1 // dwarf_reader.cc -- parse dwarf2/3 debug information
3 // Copyright 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
25 #include "elfcpp_swap.h"
28 #include "parameters.h"
30 #include "dwarf_reader.h"
34 // Read an unsigned LEB128 number. Each byte contains 7 bits of
35 // information, plus one bit saying whether the number continues or
39 read_unsigned_LEB_128(const unsigned char* buffer
, size_t* len
)
43 unsigned int shift
= 0;
50 result
|= (static_cast<uint64_t>(byte
& 0x7f)) << shift
;
60 // Read a signed LEB128 number. These are like regular LEB128
61 // numbers, except the last byte may have a sign bit set.
64 read_signed_LEB_128(const unsigned char* buffer
, size_t* len
)
75 result
|= (static_cast<uint64_t>(byte
& 0x7f) << shift
);
80 if ((shift
< 8 * static_cast<int>(sizeof(result
))) && (byte
& 0x40))
81 result
|= -((static_cast<int64_t>(1)) << shift
);
86 } // End anonymous namespace.
91 // This is the format of a DWARF2/3 line state machine that we process
92 // opcodes using. There is no need for anything outside the lineinfo
93 // processor to know how this works.
95 struct LineStateMachine
101 unsigned int shndx
; // the section address refers to
102 bool is_stmt
; // stmt means statement.
108 ResetLineStateMachine(struct LineStateMachine
* lsm
, bool default_is_stmt
)
115 lsm
->is_stmt
= default_is_stmt
;
116 lsm
->basic_block
= false;
117 lsm
->end_sequence
= false;
120 template<int size
, bool big_endian
>
121 Sized_dwarf_line_info
<size
, big_endian
>::Sized_dwarf_line_info(Object
* object
,
123 : data_valid_(false), buffer_(NULL
), symtab_buffer_(NULL
),
124 directories_(), files_(), current_header_index_(-1)
126 unsigned int debug_shndx
;
127 for (debug_shndx
= 0; debug_shndx
< object
->shnum(); ++debug_shndx
)
128 // FIXME: do this more efficiently: section_name() isn't super-fast
129 if (object
->section_name(debug_shndx
) == ".debug_line")
131 section_size_type buffer_size
;
132 this->buffer_
= object
->section_contents(debug_shndx
, &buffer_size
,
134 this->buffer_end_
= this->buffer_
+ buffer_size
;
137 if (this->buffer_
== NULL
)
140 // Find the relocation section for ".debug_line".
141 // We expect these for relobjs (.o's) but not dynobjs (.so's).
142 bool got_relocs
= false;
143 for (unsigned int reloc_shndx
= 0;
144 reloc_shndx
< object
->shnum();
147 unsigned int reloc_sh_type
= object
->section_type(reloc_shndx
);
148 if ((reloc_sh_type
== elfcpp::SHT_REL
149 || reloc_sh_type
== elfcpp::SHT_RELA
)
150 && object
->section_info(reloc_shndx
) == debug_shndx
)
152 got_relocs
= this->track_relocs_
.initialize(object
, reloc_shndx
,
158 // Finally, we need the symtab section to interpret the relocs.
161 unsigned int symtab_shndx
;
162 for (symtab_shndx
= 0; symtab_shndx
< object
->shnum(); ++symtab_shndx
)
163 if (object
->section_type(symtab_shndx
) == elfcpp::SHT_SYMTAB
)
165 this->symtab_buffer_
= object
->section_contents(
166 symtab_shndx
, &this->symtab_buffer_size_
, false);
169 if (this->symtab_buffer_
== NULL
)
173 // Now that we have successfully read all the data, parse the debug
175 this->data_valid_
= true;
176 this->read_line_mappings(read_shndx
);
179 // Read the DWARF header.
181 template<int size
, bool big_endian
>
183 Sized_dwarf_line_info
<size
, big_endian
>::read_header_prolog(
184 const unsigned char* lineptr
)
186 uint32_t initial_length
= elfcpp::Swap
<32, big_endian
>::readval(lineptr
);
189 // In DWARF2/3, if the initial length is all 1 bits, then the offset
190 // size is 8 and we need to read the next 8 bytes for the real length.
191 if (initial_length
== 0xffffffff)
193 header_
.offset_size
= 8;
194 initial_length
= elfcpp::Swap
<64, big_endian
>::readval(lineptr
);
198 header_
.offset_size
= 4;
200 header_
.total_length
= initial_length
;
202 gold_assert(lineptr
+ header_
.total_length
<= buffer_end_
);
204 header_
.version
= elfcpp::Swap
<16, big_endian
>::readval(lineptr
);
207 if (header_
.offset_size
== 4)
208 header_
.prologue_length
= elfcpp::Swap
<32, big_endian
>::readval(lineptr
);
210 header_
.prologue_length
= elfcpp::Swap
<64, big_endian
>::readval(lineptr
);
211 lineptr
+= header_
.offset_size
;
213 header_
.min_insn_length
= *lineptr
;
216 header_
.default_is_stmt
= *lineptr
;
219 header_
.line_base
= *reinterpret_cast<const signed char*>(lineptr
);
222 header_
.line_range
= *lineptr
;
225 header_
.opcode_base
= *lineptr
;
228 header_
.std_opcode_lengths
.reserve(header_
.opcode_base
+ 1);
229 header_
.std_opcode_lengths
[0] = 0;
230 for (int i
= 1; i
< header_
.opcode_base
; i
++)
232 header_
.std_opcode_lengths
[i
] = *lineptr
;
239 // The header for a debug_line section is mildly complicated, because
240 // the line info is very tightly encoded.
242 template<int size
, bool big_endian
>
244 Sized_dwarf_line_info
<size
, big_endian
>::read_header_tables(
245 const unsigned char* lineptr
)
247 ++this->current_header_index_
;
249 // Create a new directories_ entry and a new files_ entry for our new
250 // header. We initialize each with a single empty element, because
251 // dwarf indexes directory and filenames starting at 1.
252 gold_assert(static_cast<int>(this->directories_
.size())
253 == this->current_header_index_
);
254 gold_assert(static_cast<int>(this->files_
.size())
255 == this->current_header_index_
);
256 this->directories_
.push_back(std::vector
<std::string
>(1));
257 this->files_
.push_back(std::vector
<std::pair
<int, std::string
> >(1));
259 // It is legal for the directory entry table to be empty.
265 const char* dirname
= reinterpret_cast<const char*>(lineptr
);
267 == static_cast<int>(this->directories_
.back().size()));
268 this->directories_
.back().push_back(dirname
);
269 lineptr
+= this->directories_
.back().back().size() + 1;
275 // It is also legal for the file entry table to be empty.
282 const char* filename
= reinterpret_cast<const char*>(lineptr
);
283 lineptr
+= strlen(filename
) + 1;
285 uint64_t dirindex
= read_unsigned_LEB_128(lineptr
, &len
);
288 if (dirindex
>= this->directories_
.back().size())
290 int dirindexi
= static_cast<int>(dirindex
);
292 read_unsigned_LEB_128(lineptr
, &len
); // mod_time
295 read_unsigned_LEB_128(lineptr
, &len
); // filelength
298 gold_assert(fileindex
299 == static_cast<int>(this->files_
.back().size()));
300 this->files_
.back().push_back(std::make_pair(dirindexi
, filename
));
309 // Process a single opcode in the .debug.line structure.
311 // Templating on size and big_endian would yield more efficient (and
312 // simpler) code, but would bloat the binary. Speed isn't important
315 template<int size
, bool big_endian
>
317 Sized_dwarf_line_info
<size
, big_endian
>::process_one_opcode(
318 const unsigned char* start
, struct LineStateMachine
* lsm
, size_t* len
)
322 unsigned char opcode
= *start
;
326 // If the opcode is great than the opcode_base, it is a special
327 // opcode. Most line programs consist mainly of special opcodes.
328 if (opcode
>= header_
.opcode_base
)
330 opcode
-= header_
.opcode_base
;
331 const int advance_address
= ((opcode
/ header_
.line_range
)
332 * header_
.min_insn_length
);
333 lsm
->address
+= advance_address
;
335 const int advance_line
= ((opcode
% header_
.line_range
)
336 + header_
.line_base
);
337 lsm
->line_num
+= advance_line
;
338 lsm
->basic_block
= true;
343 // Otherwise, we have the regular opcodes
346 case elfcpp::DW_LNS_copy
:
347 lsm
->basic_block
= false;
351 case elfcpp::DW_LNS_advance_pc
:
353 const uint64_t advance_address
354 = read_unsigned_LEB_128(start
, &templen
);
356 lsm
->address
+= header_
.min_insn_length
* advance_address
;
360 case elfcpp::DW_LNS_advance_line
:
362 const uint64_t advance_line
= read_signed_LEB_128(start
, &templen
);
364 lsm
->line_num
+= advance_line
;
368 case elfcpp::DW_LNS_set_file
:
370 const uint64_t fileno
= read_unsigned_LEB_128(start
, &templen
);
372 lsm
->file_num
= fileno
;
376 case elfcpp::DW_LNS_set_column
:
378 const uint64_t colno
= read_unsigned_LEB_128(start
, &templen
);
380 lsm
->column_num
= colno
;
384 case elfcpp::DW_LNS_negate_stmt
:
385 lsm
->is_stmt
= !lsm
->is_stmt
;
388 case elfcpp::DW_LNS_set_basic_block
:
389 lsm
->basic_block
= true;
392 case elfcpp::DW_LNS_fixed_advance_pc
:
395 advance_address
= elfcpp::Swap
<16, big_endian
>::readval(start
);
397 lsm
->address
+= advance_address
;
401 case elfcpp::DW_LNS_const_add_pc
:
403 const int advance_address
= (header_
.min_insn_length
404 * ((255 - header_
.opcode_base
)
405 / header_
.line_range
));
406 lsm
->address
+= advance_address
;
410 case elfcpp::DW_LNS_extended_op
:
412 const uint64_t extended_op_len
413 = read_unsigned_LEB_128(start
, &templen
);
415 oplen
+= templen
+ extended_op_len
;
417 const unsigned char extended_op
= *start
;
422 case elfcpp::DW_LNE_end_sequence
:
423 // This means that the current byte is the one immediately
424 // after a set of instructions. Record the current line
425 // for up to one less than the current address.
427 lsm
->end_sequence
= true;
431 case elfcpp::DW_LNE_set_address
:
433 lsm
->address
= elfcpp::Swap
<size
, big_endian
>::readval(start
);
434 typename
Reloc_map::const_iterator it
435 = reloc_map_
.find(start
- this->buffer_
);
436 if (it
!= reloc_map_
.end())
439 lsm
->address
+= it
->second
.second
;
440 lsm
->shndx
= it
->second
.first
;
444 // If we're a normal .o file, with relocs, every
445 // set_address should have an associated relocation.
446 if (this->input_is_relobj())
447 this->data_valid_
= false;
451 case elfcpp::DW_LNE_define_file
:
453 const char* filename
= reinterpret_cast<const char*>(start
);
454 templen
= strlen(filename
) + 1;
457 uint64_t dirindex
= read_unsigned_LEB_128(start
, &templen
);
460 if (dirindex
>= this->directories_
.back().size())
462 int dirindexi
= static_cast<int>(dirindex
);
464 read_unsigned_LEB_128(start
, &templen
); // mod_time
467 read_unsigned_LEB_128(start
, &templen
); // filelength
470 this->files_
.back().push_back(std::make_pair(dirindexi
,
480 // Ignore unknown opcode silently
481 for (int i
= 0; i
< header_
.std_opcode_lengths
[opcode
]; i
++)
484 read_unsigned_LEB_128(start
, &templen
);
495 // Read the debug information at LINEPTR and store it in the line
498 template<int size
, bool big_endian
>
500 Sized_dwarf_line_info
<size
, big_endian
>::read_lines(unsigned const char* lineptr
,
503 struct LineStateMachine lsm
;
505 // LENGTHSTART is the place the length field is based on. It is the
506 // point in the header after the initial length field.
507 const unsigned char* lengthstart
= buffer_
;
509 // In 64 bit dwarf, the initial length is 12 bytes, because of the
510 // 0xffffffff at the start.
511 if (header_
.offset_size
== 8)
516 while (lineptr
< lengthstart
+ header_
.total_length
)
518 ResetLineStateMachine(&lsm
, header_
.default_is_stmt
);
519 while (!lsm
.end_sequence
)
522 bool add_line
= this->process_one_opcode(lineptr
, &lsm
, &oplength
);
524 && (shndx
== -1U || lsm
.shndx
== -1U || shndx
== lsm
.shndx
))
526 Offset_to_lineno_entry entry
527 = { lsm
.address
, this->current_header_index_
,
528 lsm
.file_num
, lsm
.line_num
};
529 line_number_map_
[lsm
.shndx
].push_back(entry
);
535 return lengthstart
+ header_
.total_length
;
538 // Looks in the symtab to see what section a symbol is in.
540 template<int size
, bool big_endian
>
542 Sized_dwarf_line_info
<size
, big_endian
>::symbol_section(
544 typename
elfcpp::Elf_types
<size
>::Elf_Addr
* value
)
546 const int symsize
= elfcpp::Elf_sizes
<size
>::sym_size
;
547 gold_assert(sym
* symsize
< this->symtab_buffer_size_
);
548 elfcpp::Sym
<size
, big_endian
> elfsym(this->symtab_buffer_
+ sym
* symsize
);
549 *value
= elfsym
.get_st_value();
550 return elfsym
.get_st_shndx();
553 // Read the relocations into a Reloc_map.
555 template<int size
, bool big_endian
>
557 Sized_dwarf_line_info
<size
, big_endian
>::read_relocs()
559 if (this->symtab_buffer_
== NULL
)
562 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
;
564 while ((reloc_offset
= this->track_relocs_
.next_offset()) != -1)
566 const unsigned int sym
= this->track_relocs_
.next_symndx();
567 const unsigned int shndx
= this->symbol_section(sym
, &value
);
568 this->reloc_map_
[reloc_offset
] = std::make_pair(shndx
, value
);
569 this->track_relocs_
.advance(reloc_offset
+ 1);
573 // Read the line number info.
575 template<int size
, bool big_endian
>
577 Sized_dwarf_line_info
<size
, big_endian
>::read_line_mappings(off_t shndx
)
579 gold_assert(this->data_valid_
== true);
582 while (this->buffer_
< this->buffer_end_
)
584 const unsigned char* lineptr
= this->buffer_
;
585 lineptr
= this->read_header_prolog(lineptr
);
586 lineptr
= this->read_header_tables(lineptr
);
587 lineptr
= this->read_lines(lineptr
, shndx
);
588 this->buffer_
= lineptr
;
591 // Sort the lines numbers, so addr2line can use binary search.
592 for (typename
Lineno_map::iterator it
= line_number_map_
.begin();
593 it
!= line_number_map_
.end();
595 // Each vector needs to be sorted by offset.
596 std::sort(it
->second
.begin(), it
->second
.end());
599 // Some processing depends on whether the input is a .o file or not.
600 // For instance, .o files have relocs, and have .debug_lines
601 // information on a per section basis. .so files, on the other hand,
602 // lack relocs, and offsets are unique, so we can ignore the section
605 template<int size
, bool big_endian
>
607 Sized_dwarf_line_info
<size
, big_endian
>::input_is_relobj()
609 // Only .o files have relocs and the symtab buffer that goes with them.
610 return this->symtab_buffer_
!= NULL
;
613 // Given an Offset_to_lineno_entry vector, and an offset, figure out
614 // if the offset points into a function according to the vector (see
615 // comments below for the algorithm). If it does, return an iterator
616 // into the vector that points to the line-number that contains that
617 // offset. If not, it returns vector::end().
619 static std::vector
<Offset_to_lineno_entry
>::const_iterator
620 offset_to_iterator(const std::vector
<Offset_to_lineno_entry
>* offsets
,
623 const Offset_to_lineno_entry lookup_key
= { offset
, 0, 0, 0 };
625 // lower_bound() returns the smallest offset which is >= lookup_key.
626 // If no offset in offsets is >= lookup_key, returns end().
627 std::vector
<Offset_to_lineno_entry
>::const_iterator it
628 = std::lower_bound(offsets
->begin(), offsets
->end(), lookup_key
);
630 // This code is easiest to understand with a concrete example.
631 // Here's a possible offsets array:
632 // {{offset = 3211, header_num = 0, file_num = 1, line_num = 16}, // 0
633 // {offset = 3224, header_num = 0, file_num = 1, line_num = 20}, // 1
634 // {offset = 3226, header_num = 0, file_num = 1, line_num = 22}, // 2
635 // {offset = 3231, header_num = 0, file_num = 1, line_num = 25}, // 3
636 // {offset = 3232, header_num = 0, file_num = 1, line_num = -1}, // 4
637 // {offset = 3232, header_num = 0, file_num = 1, line_num = 65}, // 5
638 // {offset = 3235, header_num = 0, file_num = 1, line_num = 66}, // 6
639 // {offset = 3236, header_num = 0, file_num = 1, line_num = -1}, // 7
640 // {offset = 5764, header_num = 0, file_num = 1, line_num = 47}, // 8
641 // {offset = 5765, header_num = 0, file_num = 1, line_num = 48}, // 9
642 // {offset = 5767, header_num = 0, file_num = 1, line_num = 49}, // 10
643 // {offset = 5768, header_num = 0, file_num = 1, line_num = 50}, // 11
644 // {offset = 5773, header_num = 0, file_num = 1, line_num = -1}, // 12
645 // {offset = 5787, header_num = 1, file_num = 1, line_num = 19}, // 13
646 // {offset = 5790, header_num = 1, file_num = 1, line_num = 20}, // 14
647 // {offset = 5793, header_num = 1, file_num = 1, line_num = 67}, // 15
648 // {offset = 5793, header_num = 1, file_num = 1, line_num = -1}, // 16
649 // {offset = 5795, header_num = 1, file_num = 1, line_num = 68}, // 17
650 // {offset = 5798, header_num = 1, file_num = 1, line_num = -1}, // 18
651 // The entries with line_num == -1 mark the end of a function: the
652 // associated offset is one past the last instruction in the
653 // function. This can correspond to the beginning of the next
654 // function (as is true for offset 3232); alternately, there can be
655 // a gap between the end of one function and the start of the next
656 // (as is true for some others, most obviously from 3236->5764).
658 // Case 1: lookup_key has offset == 10. lower_bound returns
659 // offsets[0]. Since it's not an exact match and we're
660 // at the beginning of offsets, we return end() (invalid).
661 // Case 2: lookup_key has offset 10000. lower_bound returns
662 // offset[19] (end()). We return end() (invalid).
663 // Case 3: lookup_key has offset == 3211. lower_bound matches
664 // offsets[0] exactly, and that's the entry we return.
665 // Case 4: lookup_key has offset == 3232. lower_bound returns
666 // offsets[4]. That's an exact match, but indicates
667 // end-of-function. We check if offsets[5] is also an
668 // exact match but not end-of-function. It is, so we
669 // return offsets[5].
670 // Case 5: lookup_key has offset == 3214. lower_bound returns
671 // offsets[1]. Since it's not an exact match, we back
672 // up to the offset that's < lookup_key, offsets[0].
673 // We note offsets[0] is a valid entry (not end-of-function),
674 // so that's the entry we return.
675 // Case 6: lookup_key has offset == 4000. lower_bound returns
676 // offsets[8]. Since it's not an exact match, we back
677 // up to offsets[7]. Since offsets[7] indicates
678 // end-of-function, we know lookup_key is between
679 // functions, so we return end() (not a valid offset).
680 // Case 7: lookup_key has offset == 5794. lower_bound returns
681 // offsets[17]. Since it's not an exact match, we back
682 // up to offsets[15]. Note we back up to the *first*
683 // entry with offset 5793, not just offsets[17-1].
684 // We note offsets[15] is a valid entry, so we return it.
685 // If offsets[15] had had line_num == -1, we would have
686 // checked offsets[16]. The reason for this is that
687 // 15 and 16 can be in an arbitrary order, since we sort
688 // only by offset. (Note it doesn't help to use line_number
689 // as a secondary sort key, since sometimes we want the -1
690 // to be first and sometimes we want it to be last.)
692 // This deals with cases (1) and (2).
693 if ((it
== offsets
->begin() && offset
< it
->offset
)
694 || it
== offsets
->end())
695 return offsets
->end();
697 // This deals with cases (3) and (4).
698 if (offset
== it
->offset
)
700 while (it
!= offsets
->end()
701 && it
->offset
== offset
702 && it
->line_num
== -1)
704 if (it
== offsets
->end() || it
->offset
!= offset
)
705 return offsets
->end();
710 // This handles the first part of case (7) -- we back up to the
711 // *first* entry that has the offset that's behind us.
712 gold_assert(it
!= offsets
->begin());
713 std::vector
<Offset_to_lineno_entry
>::const_iterator range_end
= it
;
715 const off_t range_value
= it
->offset
;
716 while (it
!= offsets
->begin() && (it
-1)->offset
== range_value
)
719 // This handles cases (5), (6), and (7): if any entry in the
720 // equal_range [it, range_end) has a line_num != -1, it's a valid
721 // match. If not, we're not in a function.
722 for (; it
!= range_end
; ++it
)
723 if (it
->line_num
!= -1)
725 return offsets
->end();
728 // Return a string for a file name and line number.
730 template<int size
, bool big_endian
>
732 Sized_dwarf_line_info
<size
, big_endian
>::do_addr2line(unsigned int shndx
,
735 if (this->data_valid_
== false)
738 const std::vector
<Offset_to_lineno_entry
>* offsets
;
739 // If we do not have reloc information, then our input is a .so or
740 // some similar data structure where all the information is held in
741 // the offset. In that case, we ignore the input shndx.
742 if (this->input_is_relobj())
743 offsets
= &this->line_number_map_
[shndx
];
745 offsets
= &this->line_number_map_
[-1U];
746 if (offsets
->empty())
749 typename
std::vector
<Offset_to_lineno_entry
>::const_iterator it
750 = offset_to_iterator(offsets
, offset
);
751 if (it
== offsets
->end())
754 // Convert the file_num + line_num into a string.
757 gold_assert(it
->header_num
< static_cast<int>(this->files_
.size()));
758 gold_assert(it
->file_num
759 < static_cast<int>(this->files_
[it
->header_num
].size()));
760 const std::pair
<int, std::string
>& filename_pair
761 = this->files_
[it
->header_num
][it
->file_num
];
762 const std::string
& filename
= filename_pair
.second
;
764 gold_assert(it
->header_num
< static_cast<int>(this->directories_
.size()));
765 gold_assert(filename_pair
.first
766 < static_cast<int>(this->directories_
[it
->header_num
].size()));
767 const std::string
& dirname
768 = this->directories_
[it
->header_num
][filename_pair
.first
];
770 if (!dirname
.empty())
779 char buffer
[64]; // enough to hold a line number
780 snprintf(buffer
, sizeof(buffer
), "%d", it
->line_num
);
787 // Dwarf_line_info routines.
790 Dwarf_line_info::one_addr2line(Object
* object
,
791 unsigned int shndx
, off_t offset
)
793 if (parameters
->get_size() == 32 && !parameters
->is_big_endian())
794 #ifdef HAVE_TARGET_32_LITTLE
795 return Sized_dwarf_line_info
<32, false>(object
, shndx
).addr2line(shndx
,
800 else if (parameters
->get_size() == 32 && parameters
->is_big_endian())
801 #ifdef HAVE_TARGET_32_BIG
802 return Sized_dwarf_line_info
<32, true>(object
, shndx
).addr2line(shndx
,
807 else if (parameters
->get_size() == 64 && !parameters
->is_big_endian())
808 #ifdef HAVE_TARGET_64_LITTLE
809 return Sized_dwarf_line_info
<64, false>(object
, shndx
).addr2line(shndx
,
814 else if (parameters
->get_size() == 64 && parameters
->is_big_endian())
815 #ifdef HAVE_TARGET_64_BIT
816 return Sized_dwarf_line_info
<64, true>(object
, shndx
).addr2line(shndx
,
825 #ifdef HAVE_TARGET_32_LITTLE
827 class Sized_dwarf_line_info
<32, false>;
830 #ifdef HAVE_TARGET_32_BIG
832 class Sized_dwarf_line_info
<32, true>;
835 #ifdef HAVE_TARGET_64_LITTLE
837 class Sized_dwarf_line_info
<64, false>;
840 #ifdef HAVE_TARGET_64_BIG
842 class Sized_dwarf_line_info
<64, true>;
845 } // End namespace gold.