1 // dynobj.cc -- dynamic object support for gold
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "parameters.h"
40 // Sets up the default soname_ to use, in the (rare) cases we never
41 // see a DT_SONAME entry.
43 Dynobj::Dynobj(const std::string
& name
, Input_file
* input_file
, off_t offset
)
44 : Object(name
, input_file
, true, offset
),
46 unknown_needed_(UNKNOWN_NEEDED_UNSET
)
48 // This will be overridden by a DT_SONAME entry, hopefully. But if
49 // we never see a DT_SONAME entry, our rule is to use the dynamic
50 // object's filename. The only exception is when the dynamic object
51 // is part of an archive (so the filename is the archive's
52 // filename). In that case, we use just the dynobj's name-in-archive.
53 this->soname_
= this->input_file()->found_name();
54 if (this->offset() != 0)
56 std::string::size_type open_paren
= this->name().find('(');
57 std::string::size_type close_paren
= this->name().find(')');
58 if (open_paren
!= std::string::npos
&& close_paren
!= std::string::npos
)
60 // It's an archive, and name() is of the form 'foo.a(bar.so)'.
61 this->soname_
= this->name().substr(open_paren
+ 1,
62 close_paren
- (open_paren
+ 1));
67 // Class Sized_dynobj.
69 template<int size
, bool big_endian
>
70 Sized_dynobj
<size
, big_endian
>::Sized_dynobj(
71 const std::string
& name
,
72 Input_file
* input_file
,
74 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
75 : Dynobj(name
, input_file
, offset
),
82 template<int size
, bool big_endian
>
84 Sized_dynobj
<size
, big_endian
>::setup(
85 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
87 this->set_target(ehdr
.get_e_machine(), size
, big_endian
,
88 ehdr
.get_e_ident()[elfcpp::EI_OSABI
],
89 ehdr
.get_e_ident()[elfcpp::EI_ABIVERSION
]);
91 const unsigned int shnum
= this->elf_file_
.shnum();
92 this->set_shnum(shnum
);
95 // Find the SHT_DYNSYM section and the various version sections, and
96 // the dynamic section, given the section headers.
98 template<int size
, bool big_endian
>
100 Sized_dynobj
<size
, big_endian
>::find_dynsym_sections(
101 const unsigned char* pshdrs
,
102 unsigned int* pdynsym_shndx
,
103 unsigned int* pversym_shndx
,
104 unsigned int* pverdef_shndx
,
105 unsigned int* pverneed_shndx
,
106 unsigned int* pdynamic_shndx
)
108 *pdynsym_shndx
= -1U;
109 *pversym_shndx
= -1U;
110 *pverdef_shndx
= -1U;
111 *pverneed_shndx
= -1U;
112 *pdynamic_shndx
= -1U;
114 const unsigned int shnum
= this->shnum();
115 const unsigned char* p
= pshdrs
;
116 for (unsigned int i
= 0; i
< shnum
; ++i
, p
+= This::shdr_size
)
118 typename
This::Shdr
shdr(p
);
121 switch (shdr
.get_sh_type())
123 case elfcpp::SHT_DYNSYM
:
126 case elfcpp::SHT_GNU_versym
:
129 case elfcpp::SHT_GNU_verdef
:
132 case elfcpp::SHT_GNU_verneed
:
135 case elfcpp::SHT_DYNAMIC
:
147 this->error(_("unexpected duplicate type %u section: %u, %u"),
148 shdr
.get_sh_type(), *pi
, i
);
154 // Read the contents of section SHNDX. PSHDRS points to the section
155 // headers. TYPE is the expected section type. LINK is the expected
156 // section link. Store the data in *VIEW and *VIEW_SIZE. The
157 // section's sh_info field is stored in *VIEW_INFO.
159 template<int size
, bool big_endian
>
161 Sized_dynobj
<size
, big_endian
>::read_dynsym_section(
162 const unsigned char* pshdrs
,
167 section_size_type
* view_size
,
168 unsigned int* view_info
)
178 typename
This::Shdr
shdr(pshdrs
+ shndx
* This::shdr_size
);
180 gold_assert(shdr
.get_sh_type() == type
);
182 if (shdr
.get_sh_link() != link
)
183 this->error(_("unexpected link in section %u header: %u != %u"),
184 shndx
, shdr
.get_sh_link(), link
);
186 *view
= this->get_lasting_view(shdr
.get_sh_offset(), shdr
.get_sh_size(),
188 *view_size
= convert_to_section_size_type(shdr
.get_sh_size());
189 *view_info
= shdr
.get_sh_info();
192 // Read the dynamic tags. Set the soname field if this shared object
193 // has a DT_SONAME tag. Record the DT_NEEDED tags. PSHDRS points to
194 // the section headers. DYNAMIC_SHNDX is the section index of the
195 // SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the
196 // section index and contents of a string table which may be the one
197 // associated with the SHT_DYNAMIC section.
199 template<int size
, bool big_endian
>
201 Sized_dynobj
<size
, big_endian
>::read_dynamic(const unsigned char* pshdrs
,
202 unsigned int dynamic_shndx
,
203 unsigned int strtab_shndx
,
204 const unsigned char* strtabu
,
207 typename
This::Shdr
dynamicshdr(pshdrs
+ dynamic_shndx
* This::shdr_size
);
208 gold_assert(dynamicshdr
.get_sh_type() == elfcpp::SHT_DYNAMIC
);
210 const off_t dynamic_size
= dynamicshdr
.get_sh_size();
211 const unsigned char* pdynamic
= this->get_view(dynamicshdr
.get_sh_offset(),
212 dynamic_size
, false);
214 const unsigned int link
= dynamicshdr
.get_sh_link();
215 if (link
!= strtab_shndx
)
217 if (link
>= this->shnum())
219 this->error(_("DYNAMIC section %u link out of range: %u"),
220 dynamic_shndx
, link
);
224 typename
This::Shdr
strtabshdr(pshdrs
+ link
* This::shdr_size
);
225 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
227 this->error(_("DYNAMIC section %u link %u is not a strtab"),
228 dynamic_shndx
, link
);
232 strtab_size
= strtabshdr
.get_sh_size();
233 strtabu
= this->get_view(strtabshdr
.get_sh_offset(), strtab_size
, false);
236 const char* const strtab
= reinterpret_cast<const char*>(strtabu
);
238 for (const unsigned char* p
= pdynamic
;
239 p
< pdynamic
+ dynamic_size
;
242 typename
This::Dyn
dyn(p
);
244 switch (dyn
.get_d_tag())
246 case elfcpp::DT_NULL
:
247 // We should always see DT_NULL at the end of the dynamic
251 case elfcpp::DT_SONAME
:
253 off_t val
= dyn
.get_d_val();
254 if (val
>= strtab_size
)
255 this->error(_("DT_SONAME value out of range: %lld >= %lld"),
256 static_cast<long long>(val
),
257 static_cast<long long>(strtab_size
));
259 this->set_soname_string(strtab
+ val
);
263 case elfcpp::DT_NEEDED
:
265 off_t val
= dyn
.get_d_val();
266 if (val
>= strtab_size
)
267 this->error(_("DT_NEEDED value out of range: %lld >= %lld"),
268 static_cast<long long>(val
),
269 static_cast<long long>(strtab_size
));
271 this->add_needed(strtab
+ val
);
280 this->error(_("missing DT_NULL in dynamic segment"));
283 // Read the symbols and sections from a dynamic object. We read the
284 // dynamic symbols, not the normal symbols.
286 template<int size
, bool big_endian
>
288 Sized_dynobj
<size
, big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
290 this->read_section_data(&this->elf_file_
, sd
);
292 const unsigned char* const pshdrs
= sd
->section_headers
->data();
294 unsigned int dynsym_shndx
;
295 unsigned int versym_shndx
;
296 unsigned int verdef_shndx
;
297 unsigned int verneed_shndx
;
298 unsigned int dynamic_shndx
;
299 this->find_dynsym_sections(pshdrs
, &dynsym_shndx
, &versym_shndx
,
300 &verdef_shndx
, &verneed_shndx
, &dynamic_shndx
);
302 unsigned int strtab_shndx
= -1U;
305 sd
->symbols_size
= 0;
306 sd
->external_symbols_offset
= 0;
307 sd
->symbol_names
= NULL
;
308 sd
->symbol_names_size
= 0;
310 if (dynsym_shndx
!= -1U)
312 // Get the dynamic symbols.
313 typename
This::Shdr
dynsymshdr(pshdrs
+ dynsym_shndx
* This::shdr_size
);
314 gold_assert(dynsymshdr
.get_sh_type() == elfcpp::SHT_DYNSYM
);
316 sd
->symbols
= this->get_lasting_view(dynsymshdr
.get_sh_offset(),
317 dynsymshdr
.get_sh_size(), false);
319 convert_to_section_size_type(dynsymshdr
.get_sh_size());
321 // Get the symbol names.
322 strtab_shndx
= dynsymshdr
.get_sh_link();
323 if (strtab_shndx
>= this->shnum())
325 this->error(_("invalid dynamic symbol table name index: %u"),
329 typename
This::Shdr
strtabshdr(pshdrs
+ strtab_shndx
* This::shdr_size
);
330 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
332 this->error(_("dynamic symbol table name section "
333 "has wrong type: %u"),
334 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
338 sd
->symbol_names
= this->get_lasting_view(strtabshdr
.get_sh_offset(),
339 strtabshdr
.get_sh_size(),
341 sd
->symbol_names_size
=
342 convert_to_section_size_type(strtabshdr
.get_sh_size());
344 // Get the version information.
347 this->read_dynsym_section(pshdrs
, versym_shndx
, elfcpp::SHT_GNU_versym
,
348 dynsym_shndx
, &sd
->versym
, &sd
->versym_size
,
351 // We require that the version definition and need section link
352 // to the same string table as the dynamic symbol table. This
353 // is not a technical requirement, but it always happens in
354 // practice. We could change this if necessary.
356 this->read_dynsym_section(pshdrs
, verdef_shndx
, elfcpp::SHT_GNU_verdef
,
357 strtab_shndx
, &sd
->verdef
, &sd
->verdef_size
,
360 this->read_dynsym_section(pshdrs
, verneed_shndx
, elfcpp::SHT_GNU_verneed
,
361 strtab_shndx
, &sd
->verneed
, &sd
->verneed_size
,
365 // Read the SHT_DYNAMIC section to find whether this shared object
366 // has a DT_SONAME tag and to record any DT_NEEDED tags. This
367 // doesn't really have anything to do with reading the symbols, but
368 // this is a convenient place to do it.
369 if (dynamic_shndx
!= -1U)
370 this->read_dynamic(pshdrs
, dynamic_shndx
, strtab_shndx
,
371 (sd
->symbol_names
== NULL
373 : sd
->symbol_names
->data()),
374 sd
->symbol_names_size
);
377 // Lay out the input sections for a dynamic object. We don't want to
378 // include sections from a dynamic object, so all that we actually do
379 // here is check for .gnu.warning sections.
381 template<int size
, bool big_endian
>
383 Sized_dynobj
<size
, big_endian
>::do_layout(Symbol_table
* symtab
,
385 Read_symbols_data
* sd
)
387 const unsigned int shnum
= this->shnum();
391 // Get the section headers.
392 const unsigned char* pshdrs
= sd
->section_headers
->data();
394 // Get the section names.
395 const unsigned char* pnamesu
= sd
->section_names
->data();
396 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
398 // Skip the first, dummy, section.
399 pshdrs
+= This::shdr_size
;
400 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
402 typename
This::Shdr
shdr(pshdrs
);
404 if (shdr
.get_sh_name() >= sd
->section_names_size
)
406 this->error(_("bad section name offset for section %u: %lu"),
407 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
411 const char* name
= pnames
+ shdr
.get_sh_name();
413 this->handle_gnu_warning_section(name
, i
, symtab
);
416 delete sd
->section_headers
;
417 sd
->section_headers
= NULL
;
418 delete sd
->section_names
;
419 sd
->section_names
= NULL
;
422 // Add an entry to the vector mapping version numbers to version
425 template<int size
, bool big_endian
>
427 Sized_dynobj
<size
, big_endian
>::set_version_map(
428 Version_map
* version_map
,
430 const char* name
) const
432 if (ndx
>= version_map
->size())
433 version_map
->resize(ndx
+ 1);
434 if ((*version_map
)[ndx
] != NULL
)
435 this->error(_("duplicate definition for version %u"), ndx
);
436 (*version_map
)[ndx
] = name
;
439 // Add mappings for the version definitions to VERSION_MAP.
441 template<int size
, bool big_endian
>
443 Sized_dynobj
<size
, big_endian
>::make_verdef_map(
444 Read_symbols_data
* sd
,
445 Version_map
* version_map
) const
447 if (sd
->verdef
== NULL
)
450 const char* names
= reinterpret_cast<const char*>(sd
->symbol_names
->data());
451 section_size_type names_size
= sd
->symbol_names_size
;
453 const unsigned char* pverdef
= sd
->verdef
->data();
454 section_size_type verdef_size
= sd
->verdef_size
;
455 const unsigned int count
= sd
->verdef_info
;
457 const unsigned char* p
= pverdef
;
458 for (unsigned int i
= 0; i
< count
; ++i
)
460 elfcpp::Verdef
<size
, big_endian
> verdef(p
);
462 if (verdef
.get_vd_version() != elfcpp::VER_DEF_CURRENT
)
464 this->error(_("unexpected verdef version %u"),
465 verdef
.get_vd_version());
469 const section_size_type vd_ndx
= verdef
.get_vd_ndx();
471 // The GNU linker clears the VERSYM_HIDDEN bit. I'm not
474 // The first Verdaux holds the name of this version. Subsequent
475 // ones are versions that this one depends upon, which we don't
477 const section_size_type vd_cnt
= verdef
.get_vd_cnt();
480 this->error(_("verdef vd_cnt field too small: %u"),
481 static_cast<unsigned int>(vd_cnt
));
485 const section_size_type vd_aux
= verdef
.get_vd_aux();
486 if ((p
- pverdef
) + vd_aux
>= verdef_size
)
488 this->error(_("verdef vd_aux field out of range: %u"),
489 static_cast<unsigned int>(vd_aux
));
493 const unsigned char* pvda
= p
+ vd_aux
;
494 elfcpp::Verdaux
<size
, big_endian
> verdaux(pvda
);
496 const section_size_type vda_name
= verdaux
.get_vda_name();
497 if (vda_name
>= names_size
)
499 this->error(_("verdaux vda_name field out of range: %u"),
500 static_cast<unsigned int>(vda_name
));
504 this->set_version_map(version_map
, vd_ndx
, names
+ vda_name
);
506 const section_size_type vd_next
= verdef
.get_vd_next();
507 if ((p
- pverdef
) + vd_next
>= verdef_size
)
509 this->error(_("verdef vd_next field out of range: %u"),
510 static_cast<unsigned int>(vd_next
));
518 // Add mappings for the required versions to VERSION_MAP.
520 template<int size
, bool big_endian
>
522 Sized_dynobj
<size
, big_endian
>::make_verneed_map(
523 Read_symbols_data
* sd
,
524 Version_map
* version_map
) const
526 if (sd
->verneed
== NULL
)
529 const char* names
= reinterpret_cast<const char*>(sd
->symbol_names
->data());
530 section_size_type names_size
= sd
->symbol_names_size
;
532 const unsigned char* pverneed
= sd
->verneed
->data();
533 const section_size_type verneed_size
= sd
->verneed_size
;
534 const unsigned int count
= sd
->verneed_info
;
536 const unsigned char* p
= pverneed
;
537 for (unsigned int i
= 0; i
< count
; ++i
)
539 elfcpp::Verneed
<size
, big_endian
> verneed(p
);
541 if (verneed
.get_vn_version() != elfcpp::VER_NEED_CURRENT
)
543 this->error(_("unexpected verneed version %u"),
544 verneed
.get_vn_version());
548 const section_size_type vn_aux
= verneed
.get_vn_aux();
550 if ((p
- pverneed
) + vn_aux
>= verneed_size
)
552 this->error(_("verneed vn_aux field out of range: %u"),
553 static_cast<unsigned int>(vn_aux
));
557 const unsigned int vn_cnt
= verneed
.get_vn_cnt();
558 const unsigned char* pvna
= p
+ vn_aux
;
559 for (unsigned int j
= 0; j
< vn_cnt
; ++j
)
561 elfcpp::Vernaux
<size
, big_endian
> vernaux(pvna
);
563 const unsigned int vna_name
= vernaux
.get_vna_name();
564 if (vna_name
>= names_size
)
566 this->error(_("vernaux vna_name field out of range: %u"),
567 static_cast<unsigned int>(vna_name
));
571 this->set_version_map(version_map
, vernaux
.get_vna_other(),
574 const section_size_type vna_next
= vernaux
.get_vna_next();
575 if ((pvna
- pverneed
) + vna_next
>= verneed_size
)
577 this->error(_("verneed vna_next field out of range: %u"),
578 static_cast<unsigned int>(vna_next
));
585 const section_size_type vn_next
= verneed
.get_vn_next();
586 if ((p
- pverneed
) + vn_next
>= verneed_size
)
588 this->error(_("verneed vn_next field out of range: %u"),
589 static_cast<unsigned int>(vn_next
));
597 // Create a vector mapping version numbers to version strings.
599 template<int size
, bool big_endian
>
601 Sized_dynobj
<size
, big_endian
>::make_version_map(
602 Read_symbols_data
* sd
,
603 Version_map
* version_map
) const
605 if (sd
->verdef
== NULL
&& sd
->verneed
== NULL
)
608 // A guess at the maximum version number we will see. If this is
609 // wrong we will be less efficient but still correct.
610 version_map
->reserve(sd
->verdef_info
+ sd
->verneed_info
* 10);
612 this->make_verdef_map(sd
, version_map
);
613 this->make_verneed_map(sd
, version_map
);
616 // Add the dynamic symbols to the symbol table.
618 template<int size
, bool big_endian
>
620 Sized_dynobj
<size
, big_endian
>::do_add_symbols(Symbol_table
* symtab
,
621 Read_symbols_data
* sd
)
623 if (sd
->symbols
== NULL
)
625 gold_assert(sd
->symbol_names
== NULL
);
626 gold_assert(sd
->versym
== NULL
&& sd
->verdef
== NULL
627 && sd
->verneed
== NULL
);
631 const int sym_size
= This::sym_size
;
632 const size_t symcount
= sd
->symbols_size
/ sym_size
;
633 gold_assert(sd
->external_symbols_offset
== 0);
634 if (symcount
* sym_size
!= sd
->symbols_size
)
636 this->error(_("size of dynamic symbols is not multiple of symbol size"));
640 Version_map version_map
;
641 this->make_version_map(sd
, &version_map
);
643 const char* sym_names
=
644 reinterpret_cast<const char*>(sd
->symbol_names
->data());
645 symtab
->add_from_dynobj(this, sd
->symbols
->data(), symcount
,
646 sym_names
, sd
->symbol_names_size
,
649 : sd
->versym
->data()),
655 delete sd
->symbol_names
;
656 sd
->symbol_names
= NULL
;
657 if (sd
->versym
!= NULL
)
662 if (sd
->verdef
!= NULL
)
667 if (sd
->verneed
!= NULL
)
673 // This is normally the last time we will read any data from this
675 this->clear_view_cache_marks();
678 // Given a vector of hash codes, compute the number of hash buckets to
682 Dynobj::compute_bucket_count(const std::vector
<uint32_t>& hashcodes
,
683 bool for_gnu_hash_table
)
685 // FIXME: Implement optional hash table optimization.
687 // Array used to determine the number of hash table buckets to use
688 // based on the number of symbols there are. If there are fewer
689 // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3
690 // buckets, fewer than 37 we use 17 buckets, and so forth. We never
691 // use more than 32771 buckets. This is straight from the old GNU
693 static const unsigned int buckets
[] =
695 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
698 const int buckets_count
= sizeof buckets
/ sizeof buckets
[0];
700 unsigned int symcount
= hashcodes
.size();
701 unsigned int ret
= 1;
702 for (int i
= 0; i
< buckets_count
; ++i
)
704 if (symcount
< buckets
[i
])
709 if (for_gnu_hash_table
&& ret
< 2)
715 // The standard ELF hash function. This hash function must not
716 // change, as the dynamic linker uses it also.
719 Dynobj::elf_hash(const char* name
)
721 const unsigned char* nameu
= reinterpret_cast<const unsigned char*>(name
);
724 while ((c
= *nameu
++) != '\0')
727 uint32_t g
= h
& 0xf0000000;
731 // The ELF ABI says h &= ~g, but using xor is equivalent in
732 // this case (since g was set from h) and may save one
740 // Create a standard ELF hash table, setting *PPHASH and *PHASHLEN.
741 // DYNSYMS is a vector with all the global dynamic symbols.
742 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
746 Dynobj::create_elf_hash_table(const std::vector
<Symbol
*>& dynsyms
,
747 unsigned int local_dynsym_count
,
748 unsigned char** pphash
,
749 unsigned int* phashlen
)
751 unsigned int dynsym_count
= dynsyms
.size();
753 // Get the hash values for all the symbols.
754 std::vector
<uint32_t> dynsym_hashvals(dynsym_count
);
755 for (unsigned int i
= 0; i
< dynsym_count
; ++i
)
756 dynsym_hashvals
[i
] = Dynobj::elf_hash(dynsyms
[i
]->name());
758 const unsigned int bucketcount
=
759 Dynobj::compute_bucket_count(dynsym_hashvals
, false);
761 std::vector
<uint32_t> bucket(bucketcount
);
762 std::vector
<uint32_t> chain(local_dynsym_count
+ dynsym_count
);
764 for (unsigned int i
= 0; i
< dynsym_count
; ++i
)
766 unsigned int dynsym_index
= dynsyms
[i
]->dynsym_index();
767 unsigned int bucketpos
= dynsym_hashvals
[i
] % bucketcount
;
768 chain
[dynsym_index
] = bucket
[bucketpos
];
769 bucket
[bucketpos
] = dynsym_index
;
772 unsigned int hashlen
= ((2
777 unsigned char* phash
= new unsigned char[hashlen
];
779 if (parameters
->is_big_endian())
781 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
782 Dynobj::sized_create_elf_hash_table
<true>(bucket
, chain
, phash
,
790 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
791 Dynobj::sized_create_elf_hash_table
<false>(bucket
, chain
, phash
,
802 // Fill in an ELF hash table.
804 template<bool big_endian
>
806 Dynobj::sized_create_elf_hash_table(const std::vector
<uint32_t>& bucket
,
807 const std::vector
<uint32_t>& chain
,
808 unsigned char* phash
,
809 unsigned int hashlen
)
811 unsigned char* p
= phash
;
813 const unsigned int bucketcount
= bucket
.size();
814 const unsigned int chaincount
= chain
.size();
816 elfcpp::Swap
<32, big_endian
>::writeval(p
, bucketcount
);
818 elfcpp::Swap
<32, big_endian
>::writeval(p
, chaincount
);
821 for (unsigned int i
= 0; i
< bucketcount
; ++i
)
823 elfcpp::Swap
<32, big_endian
>::writeval(p
, bucket
[i
]);
827 for (unsigned int i
= 0; i
< chaincount
; ++i
)
829 elfcpp::Swap
<32, big_endian
>::writeval(p
, chain
[i
]);
833 gold_assert(static_cast<unsigned int>(p
- phash
) == hashlen
);
836 // The hash function used for the GNU hash table. This hash function
837 // must not change, as the dynamic linker uses it also.
840 Dynobj::gnu_hash(const char* name
)
842 const unsigned char* nameu
= reinterpret_cast<const unsigned char*>(name
);
845 while ((c
= *nameu
++) != '\0')
846 h
= (h
<< 5) + h
+ c
;
850 // Create a GNU hash table, setting *PPHASH and *PHASHLEN. GNU hash
851 // tables are an extension to ELF which are recognized by the GNU
852 // dynamic linker. They are referenced using dynamic tag DT_GNU_HASH.
853 // TARGET is the target. DYNSYMS is a vector with all the global
854 // symbols which will be going into the dynamic symbol table.
855 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
859 Dynobj::create_gnu_hash_table(const std::vector
<Symbol
*>& dynsyms
,
860 unsigned int local_dynsym_count
,
861 unsigned char** pphash
,
862 unsigned int* phashlen
)
864 const unsigned int count
= dynsyms
.size();
866 // Sort the dynamic symbols into two vectors. Symbols which we do
867 // not want to put into the hash table we store into
868 // UNHASHED_DYNSYMS. Symbols which we do want to store we put into
869 // HASHED_DYNSYMS. DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS,
870 // and records the hash codes.
872 std::vector
<Symbol
*> unhashed_dynsyms
;
873 unhashed_dynsyms
.reserve(count
);
875 std::vector
<Symbol
*> hashed_dynsyms
;
876 hashed_dynsyms
.reserve(count
);
878 std::vector
<uint32_t> dynsym_hashvals
;
879 dynsym_hashvals
.reserve(count
);
881 for (unsigned int i
= 0; i
< count
; ++i
)
883 Symbol
* sym
= dynsyms
[i
];
885 // FIXME: Should put on unhashed_dynsyms if the symbol is
887 if (sym
->is_undefined())
888 unhashed_dynsyms
.push_back(sym
);
891 hashed_dynsyms
.push_back(sym
);
892 dynsym_hashvals
.push_back(Dynobj::gnu_hash(sym
->name()));
896 // Put the unhashed symbols at the start of the global portion of
897 // the dynamic symbol table.
898 const unsigned int unhashed_count
= unhashed_dynsyms
.size();
899 unsigned int unhashed_dynsym_index
= local_dynsym_count
;
900 for (unsigned int i
= 0; i
< unhashed_count
; ++i
)
902 unhashed_dynsyms
[i
]->set_dynsym_index(unhashed_dynsym_index
);
903 ++unhashed_dynsym_index
;
906 // For the actual data generation we call out to a templatized
908 int size
= parameters
->get_size();
909 bool big_endian
= parameters
->is_big_endian();
914 #ifdef HAVE_TARGET_32_BIG
915 Dynobj::sized_create_gnu_hash_table
<32, true>(hashed_dynsyms
,
917 unhashed_dynsym_index
,
926 #ifdef HAVE_TARGET_32_LITTLE
927 Dynobj::sized_create_gnu_hash_table
<32, false>(hashed_dynsyms
,
929 unhashed_dynsym_index
,
941 #ifdef HAVE_TARGET_64_BIG
942 Dynobj::sized_create_gnu_hash_table
<64, true>(hashed_dynsyms
,
944 unhashed_dynsym_index
,
953 #ifdef HAVE_TARGET_64_LITTLE
954 Dynobj::sized_create_gnu_hash_table
<64, false>(hashed_dynsyms
,
956 unhashed_dynsym_index
,
968 // Create the actual data for a GNU hash table. This is just a copy
969 // of the code from the old GNU linker.
971 template<int size
, bool big_endian
>
973 Dynobj::sized_create_gnu_hash_table(
974 const std::vector
<Symbol
*>& hashed_dynsyms
,
975 const std::vector
<uint32_t>& dynsym_hashvals
,
976 unsigned int unhashed_dynsym_count
,
977 unsigned char** pphash
,
978 unsigned int* phashlen
)
980 if (hashed_dynsyms
.empty())
982 // Special case for the empty hash table.
983 unsigned int hashlen
= 5 * 4 + size
/ 8;
984 unsigned char* phash
= new unsigned char[hashlen
];
986 elfcpp::Swap
<32, big_endian
>::writeval(phash
, 1);
987 // Symbol index above unhashed symbols.
988 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 4, unhashed_dynsym_count
);
989 // One word for bitmask.
990 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 8, 1);
991 // Only bloom filter.
992 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 12, 0);
994 elfcpp::Swap
<size
, big_endian
>::writeval(phash
+ 16, 0);
995 // No hashes in only bucket.
996 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 16 + size
/ 8, 0);
1004 const unsigned int bucketcount
=
1005 Dynobj::compute_bucket_count(dynsym_hashvals
, true);
1007 const unsigned int nsyms
= hashed_dynsyms
.size();
1009 uint32_t maskbitslog2
= 1;
1010 uint32_t x
= nsyms
>> 1;
1016 if (maskbitslog2
< 3)
1018 else if (((1U << (maskbitslog2
- 2)) & nsyms
) != 0)
1028 if (maskbitslog2
== 5)
1032 uint32_t mask
= (1U << shift1
) - 1U;
1033 uint32_t shift2
= maskbitslog2
;
1034 uint32_t maskbits
= 1U << maskbitslog2
;
1035 uint32_t maskwords
= 1U << (maskbitslog2
- shift1
);
1037 typedef typename
elfcpp::Elf_types
<size
>::Elf_WXword Word
;
1038 std::vector
<Word
> bitmask(maskwords
);
1039 std::vector
<uint32_t> counts(bucketcount
);
1040 std::vector
<uint32_t> indx(bucketcount
);
1041 uint32_t symindx
= unhashed_dynsym_count
;
1043 // Count the number of times each hash bucket is used.
1044 for (unsigned int i
= 0; i
< nsyms
; ++i
)
1045 ++counts
[dynsym_hashvals
[i
] % bucketcount
];
1047 unsigned int cnt
= symindx
;
1048 for (unsigned int i
= 0; i
< bucketcount
; ++i
)
1054 unsigned int hashlen
= (4 + bucketcount
+ nsyms
) * 4;
1055 hashlen
+= maskbits
/ 8;
1056 unsigned char* phash
= new unsigned char[hashlen
];
1058 elfcpp::Swap
<32, big_endian
>::writeval(phash
, bucketcount
);
1059 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 4, symindx
);
1060 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 8, maskwords
);
1061 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 12, shift2
);
1063 unsigned char* p
= phash
+ 16 + maskbits
/ 8;
1064 for (unsigned int i
= 0; i
< bucketcount
; ++i
)
1067 elfcpp::Swap
<32, big_endian
>::writeval(p
, 0);
1069 elfcpp::Swap
<32, big_endian
>::writeval(p
, indx
[i
]);
1073 for (unsigned int i
= 0; i
< nsyms
; ++i
)
1075 Symbol
* sym
= hashed_dynsyms
[i
];
1076 uint32_t hashval
= dynsym_hashvals
[i
];
1078 unsigned int bucket
= hashval
% bucketcount
;
1079 unsigned int val
= ((hashval
>> shift1
)
1080 & ((maskbits
>> shift1
) - 1));
1081 bitmask
[val
] |= (static_cast<Word
>(1U)) << (hashval
& mask
);
1082 bitmask
[val
] |= (static_cast<Word
>(1U)) << ((hashval
>> shift2
) & mask
);
1083 val
= hashval
& ~ 1U;
1084 if (counts
[bucket
] == 1)
1086 // Last element terminates the chain.
1089 elfcpp::Swap
<32, big_endian
>::writeval(p
+ (indx
[bucket
] - symindx
) * 4,
1093 sym
->set_dynsym_index(indx
[bucket
]);
1098 for (unsigned int i
= 0; i
< maskwords
; ++i
)
1100 elfcpp::Swap
<size
, big_endian
>::writeval(p
, bitmask
[i
]);
1104 *phashlen
= hashlen
;
1110 // Write this definition to a buffer for the output section.
1112 template<int size
, bool big_endian
>
1114 Verdef::write(const Stringpool
* dynpool
, bool is_last
, unsigned char* pb
1115 ACCEPT_SIZE_ENDIAN
) const
1117 const int verdef_size
= elfcpp::Elf_sizes
<size
>::verdef_size
;
1118 const int verdaux_size
= elfcpp::Elf_sizes
<size
>::verdaux_size
;
1120 elfcpp::Verdef_write
<size
, big_endian
> vd(pb
);
1121 vd
.set_vd_version(elfcpp::VER_DEF_CURRENT
);
1122 vd
.set_vd_flags((this->is_base_
? elfcpp::VER_FLG_BASE
: 0)
1123 | (this->is_weak_
? elfcpp::VER_FLG_WEAK
: 0));
1124 vd
.set_vd_ndx(this->index());
1125 vd
.set_vd_cnt(1 + this->deps_
.size());
1126 vd
.set_vd_hash(Dynobj::elf_hash(this->name()));
1127 vd
.set_vd_aux(verdef_size
);
1128 vd
.set_vd_next(is_last
1130 : verdef_size
+ (1 + this->deps_
.size()) * verdaux_size
);
1133 elfcpp::Verdaux_write
<size
, big_endian
> vda(pb
);
1134 vda
.set_vda_name(dynpool
->get_offset(this->name()));
1135 vda
.set_vda_next(this->deps_
.empty() ? 0 : verdaux_size
);
1138 Deps::const_iterator p
;
1140 for (p
= this->deps_
.begin(), i
= 0;
1141 p
!= this->deps_
.end();
1144 elfcpp::Verdaux_write
<size
, big_endian
> vda(pb
);
1145 vda
.set_vda_name(dynpool
->get_offset(*p
));
1146 vda
.set_vda_next(i
+ 1 >= this->deps_
.size() ? 0 : verdaux_size
);
1157 for (Need_versions::iterator p
= this->need_versions_
.begin();
1158 p
!= this->need_versions_
.end();
1163 // Add a new version to this file reference.
1166 Verneed::add_name(const char* name
)
1168 Verneed_version
* vv
= new Verneed_version(name
);
1169 this->need_versions_
.push_back(vv
);
1173 // Set the version indexes starting at INDEX.
1176 Verneed::finalize(unsigned int index
)
1178 for (Need_versions::iterator p
= this->need_versions_
.begin();
1179 p
!= this->need_versions_
.end();
1182 (*p
)->set_index(index
);
1188 // Write this list of referenced versions to a buffer for the output
1191 template<int size
, bool big_endian
>
1193 Verneed::write(const Stringpool
* dynpool
, bool is_last
,
1194 unsigned char* pb ACCEPT_SIZE_ENDIAN
) const
1196 const int verneed_size
= elfcpp::Elf_sizes
<size
>::verneed_size
;
1197 const int vernaux_size
= elfcpp::Elf_sizes
<size
>::vernaux_size
;
1199 elfcpp::Verneed_write
<size
, big_endian
> vn(pb
);
1200 vn
.set_vn_version(elfcpp::VER_NEED_CURRENT
);
1201 vn
.set_vn_cnt(this->need_versions_
.size());
1202 vn
.set_vn_file(dynpool
->get_offset(this->filename()));
1203 vn
.set_vn_aux(verneed_size
);
1204 vn
.set_vn_next(is_last
1206 : verneed_size
+ this->need_versions_
.size() * vernaux_size
);
1209 Need_versions::const_iterator p
;
1211 for (p
= this->need_versions_
.begin(), i
= 0;
1212 p
!= this->need_versions_
.end();
1215 elfcpp::Vernaux_write
<size
, big_endian
> vna(pb
);
1216 vna
.set_vna_hash(Dynobj::elf_hash((*p
)->version()));
1217 // FIXME: We need to sometimes set VER_FLG_WEAK here.
1218 vna
.set_vna_flags(0);
1219 vna
.set_vna_other((*p
)->index());
1220 vna
.set_vna_name(dynpool
->get_offset((*p
)->version()));
1221 vna
.set_vna_next(i
+ 1 >= this->need_versions_
.size()
1230 // Versions methods.
1232 Versions::Versions(const General_options
& options
, Stringpool
* dynpool
)
1233 : defs_(), needs_(), version_table_(),
1234 is_finalized_(false), version_script_(options
.version_script())
1236 // We always need a base version, so define that first. Nothing
1237 // explicitly declares itself as part of base, so it doesn't need to
1238 // be in version_table_.
1239 // FIXME: Should use soname here when creating a shared object. Is
1240 // this fixme still valid? It looks like it's doing the right thing
1242 if (parameters
->output_is_shared())
1244 const char* name
= dynpool
->add(parameters
->output_file_name(),
1246 Verdef
* vdbase
= new Verdef(name
, std::vector
<std::string
>(),
1248 this->defs_
.push_back(vdbase
);
1251 if (!this->version_script_
.empty())
1253 // Parse the version script, and insert each declared version into
1254 // defs_ and version_table_.
1255 std::vector
<std::string
> versions
= this->version_script_
.get_versions();
1256 for (size_t k
= 0; k
< versions
.size(); ++k
)
1258 Stringpool::Key version_key
;
1259 const char* version
= dynpool
->add(versions
[k
].c_str(),
1260 true, &version_key
);
1261 Verdef
* const vd
= new Verdef(
1263 options
.version_script().get_dependencies(version
),
1264 false, false, false);
1265 this->defs_
.push_back(vd
);
1266 Key
key(version_key
, 0);
1267 this->version_table_
.insert(std::make_pair(key
, vd
));
1272 Versions::~Versions()
1274 for (Defs::iterator p
= this->defs_
.begin();
1275 p
!= this->defs_
.end();
1279 for (Needs::iterator p
= this->needs_
.begin();
1280 p
!= this->needs_
.end();
1285 // Return the dynamic object which a symbol refers to.
1288 Versions::get_dynobj_for_sym(const Symbol_table
* symtab
,
1289 const Symbol
* sym
) const
1291 if (sym
->is_copied_from_dynobj())
1292 return symtab
->get_copy_source(sym
);
1295 Object
* object
= sym
->object();
1296 gold_assert(object
->is_dynamic());
1297 return static_cast<Dynobj
*>(object
);
1301 // Record version information for a symbol going into the dynamic
1305 Versions::record_version(const Symbol_table
* symtab
,
1306 Stringpool
* dynpool
, const Symbol
* sym
)
1308 gold_assert(!this->is_finalized_
);
1309 gold_assert(sym
->version() != NULL
);
1311 Stringpool::Key version_key
;
1312 const char* version
= dynpool
->add(sym
->version(), false, &version_key
);
1314 if (!sym
->is_from_dynobj() && !sym
->is_copied_from_dynobj())
1316 if (parameters
->output_is_shared())
1317 this->add_def(sym
, version
, version_key
);
1321 // This is a version reference.
1322 Dynobj
* dynobj
= this->get_dynobj_for_sym(symtab
, sym
);
1323 this->add_need(dynpool
, dynobj
->soname(), version
, version_key
);
1327 // We've found a symbol SYM defined in version VERSION.
1330 Versions::add_def(const Symbol
* sym
, const char* version
,
1331 Stringpool::Key version_key
)
1333 Key
k(version_key
, 0);
1334 Version_base
* const vbnull
= NULL
;
1335 std::pair
<Version_table::iterator
, bool> ins
=
1336 this->version_table_
.insert(std::make_pair(k
, vbnull
));
1340 // We already have an entry for this version.
1341 Version_base
* vb
= ins
.first
->second
;
1343 // We have now seen a symbol in this version, so it is not
1345 gold_assert(vb
!= NULL
);
1350 // If we are creating a shared object, it is an error to
1351 // find a definition of a symbol with a version which is not
1352 // in the version script.
1353 if (parameters
->output_is_shared())
1355 gold_error(_("symbol %s has undefined version %s"),
1356 sym
->demangled_name().c_str(), version
);
1360 // When creating a regular executable, automatically define
1362 Verdef
* vd
= new Verdef(version
, std::vector
<std::string
>(),
1363 false, false, false);
1364 this->defs_
.push_back(vd
);
1365 ins
.first
->second
= vd
;
1369 // Add a reference to version NAME in file FILENAME.
1372 Versions::add_need(Stringpool
* dynpool
, const char* filename
, const char* name
,
1373 Stringpool::Key name_key
)
1375 Stringpool::Key filename_key
;
1376 filename
= dynpool
->add(filename
, true, &filename_key
);
1378 Key
k(name_key
, filename_key
);
1379 Version_base
* const vbnull
= NULL
;
1380 std::pair
<Version_table::iterator
, bool> ins
=
1381 this->version_table_
.insert(std::make_pair(k
, vbnull
));
1385 // We already have an entry for this filename/version.
1389 // See whether we already have this filename. We don't expect many
1390 // version references, so we just do a linear search. This could be
1391 // replaced by a hash table.
1393 for (Needs::iterator p
= this->needs_
.begin();
1394 p
!= this->needs_
.end();
1397 if ((*p
)->filename() == filename
)
1406 // We have a new filename.
1407 vn
= new Verneed(filename
);
1408 this->needs_
.push_back(vn
);
1411 ins
.first
->second
= vn
->add_name(name
);
1414 // Set the version indexes. Create a new dynamic version symbol for
1415 // each new version definition.
1418 Versions::finalize(Symbol_table
* symtab
, unsigned int dynsym_index
,
1419 std::vector
<Symbol
*>* syms
)
1421 gold_assert(!this->is_finalized_
);
1423 unsigned int vi
= 1;
1425 for (Defs::iterator p
= this->defs_
.begin();
1426 p
!= this->defs_
.end();
1429 (*p
)->set_index(vi
);
1432 // Create a version symbol if necessary.
1433 if (!(*p
)->is_symbol_created())
1435 Symbol
* vsym
= symtab
->define_as_constant((*p
)->name(),
1439 elfcpp::STV_DEFAULT
, 0,
1441 vsym
->set_needs_dynsym_entry();
1442 vsym
->set_dynsym_index(dynsym_index
);
1444 syms
->push_back(vsym
);
1445 // The name is already in the dynamic pool.
1449 // Index 1 is used for global symbols.
1452 gold_assert(this->defs_
.empty());
1456 for (Needs::iterator p
= this->needs_
.begin();
1457 p
!= this->needs_
.end();
1459 vi
= (*p
)->finalize(vi
);
1461 this->is_finalized_
= true;
1463 return dynsym_index
;
1466 // Return the version index to use for a symbol. This does two hash
1467 // table lookups: one in DYNPOOL and one in this->version_table_.
1468 // Another approach alternative would be store a pointer in SYM, which
1469 // would increase the size of the symbol table. Or perhaps we could
1470 // use a hash table from dynamic symbol pointer values to Version_base
1474 Versions::version_index(const Symbol_table
* symtab
, const Stringpool
* dynpool
,
1475 const Symbol
* sym
) const
1477 Stringpool::Key version_key
;
1478 const char* version
= dynpool
->find(sym
->version(), &version_key
);
1479 gold_assert(version
!= NULL
);
1482 if (!sym
->is_from_dynobj() && !sym
->is_copied_from_dynobj())
1484 if (!parameters
->output_is_shared())
1485 return elfcpp::VER_NDX_GLOBAL
;
1486 k
= Key(version_key
, 0);
1490 Dynobj
* dynobj
= this->get_dynobj_for_sym(symtab
, sym
);
1492 Stringpool::Key filename_key
;
1493 const char* filename
= dynpool
->find(dynobj
->soname(), &filename_key
);
1494 gold_assert(filename
!= NULL
);
1496 k
= Key(version_key
, filename_key
);
1499 Version_table::const_iterator p
= this->version_table_
.find(k
);
1500 gold_assert(p
!= this->version_table_
.end());
1502 return p
->second
->index();
1505 // Return an allocated buffer holding the contents of the symbol
1508 template<int size
, bool big_endian
>
1510 Versions::symbol_section_contents(const Symbol_table
* symtab
,
1511 const Stringpool
* dynpool
,
1512 unsigned int local_symcount
,
1513 const std::vector
<Symbol
*>& syms
,
1516 ACCEPT_SIZE_ENDIAN
) const
1518 gold_assert(this->is_finalized_
);
1520 unsigned int sz
= (local_symcount
+ syms
.size()) * 2;
1521 unsigned char* pbuf
= new unsigned char[sz
];
1523 for (unsigned int i
= 0; i
< local_symcount
; ++i
)
1524 elfcpp::Swap
<16, big_endian
>::writeval(pbuf
+ i
* 2,
1525 elfcpp::VER_NDX_LOCAL
);
1527 for (std::vector
<Symbol
*>::const_iterator p
= syms
.begin();
1531 unsigned int version_index
;
1532 const char* version
= (*p
)->version();
1533 if (version
== NULL
)
1534 version_index
= elfcpp::VER_NDX_GLOBAL
;
1536 version_index
= this->version_index(symtab
, dynpool
, *p
);
1537 // If the symbol was defined as foo@V1 instead of foo@@V1, add
1539 if ((*p
)->version() != NULL
&& !(*p
)->is_default())
1540 version_index
|= elfcpp::VERSYM_HIDDEN
;
1541 elfcpp::Swap
<16, big_endian
>::writeval(pbuf
+ (*p
)->dynsym_index() * 2,
1549 // Return an allocated buffer holding the contents of the version
1550 // definition section.
1552 template<int size
, bool big_endian
>
1554 Versions::def_section_contents(const Stringpool
* dynpool
,
1555 unsigned char** pp
, unsigned int* psize
,
1556 unsigned int* pentries
1557 ACCEPT_SIZE_ENDIAN
) const
1559 gold_assert(this->is_finalized_
);
1560 gold_assert(!this->defs_
.empty());
1562 const int verdef_size
= elfcpp::Elf_sizes
<size
>::verdef_size
;
1563 const int verdaux_size
= elfcpp::Elf_sizes
<size
>::verdaux_size
;
1565 unsigned int sz
= 0;
1566 for (Defs::const_iterator p
= this->defs_
.begin();
1567 p
!= this->defs_
.end();
1570 sz
+= verdef_size
+ verdaux_size
;
1571 sz
+= (*p
)->count_dependencies() * verdaux_size
;
1574 unsigned char* pbuf
= new unsigned char[sz
];
1576 unsigned char* pb
= pbuf
;
1577 Defs::const_iterator p
;
1579 for (p
= this->defs_
.begin(), i
= 0;
1580 p
!= this->defs_
.end();
1582 pb
= (*p
)->write
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
)(
1583 dynpool
, i
+ 1 >= this->defs_
.size(), pb
1584 SELECT_SIZE_ENDIAN(size
, big_endian
));
1586 gold_assert(static_cast<unsigned int>(pb
- pbuf
) == sz
);
1590 *pentries
= this->defs_
.size();
1593 // Return an allocated buffer holding the contents of the version
1594 // reference section.
1596 template<int size
, bool big_endian
>
1598 Versions::need_section_contents(const Stringpool
* dynpool
,
1599 unsigned char** pp
, unsigned int *psize
,
1600 unsigned int *pentries
1601 ACCEPT_SIZE_ENDIAN
) const
1603 gold_assert(this->is_finalized_
);
1604 gold_assert(!this->needs_
.empty());
1606 const int verneed_size
= elfcpp::Elf_sizes
<size
>::verneed_size
;
1607 const int vernaux_size
= elfcpp::Elf_sizes
<size
>::vernaux_size
;
1609 unsigned int sz
= 0;
1610 for (Needs::const_iterator p
= this->needs_
.begin();
1611 p
!= this->needs_
.end();
1615 sz
+= (*p
)->count_versions() * vernaux_size
;
1618 unsigned char* pbuf
= new unsigned char[sz
];
1620 unsigned char* pb
= pbuf
;
1621 Needs::const_iterator p
;
1623 for (p
= this->needs_
.begin(), i
= 0;
1624 p
!= this->needs_
.end();
1626 pb
= (*p
)->write
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
)(
1627 dynpool
, i
+ 1 >= this->needs_
.size(), pb
1628 SELECT_SIZE_ENDIAN(size
, big_endian
));
1630 gold_assert(static_cast<unsigned int>(pb
- pbuf
) == sz
);
1634 *pentries
= this->needs_
.size();
1637 // Instantiate the templates we need. We could use the configure
1638 // script to restrict this to only the ones for implemented targets.
1640 #ifdef HAVE_TARGET_32_LITTLE
1642 class Sized_dynobj
<32, false>;
1645 #ifdef HAVE_TARGET_32_BIG
1647 class Sized_dynobj
<32, true>;
1650 #ifdef HAVE_TARGET_64_LITTLE
1652 class Sized_dynobj
<64, false>;
1655 #ifdef HAVE_TARGET_64_BIG
1657 class Sized_dynobj
<64, true>;
1660 #ifdef HAVE_TARGET_32_LITTLE
1663 Versions::symbol_section_contents
<32, false>(
1664 const Symbol_table
*,
1667 const std::vector
<Symbol
*>&,
1670 ACCEPT_SIZE_ENDIAN_EXPLICIT(32, false)) const;
1673 #ifdef HAVE_TARGET_32_BIG
1676 Versions::symbol_section_contents
<32, true>(
1677 const Symbol_table
*,
1680 const std::vector
<Symbol
*>&,
1683 ACCEPT_SIZE_ENDIAN_EXPLICIT(32, true)) const;
1686 #ifdef HAVE_TARGET_64_LITTLE
1689 Versions::symbol_section_contents
<64, false>(
1690 const Symbol_table
*,
1693 const std::vector
<Symbol
*>&,
1696 ACCEPT_SIZE_ENDIAN_EXPLICIT(64, false)) const;
1699 #ifdef HAVE_TARGET_64_BIG
1702 Versions::symbol_section_contents
<64, true>(
1703 const Symbol_table
*,
1706 const std::vector
<Symbol
*>&,
1709 ACCEPT_SIZE_ENDIAN_EXPLICIT(64, true)) const;
1712 #ifdef HAVE_TARGET_32_LITTLE
1715 Versions::def_section_contents
<32, false>(
1720 ACCEPT_SIZE_ENDIAN_EXPLICIT(32, false)) const;
1723 #ifdef HAVE_TARGET_32_BIG
1726 Versions::def_section_contents
<32, true>(
1731 ACCEPT_SIZE_ENDIAN_EXPLICIT(32, true)) const;
1734 #ifdef HAVE_TARGET_64_LITTLE
1737 Versions::def_section_contents
<64, false>(
1742 ACCEPT_SIZE_ENDIAN_EXPLICIT(64, false)) const;
1745 #ifdef HAVE_TARGET_64_BIG
1748 Versions::def_section_contents
<64, true>(
1753 ACCEPT_SIZE_ENDIAN_EXPLICIT(64, true)) const;
1756 #ifdef HAVE_TARGET_32_LITTLE
1759 Versions::need_section_contents
<32, false>(
1764 ACCEPT_SIZE_ENDIAN_EXPLICIT(32, false)) const;
1767 #ifdef HAVE_TARGET_32_BIG
1770 Versions::need_section_contents
<32, true>(
1775 ACCEPT_SIZE_ENDIAN_EXPLICIT(32, true)) const;
1778 #ifdef HAVE_TARGET_64_LITTLE
1781 Versions::need_section_contents
<64, false>(
1786 ACCEPT_SIZE_ENDIAN_EXPLICIT(64, false)) const;
1789 #ifdef HAVE_TARGET_64_BIG
1792 Versions::need_section_contents
<64, true>(
1797 ACCEPT_SIZE_ENDIAN_EXPLICIT(64, true)) const;
1800 } // End namespace gold.