merge from gcc
[binutils.git] / bfd / elf32-m68hc1x.c
blob544db35b7d8006d3d5e88a8be704f3bf84006e8d
1 /* Motorola 68HC11/HC12-specific support for 32-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009 Free Software Foundation, Inc.
4 Contributed by Stephane Carrez (stcarrez@nerim.fr)
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
23 #include "alloca-conf.h"
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "bfdlink.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf32-m68hc1x.h"
30 #include "elf/m68hc11.h"
31 #include "opcode/m68hc11.h"
34 #define m68hc12_stub_hash_lookup(table, string, create, copy) \
35 ((struct elf32_m68hc11_stub_hash_entry *) \
36 bfd_hash_lookup ((table), (string), (create), (copy)))
38 static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub
39 (const char *stub_name,
40 asection *section,
41 struct m68hc11_elf_link_hash_table *htab);
43 static struct bfd_hash_entry *stub_hash_newfunc
44 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
46 static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info,
47 const char* name, bfd_vma value,
48 asection* sec);
50 static bfd_boolean m68hc11_elf_export_one_stub
51 (struct bfd_hash_entry *gen_entry, void *in_arg);
53 static void scan_sections_for_abi (bfd*, asection*, PTR);
55 struct m68hc11_scan_param
57 struct m68hc11_page_info* pinfo;
58 bfd_boolean use_memory_banks;
62 /* Create a 68HC11/68HC12 ELF linker hash table. */
64 struct m68hc11_elf_link_hash_table*
65 m68hc11_elf_hash_table_create (bfd *abfd)
67 struct m68hc11_elf_link_hash_table *ret;
68 bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table);
70 ret = (struct m68hc11_elf_link_hash_table *) bfd_malloc (amt);
71 if (ret == (struct m68hc11_elf_link_hash_table *) NULL)
72 return NULL;
74 memset (ret, 0, amt);
75 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
76 _bfd_elf_link_hash_newfunc,
77 sizeof (struct elf_link_hash_entry)))
79 free (ret);
80 return NULL;
83 /* Init the stub hash table too. */
84 amt = sizeof (struct bfd_hash_table);
85 ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt);
86 if (ret->stub_hash_table == NULL)
88 free (ret);
89 return NULL;
91 if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc,
92 sizeof (struct elf32_m68hc11_stub_hash_entry)))
93 return NULL;
95 ret->stub_bfd = NULL;
96 ret->stub_section = 0;
97 ret->add_stub_section = NULL;
98 ret->sym_cache.abfd = NULL;
100 return ret;
103 /* Free the derived linker hash table. */
105 void
106 m68hc11_elf_bfd_link_hash_table_free (struct bfd_link_hash_table *hash)
108 struct m68hc11_elf_link_hash_table *ret
109 = (struct m68hc11_elf_link_hash_table *) hash;
111 bfd_hash_table_free (ret->stub_hash_table);
112 free (ret->stub_hash_table);
113 _bfd_generic_link_hash_table_free (hash);
116 /* Assorted hash table functions. */
118 /* Initialize an entry in the stub hash table. */
120 static struct bfd_hash_entry *
121 stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
122 const char *string)
124 /* Allocate the structure if it has not already been allocated by a
125 subclass. */
126 if (entry == NULL)
128 entry = bfd_hash_allocate (table,
129 sizeof (struct elf32_m68hc11_stub_hash_entry));
130 if (entry == NULL)
131 return entry;
134 /* Call the allocation method of the superclass. */
135 entry = bfd_hash_newfunc (entry, table, string);
136 if (entry != NULL)
138 struct elf32_m68hc11_stub_hash_entry *eh;
140 /* Initialize the local fields. */
141 eh = (struct elf32_m68hc11_stub_hash_entry *) entry;
142 eh->stub_sec = NULL;
143 eh->stub_offset = 0;
144 eh->target_value = 0;
145 eh->target_section = NULL;
148 return entry;
151 /* Add a new stub entry to the stub hash. Not all fields of the new
152 stub entry are initialised. */
154 static struct elf32_m68hc11_stub_hash_entry *
155 m68hc12_add_stub (const char *stub_name, asection *section,
156 struct m68hc11_elf_link_hash_table *htab)
158 struct elf32_m68hc11_stub_hash_entry *stub_entry;
160 /* Enter this entry into the linker stub hash table. */
161 stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name,
162 TRUE, FALSE);
163 if (stub_entry == NULL)
165 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
166 section->owner, stub_name);
167 return NULL;
170 if (htab->stub_section == 0)
172 htab->stub_section = (*htab->add_stub_section) (".tramp",
173 htab->tramp_section);
176 stub_entry->stub_sec = htab->stub_section;
177 stub_entry->stub_offset = 0;
178 return stub_entry;
181 /* Hook called by the linker routine which adds symbols from an object
182 file. We use it for identify far symbols and force a loading of
183 the trampoline handler. */
185 bfd_boolean
186 elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
187 Elf_Internal_Sym *sym,
188 const char **namep ATTRIBUTE_UNUSED,
189 flagword *flagsp ATTRIBUTE_UNUSED,
190 asection **secp ATTRIBUTE_UNUSED,
191 bfd_vma *valp ATTRIBUTE_UNUSED)
193 if (sym->st_other & STO_M68HC12_FAR)
195 struct elf_link_hash_entry *h;
197 h = (struct elf_link_hash_entry *)
198 bfd_link_hash_lookup (info->hash, "__far_trampoline",
199 FALSE, FALSE, FALSE);
200 if (h == NULL)
202 struct bfd_link_hash_entry* entry = NULL;
204 _bfd_generic_link_add_one_symbol (info, abfd,
205 "__far_trampoline",
206 BSF_GLOBAL,
207 bfd_und_section_ptr,
208 (bfd_vma) 0, (const char*) NULL,
209 FALSE, FALSE, &entry);
213 return TRUE;
216 /* External entry points for sizing and building linker stubs. */
218 /* Set up various things so that we can make a list of input sections
219 for each output section included in the link. Returns -1 on error,
220 0 when no stubs will be needed, and 1 on success. */
223 elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
225 bfd *input_bfd;
226 unsigned int bfd_count;
227 int top_id, top_index;
228 asection *section;
229 asection **input_list, **list;
230 bfd_size_type amt;
231 asection *text_section;
232 struct m68hc11_elf_link_hash_table *htab;
234 htab = m68hc11_elf_hash_table (info);
236 if (bfd_get_flavour (info->output_bfd) != bfd_target_elf_flavour)
237 return 0;
239 /* Count the number of input BFDs and find the top input section id.
240 Also search for an existing ".tramp" section so that we know
241 where generated trampolines must go. Default to ".text" if we
242 can't find it. */
243 htab->tramp_section = 0;
244 text_section = 0;
245 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
246 input_bfd != NULL;
247 input_bfd = input_bfd->link_next)
249 bfd_count += 1;
250 for (section = input_bfd->sections;
251 section != NULL;
252 section = section->next)
254 const char* name = bfd_get_section_name (input_bfd, section);
256 if (!strcmp (name, ".tramp"))
257 htab->tramp_section = section;
259 if (!strcmp (name, ".text"))
260 text_section = section;
262 if (top_id < section->id)
263 top_id = section->id;
266 htab->bfd_count = bfd_count;
267 if (htab->tramp_section == 0)
268 htab->tramp_section = text_section;
270 /* We can't use output_bfd->section_count here to find the top output
271 section index as some sections may have been removed, and
272 strip_excluded_output_sections doesn't renumber the indices. */
273 for (section = output_bfd->sections, top_index = 0;
274 section != NULL;
275 section = section->next)
277 if (top_index < section->index)
278 top_index = section->index;
281 htab->top_index = top_index;
282 amt = sizeof (asection *) * (top_index + 1);
283 input_list = (asection **) bfd_malloc (amt);
284 htab->input_list = input_list;
285 if (input_list == NULL)
286 return -1;
288 /* For sections we aren't interested in, mark their entries with a
289 value we can check later. */
290 list = input_list + top_index;
292 *list = bfd_abs_section_ptr;
293 while (list-- != input_list);
295 for (section = output_bfd->sections;
296 section != NULL;
297 section = section->next)
299 if ((section->flags & SEC_CODE) != 0)
300 input_list[section->index] = NULL;
303 return 1;
306 /* Determine and set the size of the stub section for a final link.
308 The basic idea here is to examine all the relocations looking for
309 PC-relative calls to a target that is unreachable with a "bl"
310 instruction. */
312 bfd_boolean
313 elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd,
314 struct bfd_link_info *info,
315 asection * (*add_stub_section) (const char*, asection*))
317 bfd *input_bfd;
318 asection *section;
319 Elf_Internal_Sym *local_syms, **all_local_syms;
320 unsigned int bfd_indx, bfd_count;
321 bfd_size_type amt;
322 asection *stub_sec;
324 struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info);
326 /* Stash our params away. */
327 htab->stub_bfd = stub_bfd;
328 htab->add_stub_section = add_stub_section;
330 /* Count the number of input BFDs and find the top input section id. */
331 for (input_bfd = info->input_bfds, bfd_count = 0;
332 input_bfd != NULL;
333 input_bfd = input_bfd->link_next)
335 bfd_count += 1;
338 /* We want to read in symbol extension records only once. To do this
339 we need to read in the local symbols in parallel and save them for
340 later use; so hold pointers to the local symbols in an array. */
341 amt = sizeof (Elf_Internal_Sym *) * bfd_count;
342 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
343 if (all_local_syms == NULL)
344 return FALSE;
346 /* Walk over all the input BFDs, swapping in local symbols. */
347 for (input_bfd = info->input_bfds, bfd_indx = 0;
348 input_bfd != NULL;
349 input_bfd = input_bfd->link_next, bfd_indx++)
351 Elf_Internal_Shdr *symtab_hdr;
353 /* We'll need the symbol table in a second. */
354 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
355 if (symtab_hdr->sh_info == 0)
356 continue;
358 /* We need an array of the local symbols attached to the input bfd. */
359 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
360 if (local_syms == NULL)
362 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
363 symtab_hdr->sh_info, 0,
364 NULL, NULL, NULL);
365 /* Cache them for elf_link_input_bfd. */
366 symtab_hdr->contents = (unsigned char *) local_syms;
368 if (local_syms == NULL)
370 free (all_local_syms);
371 return FALSE;
374 all_local_syms[bfd_indx] = local_syms;
377 for (input_bfd = info->input_bfds, bfd_indx = 0;
378 input_bfd != NULL;
379 input_bfd = input_bfd->link_next, bfd_indx++)
381 Elf_Internal_Shdr *symtab_hdr;
382 Elf_Internal_Sym *local_syms;
383 struct elf_link_hash_entry ** sym_hashes;
385 sym_hashes = elf_sym_hashes (input_bfd);
387 /* We'll need the symbol table in a second. */
388 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
389 if (symtab_hdr->sh_info == 0)
390 continue;
392 local_syms = all_local_syms[bfd_indx];
394 /* Walk over each section attached to the input bfd. */
395 for (section = input_bfd->sections;
396 section != NULL;
397 section = section->next)
399 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
401 /* If there aren't any relocs, then there's nothing more
402 to do. */
403 if ((section->flags & SEC_RELOC) == 0
404 || section->reloc_count == 0)
405 continue;
407 /* If this section is a link-once section that will be
408 discarded, then don't create any stubs. */
409 if (section->output_section == NULL
410 || section->output_section->owner != output_bfd)
411 continue;
413 /* Get the relocs. */
414 internal_relocs
415 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
416 (Elf_Internal_Rela *) NULL,
417 info->keep_memory);
418 if (internal_relocs == NULL)
419 goto error_ret_free_local;
421 /* Now examine each relocation. */
422 irela = internal_relocs;
423 irelaend = irela + section->reloc_count;
424 for (; irela < irelaend; irela++)
426 unsigned int r_type, r_indx;
427 struct elf32_m68hc11_stub_hash_entry *stub_entry;
428 asection *sym_sec;
429 bfd_vma sym_value;
430 struct elf_link_hash_entry *hash;
431 const char *stub_name;
432 Elf_Internal_Sym *sym;
434 r_type = ELF32_R_TYPE (irela->r_info);
436 /* Only look at 16-bit relocs. */
437 if (r_type != (unsigned int) R_M68HC11_16)
438 continue;
440 /* Now determine the call target, its name, value,
441 section. */
442 r_indx = ELF32_R_SYM (irela->r_info);
443 if (r_indx < symtab_hdr->sh_info)
445 /* It's a local symbol. */
446 Elf_Internal_Shdr *hdr;
447 bfd_boolean is_far;
449 sym = local_syms + r_indx;
450 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
451 if (!is_far)
452 continue;
454 if (sym->st_shndx >= elf_numsections (input_bfd))
455 sym_sec = NULL;
456 else
458 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
459 sym_sec = hdr->bfd_section;
461 stub_name = (bfd_elf_string_from_elf_section
462 (input_bfd, symtab_hdr->sh_link,
463 sym->st_name));
464 sym_value = sym->st_value;
465 hash = NULL;
467 else
469 /* It's an external symbol. */
470 int e_indx;
472 e_indx = r_indx - symtab_hdr->sh_info;
473 hash = (struct elf_link_hash_entry *)
474 (sym_hashes[e_indx]);
476 while (hash->root.type == bfd_link_hash_indirect
477 || hash->root.type == bfd_link_hash_warning)
478 hash = ((struct elf_link_hash_entry *)
479 hash->root.u.i.link);
481 if (hash->root.type == bfd_link_hash_defined
482 || hash->root.type == bfd_link_hash_defweak
483 || hash->root.type == bfd_link_hash_new)
485 if (!(hash->other & STO_M68HC12_FAR))
486 continue;
488 else if (hash->root.type == bfd_link_hash_undefweak)
490 continue;
492 else if (hash->root.type == bfd_link_hash_undefined)
494 continue;
496 else
498 bfd_set_error (bfd_error_bad_value);
499 goto error_ret_free_internal;
501 sym_sec = hash->root.u.def.section;
502 sym_value = hash->root.u.def.value;
503 stub_name = hash->root.root.string;
506 if (!stub_name)
507 goto error_ret_free_internal;
509 stub_entry = m68hc12_stub_hash_lookup
510 (htab->stub_hash_table,
511 stub_name,
512 FALSE, FALSE);
513 if (stub_entry == NULL)
515 if (add_stub_section == 0)
516 continue;
518 stub_entry = m68hc12_add_stub (stub_name, section, htab);
519 if (stub_entry == NULL)
521 error_ret_free_internal:
522 if (elf_section_data (section)->relocs == NULL)
523 free (internal_relocs);
524 goto error_ret_free_local;
528 stub_entry->target_value = sym_value;
529 stub_entry->target_section = sym_sec;
532 /* We're done with the internal relocs, free them. */
533 if (elf_section_data (section)->relocs == NULL)
534 free (internal_relocs);
538 if (add_stub_section)
540 /* OK, we've added some stubs. Find out the new size of the
541 stub sections. */
542 for (stub_sec = htab->stub_bfd->sections;
543 stub_sec != NULL;
544 stub_sec = stub_sec->next)
546 stub_sec->size = 0;
549 bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab);
551 free (all_local_syms);
552 return TRUE;
554 error_ret_free_local:
555 free (all_local_syms);
556 return FALSE;
559 /* Export the trampoline addresses in the symbol table. */
560 static bfd_boolean
561 m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
563 struct bfd_link_info *info;
564 struct m68hc11_elf_link_hash_table *htab;
565 struct elf32_m68hc11_stub_hash_entry *stub_entry;
566 char* name;
567 bfd_boolean result;
569 info = (struct bfd_link_info *) in_arg;
570 htab = m68hc11_elf_hash_table (info);
572 /* Massage our args to the form they really have. */
573 stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry;
575 /* Generate the trampoline according to HC11 or HC12. */
576 result = (* htab->build_one_stub) (gen_entry, in_arg);
578 /* Make a printable name that does not conflict with the real function. */
579 name = alloca (strlen (stub_entry->root.string) + 16);
580 sprintf (name, "tramp.%s", stub_entry->root.string);
582 /* Export the symbol for debugging/disassembling. */
583 m68hc11_elf_set_symbol (htab->stub_bfd, info, name,
584 stub_entry->stub_offset,
585 stub_entry->stub_sec);
586 return result;
589 /* Export a symbol or set its value and section. */
590 static void
591 m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info,
592 const char *name, bfd_vma value, asection *sec)
594 struct elf_link_hash_entry *h;
596 h = (struct elf_link_hash_entry *)
597 bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
598 if (h == NULL)
600 _bfd_generic_link_add_one_symbol (info, abfd,
601 name,
602 BSF_GLOBAL,
603 sec,
604 value,
605 (const char*) NULL,
606 TRUE, FALSE, NULL);
608 else
610 h->root.type = bfd_link_hash_defined;
611 h->root.u.def.value = value;
612 h->root.u.def.section = sec;
617 /* Build all the stubs associated with the current output file. The
618 stubs are kept in a hash table attached to the main linker hash
619 table. This function is called via m68hc12elf_finish in the
620 linker. */
622 bfd_boolean
623 elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info)
625 asection *stub_sec;
626 struct bfd_hash_table *table;
627 struct m68hc11_elf_link_hash_table *htab;
628 struct m68hc11_scan_param param;
630 m68hc11_elf_get_bank_parameters (info);
631 htab = m68hc11_elf_hash_table (info);
633 for (stub_sec = htab->stub_bfd->sections;
634 stub_sec != NULL;
635 stub_sec = stub_sec->next)
637 bfd_size_type size;
639 /* Allocate memory to hold the linker stubs. */
640 size = stub_sec->size;
641 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
642 if (stub_sec->contents == NULL && size != 0)
643 return FALSE;
644 stub_sec->size = 0;
647 /* Build the stubs as directed by the stub hash table. */
648 table = htab->stub_hash_table;
649 bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info);
651 /* Scan the output sections to see if we use the memory banks.
652 If so, export the symbols that define how the memory banks
653 are mapped. This is used by gdb and the simulator to obtain
654 the information. It can be used by programs to burn the eprom
655 at the good addresses. */
656 param.use_memory_banks = FALSE;
657 param.pinfo = &htab->pinfo;
658 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
659 if (param.use_memory_banks)
661 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME,
662 htab->pinfo.bank_physical,
663 bfd_abs_section_ptr);
664 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME,
665 htab->pinfo.bank_virtual,
666 bfd_abs_section_ptr);
667 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME,
668 htab->pinfo.bank_size,
669 bfd_abs_section_ptr);
672 return TRUE;
675 void
676 m68hc11_elf_get_bank_parameters (struct bfd_link_info *info)
678 unsigned i;
679 struct m68hc11_page_info *pinfo;
680 struct bfd_link_hash_entry *h;
682 pinfo = &m68hc11_elf_hash_table (info)->pinfo;
683 if (pinfo->bank_param_initialized)
684 return;
686 pinfo->bank_virtual = M68HC12_BANK_VIRT;
687 pinfo->bank_mask = M68HC12_BANK_MASK;
688 pinfo->bank_physical = M68HC12_BANK_BASE;
689 pinfo->bank_shift = M68HC12_BANK_SHIFT;
690 pinfo->bank_size = 1 << M68HC12_BANK_SHIFT;
692 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME,
693 FALSE, FALSE, TRUE);
694 if (h != (struct bfd_link_hash_entry*) NULL
695 && h->type == bfd_link_hash_defined)
696 pinfo->bank_physical = (h->u.def.value
697 + h->u.def.section->output_section->vma
698 + h->u.def.section->output_offset);
700 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME,
701 FALSE, FALSE, TRUE);
702 if (h != (struct bfd_link_hash_entry*) NULL
703 && h->type == bfd_link_hash_defined)
704 pinfo->bank_virtual = (h->u.def.value
705 + h->u.def.section->output_section->vma
706 + h->u.def.section->output_offset);
708 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME,
709 FALSE, FALSE, TRUE);
710 if (h != (struct bfd_link_hash_entry*) NULL
711 && h->type == bfd_link_hash_defined)
712 pinfo->bank_size = (h->u.def.value
713 + h->u.def.section->output_section->vma
714 + h->u.def.section->output_offset);
716 pinfo->bank_shift = 0;
717 for (i = pinfo->bank_size; i != 0; i >>= 1)
718 pinfo->bank_shift++;
719 pinfo->bank_shift--;
720 pinfo->bank_mask = (1 << pinfo->bank_shift) - 1;
721 pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size;
722 pinfo->bank_param_initialized = 1;
724 h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE,
725 FALSE, TRUE);
726 if (h != (struct bfd_link_hash_entry*) NULL
727 && h->type == bfd_link_hash_defined)
728 pinfo->trampoline_addr = (h->u.def.value
729 + h->u.def.section->output_section->vma
730 + h->u.def.section->output_offset);
733 /* Return 1 if the address is in banked memory.
734 This can be applied to a virtual address and to a physical address. */
736 m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr)
738 if (addr >= pinfo->bank_virtual)
739 return 1;
741 if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end)
742 return 1;
744 return 0;
747 /* Return the physical address seen by the processor, taking
748 into account banked memory. */
749 bfd_vma
750 m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr)
752 if (addr < pinfo->bank_virtual)
753 return addr;
755 /* Map the address to the memory bank. */
756 addr -= pinfo->bank_virtual;
757 addr &= pinfo->bank_mask;
758 addr += pinfo->bank_physical;
759 return addr;
762 /* Return the page number corresponding to an address in banked memory. */
763 bfd_vma
764 m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr)
766 if (addr < pinfo->bank_virtual)
767 return 0;
769 /* Map the address to the memory bank. */
770 addr -= pinfo->bank_virtual;
771 addr >>= pinfo->bank_shift;
772 addr &= 0x0ff;
773 return addr;
776 /* This function is used for relocs which are only used for relaxing,
777 which the linker should otherwise ignore. */
779 bfd_reloc_status_type
780 m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED,
781 arelent *reloc_entry,
782 asymbol *symbol ATTRIBUTE_UNUSED,
783 void *data ATTRIBUTE_UNUSED,
784 asection *input_section,
785 bfd *output_bfd,
786 char **error_message ATTRIBUTE_UNUSED)
788 if (output_bfd != NULL)
789 reloc_entry->address += input_section->output_offset;
790 return bfd_reloc_ok;
793 bfd_reloc_status_type
794 m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED,
795 arelent *reloc_entry,
796 asymbol *symbol,
797 void *data ATTRIBUTE_UNUSED,
798 asection *input_section,
799 bfd *output_bfd,
800 char **error_message ATTRIBUTE_UNUSED)
802 if (output_bfd != (bfd *) NULL
803 && (symbol->flags & BSF_SECTION_SYM) == 0
804 && (! reloc_entry->howto->partial_inplace
805 || reloc_entry->addend == 0))
807 reloc_entry->address += input_section->output_offset;
808 return bfd_reloc_ok;
811 if (output_bfd != NULL)
812 return bfd_reloc_continue;
814 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
815 return bfd_reloc_outofrange;
817 abort();
820 /* Look through the relocs for a section during the first phase.
821 Since we don't do .gots or .plts, we just need to consider the
822 virtual table relocs for gc. */
824 bfd_boolean
825 elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info,
826 asection *sec, const Elf_Internal_Rela *relocs)
828 Elf_Internal_Shdr * symtab_hdr;
829 struct elf_link_hash_entry ** sym_hashes;
830 const Elf_Internal_Rela * rel;
831 const Elf_Internal_Rela * rel_end;
833 if (info->relocatable)
834 return TRUE;
836 symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
837 sym_hashes = elf_sym_hashes (abfd);
838 rel_end = relocs + sec->reloc_count;
840 for (rel = relocs; rel < rel_end; rel++)
842 struct elf_link_hash_entry * h;
843 unsigned long r_symndx;
845 r_symndx = ELF32_R_SYM (rel->r_info);
847 if (r_symndx < symtab_hdr->sh_info)
848 h = NULL;
849 else
851 h = sym_hashes [r_symndx - symtab_hdr->sh_info];
852 while (h->root.type == bfd_link_hash_indirect
853 || h->root.type == bfd_link_hash_warning)
854 h = (struct elf_link_hash_entry *) h->root.u.i.link;
857 switch (ELF32_R_TYPE (rel->r_info))
859 /* This relocation describes the C++ object vtable hierarchy.
860 Reconstruct it for later use during GC. */
861 case R_M68HC11_GNU_VTINHERIT:
862 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
863 return FALSE;
864 break;
866 /* This relocation describes which C++ vtable entries are actually
867 used. Record for later use during GC. */
868 case R_M68HC11_GNU_VTENTRY:
869 BFD_ASSERT (h != NULL);
870 if (h != NULL
871 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
872 return FALSE;
873 break;
877 return TRUE;
880 /* Relocate a 68hc11/68hc12 ELF section. */
881 bfd_boolean
882 elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
883 struct bfd_link_info *info,
884 bfd *input_bfd, asection *input_section,
885 bfd_byte *contents, Elf_Internal_Rela *relocs,
886 Elf_Internal_Sym *local_syms,
887 asection **local_sections)
889 Elf_Internal_Shdr *symtab_hdr;
890 struct elf_link_hash_entry **sym_hashes;
891 Elf_Internal_Rela *rel, *relend;
892 const char *name = NULL;
893 struct m68hc11_page_info *pinfo;
894 const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd);
896 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
897 sym_hashes = elf_sym_hashes (input_bfd);
899 /* Get memory bank parameters. */
900 m68hc11_elf_get_bank_parameters (info);
901 pinfo = &m68hc11_elf_hash_table (info)->pinfo;
903 rel = relocs;
904 relend = relocs + input_section->reloc_count;
905 for (; rel < relend; rel++)
907 int r_type;
908 arelent arel;
909 reloc_howto_type *howto;
910 unsigned long r_symndx;
911 Elf_Internal_Sym *sym;
912 asection *sec;
913 bfd_vma relocation = 0;
914 bfd_reloc_status_type r = bfd_reloc_undefined;
915 bfd_vma phys_page;
916 bfd_vma phys_addr;
917 bfd_vma insn_addr;
918 bfd_vma insn_page;
919 bfd_boolean is_far = FALSE;
920 struct elf_link_hash_entry *h;
921 const char* stub_name = 0;
923 r_symndx = ELF32_R_SYM (rel->r_info);
924 r_type = ELF32_R_TYPE (rel->r_info);
926 if (r_type == R_M68HC11_GNU_VTENTRY
927 || r_type == R_M68HC11_GNU_VTINHERIT )
928 continue;
930 (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel);
931 howto = arel.howto;
933 h = NULL;
934 sym = NULL;
935 sec = NULL;
936 if (r_symndx < symtab_hdr->sh_info)
938 sym = local_syms + r_symndx;
939 sec = local_sections[r_symndx];
940 relocation = (sec->output_section->vma
941 + sec->output_offset
942 + sym->st_value);
943 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
944 if (is_far)
945 stub_name = (bfd_elf_string_from_elf_section
946 (input_bfd, symtab_hdr->sh_link,
947 sym->st_name));
949 else
951 bfd_boolean unresolved_reloc, warned;
953 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
954 r_symndx, symtab_hdr, sym_hashes,
955 h, sec, relocation, unresolved_reloc,
956 warned);
958 is_far = (h && (h->other & STO_M68HC12_FAR));
959 stub_name = h->root.root.string;
962 if (sec != NULL && elf_discarded_section (sec))
964 /* For relocs against symbols from removed linkonce sections,
965 or sections discarded by a linker script, we just want the
966 section contents zeroed. Avoid any special processing. */
967 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
968 rel->r_info = 0;
969 rel->r_addend = 0;
970 continue;
973 if (info->relocatable)
975 /* This is a relocatable link. We don't have to change
976 anything, unless the reloc is against a section symbol,
977 in which case we have to adjust according to where the
978 section symbol winds up in the output section. */
979 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
980 rel->r_addend += sec->output_offset;
981 continue;
984 if (h != NULL)
985 name = h->root.root.string;
986 else
988 name = (bfd_elf_string_from_elf_section
989 (input_bfd, symtab_hdr->sh_link, sym->st_name));
990 if (name == NULL || *name == '\0')
991 name = bfd_section_name (input_bfd, sec);
994 if (is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16)
996 struct elf32_m68hc11_stub_hash_entry* stub;
997 struct m68hc11_elf_link_hash_table *htab;
999 htab = m68hc11_elf_hash_table (info);
1000 stub = m68hc12_stub_hash_lookup (htab->stub_hash_table,
1001 name, FALSE, FALSE);
1002 if (stub)
1004 relocation = stub->stub_offset
1005 + stub->stub_sec->output_section->vma
1006 + stub->stub_sec->output_offset;
1007 is_far = FALSE;
1011 /* Do the memory bank mapping. */
1012 phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend);
1013 phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend);
1014 switch (r_type)
1016 case R_M68HC11_24:
1017 /* Reloc used by 68HC12 call instruction. */
1018 bfd_put_16 (input_bfd, phys_addr,
1019 (bfd_byte*) contents + rel->r_offset);
1020 bfd_put_8 (input_bfd, phys_page,
1021 (bfd_byte*) contents + rel->r_offset + 2);
1022 r = bfd_reloc_ok;
1023 r_type = R_M68HC11_NONE;
1024 break;
1026 case R_M68HC11_NONE:
1027 r = bfd_reloc_ok;
1028 break;
1030 case R_M68HC11_LO16:
1031 /* Reloc generated by %addr(expr) gas to obtain the
1032 address as mapped in the memory bank window. */
1033 relocation = phys_addr;
1034 break;
1036 case R_M68HC11_PAGE:
1037 /* Reloc generated by %page(expr) gas to obtain the
1038 page number associated with the address. */
1039 relocation = phys_page;
1040 break;
1042 case R_M68HC11_16:
1043 /* Get virtual address of instruction having the relocation. */
1044 if (is_far)
1046 const char* msg;
1047 char* buf;
1048 msg = _("Reference to the far symbol `%s' using a wrong "
1049 "relocation may result in incorrect execution");
1050 buf = alloca (strlen (msg) + strlen (name) + 10);
1051 sprintf (buf, msg, name);
1053 (* info->callbacks->warning)
1054 (info, buf, name, input_bfd, NULL, rel->r_offset);
1057 /* Get virtual address of instruction having the relocation. */
1058 insn_addr = input_section->output_section->vma
1059 + input_section->output_offset
1060 + rel->r_offset;
1062 insn_page = m68hc11_phys_page (pinfo, insn_addr);
1064 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)
1065 && m68hc11_addr_is_banked (pinfo, insn_addr)
1066 && phys_page != insn_page)
1068 const char* msg;
1069 char* buf;
1071 msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank "
1072 "as current banked address [%lx:%04lx] (%lx)");
1074 buf = alloca (strlen (msg) + 128);
1075 sprintf (buf, msg, phys_page, phys_addr,
1076 (long) (relocation + rel->r_addend),
1077 insn_page, m68hc11_phys_addr (pinfo, insn_addr),
1078 (long) (insn_addr));
1079 if (!((*info->callbacks->warning)
1080 (info, buf, name, input_bfd, input_section,
1081 rel->r_offset)))
1082 return FALSE;
1083 break;
1085 if (phys_page != 0 && insn_page == 0)
1087 const char* msg;
1088 char* buf;
1090 msg = _("reference to a banked address [%lx:%04lx] in the "
1091 "normal address space at %04lx");
1093 buf = alloca (strlen (msg) + 128);
1094 sprintf (buf, msg, phys_page, phys_addr, insn_addr);
1095 if (!((*info->callbacks->warning)
1096 (info, buf, name, input_bfd, input_section,
1097 insn_addr)))
1098 return FALSE;
1100 relocation = phys_addr;
1101 break;
1104 /* If this is a banked address use the phys_addr so that
1105 we stay in the banked window. */
1106 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend))
1107 relocation = phys_addr;
1108 break;
1110 if (r_type != R_M68HC11_NONE)
1111 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1112 contents, rel->r_offset,
1113 relocation, rel->r_addend);
1115 if (r != bfd_reloc_ok)
1117 const char * msg = (const char *) 0;
1119 switch (r)
1121 case bfd_reloc_overflow:
1122 if (!((*info->callbacks->reloc_overflow)
1123 (info, NULL, name, howto->name, (bfd_vma) 0,
1124 input_bfd, input_section, rel->r_offset)))
1125 return FALSE;
1126 break;
1128 case bfd_reloc_undefined:
1129 if (!((*info->callbacks->undefined_symbol)
1130 (info, name, input_bfd, input_section,
1131 rel->r_offset, TRUE)))
1132 return FALSE;
1133 break;
1135 case bfd_reloc_outofrange:
1136 msg = _ ("internal error: out of range error");
1137 goto common_error;
1139 case bfd_reloc_notsupported:
1140 msg = _ ("internal error: unsupported relocation error");
1141 goto common_error;
1143 case bfd_reloc_dangerous:
1144 msg = _ ("internal error: dangerous error");
1145 goto common_error;
1147 default:
1148 msg = _ ("internal error: unknown error");
1149 /* fall through */
1151 common_error:
1152 if (!((*info->callbacks->warning)
1153 (info, msg, name, input_bfd, input_section,
1154 rel->r_offset)))
1155 return FALSE;
1156 break;
1161 return TRUE;
1166 /* Set and control ELF flags in ELF header. */
1168 bfd_boolean
1169 _bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags)
1171 BFD_ASSERT (!elf_flags_init (abfd)
1172 || elf_elfheader (abfd)->e_flags == flags);
1174 elf_elfheader (abfd)->e_flags = flags;
1175 elf_flags_init (abfd) = TRUE;
1176 return TRUE;
1179 /* Merge backend specific data from an object file to the output
1180 object file when linking. */
1182 bfd_boolean
1183 _bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
1185 flagword old_flags;
1186 flagword new_flags;
1187 bfd_boolean ok = TRUE;
1189 /* Check if we have the same endianess */
1190 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
1191 return FALSE;
1193 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1194 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1195 return TRUE;
1197 new_flags = elf_elfheader (ibfd)->e_flags;
1198 elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI;
1199 old_flags = elf_elfheader (obfd)->e_flags;
1201 if (! elf_flags_init (obfd))
1203 elf_flags_init (obfd) = TRUE;
1204 elf_elfheader (obfd)->e_flags = new_flags;
1205 elf_elfheader (obfd)->e_ident[EI_CLASS]
1206 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
1208 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
1209 && bfd_get_arch_info (obfd)->the_default)
1211 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
1212 bfd_get_mach (ibfd)))
1213 return FALSE;
1216 return TRUE;
1219 /* Check ABI compatibility. */
1220 if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32))
1222 (*_bfd_error_handler)
1223 (_("%B: linking files compiled for 16-bit integers (-mshort) "
1224 "and others for 32-bit integers"), ibfd);
1225 ok = FALSE;
1227 if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64))
1229 (*_bfd_error_handler)
1230 (_("%B: linking files compiled for 32-bit double (-fshort-double) "
1231 "and others for 64-bit double"), ibfd);
1232 ok = FALSE;
1235 /* Processor compatibility. */
1236 if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags))
1238 (*_bfd_error_handler)
1239 (_("%B: linking files compiled for HCS12 with "
1240 "others compiled for HC12"), ibfd);
1241 ok = FALSE;
1243 new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK)
1244 | (EF_M68HC11_MERGE_MACH (new_flags, old_flags)));
1246 elf_elfheader (obfd)->e_flags = new_flags;
1248 new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1249 old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1251 /* Warn about any other mismatches */
1252 if (new_flags != old_flags)
1254 (*_bfd_error_handler)
1255 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
1256 ibfd, (unsigned long) new_flags, (unsigned long) old_flags);
1257 ok = FALSE;
1260 if (! ok)
1262 bfd_set_error (bfd_error_bad_value);
1263 return FALSE;
1266 return TRUE;
1269 bfd_boolean
1270 _bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr)
1272 FILE *file = (FILE *) ptr;
1274 BFD_ASSERT (abfd != NULL && ptr != NULL);
1276 /* Print normal ELF private data. */
1277 _bfd_elf_print_private_bfd_data (abfd, ptr);
1279 /* xgettext:c-format */
1280 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1282 if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32)
1283 fprintf (file, _("[abi=32-bit int, "));
1284 else
1285 fprintf (file, _("[abi=16-bit int, "));
1287 if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64)
1288 fprintf (file, _("64-bit double, "));
1289 else
1290 fprintf (file, _("32-bit double, "));
1292 if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0)
1293 fprintf (file, _("cpu=HC11]"));
1294 else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH)
1295 fprintf (file, _("cpu=HCS12]"));
1296 else
1297 fprintf (file, _("cpu=HC12]"));
1299 if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS)
1300 fprintf (file, _(" [memory=bank-model]"));
1301 else
1302 fprintf (file, _(" [memory=flat]"));
1304 fputc ('\n', file);
1306 return TRUE;
1309 static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED,
1310 asection *asect, void *arg)
1312 struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg;
1314 if (asect->vma >= p->pinfo->bank_virtual)
1315 p->use_memory_banks = TRUE;
1318 /* Tweak the OSABI field of the elf header. */
1320 void
1321 elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
1323 struct m68hc11_scan_param param;
1325 if (link_info == 0)
1326 return;
1328 m68hc11_elf_get_bank_parameters (link_info);
1330 param.use_memory_banks = FALSE;
1331 param.pinfo = &m68hc11_elf_hash_table (link_info)->pinfo;
1332 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
1333 if (param.use_memory_banks)
1335 Elf_Internal_Ehdr * i_ehdrp;
1337 i_ehdrp = elf_elfheader (abfd);
1338 i_ehdrp->e_flags |= E_M68HC12_BANKS;