1 // x86_64.cc -- x86_64 target support for gold.
3 // Copyright 2006, 2007, Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or
9 // modify it under the terms of the GNU Library General Public License
10 // as published by the Free Software Foundation; either version 2, or
11 // (at your option) any later version.
13 // In addition to the permissions in the GNU Library General Public
14 // License, the Free Software Foundation gives you unlimited
15 // permission to link the compiled version of this file into
16 // combinations with other programs, and to distribute those
17 // combinations without any restriction coming from the use of this
18 // file. (The Library Public License restrictions do apply in other
19 // respects; for example, they cover modification of the file, and
20 /// distribution when not linked into a combined executable.)
22 // This program is distributed in the hope that it will be useful, but
23 // WITHOUT ANY WARRANTY; without even the implied warranty of
24 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 // Library General Public License for more details.
27 // You should have received a copy of the GNU Library General Public
28 // License along with this program; if not, write to the Free Software
29 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
37 #include "parameters.h"
45 #include "target-reloc.h"
46 #include "target-select.h"
54 class Output_data_plt_x86_64
;
56 // The x86_64 target class.
58 // http://www.x86-64.org/documentation/abi.pdf
59 // TLS info comes from
60 // http://people.redhat.com/drepper/tls.pdf
61 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
63 class Target_x86_64
: public Sized_target
<64, false>
66 // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
67 // uses only Elf64_Rela relocation entries with explicit addends."
68 typedef Output_data_reloc
<elfcpp::SHT_RELA
, true, 64, false> Reloc_section
;
71 : Sized_target
<64, false>(&x86_64_info
),
72 got_(NULL
), plt_(NULL
), got_plt_(NULL
), rela_dyn_(NULL
),
73 copy_relocs_(NULL
), dynbss_(NULL
), got_mod_index_offset_(-1U)
76 // Scan the relocations to look for symbol adjustments.
78 scan_relocs(const General_options
& options
,
81 Sized_relobj
<64, false>* object
,
82 unsigned int data_shndx
,
84 const unsigned char* prelocs
,
86 Output_section
* output_section
,
87 bool needs_special_offset_handling
,
88 size_t local_symbol_count
,
89 const unsigned char* plocal_symbols
);
91 // Finalize the sections.
93 do_finalize_sections(Layout
*);
95 // Return the value to use for a dynamic which requires special
98 do_dynsym_value(const Symbol
*) const;
100 // Relocate a section.
102 relocate_section(const Relocate_info
<64, false>*,
103 unsigned int sh_type
,
104 const unsigned char* prelocs
,
106 Output_section
* output_section
,
107 bool needs_special_offset_handling
,
109 elfcpp::Elf_types
<64>::Elf_Addr view_address
,
110 section_size_type view_size
);
112 // Scan the relocs during a relocatable link.
114 scan_relocatable_relocs(const General_options
& options
,
115 Symbol_table
* symtab
,
117 Sized_relobj
<64, false>* object
,
118 unsigned int data_shndx
,
119 unsigned int sh_type
,
120 const unsigned char* prelocs
,
122 Output_section
* output_section
,
123 bool needs_special_offset_handling
,
124 size_t local_symbol_count
,
125 const unsigned char* plocal_symbols
,
126 Relocatable_relocs
*);
128 // Relocate a section during a relocatable link.
130 relocate_for_relocatable(const Relocate_info
<64, false>*,
131 unsigned int sh_type
,
132 const unsigned char* prelocs
,
134 Output_section
* output_section
,
135 off_t offset_in_output_section
,
136 const Relocatable_relocs
*,
138 elfcpp::Elf_types
<64>::Elf_Addr view_address
,
139 section_size_type view_size
,
140 unsigned char* reloc_view
,
141 section_size_type reloc_view_size
);
143 // Return a string used to fill a code section with nops.
145 do_code_fill(section_size_type length
);
147 // Return whether SYM is defined by the ABI.
149 do_is_defined_by_abi(Symbol
* sym
) const
150 { return strcmp(sym
->name(), "__tls_get_addr") == 0; }
152 // Return the size of the GOT section.
156 gold_assert(this->got_
!= NULL
);
157 return this->got_
->data_size();
161 // The class which scans relocations.
165 local(const General_options
& options
, Symbol_table
* symtab
,
166 Layout
* layout
, Target_x86_64
* target
,
167 Sized_relobj
<64, false>* object
,
168 unsigned int data_shndx
,
169 Output_section
* output_section
,
170 const elfcpp::Rela
<64, false>& reloc
, unsigned int r_type
,
171 const elfcpp::Sym
<64, false>& lsym
);
174 global(const General_options
& options
, Symbol_table
* symtab
,
175 Layout
* layout
, Target_x86_64
* target
,
176 Sized_relobj
<64, false>* object
,
177 unsigned int data_shndx
,
178 Output_section
* output_section
,
179 const elfcpp::Rela
<64, false>& reloc
, unsigned int r_type
,
183 unsupported_reloc_local(Sized_relobj
<64, false>*, unsigned int r_type
);
186 unsupported_reloc_global(Sized_relobj
<64, false>*, unsigned int r_type
,
190 // The class which implements relocation.
195 : skip_call_tls_get_addr_(false)
200 if (this->skip_call_tls_get_addr_
)
202 // FIXME: This needs to specify the location somehow.
203 gold_error(_("missing expected TLS relocation"));
207 // Do a relocation. Return false if the caller should not issue
208 // any warnings about this relocation.
210 relocate(const Relocate_info
<64, false>*, Target_x86_64
*, size_t relnum
,
211 const elfcpp::Rela
<64, false>&,
212 unsigned int r_type
, const Sized_symbol
<64>*,
213 const Symbol_value
<64>*,
214 unsigned char*, elfcpp::Elf_types
<64>::Elf_Addr
,
218 // Do a TLS relocation.
220 relocate_tls(const Relocate_info
<64, false>*, Target_x86_64
*,
221 size_t relnum
, const elfcpp::Rela
<64, false>&,
222 unsigned int r_type
, const Sized_symbol
<64>*,
223 const Symbol_value
<64>*,
224 unsigned char*, elfcpp::Elf_types
<64>::Elf_Addr
,
227 // Do a TLS General-Dynamic to Local-Exec transition.
229 tls_gd_to_ie(const Relocate_info
<64, false>*, size_t relnum
,
230 Output_segment
* tls_segment
,
231 const elfcpp::Rela
<64, false>&, unsigned int r_type
,
232 elfcpp::Elf_types
<64>::Elf_Addr value
,
234 section_size_type view_size
);
236 // Do a TLS General-Dynamic to Local-Exec transition.
238 tls_gd_to_le(const Relocate_info
<64, false>*, size_t relnum
,
239 Output_segment
* tls_segment
,
240 const elfcpp::Rela
<64, false>&, unsigned int r_type
,
241 elfcpp::Elf_types
<64>::Elf_Addr value
,
243 section_size_type view_size
);
245 // Do a TLS Local-Dynamic to Local-Exec transition.
247 tls_ld_to_le(const Relocate_info
<64, false>*, size_t relnum
,
248 Output_segment
* tls_segment
,
249 const elfcpp::Rela
<64, false>&, unsigned int r_type
,
250 elfcpp::Elf_types
<64>::Elf_Addr value
,
252 section_size_type view_size
);
254 // Do a TLS Initial-Exec to Local-Exec transition.
256 tls_ie_to_le(const Relocate_info
<64, false>*, size_t relnum
,
257 Output_segment
* tls_segment
,
258 const elfcpp::Rela
<64, false>&, unsigned int r_type
,
259 elfcpp::Elf_types
<64>::Elf_Addr value
,
261 section_size_type view_size
);
263 // This is set if we should skip the next reloc, which should be a
264 // PLT32 reloc against ___tls_get_addr.
265 bool skip_call_tls_get_addr_
;
268 // A class which returns the size required for a relocation type,
269 // used while scanning relocs during a relocatable link.
270 class Relocatable_size_for_reloc
274 get_size_for_reloc(unsigned int, Relobj
*);
277 // Adjust TLS relocation type based on the options and whether this
278 // is a local symbol.
279 static tls::Tls_optimization
280 optimize_tls_reloc(bool is_final
, int r_type
);
282 // Get the GOT section, creating it if necessary.
283 Output_data_got
<64, false>*
284 got_section(Symbol_table
*, Layout
*);
286 // Get the GOT PLT section.
288 got_plt_section() const
290 gold_assert(this->got_plt_
!= NULL
);
291 return this->got_plt_
;
294 // Create a PLT entry for a global symbol.
296 make_plt_entry(Symbol_table
*, Layout
*, Symbol
*);
298 // Create a GOT entry for the TLS module index.
300 got_mod_index_entry(Symbol_table
* symtab
, Layout
* layout
,
301 Sized_relobj
<64, false>* object
);
303 // Get the PLT section.
304 Output_data_plt_x86_64
*
307 gold_assert(this->plt_
!= NULL
);
311 // Get the dynamic reloc section, creating it if necessary.
313 rela_dyn_section(Layout
*);
315 // Return true if the symbol may need a COPY relocation.
316 // References from an executable object to non-function symbols
317 // defined in a dynamic object may need a COPY relocation.
319 may_need_copy_reloc(Symbol
* gsym
)
321 return (!parameters
->output_is_shared()
322 && gsym
->is_from_dynobj()
323 && gsym
->type() != elfcpp::STT_FUNC
);
326 // Copy a relocation against a global symbol.
328 copy_reloc(const General_options
*, Symbol_table
*, Layout
*,
329 Sized_relobj
<64, false>*, unsigned int,
330 Output_section
*, Symbol
*, const elfcpp::Rela
<64, false>&);
332 // Information about this specific target which we pass to the
333 // general Target structure.
334 static const Target::Target_info x86_64_info
;
337 Output_data_got
<64, false>* got_
;
339 Output_data_plt_x86_64
* plt_
;
340 // The GOT PLT section.
341 Output_data_space
* got_plt_
;
342 // The dynamic reloc section.
343 Reloc_section
* rela_dyn_
;
344 // Relocs saved to avoid a COPY reloc.
345 Copy_relocs
<64, false>* copy_relocs_
;
346 // Space for variables copied with a COPY reloc.
347 Output_data_space
* dynbss_
;
348 // Offset of the GOT entry for the TLS module index;
349 unsigned int got_mod_index_offset_
;
352 const Target::Target_info
Target_x86_64::x86_64_info
=
355 false, // is_big_endian
356 elfcpp::EM_X86_64
, // machine_code
357 false, // has_make_symbol
358 false, // has_resolve
359 true, // has_code_fill
360 true, // is_default_stack_executable
361 "/lib/ld64.so.1", // program interpreter
362 0x400000, // default_text_segment_address
363 0x1000, // abi_pagesize
364 0x1000 // common_pagesize
367 // Get the GOT section, creating it if necessary.
369 Output_data_got
<64, false>*
370 Target_x86_64::got_section(Symbol_table
* symtab
, Layout
* layout
)
372 if (this->got_
== NULL
)
374 gold_assert(symtab
!= NULL
&& layout
!= NULL
);
376 this->got_
= new Output_data_got
<64, false>();
378 layout
->add_output_section_data(".got", elfcpp::SHT_PROGBITS
,
379 elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE
,
382 // The old GNU linker creates a .got.plt section. We just
383 // create another set of data in the .got section. Note that we
384 // always create a PLT if we create a GOT, although the PLT
386 this->got_plt_
= new Output_data_space(8);
387 layout
->add_output_section_data(".got", elfcpp::SHT_PROGBITS
,
388 elfcpp::SHF_ALLOC
| elfcpp::SHF_WRITE
,
391 // The first three entries are reserved.
392 this->got_plt_
->set_current_data_size(3 * 8);
394 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
395 symtab
->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL
,
397 0, 0, elfcpp::STT_OBJECT
,
399 elfcpp::STV_HIDDEN
, 0,
406 // Get the dynamic reloc section, creating it if necessary.
408 Target_x86_64::Reloc_section
*
409 Target_x86_64::rela_dyn_section(Layout
* layout
)
411 if (this->rela_dyn_
== NULL
)
413 gold_assert(layout
!= NULL
);
414 this->rela_dyn_
= new Reloc_section();
415 layout
->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA
,
416 elfcpp::SHF_ALLOC
, this->rela_dyn_
);
418 return this->rela_dyn_
;
421 // A class to handle the PLT data.
423 class Output_data_plt_x86_64
: public Output_section_data
426 typedef Output_data_reloc
<elfcpp::SHT_RELA
, true, 64, false> Reloc_section
;
428 Output_data_plt_x86_64(Layout
*, Output_data_space
*);
430 // Add an entry to the PLT.
432 add_entry(Symbol
* gsym
);
434 // Return the .rel.plt section data.
437 { return this->rel_
; }
441 do_adjust_output_section(Output_section
* os
);
444 // The size of an entry in the PLT.
445 static const int plt_entry_size
= 16;
447 // The first entry in the PLT.
448 // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
449 // procedure linkage table for both programs and shared objects."
450 static unsigned char first_plt_entry
[plt_entry_size
];
452 // Other entries in the PLT for an executable.
453 static unsigned char plt_entry
[plt_entry_size
];
455 // Set the final size.
457 set_final_data_size()
458 { this->set_data_size((this->count_
+ 1) * plt_entry_size
); }
460 // Write out the PLT data.
462 do_write(Output_file
*);
464 // The reloc section.
466 // The .got.plt section.
467 Output_data_space
* got_plt_
;
468 // The number of PLT entries.
472 // Create the PLT section. The ordinary .got section is an argument,
473 // since we need to refer to the start. We also create our own .got
474 // section just for PLT entries.
476 Output_data_plt_x86_64::Output_data_plt_x86_64(Layout
* layout
,
477 Output_data_space
* got_plt
)
478 : Output_section_data(8), got_plt_(got_plt
), count_(0)
480 this->rel_
= new Reloc_section();
481 layout
->add_output_section_data(".rela.plt", elfcpp::SHT_RELA
,
482 elfcpp::SHF_ALLOC
, this->rel_
);
486 Output_data_plt_x86_64::do_adjust_output_section(Output_section
* os
)
488 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
489 // linker, and so do we.
493 // Add an entry to the PLT.
496 Output_data_plt_x86_64::add_entry(Symbol
* gsym
)
498 gold_assert(!gsym
->has_plt_offset());
500 // Note that when setting the PLT offset we skip the initial
501 // reserved PLT entry.
502 gsym
->set_plt_offset((this->count_
+ 1) * plt_entry_size
);
506 section_offset_type got_offset
= this->got_plt_
->current_data_size();
508 // Every PLT entry needs a GOT entry which points back to the PLT
509 // entry (this will be changed by the dynamic linker, normally
510 // lazily when the function is called).
511 this->got_plt_
->set_current_data_size(got_offset
+ 8);
513 // Every PLT entry needs a reloc.
514 gsym
->set_needs_dynsym_entry();
515 this->rel_
->add_global(gsym
, elfcpp::R_X86_64_JUMP_SLOT
, this->got_plt_
,
518 // Note that we don't need to save the symbol. The contents of the
519 // PLT are independent of which symbols are used. The symbols only
520 // appear in the relocations.
523 // The first entry in the PLT for an executable.
525 unsigned char Output_data_plt_x86_64::first_plt_entry
[plt_entry_size
] =
527 // From AMD64 ABI Draft 0.98, page 76
528 0xff, 0x35, // pushq contents of memory address
529 0, 0, 0, 0, // replaced with address of .got + 8
530 0xff, 0x25, // jmp indirect
531 0, 0, 0, 0, // replaced with address of .got + 16
532 0x90, 0x90, 0x90, 0x90 // noop (x4)
535 // Subsequent entries in the PLT for an executable.
537 unsigned char Output_data_plt_x86_64::plt_entry
[plt_entry_size
] =
539 // From AMD64 ABI Draft 0.98, page 76
540 0xff, 0x25, // jmpq indirect
541 0, 0, 0, 0, // replaced with address of symbol in .got
542 0x68, // pushq immediate
543 0, 0, 0, 0, // replaced with offset into relocation table
544 0xe9, // jmpq relative
545 0, 0, 0, 0 // replaced with offset to start of .plt
548 // Write out the PLT. This uses the hand-coded instructions above,
549 // and adjusts them as needed. This is specified by the AMD64 ABI.
552 Output_data_plt_x86_64::do_write(Output_file
* of
)
554 const off_t offset
= this->offset();
555 const section_size_type oview_size
=
556 convert_to_section_size_type(this->data_size());
557 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
559 const off_t got_file_offset
= this->got_plt_
->offset();
560 const section_size_type got_size
=
561 convert_to_section_size_type(this->got_plt_
->data_size());
562 unsigned char* const got_view
= of
->get_output_view(got_file_offset
,
565 unsigned char* pov
= oview
;
567 elfcpp::Elf_types
<32>::Elf_Addr plt_address
= this->address();
568 elfcpp::Elf_types
<32>::Elf_Addr got_address
= this->got_plt_
->address();
570 memcpy(pov
, first_plt_entry
, plt_entry_size
);
571 // We do a jmp relative to the PC at the end of this instruction.
572 elfcpp::Swap_unaligned
<32, false>::writeval(pov
+ 2, got_address
+ 8
573 - (plt_address
+ 6));
574 elfcpp::Swap
<32, false>::writeval(pov
+ 8, got_address
+ 16
575 - (plt_address
+ 12));
576 pov
+= plt_entry_size
;
578 unsigned char* got_pov
= got_view
;
580 memset(got_pov
, 0, 24);
583 unsigned int plt_offset
= plt_entry_size
;
584 unsigned int got_offset
= 24;
585 const unsigned int count
= this->count_
;
586 for (unsigned int plt_index
= 0;
589 pov
+= plt_entry_size
,
591 plt_offset
+= plt_entry_size
,
594 // Set and adjust the PLT entry itself.
595 memcpy(pov
, plt_entry
, plt_entry_size
);
596 elfcpp::Swap_unaligned
<32, false>::writeval(pov
+ 2,
597 (got_address
+ got_offset
598 - (plt_address
+ plt_offset
601 elfcpp::Swap_unaligned
<32, false>::writeval(pov
+ 7, plt_index
);
602 elfcpp::Swap
<32, false>::writeval(pov
+ 12,
603 - (plt_offset
+ plt_entry_size
));
605 // Set the entry in the GOT.
606 elfcpp::Swap
<64, false>::writeval(got_pov
, plt_address
+ plt_offset
+ 6);
609 gold_assert(static_cast<section_size_type
>(pov
- oview
) == oview_size
);
610 gold_assert(static_cast<section_size_type
>(got_pov
- got_view
) == got_size
);
612 of
->write_output_view(offset
, oview_size
, oview
);
613 of
->write_output_view(got_file_offset
, got_size
, got_view
);
616 // Create a PLT entry for a global symbol.
619 Target_x86_64::make_plt_entry(Symbol_table
* symtab
, Layout
* layout
,
622 if (gsym
->has_plt_offset())
625 if (this->plt_
== NULL
)
627 // Create the GOT sections first.
628 this->got_section(symtab
, layout
);
630 this->plt_
= new Output_data_plt_x86_64(layout
, this->got_plt_
);
631 layout
->add_output_section_data(".plt", elfcpp::SHT_PROGBITS
,
633 | elfcpp::SHF_EXECINSTR
),
637 this->plt_
->add_entry(gsym
);
640 // Create a GOT entry for the TLS module index.
643 Target_x86_64::got_mod_index_entry(Symbol_table
* symtab
, Layout
* layout
,
644 Sized_relobj
<64, false>* object
)
646 if (this->got_mod_index_offset_
== -1U)
648 gold_assert(symtab
!= NULL
&& layout
!= NULL
&& object
!= NULL
);
649 Reloc_section
* rela_dyn
= this->rela_dyn_section(layout
);
650 Output_data_got
<64, false>* got
= this->got_section(symtab
, layout
);
651 unsigned int got_offset
= got
->add_constant(0);
652 rela_dyn
->add_local(object
, 0, elfcpp::R_X86_64_DTPMOD64
, got
,
654 got
->add_constant(0);
655 this->got_mod_index_offset_
= got_offset
;
657 return this->got_mod_index_offset_
;
660 // Handle a relocation against a non-function symbol defined in a
661 // dynamic object. The traditional way to handle this is to generate
662 // a COPY relocation to copy the variable at runtime from the shared
663 // object into the executable's data segment. However, this is
664 // undesirable in general, as if the size of the object changes in the
665 // dynamic object, the executable will no longer work correctly. If
666 // this relocation is in a writable section, then we can create a
667 // dynamic reloc and the dynamic linker will resolve it to the correct
668 // address at runtime. However, we do not want do that if the
669 // relocation is in a read-only section, as it would prevent the
670 // readonly segment from being shared. And if we have to eventually
671 // generate a COPY reloc, then any dynamic relocations will be
672 // useless. So this means that if this is a writable section, we need
673 // to save the relocation until we see whether we have to create a
674 // COPY relocation for this symbol for any other relocation.
677 Target_x86_64::copy_reloc(const General_options
* options
,
678 Symbol_table
* symtab
,
680 Sized_relobj
<64, false>* object
,
681 unsigned int data_shndx
,
682 Output_section
* output_section
,
684 const elfcpp::Rela
<64, false>& rela
)
686 Sized_symbol
<64>* ssym
;
687 ssym
= symtab
->get_sized_symbol
SELECT_SIZE_NAME(64) (gsym
690 if (!Copy_relocs
<64, false>::need_copy_reloc(options
, object
,
693 // So far we do not need a COPY reloc. Save this relocation.
694 // If it turns out that we never need a COPY reloc for this
695 // symbol, then we will emit the relocation.
696 if (this->copy_relocs_
== NULL
)
697 this->copy_relocs_
= new Copy_relocs
<64, false>();
698 this->copy_relocs_
->save(ssym
, object
, data_shndx
, output_section
, rela
);
702 // Allocate space for this symbol in the .bss section.
704 elfcpp::Elf_types
<64>::Elf_WXword symsize
= ssym
->symsize();
706 // There is no defined way to determine the required alignment
707 // of the symbol. We pick the alignment based on the size. We
708 // set an arbitrary maximum of 256.
710 for (align
= 1; align
< 512; align
<<= 1)
711 if ((symsize
& align
) != 0)
714 if (this->dynbss_
== NULL
)
716 this->dynbss_
= new Output_data_space(align
);
717 layout
->add_output_section_data(".bss",
720 | elfcpp::SHF_WRITE
),
724 Output_data_space
* dynbss
= this->dynbss_
;
726 if (align
> dynbss
->addralign())
727 dynbss
->set_space_alignment(align
);
729 section_size_type dynbss_size
= dynbss
->current_data_size();
730 dynbss_size
= align_address(dynbss_size
, align
);
731 section_size_type offset
= dynbss_size
;
732 dynbss
->set_current_data_size(dynbss_size
+ symsize
);
734 symtab
->define_with_copy_reloc(ssym
, dynbss
, offset
);
736 // Add the COPY reloc.
737 Reloc_section
* rela_dyn
= this->rela_dyn_section(layout
);
738 rela_dyn
->add_global(ssym
, elfcpp::R_X86_64_COPY
, dynbss
, offset
, 0);
743 // Optimize the TLS relocation type based on what we know about the
744 // symbol. IS_FINAL is true if the final address of this symbol is
745 // known at link time.
747 tls::Tls_optimization
748 Target_x86_64::optimize_tls_reloc(bool is_final
, int r_type
)
750 // If we are generating a shared library, then we can't do anything
752 if (parameters
->output_is_shared())
753 return tls::TLSOPT_NONE
;
757 case elfcpp::R_X86_64_TLSGD
:
758 case elfcpp::R_X86_64_GOTPC32_TLSDESC
:
759 case elfcpp::R_X86_64_TLSDESC_CALL
:
760 // These are General-Dynamic which permits fully general TLS
761 // access. Since we know that we are generating an executable,
762 // we can convert this to Initial-Exec. If we also know that
763 // this is a local symbol, we can further switch to Local-Exec.
765 return tls::TLSOPT_TO_LE
;
766 return tls::TLSOPT_TO_IE
;
768 case elfcpp::R_X86_64_TLSLD
:
769 // This is Local-Dynamic, which refers to a local symbol in the
770 // dynamic TLS block. Since we know that we generating an
771 // executable, we can switch to Local-Exec.
772 return tls::TLSOPT_TO_LE
;
774 case elfcpp::R_X86_64_DTPOFF32
:
775 case elfcpp::R_X86_64_DTPOFF64
:
776 // Another Local-Dynamic reloc.
777 return tls::TLSOPT_TO_LE
;
779 case elfcpp::R_X86_64_GOTTPOFF
:
780 // These are Initial-Exec relocs which get the thread offset
781 // from the GOT. If we know that we are linking against the
782 // local symbol, we can switch to Local-Exec, which links the
783 // thread offset into the instruction.
785 return tls::TLSOPT_TO_LE
;
786 return tls::TLSOPT_NONE
;
788 case elfcpp::R_X86_64_TPOFF32
:
789 // When we already have Local-Exec, there is nothing further we
791 return tls::TLSOPT_NONE
;
798 // Report an unsupported relocation against a local symbol.
801 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj
<64, false>* object
,
804 gold_error(_("%s: unsupported reloc %u against local symbol"),
805 object
->name().c_str(), r_type
);
808 // Scan a relocation for a local symbol.
811 Target_x86_64::Scan::local(const General_options
&,
812 Symbol_table
* symtab
,
814 Target_x86_64
* target
,
815 Sized_relobj
<64, false>* object
,
816 unsigned int data_shndx
,
817 Output_section
* output_section
,
818 const elfcpp::Rela
<64, false>& reloc
,
820 const elfcpp::Sym
<64, false>& lsym
)
824 case elfcpp::R_X86_64_NONE
:
825 case elfcpp::R_386_GNU_VTINHERIT
:
826 case elfcpp::R_386_GNU_VTENTRY
:
829 case elfcpp::R_X86_64_64
:
830 // If building a shared library (or a position-independent
831 // executable), we need to create a dynamic relocation for this
832 // location. The relocation applied at link time will apply the
833 // link-time value, so we flag the location with an
834 // R_X86_64_RELATIVE relocation so the dynamic loader can
835 // relocate it easily.
836 if (parameters
->output_is_position_independent())
838 unsigned int r_sym
= elfcpp::elf_r_sym
<64>(reloc
.get_r_info());
839 Reloc_section
* rela_dyn
= target
->rela_dyn_section(layout
);
840 rela_dyn
->add_local_relative(object
, r_sym
,
841 elfcpp::R_X86_64_RELATIVE
,
842 output_section
, data_shndx
,
843 reloc
.get_r_offset(),
844 reloc
.get_r_addend());
848 case elfcpp::R_X86_64_32
:
849 case elfcpp::R_X86_64_32S
:
850 case elfcpp::R_X86_64_16
:
851 case elfcpp::R_X86_64_8
:
852 // If building a shared library (or a position-independent
853 // executable), we need to create a dynamic relocation for this
854 // location. We can't use an R_X86_64_RELATIVE relocation
855 // because that is always a 64-bit relocation.
856 if (parameters
->output_is_position_independent())
858 Reloc_section
* rela_dyn
= target
->rela_dyn_section(layout
);
859 if (lsym
.get_st_type() != elfcpp::STT_SECTION
)
861 unsigned int r_sym
= elfcpp::elf_r_sym
<64>(reloc
.get_r_info());
862 rela_dyn
->add_local(object
, r_sym
, r_type
, output_section
,
863 data_shndx
, reloc
.get_r_offset(),
864 reloc
.get_r_addend());
868 gold_assert(lsym
.get_st_value() == 0);
869 rela_dyn
->add_local_section(object
, lsym
.get_st_shndx(),
870 r_type
, output_section
,
871 data_shndx
, reloc
.get_r_offset(),
872 reloc
.get_r_addend());
877 case elfcpp::R_X86_64_PC64
:
878 case elfcpp::R_X86_64_PC32
:
879 case elfcpp::R_X86_64_PC16
:
880 case elfcpp::R_X86_64_PC8
:
883 case elfcpp::R_X86_64_PLT32
:
884 // Since we know this is a local symbol, we can handle this as a
888 case elfcpp::R_X86_64_GOTPC32
:
889 case elfcpp::R_X86_64_GOTOFF64
:
890 case elfcpp::R_X86_64_GOTPC64
:
891 case elfcpp::R_X86_64_PLTOFF64
:
892 // We need a GOT section.
893 target
->got_section(symtab
, layout
);
894 // For PLTOFF64, we'd normally want a PLT section, but since we
895 // know this is a local symbol, no PLT is needed.
898 case elfcpp::R_X86_64_GOT64
:
899 case elfcpp::R_X86_64_GOT32
:
900 case elfcpp::R_X86_64_GOTPCREL64
:
901 case elfcpp::R_X86_64_GOTPCREL
:
902 case elfcpp::R_X86_64_GOTPLT64
:
904 // The symbol requires a GOT entry.
905 Output_data_got
<64, false>* got
= target
->got_section(symtab
, layout
);
906 unsigned int r_sym
= elfcpp::elf_r_sym
<64>(reloc
.get_r_info());
907 if (got
->add_local(object
, r_sym
))
909 // If we are generating a shared object, we need to add a
910 // dynamic relocation for this symbol's GOT entry.
911 if (parameters
->output_is_position_independent())
913 Reloc_section
* rela_dyn
= target
->rela_dyn_section(layout
);
914 // R_X86_64_RELATIVE assumes a 64-bit relocation.
915 if (r_type
!= elfcpp::R_X86_64_GOT32
)
916 rela_dyn
->add_local_relative(object
, r_sym
,
917 elfcpp::R_X86_64_RELATIVE
, got
,
918 object
->local_got_offset(r_sym
),
922 gold_assert(lsym
.get_st_type() != elfcpp::STT_SECTION
);
923 rela_dyn
->add_local(object
, r_sym
, r_type
,
924 got
, object
->local_got_offset(r_sym
),
929 // For GOTPLT64, we'd normally want a PLT section, but since
930 // we know this is a local symbol, no PLT is needed.
934 case elfcpp::R_X86_64_COPY
:
935 case elfcpp::R_X86_64_GLOB_DAT
:
936 case elfcpp::R_X86_64_JUMP_SLOT
:
937 case elfcpp::R_X86_64_RELATIVE
:
938 // These are outstanding tls relocs, which are unexpected when linking
939 case elfcpp::R_X86_64_TPOFF64
:
940 case elfcpp::R_X86_64_DTPMOD64
:
941 case elfcpp::R_X86_64_TLSDESC
:
942 gold_error(_("%s: unexpected reloc %u in object file"),
943 object
->name().c_str(), r_type
);
946 // These are initial tls relocs, which are expected when linking
947 case elfcpp::R_X86_64_TLSGD
: // Global-dynamic
948 case elfcpp::R_X86_64_GOTPC32_TLSDESC
: // Global-dynamic (from ~oliva url)
949 case elfcpp::R_X86_64_TLSDESC_CALL
:
950 case elfcpp::R_X86_64_TLSLD
: // Local-dynamic
951 case elfcpp::R_X86_64_DTPOFF32
:
952 case elfcpp::R_X86_64_DTPOFF64
:
953 case elfcpp::R_X86_64_GOTTPOFF
: // Initial-exec
954 case elfcpp::R_X86_64_TPOFF32
: // Local-exec
956 bool output_is_shared
= parameters
->output_is_shared();
957 const tls::Tls_optimization optimized_type
958 = Target_x86_64::optimize_tls_reloc(!output_is_shared
, r_type
);
961 case elfcpp::R_X86_64_TLSGD
: // General-dynamic
962 if (optimized_type
== tls::TLSOPT_NONE
)
964 // Create a pair of GOT entries for the module index and
965 // dtv-relative offset.
966 Output_data_got
<64, false>* got
967 = target
->got_section(symtab
, layout
);
968 unsigned int r_sym
= elfcpp::elf_r_sym
<64>(reloc
.get_r_info());
969 got
->add_local_tls_with_rela(object
, r_sym
,
970 lsym
.get_st_shndx(), true,
971 target
->rela_dyn_section(layout
),
972 elfcpp::R_X86_64_DTPMOD64
);
974 else if (optimized_type
!= tls::TLSOPT_TO_LE
)
975 unsupported_reloc_local(object
, r_type
);
978 case elfcpp::R_X86_64_GOTPC32_TLSDESC
:
979 case elfcpp::R_X86_64_TLSDESC_CALL
:
980 // FIXME: If not relaxing to LE, we need to generate
981 // a GOT entry with a R_x86_64_TLSDESC reloc.
982 if (optimized_type
!= tls::TLSOPT_TO_LE
)
983 unsupported_reloc_local(object
, r_type
);
986 case elfcpp::R_X86_64_TLSLD
: // Local-dynamic
987 if (optimized_type
== tls::TLSOPT_NONE
)
989 // Create a GOT entry for the module index.
990 target
->got_mod_index_entry(symtab
, layout
, object
);
992 else if (optimized_type
!= tls::TLSOPT_TO_LE
)
993 unsupported_reloc_local(object
, r_type
);
996 case elfcpp::R_X86_64_DTPOFF32
:
997 case elfcpp::R_X86_64_DTPOFF64
:
1000 case elfcpp::R_X86_64_GOTTPOFF
: // Initial-exec
1001 layout
->set_has_static_tls();
1002 if (optimized_type
== tls::TLSOPT_NONE
)
1004 // Create a GOT entry for the tp-relative offset.
1005 Output_data_got
<64, false>* got
1006 = target
->got_section(symtab
, layout
);
1007 unsigned int r_sym
= elfcpp::elf_r_sym
<64>(reloc
.get_r_info());
1008 got
->add_local_with_rela(object
, r_sym
,
1009 target
->rela_dyn_section(layout
),
1010 elfcpp::R_X86_64_TPOFF64
);
1012 else if (optimized_type
!= tls::TLSOPT_TO_LE
)
1013 unsupported_reloc_local(object
, r_type
);
1016 case elfcpp::R_X86_64_TPOFF32
: // Local-exec
1017 layout
->set_has_static_tls();
1018 if (output_is_shared
)
1019 unsupported_reloc_local(object
, r_type
);
1028 case elfcpp::R_X86_64_SIZE32
:
1029 case elfcpp::R_X86_64_SIZE64
:
1031 gold_error(_("%s: unsupported reloc %u against local symbol"),
1032 object
->name().c_str(), r_type
);
1038 // Report an unsupported relocation against a global symbol.
1041 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj
<64, false>* object
,
1042 unsigned int r_type
,
1045 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1046 object
->name().c_str(), r_type
, gsym
->demangled_name().c_str());
1049 // Scan a relocation for a global symbol.
1052 Target_x86_64::Scan::global(const General_options
& options
,
1053 Symbol_table
* symtab
,
1055 Target_x86_64
* target
,
1056 Sized_relobj
<64, false>* object
,
1057 unsigned int data_shndx
,
1058 Output_section
* output_section
,
1059 const elfcpp::Rela
<64, false>& reloc
,
1060 unsigned int r_type
,
1065 case elfcpp::R_X86_64_NONE
:
1066 case elfcpp::R_386_GNU_VTINHERIT
:
1067 case elfcpp::R_386_GNU_VTENTRY
:
1070 case elfcpp::R_X86_64_64
:
1071 case elfcpp::R_X86_64_32
:
1072 case elfcpp::R_X86_64_32S
:
1073 case elfcpp::R_X86_64_16
:
1074 case elfcpp::R_X86_64_8
:
1076 // Make a PLT entry if necessary.
1077 if (gsym
->needs_plt_entry())
1079 target
->make_plt_entry(symtab
, layout
, gsym
);
1080 // Since this is not a PC-relative relocation, we may be
1081 // taking the address of a function. In that case we need to
1082 // set the entry in the dynamic symbol table to the address of
1084 if (gsym
->is_from_dynobj() && !parameters
->output_is_shared())
1085 gsym
->set_needs_dynsym_value();
1087 // Make a dynamic relocation if necessary.
1088 if (gsym
->needs_dynamic_reloc(Symbol::ABSOLUTE_REF
))
1090 if (target
->may_need_copy_reloc(gsym
))
1092 target
->copy_reloc(&options
, symtab
, layout
, object
,
1093 data_shndx
, output_section
, gsym
, reloc
);
1095 else if (r_type
== elfcpp::R_X86_64_64
1096 && gsym
->can_use_relative_reloc(false))
1098 Reloc_section
* rela_dyn
= target
->rela_dyn_section(layout
);
1099 rela_dyn
->add_global_relative(gsym
, elfcpp::R_X86_64_RELATIVE
,
1100 output_section
, object
,
1101 data_shndx
, reloc
.get_r_offset(),
1102 reloc
.get_r_addend());
1106 Reloc_section
* rela_dyn
= target
->rela_dyn_section(layout
);
1107 rela_dyn
->add_global(gsym
, r_type
, output_section
, object
,
1108 data_shndx
, reloc
.get_r_offset(),
1109 reloc
.get_r_addend());
1115 case elfcpp::R_X86_64_PC64
:
1116 case elfcpp::R_X86_64_PC32
:
1117 case elfcpp::R_X86_64_PC16
:
1118 case elfcpp::R_X86_64_PC8
:
1120 // Make a PLT entry if necessary.
1121 if (gsym
->needs_plt_entry())
1122 target
->make_plt_entry(symtab
, layout
, gsym
);
1123 // Make a dynamic relocation if necessary.
1124 int flags
= Symbol::NON_PIC_REF
;
1125 if (gsym
->type() == elfcpp::STT_FUNC
)
1126 flags
|= Symbol::FUNCTION_CALL
;
1127 if (gsym
->needs_dynamic_reloc(flags
))
1129 if (target
->may_need_copy_reloc(gsym
))
1131 target
->copy_reloc(&options
, symtab
, layout
, object
,
1132 data_shndx
, output_section
, gsym
, reloc
);
1136 Reloc_section
* rela_dyn
= target
->rela_dyn_section(layout
);
1137 rela_dyn
->add_global(gsym
, r_type
, output_section
, object
,
1138 data_shndx
, reloc
.get_r_offset(),
1139 reloc
.get_r_addend());
1145 case elfcpp::R_X86_64_GOT64
:
1146 case elfcpp::R_X86_64_GOT32
:
1147 case elfcpp::R_X86_64_GOTPCREL64
:
1148 case elfcpp::R_X86_64_GOTPCREL
:
1149 case elfcpp::R_X86_64_GOTPLT64
:
1151 // The symbol requires a GOT entry.
1152 Output_data_got
<64, false>* got
= target
->got_section(symtab
, layout
);
1153 if (gsym
->final_value_is_known())
1154 got
->add_global(gsym
);
1157 // If this symbol is not fully resolved, we need to add a
1158 // dynamic relocation for it.
1159 Reloc_section
* rela_dyn
= target
->rela_dyn_section(layout
);
1160 if (gsym
->is_from_dynobj()
1161 || gsym
->is_undefined()
1162 || gsym
->is_preemptible())
1163 got
->add_global_with_rela(gsym
, rela_dyn
,
1164 elfcpp::R_X86_64_GLOB_DAT
);
1167 if (got
->add_global(gsym
))
1168 rela_dyn
->add_global_relative(gsym
,
1169 elfcpp::R_X86_64_RELATIVE
,
1170 got
, gsym
->got_offset(), 0);
1173 // For GOTPLT64, we also need a PLT entry (but only if the
1174 // symbol is not fully resolved).
1175 if (r_type
== elfcpp::R_X86_64_GOTPLT64
1176 && !gsym
->final_value_is_known())
1177 target
->make_plt_entry(symtab
, layout
, gsym
);
1181 case elfcpp::R_X86_64_PLT32
:
1182 // If the symbol is fully resolved, this is just a PC32 reloc.
1183 // Otherwise we need a PLT entry.
1184 if (gsym
->final_value_is_known())
1186 // If building a shared library, we can also skip the PLT entry
1187 // if the symbol is defined in the output file and is protected
1189 if (gsym
->is_defined()
1190 && !gsym
->is_from_dynobj()
1191 && !gsym
->is_preemptible())
1193 target
->make_plt_entry(symtab
, layout
, gsym
);
1196 case elfcpp::R_X86_64_GOTPC32
:
1197 case elfcpp::R_X86_64_GOTOFF64
:
1198 case elfcpp::R_X86_64_GOTPC64
:
1199 case elfcpp::R_X86_64_PLTOFF64
:
1200 // We need a GOT section.
1201 target
->got_section(symtab
, layout
);
1202 // For PLTOFF64, we also need a PLT entry (but only if the
1203 // symbol is not fully resolved).
1204 if (r_type
== elfcpp::R_X86_64_PLTOFF64
1205 && !gsym
->final_value_is_known())
1206 target
->make_plt_entry(symtab
, layout
, gsym
);
1209 case elfcpp::R_X86_64_COPY
:
1210 case elfcpp::R_X86_64_GLOB_DAT
:
1211 case elfcpp::R_X86_64_JUMP_SLOT
:
1212 case elfcpp::R_X86_64_RELATIVE
:
1213 // These are outstanding tls relocs, which are unexpected when linking
1214 case elfcpp::R_X86_64_TPOFF64
:
1215 case elfcpp::R_X86_64_DTPMOD64
:
1216 case elfcpp::R_X86_64_TLSDESC
:
1217 gold_error(_("%s: unexpected reloc %u in object file"),
1218 object
->name().c_str(), r_type
);
1221 // These are initial tls relocs, which are expected for global()
1222 case elfcpp::R_X86_64_TLSGD
: // Global-dynamic
1223 case elfcpp::R_X86_64_GOTPC32_TLSDESC
: // Global-dynamic (from ~oliva url)
1224 case elfcpp::R_X86_64_TLSDESC_CALL
:
1225 case elfcpp::R_X86_64_TLSLD
: // Local-dynamic
1226 case elfcpp::R_X86_64_DTPOFF32
:
1227 case elfcpp::R_X86_64_DTPOFF64
:
1228 case elfcpp::R_X86_64_GOTTPOFF
: // Initial-exec
1229 case elfcpp::R_X86_64_TPOFF32
: // Local-exec
1231 const bool is_final
= gsym
->final_value_is_known();
1232 const tls::Tls_optimization optimized_type
1233 = Target_x86_64::optimize_tls_reloc(is_final
, r_type
);
1236 case elfcpp::R_X86_64_TLSGD
: // General-dynamic
1237 if (optimized_type
== tls::TLSOPT_NONE
)
1239 // Create a pair of GOT entries for the module index and
1240 // dtv-relative offset.
1241 Output_data_got
<64, false>* got
1242 = target
->got_section(symtab
, layout
);
1243 got
->add_global_tls_with_rela(gsym
,
1244 target
->rela_dyn_section(layout
),
1245 elfcpp::R_X86_64_DTPMOD64
,
1246 elfcpp::R_X86_64_DTPOFF64
);
1248 else if (optimized_type
== tls::TLSOPT_TO_IE
)
1250 // Create a GOT entry for the tp-relative offset.
1251 Output_data_got
<64, false>* got
1252 = target
->got_section(symtab
, layout
);
1253 got
->add_global_with_rela(gsym
,
1254 target
->rela_dyn_section(layout
),
1255 elfcpp::R_X86_64_TPOFF64
);
1257 else if (optimized_type
!= tls::TLSOPT_TO_LE
)
1258 unsupported_reloc_global(object
, r_type
, gsym
);
1261 case elfcpp::R_X86_64_GOTPC32_TLSDESC
:
1262 case elfcpp::R_X86_64_TLSDESC_CALL
:
1263 // FIXME: If not relaxing to LE, we need to generate
1264 // DTPMOD64 and DTPOFF64, or TLSDESC, relocs.
1265 if (optimized_type
!= tls::TLSOPT_TO_LE
)
1266 unsupported_reloc_global(object
, r_type
, gsym
);
1269 case elfcpp::R_X86_64_TLSLD
: // Local-dynamic
1270 if (optimized_type
== tls::TLSOPT_NONE
)
1272 // Create a GOT entry for the module index.
1273 target
->got_mod_index_entry(symtab
, layout
, object
);
1275 else if (optimized_type
!= tls::TLSOPT_TO_LE
)
1276 unsupported_reloc_global(object
, r_type
, gsym
);
1279 case elfcpp::R_X86_64_DTPOFF32
:
1280 case elfcpp::R_X86_64_DTPOFF64
:
1283 case elfcpp::R_X86_64_GOTTPOFF
: // Initial-exec
1284 layout
->set_has_static_tls();
1285 if (optimized_type
== tls::TLSOPT_NONE
)
1287 // Create a GOT entry for the tp-relative offset.
1288 Output_data_got
<64, false>* got
1289 = target
->got_section(symtab
, layout
);
1290 got
->add_global_with_rela(gsym
,
1291 target
->rela_dyn_section(layout
),
1292 elfcpp::R_X86_64_TPOFF64
);
1294 else if (optimized_type
!= tls::TLSOPT_TO_LE
)
1295 unsupported_reloc_global(object
, r_type
, gsym
);
1298 case elfcpp::R_X86_64_TPOFF32
: // Local-exec
1299 layout
->set_has_static_tls();
1300 if (parameters
->output_is_shared())
1301 unsupported_reloc_local(object
, r_type
);
1310 case elfcpp::R_X86_64_SIZE32
:
1311 case elfcpp::R_X86_64_SIZE64
:
1313 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1314 object
->name().c_str(), r_type
,
1315 gsym
->demangled_name().c_str());
1320 // Scan relocations for a section.
1323 Target_x86_64::scan_relocs(const General_options
& options
,
1324 Symbol_table
* symtab
,
1326 Sized_relobj
<64, false>* object
,
1327 unsigned int data_shndx
,
1328 unsigned int sh_type
,
1329 const unsigned char* prelocs
,
1331 Output_section
* output_section
,
1332 bool needs_special_offset_handling
,
1333 size_t local_symbol_count
,
1334 const unsigned char* plocal_symbols
)
1336 if (sh_type
== elfcpp::SHT_REL
)
1338 gold_error(_("%s: unsupported REL reloc section"),
1339 object
->name().c_str());
1343 gold::scan_relocs
<64, false, Target_x86_64
, elfcpp::SHT_RELA
,
1344 Target_x86_64::Scan
>(
1354 needs_special_offset_handling
,
1359 // Finalize the sections.
1362 Target_x86_64::do_finalize_sections(Layout
* layout
)
1364 // Fill in some more dynamic tags.
1365 Output_data_dynamic
* const odyn
= layout
->dynamic_data();
1368 if (this->got_plt_
!= NULL
)
1369 odyn
->add_section_address(elfcpp::DT_PLTGOT
, this->got_plt_
);
1371 if (this->plt_
!= NULL
)
1373 const Output_data
* od
= this->plt_
->rel_plt();
1374 odyn
->add_section_size(elfcpp::DT_PLTRELSZ
, od
);
1375 odyn
->add_section_address(elfcpp::DT_JMPREL
, od
);
1376 odyn
->add_constant(elfcpp::DT_PLTREL
, elfcpp::DT_RELA
);
1379 if (this->rela_dyn_
!= NULL
)
1381 const Output_data
* od
= this->rela_dyn_
;
1382 odyn
->add_section_address(elfcpp::DT_RELA
, od
);
1383 odyn
->add_section_size(elfcpp::DT_RELASZ
, od
);
1384 odyn
->add_constant(elfcpp::DT_RELAENT
,
1385 elfcpp::Elf_sizes
<64>::rela_size
);
1388 if (!parameters
->output_is_shared())
1390 // The value of the DT_DEBUG tag is filled in by the dynamic
1391 // linker at run time, and used by the debugger.
1392 odyn
->add_constant(elfcpp::DT_DEBUG
, 0);
1396 // Emit any relocs we saved in an attempt to avoid generating COPY
1398 if (this->copy_relocs_
== NULL
)
1400 if (this->copy_relocs_
->any_to_emit())
1402 Reloc_section
* rela_dyn
= this->rela_dyn_section(layout
);
1403 this->copy_relocs_
->emit(rela_dyn
);
1405 delete this->copy_relocs_
;
1406 this->copy_relocs_
= NULL
;
1409 // Perform a relocation.
1412 Target_x86_64::Relocate::relocate(const Relocate_info
<64, false>* relinfo
,
1413 Target_x86_64
* target
,
1415 const elfcpp::Rela
<64, false>& rela
,
1416 unsigned int r_type
,
1417 const Sized_symbol
<64>* gsym
,
1418 const Symbol_value
<64>* psymval
,
1419 unsigned char* view
,
1420 elfcpp::Elf_types
<64>::Elf_Addr address
,
1421 section_size_type view_size
)
1423 if (this->skip_call_tls_get_addr_
)
1425 if (r_type
!= elfcpp::R_X86_64_PLT32
1427 || strcmp(gsym
->name(), "__tls_get_addr") != 0)
1429 gold_error_at_location(relinfo
, relnum
, rela
.get_r_offset(),
1430 _("missing expected TLS relocation"));
1434 this->skip_call_tls_get_addr_
= false;
1439 // Pick the value to use for symbols defined in shared objects.
1440 Symbol_value
<64> symval
;
1442 && (gsym
->is_from_dynobj()
1443 || (parameters
->output_is_shared()
1444 && (gsym
->is_undefined() || gsym
->is_preemptible())))
1445 && gsym
->has_plt_offset())
1447 symval
.set_output_value(target
->plt_section()->address()
1448 + gsym
->plt_offset());
1452 const Sized_relobj
<64, false>* object
= relinfo
->object
;
1453 const elfcpp::Elf_Xword addend
= rela
.get_r_addend();
1455 // Get the GOT offset if needed.
1456 // The GOT pointer points to the end of the GOT section.
1457 // We need to subtract the size of the GOT section to get
1458 // the actual offset to use in the relocation.
1459 bool have_got_offset
= false;
1460 unsigned int got_offset
= 0;
1463 case elfcpp::R_X86_64_GOT32
:
1464 case elfcpp::R_X86_64_GOT64
:
1465 case elfcpp::R_X86_64_GOTPLT64
:
1466 case elfcpp::R_X86_64_GOTPCREL
:
1467 case elfcpp::R_X86_64_GOTPCREL64
:
1470 gold_assert(gsym
->has_got_offset());
1471 got_offset
= gsym
->got_offset() - target
->got_size();
1475 unsigned int r_sym
= elfcpp::elf_r_sym
<64>(rela
.get_r_info());
1476 gold_assert(object
->local_has_got_offset(r_sym
));
1477 got_offset
= object
->local_got_offset(r_sym
) - target
->got_size();
1479 have_got_offset
= true;
1488 case elfcpp::R_X86_64_NONE
:
1489 case elfcpp::R_386_GNU_VTINHERIT
:
1490 case elfcpp::R_386_GNU_VTENTRY
:
1493 case elfcpp::R_X86_64_64
:
1494 Relocate_functions
<64, false>::rela64(view
, object
, psymval
, addend
);
1497 case elfcpp::R_X86_64_PC64
:
1498 Relocate_functions
<64, false>::pcrela64(view
, object
, psymval
, addend
,
1502 case elfcpp::R_X86_64_32
:
1503 // FIXME: we need to verify that value + addend fits into 32 bits:
1504 // uint64_t x = value + addend;
1505 // x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1506 // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
1507 Relocate_functions
<64, false>::rela32(view
, object
, psymval
, addend
);
1510 case elfcpp::R_X86_64_32S
:
1511 // FIXME: we need to verify that value + addend fits into 32 bits:
1512 // int64_t x = value + addend; // note this quantity is signed!
1513 // x == static_cast<int64_t>(static_cast<int32_t>(x))
1514 Relocate_functions
<64, false>::rela32(view
, object
, psymval
, addend
);
1517 case elfcpp::R_X86_64_PC32
:
1518 Relocate_functions
<64, false>::pcrela32(view
, object
, psymval
, addend
,
1522 case elfcpp::R_X86_64_16
:
1523 Relocate_functions
<64, false>::rela16(view
, object
, psymval
, addend
);
1526 case elfcpp::R_X86_64_PC16
:
1527 Relocate_functions
<64, false>::pcrela16(view
, object
, psymval
, addend
,
1531 case elfcpp::R_X86_64_8
:
1532 Relocate_functions
<64, false>::rela8(view
, object
, psymval
, addend
);
1535 case elfcpp::R_X86_64_PC8
:
1536 Relocate_functions
<64, false>::pcrela8(view
, object
, psymval
, addend
,
1540 case elfcpp::R_X86_64_PLT32
:
1541 gold_assert(gsym
== NULL
1542 || gsym
->has_plt_offset()
1543 || gsym
->final_value_is_known()
1544 || (gsym
->is_defined()
1545 && !gsym
->is_from_dynobj()
1546 && !gsym
->is_preemptible()));
1547 // Note: while this code looks the same as for R_X86_64_PC32, it
1548 // behaves differently because psymval was set to point to
1549 // the PLT entry, rather than the symbol, in Scan::global().
1550 Relocate_functions
<64, false>::pcrela32(view
, object
, psymval
, addend
,
1554 case elfcpp::R_X86_64_PLTOFF64
:
1557 gold_assert(gsym
->has_plt_offset()
1558 || gsym
->final_value_is_known());
1559 elfcpp::Elf_types
<64>::Elf_Addr got_address
;
1560 got_address
= target
->got_section(NULL
, NULL
)->address();
1561 Relocate_functions
<64, false>::rela64(view
, object
, psymval
,
1562 addend
- got_address
);
1565 case elfcpp::R_X86_64_GOT32
:
1566 gold_assert(have_got_offset
);
1567 Relocate_functions
<64, false>::rela32(view
, got_offset
, addend
);
1570 case elfcpp::R_X86_64_GOTPC32
:
1573 elfcpp::Elf_types
<64>::Elf_Addr value
;
1574 value
= target
->got_plt_section()->address();
1575 Relocate_functions
<64, false>::pcrela32(view
, value
, addend
, address
);
1579 case elfcpp::R_X86_64_GOT64
:
1580 // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1581 // Since we always add a PLT entry, this is equivalent.
1582 case elfcpp::R_X86_64_GOTPLT64
:
1583 gold_assert(have_got_offset
);
1584 Relocate_functions
<64, false>::rela64(view
, got_offset
, addend
);
1587 case elfcpp::R_X86_64_GOTPC64
:
1590 elfcpp::Elf_types
<64>::Elf_Addr value
;
1591 value
= target
->got_plt_section()->address();
1592 Relocate_functions
<64, false>::pcrela64(view
, value
, addend
, address
);
1596 case elfcpp::R_X86_64_GOTOFF64
:
1598 elfcpp::Elf_types
<64>::Elf_Addr value
;
1599 value
= (psymval
->value(object
, 0)
1600 - target
->got_plt_section()->address());
1601 Relocate_functions
<64, false>::rela64(view
, value
, addend
);
1605 case elfcpp::R_X86_64_GOTPCREL
:
1607 gold_assert(have_got_offset
);
1608 elfcpp::Elf_types
<64>::Elf_Addr value
;
1609 value
= target
->got_plt_section()->address() + got_offset
;
1610 Relocate_functions
<64, false>::pcrela32(view
, value
, addend
, address
);
1614 case elfcpp::R_X86_64_GOTPCREL64
:
1616 gold_assert(have_got_offset
);
1617 elfcpp::Elf_types
<64>::Elf_Addr value
;
1618 value
= target
->got_plt_section()->address() + got_offset
;
1619 Relocate_functions
<64, false>::pcrela64(view
, value
, addend
, address
);
1623 case elfcpp::R_X86_64_COPY
:
1624 case elfcpp::R_X86_64_GLOB_DAT
:
1625 case elfcpp::R_X86_64_JUMP_SLOT
:
1626 case elfcpp::R_X86_64_RELATIVE
:
1627 // These are outstanding tls relocs, which are unexpected when linking
1628 case elfcpp::R_X86_64_TPOFF64
:
1629 case elfcpp::R_X86_64_DTPMOD64
:
1630 case elfcpp::R_X86_64_TLSDESC
:
1631 gold_error_at_location(relinfo
, relnum
, rela
.get_r_offset(),
1632 _("unexpected reloc %u in object file"),
1636 // These are initial tls relocs, which are expected when linking
1637 case elfcpp::R_X86_64_TLSGD
: // Global-dynamic
1638 case elfcpp::R_X86_64_GOTPC32_TLSDESC
: // Global-dynamic (from ~oliva url)
1639 case elfcpp::R_X86_64_TLSDESC_CALL
:
1640 case elfcpp::R_X86_64_TLSLD
: // Local-dynamic
1641 case elfcpp::R_X86_64_DTPOFF32
:
1642 case elfcpp::R_X86_64_DTPOFF64
:
1643 case elfcpp::R_X86_64_GOTTPOFF
: // Initial-exec
1644 case elfcpp::R_X86_64_TPOFF32
: // Local-exec
1645 this->relocate_tls(relinfo
, target
, relnum
, rela
, r_type
, gsym
, psymval
,
1646 view
, address
, view_size
);
1649 case elfcpp::R_X86_64_SIZE32
:
1650 case elfcpp::R_X86_64_SIZE64
:
1652 gold_error_at_location(relinfo
, relnum
, rela
.get_r_offset(),
1653 _("unsupported reloc %u"),
1661 // Perform a TLS relocation.
1664 Target_x86_64::Relocate::relocate_tls(const Relocate_info
<64, false>* relinfo
,
1665 Target_x86_64
* target
,
1667 const elfcpp::Rela
<64, false>& rela
,
1668 unsigned int r_type
,
1669 const Sized_symbol
<64>* gsym
,
1670 const Symbol_value
<64>* psymval
,
1671 unsigned char* view
,
1672 elfcpp::Elf_types
<64>::Elf_Addr address
,
1673 section_size_type view_size
)
1675 Output_segment
* tls_segment
= relinfo
->layout
->tls_segment();
1677 const Sized_relobj
<64, false>* object
= relinfo
->object
;
1678 const elfcpp::Elf_Xword addend
= rela
.get_r_addend();
1680 elfcpp::Elf_types
<64>::Elf_Addr value
= psymval
->value(relinfo
->object
, 0);
1682 const bool is_final
= (gsym
== NULL
1683 ? !parameters
->output_is_position_independent()
1684 : gsym
->final_value_is_known());
1685 const tls::Tls_optimization optimized_type
1686 = Target_x86_64::optimize_tls_reloc(is_final
, r_type
);
1689 case elfcpp::R_X86_64_TLSGD
: // Global-dynamic
1690 case elfcpp::R_X86_64_GOTPC32_TLSDESC
: // Global-dynamic (from ~oliva url)
1691 case elfcpp::R_X86_64_TLSDESC_CALL
:
1692 if (optimized_type
== tls::TLSOPT_TO_LE
)
1694 gold_assert(tls_segment
!= NULL
);
1695 this->tls_gd_to_le(relinfo
, relnum
, tls_segment
,
1696 rela
, r_type
, value
, view
,
1702 unsigned int got_offset
;
1705 gold_assert(gsym
->has_tls_got_offset(true));
1706 got_offset
= gsym
->tls_got_offset(true) - target
->got_size();
1710 unsigned int r_sym
= elfcpp::elf_r_sym
<64>(rela
.get_r_info());
1711 gold_assert(object
->local_has_tls_got_offset(r_sym
, true));
1712 got_offset
= (object
->local_tls_got_offset(r_sym
, true)
1713 - target
->got_size());
1715 if (optimized_type
== tls::TLSOPT_TO_IE
)
1717 gold_assert(tls_segment
!= NULL
);
1718 this->tls_gd_to_ie(relinfo
, relnum
, tls_segment
, rela
, r_type
,
1719 got_offset
, view
, view_size
);
1722 else if (optimized_type
== tls::TLSOPT_NONE
)
1724 // Relocate the field with the offset of the pair of GOT
1726 value
= target
->got_plt_section()->address() + got_offset
;
1727 Relocate_functions
<64, false>::pcrela32(view
, value
, addend
,
1732 gold_error_at_location(relinfo
, relnum
, rela
.get_r_offset(),
1733 _("unsupported reloc %u"), r_type
);
1736 case elfcpp::R_X86_64_TLSLD
: // Local-dynamic
1737 if (optimized_type
== tls::TLSOPT_TO_LE
)
1739 gold_assert(tls_segment
!= NULL
);
1740 this->tls_ld_to_le(relinfo
, relnum
, tls_segment
, rela
, r_type
,
1741 value
, view
, view_size
);
1744 else if (optimized_type
== tls::TLSOPT_NONE
)
1746 // Relocate the field with the offset of the GOT entry for
1747 // the module index.
1748 unsigned int got_offset
;
1749 got_offset
= (target
->got_mod_index_entry(NULL
, NULL
, NULL
)
1750 - target
->got_size());
1751 value
= target
->got_plt_section()->address() + got_offset
;
1752 Relocate_functions
<64, false>::pcrela32(view
, value
, addend
,
1756 gold_error_at_location(relinfo
, relnum
, rela
.get_r_offset(),
1757 _("unsupported reloc %u"), r_type
);
1760 case elfcpp::R_X86_64_DTPOFF32
:
1761 gold_assert(tls_segment
!= NULL
);
1762 if (optimized_type
== tls::TLSOPT_TO_LE
)
1763 value
-= tls_segment
->memsz();
1764 Relocate_functions
<64, false>::rela32(view
, value
, 0);
1767 case elfcpp::R_X86_64_DTPOFF64
:
1768 gold_assert(tls_segment
!= NULL
);
1769 if (optimized_type
== tls::TLSOPT_TO_LE
)
1770 value
-= tls_segment
->memsz();
1771 Relocate_functions
<64, false>::rela64(view
, value
, 0);
1774 case elfcpp::R_X86_64_GOTTPOFF
: // Initial-exec
1775 if (optimized_type
== tls::TLSOPT_TO_LE
)
1777 gold_assert(tls_segment
!= NULL
);
1778 Target_x86_64::Relocate::tls_ie_to_le(relinfo
, relnum
, tls_segment
,
1779 rela
, r_type
, value
, view
,
1783 else if (optimized_type
== tls::TLSOPT_NONE
)
1785 // Relocate the field with the offset of the GOT entry for
1786 // the tp-relative offset of the symbol.
1787 unsigned int got_offset
;
1790 gold_assert(gsym
->has_got_offset());
1791 got_offset
= gsym
->got_offset() - target
->got_size();
1795 unsigned int r_sym
= elfcpp::elf_r_sym
<64>(rela
.get_r_info());
1796 gold_assert(object
->local_has_got_offset(r_sym
));
1797 got_offset
= (object
->local_got_offset(r_sym
)
1798 - target
->got_size());
1800 value
= target
->got_plt_section()->address() + got_offset
;
1801 Relocate_functions
<64, false>::pcrela32(view
, value
, addend
, address
);
1804 gold_error_at_location(relinfo
, relnum
, rela
.get_r_offset(),
1805 _("unsupported reloc type %u"),
1809 case elfcpp::R_X86_64_TPOFF32
: // Local-exec
1810 value
-= tls_segment
->memsz();
1811 Relocate_functions
<64, false>::rela32(view
, value
, 0);
1816 // Do a relocation in which we convert a TLS General-Dynamic to an
1820 Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info
<64, false>* relinfo
,
1822 Output_segment
* tls_segment
,
1823 const elfcpp::Rela
<64, false>& rela
,
1825 elfcpp::Elf_types
<64>::Elf_Addr value
,
1826 unsigned char* view
,
1827 section_size_type view_size
)
1829 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1830 // .word 0x6666; rex64; call __tls_get_addr
1831 // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
1833 tls::check_range(relinfo
, relnum
, rela
.get_r_offset(), view_size
, -4);
1834 tls::check_range(relinfo
, relnum
, rela
.get_r_offset(), view_size
, 12);
1836 tls::check_tls(relinfo
, relnum
, rela
.get_r_offset(),
1837 (memcmp(view
- 4, "\x66\x48\x8d\x3d", 4) == 0));
1838 tls::check_tls(relinfo
, relnum
, rela
.get_r_offset(),
1839 (memcmp(view
+ 4, "\x66\x66\x48\xe8", 4) == 0));
1841 memcpy(view
- 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
1843 value
-= tls_segment
->memsz();
1844 Relocate_functions
<64, false>::rela32(view
+ 8, value
, 0);
1846 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1848 this->skip_call_tls_get_addr_
= true;
1851 // Do a relocation in which we convert a TLS General-Dynamic to a
1855 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info
<64, false>* relinfo
,
1857 Output_segment
* tls_segment
,
1858 const elfcpp::Rela
<64, false>& rela
,
1860 elfcpp::Elf_types
<64>::Elf_Addr value
,
1861 unsigned char* view
,
1862 section_size_type view_size
)
1864 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1865 // .word 0x6666; rex64; call __tls_get_addr
1866 // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
1868 tls::check_range(relinfo
, relnum
, rela
.get_r_offset(), view_size
, -4);
1869 tls::check_range(relinfo
, relnum
, rela
.get_r_offset(), view_size
, 12);
1871 tls::check_tls(relinfo
, relnum
, rela
.get_r_offset(),
1872 (memcmp(view
- 4, "\x66\x48\x8d\x3d", 4) == 0));
1873 tls::check_tls(relinfo
, relnum
, rela
.get_r_offset(),
1874 (memcmp(view
+ 4, "\x66\x66\x48\xe8", 4) == 0));
1876 memcpy(view
- 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
1878 value
-= tls_segment
->memsz();
1879 Relocate_functions
<64, false>::rela32(view
+ 8, value
, 0);
1881 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1883 this->skip_call_tls_get_addr_
= true;
1887 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info
<64, false>* relinfo
,
1890 const elfcpp::Rela
<64, false>& rela
,
1892 elfcpp::Elf_types
<64>::Elf_Addr
,
1893 unsigned char* view
,
1894 section_size_type view_size
)
1896 // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
1897 // ... leq foo@dtpoff(%rax),%reg
1898 // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
1900 tls::check_range(relinfo
, relnum
, rela
.get_r_offset(), view_size
, -3);
1901 tls::check_range(relinfo
, relnum
, rela
.get_r_offset(), view_size
, 9);
1903 tls::check_tls(relinfo
, relnum
, rela
.get_r_offset(),
1904 view
[-3] == 0x48 && view
[-2] == 0x8d && view
[-1] == 0x3d);
1906 tls::check_tls(relinfo
, relnum
, rela
.get_r_offset(), view
[4] == 0xe8);
1908 memcpy(view
- 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
1910 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1912 this->skip_call_tls_get_addr_
= true;
1915 // Do a relocation in which we convert a TLS Initial-Exec to a
1919 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info
<64, false>* relinfo
,
1921 Output_segment
* tls_segment
,
1922 const elfcpp::Rela
<64, false>& rela
,
1924 elfcpp::Elf_types
<64>::Elf_Addr value
,
1925 unsigned char* view
,
1926 section_size_type view_size
)
1928 // We need to examine the opcodes to figure out which instruction we
1931 // movq foo@gottpoff(%rip),%reg ==> movq $YY,%reg
1932 // addq foo@gottpoff(%rip),%reg ==> addq $YY,%reg
1934 tls::check_range(relinfo
, relnum
, rela
.get_r_offset(), view_size
, -3);
1935 tls::check_range(relinfo
, relnum
, rela
.get_r_offset(), view_size
, 4);
1937 unsigned char op1
= view
[-3];
1938 unsigned char op2
= view
[-2];
1939 unsigned char op3
= view
[-1];
1940 unsigned char reg
= op3
>> 3;
1948 view
[-1] = 0xc0 | reg
;
1952 // Special handling for %rsp.
1956 view
[-1] = 0xc0 | reg
;
1964 view
[-1] = 0x80 | reg
| (reg
<< 3);
1967 value
-= tls_segment
->memsz();
1968 Relocate_functions
<64, false>::rela32(view
, value
, 0);
1971 // Relocate section data.
1974 Target_x86_64::relocate_section(const Relocate_info
<64, false>* relinfo
,
1975 unsigned int sh_type
,
1976 const unsigned char* prelocs
,
1978 Output_section
* output_section
,
1979 bool needs_special_offset_handling
,
1980 unsigned char* view
,
1981 elfcpp::Elf_types
<64>::Elf_Addr address
,
1982 section_size_type view_size
)
1984 gold_assert(sh_type
== elfcpp::SHT_RELA
);
1986 gold::relocate_section
<64, false, Target_x86_64
, elfcpp::SHT_RELA
,
1987 Target_x86_64::Relocate
>(
1993 needs_special_offset_handling
,
1999 // Return the size of a relocation while scanning during a relocatable
2003 Target_x86_64::Relocatable_size_for_reloc::get_size_for_reloc(
2004 unsigned int r_type
,
2009 case elfcpp::R_X86_64_NONE
:
2010 case elfcpp::R_386_GNU_VTINHERIT
:
2011 case elfcpp::R_386_GNU_VTENTRY
:
2012 case elfcpp::R_X86_64_TLSGD
: // Global-dynamic
2013 case elfcpp::R_X86_64_GOTPC32_TLSDESC
: // Global-dynamic (from ~oliva url)
2014 case elfcpp::R_X86_64_TLSDESC_CALL
:
2015 case elfcpp::R_X86_64_TLSLD
: // Local-dynamic
2016 case elfcpp::R_X86_64_DTPOFF32
:
2017 case elfcpp::R_X86_64_DTPOFF64
:
2018 case elfcpp::R_X86_64_GOTTPOFF
: // Initial-exec
2019 case elfcpp::R_X86_64_TPOFF32
: // Local-exec
2022 case elfcpp::R_X86_64_64
:
2023 case elfcpp::R_X86_64_PC64
:
2024 case elfcpp::R_X86_64_GOTOFF64
:
2025 case elfcpp::R_X86_64_GOTPC64
:
2026 case elfcpp::R_X86_64_PLTOFF64
:
2027 case elfcpp::R_X86_64_GOT64
:
2028 case elfcpp::R_X86_64_GOTPCREL64
:
2029 case elfcpp::R_X86_64_GOTPCREL
:
2030 case elfcpp::R_X86_64_GOTPLT64
:
2033 case elfcpp::R_X86_64_32
:
2034 case elfcpp::R_X86_64_32S
:
2035 case elfcpp::R_X86_64_PC32
:
2036 case elfcpp::R_X86_64_PLT32
:
2037 case elfcpp::R_X86_64_GOTPC32
:
2038 case elfcpp::R_X86_64_GOT32
:
2041 case elfcpp::R_X86_64_16
:
2042 case elfcpp::R_X86_64_PC16
:
2045 case elfcpp::R_X86_64_8
:
2046 case elfcpp::R_X86_64_PC8
:
2049 case elfcpp::R_X86_64_COPY
:
2050 case elfcpp::R_X86_64_GLOB_DAT
:
2051 case elfcpp::R_X86_64_JUMP_SLOT
:
2052 case elfcpp::R_X86_64_RELATIVE
:
2053 // These are outstanding tls relocs, which are unexpected when linking
2054 case elfcpp::R_X86_64_TPOFF64
:
2055 case elfcpp::R_X86_64_DTPMOD64
:
2056 case elfcpp::R_X86_64_TLSDESC
:
2057 object
->error(_("unexpected reloc %u in object file"), r_type
);
2060 case elfcpp::R_X86_64_SIZE32
:
2061 case elfcpp::R_X86_64_SIZE64
:
2063 object
->error(_("unsupported reloc %u against local symbol"), r_type
);
2068 // Scan the relocs during a relocatable link.
2071 Target_x86_64::scan_relocatable_relocs(const General_options
& options
,
2072 Symbol_table
* symtab
,
2074 Sized_relobj
<64, false>* object
,
2075 unsigned int data_shndx
,
2076 unsigned int sh_type
,
2077 const unsigned char* prelocs
,
2079 Output_section
* output_section
,
2080 bool needs_special_offset_handling
,
2081 size_t local_symbol_count
,
2082 const unsigned char* plocal_symbols
,
2083 Relocatable_relocs
* rr
)
2085 gold_assert(sh_type
== elfcpp::SHT_RELA
);
2087 typedef gold::Default_scan_relocatable_relocs
<elfcpp::SHT_RELA
,
2088 Relocatable_size_for_reloc
> Scan_relocatable_relocs
;
2090 gold::scan_relocatable_relocs
<64, false, Target_x86_64
, elfcpp::SHT_RELA
,
2091 Scan_relocatable_relocs
>(
2100 needs_special_offset_handling
,
2106 // Relocate a section during a relocatable link.
2109 Target_x86_64::relocate_for_relocatable(
2110 const Relocate_info
<64, false>* relinfo
,
2111 unsigned int sh_type
,
2112 const unsigned char* prelocs
,
2114 Output_section
* output_section
,
2115 off_t offset_in_output_section
,
2116 const Relocatable_relocs
* rr
,
2117 unsigned char* view
,
2118 elfcpp::Elf_types
<64>::Elf_Addr view_address
,
2119 section_size_type view_size
,
2120 unsigned char* reloc_view
,
2121 section_size_type reloc_view_size
)
2123 gold_assert(sh_type
== elfcpp::SHT_RELA
);
2125 gold::relocate_for_relocatable
<64, false, Target_x86_64
, elfcpp::SHT_RELA
>(
2130 offset_in_output_section
,
2139 // Return the value to use for a dynamic which requires special
2140 // treatment. This is how we support equality comparisons of function
2141 // pointers across shared library boundaries, as described in the
2142 // processor specific ABI supplement.
2145 Target_x86_64::do_dynsym_value(const Symbol
* gsym
) const
2147 gold_assert(gsym
->is_from_dynobj() && gsym
->has_plt_offset());
2148 return this->plt_section()->address() + gsym
->plt_offset();
2151 // Return a string used to fill a code section with nops to take up
2152 // the specified length.
2155 Target_x86_64::do_code_fill(section_size_type length
)
2159 // Build a jmpq instruction to skip over the bytes.
2160 unsigned char jmp
[5];
2162 elfcpp::Swap_unaligned
<64, false>::writeval(jmp
+ 1, length
- 5);
2163 return (std::string(reinterpret_cast<char*>(&jmp
[0]), 5)
2164 + std::string(length
- 5, '\0'));
2167 // Nop sequences of various lengths.
2168 const char nop1
[1] = { 0x90 }; // nop
2169 const char nop2
[2] = { 0x66, 0x90 }; // xchg %ax %ax
2170 const char nop3
[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
2171 const char nop4
[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
2172 const char nop5
[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
2173 0x00 }; // leal 0(%esi,1),%esi
2174 const char nop6
[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2176 const char nop7
[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
2178 const char nop8
[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
2179 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
2180 const char nop9
[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
2181 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
2183 const char nop10
[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
2184 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
2186 const char nop11
[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
2187 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
2189 const char nop12
[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2190 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
2191 0x00, 0x00, 0x00, 0x00 };
2192 const char nop13
[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2193 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
2194 0x27, 0x00, 0x00, 0x00,
2196 const char nop14
[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
2197 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
2198 0xbc, 0x27, 0x00, 0x00,
2200 const char nop15
[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
2201 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
2202 0x90, 0x90, 0x90, 0x90,
2205 const char* nops
[16] = {
2207 nop1
, nop2
, nop3
, nop4
, nop5
, nop6
, nop7
,
2208 nop8
, nop9
, nop10
, nop11
, nop12
, nop13
, nop14
, nop15
2211 return std::string(nops
[length
], length
);
2214 // The selector for x86_64 object files.
2216 class Target_selector_x86_64
: public Target_selector
2219 Target_selector_x86_64()
2220 : Target_selector(elfcpp::EM_X86_64
, 64, false)
2224 recognize(int machine
, int osabi
, int abiversion
);
2227 recognize_by_name(const char*);
2230 Target_x86_64
* target_
;
2233 // Recognize an x86_64 object file when we already know that the machine
2234 // number is EM_X86_64.
2237 Target_selector_x86_64::recognize(int, int, int)
2239 if (this->target_
== NULL
)
2240 this->target_
= new Target_x86_64();
2241 return this->target_
;
2245 Target_selector_x86_64::recognize_by_name(const char* name
)
2247 if (strcmp(name
, "elf64-x86-64") != 0)
2249 if (this->target_
== NULL
)
2250 this->target_
= new Target_x86_64();
2251 return this->target_
;
2254 Target_selector_x86_64 target_selector_x86_64
;
2256 } // End anonymous namespace.