1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
37 /* For sparc64-cross-sparc32. */
45 #include "libiberty.h"
46 #include "safe-ctype.h"
48 static int elf_sort_sections (const void *, const void *);
49 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
50 static bfd_boolean
prep_headers (bfd
*);
51 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
52 static bfd_boolean
elf_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
53 static bfd_boolean
elf_parse_notes (bfd
*abfd
, char *buf
, size_t size
,
56 /* Swap version information in and out. The version information is
57 currently size independent. If that ever changes, this code will
58 need to move into elfcode.h. */
60 /* Swap in a Verdef structure. */
63 _bfd_elf_swap_verdef_in (bfd
*abfd
,
64 const Elf_External_Verdef
*src
,
65 Elf_Internal_Verdef
*dst
)
67 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
68 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
69 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
70 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
71 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
72 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
73 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
76 /* Swap out a Verdef structure. */
79 _bfd_elf_swap_verdef_out (bfd
*abfd
,
80 const Elf_Internal_Verdef
*src
,
81 Elf_External_Verdef
*dst
)
83 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
84 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
85 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
86 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
87 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
88 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
89 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
92 /* Swap in a Verdaux structure. */
95 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
96 const Elf_External_Verdaux
*src
,
97 Elf_Internal_Verdaux
*dst
)
99 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
100 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
103 /* Swap out a Verdaux structure. */
106 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
107 const Elf_Internal_Verdaux
*src
,
108 Elf_External_Verdaux
*dst
)
110 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
111 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
114 /* Swap in a Verneed structure. */
117 _bfd_elf_swap_verneed_in (bfd
*abfd
,
118 const Elf_External_Verneed
*src
,
119 Elf_Internal_Verneed
*dst
)
121 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
122 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
123 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
124 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
125 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
128 /* Swap out a Verneed structure. */
131 _bfd_elf_swap_verneed_out (bfd
*abfd
,
132 const Elf_Internal_Verneed
*src
,
133 Elf_External_Verneed
*dst
)
135 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
136 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
137 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
138 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
139 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
142 /* Swap in a Vernaux structure. */
145 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
146 const Elf_External_Vernaux
*src
,
147 Elf_Internal_Vernaux
*dst
)
149 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
150 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
151 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
152 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
153 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
156 /* Swap out a Vernaux structure. */
159 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
160 const Elf_Internal_Vernaux
*src
,
161 Elf_External_Vernaux
*dst
)
163 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
164 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
165 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
166 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
167 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
170 /* Swap in a Versym structure. */
173 _bfd_elf_swap_versym_in (bfd
*abfd
,
174 const Elf_External_Versym
*src
,
175 Elf_Internal_Versym
*dst
)
177 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
180 /* Swap out a Versym structure. */
183 _bfd_elf_swap_versym_out (bfd
*abfd
,
184 const Elf_Internal_Versym
*src
,
185 Elf_External_Versym
*dst
)
187 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
190 /* Standard ELF hash function. Do not change this function; you will
191 cause invalid hash tables to be generated. */
194 bfd_elf_hash (const char *namearg
)
196 const unsigned char *name
= (const unsigned char *) namearg
;
201 while ((ch
= *name
++) != '\0')
204 if ((g
= (h
& 0xf0000000)) != 0)
207 /* The ELF ABI says `h &= ~g', but this is equivalent in
208 this case and on some machines one insn instead of two. */
212 return h
& 0xffffffff;
215 /* DT_GNU_HASH hash function. Do not change this function; you will
216 cause invalid hash tables to be generated. */
219 bfd_elf_gnu_hash (const char *namearg
)
221 const unsigned char *name
= (const unsigned char *) namearg
;
222 unsigned long h
= 5381;
225 while ((ch
= *name
++) != '\0')
226 h
= (h
<< 5) + h
+ ch
;
227 return h
& 0xffffffff;
230 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
231 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
233 bfd_elf_allocate_object (bfd
*abfd
,
235 enum elf_object_id object_id
)
237 BFD_ASSERT (object_size
>= sizeof (struct elf_obj_tdata
));
238 abfd
->tdata
.any
= bfd_zalloc (abfd
, object_size
);
239 if (abfd
->tdata
.any
== NULL
)
242 elf_object_id (abfd
) = object_id
;
243 elf_program_header_size (abfd
) = (bfd_size_type
) -1;
249 bfd_elf_make_generic_object (bfd
*abfd
)
251 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_obj_tdata
),
256 bfd_elf_mkcorefile (bfd
*abfd
)
258 /* I think this can be done just like an object file. */
259 return bfd_elf_make_generic_object (abfd
);
263 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
265 Elf_Internal_Shdr
**i_shdrp
;
266 bfd_byte
*shstrtab
= NULL
;
268 bfd_size_type shstrtabsize
;
270 i_shdrp
= elf_elfsections (abfd
);
272 || shindex
>= elf_numsections (abfd
)
273 || i_shdrp
[shindex
] == 0)
276 shstrtab
= i_shdrp
[shindex
]->contents
;
277 if (shstrtab
== NULL
)
279 /* No cached one, attempt to read, and cache what we read. */
280 offset
= i_shdrp
[shindex
]->sh_offset
;
281 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
283 /* Allocate and clear an extra byte at the end, to prevent crashes
284 in case the string table is not terminated. */
285 if (shstrtabsize
+ 1 <= 1
286 || (shstrtab
= (bfd_byte
*) bfd_alloc (abfd
, shstrtabsize
+ 1)) == NULL
287 || bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
289 else if (bfd_bread (shstrtab
, shstrtabsize
, abfd
) != shstrtabsize
)
291 if (bfd_get_error () != bfd_error_system_call
)
292 bfd_set_error (bfd_error_file_truncated
);
294 /* Once we've failed to read it, make sure we don't keep
295 trying. Otherwise, we'll keep allocating space for
296 the string table over and over. */
297 i_shdrp
[shindex
]->sh_size
= 0;
300 shstrtab
[shstrtabsize
] = '\0';
301 i_shdrp
[shindex
]->contents
= shstrtab
;
303 return (char *) shstrtab
;
307 bfd_elf_string_from_elf_section (bfd
*abfd
,
308 unsigned int shindex
,
309 unsigned int strindex
)
311 Elf_Internal_Shdr
*hdr
;
316 if (elf_elfsections (abfd
) == NULL
|| shindex
>= elf_numsections (abfd
))
319 hdr
= elf_elfsections (abfd
)[shindex
];
321 if (hdr
->contents
== NULL
322 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
325 if (strindex
>= hdr
->sh_size
)
327 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
328 (*_bfd_error_handler
)
329 (_("%B: invalid string offset %u >= %lu for section `%s'"),
330 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
331 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
333 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
337 return ((char *) hdr
->contents
) + strindex
;
340 /* Read and convert symbols to internal format.
341 SYMCOUNT specifies the number of symbols to read, starting from
342 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
343 are non-NULL, they are used to store the internal symbols, external
344 symbols, and symbol section index extensions, respectively.
345 Returns a pointer to the internal symbol buffer (malloced if necessary)
346 or NULL if there were no symbols or some kind of problem. */
349 bfd_elf_get_elf_syms (bfd
*ibfd
,
350 Elf_Internal_Shdr
*symtab_hdr
,
353 Elf_Internal_Sym
*intsym_buf
,
355 Elf_External_Sym_Shndx
*extshndx_buf
)
357 Elf_Internal_Shdr
*shndx_hdr
;
359 const bfd_byte
*esym
;
360 Elf_External_Sym_Shndx
*alloc_extshndx
;
361 Elf_External_Sym_Shndx
*shndx
;
362 Elf_Internal_Sym
*alloc_intsym
;
363 Elf_Internal_Sym
*isym
;
364 Elf_Internal_Sym
*isymend
;
365 const struct elf_backend_data
*bed
;
370 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
376 /* Normal syms might have section extension entries. */
378 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
379 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
381 /* Read the symbols. */
383 alloc_extshndx
= NULL
;
385 bed
= get_elf_backend_data (ibfd
);
386 extsym_size
= bed
->s
->sizeof_sym
;
387 amt
= symcount
* extsym_size
;
388 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
389 if (extsym_buf
== NULL
)
391 alloc_ext
= bfd_malloc2 (symcount
, extsym_size
);
392 extsym_buf
= alloc_ext
;
394 if (extsym_buf
== NULL
395 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
396 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
402 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
406 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
407 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
408 if (extshndx_buf
== NULL
)
410 alloc_extshndx
= (Elf_External_Sym_Shndx
*)
411 bfd_malloc2 (symcount
, sizeof (Elf_External_Sym_Shndx
));
412 extshndx_buf
= alloc_extshndx
;
414 if (extshndx_buf
== NULL
415 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
416 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
423 if (intsym_buf
== NULL
)
425 alloc_intsym
= (Elf_Internal_Sym
*)
426 bfd_malloc2 (symcount
, sizeof (Elf_Internal_Sym
));
427 intsym_buf
= alloc_intsym
;
428 if (intsym_buf
== NULL
)
432 /* Convert the symbols to internal form. */
433 isymend
= intsym_buf
+ symcount
;
434 for (esym
= (const bfd_byte
*) extsym_buf
, isym
= intsym_buf
,
435 shndx
= extshndx_buf
;
437 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
438 if (!(*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
))
440 symoffset
+= (esym
- (bfd_byte
*) extsym_buf
) / extsym_size
;
441 (*_bfd_error_handler
) (_("%B symbol number %lu references "
442 "nonexistent SHT_SYMTAB_SHNDX section"),
443 ibfd
, (unsigned long) symoffset
);
444 if (alloc_intsym
!= NULL
)
451 if (alloc_ext
!= NULL
)
453 if (alloc_extshndx
!= NULL
)
454 free (alloc_extshndx
);
459 /* Look up a symbol name. */
461 bfd_elf_sym_name (bfd
*abfd
,
462 Elf_Internal_Shdr
*symtab_hdr
,
463 Elf_Internal_Sym
*isym
,
467 unsigned int iname
= isym
->st_name
;
468 unsigned int shindex
= symtab_hdr
->sh_link
;
470 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
471 /* Check for a bogus st_shndx to avoid crashing. */
472 && isym
->st_shndx
< elf_numsections (abfd
))
474 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
475 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
478 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
481 else if (sym_sec
&& *name
== '\0')
482 name
= bfd_section_name (abfd
, sym_sec
);
487 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
488 sections. The first element is the flags, the rest are section
491 typedef union elf_internal_group
{
492 Elf_Internal_Shdr
*shdr
;
494 } Elf_Internal_Group
;
496 /* Return the name of the group signature symbol. Why isn't the
497 signature just a string? */
500 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
502 Elf_Internal_Shdr
*hdr
;
503 unsigned char esym
[sizeof (Elf64_External_Sym
)];
504 Elf_External_Sym_Shndx eshndx
;
505 Elf_Internal_Sym isym
;
507 /* First we need to ensure the symbol table is available. Make sure
508 that it is a symbol table section. */
509 if (ghdr
->sh_link
>= elf_numsections (abfd
))
511 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
512 if (hdr
->sh_type
!= SHT_SYMTAB
513 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
516 /* Go read the symbol. */
517 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
518 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
519 &isym
, esym
, &eshndx
) == NULL
)
522 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
525 /* Set next_in_group list pointer, and group name for NEWSECT. */
528 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
530 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
532 /* If num_group is zero, read in all SHT_GROUP sections. The count
533 is set to -1 if there are no SHT_GROUP sections. */
536 unsigned int i
, shnum
;
538 /* First count the number of groups. If we have a SHT_GROUP
539 section with just a flag word (ie. sh_size is 4), ignore it. */
540 shnum
= elf_numsections (abfd
);
543 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
544 ( (shdr)->sh_type == SHT_GROUP \
545 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
546 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
547 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
549 for (i
= 0; i
< shnum
; i
++)
551 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
553 if (IS_VALID_GROUP_SECTION_HEADER (shdr
))
559 num_group
= (unsigned) -1;
560 elf_tdata (abfd
)->num_group
= num_group
;
564 /* We keep a list of elf section headers for group sections,
565 so we can find them quickly. */
568 elf_tdata (abfd
)->num_group
= num_group
;
569 elf_tdata (abfd
)->group_sect_ptr
= (Elf_Internal_Shdr
**)
570 bfd_alloc2 (abfd
, num_group
, sizeof (Elf_Internal_Shdr
*));
571 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
575 for (i
= 0; i
< shnum
; i
++)
577 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
579 if (IS_VALID_GROUP_SECTION_HEADER (shdr
))
582 Elf_Internal_Group
*dest
;
584 /* Add to list of sections. */
585 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
588 /* Read the raw contents. */
589 BFD_ASSERT (sizeof (*dest
) >= 4);
590 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
591 shdr
->contents
= (unsigned char *)
592 bfd_alloc2 (abfd
, shdr
->sh_size
, sizeof (*dest
) / 4);
593 /* PR binutils/4110: Handle corrupt group headers. */
594 if (shdr
->contents
== NULL
)
597 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd
, shdr
->sh_size
);
598 bfd_set_error (bfd_error_bad_value
);
602 memset (shdr
->contents
, 0, amt
);
604 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
605 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
609 /* Translate raw contents, a flag word followed by an
610 array of elf section indices all in target byte order,
611 to the flag word followed by an array of elf section
613 src
= shdr
->contents
+ shdr
->sh_size
;
614 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
621 idx
= H_GET_32 (abfd
, src
);
622 if (src
== shdr
->contents
)
625 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
626 shdr
->bfd_section
->flags
627 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
632 ((*_bfd_error_handler
)
633 (_("%B: invalid SHT_GROUP entry"), abfd
));
636 dest
->shdr
= elf_elfsections (abfd
)[idx
];
643 if (num_group
!= (unsigned) -1)
647 for (i
= 0; i
< num_group
; i
++)
649 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
650 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
651 unsigned int n_elt
= shdr
->sh_size
/ 4;
653 /* Look through this group's sections to see if current
654 section is a member. */
656 if ((++idx
)->shdr
== hdr
)
660 /* We are a member of this group. Go looking through
661 other members to see if any others are linked via
663 idx
= (Elf_Internal_Group
*) shdr
->contents
;
664 n_elt
= shdr
->sh_size
/ 4;
666 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
667 && elf_next_in_group (s
) != NULL
)
671 /* Snarf the group name from other member, and
672 insert current section in circular list. */
673 elf_group_name (newsect
) = elf_group_name (s
);
674 elf_next_in_group (newsect
) = elf_next_in_group (s
);
675 elf_next_in_group (s
) = newsect
;
681 gname
= group_signature (abfd
, shdr
);
684 elf_group_name (newsect
) = gname
;
686 /* Start a circular list with one element. */
687 elf_next_in_group (newsect
) = newsect
;
690 /* If the group section has been created, point to the
692 if (shdr
->bfd_section
!= NULL
)
693 elf_next_in_group (shdr
->bfd_section
) = newsect
;
701 if (elf_group_name (newsect
) == NULL
)
703 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
710 _bfd_elf_setup_sections (bfd
*abfd
)
713 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
714 bfd_boolean result
= TRUE
;
717 /* Process SHF_LINK_ORDER. */
718 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
720 Elf_Internal_Shdr
*this_hdr
= &elf_section_data (s
)->this_hdr
;
721 if ((this_hdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
723 unsigned int elfsec
= this_hdr
->sh_link
;
724 /* FIXME: The old Intel compiler and old strip/objcopy may
725 not set the sh_link or sh_info fields. Hence we could
726 get the situation where elfsec is 0. */
729 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
730 if (bed
->link_order_error_handler
)
731 bed
->link_order_error_handler
732 (_("%B: warning: sh_link not set for section `%A'"),
737 asection
*link
= NULL
;
739 if (elfsec
< elf_numsections (abfd
))
741 this_hdr
= elf_elfsections (abfd
)[elfsec
];
742 link
= this_hdr
->bfd_section
;
746 Some strip/objcopy may leave an incorrect value in
747 sh_link. We don't want to proceed. */
750 (*_bfd_error_handler
)
751 (_("%B: sh_link [%d] in section `%A' is incorrect"),
752 s
->owner
, s
, elfsec
);
756 elf_linked_to_section (s
) = link
;
761 /* Process section groups. */
762 if (num_group
== (unsigned) -1)
765 for (i
= 0; i
< num_group
; i
++)
767 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
768 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
769 unsigned int n_elt
= shdr
->sh_size
/ 4;
772 if ((++idx
)->shdr
->bfd_section
)
773 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
774 else if (idx
->shdr
->sh_type
== SHT_RELA
775 || idx
->shdr
->sh_type
== SHT_REL
)
776 /* We won't include relocation sections in section groups in
777 output object files. We adjust the group section size here
778 so that relocatable link will work correctly when
779 relocation sections are in section group in input object
781 shdr
->bfd_section
->size
-= 4;
784 /* There are some unknown sections in the group. */
785 (*_bfd_error_handler
)
786 (_("%B: unknown [%d] section `%s' in group [%s]"),
788 (unsigned int) idx
->shdr
->sh_type
,
789 bfd_elf_string_from_elf_section (abfd
,
790 (elf_elfheader (abfd
)
793 shdr
->bfd_section
->name
);
801 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
803 return elf_next_in_group (sec
) != NULL
;
806 /* Make a BFD section from an ELF section. We store a pointer to the
807 BFD section in the bfd_section field of the header. */
810 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
811 Elf_Internal_Shdr
*hdr
,
817 const struct elf_backend_data
*bed
;
819 if (hdr
->bfd_section
!= NULL
)
821 BFD_ASSERT (strcmp (name
,
822 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
826 newsect
= bfd_make_section_anyway (abfd
, name
);
830 hdr
->bfd_section
= newsect
;
831 elf_section_data (newsect
)->this_hdr
= *hdr
;
832 elf_section_data (newsect
)->this_idx
= shindex
;
834 /* Always use the real type/flags. */
835 elf_section_type (newsect
) = hdr
->sh_type
;
836 elf_section_flags (newsect
) = hdr
->sh_flags
;
838 newsect
->filepos
= hdr
->sh_offset
;
840 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
841 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
842 || ! bfd_set_section_alignment (abfd
, newsect
,
843 bfd_log2 (hdr
->sh_addralign
)))
846 flags
= SEC_NO_FLAGS
;
847 if (hdr
->sh_type
!= SHT_NOBITS
)
848 flags
|= SEC_HAS_CONTENTS
;
849 if (hdr
->sh_type
== SHT_GROUP
)
850 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
851 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
854 if (hdr
->sh_type
!= SHT_NOBITS
)
857 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
858 flags
|= SEC_READONLY
;
859 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
861 else if ((flags
& SEC_LOAD
) != 0)
863 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
866 newsect
->entsize
= hdr
->sh_entsize
;
867 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
868 flags
|= SEC_STRINGS
;
870 if (hdr
->sh_flags
& SHF_GROUP
)
871 if (!setup_group (abfd
, hdr
, newsect
))
873 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
874 flags
|= SEC_THREAD_LOCAL
;
876 if ((flags
& SEC_ALLOC
) == 0)
878 /* The debugging sections appear to be recognized only by name,
879 not any sort of flag. Their SEC_ALLOC bits are cleared. */
884 } debug_sections
[] =
886 { STRING_COMMA_LEN ("debug") }, /* 'd' */
887 { NULL
, 0 }, /* 'e' */
888 { NULL
, 0 }, /* 'f' */
889 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
890 { NULL
, 0 }, /* 'h' */
891 { NULL
, 0 }, /* 'i' */
892 { NULL
, 0 }, /* 'j' */
893 { NULL
, 0 }, /* 'k' */
894 { STRING_COMMA_LEN ("line") }, /* 'l' */
895 { NULL
, 0 }, /* 'm' */
896 { NULL
, 0 }, /* 'n' */
897 { NULL
, 0 }, /* 'o' */
898 { NULL
, 0 }, /* 'p' */
899 { NULL
, 0 }, /* 'q' */
900 { NULL
, 0 }, /* 'r' */
901 { STRING_COMMA_LEN ("stab") }, /* 's' */
902 { NULL
, 0 }, /* 't' */
903 { NULL
, 0 }, /* 'u' */
904 { NULL
, 0 }, /* 'v' */
905 { NULL
, 0 }, /* 'w' */
906 { NULL
, 0 }, /* 'x' */
907 { NULL
, 0 }, /* 'y' */
908 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
913 int i
= name
[1] - 'd';
915 && i
< (int) ARRAY_SIZE (debug_sections
)
916 && debug_sections
[i
].name
!= NULL
917 && strncmp (&name
[1], debug_sections
[i
].name
,
918 debug_sections
[i
].len
) == 0)
919 flags
|= SEC_DEBUGGING
;
923 /* As a GNU extension, if the name begins with .gnu.linkonce, we
924 only link a single copy of the section. This is used to support
925 g++. g++ will emit each template expansion in its own section.
926 The symbols will be defined as weak, so that multiple definitions
927 are permitted. The GNU linker extension is to actually discard
928 all but one of the sections. */
929 if (CONST_STRNEQ (name
, ".gnu.linkonce")
930 && elf_next_in_group (newsect
) == NULL
)
931 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
933 bed
= get_elf_backend_data (abfd
);
934 if (bed
->elf_backend_section_flags
)
935 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
938 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
941 /* We do not parse the PT_NOTE segments as we are interested even in the
942 separate debug info files which may have the segments offsets corrupted.
943 PT_NOTEs from the core files are currently not parsed using BFD. */
944 if (hdr
->sh_type
== SHT_NOTE
)
948 if (!bfd_malloc_and_get_section (abfd
, newsect
, &contents
))
951 elf_parse_notes (abfd
, (char *) contents
, hdr
->sh_size
, -1);
955 if ((flags
& SEC_ALLOC
) != 0)
957 Elf_Internal_Phdr
*phdr
;
958 unsigned int i
, nload
;
960 /* Some ELF linkers produce binaries with all the program header
961 p_paddr fields zero. If we have such a binary with more than
962 one PT_LOAD header, then leave the section lma equal to vma
963 so that we don't create sections with overlapping lma. */
964 phdr
= elf_tdata (abfd
)->phdr
;
965 for (nload
= 0, i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
966 if (phdr
->p_paddr
!= 0)
968 else if (phdr
->p_type
== PT_LOAD
&& phdr
->p_memsz
!= 0)
970 if (i
>= elf_elfheader (abfd
)->e_phnum
&& nload
> 1)
973 phdr
= elf_tdata (abfd
)->phdr
;
974 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
976 if (phdr
->p_type
== PT_LOAD
977 && ELF_IS_SECTION_IN_SEGMENT (hdr
, phdr
))
979 if ((flags
& SEC_LOAD
) == 0)
980 newsect
->lma
= (phdr
->p_paddr
981 + hdr
->sh_addr
- phdr
->p_vaddr
);
983 /* We used to use the same adjustment for SEC_LOAD
984 sections, but that doesn't work if the segment
985 is packed with code from multiple VMAs.
986 Instead we calculate the section LMA based on
987 the segment LMA. It is assumed that the
988 segment will contain sections with contiguous
989 LMAs, even if the VMAs are not. */
990 newsect
->lma
= (phdr
->p_paddr
991 + hdr
->sh_offset
- phdr
->p_offset
);
993 /* With contiguous segments, we can't tell from file
994 offsets whether a section with zero size should
995 be placed at the end of one segment or the
996 beginning of the next. Decide based on vaddr. */
997 if (hdr
->sh_addr
>= phdr
->p_vaddr
998 && (hdr
->sh_addr
+ hdr
->sh_size
999 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
1008 const char *const bfd_elf_section_type_names
[] = {
1009 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1010 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1011 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1014 /* ELF relocs are against symbols. If we are producing relocatable
1015 output, and the reloc is against an external symbol, and nothing
1016 has given us any additional addend, the resulting reloc will also
1017 be against the same symbol. In such a case, we don't want to
1018 change anything about the way the reloc is handled, since it will
1019 all be done at final link time. Rather than put special case code
1020 into bfd_perform_relocation, all the reloc types use this howto
1021 function. It just short circuits the reloc if producing
1022 relocatable output against an external symbol. */
1024 bfd_reloc_status_type
1025 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
1026 arelent
*reloc_entry
,
1028 void *data ATTRIBUTE_UNUSED
,
1029 asection
*input_section
,
1031 char **error_message ATTRIBUTE_UNUSED
)
1033 if (output_bfd
!= NULL
1034 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1035 && (! reloc_entry
->howto
->partial_inplace
1036 || reloc_entry
->addend
== 0))
1038 reloc_entry
->address
+= input_section
->output_offset
;
1039 return bfd_reloc_ok
;
1042 return bfd_reloc_continue
;
1045 /* Copy the program header and other data from one object module to
1049 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1051 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1052 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1055 BFD_ASSERT (!elf_flags_init (obfd
)
1056 || (elf_elfheader (obfd
)->e_flags
1057 == elf_elfheader (ibfd
)->e_flags
));
1059 elf_gp (obfd
) = elf_gp (ibfd
);
1060 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1061 elf_flags_init (obfd
) = TRUE
;
1063 /* Copy object attributes. */
1064 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
1070 get_segment_type (unsigned int p_type
)
1075 case PT_NULL
: pt
= "NULL"; break;
1076 case PT_LOAD
: pt
= "LOAD"; break;
1077 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1078 case PT_INTERP
: pt
= "INTERP"; break;
1079 case PT_NOTE
: pt
= "NOTE"; break;
1080 case PT_SHLIB
: pt
= "SHLIB"; break;
1081 case PT_PHDR
: pt
= "PHDR"; break;
1082 case PT_TLS
: pt
= "TLS"; break;
1083 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1084 case PT_GNU_STACK
: pt
= "STACK"; break;
1085 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1086 default: pt
= NULL
; break;
1091 /* Print out the program headers. */
1094 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1096 FILE *f
= (FILE *) farg
;
1097 Elf_Internal_Phdr
*p
;
1099 bfd_byte
*dynbuf
= NULL
;
1101 p
= elf_tdata (abfd
)->phdr
;
1106 fprintf (f
, _("\nProgram Header:\n"));
1107 c
= elf_elfheader (abfd
)->e_phnum
;
1108 for (i
= 0; i
< c
; i
++, p
++)
1110 const char *pt
= get_segment_type (p
->p_type
);
1115 sprintf (buf
, "0x%lx", p
->p_type
);
1118 fprintf (f
, "%8s off 0x", pt
);
1119 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1120 fprintf (f
, " vaddr 0x");
1121 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1122 fprintf (f
, " paddr 0x");
1123 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1124 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1125 fprintf (f
, " filesz 0x");
1126 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1127 fprintf (f
, " memsz 0x");
1128 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1129 fprintf (f
, " flags %c%c%c",
1130 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1131 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1132 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1133 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1134 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1139 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1142 unsigned int elfsec
;
1143 unsigned long shlink
;
1144 bfd_byte
*extdyn
, *extdynend
;
1146 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1148 fprintf (f
, _("\nDynamic Section:\n"));
1150 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1153 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1154 if (elfsec
== SHN_BAD
)
1156 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1158 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1159 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1162 extdynend
= extdyn
+ s
->size
;
1163 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1165 Elf_Internal_Dyn dyn
;
1166 const char *name
= "";
1168 bfd_boolean stringp
;
1169 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1171 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1173 if (dyn
.d_tag
== DT_NULL
)
1180 if (bed
->elf_backend_get_target_dtag
)
1181 name
= (*bed
->elf_backend_get_target_dtag
) (dyn
.d_tag
);
1183 if (!strcmp (name
, ""))
1185 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1190 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1191 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1192 case DT_PLTGOT
: name
= "PLTGOT"; break;
1193 case DT_HASH
: name
= "HASH"; break;
1194 case DT_STRTAB
: name
= "STRTAB"; break;
1195 case DT_SYMTAB
: name
= "SYMTAB"; break;
1196 case DT_RELA
: name
= "RELA"; break;
1197 case DT_RELASZ
: name
= "RELASZ"; break;
1198 case DT_RELAENT
: name
= "RELAENT"; break;
1199 case DT_STRSZ
: name
= "STRSZ"; break;
1200 case DT_SYMENT
: name
= "SYMENT"; break;
1201 case DT_INIT
: name
= "INIT"; break;
1202 case DT_FINI
: name
= "FINI"; break;
1203 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1204 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1205 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1206 case DT_REL
: name
= "REL"; break;
1207 case DT_RELSZ
: name
= "RELSZ"; break;
1208 case DT_RELENT
: name
= "RELENT"; break;
1209 case DT_PLTREL
: name
= "PLTREL"; break;
1210 case DT_DEBUG
: name
= "DEBUG"; break;
1211 case DT_TEXTREL
: name
= "TEXTREL"; break;
1212 case DT_JMPREL
: name
= "JMPREL"; break;
1213 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1214 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1215 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1216 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1217 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1218 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1219 case DT_FLAGS
: name
= "FLAGS"; break;
1220 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1221 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1222 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1223 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1224 case DT_MOVEENT
: name
= "MOVEENT"; break;
1225 case DT_MOVESZ
: name
= "MOVESZ"; break;
1226 case DT_FEATURE
: name
= "FEATURE"; break;
1227 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1228 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1229 case DT_SYMINENT
: name
= "SYMINENT"; break;
1230 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1231 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1232 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1233 case DT_PLTPAD
: name
= "PLTPAD"; break;
1234 case DT_MOVETAB
: name
= "MOVETAB"; break;
1235 case DT_SYMINFO
: name
= "SYMINFO"; break;
1236 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1237 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1238 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1239 case DT_VERSYM
: name
= "VERSYM"; break;
1240 case DT_VERDEF
: name
= "VERDEF"; break;
1241 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1242 case DT_VERNEED
: name
= "VERNEED"; break;
1243 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1244 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1245 case DT_USED
: name
= "USED"; break;
1246 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1247 case DT_GNU_HASH
: name
= "GNU_HASH"; break;
1250 fprintf (f
, " %-20s ", name
);
1254 bfd_fprintf_vma (abfd
, f
, dyn
.d_un
.d_val
);
1259 unsigned int tagv
= dyn
.d_un
.d_val
;
1261 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1264 fprintf (f
, "%s", string
);
1273 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1274 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1276 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1280 if (elf_dynverdef (abfd
) != 0)
1282 Elf_Internal_Verdef
*t
;
1284 fprintf (f
, _("\nVersion definitions:\n"));
1285 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1287 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1288 t
->vd_flags
, t
->vd_hash
,
1289 t
->vd_nodename
? t
->vd_nodename
: "<corrupt>");
1290 if (t
->vd_auxptr
!= NULL
&& t
->vd_auxptr
->vda_nextptr
!= NULL
)
1292 Elf_Internal_Verdaux
*a
;
1295 for (a
= t
->vd_auxptr
->vda_nextptr
;
1299 a
->vda_nodename
? a
->vda_nodename
: "<corrupt>");
1305 if (elf_dynverref (abfd
) != 0)
1307 Elf_Internal_Verneed
*t
;
1309 fprintf (f
, _("\nVersion References:\n"));
1310 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1312 Elf_Internal_Vernaux
*a
;
1314 fprintf (f
, _(" required from %s:\n"),
1315 t
->vn_filename
? t
->vn_filename
: "<corrupt>");
1316 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1317 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1318 a
->vna_flags
, a
->vna_other
,
1319 a
->vna_nodename
? a
->vna_nodename
: "<corrupt>");
1331 /* Display ELF-specific fields of a symbol. */
1334 bfd_elf_print_symbol (bfd
*abfd
,
1337 bfd_print_symbol_type how
)
1339 FILE *file
= (FILE *) filep
;
1342 case bfd_print_symbol_name
:
1343 fprintf (file
, "%s", symbol
->name
);
1345 case bfd_print_symbol_more
:
1346 fprintf (file
, "elf ");
1347 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1348 fprintf (file
, " %lx", (unsigned long) symbol
->flags
);
1350 case bfd_print_symbol_all
:
1352 const char *section_name
;
1353 const char *name
= NULL
;
1354 const struct elf_backend_data
*bed
;
1355 unsigned char st_other
;
1358 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1360 bed
= get_elf_backend_data (abfd
);
1361 if (bed
->elf_backend_print_symbol_all
)
1362 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1366 name
= symbol
->name
;
1367 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1370 fprintf (file
, " %s\t", section_name
);
1371 /* Print the "other" value for a symbol. For common symbols,
1372 we've already printed the size; now print the alignment.
1373 For other symbols, we have no specified alignment, and
1374 we've printed the address; now print the size. */
1375 if (symbol
->section
&& bfd_is_com_section (symbol
->section
))
1376 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1378 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1379 bfd_fprintf_vma (abfd
, file
, val
);
1381 /* If we have version information, print it. */
1382 if (elf_tdata (abfd
)->dynversym_section
!= 0
1383 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1384 || elf_tdata (abfd
)->dynverref_section
!= 0))
1386 unsigned int vernum
;
1387 const char *version_string
;
1389 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1392 version_string
= "";
1393 else if (vernum
== 1)
1394 version_string
= "Base";
1395 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1397 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1400 Elf_Internal_Verneed
*t
;
1402 version_string
= "";
1403 for (t
= elf_tdata (abfd
)->verref
;
1407 Elf_Internal_Vernaux
*a
;
1409 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1411 if (a
->vna_other
== vernum
)
1413 version_string
= a
->vna_nodename
;
1420 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1421 fprintf (file
, " %-11s", version_string
);
1426 fprintf (file
, " (%s)", version_string
);
1427 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1432 /* If the st_other field is not zero, print it. */
1433 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1438 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1439 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1440 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1442 /* Some other non-defined flags are also present, so print
1444 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1447 fprintf (file
, " %s", name
);
1453 /* Allocate an ELF string table--force the first byte to be zero. */
1455 struct bfd_strtab_hash
*
1456 _bfd_elf_stringtab_init (void)
1458 struct bfd_strtab_hash
*ret
;
1460 ret
= _bfd_stringtab_init ();
1465 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1466 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1467 if (loc
== (bfd_size_type
) -1)
1469 _bfd_stringtab_free (ret
);
1476 /* ELF .o/exec file reading */
1478 /* Create a new bfd section from an ELF section header. */
1481 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1483 Elf_Internal_Shdr
*hdr
;
1484 Elf_Internal_Ehdr
*ehdr
;
1485 const struct elf_backend_data
*bed
;
1488 if (shindex
>= elf_numsections (abfd
))
1491 hdr
= elf_elfsections (abfd
)[shindex
];
1492 ehdr
= elf_elfheader (abfd
);
1493 name
= bfd_elf_string_from_elf_section (abfd
, ehdr
->e_shstrndx
,
1498 bed
= get_elf_backend_data (abfd
);
1499 switch (hdr
->sh_type
)
1502 /* Inactive section. Throw it away. */
1505 case SHT_PROGBITS
: /* Normal section with contents. */
1506 case SHT_NOBITS
: /* .bss section. */
1507 case SHT_HASH
: /* .hash section. */
1508 case SHT_NOTE
: /* .note section. */
1509 case SHT_INIT_ARRAY
: /* .init_array section. */
1510 case SHT_FINI_ARRAY
: /* .fini_array section. */
1511 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1512 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1513 case SHT_GNU_HASH
: /* .gnu.hash section. */
1514 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1516 case SHT_DYNAMIC
: /* Dynamic linking information. */
1517 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1519 if (hdr
->sh_link
> elf_numsections (abfd
))
1521 /* PR 10478: Accept sparc binaries with a sh_link
1522 field set to SHN_BEFORE or SHN_AFTER. */
1523 switch (bfd_get_arch (abfd
))
1525 case bfd_arch_sparc
:
1526 if (hdr
->sh_link
== (SHN_LORESERVE
& 0xffff) /* SHN_BEFORE */
1527 || hdr
->sh_link
== ((SHN_LORESERVE
+ 1) & 0xffff) /* SHN_AFTER */)
1529 /* Otherwise fall through. */
1534 else if (elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1536 else if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1538 Elf_Internal_Shdr
*dynsymhdr
;
1540 /* The shared libraries distributed with hpux11 have a bogus
1541 sh_link field for the ".dynamic" section. Find the
1542 string table for the ".dynsym" section instead. */
1543 if (elf_dynsymtab (abfd
) != 0)
1545 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1546 hdr
->sh_link
= dynsymhdr
->sh_link
;
1550 unsigned int i
, num_sec
;
1552 num_sec
= elf_numsections (abfd
);
1553 for (i
= 1; i
< num_sec
; i
++)
1555 dynsymhdr
= elf_elfsections (abfd
)[i
];
1556 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1558 hdr
->sh_link
= dynsymhdr
->sh_link
;
1566 case SHT_SYMTAB
: /* A symbol table */
1567 if (elf_onesymtab (abfd
) == shindex
)
1570 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1572 if (hdr
->sh_info
* hdr
->sh_entsize
> hdr
->sh_size
)
1574 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1575 elf_onesymtab (abfd
) = shindex
;
1576 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1577 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1578 abfd
->flags
|= HAS_SYMS
;
1580 /* Sometimes a shared object will map in the symbol table. If
1581 SHF_ALLOC is set, and this is a shared object, then we also
1582 treat this section as a BFD section. We can not base the
1583 decision purely on SHF_ALLOC, because that flag is sometimes
1584 set in a relocatable object file, which would confuse the
1586 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1587 && (abfd
->flags
& DYNAMIC
) != 0
1588 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1592 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1593 can't read symbols without that section loaded as well. It
1594 is most likely specified by the next section header. */
1595 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1597 unsigned int i
, num_sec
;
1599 num_sec
= elf_numsections (abfd
);
1600 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1602 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1603 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1604 && hdr2
->sh_link
== shindex
)
1608 for (i
= 1; i
< shindex
; i
++)
1610 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1611 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1612 && hdr2
->sh_link
== shindex
)
1616 return bfd_section_from_shdr (abfd
, i
);
1620 case SHT_DYNSYM
: /* A dynamic symbol table */
1621 if (elf_dynsymtab (abfd
) == shindex
)
1624 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1626 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1627 elf_dynsymtab (abfd
) = shindex
;
1628 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1629 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1630 abfd
->flags
|= HAS_SYMS
;
1632 /* Besides being a symbol table, we also treat this as a regular
1633 section, so that objcopy can handle it. */
1634 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1636 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1637 if (elf_symtab_shndx (abfd
) == shindex
)
1640 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1641 elf_symtab_shndx (abfd
) = shindex
;
1642 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1643 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1646 case SHT_STRTAB
: /* A string table */
1647 if (hdr
->bfd_section
!= NULL
)
1649 if (ehdr
->e_shstrndx
== shindex
)
1651 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1652 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1655 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1658 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1659 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1662 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1665 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1666 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1667 elf_elfsections (abfd
)[shindex
] = hdr
;
1668 /* We also treat this as a regular section, so that objcopy
1670 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1674 /* If the string table isn't one of the above, then treat it as a
1675 regular section. We need to scan all the headers to be sure,
1676 just in case this strtab section appeared before the above. */
1677 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
1679 unsigned int i
, num_sec
;
1681 num_sec
= elf_numsections (abfd
);
1682 for (i
= 1; i
< num_sec
; i
++)
1684 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1685 if (hdr2
->sh_link
== shindex
)
1687 /* Prevent endless recursion on broken objects. */
1690 if (! bfd_section_from_shdr (abfd
, i
))
1692 if (elf_onesymtab (abfd
) == i
)
1694 if (elf_dynsymtab (abfd
) == i
)
1695 goto dynsymtab_strtab
;
1699 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1703 /* *These* do a lot of work -- but build no sections! */
1705 asection
*target_sect
;
1706 Elf_Internal_Shdr
*hdr2
;
1707 unsigned int num_sec
= elf_numsections (abfd
);
1710 != (bfd_size_type
) (hdr
->sh_type
== SHT_REL
1711 ? bed
->s
->sizeof_rel
: bed
->s
->sizeof_rela
))
1714 /* Check for a bogus link to avoid crashing. */
1715 if (hdr
->sh_link
>= num_sec
)
1717 ((*_bfd_error_handler
)
1718 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1719 abfd
, hdr
->sh_link
, name
, shindex
));
1720 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1724 /* For some incomprehensible reason Oracle distributes
1725 libraries for Solaris in which some of the objects have
1726 bogus sh_link fields. It would be nice if we could just
1727 reject them, but, unfortunately, some people need to use
1728 them. We scan through the section headers; if we find only
1729 one suitable symbol table, we clobber the sh_link to point
1730 to it. I hope this doesn't break anything.
1732 Don't do it on executable nor shared library. */
1733 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0
1734 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
1735 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
1741 for (scan
= 1; scan
< num_sec
; scan
++)
1743 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
1744 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
1755 hdr
->sh_link
= found
;
1758 /* Get the symbol table. */
1759 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
1760 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
1761 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
1764 /* If this reloc section does not use the main symbol table we
1765 don't treat it as a reloc section. BFD can't adequately
1766 represent such a section, so at least for now, we don't
1767 try. We just present it as a normal section. We also
1768 can't use it as a reloc section if it points to the null
1769 section, an invalid section, another reloc section, or its
1770 sh_link points to the null section. */
1771 if (hdr
->sh_link
!= elf_onesymtab (abfd
)
1772 || hdr
->sh_link
== SHN_UNDEF
1773 || hdr
->sh_info
== SHN_UNDEF
1774 || hdr
->sh_info
>= num_sec
1775 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_REL
1776 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_RELA
)
1777 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1780 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
1782 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
1783 if (target_sect
== NULL
)
1786 if ((target_sect
->flags
& SEC_RELOC
) == 0
1787 || target_sect
->reloc_count
== 0)
1788 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
1792 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
1793 amt
= sizeof (*hdr2
);
1794 hdr2
= (Elf_Internal_Shdr
*) bfd_alloc (abfd
, amt
);
1797 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
1800 elf_elfsections (abfd
)[shindex
] = hdr2
;
1801 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
1802 target_sect
->flags
|= SEC_RELOC
;
1803 target_sect
->relocation
= NULL
;
1804 target_sect
->rel_filepos
= hdr
->sh_offset
;
1805 /* In the section to which the relocations apply, mark whether
1806 its relocations are of the REL or RELA variety. */
1807 if (hdr
->sh_size
!= 0)
1808 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
1809 abfd
->flags
|= HAS_RELOC
;
1813 case SHT_GNU_verdef
:
1814 elf_dynverdef (abfd
) = shindex
;
1815 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
1816 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1818 case SHT_GNU_versym
:
1819 if (hdr
->sh_entsize
!= sizeof (Elf_External_Versym
))
1821 elf_dynversym (abfd
) = shindex
;
1822 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
1823 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1825 case SHT_GNU_verneed
:
1826 elf_dynverref (abfd
) = shindex
;
1827 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
1828 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1834 if (! IS_VALID_GROUP_SECTION_HEADER (hdr
))
1836 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1838 if (hdr
->contents
!= NULL
)
1840 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
1841 unsigned int n_elt
= hdr
->sh_size
/ GRP_ENTRY_SIZE
;
1844 if (idx
->flags
& GRP_COMDAT
)
1845 hdr
->bfd_section
->flags
1846 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
1848 /* We try to keep the same section order as it comes in. */
1850 while (--n_elt
!= 0)
1854 if (idx
->shdr
!= NULL
1855 && (s
= idx
->shdr
->bfd_section
) != NULL
1856 && elf_next_in_group (s
) != NULL
)
1858 elf_next_in_group (hdr
->bfd_section
) = s
;
1866 /* Possibly an attributes section. */
1867 if (hdr
->sh_type
== SHT_GNU_ATTRIBUTES
1868 || hdr
->sh_type
== bed
->obj_attrs_section_type
)
1870 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1872 _bfd_elf_parse_attributes (abfd
, hdr
);
1876 /* Check for any processor-specific section types. */
1877 if (bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
, shindex
))
1880 if (hdr
->sh_type
>= SHT_LOUSER
&& hdr
->sh_type
<= SHT_HIUSER
)
1882 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
1883 /* FIXME: How to properly handle allocated section reserved
1884 for applications? */
1885 (*_bfd_error_handler
)
1886 (_("%B: don't know how to handle allocated, application "
1887 "specific section `%s' [0x%8x]"),
1888 abfd
, name
, hdr
->sh_type
);
1890 /* Allow sections reserved for applications. */
1891 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1894 else if (hdr
->sh_type
>= SHT_LOPROC
1895 && hdr
->sh_type
<= SHT_HIPROC
)
1896 /* FIXME: We should handle this section. */
1897 (*_bfd_error_handler
)
1898 (_("%B: don't know how to handle processor specific section "
1900 abfd
, name
, hdr
->sh_type
);
1901 else if (hdr
->sh_type
>= SHT_LOOS
&& hdr
->sh_type
<= SHT_HIOS
)
1903 /* Unrecognised OS-specific sections. */
1904 if ((hdr
->sh_flags
& SHF_OS_NONCONFORMING
) != 0)
1905 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1906 required to correctly process the section and the file should
1907 be rejected with an error message. */
1908 (*_bfd_error_handler
)
1909 (_("%B: don't know how to handle OS specific section "
1911 abfd
, name
, hdr
->sh_type
);
1913 /* Otherwise it should be processed. */
1914 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1917 /* FIXME: We should handle this section. */
1918 (*_bfd_error_handler
)
1919 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1920 abfd
, name
, hdr
->sh_type
);
1928 /* Return the local symbol specified by ABFD, R_SYMNDX. */
1931 bfd_sym_from_r_symndx (struct sym_cache
*cache
,
1933 unsigned long r_symndx
)
1935 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
1937 if (cache
->abfd
!= abfd
|| cache
->indx
[ent
] != r_symndx
)
1939 Elf_Internal_Shdr
*symtab_hdr
;
1940 unsigned char esym
[sizeof (Elf64_External_Sym
)];
1941 Elf_External_Sym_Shndx eshndx
;
1943 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1944 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
1945 &cache
->sym
[ent
], esym
, &eshndx
) == NULL
)
1948 if (cache
->abfd
!= abfd
)
1950 memset (cache
->indx
, -1, sizeof (cache
->indx
));
1953 cache
->indx
[ent
] = r_symndx
;
1956 return &cache
->sym
[ent
];
1959 /* Given an ELF section number, retrieve the corresponding BFD
1963 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
1965 if (index
>= elf_numsections (abfd
))
1967 return elf_elfsections (abfd
)[index
]->bfd_section
;
1970 static const struct bfd_elf_special_section special_sections_b
[] =
1972 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
1973 { NULL
, 0, 0, 0, 0 }
1976 static const struct bfd_elf_special_section special_sections_c
[] =
1978 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS
, 0 },
1979 { NULL
, 0, 0, 0, 0 }
1982 static const struct bfd_elf_special_section special_sections_d
[] =
1984 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
1985 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
1986 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS
, 0 },
1987 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS
, 0 },
1988 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS
, 0 },
1989 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS
, 0 },
1990 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS
, 0 },
1991 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, SHF_ALLOC
},
1992 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, SHF_ALLOC
},
1993 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, SHF_ALLOC
},
1994 { NULL
, 0, 0, 0, 0 }
1997 static const struct bfd_elf_special_section special_sections_f
[] =
1999 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2000 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2001 { NULL
, 0, 0, 0, 0 }
2004 static const struct bfd_elf_special_section special_sections_g
[] =
2006 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2007 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2008 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym
, 0 },
2009 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef
, 0 },
2010 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed
, 0 },
2011 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2012 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA
, SHF_ALLOC
},
2013 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH
, SHF_ALLOC
},
2014 { NULL
, 0, 0, 0, 0 }
2017 static const struct bfd_elf_special_section special_sections_h
[] =
2019 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, SHF_ALLOC
},
2020 { NULL
, 0, 0, 0, 0 }
2023 static const struct bfd_elf_special_section special_sections_i
[] =
2025 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2026 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2027 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS
, 0 },
2028 { NULL
, 0, 0, 0, 0 }
2031 static const struct bfd_elf_special_section special_sections_l
[] =
2033 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS
, 0 },
2034 { NULL
, 0, 0, 0, 0 }
2037 static const struct bfd_elf_special_section special_sections_n
[] =
2039 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS
, 0 },
2040 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE
, 0 },
2041 { NULL
, 0, 0, 0, 0 }
2044 static const struct bfd_elf_special_section special_sections_p
[] =
2046 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2047 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2048 { NULL
, 0, 0, 0, 0 }
2051 static const struct bfd_elf_special_section special_sections_r
[] =
2053 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS
, SHF_ALLOC
},
2054 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS
, SHF_ALLOC
},
2055 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA
, 0 },
2056 { STRING_COMMA_LEN (".rel"), -1, SHT_REL
, 0 },
2057 { NULL
, 0, 0, 0, 0 }
2060 static const struct bfd_elf_special_section special_sections_s
[] =
2062 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB
, 0 },
2063 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB
, 0 },
2064 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB
, 0 },
2065 /* See struct bfd_elf_special_section declaration for the semantics of
2066 this special case where .prefix_length != strlen (.prefix). */
2067 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2068 { NULL
, 0, 0, 0, 0 }
2071 static const struct bfd_elf_special_section special_sections_t
[] =
2073 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2074 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2075 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2076 { NULL
, 0, 0, 0, 0 }
2079 static const struct bfd_elf_special_section special_sections_z
[] =
2081 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS
, 0 },
2082 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS
, 0 },
2083 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS
, 0 },
2084 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS
, 0 },
2085 { NULL
, 0, 0, 0, 0 }
2088 static const struct bfd_elf_special_section
*special_sections
[] =
2090 special_sections_b
, /* 'b' */
2091 special_sections_c
, /* 'c' */
2092 special_sections_d
, /* 'd' */
2094 special_sections_f
, /* 'f' */
2095 special_sections_g
, /* 'g' */
2096 special_sections_h
, /* 'h' */
2097 special_sections_i
, /* 'i' */
2100 special_sections_l
, /* 'l' */
2102 special_sections_n
, /* 'n' */
2104 special_sections_p
, /* 'p' */
2106 special_sections_r
, /* 'r' */
2107 special_sections_s
, /* 's' */
2108 special_sections_t
, /* 't' */
2114 special_sections_z
/* 'z' */
2117 const struct bfd_elf_special_section
*
2118 _bfd_elf_get_special_section (const char *name
,
2119 const struct bfd_elf_special_section
*spec
,
2125 len
= strlen (name
);
2127 for (i
= 0; spec
[i
].prefix
!= NULL
; i
++)
2130 int prefix_len
= spec
[i
].prefix_length
;
2132 if (len
< prefix_len
)
2134 if (memcmp (name
, spec
[i
].prefix
, prefix_len
) != 0)
2137 suffix_len
= spec
[i
].suffix_length
;
2138 if (suffix_len
<= 0)
2140 if (name
[prefix_len
] != 0)
2142 if (suffix_len
== 0)
2144 if (name
[prefix_len
] != '.'
2145 && (suffix_len
== -2
2146 || (rela
&& spec
[i
].type
== SHT_REL
)))
2152 if (len
< prefix_len
+ suffix_len
)
2154 if (memcmp (name
+ len
- suffix_len
,
2155 spec
[i
].prefix
+ prefix_len
,
2165 const struct bfd_elf_special_section
*
2166 _bfd_elf_get_sec_type_attr (bfd
*abfd
, asection
*sec
)
2169 const struct bfd_elf_special_section
*spec
;
2170 const struct elf_backend_data
*bed
;
2172 /* See if this is one of the special sections. */
2173 if (sec
->name
== NULL
)
2176 bed
= get_elf_backend_data (abfd
);
2177 spec
= bed
->special_sections
;
2180 spec
= _bfd_elf_get_special_section (sec
->name
,
2181 bed
->special_sections
,
2187 if (sec
->name
[0] != '.')
2190 i
= sec
->name
[1] - 'b';
2191 if (i
< 0 || i
> 'z' - 'b')
2194 spec
= special_sections
[i
];
2199 return _bfd_elf_get_special_section (sec
->name
, spec
, sec
->use_rela_p
);
2203 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2205 struct bfd_elf_section_data
*sdata
;
2206 const struct elf_backend_data
*bed
;
2207 const struct bfd_elf_special_section
*ssect
;
2209 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2212 sdata
= (struct bfd_elf_section_data
*) bfd_zalloc (abfd
,
2216 sec
->used_by_bfd
= sdata
;
2219 /* Indicate whether or not this section should use RELA relocations. */
2220 bed
= get_elf_backend_data (abfd
);
2221 sec
->use_rela_p
= bed
->default_use_rela_p
;
2223 /* When we read a file, we don't need to set ELF section type and
2224 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2225 anyway. We will set ELF section type and flags for all linker
2226 created sections. If user specifies BFD section flags, we will
2227 set ELF section type and flags based on BFD section flags in
2228 elf_fake_sections. */
2229 if ((!sec
->flags
&& abfd
->direction
!= read_direction
)
2230 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2232 ssect
= (*bed
->get_sec_type_attr
) (abfd
, sec
);
2235 elf_section_type (sec
) = ssect
->type
;
2236 elf_section_flags (sec
) = ssect
->attr
;
2240 return _bfd_generic_new_section_hook (abfd
, sec
);
2243 /* Create a new bfd section from an ELF program header.
2245 Since program segments have no names, we generate a synthetic name
2246 of the form segment<NUM>, where NUM is generally the index in the
2247 program header table. For segments that are split (see below) we
2248 generate the names segment<NUM>a and segment<NUM>b.
2250 Note that some program segments may have a file size that is different than
2251 (less than) the memory size. All this means is that at execution the
2252 system must allocate the amount of memory specified by the memory size,
2253 but only initialize it with the first "file size" bytes read from the
2254 file. This would occur for example, with program segments consisting
2255 of combined data+bss.
2257 To handle the above situation, this routine generates TWO bfd sections
2258 for the single program segment. The first has the length specified by
2259 the file size of the segment, and the second has the length specified
2260 by the difference between the two sizes. In effect, the segment is split
2261 into its initialized and uninitialized parts.
2266 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2267 Elf_Internal_Phdr
*hdr
,
2269 const char *type_name
)
2277 split
= ((hdr
->p_memsz
> 0)
2278 && (hdr
->p_filesz
> 0)
2279 && (hdr
->p_memsz
> hdr
->p_filesz
));
2281 if (hdr
->p_filesz
> 0)
2283 sprintf (namebuf
, "%s%d%s", type_name
, index
, split
? "a" : "");
2284 len
= strlen (namebuf
) + 1;
2285 name
= (char *) bfd_alloc (abfd
, len
);
2288 memcpy (name
, namebuf
, len
);
2289 newsect
= bfd_make_section (abfd
, name
);
2290 if (newsect
== NULL
)
2292 newsect
->vma
= hdr
->p_vaddr
;
2293 newsect
->lma
= hdr
->p_paddr
;
2294 newsect
->size
= hdr
->p_filesz
;
2295 newsect
->filepos
= hdr
->p_offset
;
2296 newsect
->flags
|= SEC_HAS_CONTENTS
;
2297 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2298 if (hdr
->p_type
== PT_LOAD
)
2300 newsect
->flags
|= SEC_ALLOC
;
2301 newsect
->flags
|= SEC_LOAD
;
2302 if (hdr
->p_flags
& PF_X
)
2304 /* FIXME: all we known is that it has execute PERMISSION,
2306 newsect
->flags
|= SEC_CODE
;
2309 if (!(hdr
->p_flags
& PF_W
))
2311 newsect
->flags
|= SEC_READONLY
;
2315 if (hdr
->p_memsz
> hdr
->p_filesz
)
2319 sprintf (namebuf
, "%s%d%s", type_name
, index
, split
? "b" : "");
2320 len
= strlen (namebuf
) + 1;
2321 name
= (char *) bfd_alloc (abfd
, len
);
2324 memcpy (name
, namebuf
, len
);
2325 newsect
= bfd_make_section (abfd
, name
);
2326 if (newsect
== NULL
)
2328 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2329 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2330 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2331 newsect
->filepos
= hdr
->p_offset
+ hdr
->p_filesz
;
2332 align
= newsect
->vma
& -newsect
->vma
;
2333 if (align
== 0 || align
> hdr
->p_align
)
2334 align
= hdr
->p_align
;
2335 newsect
->alignment_power
= bfd_log2 (align
);
2336 if (hdr
->p_type
== PT_LOAD
)
2338 /* Hack for gdb. Segments that have not been modified do
2339 not have their contents written to a core file, on the
2340 assumption that a debugger can find the contents in the
2341 executable. We flag this case by setting the fake
2342 section size to zero. Note that "real" bss sections will
2343 always have their contents dumped to the core file. */
2344 if (bfd_get_format (abfd
) == bfd_core
)
2346 newsect
->flags
|= SEC_ALLOC
;
2347 if (hdr
->p_flags
& PF_X
)
2348 newsect
->flags
|= SEC_CODE
;
2350 if (!(hdr
->p_flags
& PF_W
))
2351 newsect
->flags
|= SEC_READONLY
;
2358 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2360 const struct elf_backend_data
*bed
;
2362 switch (hdr
->p_type
)
2365 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2368 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2371 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2374 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2377 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2379 if (! elf_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2384 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2387 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2389 case PT_GNU_EH_FRAME
:
2390 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2394 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2397 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "relro");
2400 /* Check for any processor-specific program segment types. */
2401 bed
= get_elf_backend_data (abfd
);
2402 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, index
, "proc");
2406 /* Initialize REL_HDR, the section-header for new section, containing
2407 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2408 relocations; otherwise, we use REL relocations. */
2411 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2412 Elf_Internal_Shdr
*rel_hdr
,
2414 bfd_boolean use_rela_p
)
2417 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2418 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2420 name
= (char *) bfd_alloc (abfd
, amt
);
2423 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2425 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2427 if (rel_hdr
->sh_name
== (unsigned int) -1)
2429 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2430 rel_hdr
->sh_entsize
= (use_rela_p
2431 ? bed
->s
->sizeof_rela
2432 : bed
->s
->sizeof_rel
);
2433 rel_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
2434 rel_hdr
->sh_flags
= 0;
2435 rel_hdr
->sh_addr
= 0;
2436 rel_hdr
->sh_size
= 0;
2437 rel_hdr
->sh_offset
= 0;
2442 /* Return the default section type based on the passed in section flags. */
2445 bfd_elf_get_default_section_type (flagword flags
)
2447 if ((flags
& SEC_ALLOC
) != 0
2448 && ((flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0
2449 || (flags
& SEC_NEVER_LOAD
) != 0))
2451 return SHT_PROGBITS
;
2454 /* Set up an ELF internal section header for a section. */
2457 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2459 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2460 bfd_boolean
*failedptr
= (bfd_boolean
*) failedptrarg
;
2461 Elf_Internal_Shdr
*this_hdr
;
2462 unsigned int sh_type
;
2466 /* We already failed; just get out of the bfd_map_over_sections
2471 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2473 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2474 asect
->name
, FALSE
);
2475 if (this_hdr
->sh_name
== (unsigned int) -1)
2481 /* Don't clear sh_flags. Assembler may set additional bits. */
2483 if ((asect
->flags
& SEC_ALLOC
) != 0
2484 || asect
->user_set_vma
)
2485 this_hdr
->sh_addr
= asect
->vma
;
2487 this_hdr
->sh_addr
= 0;
2489 this_hdr
->sh_offset
= 0;
2490 this_hdr
->sh_size
= asect
->size
;
2491 this_hdr
->sh_link
= 0;
2492 this_hdr
->sh_addralign
= (bfd_vma
) 1 << asect
->alignment_power
;
2493 /* The sh_entsize and sh_info fields may have been set already by
2494 copy_private_section_data. */
2496 this_hdr
->bfd_section
= asect
;
2497 this_hdr
->contents
= NULL
;
2499 /* If the section type is unspecified, we set it based on
2501 if ((asect
->flags
& SEC_GROUP
) != 0)
2502 sh_type
= SHT_GROUP
;
2504 sh_type
= bfd_elf_get_default_section_type (asect
->flags
);
2506 if (this_hdr
->sh_type
== SHT_NULL
)
2507 this_hdr
->sh_type
= sh_type
;
2508 else if (this_hdr
->sh_type
== SHT_NOBITS
2509 && sh_type
== SHT_PROGBITS
2510 && (asect
->flags
& SEC_ALLOC
) != 0)
2512 /* Warn if we are changing a NOBITS section to PROGBITS, but
2513 allow the link to proceed. This can happen when users link
2514 non-bss input sections to bss output sections, or emit data
2515 to a bss output section via a linker script. */
2516 (*_bfd_error_handler
)
2517 (_("warning: section `%A' type changed to PROGBITS"), asect
);
2518 this_hdr
->sh_type
= sh_type
;
2521 switch (this_hdr
->sh_type
)
2527 case SHT_INIT_ARRAY
:
2528 case SHT_FINI_ARRAY
:
2529 case SHT_PREINIT_ARRAY
:
2536 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2540 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2544 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2548 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2549 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2553 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2554 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2557 case SHT_GNU_versym
:
2558 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2561 case SHT_GNU_verdef
:
2562 this_hdr
->sh_entsize
= 0;
2563 /* objcopy or strip will copy over sh_info, but may not set
2564 cverdefs. The linker will set cverdefs, but sh_info will be
2566 if (this_hdr
->sh_info
== 0)
2567 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2569 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2570 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2573 case SHT_GNU_verneed
:
2574 this_hdr
->sh_entsize
= 0;
2575 /* objcopy or strip will copy over sh_info, but may not set
2576 cverrefs. The linker will set cverrefs, but sh_info will be
2578 if (this_hdr
->sh_info
== 0)
2579 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2581 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2582 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2586 this_hdr
->sh_entsize
= GRP_ENTRY_SIZE
;
2590 this_hdr
->sh_entsize
= bed
->s
->arch_size
== 64 ? 0 : 4;
2594 if ((asect
->flags
& SEC_ALLOC
) != 0)
2595 this_hdr
->sh_flags
|= SHF_ALLOC
;
2596 if ((asect
->flags
& SEC_READONLY
) == 0)
2597 this_hdr
->sh_flags
|= SHF_WRITE
;
2598 if ((asect
->flags
& SEC_CODE
) != 0)
2599 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2600 if ((asect
->flags
& SEC_MERGE
) != 0)
2602 this_hdr
->sh_flags
|= SHF_MERGE
;
2603 this_hdr
->sh_entsize
= asect
->entsize
;
2604 if ((asect
->flags
& SEC_STRINGS
) != 0)
2605 this_hdr
->sh_flags
|= SHF_STRINGS
;
2607 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2608 this_hdr
->sh_flags
|= SHF_GROUP
;
2609 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2611 this_hdr
->sh_flags
|= SHF_TLS
;
2612 if (asect
->size
== 0
2613 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2615 struct bfd_link_order
*o
= asect
->map_tail
.link_order
;
2617 this_hdr
->sh_size
= 0;
2620 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2621 if (this_hdr
->sh_size
!= 0)
2622 this_hdr
->sh_type
= SHT_NOBITS
;
2627 /* Check for processor-specific section types. */
2628 sh_type
= this_hdr
->sh_type
;
2629 if (bed
->elf_backend_fake_sections
2630 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2633 if (sh_type
== SHT_NOBITS
&& asect
->size
!= 0)
2635 /* Don't change the header type from NOBITS if we are being
2636 called for objcopy --only-keep-debug. */
2637 this_hdr
->sh_type
= sh_type
;
2640 /* If the section has relocs, set up a section header for the
2641 SHT_REL[A] section. If two relocation sections are required for
2642 this section, it is up to the processor-specific back-end to
2643 create the other. */
2644 if ((asect
->flags
& SEC_RELOC
) != 0
2645 && !_bfd_elf_init_reloc_shdr (abfd
,
2646 &elf_section_data (asect
)->rel_hdr
,
2652 /* Fill in the contents of a SHT_GROUP section. Called from
2653 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2654 when ELF targets use the generic linker, ld. Called for ld -r
2655 from bfd_elf_final_link. */
2658 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2660 bfd_boolean
*failedptr
= (bfd_boolean
*) failedptrarg
;
2661 asection
*elt
, *first
;
2665 /* Ignore linker created group section. See elfNN_ia64_object_p in
2667 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2671 if (elf_section_data (sec
)->this_hdr
.sh_info
== 0)
2673 unsigned long symindx
= 0;
2675 /* elf_group_id will have been set up by objcopy and the
2677 if (elf_group_id (sec
) != NULL
)
2678 symindx
= elf_group_id (sec
)->udata
.i
;
2682 /* If called from the assembler, swap_out_syms will have set up
2683 elf_section_syms. */
2684 BFD_ASSERT (elf_section_syms (abfd
) != NULL
);
2685 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2687 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2689 else if (elf_section_data (sec
)->this_hdr
.sh_info
== (unsigned int) -2)
2691 /* The ELF backend linker sets sh_info to -2 when the group
2692 signature symbol is global, and thus the index can't be
2693 set until all local symbols are output. */
2694 asection
*igroup
= elf_sec_group (elf_next_in_group (sec
));
2695 struct bfd_elf_section_data
*sec_data
= elf_section_data (igroup
);
2696 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
2697 unsigned long extsymoff
= 0;
2698 struct elf_link_hash_entry
*h
;
2700 if (!elf_bad_symtab (igroup
->owner
))
2702 Elf_Internal_Shdr
*symtab_hdr
;
2704 symtab_hdr
= &elf_tdata (igroup
->owner
)->symtab_hdr
;
2705 extsymoff
= symtab_hdr
->sh_info
;
2707 h
= elf_sym_hashes (igroup
->owner
)[symndx
- extsymoff
];
2708 while (h
->root
.type
== bfd_link_hash_indirect
2709 || h
->root
.type
== bfd_link_hash_warning
)
2710 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2712 elf_section_data (sec
)->this_hdr
.sh_info
= h
->indx
;
2715 /* The contents won't be allocated for "ld -r" or objcopy. */
2717 if (sec
->contents
== NULL
)
2720 sec
->contents
= (unsigned char *) bfd_alloc (abfd
, sec
->size
);
2722 /* Arrange for the section to be written out. */
2723 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2724 if (sec
->contents
== NULL
)
2731 loc
= sec
->contents
+ sec
->size
;
2733 /* Get the pointer to the first section in the group that gas
2734 squirreled away here. objcopy arranges for this to be set to the
2735 start of the input section group. */
2736 first
= elt
= elf_next_in_group (sec
);
2738 /* First element is a flag word. Rest of section is elf section
2739 indices for all the sections of the group. Write them backwards
2740 just to keep the group in the same order as given in .section
2741 directives, not that it matters. */
2748 if (! elf_discarded_section (s
))
2752 s
= s
->output_section
;
2755 idx
= elf_section_data (s
)->this_idx
;
2756 H_PUT_32 (abfd
, idx
, loc
);
2758 elt
= elf_next_in_group (elt
);
2763 if ((loc
-= 4) != sec
->contents
)
2766 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2769 /* Assign all ELF section numbers. The dummy first section is handled here
2770 too. The link/info pointers for the standard section types are filled
2771 in here too, while we're at it. */
2774 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2776 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2778 unsigned int section_number
, secn
;
2779 Elf_Internal_Shdr
**i_shdrp
;
2780 struct bfd_elf_section_data
*d
;
2781 bfd_boolean need_symtab
;
2785 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2787 /* SHT_GROUP sections are in relocatable files only. */
2788 if (link_info
== NULL
|| link_info
->relocatable
)
2790 /* Put SHT_GROUP sections first. */
2791 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2793 d
= elf_section_data (sec
);
2795 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
2797 if (sec
->flags
& SEC_LINKER_CREATED
)
2799 /* Remove the linker created SHT_GROUP sections. */
2800 bfd_section_list_remove (abfd
, sec
);
2801 abfd
->section_count
--;
2804 d
->this_idx
= section_number
++;
2809 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2811 d
= elf_section_data (sec
);
2813 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
2814 d
->this_idx
= section_number
++;
2815 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
2816 if ((sec
->flags
& SEC_RELOC
) == 0)
2820 d
->rel_idx
= section_number
++;
2821 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
2826 d
->rel_idx2
= section_number
++;
2827 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
2833 t
->shstrtab_section
= section_number
++;
2834 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
2835 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
2837 need_symtab
= (bfd_get_symcount (abfd
) > 0
2838 || (link_info
== NULL
2839 && ((abfd
->flags
& (EXEC_P
| DYNAMIC
| HAS_RELOC
))
2843 t
->symtab_section
= section_number
++;
2844 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
2845 if (section_number
> ((SHN_LORESERVE
- 2) & 0xFFFF))
2847 t
->symtab_shndx_section
= section_number
++;
2848 t
->symtab_shndx_hdr
.sh_name
2849 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2850 ".symtab_shndx", FALSE
);
2851 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
2854 t
->strtab_section
= section_number
++;
2855 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
2858 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
2859 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
2861 elf_numsections (abfd
) = section_number
;
2862 elf_elfheader (abfd
)->e_shnum
= section_number
;
2864 /* Set up the list of section header pointers, in agreement with the
2866 i_shdrp
= (Elf_Internal_Shdr
**) bfd_zalloc2 (abfd
, section_number
,
2867 sizeof (Elf_Internal_Shdr
*));
2868 if (i_shdrp
== NULL
)
2871 i_shdrp
[0] = (Elf_Internal_Shdr
*) bfd_zalloc (abfd
,
2872 sizeof (Elf_Internal_Shdr
));
2873 if (i_shdrp
[0] == NULL
)
2875 bfd_release (abfd
, i_shdrp
);
2879 elf_elfsections (abfd
) = i_shdrp
;
2881 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
2884 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
2885 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
2887 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
2888 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
2890 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
2891 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
2894 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2896 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
2900 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
2901 if (d
->rel_idx
!= 0)
2902 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
2903 if (d
->rel_idx2
!= 0)
2904 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
2906 /* Fill in the sh_link and sh_info fields while we're at it. */
2908 /* sh_link of a reloc section is the section index of the symbol
2909 table. sh_info is the section index of the section to which
2910 the relocation entries apply. */
2911 if (d
->rel_idx
!= 0)
2913 d
->rel_hdr
.sh_link
= t
->symtab_section
;
2914 d
->rel_hdr
.sh_info
= d
->this_idx
;
2916 if (d
->rel_idx2
!= 0)
2918 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
2919 d
->rel_hdr2
->sh_info
= d
->this_idx
;
2922 /* We need to set up sh_link for SHF_LINK_ORDER. */
2923 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
2925 s
= elf_linked_to_section (sec
);
2928 /* elf_linked_to_section points to the input section. */
2929 if (link_info
!= NULL
)
2931 /* Check discarded linkonce section. */
2932 if (elf_discarded_section (s
))
2935 (*_bfd_error_handler
)
2936 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2937 abfd
, d
->this_hdr
.bfd_section
,
2939 /* Point to the kept section if it has the same
2940 size as the discarded one. */
2941 kept
= _bfd_elf_check_kept_section (s
, link_info
);
2944 bfd_set_error (bfd_error_bad_value
);
2950 s
= s
->output_section
;
2951 BFD_ASSERT (s
!= NULL
);
2955 /* Handle objcopy. */
2956 if (s
->output_section
== NULL
)
2958 (*_bfd_error_handler
)
2959 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2960 abfd
, d
->this_hdr
.bfd_section
, s
, s
->owner
);
2961 bfd_set_error (bfd_error_bad_value
);
2964 s
= s
->output_section
;
2966 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2971 The Intel C compiler generates SHT_IA_64_UNWIND with
2972 SHF_LINK_ORDER. But it doesn't set the sh_link or
2973 sh_info fields. Hence we could get the situation
2975 const struct elf_backend_data
*bed
2976 = get_elf_backend_data (abfd
);
2977 if (bed
->link_order_error_handler
)
2978 bed
->link_order_error_handler
2979 (_("%B: warning: sh_link not set for section `%A'"),
2984 switch (d
->this_hdr
.sh_type
)
2988 /* A reloc section which we are treating as a normal BFD
2989 section. sh_link is the section index of the symbol
2990 table. sh_info is the section index of the section to
2991 which the relocation entries apply. We assume that an
2992 allocated reloc section uses the dynamic symbol table.
2993 FIXME: How can we be sure? */
2994 s
= bfd_get_section_by_name (abfd
, ".dynsym");
2996 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2998 /* We look up the section the relocs apply to by name. */
3000 if (d
->this_hdr
.sh_type
== SHT_REL
)
3004 s
= bfd_get_section_by_name (abfd
, name
);
3006 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3010 /* We assume that a section named .stab*str is a stabs
3011 string section. We look for a section with the same name
3012 but without the trailing ``str'', and set its sh_link
3013 field to point to this section. */
3014 if (CONST_STRNEQ (sec
->name
, ".stab")
3015 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3020 len
= strlen (sec
->name
);
3021 alc
= (char *) bfd_malloc (len
- 2);
3024 memcpy (alc
, sec
->name
, len
- 3);
3025 alc
[len
- 3] = '\0';
3026 s
= bfd_get_section_by_name (abfd
, alc
);
3030 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3032 /* This is a .stab section. */
3033 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3034 elf_section_data (s
)->this_hdr
.sh_entsize
3035 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3042 case SHT_GNU_verneed
:
3043 case SHT_GNU_verdef
:
3044 /* sh_link is the section header index of the string table
3045 used for the dynamic entries, or the symbol table, or the
3047 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3049 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3052 case SHT_GNU_LIBLIST
:
3053 /* sh_link is the section header index of the prelink library
3054 list used for the dynamic entries, or the symbol table, or
3055 the version strings. */
3056 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3057 ? ".dynstr" : ".gnu.libstr");
3059 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3064 case SHT_GNU_versym
:
3065 /* sh_link is the section header index of the symbol table
3066 this hash table or version table is for. */
3067 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3069 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3073 d
->this_hdr
.sh_link
= t
->symtab_section
;
3077 for (secn
= 1; secn
< section_number
; ++secn
)
3078 if (i_shdrp
[secn
] == NULL
)
3079 i_shdrp
[secn
] = i_shdrp
[0];
3081 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3082 i_shdrp
[secn
]->sh_name
);
3086 /* Map symbol from it's internal number to the external number, moving
3087 all local symbols to be at the head of the list. */
3090 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3092 /* If the backend has a special mapping, use it. */
3093 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3094 if (bed
->elf_backend_sym_is_global
)
3095 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3097 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
| BSF_GNU_UNIQUE
)) != 0
3098 || bfd_is_und_section (bfd_get_section (sym
))
3099 || bfd_is_com_section (bfd_get_section (sym
)));
3102 /* Don't output section symbols for sections that are not going to be
3106 ignore_section_sym (bfd
*abfd
, asymbol
*sym
)
3108 return ((sym
->flags
& BSF_SECTION_SYM
) != 0
3109 && !(sym
->section
->owner
== abfd
3110 || (sym
->section
->output_section
->owner
== abfd
3111 && sym
->section
->output_offset
== 0)));
3115 elf_map_symbols (bfd
*abfd
)
3117 unsigned int symcount
= bfd_get_symcount (abfd
);
3118 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3119 asymbol
**sect_syms
;
3120 unsigned int num_locals
= 0;
3121 unsigned int num_globals
= 0;
3122 unsigned int num_locals2
= 0;
3123 unsigned int num_globals2
= 0;
3130 fprintf (stderr
, "elf_map_symbols\n");
3134 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3136 if (max_index
< asect
->index
)
3137 max_index
= asect
->index
;
3141 sect_syms
= (asymbol
**) bfd_zalloc2 (abfd
, max_index
, sizeof (asymbol
*));
3142 if (sect_syms
== NULL
)
3144 elf_section_syms (abfd
) = sect_syms
;
3145 elf_num_section_syms (abfd
) = max_index
;
3147 /* Init sect_syms entries for any section symbols we have already
3148 decided to output. */
3149 for (idx
= 0; idx
< symcount
; idx
++)
3151 asymbol
*sym
= syms
[idx
];
3153 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3155 && !ignore_section_sym (abfd
, sym
))
3157 asection
*sec
= sym
->section
;
3159 if (sec
->owner
!= abfd
)
3160 sec
= sec
->output_section
;
3162 sect_syms
[sec
->index
] = syms
[idx
];
3166 /* Classify all of the symbols. */
3167 for (idx
= 0; idx
< symcount
; idx
++)
3169 if (ignore_section_sym (abfd
, syms
[idx
]))
3171 if (!sym_is_global (abfd
, syms
[idx
]))
3177 /* We will be adding a section symbol for each normal BFD section. Most
3178 sections will already have a section symbol in outsymbols, but
3179 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3180 at least in that case. */
3181 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3183 if (sect_syms
[asect
->index
] == NULL
)
3185 if (!sym_is_global (abfd
, asect
->symbol
))
3192 /* Now sort the symbols so the local symbols are first. */
3193 new_syms
= (asymbol
**) bfd_alloc2 (abfd
, num_locals
+ num_globals
,
3194 sizeof (asymbol
*));
3196 if (new_syms
== NULL
)
3199 for (idx
= 0; idx
< symcount
; idx
++)
3201 asymbol
*sym
= syms
[idx
];
3204 if (ignore_section_sym (abfd
, sym
))
3206 if (!sym_is_global (abfd
, sym
))
3209 i
= num_locals
+ num_globals2
++;
3211 sym
->udata
.i
= i
+ 1;
3213 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3215 if (sect_syms
[asect
->index
] == NULL
)
3217 asymbol
*sym
= asect
->symbol
;
3220 sect_syms
[asect
->index
] = sym
;
3221 if (!sym_is_global (abfd
, sym
))
3224 i
= num_locals
+ num_globals2
++;
3226 sym
->udata
.i
= i
+ 1;
3230 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3232 elf_num_locals (abfd
) = num_locals
;
3233 elf_num_globals (abfd
) = num_globals
;
3237 /* Align to the maximum file alignment that could be required for any
3238 ELF data structure. */
3240 static inline file_ptr
3241 align_file_position (file_ptr off
, int align
)
3243 return (off
+ align
- 1) & ~(align
- 1);
3246 /* Assign a file position to a section, optionally aligning to the
3247 required section alignment. */
3250 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3254 if (align
&& i_shdrp
->sh_addralign
> 1)
3255 offset
= BFD_ALIGN (offset
, i_shdrp
->sh_addralign
);
3256 i_shdrp
->sh_offset
= offset
;
3257 if (i_shdrp
->bfd_section
!= NULL
)
3258 i_shdrp
->bfd_section
->filepos
= offset
;
3259 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3260 offset
+= i_shdrp
->sh_size
;
3264 /* Compute the file positions we are going to put the sections at, and
3265 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3266 is not NULL, this is being called by the ELF backend linker. */
3269 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3270 struct bfd_link_info
*link_info
)
3272 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3274 struct bfd_strtab_hash
*strtab
= NULL
;
3275 Elf_Internal_Shdr
*shstrtab_hdr
;
3276 bfd_boolean need_symtab
;
3278 if (abfd
->output_has_begun
)
3281 /* Do any elf backend specific processing first. */
3282 if (bed
->elf_backend_begin_write_processing
)
3283 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3285 if (! prep_headers (abfd
))
3288 /* Post process the headers if necessary. */
3289 if (bed
->elf_backend_post_process_headers
)
3290 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3293 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3297 if (!assign_section_numbers (abfd
, link_info
))
3300 /* The backend linker builds symbol table information itself. */
3301 need_symtab
= (link_info
== NULL
3302 && (bfd_get_symcount (abfd
) > 0
3303 || ((abfd
->flags
& (EXEC_P
| DYNAMIC
| HAS_RELOC
))
3307 /* Non-zero if doing a relocatable link. */
3308 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3310 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3314 if (link_info
== NULL
)
3316 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3321 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3322 /* sh_name was set in prep_headers. */
3323 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3324 shstrtab_hdr
->sh_flags
= 0;
3325 shstrtab_hdr
->sh_addr
= 0;
3326 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3327 shstrtab_hdr
->sh_entsize
= 0;
3328 shstrtab_hdr
->sh_link
= 0;
3329 shstrtab_hdr
->sh_info
= 0;
3330 /* sh_offset is set in assign_file_positions_except_relocs. */
3331 shstrtab_hdr
->sh_addralign
= 1;
3333 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3339 Elf_Internal_Shdr
*hdr
;
3341 off
= elf_tdata (abfd
)->next_file_pos
;
3343 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3344 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3346 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3347 if (hdr
->sh_size
!= 0)
3348 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3350 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3351 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3353 elf_tdata (abfd
)->next_file_pos
= off
;
3355 /* Now that we know where the .strtab section goes, write it
3357 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3358 || ! _bfd_stringtab_emit (abfd
, strtab
))
3360 _bfd_stringtab_free (strtab
);
3363 abfd
->output_has_begun
= TRUE
;
3368 /* Make an initial estimate of the size of the program header. If we
3369 get the number wrong here, we'll redo section placement. */
3371 static bfd_size_type
3372 get_program_header_size (bfd
*abfd
, struct bfd_link_info
*info
)
3376 const struct elf_backend_data
*bed
;
3378 /* Assume we will need exactly two PT_LOAD segments: one for text
3379 and one for data. */
3382 s
= bfd_get_section_by_name (abfd
, ".interp");
3383 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3385 /* If we have a loadable interpreter section, we need a
3386 PT_INTERP segment. In this case, assume we also need a
3387 PT_PHDR segment, although that may not be true for all
3392 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
3394 /* We need a PT_DYNAMIC segment. */
3398 if (info
!= NULL
&& info
->relro
)
3400 /* We need a PT_GNU_RELRO segment. */
3404 if (elf_tdata (abfd
)->eh_frame_hdr
)
3406 /* We need a PT_GNU_EH_FRAME segment. */
3410 if (elf_tdata (abfd
)->stack_flags
)
3412 /* We need a PT_GNU_STACK segment. */
3416 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3418 if ((s
->flags
& SEC_LOAD
) != 0
3419 && CONST_STRNEQ (s
->name
, ".note"))
3421 /* We need a PT_NOTE segment. */
3423 /* Try to create just one PT_NOTE segment
3424 for all adjacent loadable .note* sections.
3425 gABI requires that within a PT_NOTE segment
3426 (and also inside of each SHT_NOTE section)
3427 each note is padded to a multiple of 4 size,
3428 so we check whether the sections are correctly
3430 if (s
->alignment_power
== 2)
3431 while (s
->next
!= NULL
3432 && s
->next
->alignment_power
== 2
3433 && (s
->next
->flags
& SEC_LOAD
) != 0
3434 && CONST_STRNEQ (s
->next
->name
, ".note"))
3439 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3441 if (s
->flags
& SEC_THREAD_LOCAL
)
3443 /* We need a PT_TLS segment. */
3449 /* Let the backend count up any program headers it might need. */
3450 bed
= get_elf_backend_data (abfd
);
3451 if (bed
->elf_backend_additional_program_headers
)
3455 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
, info
);
3461 return segs
* bed
->s
->sizeof_phdr
;
3464 /* Find the segment that contains the output_section of section. */
3467 _bfd_elf_find_segment_containing_section (bfd
* abfd
, asection
* section
)
3469 struct elf_segment_map
*m
;
3470 Elf_Internal_Phdr
*p
;
3472 for (m
= elf_tdata (abfd
)->segment_map
,
3473 p
= elf_tdata (abfd
)->phdr
;
3479 for (i
= m
->count
- 1; i
>= 0; i
--)
3480 if (m
->sections
[i
] == section
)
3487 /* Create a mapping from a set of sections to a program segment. */
3489 static struct elf_segment_map
*
3490 make_mapping (bfd
*abfd
,
3491 asection
**sections
,
3496 struct elf_segment_map
*m
;
3501 amt
= sizeof (struct elf_segment_map
);
3502 amt
+= (to
- from
- 1) * sizeof (asection
*);
3503 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3507 m
->p_type
= PT_LOAD
;
3508 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3509 m
->sections
[i
- from
] = *hdrpp
;
3510 m
->count
= to
- from
;
3512 if (from
== 0 && phdr
)
3514 /* Include the headers in the first PT_LOAD segment. */
3515 m
->includes_filehdr
= 1;
3516 m
->includes_phdrs
= 1;
3522 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3525 struct elf_segment_map
*
3526 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3528 struct elf_segment_map
*m
;
3530 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
,
3531 sizeof (struct elf_segment_map
));
3535 m
->p_type
= PT_DYNAMIC
;
3537 m
->sections
[0] = dynsec
;
3542 /* Possibly add or remove segments from the segment map. */
3545 elf_modify_segment_map (bfd
*abfd
,
3546 struct bfd_link_info
*info
,
3547 bfd_boolean remove_empty_load
)
3549 struct elf_segment_map
**m
;
3550 const struct elf_backend_data
*bed
;
3552 /* The placement algorithm assumes that non allocated sections are
3553 not in PT_LOAD segments. We ensure this here by removing such
3554 sections from the segment map. We also remove excluded
3555 sections. Finally, any PT_LOAD segment without sections is
3557 m
= &elf_tdata (abfd
)->segment_map
;
3560 unsigned int i
, new_count
;
3562 for (new_count
= 0, i
= 0; i
< (*m
)->count
; i
++)
3564 if (((*m
)->sections
[i
]->flags
& SEC_EXCLUDE
) == 0
3565 && (((*m
)->sections
[i
]->flags
& SEC_ALLOC
) != 0
3566 || (*m
)->p_type
!= PT_LOAD
))
3568 (*m
)->sections
[new_count
] = (*m
)->sections
[i
];
3572 (*m
)->count
= new_count
;
3574 if (remove_empty_load
&& (*m
)->p_type
== PT_LOAD
&& (*m
)->count
== 0)
3580 bed
= get_elf_backend_data (abfd
);
3581 if (bed
->elf_backend_modify_segment_map
!= NULL
)
3583 if (!(*bed
->elf_backend_modify_segment_map
) (abfd
, info
))
3590 /* Set up a mapping from BFD sections to program segments. */
3593 _bfd_elf_map_sections_to_segments (bfd
*abfd
, struct bfd_link_info
*info
)
3596 struct elf_segment_map
*m
;
3597 asection
**sections
= NULL
;
3598 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3599 bfd_boolean no_user_phdrs
;
3601 no_user_phdrs
= elf_tdata (abfd
)->segment_map
== NULL
;
3602 if (no_user_phdrs
&& bfd_count_sections (abfd
) != 0)
3606 struct elf_segment_map
*mfirst
;
3607 struct elf_segment_map
**pm
;
3610 unsigned int phdr_index
;
3611 bfd_vma maxpagesize
;
3613 bfd_boolean phdr_in_segment
= TRUE
;
3614 bfd_boolean writable
;
3616 asection
*first_tls
= NULL
;
3617 asection
*dynsec
, *eh_frame_hdr
;
3620 /* Select the allocated sections, and sort them. */
3622 sections
= (asection
**) bfd_malloc2 (bfd_count_sections (abfd
),
3623 sizeof (asection
*));
3624 if (sections
== NULL
)
3628 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3630 if ((s
->flags
& SEC_ALLOC
) != 0)
3636 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3639 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3641 /* Build the mapping. */
3646 /* If we have a .interp section, then create a PT_PHDR segment for
3647 the program headers and a PT_INTERP segment for the .interp
3649 s
= bfd_get_section_by_name (abfd
, ".interp");
3650 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3652 amt
= sizeof (struct elf_segment_map
);
3653 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3657 m
->p_type
= PT_PHDR
;
3658 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3659 m
->p_flags
= PF_R
| PF_X
;
3660 m
->p_flags_valid
= 1;
3661 m
->includes_phdrs
= 1;
3666 amt
= sizeof (struct elf_segment_map
);
3667 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3671 m
->p_type
= PT_INTERP
;
3679 /* Look through the sections. We put sections in the same program
3680 segment when the start of the second section can be placed within
3681 a few bytes of the end of the first section. */
3685 maxpagesize
= bed
->maxpagesize
;
3687 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3689 && (dynsec
->flags
& SEC_LOAD
) == 0)
3692 /* Deal with -Ttext or something similar such that the first section
3693 is not adjacent to the program headers. This is an
3694 approximation, since at this point we don't know exactly how many
3695 program headers we will need. */
3698 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
3700 if (phdr_size
== (bfd_size_type
) -1)
3701 phdr_size
= get_program_header_size (abfd
, info
);
3702 if ((abfd
->flags
& D_PAGED
) == 0
3703 || sections
[0]->lma
< phdr_size
3704 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3705 phdr_in_segment
= FALSE
;
3708 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3711 bfd_boolean new_segment
;
3715 /* See if this section and the last one will fit in the same
3718 if (last_hdr
== NULL
)
3720 /* If we don't have a segment yet, then we don't need a new
3721 one (we build the last one after this loop). */
3722 new_segment
= FALSE
;
3724 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3726 /* If this section has a different relation between the
3727 virtual address and the load address, then we need a new
3731 /* In the next test we have to be careful when last_hdr->lma is close
3732 to the end of the address space. If the aligned address wraps
3733 around to the start of the address space, then there are no more
3734 pages left in memory and it is OK to assume that the current
3735 section can be included in the current segment. */
3736 else if ((BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
) + maxpagesize
3738 && (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
) + maxpagesize
3741 /* If putting this section in this segment would force us to
3742 skip a page in the segment, then we need a new segment. */
3745 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3746 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3748 /* We don't want to put a loadable section after a
3749 nonloadable section in the same segment.
3750 Consider .tbss sections as loadable for this purpose. */
3753 else if ((abfd
->flags
& D_PAGED
) == 0)
3755 /* If the file is not demand paged, which means that we
3756 don't require the sections to be correctly aligned in the
3757 file, then there is no other reason for a new segment. */
3758 new_segment
= FALSE
;
3761 && (hdr
->flags
& SEC_READONLY
) == 0
3762 && (((last_hdr
->lma
+ last_size
- 1)
3763 & ~(maxpagesize
- 1))
3764 != (hdr
->lma
& ~(maxpagesize
- 1))))
3766 /* We don't want to put a writable section in a read only
3767 segment, unless they are on the same page in memory
3768 anyhow. We already know that the last section does not
3769 bring us past the current section on the page, so the
3770 only case in which the new section is not on the same
3771 page as the previous section is when the previous section
3772 ends precisely on a page boundary. */
3777 /* Otherwise, we can use the same segment. */
3778 new_segment
= FALSE
;
3781 /* Allow interested parties a chance to override our decision. */
3782 if (last_hdr
!= NULL
3784 && info
->callbacks
->override_segment_assignment
!= NULL
)
3786 = info
->callbacks
->override_segment_assignment (info
, abfd
, hdr
,
3792 if ((hdr
->flags
& SEC_READONLY
) == 0)
3795 /* .tbss sections effectively have zero size. */
3796 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
))
3797 != SEC_THREAD_LOCAL
)
3798 last_size
= hdr
->size
;
3804 /* We need a new program segment. We must create a new program
3805 header holding all the sections from phdr_index until hdr. */
3807 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3814 if ((hdr
->flags
& SEC_READONLY
) == 0)
3820 /* .tbss sections effectively have zero size. */
3821 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3822 last_size
= hdr
->size
;
3826 phdr_in_segment
= FALSE
;
3829 /* Create a final PT_LOAD program segment. */
3830 if (last_hdr
!= NULL
)
3832 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3840 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3843 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
3850 /* For each batch of consecutive loadable .note sections,
3851 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3852 because if we link together nonloadable .note sections and
3853 loadable .note sections, we will generate two .note sections
3854 in the output file. FIXME: Using names for section types is
3856 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3858 if ((s
->flags
& SEC_LOAD
) != 0
3859 && CONST_STRNEQ (s
->name
, ".note"))
3863 amt
= sizeof (struct elf_segment_map
);
3864 if (s
->alignment_power
== 2)
3865 for (s2
= s
; s2
->next
!= NULL
; s2
= s2
->next
)
3867 if (s2
->next
->alignment_power
== 2
3868 && (s2
->next
->flags
& SEC_LOAD
) != 0
3869 && CONST_STRNEQ (s2
->next
->name
, ".note")
3870 && align_power (s2
->vma
+ s2
->size
, 2)
3876 amt
+= (count
- 1) * sizeof (asection
*);
3877 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3881 m
->p_type
= PT_NOTE
;
3885 m
->sections
[m
->count
- count
--] = s
;
3886 BFD_ASSERT ((s
->flags
& SEC_THREAD_LOCAL
) == 0);
3889 m
->sections
[m
->count
- 1] = s
;
3890 BFD_ASSERT ((s
->flags
& SEC_THREAD_LOCAL
) == 0);
3894 if (s
->flags
& SEC_THREAD_LOCAL
)
3902 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3907 amt
= sizeof (struct elf_segment_map
);
3908 amt
+= (tls_count
- 1) * sizeof (asection
*);
3909 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3914 m
->count
= tls_count
;
3915 /* Mandated PF_R. */
3917 m
->p_flags_valid
= 1;
3918 for (i
= 0; i
< tls_count
; ++i
)
3920 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
3921 m
->sections
[i
] = first_tls
;
3922 first_tls
= first_tls
->next
;
3929 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3931 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
3932 if (eh_frame_hdr
!= NULL
3933 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
3935 amt
= sizeof (struct elf_segment_map
);
3936 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3940 m
->p_type
= PT_GNU_EH_FRAME
;
3942 m
->sections
[0] = eh_frame_hdr
->output_section
;
3948 if (elf_tdata (abfd
)->stack_flags
)
3950 amt
= sizeof (struct elf_segment_map
);
3951 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3955 m
->p_type
= PT_GNU_STACK
;
3956 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
3957 m
->p_flags_valid
= 1;
3963 if (info
!= NULL
&& info
->relro
)
3965 for (m
= mfirst
; m
!= NULL
; m
= m
->next
)
3967 if (m
->p_type
== PT_LOAD
)
3969 asection
*last
= m
->sections
[m
->count
- 1];
3970 bfd_vma vaddr
= m
->sections
[0]->vma
;
3971 bfd_vma filesz
= last
->vma
- vaddr
+ last
->size
;
3973 if (vaddr
< info
->relro_end
3974 && vaddr
>= info
->relro_start
3975 && (vaddr
+ filesz
) >= info
->relro_end
)
3980 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
3983 amt
= sizeof (struct elf_segment_map
);
3984 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3988 m
->p_type
= PT_GNU_RELRO
;
3990 m
->p_flags_valid
= 1;
3998 elf_tdata (abfd
)->segment_map
= mfirst
;
4001 if (!elf_modify_segment_map (abfd
, info
, no_user_phdrs
))
4004 for (count
= 0, m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4006 elf_tdata (abfd
)->program_header_size
= count
* bed
->s
->sizeof_phdr
;
4011 if (sections
!= NULL
)
4016 /* Sort sections by address. */
4019 elf_sort_sections (const void *arg1
, const void *arg2
)
4021 const asection
*sec1
= *(const asection
**) arg1
;
4022 const asection
*sec2
= *(const asection
**) arg2
;
4023 bfd_size_type size1
, size2
;
4025 /* Sort by LMA first, since this is the address used to
4026 place the section into a segment. */
4027 if (sec1
->lma
< sec2
->lma
)
4029 else if (sec1
->lma
> sec2
->lma
)
4032 /* Then sort by VMA. Normally the LMA and the VMA will be
4033 the same, and this will do nothing. */
4034 if (sec1
->vma
< sec2
->vma
)
4036 else if (sec1
->vma
> sec2
->vma
)
4039 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4041 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4047 /* If the indicies are the same, do not return 0
4048 here, but continue to try the next comparison. */
4049 if (sec1
->target_index
- sec2
->target_index
!= 0)
4050 return sec1
->target_index
- sec2
->target_index
;
4055 else if (TOEND (sec2
))
4060 /* Sort by size, to put zero sized sections
4061 before others at the same address. */
4063 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
4064 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
4071 return sec1
->target_index
- sec2
->target_index
;
4074 /* Ian Lance Taylor writes:
4076 We shouldn't be using % with a negative signed number. That's just
4077 not good. We have to make sure either that the number is not
4078 negative, or that the number has an unsigned type. When the types
4079 are all the same size they wind up as unsigned. When file_ptr is a
4080 larger signed type, the arithmetic winds up as signed long long,
4083 What we're trying to say here is something like ``increase OFF by
4084 the least amount that will cause it to be equal to the VMA modulo
4086 /* In other words, something like:
4088 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4089 off_offset = off % bed->maxpagesize;
4090 if (vma_offset < off_offset)
4091 adjustment = vma_offset + bed->maxpagesize - off_offset;
4093 adjustment = vma_offset - off_offset;
4095 which can can be collapsed into the expression below. */
4098 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4100 return ((vma
- off
) % maxpagesize
);
4104 print_segment_map (const struct elf_segment_map
*m
)
4107 const char *pt
= get_segment_type (m
->p_type
);
4112 if (m
->p_type
>= PT_LOPROC
&& m
->p_type
<= PT_HIPROC
)
4113 sprintf (buf
, "LOPROC+%7.7x",
4114 (unsigned int) (m
->p_type
- PT_LOPROC
));
4115 else if (m
->p_type
>= PT_LOOS
&& m
->p_type
<= PT_HIOS
)
4116 sprintf (buf
, "LOOS+%7.7x",
4117 (unsigned int) (m
->p_type
- PT_LOOS
));
4119 snprintf (buf
, sizeof (buf
), "%8.8x",
4120 (unsigned int) m
->p_type
);
4123 fprintf (stderr
, "%s:", pt
);
4124 for (j
= 0; j
< m
->count
; j
++)
4125 fprintf (stderr
, " %s", m
->sections
[j
]->name
);
4129 /* Assign file positions to the sections based on the mapping from
4130 sections to segments. This function also sets up some fields in
4134 assign_file_positions_for_load_sections (bfd
*abfd
,
4135 struct bfd_link_info
*link_info
)
4137 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4138 struct elf_segment_map
*m
;
4139 Elf_Internal_Phdr
*phdrs
;
4140 Elf_Internal_Phdr
*p
;
4142 bfd_size_type maxpagesize
;
4145 bfd_vma header_pad
= 0;
4147 if (link_info
== NULL
4148 && !_bfd_elf_map_sections_to_segments (abfd
, link_info
))
4152 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4156 header_pad
= m
->header_size
;
4159 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4160 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4161 elf_elfheader (abfd
)->e_phnum
= alloc
;
4163 if (elf_tdata (abfd
)->program_header_size
== (bfd_size_type
) -1)
4164 elf_tdata (abfd
)->program_header_size
= alloc
* bed
->s
->sizeof_phdr
;
4166 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
4167 >= alloc
* bed
->s
->sizeof_phdr
);
4171 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4175 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4176 see assign_file_positions_except_relocs, so make sure we have
4177 that amount allocated, with trailing space cleared.
4178 The variable alloc contains the computed need, while elf_tdata
4179 (abfd)->program_header_size contains the size used for the
4181 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4182 where the layout is forced to according to a larger size in the
4183 last iterations for the testcase ld-elf/header. */
4184 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
% bed
->s
->sizeof_phdr
4186 phdrs
= (Elf_Internal_Phdr
*)
4188 (elf_tdata (abfd
)->program_header_size
/ bed
->s
->sizeof_phdr
),
4189 sizeof (Elf_Internal_Phdr
));
4190 elf_tdata (abfd
)->phdr
= phdrs
;
4195 if ((abfd
->flags
& D_PAGED
) != 0)
4196 maxpagesize
= bed
->maxpagesize
;
4198 off
= bed
->s
->sizeof_ehdr
;
4199 off
+= alloc
* bed
->s
->sizeof_phdr
;
4200 if (header_pad
< (bfd_vma
) off
)
4206 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
, j
= 0;
4208 m
= m
->next
, p
++, j
++)
4212 bfd_boolean no_contents
;
4214 /* If elf_segment_map is not from map_sections_to_segments, the
4215 sections may not be correctly ordered. NOTE: sorting should
4216 not be done to the PT_NOTE section of a corefile, which may
4217 contain several pseudo-sections artificially created by bfd.
4218 Sorting these pseudo-sections breaks things badly. */
4220 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4221 && m
->p_type
== PT_NOTE
))
4222 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4225 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4226 number of sections with contents contributing to both p_filesz
4227 and p_memsz, followed by a number of sections with no contents
4228 that just contribute to p_memsz. In this loop, OFF tracks next
4229 available file offset for PT_LOAD and PT_NOTE segments. */
4230 p
->p_type
= m
->p_type
;
4231 p
->p_flags
= m
->p_flags
;
4236 p
->p_vaddr
= m
->sections
[0]->vma
- m
->p_vaddr_offset
;
4238 if (m
->p_paddr_valid
)
4239 p
->p_paddr
= m
->p_paddr
;
4240 else if (m
->count
== 0)
4243 p
->p_paddr
= m
->sections
[0]->lma
- m
->p_vaddr_offset
;
4245 if (p
->p_type
== PT_LOAD
4246 && (abfd
->flags
& D_PAGED
) != 0)
4248 /* p_align in demand paged PT_LOAD segments effectively stores
4249 the maximum page size. When copying an executable with
4250 objcopy, we set m->p_align from the input file. Use this
4251 value for maxpagesize rather than bed->maxpagesize, which
4252 may be different. Note that we use maxpagesize for PT_TLS
4253 segment alignment later in this function, so we are relying
4254 on at least one PT_LOAD segment appearing before a PT_TLS
4256 if (m
->p_align_valid
)
4257 maxpagesize
= m
->p_align
;
4259 p
->p_align
= maxpagesize
;
4261 else if (m
->p_align_valid
)
4262 p
->p_align
= m
->p_align
;
4263 else if (m
->count
== 0)
4264 p
->p_align
= 1 << bed
->s
->log_file_align
;
4268 no_contents
= FALSE
;
4270 if (p
->p_type
== PT_LOAD
4273 bfd_size_type align
;
4274 unsigned int align_power
= 0;
4276 if (m
->p_align_valid
)
4280 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4282 unsigned int secalign
;
4284 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4285 if (secalign
> align_power
)
4286 align_power
= secalign
;
4288 align
= (bfd_size_type
) 1 << align_power
;
4289 if (align
< maxpagesize
)
4290 align
= maxpagesize
;
4293 for (i
= 0; i
< m
->count
; i
++)
4294 if ((m
->sections
[i
]->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
4295 /* If we aren't making room for this section, then
4296 it must be SHT_NOBITS regardless of what we've
4297 set via struct bfd_elf_special_section. */
4298 elf_section_type (m
->sections
[i
]) = SHT_NOBITS
;
4300 /* Find out whether this segment contains any loadable
4303 for (i
= 0; i
< m
->count
; i
++)
4304 if (elf_section_type (m
->sections
[i
]) != SHT_NOBITS
)
4306 no_contents
= FALSE
;
4310 off_adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
4314 /* We shouldn't need to align the segment on disk since
4315 the segment doesn't need file space, but the gABI
4316 arguably requires the alignment and glibc ld.so
4317 checks it. So to comply with the alignment
4318 requirement but not waste file space, we adjust
4319 p_offset for just this segment. (OFF_ADJUST is
4320 subtracted from OFF later.) This may put p_offset
4321 past the end of file, but that shouldn't matter. */
4326 /* Make sure the .dynamic section is the first section in the
4327 PT_DYNAMIC segment. */
4328 else if (p
->p_type
== PT_DYNAMIC
4330 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4333 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4335 bfd_set_error (bfd_error_bad_value
);
4338 /* Set the note section type to SHT_NOTE. */
4339 else if (p
->p_type
== PT_NOTE
)
4340 for (i
= 0; i
< m
->count
; i
++)
4341 elf_section_type (m
->sections
[i
]) = SHT_NOTE
;
4347 if (m
->includes_filehdr
)
4349 if (!m
->p_flags_valid
)
4351 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4352 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4355 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4357 if (p
->p_vaddr
< (bfd_vma
) off
)
4359 (*_bfd_error_handler
)
4360 (_("%B: Not enough room for program headers, try linking with -N"),
4362 bfd_set_error (bfd_error_bad_value
);
4367 if (!m
->p_paddr_valid
)
4372 if (m
->includes_phdrs
)
4374 if (!m
->p_flags_valid
)
4377 if (!m
->includes_filehdr
)
4379 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4383 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4384 p
->p_vaddr
-= off
- p
->p_offset
;
4385 if (!m
->p_paddr_valid
)
4386 p
->p_paddr
-= off
- p
->p_offset
;
4390 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4391 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4394 p
->p_filesz
+= header_pad
;
4395 p
->p_memsz
+= header_pad
;
4399 if (p
->p_type
== PT_LOAD
4400 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4402 if (!m
->includes_filehdr
&& !m
->includes_phdrs
)
4408 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4410 p
->p_filesz
+= adjust
;
4411 p
->p_memsz
+= adjust
;
4415 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4416 maps. Set filepos for sections in PT_LOAD segments, and in
4417 core files, for sections in PT_NOTE segments.
4418 assign_file_positions_for_non_load_sections will set filepos
4419 for other sections and update p_filesz for other segments. */
4420 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4423 bfd_size_type align
;
4424 Elf_Internal_Shdr
*this_hdr
;
4427 this_hdr
= &elf_section_data (sec
)->this_hdr
;
4428 align
= (bfd_size_type
) 1 << bfd_get_section_alignment (abfd
, sec
);
4430 if ((p
->p_type
== PT_LOAD
4431 || p
->p_type
== PT_TLS
)
4432 && (this_hdr
->sh_type
!= SHT_NOBITS
4433 || ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0
4434 && ((this_hdr
->sh_flags
& SHF_TLS
) == 0
4435 || p
->p_type
== PT_TLS
))))
4437 bfd_signed_vma adjust
= sec
->vma
- (p
->p_vaddr
+ p
->p_memsz
);
4441 (*_bfd_error_handler
)
4442 (_("%B: section %A vma 0x%lx overlaps previous sections"),
4443 abfd
, sec
, (unsigned long) sec
->vma
);
4446 p
->p_memsz
+= adjust
;
4448 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4451 p
->p_filesz
+= adjust
;
4455 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4457 /* The section at i == 0 is the one that actually contains
4461 this_hdr
->sh_offset
= sec
->filepos
= off
;
4462 off
+= this_hdr
->sh_size
;
4463 p
->p_filesz
= this_hdr
->sh_size
;
4469 /* The rest are fake sections that shouldn't be written. */
4478 if (p
->p_type
== PT_LOAD
)
4480 this_hdr
->sh_offset
= sec
->filepos
= off
;
4481 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4482 off
+= this_hdr
->sh_size
;
4485 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4487 p
->p_filesz
+= this_hdr
->sh_size
;
4488 /* A load section without SHF_ALLOC is something like
4489 a note section in a PT_NOTE segment. These take
4490 file space but are not loaded into memory. */
4491 if ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0)
4492 p
->p_memsz
+= this_hdr
->sh_size
;
4494 else if ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0)
4496 if (p
->p_type
== PT_TLS
)
4497 p
->p_memsz
+= this_hdr
->sh_size
;
4499 /* .tbss is special. It doesn't contribute to p_memsz of
4501 else if ((this_hdr
->sh_flags
& SHF_TLS
) == 0)
4502 p
->p_memsz
+= this_hdr
->sh_size
;
4505 if (align
> p
->p_align
4506 && !m
->p_align_valid
4507 && (p
->p_type
!= PT_LOAD
4508 || (abfd
->flags
& D_PAGED
) == 0))
4512 if (!m
->p_flags_valid
)
4515 if ((this_hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
4517 if ((this_hdr
->sh_flags
& SHF_WRITE
) != 0)
4523 /* Check that all sections are in a PT_LOAD segment.
4524 Don't check funky gdb generated core files. */
4525 if (p
->p_type
== PT_LOAD
&& bfd_get_format (abfd
) != bfd_core
)
4526 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4528 Elf_Internal_Shdr
*this_hdr
;
4532 this_hdr
= &(elf_section_data(sec
)->this_hdr
);
4533 if (this_hdr
->sh_size
!= 0
4534 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, p
))
4536 (*_bfd_error_handler
)
4537 (_("%B: section `%A' can't be allocated in segment %d"),
4539 print_segment_map (m
);
4540 bfd_set_error (bfd_error_bad_value
);
4546 elf_tdata (abfd
)->next_file_pos
= off
;
4550 /* Assign file positions for the other sections. */
4553 assign_file_positions_for_non_load_sections (bfd
*abfd
,
4554 struct bfd_link_info
*link_info
)
4556 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4557 Elf_Internal_Shdr
**i_shdrpp
;
4558 Elf_Internal_Shdr
**hdrpp
;
4559 Elf_Internal_Phdr
*phdrs
;
4560 Elf_Internal_Phdr
*p
;
4561 struct elf_segment_map
*m
;
4562 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4563 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4565 unsigned int num_sec
;
4569 i_shdrpp
= elf_elfsections (abfd
);
4570 num_sec
= elf_numsections (abfd
);
4571 off
= elf_tdata (abfd
)->next_file_pos
;
4572 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4574 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4575 Elf_Internal_Shdr
*hdr
;
4578 if (hdr
->bfd_section
!= NULL
4579 && (hdr
->bfd_section
->filepos
!= 0
4580 || (hdr
->sh_type
== SHT_NOBITS
4581 && hdr
->contents
== NULL
)))
4582 BFD_ASSERT (hdr
->sh_offset
== hdr
->bfd_section
->filepos
);
4583 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4585 if (hdr
->sh_size
!= 0)
4586 ((*_bfd_error_handler
)
4587 (_("%B: warning: allocated section `%s' not in segment"),
4589 (hdr
->bfd_section
== NULL
4591 : hdr
->bfd_section
->name
)));
4592 /* We don't need to page align empty sections. */
4593 if ((abfd
->flags
& D_PAGED
) != 0 && hdr
->sh_size
!= 0)
4594 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4597 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4599 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4602 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4603 && hdr
->bfd_section
== NULL
)
4604 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4605 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4606 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4607 hdr
->sh_offset
= -1;
4609 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4612 /* Now that we have set the section file positions, we can set up
4613 the file positions for the non PT_LOAD segments. */
4617 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4619 phdrs
= elf_tdata (abfd
)->phdr
;
4620 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4625 if (p
->p_type
!= PT_LOAD
)
4628 if (m
->includes_filehdr
)
4630 filehdr_vaddr
= p
->p_vaddr
;
4631 filehdr_paddr
= p
->p_paddr
;
4633 if (m
->includes_phdrs
)
4635 phdrs_vaddr
= p
->p_vaddr
;
4636 phdrs_paddr
= p
->p_paddr
;
4637 if (m
->includes_filehdr
)
4639 phdrs_vaddr
+= bed
->s
->sizeof_ehdr
;
4640 phdrs_paddr
+= bed
->s
->sizeof_ehdr
;
4645 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4649 if (p
->p_type
== PT_GNU_RELRO
)
4651 const Elf_Internal_Phdr
*lp
;
4653 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4655 if (link_info
!= NULL
)
4657 /* During linking the range of the RELRO segment is passed
4659 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4661 if (lp
->p_type
== PT_LOAD
4662 && lp
->p_vaddr
>= link_info
->relro_start
4663 && lp
->p_vaddr
< link_info
->relro_end
4664 && lp
->p_vaddr
+ lp
->p_filesz
>= link_info
->relro_end
)
4670 /* Otherwise we are copying an executable or shared
4671 library, but we need to use the same linker logic. */
4672 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4674 if (lp
->p_type
== PT_LOAD
4675 && lp
->p_paddr
== p
->p_paddr
)
4680 if (lp
< phdrs
+ count
)
4682 p
->p_vaddr
= lp
->p_vaddr
;
4683 p
->p_paddr
= lp
->p_paddr
;
4684 p
->p_offset
= lp
->p_offset
;
4685 if (link_info
!= NULL
)
4686 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4687 else if (m
->p_size_valid
)
4688 p
->p_filesz
= m
->p_size
;
4691 p
->p_memsz
= p
->p_filesz
;
4693 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4697 memset (p
, 0, sizeof *p
);
4698 p
->p_type
= PT_NULL
;
4701 else if (m
->count
!= 0)
4703 if (p
->p_type
!= PT_LOAD
4704 && (p
->p_type
!= PT_NOTE
4705 || bfd_get_format (abfd
) != bfd_core
))
4707 Elf_Internal_Shdr
*hdr
;
4710 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4712 sect
= m
->sections
[m
->count
- 1];
4713 hdr
= &elf_section_data (sect
)->this_hdr
;
4714 p
->p_filesz
= sect
->filepos
- m
->sections
[0]->filepos
;
4715 if (hdr
->sh_type
!= SHT_NOBITS
)
4716 p
->p_filesz
+= hdr
->sh_size
;
4717 p
->p_offset
= m
->sections
[0]->filepos
;
4720 else if (m
->includes_filehdr
)
4722 p
->p_vaddr
= filehdr_vaddr
;
4723 if (! m
->p_paddr_valid
)
4724 p
->p_paddr
= filehdr_paddr
;
4726 else if (m
->includes_phdrs
)
4728 p
->p_vaddr
= phdrs_vaddr
;
4729 if (! m
->p_paddr_valid
)
4730 p
->p_paddr
= phdrs_paddr
;
4734 elf_tdata (abfd
)->next_file_pos
= off
;
4739 /* Work out the file positions of all the sections. This is called by
4740 _bfd_elf_compute_section_file_positions. All the section sizes and
4741 VMAs must be known before this is called.
4743 Reloc sections come in two flavours: Those processed specially as
4744 "side-channel" data attached to a section to which they apply, and
4745 those that bfd doesn't process as relocations. The latter sort are
4746 stored in a normal bfd section by bfd_section_from_shdr. We don't
4747 consider the former sort here, unless they form part of the loadable
4748 image. Reloc sections not assigned here will be handled later by
4749 assign_file_positions_for_relocs.
4751 We also don't set the positions of the .symtab and .strtab here. */
4754 assign_file_positions_except_relocs (bfd
*abfd
,
4755 struct bfd_link_info
*link_info
)
4757 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4758 Elf_Internal_Ehdr
*i_ehdrp
= elf_elfheader (abfd
);
4760 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4762 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4763 && bfd_get_format (abfd
) != bfd_core
)
4765 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4766 unsigned int num_sec
= elf_numsections (abfd
);
4767 Elf_Internal_Shdr
**hdrpp
;
4770 /* Start after the ELF header. */
4771 off
= i_ehdrp
->e_ehsize
;
4773 /* We are not creating an executable, which means that we are
4774 not creating a program header, and that the actual order of
4775 the sections in the file is unimportant. */
4776 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4778 Elf_Internal_Shdr
*hdr
;
4781 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4782 && hdr
->bfd_section
== NULL
)
4783 || i
== tdata
->symtab_section
4784 || i
== tdata
->symtab_shndx_section
4785 || i
== tdata
->strtab_section
)
4787 hdr
->sh_offset
= -1;
4790 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4797 /* Assign file positions for the loaded sections based on the
4798 assignment of sections to segments. */
4799 if (!assign_file_positions_for_load_sections (abfd
, link_info
))
4802 /* And for non-load sections. */
4803 if (!assign_file_positions_for_non_load_sections (abfd
, link_info
))
4806 if (bed
->elf_backend_modify_program_headers
!= NULL
)
4808 if (!(*bed
->elf_backend_modify_program_headers
) (abfd
, link_info
))
4812 /* Write out the program headers. */
4813 alloc
= tdata
->program_header_size
/ bed
->s
->sizeof_phdr
;
4814 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4815 || bed
->s
->write_out_phdrs (abfd
, tdata
->phdr
, alloc
) != 0)
4818 off
= tdata
->next_file_pos
;
4821 /* Place the section headers. */
4822 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4823 i_ehdrp
->e_shoff
= off
;
4824 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4826 tdata
->next_file_pos
= off
;
4832 prep_headers (bfd
*abfd
)
4834 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4835 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4836 struct elf_strtab_hash
*shstrtab
;
4837 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4839 i_ehdrp
= elf_elfheader (abfd
);
4841 shstrtab
= _bfd_elf_strtab_init ();
4842 if (shstrtab
== NULL
)
4845 elf_shstrtab (abfd
) = shstrtab
;
4847 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4848 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4849 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4850 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4852 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4853 i_ehdrp
->e_ident
[EI_DATA
] =
4854 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4855 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4857 if ((abfd
->flags
& DYNAMIC
) != 0)
4858 i_ehdrp
->e_type
= ET_DYN
;
4859 else if ((abfd
->flags
& EXEC_P
) != 0)
4860 i_ehdrp
->e_type
= ET_EXEC
;
4861 else if (bfd_get_format (abfd
) == bfd_core
)
4862 i_ehdrp
->e_type
= ET_CORE
;
4864 i_ehdrp
->e_type
= ET_REL
;
4866 switch (bfd_get_arch (abfd
))
4868 case bfd_arch_unknown
:
4869 i_ehdrp
->e_machine
= EM_NONE
;
4872 /* There used to be a long list of cases here, each one setting
4873 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4874 in the corresponding bfd definition. To avoid duplication,
4875 the switch was removed. Machines that need special handling
4876 can generally do it in elf_backend_final_write_processing(),
4877 unless they need the information earlier than the final write.
4878 Such need can generally be supplied by replacing the tests for
4879 e_machine with the conditions used to determine it. */
4881 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4884 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4885 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4887 /* No program header, for now. */
4888 i_ehdrp
->e_phoff
= 0;
4889 i_ehdrp
->e_phentsize
= 0;
4890 i_ehdrp
->e_phnum
= 0;
4892 /* Each bfd section is section header entry. */
4893 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4894 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4896 /* If we're building an executable, we'll need a program header table. */
4897 if (abfd
->flags
& EXEC_P
)
4898 /* It all happens later. */
4902 i_ehdrp
->e_phentsize
= 0;
4904 i_ehdrp
->e_phoff
= 0;
4907 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4908 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4909 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4910 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4911 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4912 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4913 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4914 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4915 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4921 /* Assign file positions for all the reloc sections which are not part
4922 of the loadable file image. */
4925 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4928 unsigned int i
, num_sec
;
4929 Elf_Internal_Shdr
**shdrpp
;
4931 off
= elf_tdata (abfd
)->next_file_pos
;
4933 num_sec
= elf_numsections (abfd
);
4934 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
4936 Elf_Internal_Shdr
*shdrp
;
4939 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
4940 && shdrp
->sh_offset
== -1)
4941 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
4944 elf_tdata (abfd
)->next_file_pos
= off
;
4948 _bfd_elf_write_object_contents (bfd
*abfd
)
4950 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4951 Elf_Internal_Ehdr
*i_ehdrp
;
4952 Elf_Internal_Shdr
**i_shdrp
;
4954 unsigned int count
, num_sec
;
4956 if (! abfd
->output_has_begun
4957 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
4960 i_shdrp
= elf_elfsections (abfd
);
4961 i_ehdrp
= elf_elfheader (abfd
);
4964 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
4968 _bfd_elf_assign_file_positions_for_relocs (abfd
);
4970 /* After writing the headers, we need to write the sections too... */
4971 num_sec
= elf_numsections (abfd
);
4972 for (count
= 1; count
< num_sec
; count
++)
4974 if (bed
->elf_backend_section_processing
)
4975 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
4976 if (i_shdrp
[count
]->contents
)
4978 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
4980 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
4981 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
4986 /* Write out the section header names. */
4987 if (elf_shstrtab (abfd
) != NULL
4988 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
4989 || !_bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
4992 if (bed
->elf_backend_final_write_processing
)
4993 (*bed
->elf_backend_final_write_processing
) (abfd
,
4994 elf_tdata (abfd
)->linker
);
4996 if (!bed
->s
->write_shdrs_and_ehdr (abfd
))
4999 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5000 if (elf_tdata (abfd
)->after_write_object_contents
)
5001 return (*elf_tdata (abfd
)->after_write_object_contents
) (abfd
);
5007 _bfd_elf_write_corefile_contents (bfd
*abfd
)
5009 /* Hopefully this can be done just like an object file. */
5010 return _bfd_elf_write_object_contents (abfd
);
5013 /* Given a section, search the header to find them. */
5016 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
5018 const struct elf_backend_data
*bed
;
5021 if (elf_section_data (asect
) != NULL
5022 && elf_section_data (asect
)->this_idx
!= 0)
5023 return elf_section_data (asect
)->this_idx
;
5025 if (bfd_is_abs_section (asect
))
5027 else if (bfd_is_com_section (asect
))
5029 else if (bfd_is_und_section (asect
))
5034 bed
= get_elf_backend_data (abfd
);
5035 if (bed
->elf_backend_section_from_bfd_section
)
5039 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
5043 if (index
== SHN_BAD
)
5044 bfd_set_error (bfd_error_nonrepresentable_section
);
5049 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5053 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
5055 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5057 flagword flags
= asym_ptr
->flags
;
5059 /* When gas creates relocations against local labels, it creates its
5060 own symbol for the section, but does put the symbol into the
5061 symbol chain, so udata is 0. When the linker is generating
5062 relocatable output, this section symbol may be for one of the
5063 input sections rather than the output section. */
5064 if (asym_ptr
->udata
.i
== 0
5065 && (flags
& BSF_SECTION_SYM
)
5066 && asym_ptr
->section
)
5071 sec
= asym_ptr
->section
;
5072 if (sec
->owner
!= abfd
&& sec
->output_section
!= NULL
)
5073 sec
= sec
->output_section
;
5074 if (sec
->owner
== abfd
5075 && (indx
= sec
->index
) < elf_num_section_syms (abfd
)
5076 && elf_section_syms (abfd
)[indx
] != NULL
)
5077 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5080 idx
= asym_ptr
->udata
.i
;
5084 /* This case can occur when using --strip-symbol on a symbol
5085 which is used in a relocation entry. */
5086 (*_bfd_error_handler
)
5087 (_("%B: symbol `%s' required but not present"),
5088 abfd
, bfd_asymbol_name (asym_ptr
));
5089 bfd_set_error (bfd_error_no_symbols
);
5096 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5097 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
5098 elf_symbol_flags (flags
));
5106 /* Rewrite program header information. */
5109 rewrite_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5111 Elf_Internal_Ehdr
*iehdr
;
5112 struct elf_segment_map
*map
;
5113 struct elf_segment_map
*map_first
;
5114 struct elf_segment_map
**pointer_to_map
;
5115 Elf_Internal_Phdr
*segment
;
5118 unsigned int num_segments
;
5119 bfd_boolean phdr_included
= FALSE
;
5120 bfd_boolean p_paddr_valid
;
5121 bfd_vma maxpagesize
;
5122 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5123 unsigned int phdr_adjust_num
= 0;
5124 const struct elf_backend_data
*bed
;
5126 bed
= get_elf_backend_data (ibfd
);
5127 iehdr
= elf_elfheader (ibfd
);
5130 pointer_to_map
= &map_first
;
5132 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5133 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5135 /* Returns the end address of the segment + 1. */
5136 #define SEGMENT_END(segment, start) \
5137 (start + (segment->p_memsz > segment->p_filesz \
5138 ? segment->p_memsz : segment->p_filesz))
5140 #define SECTION_SIZE(section, segment) \
5141 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5142 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5143 ? section->size : 0)
5145 /* Returns TRUE if the given section is contained within
5146 the given segment. VMA addresses are compared. */
5147 #define IS_CONTAINED_BY_VMA(section, segment) \
5148 (section->vma >= segment->p_vaddr \
5149 && (section->vma + SECTION_SIZE (section, segment) \
5150 <= (SEGMENT_END (segment, segment->p_vaddr))))
5152 /* Returns TRUE if the given section is contained within
5153 the given segment. LMA addresses are compared. */
5154 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5155 (section->lma >= base \
5156 && (section->lma + SECTION_SIZE (section, segment) \
5157 <= SEGMENT_END (segment, base)))
5159 /* Handle PT_NOTE segment. */
5160 #define IS_NOTE(p, s) \
5161 (p->p_type == PT_NOTE \
5162 && elf_section_type (s) == SHT_NOTE \
5163 && (bfd_vma) s->filepos >= p->p_offset \
5164 && ((bfd_vma) s->filepos + s->size \
5165 <= p->p_offset + p->p_filesz))
5167 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5169 #define IS_COREFILE_NOTE(p, s) \
5171 && bfd_get_format (ibfd) == bfd_core \
5175 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5176 linker, which generates a PT_INTERP section with p_vaddr and
5177 p_memsz set to 0. */
5178 #define IS_SOLARIS_PT_INTERP(p, s) \
5180 && p->p_paddr == 0 \
5181 && p->p_memsz == 0 \
5182 && p->p_filesz > 0 \
5183 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5185 && (bfd_vma) s->filepos >= p->p_offset \
5186 && ((bfd_vma) s->filepos + s->size \
5187 <= p->p_offset + p->p_filesz))
5189 /* Decide if the given section should be included in the given segment.
5190 A section will be included if:
5191 1. It is within the address space of the segment -- we use the LMA
5192 if that is set for the segment and the VMA otherwise,
5193 2. It is an allocated section or a NOTE section in a PT_NOTE
5195 3. There is an output section associated with it,
5196 4. The section has not already been allocated to a previous segment.
5197 5. PT_GNU_STACK segments do not include any sections.
5198 6. PT_TLS segment includes only SHF_TLS sections.
5199 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5200 8. PT_DYNAMIC should not contain empty sections at the beginning
5201 (with the possible exception of .dynamic). */
5202 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5203 ((((segment->p_paddr \
5204 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5205 : IS_CONTAINED_BY_VMA (section, segment)) \
5206 && (section->flags & SEC_ALLOC) != 0) \
5207 || IS_NOTE (segment, section)) \
5208 && segment->p_type != PT_GNU_STACK \
5209 && (segment->p_type != PT_TLS \
5210 || (section->flags & SEC_THREAD_LOCAL)) \
5211 && (segment->p_type == PT_LOAD \
5212 || segment->p_type == PT_TLS \
5213 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5214 && (segment->p_type != PT_DYNAMIC \
5215 || SECTION_SIZE (section, segment) > 0 \
5216 || (segment->p_paddr \
5217 ? segment->p_paddr != section->lma \
5218 : segment->p_vaddr != section->vma) \
5219 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5221 && !section->segment_mark)
5223 /* If the output section of a section in the input segment is NULL,
5224 it is removed from the corresponding output segment. */
5225 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5226 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5227 && section->output_section != NULL)
5229 /* Returns TRUE iff seg1 starts after the end of seg2. */
5230 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5231 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5233 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5234 their VMA address ranges and their LMA address ranges overlap.
5235 It is possible to have overlapping VMA ranges without overlapping LMA
5236 ranges. RedBoot images for example can have both .data and .bss mapped
5237 to the same VMA range, but with the .data section mapped to a different
5239 #define SEGMENT_OVERLAPS(seg1, seg2) \
5240 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5241 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5242 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5243 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5245 /* Initialise the segment mark field. */
5246 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5247 section
->segment_mark
= FALSE
;
5249 /* The Solaris linker creates program headers in which all the
5250 p_paddr fields are zero. When we try to objcopy or strip such a
5251 file, we get confused. Check for this case, and if we find it
5252 don't set the p_paddr_valid fields. */
5253 p_paddr_valid
= FALSE
;
5254 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5257 if (segment
->p_paddr
!= 0)
5259 p_paddr_valid
= TRUE
;
5263 /* Scan through the segments specified in the program header
5264 of the input BFD. For this first scan we look for overlaps
5265 in the loadable segments. These can be created by weird
5266 parameters to objcopy. Also, fix some solaris weirdness. */
5267 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5272 Elf_Internal_Phdr
*segment2
;
5274 if (segment
->p_type
== PT_INTERP
)
5275 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5276 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5278 /* Mininal change so that the normal section to segment
5279 assignment code will work. */
5280 segment
->p_vaddr
= section
->vma
;
5284 if (segment
->p_type
!= PT_LOAD
)
5286 /* Remove PT_GNU_RELRO segment. */
5287 if (segment
->p_type
== PT_GNU_RELRO
)
5288 segment
->p_type
= PT_NULL
;
5292 /* Determine if this segment overlaps any previous segments. */
5293 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5295 bfd_signed_vma extra_length
;
5297 if (segment2
->p_type
!= PT_LOAD
5298 || !SEGMENT_OVERLAPS (segment
, segment2
))
5301 /* Merge the two segments together. */
5302 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5304 /* Extend SEGMENT2 to include SEGMENT and then delete
5306 extra_length
= (SEGMENT_END (segment
, segment
->p_vaddr
)
5307 - SEGMENT_END (segment2
, segment2
->p_vaddr
));
5309 if (extra_length
> 0)
5311 segment2
->p_memsz
+= extra_length
;
5312 segment2
->p_filesz
+= extra_length
;
5315 segment
->p_type
= PT_NULL
;
5317 /* Since we have deleted P we must restart the outer loop. */
5319 segment
= elf_tdata (ibfd
)->phdr
;
5324 /* Extend SEGMENT to include SEGMENT2 and then delete
5326 extra_length
= (SEGMENT_END (segment2
, segment2
->p_vaddr
)
5327 - SEGMENT_END (segment
, segment
->p_vaddr
));
5329 if (extra_length
> 0)
5331 segment
->p_memsz
+= extra_length
;
5332 segment
->p_filesz
+= extra_length
;
5335 segment2
->p_type
= PT_NULL
;
5340 /* The second scan attempts to assign sections to segments. */
5341 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5345 unsigned int section_count
;
5346 asection
**sections
;
5347 asection
*output_section
;
5349 bfd_vma matching_lma
;
5350 bfd_vma suggested_lma
;
5353 asection
*first_section
;
5354 bfd_boolean first_matching_lma
;
5355 bfd_boolean first_suggested_lma
;
5357 if (segment
->p_type
== PT_NULL
)
5360 first_section
= NULL
;
5361 /* Compute how many sections might be placed into this segment. */
5362 for (section
= ibfd
->sections
, section_count
= 0;
5364 section
= section
->next
)
5366 /* Find the first section in the input segment, which may be
5367 removed from the corresponding output segment. */
5368 if (IS_SECTION_IN_INPUT_SEGMENT (section
, segment
, bed
))
5370 if (first_section
== NULL
)
5371 first_section
= section
;
5372 if (section
->output_section
!= NULL
)
5377 /* Allocate a segment map big enough to contain
5378 all of the sections we have selected. */
5379 amt
= sizeof (struct elf_segment_map
);
5380 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5381 map
= (struct elf_segment_map
*) bfd_zalloc (obfd
, amt
);
5385 /* Initialise the fields of the segment map. Default to
5386 using the physical address of the segment in the input BFD. */
5388 map
->p_type
= segment
->p_type
;
5389 map
->p_flags
= segment
->p_flags
;
5390 map
->p_flags_valid
= 1;
5392 /* If the first section in the input segment is removed, there is
5393 no need to preserve segment physical address in the corresponding
5395 if (!first_section
|| first_section
->output_section
!= NULL
)
5397 map
->p_paddr
= segment
->p_paddr
;
5398 map
->p_paddr_valid
= p_paddr_valid
;
5401 /* Determine if this segment contains the ELF file header
5402 and if it contains the program headers themselves. */
5403 map
->includes_filehdr
= (segment
->p_offset
== 0
5404 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5405 map
->includes_phdrs
= 0;
5407 if (!phdr_included
|| segment
->p_type
!= PT_LOAD
)
5409 map
->includes_phdrs
=
5410 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5411 && (segment
->p_offset
+ segment
->p_filesz
5412 >= ((bfd_vma
) iehdr
->e_phoff
5413 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5415 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5416 phdr_included
= TRUE
;
5419 if (section_count
== 0)
5421 /* Special segments, such as the PT_PHDR segment, may contain
5422 no sections, but ordinary, loadable segments should contain
5423 something. They are allowed by the ELF spec however, so only
5424 a warning is produced. */
5425 if (segment
->p_type
== PT_LOAD
)
5426 (*_bfd_error_handler
) (_("%B: warning: Empty loadable segment"
5427 " detected, is this intentional ?\n"),
5431 *pointer_to_map
= map
;
5432 pointer_to_map
= &map
->next
;
5437 /* Now scan the sections in the input BFD again and attempt
5438 to add their corresponding output sections to the segment map.
5439 The problem here is how to handle an output section which has
5440 been moved (ie had its LMA changed). There are four possibilities:
5442 1. None of the sections have been moved.
5443 In this case we can continue to use the segment LMA from the
5446 2. All of the sections have been moved by the same amount.
5447 In this case we can change the segment's LMA to match the LMA
5448 of the first section.
5450 3. Some of the sections have been moved, others have not.
5451 In this case those sections which have not been moved can be
5452 placed in the current segment which will have to have its size,
5453 and possibly its LMA changed, and a new segment or segments will
5454 have to be created to contain the other sections.
5456 4. The sections have been moved, but not by the same amount.
5457 In this case we can change the segment's LMA to match the LMA
5458 of the first section and we will have to create a new segment
5459 or segments to contain the other sections.
5461 In order to save time, we allocate an array to hold the section
5462 pointers that we are interested in. As these sections get assigned
5463 to a segment, they are removed from this array. */
5465 sections
= (asection
**) bfd_malloc2 (section_count
, sizeof (asection
*));
5466 if (sections
== NULL
)
5469 /* Step One: Scan for segment vs section LMA conflicts.
5470 Also add the sections to the section array allocated above.
5471 Also add the sections to the current segment. In the common
5472 case, where the sections have not been moved, this means that
5473 we have completely filled the segment, and there is nothing
5478 first_matching_lma
= TRUE
;
5479 first_suggested_lma
= TRUE
;
5481 for (section
= ibfd
->sections
;
5483 section
= section
->next
)
5484 if (section
== first_section
)
5487 for (j
= 0; section
!= NULL
; section
= section
->next
)
5489 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5491 output_section
= section
->output_section
;
5493 sections
[j
++] = section
;
5495 /* The Solaris native linker always sets p_paddr to 0.
5496 We try to catch that case here, and set it to the
5497 correct value. Note - some backends require that
5498 p_paddr be left as zero. */
5500 && segment
->p_vaddr
!= 0
5501 && !bed
->want_p_paddr_set_to_zero
5503 && output_section
->lma
!= 0
5504 && output_section
->vma
== (segment
->p_vaddr
5505 + (map
->includes_filehdr
5508 + (map
->includes_phdrs
5510 * iehdr
->e_phentsize
)
5512 map
->p_paddr
= segment
->p_vaddr
;
5514 /* Match up the physical address of the segment with the
5515 LMA address of the output section. */
5516 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5517 || IS_COREFILE_NOTE (segment
, section
)
5518 || (bed
->want_p_paddr_set_to_zero
5519 && IS_CONTAINED_BY_VMA (output_section
, segment
)))
5521 if (first_matching_lma
|| output_section
->lma
< matching_lma
)
5523 matching_lma
= output_section
->lma
;
5524 first_matching_lma
= FALSE
;
5527 /* We assume that if the section fits within the segment
5528 then it does not overlap any other section within that
5530 map
->sections
[isec
++] = output_section
;
5532 else if (first_suggested_lma
)
5534 suggested_lma
= output_section
->lma
;
5535 first_suggested_lma
= FALSE
;
5538 if (j
== section_count
)
5543 BFD_ASSERT (j
== section_count
);
5545 /* Step Two: Adjust the physical address of the current segment,
5547 if (isec
== section_count
)
5549 /* All of the sections fitted within the segment as currently
5550 specified. This is the default case. Add the segment to
5551 the list of built segments and carry on to process the next
5552 program header in the input BFD. */
5553 map
->count
= section_count
;
5554 *pointer_to_map
= map
;
5555 pointer_to_map
= &map
->next
;
5558 && !bed
->want_p_paddr_set_to_zero
5559 && matching_lma
!= map
->p_paddr
5560 && !map
->includes_filehdr
5561 && !map
->includes_phdrs
)
5562 /* There is some padding before the first section in the
5563 segment. So, we must account for that in the output
5565 map
->p_vaddr_offset
= matching_lma
- map
->p_paddr
;
5572 if (!first_matching_lma
)
5574 /* At least one section fits inside the current segment.
5575 Keep it, but modify its physical address to match the
5576 LMA of the first section that fitted. */
5577 map
->p_paddr
= matching_lma
;
5581 /* None of the sections fitted inside the current segment.
5582 Change the current segment's physical address to match
5583 the LMA of the first section. */
5584 map
->p_paddr
= suggested_lma
;
5587 /* Offset the segment physical address from the lma
5588 to allow for space taken up by elf headers. */
5589 if (map
->includes_filehdr
)
5591 if (map
->p_paddr
>= iehdr
->e_ehsize
)
5592 map
->p_paddr
-= iehdr
->e_ehsize
;
5595 map
->includes_filehdr
= FALSE
;
5596 map
->includes_phdrs
= FALSE
;
5600 if (map
->includes_phdrs
)
5602 if (map
->p_paddr
>= iehdr
->e_phnum
* iehdr
->e_phentsize
)
5604 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5606 /* iehdr->e_phnum is just an estimate of the number
5607 of program headers that we will need. Make a note
5608 here of the number we used and the segment we chose
5609 to hold these headers, so that we can adjust the
5610 offset when we know the correct value. */
5611 phdr_adjust_num
= iehdr
->e_phnum
;
5612 phdr_adjust_seg
= map
;
5615 map
->includes_phdrs
= FALSE
;
5619 /* Step Three: Loop over the sections again, this time assigning
5620 those that fit to the current segment and removing them from the
5621 sections array; but making sure not to leave large gaps. Once all
5622 possible sections have been assigned to the current segment it is
5623 added to the list of built segments and if sections still remain
5624 to be assigned, a new segment is constructed before repeating
5631 first_suggested_lma
= TRUE
;
5633 /* Fill the current segment with sections that fit. */
5634 for (j
= 0; j
< section_count
; j
++)
5636 section
= sections
[j
];
5638 if (section
== NULL
)
5641 output_section
= section
->output_section
;
5643 BFD_ASSERT (output_section
!= NULL
);
5645 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5646 || IS_COREFILE_NOTE (segment
, section
))
5648 if (map
->count
== 0)
5650 /* If the first section in a segment does not start at
5651 the beginning of the segment, then something is
5653 if (output_section
->lma
5655 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5656 + (map
->includes_phdrs
5657 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5665 prev_sec
= map
->sections
[map
->count
- 1];
5667 /* If the gap between the end of the previous section
5668 and the start of this section is more than
5669 maxpagesize then we need to start a new segment. */
5670 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5672 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5673 || (prev_sec
->lma
+ prev_sec
->size
5674 > output_section
->lma
))
5676 if (first_suggested_lma
)
5678 suggested_lma
= output_section
->lma
;
5679 first_suggested_lma
= FALSE
;
5686 map
->sections
[map
->count
++] = output_section
;
5689 section
->segment_mark
= TRUE
;
5691 else if (first_suggested_lma
)
5693 suggested_lma
= output_section
->lma
;
5694 first_suggested_lma
= FALSE
;
5698 BFD_ASSERT (map
->count
> 0);
5700 /* Add the current segment to the list of built segments. */
5701 *pointer_to_map
= map
;
5702 pointer_to_map
= &map
->next
;
5704 if (isec
< section_count
)
5706 /* We still have not allocated all of the sections to
5707 segments. Create a new segment here, initialise it
5708 and carry on looping. */
5709 amt
= sizeof (struct elf_segment_map
);
5710 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5711 map
= (struct elf_segment_map
*) bfd_alloc (obfd
, amt
);
5718 /* Initialise the fields of the segment map. Set the physical
5719 physical address to the LMA of the first section that has
5720 not yet been assigned. */
5722 map
->p_type
= segment
->p_type
;
5723 map
->p_flags
= segment
->p_flags
;
5724 map
->p_flags_valid
= 1;
5725 map
->p_paddr
= suggested_lma
;
5726 map
->p_paddr_valid
= p_paddr_valid
;
5727 map
->includes_filehdr
= 0;
5728 map
->includes_phdrs
= 0;
5731 while (isec
< section_count
);
5736 elf_tdata (obfd
)->segment_map
= map_first
;
5738 /* If we had to estimate the number of program headers that were
5739 going to be needed, then check our estimate now and adjust
5740 the offset if necessary. */
5741 if (phdr_adjust_seg
!= NULL
)
5745 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5748 if (count
> phdr_adjust_num
)
5749 phdr_adjust_seg
->p_paddr
5750 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5755 #undef IS_CONTAINED_BY_VMA
5756 #undef IS_CONTAINED_BY_LMA
5758 #undef IS_COREFILE_NOTE
5759 #undef IS_SOLARIS_PT_INTERP
5760 #undef IS_SECTION_IN_INPUT_SEGMENT
5761 #undef INCLUDE_SECTION_IN_SEGMENT
5762 #undef SEGMENT_AFTER_SEGMENT
5763 #undef SEGMENT_OVERLAPS
5767 /* Copy ELF program header information. */
5770 copy_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5772 Elf_Internal_Ehdr
*iehdr
;
5773 struct elf_segment_map
*map
;
5774 struct elf_segment_map
*map_first
;
5775 struct elf_segment_map
**pointer_to_map
;
5776 Elf_Internal_Phdr
*segment
;
5778 unsigned int num_segments
;
5779 bfd_boolean phdr_included
= FALSE
;
5780 bfd_boolean p_paddr_valid
;
5782 iehdr
= elf_elfheader (ibfd
);
5785 pointer_to_map
= &map_first
;
5787 /* If all the segment p_paddr fields are zero, don't set
5788 map->p_paddr_valid. */
5789 p_paddr_valid
= FALSE
;
5790 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5791 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5794 if (segment
->p_paddr
!= 0)
5796 p_paddr_valid
= TRUE
;
5800 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5805 unsigned int section_count
;
5807 Elf_Internal_Shdr
*this_hdr
;
5808 asection
*first_section
= NULL
;
5809 asection
*lowest_section
= NULL
;
5811 /* Compute how many sections are in this segment. */
5812 for (section
= ibfd
->sections
, section_count
= 0;
5814 section
= section
->next
)
5816 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5817 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5820 first_section
= lowest_section
= section
;
5821 if (section
->lma
< lowest_section
->lma
)
5822 lowest_section
= section
;
5827 /* Allocate a segment map big enough to contain
5828 all of the sections we have selected. */
5829 amt
= sizeof (struct elf_segment_map
);
5830 if (section_count
!= 0)
5831 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5832 map
= (struct elf_segment_map
*) bfd_zalloc (obfd
, amt
);
5836 /* Initialize the fields of the output segment map with the
5839 map
->p_type
= segment
->p_type
;
5840 map
->p_flags
= segment
->p_flags
;
5841 map
->p_flags_valid
= 1;
5842 map
->p_paddr
= segment
->p_paddr
;
5843 map
->p_paddr_valid
= p_paddr_valid
;
5844 map
->p_align
= segment
->p_align
;
5845 map
->p_align_valid
= 1;
5846 map
->p_vaddr_offset
= 0;
5848 if (map
->p_type
== PT_GNU_RELRO
)
5850 /* The PT_GNU_RELRO segment may contain the first a few
5851 bytes in the .got.plt section even if the whole .got.plt
5852 section isn't in the PT_GNU_RELRO segment. We won't
5853 change the size of the PT_GNU_RELRO segment. */
5854 map
->p_size
= segment
->p_memsz
;
5855 map
->p_size_valid
= 1;
5858 /* Determine if this segment contains the ELF file header
5859 and if it contains the program headers themselves. */
5860 map
->includes_filehdr
= (segment
->p_offset
== 0
5861 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5863 map
->includes_phdrs
= 0;
5864 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5866 map
->includes_phdrs
=
5867 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5868 && (segment
->p_offset
+ segment
->p_filesz
5869 >= ((bfd_vma
) iehdr
->e_phoff
5870 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5872 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5873 phdr_included
= TRUE
;
5876 if (map
->includes_filehdr
&& first_section
)
5877 /* We need to keep the space used by the headers fixed. */
5878 map
->header_size
= first_section
->vma
- segment
->p_vaddr
;
5880 if (!map
->includes_phdrs
5881 && !map
->includes_filehdr
5882 && map
->p_paddr_valid
)
5883 /* There is some other padding before the first section. */
5884 map
->p_vaddr_offset
= ((lowest_section
? lowest_section
->lma
: 0)
5885 - segment
->p_paddr
);
5887 if (section_count
!= 0)
5889 unsigned int isec
= 0;
5891 for (section
= first_section
;
5893 section
= section
->next
)
5895 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5896 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5898 map
->sections
[isec
++] = section
->output_section
;
5899 if (isec
== section_count
)
5905 map
->count
= section_count
;
5906 *pointer_to_map
= map
;
5907 pointer_to_map
= &map
->next
;
5910 elf_tdata (obfd
)->segment_map
= map_first
;
5914 /* Copy private BFD data. This copies or rewrites ELF program header
5918 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
5920 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5921 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5924 if (elf_tdata (ibfd
)->phdr
== NULL
)
5927 if (ibfd
->xvec
== obfd
->xvec
)
5929 /* Check to see if any sections in the input BFD
5930 covered by ELF program header have changed. */
5931 Elf_Internal_Phdr
*segment
;
5932 asection
*section
, *osec
;
5933 unsigned int i
, num_segments
;
5934 Elf_Internal_Shdr
*this_hdr
;
5935 const struct elf_backend_data
*bed
;
5937 bed
= get_elf_backend_data (ibfd
);
5939 /* Regenerate the segment map if p_paddr is set to 0. */
5940 if (bed
->want_p_paddr_set_to_zero
)
5943 /* Initialize the segment mark field. */
5944 for (section
= obfd
->sections
; section
!= NULL
;
5945 section
= section
->next
)
5946 section
->segment_mark
= FALSE
;
5948 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5949 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5953 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5954 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5955 which severly confuses things, so always regenerate the segment
5956 map in this case. */
5957 if (segment
->p_paddr
== 0
5958 && segment
->p_memsz
== 0
5959 && (segment
->p_type
== PT_INTERP
|| segment
->p_type
== PT_DYNAMIC
))
5962 for (section
= ibfd
->sections
;
5963 section
!= NULL
; section
= section
->next
)
5965 /* We mark the output section so that we know it comes
5966 from the input BFD. */
5967 osec
= section
->output_section
;
5969 osec
->segment_mark
= TRUE
;
5971 /* Check if this section is covered by the segment. */
5972 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5973 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5975 /* FIXME: Check if its output section is changed or
5976 removed. What else do we need to check? */
5978 || section
->flags
!= osec
->flags
5979 || section
->lma
!= osec
->lma
5980 || section
->vma
!= osec
->vma
5981 || section
->size
!= osec
->size
5982 || section
->rawsize
!= osec
->rawsize
5983 || section
->alignment_power
!= osec
->alignment_power
)
5989 /* Check to see if any output section do not come from the
5991 for (section
= obfd
->sections
; section
!= NULL
;
5992 section
= section
->next
)
5994 if (section
->segment_mark
== FALSE
)
5997 section
->segment_mark
= FALSE
;
6000 return copy_elf_program_header (ibfd
, obfd
);
6004 return rewrite_elf_program_header (ibfd
, obfd
);
6007 /* Initialize private output section information from input section. */
6010 _bfd_elf_init_private_section_data (bfd
*ibfd
,
6014 struct bfd_link_info
*link_info
)
6017 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6018 bfd_boolean need_group
= link_info
== NULL
|| link_info
->relocatable
;
6020 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6021 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6024 /* Don't copy the output ELF section type from input if the
6025 output BFD section flags have been set to something different.
6026 elf_fake_sections will set ELF section type based on BFD
6028 if (elf_section_type (osec
) == SHT_NULL
6029 && (osec
->flags
== isec
->flags
|| !osec
->flags
))
6030 elf_section_type (osec
) = elf_section_type (isec
);
6032 /* FIXME: Is this correct for all OS/PROC specific flags? */
6033 elf_section_flags (osec
) |= (elf_section_flags (isec
)
6034 & (SHF_MASKOS
| SHF_MASKPROC
));
6036 /* Set things up for objcopy and relocatable link. The output
6037 SHT_GROUP section will have its elf_next_in_group pointing back
6038 to the input group members. Ignore linker created group section.
6039 See elfNN_ia64_object_p in elfxx-ia64.c. */
6042 if (elf_sec_group (isec
) == NULL
6043 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
6045 if (elf_section_flags (isec
) & SHF_GROUP
)
6046 elf_section_flags (osec
) |= SHF_GROUP
;
6047 elf_next_in_group (osec
) = elf_next_in_group (isec
);
6048 elf_section_data (osec
)->group
= elf_section_data (isec
)->group
;
6052 ihdr
= &elf_section_data (isec
)->this_hdr
;
6054 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6055 don't use the output section of the linked-to section since it
6056 may be NULL at this point. */
6057 if ((ihdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
6059 ohdr
= &elf_section_data (osec
)->this_hdr
;
6060 ohdr
->sh_flags
|= SHF_LINK_ORDER
;
6061 elf_linked_to_section (osec
) = elf_linked_to_section (isec
);
6064 osec
->use_rela_p
= isec
->use_rela_p
;
6069 /* Copy private section information. This copies over the entsize
6070 field, and sometimes the info field. */
6073 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
6078 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6080 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6081 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6084 ihdr
= &elf_section_data (isec
)->this_hdr
;
6085 ohdr
= &elf_section_data (osec
)->this_hdr
;
6087 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
6089 if (ihdr
->sh_type
== SHT_SYMTAB
6090 || ihdr
->sh_type
== SHT_DYNSYM
6091 || ihdr
->sh_type
== SHT_GNU_verneed
6092 || ihdr
->sh_type
== SHT_GNU_verdef
)
6093 ohdr
->sh_info
= ihdr
->sh_info
;
6095 return _bfd_elf_init_private_section_data (ibfd
, isec
, obfd
, osec
,
6099 /* Copy private header information. */
6102 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
6106 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6107 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6110 /* Copy over private BFD data if it has not already been copied.
6111 This must be done here, rather than in the copy_private_bfd_data
6112 entry point, because the latter is called after the section
6113 contents have been set, which means that the program headers have
6114 already been worked out. */
6115 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
6117 if (! copy_private_bfd_data (ibfd
, obfd
))
6121 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6122 but this might be wrong if we deleted the group section. */
6123 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
6124 if (elf_section_type (isec
) == SHT_GROUP
6125 && isec
->output_section
== NULL
)
6127 asection
*first
= elf_next_in_group (isec
);
6128 asection
*s
= first
;
6131 if (s
->output_section
!= NULL
)
6133 elf_section_flags (s
->output_section
) &= ~SHF_GROUP
;
6134 elf_group_name (s
->output_section
) = NULL
;
6136 s
= elf_next_in_group (s
);
6145 /* Copy private symbol information. If this symbol is in a section
6146 which we did not map into a BFD section, try to map the section
6147 index correctly. We use special macro definitions for the mapped
6148 section indices; these definitions are interpreted by the
6149 swap_out_syms function. */
6151 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6152 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6153 #define MAP_STRTAB (SHN_HIOS + 3)
6154 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6155 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6158 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
6163 elf_symbol_type
*isym
, *osym
;
6165 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6166 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6169 isym
= elf_symbol_from (ibfd
, isymarg
);
6170 osym
= elf_symbol_from (obfd
, osymarg
);
6173 && isym
->internal_elf_sym
.st_shndx
!= 0
6175 && bfd_is_abs_section (isym
->symbol
.section
))
6179 shndx
= isym
->internal_elf_sym
.st_shndx
;
6180 if (shndx
== elf_onesymtab (ibfd
))
6181 shndx
= MAP_ONESYMTAB
;
6182 else if (shndx
== elf_dynsymtab (ibfd
))
6183 shndx
= MAP_DYNSYMTAB
;
6184 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
6186 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
6187 shndx
= MAP_SHSTRTAB
;
6188 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
6189 shndx
= MAP_SYM_SHNDX
;
6190 osym
->internal_elf_sym
.st_shndx
= shndx
;
6196 /* Swap out the symbols. */
6199 swap_out_syms (bfd
*abfd
,
6200 struct bfd_strtab_hash
**sttp
,
6203 const struct elf_backend_data
*bed
;
6206 struct bfd_strtab_hash
*stt
;
6207 Elf_Internal_Shdr
*symtab_hdr
;
6208 Elf_Internal_Shdr
*symtab_shndx_hdr
;
6209 Elf_Internal_Shdr
*symstrtab_hdr
;
6210 bfd_byte
*outbound_syms
;
6211 bfd_byte
*outbound_shndx
;
6214 bfd_boolean name_local_sections
;
6216 if (!elf_map_symbols (abfd
))
6219 /* Dump out the symtabs. */
6220 stt
= _bfd_elf_stringtab_init ();
6224 bed
= get_elf_backend_data (abfd
);
6225 symcount
= bfd_get_symcount (abfd
);
6226 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6227 symtab_hdr
->sh_type
= SHT_SYMTAB
;
6228 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
6229 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
6230 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
6231 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
6233 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
6234 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6236 outbound_syms
= (bfd_byte
*) bfd_alloc2 (abfd
, 1 + symcount
,
6237 bed
->s
->sizeof_sym
);
6238 if (outbound_syms
== NULL
)
6240 _bfd_stringtab_free (stt
);
6243 symtab_hdr
->contents
= outbound_syms
;
6245 outbound_shndx
= NULL
;
6246 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
6247 if (symtab_shndx_hdr
->sh_name
!= 0)
6249 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
6250 outbound_shndx
= (bfd_byte
*)
6251 bfd_zalloc2 (abfd
, 1 + symcount
, sizeof (Elf_External_Sym_Shndx
));
6252 if (outbound_shndx
== NULL
)
6254 _bfd_stringtab_free (stt
);
6258 symtab_shndx_hdr
->contents
= outbound_shndx
;
6259 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
6260 symtab_shndx_hdr
->sh_size
= amt
;
6261 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
6262 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
6265 /* Now generate the data (for "contents"). */
6267 /* Fill in zeroth symbol and swap it out. */
6268 Elf_Internal_Sym sym
;
6274 sym
.st_shndx
= SHN_UNDEF
;
6275 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6276 outbound_syms
+= bed
->s
->sizeof_sym
;
6277 if (outbound_shndx
!= NULL
)
6278 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6282 = (bed
->elf_backend_name_local_section_symbols
6283 && bed
->elf_backend_name_local_section_symbols (abfd
));
6285 syms
= bfd_get_outsymbols (abfd
);
6286 for (idx
= 0; idx
< symcount
; idx
++)
6288 Elf_Internal_Sym sym
;
6289 bfd_vma value
= syms
[idx
]->value
;
6290 elf_symbol_type
*type_ptr
;
6291 flagword flags
= syms
[idx
]->flags
;
6294 if (!name_local_sections
6295 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
6297 /* Local section symbols have no name. */
6302 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
6305 if (sym
.st_name
== (unsigned long) -1)
6307 _bfd_stringtab_free (stt
);
6312 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
6314 if ((flags
& BSF_SECTION_SYM
) == 0
6315 && bfd_is_com_section (syms
[idx
]->section
))
6317 /* ELF common symbols put the alignment into the `value' field,
6318 and the size into the `size' field. This is backwards from
6319 how BFD handles it, so reverse it here. */
6320 sym
.st_size
= value
;
6321 if (type_ptr
== NULL
6322 || type_ptr
->internal_elf_sym
.st_value
== 0)
6323 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
6325 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
6326 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
6327 (abfd
, syms
[idx
]->section
);
6331 asection
*sec
= syms
[idx
]->section
;
6334 if (sec
->output_section
)
6336 value
+= sec
->output_offset
;
6337 sec
= sec
->output_section
;
6340 /* Don't add in the section vma for relocatable output. */
6341 if (! relocatable_p
)
6343 sym
.st_value
= value
;
6344 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
6346 if (bfd_is_abs_section (sec
)
6348 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
6350 /* This symbol is in a real ELF section which we did
6351 not create as a BFD section. Undo the mapping done
6352 by copy_private_symbol_data. */
6353 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
6357 shndx
= elf_onesymtab (abfd
);
6360 shndx
= elf_dynsymtab (abfd
);
6363 shndx
= elf_tdata (abfd
)->strtab_section
;
6366 shndx
= elf_tdata (abfd
)->shstrtab_section
;
6369 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
6377 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
6379 if (shndx
== SHN_BAD
)
6383 /* Writing this would be a hell of a lot easier if
6384 we had some decent documentation on bfd, and
6385 knew what to expect of the library, and what to
6386 demand of applications. For example, it
6387 appears that `objcopy' might not set the
6388 section of a symbol to be a section that is
6389 actually in the output file. */
6390 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
6393 _bfd_error_handler (_("\
6394 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6395 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
6397 bfd_set_error (bfd_error_invalid_operation
);
6398 _bfd_stringtab_free (stt
);
6402 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
6403 BFD_ASSERT (shndx
!= SHN_BAD
);
6407 sym
.st_shndx
= shndx
;
6410 if ((flags
& BSF_THREAD_LOCAL
) != 0)
6412 else if ((flags
& BSF_GNU_INDIRECT_FUNCTION
) != 0)
6413 type
= STT_GNU_IFUNC
;
6414 else if ((flags
& BSF_FUNCTION
) != 0)
6416 else if ((flags
& BSF_OBJECT
) != 0)
6418 else if ((flags
& BSF_RELC
) != 0)
6420 else if ((flags
& BSF_SRELC
) != 0)
6425 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
6428 /* Processor-specific types. */
6429 if (type_ptr
!= NULL
6430 && bed
->elf_backend_get_symbol_type
)
6431 type
= ((*bed
->elf_backend_get_symbol_type
)
6432 (&type_ptr
->internal_elf_sym
, type
));
6434 if (flags
& BSF_SECTION_SYM
)
6436 if (flags
& BSF_GLOBAL
)
6437 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6439 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
6441 else if (bfd_is_com_section (syms
[idx
]->section
))
6443 #ifdef USE_STT_COMMON
6444 if (type
== STT_OBJECT
)
6445 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_COMMON
);
6448 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
6450 else if (bfd_is_und_section (syms
[idx
]->section
))
6451 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
6455 else if (flags
& BSF_FILE
)
6456 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6459 int bind
= STB_LOCAL
;
6461 if (flags
& BSF_LOCAL
)
6463 else if (flags
& BSF_GNU_UNIQUE
)
6464 bind
= STB_GNU_UNIQUE
;
6465 else if (flags
& BSF_WEAK
)
6467 else if (flags
& BSF_GLOBAL
)
6470 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6473 if (type_ptr
!= NULL
)
6474 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6478 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6479 outbound_syms
+= bed
->s
->sizeof_sym
;
6480 if (outbound_shndx
!= NULL
)
6481 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6485 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6486 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6488 symstrtab_hdr
->sh_flags
= 0;
6489 symstrtab_hdr
->sh_addr
= 0;
6490 symstrtab_hdr
->sh_entsize
= 0;
6491 symstrtab_hdr
->sh_link
= 0;
6492 symstrtab_hdr
->sh_info
= 0;
6493 symstrtab_hdr
->sh_addralign
= 1;
6498 /* Return the number of bytes required to hold the symtab vector.
6500 Note that we base it on the count plus 1, since we will null terminate
6501 the vector allocated based on this size. However, the ELF symbol table
6502 always has a dummy entry as symbol #0, so it ends up even. */
6505 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6509 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6511 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6512 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6514 symtab_size
-= sizeof (asymbol
*);
6520 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6524 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6526 if (elf_dynsymtab (abfd
) == 0)
6528 bfd_set_error (bfd_error_invalid_operation
);
6532 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6533 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6535 symtab_size
-= sizeof (asymbol
*);
6541 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6544 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6547 /* Canonicalize the relocs. */
6550 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6557 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6559 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6562 tblptr
= section
->relocation
;
6563 for (i
= 0; i
< section
->reloc_count
; i
++)
6564 *relptr
++ = tblptr
++;
6568 return section
->reloc_count
;
6572 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6574 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6575 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6578 bfd_get_symcount (abfd
) = symcount
;
6583 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6584 asymbol
**allocation
)
6586 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6587 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6590 bfd_get_dynamic_symcount (abfd
) = symcount
;
6594 /* Return the size required for the dynamic reloc entries. Any loadable
6595 section that was actually installed in the BFD, and has type SHT_REL
6596 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6597 dynamic reloc section. */
6600 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6605 if (elf_dynsymtab (abfd
) == 0)
6607 bfd_set_error (bfd_error_invalid_operation
);
6611 ret
= sizeof (arelent
*);
6612 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6613 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6614 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6615 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6616 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6617 * sizeof (arelent
*));
6622 /* Canonicalize the dynamic relocation entries. Note that we return the
6623 dynamic relocations as a single block, although they are actually
6624 associated with particular sections; the interface, which was
6625 designed for SunOS style shared libraries, expects that there is only
6626 one set of dynamic relocs. Any loadable section that was actually
6627 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6628 dynamic symbol table, is considered to be a dynamic reloc section. */
6631 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6635 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6639 if (elf_dynsymtab (abfd
) == 0)
6641 bfd_set_error (bfd_error_invalid_operation
);
6645 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6647 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6649 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6650 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6651 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6656 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6658 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6660 for (i
= 0; i
< count
; i
++)
6671 /* Read in the version information. */
6674 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6676 bfd_byte
*contents
= NULL
;
6677 unsigned int freeidx
= 0;
6679 if (elf_dynverref (abfd
) != 0)
6681 Elf_Internal_Shdr
*hdr
;
6682 Elf_External_Verneed
*everneed
;
6683 Elf_Internal_Verneed
*iverneed
;
6685 bfd_byte
*contents_end
;
6687 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6689 elf_tdata (abfd
)->verref
= (Elf_Internal_Verneed
*)
6690 bfd_zalloc2 (abfd
, hdr
->sh_info
, sizeof (Elf_Internal_Verneed
));
6691 if (elf_tdata (abfd
)->verref
== NULL
)
6694 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6696 contents
= (bfd_byte
*) bfd_malloc (hdr
->sh_size
);
6697 if (contents
== NULL
)
6699 error_return_verref
:
6700 elf_tdata (abfd
)->verref
= NULL
;
6701 elf_tdata (abfd
)->cverrefs
= 0;
6704 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6705 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6706 goto error_return_verref
;
6708 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verneed
))
6709 goto error_return_verref
;
6711 BFD_ASSERT (sizeof (Elf_External_Verneed
)
6712 == sizeof (Elf_External_Vernaux
));
6713 contents_end
= contents
+ hdr
->sh_size
- sizeof (Elf_External_Verneed
);
6714 everneed
= (Elf_External_Verneed
*) contents
;
6715 iverneed
= elf_tdata (abfd
)->verref
;
6716 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6718 Elf_External_Vernaux
*evernaux
;
6719 Elf_Internal_Vernaux
*ivernaux
;
6722 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6724 iverneed
->vn_bfd
= abfd
;
6726 iverneed
->vn_filename
=
6727 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6729 if (iverneed
->vn_filename
== NULL
)
6730 goto error_return_verref
;
6732 if (iverneed
->vn_cnt
== 0)
6733 iverneed
->vn_auxptr
= NULL
;
6736 iverneed
->vn_auxptr
= (struct elf_internal_vernaux
*)
6737 bfd_alloc2 (abfd
, iverneed
->vn_cnt
,
6738 sizeof (Elf_Internal_Vernaux
));
6739 if (iverneed
->vn_auxptr
== NULL
)
6740 goto error_return_verref
;
6743 if (iverneed
->vn_aux
6744 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6745 goto error_return_verref
;
6747 evernaux
= ((Elf_External_Vernaux
*)
6748 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6749 ivernaux
= iverneed
->vn_auxptr
;
6750 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6752 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6754 ivernaux
->vna_nodename
=
6755 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6756 ivernaux
->vna_name
);
6757 if (ivernaux
->vna_nodename
== NULL
)
6758 goto error_return_verref
;
6760 if (j
+ 1 < iverneed
->vn_cnt
)
6761 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6763 ivernaux
->vna_nextptr
= NULL
;
6765 if (ivernaux
->vna_next
6766 > (size_t) (contents_end
- (bfd_byte
*) evernaux
))
6767 goto error_return_verref
;
6769 evernaux
= ((Elf_External_Vernaux
*)
6770 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6772 if (ivernaux
->vna_other
> freeidx
)
6773 freeidx
= ivernaux
->vna_other
;
6776 if (i
+ 1 < hdr
->sh_info
)
6777 iverneed
->vn_nextref
= iverneed
+ 1;
6779 iverneed
->vn_nextref
= NULL
;
6781 if (iverneed
->vn_next
6782 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6783 goto error_return_verref
;
6785 everneed
= ((Elf_External_Verneed
*)
6786 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6793 if (elf_dynverdef (abfd
) != 0)
6795 Elf_Internal_Shdr
*hdr
;
6796 Elf_External_Verdef
*everdef
;
6797 Elf_Internal_Verdef
*iverdef
;
6798 Elf_Internal_Verdef
*iverdefarr
;
6799 Elf_Internal_Verdef iverdefmem
;
6801 unsigned int maxidx
;
6802 bfd_byte
*contents_end_def
, *contents_end_aux
;
6804 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6806 contents
= (bfd_byte
*) bfd_malloc (hdr
->sh_size
);
6807 if (contents
== NULL
)
6809 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6810 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6813 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verdef
))
6816 BFD_ASSERT (sizeof (Elf_External_Verdef
)
6817 >= sizeof (Elf_External_Verdaux
));
6818 contents_end_def
= contents
+ hdr
->sh_size
6819 - sizeof (Elf_External_Verdef
);
6820 contents_end_aux
= contents
+ hdr
->sh_size
6821 - sizeof (Elf_External_Verdaux
);
6823 /* We know the number of entries in the section but not the maximum
6824 index. Therefore we have to run through all entries and find
6826 everdef
= (Elf_External_Verdef
*) contents
;
6828 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6830 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6832 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6833 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6835 if (iverdefmem
.vd_next
6836 > (size_t) (contents_end_def
- (bfd_byte
*) everdef
))
6839 everdef
= ((Elf_External_Verdef
*)
6840 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6843 if (default_imported_symver
)
6845 if (freeidx
> maxidx
)
6850 elf_tdata (abfd
)->verdef
= (Elf_Internal_Verdef
*)
6851 bfd_zalloc2 (abfd
, maxidx
, sizeof (Elf_Internal_Verdef
));
6852 if (elf_tdata (abfd
)->verdef
== NULL
)
6855 elf_tdata (abfd
)->cverdefs
= maxidx
;
6857 everdef
= (Elf_External_Verdef
*) contents
;
6858 iverdefarr
= elf_tdata (abfd
)->verdef
;
6859 for (i
= 0; i
< hdr
->sh_info
; i
++)
6861 Elf_External_Verdaux
*everdaux
;
6862 Elf_Internal_Verdaux
*iverdaux
;
6865 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6867 if ((iverdefmem
.vd_ndx
& VERSYM_VERSION
) == 0)
6869 error_return_verdef
:
6870 elf_tdata (abfd
)->verdef
= NULL
;
6871 elf_tdata (abfd
)->cverdefs
= 0;
6875 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6876 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6878 iverdef
->vd_bfd
= abfd
;
6880 if (iverdef
->vd_cnt
== 0)
6881 iverdef
->vd_auxptr
= NULL
;
6884 iverdef
->vd_auxptr
= (struct elf_internal_verdaux
*)
6885 bfd_alloc2 (abfd
, iverdef
->vd_cnt
,
6886 sizeof (Elf_Internal_Verdaux
));
6887 if (iverdef
->vd_auxptr
== NULL
)
6888 goto error_return_verdef
;
6892 > (size_t) (contents_end_aux
- (bfd_byte
*) everdef
))
6893 goto error_return_verdef
;
6895 everdaux
= ((Elf_External_Verdaux
*)
6896 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6897 iverdaux
= iverdef
->vd_auxptr
;
6898 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6900 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6902 iverdaux
->vda_nodename
=
6903 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6904 iverdaux
->vda_name
);
6905 if (iverdaux
->vda_nodename
== NULL
)
6906 goto error_return_verdef
;
6908 if (j
+ 1 < iverdef
->vd_cnt
)
6909 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6911 iverdaux
->vda_nextptr
= NULL
;
6913 if (iverdaux
->vda_next
6914 > (size_t) (contents_end_aux
- (bfd_byte
*) everdaux
))
6915 goto error_return_verdef
;
6917 everdaux
= ((Elf_External_Verdaux
*)
6918 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6921 if (iverdef
->vd_cnt
)
6922 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6924 if ((size_t) (iverdef
- iverdefarr
) + 1 < maxidx
)
6925 iverdef
->vd_nextdef
= iverdef
+ 1;
6927 iverdef
->vd_nextdef
= NULL
;
6929 everdef
= ((Elf_External_Verdef
*)
6930 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6936 else if (default_imported_symver
)
6943 elf_tdata (abfd
)->verdef
= (Elf_Internal_Verdef
*)
6944 bfd_zalloc2 (abfd
, freeidx
, sizeof (Elf_Internal_Verdef
));
6945 if (elf_tdata (abfd
)->verdef
== NULL
)
6948 elf_tdata (abfd
)->cverdefs
= freeidx
;
6951 /* Create a default version based on the soname. */
6952 if (default_imported_symver
)
6954 Elf_Internal_Verdef
*iverdef
;
6955 Elf_Internal_Verdaux
*iverdaux
;
6957 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
6959 iverdef
->vd_version
= VER_DEF_CURRENT
;
6960 iverdef
->vd_flags
= 0;
6961 iverdef
->vd_ndx
= freeidx
;
6962 iverdef
->vd_cnt
= 1;
6964 iverdef
->vd_bfd
= abfd
;
6966 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
6967 if (iverdef
->vd_nodename
== NULL
)
6968 goto error_return_verdef
;
6969 iverdef
->vd_nextdef
= NULL
;
6970 iverdef
->vd_auxptr
= (struct elf_internal_verdaux
*)
6971 bfd_alloc (abfd
, sizeof (Elf_Internal_Verdaux
));
6972 if (iverdef
->vd_auxptr
== NULL
)
6973 goto error_return_verdef
;
6975 iverdaux
= iverdef
->vd_auxptr
;
6976 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
6977 iverdaux
->vda_nextptr
= NULL
;
6983 if (contents
!= NULL
)
6989 _bfd_elf_make_empty_symbol (bfd
*abfd
)
6991 elf_symbol_type
*newsym
;
6992 bfd_size_type amt
= sizeof (elf_symbol_type
);
6994 newsym
= (elf_symbol_type
*) bfd_zalloc (abfd
, amt
);
6999 newsym
->symbol
.the_bfd
= abfd
;
7000 return &newsym
->symbol
;
7005 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
7009 bfd_symbol_info (symbol
, ret
);
7012 /* Return whether a symbol name implies a local symbol. Most targets
7013 use this function for the is_local_label_name entry point, but some
7017 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
7020 /* Normal local symbols start with ``.L''. */
7021 if (name
[0] == '.' && name
[1] == 'L')
7024 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7025 DWARF debugging symbols starting with ``..''. */
7026 if (name
[0] == '.' && name
[1] == '.')
7029 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7030 emitting DWARF debugging output. I suspect this is actually a
7031 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7032 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7033 underscore to be emitted on some ELF targets). For ease of use,
7034 we treat such symbols as local. */
7035 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
7042 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
7043 asymbol
*symbol ATTRIBUTE_UNUSED
)
7050 _bfd_elf_set_arch_mach (bfd
*abfd
,
7051 enum bfd_architecture arch
,
7052 unsigned long machine
)
7054 /* If this isn't the right architecture for this backend, and this
7055 isn't the generic backend, fail. */
7056 if (arch
!= get_elf_backend_data (abfd
)->arch
7057 && arch
!= bfd_arch_unknown
7058 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
7061 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
7064 /* Find the function to a particular section and offset,
7065 for error reporting. */
7068 elf_find_function (bfd
*abfd
,
7072 const char **filename_ptr
,
7073 const char **functionname_ptr
)
7075 const char *filename
;
7076 asymbol
*func
, *file
;
7079 /* ??? Given multiple file symbols, it is impossible to reliably
7080 choose the right file name for global symbols. File symbols are
7081 local symbols, and thus all file symbols must sort before any
7082 global symbols. The ELF spec may be interpreted to say that a
7083 file symbol must sort before other local symbols, but currently
7084 ld -r doesn't do this. So, for ld -r output, it is possible to
7085 make a better choice of file name for local symbols by ignoring
7086 file symbols appearing after a given local symbol. */
7087 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
7088 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7094 state
= nothing_seen
;
7096 for (p
= symbols
; *p
!= NULL
; p
++)
7101 q
= (elf_symbol_type
*) *p
;
7103 type
= ELF_ST_TYPE (q
->internal_elf_sym
.st_info
);
7108 if (state
== symbol_seen
)
7109 state
= file_after_symbol_seen
;
7112 if (!bed
->is_function_type (type
))
7115 if (bfd_get_section (&q
->symbol
) == section
7116 && q
->symbol
.value
>= low_func
7117 && q
->symbol
.value
<= offset
)
7119 func
= (asymbol
*) q
;
7120 low_func
= q
->symbol
.value
;
7123 && (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) == STB_LOCAL
7124 || state
!= file_after_symbol_seen
))
7125 filename
= bfd_asymbol_name (file
);
7129 if (state
== nothing_seen
)
7130 state
= symbol_seen
;
7137 *filename_ptr
= filename
;
7138 if (functionname_ptr
)
7139 *functionname_ptr
= bfd_asymbol_name (func
);
7144 /* Find the nearest line to a particular section and offset,
7145 for error reporting. */
7148 _bfd_elf_find_nearest_line (bfd
*abfd
,
7152 const char **filename_ptr
,
7153 const char **functionname_ptr
,
7154 unsigned int *line_ptr
)
7158 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
7159 filename_ptr
, functionname_ptr
,
7162 if (!*functionname_ptr
)
7163 elf_find_function (abfd
, section
, symbols
, offset
,
7164 *filename_ptr
? NULL
: filename_ptr
,
7170 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
7171 filename_ptr
, functionname_ptr
,
7173 &elf_tdata (abfd
)->dwarf2_find_line_info
))
7175 if (!*functionname_ptr
)
7176 elf_find_function (abfd
, section
, symbols
, offset
,
7177 *filename_ptr
? NULL
: filename_ptr
,
7183 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
7184 &found
, filename_ptr
,
7185 functionname_ptr
, line_ptr
,
7186 &elf_tdata (abfd
)->line_info
))
7188 if (found
&& (*functionname_ptr
|| *line_ptr
))
7191 if (symbols
== NULL
)
7194 if (! elf_find_function (abfd
, section
, symbols
, offset
,
7195 filename_ptr
, functionname_ptr
))
7202 /* Find the line for a symbol. */
7205 _bfd_elf_find_line (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
7206 const char **filename_ptr
, unsigned int *line_ptr
)
7208 return _bfd_dwarf2_find_line (abfd
, symbols
, symbol
,
7209 filename_ptr
, line_ptr
, 0,
7210 &elf_tdata (abfd
)->dwarf2_find_line_info
);
7213 /* After a call to bfd_find_nearest_line, successive calls to
7214 bfd_find_inliner_info can be used to get source information about
7215 each level of function inlining that terminated at the address
7216 passed to bfd_find_nearest_line. Currently this is only supported
7217 for DWARF2 with appropriate DWARF3 extensions. */
7220 _bfd_elf_find_inliner_info (bfd
*abfd
,
7221 const char **filename_ptr
,
7222 const char **functionname_ptr
,
7223 unsigned int *line_ptr
)
7226 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
7227 functionname_ptr
, line_ptr
,
7228 & elf_tdata (abfd
)->dwarf2_find_line_info
);
7233 _bfd_elf_sizeof_headers (bfd
*abfd
, struct bfd_link_info
*info
)
7235 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7236 int ret
= bed
->s
->sizeof_ehdr
;
7238 if (!info
->relocatable
)
7240 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
7242 if (phdr_size
== (bfd_size_type
) -1)
7244 struct elf_segment_map
*m
;
7247 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
7248 phdr_size
+= bed
->s
->sizeof_phdr
;
7251 phdr_size
= get_program_header_size (abfd
, info
);
7254 elf_tdata (abfd
)->program_header_size
= phdr_size
;
7262 _bfd_elf_set_section_contents (bfd
*abfd
,
7264 const void *location
,
7266 bfd_size_type count
)
7268 Elf_Internal_Shdr
*hdr
;
7271 if (! abfd
->output_has_begun
7272 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
7275 hdr
= &elf_section_data (section
)->this_hdr
;
7276 pos
= hdr
->sh_offset
+ offset
;
7277 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
7278 || bfd_bwrite (location
, count
, abfd
) != count
)
7285 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
7286 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
7287 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
7292 /* Try to convert a non-ELF reloc into an ELF one. */
7295 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
7297 /* Check whether we really have an ELF howto. */
7299 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
7301 bfd_reloc_code_real_type code
;
7302 reloc_howto_type
*howto
;
7304 /* Alien reloc: Try to determine its type to replace it with an
7305 equivalent ELF reloc. */
7307 if (areloc
->howto
->pc_relative
)
7309 switch (areloc
->howto
->bitsize
)
7312 code
= BFD_RELOC_8_PCREL
;
7315 code
= BFD_RELOC_12_PCREL
;
7318 code
= BFD_RELOC_16_PCREL
;
7321 code
= BFD_RELOC_24_PCREL
;
7324 code
= BFD_RELOC_32_PCREL
;
7327 code
= BFD_RELOC_64_PCREL
;
7333 howto
= bfd_reloc_type_lookup (abfd
, code
);
7335 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
7337 if (howto
->pcrel_offset
)
7338 areloc
->addend
+= areloc
->address
;
7340 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
7345 switch (areloc
->howto
->bitsize
)
7351 code
= BFD_RELOC_14
;
7354 code
= BFD_RELOC_16
;
7357 code
= BFD_RELOC_26
;
7360 code
= BFD_RELOC_32
;
7363 code
= BFD_RELOC_64
;
7369 howto
= bfd_reloc_type_lookup (abfd
, code
);
7373 areloc
->howto
= howto
;
7381 (*_bfd_error_handler
)
7382 (_("%B: unsupported relocation type %s"),
7383 abfd
, areloc
->howto
->name
);
7384 bfd_set_error (bfd_error_bad_value
);
7389 _bfd_elf_close_and_cleanup (bfd
*abfd
)
7391 if (bfd_get_format (abfd
) == bfd_object
)
7393 if (elf_tdata (abfd
) != NULL
&& elf_shstrtab (abfd
) != NULL
)
7394 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
7395 _bfd_dwarf2_cleanup_debug_info (abfd
);
7398 return _bfd_generic_close_and_cleanup (abfd
);
7401 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7402 in the relocation's offset. Thus we cannot allow any sort of sanity
7403 range-checking to interfere. There is nothing else to do in processing
7406 bfd_reloc_status_type
7407 _bfd_elf_rel_vtable_reloc_fn
7408 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
7409 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
7410 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
7411 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
7413 return bfd_reloc_ok
;
7416 /* Elf core file support. Much of this only works on native
7417 toolchains, since we rely on knowing the
7418 machine-dependent procfs structure in order to pick
7419 out details about the corefile. */
7421 #ifdef HAVE_SYS_PROCFS_H
7422 # include <sys/procfs.h>
7425 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7428 elfcore_make_pid (bfd
*abfd
)
7430 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
7431 + (elf_tdata (abfd
)->core_pid
));
7434 /* If there isn't a section called NAME, make one, using
7435 data from SECT. Note, this function will generate a
7436 reference to NAME, so you shouldn't deallocate or
7440 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
7444 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
7447 sect2
= bfd_make_section_with_flags (abfd
, name
, sect
->flags
);
7451 sect2
->size
= sect
->size
;
7452 sect2
->filepos
= sect
->filepos
;
7453 sect2
->alignment_power
= sect
->alignment_power
;
7457 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7458 actually creates up to two pseudosections:
7459 - For the single-threaded case, a section named NAME, unless
7460 such a section already exists.
7461 - For the multi-threaded case, a section named "NAME/PID", where
7462 PID is elfcore_make_pid (abfd).
7463 Both pseudosections have identical contents. */
7465 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
7471 char *threaded_name
;
7475 /* Build the section name. */
7477 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
7478 len
= strlen (buf
) + 1;
7479 threaded_name
= (char *) bfd_alloc (abfd
, len
);
7480 if (threaded_name
== NULL
)
7482 memcpy (threaded_name
, buf
, len
);
7484 sect
= bfd_make_section_anyway_with_flags (abfd
, threaded_name
,
7489 sect
->filepos
= filepos
;
7490 sect
->alignment_power
= 2;
7492 return elfcore_maybe_make_sect (abfd
, name
, sect
);
7495 /* prstatus_t exists on:
7497 linux 2.[01] + glibc
7501 #if defined (HAVE_PRSTATUS_T)
7504 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7509 if (note
->descsz
== sizeof (prstatus_t
))
7513 size
= sizeof (prstat
.pr_reg
);
7514 offset
= offsetof (prstatus_t
, pr_reg
);
7515 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7517 /* Do not overwrite the core signal if it
7518 has already been set by another thread. */
7519 if (elf_tdata (abfd
)->core_signal
== 0)
7520 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7521 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7523 /* pr_who exists on:
7526 pr_who doesn't exist on:
7529 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7530 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7533 #if defined (HAVE_PRSTATUS32_T)
7534 else if (note
->descsz
== sizeof (prstatus32_t
))
7536 /* 64-bit host, 32-bit corefile */
7537 prstatus32_t prstat
;
7539 size
= sizeof (prstat
.pr_reg
);
7540 offset
= offsetof (prstatus32_t
, pr_reg
);
7541 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7543 /* Do not overwrite the core signal if it
7544 has already been set by another thread. */
7545 if (elf_tdata (abfd
)->core_signal
== 0)
7546 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7547 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7549 /* pr_who exists on:
7552 pr_who doesn't exist on:
7555 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7556 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7559 #endif /* HAVE_PRSTATUS32_T */
7562 /* Fail - we don't know how to handle any other
7563 note size (ie. data object type). */
7567 /* Make a ".reg/999" section and a ".reg" section. */
7568 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
7569 size
, note
->descpos
+ offset
);
7571 #endif /* defined (HAVE_PRSTATUS_T) */
7573 /* Create a pseudosection containing the exact contents of NOTE. */
7575 elfcore_make_note_pseudosection (bfd
*abfd
,
7577 Elf_Internal_Note
*note
)
7579 return _bfd_elfcore_make_pseudosection (abfd
, name
,
7580 note
->descsz
, note
->descpos
);
7583 /* There isn't a consistent prfpregset_t across platforms,
7584 but it doesn't matter, because we don't have to pick this
7585 data structure apart. */
7588 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7590 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7593 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7594 type of NT_PRXFPREG. Just include the whole note's contents
7598 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7600 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
7604 elfcore_grok_ppc_vmx (bfd
*abfd
, Elf_Internal_Note
*note
)
7606 return elfcore_make_note_pseudosection (abfd
, ".reg-ppc-vmx", note
);
7610 elfcore_grok_ppc_vsx (bfd
*abfd
, Elf_Internal_Note
*note
)
7612 return elfcore_make_note_pseudosection (abfd
, ".reg-ppc-vsx", note
);
7615 #if defined (HAVE_PRPSINFO_T)
7616 typedef prpsinfo_t elfcore_psinfo_t
;
7617 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7618 typedef prpsinfo32_t elfcore_psinfo32_t
;
7622 #if defined (HAVE_PSINFO_T)
7623 typedef psinfo_t elfcore_psinfo_t
;
7624 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7625 typedef psinfo32_t elfcore_psinfo32_t
;
7629 /* return a malloc'ed copy of a string at START which is at
7630 most MAX bytes long, possibly without a terminating '\0'.
7631 the copy will always have a terminating '\0'. */
7634 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
7637 char *end
= (char *) memchr (start
, '\0', max
);
7645 dups
= (char *) bfd_alloc (abfd
, len
+ 1);
7649 memcpy (dups
, start
, len
);
7655 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7657 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7659 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
7661 elfcore_psinfo_t psinfo
;
7663 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7665 elf_tdata (abfd
)->core_program
7666 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7667 sizeof (psinfo
.pr_fname
));
7669 elf_tdata (abfd
)->core_command
7670 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7671 sizeof (psinfo
.pr_psargs
));
7673 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7674 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
7676 /* 64-bit host, 32-bit corefile */
7677 elfcore_psinfo32_t psinfo
;
7679 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7681 elf_tdata (abfd
)->core_program
7682 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7683 sizeof (psinfo
.pr_fname
));
7685 elf_tdata (abfd
)->core_command
7686 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7687 sizeof (psinfo
.pr_psargs
));
7693 /* Fail - we don't know how to handle any other
7694 note size (ie. data object type). */
7698 /* Note that for some reason, a spurious space is tacked
7699 onto the end of the args in some (at least one anyway)
7700 implementations, so strip it off if it exists. */
7703 char *command
= elf_tdata (abfd
)->core_command
;
7704 int n
= strlen (command
);
7706 if (0 < n
&& command
[n
- 1] == ' ')
7707 command
[n
- 1] = '\0';
7712 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7714 #if defined (HAVE_PSTATUS_T)
7716 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7718 if (note
->descsz
== sizeof (pstatus_t
)
7719 #if defined (HAVE_PXSTATUS_T)
7720 || note
->descsz
== sizeof (pxstatus_t
)
7726 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7728 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7730 #if defined (HAVE_PSTATUS32_T)
7731 else if (note
->descsz
== sizeof (pstatus32_t
))
7733 /* 64-bit host, 32-bit corefile */
7736 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7738 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7741 /* Could grab some more details from the "representative"
7742 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7743 NT_LWPSTATUS note, presumably. */
7747 #endif /* defined (HAVE_PSTATUS_T) */
7749 #if defined (HAVE_LWPSTATUS_T)
7751 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7753 lwpstatus_t lwpstat
;
7759 if (note
->descsz
!= sizeof (lwpstat
)
7760 #if defined (HAVE_LWPXSTATUS_T)
7761 && note
->descsz
!= sizeof (lwpxstatus_t
)
7766 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
7768 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
7769 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
7771 /* Make a ".reg/999" section. */
7773 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
7774 len
= strlen (buf
) + 1;
7775 name
= bfd_alloc (abfd
, len
);
7778 memcpy (name
, buf
, len
);
7780 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7784 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7785 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
7786 sect
->filepos
= note
->descpos
7787 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
7790 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7791 sect
->size
= sizeof (lwpstat
.pr_reg
);
7792 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
7795 sect
->alignment_power
= 2;
7797 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7800 /* Make a ".reg2/999" section */
7802 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
7803 len
= strlen (buf
) + 1;
7804 name
= bfd_alloc (abfd
, len
);
7807 memcpy (name
, buf
, len
);
7809 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7813 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7814 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
7815 sect
->filepos
= note
->descpos
7816 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
7819 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7820 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
7821 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
7824 sect
->alignment_power
= 2;
7826 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
7828 #endif /* defined (HAVE_LWPSTATUS_T) */
7831 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7838 int is_active_thread
;
7841 if (note
->descsz
< 728)
7844 if (! CONST_STRNEQ (note
->namedata
, "win32"))
7847 type
= bfd_get_32 (abfd
, note
->descdata
);
7851 case 1 /* NOTE_INFO_PROCESS */:
7852 /* FIXME: need to add ->core_command. */
7853 /* process_info.pid */
7854 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 8);
7855 /* process_info.signal */
7856 elf_tdata (abfd
)->core_signal
= bfd_get_32 (abfd
, note
->descdata
+ 12);
7859 case 2 /* NOTE_INFO_THREAD */:
7860 /* Make a ".reg/999" section. */
7861 /* thread_info.tid */
7862 sprintf (buf
, ".reg/%ld", (long) bfd_get_32 (abfd
, note
->descdata
+ 8));
7864 len
= strlen (buf
) + 1;
7865 name
= (char *) bfd_alloc (abfd
, len
);
7869 memcpy (name
, buf
, len
);
7871 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7875 /* sizeof (thread_info.thread_context) */
7877 /* offsetof (thread_info.thread_context) */
7878 sect
->filepos
= note
->descpos
+ 12;
7879 sect
->alignment_power
= 2;
7881 /* thread_info.is_active_thread */
7882 is_active_thread
= bfd_get_32 (abfd
, note
->descdata
+ 8);
7884 if (is_active_thread
)
7885 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7889 case 3 /* NOTE_INFO_MODULE */:
7890 /* Make a ".module/xxxxxxxx" section. */
7891 /* module_info.base_address */
7892 base_addr
= bfd_get_32 (abfd
, note
->descdata
+ 4);
7893 sprintf (buf
, ".module/%08lx", (unsigned long) base_addr
);
7895 len
= strlen (buf
) + 1;
7896 name
= (char *) bfd_alloc (abfd
, len
);
7900 memcpy (name
, buf
, len
);
7902 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7907 sect
->size
= note
->descsz
;
7908 sect
->filepos
= note
->descpos
;
7909 sect
->alignment_power
= 2;
7920 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7922 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7930 if (bed
->elf_backend_grok_prstatus
)
7931 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7933 #if defined (HAVE_PRSTATUS_T)
7934 return elfcore_grok_prstatus (abfd
, note
);
7939 #if defined (HAVE_PSTATUS_T)
7941 return elfcore_grok_pstatus (abfd
, note
);
7944 #if defined (HAVE_LWPSTATUS_T)
7946 return elfcore_grok_lwpstatus (abfd
, note
);
7949 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7950 return elfcore_grok_prfpreg (abfd
, note
);
7952 case NT_WIN32PSTATUS
:
7953 return elfcore_grok_win32pstatus (abfd
, note
);
7955 case NT_PRXFPREG
: /* Linux SSE extension */
7956 if (note
->namesz
== 6
7957 && strcmp (note
->namedata
, "LINUX") == 0)
7958 return elfcore_grok_prxfpreg (abfd
, note
);
7963 if (note
->namesz
== 6
7964 && strcmp (note
->namedata
, "LINUX") == 0)
7965 return elfcore_grok_ppc_vmx (abfd
, note
);
7970 if (note
->namesz
== 6
7971 && strcmp (note
->namedata
, "LINUX") == 0)
7972 return elfcore_grok_ppc_vsx (abfd
, note
);
7978 if (bed
->elf_backend_grok_psinfo
)
7979 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
7981 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7982 return elfcore_grok_psinfo (abfd
, note
);
7989 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
7994 sect
->size
= note
->descsz
;
7995 sect
->filepos
= note
->descpos
;
7996 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8004 elfobj_grok_gnu_build_id (bfd
*abfd
, Elf_Internal_Note
*note
)
8006 elf_tdata (abfd
)->build_id_size
= note
->descsz
;
8007 elf_tdata (abfd
)->build_id
= (bfd_byte
*) bfd_alloc (abfd
, note
->descsz
);
8008 if (elf_tdata (abfd
)->build_id
== NULL
)
8011 memcpy (elf_tdata (abfd
)->build_id
, note
->descdata
, note
->descsz
);
8017 elfobj_grok_gnu_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8024 case NT_GNU_BUILD_ID
:
8025 return elfobj_grok_gnu_build_id (abfd
, note
);
8030 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
8034 cp
= strchr (note
->namedata
, '@');
8037 *lwpidp
= atoi(cp
+ 1);
8044 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
8046 /* Signal number at offset 0x08. */
8047 elf_tdata (abfd
)->core_signal
8048 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
8050 /* Process ID at offset 0x50. */
8051 elf_tdata (abfd
)->core_pid
8052 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
8054 /* Command name at 0x7c (max 32 bytes, including nul). */
8055 elf_tdata (abfd
)->core_command
8056 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
8058 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
8063 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8067 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
8068 elf_tdata (abfd
)->core_lwpid
= lwp
;
8070 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
8072 /* NetBSD-specific core "procinfo". Note that we expect to
8073 find this note before any of the others, which is fine,
8074 since the kernel writes this note out first when it
8075 creates a core file. */
8077 return elfcore_grok_netbsd_procinfo (abfd
, note
);
8080 /* As of Jan 2002 there are no other machine-independent notes
8081 defined for NetBSD core files. If the note type is less
8082 than the start of the machine-dependent note types, we don't
8085 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
8089 switch (bfd_get_arch (abfd
))
8091 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8092 PT_GETFPREGS == mach+2. */
8094 case bfd_arch_alpha
:
8095 case bfd_arch_sparc
:
8098 case NT_NETBSDCORE_FIRSTMACH
+0:
8099 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8101 case NT_NETBSDCORE_FIRSTMACH
+2:
8102 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8108 /* On all other arch's, PT_GETREGS == mach+1 and
8109 PT_GETFPREGS == mach+3. */
8114 case NT_NETBSDCORE_FIRSTMACH
+1:
8115 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8117 case NT_NETBSDCORE_FIRSTMACH
+3:
8118 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8128 elfcore_grok_openbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
8130 /* Signal number at offset 0x08. */
8131 elf_tdata (abfd
)->core_signal
8132 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
8134 /* Process ID at offset 0x20. */
8135 elf_tdata (abfd
)->core_pid
8136 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x20);
8138 /* Command name at 0x48 (max 32 bytes, including nul). */
8139 elf_tdata (abfd
)->core_command
8140 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x48, 31);
8146 elfcore_grok_openbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8148 if (note
->type
== NT_OPENBSD_PROCINFO
)
8149 return elfcore_grok_openbsd_procinfo (abfd
, note
);
8151 if (note
->type
== NT_OPENBSD_REGS
)
8152 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8154 if (note
->type
== NT_OPENBSD_FPREGS
)
8155 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8157 if (note
->type
== NT_OPENBSD_XFPREGS
)
8158 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
8160 if (note
->type
== NT_OPENBSD_AUXV
)
8162 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
8167 sect
->size
= note
->descsz
;
8168 sect
->filepos
= note
->descpos
;
8169 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8174 if (note
->type
== NT_OPENBSD_WCOOKIE
)
8176 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".wcookie",
8181 sect
->size
= note
->descsz
;
8182 sect
->filepos
= note
->descpos
;
8183 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8192 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, long *tid
)
8194 void *ddata
= note
->descdata
;
8201 /* nto_procfs_status 'pid' field is at offset 0. */
8202 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
8204 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8205 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
8207 /* nto_procfs_status 'flags' field is at offset 8. */
8208 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
8210 /* nto_procfs_status 'what' field is at offset 14. */
8211 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
8213 elf_tdata (abfd
)->core_signal
= sig
;
8214 elf_tdata (abfd
)->core_lwpid
= *tid
;
8217 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8218 do not come from signals so we make sure we set the current
8219 thread just in case. */
8220 if (flags
& 0x00000080)
8221 elf_tdata (abfd
)->core_lwpid
= *tid
;
8223 /* Make a ".qnx_core_status/%d" section. */
8224 sprintf (buf
, ".qnx_core_status/%ld", *tid
);
8226 name
= (char *) bfd_alloc (abfd
, strlen (buf
) + 1);
8231 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8235 sect
->size
= note
->descsz
;
8236 sect
->filepos
= note
->descpos
;
8237 sect
->alignment_power
= 2;
8239 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
8243 elfcore_grok_nto_regs (bfd
*abfd
,
8244 Elf_Internal_Note
*note
,
8252 /* Make a "(base)/%d" section. */
8253 sprintf (buf
, "%s/%ld", base
, tid
);
8255 name
= (char *) bfd_alloc (abfd
, strlen (buf
) + 1);
8260 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8264 sect
->size
= note
->descsz
;
8265 sect
->filepos
= note
->descpos
;
8266 sect
->alignment_power
= 2;
8268 /* This is the current thread. */
8269 if (elf_tdata (abfd
)->core_lwpid
== tid
)
8270 return elfcore_maybe_make_sect (abfd
, base
, sect
);
8275 #define BFD_QNT_CORE_INFO 7
8276 #define BFD_QNT_CORE_STATUS 8
8277 #define BFD_QNT_CORE_GREG 9
8278 #define BFD_QNT_CORE_FPREG 10
8281 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8283 /* Every GREG section has a STATUS section before it. Store the
8284 tid from the previous call to pass down to the next gregs
8286 static long tid
= 1;
8290 case BFD_QNT_CORE_INFO
:
8291 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
8292 case BFD_QNT_CORE_STATUS
:
8293 return elfcore_grok_nto_status (abfd
, note
, &tid
);
8294 case BFD_QNT_CORE_GREG
:
8295 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
8296 case BFD_QNT_CORE_FPREG
:
8297 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
8304 elfcore_grok_spu_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8310 /* Use note name as section name. */
8312 name
= (char *) bfd_alloc (abfd
, len
);
8315 memcpy (name
, note
->namedata
, len
);
8316 name
[len
- 1] = '\0';
8318 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8322 sect
->size
= note
->descsz
;
8323 sect
->filepos
= note
->descpos
;
8324 sect
->alignment_power
= 1;
8329 /* Function: elfcore_write_note
8332 buffer to hold note, and current size of buffer
8336 size of data for note
8338 Writes note to end of buffer. ELF64 notes are written exactly as
8339 for ELF32, despite the current (as of 2006) ELF gabi specifying
8340 that they ought to have 8-byte namesz and descsz field, and have
8341 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8344 Pointer to realloc'd buffer, *BUFSIZ updated. */
8347 elfcore_write_note (bfd
*abfd
,
8355 Elf_External_Note
*xnp
;
8362 namesz
= strlen (name
) + 1;
8364 newspace
= 12 + ((namesz
+ 3) & -4) + ((size
+ 3) & -4);
8366 buf
= (char *) realloc (buf
, *bufsiz
+ newspace
);
8369 dest
= buf
+ *bufsiz
;
8370 *bufsiz
+= newspace
;
8371 xnp
= (Elf_External_Note
*) dest
;
8372 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
8373 H_PUT_32 (abfd
, size
, xnp
->descsz
);
8374 H_PUT_32 (abfd
, type
, xnp
->type
);
8378 memcpy (dest
, name
, namesz
);
8386 memcpy (dest
, input
, size
);
8396 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8398 elfcore_write_prpsinfo (bfd
*abfd
,
8404 const char *note_name
= "CORE";
8405 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8407 if (bed
->elf_backend_write_core_note
!= NULL
)
8410 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8411 NT_PRPSINFO
, fname
, psargs
);
8416 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8417 if (bed
->s
->elfclass
== ELFCLASS32
)
8419 #if defined (HAVE_PSINFO32_T)
8421 int note_type
= NT_PSINFO
;
8424 int note_type
= NT_PRPSINFO
;
8427 memset (&data
, 0, sizeof (data
));
8428 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8429 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8430 return elfcore_write_note (abfd
, buf
, bufsiz
,
8431 note_name
, note_type
, &data
, sizeof (data
));
8436 #if defined (HAVE_PSINFO_T)
8438 int note_type
= NT_PSINFO
;
8441 int note_type
= NT_PRPSINFO
;
8444 memset (&data
, 0, sizeof (data
));
8445 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8446 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8447 return elfcore_write_note (abfd
, buf
, bufsiz
,
8448 note_name
, note_type
, &data
, sizeof (data
));
8451 #endif /* PSINFO_T or PRPSINFO_T */
8453 #if defined (HAVE_PRSTATUS_T)
8455 elfcore_write_prstatus (bfd
*abfd
,
8462 const char *note_name
= "CORE";
8463 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8465 if (bed
->elf_backend_write_core_note
!= NULL
)
8468 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8470 pid
, cursig
, gregs
);
8475 #if defined (HAVE_PRSTATUS32_T)
8476 if (bed
->s
->elfclass
== ELFCLASS32
)
8478 prstatus32_t prstat
;
8480 memset (&prstat
, 0, sizeof (prstat
));
8481 prstat
.pr_pid
= pid
;
8482 prstat
.pr_cursig
= cursig
;
8483 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8484 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8485 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8492 memset (&prstat
, 0, sizeof (prstat
));
8493 prstat
.pr_pid
= pid
;
8494 prstat
.pr_cursig
= cursig
;
8495 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8496 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8497 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8500 #endif /* HAVE_PRSTATUS_T */
8502 #if defined (HAVE_LWPSTATUS_T)
8504 elfcore_write_lwpstatus (bfd
*abfd
,
8511 lwpstatus_t lwpstat
;
8512 const char *note_name
= "CORE";
8514 memset (&lwpstat
, 0, sizeof (lwpstat
));
8515 lwpstat
.pr_lwpid
= pid
>> 16;
8516 lwpstat
.pr_cursig
= cursig
;
8517 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8518 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
8519 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8521 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
8522 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
8524 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
8525 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
8528 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8529 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
8531 #endif /* HAVE_LWPSTATUS_T */
8533 #if defined (HAVE_PSTATUS_T)
8535 elfcore_write_pstatus (bfd
*abfd
,
8539 int cursig ATTRIBUTE_UNUSED
,
8540 const void *gregs ATTRIBUTE_UNUSED
)
8542 const char *note_name
= "CORE";
8543 #if defined (HAVE_PSTATUS32_T)
8544 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8546 if (bed
->s
->elfclass
== ELFCLASS32
)
8550 memset (&pstat
, 0, sizeof (pstat
));
8551 pstat
.pr_pid
= pid
& 0xffff;
8552 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8553 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8561 memset (&pstat
, 0, sizeof (pstat
));
8562 pstat
.pr_pid
= pid
& 0xffff;
8563 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8564 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8568 #endif /* HAVE_PSTATUS_T */
8571 elfcore_write_prfpreg (bfd
*abfd
,
8577 const char *note_name
= "CORE";
8578 return elfcore_write_note (abfd
, buf
, bufsiz
,
8579 note_name
, NT_FPREGSET
, fpregs
, size
);
8583 elfcore_write_prxfpreg (bfd
*abfd
,
8586 const void *xfpregs
,
8589 char *note_name
= "LINUX";
8590 return elfcore_write_note (abfd
, buf
, bufsiz
,
8591 note_name
, NT_PRXFPREG
, xfpregs
, size
);
8595 elfcore_write_ppc_vmx (bfd
*abfd
,
8598 const void *ppc_vmx
,
8601 char *note_name
= "LINUX";
8602 return elfcore_write_note (abfd
, buf
, bufsiz
,
8603 note_name
, NT_PPC_VMX
, ppc_vmx
, size
);
8607 elfcore_write_ppc_vsx (bfd
*abfd
,
8610 const void *ppc_vsx
,
8613 char *note_name
= "LINUX";
8614 return elfcore_write_note (abfd
, buf
, bufsiz
,
8615 note_name
, NT_PPC_VSX
, ppc_vsx
, size
);
8619 elfcore_write_register_note (bfd
*abfd
,
8622 const char *section
,
8626 if (strcmp (section
, ".reg2") == 0)
8627 return elfcore_write_prfpreg (abfd
, buf
, bufsiz
, data
, size
);
8628 if (strcmp (section
, ".reg-xfp") == 0)
8629 return elfcore_write_prxfpreg (abfd
, buf
, bufsiz
, data
, size
);
8630 if (strcmp (section
, ".reg-ppc-vmx") == 0)
8631 return elfcore_write_ppc_vmx (abfd
, buf
, bufsiz
, data
, size
);
8632 if (strcmp (section
, ".reg-ppc-vsx") == 0)
8633 return elfcore_write_ppc_vsx (abfd
, buf
, bufsiz
, data
, size
);
8638 elf_parse_notes (bfd
*abfd
, char *buf
, size_t size
, file_ptr offset
)
8643 while (p
< buf
+ size
)
8645 /* FIXME: bad alignment assumption. */
8646 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
8647 Elf_Internal_Note in
;
8649 if (offsetof (Elf_External_Note
, name
) > buf
- p
+ size
)
8652 in
.type
= H_GET_32 (abfd
, xnp
->type
);
8654 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
8655 in
.namedata
= xnp
->name
;
8656 if (in
.namesz
> buf
- in
.namedata
+ size
)
8659 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
8660 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
8661 in
.descpos
= offset
+ (in
.descdata
- buf
);
8663 && (in
.descdata
>= buf
+ size
8664 || in
.descsz
> buf
- in
.descdata
+ size
))
8667 switch (bfd_get_format (abfd
))
8673 if (CONST_STRNEQ (in
.namedata
, "NetBSD-CORE"))
8675 if (! elfcore_grok_netbsd_note (abfd
, &in
))
8678 else if (CONST_STRNEQ (in
.namedata
, "OpenBSD"))
8680 if (! elfcore_grok_openbsd_note (abfd
, &in
))
8683 else if (CONST_STRNEQ (in
.namedata
, "QNX"))
8685 if (! elfcore_grok_nto_note (abfd
, &in
))
8688 else if (CONST_STRNEQ (in
.namedata
, "SPU/"))
8690 if (! elfcore_grok_spu_note (abfd
, &in
))
8695 if (! elfcore_grok_note (abfd
, &in
))
8701 if (in
.namesz
== sizeof "GNU" && strcmp (in
.namedata
, "GNU") == 0)
8703 if (! elfobj_grok_gnu_note (abfd
, &in
))
8709 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
8716 elf_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
8723 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
8726 buf
= (char *) bfd_malloc (size
);
8730 if (bfd_bread (buf
, size
, abfd
) != size
8731 || !elf_parse_notes (abfd
, buf
, size
, offset
))
8741 /* Providing external access to the ELF program header table. */
8743 /* Return an upper bound on the number of bytes required to store a
8744 copy of ABFD's program header table entries. Return -1 if an error
8745 occurs; bfd_get_error will return an appropriate code. */
8748 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
8750 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8752 bfd_set_error (bfd_error_wrong_format
);
8756 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
8759 /* Copy ABFD's program header table entries to *PHDRS. The entries
8760 will be stored as an array of Elf_Internal_Phdr structures, as
8761 defined in include/elf/internal.h. To find out how large the
8762 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8764 Return the number of program header table entries read, or -1 if an
8765 error occurs; bfd_get_error will return an appropriate code. */
8768 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
8772 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8774 bfd_set_error (bfd_error_wrong_format
);
8778 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
8779 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
8780 num_phdrs
* sizeof (Elf_Internal_Phdr
));
8785 enum elf_reloc_type_class
8786 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
8788 return reloc_class_normal
;
8791 /* For RELA architectures, return the relocation value for a
8792 relocation against a local symbol. */
8795 _bfd_elf_rela_local_sym (bfd
*abfd
,
8796 Elf_Internal_Sym
*sym
,
8798 Elf_Internal_Rela
*rel
)
8800 asection
*sec
= *psec
;
8803 relocation
= (sec
->output_section
->vma
8804 + sec
->output_offset
8806 if ((sec
->flags
& SEC_MERGE
)
8807 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
8808 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
8811 _bfd_merged_section_offset (abfd
, psec
,
8812 elf_section_data (sec
)->sec_info
,
8813 sym
->st_value
+ rel
->r_addend
);
8816 /* If we have changed the section, and our original section is
8817 marked with SEC_EXCLUDE, it means that the original
8818 SEC_MERGE section has been completely subsumed in some
8819 other SEC_MERGE section. In this case, we need to leave
8820 some info around for --emit-relocs. */
8821 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
8822 sec
->kept_section
= *psec
;
8825 rel
->r_addend
-= relocation
;
8826 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
8832 _bfd_elf_rel_local_sym (bfd
*abfd
,
8833 Elf_Internal_Sym
*sym
,
8837 asection
*sec
= *psec
;
8839 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
8840 return sym
->st_value
+ addend
;
8842 return _bfd_merged_section_offset (abfd
, psec
,
8843 elf_section_data (sec
)->sec_info
,
8844 sym
->st_value
+ addend
);
8848 _bfd_elf_section_offset (bfd
*abfd
,
8849 struct bfd_link_info
*info
,
8853 switch (sec
->sec_info_type
)
8855 case ELF_INFO_TYPE_STABS
:
8856 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
8858 case ELF_INFO_TYPE_EH_FRAME
:
8859 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
8865 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8866 reconstruct an ELF file by reading the segments out of remote memory
8867 based on the ELF file header at EHDR_VMA and the ELF program headers it
8868 points to. If not null, *LOADBASEP is filled in with the difference
8869 between the VMAs from which the segments were read, and the VMAs the
8870 file headers (and hence BFD's idea of each section's VMA) put them at.
8872 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8873 remote memory at target address VMA into the local buffer at MYADDR; it
8874 should return zero on success or an `errno' code on failure. TEMPL must
8875 be a BFD for an ELF target with the word size and byte order found in
8876 the remote memory. */
8879 bfd_elf_bfd_from_remote_memory
8883 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
8885 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
8886 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
8890 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
8891 long symcount ATTRIBUTE_UNUSED
,
8892 asymbol
**syms ATTRIBUTE_UNUSED
,
8897 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8900 const char *relplt_name
;
8901 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
8905 Elf_Internal_Shdr
*hdr
;
8911 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
8914 if (dynsymcount
<= 0)
8917 if (!bed
->plt_sym_val
)
8920 relplt_name
= bed
->relplt_name
;
8921 if (relplt_name
== NULL
)
8922 relplt_name
= bed
->rela_plts_and_copies_p
? ".rela.plt" : ".rel.plt";
8923 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
8927 hdr
= &elf_section_data (relplt
)->this_hdr
;
8928 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
8929 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
8932 plt
= bfd_get_section_by_name (abfd
, ".plt");
8936 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
8937 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
8940 count
= relplt
->size
/ hdr
->sh_entsize
;
8941 size
= count
* sizeof (asymbol
);
8942 p
= relplt
->relocation
;
8943 for (i
= 0; i
< count
; i
++, p
+= bed
->s
->int_rels_per_ext_rel
)
8945 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
8949 size
+= sizeof ("+0x") - 1 + 8 + 8 * (bed
->s
->elfclass
== ELFCLASS64
);
8951 size
+= sizeof ("+0x") - 1 + 8;
8956 s
= *ret
= (asymbol
*) bfd_malloc (size
);
8960 names
= (char *) (s
+ count
);
8961 p
= relplt
->relocation
;
8963 for (i
= 0; i
< count
; i
++, p
+= bed
->s
->int_rels_per_ext_rel
)
8968 addr
= bed
->plt_sym_val (i
, plt
, p
);
8969 if (addr
== (bfd_vma
) -1)
8972 *s
= **p
->sym_ptr_ptr
;
8973 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8974 we are defining a symbol, ensure one of them is set. */
8975 if ((s
->flags
& BSF_LOCAL
) == 0)
8976 s
->flags
|= BSF_GLOBAL
;
8977 s
->flags
|= BSF_SYNTHETIC
;
8979 s
->value
= addr
- plt
->vma
;
8982 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
8983 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
8989 memcpy (names
, "+0x", sizeof ("+0x") - 1);
8990 names
+= sizeof ("+0x") - 1;
8991 bfd_sprintf_vma (abfd
, buf
, p
->addend
);
8992 for (a
= buf
; *a
== '0'; ++a
)
8995 memcpy (names
, a
, len
);
8998 memcpy (names
, "@plt", sizeof ("@plt"));
8999 names
+= sizeof ("@plt");
9006 /* It is only used by x86-64 so far. */
9007 asection _bfd_elf_large_com_section
9008 = BFD_FAKE_SECTION (_bfd_elf_large_com_section
,
9009 SEC_IS_COMMON
, NULL
, "LARGE_COMMON", 0);
9012 _bfd_elf_set_osabi (bfd
* abfd
,
9013 struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
9015 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
9017 i_ehdrp
= elf_elfheader (abfd
);
9019 i_ehdrp
->e_ident
[EI_OSABI
] = get_elf_backend_data (abfd
)->elf_osabi
;
9021 /* To make things simpler for the loader on Linux systems we set the
9022 osabi field to ELFOSABI_LINUX if the binary contains symbols of
9023 the STT_GNU_IFUNC type. */
9024 if (i_ehdrp
->e_ident
[EI_OSABI
] == ELFOSABI_NONE
9025 && elf_tdata (abfd
)->has_ifunc_symbols
)
9026 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_LINUX
;
9030 /* Return TRUE for ELF symbol types that represent functions.
9031 This is the default version of this function, which is sufficient for
9032 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9035 _bfd_elf_is_function_type (unsigned int type
)
9037 return (type
== STT_FUNC
9038 || type
== STT_GNU_IFUNC
);