* arm-dis.c (print_insn_arm): Output combinations of PSR flags.
[binutils.git] / gprof / gprof.texi
blob6e1cfd0199065df7f015e47c837f1e893530d9b8
1 \input texinfo @c -*-texinfo-*-
2 @setfilename gprof.info
3 @settitle GNU gprof
4 @setchapternewpage odd
6 @ifinfo
7 @c This is a dir.info fragment to support semi-automated addition of
8 @c manuals to an info tree.  zoo@cygnus.com is developing this facility.
9 @format
10 START-INFO-DIR-ENTRY
11 * gprof: (gprof).                Profiling your program's execution
12 END-INFO-DIR-ENTRY
13 @end format
14 @end ifinfo
16 @ifinfo
17 This file documents the gprof profiler of the GNU system.
19 Copyright (C) 1988, 92, 97, 98, 99, 2000 Free Software Foundation, Inc.
21 Permission is granted to make and distribute verbatim copies of
22 this manual provided the copyright notice and this permission notice
23 are preserved on all copies.
25 @ignore
26 Permission is granted to process this file through Tex and print the
27 results, provided the printed document carries copying permission
28 notice identical to this one except for the removal of this paragraph
29 (this paragraph not being relevant to the printed manual).
31 @end ignore
32 Permission is granted to copy and distribute modified versions of this
33 manual under the conditions for verbatim copying, provided that the entire
34 resulting derived work is distributed under the terms of a permission
35 notice identical to this one.
37 Permission is granted to copy and distribute translations of this manual
38 into another language, under the above conditions for modified versions.
39 @end ifinfo
41 @finalout
42 @smallbook
44 @titlepage
45 @title GNU gprof
46 @subtitle The @sc{gnu} Profiler 
47 @author Jay Fenlason and Richard Stallman
49 @page
51 This manual describes the @sc{gnu} profiler, @code{gprof}, and how you
52 can use it to determine which parts of a program are taking most of the
53 execution time.  We assume that you know how to write, compile, and
54 execute programs.  @sc{gnu} @code{gprof} was written by Jay Fenlason.
56 @vskip 0pt plus 1filll
57 Copyright @copyright{} 1988, 92, 97, 98, 99, 2000 Free Software Foundation, Inc.
59 Permission is granted to make and distribute verbatim copies of
60 this manual provided the copyright notice and this permission notice
61 are preserved on all copies.
63 @ignore
64 Permission is granted to process this file through TeX and print the
65 results, provided the printed document carries copying permission
66 notice identical to this one except for the removal of this paragraph
67 (this paragraph not being relevant to the printed manual).
69 @end ignore
70 Permission is granted to copy and distribute modified versions of this
71 manual under the conditions for verbatim copying, provided that the entire
72 resulting derived work is distributed under the terms of a permission
73 notice identical to this one.
75 Permission is granted to copy and distribute translations of this manual
76 into another language, under the same conditions as for modified versions.
78 @end titlepage
80 @ifinfo
81 @node Top
82 @top Profiling a Program: Where Does It Spend Its Time?
84 This manual describes the @sc{gnu} profiler, @code{gprof}, and how you
85 can use it to determine which parts of a program are taking most of the
86 execution time.  We assume that you know how to write, compile, and
87 execute programs.  @sc{gnu} @code{gprof} was written by Jay Fenlason.
89 @menu
90 * Introduction::        What profiling means, and why it is useful.
92 * Compiling::           How to compile your program for profiling.
93 * Executing::           Executing your program to generate profile data
94 * Invoking::            How to run @code{gprof}, and its options
96 * Output::              Interpreting @code{gprof}'s output
98 * Inaccuracy::          Potential problems you should be aware of
99 * How do I?::           Answers to common questions
100 * Incompatibilities::   (between @sc{gnu} @code{gprof} and Unix @code{gprof}.)
101 * Details::             Details of how profiling is done
102 @end menu
103 @end ifinfo
105 @node Introduction
106 @chapter Introduction to Profiling
108 Profiling allows you to learn where your program spent its time and which
109 functions called which other functions while it was executing.  This
110 information can show you which pieces of your program are slower than you
111 expected, and might be candidates for rewriting to make your program
112 execute faster.  It can also tell you which functions are being called more
113 or less often than you expected.  This may help you spot bugs that had
114 otherwise been unnoticed.
116 Since the profiler uses information collected during the actual execution
117 of your program, it can be used on programs that are too large or too
118 complex to analyze by reading the source.  However, how your program is run
119 will affect the information that shows up in the profile data.  If you
120 don't use some feature of your program while it is being profiled, no
121 profile information will be generated for that feature.
123 Profiling has several steps:
125 @itemize @bullet
126 @item
127 You must compile and link your program with profiling enabled.
128 @xref{Compiling}.
130 @item
131 You must execute your program to generate a profile data file.
132 @xref{Executing}.
134 @item
135 You must run @code{gprof} to analyze the profile data.
136 @xref{Invoking}.
137 @end itemize
139 The next three chapters explain these steps in greater detail.
141 Several forms of output are available from the analysis.
143 The @dfn{flat profile} shows how much time your program spent in each function,
144 and how many times that function was called.  If you simply want to know
145 which functions burn most of the cycles, it is stated concisely here.
146 @xref{Flat Profile}.
148 The @dfn{call graph} shows, for each function, which functions called it, which
149 other functions it called, and how many times.  There is also an estimate
150 of how much time was spent in the subroutines of each function.  This can
151 suggest places where you might try to eliminate function calls that use a
152 lot of time.  @xref{Call Graph}.
154 The @dfn{annotated source} listing is a copy of the program's
155 source code, labeled with the number of times each line of the
156 program was executed.  @xref{Annotated Source}.
158 To better understand how profiling works, you may wish to read
159 a description of its implementation.
160 @xref{Implementation}.
162 @node Compiling
163 @chapter Compiling a Program for Profiling
165 The first step in generating profile information for your program is
166 to compile and link it with profiling enabled.
168 To compile a source file for profiling, specify the @samp{-pg} option when
169 you run the compiler.  (This is in addition to the options you normally
170 use.)
172 To link the program for profiling, if you use a compiler such as @code{cc}
173 to do the linking, simply specify @samp{-pg} in addition to your usual
174 options.  The same option, @samp{-pg}, alters either compilation or linking
175 to do what is necessary for profiling.  Here are examples:
177 @example
178 cc -g -c myprog.c utils.c -pg
179 cc -o myprog myprog.o utils.o -pg
180 @end example
182 The @samp{-pg} option also works with a command that both compiles and links:
184 @example
185 cc -o myprog myprog.c utils.c -g -pg
186 @end example
188 If you run the linker @code{ld} directly instead of through a compiler
189 such as @code{cc}, you may have to specify a profiling startup file
190 @file{gcrt0.o} as the first input file instead of the usual startup
191 file @file{crt0.o}.  In addition, you would probably want to
192 specify the profiling C library, @file{libc_p.a}, by writing
193 @samp{-lc_p} instead of the usual @samp{-lc}.  This is not absolutely
194 necessary, but doing this gives you number-of-calls information for
195 standard library functions such as @code{read} and @code{open}.  For
196 example:
198 @example
199 ld -o myprog /lib/gcrt0.o myprog.o utils.o -lc_p
200 @end example
202 If you compile only some of the modules of the program with @samp{-pg}, you
203 can still profile the program, but you won't get complete information about
204 the modules that were compiled without @samp{-pg}.  The only information
205 you get for the functions in those modules is the total time spent in them;
206 there is no record of how many times they were called, or from where.  This
207 will not affect the flat profile (except that the @code{calls} field for
208 the functions will be blank), but will greatly reduce the usefulness of the
209 call graph.
211 If you wish to perform line-by-line profiling,
212 you will also need to specify the @samp{-g} option,
213 instructing the compiler to insert debugging symbols into the program
214 that match program addresses to source code lines.
215 @xref{Line-by-line}.
217 In addition to the @samp{-pg} and @samp{-g} options,
218 you may also wish to specify the @samp{-a} option when compiling.
219 This will instrument
220 the program to perform basic-block counting.  As the program runs,
221 it will count how many times it executed each branch of each @samp{if}
222 statement, each iteration of each @samp{do} loop, etc.  This will
223 enable @code{gprof} to construct an annotated source code
224 listing showing how many times each line of code was executed.
226 @node Executing
227 @chapter Executing the Program
229 Once the program is compiled for profiling, you must run it in order to
230 generate the information that @code{gprof} needs.  Simply run the program
231 as usual, using the normal arguments, file names, etc.  The program should
232 run normally, producing the same output as usual.  It will, however, run
233 somewhat slower than normal because of the time spent collecting and the
234 writing the profile data.
236 The way you run the program---the arguments and input that you give
237 it---may have a dramatic effect on what the profile information shows.  The
238 profile data will describe the parts of the program that were activated for
239 the particular input you use.  For example, if the first command you give
240 to your program is to quit, the profile data will show the time used in
241 initialization and in cleanup, but not much else.
243 Your program will write the profile data into a file called @file{gmon.out}
244 just before exiting.  If there is already a file called @file{gmon.out},
245 its contents are overwritten.  There is currently no way to tell the
246 program to write the profile data under a different name, but you can rename
247 the file afterward if you are concerned that it may be overwritten.
249 In order to write the @file{gmon.out} file properly, your program must exit
250 normally: by returning from @code{main} or by calling @code{exit}.  Calling
251 the low-level function @code{_exit} does not write the profile data, and
252 neither does abnormal termination due to an unhandled signal.
254 The @file{gmon.out} file is written in the program's @emph{current working
255 directory} at the time it exits.  This means that if your program calls
256 @code{chdir}, the @file{gmon.out} file will be left in the last directory
257 your program @code{chdir}'d to.  If you don't have permission to write in
258 this directory, the file is not written, and you will get an error message.
260 Older versions of the @sc{gnu} profiling library may also write a file
261 called @file{bb.out}.  This file, if present, contains an human-readable
262 listing of the basic-block execution counts.  Unfortunately, the
263 appearance of a human-readable @file{bb.out} means the basic-block
264 counts didn't get written into @file{gmon.out}.
265 The Perl script @code{bbconv.pl}, included with the @code{gprof}
266 source distribution, will convert a @file{bb.out} file into
267 a format readable by @code{gprof}.
269 @node Invoking
270 @chapter @code{gprof} Command Summary
272 After you have a profile data file @file{gmon.out}, you can run @code{gprof}
273 to interpret the information in it.  The @code{gprof} program prints a
274 flat profile and a call graph on standard output.  Typically you would
275 redirect the output of @code{gprof} into a file with @samp{>}.
277 You run @code{gprof} like this:
279 @smallexample
280 gprof @var{options} [@var{executable-file} [@var{profile-data-files}@dots{}]] [> @var{outfile}]
281 @end smallexample
283 @noindent
284 Here square-brackets indicate optional arguments.
286 If you omit the executable file name, the file @file{a.out} is used.  If
287 you give no profile data file name, the file @file{gmon.out} is used.  If
288 any file is not in the proper format, or if the profile data file does not
289 appear to belong to the executable file, an error message is printed.
291 You can give more than one profile data file by entering all their names
292 after the executable file name; then the statistics in all the data files
293 are summed together.
295 The order of these options does not matter.
297 @menu
298 * Output Options::      Controlling @code{gprof}'s output style
299 * Analysis Options::    Controlling how @code{gprof} analyses its data
300 * Miscellaneous Options::
301 * Deprecated Options::  Options you no longer need to use, but which
302                             have been retained for compatibility
303 * Symspecs::            Specifying functions to include or exclude
304 @end menu
306 @node Output Options,Analysis Options,,Invoking
307 @section Output Options
309 These options specify which of several output formats
310 @code{gprof} should produce.
312 Many of these options take an optional @dfn{symspec} to specify
313 functions to be included or excluded.  These options can be
314 specified multiple times, with different symspecs, to include
315 or exclude sets of symbols.  @xref{Symspecs}.
317 Specifying any of these options overrides the default (@samp{-p -q}),
318 which prints a flat profile and call graph analysis
319 for all functions.
321 @table @code
323 @item -A[@var{symspec}]
324 @itemx --annotated-source[=@var{symspec}]
325 The @samp{-A} option causes @code{gprof} to print annotated source code.
326 If @var{symspec} is specified, print output only for matching symbols.
327 @xref{Annotated Source}.
329 @item -b
330 @itemx --brief
331 If the @samp{-b} option is given, @code{gprof} doesn't print the
332 verbose blurbs that try to explain the meaning of all of the fields in
333 the tables.  This is useful if you intend to print out the output, or
334 are tired of seeing the blurbs.
336 @item -C[@var{symspec}]
337 @itemx --exec-counts[=@var{symspec}]
338 The @samp{-C} option causes @code{gprof} to
339 print a tally of functions and the number of times each was called.
340 If @var{symspec} is specified, print tally only for matching symbols.
342 If the profile data file contains basic-block count records, specifying
343 the @samp{-l} option, along with @samp{-C}, will cause basic-block
344 execution counts to be tallied and displayed.
346 @item -i
347 @itemx --file-info
348 The @samp{-i} option causes @code{gprof} to display summary information
349 about the profile data file(s) and then exit.  The number of histogram,
350 call graph, and basic-block count records is displayed.
352 @item -I @var{dirs}
353 @itemx --directory-path=@var{dirs}
354 The @samp{-I} option specifies a list of search directories in
355 which to find source files.  Environment variable @var{GPROF_PATH}
356 can also be used to convey this information.
357 Used mostly for annotated source output.
359 @item -J[@var{symspec}]
360 @itemx --no-annotated-source[=@var{symspec}]
361 The @samp{-J} option causes @code{gprof} not to
362 print annotated source code.
363 If @var{symspec} is specified, @code{gprof} prints annotated source,
364 but excludes matching symbols.
366 @item -L
367 @itemx --print-path
368 Normally, source filenames are printed with the path
369 component suppressed.  The @samp{-L} option causes @code{gprof}
370 to print the full pathname of
371 source filenames, which is determined
372 from symbolic debugging information in the image file
373 and is relative to the directory in which the compiler
374 was invoked.
376 @item -p[@var{symspec}]
377 @itemx --flat-profile[=@var{symspec}]
378 The @samp{-p} option causes @code{gprof} to print a flat profile.
379 If @var{symspec} is specified, print flat profile only for matching symbols.
380 @xref{Flat Profile}.
382 @item -P[@var{symspec}]
383 @itemx --no-flat-profile[=@var{symspec}]
384 The @samp{-P} option causes @code{gprof} to suppress printing a flat profile.
385 If @var{symspec} is specified, @code{gprof} prints a flat profile,
386 but excludes matching symbols.
388 @item -q[@var{symspec}]
389 @itemx --graph[=@var{symspec}]
390 The @samp{-q} option causes @code{gprof} to print the call graph analysis.
391 If @var{symspec} is specified, print call graph only for matching symbols
392 and their children.
393 @xref{Call Graph}.
395 @item -Q[@var{symspec}]
396 @itemx --no-graph[=@var{symspec}]
397 The @samp{-Q} option causes @code{gprof} to suppress printing the
398 call graph.
399 If @var{symspec} is specified, @code{gprof} prints a call graph,
400 but excludes matching symbols.
402 @item -y
403 @itemx --separate-files
404 This option affects annotated source output only.
405 Normally, @code{gprof} prints annotated source files
406 to standard-output.  If this option is specified,
407 annotated source for a file named @file{path/@var{filename}}
408 is generated in the file @file{@var{filename}-ann}.  If the underlying
409 filesystem would truncate @file{@var{filename}-ann} so that it
410 overwrites the original @file{@var{filename}}, @code{gprof} generates
411 annotated source in the file @file{@var{filename}.ann} instead (if the
412 original file name has an extension, that extension is @emph{replaced}
413 with @file{.ann}).
415 @item -Z[@var{symspec}]
416 @itemx --no-exec-counts[=@var{symspec}]
417 The @samp{-Z} option causes @code{gprof} not to
418 print a tally of functions and the number of times each was called.
419 If @var{symspec} is specified, print tally, but exclude matching symbols.
421 @item --function-ordering
422 The @samp{--function-ordering} option causes @code{gprof} to print a
423 suggested function ordering for the program based on profiling data.
424 This option suggests an ordering which may improve paging, tlb and
425 cache behavior for the program on systems which support arbitrary
426 ordering of functions in an executable.
428 The exact details of how to force the linker to place functions
429 in a particular order is system dependent and out of the scope of this
430 manual.
432 @item --file-ordering @var{map_file}
433 The @samp{--file-ordering} option causes @code{gprof} to print a
434 suggested .o link line ordering for the program based on profiling data.
435 This option suggests an ordering which may improve paging, tlb and
436 cache behavior for the program on systems which do not support arbitrary
437 ordering of functions in an executable.
439 Use of the @samp{-a} argument is highly recommended with this option.
441 The @var{map_file} argument is a pathname to a file which provides
442 function name to object file mappings.  The format of the file is similar to
443 the output of the program @code{nm}.
445 @smallexample
446 @group
447 c-parse.o:00000000 T yyparse
448 c-parse.o:00000004 C yyerrflag
449 c-lang.o:00000000 T maybe_objc_method_name
450 c-lang.o:00000000 T print_lang_statistics
451 c-lang.o:00000000 T recognize_objc_keyword
452 c-decl.o:00000000 T print_lang_identifier
453 c-decl.o:00000000 T print_lang_type
454 @dots{}
456 @end group
457 @end smallexample
459 To create a @var{map_file} with @sc{gnu} @code{nm}, type a command like
460 @kbd{nm --extern-only --defined-only -v --print-file-name program-name}.
462 @item -T
463 @itemx --traditional
464 The @samp{-T} option causes @code{gprof} to print its output in
465 ``traditional'' BSD style.
467 @item -w @var{width}
468 @itemx --width=@var{width}
469 Sets width of output lines to @var{width}.
470 Currently only used when printing the function index at the bottom
471 of the call graph.
473 @item -x
474 @itemx --all-lines
475 This option affects annotated source output only.
476 By default, only the lines at the beginning of a basic-block
477 are annotated.  If this option is specified, every line in
478 a basic-block is annotated by repeating the annotation for the
479 first line.  This behavior is similar to @code{tcov}'s @samp{-a}.
481 @item --demangle
482 @itemx --no-demangle
483 These options control whether C++ symbol names should be demangled when
484 printing output.  The default is to demangle symbols.  The
485 @code{--no-demangle} option may be used to turn off demangling.
487 @end table
489 @node Analysis Options,Miscellaneous Options,Output Options,Invoking
490 @section Analysis Options
492 @table @code
494 @item -a
495 @itemx --no-static
496 The @samp{-a} option causes @code{gprof} to suppress the printing of
497 statically declared (private) functions.  (These are functions whose
498 names are not listed as global, and which are not visible outside the
499 file/function/block where they were defined.)  Time spent in these
500 functions, calls to/from them, etc, will all be attributed to the
501 function that was loaded directly before it in the executable file.
502 @c This is compatible with Unix @code{gprof}, but a bad idea.  
503 This option affects both the flat profile and the call graph.
505 @item -c
506 @itemx --static-call-graph
507 The @samp{-c} option causes the call graph of the program to be
508 augmented by a heuristic which examines the text space of the object
509 file and identifies function calls in the binary machine code.
510 Since normal call graph records are only generated when functions are
511 entered, this option identifies children that could have been called,
512 but never were.  Calls to functions that were not compiled with
513 profiling enabled are also identified, but only if symbol table
514 entries are present for them.
515 Calls to dynamic library routines are typically @emph{not} found
516 by this option.
517 Parents or children identified via this heuristic
518 are indicated in the call graph with call counts of @samp{0}.
520 @item -D
521 @itemx --ignore-non-functions
522 The @samp{-D} option causes @code{gprof} to ignore symbols which
523 are not known to be functions.  This option will give more accurate
524 profile data on systems where it is supported (Solaris and HPUX for
525 example).
527 @item -k @var{from}/@var{to}
528 The @samp{-k} option allows you to delete from the call graph any arcs from
529 symbols matching symspec @var{from} to those matching symspec @var{to}.
531 @item -l
532 @itemx --line
533 The @samp{-l} option enables line-by-line profiling, which causes
534 histogram hits to be charged to individual source code lines,
535 instead of functions.
536 If the program was compiled with basic-block counting enabled,
537 this option will also identify how many times each line of
538 code was executed.
539 While line-by-line profiling can help isolate where in a large function
540 a program is spending its time, it also significantly increases
541 the running time of @code{gprof}, and magnifies statistical
542 inaccuracies.
543 @xref{Sampling Error}.
545 @item -m @var{num}
546 @itemx --min-count=@var{num}
547 This option affects execution count output only.
548 Symbols that are executed less than @var{num} times are suppressed.
550 @item -n[@var{symspec}]
551 @itemx --time[=@var{symspec}]
552 The @samp{-n} option causes @code{gprof}, in its call graph analysis,
553 to only propagate times for symbols matching @var{symspec}.
555 @item -N[@var{symspec}]
556 @itemx --no-time[=@var{symspec}]
557 The @samp{-n} option causes @code{gprof}, in its call graph analysis,
558 not to propagate times for symbols matching @var{symspec}.
560 @item -z
561 @itemx --display-unused-functions
562 If you give the @samp{-z} option, @code{gprof} will mention all
563 functions in the flat profile, even those that were never called, and
564 that had no time spent in them.  This is useful in conjunction with the
565 @samp{-c} option for discovering which routines were never called.
567 @end table
569 @node Miscellaneous Options,Deprecated Options,Analysis Options,Invoking
570 @section Miscellaneous Options
572 @table @code
574 @item -d[@var{num}]
575 @itemx --debug[=@var{num}]
576 The @samp{-d @var{num}} option specifies debugging options.
577 If @var{num} is not specified, enable all debugging.
578 @xref{Debugging}.
580 @item -O@var{name}
581 @itemx --file-format=@var{name}
582 Selects the format of the profile data files.  Recognized formats are
583 @samp{auto} (the default), @samp{bsd}, @samp{4.4bsd}, @samp{magic}, and
584 @samp{prof} (not yet supported).
586 @item -s
587 @itemx --sum
588 The @samp{-s} option causes @code{gprof} to summarize the information
589 in the profile data files it read in, and write out a profile data
590 file called @file{gmon.sum}, which contains all the information from
591 the profile data files that @code{gprof} read in.  The file @file{gmon.sum}
592 may be one of the specified input files; the effect of this is to
593 merge the data in the other input files into @file{gmon.sum}.
595 Eventually you can run @code{gprof} again without @samp{-s} to analyze the
596 cumulative data in the file @file{gmon.sum}.
598 @item -v
599 @itemx --version
600 The @samp{-v} flag causes @code{gprof} to print the current version
601 number, and then exit.
603 @end table
605 @node Deprecated Options,Symspecs,Miscellaneous Options,Invoking
606 @section Deprecated Options
608 @table @code
610 These options have been replaced with newer versions that use symspecs.
612 @item -e @var{function_name}
613 The @samp{-e @var{function}} option tells @code{gprof} to not print
614 information about the function @var{function_name} (and its
615 children@dots{}) in the call graph.  The function will still be listed
616 as a child of any functions that call it, but its index number will be
617 shown as @samp{[not printed]}.  More than one @samp{-e} option may be
618 given; only one @var{function_name} may be indicated with each @samp{-e}
619 option. 
621 @item -E @var{function_name}
622 The @code{-E @var{function}} option works like the @code{-e} option, but
623 time spent in the function (and children who were not called from
624 anywhere else), will not be used to compute the percentages-of-time for
625 the call graph.  More than one @samp{-E} option may be given; only one
626 @var{function_name} may be indicated with each @samp{-E} option.
628 @item -f @var{function_name}
629 The @samp{-f @var{function}} option causes @code{gprof} to limit the
630 call graph to the function @var{function_name} and its children (and
631 their children@dots{}).  More than one @samp{-f} option may be given;
632 only one @var{function_name} may be indicated with each @samp{-f}
633 option.  
635 @item -F @var{function_name}
636 The @samp{-F @var{function}} option works like the @code{-f} option, but
637 only time spent in the function and its children (and their
638 children@dots{}) will be used to determine total-time and
639 percentages-of-time for the call graph.  More than one @samp{-F} option
640 may be given; only one @var{function_name} may be indicated with each
641 @samp{-F} option.  The @samp{-F} option overrides the @samp{-E} option.
643 @end table
645 Note that only one function can be specified with each @code{-e},
646 @code{-E}, @code{-f} or @code{-F} option.  To specify more than one
647 function, use multiple options.  For example, this command:
649 @example
650 gprof -e boring -f foo -f bar myprogram > gprof.output
651 @end example
653 @noindent
654 lists in the call graph all functions that were reached from either
655 @code{foo} or @code{bar} and were not reachable from @code{boring}.
657 @node Symspecs,,Deprecated Options,Invoking
658 @section Symspecs
660 Many of the output options allow functions to be included or excluded
661 using @dfn{symspecs} (symbol specifications), which observe the
662 following syntax:
664 @example
665   filename_containing_a_dot
666 | funcname_not_containing_a_dot
667 | linenumber
668 | ( [ any_filename ] `:' ( any_funcname | linenumber ) )
669 @end example
671 Here are some sample symspecs:
673 @table @samp
674 @item main.c
675 Selects everything in file @file{main.c}---the
676 dot in the string tells @code{gprof} to interpret
677 the string as a filename, rather than as
678 a function name.  To select a file whose
679 name does not contain a dot, a trailing colon
680 should be specified.  For example, @samp{odd:} is
681 interpreted as the file named @file{odd}.
683 @item main
684 Selects all functions named @samp{main}.
686 Note that there may be multiple instances of the same function name
687 because some of the definitions may be local (i.e., static).  Unless a
688 function name is unique in a program, you must use the colon notation
689 explained below to specify a function from a specific source file.
691 Sometimes, function names contain dots.  In such cases, it is necessary
692 to add a leading colon to the name.  For example, @samp{:.mul} selects
693 function @samp{.mul}.
695 In some object file formats, symbols have a leading underscore.
696 @code{gprof} will normally not print these underscores.  When you name a
697 symbol in a symspec, you should type it exactly as @code{gprof} prints
698 it in its output.  For example, if the compiler produces a symbol
699 @samp{_main} from your @code{main} function, @code{gprof} still prints
700 it as @samp{main} in its output, so you should use @samp{main} in
701 symspecs.
703 @item main.c:main
704 Selects function @samp{main} in file @file{main.c}.
706 @item main.c:134
707 Selects line 134 in file @file{main.c}.
708 @end table
710 @node Output
711 @chapter Interpreting @code{gprof}'s Output
713 @code{gprof} can produce several different output styles, the
714 most important of which are described below.  The simplest output
715 styles (file information, execution count, and function and file ordering)
716 are not described here, but are documented with the respective options
717 that trigger them.
718 @xref{Output Options}.
720 @menu
721 * Flat Profile::        The flat profile shows how much time was spent
722                             executing directly in each function.
723 * Call Graph::          The call graph shows which functions called which
724                             others, and how much time each function used
725                             when its subroutine calls are included.
726 * Line-by-line::        @code{gprof} can analyze individual source code lines
727 * Annotated Source::    The annotated source listing displays source code
728                             labeled with execution counts
729 @end menu
732 @node Flat Profile,Call Graph,,Output
733 @section The Flat Profile
734 @cindex flat profile
736 The @dfn{flat profile} shows the total amount of time your program
737 spent executing each function.  Unless the @samp{-z} option is given,
738 functions with no apparent time spent in them, and no apparent calls
739 to them, are not mentioned.  Note that if a function was not compiled
740 for profiling, and didn't run long enough to show up on the program
741 counter histogram, it will be indistinguishable from a function that
742 was never called.
744 This is part of a flat profile for a small program:
746 @smallexample
747 @group
748 Flat profile:
750 Each sample counts as 0.01 seconds.
751   %   cumulative   self              self     total           
752  time   seconds   seconds    calls  ms/call  ms/call  name    
753  33.34      0.02     0.02     7208     0.00     0.00  open
754  16.67      0.03     0.01      244     0.04     0.12  offtime
755  16.67      0.04     0.01        8     1.25     1.25  memccpy
756  16.67      0.05     0.01        7     1.43     1.43  write
757  16.67      0.06     0.01                             mcount
758   0.00      0.06     0.00      236     0.00     0.00  tzset
759   0.00      0.06     0.00      192     0.00     0.00  tolower
760   0.00      0.06     0.00       47     0.00     0.00  strlen
761   0.00      0.06     0.00       45     0.00     0.00  strchr
762   0.00      0.06     0.00        1     0.00    50.00  main
763   0.00      0.06     0.00        1     0.00     0.00  memcpy
764   0.00      0.06     0.00        1     0.00    10.11  print
765   0.00      0.06     0.00        1     0.00     0.00  profil
766   0.00      0.06     0.00        1     0.00    50.00  report
767 @dots{}
768 @end group
769 @end smallexample
771 @noindent
772 The functions are sorted by first by decreasing run-time spent in them,
773 then by decreasing number of calls, then alphabetically by name.  The
774 functions @samp{mcount} and @samp{profil} are part of the profiling
775 apparatus and appear in every flat profile; their time gives a measure of
776 the amount of overhead due to profiling.
778 Just before the column headers, a statement appears indicating
779 how much time each sample counted as.
780 This @dfn{sampling period} estimates the margin of error in each of the time
781 figures.  A time figure that is not much larger than this is not
782 reliable.  In this example, each sample counted as 0.01 seconds,
783 suggesting a 100 Hz sampling rate.
784 The program's total execution time was 0.06
785 seconds, as indicated by the @samp{cumulative seconds} field.  Since
786 each sample counted for 0.01 seconds, this means only six samples
787 were taken during the run.  Two of the samples occurred while the
788 program was in the @samp{open} function, as indicated by the
789 @samp{self seconds} field.  Each of the other four samples
790 occurred one each in @samp{offtime}, @samp{memccpy}, @samp{write},
791 and @samp{mcount}.
792 Since only six samples were taken, none of these values can
793 be regarded as particularly reliable.
794 In another run,
795 the @samp{self seconds} field for
796 @samp{mcount} might well be @samp{0.00} or @samp{0.02}.
797 @xref{Sampling Error}, for a complete discussion.
799 The remaining functions in the listing (those whose
800 @samp{self seconds} field is @samp{0.00}) didn't appear
801 in the histogram samples at all.  However, the call graph
802 indicated that they were called, so therefore they are listed,
803 sorted in decreasing order by the @samp{calls} field.
804 Clearly some time was spent executing these functions,
805 but the paucity of histogram samples prevents any
806 determination of how much time each took.
808 Here is what the fields in each line mean:
810 @table @code
811 @item % time
812 This is the percentage of the total execution time your program spent
813 in this function.  These should all add up to 100%.
815 @item cumulative seconds
816 This is the cumulative total number of seconds the computer spent
817 executing this functions, plus the time spent in all the functions
818 above this one in this table.
820 @item self seconds
821 This is the number of seconds accounted for by this function alone.
822 The flat profile listing is sorted first by this number.
824 @item calls
825 This is the total number of times the function was called.  If the
826 function was never called, or the number of times it was called cannot
827 be determined (probably because the function was not compiled with
828 profiling enabled), the @dfn{calls} field is blank.
830 @item self ms/call
831 This represents the average number of milliseconds spent in this
832 function per call, if this function is profiled.  Otherwise, this field
833 is blank for this function.
835 @item total ms/call
836 This represents the average number of milliseconds spent in this
837 function and its descendants per call, if this function is profiled.
838 Otherwise, this field is blank for this function.
839 This is the only field in the flat profile that uses call graph analysis.
841 @item name
842 This is the name of the function.   The flat profile is sorted by this
843 field alphabetically after the @dfn{self seconds} and @dfn{calls}
844 fields are sorted.
845 @end table
847 @node Call Graph,Line-by-line,Flat Profile,Output
848 @section The Call Graph
849 @cindex call graph
851 The @dfn{call graph} shows how much time was spent in each function
852 and its children.  From this information, you can find functions that,
853 while they themselves may not have used much time, called other
854 functions that did use unusual amounts of time.
856 Here is a sample call from a small program.  This call came from the
857 same @code{gprof} run as the flat profile example in the previous
858 chapter.
860 @smallexample
861 @group
862 granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds
864 index % time    self  children    called     name
865                                                  <spontaneous>
866 [1]    100.0    0.00    0.05                 start [1]
867                 0.00    0.05       1/1           main [2]
868                 0.00    0.00       1/2           on_exit [28]
869                 0.00    0.00       1/1           exit [59]
870 -----------------------------------------------
871                 0.00    0.05       1/1           start [1]
872 [2]    100.0    0.00    0.05       1         main [2]
873                 0.00    0.05       1/1           report [3]
874 -----------------------------------------------
875                 0.00    0.05       1/1           main [2]
876 [3]    100.0    0.00    0.05       1         report [3]
877                 0.00    0.03       8/8           timelocal [6]
878                 0.00    0.01       1/1           print [9]
879                 0.00    0.01       9/9           fgets [12]
880                 0.00    0.00      12/34          strncmp <cycle 1> [40]
881                 0.00    0.00       8/8           lookup [20]
882                 0.00    0.00       1/1           fopen [21]
883                 0.00    0.00       8/8           chewtime [24]
884                 0.00    0.00       8/16          skipspace [44]
885 -----------------------------------------------
886 [4]     59.8    0.01        0.02       8+472     <cycle 2 as a whole>   [4]
887                 0.01        0.02     244+260         offtime <cycle 2> [7]
888                 0.00        0.00     236+1           tzset <cycle 2> [26]
889 -----------------------------------------------
890 @end group
891 @end smallexample
893 The lines full of dashes divide this table into @dfn{entries}, one for each
894 function.  Each entry has one or more lines.
896 In each entry, the primary line is the one that starts with an index number
897 in square brackets.  The end of this line says which function the entry is
898 for.  The preceding lines in the entry describe the callers of this
899 function and the following lines describe its subroutines (also called
900 @dfn{children} when we speak of the call graph).
902 The entries are sorted by time spent in the function and its subroutines.
904 The internal profiling function @code{mcount} (@pxref{Flat Profile})
905 is never mentioned in the call graph.
907 @menu
908 * Primary::       Details of the primary line's contents.
909 * Callers::       Details of caller-lines' contents.
910 * Subroutines::   Details of subroutine-lines' contents.
911 * Cycles::        When there are cycles of recursion,
912                    such as @code{a} calls @code{b} calls @code{a}@dots{}
913 @end menu
915 @node Primary
916 @subsection The Primary Line
918 The @dfn{primary line} in a call graph entry is the line that
919 describes the function which the entry is about and gives the overall
920 statistics for this function.
922 For reference, we repeat the primary line from the entry for function
923 @code{report} in our main example, together with the heading line that
924 shows the names of the fields:
926 @smallexample
927 @group
928 index  % time    self  children called     name
929 @dots{}
930 [3]    100.0    0.00    0.05       1         report [3]
931 @end group
932 @end smallexample
934 Here is what the fields in the primary line mean:
936 @table @code
937 @item index
938 Entries are numbered with consecutive integers.  Each function
939 therefore has an index number, which appears at the beginning of its
940 primary line.
942 Each cross-reference to a function, as a caller or subroutine of
943 another, gives its index number as well as its name.  The index number
944 guides you if you wish to look for the entry for that function.
946 @item % time
947 This is the percentage of the total time that was spent in this
948 function, including time spent in subroutines called from this
949 function.
951 The time spent in this function is counted again for the callers of
952 this function.  Therefore, adding up these percentages is meaningless.
954 @item self
955 This is the total amount of time spent in this function.  This
956 should be identical to the number printed in the @code{seconds} field
957 for this function in the flat profile.
959 @item children
960 This is the total amount of time spent in the subroutine calls made by
961 this function.  This should be equal to the sum of all the @code{self}
962 and @code{children} entries of the children listed directly below this
963 function.
965 @item called
966 This is the number of times the function was called.
968 If the function called itself recursively, there are two numbers,
969 separated by a @samp{+}.  The first number counts non-recursive calls,
970 and the second counts recursive calls.
972 In the example above, the function @code{report} was called once from
973 @code{main}.
975 @item name
976 This is the name of the current function.  The index number is
977 repeated after it.
979 If the function is part of a cycle of recursion, the cycle number is
980 printed between the function's name and the index number
981 (@pxref{Cycles}).  For example, if function @code{gnurr} is part of
982 cycle number one, and has index number twelve, its primary line would
983 be end like this:
985 @example
986 gnurr <cycle 1> [12]
987 @end example
988 @end table
990 @node Callers, Subroutines, Primary, Call Graph
991 @subsection Lines for a Function's Callers
993 A function's entry has a line for each function it was called by.
994 These lines' fields correspond to the fields of the primary line, but
995 their meanings are different because of the difference in context.
997 For reference, we repeat two lines from the entry for the function
998 @code{report}, the primary line and one caller-line preceding it, together
999 with the heading line that shows the names of the fields:
1001 @smallexample
1002 index  % time    self  children called     name
1003 @dots{}
1004                 0.00    0.05       1/1           main [2]
1005 [3]    100.0    0.00    0.05       1         report [3]
1006 @end smallexample
1008 Here are the meanings of the fields in the caller-line for @code{report}
1009 called from @code{main}:
1011 @table @code
1012 @item self
1013 An estimate of the amount of time spent in @code{report} itself when it was
1014 called from @code{main}.
1016 @item children
1017 An estimate of the amount of time spent in subroutines of @code{report}
1018 when @code{report} was called from @code{main}.
1020 The sum of the @code{self} and @code{children} fields is an estimate
1021 of the amount of time spent within calls to @code{report} from @code{main}.
1023 @item called
1024 Two numbers: the number of times @code{report} was called from @code{main},
1025 followed by the total number of non-recursive calls to @code{report} from
1026 all its callers.
1028 @item name and index number
1029 The name of the caller of @code{report} to which this line applies,
1030 followed by the caller's index number.
1032 Not all functions have entries in the call graph; some
1033 options to @code{gprof} request the omission of certain functions.
1034 When a caller has no entry of its own, it still has caller-lines
1035 in the entries of the functions it calls.
1037 If the caller is part of a recursion cycle, the cycle number is
1038 printed between the name and the index number.
1039 @end table
1041 If the identity of the callers of a function cannot be determined, a
1042 dummy caller-line is printed which has @samp{<spontaneous>} as the
1043 ``caller's name'' and all other fields blank.  This can happen for
1044 signal handlers.
1045 @c What if some calls have determinable callers' names but not all?
1046 @c FIXME - still relevant?
1048 @node Subroutines, Cycles, Callers, Call Graph
1049 @subsection Lines for a Function's Subroutines
1051 A function's entry has a line for each of its subroutines---in other
1052 words, a line for each other function that it called.  These lines'
1053 fields correspond to the fields of the primary line, but their meanings
1054 are different because of the difference in context.
1056 For reference, we repeat two lines from the entry for the function
1057 @code{main}, the primary line and a line for a subroutine, together
1058 with the heading line that shows the names of the fields:
1060 @smallexample
1061 index  % time    self  children called     name
1062 @dots{}
1063 [2]    100.0    0.00    0.05       1         main [2]
1064                 0.00    0.05       1/1           report [3]
1065 @end smallexample
1067 Here are the meanings of the fields in the subroutine-line for @code{main}
1068 calling @code{report}:
1070 @table @code
1071 @item self
1072 An estimate of the amount of time spent directly within @code{report}
1073 when @code{report} was called from @code{main}.
1075 @item children
1076 An estimate of the amount of time spent in subroutines of @code{report}
1077 when @code{report} was called from @code{main}.
1079 The sum of the @code{self} and @code{children} fields is an estimate
1080 of the total time spent in calls to @code{report} from @code{main}.
1082 @item called
1083 Two numbers, the number of calls to @code{report} from @code{main}
1084 followed by the total number of non-recursive calls to @code{report}.
1085 This ratio is used to determine how much of @code{report}'s @code{self}
1086 and @code{children} time gets credited to @code{main}.
1087 @xref{Assumptions}.
1089 @item name
1090 The name of the subroutine of @code{main} to which this line applies,
1091 followed by the subroutine's index number.
1093 If the caller is part of a recursion cycle, the cycle number is
1094 printed between the name and the index number.
1095 @end table
1097 @node Cycles,, Subroutines, Call Graph
1098 @subsection How Mutually Recursive Functions Are Described
1099 @cindex cycle
1100 @cindex recursion cycle
1102 The graph may be complicated by the presence of @dfn{cycles of
1103 recursion} in the call graph.  A cycle exists if a function calls
1104 another function that (directly or indirectly) calls (or appears to
1105 call) the original function.  For example: if @code{a} calls @code{b},
1106 and @code{b} calls @code{a}, then @code{a} and @code{b} form a cycle.
1108 Whenever there are call paths both ways between a pair of functions, they
1109 belong to the same cycle.  If @code{a} and @code{b} call each other and
1110 @code{b} and @code{c} call each other, all three make one cycle.  Note that
1111 even if @code{b} only calls @code{a} if it was not called from @code{a},
1112 @code{gprof} cannot determine this, so @code{a} and @code{b} are still
1113 considered a cycle.
1115 The cycles are numbered with consecutive integers.  When a function
1116 belongs to a cycle, each time the function name appears in the call graph
1117 it is followed by @samp{<cycle @var{number}>}.
1119 The reason cycles matter is that they make the time values in the call
1120 graph paradoxical.  The ``time spent in children'' of @code{a} should
1121 include the time spent in its subroutine @code{b} and in @code{b}'s
1122 subroutines---but one of @code{b}'s subroutines is @code{a}!  How much of
1123 @code{a}'s time should be included in the children of @code{a}, when
1124 @code{a} is indirectly recursive?
1126 The way @code{gprof} resolves this paradox is by creating a single entry
1127 for the cycle as a whole.  The primary line of this entry describes the
1128 total time spent directly in the functions of the cycle.  The
1129 ``subroutines'' of the cycle are the individual functions of the cycle, and
1130 all other functions that were called directly by them.  The ``callers'' of
1131 the cycle are the functions, outside the cycle, that called functions in
1132 the cycle.
1134 Here is an example portion of a call graph which shows a cycle containing
1135 functions @code{a} and @code{b}.  The cycle was entered by a call to
1136 @code{a} from @code{main}; both @code{a} and @code{b} called @code{c}.
1138 @smallexample
1139 index  % time    self  children called     name
1140 ----------------------------------------
1141                  1.77        0    1/1        main [2]
1142 [3]     91.71    1.77        0    1+5    <cycle 1 as a whole> [3]
1143                  1.02        0    3          b <cycle 1> [4]
1144                  0.75        0    2          a <cycle 1> [5]
1145 ----------------------------------------
1146                                   3          a <cycle 1> [5]
1147 [4]     52.85    1.02        0    0      b <cycle 1> [4]
1148                                   2          a <cycle 1> [5]
1149                     0        0    3/6        c [6]
1150 ----------------------------------------
1151                  1.77        0    1/1        main [2]
1152                                   2          b <cycle 1> [4]
1153 [5]     38.86    0.75        0    1      a <cycle 1> [5]
1154                                   3          b <cycle 1> [4]
1155                     0        0    3/6        c [6]
1156 ----------------------------------------
1157 @end smallexample
1159 @noindent
1160 (The entire call graph for this program contains in addition an entry for
1161 @code{main}, which calls @code{a}, and an entry for @code{c}, with callers
1162 @code{a} and @code{b}.)
1164 @smallexample
1165 index  % time    self  children called     name
1166                                              <spontaneous>
1167 [1]    100.00       0     1.93    0      start [1]
1168                  0.16     1.77    1/1        main [2]
1169 ----------------------------------------
1170                  0.16     1.77    1/1        start [1]
1171 [2]    100.00    0.16     1.77    1      main [2]
1172                  1.77        0    1/1        a <cycle 1> [5]
1173 ----------------------------------------
1174                  1.77        0    1/1        main [2]
1175 [3]     91.71    1.77        0    1+5    <cycle 1 as a whole> [3]
1176                  1.02        0    3          b <cycle 1> [4]
1177                  0.75        0    2          a <cycle 1> [5]
1178                     0        0    6/6        c [6]
1179 ----------------------------------------
1180                                   3          a <cycle 1> [5]
1181 [4]     52.85    1.02        0    0      b <cycle 1> [4]
1182                                   2          a <cycle 1> [5]
1183                     0        0    3/6        c [6]
1184 ----------------------------------------
1185                  1.77        0    1/1        main [2]
1186                                   2          b <cycle 1> [4]
1187 [5]     38.86    0.75        0    1      a <cycle 1> [5]
1188                                   3          b <cycle 1> [4]
1189                     0        0    3/6        c [6]
1190 ----------------------------------------
1191                     0        0    3/6        b <cycle 1> [4]
1192                     0        0    3/6        a <cycle 1> [5]
1193 [6]      0.00       0        0    6      c [6]
1194 ----------------------------------------
1195 @end smallexample
1197 The @code{self} field of the cycle's primary line is the total time
1198 spent in all the functions of the cycle.  It equals the sum of the
1199 @code{self} fields for the individual functions in the cycle, found
1200 in the entry in the subroutine lines for these functions.
1202 The @code{children} fields of the cycle's primary line and subroutine lines
1203 count only subroutines outside the cycle.  Even though @code{a} calls
1204 @code{b}, the time spent in those calls to @code{b} is not counted in
1205 @code{a}'s @code{children} time.  Thus, we do not encounter the problem of
1206 what to do when the time in those calls to @code{b} includes indirect
1207 recursive calls back to @code{a}.
1209 The @code{children} field of a caller-line in the cycle's entry estimates
1210 the amount of time spent @emph{in the whole cycle}, and its other
1211 subroutines, on the times when that caller called a function in the cycle.
1213 The @code{calls} field in the primary line for the cycle has two numbers:
1214 first, the number of times functions in the cycle were called by functions
1215 outside the cycle; second, the number of times they were called by
1216 functions in the cycle (including times when a function in the cycle calls
1217 itself).  This is a generalization of the usual split into non-recursive and
1218 recursive calls.
1220 The @code{calls} field of a subroutine-line for a cycle member in the
1221 cycle's entry says how many time that function was called from functions in
1222 the cycle.  The total of all these is the second number in the primary line's
1223 @code{calls} field.
1225 In the individual entry for a function in a cycle, the other functions in
1226 the same cycle can appear as subroutines and as callers.  These lines show
1227 how many times each function in the cycle called or was called from each other
1228 function in the cycle.  The @code{self} and @code{children} fields in these
1229 lines are blank because of the difficulty of defining meanings for them
1230 when recursion is going on.
1232 @node Line-by-line,Annotated Source,Call Graph,Output
1233 @section Line-by-line Profiling
1235 @code{gprof}'s @samp{-l} option causes the program to perform
1236 @dfn{line-by-line} profiling.  In this mode, histogram
1237 samples are assigned not to functions, but to individual
1238 lines of source code.  The program usually must be compiled
1239 with a @samp{-g} option, in addition to @samp{-pg}, in order
1240 to generate debugging symbols for tracking source code lines.
1242 The flat profile is the most useful output table
1243 in line-by-line mode.
1244 The call graph isn't as useful as normal, since
1245 the current version of @code{gprof} does not propagate
1246 call graph arcs from source code lines to the enclosing function.
1247 The call graph does, however, show each line of code
1248 that called each function, along with a count.
1250 Here is a section of @code{gprof}'s output, without line-by-line profiling.
1251 Note that @code{ct_init} accounted for four histogram hits, and
1252 13327 calls to @code{init_block}.
1254 @smallexample
1255 Flat profile:
1257 Each sample counts as 0.01 seconds.
1258   %   cumulative   self              self     total           
1259  time   seconds   seconds    calls  us/call  us/call  name    
1260  30.77      0.13     0.04     6335     6.31     6.31  ct_init
1263                      Call graph (explanation follows)
1266 granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds
1268 index % time    self  children    called     name
1270                 0.00    0.00       1/13496       name_too_long
1271                 0.00    0.00      40/13496       deflate
1272                 0.00    0.00     128/13496       deflate_fast
1273                 0.00    0.00   13327/13496       ct_init
1274 [7]      0.0    0.00    0.00   13496         init_block
1276 @end smallexample
1278 Now let's look at some of @code{gprof}'s output from the same program run,
1279 this time with line-by-line profiling enabled.  Note that @code{ct_init}'s
1280 four histogram hits are broken down into four lines of source code - one hit
1281 occurred on each of lines 349, 351, 382 and 385.  In the call graph,
1282 note how
1283 @code{ct_init}'s 13327 calls to @code{init_block} are broken down
1284 into one call from line 396, 3071 calls from line 384, 3730 calls
1285 from line 385, and 6525 calls from 387.
1287 @smallexample
1288 Flat profile:
1290 Each sample counts as 0.01 seconds.
1291   %   cumulative   self                    
1292  time   seconds   seconds    calls  name    
1293   7.69      0.10     0.01           ct_init (trees.c:349)
1294   7.69      0.11     0.01           ct_init (trees.c:351)
1295   7.69      0.12     0.01           ct_init (trees.c:382)
1296   7.69      0.13     0.01           ct_init (trees.c:385)
1299                      Call graph (explanation follows)
1302 granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds
1304   % time    self  children    called     name
1306             0.00    0.00       1/13496       name_too_long (gzip.c:1440)
1307             0.00    0.00       1/13496       deflate (deflate.c:763)
1308             0.00    0.00       1/13496       ct_init (trees.c:396)
1309             0.00    0.00       2/13496       deflate (deflate.c:727)
1310             0.00    0.00       4/13496       deflate (deflate.c:686)
1311             0.00    0.00       5/13496       deflate (deflate.c:675)
1312             0.00    0.00      12/13496       deflate (deflate.c:679)
1313             0.00    0.00      16/13496       deflate (deflate.c:730)
1314             0.00    0.00     128/13496       deflate_fast (deflate.c:654)
1315             0.00    0.00    3071/13496       ct_init (trees.c:384)
1316             0.00    0.00    3730/13496       ct_init (trees.c:385)
1317             0.00    0.00    6525/13496       ct_init (trees.c:387)
1318 [6]  0.0    0.00    0.00   13496         init_block (trees.c:408)
1320 @end smallexample
1323 @node Annotated Source,,Line-by-line,Output
1324 @section The Annotated Source Listing
1326 @code{gprof}'s @samp{-A} option triggers an annotated source listing,
1327 which lists the program's source code, each function labeled with the
1328 number of times it was called.  You may also need to specify the
1329 @samp{-I} option, if @code{gprof} can't find the source code files.
1331 Compiling with @samp{gcc @dots{} -g -pg -a} augments your program
1332 with basic-block counting code, in addition to function counting code.
1333 This enables @code{gprof} to determine how many times each line
1334 of code was executed.
1335 For example, consider the following function, taken from gzip,
1336 with line numbers added:
1338 @smallexample
1339  1 ulg updcrc(s, n)
1340  2     uch *s;
1341  3     unsigned n;
1342  4 @{
1343  5     register ulg c;
1345  7     static ulg crc = (ulg)0xffffffffL;
1347  9     if (s == NULL) @{
1348 10         c = 0xffffffffL;
1349 11     @} else @{
1350 12         c = crc;
1351 13         if (n) do @{
1352 14             c = crc_32_tab[...];
1353 15         @} while (--n);
1354 16     @}
1355 17     crc = c;
1356 18     return c ^ 0xffffffffL;
1357 19 @}
1359 @end smallexample
1361 @code{updcrc} has at least five basic-blocks.
1362 One is the function itself.  The
1363 @code{if} statement on line 9 generates two more basic-blocks, one
1364 for each branch of the @code{if}.  A fourth basic-block results from
1365 the @code{if} on line 13, and the contents of the @code{do} loop form
1366 the fifth basic-block.  The compiler may also generate additional
1367 basic-blocks to handle various special cases.
1369 A program augmented for basic-block counting can be analyzed with
1370 @samp{gprof -l -A}.  I also suggest use of the @samp{-x} option,
1371 which ensures that each line of code is labeled at least once.
1372 Here is @code{updcrc}'s
1373 annotated source listing for a sample @code{gzip} run:
1375 @smallexample
1376                 ulg updcrc(s, n)
1377                     uch *s;
1378                     unsigned n;
1379             2 ->@{
1380                     register ulg c;
1381                 
1382                     static ulg crc = (ulg)0xffffffffL;
1383                 
1384             2 ->    if (s == NULL) @{
1385             1 ->        c = 0xffffffffL;
1386             1 ->    @} else @{
1387             1 ->        c = crc;
1388             1 ->        if (n) do @{
1389         26312 ->            c = crc_32_tab[...];
1390 26312,1,26311 ->        @} while (--n);
1391                     @}
1392             2 ->    crc = c;
1393             2 ->    return c ^ 0xffffffffL;
1394             2 ->@}
1395 @end smallexample
1397 In this example, the function was called twice, passing once through
1398 each branch of the @code{if} statement.  The body of the @code{do}
1399 loop was executed a total of 26312 times.  Note how the @code{while}
1400 statement is annotated.  It began execution 26312 times, once for
1401 each iteration through the loop.  One of those times (the last time)
1402 it exited, while it branched back to the beginning of the loop 26311 times.
1404 @node Inaccuracy
1405 @chapter Inaccuracy of @code{gprof} Output
1407 @menu
1408 * Sampling Error::      Statistical margins of error
1409 * Assumptions::         Estimating children times
1410 @end menu
1412 @node Sampling Error,Assumptions,,Inaccuracy
1413 @section Statistical Sampling Error
1415 The run-time figures that @code{gprof} gives you are based on a sampling
1416 process, so they are subject to statistical inaccuracy.  If a function runs
1417 only a small amount of time, so that on the average the sampling process
1418 ought to catch that function in the act only once, there is a pretty good
1419 chance it will actually find that function zero times, or twice.
1421 By contrast, the number-of-calls and basic-block figures
1422 are derived by counting, not
1423 sampling.  They are completely accurate and will not vary from run to run
1424 if your program is deterministic.
1426 The @dfn{sampling period} that is printed at the beginning of the flat
1427 profile says how often samples are taken.  The rule of thumb is that a
1428 run-time figure is accurate if it is considerably bigger than the sampling
1429 period.
1431 The actual amount of error can be predicted.
1432 For @var{n} samples, the @emph{expected} error
1433 is the square-root of @var{n}.  For example,
1434 if the sampling period is 0.01 seconds and @code{foo}'s run-time is 1 second,
1435 @var{n} is 100 samples (1 second/0.01 seconds), sqrt(@var{n}) is 10 samples, so
1436 the expected error in @code{foo}'s run-time is 0.1 seconds (10*0.01 seconds),
1437 or ten percent of the observed value.
1438 Again, if the sampling period is 0.01 seconds and @code{bar}'s run-time is
1439 100 seconds, @var{n} is 10000 samples, sqrt(@var{n}) is 100 samples, so
1440 the expected error in @code{bar}'s run-time is 1 second,
1441 or one percent of the observed value.
1442 It is likely to
1443 vary this much @emph{on the average} from one profiling run to the next.
1444 (@emph{Sometimes} it will vary more.)
1446 This does not mean that a small run-time figure is devoid of information.
1447 If the program's @emph{total} run-time is large, a small run-time for one
1448 function does tell you that that function used an insignificant fraction of
1449 the whole program's time.  Usually this means it is not worth optimizing.
1451 One way to get more accuracy is to give your program more (but similar)
1452 input data so it will take longer.  Another way is to combine the data from
1453 several runs, using the @samp{-s} option of @code{gprof}.  Here is how:
1455 @enumerate
1456 @item
1457 Run your program once.
1459 @item
1460 Issue the command @samp{mv gmon.out gmon.sum}.
1462 @item
1463 Run your program again, the same as before.
1465 @item
1466 Merge the new data in @file{gmon.out} into @file{gmon.sum} with this command:
1468 @example
1469 gprof -s @var{executable-file} gmon.out gmon.sum
1470 @end example
1472 @item
1473 Repeat the last two steps as often as you wish.
1475 @item
1476 Analyze the cumulative data using this command:
1478 @example
1479 gprof @var{executable-file} gmon.sum > @var{output-file}
1480 @end example
1481 @end enumerate
1483 @node Assumptions,,Sampling Error,Inaccuracy
1484 @section Estimating @code{children} Times
1486 Some of the figures in the call graph are estimates---for example, the
1487 @code{children} time values and all the the time figures in caller and
1488 subroutine lines.
1490 There is no direct information about these measurements in the profile
1491 data itself.  Instead, @code{gprof} estimates them by making an assumption
1492 about your program that might or might not be true.
1494 The assumption made is that the average time spent in each call to any
1495 function @code{foo} is not correlated with who called @code{foo}.  If
1496 @code{foo} used 5 seconds in all, and 2/5 of the calls to @code{foo} came
1497 from @code{a}, then @code{foo} contributes 2 seconds to @code{a}'s
1498 @code{children} time, by assumption.
1500 This assumption is usually true enough, but for some programs it is far
1501 from true.  Suppose that @code{foo} returns very quickly when its argument
1502 is zero; suppose that @code{a} always passes zero as an argument, while
1503 other callers of @code{foo} pass other arguments.  In this program, all the
1504 time spent in @code{foo} is in the calls from callers other than @code{a}.
1505 But @code{gprof} has no way of knowing this; it will blindly and
1506 incorrectly charge 2 seconds of time in @code{foo} to the children of
1507 @code{a}.
1509 @c FIXME - has this been fixed?
1510 We hope some day to put more complete data into @file{gmon.out}, so that
1511 this assumption is no longer needed, if we can figure out how.  For the
1512 nonce, the estimated figures are usually more useful than misleading.
1514 @node How do I?
1515 @chapter Answers to Common Questions
1517 @table @asis
1518 @item How do I find which lines in my program were executed the most times?
1520 Compile your program with basic-block counting enabled, run it, then
1521 use the following pipeline:
1523 @example
1524 gprof -l -C @var{objfile} | sort -k 3 -n -r
1525 @end example
1527 This listing will show you the lines in your code executed most often,
1528 but not necessarily those that consumed the most time.
1530 @item How do I find which lines in my program called a particular function?
1532 Use @samp{gprof -l} and lookup the function in the call graph.
1533 The callers will be broken down by function and line number.
1535 @item How do I analyze a program that runs for less than a second?
1537 Try using a shell script like this one:
1539 @example
1540 for i in `seq 1 100`; do
1541   fastprog
1542   mv gmon.out gmon.out.$i
1543 done
1545 gprof -s fastprog gmon.out.*
1547 gprof fastprog gmon.sum
1548 @end example
1550 If your program is completely deterministic, all the call counts
1551 will be simple multiples of 100 (i.e. a function called once in
1552 each run will appear with a call count of 100).
1554 @end table
1556 @node Incompatibilities
1557 @chapter Incompatibilities with Unix @code{gprof}
1559 @sc{gnu} @code{gprof} and Berkeley Unix @code{gprof} use the same data
1560 file @file{gmon.out}, and provide essentially the same information.  But
1561 there are a few differences.
1563 @itemize @bullet
1564 @item
1565 @sc{gnu} @code{gprof} uses a new, generalized file format with support
1566 for basic-block execution counts and non-realtime histograms.  A magic
1567 cookie and version number allows @code{gprof} to easily identify
1568 new style files.  Old BSD-style files can still be read.
1569 @xref{File Format}.
1571 @item
1572 For a recursive function, Unix @code{gprof} lists the function as a
1573 parent and as a child, with a @code{calls} field that lists the number
1574 of recursive calls.  @sc{gnu} @code{gprof} omits these lines and puts
1575 the number of recursive calls in the primary line.
1577 @item
1578 When a function is suppressed from the call graph with @samp{-e}, @sc{gnu}
1579 @code{gprof} still lists it as a subroutine of functions that call it.
1581 @item
1582 @sc{gnu} @code{gprof} accepts the @samp{-k} with its argument
1583 in the form @samp{from/to}, instead of @samp{from to}.
1585 @item
1586 In the annotated source listing,
1587 if there are multiple basic blocks on the same line,
1588 @sc{gnu} @code{gprof} prints all of their counts, separated by commas.
1590 @ignore - it does this now
1591 @item
1592 The function names printed in @sc{gnu} @code{gprof} output do not include
1593 the leading underscores that are added internally to the front of all
1594 C identifiers on many operating systems.
1595 @end ignore
1597 @item
1598 The blurbs, field widths, and output formats are different.  @sc{gnu}
1599 @code{gprof} prints blurbs after the tables, so that you can see the
1600 tables without skipping the blurbs.
1601 @end itemize
1603 @node Details
1604 @chapter Details of Profiling
1606 @menu
1607 * Implementation::      How a program collects profiling information
1608 * File Format::         Format of @samp{gmon.out} files
1609 * Internals::           @code{gprof}'s internal operation
1610 * Debugging::           Using @code{gprof}'s @samp{-d} option
1611 @end menu
1613 @node Implementation,File Format,,Details
1614 @section Implementation of Profiling
1616 Profiling works by changing how every function in your program is compiled
1617 so that when it is called, it will stash away some information about where
1618 it was called from.  From this, the profiler can figure out what function
1619 called it, and can count how many times it was called.  This change is made
1620 by the compiler when your program is compiled with the @samp{-pg} option,
1621 which causes every function to call @code{mcount}
1622 (or @code{_mcount}, or @code{__mcount}, depending on the OS and compiler)
1623 as one of its first operations.
1625 The @code{mcount} routine, included in the profiling library,
1626 is responsible for recording in an in-memory call graph table
1627 both its parent routine (the child) and its parent's parent.  This is
1628 typically done by examining the stack frame to find both
1629 the address of the child, and the return address in the original parent.
1630 Since this is a very machine-dependent operation, @code{mcount}
1631 itself is typically a short assembly-language stub routine
1632 that extracts the required
1633 information, and then calls @code{__mcount_internal}
1634 (a normal C function) with two arguments - @code{frompc} and @code{selfpc}.
1635 @code{__mcount_internal} is responsible for maintaining
1636 the in-memory call graph, which records @code{frompc}, @code{selfpc},
1637 and the number of times each of these call arcs was traversed.
1639 GCC Version 2 provides a magical function (@code{__builtin_return_address}),
1640 which allows a generic @code{mcount} function to extract the
1641 required information from the stack frame.  However, on some
1642 architectures, most notably the SPARC, using this builtin can be
1643 very computationally expensive, and an assembly language version
1644 of @code{mcount} is used for performance reasons.
1646 Number-of-calls information for library routines is collected by using a
1647 special version of the C library.  The programs in it are the same as in
1648 the usual C library, but they were compiled with @samp{-pg}.  If you
1649 link your program with @samp{gcc @dots{} -pg}, it automatically uses the
1650 profiling version of the library.
1652 Profiling also involves watching your program as it runs, and keeping a
1653 histogram of where the program counter happens to be every now and then.
1654 Typically the program counter is looked at around 100 times per second of
1655 run time, but the exact frequency may vary from system to system.
1657 This is done is one of two ways.  Most UNIX-like operating systems
1658 provide a @code{profil()} system call, which registers a memory
1659 array with the kernel, along with a scale
1660 factor that determines how the program's address space maps
1661 into the array.
1662 Typical scaling values cause every 2 to 8 bytes of address space
1663 to map into a single array slot.
1664 On every tick of the system clock
1665 (assuming the profiled program is running), the value of the
1666 program counter is examined and the corresponding slot in
1667 the memory array is incremented.  Since this is done in the kernel,
1668 which had to interrupt the process anyway to handle the clock
1669 interrupt, very little additional system overhead is required.
1671 However, some operating systems, most notably Linux 2.0 (and earlier),
1672 do not provide a @code{profil()} system call.  On such a system,
1673 arrangements are made for the kernel to periodically deliver
1674 a signal to the process (typically via @code{setitimer()}),
1675 which then performs the same operation of examining the
1676 program counter and incrementing a slot in the memory array.
1677 Since this method requires a signal to be delivered to
1678 user space every time a sample is taken, it uses considerably
1679 more overhead than kernel-based profiling.  Also, due to the
1680 added delay required to deliver the signal, this method is
1681 less accurate as well.
1683 A special startup routine allocates memory for the histogram and 
1684 either calls @code{profil()} or sets up
1685 a clock signal handler.
1686 This routine (@code{monstartup}) can be invoked in several ways.
1687 On Linux systems, a special profiling startup file @code{gcrt0.o},
1688 which invokes @code{monstartup} before @code{main},
1689 is used instead of the default @code{crt0.o}.
1690 Use of this special startup file is one of the effects
1691 of using @samp{gcc @dots{} -pg} to link.
1692 On SPARC systems, no special startup files are used.
1693 Rather, the @code{mcount} routine, when it is invoked for
1694 the first time (typically when @code{main} is called),
1695 calls @code{monstartup}.
1697 If the compiler's @samp{-a} option was used, basic-block counting
1698 is also enabled.  Each object file is then compiled with a static array
1699 of counts, initially zero.
1700 In the executable code, every time a new basic-block begins
1701 (i.e. when an @code{if} statement appears), an extra instruction
1702 is inserted to increment the corresponding count in the array.
1703 At compile time, a paired array was constructed that recorded
1704 the starting address of each basic-block.  Taken together,
1705 the two arrays record the starting address of every basic-block,
1706 along with the number of times it was executed.
1708 The profiling library also includes a function (@code{mcleanup}) which is
1709 typically registered using @code{atexit()} to be called as the
1710 program exits, and is responsible for writing the file @file{gmon.out}.
1711 Profiling is turned off, various headers are output, and the histogram
1712 is written, followed by the call-graph arcs and the basic-block counts.
1714 The output from @code{gprof} gives no indication of parts of your program that
1715 are limited by I/O or swapping bandwidth.  This is because samples of the
1716 program counter are taken at fixed intervals of the program's run time.
1717 Therefore, the
1718 time measurements in @code{gprof} output say nothing about time that your
1719 program was not running.  For example, a part of the program that creates
1720 so much data that it cannot all fit in physical memory at once may run very
1721 slowly due to thrashing, but @code{gprof} will say it uses little time.  On
1722 the other hand, sampling by run time has the advantage that the amount of
1723 load due to other users won't directly affect the output you get.
1725 @node File Format,Internals,Implementation,Details
1726 @section Profiling Data File Format
1728 The old BSD-derived file format used for profile data does not contain a
1729 magic cookie that allows to check whether a data file really is a
1730 @code{gprof} file.  Furthermore, it does not provide a version number, thus
1731 rendering changes to the file format almost impossible.  @sc{gnu} @code{gprof}
1732 uses a new file format that provides these features.  For backward
1733 compatibility, @sc{gnu} @code{gprof} continues to support the old BSD-derived
1734 format, but not all features are supported with it.  For example,
1735 basic-block execution counts cannot be accommodated by the old file
1736 format.
1738 The new file format is defined in header file @file{gmon_out.h}.  It
1739 consists of a header containing the magic cookie and a version number,
1740 as well as some spare bytes available for future extensions.  All data
1741 in a profile data file is in the native format of the host on which
1742 the profile was collected.  @sc{gnu} @code{gprof} adapts automatically to the
1743 byte-order in use.
1745 In the new file format, the header is followed by a sequence of
1746 records.  Currently, there are three different record types: histogram
1747 records, call-graph arc records, and basic-block execution count
1748 records.  Each file can contain any number of each record type.  When
1749 reading a file, @sc{gnu} @code{gprof} will ensure records of the same type are
1750 compatible with each other and compute the union of all records.  For
1751 example, for basic-block execution counts, the union is simply the sum
1752 of all execution counts for each basic-block.
1754 @subsection Histogram Records
1756 Histogram records consist of a header that is followed by an array of
1757 bins.  The header contains the text-segment range that the histogram
1758 spans, the size of the histogram in bytes (unlike in the old BSD
1759 format, this does not include the size of the header), the rate of the
1760 profiling clock, and the physical dimension that the bin counts
1761 represent after being scaled by the profiling clock rate.  The
1762 physical dimension is specified in two parts: a long name of up to 15
1763 characters and a single character abbreviation.  For example, a
1764 histogram representing real-time would specify the long name as
1765 "seconds" and the abbreviation as "s".  This feature is useful for
1766 architectures that support performance monitor hardware (which,
1767 fortunately, is becoming increasingly common).  For example, under DEC
1768 OSF/1, the "uprofile" command can be used to produce a histogram of,
1769 say, instruction cache misses.  In this case, the dimension in the
1770 histogram header could be set to "i-cache misses" and the abbreviation
1771 could be set to "1" (because it is simply a count, not a physical
1772 dimension).  Also, the profiling rate would have to be set to 1 in
1773 this case.
1775 Histogram bins are 16-bit numbers and each bin represent an equal
1776 amount of text-space.  For example, if the text-segment is one
1777 thousand bytes long and if there are ten bins in the histogram, each
1778 bin represents one hundred bytes.
1781 @subsection Call-Graph Records
1783 Call-graph records have a format that is identical to the one used in
1784 the BSD-derived file format.  It consists of an arc in the call graph
1785 and a count indicating the number of times the arc was traversed
1786 during program execution.  Arcs are specified by a pair of addresses:
1787 the first must be within caller's function and the second must be
1788 within the callee's function.  When performing profiling at the
1789 function level, these addresses can point anywhere within the
1790 respective function.  However, when profiling at the line-level, it is
1791 better if the addresses are as close to the call-site/entry-point as
1792 possible.  This will ensure that the line-level call-graph is able to
1793 identify exactly which line of source code performed calls to a
1794 function.
1796 @subsection Basic-Block Execution Count Records
1798 Basic-block execution count records consist of a header followed by a
1799 sequence of address/count pairs.  The header simply specifies the
1800 length of the sequence.  In an address/count pair, the address
1801 identifies a basic-block and the count specifies the number of times
1802 that basic-block was executed.  Any address within the basic-address can
1803 be used.
1805 @node Internals,Debugging,File Format,Details
1806 @section @code{gprof}'s Internal Operation
1808 Like most programs, @code{gprof} begins by processing its options.
1809 During this stage, it may building its symspec list
1810 (@code{sym_ids.c:sym_id_add}), if
1811 options are specified which use symspecs.
1812 @code{gprof} maintains a single linked list of symspecs,
1813 which will eventually get turned into 12 symbol tables,
1814 organized into six include/exclude pairs - one
1815 pair each for the flat profile (INCL_FLAT/EXCL_FLAT),
1816 the call graph arcs (INCL_ARCS/EXCL_ARCS),
1817 printing in the call graph (INCL_GRAPH/EXCL_GRAPH),
1818 timing propagation in the call graph (INCL_TIME/EXCL_TIME),
1819 the annotated source listing (INCL_ANNO/EXCL_ANNO),
1820 and the execution count listing (INCL_EXEC/EXCL_EXEC).
1822 After option processing, @code{gprof} finishes
1823 building the symspec list by adding all the symspecs in
1824 @code{default_excluded_list} to the exclude lists
1825 EXCL_TIME and EXCL_GRAPH, and if line-by-line profiling is specified,
1826 EXCL_FLAT as well.
1827 These default excludes are not added to EXCL_ANNO, EXCL_ARCS, and EXCL_EXEC.
1829 Next, the BFD library is called to open the object file,
1830 verify that it is an object file,
1831 and read its symbol table (@code{core.c:core_init}),
1832 using @code{bfd_canonicalize_symtab} after mallocing
1833 an appropriately sized array of symbols.  At this point,
1834 function mappings are read (if the @samp{--file-ordering} option
1835 has been specified), and the core text space is read into
1836 memory (if the @samp{-c} option was given).
1838 @code{gprof}'s own symbol table, an array of Sym structures,
1839 is now built.
1840 This is done in one of two ways, by one of two routines, depending
1841 on whether line-by-line profiling (@samp{-l} option) has been
1842 enabled.
1843 For normal profiling, the BFD canonical symbol table is scanned.
1844 For line-by-line profiling, every
1845 text space address is examined, and a new symbol table entry
1846 gets created every time the line number changes.
1847 In either case, two passes are made through the symbol
1848 table - one to count the size of the symbol table required,
1849 and the other to actually read the symbols.  In between the
1850 two passes, a single array of type @code{Sym} is created of
1851 the appropriate length.
1852 Finally, @code{symtab.c:symtab_finalize}
1853 is called to sort the symbol table and remove duplicate entries
1854 (entries with the same memory address).
1856 The symbol table must be a contiguous array for two reasons.
1857 First, the @code{qsort} library function (which sorts an array)
1858 will be used to sort the symbol table.
1859 Also, the symbol lookup routine (@code{symtab.c:sym_lookup}),
1860 which finds symbols
1861 based on memory address, uses a binary search algorithm
1862 which requires the symbol table to be a sorted array.
1863 Function symbols are indicated with an @code{is_func} flag.
1864 Line number symbols have no special flags set.
1865 Additionally, a symbol can have an @code{is_static} flag
1866 to indicate that it is a local symbol.
1868 With the symbol table read, the symspecs can now be translated
1869 into Syms (@code{sym_ids.c:sym_id_parse}).  Remember that a single
1870 symspec can match multiple symbols.
1871 An array of symbol tables
1872 (@code{syms}) is created, each entry of which is a symbol table
1873 of Syms to be included or excluded from a particular listing.
1874 The master symbol table and the symspecs are examined by nested
1875 loops, and every symbol that matches a symspec is inserted
1876 into the appropriate syms table.  This is done twice, once to
1877 count the size of each required symbol table, and again to build
1878 the tables, which have been malloced between passes.
1879 From now on, to determine whether a symbol is on an include
1880 or exclude symspec list, @code{gprof} simply uses its
1881 standard symbol lookup routine on the appropriate table
1882 in the @code{syms} array.
1884 Now the profile data file(s) themselves are read
1885 (@code{gmon_io.c:gmon_out_read}),
1886 first by checking for a new-style @samp{gmon.out} header,
1887 then assuming this is an old-style BSD @samp{gmon.out}
1888 if the magic number test failed.
1890 New-style histogram records are read by @code{hist.c:hist_read_rec}.
1891 For the first histogram record, allocate a memory array to hold
1892 all the bins, and read them in.
1893 When multiple profile data files (or files with multiple histogram
1894 records) are read, the starting address, ending address, number
1895 of bins and sampling rate must match between the various histograms,
1896 or a fatal error will result.
1897 If everything matches, just sum the additional histograms into
1898 the existing in-memory array.
1900 As each call graph record is read (@code{call_graph.c:cg_read_rec}),
1901 the parent and child addresses
1902 are matched to symbol table entries, and a call graph arc is
1903 created by @code{cg_arcs.c:arc_add}, unless the arc fails a symspec
1904 check against INCL_ARCS/EXCL_ARCS.  As each arc is added,
1905 a linked list is maintained of the parent's child arcs, and of the child's
1906 parent arcs.
1907 Both the child's call count and the arc's call count are
1908 incremented by the record's call count.
1910 Basic-block records are read (@code{basic_blocks.c:bb_read_rec}),
1911 but only if line-by-line profiling has been selected.
1912 Each basic-block address is matched to a corresponding line
1913 symbol in the symbol table, and an entry made in the symbol's
1914 bb_addr and bb_calls arrays.  Again, if multiple basic-block
1915 records are present for the same address, the call counts
1916 are cumulative.
1918 A gmon.sum file is dumped, if requested (@code{gmon_io.c:gmon_out_write}).
1920 If histograms were present in the data files, assign them to symbols
1921 (@code{hist.c:hist_assign_samples}) by iterating over all the sample
1922 bins and assigning them to symbols.  Since the symbol table
1923 is sorted in order of ascending memory addresses, we can
1924 simple follow along in the symbol table as we make our pass
1925 over the sample bins.
1926 This step includes a symspec check against INCL_FLAT/EXCL_FLAT.
1927 Depending on the histogram
1928 scale factor, a sample bin may span multiple symbols,
1929 in which case a fraction of the sample count is allocated
1930 to each symbol, proportional to the degree of overlap.
1931 This effect is rare for normal profiling, but overlaps
1932 are more common during line-by-line profiling, and can
1933 cause each of two adjacent lines to be credited with half
1934 a hit, for example.
1936 If call graph data is present, @code{cg_arcs.c:cg_assemble} is called.
1937 First, if @samp{-c} was specified, a machine-dependent
1938 routine (@code{find_call}) scans through each symbol's machine code,
1939 looking for subroutine call instructions, and adding them
1940 to the call graph with a zero call count.
1941 A topological sort is performed by depth-first numbering
1942 all the symbols (@code{cg_dfn.c:cg_dfn}), so that
1943 children are always numbered less than their parents,
1944 then making a array of pointers into the symbol table and sorting it into
1945 numerical order, which is reverse topological
1946 order (children appear before parents).
1947 Cycles are also detected at this point, all members
1948 of which are assigned the same topological number.
1949 Two passes are now made through this sorted array of symbol pointers.
1950 The first pass, from end to beginning (parents to children),
1951 computes the fraction of child time to propagate to each parent
1952 and a print flag.
1953 The print flag reflects symspec handling of INCL_GRAPH/EXCL_GRAPH,
1954 with a parent's include or exclude (print or no print) property
1955 being propagated to its children, unless they themselves explicitly appear
1956 in INCL_GRAPH or EXCL_GRAPH.
1957 A second pass, from beginning to end (children to parents) actually
1958 propagates the timings along the call graph, subject
1959 to a check against INCL_TIME/EXCL_TIME.
1960 With the print flag, fractions, and timings now stored in the symbol
1961 structures, the topological sort array is now discarded, and a
1962 new array of pointers is assembled, this time sorted by propagated time.
1964 Finally, print the various outputs the user requested, which is now fairly
1965 straightforward.  The call graph (@code{cg_print.c:cg_print}) and
1966 flat profile (@code{hist.c:hist_print}) are regurgitations of values
1967 already computed.  The annotated source listing
1968 (@code{basic_blocks.c:print_annotated_source}) uses basic-block
1969 information, if present, to label each line of code with call counts,
1970 otherwise only the function call counts are presented.
1972 The function ordering code is marginally well documented
1973 in the source code itself (@code{cg_print.c}).  Basically,
1974 the functions with the most use and the most parents are
1975 placed first, followed by other functions with the most use,
1976 followed by lower use functions, followed by unused functions
1977 at the end.
1979 @node Debugging,,Internals,Details
1980 @subsection Debugging @code{gprof}
1982 If @code{gprof} was compiled with debugging enabled,
1983 the @samp{-d} option triggers debugging output
1984 (to stdout) which can be helpful in understanding its operation.
1985 The debugging number specified is interpreted as a sum of the following
1986 options:
1988 @table @asis
1989 @item 2 - Topological sort
1990 Monitor depth-first numbering of symbols during call graph analysis
1991 @item 4 - Cycles
1992 Shows symbols as they are identified as cycle heads
1993 @item 16 - Tallying
1994 As the call graph arcs are read, show each arc and how
1995 the total calls to each function are tallied
1996 @item 32 - Call graph arc sorting
1997 Details sorting individual parents/children within each call graph entry
1998 @item 64 - Reading histogram and call graph records
1999 Shows address ranges of histograms as they are read, and each
2000 call graph arc
2001 @item 128 - Symbol table
2002 Reading, classifying, and sorting the symbol table from the object file.
2003 For line-by-line profiling (@samp{-l} option), also shows line numbers
2004 being assigned to memory addresses.
2005 @item 256 - Static call graph
2006 Trace operation of @samp{-c} option
2007 @item 512 - Symbol table and arc table lookups
2008 Detail operation of lookup routines
2009 @item 1024 - Call graph propagation
2010 Shows how function times are propagated along the call graph
2011 @item 2048 - Basic-blocks
2012 Shows basic-block records as they are read from profile data
2013 (only meaningful with @samp{-l} option)
2014 @item 4096 - Symspecs
2015 Shows symspec-to-symbol pattern matching operation
2016 @item 8192 - Annotate source
2017 Tracks operation of @samp{-A} option
2018 @end table
2020 @contents
2021 @bye
2023 NEEDS AN INDEX
2025 -T - "traditional BSD style": How is it different?  Should the
2026 differences be documented?
2028 example flat file adds up to 100.01%...
2030 note: time estimates now only go out to one decimal place (0.0), where
2031 they used to extend two (78.67).