1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 #include "alloca-conf.h"
28 #include "elf64-hppa.h"
31 #define PLT_ENTRY_SIZE 0x10
32 #define DLT_ENTRY_SIZE 0x8
33 #define OPD_ENTRY_SIZE 0x20
35 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
37 /* The stub is supposed to load the target address and target's DP
38 value out of the PLT, then do an external branch to the target
43 LDD PLTOFF+8(%r27),%r27
45 Note that we must use the LDD with a 14 bit displacement, not the one
46 with a 5 bit displacement. */
47 static char plt_stub
[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
48 0x53, 0x7b, 0x00, 0x00 };
50 struct elf64_hppa_dyn_hash_entry
52 struct bfd_hash_entry root
;
54 /* Offsets for this symbol in various linker sections. */
60 /* The symbol table entry, if any, that this was derived from. */
61 struct elf_link_hash_entry
*h
;
63 /* The index of the (possibly local) symbol in the input bfd and its
64 associated BFD. Needed so that we can have relocs against local
65 symbols in shared libraries. */
69 /* Dynamic symbols may need to have two different values. One for
70 the dynamic symbol table, one for the normal symbol table.
72 In such cases we store the symbol's real value and section
73 index here so we can restore the real value before we write
74 the normal symbol table. */
78 /* Used to count non-got, non-plt relocations for delayed sizing
79 of relocation sections. */
80 struct elf64_hppa_dyn_reloc_entry
82 /* Next relocation in the chain. */
83 struct elf64_hppa_dyn_reloc_entry
*next
;
85 /* The type of the relocation. */
88 /* The input section of the relocation. */
91 /* The index of the section symbol for the input section of
92 the relocation. Only needed when building shared libraries. */
95 /* The offset within the input section of the relocation. */
98 /* The addend for the relocation. */
103 /* Nonzero if this symbol needs an entry in one of the linker
111 struct elf64_hppa_dyn_hash_table
113 struct bfd_hash_table root
;
116 struct elf64_hppa_link_hash_table
118 struct elf_link_hash_table root
;
120 /* Shortcuts to get to the various linker defined sections. */
122 asection
*dlt_rel_sec
;
124 asection
*plt_rel_sec
;
126 asection
*opd_rel_sec
;
127 asection
*other_rel_sec
;
129 /* Offset of __gp within .plt section. When the PLT gets large we want
130 to slide __gp into the PLT section so that we can continue to use
131 single DP relative instructions to load values out of the PLT. */
134 /* Note this is not strictly correct. We should create a stub section for
135 each input section with calls. The stub section should be placed before
136 the section with the call. */
139 bfd_vma text_segment_base
;
140 bfd_vma data_segment_base
;
142 struct elf64_hppa_dyn_hash_table dyn_hash_table
;
144 /* We build tables to map from an input section back to its
145 symbol index. This is the BFD for which we currently have
147 bfd
*section_syms_bfd
;
149 /* Array of symbol numbers for each input section attached to the
154 #define elf64_hppa_hash_table(p) \
155 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
157 typedef struct bfd_hash_entry
*(*new_hash_entry_func
)
158 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
160 static bfd_boolean elf64_hppa_dyn_hash_table_init
161 PARAMS ((struct elf64_hppa_dyn_hash_table
*ht
, bfd
*abfd
,
162 new_hash_entry_func
new));
163 static struct bfd_hash_entry
*elf64_hppa_new_dyn_hash_entry
164 PARAMS ((struct bfd_hash_entry
*entry
, struct bfd_hash_table
*table
,
165 const char *string
));
166 static struct bfd_link_hash_table
*elf64_hppa_hash_table_create
167 PARAMS ((bfd
*abfd
));
168 static struct elf64_hppa_dyn_hash_entry
*elf64_hppa_dyn_hash_lookup
169 PARAMS ((struct elf64_hppa_dyn_hash_table
*table
, const char *string
,
170 bfd_boolean create
, bfd_boolean copy
));
171 static void elf64_hppa_dyn_hash_traverse
172 PARAMS ((struct elf64_hppa_dyn_hash_table
*table
,
173 bfd_boolean (*func
) (struct elf64_hppa_dyn_hash_entry
*, PTR
),
176 static const char *get_dyn_name
177 PARAMS ((bfd
*, struct elf_link_hash_entry
*,
178 const Elf_Internal_Rela
*, char **, size_t *));
180 /* This must follow the definitions of the various derived linker
181 hash tables and shared functions. */
182 #include "elf-hppa.h"
184 static bfd_boolean elf64_hppa_object_p
187 static void elf64_hppa_post_process_headers
188 PARAMS ((bfd
*, struct bfd_link_info
*));
190 static bfd_boolean elf64_hppa_create_dynamic_sections
191 PARAMS ((bfd
*, struct bfd_link_info
*));
193 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
194 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
196 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
197 PARAMS ((struct elf_link_hash_entry
*, PTR
));
199 static bfd_boolean elf64_hppa_size_dynamic_sections
200 PARAMS ((bfd
*, struct bfd_link_info
*));
202 static bfd_boolean elf64_hppa_link_output_symbol_hook
203 PARAMS ((struct bfd_link_info
*, const char *, Elf_Internal_Sym
*,
204 asection
*, struct elf_link_hash_entry
*));
206 static bfd_boolean elf64_hppa_finish_dynamic_symbol
207 PARAMS ((bfd
*, struct bfd_link_info
*,
208 struct elf_link_hash_entry
*, Elf_Internal_Sym
*));
210 static int elf64_hppa_additional_program_headers
213 static bfd_boolean elf64_hppa_modify_segment_map
214 PARAMS ((bfd
*, struct bfd_link_info
*));
216 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
217 PARAMS ((const Elf_Internal_Rela
*));
219 static bfd_boolean elf64_hppa_finish_dynamic_sections
220 PARAMS ((bfd
*, struct bfd_link_info
*));
222 static bfd_boolean elf64_hppa_check_relocs
223 PARAMS ((bfd
*, struct bfd_link_info
*,
224 asection
*, const Elf_Internal_Rela
*));
226 static bfd_boolean elf64_hppa_dynamic_symbol_p
227 PARAMS ((struct elf_link_hash_entry
*, struct bfd_link_info
*));
229 static bfd_boolean elf64_hppa_mark_exported_functions
230 PARAMS ((struct elf_link_hash_entry
*, PTR
));
232 static bfd_boolean elf64_hppa_finalize_opd
233 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
235 static bfd_boolean elf64_hppa_finalize_dlt
236 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
238 static bfd_boolean allocate_global_data_dlt
239 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
241 static bfd_boolean allocate_global_data_plt
242 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
244 static bfd_boolean allocate_global_data_stub
245 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
247 static bfd_boolean allocate_global_data_opd
248 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
250 static bfd_boolean get_reloc_section
251 PARAMS ((bfd
*, struct elf64_hppa_link_hash_table
*, asection
*));
253 static bfd_boolean count_dyn_reloc
254 PARAMS ((bfd
*, struct elf64_hppa_dyn_hash_entry
*,
255 int, asection
*, int, bfd_vma
, bfd_vma
));
257 static bfd_boolean allocate_dynrel_entries
258 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
260 static bfd_boolean elf64_hppa_finalize_dynreloc
261 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
263 static bfd_boolean get_opd
264 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
266 static bfd_boolean get_plt
267 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
269 static bfd_boolean get_dlt
270 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
272 static bfd_boolean get_stub
273 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
275 static int elf64_hppa_elf_get_symbol_type
276 PARAMS ((Elf_Internal_Sym
*, int));
279 elf64_hppa_dyn_hash_table_init (ht
, abfd
, new)
280 struct elf64_hppa_dyn_hash_table
*ht
;
281 bfd
*abfd ATTRIBUTE_UNUSED
;
282 new_hash_entry_func
new;
284 memset (ht
, 0, sizeof (*ht
));
285 return bfd_hash_table_init (&ht
->root
, new);
288 static struct bfd_hash_entry
*
289 elf64_hppa_new_dyn_hash_entry (entry
, table
, string
)
290 struct bfd_hash_entry
*entry
;
291 struct bfd_hash_table
*table
;
294 struct elf64_hppa_dyn_hash_entry
*ret
;
295 ret
= (struct elf64_hppa_dyn_hash_entry
*) entry
;
297 /* Allocate the structure if it has not already been allocated by a
300 ret
= bfd_hash_allocate (table
, sizeof (*ret
));
305 /* Call the allocation method of the superclass. */
306 ret
= ((struct elf64_hppa_dyn_hash_entry
*)
307 bfd_hash_newfunc ((struct bfd_hash_entry
*) ret
, table
, string
));
309 /* Initialize our local data. All zeros. */
310 memset (&ret
->dlt_offset
, 0,
311 (sizeof (struct elf64_hppa_dyn_hash_entry
)
312 - offsetof (struct elf64_hppa_dyn_hash_entry
, dlt_offset
)));
317 /* Create the derived linker hash table. The PA64 ELF port uses this
318 derived hash table to keep information specific to the PA ElF
319 linker (without using static variables). */
321 static struct bfd_link_hash_table
*
322 elf64_hppa_hash_table_create (abfd
)
325 struct elf64_hppa_link_hash_table
*ret
;
327 ret
= bfd_zalloc (abfd
, (bfd_size_type
) sizeof (*ret
));
330 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
331 _bfd_elf_link_hash_newfunc
))
333 bfd_release (abfd
, ret
);
337 if (!elf64_hppa_dyn_hash_table_init (&ret
->dyn_hash_table
, abfd
,
338 elf64_hppa_new_dyn_hash_entry
))
340 return &ret
->root
.root
;
343 /* Look up an entry in a PA64 ELF linker hash table. */
345 static struct elf64_hppa_dyn_hash_entry
*
346 elf64_hppa_dyn_hash_lookup(table
, string
, create
, copy
)
347 struct elf64_hppa_dyn_hash_table
*table
;
349 bfd_boolean create
, copy
;
351 return ((struct elf64_hppa_dyn_hash_entry
*)
352 bfd_hash_lookup (&table
->root
, string
, create
, copy
));
355 /* Traverse a PA64 ELF linker hash table. */
358 elf64_hppa_dyn_hash_traverse (table
, func
, info
)
359 struct elf64_hppa_dyn_hash_table
*table
;
360 bfd_boolean (*func
) PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
365 (bfd_boolean (*) PARAMS ((struct bfd_hash_entry
*, PTR
))) func
,
369 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
371 Additionally we set the default architecture and machine. */
373 elf64_hppa_object_p (abfd
)
376 Elf_Internal_Ehdr
* i_ehdrp
;
379 i_ehdrp
= elf_elfheader (abfd
);
380 if (strcmp (bfd_get_target (abfd
), "elf64-hppa-linux") == 0)
382 /* GCC on hppa-linux produces binaries with OSABI=Linux,
383 but the kernel produces corefiles with OSABI=SysV. */
384 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_LINUX
&&
385 i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_NONE
) /* aka SYSV */
390 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_HPUX
)
394 flags
= i_ehdrp
->e_flags
;
395 switch (flags
& (EF_PARISC_ARCH
| EF_PARISC_WIDE
))
398 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 10);
400 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 11);
402 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 20);
403 case EFA_PARISC_2_0
| EF_PARISC_WIDE
:
404 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 25);
406 /* Don't be fussy. */
410 /* Given section type (hdr->sh_type), return a boolean indicating
411 whether or not the section is an elf64-hppa specific section. */
413 elf64_hppa_section_from_shdr (bfd
*abfd
,
414 Elf_Internal_Shdr
*hdr
,
420 switch (hdr
->sh_type
)
423 if (strcmp (name
, ".PARISC.archext") != 0)
426 case SHT_PARISC_UNWIND
:
427 if (strcmp (name
, ".PARISC.unwind") != 0)
431 case SHT_PARISC_ANNOT
:
436 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
438 newsect
= hdr
->bfd_section
;
443 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
444 name describes what was once potentially anonymous memory. We
445 allocate memory as necessary, possibly reusing PBUF/PLEN. */
448 get_dyn_name (abfd
, h
, rel
, pbuf
, plen
)
450 struct elf_link_hash_entry
*h
;
451 const Elf_Internal_Rela
*rel
;
455 asection
*sec
= abfd
->sections
;
460 if (h
&& rel
->r_addend
== 0)
461 return h
->root
.root
.string
;
464 nlen
= strlen (h
->root
.root
.string
);
466 nlen
= 8 + 1 + sizeof (rel
->r_info
) * 2 - 8;
467 tlen
= nlen
+ 1 + sizeof (rel
->r_addend
) * 2 + 1;
475 *pbuf
= buf
= malloc (tlen
);
483 memcpy (buf
, h
->root
.root
.string
, nlen
);
485 sprintf_vma (buf
+ nlen
, rel
->r_addend
);
489 nlen
= sprintf (buf
, "%x:%lx",
490 sec
->id
& 0xffffffff,
491 (long) ELF64_R_SYM (rel
->r_info
));
495 sprintf_vma (buf
+ nlen
, rel
->r_addend
);
502 /* SEC is a section containing relocs for an input BFD when linking; return
503 a suitable section for holding relocs in the output BFD for a link. */
506 get_reloc_section (abfd
, hppa_info
, sec
)
508 struct elf64_hppa_link_hash_table
*hppa_info
;
511 const char *srel_name
;
515 srel_name
= (bfd_elf_string_from_elf_section
516 (abfd
, elf_elfheader(abfd
)->e_shstrndx
,
517 elf_section_data(sec
)->rel_hdr
.sh_name
));
518 if (srel_name
== NULL
)
521 BFD_ASSERT ((strncmp (srel_name
, ".rela", 5) == 0
522 && strcmp (bfd_get_section_name (abfd
, sec
),
524 || (strncmp (srel_name
, ".rel", 4) == 0
525 && strcmp (bfd_get_section_name (abfd
, sec
),
528 dynobj
= hppa_info
->root
.dynobj
;
530 hppa_info
->root
.dynobj
= dynobj
= abfd
;
532 srel
= bfd_get_section_by_name (dynobj
, srel_name
);
535 srel
= bfd_make_section (dynobj
, srel_name
);
537 || !bfd_set_section_flags (dynobj
, srel
,
544 || !bfd_set_section_alignment (dynobj
, srel
, 3))
548 hppa_info
->other_rel_sec
= srel
;
552 /* Add a new entry to the list of dynamic relocations against DYN_H.
554 We use this to keep a record of all the FPTR relocations against a
555 particular symbol so that we can create FPTR relocations in the
559 count_dyn_reloc (abfd
, dyn_h
, type
, sec
, sec_symndx
, offset
, addend
)
561 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
568 struct elf64_hppa_dyn_reloc_entry
*rent
;
570 rent
= (struct elf64_hppa_dyn_reloc_entry
*)
571 bfd_alloc (abfd
, (bfd_size_type
) sizeof (*rent
));
575 rent
->next
= dyn_h
->reloc_entries
;
578 rent
->sec_symndx
= sec_symndx
;
579 rent
->offset
= offset
;
580 rent
->addend
= addend
;
581 dyn_h
->reloc_entries
= rent
;
586 /* Scan the RELOCS and record the type of dynamic entries that each
587 referenced symbol needs. */
590 elf64_hppa_check_relocs (abfd
, info
, sec
, relocs
)
592 struct bfd_link_info
*info
;
594 const Elf_Internal_Rela
*relocs
;
596 struct elf64_hppa_link_hash_table
*hppa_info
;
597 const Elf_Internal_Rela
*relend
;
598 Elf_Internal_Shdr
*symtab_hdr
;
599 const Elf_Internal_Rela
*rel
;
600 asection
*dlt
, *plt
, *stubs
;
605 if (info
->relocatable
)
608 /* If this is the first dynamic object found in the link, create
609 the special sections required for dynamic linking. */
610 if (! elf_hash_table (info
)->dynamic_sections_created
)
612 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
616 hppa_info
= elf64_hppa_hash_table (info
);
617 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
619 /* If necessary, build a new table holding section symbols indices
622 if (info
->shared
&& hppa_info
->section_syms_bfd
!= abfd
)
625 unsigned int highest_shndx
;
626 Elf_Internal_Sym
*local_syms
= NULL
;
627 Elf_Internal_Sym
*isym
, *isymend
;
630 /* We're done with the old cache of section index to section symbol
631 index information. Free it.
633 ?!? Note we leak the last section_syms array. Presumably we
634 could free it in one of the later routines in this file. */
635 if (hppa_info
->section_syms
)
636 free (hppa_info
->section_syms
);
638 /* Read this BFD's local symbols. */
639 if (symtab_hdr
->sh_info
!= 0)
641 local_syms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
642 if (local_syms
== NULL
)
643 local_syms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
644 symtab_hdr
->sh_info
, 0,
646 if (local_syms
== NULL
)
650 /* Record the highest section index referenced by the local symbols. */
652 isymend
= local_syms
+ symtab_hdr
->sh_info
;
653 for (isym
= local_syms
; isym
< isymend
; isym
++)
655 if (isym
->st_shndx
> highest_shndx
)
656 highest_shndx
= isym
->st_shndx
;
659 /* Allocate an array to hold the section index to section symbol index
660 mapping. Bump by one since we start counting at zero. */
664 hppa_info
->section_syms
= (int *) bfd_malloc (amt
);
666 /* Now walk the local symbols again. If we find a section symbol,
667 record the index of the symbol into the section_syms array. */
668 for (i
= 0, isym
= local_syms
; isym
< isymend
; i
++, isym
++)
670 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
671 hppa_info
->section_syms
[isym
->st_shndx
] = i
;
674 /* We are finished with the local symbols. */
675 if (local_syms
!= NULL
676 && symtab_hdr
->contents
!= (unsigned char *) local_syms
)
678 if (! info
->keep_memory
)
682 /* Cache the symbols for elf_link_input_bfd. */
683 symtab_hdr
->contents
= (unsigned char *) local_syms
;
687 /* Record which BFD we built the section_syms mapping for. */
688 hppa_info
->section_syms_bfd
= abfd
;
691 /* Record the symbol index for this input section. We may need it for
692 relocations when building shared libraries. When not building shared
693 libraries this value is never really used, but assign it to zero to
694 prevent out of bounds memory accesses in other routines. */
697 sec_symndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
699 /* If we did not find a section symbol for this section, then
700 something went terribly wrong above. */
701 if (sec_symndx
== -1)
704 sec_symndx
= hppa_info
->section_syms
[sec_symndx
];
709 dlt
= plt
= stubs
= NULL
;
713 relend
= relocs
+ sec
->reloc_count
;
714 for (rel
= relocs
; rel
< relend
; ++rel
)
725 struct elf_link_hash_entry
*h
= NULL
;
726 unsigned long r_symndx
= ELF64_R_SYM (rel
->r_info
);
727 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
729 const char *addr_name
;
730 bfd_boolean maybe_dynamic
;
731 int dynrel_type
= R_PARISC_NONE
;
732 static reloc_howto_type
*howto
;
734 if (r_symndx
>= symtab_hdr
->sh_info
)
736 /* We're dealing with a global symbol -- find its hash entry
737 and mark it as being referenced. */
738 long indx
= r_symndx
- symtab_hdr
->sh_info
;
739 h
= elf_sym_hashes (abfd
)[indx
];
740 while (h
->root
.type
== bfd_link_hash_indirect
741 || h
->root
.type
== bfd_link_hash_warning
)
742 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
747 /* We can only get preliminary data on whether a symbol is
748 locally or externally defined, as not all of the input files
749 have yet been processed. Do something with what we know, as
750 this may help reduce memory usage and processing time later. */
751 maybe_dynamic
= FALSE
;
752 if (h
&& ((info
->shared
754 || info
->unresolved_syms_in_shared_libs
== RM_IGNORE
))
756 || h
->root
.type
== bfd_link_hash_defweak
))
757 maybe_dynamic
= TRUE
;
759 howto
= elf_hppa_howto_table
+ ELF64_R_TYPE (rel
->r_info
);
763 /* These are simple indirect references to symbols through the
764 DLT. We need to create a DLT entry for any symbols which
765 appears in a DLTIND relocation. */
766 case R_PARISC_DLTIND21L
:
767 case R_PARISC_DLTIND14R
:
768 case R_PARISC_DLTIND14F
:
769 case R_PARISC_DLTIND14WR
:
770 case R_PARISC_DLTIND14DR
:
771 need_entry
= NEED_DLT
;
774 /* ?!? These need a DLT entry. But I have no idea what to do with
775 the "link time TP value. */
776 case R_PARISC_LTOFF_TP21L
:
777 case R_PARISC_LTOFF_TP14R
:
778 case R_PARISC_LTOFF_TP14F
:
779 case R_PARISC_LTOFF_TP64
:
780 case R_PARISC_LTOFF_TP14WR
:
781 case R_PARISC_LTOFF_TP14DR
:
782 case R_PARISC_LTOFF_TP16F
:
783 case R_PARISC_LTOFF_TP16WF
:
784 case R_PARISC_LTOFF_TP16DF
:
785 need_entry
= NEED_DLT
;
788 /* These are function calls. Depending on their precise target we
789 may need to make a stub for them. The stub uses the PLT, so we
790 need to create PLT entries for these symbols too. */
791 case R_PARISC_PCREL12F
:
792 case R_PARISC_PCREL17F
:
793 case R_PARISC_PCREL22F
:
794 case R_PARISC_PCREL32
:
795 case R_PARISC_PCREL64
:
796 case R_PARISC_PCREL21L
:
797 case R_PARISC_PCREL17R
:
798 case R_PARISC_PCREL17C
:
799 case R_PARISC_PCREL14R
:
800 case R_PARISC_PCREL14F
:
801 case R_PARISC_PCREL22C
:
802 case R_PARISC_PCREL14WR
:
803 case R_PARISC_PCREL14DR
:
804 case R_PARISC_PCREL16F
:
805 case R_PARISC_PCREL16WF
:
806 case R_PARISC_PCREL16DF
:
807 need_entry
= (NEED_PLT
| NEED_STUB
);
810 case R_PARISC_PLTOFF21L
:
811 case R_PARISC_PLTOFF14R
:
812 case R_PARISC_PLTOFF14F
:
813 case R_PARISC_PLTOFF14WR
:
814 case R_PARISC_PLTOFF14DR
:
815 case R_PARISC_PLTOFF16F
:
816 case R_PARISC_PLTOFF16WF
:
817 case R_PARISC_PLTOFF16DF
:
818 need_entry
= (NEED_PLT
);
822 if (info
->shared
|| maybe_dynamic
)
823 need_entry
= (NEED_DYNREL
);
824 dynrel_type
= R_PARISC_DIR64
;
827 /* This is an indirect reference through the DLT to get the address
828 of a OPD descriptor. Thus we need to make a DLT entry that points
830 case R_PARISC_LTOFF_FPTR21L
:
831 case R_PARISC_LTOFF_FPTR14R
:
832 case R_PARISC_LTOFF_FPTR14WR
:
833 case R_PARISC_LTOFF_FPTR14DR
:
834 case R_PARISC_LTOFF_FPTR32
:
835 case R_PARISC_LTOFF_FPTR64
:
836 case R_PARISC_LTOFF_FPTR16F
:
837 case R_PARISC_LTOFF_FPTR16WF
:
838 case R_PARISC_LTOFF_FPTR16DF
:
839 if (info
->shared
|| maybe_dynamic
)
840 need_entry
= (NEED_DLT
| NEED_OPD
);
842 need_entry
= (NEED_DLT
| NEED_OPD
);
843 dynrel_type
= R_PARISC_FPTR64
;
846 /* This is a simple OPD entry. */
847 case R_PARISC_FPTR64
:
848 if (info
->shared
|| maybe_dynamic
)
849 need_entry
= (NEED_OPD
| NEED_DYNREL
);
851 need_entry
= (NEED_OPD
);
852 dynrel_type
= R_PARISC_FPTR64
;
855 /* Add more cases as needed. */
861 /* Collect a canonical name for this address. */
862 addr_name
= get_dyn_name (abfd
, h
, rel
, &buf
, &buf_len
);
864 /* Collect the canonical entry data for this address. */
865 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
866 addr_name
, TRUE
, TRUE
);
869 /* Stash away enough information to be able to find this symbol
870 regardless of whether or not it is local or global. */
873 dyn_h
->sym_indx
= r_symndx
;
875 /* ?!? We may need to do some error checking in here. */
876 /* Create what's needed. */
877 if (need_entry
& NEED_DLT
)
879 if (! hppa_info
->dlt_sec
880 && ! get_dlt (abfd
, info
, hppa_info
))
885 if (need_entry
& NEED_PLT
)
887 if (! hppa_info
->plt_sec
888 && ! get_plt (abfd
, info
, hppa_info
))
893 if (need_entry
& NEED_STUB
)
895 if (! hppa_info
->stub_sec
896 && ! get_stub (abfd
, info
, hppa_info
))
898 dyn_h
->want_stub
= 1;
901 if (need_entry
& NEED_OPD
)
903 if (! hppa_info
->opd_sec
904 && ! get_opd (abfd
, info
, hppa_info
))
909 /* FPTRs are not allocated by the dynamic linker for PA64, though
910 it is possible that will change in the future. */
912 /* This could be a local function that had its address taken, in
913 which case H will be NULL. */
918 /* Add a new dynamic relocation to the chain of dynamic
919 relocations for this symbol. */
920 if ((need_entry
& NEED_DYNREL
) && (sec
->flags
& SEC_ALLOC
))
922 if (! hppa_info
->other_rel_sec
923 && ! get_reloc_section (abfd
, hppa_info
, sec
))
926 if (!count_dyn_reloc (abfd
, dyn_h
, dynrel_type
, sec
,
927 sec_symndx
, rel
->r_offset
, rel
->r_addend
))
930 /* If we are building a shared library and we just recorded
931 a dynamic R_PARISC_FPTR64 relocation, then make sure the
932 section symbol for this section ends up in the dynamic
934 if (info
->shared
&& dynrel_type
== R_PARISC_FPTR64
935 && ! (bfd_elf_link_record_local_dynamic_symbol
936 (info
, abfd
, sec_symndx
)))
951 struct elf64_hppa_allocate_data
953 struct bfd_link_info
*info
;
957 /* Should we do dynamic things to this symbol? */
960 elf64_hppa_dynamic_symbol_p (h
, info
)
961 struct elf_link_hash_entry
*h
;
962 struct bfd_link_info
*info
;
964 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
965 and relocations that retrieve a function descriptor? Assume the
967 if (_bfd_elf_dynamic_symbol_p (h
, info
, 1))
969 /* ??? Why is this here and not elsewhere is_local_label_name. */
970 if (h
->root
.root
.string
[0] == '$' && h
->root
.root
.string
[1] == '$')
979 /* Mark all functions exported by this file so that we can later allocate
980 entries in .opd for them. */
983 elf64_hppa_mark_exported_functions (h
, data
)
984 struct elf_link_hash_entry
*h
;
987 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
988 struct elf64_hppa_link_hash_table
*hppa_info
;
990 hppa_info
= elf64_hppa_hash_table (info
);
992 if (h
->root
.type
== bfd_link_hash_warning
)
993 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
996 && (h
->root
.type
== bfd_link_hash_defined
997 || h
->root
.type
== bfd_link_hash_defweak
)
998 && h
->root
.u
.def
.section
->output_section
!= NULL
999 && h
->type
== STT_FUNC
)
1001 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1003 /* Add this symbol to the PA64 linker hash table. */
1004 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
1005 h
->root
.root
.string
, TRUE
, TRUE
);
1009 if (! hppa_info
->opd_sec
1010 && ! get_opd (hppa_info
->root
.dynobj
, info
, hppa_info
))
1013 dyn_h
->want_opd
= 1;
1014 /* Put a flag here for output_symbol_hook. */
1015 dyn_h
->st_shndx
= -1;
1022 /* Allocate space for a DLT entry. */
1025 allocate_global_data_dlt (dyn_h
, data
)
1026 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1029 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1031 if (dyn_h
->want_dlt
)
1033 struct elf_link_hash_entry
*h
= dyn_h
->h
;
1035 if (x
->info
->shared
)
1037 /* Possibly add the symbol to the local dynamic symbol
1038 table since we might need to create a dynamic relocation
1041 || (h
->dynindx
== -1 && h
->type
!= STT_PARISC_MILLI
))
1044 owner
= (h
? h
->root
.u
.def
.section
->owner
: dyn_h
->owner
);
1046 if (! (bfd_elf_link_record_local_dynamic_symbol
1047 (x
->info
, owner
, dyn_h
->sym_indx
)))
1052 dyn_h
->dlt_offset
= x
->ofs
;
1053 x
->ofs
+= DLT_ENTRY_SIZE
;
1058 /* Allocate space for a DLT.PLT entry. */
1061 allocate_global_data_plt (dyn_h
, data
)
1062 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1065 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1068 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, x
->info
)
1069 && !((dyn_h
->h
->root
.type
== bfd_link_hash_defined
1070 || dyn_h
->h
->root
.type
== bfd_link_hash_defweak
)
1071 && dyn_h
->h
->root
.u
.def
.section
->output_section
!= NULL
))
1073 dyn_h
->plt_offset
= x
->ofs
;
1074 x
->ofs
+= PLT_ENTRY_SIZE
;
1075 if (dyn_h
->plt_offset
< 0x2000)
1076 elf64_hppa_hash_table (x
->info
)->gp_offset
= dyn_h
->plt_offset
;
1079 dyn_h
->want_plt
= 0;
1084 /* Allocate space for a STUB entry. */
1087 allocate_global_data_stub (dyn_h
, data
)
1088 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1091 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1093 if (dyn_h
->want_stub
1094 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, x
->info
)
1095 && !((dyn_h
->h
->root
.type
== bfd_link_hash_defined
1096 || dyn_h
->h
->root
.type
== bfd_link_hash_defweak
)
1097 && dyn_h
->h
->root
.u
.def
.section
->output_section
!= NULL
))
1099 dyn_h
->stub_offset
= x
->ofs
;
1100 x
->ofs
+= sizeof (plt_stub
);
1103 dyn_h
->want_stub
= 0;
1107 /* Allocate space for a FPTR entry. */
1110 allocate_global_data_opd (dyn_h
, data
)
1111 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1114 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1116 if (dyn_h
->want_opd
)
1118 struct elf_link_hash_entry
*h
= dyn_h
->h
;
1121 while (h
->root
.type
== bfd_link_hash_indirect
1122 || h
->root
.type
== bfd_link_hash_warning
)
1123 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1125 /* We never need an opd entry for a symbol which is not
1126 defined by this output file. */
1127 if (h
&& (h
->root
.type
== bfd_link_hash_undefined
1128 || h
->root
.u
.def
.section
->output_section
== NULL
))
1129 dyn_h
->want_opd
= 0;
1131 /* If we are creating a shared library, took the address of a local
1132 function or might export this function from this object file, then
1133 we have to create an opd descriptor. */
1134 else if (x
->info
->shared
1136 || (h
->dynindx
== -1 && h
->type
!= STT_PARISC_MILLI
)
1137 || (h
->root
.type
== bfd_link_hash_defined
1138 || h
->root
.type
== bfd_link_hash_defweak
))
1140 /* If we are creating a shared library, then we will have to
1141 create a runtime relocation for the symbol to properly
1142 initialize the .opd entry. Make sure the symbol gets
1143 added to the dynamic symbol table. */
1145 && (h
== NULL
|| (h
->dynindx
== -1)))
1148 owner
= (h
? h
->root
.u
.def
.section
->owner
: dyn_h
->owner
);
1150 if (!bfd_elf_link_record_local_dynamic_symbol
1151 (x
->info
, owner
, dyn_h
->sym_indx
))
1155 /* This may not be necessary or desirable anymore now that
1156 we have some support for dealing with section symbols
1157 in dynamic relocs. But name munging does make the result
1158 much easier to debug. ie, the EPLT reloc will reference
1159 a symbol like .foobar, instead of .text + offset. */
1160 if (x
->info
->shared
&& h
)
1163 struct elf_link_hash_entry
*nh
;
1165 new_name
= alloca (strlen (h
->root
.root
.string
) + 2);
1167 strcpy (new_name
+ 1, h
->root
.root
.string
);
1169 nh
= elf_link_hash_lookup (elf_hash_table (x
->info
),
1170 new_name
, TRUE
, TRUE
, TRUE
);
1172 nh
->root
.type
= h
->root
.type
;
1173 nh
->root
.u
.def
.value
= h
->root
.u
.def
.value
;
1174 nh
->root
.u
.def
.section
= h
->root
.u
.def
.section
;
1176 if (! bfd_elf_link_record_dynamic_symbol (x
->info
, nh
))
1180 dyn_h
->opd_offset
= x
->ofs
;
1181 x
->ofs
+= OPD_ENTRY_SIZE
;
1184 /* Otherwise we do not need an opd entry. */
1186 dyn_h
->want_opd
= 0;
1191 /* HP requires the EI_OSABI field to be filled in. The assignment to
1192 EI_ABIVERSION may not be strictly necessary. */
1195 elf64_hppa_post_process_headers (abfd
, link_info
)
1197 struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
;
1199 Elf_Internal_Ehdr
* i_ehdrp
;
1201 i_ehdrp
= elf_elfheader (abfd
);
1203 if (strcmp (bfd_get_target (abfd
), "elf64-hppa-linux") == 0)
1205 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_LINUX
;
1209 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_HPUX
;
1210 i_ehdrp
->e_ident
[EI_ABIVERSION
] = 1;
1214 /* Create function descriptor section (.opd). This section is called .opd
1215 because it contains "official procedure descriptors". The "official"
1216 refers to the fact that these descriptors are used when taking the address
1217 of a procedure, thus ensuring a unique address for each procedure. */
1220 get_opd (abfd
, info
, hppa_info
)
1222 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1223 struct elf64_hppa_link_hash_table
*hppa_info
;
1228 opd
= hppa_info
->opd_sec
;
1231 dynobj
= hppa_info
->root
.dynobj
;
1233 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1235 opd
= bfd_make_section (dynobj
, ".opd");
1237 || !bfd_set_section_flags (dynobj
, opd
,
1242 | SEC_LINKER_CREATED
))
1243 || !bfd_set_section_alignment (abfd
, opd
, 3))
1249 hppa_info
->opd_sec
= opd
;
1255 /* Create the PLT section. */
1258 get_plt (abfd
, info
, hppa_info
)
1260 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1261 struct elf64_hppa_link_hash_table
*hppa_info
;
1266 plt
= hppa_info
->plt_sec
;
1269 dynobj
= hppa_info
->root
.dynobj
;
1271 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1273 plt
= bfd_make_section (dynobj
, ".plt");
1275 || !bfd_set_section_flags (dynobj
, plt
,
1280 | SEC_LINKER_CREATED
))
1281 || !bfd_set_section_alignment (abfd
, plt
, 3))
1287 hppa_info
->plt_sec
= plt
;
1293 /* Create the DLT section. */
1296 get_dlt (abfd
, info
, hppa_info
)
1298 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1299 struct elf64_hppa_link_hash_table
*hppa_info
;
1304 dlt
= hppa_info
->dlt_sec
;
1307 dynobj
= hppa_info
->root
.dynobj
;
1309 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1311 dlt
= bfd_make_section (dynobj
, ".dlt");
1313 || !bfd_set_section_flags (dynobj
, dlt
,
1318 | SEC_LINKER_CREATED
))
1319 || !bfd_set_section_alignment (abfd
, dlt
, 3))
1325 hppa_info
->dlt_sec
= dlt
;
1331 /* Create the stubs section. */
1334 get_stub (abfd
, info
, hppa_info
)
1336 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1337 struct elf64_hppa_link_hash_table
*hppa_info
;
1342 stub
= hppa_info
->stub_sec
;
1345 dynobj
= hppa_info
->root
.dynobj
;
1347 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1349 stub
= bfd_make_section (dynobj
, ".stub");
1351 || !bfd_set_section_flags (dynobj
, stub
,
1357 | SEC_LINKER_CREATED
))
1358 || !bfd_set_section_alignment (abfd
, stub
, 3))
1364 hppa_info
->stub_sec
= stub
;
1370 /* Create sections necessary for dynamic linking. This is only a rough
1371 cut and will likely change as we learn more about the somewhat
1372 unusual dynamic linking scheme HP uses.
1375 Contains code to implement cross-space calls. The first time one
1376 of the stubs is used it will call into the dynamic linker, later
1377 calls will go straight to the target.
1379 The only stub we support right now looks like
1383 ldd OFFSET+8(%dp),%dp
1385 Other stubs may be needed in the future. We may want the remove
1386 the break/nop instruction. It is only used right now to keep the
1387 offset of a .plt entry and a .stub entry in sync.
1390 This is what most people call the .got. HP used a different name.
1394 Relocations for the DLT.
1397 Function pointers as address,gp pairs.
1400 Should contain dynamic IPLT (and EPLT?) relocations.
1406 EPLT relocations for symbols exported from shared libraries. */
1409 elf64_hppa_create_dynamic_sections (abfd
, info
)
1411 struct bfd_link_info
*info
;
1415 if (! get_stub (abfd
, info
, elf64_hppa_hash_table (info
)))
1418 if (! get_dlt (abfd
, info
, elf64_hppa_hash_table (info
)))
1421 if (! get_plt (abfd
, info
, elf64_hppa_hash_table (info
)))
1424 if (! get_opd (abfd
, info
, elf64_hppa_hash_table (info
)))
1427 s
= bfd_make_section(abfd
, ".rela.dlt");
1429 || !bfd_set_section_flags (abfd
, s
, (SEC_ALLOC
| SEC_LOAD
1433 | SEC_LINKER_CREATED
))
1434 || !bfd_set_section_alignment (abfd
, s
, 3))
1436 elf64_hppa_hash_table (info
)->dlt_rel_sec
= s
;
1438 s
= bfd_make_section(abfd
, ".rela.plt");
1440 || !bfd_set_section_flags (abfd
, s
, (SEC_ALLOC
| SEC_LOAD
1444 | SEC_LINKER_CREATED
))
1445 || !bfd_set_section_alignment (abfd
, s
, 3))
1447 elf64_hppa_hash_table (info
)->plt_rel_sec
= s
;
1449 s
= bfd_make_section(abfd
, ".rela.data");
1451 || !bfd_set_section_flags (abfd
, s
, (SEC_ALLOC
| SEC_LOAD
1455 | SEC_LINKER_CREATED
))
1456 || !bfd_set_section_alignment (abfd
, s
, 3))
1458 elf64_hppa_hash_table (info
)->other_rel_sec
= s
;
1460 s
= bfd_make_section(abfd
, ".rela.opd");
1462 || !bfd_set_section_flags (abfd
, s
, (SEC_ALLOC
| SEC_LOAD
1466 | SEC_LINKER_CREATED
))
1467 || !bfd_set_section_alignment (abfd
, s
, 3))
1469 elf64_hppa_hash_table (info
)->opd_rel_sec
= s
;
1474 /* Allocate dynamic relocations for those symbols that turned out
1478 allocate_dynrel_entries (dyn_h
, data
)
1479 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1482 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1483 struct elf64_hppa_link_hash_table
*hppa_info
;
1484 struct elf64_hppa_dyn_reloc_entry
*rent
;
1485 bfd_boolean dynamic_symbol
, shared
;
1487 hppa_info
= elf64_hppa_hash_table (x
->info
);
1488 dynamic_symbol
= elf64_hppa_dynamic_symbol_p (dyn_h
->h
, x
->info
);
1489 shared
= x
->info
->shared
;
1491 /* We may need to allocate relocations for a non-dynamic symbol
1492 when creating a shared library. */
1493 if (!dynamic_symbol
&& !shared
)
1496 /* Take care of the normal data relocations. */
1498 for (rent
= dyn_h
->reloc_entries
; rent
; rent
= rent
->next
)
1500 /* Allocate one iff we are building a shared library, the relocation
1501 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1502 if (!shared
&& rent
->type
== R_PARISC_FPTR64
&& dyn_h
->want_opd
)
1505 hppa_info
->other_rel_sec
->size
+= sizeof (Elf64_External_Rela
);
1507 /* Make sure this symbol gets into the dynamic symbol table if it is
1508 not already recorded. ?!? This should not be in the loop since
1509 the symbol need only be added once. */
1511 || (dyn_h
->h
->dynindx
== -1 && dyn_h
->h
->type
!= STT_PARISC_MILLI
))
1512 if (!bfd_elf_link_record_local_dynamic_symbol
1513 (x
->info
, rent
->sec
->owner
, dyn_h
->sym_indx
))
1517 /* Take care of the GOT and PLT relocations. */
1519 if ((dynamic_symbol
|| shared
) && dyn_h
->want_dlt
)
1520 hppa_info
->dlt_rel_sec
->size
+= sizeof (Elf64_External_Rela
);
1522 /* If we are building a shared library, then every symbol that has an
1523 opd entry will need an EPLT relocation to relocate the symbol's address
1524 and __gp value based on the runtime load address. */
1525 if (shared
&& dyn_h
->want_opd
)
1526 hppa_info
->opd_rel_sec
->size
+= sizeof (Elf64_External_Rela
);
1528 if (dyn_h
->want_plt
&& dynamic_symbol
)
1530 bfd_size_type t
= 0;
1532 /* Dynamic symbols get one IPLT relocation. Local symbols in
1533 shared libraries get two REL relocations. Local symbols in
1534 main applications get nothing. */
1536 t
= sizeof (Elf64_External_Rela
);
1538 t
= 2 * sizeof (Elf64_External_Rela
);
1540 hppa_info
->plt_rel_sec
->size
+= t
;
1546 /* Adjust a symbol defined by a dynamic object and referenced by a
1550 elf64_hppa_adjust_dynamic_symbol (info
, h
)
1551 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1552 struct elf_link_hash_entry
*h
;
1554 /* ??? Undefined symbols with PLT entries should be re-defined
1555 to be the PLT entry. */
1557 /* If this is a weak symbol, and there is a real definition, the
1558 processor independent code will have arranged for us to see the
1559 real definition first, and we can just use the same value. */
1560 if (h
->u
.weakdef
!= NULL
)
1562 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
1563 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
1564 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
1565 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
1569 /* If this is a reference to a symbol defined by a dynamic object which
1570 is not a function, we might allocate the symbol in our .dynbss section
1571 and allocate a COPY dynamic relocation.
1573 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1579 /* This function is called via elf_link_hash_traverse to mark millicode
1580 symbols with a dynindx of -1 and to remove the string table reference
1581 from the dynamic symbol table. If the symbol is not a millicode symbol,
1582 elf64_hppa_mark_exported_functions is called. */
1585 elf64_hppa_mark_milli_and_exported_functions (h
, data
)
1586 struct elf_link_hash_entry
*h
;
1589 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
1590 struct elf_link_hash_entry
*elf
= h
;
1592 if (elf
->root
.type
== bfd_link_hash_warning
)
1593 elf
= (struct elf_link_hash_entry
*) elf
->root
.u
.i
.link
;
1595 if (elf
->type
== STT_PARISC_MILLI
)
1597 if (elf
->dynindx
!= -1)
1600 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1606 return elf64_hppa_mark_exported_functions (h
, data
);
1609 /* Set the final sizes of the dynamic sections and allocate memory for
1610 the contents of our special sections. */
1613 elf64_hppa_size_dynamic_sections (output_bfd
, info
)
1615 struct bfd_link_info
*info
;
1621 bfd_boolean reltext
;
1622 struct elf64_hppa_allocate_data data
;
1623 struct elf64_hppa_link_hash_table
*hppa_info
;
1625 hppa_info
= elf64_hppa_hash_table (info
);
1627 dynobj
= elf_hash_table (info
)->dynobj
;
1628 BFD_ASSERT (dynobj
!= NULL
);
1630 /* Mark each function this program exports so that we will allocate
1631 space in the .opd section for each function's FPTR. If we are
1632 creating dynamic sections, change the dynamic index of millicode
1633 symbols to -1 and remove them from the string table for .dynstr.
1635 We have to traverse the main linker hash table since we have to
1636 find functions which may not have been mentioned in any relocs. */
1637 elf_link_hash_traverse (elf_hash_table (info
),
1638 (elf_hash_table (info
)->dynamic_sections_created
1639 ? elf64_hppa_mark_milli_and_exported_functions
1640 : elf64_hppa_mark_exported_functions
),
1643 if (elf_hash_table (info
)->dynamic_sections_created
)
1645 /* Set the contents of the .interp section to the interpreter. */
1646 if (info
->executable
)
1648 s
= bfd_get_section_by_name (dynobj
, ".interp");
1649 BFD_ASSERT (s
!= NULL
);
1650 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1651 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1656 /* We may have created entries in the .rela.got section.
1657 However, if we are not creating the dynamic sections, we will
1658 not actually use these entries. Reset the size of .rela.dlt,
1659 which will cause it to get stripped from the output file
1661 s
= bfd_get_section_by_name (dynobj
, ".rela.dlt");
1666 /* Allocate the GOT entries. */
1669 if (elf64_hppa_hash_table (info
)->dlt_sec
)
1672 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1673 allocate_global_data_dlt
, &data
);
1674 hppa_info
->dlt_sec
->size
= data
.ofs
;
1677 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1678 allocate_global_data_plt
, &data
);
1679 hppa_info
->plt_sec
->size
= data
.ofs
;
1682 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1683 allocate_global_data_stub
, &data
);
1684 hppa_info
->stub_sec
->size
= data
.ofs
;
1687 /* Allocate space for entries in the .opd section. */
1688 if (elf64_hppa_hash_table (info
)->opd_sec
)
1691 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1692 allocate_global_data_opd
, &data
);
1693 hppa_info
->opd_sec
->size
= data
.ofs
;
1696 /* Now allocate space for dynamic relocations, if necessary. */
1697 if (hppa_info
->root
.dynamic_sections_created
)
1698 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1699 allocate_dynrel_entries
, &data
);
1701 /* The sizes of all the sections are set. Allocate memory for them. */
1705 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1710 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1713 /* It's OK to base decisions on the section name, because none
1714 of the dynobj section names depend upon the input files. */
1715 name
= bfd_get_section_name (dynobj
, s
);
1719 if (strcmp (name
, ".plt") == 0)
1721 /* Strip this section if we don't need it; see the comment below. */
1728 /* Remember whether there is a PLT. */
1732 else if (strcmp (name
, ".dlt") == 0)
1734 /* Strip this section if we don't need it; see the comment below. */
1740 else if (strcmp (name
, ".opd") == 0)
1742 /* Strip this section if we don't need it; see the comment below. */
1748 else if (strncmp (name
, ".rela", 5) == 0)
1750 /* If we don't need this section, strip it from the output file.
1751 This is mostly to handle .rela.bss and .rela.plt. We must
1752 create both sections in create_dynamic_sections, because they
1753 must be created before the linker maps input sections to output
1754 sections. The linker does that before adjust_dynamic_symbol
1755 is called, and it is that function which decides whether
1756 anything needs to go into these sections. */
1759 /* If we don't need this section, strip it from the
1760 output file. This is mostly to handle .rela.bss and
1761 .rela.plt. We must create both sections in
1762 create_dynamic_sections, because they must be created
1763 before the linker maps input sections to output
1764 sections. The linker does that before
1765 adjust_dynamic_symbol is called, and it is that
1766 function which decides whether anything needs to go
1767 into these sections. */
1774 /* Remember whether there are any reloc sections other
1776 if (strcmp (name
, ".rela.plt") != 0)
1778 const char *outname
;
1782 /* If this relocation section applies to a read only
1783 section, then we probably need a DT_TEXTREL
1784 entry. The entries in the .rela.plt section
1785 really apply to the .got section, which we
1786 created ourselves and so know is not readonly. */
1787 outname
= bfd_get_section_name (output_bfd
,
1789 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
1791 && (target
->flags
& SEC_READONLY
) != 0
1792 && (target
->flags
& SEC_ALLOC
) != 0)
1796 /* We use the reloc_count field as a counter if we need
1797 to copy relocs into the output file. */
1801 else if (strncmp (name
, ".dlt", 4) != 0
1802 && strcmp (name
, ".stub") != 0
1803 && strcmp (name
, ".got") != 0)
1805 /* It's not one of our sections, so don't allocate space. */
1811 _bfd_strip_section_from_output (info
, s
);
1815 /* Allocate memory for the section contents if it has not
1816 been allocated already. We use bfd_zalloc here in case
1817 unused entries are not reclaimed before the section's
1818 contents are written out. This should not happen, but this
1819 way if it does, we get a R_PARISC_NONE reloc instead of
1821 if (s
->contents
== NULL
)
1823 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
1824 if (s
->contents
== NULL
&& s
->size
!= 0)
1829 if (elf_hash_table (info
)->dynamic_sections_created
)
1831 /* Always create a DT_PLTGOT. It actually has nothing to do with
1832 the PLT, it is how we communicate the __gp value of a load
1833 module to the dynamic linker. */
1834 #define add_dynamic_entry(TAG, VAL) \
1835 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1837 if (!add_dynamic_entry (DT_HP_DLD_FLAGS
, 0)
1838 || !add_dynamic_entry (DT_PLTGOT
, 0))
1841 /* Add some entries to the .dynamic section. We fill in the
1842 values later, in elf64_hppa_finish_dynamic_sections, but we
1843 must add the entries now so that we get the correct size for
1844 the .dynamic section. The DT_DEBUG entry is filled in by the
1845 dynamic linker and used by the debugger. */
1848 if (!add_dynamic_entry (DT_DEBUG
, 0)
1849 || !add_dynamic_entry (DT_HP_DLD_HOOK
, 0)
1850 || !add_dynamic_entry (DT_HP_LOAD_MAP
, 0))
1854 /* Force DT_FLAGS to always be set.
1855 Required by HPUX 11.00 patch PHSS_26559. */
1856 if (!add_dynamic_entry (DT_FLAGS
, (info
)->flags
))
1861 if (!add_dynamic_entry (DT_PLTRELSZ
, 0)
1862 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
1863 || !add_dynamic_entry (DT_JMPREL
, 0))
1869 if (!add_dynamic_entry (DT_RELA
, 0)
1870 || !add_dynamic_entry (DT_RELASZ
, 0)
1871 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf64_External_Rela
)))
1877 if (!add_dynamic_entry (DT_TEXTREL
, 0))
1879 info
->flags
|= DF_TEXTREL
;
1882 #undef add_dynamic_entry
1887 /* Called after we have output the symbol into the dynamic symbol
1888 table, but before we output the symbol into the normal symbol
1891 For some symbols we had to change their address when outputting
1892 the dynamic symbol table. We undo that change here so that
1893 the symbols have their expected value in the normal symbol
1897 elf64_hppa_link_output_symbol_hook (info
, name
, sym
, input_sec
, h
)
1898 struct bfd_link_info
*info
;
1900 Elf_Internal_Sym
*sym
;
1901 asection
*input_sec ATTRIBUTE_UNUSED
;
1902 struct elf_link_hash_entry
*h
;
1904 struct elf64_hppa_link_hash_table
*hppa_info
;
1905 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1907 /* We may be called with the file symbol or section symbols.
1908 They never need munging, so it is safe to ignore them. */
1912 /* Get the PA dyn_symbol (if any) associated with NAME. */
1913 hppa_info
= elf64_hppa_hash_table (info
);
1914 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
1915 name
, FALSE
, FALSE
);
1916 if (!dyn_h
|| dyn_h
->h
!= h
)
1919 /* Function symbols for which we created .opd entries *may* have been
1920 munged by finish_dynamic_symbol and have to be un-munged here.
1922 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1923 into non-dynamic ones, so we initialize st_shndx to -1 in
1924 mark_exported_functions and check to see if it was overwritten
1925 here instead of just checking dyn_h->h->dynindx. */
1926 if (dyn_h
->want_opd
&& dyn_h
->st_shndx
!= -1)
1928 /* Restore the saved value and section index. */
1929 sym
->st_value
= dyn_h
->st_value
;
1930 sym
->st_shndx
= dyn_h
->st_shndx
;
1936 /* Finish up dynamic symbol handling. We set the contents of various
1937 dynamic sections here. */
1940 elf64_hppa_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
1942 struct bfd_link_info
*info
;
1943 struct elf_link_hash_entry
*h
;
1944 Elf_Internal_Sym
*sym
;
1946 asection
*stub
, *splt
, *sdlt
, *sopd
, *spltrel
, *sdltrel
;
1947 struct elf64_hppa_link_hash_table
*hppa_info
;
1948 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1950 hppa_info
= elf64_hppa_hash_table (info
);
1951 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
1952 h
->root
.root
.string
, FALSE
, FALSE
);
1954 stub
= hppa_info
->stub_sec
;
1955 splt
= hppa_info
->plt_sec
;
1956 sdlt
= hppa_info
->dlt_sec
;
1957 sopd
= hppa_info
->opd_sec
;
1958 spltrel
= hppa_info
->plt_rel_sec
;
1959 sdltrel
= hppa_info
->dlt_rel_sec
;
1961 /* Incredible. It is actually necessary to NOT use the symbol's real
1962 value when building the dynamic symbol table for a shared library.
1963 At least for symbols that refer to functions.
1965 We will store a new value and section index into the symbol long
1966 enough to output it into the dynamic symbol table, then we restore
1967 the original values (in elf64_hppa_link_output_symbol_hook). */
1968 if (dyn_h
&& dyn_h
->want_opd
)
1970 BFD_ASSERT (sopd
!= NULL
);
1972 /* Save away the original value and section index so that we
1973 can restore them later. */
1974 dyn_h
->st_value
= sym
->st_value
;
1975 dyn_h
->st_shndx
= sym
->st_shndx
;
1977 /* For the dynamic symbol table entry, we want the value to be
1978 address of this symbol's entry within the .opd section. */
1979 sym
->st_value
= (dyn_h
->opd_offset
1980 + sopd
->output_offset
1981 + sopd
->output_section
->vma
);
1982 sym
->st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
1983 sopd
->output_section
);
1986 /* Initialize a .plt entry if requested. */
1987 if (dyn_h
&& dyn_h
->want_plt
1988 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
))
1991 Elf_Internal_Rela rel
;
1994 BFD_ASSERT (splt
!= NULL
&& spltrel
!= NULL
);
1996 /* We do not actually care about the value in the PLT entry
1997 if we are creating a shared library and the symbol is
1998 still undefined, we create a dynamic relocation to fill
1999 in the correct value. */
2000 if (info
->shared
&& h
->root
.type
== bfd_link_hash_undefined
)
2003 value
= (h
->root
.u
.def
.value
+ h
->root
.u
.def
.section
->vma
);
2005 /* Fill in the entry in the procedure linkage table.
2007 The format of a plt entry is
2010 plt_offset is the offset within the PLT section at which to
2011 install the PLT entry.
2013 We are modifying the in-memory PLT contents here, so we do not add
2014 in the output_offset of the PLT section. */
2016 bfd_put_64 (splt
->owner
, value
, splt
->contents
+ dyn_h
->plt_offset
);
2017 value
= _bfd_get_gp_value (splt
->output_section
->owner
);
2018 bfd_put_64 (splt
->owner
, value
, splt
->contents
+ dyn_h
->plt_offset
+ 0x8);
2020 /* Create a dynamic IPLT relocation for this entry.
2022 We are creating a relocation in the output file's PLT section,
2023 which is included within the DLT secton. So we do need to include
2024 the PLT's output_offset in the computation of the relocation's
2026 rel
.r_offset
= (dyn_h
->plt_offset
+ splt
->output_offset
2027 + splt
->output_section
->vma
);
2028 rel
.r_info
= ELF64_R_INFO (h
->dynindx
, R_PARISC_IPLT
);
2031 loc
= spltrel
->contents
;
2032 loc
+= spltrel
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2033 bfd_elf64_swap_reloca_out (splt
->output_section
->owner
, &rel
, loc
);
2036 /* Initialize an external call stub entry if requested. */
2037 if (dyn_h
&& dyn_h
->want_stub
2038 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
))
2042 unsigned int max_offset
;
2044 BFD_ASSERT (stub
!= NULL
);
2046 /* Install the generic stub template.
2048 We are modifying the contents of the stub section, so we do not
2049 need to include the stub section's output_offset here. */
2050 memcpy (stub
->contents
+ dyn_h
->stub_offset
, plt_stub
, sizeof (plt_stub
));
2052 /* Fix up the first ldd instruction.
2054 We are modifying the contents of the STUB section in memory,
2055 so we do not need to include its output offset in this computation.
2057 Note the plt_offset value is the value of the PLT entry relative to
2058 the start of the PLT section. These instructions will reference
2059 data relative to the value of __gp, which may not necessarily have
2060 the same address as the start of the PLT section.
2062 gp_offset contains the offset of __gp within the PLT section. */
2063 value
= dyn_h
->plt_offset
- hppa_info
->gp_offset
;
2065 insn
= bfd_get_32 (stub
->owner
, stub
->contents
+ dyn_h
->stub_offset
);
2066 if (output_bfd
->arch_info
->mach
>= 25)
2068 /* Wide mode allows 16 bit offsets. */
2071 insn
|= re_assemble_16 ((int) value
);
2077 insn
|= re_assemble_14 ((int) value
);
2080 if ((value
& 7) || value
+ max_offset
>= 2*max_offset
- 8)
2082 (*_bfd_error_handler
) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2088 bfd_put_32 (stub
->owner
, (bfd_vma
) insn
,
2089 stub
->contents
+ dyn_h
->stub_offset
);
2091 /* Fix up the second ldd instruction. */
2093 insn
= bfd_get_32 (stub
->owner
, stub
->contents
+ dyn_h
->stub_offset
+ 8);
2094 if (output_bfd
->arch_info
->mach
>= 25)
2097 insn
|= re_assemble_16 ((int) value
);
2102 insn
|= re_assemble_14 ((int) value
);
2104 bfd_put_32 (stub
->owner
, (bfd_vma
) insn
,
2105 stub
->contents
+ dyn_h
->stub_offset
+ 8);
2111 /* The .opd section contains FPTRs for each function this file
2112 exports. Initialize the FPTR entries. */
2115 elf64_hppa_finalize_opd (dyn_h
, data
)
2116 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
2119 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2120 struct elf64_hppa_link_hash_table
*hppa_info
;
2121 struct elf_link_hash_entry
*h
= dyn_h
? dyn_h
->h
: NULL
;
2125 hppa_info
= elf64_hppa_hash_table (info
);
2126 sopd
= hppa_info
->opd_sec
;
2127 sopdrel
= hppa_info
->opd_rel_sec
;
2129 if (h
&& dyn_h
->want_opd
)
2133 /* The first two words of an .opd entry are zero.
2135 We are modifying the contents of the OPD section in memory, so we
2136 do not need to include its output offset in this computation. */
2137 memset (sopd
->contents
+ dyn_h
->opd_offset
, 0, 16);
2139 value
= (h
->root
.u
.def
.value
2140 + h
->root
.u
.def
.section
->output_section
->vma
2141 + h
->root
.u
.def
.section
->output_offset
);
2143 /* The next word is the address of the function. */
2144 bfd_put_64 (sopd
->owner
, value
, sopd
->contents
+ dyn_h
->opd_offset
+ 16);
2146 /* The last word is our local __gp value. */
2147 value
= _bfd_get_gp_value (sopd
->output_section
->owner
);
2148 bfd_put_64 (sopd
->owner
, value
, sopd
->contents
+ dyn_h
->opd_offset
+ 24);
2151 /* If we are generating a shared library, we must generate EPLT relocations
2152 for each entry in the .opd, even for static functions (they may have
2153 had their address taken). */
2154 if (info
->shared
&& dyn_h
&& dyn_h
->want_opd
)
2156 Elf_Internal_Rela rel
;
2160 /* We may need to do a relocation against a local symbol, in
2161 which case we have to look up it's dynamic symbol index off
2162 the local symbol hash table. */
2163 if (h
&& h
->dynindx
!= -1)
2164 dynindx
= h
->dynindx
;
2167 = _bfd_elf_link_lookup_local_dynindx (info
, dyn_h
->owner
,
2170 /* The offset of this relocation is the absolute address of the
2171 .opd entry for this symbol. */
2172 rel
.r_offset
= (dyn_h
->opd_offset
+ sopd
->output_offset
2173 + sopd
->output_section
->vma
);
2175 /* If H is non-null, then we have an external symbol.
2177 It is imperative that we use a different dynamic symbol for the
2178 EPLT relocation if the symbol has global scope.
2180 In the dynamic symbol table, the function symbol will have a value
2181 which is address of the function's .opd entry.
2183 Thus, we can not use that dynamic symbol for the EPLT relocation
2184 (if we did, the data in the .opd would reference itself rather
2185 than the actual address of the function). Instead we have to use
2186 a new dynamic symbol which has the same value as the original global
2189 We prefix the original symbol with a "." and use the new symbol in
2190 the EPLT relocation. This new symbol has already been recorded in
2191 the symbol table, we just have to look it up and use it.
2193 We do not have such problems with static functions because we do
2194 not make their addresses in the dynamic symbol table point to
2195 the .opd entry. Ultimately this should be safe since a static
2196 function can not be directly referenced outside of its shared
2199 We do have to play similar games for FPTR relocations in shared
2200 libraries, including those for static symbols. See the FPTR
2201 handling in elf64_hppa_finalize_dynreloc. */
2205 struct elf_link_hash_entry
*nh
;
2207 new_name
= alloca (strlen (h
->root
.root
.string
) + 2);
2209 strcpy (new_name
+ 1, h
->root
.root
.string
);
2211 nh
= elf_link_hash_lookup (elf_hash_table (info
),
2212 new_name
, FALSE
, FALSE
, FALSE
);
2214 /* All we really want from the new symbol is its dynamic
2216 dynindx
= nh
->dynindx
;
2220 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_EPLT
);
2222 loc
= sopdrel
->contents
;
2223 loc
+= sopdrel
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2224 bfd_elf64_swap_reloca_out (sopd
->output_section
->owner
, &rel
, loc
);
2229 /* The .dlt section contains addresses for items referenced through the
2230 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2231 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2234 elf64_hppa_finalize_dlt (dyn_h
, data
)
2235 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
2238 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2239 struct elf64_hppa_link_hash_table
*hppa_info
;
2240 asection
*sdlt
, *sdltrel
;
2241 struct elf_link_hash_entry
*h
= dyn_h
? dyn_h
->h
: NULL
;
2243 hppa_info
= elf64_hppa_hash_table (info
);
2245 sdlt
= hppa_info
->dlt_sec
;
2246 sdltrel
= hppa_info
->dlt_rel_sec
;
2248 /* H/DYN_H may refer to a local variable and we know it's
2249 address, so there is no need to create a relocation. Just install
2250 the proper value into the DLT, note this shortcut can not be
2251 skipped when building a shared library. */
2252 if (! info
->shared
&& h
&& dyn_h
->want_dlt
)
2256 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2257 to point to the FPTR entry in the .opd section.
2259 We include the OPD's output offset in this computation as
2260 we are referring to an absolute address in the resulting
2262 if (dyn_h
->want_opd
)
2264 value
= (dyn_h
->opd_offset
2265 + hppa_info
->opd_sec
->output_offset
2266 + hppa_info
->opd_sec
->output_section
->vma
);
2268 else if ((h
->root
.type
== bfd_link_hash_defined
2269 || h
->root
.type
== bfd_link_hash_defweak
)
2270 && h
->root
.u
.def
.section
)
2272 value
= h
->root
.u
.def
.value
+ h
->root
.u
.def
.section
->output_offset
;
2273 if (h
->root
.u
.def
.section
->output_section
)
2274 value
+= h
->root
.u
.def
.section
->output_section
->vma
;
2276 value
+= h
->root
.u
.def
.section
->vma
;
2279 /* We have an undefined function reference. */
2282 /* We do not need to include the output offset of the DLT section
2283 here because we are modifying the in-memory contents. */
2284 bfd_put_64 (sdlt
->owner
, value
, sdlt
->contents
+ dyn_h
->dlt_offset
);
2287 /* Create a relocation for the DLT entry associated with this symbol.
2288 When building a shared library the symbol does not have to be dynamic. */
2290 && (elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
) || info
->shared
))
2292 Elf_Internal_Rela rel
;
2296 /* We may need to do a relocation against a local symbol, in
2297 which case we have to look up it's dynamic symbol index off
2298 the local symbol hash table. */
2299 if (h
&& h
->dynindx
!= -1)
2300 dynindx
= h
->dynindx
;
2303 = _bfd_elf_link_lookup_local_dynindx (info
, dyn_h
->owner
,
2306 /* Create a dynamic relocation for this entry. Do include the output
2307 offset of the DLT entry since we need an absolute address in the
2308 resulting object file. */
2309 rel
.r_offset
= (dyn_h
->dlt_offset
+ sdlt
->output_offset
2310 + sdlt
->output_section
->vma
);
2311 if (h
&& h
->type
== STT_FUNC
)
2312 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_FPTR64
);
2314 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_DIR64
);
2317 loc
= sdltrel
->contents
;
2318 loc
+= sdltrel
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2319 bfd_elf64_swap_reloca_out (sdlt
->output_section
->owner
, &rel
, loc
);
2324 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2325 for dynamic functions used to initialize static data. */
2328 elf64_hppa_finalize_dynreloc (dyn_h
, data
)
2329 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
2332 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2333 struct elf64_hppa_link_hash_table
*hppa_info
;
2334 struct elf_link_hash_entry
*h
;
2337 dynamic_symbol
= elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
);
2339 if (!dynamic_symbol
&& !info
->shared
)
2342 if (dyn_h
->reloc_entries
)
2344 struct elf64_hppa_dyn_reloc_entry
*rent
;
2347 hppa_info
= elf64_hppa_hash_table (info
);
2350 /* We may need to do a relocation against a local symbol, in
2351 which case we have to look up it's dynamic symbol index off
2352 the local symbol hash table. */
2353 if (h
&& h
->dynindx
!= -1)
2354 dynindx
= h
->dynindx
;
2357 = _bfd_elf_link_lookup_local_dynindx (info
, dyn_h
->owner
,
2360 for (rent
= dyn_h
->reloc_entries
; rent
; rent
= rent
->next
)
2362 Elf_Internal_Rela rel
;
2365 /* Allocate one iff we are building a shared library, the relocation
2366 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2367 if (!info
->shared
&& rent
->type
== R_PARISC_FPTR64
&& dyn_h
->want_opd
)
2370 /* Create a dynamic relocation for this entry.
2372 We need the output offset for the reloc's section because
2373 we are creating an absolute address in the resulting object
2375 rel
.r_offset
= (rent
->offset
+ rent
->sec
->output_offset
2376 + rent
->sec
->output_section
->vma
);
2378 /* An FPTR64 relocation implies that we took the address of
2379 a function and that the function has an entry in the .opd
2380 section. We want the FPTR64 relocation to reference the
2383 We could munge the symbol value in the dynamic symbol table
2384 (in fact we already do for functions with global scope) to point
2385 to the .opd entry. Then we could use that dynamic symbol in
2388 Or we could do something sensible, not munge the symbol's
2389 address and instead just use a different symbol to reference
2390 the .opd entry. At least that seems sensible until you
2391 realize there's no local dynamic symbols we can use for that
2392 purpose. Thus the hair in the check_relocs routine.
2394 We use a section symbol recorded by check_relocs as the
2395 base symbol for the relocation. The addend is the difference
2396 between the section symbol and the address of the .opd entry. */
2397 if (info
->shared
&& rent
->type
== R_PARISC_FPTR64
&& dyn_h
->want_opd
)
2399 bfd_vma value
, value2
;
2401 /* First compute the address of the opd entry for this symbol. */
2402 value
= (dyn_h
->opd_offset
2403 + hppa_info
->opd_sec
->output_section
->vma
2404 + hppa_info
->opd_sec
->output_offset
);
2406 /* Compute the value of the start of the section with
2408 value2
= (rent
->sec
->output_section
->vma
2409 + rent
->sec
->output_offset
);
2411 /* Compute the difference between the start of the section
2412 with the relocation and the opd entry. */
2415 /* The result becomes the addend of the relocation. */
2416 rel
.r_addend
= value
;
2418 /* The section symbol becomes the symbol for the dynamic
2421 = _bfd_elf_link_lookup_local_dynindx (info
,
2426 rel
.r_addend
= rent
->addend
;
2428 rel
.r_info
= ELF64_R_INFO (dynindx
, rent
->type
);
2430 loc
= hppa_info
->other_rel_sec
->contents
;
2431 loc
+= (hppa_info
->other_rel_sec
->reloc_count
++
2432 * sizeof (Elf64_External_Rela
));
2433 bfd_elf64_swap_reloca_out (hppa_info
->other_rel_sec
->output_section
->owner
,
2441 /* Used to decide how to sort relocs in an optimal manner for the
2442 dynamic linker, before writing them out. */
2444 static enum elf_reloc_type_class
2445 elf64_hppa_reloc_type_class (rela
)
2446 const Elf_Internal_Rela
*rela
;
2448 if (ELF64_R_SYM (rela
->r_info
) == 0)
2449 return reloc_class_relative
;
2451 switch ((int) ELF64_R_TYPE (rela
->r_info
))
2454 return reloc_class_plt
;
2456 return reloc_class_copy
;
2458 return reloc_class_normal
;
2462 /* Finish up the dynamic sections. */
2465 elf64_hppa_finish_dynamic_sections (output_bfd
, info
)
2467 struct bfd_link_info
*info
;
2471 struct elf64_hppa_link_hash_table
*hppa_info
;
2473 hppa_info
= elf64_hppa_hash_table (info
);
2475 /* Finalize the contents of the .opd section. */
2476 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
2477 elf64_hppa_finalize_opd
,
2480 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
2481 elf64_hppa_finalize_dynreloc
,
2484 /* Finalize the contents of the .dlt section. */
2485 dynobj
= elf_hash_table (info
)->dynobj
;
2486 /* Finalize the contents of the .dlt section. */
2487 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
2488 elf64_hppa_finalize_dlt
,
2491 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
2493 if (elf_hash_table (info
)->dynamic_sections_created
)
2495 Elf64_External_Dyn
*dyncon
, *dynconend
;
2497 BFD_ASSERT (sdyn
!= NULL
);
2499 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
2500 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
2501 for (; dyncon
< dynconend
; dyncon
++)
2503 Elf_Internal_Dyn dyn
;
2506 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2513 case DT_HP_LOAD_MAP
:
2514 /* Compute the absolute address of 16byte scratchpad area
2515 for the dynamic linker.
2517 By convention the linker script will allocate the scratchpad
2518 area at the start of the .data section. So all we have to
2519 to is find the start of the .data section. */
2520 s
= bfd_get_section_by_name (output_bfd
, ".data");
2521 dyn
.d_un
.d_ptr
= s
->vma
;
2522 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2526 /* HP's use PLTGOT to set the GOT register. */
2527 dyn
.d_un
.d_ptr
= _bfd_get_gp_value (output_bfd
);
2528 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2532 s
= hppa_info
->plt_rel_sec
;
2533 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
2534 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2538 s
= hppa_info
->plt_rel_sec
;
2539 dyn
.d_un
.d_val
= s
->size
;
2540 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2544 s
= hppa_info
->other_rel_sec
;
2545 if (! s
|| ! s
->size
)
2546 s
= hppa_info
->dlt_rel_sec
;
2547 if (! s
|| ! s
->size
)
2548 s
= hppa_info
->opd_rel_sec
;
2549 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
2550 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2554 s
= hppa_info
->other_rel_sec
;
2555 dyn
.d_un
.d_val
= s
->size
;
2556 s
= hppa_info
->dlt_rel_sec
;
2557 dyn
.d_un
.d_val
+= s
->size
;
2558 s
= hppa_info
->opd_rel_sec
;
2559 dyn
.d_un
.d_val
+= s
->size
;
2560 /* There is some question about whether or not the size of
2561 the PLT relocs should be included here. HP's tools do
2562 it, so we'll emulate them. */
2563 s
= hppa_info
->plt_rel_sec
;
2564 dyn
.d_un
.d_val
+= s
->size
;
2565 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2575 /* Return the number of additional phdrs we will need.
2577 The generic ELF code only creates PT_PHDRs for executables. The HP
2578 dynamic linker requires PT_PHDRs for dynamic libraries too.
2580 This routine indicates that the backend needs one additional program
2581 header for that case.
2583 Note we do not have access to the link info structure here, so we have
2584 to guess whether or not we are building a shared library based on the
2585 existence of a .interp section. */
2588 elf64_hppa_additional_program_headers (abfd
)
2593 /* If we are creating a shared library, then we have to create a
2594 PT_PHDR segment. HP's dynamic linker chokes without it. */
2595 s
= bfd_get_section_by_name (abfd
, ".interp");
2601 /* Allocate and initialize any program headers required by this
2604 The generic ELF code only creates PT_PHDRs for executables. The HP
2605 dynamic linker requires PT_PHDRs for dynamic libraries too.
2607 This allocates the PT_PHDR and initializes it in a manner suitable
2610 Note we do not have access to the link info structure here, so we have
2611 to guess whether or not we are building a shared library based on the
2612 existence of a .interp section. */
2615 elf64_hppa_modify_segment_map (abfd
, info
)
2617 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
2619 struct elf_segment_map
*m
;
2622 s
= bfd_get_section_by_name (abfd
, ".interp");
2625 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
2626 if (m
->p_type
== PT_PHDR
)
2630 m
= ((struct elf_segment_map
*)
2631 bfd_zalloc (abfd
, (bfd_size_type
) sizeof *m
));
2635 m
->p_type
= PT_PHDR
;
2636 m
->p_flags
= PF_R
| PF_X
;
2637 m
->p_flags_valid
= 1;
2638 m
->p_paddr_valid
= 1;
2639 m
->includes_phdrs
= 1;
2641 m
->next
= elf_tdata (abfd
)->segment_map
;
2642 elf_tdata (abfd
)->segment_map
= m
;
2646 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
2647 if (m
->p_type
== PT_LOAD
)
2651 for (i
= 0; i
< m
->count
; i
++)
2653 /* The code "hint" is not really a hint. It is a requirement
2654 for certain versions of the HP dynamic linker. Worse yet,
2655 it must be set even if the shared library does not have
2656 any code in its "text" segment (thus the check for .hash
2657 to catch this situation). */
2658 if (m
->sections
[i
]->flags
& SEC_CODE
2659 || (strcmp (m
->sections
[i
]->name
, ".hash") == 0))
2660 m
->p_flags
|= (PF_X
| PF_HP_CODE
);
2667 /* Called when writing out an object file to decide the type of a
2670 elf64_hppa_elf_get_symbol_type (elf_sym
, type
)
2671 Elf_Internal_Sym
*elf_sym
;
2674 if (ELF_ST_TYPE (elf_sym
->st_info
) == STT_PARISC_MILLI
)
2675 return STT_PARISC_MILLI
;
2680 static struct bfd_elf_special_section
const elf64_hppa_special_sections
[]=
2682 { ".fini", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2683 { ".init", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2684 { NULL
, 0, 0, 0, 0 }
2687 /* The hash bucket size is the standard one, namely 4. */
2689 const struct elf_size_info hppa64_elf_size_info
=
2691 sizeof (Elf64_External_Ehdr
),
2692 sizeof (Elf64_External_Phdr
),
2693 sizeof (Elf64_External_Shdr
),
2694 sizeof (Elf64_External_Rel
),
2695 sizeof (Elf64_External_Rela
),
2696 sizeof (Elf64_External_Sym
),
2697 sizeof (Elf64_External_Dyn
),
2698 sizeof (Elf_External_Note
),
2702 ELFCLASS64
, EV_CURRENT
,
2703 bfd_elf64_write_out_phdrs
,
2704 bfd_elf64_write_shdrs_and_ehdr
,
2705 bfd_elf64_write_relocs
,
2706 bfd_elf64_swap_symbol_in
,
2707 bfd_elf64_swap_symbol_out
,
2708 bfd_elf64_slurp_reloc_table
,
2709 bfd_elf64_slurp_symbol_table
,
2710 bfd_elf64_swap_dyn_in
,
2711 bfd_elf64_swap_dyn_out
,
2712 bfd_elf64_swap_reloc_in
,
2713 bfd_elf64_swap_reloc_out
,
2714 bfd_elf64_swap_reloca_in
,
2715 bfd_elf64_swap_reloca_out
2718 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2719 #define TARGET_BIG_NAME "elf64-hppa"
2720 #define ELF_ARCH bfd_arch_hppa
2721 #define ELF_MACHINE_CODE EM_PARISC
2722 /* This is not strictly correct. The maximum page size for PA2.0 is
2723 64M. But everything still uses 4k. */
2724 #define ELF_MAXPAGESIZE 0x1000
2725 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2726 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2727 #define elf_info_to_howto elf_hppa_info_to_howto
2728 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2730 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2731 #define elf_backend_object_p elf64_hppa_object_p
2732 #define elf_backend_final_write_processing \
2733 elf_hppa_final_write_processing
2734 #define elf_backend_fake_sections elf_hppa_fake_sections
2735 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2737 #define elf_backend_relocate_section elf_hppa_relocate_section
2739 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2741 #define elf_backend_create_dynamic_sections \
2742 elf64_hppa_create_dynamic_sections
2743 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2745 #define elf_backend_adjust_dynamic_symbol \
2746 elf64_hppa_adjust_dynamic_symbol
2748 #define elf_backend_size_dynamic_sections \
2749 elf64_hppa_size_dynamic_sections
2751 #define elf_backend_finish_dynamic_symbol \
2752 elf64_hppa_finish_dynamic_symbol
2753 #define elf_backend_finish_dynamic_sections \
2754 elf64_hppa_finish_dynamic_sections
2756 /* Stuff for the BFD linker: */
2757 #define bfd_elf64_bfd_link_hash_table_create \
2758 elf64_hppa_hash_table_create
2760 #define elf_backend_check_relocs \
2761 elf64_hppa_check_relocs
2763 #define elf_backend_size_info \
2764 hppa64_elf_size_info
2766 #define elf_backend_additional_program_headers \
2767 elf64_hppa_additional_program_headers
2769 #define elf_backend_modify_segment_map \
2770 elf64_hppa_modify_segment_map
2772 #define elf_backend_link_output_symbol_hook \
2773 elf64_hppa_link_output_symbol_hook
2775 #define elf_backend_want_got_plt 0
2776 #define elf_backend_plt_readonly 0
2777 #define elf_backend_want_plt_sym 0
2778 #define elf_backend_got_header_size 0
2779 #define elf_backend_type_change_ok TRUE
2780 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2781 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2782 #define elf_backend_rela_normal 1
2783 #define elf_backend_special_sections elf64_hppa_special_sections
2785 #include "elf64-target.h"
2787 #undef TARGET_BIG_SYM
2788 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2789 #undef TARGET_BIG_NAME
2790 #define TARGET_BIG_NAME "elf64-hppa-linux"
2792 #undef elf_backend_special_sections
2794 #define INCLUDED_TARGET_FILE 1
2795 #include "elf64-target.h"