2008-02-20 Paolo Bonzini <bonzini@gnu.org>
[binutils.git] / gold / x86_64.cc
blobc65031e9cdcba07ffda5605608f8938c4b28e922
1 // x86_64.cc -- x86_64 target support for gold.
3 // Copyright 2006, 2007, Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or
9 // modify it under the terms of the GNU Library General Public License
10 // as published by the Free Software Foundation; either version 2, or
11 // (at your option) any later version.
13 // In addition to the permissions in the GNU Library General Public
14 // License, the Free Software Foundation gives you unlimited
15 // permission to link the compiled version of this file into
16 // combinations with other programs, and to distribute those
17 // combinations without any restriction coming from the use of this
18 // file. (The Library Public License restrictions do apply in other
19 // respects; for example, they cover modification of the file, and
20 /// distribution when not linked into a combined executable.)
22 // This program is distributed in the hope that it will be useful, but
23 // WITHOUT ANY WARRANTY; without even the implied warranty of
24 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 // Library General Public License for more details.
27 // You should have received a copy of the GNU Library General Public
28 // License along with this program; if not, write to the Free Software
29 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30 // 02110-1301, USA.
32 #include "gold.h"
34 #include <cstring>
36 #include "elfcpp.h"
37 #include "parameters.h"
38 #include "reloc.h"
39 #include "x86_64.h"
40 #include "object.h"
41 #include "symtab.h"
42 #include "layout.h"
43 #include "output.h"
44 #include "target.h"
45 #include "target-reloc.h"
46 #include "target-select.h"
47 #include "tls.h"
49 namespace
52 using namespace gold;
54 class Output_data_plt_x86_64;
56 // The x86_64 target class.
57 // See the ABI at
58 // http://www.x86-64.org/documentation/abi.pdf
59 // TLS info comes from
60 // http://people.redhat.com/drepper/tls.pdf
61 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
63 class Target_x86_64 : public Sized_target<64, false>
65 public:
66 // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
67 // uses only Elf64_Rela relocation entries with explicit addends."
68 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
70 Target_x86_64()
71 : Sized_target<64, false>(&x86_64_info),
72 got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
73 copy_relocs_(NULL), dynbss_(NULL), got_mod_index_offset_(-1U)
74 { }
76 // Scan the relocations to look for symbol adjustments.
77 void
78 scan_relocs(const General_options& options,
79 Symbol_table* symtab,
80 Layout* layout,
81 Sized_relobj<64, false>* object,
82 unsigned int data_shndx,
83 unsigned int sh_type,
84 const unsigned char* prelocs,
85 size_t reloc_count,
86 Output_section* output_section,
87 bool needs_special_offset_handling,
88 size_t local_symbol_count,
89 const unsigned char* plocal_symbols);
91 // Finalize the sections.
92 void
93 do_finalize_sections(Layout*);
95 // Return the value to use for a dynamic which requires special
96 // treatment.
97 uint64_t
98 do_dynsym_value(const Symbol*) const;
100 // Relocate a section.
101 void
102 relocate_section(const Relocate_info<64, false>*,
103 unsigned int sh_type,
104 const unsigned char* prelocs,
105 size_t reloc_count,
106 Output_section* output_section,
107 bool needs_special_offset_handling,
108 unsigned char* view,
109 elfcpp::Elf_types<64>::Elf_Addr view_address,
110 section_size_type view_size);
112 // Scan the relocs during a relocatable link.
113 void
114 scan_relocatable_relocs(const General_options& options,
115 Symbol_table* symtab,
116 Layout* layout,
117 Sized_relobj<64, false>* object,
118 unsigned int data_shndx,
119 unsigned int sh_type,
120 const unsigned char* prelocs,
121 size_t reloc_count,
122 Output_section* output_section,
123 bool needs_special_offset_handling,
124 size_t local_symbol_count,
125 const unsigned char* plocal_symbols,
126 Relocatable_relocs*);
128 // Relocate a section during a relocatable link.
129 void
130 relocate_for_relocatable(const Relocate_info<64, false>*,
131 unsigned int sh_type,
132 const unsigned char* prelocs,
133 size_t reloc_count,
134 Output_section* output_section,
135 off_t offset_in_output_section,
136 const Relocatable_relocs*,
137 unsigned char* view,
138 elfcpp::Elf_types<64>::Elf_Addr view_address,
139 section_size_type view_size,
140 unsigned char* reloc_view,
141 section_size_type reloc_view_size);
143 // Return a string used to fill a code section with nops.
144 std::string
145 do_code_fill(section_size_type length);
147 // Return whether SYM is defined by the ABI.
148 bool
149 do_is_defined_by_abi(Symbol* sym) const
150 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
152 // Return the size of the GOT section.
153 section_size_type
154 got_size()
156 gold_assert(this->got_ != NULL);
157 return this->got_->data_size();
160 private:
161 // The class which scans relocations.
162 struct Scan
164 inline void
165 local(const General_options& options, Symbol_table* symtab,
166 Layout* layout, Target_x86_64* target,
167 Sized_relobj<64, false>* object,
168 unsigned int data_shndx,
169 Output_section* output_section,
170 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
171 const elfcpp::Sym<64, false>& lsym);
173 inline void
174 global(const General_options& options, Symbol_table* symtab,
175 Layout* layout, Target_x86_64* target,
176 Sized_relobj<64, false>* object,
177 unsigned int data_shndx,
178 Output_section* output_section,
179 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
180 Symbol* gsym);
182 static void
183 unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
185 static void
186 unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
187 Symbol*);
190 // The class which implements relocation.
191 class Relocate
193 public:
194 Relocate()
195 : skip_call_tls_get_addr_(false)
198 ~Relocate()
200 if (this->skip_call_tls_get_addr_)
202 // FIXME: This needs to specify the location somehow.
203 gold_error(_("missing expected TLS relocation"));
207 // Do a relocation. Return false if the caller should not issue
208 // any warnings about this relocation.
209 inline bool
210 relocate(const Relocate_info<64, false>*, Target_x86_64*, size_t relnum,
211 const elfcpp::Rela<64, false>&,
212 unsigned int r_type, const Sized_symbol<64>*,
213 const Symbol_value<64>*,
214 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
215 section_size_type);
217 private:
218 // Do a TLS relocation.
219 inline void
220 relocate_tls(const Relocate_info<64, false>*, Target_x86_64*,
221 size_t relnum, const elfcpp::Rela<64, false>&,
222 unsigned int r_type, const Sized_symbol<64>*,
223 const Symbol_value<64>*,
224 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
225 section_size_type);
227 // Do a TLS General-Dynamic to Local-Exec transition.
228 inline void
229 tls_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
230 Output_segment* tls_segment,
231 const elfcpp::Rela<64, false>&, unsigned int r_type,
232 elfcpp::Elf_types<64>::Elf_Addr value,
233 unsigned char* view,
234 section_size_type view_size);
236 // Do a TLS General-Dynamic to Local-Exec transition.
237 inline void
238 tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
239 Output_segment* tls_segment,
240 const elfcpp::Rela<64, false>&, unsigned int r_type,
241 elfcpp::Elf_types<64>::Elf_Addr value,
242 unsigned char* view,
243 section_size_type view_size);
245 // Do a TLS Local-Dynamic to Local-Exec transition.
246 inline void
247 tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
248 Output_segment* tls_segment,
249 const elfcpp::Rela<64, false>&, unsigned int r_type,
250 elfcpp::Elf_types<64>::Elf_Addr value,
251 unsigned char* view,
252 section_size_type view_size);
254 // Do a TLS Initial-Exec to Local-Exec transition.
255 static inline void
256 tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
257 Output_segment* tls_segment,
258 const elfcpp::Rela<64, false>&, unsigned int r_type,
259 elfcpp::Elf_types<64>::Elf_Addr value,
260 unsigned char* view,
261 section_size_type view_size);
263 // This is set if we should skip the next reloc, which should be a
264 // PLT32 reloc against ___tls_get_addr.
265 bool skip_call_tls_get_addr_;
268 // A class which returns the size required for a relocation type,
269 // used while scanning relocs during a relocatable link.
270 class Relocatable_size_for_reloc
272 public:
273 unsigned int
274 get_size_for_reloc(unsigned int, Relobj*);
277 // Adjust TLS relocation type based on the options and whether this
278 // is a local symbol.
279 static tls::Tls_optimization
280 optimize_tls_reloc(bool is_final, int r_type);
282 // Get the GOT section, creating it if necessary.
283 Output_data_got<64, false>*
284 got_section(Symbol_table*, Layout*);
286 // Get the GOT PLT section.
287 Output_data_space*
288 got_plt_section() const
290 gold_assert(this->got_plt_ != NULL);
291 return this->got_plt_;
294 // Create a PLT entry for a global symbol.
295 void
296 make_plt_entry(Symbol_table*, Layout*, Symbol*);
298 // Create a GOT entry for the TLS module index.
299 unsigned int
300 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
301 Sized_relobj<64, false>* object);
303 // Get the PLT section.
304 Output_data_plt_x86_64*
305 plt_section() const
307 gold_assert(this->plt_ != NULL);
308 return this->plt_;
311 // Get the dynamic reloc section, creating it if necessary.
312 Reloc_section*
313 rela_dyn_section(Layout*);
315 // Return true if the symbol may need a COPY relocation.
316 // References from an executable object to non-function symbols
317 // defined in a dynamic object may need a COPY relocation.
318 bool
319 may_need_copy_reloc(Symbol* gsym)
321 return (!parameters->output_is_shared()
322 && gsym->is_from_dynobj()
323 && gsym->type() != elfcpp::STT_FUNC);
326 // Copy a relocation against a global symbol.
327 void
328 copy_reloc(const General_options*, Symbol_table*, Layout*,
329 Sized_relobj<64, false>*, unsigned int,
330 Output_section*, Symbol*, const elfcpp::Rela<64, false>&);
332 // Information about this specific target which we pass to the
333 // general Target structure.
334 static const Target::Target_info x86_64_info;
336 // The GOT section.
337 Output_data_got<64, false>* got_;
338 // The PLT section.
339 Output_data_plt_x86_64* plt_;
340 // The GOT PLT section.
341 Output_data_space* got_plt_;
342 // The dynamic reloc section.
343 Reloc_section* rela_dyn_;
344 // Relocs saved to avoid a COPY reloc.
345 Copy_relocs<64, false>* copy_relocs_;
346 // Space for variables copied with a COPY reloc.
347 Output_data_space* dynbss_;
348 // Offset of the GOT entry for the TLS module index;
349 unsigned int got_mod_index_offset_;
352 const Target::Target_info Target_x86_64::x86_64_info =
354 64, // size
355 false, // is_big_endian
356 elfcpp::EM_X86_64, // machine_code
357 false, // has_make_symbol
358 false, // has_resolve
359 true, // has_code_fill
360 true, // is_default_stack_executable
361 "/lib/ld64.so.1", // program interpreter
362 0x400000, // default_text_segment_address
363 0x1000, // abi_pagesize
364 0x1000 // common_pagesize
367 // Get the GOT section, creating it if necessary.
369 Output_data_got<64, false>*
370 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
372 if (this->got_ == NULL)
374 gold_assert(symtab != NULL && layout != NULL);
376 this->got_ = new Output_data_got<64, false>();
378 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
379 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
380 this->got_);
382 // The old GNU linker creates a .got.plt section. We just
383 // create another set of data in the .got section. Note that we
384 // always create a PLT if we create a GOT, although the PLT
385 // might be empty.
386 this->got_plt_ = new Output_data_space(8);
387 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
388 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
389 this->got_plt_);
391 // The first three entries are reserved.
392 this->got_plt_->set_current_data_size(3 * 8);
394 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
395 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
396 this->got_plt_,
397 0, 0, elfcpp::STT_OBJECT,
398 elfcpp::STB_LOCAL,
399 elfcpp::STV_HIDDEN, 0,
400 false, false);
403 return this->got_;
406 // Get the dynamic reloc section, creating it if necessary.
408 Target_x86_64::Reloc_section*
409 Target_x86_64::rela_dyn_section(Layout* layout)
411 if (this->rela_dyn_ == NULL)
413 gold_assert(layout != NULL);
414 this->rela_dyn_ = new Reloc_section();
415 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
416 elfcpp::SHF_ALLOC, this->rela_dyn_);
418 return this->rela_dyn_;
421 // A class to handle the PLT data.
423 class Output_data_plt_x86_64 : public Output_section_data
425 public:
426 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
428 Output_data_plt_x86_64(Layout*, Output_data_space*);
430 // Add an entry to the PLT.
431 void
432 add_entry(Symbol* gsym);
434 // Return the .rel.plt section data.
435 const Reloc_section*
436 rel_plt() const
437 { return this->rel_; }
439 protected:
440 void
441 do_adjust_output_section(Output_section* os);
443 private:
444 // The size of an entry in the PLT.
445 static const int plt_entry_size = 16;
447 // The first entry in the PLT.
448 // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
449 // procedure linkage table for both programs and shared objects."
450 static unsigned char first_plt_entry[plt_entry_size];
452 // Other entries in the PLT for an executable.
453 static unsigned char plt_entry[plt_entry_size];
455 // Set the final size.
456 void
457 set_final_data_size()
458 { this->set_data_size((this->count_ + 1) * plt_entry_size); }
460 // Write out the PLT data.
461 void
462 do_write(Output_file*);
464 // The reloc section.
465 Reloc_section* rel_;
466 // The .got.plt section.
467 Output_data_space* got_plt_;
468 // The number of PLT entries.
469 unsigned int count_;
472 // Create the PLT section. The ordinary .got section is an argument,
473 // since we need to refer to the start. We also create our own .got
474 // section just for PLT entries.
476 Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
477 Output_data_space* got_plt)
478 : Output_section_data(8), got_plt_(got_plt), count_(0)
480 this->rel_ = new Reloc_section();
481 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
482 elfcpp::SHF_ALLOC, this->rel_);
485 void
486 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
488 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
489 // linker, and so do we.
490 os->set_entsize(4);
493 // Add an entry to the PLT.
495 void
496 Output_data_plt_x86_64::add_entry(Symbol* gsym)
498 gold_assert(!gsym->has_plt_offset());
500 // Note that when setting the PLT offset we skip the initial
501 // reserved PLT entry.
502 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
504 ++this->count_;
506 section_offset_type got_offset = this->got_plt_->current_data_size();
508 // Every PLT entry needs a GOT entry which points back to the PLT
509 // entry (this will be changed by the dynamic linker, normally
510 // lazily when the function is called).
511 this->got_plt_->set_current_data_size(got_offset + 8);
513 // Every PLT entry needs a reloc.
514 gsym->set_needs_dynsym_entry();
515 this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
516 got_offset, 0);
518 // Note that we don't need to save the symbol. The contents of the
519 // PLT are independent of which symbols are used. The symbols only
520 // appear in the relocations.
523 // The first entry in the PLT for an executable.
525 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
527 // From AMD64 ABI Draft 0.98, page 76
528 0xff, 0x35, // pushq contents of memory address
529 0, 0, 0, 0, // replaced with address of .got + 8
530 0xff, 0x25, // jmp indirect
531 0, 0, 0, 0, // replaced with address of .got + 16
532 0x90, 0x90, 0x90, 0x90 // noop (x4)
535 // Subsequent entries in the PLT for an executable.
537 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
539 // From AMD64 ABI Draft 0.98, page 76
540 0xff, 0x25, // jmpq indirect
541 0, 0, 0, 0, // replaced with address of symbol in .got
542 0x68, // pushq immediate
543 0, 0, 0, 0, // replaced with offset into relocation table
544 0xe9, // jmpq relative
545 0, 0, 0, 0 // replaced with offset to start of .plt
548 // Write out the PLT. This uses the hand-coded instructions above,
549 // and adjusts them as needed. This is specified by the AMD64 ABI.
551 void
552 Output_data_plt_x86_64::do_write(Output_file* of)
554 const off_t offset = this->offset();
555 const section_size_type oview_size =
556 convert_to_section_size_type(this->data_size());
557 unsigned char* const oview = of->get_output_view(offset, oview_size);
559 const off_t got_file_offset = this->got_plt_->offset();
560 const section_size_type got_size =
561 convert_to_section_size_type(this->got_plt_->data_size());
562 unsigned char* const got_view = of->get_output_view(got_file_offset,
563 got_size);
565 unsigned char* pov = oview;
567 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
568 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
570 memcpy(pov, first_plt_entry, plt_entry_size);
571 // We do a jmp relative to the PC at the end of this instruction.
572 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 8
573 - (plt_address + 6));
574 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 16
575 - (plt_address + 12));
576 pov += plt_entry_size;
578 unsigned char* got_pov = got_view;
580 memset(got_pov, 0, 24);
581 got_pov += 24;
583 unsigned int plt_offset = plt_entry_size;
584 unsigned int got_offset = 24;
585 const unsigned int count = this->count_;
586 for (unsigned int plt_index = 0;
587 plt_index < count;
588 ++plt_index,
589 pov += plt_entry_size,
590 got_pov += 8,
591 plt_offset += plt_entry_size,
592 got_offset += 8)
594 // Set and adjust the PLT entry itself.
595 memcpy(pov, plt_entry, plt_entry_size);
596 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
597 (got_address + got_offset
598 - (plt_address + plt_offset
599 + 6)));
601 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
602 elfcpp::Swap<32, false>::writeval(pov + 12,
603 - (plt_offset + plt_entry_size));
605 // Set the entry in the GOT.
606 elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
609 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
610 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
612 of->write_output_view(offset, oview_size, oview);
613 of->write_output_view(got_file_offset, got_size, got_view);
616 // Create a PLT entry for a global symbol.
618 void
619 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
620 Symbol* gsym)
622 if (gsym->has_plt_offset())
623 return;
625 if (this->plt_ == NULL)
627 // Create the GOT sections first.
628 this->got_section(symtab, layout);
630 this->plt_ = new Output_data_plt_x86_64(layout, this->got_plt_);
631 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
632 (elfcpp::SHF_ALLOC
633 | elfcpp::SHF_EXECINSTR),
634 this->plt_);
637 this->plt_->add_entry(gsym);
640 // Create a GOT entry for the TLS module index.
642 unsigned int
643 Target_x86_64::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
644 Sized_relobj<64, false>* object)
646 if (this->got_mod_index_offset_ == -1U)
648 gold_assert(symtab != NULL && layout != NULL && object != NULL);
649 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
650 Output_data_got<64, false>* got = this->got_section(symtab, layout);
651 unsigned int got_offset = got->add_constant(0);
652 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
653 got_offset, 0);
654 got->add_constant(0);
655 this->got_mod_index_offset_ = got_offset;
657 return this->got_mod_index_offset_;
660 // Handle a relocation against a non-function symbol defined in a
661 // dynamic object. The traditional way to handle this is to generate
662 // a COPY relocation to copy the variable at runtime from the shared
663 // object into the executable's data segment. However, this is
664 // undesirable in general, as if the size of the object changes in the
665 // dynamic object, the executable will no longer work correctly. If
666 // this relocation is in a writable section, then we can create a
667 // dynamic reloc and the dynamic linker will resolve it to the correct
668 // address at runtime. However, we do not want do that if the
669 // relocation is in a read-only section, as it would prevent the
670 // readonly segment from being shared. And if we have to eventually
671 // generate a COPY reloc, then any dynamic relocations will be
672 // useless. So this means that if this is a writable section, we need
673 // to save the relocation until we see whether we have to create a
674 // COPY relocation for this symbol for any other relocation.
676 void
677 Target_x86_64::copy_reloc(const General_options* options,
678 Symbol_table* symtab,
679 Layout* layout,
680 Sized_relobj<64, false>* object,
681 unsigned int data_shndx,
682 Output_section* output_section,
683 Symbol* gsym,
684 const elfcpp::Rela<64, false>& rela)
686 Sized_symbol<64>* ssym;
687 ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(64) (gsym
688 SELECT_SIZE(64));
690 if (!Copy_relocs<64, false>::need_copy_reloc(options, object,
691 data_shndx, ssym))
693 // So far we do not need a COPY reloc. Save this relocation.
694 // If it turns out that we never need a COPY reloc for this
695 // symbol, then we will emit the relocation.
696 if (this->copy_relocs_ == NULL)
697 this->copy_relocs_ = new Copy_relocs<64, false>();
698 this->copy_relocs_->save(ssym, object, data_shndx, output_section, rela);
700 else
702 // Allocate space for this symbol in the .bss section.
704 elfcpp::Elf_types<64>::Elf_WXword symsize = ssym->symsize();
706 // There is no defined way to determine the required alignment
707 // of the symbol. We pick the alignment based on the size. We
708 // set an arbitrary maximum of 256.
709 unsigned int align;
710 for (align = 1; align < 512; align <<= 1)
711 if ((symsize & align) != 0)
712 break;
714 if (this->dynbss_ == NULL)
716 this->dynbss_ = new Output_data_space(align);
717 layout->add_output_section_data(".bss",
718 elfcpp::SHT_NOBITS,
719 (elfcpp::SHF_ALLOC
720 | elfcpp::SHF_WRITE),
721 this->dynbss_);
724 Output_data_space* dynbss = this->dynbss_;
726 if (align > dynbss->addralign())
727 dynbss->set_space_alignment(align);
729 section_size_type dynbss_size = dynbss->current_data_size();
730 dynbss_size = align_address(dynbss_size, align);
731 section_size_type offset = dynbss_size;
732 dynbss->set_current_data_size(dynbss_size + symsize);
734 symtab->define_with_copy_reloc(ssym, dynbss, offset);
736 // Add the COPY reloc.
737 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
738 rela_dyn->add_global(ssym, elfcpp::R_X86_64_COPY, dynbss, offset, 0);
743 // Optimize the TLS relocation type based on what we know about the
744 // symbol. IS_FINAL is true if the final address of this symbol is
745 // known at link time.
747 tls::Tls_optimization
748 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
750 // If we are generating a shared library, then we can't do anything
751 // in the linker.
752 if (parameters->output_is_shared())
753 return tls::TLSOPT_NONE;
755 switch (r_type)
757 case elfcpp::R_X86_64_TLSGD:
758 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
759 case elfcpp::R_X86_64_TLSDESC_CALL:
760 // These are General-Dynamic which permits fully general TLS
761 // access. Since we know that we are generating an executable,
762 // we can convert this to Initial-Exec. If we also know that
763 // this is a local symbol, we can further switch to Local-Exec.
764 if (is_final)
765 return tls::TLSOPT_TO_LE;
766 return tls::TLSOPT_TO_IE;
768 case elfcpp::R_X86_64_TLSLD:
769 // This is Local-Dynamic, which refers to a local symbol in the
770 // dynamic TLS block. Since we know that we generating an
771 // executable, we can switch to Local-Exec.
772 return tls::TLSOPT_TO_LE;
774 case elfcpp::R_X86_64_DTPOFF32:
775 case elfcpp::R_X86_64_DTPOFF64:
776 // Another Local-Dynamic reloc.
777 return tls::TLSOPT_TO_LE;
779 case elfcpp::R_X86_64_GOTTPOFF:
780 // These are Initial-Exec relocs which get the thread offset
781 // from the GOT. If we know that we are linking against the
782 // local symbol, we can switch to Local-Exec, which links the
783 // thread offset into the instruction.
784 if (is_final)
785 return tls::TLSOPT_TO_LE;
786 return tls::TLSOPT_NONE;
788 case elfcpp::R_X86_64_TPOFF32:
789 // When we already have Local-Exec, there is nothing further we
790 // can do.
791 return tls::TLSOPT_NONE;
793 default:
794 gold_unreachable();
798 // Report an unsupported relocation against a local symbol.
800 void
801 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
802 unsigned int r_type)
804 gold_error(_("%s: unsupported reloc %u against local symbol"),
805 object->name().c_str(), r_type);
808 // Scan a relocation for a local symbol.
810 inline void
811 Target_x86_64::Scan::local(const General_options&,
812 Symbol_table* symtab,
813 Layout* layout,
814 Target_x86_64* target,
815 Sized_relobj<64, false>* object,
816 unsigned int data_shndx,
817 Output_section* output_section,
818 const elfcpp::Rela<64, false>& reloc,
819 unsigned int r_type,
820 const elfcpp::Sym<64, false>& lsym)
822 switch (r_type)
824 case elfcpp::R_X86_64_NONE:
825 case elfcpp::R_386_GNU_VTINHERIT:
826 case elfcpp::R_386_GNU_VTENTRY:
827 break;
829 case elfcpp::R_X86_64_64:
830 // If building a shared library (or a position-independent
831 // executable), we need to create a dynamic relocation for this
832 // location. The relocation applied at link time will apply the
833 // link-time value, so we flag the location with an
834 // R_X86_64_RELATIVE relocation so the dynamic loader can
835 // relocate it easily.
836 if (parameters->output_is_position_independent())
838 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
839 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
840 rela_dyn->add_local_relative(object, r_sym,
841 elfcpp::R_X86_64_RELATIVE,
842 output_section, data_shndx,
843 reloc.get_r_offset(),
844 reloc.get_r_addend());
846 break;
848 case elfcpp::R_X86_64_32:
849 case elfcpp::R_X86_64_32S:
850 case elfcpp::R_X86_64_16:
851 case elfcpp::R_X86_64_8:
852 // If building a shared library (or a position-independent
853 // executable), we need to create a dynamic relocation for this
854 // location. We can't use an R_X86_64_RELATIVE relocation
855 // because that is always a 64-bit relocation.
856 if (parameters->output_is_position_independent())
858 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
859 if (lsym.get_st_type() != elfcpp::STT_SECTION)
861 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
862 rela_dyn->add_local(object, r_sym, r_type, output_section,
863 data_shndx, reloc.get_r_offset(),
864 reloc.get_r_addend());
866 else
868 gold_assert(lsym.get_st_value() == 0);
869 rela_dyn->add_local_section(object, lsym.get_st_shndx(),
870 r_type, output_section,
871 data_shndx, reloc.get_r_offset(),
872 reloc.get_r_addend());
875 break;
877 case elfcpp::R_X86_64_PC64:
878 case elfcpp::R_X86_64_PC32:
879 case elfcpp::R_X86_64_PC16:
880 case elfcpp::R_X86_64_PC8:
881 break;
883 case elfcpp::R_X86_64_PLT32:
884 // Since we know this is a local symbol, we can handle this as a
885 // PC32 reloc.
886 break;
888 case elfcpp::R_X86_64_GOTPC32:
889 case elfcpp::R_X86_64_GOTOFF64:
890 case elfcpp::R_X86_64_GOTPC64:
891 case elfcpp::R_X86_64_PLTOFF64:
892 // We need a GOT section.
893 target->got_section(symtab, layout);
894 // For PLTOFF64, we'd normally want a PLT section, but since we
895 // know this is a local symbol, no PLT is needed.
896 break;
898 case elfcpp::R_X86_64_GOT64:
899 case elfcpp::R_X86_64_GOT32:
900 case elfcpp::R_X86_64_GOTPCREL64:
901 case elfcpp::R_X86_64_GOTPCREL:
902 case elfcpp::R_X86_64_GOTPLT64:
904 // The symbol requires a GOT entry.
905 Output_data_got<64, false>* got = target->got_section(symtab, layout);
906 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
907 if (got->add_local(object, r_sym))
909 // If we are generating a shared object, we need to add a
910 // dynamic relocation for this symbol's GOT entry.
911 if (parameters->output_is_position_independent())
913 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
914 // R_X86_64_RELATIVE assumes a 64-bit relocation.
915 if (r_type != elfcpp::R_X86_64_GOT32)
916 rela_dyn->add_local_relative(object, r_sym,
917 elfcpp::R_X86_64_RELATIVE, got,
918 object->local_got_offset(r_sym),
920 else
922 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
923 rela_dyn->add_local(object, r_sym, r_type,
924 got, object->local_got_offset(r_sym),
929 // For GOTPLT64, we'd normally want a PLT section, but since
930 // we know this is a local symbol, no PLT is needed.
932 break;
934 case elfcpp::R_X86_64_COPY:
935 case elfcpp::R_X86_64_GLOB_DAT:
936 case elfcpp::R_X86_64_JUMP_SLOT:
937 case elfcpp::R_X86_64_RELATIVE:
938 // These are outstanding tls relocs, which are unexpected when linking
939 case elfcpp::R_X86_64_TPOFF64:
940 case elfcpp::R_X86_64_DTPMOD64:
941 case elfcpp::R_X86_64_TLSDESC:
942 gold_error(_("%s: unexpected reloc %u in object file"),
943 object->name().c_str(), r_type);
944 break;
946 // These are initial tls relocs, which are expected when linking
947 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
948 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
949 case elfcpp::R_X86_64_TLSDESC_CALL:
950 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
951 case elfcpp::R_X86_64_DTPOFF32:
952 case elfcpp::R_X86_64_DTPOFF64:
953 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
954 case elfcpp::R_X86_64_TPOFF32: // Local-exec
956 bool output_is_shared = parameters->output_is_shared();
957 const tls::Tls_optimization optimized_type
958 = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
959 switch (r_type)
961 case elfcpp::R_X86_64_TLSGD: // General-dynamic
962 if (optimized_type == tls::TLSOPT_NONE)
964 // Create a pair of GOT entries for the module index and
965 // dtv-relative offset.
966 Output_data_got<64, false>* got
967 = target->got_section(symtab, layout);
968 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
969 got->add_local_tls_with_rela(object, r_sym,
970 lsym.get_st_shndx(), true,
971 target->rela_dyn_section(layout),
972 elfcpp::R_X86_64_DTPMOD64);
974 else if (optimized_type != tls::TLSOPT_TO_LE)
975 unsupported_reloc_local(object, r_type);
976 break;
978 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
979 case elfcpp::R_X86_64_TLSDESC_CALL:
980 // FIXME: If not relaxing to LE, we need to generate
981 // a GOT entry with a R_x86_64_TLSDESC reloc.
982 if (optimized_type != tls::TLSOPT_TO_LE)
983 unsupported_reloc_local(object, r_type);
984 break;
986 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
987 if (optimized_type == tls::TLSOPT_NONE)
989 // Create a GOT entry for the module index.
990 target->got_mod_index_entry(symtab, layout, object);
992 else if (optimized_type != tls::TLSOPT_TO_LE)
993 unsupported_reloc_local(object, r_type);
994 break;
996 case elfcpp::R_X86_64_DTPOFF32:
997 case elfcpp::R_X86_64_DTPOFF64:
998 break;
1000 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1001 layout->set_has_static_tls();
1002 if (optimized_type == tls::TLSOPT_NONE)
1004 // Create a GOT entry for the tp-relative offset.
1005 Output_data_got<64, false>* got
1006 = target->got_section(symtab, layout);
1007 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1008 got->add_local_with_rela(object, r_sym,
1009 target->rela_dyn_section(layout),
1010 elfcpp::R_X86_64_TPOFF64);
1012 else if (optimized_type != tls::TLSOPT_TO_LE)
1013 unsupported_reloc_local(object, r_type);
1014 break;
1016 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1017 layout->set_has_static_tls();
1018 if (output_is_shared)
1019 unsupported_reloc_local(object, r_type);
1020 break;
1022 default:
1023 gold_unreachable();
1026 break;
1028 case elfcpp::R_X86_64_SIZE32:
1029 case elfcpp::R_X86_64_SIZE64:
1030 default:
1031 gold_error(_("%s: unsupported reloc %u against local symbol"),
1032 object->name().c_str(), r_type);
1033 break;
1038 // Report an unsupported relocation against a global symbol.
1040 void
1041 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
1042 unsigned int r_type,
1043 Symbol* gsym)
1045 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1046 object->name().c_str(), r_type, gsym->demangled_name().c_str());
1049 // Scan a relocation for a global symbol.
1051 inline void
1052 Target_x86_64::Scan::global(const General_options& options,
1053 Symbol_table* symtab,
1054 Layout* layout,
1055 Target_x86_64* target,
1056 Sized_relobj<64, false>* object,
1057 unsigned int data_shndx,
1058 Output_section* output_section,
1059 const elfcpp::Rela<64, false>& reloc,
1060 unsigned int r_type,
1061 Symbol* gsym)
1063 switch (r_type)
1065 case elfcpp::R_X86_64_NONE:
1066 case elfcpp::R_386_GNU_VTINHERIT:
1067 case elfcpp::R_386_GNU_VTENTRY:
1068 break;
1070 case elfcpp::R_X86_64_64:
1071 case elfcpp::R_X86_64_32:
1072 case elfcpp::R_X86_64_32S:
1073 case elfcpp::R_X86_64_16:
1074 case elfcpp::R_X86_64_8:
1076 // Make a PLT entry if necessary.
1077 if (gsym->needs_plt_entry())
1079 target->make_plt_entry(symtab, layout, gsym);
1080 // Since this is not a PC-relative relocation, we may be
1081 // taking the address of a function. In that case we need to
1082 // set the entry in the dynamic symbol table to the address of
1083 // the PLT entry.
1084 if (gsym->is_from_dynobj() && !parameters->output_is_shared())
1085 gsym->set_needs_dynsym_value();
1087 // Make a dynamic relocation if necessary.
1088 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
1090 if (target->may_need_copy_reloc(gsym))
1092 target->copy_reloc(&options, symtab, layout, object,
1093 data_shndx, output_section, gsym, reloc);
1095 else if (r_type == elfcpp::R_X86_64_64
1096 && gsym->can_use_relative_reloc(false))
1098 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1099 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1100 output_section, object,
1101 data_shndx, reloc.get_r_offset(),
1102 reloc.get_r_addend());
1104 else
1106 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1107 rela_dyn->add_global(gsym, r_type, output_section, object,
1108 data_shndx, reloc.get_r_offset(),
1109 reloc.get_r_addend());
1113 break;
1115 case elfcpp::R_X86_64_PC64:
1116 case elfcpp::R_X86_64_PC32:
1117 case elfcpp::R_X86_64_PC16:
1118 case elfcpp::R_X86_64_PC8:
1120 // Make a PLT entry if necessary.
1121 if (gsym->needs_plt_entry())
1122 target->make_plt_entry(symtab, layout, gsym);
1123 // Make a dynamic relocation if necessary.
1124 int flags = Symbol::NON_PIC_REF;
1125 if (gsym->type() == elfcpp::STT_FUNC)
1126 flags |= Symbol::FUNCTION_CALL;
1127 if (gsym->needs_dynamic_reloc(flags))
1129 if (target->may_need_copy_reloc(gsym))
1131 target->copy_reloc(&options, symtab, layout, object,
1132 data_shndx, output_section, gsym, reloc);
1134 else
1136 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1137 rela_dyn->add_global(gsym, r_type, output_section, object,
1138 data_shndx, reloc.get_r_offset(),
1139 reloc.get_r_addend());
1143 break;
1145 case elfcpp::R_X86_64_GOT64:
1146 case elfcpp::R_X86_64_GOT32:
1147 case elfcpp::R_X86_64_GOTPCREL64:
1148 case elfcpp::R_X86_64_GOTPCREL:
1149 case elfcpp::R_X86_64_GOTPLT64:
1151 // The symbol requires a GOT entry.
1152 Output_data_got<64, false>* got = target->got_section(symtab, layout);
1153 if (gsym->final_value_is_known())
1154 got->add_global(gsym);
1155 else
1157 // If this symbol is not fully resolved, we need to add a
1158 // dynamic relocation for it.
1159 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1160 if (gsym->is_from_dynobj()
1161 || gsym->is_undefined()
1162 || gsym->is_preemptible())
1163 got->add_global_with_rela(gsym, rela_dyn,
1164 elfcpp::R_X86_64_GLOB_DAT);
1165 else
1167 if (got->add_global(gsym))
1168 rela_dyn->add_global_relative(gsym,
1169 elfcpp::R_X86_64_RELATIVE,
1170 got, gsym->got_offset(), 0);
1173 // For GOTPLT64, we also need a PLT entry (but only if the
1174 // symbol is not fully resolved).
1175 if (r_type == elfcpp::R_X86_64_GOTPLT64
1176 && !gsym->final_value_is_known())
1177 target->make_plt_entry(symtab, layout, gsym);
1179 break;
1181 case elfcpp::R_X86_64_PLT32:
1182 // If the symbol is fully resolved, this is just a PC32 reloc.
1183 // Otherwise we need a PLT entry.
1184 if (gsym->final_value_is_known())
1185 break;
1186 // If building a shared library, we can also skip the PLT entry
1187 // if the symbol is defined in the output file and is protected
1188 // or hidden.
1189 if (gsym->is_defined()
1190 && !gsym->is_from_dynobj()
1191 && !gsym->is_preemptible())
1192 break;
1193 target->make_plt_entry(symtab, layout, gsym);
1194 break;
1196 case elfcpp::R_X86_64_GOTPC32:
1197 case elfcpp::R_X86_64_GOTOFF64:
1198 case elfcpp::R_X86_64_GOTPC64:
1199 case elfcpp::R_X86_64_PLTOFF64:
1200 // We need a GOT section.
1201 target->got_section(symtab, layout);
1202 // For PLTOFF64, we also need a PLT entry (but only if the
1203 // symbol is not fully resolved).
1204 if (r_type == elfcpp::R_X86_64_PLTOFF64
1205 && !gsym->final_value_is_known())
1206 target->make_plt_entry(symtab, layout, gsym);
1207 break;
1209 case elfcpp::R_X86_64_COPY:
1210 case elfcpp::R_X86_64_GLOB_DAT:
1211 case elfcpp::R_X86_64_JUMP_SLOT:
1212 case elfcpp::R_X86_64_RELATIVE:
1213 // These are outstanding tls relocs, which are unexpected when linking
1214 case elfcpp::R_X86_64_TPOFF64:
1215 case elfcpp::R_X86_64_DTPMOD64:
1216 case elfcpp::R_X86_64_TLSDESC:
1217 gold_error(_("%s: unexpected reloc %u in object file"),
1218 object->name().c_str(), r_type);
1219 break;
1221 // These are initial tls relocs, which are expected for global()
1222 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1223 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1224 case elfcpp::R_X86_64_TLSDESC_CALL:
1225 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1226 case elfcpp::R_X86_64_DTPOFF32:
1227 case elfcpp::R_X86_64_DTPOFF64:
1228 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1229 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1231 const bool is_final = gsym->final_value_is_known();
1232 const tls::Tls_optimization optimized_type
1233 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1234 switch (r_type)
1236 case elfcpp::R_X86_64_TLSGD: // General-dynamic
1237 if (optimized_type == tls::TLSOPT_NONE)
1239 // Create a pair of GOT entries for the module index and
1240 // dtv-relative offset.
1241 Output_data_got<64, false>* got
1242 = target->got_section(symtab, layout);
1243 got->add_global_tls_with_rela(gsym,
1244 target->rela_dyn_section(layout),
1245 elfcpp::R_X86_64_DTPMOD64,
1246 elfcpp::R_X86_64_DTPOFF64);
1248 else if (optimized_type == tls::TLSOPT_TO_IE)
1250 // Create a GOT entry for the tp-relative offset.
1251 Output_data_got<64, false>* got
1252 = target->got_section(symtab, layout);
1253 got->add_global_with_rela(gsym,
1254 target->rela_dyn_section(layout),
1255 elfcpp::R_X86_64_TPOFF64);
1257 else if (optimized_type != tls::TLSOPT_TO_LE)
1258 unsupported_reloc_global(object, r_type, gsym);
1259 break;
1261 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1262 case elfcpp::R_X86_64_TLSDESC_CALL:
1263 // FIXME: If not relaxing to LE, we need to generate
1264 // DTPMOD64 and DTPOFF64, or TLSDESC, relocs.
1265 if (optimized_type != tls::TLSOPT_TO_LE)
1266 unsupported_reloc_global(object, r_type, gsym);
1267 break;
1269 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1270 if (optimized_type == tls::TLSOPT_NONE)
1272 // Create a GOT entry for the module index.
1273 target->got_mod_index_entry(symtab, layout, object);
1275 else if (optimized_type != tls::TLSOPT_TO_LE)
1276 unsupported_reloc_global(object, r_type, gsym);
1277 break;
1279 case elfcpp::R_X86_64_DTPOFF32:
1280 case elfcpp::R_X86_64_DTPOFF64:
1281 break;
1283 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1284 layout->set_has_static_tls();
1285 if (optimized_type == tls::TLSOPT_NONE)
1287 // Create a GOT entry for the tp-relative offset.
1288 Output_data_got<64, false>* got
1289 = target->got_section(symtab, layout);
1290 got->add_global_with_rela(gsym,
1291 target->rela_dyn_section(layout),
1292 elfcpp::R_X86_64_TPOFF64);
1294 else if (optimized_type != tls::TLSOPT_TO_LE)
1295 unsupported_reloc_global(object, r_type, gsym);
1296 break;
1298 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1299 layout->set_has_static_tls();
1300 if (parameters->output_is_shared())
1301 unsupported_reloc_local(object, r_type);
1302 break;
1304 default:
1305 gold_unreachable();
1308 break;
1310 case elfcpp::R_X86_64_SIZE32:
1311 case elfcpp::R_X86_64_SIZE64:
1312 default:
1313 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1314 object->name().c_str(), r_type,
1315 gsym->demangled_name().c_str());
1316 break;
1320 // Scan relocations for a section.
1322 void
1323 Target_x86_64::scan_relocs(const General_options& options,
1324 Symbol_table* symtab,
1325 Layout* layout,
1326 Sized_relobj<64, false>* object,
1327 unsigned int data_shndx,
1328 unsigned int sh_type,
1329 const unsigned char* prelocs,
1330 size_t reloc_count,
1331 Output_section* output_section,
1332 bool needs_special_offset_handling,
1333 size_t local_symbol_count,
1334 const unsigned char* plocal_symbols)
1336 if (sh_type == elfcpp::SHT_REL)
1338 gold_error(_("%s: unsupported REL reloc section"),
1339 object->name().c_str());
1340 return;
1343 gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1344 Target_x86_64::Scan>(
1345 options,
1346 symtab,
1347 layout,
1348 this,
1349 object,
1350 data_shndx,
1351 prelocs,
1352 reloc_count,
1353 output_section,
1354 needs_special_offset_handling,
1355 local_symbol_count,
1356 plocal_symbols);
1359 // Finalize the sections.
1361 void
1362 Target_x86_64::do_finalize_sections(Layout* layout)
1364 // Fill in some more dynamic tags.
1365 Output_data_dynamic* const odyn = layout->dynamic_data();
1366 if (odyn != NULL)
1368 if (this->got_plt_ != NULL)
1369 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1371 if (this->plt_ != NULL)
1373 const Output_data* od = this->plt_->rel_plt();
1374 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1375 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1376 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1379 if (this->rela_dyn_ != NULL)
1381 const Output_data* od = this->rela_dyn_;
1382 odyn->add_section_address(elfcpp::DT_RELA, od);
1383 odyn->add_section_size(elfcpp::DT_RELASZ, od);
1384 odyn->add_constant(elfcpp::DT_RELAENT,
1385 elfcpp::Elf_sizes<64>::rela_size);
1388 if (!parameters->output_is_shared())
1390 // The value of the DT_DEBUG tag is filled in by the dynamic
1391 // linker at run time, and used by the debugger.
1392 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1396 // Emit any relocs we saved in an attempt to avoid generating COPY
1397 // relocs.
1398 if (this->copy_relocs_ == NULL)
1399 return;
1400 if (this->copy_relocs_->any_to_emit())
1402 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1403 this->copy_relocs_->emit(rela_dyn);
1405 delete this->copy_relocs_;
1406 this->copy_relocs_ = NULL;
1409 // Perform a relocation.
1411 inline bool
1412 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1413 Target_x86_64* target,
1414 size_t relnum,
1415 const elfcpp::Rela<64, false>& rela,
1416 unsigned int r_type,
1417 const Sized_symbol<64>* gsym,
1418 const Symbol_value<64>* psymval,
1419 unsigned char* view,
1420 elfcpp::Elf_types<64>::Elf_Addr address,
1421 section_size_type view_size)
1423 if (this->skip_call_tls_get_addr_)
1425 if (r_type != elfcpp::R_X86_64_PLT32
1426 || gsym == NULL
1427 || strcmp(gsym->name(), "__tls_get_addr") != 0)
1429 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1430 _("missing expected TLS relocation"));
1432 else
1434 this->skip_call_tls_get_addr_ = false;
1435 return false;
1439 // Pick the value to use for symbols defined in shared objects.
1440 Symbol_value<64> symval;
1441 if (gsym != NULL
1442 && (gsym->is_from_dynobj()
1443 || (parameters->output_is_shared()
1444 && (gsym->is_undefined() || gsym->is_preemptible())))
1445 && gsym->has_plt_offset())
1447 symval.set_output_value(target->plt_section()->address()
1448 + gsym->plt_offset());
1449 psymval = &symval;
1452 const Sized_relobj<64, false>* object = relinfo->object;
1453 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1455 // Get the GOT offset if needed.
1456 // The GOT pointer points to the end of the GOT section.
1457 // We need to subtract the size of the GOT section to get
1458 // the actual offset to use in the relocation.
1459 bool have_got_offset = false;
1460 unsigned int got_offset = 0;
1461 switch (r_type)
1463 case elfcpp::R_X86_64_GOT32:
1464 case elfcpp::R_X86_64_GOT64:
1465 case elfcpp::R_X86_64_GOTPLT64:
1466 case elfcpp::R_X86_64_GOTPCREL:
1467 case elfcpp::R_X86_64_GOTPCREL64:
1468 if (gsym != NULL)
1470 gold_assert(gsym->has_got_offset());
1471 got_offset = gsym->got_offset() - target->got_size();
1473 else
1475 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1476 gold_assert(object->local_has_got_offset(r_sym));
1477 got_offset = object->local_got_offset(r_sym) - target->got_size();
1479 have_got_offset = true;
1480 break;
1482 default:
1483 break;
1486 switch (r_type)
1488 case elfcpp::R_X86_64_NONE:
1489 case elfcpp::R_386_GNU_VTINHERIT:
1490 case elfcpp::R_386_GNU_VTENTRY:
1491 break;
1493 case elfcpp::R_X86_64_64:
1494 Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1495 break;
1497 case elfcpp::R_X86_64_PC64:
1498 Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1499 address);
1500 break;
1502 case elfcpp::R_X86_64_32:
1503 // FIXME: we need to verify that value + addend fits into 32 bits:
1504 // uint64_t x = value + addend;
1505 // x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1506 // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
1507 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1508 break;
1510 case elfcpp::R_X86_64_32S:
1511 // FIXME: we need to verify that value + addend fits into 32 bits:
1512 // int64_t x = value + addend; // note this quantity is signed!
1513 // x == static_cast<int64_t>(static_cast<int32_t>(x))
1514 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1515 break;
1517 case elfcpp::R_X86_64_PC32:
1518 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1519 address);
1520 break;
1522 case elfcpp::R_X86_64_16:
1523 Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1524 break;
1526 case elfcpp::R_X86_64_PC16:
1527 Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1528 address);
1529 break;
1531 case elfcpp::R_X86_64_8:
1532 Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1533 break;
1535 case elfcpp::R_X86_64_PC8:
1536 Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1537 address);
1538 break;
1540 case elfcpp::R_X86_64_PLT32:
1541 gold_assert(gsym == NULL
1542 || gsym->has_plt_offset()
1543 || gsym->final_value_is_known()
1544 || (gsym->is_defined()
1545 && !gsym->is_from_dynobj()
1546 && !gsym->is_preemptible()));
1547 // Note: while this code looks the same as for R_X86_64_PC32, it
1548 // behaves differently because psymval was set to point to
1549 // the PLT entry, rather than the symbol, in Scan::global().
1550 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1551 address);
1552 break;
1554 case elfcpp::R_X86_64_PLTOFF64:
1556 gold_assert(gsym);
1557 gold_assert(gsym->has_plt_offset()
1558 || gsym->final_value_is_known());
1559 elfcpp::Elf_types<64>::Elf_Addr got_address;
1560 got_address = target->got_section(NULL, NULL)->address();
1561 Relocate_functions<64, false>::rela64(view, object, psymval,
1562 addend - got_address);
1565 case elfcpp::R_X86_64_GOT32:
1566 gold_assert(have_got_offset);
1567 Relocate_functions<64, false>::rela32(view, got_offset, addend);
1568 break;
1570 case elfcpp::R_X86_64_GOTPC32:
1572 gold_assert(gsym);
1573 elfcpp::Elf_types<64>::Elf_Addr value;
1574 value = target->got_plt_section()->address();
1575 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1577 break;
1579 case elfcpp::R_X86_64_GOT64:
1580 // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1581 // Since we always add a PLT entry, this is equivalent.
1582 case elfcpp::R_X86_64_GOTPLT64:
1583 gold_assert(have_got_offset);
1584 Relocate_functions<64, false>::rela64(view, got_offset, addend);
1585 break;
1587 case elfcpp::R_X86_64_GOTPC64:
1589 gold_assert(gsym);
1590 elfcpp::Elf_types<64>::Elf_Addr value;
1591 value = target->got_plt_section()->address();
1592 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1594 break;
1596 case elfcpp::R_X86_64_GOTOFF64:
1598 elfcpp::Elf_types<64>::Elf_Addr value;
1599 value = (psymval->value(object, 0)
1600 - target->got_plt_section()->address());
1601 Relocate_functions<64, false>::rela64(view, value, addend);
1603 break;
1605 case elfcpp::R_X86_64_GOTPCREL:
1607 gold_assert(have_got_offset);
1608 elfcpp::Elf_types<64>::Elf_Addr value;
1609 value = target->got_plt_section()->address() + got_offset;
1610 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1612 break;
1614 case elfcpp::R_X86_64_GOTPCREL64:
1616 gold_assert(have_got_offset);
1617 elfcpp::Elf_types<64>::Elf_Addr value;
1618 value = target->got_plt_section()->address() + got_offset;
1619 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1621 break;
1623 case elfcpp::R_X86_64_COPY:
1624 case elfcpp::R_X86_64_GLOB_DAT:
1625 case elfcpp::R_X86_64_JUMP_SLOT:
1626 case elfcpp::R_X86_64_RELATIVE:
1627 // These are outstanding tls relocs, which are unexpected when linking
1628 case elfcpp::R_X86_64_TPOFF64:
1629 case elfcpp::R_X86_64_DTPMOD64:
1630 case elfcpp::R_X86_64_TLSDESC:
1631 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1632 _("unexpected reloc %u in object file"),
1633 r_type);
1634 break;
1636 // These are initial tls relocs, which are expected when linking
1637 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1638 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1639 case elfcpp::R_X86_64_TLSDESC_CALL:
1640 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1641 case elfcpp::R_X86_64_DTPOFF32:
1642 case elfcpp::R_X86_64_DTPOFF64:
1643 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1644 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1645 this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
1646 view, address, view_size);
1647 break;
1649 case elfcpp::R_X86_64_SIZE32:
1650 case elfcpp::R_X86_64_SIZE64:
1651 default:
1652 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1653 _("unsupported reloc %u"),
1654 r_type);
1655 break;
1658 return true;
1661 // Perform a TLS relocation.
1663 inline void
1664 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1665 Target_x86_64* target,
1666 size_t relnum,
1667 const elfcpp::Rela<64, false>& rela,
1668 unsigned int r_type,
1669 const Sized_symbol<64>* gsym,
1670 const Symbol_value<64>* psymval,
1671 unsigned char* view,
1672 elfcpp::Elf_types<64>::Elf_Addr address,
1673 section_size_type view_size)
1675 Output_segment* tls_segment = relinfo->layout->tls_segment();
1677 const Sized_relobj<64, false>* object = relinfo->object;
1678 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1680 elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1682 const bool is_final = (gsym == NULL
1683 ? !parameters->output_is_position_independent()
1684 : gsym->final_value_is_known());
1685 const tls::Tls_optimization optimized_type
1686 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1687 switch (r_type)
1689 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1690 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
1691 case elfcpp::R_X86_64_TLSDESC_CALL:
1692 if (optimized_type == tls::TLSOPT_TO_LE)
1694 gold_assert(tls_segment != NULL);
1695 this->tls_gd_to_le(relinfo, relnum, tls_segment,
1696 rela, r_type, value, view,
1697 view_size);
1698 break;
1700 else
1702 unsigned int got_offset;
1703 if (gsym != NULL)
1705 gold_assert(gsym->has_tls_got_offset(true));
1706 got_offset = gsym->tls_got_offset(true) - target->got_size();
1708 else
1710 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1711 gold_assert(object->local_has_tls_got_offset(r_sym, true));
1712 got_offset = (object->local_tls_got_offset(r_sym, true)
1713 - target->got_size());
1715 if (optimized_type == tls::TLSOPT_TO_IE)
1717 gold_assert(tls_segment != NULL);
1718 this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
1719 got_offset, view, view_size);
1720 break;
1722 else if (optimized_type == tls::TLSOPT_NONE)
1724 // Relocate the field with the offset of the pair of GOT
1725 // entries.
1726 value = target->got_plt_section()->address() + got_offset;
1727 Relocate_functions<64, false>::pcrela32(view, value, addend,
1728 address);
1729 break;
1732 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1733 _("unsupported reloc %u"), r_type);
1734 break;
1736 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
1737 if (optimized_type == tls::TLSOPT_TO_LE)
1739 gold_assert(tls_segment != NULL);
1740 this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
1741 value, view, view_size);
1742 break;
1744 else if (optimized_type == tls::TLSOPT_NONE)
1746 // Relocate the field with the offset of the GOT entry for
1747 // the module index.
1748 unsigned int got_offset;
1749 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
1750 - target->got_size());
1751 value = target->got_plt_section()->address() + got_offset;
1752 Relocate_functions<64, false>::pcrela32(view, value, addend,
1753 address);
1754 break;
1756 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1757 _("unsupported reloc %u"), r_type);
1758 break;
1760 case elfcpp::R_X86_64_DTPOFF32:
1761 gold_assert(tls_segment != NULL);
1762 if (optimized_type == tls::TLSOPT_TO_LE)
1763 value -= tls_segment->memsz();
1764 Relocate_functions<64, false>::rela32(view, value, 0);
1765 break;
1767 case elfcpp::R_X86_64_DTPOFF64:
1768 gold_assert(tls_segment != NULL);
1769 if (optimized_type == tls::TLSOPT_TO_LE)
1770 value -= tls_segment->memsz();
1771 Relocate_functions<64, false>::rela64(view, value, 0);
1772 break;
1774 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1775 if (optimized_type == tls::TLSOPT_TO_LE)
1777 gold_assert(tls_segment != NULL);
1778 Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1779 rela, r_type, value, view,
1780 view_size);
1781 break;
1783 else if (optimized_type == tls::TLSOPT_NONE)
1785 // Relocate the field with the offset of the GOT entry for
1786 // the tp-relative offset of the symbol.
1787 unsigned int got_offset;
1788 if (gsym != NULL)
1790 gold_assert(gsym->has_got_offset());
1791 got_offset = gsym->got_offset() - target->got_size();
1793 else
1795 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1796 gold_assert(object->local_has_got_offset(r_sym));
1797 got_offset = (object->local_got_offset(r_sym)
1798 - target->got_size());
1800 value = target->got_plt_section()->address() + got_offset;
1801 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1802 break;
1804 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1805 _("unsupported reloc type %u"),
1806 r_type);
1807 break;
1809 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1810 value -= tls_segment->memsz();
1811 Relocate_functions<64, false>::rela32(view, value, 0);
1812 break;
1816 // Do a relocation in which we convert a TLS General-Dynamic to an
1817 // Initial-Exec.
1819 inline void
1820 Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info<64, false>* relinfo,
1821 size_t relnum,
1822 Output_segment* tls_segment,
1823 const elfcpp::Rela<64, false>& rela,
1824 unsigned int,
1825 elfcpp::Elf_types<64>::Elf_Addr value,
1826 unsigned char* view,
1827 section_size_type view_size)
1829 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1830 // .word 0x6666; rex64; call __tls_get_addr
1831 // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
1833 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
1834 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
1836 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1837 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
1838 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1839 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
1841 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
1843 value -= tls_segment->memsz();
1844 Relocate_functions<64, false>::rela32(view + 8, value, 0);
1846 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1847 // We can skip it.
1848 this->skip_call_tls_get_addr_ = true;
1851 // Do a relocation in which we convert a TLS General-Dynamic to a
1852 // Local-Exec.
1854 inline void
1855 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
1856 size_t relnum,
1857 Output_segment* tls_segment,
1858 const elfcpp::Rela<64, false>& rela,
1859 unsigned int,
1860 elfcpp::Elf_types<64>::Elf_Addr value,
1861 unsigned char* view,
1862 section_size_type view_size)
1864 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1865 // .word 0x6666; rex64; call __tls_get_addr
1866 // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
1868 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
1869 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
1871 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1872 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
1873 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1874 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
1876 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
1878 value -= tls_segment->memsz();
1879 Relocate_functions<64, false>::rela32(view + 8, value, 0);
1881 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1882 // We can skip it.
1883 this->skip_call_tls_get_addr_ = true;
1886 inline void
1887 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
1888 size_t relnum,
1889 Output_segment*,
1890 const elfcpp::Rela<64, false>& rela,
1891 unsigned int,
1892 elfcpp::Elf_types<64>::Elf_Addr,
1893 unsigned char* view,
1894 section_size_type view_size)
1896 // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
1897 // ... leq foo@dtpoff(%rax),%reg
1898 // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
1900 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1901 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
1903 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1904 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
1906 tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
1908 memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
1910 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1911 // We can skip it.
1912 this->skip_call_tls_get_addr_ = true;
1915 // Do a relocation in which we convert a TLS Initial-Exec to a
1916 // Local-Exec.
1918 inline void
1919 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
1920 size_t relnum,
1921 Output_segment* tls_segment,
1922 const elfcpp::Rela<64, false>& rela,
1923 unsigned int,
1924 elfcpp::Elf_types<64>::Elf_Addr value,
1925 unsigned char* view,
1926 section_size_type view_size)
1928 // We need to examine the opcodes to figure out which instruction we
1929 // are looking at.
1931 // movq foo@gottpoff(%rip),%reg ==> movq $YY,%reg
1932 // addq foo@gottpoff(%rip),%reg ==> addq $YY,%reg
1934 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1935 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
1937 unsigned char op1 = view[-3];
1938 unsigned char op2 = view[-2];
1939 unsigned char op3 = view[-1];
1940 unsigned char reg = op3 >> 3;
1942 if (op2 == 0x8b)
1944 // movq
1945 if (op1 == 0x4c)
1946 view[-3] = 0x49;
1947 view[-2] = 0xc7;
1948 view[-1] = 0xc0 | reg;
1950 else if (reg == 4)
1952 // Special handling for %rsp.
1953 if (op1 == 0x4c)
1954 view[-3] = 0x49;
1955 view[-2] = 0x81;
1956 view[-1] = 0xc0 | reg;
1958 else
1960 // addq
1961 if (op1 == 0x4c)
1962 view[-3] = 0x4d;
1963 view[-2] = 0x8d;
1964 view[-1] = 0x80 | reg | (reg << 3);
1967 value -= tls_segment->memsz();
1968 Relocate_functions<64, false>::rela32(view, value, 0);
1971 // Relocate section data.
1973 void
1974 Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
1975 unsigned int sh_type,
1976 const unsigned char* prelocs,
1977 size_t reloc_count,
1978 Output_section* output_section,
1979 bool needs_special_offset_handling,
1980 unsigned char* view,
1981 elfcpp::Elf_types<64>::Elf_Addr address,
1982 section_size_type view_size)
1984 gold_assert(sh_type == elfcpp::SHT_RELA);
1986 gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
1987 Target_x86_64::Relocate>(
1988 relinfo,
1989 this,
1990 prelocs,
1991 reloc_count,
1992 output_section,
1993 needs_special_offset_handling,
1994 view,
1995 address,
1996 view_size);
1999 // Return the size of a relocation while scanning during a relocatable
2000 // link.
2002 unsigned int
2003 Target_x86_64::Relocatable_size_for_reloc::get_size_for_reloc(
2004 unsigned int r_type,
2005 Relobj* object)
2007 switch (r_type)
2009 case elfcpp::R_X86_64_NONE:
2010 case elfcpp::R_386_GNU_VTINHERIT:
2011 case elfcpp::R_386_GNU_VTENTRY:
2012 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
2013 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
2014 case elfcpp::R_X86_64_TLSDESC_CALL:
2015 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
2016 case elfcpp::R_X86_64_DTPOFF32:
2017 case elfcpp::R_X86_64_DTPOFF64:
2018 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
2019 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2020 return 0;
2022 case elfcpp::R_X86_64_64:
2023 case elfcpp::R_X86_64_PC64:
2024 case elfcpp::R_X86_64_GOTOFF64:
2025 case elfcpp::R_X86_64_GOTPC64:
2026 case elfcpp::R_X86_64_PLTOFF64:
2027 case elfcpp::R_X86_64_GOT64:
2028 case elfcpp::R_X86_64_GOTPCREL64:
2029 case elfcpp::R_X86_64_GOTPCREL:
2030 case elfcpp::R_X86_64_GOTPLT64:
2031 return 8;
2033 case elfcpp::R_X86_64_32:
2034 case elfcpp::R_X86_64_32S:
2035 case elfcpp::R_X86_64_PC32:
2036 case elfcpp::R_X86_64_PLT32:
2037 case elfcpp::R_X86_64_GOTPC32:
2038 case elfcpp::R_X86_64_GOT32:
2039 return 4;
2041 case elfcpp::R_X86_64_16:
2042 case elfcpp::R_X86_64_PC16:
2043 return 2;
2045 case elfcpp::R_X86_64_8:
2046 case elfcpp::R_X86_64_PC8:
2047 return 1;
2049 case elfcpp::R_X86_64_COPY:
2050 case elfcpp::R_X86_64_GLOB_DAT:
2051 case elfcpp::R_X86_64_JUMP_SLOT:
2052 case elfcpp::R_X86_64_RELATIVE:
2053 // These are outstanding tls relocs, which are unexpected when linking
2054 case elfcpp::R_X86_64_TPOFF64:
2055 case elfcpp::R_X86_64_DTPMOD64:
2056 case elfcpp::R_X86_64_TLSDESC:
2057 object->error(_("unexpected reloc %u in object file"), r_type);
2058 return 0;
2060 case elfcpp::R_X86_64_SIZE32:
2061 case elfcpp::R_X86_64_SIZE64:
2062 default:
2063 object->error(_("unsupported reloc %u against local symbol"), r_type);
2064 return 0;
2068 // Scan the relocs during a relocatable link.
2070 void
2071 Target_x86_64::scan_relocatable_relocs(const General_options& options,
2072 Symbol_table* symtab,
2073 Layout* layout,
2074 Sized_relobj<64, false>* object,
2075 unsigned int data_shndx,
2076 unsigned int sh_type,
2077 const unsigned char* prelocs,
2078 size_t reloc_count,
2079 Output_section* output_section,
2080 bool needs_special_offset_handling,
2081 size_t local_symbol_count,
2082 const unsigned char* plocal_symbols,
2083 Relocatable_relocs* rr)
2085 gold_assert(sh_type == elfcpp::SHT_RELA);
2087 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
2088 Relocatable_size_for_reloc> Scan_relocatable_relocs;
2090 gold::scan_relocatable_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
2091 Scan_relocatable_relocs>(
2092 options,
2093 symtab,
2094 layout,
2095 object,
2096 data_shndx,
2097 prelocs,
2098 reloc_count,
2099 output_section,
2100 needs_special_offset_handling,
2101 local_symbol_count,
2102 plocal_symbols,
2103 rr);
2106 // Relocate a section during a relocatable link.
2108 void
2109 Target_x86_64::relocate_for_relocatable(
2110 const Relocate_info<64, false>* relinfo,
2111 unsigned int sh_type,
2112 const unsigned char* prelocs,
2113 size_t reloc_count,
2114 Output_section* output_section,
2115 off_t offset_in_output_section,
2116 const Relocatable_relocs* rr,
2117 unsigned char* view,
2118 elfcpp::Elf_types<64>::Elf_Addr view_address,
2119 section_size_type view_size,
2120 unsigned char* reloc_view,
2121 section_size_type reloc_view_size)
2123 gold_assert(sh_type == elfcpp::SHT_RELA);
2125 gold::relocate_for_relocatable<64, false, Target_x86_64, elfcpp::SHT_RELA>(
2126 relinfo,
2127 prelocs,
2128 reloc_count,
2129 output_section,
2130 offset_in_output_section,
2132 view,
2133 view_address,
2134 view_size,
2135 reloc_view,
2136 reloc_view_size);
2139 // Return the value to use for a dynamic which requires special
2140 // treatment. This is how we support equality comparisons of function
2141 // pointers across shared library boundaries, as described in the
2142 // processor specific ABI supplement.
2144 uint64_t
2145 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
2147 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
2148 return this->plt_section()->address() + gsym->plt_offset();
2151 // Return a string used to fill a code section with nops to take up
2152 // the specified length.
2154 std::string
2155 Target_x86_64::do_code_fill(section_size_type length)
2157 if (length >= 16)
2159 // Build a jmpq instruction to skip over the bytes.
2160 unsigned char jmp[5];
2161 jmp[0] = 0xe9;
2162 elfcpp::Swap_unaligned<64, false>::writeval(jmp + 1, length - 5);
2163 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
2164 + std::string(length - 5, '\0'));
2167 // Nop sequences of various lengths.
2168 const char nop1[1] = { 0x90 }; // nop
2169 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
2170 const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
2171 const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
2172 const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
2173 0x00 }; // leal 0(%esi,1),%esi
2174 const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2175 0x00, 0x00 };
2176 const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
2177 0x00, 0x00, 0x00 };
2178 const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
2179 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
2180 const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
2181 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
2182 0x00 };
2183 const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
2184 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
2185 0x00, 0x00 };
2186 const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
2187 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
2188 0x00, 0x00, 0x00 };
2189 const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2190 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
2191 0x00, 0x00, 0x00, 0x00 };
2192 const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2193 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
2194 0x27, 0x00, 0x00, 0x00,
2195 0x00 };
2196 const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
2197 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
2198 0xbc, 0x27, 0x00, 0x00,
2199 0x00, 0x00 };
2200 const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
2201 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
2202 0x90, 0x90, 0x90, 0x90,
2203 0x90, 0x90, 0x90 };
2205 const char* nops[16] = {
2206 NULL,
2207 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
2208 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
2211 return std::string(nops[length], length);
2214 // The selector for x86_64 object files.
2216 class Target_selector_x86_64 : public Target_selector
2218 public:
2219 Target_selector_x86_64()
2220 : Target_selector(elfcpp::EM_X86_64, 64, false)
2223 Target*
2224 recognize(int machine, int osabi, int abiversion);
2226 Target*
2227 recognize_by_name(const char*);
2229 private:
2230 Target_x86_64* target_;
2233 // Recognize an x86_64 object file when we already know that the machine
2234 // number is EM_X86_64.
2236 Target*
2237 Target_selector_x86_64::recognize(int, int, int)
2239 if (this->target_ == NULL)
2240 this->target_ = new Target_x86_64();
2241 return this->target_;
2244 Target*
2245 Target_selector_x86_64::recognize_by_name(const char* name)
2247 if (strcmp(name, "elf64-x86-64") != 0)
2248 return NULL;
2249 if (this->target_ == NULL)
2250 this->target_ = new Target_x86_64();
2251 return this->target_;
2254 Target_selector_x86_64 target_selector_x86_64;
2256 } // End anonymous namespace.