2008-02-20 Paolo Bonzini <bonzini@gnu.org>
[binutils.git] / gold / expression.cc
blob1cc646f8538e3a1abbd698af13ae7b71883b9778
1 // expression.cc -- expressions in linker scripts for gold
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <string>
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "symtab.h"
30 #include "layout.h"
31 #include "output.h"
32 #include "script.h"
33 #include "script-c.h"
35 namespace gold
38 // This file holds the code which handles linker expressions.
40 // The dot symbol, which linker scripts refer to simply as ".",
41 // requires special treatment. The dot symbol is set several times,
42 // section addresses will refer to it, output sections will change it,
43 // and it can be set based on the value of other symbols. We simplify
44 // the handling by prohibiting setting the dot symbol to the value of
45 // a non-absolute symbol.
47 // When evaluating the value of an expression, we pass in a pointer to
48 // this struct, so that the expression evaluation can find the
49 // information it needs.
51 struct Expression::Expression_eval_info
53 // The symbol table.
54 const Symbol_table* symtab;
55 // The layout--we use this to get section information.
56 const Layout* layout;
57 // Whether expressions can refer to the dot symbol. The dot symbol
58 // is only available within a SECTIONS clause.
59 bool is_dot_available;
60 // The current value of the dot symbol.
61 uint64_t dot_value;
62 // The section in which the dot symbol is defined; this is NULL if
63 // it is absolute.
64 Output_section* dot_section;
65 // Points to where the section of the result should be stored.
66 Output_section** result_section_pointer;
69 // Evaluate an expression.
71 uint64_t
72 Expression::eval(const Symbol_table* symtab, const Layout* layout)
74 Output_section* dummy;
75 return this->eval_maybe_dot(symtab, layout, false, 0, NULL, &dummy);
78 // Evaluate an expression which may refer to the dot symbol.
80 uint64_t
81 Expression::eval_with_dot(const Symbol_table* symtab, const Layout* layout,
82 uint64_t dot_value, Output_section* dot_section,
83 Output_section** result_section_pointer)
85 return this->eval_maybe_dot(symtab, layout, true, dot_value, dot_section,
86 result_section_pointer);
89 // Evaluate an expression which may or may not refer to the dot
90 // symbol.
92 uint64_t
93 Expression::eval_maybe_dot(const Symbol_table* symtab, const Layout* layout,
94 bool is_dot_available, uint64_t dot_value,
95 Output_section* dot_section,
96 Output_section** result_section_pointer)
98 Expression_eval_info eei;
99 eei.symtab = symtab;
100 eei.layout = layout;
101 eei.is_dot_available = is_dot_available;
102 eei.dot_value = dot_value;
103 eei.dot_section = dot_section;
105 // We assume the value is absolute, and only set this to a section
106 // if we find a section relative reference.
107 *result_section_pointer = NULL;
108 eei.result_section_pointer = result_section_pointer;
110 return this->value(&eei);
113 // A number.
115 class Integer_expression : public Expression
117 public:
118 Integer_expression(uint64_t val)
119 : val_(val)
122 uint64_t
123 value(const Expression_eval_info*)
124 { return this->val_; }
126 void
127 print(FILE* f) const
128 { fprintf(f, "0x%llx", static_cast<unsigned long long>(this->val_)); }
130 private:
131 uint64_t val_;
134 extern "C" Expression*
135 script_exp_integer(uint64_t val)
137 return new Integer_expression(val);
140 // An expression whose value is the value of a symbol.
142 class Symbol_expression : public Expression
144 public:
145 Symbol_expression(const char* name, size_t length)
146 : name_(name, length)
149 uint64_t
150 value(const Expression_eval_info*);
152 void
153 print(FILE* f) const
154 { fprintf(f, "%s", this->name_.c_str()); }
156 private:
157 std::string name_;
160 uint64_t
161 Symbol_expression::value(const Expression_eval_info* eei)
163 Symbol* sym = eei->symtab->lookup(this->name_.c_str());
164 if (sym == NULL || !sym->is_defined())
166 gold_error(_("undefined symbol '%s' referenced in expression"),
167 this->name_.c_str());
168 return 0;
171 *eei->result_section_pointer = sym->output_section();
173 if (parameters->get_size() == 32)
174 return eei->symtab->get_sized_symbol<32>(sym)->value();
175 else if (parameters->get_size() == 64)
176 return eei->symtab->get_sized_symbol<64>(sym)->value();
177 else
178 gold_unreachable();
181 // An expression whose value is the value of the special symbol ".".
182 // This is only valid within a SECTIONS clause.
184 class Dot_expression : public Expression
186 public:
187 Dot_expression()
190 uint64_t
191 value(const Expression_eval_info*);
193 void
194 print(FILE* f) const
195 { fprintf(f, "."); }
198 uint64_t
199 Dot_expression::value(const Expression_eval_info* eei)
201 if (!eei->is_dot_available)
203 gold_error(_("invalid reference to dot symbol outside of "
204 "SECTIONS clause"));
205 return 0;
207 *eei->result_section_pointer = eei->dot_section;
208 return eei->dot_value;
211 // A string. This is either the name of a symbol, or ".".
213 extern "C" Expression*
214 script_exp_string(const char* name, size_t length)
216 if (length == 1 && name[0] == '.')
217 return new Dot_expression();
218 else
219 return new Symbol_expression(name, length);
222 // A unary expression.
224 class Unary_expression : public Expression
226 public:
227 Unary_expression(Expression* arg)
228 : arg_(arg)
231 ~Unary_expression()
232 { delete this->arg_; }
234 protected:
235 uint64_t
236 arg_value(const Expression_eval_info* eei,
237 Output_section** arg_section_pointer) const
239 return this->arg_->eval_maybe_dot(eei->symtab, eei->layout,
240 eei->is_dot_available,
241 eei->dot_value,
242 eei->dot_section,
243 arg_section_pointer);
246 void
247 arg_print(FILE* f) const
248 { this->arg_->print(f); }
250 private:
251 Expression* arg_;
254 // Handle unary operators. We use a preprocessor macro as a hack to
255 // capture the C operator.
257 #define UNARY_EXPRESSION(NAME, OPERATOR) \
258 class Unary_ ## NAME : public Unary_expression \
260 public: \
261 Unary_ ## NAME(Expression* arg) \
262 : Unary_expression(arg) \
263 { } \
265 uint64_t \
266 value(const Expression_eval_info* eei) \
268 Output_section* arg_section; \
269 uint64_t ret = OPERATOR this->arg_value(eei, &arg_section); \
270 if (arg_section != NULL && parameters->output_is_object()) \
271 gold_warning(_("unary " #NAME " applied to section " \
272 "relative value")); \
273 return ret; \
276 void \
277 print(FILE* f) const \
279 fprintf(f, "(%s ", #OPERATOR); \
280 this->arg_print(f); \
281 fprintf(f, ")"); \
283 }; \
285 extern "C" Expression* \
286 script_exp_unary_ ## NAME(Expression* arg) \
288 return new Unary_ ## NAME(arg); \
291 UNARY_EXPRESSION(minus, -)
292 UNARY_EXPRESSION(logical_not, !)
293 UNARY_EXPRESSION(bitwise_not, ~)
295 // A binary expression.
297 class Binary_expression : public Expression
299 public:
300 Binary_expression(Expression* left, Expression* right)
301 : left_(left), right_(right)
304 ~Binary_expression()
306 delete this->left_;
307 delete this->right_;
310 protected:
311 uint64_t
312 left_value(const Expression_eval_info* eei,
313 Output_section** section_pointer) const
315 return this->left_->eval_maybe_dot(eei->symtab, eei->layout,
316 eei->is_dot_available,
317 eei->dot_value,
318 eei->dot_section,
319 section_pointer);
322 uint64_t
323 right_value(const Expression_eval_info* eei,
324 Output_section** section_pointer) const
326 return this->right_->eval_maybe_dot(eei->symtab, eei->layout,
327 eei->is_dot_available,
328 eei->dot_value,
329 eei->dot_section,
330 section_pointer);
333 void
334 left_print(FILE* f) const
335 { this->left_->print(f); }
337 void
338 right_print(FILE* f) const
339 { this->right_->print(f); }
341 // This is a call to function FUNCTION_NAME. Print it. This is for
342 // debugging.
343 void
344 print_function(FILE* f, const char *function_name) const
346 fprintf(f, "%s(", function_name);
347 this->left_print(f);
348 fprintf(f, ", ");
349 this->right_print(f);
350 fprintf(f, ")");
353 private:
354 Expression* left_;
355 Expression* right_;
358 // Handle binary operators. We use a preprocessor macro as a hack to
359 // capture the C operator. KEEP_LEFT means that if the left operand
360 // is section relative and the right operand is not, the result uses
361 // the same section as the left operand. KEEP_RIGHT is the same with
362 // left and right swapped. IS_DIV means that we need to give an error
363 // if the right operand is zero. WARN means that we should warn if
364 // used on section relative values in a relocatable link. We always
365 // warn if used on values in different sections in a relocatable link.
367 #define BINARY_EXPRESSION(NAME, OPERATOR, KEEP_LEFT, KEEP_RIGHT, IS_DIV, WARN) \
368 class Binary_ ## NAME : public Binary_expression \
370 public: \
371 Binary_ ## NAME(Expression* left, Expression* right) \
372 : Binary_expression(left, right) \
373 { } \
375 uint64_t \
376 value(const Expression_eval_info* eei) \
378 Output_section* left_section; \
379 uint64_t left = this->left_value(eei, &left_section); \
380 Output_section* right_section; \
381 uint64_t right = this->right_value(eei, &right_section); \
382 if (KEEP_RIGHT && left_section == NULL && right_section != NULL) \
383 *eei->result_section_pointer = right_section; \
384 else if (KEEP_LEFT \
385 && left_section != NULL \
386 && right_section == NULL) \
387 *eei->result_section_pointer = left_section; \
388 else if ((WARN || left_section != right_section) \
389 && (left_section != NULL || right_section != NULL) \
390 && parameters->output_is_object()) \
391 gold_warning(_("binary " #NAME " applied to section " \
392 "relative value")); \
393 if (IS_DIV && right == 0) \
395 gold_error(_(#NAME " by zero")); \
396 return 0; \
398 return left OPERATOR right; \
401 void \
402 print(FILE* f) const \
404 fprintf(f, "("); \
405 this->left_print(f); \
406 fprintf(f, " %s ", #OPERATOR); \
407 this->right_print(f); \
408 fprintf(f, ")"); \
410 }; \
412 extern "C" Expression* \
413 script_exp_binary_ ## NAME(Expression* left, Expression* right) \
415 return new Binary_ ## NAME(left, right); \
418 BINARY_EXPRESSION(mult, *, false, false, false, true)
419 BINARY_EXPRESSION(div, /, false, false, true, true)
420 BINARY_EXPRESSION(mod, %, false, false, true, true)
421 BINARY_EXPRESSION(add, +, true, true, false, true)
422 BINARY_EXPRESSION(sub, -, true, false, false, false)
423 BINARY_EXPRESSION(lshift, <<, false, false, false, true)
424 BINARY_EXPRESSION(rshift, >>, false, false, false, true)
425 BINARY_EXPRESSION(eq, ==, false, false, false, false)
426 BINARY_EXPRESSION(ne, !=, false, false, false, false)
427 BINARY_EXPRESSION(le, <=, false, false, false, false)
428 BINARY_EXPRESSION(ge, >=, false, false, false, false)
429 BINARY_EXPRESSION(lt, <, false, false, false, false)
430 BINARY_EXPRESSION(gt, >, false, false, false, false)
431 BINARY_EXPRESSION(bitwise_and, &, true, true, false, true)
432 BINARY_EXPRESSION(bitwise_xor, ^, true, true, false, true)
433 BINARY_EXPRESSION(bitwise_or, |, true, true, false, true)
434 BINARY_EXPRESSION(logical_and, &&, false, false, false, true)
435 BINARY_EXPRESSION(logical_or, ||, false, false, false, true)
437 // A trinary expression.
439 class Trinary_expression : public Expression
441 public:
442 Trinary_expression(Expression* arg1, Expression* arg2, Expression* arg3)
443 : arg1_(arg1), arg2_(arg2), arg3_(arg3)
446 ~Trinary_expression()
448 delete this->arg1_;
449 delete this->arg2_;
450 delete this->arg3_;
453 protected:
454 uint64_t
455 arg1_value(const Expression_eval_info* eei,
456 Output_section** section_pointer) const
458 return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
459 eei->is_dot_available,
460 eei->dot_value,
461 eei->dot_section,
462 section_pointer);
465 uint64_t
466 arg2_value(const Expression_eval_info* eei,
467 Output_section** section_pointer) const
469 return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
470 eei->is_dot_available,
471 eei->dot_value,
472 eei->dot_section,
473 section_pointer);
476 uint64_t
477 arg3_value(const Expression_eval_info* eei,
478 Output_section** section_pointer) const
480 return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
481 eei->is_dot_available,
482 eei->dot_value,
483 eei->dot_section,
484 section_pointer);
487 void
488 arg1_print(FILE* f) const
489 { this->arg1_->print(f); }
491 void
492 arg2_print(FILE* f) const
493 { this->arg2_->print(f); }
495 void
496 arg3_print(FILE* f) const
497 { this->arg3_->print(f); }
499 private:
500 Expression* arg1_;
501 Expression* arg2_;
502 Expression* arg3_;
505 // The conditional operator.
507 class Trinary_cond : public Trinary_expression
509 public:
510 Trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
511 : Trinary_expression(arg1, arg2, arg3)
514 uint64_t
515 value(const Expression_eval_info* eei)
517 Output_section* arg1_section;
518 uint64_t arg1 = this->arg1_value(eei, &arg1_section);
519 return (arg1
520 ? this->arg2_value(eei, eei->result_section_pointer)
521 : this->arg3_value(eei, eei->result_section_pointer));
524 void
525 print(FILE* f) const
527 fprintf(f, "(");
528 this->arg1_print(f);
529 fprintf(f, " ? ");
530 this->arg2_print(f);
531 fprintf(f, " : ");
532 this->arg3_print(f);
533 fprintf(f, ")");
537 extern "C" Expression*
538 script_exp_trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
540 return new Trinary_cond(arg1, arg2, arg3);
543 // Max function.
545 class Max_expression : public Binary_expression
547 public:
548 Max_expression(Expression* left, Expression* right)
549 : Binary_expression(left, right)
552 uint64_t
553 value(const Expression_eval_info* eei)
555 Output_section* left_section;
556 uint64_t left = this->left_value(eei, &left_section);
557 Output_section* right_section;
558 uint64_t right = this->right_value(eei, &right_section);
559 if (left_section == right_section)
560 *eei->result_section_pointer = left_section;
561 else if ((left_section != NULL || right_section != NULL)
562 && parameters->output_is_object())
563 gold_warning(_("max applied to section relative value"));
564 return std::max(left, right);
567 void
568 print(FILE* f) const
569 { this->print_function(f, "MAX"); }
572 extern "C" Expression*
573 script_exp_function_max(Expression* left, Expression* right)
575 return new Max_expression(left, right);
578 // Min function.
580 class Min_expression : public Binary_expression
582 public:
583 Min_expression(Expression* left, Expression* right)
584 : Binary_expression(left, right)
587 uint64_t
588 value(const Expression_eval_info* eei)
590 Output_section* left_section;
591 uint64_t left = this->left_value(eei, &left_section);
592 Output_section* right_section;
593 uint64_t right = this->right_value(eei, &right_section);
594 if (left_section == right_section)
595 *eei->result_section_pointer = left_section;
596 else if ((left_section != NULL || right_section != NULL)
597 && parameters->output_is_object())
598 gold_warning(_("min applied to section relative value"));
599 return std::min(left, right);
602 void
603 print(FILE* f) const
604 { this->print_function(f, "MIN"); }
607 extern "C" Expression*
608 script_exp_function_min(Expression* left, Expression* right)
610 return new Min_expression(left, right);
613 // Class Section_expression. This is a parent class used for
614 // functions which take the name of an output section.
616 class Section_expression : public Expression
618 public:
619 Section_expression(const char* section_name, size_t section_name_len)
620 : section_name_(section_name, section_name_len)
623 uint64_t
624 value(const Expression_eval_info*);
626 void
627 print(FILE* f) const
628 { fprintf(f, "%s(%s)", this->function_name(), this->section_name_.c_str()); }
630 protected:
631 // The child class must implement this.
632 virtual uint64_t
633 value_from_output_section(const Expression_eval_info*,
634 Output_section*) = 0;
636 // The child class must implement this.
637 virtual const char*
638 function_name() const = 0;
640 private:
641 std::string section_name_;
644 uint64_t
645 Section_expression::value(const Expression_eval_info* eei)
647 const char* section_name = this->section_name_.c_str();
648 Output_section* os = eei->layout->find_output_section(section_name);
649 if (os == NULL)
651 gold_error("%s called on nonexistent output section '%s'",
652 this->function_name(), section_name);
653 return 0;
656 return this->value_from_output_section(eei, os);
659 // ABSOLUTE function.
661 class Absolute_expression : public Unary_expression
663 public:
664 Absolute_expression(Expression* arg)
665 : Unary_expression(arg)
668 uint64_t
669 value(const Expression_eval_info* eei)
671 Output_section* dummy;
672 uint64_t ret = this->arg_value(eei, &dummy);
673 // Force the value to be absolute.
674 *eei->result_section_pointer = NULL;
675 return ret;
678 void
679 print(FILE* f) const
681 fprintf(f, "ABSOLUTE(");
682 this->arg_print(f);
683 fprintf(f, ")");
687 extern "C" Expression*
688 script_exp_function_absolute(Expression* arg)
690 return new Absolute_expression(arg);
693 // ALIGN function.
695 class Align_expression : public Binary_expression
697 public:
698 Align_expression(Expression* left, Expression* right)
699 : Binary_expression(left, right)
702 uint64_t
703 value(const Expression_eval_info* eei)
705 Output_section* align_section;
706 uint64_t align = this->right_value(eei, &align_section);
707 if (align_section != NULL
708 && parameters->output_is_object())
709 gold_warning(_("aligning to section relative value"));
711 uint64_t value = this->left_value(eei, eei->result_section_pointer);
712 if (align <= 1)
713 return value;
714 return ((value + align - 1) / align) * align;
717 void
718 print(FILE* f) const
719 { this->print_function(f, "ALIGN"); }
722 extern "C" Expression*
723 script_exp_function_align(Expression* left, Expression* right)
725 return new Align_expression(left, right);
728 // ASSERT function.
730 class Assert_expression : public Unary_expression
732 public:
733 Assert_expression(Expression* arg, const char* message, size_t length)
734 : Unary_expression(arg), message_(message, length)
737 uint64_t
738 value(const Expression_eval_info* eei)
740 uint64_t value = this->arg_value(eei, eei->result_section_pointer);
741 if (!value)
742 gold_error("%s", this->message_.c_str());
743 return value;
746 void
747 print(FILE* f) const
749 fprintf(f, "ASSERT(");
750 this->arg_print(f);
751 fprintf(f, ", %s)", this->message_.c_str());
754 private:
755 std::string message_;
758 extern "C" Expression*
759 script_exp_function_assert(Expression* expr, const char* message,
760 size_t length)
762 return new Assert_expression(expr, message, length);
765 // ADDR function.
767 class Addr_expression : public Section_expression
769 public:
770 Addr_expression(const char* section_name, size_t section_name_len)
771 : Section_expression(section_name, section_name_len)
774 protected:
775 uint64_t
776 value_from_output_section(const Expression_eval_info* eei,
777 Output_section* os)
779 *eei->result_section_pointer = os;
780 return os->address();
783 const char*
784 function_name() const
785 { return "ADDR"; }
788 extern "C" Expression*
789 script_exp_function_addr(const char* section_name, size_t section_name_len)
791 return new Addr_expression(section_name, section_name_len);
794 // ALIGNOF.
796 class Alignof_expression : public Section_expression
798 public:
799 Alignof_expression(const char* section_name, size_t section_name_len)
800 : Section_expression(section_name, section_name_len)
803 protected:
804 uint64_t
805 value_from_output_section(const Expression_eval_info*,
806 Output_section* os)
807 { return os->addralign(); }
809 const char*
810 function_name() const
811 { return "ALIGNOF"; }
814 extern "C" Expression*
815 script_exp_function_alignof(const char* section_name, size_t section_name_len)
817 return new Alignof_expression(section_name, section_name_len);
820 // CONSTANT. It would be nice if we could simply evaluate this
821 // immediately and return an Integer_expression, but unfortunately we
822 // don't know the target.
824 class Constant_expression : public Expression
826 public:
827 Constant_expression(const char* name, size_t length);
829 uint64_t
830 value(const Expression_eval_info*);
832 void
833 print(FILE* f) const;
835 private:
836 enum Constant_function
838 CONSTANT_MAXPAGESIZE,
839 CONSTANT_COMMONPAGESIZE
842 Constant_function function_;
845 Constant_expression::Constant_expression(const char* name, size_t length)
847 if (length == 11 && strncmp(name, "MAXPAGESIZE", length) == 0)
848 this->function_ = CONSTANT_MAXPAGESIZE;
849 else if (length == 14 && strncmp(name, "COMMONPAGESIZE", length) == 0)
850 this->function_ = CONSTANT_COMMONPAGESIZE;
851 else
853 std::string s(name, length);
854 gold_error(_("unknown constant %s"), s.c_str());
855 this->function_ = CONSTANT_MAXPAGESIZE;
859 uint64_t
860 Constant_expression::value(const Expression_eval_info*)
862 switch (this->function_)
864 case CONSTANT_MAXPAGESIZE:
865 return parameters->target()->abi_pagesize();
866 case CONSTANT_COMMONPAGESIZE:
867 return parameters->target()->common_pagesize();
868 default:
869 gold_unreachable();
873 void
874 Constant_expression::print(FILE* f) const
876 const char* name;
877 switch (this->function_)
879 case CONSTANT_MAXPAGESIZE:
880 name = "MAXPAGESIZE";
881 break;
882 case CONSTANT_COMMONPAGESIZE:
883 name = "COMMONPAGESIZE";
884 break;
885 default:
886 gold_unreachable();
888 fprintf(f, "CONSTANT(%s)", name);
891 extern "C" Expression*
892 script_exp_function_constant(const char* name, size_t length)
894 return new Constant_expression(name, length);
897 // DATA_SEGMENT_ALIGN. FIXME: we don't implement this; we always fall
898 // back to the general case.
900 extern "C" Expression*
901 script_exp_function_data_segment_align(Expression* left, Expression*)
903 Expression* e1 = script_exp_function_align(script_exp_string(".", 1), left);
904 Expression* e2 = script_exp_binary_sub(left, script_exp_integer(1));
905 Expression* e3 = script_exp_binary_bitwise_and(script_exp_string(".", 1),
906 e2);
907 return script_exp_binary_add(e1, e3);
910 // DATA_SEGMENT_RELRO. FIXME: This is not implemented.
912 extern "C" Expression*
913 script_exp_function_data_segment_relro_end(Expression*, Expression* right)
915 return right;
918 // DATA_SEGMENT_END. FIXME: This is not implemented.
920 extern "C" Expression*
921 script_exp_function_data_segment_end(Expression* val)
923 return val;
926 // DEFINED function.
928 class Defined_expression : public Expression
930 public:
931 Defined_expression(const char* symbol_name, size_t symbol_name_len)
932 : symbol_name_(symbol_name, symbol_name_len)
935 uint64_t
936 value(const Expression_eval_info* eei)
938 Symbol* sym = eei->symtab->lookup(this->symbol_name_.c_str());
939 return sym != NULL && sym->is_defined();
942 void
943 print(FILE* f) const
944 { fprintf(f, "DEFINED(%s)", this->symbol_name_.c_str()); }
946 private:
947 std::string symbol_name_;
950 extern "C" Expression*
951 script_exp_function_defined(const char* symbol_name, size_t symbol_name_len)
953 return new Defined_expression(symbol_name, symbol_name_len);
956 // LOADADDR function
958 class Loadaddr_expression : public Section_expression
960 public:
961 Loadaddr_expression(const char* section_name, size_t section_name_len)
962 : Section_expression(section_name, section_name_len)
965 protected:
966 uint64_t
967 value_from_output_section(const Expression_eval_info* eei,
968 Output_section* os)
970 if (os->has_load_address())
971 return os->load_address();
972 else
974 *eei->result_section_pointer = os;
975 return os->address();
979 const char*
980 function_name() const
981 { return "LOADADDR"; }
984 extern "C" Expression*
985 script_exp_function_loadaddr(const char* section_name, size_t section_name_len)
987 return new Loadaddr_expression(section_name, section_name_len);
990 // SIZEOF function
992 class Sizeof_expression : public Section_expression
994 public:
995 Sizeof_expression(const char* section_name, size_t section_name_len)
996 : Section_expression(section_name, section_name_len)
999 protected:
1000 uint64_t
1001 value_from_output_section(const Expression_eval_info*,
1002 Output_section* os)
1004 // We can not use data_size here, as the size of the section may
1005 // not have been finalized. Instead we get whatever the current
1006 // size is. This will work correctly for backward references in
1007 // linker scripts.
1008 return os->current_data_size();
1011 const char*
1012 function_name() const
1013 { return "SIZEOF"; }
1016 extern "C" Expression*
1017 script_exp_function_sizeof(const char* section_name, size_t section_name_len)
1019 return new Sizeof_expression(section_name, section_name_len);
1022 // SIZEOF_HEADERS.
1024 class Sizeof_headers_expression : public Expression
1026 public:
1027 Sizeof_headers_expression()
1030 uint64_t
1031 value(const Expression_eval_info*);
1033 void
1034 print(FILE* f) const
1035 { fprintf(f, "SIZEOF_HEADERS"); }
1038 uint64_t
1039 Sizeof_headers_expression::value(const Expression_eval_info* eei)
1041 unsigned int ehdr_size;
1042 unsigned int phdr_size;
1043 if (parameters->get_size() == 32)
1045 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
1046 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
1048 else if (parameters->get_size() == 64)
1050 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
1051 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
1053 else
1054 gold_unreachable();
1056 return ehdr_size + phdr_size * eei->layout->expected_segment_count();
1059 extern "C" Expression*
1060 script_exp_function_sizeof_headers()
1062 return new Sizeof_headers_expression();
1065 // In the GNU linker SEGMENT_START basically returns the value for
1066 // -Ttext, -Tdata, or -Tbss. We could implement this by copying the
1067 // values from General_options to Parameters. But I doubt that
1068 // anybody actually uses it. The point of it for the GNU linker was
1069 // because -Ttext set the address of the .text section rather than the
1070 // text segment. In gold -Ttext sets the text segment address anyhow.
1072 extern "C" Expression*
1073 script_exp_function_segment_start(const char*, size_t, Expression*)
1075 gold_fatal(_("SEGMENT_START not implemented"));
1078 // Functions for memory regions. These can not be implemented unless
1079 // and until we implement memory regions.
1081 extern "C" Expression*
1082 script_exp_function_origin(const char*, size_t)
1084 gold_fatal(_("ORIGIN not implemented"));
1087 extern "C" Expression*
1088 script_exp_function_length(const char*, size_t)
1090 gold_fatal(_("LENGTH not implemented"));
1093 } // End namespace gold.