1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
29 #include "safe-ctype.h"
30 #include "libiberty.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info
*info
;
39 struct bfd_elf_version_tree
*verdefs
;
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
46 struct elf_find_verdep_info
48 /* General link information. */
49 struct bfd_link_info
*info
;
50 /* The number of dependencies. */
52 /* Whether we had a failure. */
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry
*, struct elf_info_failed
*);
59 /* Define a symbol in a dynamic linkage section. */
61 struct elf_link_hash_entry
*
62 _bfd_elf_define_linkage_sym (bfd
*abfd
,
63 struct bfd_link_info
*info
,
67 struct elf_link_hash_entry
*h
;
68 struct bfd_link_hash_entry
*bh
;
69 const struct elf_backend_data
*bed
;
71 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h
->root
.type
= bfd_link_hash_new
;
82 if (!_bfd_generic_link_add_one_symbol (info
, abfd
, name
, BSF_GLOBAL
,
84 get_elf_backend_data (abfd
)->collect
,
87 h
= (struct elf_link_hash_entry
*) bh
;
90 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
92 bed
= get_elf_backend_data (abfd
);
93 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
98 _bfd_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
102 struct elf_link_hash_entry
*h
;
103 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
104 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
106 /* This function may be called more than once. */
107 s
= bfd_get_section_by_name (abfd
, ".got");
108 if (s
!= NULL
&& (s
->flags
& SEC_LINKER_CREATED
) != 0)
111 flags
= bed
->dynamic_sec_flags
;
113 s
= bfd_make_section_with_flags (abfd
,
114 (bed
->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed
->dynamic_sec_flags
119 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
123 s
= bfd_make_section_with_flags (abfd
, ".got", flags
);
125 || !bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
129 if (bed
->want_got_plt
)
131 s
= bfd_make_section_with_flags (abfd
, ".got.plt", flags
);
133 || !bfd_set_section_alignment (abfd
, s
,
134 bed
->s
->log_file_align
))
139 /* The first bit of the global offset table is the header. */
140 s
->size
+= bed
->got_header_size
;
142 if (bed
->want_got_sym
)
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info
)->hgot
= h
;
158 /* Create a strtab to hold the dynamic symbol names. */
160 _bfd_elf_link_create_dynstrtab (bfd
*abfd
, struct bfd_link_info
*info
)
162 struct elf_link_hash_table
*hash_table
;
164 hash_table
= elf_hash_table (info
);
165 if (hash_table
->dynobj
== NULL
)
166 hash_table
->dynobj
= abfd
;
168 if (hash_table
->dynstr
== NULL
)
170 hash_table
->dynstr
= _bfd_elf_strtab_init ();
171 if (hash_table
->dynstr
== NULL
)
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
185 _bfd_elf_link_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
188 register asection
*s
;
189 const struct elf_backend_data
*bed
;
191 if (! is_elf_hash_table (info
->hash
))
194 if (elf_hash_table (info
)->dynamic_sections_created
)
197 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
200 abfd
= elf_hash_table (info
)->dynobj
;
201 bed
= get_elf_backend_data (abfd
);
203 flags
= bed
->dynamic_sec_flags
;
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info
->executable
)
209 s
= bfd_make_section_with_flags (abfd
, ".interp",
210 flags
| SEC_READONLY
);
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s
= bfd_make_section_with_flags (abfd
, ".gnu.version_d",
218 flags
| SEC_READONLY
);
220 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
223 s
= bfd_make_section_with_flags (abfd
, ".gnu.version",
224 flags
| SEC_READONLY
);
226 || ! bfd_set_section_alignment (abfd
, s
, 1))
229 s
= bfd_make_section_with_flags (abfd
, ".gnu.version_r",
230 flags
| SEC_READONLY
);
232 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
235 s
= bfd_make_section_with_flags (abfd
, ".dynsym",
236 flags
| SEC_READONLY
);
238 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
241 s
= bfd_make_section_with_flags (abfd
, ".dynstr",
242 flags
| SEC_READONLY
);
246 s
= bfd_make_section_with_flags (abfd
, ".dynamic", flags
);
248 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd
, info
, s
, "_DYNAMIC"))
262 s
= bfd_make_section_with_flags (abfd
, ".hash", flags
| SEC_READONLY
);
264 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
266 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
269 if (info
->emit_gnu_hash
)
271 s
= bfd_make_section_with_flags (abfd
, ".gnu.hash",
272 flags
| SEC_READONLY
);
274 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed
->s
->arch_size
== 64)
280 elf_section_data (s
)->this_hdr
.sh_entsize
= 0;
282 elf_section_data (s
)->this_hdr
.sh_entsize
= 4;
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
291 elf_hash_table (info
)->dynamic_sections_created
= TRUE
;
296 /* Create dynamic sections when linking against a dynamic object. */
299 _bfd_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
301 flagword flags
, pltflags
;
302 struct elf_link_hash_entry
*h
;
304 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
305 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags
= bed
->dynamic_sec_flags
;
312 if (bed
->plt_not_loaded
)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags
&= ~ (SEC_CODE
| SEC_LOAD
| SEC_HAS_CONTENTS
);
318 pltflags
|= SEC_ALLOC
| SEC_CODE
| SEC_LOAD
;
319 if (bed
->plt_readonly
)
320 pltflags
|= SEC_READONLY
;
322 s
= bfd_make_section_with_flags (abfd
, ".plt", pltflags
);
324 || ! bfd_set_section_alignment (abfd
, s
, bed
->plt_alignment
))
328 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
330 if (bed
->want_plt_sym
)
332 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
333 "_PROCEDURE_LINKAGE_TABLE_");
334 elf_hash_table (info
)->hplt
= h
;
339 s
= bfd_make_section_with_flags (abfd
,
340 (bed
->rela_plts_and_copies_p
341 ? ".rela.plt" : ".rel.plt"),
342 flags
| SEC_READONLY
);
344 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
348 if (! _bfd_elf_create_got_section (abfd
, info
))
351 if (bed
->want_dynbss
)
353 /* The .dynbss section is a place to put symbols which are defined
354 by dynamic objects, are referenced by regular objects, and are
355 not functions. We must allocate space for them in the process
356 image and use a R_*_COPY reloc to tell the dynamic linker to
357 initialize them at run time. The linker script puts the .dynbss
358 section into the .bss section of the final image. */
359 s
= bfd_make_section_with_flags (abfd
, ".dynbss",
361 | SEC_LINKER_CREATED
));
365 /* The .rel[a].bss section holds copy relocs. This section is not
366 normally needed. We need to create it here, though, so that the
367 linker will map it to an output section. We can't just create it
368 only if we need it, because we will not know whether we need it
369 until we have seen all the input files, and the first time the
370 main linker code calls BFD after examining all the input files
371 (size_dynamic_sections) the input sections have already been
372 mapped to the output sections. If the section turns out not to
373 be needed, we can discard it later. We will never need this
374 section when generating a shared object, since they do not use
378 s
= bfd_make_section_with_flags (abfd
,
379 (bed
->rela_plts_and_copies_p
380 ? ".rela.bss" : ".rel.bss"),
381 flags
| SEC_READONLY
);
383 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
391 /* Record a new dynamic symbol. We record the dynamic symbols as we
392 read the input files, since we need to have a list of all of them
393 before we can determine the final sizes of the output sections.
394 Note that we may actually call this function even though we are not
395 going to output any dynamic symbols; in some cases we know that a
396 symbol should be in the dynamic symbol table, but only if there is
400 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info
*info
,
401 struct elf_link_hash_entry
*h
)
403 if (h
->dynindx
== -1)
405 struct elf_strtab_hash
*dynstr
;
410 /* XXX: The ABI draft says the linker must turn hidden and
411 internal symbols into STB_LOCAL symbols when producing the
412 DSO. However, if ld.so honors st_other in the dynamic table,
413 this would not be necessary. */
414 switch (ELF_ST_VISIBILITY (h
->other
))
418 if (h
->root
.type
!= bfd_link_hash_undefined
419 && h
->root
.type
!= bfd_link_hash_undefweak
)
422 if (!elf_hash_table (info
)->is_relocatable_executable
)
430 h
->dynindx
= elf_hash_table (info
)->dynsymcount
;
431 ++elf_hash_table (info
)->dynsymcount
;
433 dynstr
= elf_hash_table (info
)->dynstr
;
436 /* Create a strtab to hold the dynamic symbol names. */
437 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
442 /* We don't put any version information in the dynamic string
444 name
= h
->root
.root
.string
;
445 p
= strchr (name
, ELF_VER_CHR
);
447 /* We know that the p points into writable memory. In fact,
448 there are only a few symbols that have read-only names, being
449 those like _GLOBAL_OFFSET_TABLE_ that are created specially
450 by the backends. Most symbols will have names pointing into
451 an ELF string table read from a file, or to objalloc memory. */
454 indx
= _bfd_elf_strtab_add (dynstr
, name
, p
!= NULL
);
459 if (indx
== (bfd_size_type
) -1)
461 h
->dynstr_index
= indx
;
467 /* Mark a symbol dynamic. */
470 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info
*info
,
471 struct elf_link_hash_entry
*h
,
472 Elf_Internal_Sym
*sym
)
474 struct bfd_elf_dynamic_list
*d
= info
->dynamic_list
;
476 /* It may be called more than once on the same H. */
477 if(h
->dynamic
|| info
->relocatable
)
480 if ((info
->dynamic_data
481 && (h
->type
== STT_OBJECT
483 && ELF_ST_TYPE (sym
->st_info
) == STT_OBJECT
)))
485 && h
->root
.type
== bfd_link_hash_new
486 && (*d
->match
) (&d
->head
, NULL
, h
->root
.root
.string
)))
490 /* Record an assignment to a symbol made by a linker script. We need
491 this in case some dynamic object refers to this symbol. */
494 bfd_elf_record_link_assignment (bfd
*output_bfd
,
495 struct bfd_link_info
*info
,
500 struct elf_link_hash_entry
*h
, *hv
;
501 struct elf_link_hash_table
*htab
;
502 const struct elf_backend_data
*bed
;
504 if (!is_elf_hash_table (info
->hash
))
507 htab
= elf_hash_table (info
);
508 h
= elf_link_hash_lookup (htab
, name
, !provide
, TRUE
, FALSE
);
512 switch (h
->root
.type
)
514 case bfd_link_hash_defined
:
515 case bfd_link_hash_defweak
:
516 case bfd_link_hash_common
:
518 case bfd_link_hash_undefweak
:
519 case bfd_link_hash_undefined
:
520 /* Since we're defining the symbol, don't let it seem to have not
521 been defined. record_dynamic_symbol and size_dynamic_sections
522 may depend on this. */
523 h
->root
.type
= bfd_link_hash_new
;
524 if (h
->root
.u
.undef
.next
!= NULL
|| htab
->root
.undefs_tail
== &h
->root
)
525 bfd_link_repair_undef_list (&htab
->root
);
527 case bfd_link_hash_new
:
528 bfd_elf_link_mark_dynamic_symbol (info
, h
, NULL
);
531 case bfd_link_hash_indirect
:
532 /* We had a versioned symbol in a dynamic library. We make the
533 the versioned symbol point to this one. */
534 bed
= get_elf_backend_data (output_bfd
);
536 while (hv
->root
.type
== bfd_link_hash_indirect
537 || hv
->root
.type
== bfd_link_hash_warning
)
538 hv
= (struct elf_link_hash_entry
*) hv
->root
.u
.i
.link
;
539 /* We don't need to update h->root.u since linker will set them
541 h
->root
.type
= bfd_link_hash_undefined
;
542 hv
->root
.type
= bfd_link_hash_indirect
;
543 hv
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
544 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hv
);
546 case bfd_link_hash_warning
:
551 /* If this symbol is being provided by the linker script, and it is
552 currently defined by a dynamic object, but not by a regular
553 object, then mark it as undefined so that the generic linker will
554 force the correct value. */
558 h
->root
.type
= bfd_link_hash_undefined
;
560 /* If this symbol is not being provided by the linker script, and it is
561 currently defined by a dynamic object, but not by a regular object,
562 then clear out any version information because the symbol will not be
563 associated with the dynamic object any more. */
567 h
->verinfo
.verdef
= NULL
;
571 if (provide
&& hidden
)
573 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
575 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
576 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
581 if (!info
->relocatable
583 && (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
))
590 || (info
->executable
&& elf_hash_table (info
)->is_relocatable_executable
))
593 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h
->u
.weakdef
!= NULL
600 && h
->u
.weakdef
->dynindx
== -1)
602 if (! bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info
*info
,
620 struct elf_link_local_dynamic_entry
*entry
;
621 struct elf_link_hash_table
*eht
;
622 struct elf_strtab_hash
*dynstr
;
623 unsigned long dynstr_index
;
625 Elf_External_Sym_Shndx eshndx
;
626 char esym
[sizeof (Elf64_External_Sym
)];
628 if (! is_elf_hash_table (info
->hash
))
631 /* See if the entry exists already. */
632 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
633 if (entry
->input_bfd
== input_bfd
&& entry
->input_indx
== input_indx
)
636 amt
= sizeof (*entry
);
637 entry
= (struct elf_link_local_dynamic_entry
*) bfd_alloc (input_bfd
, amt
);
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd
, &elf_tdata (input_bfd
)->symtab_hdr
,
643 1, input_indx
, &entry
->isym
, esym
, &eshndx
))
645 bfd_release (input_bfd
, entry
);
649 if (entry
->isym
.st_shndx
!= SHN_UNDEF
650 && entry
->isym
.st_shndx
< SHN_LORESERVE
)
654 s
= bfd_section_from_elf_index (input_bfd
, entry
->isym
.st_shndx
);
655 if (s
== NULL
|| bfd_is_abs_section (s
->output_section
))
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd
, entry
);
664 name
= (bfd_elf_string_from_elf_section
665 (input_bfd
, elf_tdata (input_bfd
)->symtab_hdr
.sh_link
,
666 entry
->isym
.st_name
));
668 dynstr
= elf_hash_table (info
)->dynstr
;
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
677 dynstr_index
= _bfd_elf_strtab_add (dynstr
, name
, FALSE
);
678 if (dynstr_index
== (unsigned long) -1)
680 entry
->isym
.st_name
= dynstr_index
;
682 eht
= elf_hash_table (info
);
684 entry
->next
= eht
->dynlocal
;
685 eht
->dynlocal
= entry
;
686 entry
->input_bfd
= input_bfd
;
687 entry
->input_indx
= input_indx
;
690 /* Whatever binding the symbol had before, it's now local. */
692 = ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (entry
->isym
.st_info
));
694 /* The dynindx will be set at the end of size_dynamic_sections. */
699 /* Return the dynindex of a local dynamic symbol. */
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info
*info
,
706 struct elf_link_local_dynamic_entry
*e
;
708 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
709 if (e
->input_bfd
== input_bfd
&& e
->input_indx
== input_indx
)
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
722 size_t *count
= (size_t *) data
;
724 if (h
->root
.type
== bfd_link_hash_warning
)
725 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
730 if (h
->dynindx
!= -1)
731 h
->dynindx
= ++(*count
);
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
744 size_t *count
= (size_t *) data
;
746 if (h
->root
.type
== bfd_link_hash_warning
)
747 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
749 if (!h
->forced_local
)
752 if (h
->dynindx
!= -1)
753 h
->dynindx
= ++(*count
);
758 /* Return true if the dynamic symbol for a given section should be
759 omitted when creating a shared library. */
761 _bfd_elf_link_omit_section_dynsym (bfd
*output_bfd ATTRIBUTE_UNUSED
,
762 struct bfd_link_info
*info
,
765 struct elf_link_hash_table
*htab
;
767 switch (elf_section_data (p
)->this_hdr
.sh_type
)
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
774 htab
= elf_hash_table (info
);
775 if (p
== htab
->tls_sec
)
778 if (htab
->text_index_section
!= NULL
)
779 return p
!= htab
->text_index_section
&& p
!= htab
->data_index_section
;
781 if (strcmp (p
->name
, ".got") == 0
782 || strcmp (p
->name
, ".got.plt") == 0
783 || strcmp (p
->name
, ".plt") == 0)
787 if (htab
->dynobj
!= NULL
788 && (ip
= bfd_get_section_by_name (htab
->dynobj
, p
->name
)) != NULL
789 && (ip
->flags
& SEC_LINKER_CREATED
)
790 && ip
->output_section
== p
)
795 /* There shouldn't be section relative relocations
796 against any other section. */
802 /* Assign dynsym indices. In a shared library we generate a section
803 symbol for each output section, which come first. Next come symbols
804 which have been forced to local binding. Then all of the back-end
805 allocated local dynamic syms, followed by the rest of the global
809 _bfd_elf_link_renumber_dynsyms (bfd
*output_bfd
,
810 struct bfd_link_info
*info
,
811 unsigned long *section_sym_count
)
813 unsigned long dynsymcount
= 0;
815 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
817 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
819 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
820 if ((p
->flags
& SEC_EXCLUDE
) == 0
821 && (p
->flags
& SEC_ALLOC
) != 0
822 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
823 elf_section_data (p
)->dynindx
= ++dynsymcount
;
825 elf_section_data (p
)->dynindx
= 0;
827 *section_sym_count
= dynsymcount
;
829 elf_link_hash_traverse (elf_hash_table (info
),
830 elf_link_renumber_local_hash_table_dynsyms
,
833 if (elf_hash_table (info
)->dynlocal
)
835 struct elf_link_local_dynamic_entry
*p
;
836 for (p
= elf_hash_table (info
)->dynlocal
; p
; p
= p
->next
)
837 p
->dynindx
= ++dynsymcount
;
840 elf_link_hash_traverse (elf_hash_table (info
),
841 elf_link_renumber_hash_table_dynsyms
,
844 /* There is an unused NULL entry at the head of the table which
845 we must account for in our count. Unless there weren't any
846 symbols, which means we'll have no table at all. */
847 if (dynsymcount
!= 0)
850 elf_hash_table (info
)->dynsymcount
= dynsymcount
;
854 /* Merge st_other field. */
857 elf_merge_st_other (bfd
*abfd
, struct elf_link_hash_entry
*h
,
858 Elf_Internal_Sym
*isym
, bfd_boolean definition
,
861 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
863 /* If st_other has a processor-specific meaning, specific
864 code might be needed here. We never merge the visibility
865 attribute with the one from a dynamic object. */
866 if (bed
->elf_backend_merge_symbol_attribute
)
867 (*bed
->elf_backend_merge_symbol_attribute
) (h
, isym
, definition
,
870 /* If this symbol has default visibility and the user has requested
871 we not re-export it, then mark it as hidden. */
875 || (abfd
->my_archive
&& abfd
->my_archive
->no_export
))
876 && ELF_ST_VISIBILITY (isym
->st_other
) != STV_INTERNAL
)
877 isym
->st_other
= (STV_HIDDEN
878 | (isym
->st_other
& ~ELF_ST_VISIBILITY (-1)));
880 if (!dynamic
&& ELF_ST_VISIBILITY (isym
->st_other
) != 0)
882 unsigned char hvis
, symvis
, other
, nvis
;
884 /* Only merge the visibility. Leave the remainder of the
885 st_other field to elf_backend_merge_symbol_attribute. */
886 other
= h
->other
& ~ELF_ST_VISIBILITY (-1);
888 /* Combine visibilities, using the most constraining one. */
889 hvis
= ELF_ST_VISIBILITY (h
->other
);
890 symvis
= ELF_ST_VISIBILITY (isym
->st_other
);
896 nvis
= hvis
< symvis
? hvis
: symvis
;
898 h
->other
= other
| nvis
;
902 /* This function is called when we want to define a new symbol. It
903 handles the various cases which arise when we find a definition in
904 a dynamic object, or when there is already a definition in a
905 dynamic object. The new symbol is described by NAME, SYM, PSEC,
906 and PVALUE. We set SYM_HASH to the hash table entry. We set
907 OVERRIDE if the old symbol is overriding a new definition. We set
908 TYPE_CHANGE_OK if it is OK for the type to change. We set
909 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
910 change, we mean that we shouldn't warn if the type or size does
911 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
912 object is overridden by a regular object. */
915 _bfd_elf_merge_symbol (bfd
*abfd
,
916 struct bfd_link_info
*info
,
918 Elf_Internal_Sym
*sym
,
921 unsigned int *pold_alignment
,
922 struct elf_link_hash_entry
**sym_hash
,
924 bfd_boolean
*override
,
925 bfd_boolean
*type_change_ok
,
926 bfd_boolean
*size_change_ok
)
928 asection
*sec
, *oldsec
;
929 struct elf_link_hash_entry
*h
;
930 struct elf_link_hash_entry
*flip
;
933 bfd_boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
934 bfd_boolean newweak
, oldweak
, newfunc
, oldfunc
;
935 const struct elf_backend_data
*bed
;
941 bind
= ELF_ST_BIND (sym
->st_info
);
943 /* Silently discard TLS symbols from --just-syms. There's no way to
944 combine a static TLS block with a new TLS block for this executable. */
945 if (ELF_ST_TYPE (sym
->st_info
) == STT_TLS
946 && sec
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
952 if (! bfd_is_und_section (sec
))
953 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
, FALSE
, FALSE
);
955 h
= ((struct elf_link_hash_entry
*)
956 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, FALSE
, FALSE
));
961 bed
= get_elf_backend_data (abfd
);
963 /* This code is for coping with dynamic objects, and is only useful
964 if we are doing an ELF link. */
965 if (!(*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
968 /* For merging, we only care about real symbols. */
970 while (h
->root
.type
== bfd_link_hash_indirect
971 || h
->root
.type
== bfd_link_hash_warning
)
972 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
974 /* We have to check it for every instance since the first few may be
975 refereences and not all compilers emit symbol type for undefined
977 bfd_elf_link_mark_dynamic_symbol (info
, h
, sym
);
979 /* If we just created the symbol, mark it as being an ELF symbol.
980 Other than that, there is nothing to do--there is no merge issue
981 with a newly defined symbol--so we just return. */
983 if (h
->root
.type
== bfd_link_hash_new
)
989 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
992 switch (h
->root
.type
)
999 case bfd_link_hash_undefined
:
1000 case bfd_link_hash_undefweak
:
1001 oldbfd
= h
->root
.u
.undef
.abfd
;
1005 case bfd_link_hash_defined
:
1006 case bfd_link_hash_defweak
:
1007 oldbfd
= h
->root
.u
.def
.section
->owner
;
1008 oldsec
= h
->root
.u
.def
.section
;
1011 case bfd_link_hash_common
:
1012 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
1013 oldsec
= h
->root
.u
.c
.p
->section
;
1017 /* In cases involving weak versioned symbols, we may wind up trying
1018 to merge a symbol with itself. Catch that here, to avoid the
1019 confusion that results if we try to override a symbol with
1020 itself. The additional tests catch cases like
1021 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1022 dynamic object, which we do want to handle here. */
1024 && ((abfd
->flags
& DYNAMIC
) == 0
1025 || !h
->def_regular
))
1028 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1029 respectively, is from a dynamic object. */
1031 newdyn
= (abfd
->flags
& DYNAMIC
) != 0;
1035 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
1036 else if (oldsec
!= NULL
)
1038 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1039 indices used by MIPS ELF. */
1040 olddyn
= (oldsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
1043 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1044 respectively, appear to be a definition rather than reference. */
1046 newdef
= !bfd_is_und_section (sec
) && !bfd_is_com_section (sec
);
1048 olddef
= (h
->root
.type
!= bfd_link_hash_undefined
1049 && h
->root
.type
!= bfd_link_hash_undefweak
1050 && h
->root
.type
!= bfd_link_hash_common
);
1052 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1053 respectively, appear to be a function. */
1055 newfunc
= (ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1056 && bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)));
1058 oldfunc
= (h
->type
!= STT_NOTYPE
1059 && bed
->is_function_type (h
->type
));
1061 /* When we try to create a default indirect symbol from the dynamic
1062 definition with the default version, we skip it if its type and
1063 the type of existing regular definition mismatch. We only do it
1064 if the existing regular definition won't be dynamic. */
1065 if (pold_alignment
== NULL
1067 && !info
->export_dynamic
1072 && (olddef
|| h
->root
.type
== bfd_link_hash_common
)
1073 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1074 && ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1075 && h
->type
!= STT_NOTYPE
1076 && !(newfunc
&& oldfunc
))
1082 /* Check TLS symbol. We don't check undefined symbol introduced by
1084 if ((ELF_ST_TYPE (sym
->st_info
) == STT_TLS
|| h
->type
== STT_TLS
)
1085 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1089 bfd_boolean ntdef
, tdef
;
1090 asection
*ntsec
, *tsec
;
1092 if (h
->type
== STT_TLS
)
1112 (*_bfd_error_handler
)
1113 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1114 tbfd
, tsec
, ntbfd
, ntsec
, h
->root
.root
.string
);
1115 else if (!tdef
&& !ntdef
)
1116 (*_bfd_error_handler
)
1117 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1118 tbfd
, ntbfd
, h
->root
.root
.string
);
1120 (*_bfd_error_handler
)
1121 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1122 tbfd
, tsec
, ntbfd
, h
->root
.root
.string
);
1124 (*_bfd_error_handler
)
1125 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1126 tbfd
, ntbfd
, ntsec
, h
->root
.root
.string
);
1128 bfd_set_error (bfd_error_bad_value
);
1132 /* We need to remember if a symbol has a definition in a dynamic
1133 object or is weak in all dynamic objects. Internal and hidden
1134 visibility will make it unavailable to dynamic objects. */
1135 if (newdyn
&& !h
->dynamic_def
)
1137 if (!bfd_is_und_section (sec
))
1141 /* Check if this symbol is weak in all dynamic objects. If it
1142 is the first time we see it in a dynamic object, we mark
1143 if it is weak. Otherwise, we clear it. */
1144 if (!h
->ref_dynamic
)
1146 if (bind
== STB_WEAK
)
1147 h
->dynamic_weak
= 1;
1149 else if (bind
!= STB_WEAK
)
1150 h
->dynamic_weak
= 0;
1154 /* If the old symbol has non-default visibility, we ignore the new
1155 definition from a dynamic object. */
1157 && ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1158 && !bfd_is_und_section (sec
))
1161 /* Make sure this symbol is dynamic. */
1163 /* A protected symbol has external availability. Make sure it is
1164 recorded as dynamic.
1166 FIXME: Should we check type and size for protected symbol? */
1167 if (ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
1168 return bfd_elf_link_record_dynamic_symbol (info
, h
);
1173 && ELF_ST_VISIBILITY (sym
->st_other
) != STV_DEFAULT
1176 /* If the new symbol with non-default visibility comes from a
1177 relocatable file and the old definition comes from a dynamic
1178 object, we remove the old definition. */
1179 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1181 /* Handle the case where the old dynamic definition is
1182 default versioned. We need to copy the symbol info from
1183 the symbol with default version to the normal one if it
1184 was referenced before. */
1187 const struct elf_backend_data
*bed
1188 = get_elf_backend_data (abfd
);
1189 struct elf_link_hash_entry
*vh
= *sym_hash
;
1190 vh
->root
.type
= h
->root
.type
;
1191 h
->root
.type
= bfd_link_hash_indirect
;
1192 (*bed
->elf_backend_copy_indirect_symbol
) (info
, vh
, h
);
1193 /* Protected symbols will override the dynamic definition
1194 with default version. */
1195 if (ELF_ST_VISIBILITY (sym
->st_other
) == STV_PROTECTED
)
1197 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) vh
;
1198 vh
->dynamic_def
= 1;
1199 vh
->ref_dynamic
= 1;
1203 h
->root
.type
= vh
->root
.type
;
1204 vh
->ref_dynamic
= 0;
1205 /* We have to hide it here since it was made dynamic
1206 global with extra bits when the symbol info was
1207 copied from the old dynamic definition. */
1208 (*bed
->elf_backend_hide_symbol
) (info
, vh
, TRUE
);
1216 if ((h
->root
.u
.undef
.next
|| info
->hash
->undefs_tail
== &h
->root
)
1217 && bfd_is_und_section (sec
))
1219 /* If the new symbol is undefined and the old symbol was
1220 also undefined before, we need to make sure
1221 _bfd_generic_link_add_one_symbol doesn't mess
1222 up the linker hash table undefs list. Since the old
1223 definition came from a dynamic object, it is still on the
1225 h
->root
.type
= bfd_link_hash_undefined
;
1226 h
->root
.u
.undef
.abfd
= abfd
;
1230 h
->root
.type
= bfd_link_hash_new
;
1231 h
->root
.u
.undef
.abfd
= NULL
;
1240 /* FIXME: Should we check type and size for protected symbol? */
1246 /* Differentiate strong and weak symbols. */
1247 newweak
= bind
== STB_WEAK
;
1248 oldweak
= (h
->root
.type
== bfd_link_hash_defweak
1249 || h
->root
.type
== bfd_link_hash_undefweak
);
1251 if (bind
== STB_GNU_UNIQUE
)
1252 h
->unique_global
= 1;
1254 /* If a new weak symbol definition comes from a regular file and the
1255 old symbol comes from a dynamic library, we treat the new one as
1256 strong. Similarly, an old weak symbol definition from a regular
1257 file is treated as strong when the new symbol comes from a dynamic
1258 library. Further, an old weak symbol from a dynamic library is
1259 treated as strong if the new symbol is from a dynamic library.
1260 This reflects the way glibc's ld.so works.
1262 Do this before setting *type_change_ok or *size_change_ok so that
1263 we warn properly when dynamic library symbols are overridden. */
1265 if (newdef
&& !newdyn
&& olddyn
)
1267 if (olddef
&& newdyn
)
1270 /* Allow changes between different types of function symbol. */
1271 if (newfunc
&& oldfunc
)
1272 *type_change_ok
= TRUE
;
1274 /* It's OK to change the type if either the existing symbol or the
1275 new symbol is weak. A type change is also OK if the old symbol
1276 is undefined and the new symbol is defined. */
1281 && h
->root
.type
== bfd_link_hash_undefined
))
1282 *type_change_ok
= TRUE
;
1284 /* It's OK to change the size if either the existing symbol or the
1285 new symbol is weak, or if the old symbol is undefined. */
1288 || h
->root
.type
== bfd_link_hash_undefined
)
1289 *size_change_ok
= TRUE
;
1291 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1292 symbol, respectively, appears to be a common symbol in a dynamic
1293 object. If a symbol appears in an uninitialized section, and is
1294 not weak, and is not a function, then it may be a common symbol
1295 which was resolved when the dynamic object was created. We want
1296 to treat such symbols specially, because they raise special
1297 considerations when setting the symbol size: if the symbol
1298 appears as a common symbol in a regular object, and the size in
1299 the regular object is larger, we must make sure that we use the
1300 larger size. This problematic case can always be avoided in C,
1301 but it must be handled correctly when using Fortran shared
1304 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1305 likewise for OLDDYNCOMMON and OLDDEF.
1307 Note that this test is just a heuristic, and that it is quite
1308 possible to have an uninitialized symbol in a shared object which
1309 is really a definition, rather than a common symbol. This could
1310 lead to some minor confusion when the symbol really is a common
1311 symbol in some regular object. However, I think it will be
1317 && (sec
->flags
& SEC_ALLOC
) != 0
1318 && (sec
->flags
& SEC_LOAD
) == 0
1321 newdyncommon
= TRUE
;
1323 newdyncommon
= FALSE
;
1327 && h
->root
.type
== bfd_link_hash_defined
1329 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
1330 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
1333 olddyncommon
= TRUE
;
1335 olddyncommon
= FALSE
;
1337 /* We now know everything about the old and new symbols. We ask the
1338 backend to check if we can merge them. */
1339 if (bed
->merge_symbol
1340 && !bed
->merge_symbol (info
, sym_hash
, h
, sym
, psec
, pvalue
,
1341 pold_alignment
, skip
, override
,
1342 type_change_ok
, size_change_ok
,
1343 &newdyn
, &newdef
, &newdyncommon
, &newweak
,
1345 &olddyn
, &olddef
, &olddyncommon
, &oldweak
,
1349 /* If both the old and the new symbols look like common symbols in a
1350 dynamic object, set the size of the symbol to the larger of the
1355 && sym
->st_size
!= h
->size
)
1357 /* Since we think we have two common symbols, issue a multiple
1358 common warning if desired. Note that we only warn if the
1359 size is different. If the size is the same, we simply let
1360 the old symbol override the new one as normally happens with
1361 symbols defined in dynamic objects. */
1363 if (! ((*info
->callbacks
->multiple_common
)
1364 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1365 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1368 if (sym
->st_size
> h
->size
)
1369 h
->size
= sym
->st_size
;
1371 *size_change_ok
= TRUE
;
1374 /* If we are looking at a dynamic object, and we have found a
1375 definition, we need to see if the symbol was already defined by
1376 some other object. If so, we want to use the existing
1377 definition, and we do not want to report a multiple symbol
1378 definition error; we do this by clobbering *PSEC to be
1379 bfd_und_section_ptr.
1381 We treat a common symbol as a definition if the symbol in the
1382 shared library is a function, since common symbols always
1383 represent variables; this can cause confusion in principle, but
1384 any such confusion would seem to indicate an erroneous program or
1385 shared library. We also permit a common symbol in a regular
1386 object to override a weak symbol in a shared object. */
1391 || (h
->root
.type
== bfd_link_hash_common
1392 && (newweak
|| newfunc
))))
1396 newdyncommon
= FALSE
;
1398 *psec
= sec
= bfd_und_section_ptr
;
1399 *size_change_ok
= TRUE
;
1401 /* If we get here when the old symbol is a common symbol, then
1402 we are explicitly letting it override a weak symbol or
1403 function in a dynamic object, and we don't want to warn about
1404 a type change. If the old symbol is a defined symbol, a type
1405 change warning may still be appropriate. */
1407 if (h
->root
.type
== bfd_link_hash_common
)
1408 *type_change_ok
= TRUE
;
1411 /* Handle the special case of an old common symbol merging with a
1412 new symbol which looks like a common symbol in a shared object.
1413 We change *PSEC and *PVALUE to make the new symbol look like a
1414 common symbol, and let _bfd_generic_link_add_one_symbol do the
1418 && h
->root
.type
== bfd_link_hash_common
)
1422 newdyncommon
= FALSE
;
1423 *pvalue
= sym
->st_size
;
1424 *psec
= sec
= bed
->common_section (oldsec
);
1425 *size_change_ok
= TRUE
;
1428 /* Skip weak definitions of symbols that are already defined. */
1429 if (newdef
&& olddef
&& newweak
)
1433 /* Merge st_other. If the symbol already has a dynamic index,
1434 but visibility says it should not be visible, turn it into a
1436 elf_merge_st_other (abfd
, h
, sym
, newdef
, newdyn
);
1437 if (h
->dynindx
!= -1)
1438 switch (ELF_ST_VISIBILITY (h
->other
))
1442 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1447 /* If the old symbol is from a dynamic object, and the new symbol is
1448 a definition which is not from a dynamic object, then the new
1449 symbol overrides the old symbol. Symbols from regular files
1450 always take precedence over symbols from dynamic objects, even if
1451 they are defined after the dynamic object in the link.
1453 As above, we again permit a common symbol in a regular object to
1454 override a definition in a shared object if the shared object
1455 symbol is a function or is weak. */
1460 || (bfd_is_com_section (sec
)
1461 && (oldweak
|| oldfunc
)))
1466 /* Change the hash table entry to undefined, and let
1467 _bfd_generic_link_add_one_symbol do the right thing with the
1470 h
->root
.type
= bfd_link_hash_undefined
;
1471 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1472 *size_change_ok
= TRUE
;
1475 olddyncommon
= FALSE
;
1477 /* We again permit a type change when a common symbol may be
1478 overriding a function. */
1480 if (bfd_is_com_section (sec
))
1484 /* If a common symbol overrides a function, make sure
1485 that it isn't defined dynamically nor has type
1488 h
->type
= STT_NOTYPE
;
1490 *type_change_ok
= TRUE
;
1493 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1496 /* This union may have been set to be non-NULL when this symbol
1497 was seen in a dynamic object. We must force the union to be
1498 NULL, so that it is correct for a regular symbol. */
1499 h
->verinfo
.vertree
= NULL
;
1502 /* Handle the special case of a new common symbol merging with an
1503 old symbol that looks like it might be a common symbol defined in
1504 a shared object. Note that we have already handled the case in
1505 which a new common symbol should simply override the definition
1506 in the shared library. */
1509 && bfd_is_com_section (sec
)
1512 /* It would be best if we could set the hash table entry to a
1513 common symbol, but we don't know what to use for the section
1514 or the alignment. */
1515 if (! ((*info
->callbacks
->multiple_common
)
1516 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1517 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1520 /* If the presumed common symbol in the dynamic object is
1521 larger, pretend that the new symbol has its size. */
1523 if (h
->size
> *pvalue
)
1526 /* We need to remember the alignment required by the symbol
1527 in the dynamic object. */
1528 BFD_ASSERT (pold_alignment
);
1529 *pold_alignment
= h
->root
.u
.def
.section
->alignment_power
;
1532 olddyncommon
= FALSE
;
1534 h
->root
.type
= bfd_link_hash_undefined
;
1535 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1537 *size_change_ok
= TRUE
;
1538 *type_change_ok
= TRUE
;
1540 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1543 h
->verinfo
.vertree
= NULL
;
1548 /* Handle the case where we had a versioned symbol in a dynamic
1549 library and now find a definition in a normal object. In this
1550 case, we make the versioned symbol point to the normal one. */
1551 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1552 flip
->root
.type
= h
->root
.type
;
1553 flip
->root
.u
.undef
.abfd
= h
->root
.u
.undef
.abfd
;
1554 h
->root
.type
= bfd_link_hash_indirect
;
1555 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) flip
;
1556 (*bed
->elf_backend_copy_indirect_symbol
) (info
, flip
, h
);
1560 flip
->ref_dynamic
= 1;
1567 /* This function is called to create an indirect symbol from the
1568 default for the symbol with the default version if needed. The
1569 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1570 set DYNSYM if the new indirect symbol is dynamic. */
1573 _bfd_elf_add_default_symbol (bfd
*abfd
,
1574 struct bfd_link_info
*info
,
1575 struct elf_link_hash_entry
*h
,
1577 Elf_Internal_Sym
*sym
,
1580 bfd_boolean
*dynsym
,
1581 bfd_boolean override
)
1583 bfd_boolean type_change_ok
;
1584 bfd_boolean size_change_ok
;
1587 struct elf_link_hash_entry
*hi
;
1588 struct bfd_link_hash_entry
*bh
;
1589 const struct elf_backend_data
*bed
;
1590 bfd_boolean collect
;
1591 bfd_boolean dynamic
;
1593 size_t len
, shortlen
;
1596 /* If this symbol has a version, and it is the default version, we
1597 create an indirect symbol from the default name to the fully
1598 decorated name. This will cause external references which do not
1599 specify a version to be bound to this version of the symbol. */
1600 p
= strchr (name
, ELF_VER_CHR
);
1601 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
1606 /* We are overridden by an old definition. We need to check if we
1607 need to create the indirect symbol from the default name. */
1608 hi
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
,
1610 BFD_ASSERT (hi
!= NULL
);
1613 while (hi
->root
.type
== bfd_link_hash_indirect
1614 || hi
->root
.type
== bfd_link_hash_warning
)
1616 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1622 bed
= get_elf_backend_data (abfd
);
1623 collect
= bed
->collect
;
1624 dynamic
= (abfd
->flags
& DYNAMIC
) != 0;
1626 shortlen
= p
- name
;
1627 shortname
= (char *) bfd_hash_allocate (&info
->hash
->table
, shortlen
+ 1);
1628 if (shortname
== NULL
)
1630 memcpy (shortname
, name
, shortlen
);
1631 shortname
[shortlen
] = '\0';
1633 /* We are going to create a new symbol. Merge it with any existing
1634 symbol with this name. For the purposes of the merge, act as
1635 though we were defining the symbol we just defined, although we
1636 actually going to define an indirect symbol. */
1637 type_change_ok
= FALSE
;
1638 size_change_ok
= FALSE
;
1640 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1641 NULL
, &hi
, &skip
, &override
,
1642 &type_change_ok
, &size_change_ok
))
1651 if (! (_bfd_generic_link_add_one_symbol
1652 (info
, abfd
, shortname
, BSF_INDIRECT
, bfd_ind_section_ptr
,
1653 0, name
, FALSE
, collect
, &bh
)))
1655 hi
= (struct elf_link_hash_entry
*) bh
;
1659 /* In this case the symbol named SHORTNAME is overriding the
1660 indirect symbol we want to add. We were planning on making
1661 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1662 is the name without a version. NAME is the fully versioned
1663 name, and it is the default version.
1665 Overriding means that we already saw a definition for the
1666 symbol SHORTNAME in a regular object, and it is overriding
1667 the symbol defined in the dynamic object.
1669 When this happens, we actually want to change NAME, the
1670 symbol we just added, to refer to SHORTNAME. This will cause
1671 references to NAME in the shared object to become references
1672 to SHORTNAME in the regular object. This is what we expect
1673 when we override a function in a shared object: that the
1674 references in the shared object will be mapped to the
1675 definition in the regular object. */
1677 while (hi
->root
.type
== bfd_link_hash_indirect
1678 || hi
->root
.type
== bfd_link_hash_warning
)
1679 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1681 h
->root
.type
= bfd_link_hash_indirect
;
1682 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1686 hi
->ref_dynamic
= 1;
1690 if (! bfd_elf_link_record_dynamic_symbol (info
, hi
))
1695 /* Now set HI to H, so that the following code will set the
1696 other fields correctly. */
1700 /* Check if HI is a warning symbol. */
1701 if (hi
->root
.type
== bfd_link_hash_warning
)
1702 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1704 /* If there is a duplicate definition somewhere, then HI may not
1705 point to an indirect symbol. We will have reported an error to
1706 the user in that case. */
1708 if (hi
->root
.type
== bfd_link_hash_indirect
)
1710 struct elf_link_hash_entry
*ht
;
1712 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1713 (*bed
->elf_backend_copy_indirect_symbol
) (info
, ht
, hi
);
1715 /* See if the new flags lead us to realize that the symbol must
1727 if (hi
->ref_regular
)
1733 /* We also need to define an indirection from the nondefault version
1737 len
= strlen (name
);
1738 shortname
= (char *) bfd_hash_allocate (&info
->hash
->table
, len
);
1739 if (shortname
== NULL
)
1741 memcpy (shortname
, name
, shortlen
);
1742 memcpy (shortname
+ shortlen
, p
+ 1, len
- shortlen
);
1744 /* Once again, merge with any existing symbol. */
1745 type_change_ok
= FALSE
;
1746 size_change_ok
= FALSE
;
1748 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1749 NULL
, &hi
, &skip
, &override
,
1750 &type_change_ok
, &size_change_ok
))
1758 /* Here SHORTNAME is a versioned name, so we don't expect to see
1759 the type of override we do in the case above unless it is
1760 overridden by a versioned definition. */
1761 if (hi
->root
.type
!= bfd_link_hash_defined
1762 && hi
->root
.type
!= bfd_link_hash_defweak
)
1763 (*_bfd_error_handler
)
1764 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1770 if (! (_bfd_generic_link_add_one_symbol
1771 (info
, abfd
, shortname
, BSF_INDIRECT
,
1772 bfd_ind_section_ptr
, 0, name
, FALSE
, collect
, &bh
)))
1774 hi
= (struct elf_link_hash_entry
*) bh
;
1776 /* If there is a duplicate definition somewhere, then HI may not
1777 point to an indirect symbol. We will have reported an error
1778 to the user in that case. */
1780 if (hi
->root
.type
== bfd_link_hash_indirect
)
1782 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
1784 /* See if the new flags lead us to realize that the symbol
1796 if (hi
->ref_regular
)
1806 /* This routine is used to export all defined symbols into the dynamic
1807 symbol table. It is called via elf_link_hash_traverse. */
1810 _bfd_elf_export_symbol (struct elf_link_hash_entry
*h
, void *data
)
1812 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
1814 /* Ignore this if we won't export it. */
1815 if (!eif
->info
->export_dynamic
&& !h
->dynamic
)
1818 /* Ignore indirect symbols. These are added by the versioning code. */
1819 if (h
->root
.type
== bfd_link_hash_indirect
)
1822 if (h
->root
.type
== bfd_link_hash_warning
)
1823 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1825 if (h
->dynindx
== -1
1831 if (eif
->verdefs
== NULL
1832 || (bfd_find_version_for_sym (eif
->verdefs
, h
->root
.root
.string
, &hide
)
1835 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
1846 /* Look through the symbols which are defined in other shared
1847 libraries and referenced here. Update the list of version
1848 dependencies. This will be put into the .gnu.version_r section.
1849 This function is called via elf_link_hash_traverse. */
1852 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry
*h
,
1855 struct elf_find_verdep_info
*rinfo
= (struct elf_find_verdep_info
*) data
;
1856 Elf_Internal_Verneed
*t
;
1857 Elf_Internal_Vernaux
*a
;
1860 if (h
->root
.type
== bfd_link_hash_warning
)
1861 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1863 /* We only care about symbols defined in shared objects with version
1868 || h
->verinfo
.verdef
== NULL
)
1871 /* See if we already know about this version. */
1872 for (t
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
1876 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
1879 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1880 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
1886 /* This is a new version. Add it to tree we are building. */
1891 t
= (Elf_Internal_Verneed
*) bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
1894 rinfo
->failed
= TRUE
;
1898 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
1899 t
->vn_nextref
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
1900 elf_tdata (rinfo
->info
->output_bfd
)->verref
= t
;
1904 a
= (Elf_Internal_Vernaux
*) bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
1907 rinfo
->failed
= TRUE
;
1911 /* Note that we are copying a string pointer here, and testing it
1912 above. If bfd_elf_string_from_elf_section is ever changed to
1913 discard the string data when low in memory, this will have to be
1915 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
1917 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
1918 a
->vna_nextptr
= t
->vn_auxptr
;
1920 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
1923 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
1930 /* Figure out appropriate versions for all the symbols. We may not
1931 have the version number script until we have read all of the input
1932 files, so until that point we don't know which symbols should be
1933 local. This function is called via elf_link_hash_traverse. */
1936 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry
*h
, void *data
)
1938 struct elf_info_failed
*sinfo
;
1939 struct bfd_link_info
*info
;
1940 const struct elf_backend_data
*bed
;
1941 struct elf_info_failed eif
;
1945 sinfo
= (struct elf_info_failed
*) data
;
1948 if (h
->root
.type
== bfd_link_hash_warning
)
1949 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1951 /* Fix the symbol flags. */
1954 if (! _bfd_elf_fix_symbol_flags (h
, &eif
))
1957 sinfo
->failed
= TRUE
;
1961 /* We only need version numbers for symbols defined in regular
1963 if (!h
->def_regular
)
1966 bed
= get_elf_backend_data (info
->output_bfd
);
1967 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
1968 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
1970 struct bfd_elf_version_tree
*t
;
1975 /* There are two consecutive ELF_VER_CHR characters if this is
1976 not a hidden symbol. */
1978 if (*p
== ELF_VER_CHR
)
1984 /* If there is no version string, we can just return out. */
1992 /* Look for the version. If we find it, it is no longer weak. */
1993 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
1995 if (strcmp (t
->name
, p
) == 0)
1999 struct bfd_elf_version_expr
*d
;
2001 len
= p
- h
->root
.root
.string
;
2002 alc
= (char *) bfd_malloc (len
);
2005 sinfo
->failed
= TRUE
;
2008 memcpy (alc
, h
->root
.root
.string
, len
- 1);
2009 alc
[len
- 1] = '\0';
2010 if (alc
[len
- 2] == ELF_VER_CHR
)
2011 alc
[len
- 2] = '\0';
2013 h
->verinfo
.vertree
= t
;
2017 if (t
->globals
.list
!= NULL
)
2018 d
= (*t
->match
) (&t
->globals
, NULL
, alc
);
2020 /* See if there is anything to force this symbol to
2022 if (d
== NULL
&& t
->locals
.list
!= NULL
)
2024 d
= (*t
->match
) (&t
->locals
, NULL
, alc
);
2027 && ! info
->export_dynamic
)
2028 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2036 /* If we are building an application, we need to create a
2037 version node for this version. */
2038 if (t
== NULL
&& info
->executable
)
2040 struct bfd_elf_version_tree
**pp
;
2043 /* If we aren't going to export this symbol, we don't need
2044 to worry about it. */
2045 if (h
->dynindx
== -1)
2049 t
= (struct bfd_elf_version_tree
*) bfd_zalloc (info
->output_bfd
, amt
);
2052 sinfo
->failed
= TRUE
;
2057 t
->name_indx
= (unsigned int) -1;
2061 /* Don't count anonymous version tag. */
2062 if (sinfo
->verdefs
!= NULL
&& sinfo
->verdefs
->vernum
== 0)
2064 for (pp
= &sinfo
->verdefs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
2066 t
->vernum
= version_index
;
2070 h
->verinfo
.vertree
= t
;
2074 /* We could not find the version for a symbol when
2075 generating a shared archive. Return an error. */
2076 (*_bfd_error_handler
)
2077 (_("%B: version node not found for symbol %s"),
2078 info
->output_bfd
, h
->root
.root
.string
);
2079 bfd_set_error (bfd_error_bad_value
);
2080 sinfo
->failed
= TRUE
;
2088 /* If we don't have a version for this symbol, see if we can find
2090 if (h
->verinfo
.vertree
== NULL
&& sinfo
->verdefs
!= NULL
)
2094 h
->verinfo
.vertree
= bfd_find_version_for_sym (sinfo
->verdefs
,
2095 h
->root
.root
.string
, &hide
);
2096 if (h
->verinfo
.vertree
!= NULL
&& hide
)
2097 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2103 /* Read and swap the relocs from the section indicated by SHDR. This
2104 may be either a REL or a RELA section. The relocations are
2105 translated into RELA relocations and stored in INTERNAL_RELOCS,
2106 which should have already been allocated to contain enough space.
2107 The EXTERNAL_RELOCS are a buffer where the external form of the
2108 relocations should be stored.
2110 Returns FALSE if something goes wrong. */
2113 elf_link_read_relocs_from_section (bfd
*abfd
,
2115 Elf_Internal_Shdr
*shdr
,
2116 void *external_relocs
,
2117 Elf_Internal_Rela
*internal_relocs
)
2119 const struct elf_backend_data
*bed
;
2120 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
2121 const bfd_byte
*erela
;
2122 const bfd_byte
*erelaend
;
2123 Elf_Internal_Rela
*irela
;
2124 Elf_Internal_Shdr
*symtab_hdr
;
2127 /* Position ourselves at the start of the section. */
2128 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
2131 /* Read the relocations. */
2132 if (bfd_bread (external_relocs
, shdr
->sh_size
, abfd
) != shdr
->sh_size
)
2135 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2136 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
2138 bed
= get_elf_backend_data (abfd
);
2140 /* Convert the external relocations to the internal format. */
2141 if (shdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2142 swap_in
= bed
->s
->swap_reloc_in
;
2143 else if (shdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2144 swap_in
= bed
->s
->swap_reloca_in
;
2147 bfd_set_error (bfd_error_wrong_format
);
2151 erela
= (const bfd_byte
*) external_relocs
;
2152 erelaend
= erela
+ shdr
->sh_size
;
2153 irela
= internal_relocs
;
2154 while (erela
< erelaend
)
2158 (*swap_in
) (abfd
, erela
, irela
);
2159 r_symndx
= ELF32_R_SYM (irela
->r_info
);
2160 if (bed
->s
->arch_size
== 64)
2164 if ((size_t) r_symndx
>= nsyms
)
2166 (*_bfd_error_handler
)
2167 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2168 " for offset 0x%lx in section `%A'"),
2170 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2171 bfd_set_error (bfd_error_bad_value
);
2175 else if (r_symndx
!= 0)
2177 (*_bfd_error_handler
)
2178 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2179 " when the object file has no symbol table"),
2181 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2182 bfd_set_error (bfd_error_bad_value
);
2185 irela
+= bed
->s
->int_rels_per_ext_rel
;
2186 erela
+= shdr
->sh_entsize
;
2192 /* Read and swap the relocs for a section O. They may have been
2193 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2194 not NULL, they are used as buffers to read into. They are known to
2195 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2196 the return value is allocated using either malloc or bfd_alloc,
2197 according to the KEEP_MEMORY argument. If O has two relocation
2198 sections (both REL and RELA relocations), then the REL_HDR
2199 relocations will appear first in INTERNAL_RELOCS, followed by the
2200 REL_HDR2 relocations. */
2203 _bfd_elf_link_read_relocs (bfd
*abfd
,
2205 void *external_relocs
,
2206 Elf_Internal_Rela
*internal_relocs
,
2207 bfd_boolean keep_memory
)
2209 Elf_Internal_Shdr
*rel_hdr
;
2210 void *alloc1
= NULL
;
2211 Elf_Internal_Rela
*alloc2
= NULL
;
2212 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2214 if (elf_section_data (o
)->relocs
!= NULL
)
2215 return elf_section_data (o
)->relocs
;
2217 if (o
->reloc_count
== 0)
2220 rel_hdr
= &elf_section_data (o
)->rel_hdr
;
2222 if (internal_relocs
== NULL
)
2226 size
= o
->reloc_count
;
2227 size
*= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
2229 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_alloc (abfd
, size
);
2231 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_malloc (size
);
2232 if (internal_relocs
== NULL
)
2236 if (external_relocs
== NULL
)
2238 bfd_size_type size
= rel_hdr
->sh_size
;
2240 if (elf_section_data (o
)->rel_hdr2
)
2241 size
+= elf_section_data (o
)->rel_hdr2
->sh_size
;
2242 alloc1
= bfd_malloc (size
);
2245 external_relocs
= alloc1
;
2248 if (!elf_link_read_relocs_from_section (abfd
, o
, rel_hdr
,
2252 if (elf_section_data (o
)->rel_hdr2
2253 && (!elf_link_read_relocs_from_section
2255 elf_section_data (o
)->rel_hdr2
,
2256 ((bfd_byte
*) external_relocs
) + rel_hdr
->sh_size
,
2257 internal_relocs
+ (NUM_SHDR_ENTRIES (rel_hdr
)
2258 * bed
->s
->int_rels_per_ext_rel
))))
2261 /* Cache the results for next time, if we can. */
2263 elf_section_data (o
)->relocs
= internal_relocs
;
2268 /* Don't free alloc2, since if it was allocated we are passing it
2269 back (under the name of internal_relocs). */
2271 return internal_relocs
;
2279 bfd_release (abfd
, alloc2
);
2286 /* Compute the size of, and allocate space for, REL_HDR which is the
2287 section header for a section containing relocations for O. */
2290 _bfd_elf_link_size_reloc_section (bfd
*abfd
,
2291 Elf_Internal_Shdr
*rel_hdr
,
2294 bfd_size_type reloc_count
;
2295 bfd_size_type num_rel_hashes
;
2297 /* Figure out how many relocations there will be. */
2298 if (rel_hdr
== &elf_section_data (o
)->rel_hdr
)
2299 reloc_count
= elf_section_data (o
)->rel_count
;
2301 reloc_count
= elf_section_data (o
)->rel_count2
;
2303 num_rel_hashes
= o
->reloc_count
;
2304 if (num_rel_hashes
< reloc_count
)
2305 num_rel_hashes
= reloc_count
;
2307 /* That allows us to calculate the size of the section. */
2308 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reloc_count
;
2310 /* The contents field must last into write_object_contents, so we
2311 allocate it with bfd_alloc rather than malloc. Also since we
2312 cannot be sure that the contents will actually be filled in,
2313 we zero the allocated space. */
2314 rel_hdr
->contents
= (unsigned char *) bfd_zalloc (abfd
, rel_hdr
->sh_size
);
2315 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
2318 /* We only allocate one set of hash entries, so we only do it the
2319 first time we are called. */
2320 if (elf_section_data (o
)->rel_hashes
== NULL
2323 struct elf_link_hash_entry
**p
;
2325 p
= (struct elf_link_hash_entry
**)
2326 bfd_zmalloc (num_rel_hashes
* sizeof (struct elf_link_hash_entry
*));
2330 elf_section_data (o
)->rel_hashes
= p
;
2336 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2337 originated from the section given by INPUT_REL_HDR) to the
2341 _bfd_elf_link_output_relocs (bfd
*output_bfd
,
2342 asection
*input_section
,
2343 Elf_Internal_Shdr
*input_rel_hdr
,
2344 Elf_Internal_Rela
*internal_relocs
,
2345 struct elf_link_hash_entry
**rel_hash
2348 Elf_Internal_Rela
*irela
;
2349 Elf_Internal_Rela
*irelaend
;
2351 Elf_Internal_Shdr
*output_rel_hdr
;
2352 asection
*output_section
;
2353 unsigned int *rel_countp
= NULL
;
2354 const struct elf_backend_data
*bed
;
2355 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
2357 output_section
= input_section
->output_section
;
2358 output_rel_hdr
= NULL
;
2360 if (elf_section_data (output_section
)->rel_hdr
.sh_entsize
2361 == input_rel_hdr
->sh_entsize
)
2363 output_rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
2364 rel_countp
= &elf_section_data (output_section
)->rel_count
;
2366 else if (elf_section_data (output_section
)->rel_hdr2
2367 && (elf_section_data (output_section
)->rel_hdr2
->sh_entsize
2368 == input_rel_hdr
->sh_entsize
))
2370 output_rel_hdr
= elf_section_data (output_section
)->rel_hdr2
;
2371 rel_countp
= &elf_section_data (output_section
)->rel_count2
;
2375 (*_bfd_error_handler
)
2376 (_("%B: relocation size mismatch in %B section %A"),
2377 output_bfd
, input_section
->owner
, input_section
);
2378 bfd_set_error (bfd_error_wrong_format
);
2382 bed
= get_elf_backend_data (output_bfd
);
2383 if (input_rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2384 swap_out
= bed
->s
->swap_reloc_out
;
2385 else if (input_rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2386 swap_out
= bed
->s
->swap_reloca_out
;
2390 erel
= output_rel_hdr
->contents
;
2391 erel
+= *rel_countp
* input_rel_hdr
->sh_entsize
;
2392 irela
= internal_relocs
;
2393 irelaend
= irela
+ (NUM_SHDR_ENTRIES (input_rel_hdr
)
2394 * bed
->s
->int_rels_per_ext_rel
);
2395 while (irela
< irelaend
)
2397 (*swap_out
) (output_bfd
, irela
, erel
);
2398 irela
+= bed
->s
->int_rels_per_ext_rel
;
2399 erel
+= input_rel_hdr
->sh_entsize
;
2402 /* Bump the counter, so that we know where to add the next set of
2404 *rel_countp
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
2409 /* Make weak undefined symbols in PIE dynamic. */
2412 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info
*info
,
2413 struct elf_link_hash_entry
*h
)
2417 && h
->root
.type
== bfd_link_hash_undefweak
)
2418 return bfd_elf_link_record_dynamic_symbol (info
, h
);
2423 /* Fix up the flags for a symbol. This handles various cases which
2424 can only be fixed after all the input files are seen. This is
2425 currently called by both adjust_dynamic_symbol and
2426 assign_sym_version, which is unnecessary but perhaps more robust in
2427 the face of future changes. */
2430 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry
*h
,
2431 struct elf_info_failed
*eif
)
2433 const struct elf_backend_data
*bed
;
2435 /* If this symbol was mentioned in a non-ELF file, try to set
2436 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2437 permit a non-ELF file to correctly refer to a symbol defined in
2438 an ELF dynamic object. */
2441 while (h
->root
.type
== bfd_link_hash_indirect
)
2442 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2444 if (h
->root
.type
!= bfd_link_hash_defined
2445 && h
->root
.type
!= bfd_link_hash_defweak
)
2448 h
->ref_regular_nonweak
= 1;
2452 if (h
->root
.u
.def
.section
->owner
!= NULL
2453 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2454 == bfd_target_elf_flavour
))
2457 h
->ref_regular_nonweak
= 1;
2463 if (h
->dynindx
== -1
2467 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
2476 /* Unfortunately, NON_ELF is only correct if the symbol
2477 was first seen in a non-ELF file. Fortunately, if the symbol
2478 was first seen in an ELF file, we're probably OK unless the
2479 symbol was defined in a non-ELF file. Catch that case here.
2480 FIXME: We're still in trouble if the symbol was first seen in
2481 a dynamic object, and then later in a non-ELF regular object. */
2482 if ((h
->root
.type
== bfd_link_hash_defined
2483 || h
->root
.type
== bfd_link_hash_defweak
)
2485 && (h
->root
.u
.def
.section
->owner
!= NULL
2486 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2487 != bfd_target_elf_flavour
)
2488 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
2489 && !h
->def_dynamic
)))
2493 /* Backend specific symbol fixup. */
2494 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
2495 if (bed
->elf_backend_fixup_symbol
2496 && !(*bed
->elf_backend_fixup_symbol
) (eif
->info
, h
))
2499 /* If this is a final link, and the symbol was defined as a common
2500 symbol in a regular object file, and there was no definition in
2501 any dynamic object, then the linker will have allocated space for
2502 the symbol in a common section but the DEF_REGULAR
2503 flag will not have been set. */
2504 if (h
->root
.type
== bfd_link_hash_defined
2508 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
2511 /* If -Bsymbolic was used (which means to bind references to global
2512 symbols to the definition within the shared object), and this
2513 symbol was defined in a regular object, then it actually doesn't
2514 need a PLT entry. Likewise, if the symbol has non-default
2515 visibility. If the symbol has hidden or internal visibility, we
2516 will force it local. */
2518 && eif
->info
->shared
2519 && is_elf_hash_table (eif
->info
->hash
)
2520 && (SYMBOLIC_BIND (eif
->info
, h
)
2521 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
2524 bfd_boolean force_local
;
2526 force_local
= (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
2527 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
);
2528 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, force_local
);
2531 /* If a weak undefined symbol has non-default visibility, we also
2532 hide it from the dynamic linker. */
2533 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
2534 && h
->root
.type
== bfd_link_hash_undefweak
)
2535 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
2537 /* If this is a weak defined symbol in a dynamic object, and we know
2538 the real definition in the dynamic object, copy interesting flags
2539 over to the real definition. */
2540 if (h
->u
.weakdef
!= NULL
)
2542 struct elf_link_hash_entry
*weakdef
;
2544 weakdef
= h
->u
.weakdef
;
2545 if (h
->root
.type
== bfd_link_hash_indirect
)
2546 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2548 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2549 || h
->root
.type
== bfd_link_hash_defweak
);
2550 BFD_ASSERT (weakdef
->def_dynamic
);
2552 /* If the real definition is defined by a regular object file,
2553 don't do anything special. See the longer description in
2554 _bfd_elf_adjust_dynamic_symbol, below. */
2555 if (weakdef
->def_regular
)
2556 h
->u
.weakdef
= NULL
;
2559 BFD_ASSERT (weakdef
->root
.type
== bfd_link_hash_defined
2560 || weakdef
->root
.type
== bfd_link_hash_defweak
);
2561 (*bed
->elf_backend_copy_indirect_symbol
) (eif
->info
, weakdef
, h
);
2568 /* Make the backend pick a good value for a dynamic symbol. This is
2569 called via elf_link_hash_traverse, and also calls itself
2573 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry
*h
, void *data
)
2575 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
2577 const struct elf_backend_data
*bed
;
2579 if (! is_elf_hash_table (eif
->info
->hash
))
2582 if (h
->root
.type
== bfd_link_hash_warning
)
2584 h
->got
= elf_hash_table (eif
->info
)->init_got_offset
;
2585 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2587 /* When warning symbols are created, they **replace** the "real"
2588 entry in the hash table, thus we never get to see the real
2589 symbol in a hash traversal. So look at it now. */
2590 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2593 /* Ignore indirect symbols. These are added by the versioning code. */
2594 if (h
->root
.type
== bfd_link_hash_indirect
)
2597 /* Fix the symbol flags. */
2598 if (! _bfd_elf_fix_symbol_flags (h
, eif
))
2601 /* If this symbol does not require a PLT entry, and it is not
2602 defined by a dynamic object, or is not referenced by a regular
2603 object, ignore it. We do have to handle a weak defined symbol,
2604 even if no regular object refers to it, if we decided to add it
2605 to the dynamic symbol table. FIXME: Do we normally need to worry
2606 about symbols which are defined by one dynamic object and
2607 referenced by another one? */
2609 && h
->type
!= STT_GNU_IFUNC
2613 && (h
->u
.weakdef
== NULL
|| h
->u
.weakdef
->dynindx
== -1))))
2615 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2619 /* If we've already adjusted this symbol, don't do it again. This
2620 can happen via a recursive call. */
2621 if (h
->dynamic_adjusted
)
2624 /* Don't look at this symbol again. Note that we must set this
2625 after checking the above conditions, because we may look at a
2626 symbol once, decide not to do anything, and then get called
2627 recursively later after REF_REGULAR is set below. */
2628 h
->dynamic_adjusted
= 1;
2630 /* If this is a weak definition, and we know a real definition, and
2631 the real symbol is not itself defined by a regular object file,
2632 then get a good value for the real definition. We handle the
2633 real symbol first, for the convenience of the backend routine.
2635 Note that there is a confusing case here. If the real definition
2636 is defined by a regular object file, we don't get the real symbol
2637 from the dynamic object, but we do get the weak symbol. If the
2638 processor backend uses a COPY reloc, then if some routine in the
2639 dynamic object changes the real symbol, we will not see that
2640 change in the corresponding weak symbol. This is the way other
2641 ELF linkers work as well, and seems to be a result of the shared
2644 I will clarify this issue. Most SVR4 shared libraries define the
2645 variable _timezone and define timezone as a weak synonym. The
2646 tzset call changes _timezone. If you write
2647 extern int timezone;
2649 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2650 you might expect that, since timezone is a synonym for _timezone,
2651 the same number will print both times. However, if the processor
2652 backend uses a COPY reloc, then actually timezone will be copied
2653 into your process image, and, since you define _timezone
2654 yourself, _timezone will not. Thus timezone and _timezone will
2655 wind up at different memory locations. The tzset call will set
2656 _timezone, leaving timezone unchanged. */
2658 if (h
->u
.weakdef
!= NULL
)
2660 /* If we get to this point, we know there is an implicit
2661 reference by a regular object file via the weak symbol H.
2662 FIXME: Is this really true? What if the traversal finds
2663 H->U.WEAKDEF before it finds H? */
2664 h
->u
.weakdef
->ref_regular
= 1;
2666 if (! _bfd_elf_adjust_dynamic_symbol (h
->u
.weakdef
, eif
))
2670 /* If a symbol has no type and no size and does not require a PLT
2671 entry, then we are probably about to do the wrong thing here: we
2672 are probably going to create a COPY reloc for an empty object.
2673 This case can arise when a shared object is built with assembly
2674 code, and the assembly code fails to set the symbol type. */
2676 && h
->type
== STT_NOTYPE
2678 (*_bfd_error_handler
)
2679 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2680 h
->root
.root
.string
);
2682 dynobj
= elf_hash_table (eif
->info
)->dynobj
;
2683 bed
= get_elf_backend_data (dynobj
);
2685 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
2694 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2698 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry
*h
,
2701 unsigned int power_of_two
;
2703 asection
*sec
= h
->root
.u
.def
.section
;
2705 /* The section aligment of definition is the maximum alignment
2706 requirement of symbols defined in the section. Since we don't
2707 know the symbol alignment requirement, we start with the
2708 maximum alignment and check low bits of the symbol address
2709 for the minimum alignment. */
2710 power_of_two
= bfd_get_section_alignment (sec
->owner
, sec
);
2711 mask
= ((bfd_vma
) 1 << power_of_two
) - 1;
2712 while ((h
->root
.u
.def
.value
& mask
) != 0)
2718 if (power_of_two
> bfd_get_section_alignment (dynbss
->owner
,
2721 /* Adjust the section alignment if needed. */
2722 if (! bfd_set_section_alignment (dynbss
->owner
, dynbss
,
2727 /* We make sure that the symbol will be aligned properly. */
2728 dynbss
->size
= BFD_ALIGN (dynbss
->size
, mask
+ 1);
2730 /* Define the symbol as being at this point in DYNBSS. */
2731 h
->root
.u
.def
.section
= dynbss
;
2732 h
->root
.u
.def
.value
= dynbss
->size
;
2734 /* Increment the size of DYNBSS to make room for the symbol. */
2735 dynbss
->size
+= h
->size
;
2740 /* Adjust all external symbols pointing into SEC_MERGE sections
2741 to reflect the object merging within the sections. */
2744 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry
*h
, void *data
)
2748 if (h
->root
.type
== bfd_link_hash_warning
)
2749 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2751 if ((h
->root
.type
== bfd_link_hash_defined
2752 || h
->root
.type
== bfd_link_hash_defweak
)
2753 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
2754 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
2756 bfd
*output_bfd
= (bfd
*) data
;
2758 h
->root
.u
.def
.value
=
2759 _bfd_merged_section_offset (output_bfd
,
2760 &h
->root
.u
.def
.section
,
2761 elf_section_data (sec
)->sec_info
,
2762 h
->root
.u
.def
.value
);
2768 /* Returns false if the symbol referred to by H should be considered
2769 to resolve local to the current module, and true if it should be
2770 considered to bind dynamically. */
2773 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
2774 struct bfd_link_info
*info
,
2775 bfd_boolean ignore_protected
)
2777 bfd_boolean binding_stays_local_p
;
2778 const struct elf_backend_data
*bed
;
2779 struct elf_link_hash_table
*hash_table
;
2784 while (h
->root
.type
== bfd_link_hash_indirect
2785 || h
->root
.type
== bfd_link_hash_warning
)
2786 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2788 /* If it was forced local, then clearly it's not dynamic. */
2789 if (h
->dynindx
== -1)
2791 if (h
->forced_local
)
2794 /* Identify the cases where name binding rules say that a
2795 visible symbol resolves locally. */
2796 binding_stays_local_p
= info
->executable
|| SYMBOLIC_BIND (info
, h
);
2798 switch (ELF_ST_VISIBILITY (h
->other
))
2805 hash_table
= elf_hash_table (info
);
2806 if (!is_elf_hash_table (hash_table
))
2809 bed
= get_elf_backend_data (hash_table
->dynobj
);
2811 /* Proper resolution for function pointer equality may require
2812 that these symbols perhaps be resolved dynamically, even though
2813 we should be resolving them to the current module. */
2814 if (!ignore_protected
|| !bed
->is_function_type (h
->type
))
2815 binding_stays_local_p
= TRUE
;
2822 /* If it isn't defined locally, then clearly it's dynamic. */
2823 if (!h
->def_regular
)
2826 /* Otherwise, the symbol is dynamic if binding rules don't tell
2827 us that it remains local. */
2828 return !binding_stays_local_p
;
2831 /* Return true if the symbol referred to by H should be considered
2832 to resolve local to the current module, and false otherwise. Differs
2833 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2834 undefined symbols and weak symbols. */
2837 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry
*h
,
2838 struct bfd_link_info
*info
,
2839 bfd_boolean local_protected
)
2841 const struct elf_backend_data
*bed
;
2842 struct elf_link_hash_table
*hash_table
;
2844 /* If it's a local sym, of course we resolve locally. */
2848 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2849 if (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
2850 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
)
2853 /* Common symbols that become definitions don't get the DEF_REGULAR
2854 flag set, so test it first, and don't bail out. */
2855 if (ELF_COMMON_DEF_P (h
))
2857 /* If we don't have a definition in a regular file, then we can't
2858 resolve locally. The sym is either undefined or dynamic. */
2859 else if (!h
->def_regular
)
2862 /* Forced local symbols resolve locally. */
2863 if (h
->forced_local
)
2866 /* As do non-dynamic symbols. */
2867 if (h
->dynindx
== -1)
2870 /* At this point, we know the symbol is defined and dynamic. In an
2871 executable it must resolve locally, likewise when building symbolic
2872 shared libraries. */
2873 if (info
->executable
|| SYMBOLIC_BIND (info
, h
))
2876 /* Now deal with defined dynamic symbols in shared libraries. Ones
2877 with default visibility might not resolve locally. */
2878 if (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
2881 hash_table
= elf_hash_table (info
);
2882 if (!is_elf_hash_table (hash_table
))
2885 bed
= get_elf_backend_data (hash_table
->dynobj
);
2887 /* STV_PROTECTED non-function symbols are local. */
2888 if (!bed
->is_function_type (h
->type
))
2891 /* Function pointer equality tests may require that STV_PROTECTED
2892 symbols be treated as dynamic symbols, even when we know that the
2893 dynamic linker will resolve them locally. */
2894 return local_protected
;
2897 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2898 aligned. Returns the first TLS output section. */
2900 struct bfd_section
*
2901 _bfd_elf_tls_setup (bfd
*obfd
, struct bfd_link_info
*info
)
2903 struct bfd_section
*sec
, *tls
;
2904 unsigned int align
= 0;
2906 for (sec
= obfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2907 if ((sec
->flags
& SEC_THREAD_LOCAL
) != 0)
2911 for (; sec
!= NULL
&& (sec
->flags
& SEC_THREAD_LOCAL
) != 0; sec
= sec
->next
)
2912 if (sec
->alignment_power
> align
)
2913 align
= sec
->alignment_power
;
2915 elf_hash_table (info
)->tls_sec
= tls
;
2917 /* Ensure the alignment of the first section is the largest alignment,
2918 so that the tls segment starts aligned. */
2920 tls
->alignment_power
= align
;
2925 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2927 is_global_data_symbol_definition (bfd
*abfd ATTRIBUTE_UNUSED
,
2928 Elf_Internal_Sym
*sym
)
2930 const struct elf_backend_data
*bed
;
2932 /* Local symbols do not count, but target specific ones might. */
2933 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
2934 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
2937 bed
= get_elf_backend_data (abfd
);
2938 /* Function symbols do not count. */
2939 if (bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)))
2942 /* If the section is undefined, then so is the symbol. */
2943 if (sym
->st_shndx
== SHN_UNDEF
)
2946 /* If the symbol is defined in the common section, then
2947 it is a common definition and so does not count. */
2948 if (bed
->common_definition (sym
))
2951 /* If the symbol is in a target specific section then we
2952 must rely upon the backend to tell us what it is. */
2953 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
2954 /* FIXME - this function is not coded yet:
2956 return _bfd_is_global_symbol_definition (abfd, sym);
2958 Instead for now assume that the definition is not global,
2959 Even if this is wrong, at least the linker will behave
2960 in the same way that it used to do. */
2966 /* Search the symbol table of the archive element of the archive ABFD
2967 whose archive map contains a mention of SYMDEF, and determine if
2968 the symbol is defined in this element. */
2970 elf_link_is_defined_archive_symbol (bfd
* abfd
, carsym
* symdef
)
2972 Elf_Internal_Shdr
* hdr
;
2973 bfd_size_type symcount
;
2974 bfd_size_type extsymcount
;
2975 bfd_size_type extsymoff
;
2976 Elf_Internal_Sym
*isymbuf
;
2977 Elf_Internal_Sym
*isym
;
2978 Elf_Internal_Sym
*isymend
;
2981 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
2985 if (! bfd_check_format (abfd
, bfd_object
))
2988 /* If we have already included the element containing this symbol in the
2989 link then we do not need to include it again. Just claim that any symbol
2990 it contains is not a definition, so that our caller will not decide to
2991 (re)include this element. */
2992 if (abfd
->archive_pass
)
2995 /* Select the appropriate symbol table. */
2996 if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
2997 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2999 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3001 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
3003 /* The sh_info field of the symtab header tells us where the
3004 external symbols start. We don't care about the local symbols. */
3005 if (elf_bad_symtab (abfd
))
3007 extsymcount
= symcount
;
3012 extsymcount
= symcount
- hdr
->sh_info
;
3013 extsymoff
= hdr
->sh_info
;
3016 if (extsymcount
== 0)
3019 /* Read in the symbol table. */
3020 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3022 if (isymbuf
== NULL
)
3025 /* Scan the symbol table looking for SYMDEF. */
3027 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
; isym
< isymend
; isym
++)
3031 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3036 if (strcmp (name
, symdef
->name
) == 0)
3038 result
= is_global_data_symbol_definition (abfd
, isym
);
3048 /* Add an entry to the .dynamic table. */
3051 _bfd_elf_add_dynamic_entry (struct bfd_link_info
*info
,
3055 struct elf_link_hash_table
*hash_table
;
3056 const struct elf_backend_data
*bed
;
3058 bfd_size_type newsize
;
3059 bfd_byte
*newcontents
;
3060 Elf_Internal_Dyn dyn
;
3062 hash_table
= elf_hash_table (info
);
3063 if (! is_elf_hash_table (hash_table
))
3066 bed
= get_elf_backend_data (hash_table
->dynobj
);
3067 s
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3068 BFD_ASSERT (s
!= NULL
);
3070 newsize
= s
->size
+ bed
->s
->sizeof_dyn
;
3071 newcontents
= (bfd_byte
*) bfd_realloc (s
->contents
, newsize
);
3072 if (newcontents
== NULL
)
3076 dyn
.d_un
.d_val
= val
;
3077 bed
->s
->swap_dyn_out (hash_table
->dynobj
, &dyn
, newcontents
+ s
->size
);
3080 s
->contents
= newcontents
;
3085 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3086 otherwise just check whether one already exists. Returns -1 on error,
3087 1 if a DT_NEEDED tag already exists, and 0 on success. */
3090 elf_add_dt_needed_tag (bfd
*abfd
,
3091 struct bfd_link_info
*info
,
3095 struct elf_link_hash_table
*hash_table
;
3096 bfd_size_type oldsize
;
3097 bfd_size_type strindex
;
3099 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
3102 hash_table
= elf_hash_table (info
);
3103 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
3104 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
, soname
, FALSE
);
3105 if (strindex
== (bfd_size_type
) -1)
3108 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
3111 const struct elf_backend_data
*bed
;
3114 bed
= get_elf_backend_data (hash_table
->dynobj
);
3115 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3117 for (extdyn
= sdyn
->contents
;
3118 extdyn
< sdyn
->contents
+ sdyn
->size
;
3119 extdyn
+= bed
->s
->sizeof_dyn
)
3121 Elf_Internal_Dyn dyn
;
3123 bed
->s
->swap_dyn_in (hash_table
->dynobj
, extdyn
, &dyn
);
3124 if (dyn
.d_tag
== DT_NEEDED
3125 && dyn
.d_un
.d_val
== strindex
)
3127 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3135 if (!_bfd_elf_link_create_dynamic_sections (hash_table
->dynobj
, info
))
3138 if (!_bfd_elf_add_dynamic_entry (info
, DT_NEEDED
, strindex
))
3142 /* We were just checking for existence of the tag. */
3143 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3149 on_needed_list (const char *soname
, struct bfd_link_needed_list
*needed
)
3151 for (; needed
!= NULL
; needed
= needed
->next
)
3152 if (strcmp (soname
, needed
->name
) == 0)
3158 /* Sort symbol by value and section. */
3160 elf_sort_symbol (const void *arg1
, const void *arg2
)
3162 const struct elf_link_hash_entry
*h1
;
3163 const struct elf_link_hash_entry
*h2
;
3164 bfd_signed_vma vdiff
;
3166 h1
= *(const struct elf_link_hash_entry
**) arg1
;
3167 h2
= *(const struct elf_link_hash_entry
**) arg2
;
3168 vdiff
= h1
->root
.u
.def
.value
- h2
->root
.u
.def
.value
;
3170 return vdiff
> 0 ? 1 : -1;
3173 long sdiff
= h1
->root
.u
.def
.section
->id
- h2
->root
.u
.def
.section
->id
;
3175 return sdiff
> 0 ? 1 : -1;
3180 /* This function is used to adjust offsets into .dynstr for
3181 dynamic symbols. This is called via elf_link_hash_traverse. */
3184 elf_adjust_dynstr_offsets (struct elf_link_hash_entry
*h
, void *data
)
3186 struct elf_strtab_hash
*dynstr
= (struct elf_strtab_hash
*) data
;
3188 if (h
->root
.type
== bfd_link_hash_warning
)
3189 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3191 if (h
->dynindx
!= -1)
3192 h
->dynstr_index
= _bfd_elf_strtab_offset (dynstr
, h
->dynstr_index
);
3196 /* Assign string offsets in .dynstr, update all structures referencing
3200 elf_finalize_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
3202 struct elf_link_hash_table
*hash_table
= elf_hash_table (info
);
3203 struct elf_link_local_dynamic_entry
*entry
;
3204 struct elf_strtab_hash
*dynstr
= hash_table
->dynstr
;
3205 bfd
*dynobj
= hash_table
->dynobj
;
3208 const struct elf_backend_data
*bed
;
3211 _bfd_elf_strtab_finalize (dynstr
);
3212 size
= _bfd_elf_strtab_size (dynstr
);
3214 bed
= get_elf_backend_data (dynobj
);
3215 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3216 BFD_ASSERT (sdyn
!= NULL
);
3218 /* Update all .dynamic entries referencing .dynstr strings. */
3219 for (extdyn
= sdyn
->contents
;
3220 extdyn
< sdyn
->contents
+ sdyn
->size
;
3221 extdyn
+= bed
->s
->sizeof_dyn
)
3223 Elf_Internal_Dyn dyn
;
3225 bed
->s
->swap_dyn_in (dynobj
, extdyn
, &dyn
);
3229 dyn
.d_un
.d_val
= size
;
3237 dyn
.d_un
.d_val
= _bfd_elf_strtab_offset (dynstr
, dyn
.d_un
.d_val
);
3242 bed
->s
->swap_dyn_out (dynobj
, &dyn
, extdyn
);
3245 /* Now update local dynamic symbols. */
3246 for (entry
= hash_table
->dynlocal
; entry
; entry
= entry
->next
)
3247 entry
->isym
.st_name
= _bfd_elf_strtab_offset (dynstr
,
3248 entry
->isym
.st_name
);
3250 /* And the rest of dynamic symbols. */
3251 elf_link_hash_traverse (hash_table
, elf_adjust_dynstr_offsets
, dynstr
);
3253 /* Adjust version definitions. */
3254 if (elf_tdata (output_bfd
)->cverdefs
)
3259 Elf_Internal_Verdef def
;
3260 Elf_Internal_Verdaux defaux
;
3262 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3266 _bfd_elf_swap_verdef_in (output_bfd
, (Elf_External_Verdef
*) p
,
3268 p
+= sizeof (Elf_External_Verdef
);
3269 if (def
.vd_aux
!= sizeof (Elf_External_Verdef
))
3271 for (i
= 0; i
< def
.vd_cnt
; ++i
)
3273 _bfd_elf_swap_verdaux_in (output_bfd
,
3274 (Elf_External_Verdaux
*) p
, &defaux
);
3275 defaux
.vda_name
= _bfd_elf_strtab_offset (dynstr
,
3277 _bfd_elf_swap_verdaux_out (output_bfd
,
3278 &defaux
, (Elf_External_Verdaux
*) p
);
3279 p
+= sizeof (Elf_External_Verdaux
);
3282 while (def
.vd_next
);
3285 /* Adjust version references. */
3286 if (elf_tdata (output_bfd
)->verref
)
3291 Elf_Internal_Verneed need
;
3292 Elf_Internal_Vernaux needaux
;
3294 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3298 _bfd_elf_swap_verneed_in (output_bfd
, (Elf_External_Verneed
*) p
,
3300 need
.vn_file
= _bfd_elf_strtab_offset (dynstr
, need
.vn_file
);
3301 _bfd_elf_swap_verneed_out (output_bfd
, &need
,
3302 (Elf_External_Verneed
*) p
);
3303 p
+= sizeof (Elf_External_Verneed
);
3304 for (i
= 0; i
< need
.vn_cnt
; ++i
)
3306 _bfd_elf_swap_vernaux_in (output_bfd
,
3307 (Elf_External_Vernaux
*) p
, &needaux
);
3308 needaux
.vna_name
= _bfd_elf_strtab_offset (dynstr
,
3310 _bfd_elf_swap_vernaux_out (output_bfd
,
3312 (Elf_External_Vernaux
*) p
);
3313 p
+= sizeof (Elf_External_Vernaux
);
3316 while (need
.vn_next
);
3322 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3323 The default is to only match when the INPUT and OUTPUT are exactly
3327 _bfd_elf_default_relocs_compatible (const bfd_target
*input
,
3328 const bfd_target
*output
)
3330 return input
== output
;
3333 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3334 This version is used when different targets for the same architecture
3335 are virtually identical. */
3338 _bfd_elf_relocs_compatible (const bfd_target
*input
,
3339 const bfd_target
*output
)
3341 const struct elf_backend_data
*obed
, *ibed
;
3343 if (input
== output
)
3346 ibed
= xvec_get_elf_backend_data (input
);
3347 obed
= xvec_get_elf_backend_data (output
);
3349 if (ibed
->arch
!= obed
->arch
)
3352 /* If both backends are using this function, deem them compatible. */
3353 return ibed
->relocs_compatible
== obed
->relocs_compatible
;
3356 /* Add symbols from an ELF object file to the linker hash table. */
3359 elf_link_add_object_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
3361 Elf_Internal_Ehdr
*ehdr
;
3362 Elf_Internal_Shdr
*hdr
;
3363 bfd_size_type symcount
;
3364 bfd_size_type extsymcount
;
3365 bfd_size_type extsymoff
;
3366 struct elf_link_hash_entry
**sym_hash
;
3367 bfd_boolean dynamic
;
3368 Elf_External_Versym
*extversym
= NULL
;
3369 Elf_External_Versym
*ever
;
3370 struct elf_link_hash_entry
*weaks
;
3371 struct elf_link_hash_entry
**nondeflt_vers
= NULL
;
3372 bfd_size_type nondeflt_vers_cnt
= 0;
3373 Elf_Internal_Sym
*isymbuf
= NULL
;
3374 Elf_Internal_Sym
*isym
;
3375 Elf_Internal_Sym
*isymend
;
3376 const struct elf_backend_data
*bed
;
3377 bfd_boolean add_needed
;
3378 struct elf_link_hash_table
*htab
;
3380 void *alloc_mark
= NULL
;
3381 struct bfd_hash_entry
**old_table
= NULL
;
3382 unsigned int old_size
= 0;
3383 unsigned int old_count
= 0;
3384 void *old_tab
= NULL
;
3387 struct bfd_link_hash_entry
*old_undefs
= NULL
;
3388 struct bfd_link_hash_entry
*old_undefs_tail
= NULL
;
3389 long old_dynsymcount
= 0;
3391 size_t hashsize
= 0;
3393 htab
= elf_hash_table (info
);
3394 bed
= get_elf_backend_data (abfd
);
3396 if ((abfd
->flags
& DYNAMIC
) == 0)
3402 /* You can't use -r against a dynamic object. Also, there's no
3403 hope of using a dynamic object which does not exactly match
3404 the format of the output file. */
3405 if (info
->relocatable
3406 || !is_elf_hash_table (htab
)
3407 || info
->output_bfd
->xvec
!= abfd
->xvec
)
3409 if (info
->relocatable
)
3410 bfd_set_error (bfd_error_invalid_operation
);
3412 bfd_set_error (bfd_error_wrong_format
);
3417 ehdr
= elf_elfheader (abfd
);
3418 if (info
->warn_alternate_em
3419 && bed
->elf_machine_code
!= ehdr
->e_machine
3420 && ((bed
->elf_machine_alt1
!= 0
3421 && ehdr
->e_machine
== bed
->elf_machine_alt1
)
3422 || (bed
->elf_machine_alt2
!= 0
3423 && ehdr
->e_machine
== bed
->elf_machine_alt2
)))
3424 info
->callbacks
->einfo
3425 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3426 ehdr
->e_machine
, abfd
, bed
->elf_machine_code
);
3428 /* As a GNU extension, any input sections which are named
3429 .gnu.warning.SYMBOL are treated as warning symbols for the given
3430 symbol. This differs from .gnu.warning sections, which generate
3431 warnings when they are included in an output file. */
3432 if (info
->executable
)
3436 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3440 name
= bfd_get_section_name (abfd
, s
);
3441 if (CONST_STRNEQ (name
, ".gnu.warning."))
3446 name
+= sizeof ".gnu.warning." - 1;
3448 /* If this is a shared object, then look up the symbol
3449 in the hash table. If it is there, and it is already
3450 been defined, then we will not be using the entry
3451 from this shared object, so we don't need to warn.
3452 FIXME: If we see the definition in a regular object
3453 later on, we will warn, but we shouldn't. The only
3454 fix is to keep track of what warnings we are supposed
3455 to emit, and then handle them all at the end of the
3459 struct elf_link_hash_entry
*h
;
3461 h
= elf_link_hash_lookup (htab
, name
, FALSE
, FALSE
, TRUE
);
3463 /* FIXME: What about bfd_link_hash_common? */
3465 && (h
->root
.type
== bfd_link_hash_defined
3466 || h
->root
.type
== bfd_link_hash_defweak
))
3468 /* We don't want to issue this warning. Clobber
3469 the section size so that the warning does not
3470 get copied into the output file. */
3477 msg
= (char *) bfd_alloc (abfd
, sz
+ 1);
3481 if (! bfd_get_section_contents (abfd
, s
, msg
, 0, sz
))
3486 if (! (_bfd_generic_link_add_one_symbol
3487 (info
, abfd
, name
, BSF_WARNING
, s
, 0, msg
,
3488 FALSE
, bed
->collect
, NULL
)))
3491 if (! info
->relocatable
)
3493 /* Clobber the section size so that the warning does
3494 not get copied into the output file. */
3497 /* Also set SEC_EXCLUDE, so that symbols defined in
3498 the warning section don't get copied to the output. */
3499 s
->flags
|= SEC_EXCLUDE
;
3508 /* If we are creating a shared library, create all the dynamic
3509 sections immediately. We need to attach them to something,
3510 so we attach them to this BFD, provided it is the right
3511 format. FIXME: If there are no input BFD's of the same
3512 format as the output, we can't make a shared library. */
3514 && is_elf_hash_table (htab
)
3515 && info
->output_bfd
->xvec
== abfd
->xvec
3516 && !htab
->dynamic_sections_created
)
3518 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
3522 else if (!is_elf_hash_table (htab
))
3527 const char *soname
= NULL
;
3528 struct bfd_link_needed_list
*rpath
= NULL
, *runpath
= NULL
;
3531 /* ld --just-symbols and dynamic objects don't mix very well.
3532 ld shouldn't allow it. */
3533 if ((s
= abfd
->sections
) != NULL
3534 && s
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
3537 /* If this dynamic lib was specified on the command line with
3538 --as-needed in effect, then we don't want to add a DT_NEEDED
3539 tag unless the lib is actually used. Similary for libs brought
3540 in by another lib's DT_NEEDED. When --no-add-needed is used
3541 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3542 any dynamic library in DT_NEEDED tags in the dynamic lib at
3544 add_needed
= (elf_dyn_lib_class (abfd
)
3545 & (DYN_AS_NEEDED
| DYN_DT_NEEDED
3546 | DYN_NO_NEEDED
)) == 0;
3548 s
= bfd_get_section_by_name (abfd
, ".dynamic");
3553 unsigned int elfsec
;
3554 unsigned long shlink
;
3556 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
3563 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
3564 if (elfsec
== SHN_BAD
)
3565 goto error_free_dyn
;
3566 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
3568 for (extdyn
= dynbuf
;
3569 extdyn
< dynbuf
+ s
->size
;
3570 extdyn
+= bed
->s
->sizeof_dyn
)
3572 Elf_Internal_Dyn dyn
;
3574 bed
->s
->swap_dyn_in (abfd
, extdyn
, &dyn
);
3575 if (dyn
.d_tag
== DT_SONAME
)
3577 unsigned int tagv
= dyn
.d_un
.d_val
;
3578 soname
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3580 goto error_free_dyn
;
3582 if (dyn
.d_tag
== DT_NEEDED
)
3584 struct bfd_link_needed_list
*n
, **pn
;
3586 unsigned int tagv
= dyn
.d_un
.d_val
;
3588 amt
= sizeof (struct bfd_link_needed_list
);
3589 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3590 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3591 if (n
== NULL
|| fnm
== NULL
)
3592 goto error_free_dyn
;
3593 amt
= strlen (fnm
) + 1;
3594 anm
= (char *) bfd_alloc (abfd
, amt
);
3596 goto error_free_dyn
;
3597 memcpy (anm
, fnm
, amt
);
3601 for (pn
= &htab
->needed
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3605 if (dyn
.d_tag
== DT_RUNPATH
)
3607 struct bfd_link_needed_list
*n
, **pn
;
3609 unsigned int tagv
= dyn
.d_un
.d_val
;
3611 amt
= sizeof (struct bfd_link_needed_list
);
3612 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3613 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3614 if (n
== NULL
|| fnm
== NULL
)
3615 goto error_free_dyn
;
3616 amt
= strlen (fnm
) + 1;
3617 anm
= (char *) bfd_alloc (abfd
, amt
);
3619 goto error_free_dyn
;
3620 memcpy (anm
, fnm
, amt
);
3624 for (pn
= & runpath
;
3630 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3631 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
3633 struct bfd_link_needed_list
*n
, **pn
;
3635 unsigned int tagv
= dyn
.d_un
.d_val
;
3637 amt
= sizeof (struct bfd_link_needed_list
);
3638 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3639 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3640 if (n
== NULL
|| fnm
== NULL
)
3641 goto error_free_dyn
;
3642 amt
= strlen (fnm
) + 1;
3643 anm
= (char *) bfd_alloc (abfd
, amt
);
3645 goto error_free_dyn
;
3646 memcpy (anm
, fnm
, amt
);
3661 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3662 frees all more recently bfd_alloc'd blocks as well. */
3668 struct bfd_link_needed_list
**pn
;
3669 for (pn
= &htab
->runpath
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3674 /* We do not want to include any of the sections in a dynamic
3675 object in the output file. We hack by simply clobbering the
3676 list of sections in the BFD. This could be handled more
3677 cleanly by, say, a new section flag; the existing
3678 SEC_NEVER_LOAD flag is not the one we want, because that one
3679 still implies that the section takes up space in the output
3681 bfd_section_list_clear (abfd
);
3683 /* Find the name to use in a DT_NEEDED entry that refers to this
3684 object. If the object has a DT_SONAME entry, we use it.
3685 Otherwise, if the generic linker stuck something in
3686 elf_dt_name, we use that. Otherwise, we just use the file
3688 if (soname
== NULL
|| *soname
== '\0')
3690 soname
= elf_dt_name (abfd
);
3691 if (soname
== NULL
|| *soname
== '\0')
3692 soname
= bfd_get_filename (abfd
);
3695 /* Save the SONAME because sometimes the linker emulation code
3696 will need to know it. */
3697 elf_dt_name (abfd
) = soname
;
3699 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
3703 /* If we have already included this dynamic object in the
3704 link, just ignore it. There is no reason to include a
3705 particular dynamic object more than once. */
3710 /* If this is a dynamic object, we always link against the .dynsym
3711 symbol table, not the .symtab symbol table. The dynamic linker
3712 will only see the .dynsym symbol table, so there is no reason to
3713 look at .symtab for a dynamic object. */
3715 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
3716 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3718 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3720 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
3722 /* The sh_info field of the symtab header tells us where the
3723 external symbols start. We don't care about the local symbols at
3725 if (elf_bad_symtab (abfd
))
3727 extsymcount
= symcount
;
3732 extsymcount
= symcount
- hdr
->sh_info
;
3733 extsymoff
= hdr
->sh_info
;
3737 if (extsymcount
!= 0)
3739 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3741 if (isymbuf
== NULL
)
3744 /* We store a pointer to the hash table entry for each external
3746 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3747 sym_hash
= (struct elf_link_hash_entry
**) bfd_alloc (abfd
, amt
);
3748 if (sym_hash
== NULL
)
3749 goto error_free_sym
;
3750 elf_sym_hashes (abfd
) = sym_hash
;
3755 /* Read in any version definitions. */
3756 if (!_bfd_elf_slurp_version_tables (abfd
,
3757 info
->default_imported_symver
))
3758 goto error_free_sym
;
3760 /* Read in the symbol versions, but don't bother to convert them
3761 to internal format. */
3762 if (elf_dynversym (abfd
) != 0)
3764 Elf_Internal_Shdr
*versymhdr
;
3766 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
3767 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
3768 if (extversym
== NULL
)
3769 goto error_free_sym
;
3770 amt
= versymhdr
->sh_size
;
3771 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
3772 || bfd_bread (extversym
, amt
, abfd
) != amt
)
3773 goto error_free_vers
;
3777 /* If we are loading an as-needed shared lib, save the symbol table
3778 state before we start adding symbols. If the lib turns out
3779 to be unneeded, restore the state. */
3780 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
3785 for (entsize
= 0, i
= 0; i
< htab
->root
.table
.size
; i
++)
3787 struct bfd_hash_entry
*p
;
3788 struct elf_link_hash_entry
*h
;
3790 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3792 h
= (struct elf_link_hash_entry
*) p
;
3793 entsize
+= htab
->root
.table
.entsize
;
3794 if (h
->root
.type
== bfd_link_hash_warning
)
3795 entsize
+= htab
->root
.table
.entsize
;
3799 tabsize
= htab
->root
.table
.size
* sizeof (struct bfd_hash_entry
*);
3800 hashsize
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3801 old_tab
= bfd_malloc (tabsize
+ entsize
+ hashsize
);
3802 if (old_tab
== NULL
)
3803 goto error_free_vers
;
3805 /* Remember the current objalloc pointer, so that all mem for
3806 symbols added can later be reclaimed. */
3807 alloc_mark
= bfd_hash_allocate (&htab
->root
.table
, 1);
3808 if (alloc_mark
== NULL
)
3809 goto error_free_vers
;
3811 /* Make a special call to the linker "notice" function to
3812 tell it that we are about to handle an as-needed lib. */
3813 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
3815 goto error_free_vers
;
3817 /* Clone the symbol table and sym hashes. Remember some
3818 pointers into the symbol table, and dynamic symbol count. */
3819 old_hash
= (char *) old_tab
+ tabsize
;
3820 old_ent
= (char *) old_hash
+ hashsize
;
3821 memcpy (old_tab
, htab
->root
.table
.table
, tabsize
);
3822 memcpy (old_hash
, sym_hash
, hashsize
);
3823 old_undefs
= htab
->root
.undefs
;
3824 old_undefs_tail
= htab
->root
.undefs_tail
;
3825 old_table
= htab
->root
.table
.table
;
3826 old_size
= htab
->root
.table
.size
;
3827 old_count
= htab
->root
.table
.count
;
3828 old_dynsymcount
= htab
->dynsymcount
;
3830 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
3832 struct bfd_hash_entry
*p
;
3833 struct elf_link_hash_entry
*h
;
3835 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3837 memcpy (old_ent
, p
, htab
->root
.table
.entsize
);
3838 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3839 h
= (struct elf_link_hash_entry
*) p
;
3840 if (h
->root
.type
== bfd_link_hash_warning
)
3842 memcpy (old_ent
, h
->root
.u
.i
.link
, htab
->root
.table
.entsize
);
3843 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3850 ever
= extversym
!= NULL
? extversym
+ extsymoff
: NULL
;
3851 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
;
3853 isym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
3857 asection
*sec
, *new_sec
;
3860 struct elf_link_hash_entry
*h
;
3861 bfd_boolean definition
;
3862 bfd_boolean size_change_ok
;
3863 bfd_boolean type_change_ok
;
3864 bfd_boolean new_weakdef
;
3865 bfd_boolean override
;
3867 unsigned int old_alignment
;
3872 flags
= BSF_NO_FLAGS
;
3874 value
= isym
->st_value
;
3876 common
= bed
->common_definition (isym
);
3878 bind
= ELF_ST_BIND (isym
->st_info
);
3882 /* This should be impossible, since ELF requires that all
3883 global symbols follow all local symbols, and that sh_info
3884 point to the first global symbol. Unfortunately, Irix 5
3889 if (isym
->st_shndx
!= SHN_UNDEF
&& !common
)
3897 case STB_GNU_UNIQUE
:
3898 flags
= BSF_GNU_UNIQUE
;
3902 /* Leave it up to the processor backend. */
3906 if (isym
->st_shndx
== SHN_UNDEF
)
3907 sec
= bfd_und_section_ptr
;
3908 else if (isym
->st_shndx
== SHN_ABS
)
3909 sec
= bfd_abs_section_ptr
;
3910 else if (isym
->st_shndx
== SHN_COMMON
)
3912 sec
= bfd_com_section_ptr
;
3913 /* What ELF calls the size we call the value. What ELF
3914 calls the value we call the alignment. */
3915 value
= isym
->st_size
;
3919 sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3921 sec
= bfd_abs_section_ptr
;
3922 else if (sec
->kept_section
)
3924 /* Symbols from discarded section are undefined. We keep
3926 sec
= bfd_und_section_ptr
;
3927 isym
->st_shndx
= SHN_UNDEF
;
3929 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
3933 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3936 goto error_free_vers
;
3938 if (isym
->st_shndx
== SHN_COMMON
3939 && ELF_ST_TYPE (isym
->st_info
) == STT_TLS
3940 && !info
->relocatable
)
3942 asection
*tcomm
= bfd_get_section_by_name (abfd
, ".tcommon");
3946 tcomm
= bfd_make_section_with_flags (abfd
, ".tcommon",
3949 | SEC_LINKER_CREATED
3950 | SEC_THREAD_LOCAL
));
3952 goto error_free_vers
;
3956 else if (bed
->elf_add_symbol_hook
)
3958 if (! (*bed
->elf_add_symbol_hook
) (abfd
, info
, isym
, &name
, &flags
,
3960 goto error_free_vers
;
3962 /* The hook function sets the name to NULL if this symbol
3963 should be skipped for some reason. */
3968 /* Sanity check that all possibilities were handled. */
3971 bfd_set_error (bfd_error_bad_value
);
3972 goto error_free_vers
;
3975 if (bfd_is_und_section (sec
)
3976 || bfd_is_com_section (sec
))
3981 size_change_ok
= FALSE
;
3982 type_change_ok
= bed
->type_change_ok
;
3987 if (is_elf_hash_table (htab
))
3989 Elf_Internal_Versym iver
;
3990 unsigned int vernum
= 0;
3995 if (info
->default_imported_symver
)
3996 /* Use the default symbol version created earlier. */
3997 iver
.vs_vers
= elf_tdata (abfd
)->cverdefs
;
4002 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
4004 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
4006 /* If this is a hidden symbol, or if it is not version
4007 1, we append the version name to the symbol name.
4008 However, we do not modify a non-hidden absolute symbol
4009 if it is not a function, because it might be the version
4010 symbol itself. FIXME: What if it isn't? */
4011 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
4013 && (!bfd_is_abs_section (sec
)
4014 || bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
)))))
4017 size_t namelen
, verlen
, newlen
;
4020 if (isym
->st_shndx
!= SHN_UNDEF
)
4022 if (vernum
> elf_tdata (abfd
)->cverdefs
)
4024 else if (vernum
> 1)
4026 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
4032 (*_bfd_error_handler
)
4033 (_("%B: %s: invalid version %u (max %d)"),
4035 elf_tdata (abfd
)->cverdefs
);
4036 bfd_set_error (bfd_error_bad_value
);
4037 goto error_free_vers
;
4042 /* We cannot simply test for the number of
4043 entries in the VERNEED section since the
4044 numbers for the needed versions do not start
4046 Elf_Internal_Verneed
*t
;
4049 for (t
= elf_tdata (abfd
)->verref
;
4053 Elf_Internal_Vernaux
*a
;
4055 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
4057 if (a
->vna_other
== vernum
)
4059 verstr
= a
->vna_nodename
;
4068 (*_bfd_error_handler
)
4069 (_("%B: %s: invalid needed version %d"),
4070 abfd
, name
, vernum
);
4071 bfd_set_error (bfd_error_bad_value
);
4072 goto error_free_vers
;
4076 namelen
= strlen (name
);
4077 verlen
= strlen (verstr
);
4078 newlen
= namelen
+ verlen
+ 2;
4079 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4080 && isym
->st_shndx
!= SHN_UNDEF
)
4083 newname
= (char *) bfd_hash_allocate (&htab
->root
.table
, newlen
);
4084 if (newname
== NULL
)
4085 goto error_free_vers
;
4086 memcpy (newname
, name
, namelen
);
4087 p
= newname
+ namelen
;
4089 /* If this is a defined non-hidden version symbol,
4090 we add another @ to the name. This indicates the
4091 default version of the symbol. */
4092 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4093 && isym
->st_shndx
!= SHN_UNDEF
)
4095 memcpy (p
, verstr
, verlen
+ 1);
4100 if (!_bfd_elf_merge_symbol (abfd
, info
, name
, isym
, &sec
,
4101 &value
, &old_alignment
,
4102 sym_hash
, &skip
, &override
,
4103 &type_change_ok
, &size_change_ok
))
4104 goto error_free_vers
;
4113 while (h
->root
.type
== bfd_link_hash_indirect
4114 || h
->root
.type
== bfd_link_hash_warning
)
4115 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4117 /* Remember the old alignment if this is a common symbol, so
4118 that we don't reduce the alignment later on. We can't
4119 check later, because _bfd_generic_link_add_one_symbol
4120 will set a default for the alignment which we want to
4121 override. We also remember the old bfd where the existing
4122 definition comes from. */
4123 switch (h
->root
.type
)
4128 case bfd_link_hash_defined
:
4129 case bfd_link_hash_defweak
:
4130 old_bfd
= h
->root
.u
.def
.section
->owner
;
4133 case bfd_link_hash_common
:
4134 old_bfd
= h
->root
.u
.c
.p
->section
->owner
;
4135 old_alignment
= h
->root
.u
.c
.p
->alignment_power
;
4139 if (elf_tdata (abfd
)->verdef
!= NULL
4143 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
4146 if (! (_bfd_generic_link_add_one_symbol
4147 (info
, abfd
, name
, flags
, sec
, value
, NULL
, FALSE
, bed
->collect
,
4148 (struct bfd_link_hash_entry
**) sym_hash
)))
4149 goto error_free_vers
;
4152 while (h
->root
.type
== bfd_link_hash_indirect
4153 || h
->root
.type
== bfd_link_hash_warning
)
4154 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4157 h
->unique_global
= (flags
& BSF_GNU_UNIQUE
) != 0;
4159 new_weakdef
= FALSE
;
4162 && (flags
& BSF_WEAK
) != 0
4163 && !bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
))
4164 && is_elf_hash_table (htab
)
4165 && h
->u
.weakdef
== NULL
)
4167 /* Keep a list of all weak defined non function symbols from
4168 a dynamic object, using the weakdef field. Later in this
4169 function we will set the weakdef field to the correct
4170 value. We only put non-function symbols from dynamic
4171 objects on this list, because that happens to be the only
4172 time we need to know the normal symbol corresponding to a
4173 weak symbol, and the information is time consuming to
4174 figure out. If the weakdef field is not already NULL,
4175 then this symbol was already defined by some previous
4176 dynamic object, and we will be using that previous
4177 definition anyhow. */
4179 h
->u
.weakdef
= weaks
;
4184 /* Set the alignment of a common symbol. */
4185 if ((common
|| bfd_is_com_section (sec
))
4186 && h
->root
.type
== bfd_link_hash_common
)
4191 align
= bfd_log2 (isym
->st_value
);
4194 /* The new symbol is a common symbol in a shared object.
4195 We need to get the alignment from the section. */
4196 align
= new_sec
->alignment_power
;
4198 if (align
> old_alignment
4199 /* Permit an alignment power of zero if an alignment of one
4200 is specified and no other alignments have been specified. */
4201 || (isym
->st_value
== 1 && old_alignment
== 0))
4202 h
->root
.u
.c
.p
->alignment_power
= align
;
4204 h
->root
.u
.c
.p
->alignment_power
= old_alignment
;
4207 if (is_elf_hash_table (htab
))
4211 /* Check the alignment when a common symbol is involved. This
4212 can change when a common symbol is overridden by a normal
4213 definition or a common symbol is ignored due to the old
4214 normal definition. We need to make sure the maximum
4215 alignment is maintained. */
4216 if ((old_alignment
|| common
)
4217 && h
->root
.type
!= bfd_link_hash_common
)
4219 unsigned int common_align
;
4220 unsigned int normal_align
;
4221 unsigned int symbol_align
;
4225 symbol_align
= ffs (h
->root
.u
.def
.value
) - 1;
4226 if (h
->root
.u
.def
.section
->owner
!= NULL
4227 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
4229 normal_align
= h
->root
.u
.def
.section
->alignment_power
;
4230 if (normal_align
> symbol_align
)
4231 normal_align
= symbol_align
;
4234 normal_align
= symbol_align
;
4238 common_align
= old_alignment
;
4239 common_bfd
= old_bfd
;
4244 common_align
= bfd_log2 (isym
->st_value
);
4246 normal_bfd
= old_bfd
;
4249 if (normal_align
< common_align
)
4251 /* PR binutils/2735 */
4252 if (normal_bfd
== NULL
)
4253 (*_bfd_error_handler
)
4254 (_("Warning: alignment %u of common symbol `%s' in %B"
4255 " is greater than the alignment (%u) of its section %A"),
4256 common_bfd
, h
->root
.u
.def
.section
,
4257 1 << common_align
, name
, 1 << normal_align
);
4259 (*_bfd_error_handler
)
4260 (_("Warning: alignment %u of symbol `%s' in %B"
4261 " is smaller than %u in %B"),
4262 normal_bfd
, common_bfd
,
4263 1 << normal_align
, name
, 1 << common_align
);
4267 /* Remember the symbol size if it isn't undefined. */
4268 if ((isym
->st_size
!= 0 && isym
->st_shndx
!= SHN_UNDEF
)
4269 && (definition
|| h
->size
== 0))
4272 && h
->size
!= isym
->st_size
4273 && ! size_change_ok
)
4274 (*_bfd_error_handler
)
4275 (_("Warning: size of symbol `%s' changed"
4276 " from %lu in %B to %lu in %B"),
4278 name
, (unsigned long) h
->size
,
4279 (unsigned long) isym
->st_size
);
4281 h
->size
= isym
->st_size
;
4284 /* If this is a common symbol, then we always want H->SIZE
4285 to be the size of the common symbol. The code just above
4286 won't fix the size if a common symbol becomes larger. We
4287 don't warn about a size change here, because that is
4288 covered by --warn-common. Allow changed between different
4290 if (h
->root
.type
== bfd_link_hash_common
)
4291 h
->size
= h
->root
.u
.c
.size
;
4293 if (ELF_ST_TYPE (isym
->st_info
) != STT_NOTYPE
4294 && (definition
|| h
->type
== STT_NOTYPE
))
4296 unsigned int type
= ELF_ST_TYPE (isym
->st_info
);
4298 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4300 if (type
== STT_GNU_IFUNC
4301 && (abfd
->flags
& DYNAMIC
) != 0)
4304 if (h
->type
!= type
)
4306 if (h
->type
!= STT_NOTYPE
&& ! type_change_ok
)
4307 (*_bfd_error_handler
)
4308 (_("Warning: type of symbol `%s' changed"
4309 " from %d to %d in %B"),
4310 abfd
, name
, h
->type
, type
);
4316 /* Merge st_other field. */
4317 elf_merge_st_other (abfd
, h
, isym
, definition
, dynamic
);
4319 /* Set a flag in the hash table entry indicating the type of
4320 reference or definition we just found. Keep a count of
4321 the number of dynamic symbols we find. A dynamic symbol
4322 is one which is referenced or defined by both a regular
4323 object and a shared object. */
4330 if (bind
!= STB_WEAK
)
4331 h
->ref_regular_nonweak
= 1;
4343 if (! info
->executable
4356 || (h
->u
.weakdef
!= NULL
4358 && h
->u
.weakdef
->dynindx
!= -1))
4362 if (definition
&& (sec
->flags
& SEC_DEBUGGING
) && !info
->relocatable
)
4364 /* We don't want to make debug symbol dynamic. */
4365 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4369 /* Check to see if we need to add an indirect symbol for
4370 the default name. */
4371 if (definition
|| h
->root
.type
== bfd_link_hash_common
)
4372 if (!_bfd_elf_add_default_symbol (abfd
, info
, h
, name
, isym
,
4373 &sec
, &value
, &dynsym
,
4375 goto error_free_vers
;
4377 if (definition
&& !dynamic
)
4379 char *p
= strchr (name
, ELF_VER_CHR
);
4380 if (p
!= NULL
&& p
[1] != ELF_VER_CHR
)
4382 /* Queue non-default versions so that .symver x, x@FOO
4383 aliases can be checked. */
4386 amt
= ((isymend
- isym
+ 1)
4387 * sizeof (struct elf_link_hash_entry
*));
4389 (struct elf_link_hash_entry
**) bfd_malloc (amt
);
4391 goto error_free_vers
;
4393 nondeflt_vers
[nondeflt_vers_cnt
++] = h
;
4397 if (dynsym
&& h
->dynindx
== -1)
4399 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4400 goto error_free_vers
;
4401 if (h
->u
.weakdef
!= NULL
4403 && h
->u
.weakdef
->dynindx
== -1)
4405 if (!bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
4406 goto error_free_vers
;
4409 else if (dynsym
&& h
->dynindx
!= -1)
4410 /* If the symbol already has a dynamic index, but
4411 visibility says it should not be visible, turn it into
4413 switch (ELF_ST_VISIBILITY (h
->other
))
4417 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4427 && (elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0
4428 && !on_needed_list (elf_dt_name (abfd
), htab
->needed
))))
4431 const char *soname
= elf_dt_name (abfd
);
4433 /* A symbol from a library loaded via DT_NEEDED of some
4434 other library is referenced by a regular object.
4435 Add a DT_NEEDED entry for it. Issue an error if
4436 --no-add-needed is used. */
4437 if ((elf_dyn_lib_class (abfd
) & DYN_NO_NEEDED
) != 0)
4439 (*_bfd_error_handler
)
4440 (_("%s: invalid DSO for symbol `%s' definition"),
4442 bfd_set_error (bfd_error_bad_value
);
4443 goto error_free_vers
;
4446 elf_dyn_lib_class (abfd
) = (enum dynamic_lib_link_class
)
4447 (elf_dyn_lib_class (abfd
) & ~DYN_AS_NEEDED
);
4450 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
4452 goto error_free_vers
;
4454 BFD_ASSERT (ret
== 0);
4459 if (extversym
!= NULL
)
4465 if (isymbuf
!= NULL
)
4471 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
4475 /* Restore the symbol table. */
4476 if (bed
->as_needed_cleanup
)
4477 (*bed
->as_needed_cleanup
) (abfd
, info
);
4478 old_hash
= (char *) old_tab
+ tabsize
;
4479 old_ent
= (char *) old_hash
+ hashsize
;
4480 sym_hash
= elf_sym_hashes (abfd
);
4481 htab
->root
.table
.table
= old_table
;
4482 htab
->root
.table
.size
= old_size
;
4483 htab
->root
.table
.count
= old_count
;
4484 memcpy (htab
->root
.table
.table
, old_tab
, tabsize
);
4485 memcpy (sym_hash
, old_hash
, hashsize
);
4486 htab
->root
.undefs
= old_undefs
;
4487 htab
->root
.undefs_tail
= old_undefs_tail
;
4488 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
4490 struct bfd_hash_entry
*p
;
4491 struct elf_link_hash_entry
*h
;
4493 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
4495 h
= (struct elf_link_hash_entry
*) p
;
4496 if (h
->root
.type
== bfd_link_hash_warning
)
4497 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4498 if (h
->dynindx
>= old_dynsymcount
)
4499 _bfd_elf_strtab_delref (htab
->dynstr
, h
->dynstr_index
);
4501 memcpy (p
, old_ent
, htab
->root
.table
.entsize
);
4502 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4503 h
= (struct elf_link_hash_entry
*) p
;
4504 if (h
->root
.type
== bfd_link_hash_warning
)
4506 memcpy (h
->root
.u
.i
.link
, old_ent
, htab
->root
.table
.entsize
);
4507 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4512 /* Make a special call to the linker "notice" function to
4513 tell it that symbols added for crefs may need to be removed. */
4514 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4516 goto error_free_vers
;
4519 objalloc_free_block ((struct objalloc
*) htab
->root
.table
.memory
,
4521 if (nondeflt_vers
!= NULL
)
4522 free (nondeflt_vers
);
4526 if (old_tab
!= NULL
)
4528 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4530 goto error_free_vers
;
4535 /* Now that all the symbols from this input file are created, handle
4536 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4537 if (nondeflt_vers
!= NULL
)
4539 bfd_size_type cnt
, symidx
;
4541 for (cnt
= 0; cnt
< nondeflt_vers_cnt
; ++cnt
)
4543 struct elf_link_hash_entry
*h
= nondeflt_vers
[cnt
], *hi
;
4544 char *shortname
, *p
;
4546 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
4548 || (h
->root
.type
!= bfd_link_hash_defined
4549 && h
->root
.type
!= bfd_link_hash_defweak
))
4552 amt
= p
- h
->root
.root
.string
;
4553 shortname
= (char *) bfd_malloc (amt
+ 1);
4555 goto error_free_vers
;
4556 memcpy (shortname
, h
->root
.root
.string
, amt
);
4557 shortname
[amt
] = '\0';
4559 hi
= (struct elf_link_hash_entry
*)
4560 bfd_link_hash_lookup (&htab
->root
, shortname
,
4561 FALSE
, FALSE
, FALSE
);
4563 && hi
->root
.type
== h
->root
.type
4564 && hi
->root
.u
.def
.value
== h
->root
.u
.def
.value
4565 && hi
->root
.u
.def
.section
== h
->root
.u
.def
.section
)
4567 (*bed
->elf_backend_hide_symbol
) (info
, hi
, TRUE
);
4568 hi
->root
.type
= bfd_link_hash_indirect
;
4569 hi
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
4570 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
4571 sym_hash
= elf_sym_hashes (abfd
);
4573 for (symidx
= 0; symidx
< extsymcount
; ++symidx
)
4574 if (sym_hash
[symidx
] == hi
)
4576 sym_hash
[symidx
] = h
;
4582 free (nondeflt_vers
);
4583 nondeflt_vers
= NULL
;
4586 /* Now set the weakdefs field correctly for all the weak defined
4587 symbols we found. The only way to do this is to search all the
4588 symbols. Since we only need the information for non functions in
4589 dynamic objects, that's the only time we actually put anything on
4590 the list WEAKS. We need this information so that if a regular
4591 object refers to a symbol defined weakly in a dynamic object, the
4592 real symbol in the dynamic object is also put in the dynamic
4593 symbols; we also must arrange for both symbols to point to the
4594 same memory location. We could handle the general case of symbol
4595 aliasing, but a general symbol alias can only be generated in
4596 assembler code, handling it correctly would be very time
4597 consuming, and other ELF linkers don't handle general aliasing
4601 struct elf_link_hash_entry
**hpp
;
4602 struct elf_link_hash_entry
**hppend
;
4603 struct elf_link_hash_entry
**sorted_sym_hash
;
4604 struct elf_link_hash_entry
*h
;
4607 /* Since we have to search the whole symbol list for each weak
4608 defined symbol, search time for N weak defined symbols will be
4609 O(N^2). Binary search will cut it down to O(NlogN). */
4610 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
4611 sorted_sym_hash
= (struct elf_link_hash_entry
**) bfd_malloc (amt
);
4612 if (sorted_sym_hash
== NULL
)
4614 sym_hash
= sorted_sym_hash
;
4615 hpp
= elf_sym_hashes (abfd
);
4616 hppend
= hpp
+ extsymcount
;
4618 for (; hpp
< hppend
; hpp
++)
4622 && h
->root
.type
== bfd_link_hash_defined
4623 && !bed
->is_function_type (h
->type
))
4631 qsort (sorted_sym_hash
, sym_count
,
4632 sizeof (struct elf_link_hash_entry
*),
4635 while (weaks
!= NULL
)
4637 struct elf_link_hash_entry
*hlook
;
4644 weaks
= hlook
->u
.weakdef
;
4645 hlook
->u
.weakdef
= NULL
;
4647 BFD_ASSERT (hlook
->root
.type
== bfd_link_hash_defined
4648 || hlook
->root
.type
== bfd_link_hash_defweak
4649 || hlook
->root
.type
== bfd_link_hash_common
4650 || hlook
->root
.type
== bfd_link_hash_indirect
);
4651 slook
= hlook
->root
.u
.def
.section
;
4652 vlook
= hlook
->root
.u
.def
.value
;
4659 bfd_signed_vma vdiff
;
4661 h
= sorted_sym_hash
[idx
];
4662 vdiff
= vlook
- h
->root
.u
.def
.value
;
4669 long sdiff
= slook
->id
- h
->root
.u
.def
.section
->id
;
4682 /* We didn't find a value/section match. */
4686 for (i
= ilook
; i
< sym_count
; i
++)
4688 h
= sorted_sym_hash
[i
];
4690 /* Stop if value or section doesn't match. */
4691 if (h
->root
.u
.def
.value
!= vlook
4692 || h
->root
.u
.def
.section
!= slook
)
4694 else if (h
!= hlook
)
4696 hlook
->u
.weakdef
= h
;
4698 /* If the weak definition is in the list of dynamic
4699 symbols, make sure the real definition is put
4701 if (hlook
->dynindx
!= -1 && h
->dynindx
== -1)
4703 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4706 free (sorted_sym_hash
);
4711 /* If the real definition is in the list of dynamic
4712 symbols, make sure the weak definition is put
4713 there as well. If we don't do this, then the
4714 dynamic loader might not merge the entries for the
4715 real definition and the weak definition. */
4716 if (h
->dynindx
!= -1 && hlook
->dynindx
== -1)
4718 if (! bfd_elf_link_record_dynamic_symbol (info
, hlook
))
4719 goto err_free_sym_hash
;
4726 free (sorted_sym_hash
);
4729 if (bed
->check_directives
4730 && !(*bed
->check_directives
) (abfd
, info
))
4733 /* If this object is the same format as the output object, and it is
4734 not a shared library, then let the backend look through the
4737 This is required to build global offset table entries and to
4738 arrange for dynamic relocs. It is not required for the
4739 particular common case of linking non PIC code, even when linking
4740 against shared libraries, but unfortunately there is no way of
4741 knowing whether an object file has been compiled PIC or not.
4742 Looking through the relocs is not particularly time consuming.
4743 The problem is that we must either (1) keep the relocs in memory,
4744 which causes the linker to require additional runtime memory or
4745 (2) read the relocs twice from the input file, which wastes time.
4746 This would be a good case for using mmap.
4748 I have no idea how to handle linking PIC code into a file of a
4749 different format. It probably can't be done. */
4751 && is_elf_hash_table (htab
)
4752 && bed
->check_relocs
!= NULL
4753 && (*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
4757 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4759 Elf_Internal_Rela
*internal_relocs
;
4762 if ((o
->flags
& SEC_RELOC
) == 0
4763 || o
->reloc_count
== 0
4764 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
4765 && (o
->flags
& SEC_DEBUGGING
) != 0)
4766 || bfd_is_abs_section (o
->output_section
))
4769 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
4771 if (internal_relocs
== NULL
)
4774 ok
= (*bed
->check_relocs
) (abfd
, info
, o
, internal_relocs
);
4776 if (elf_section_data (o
)->relocs
!= internal_relocs
)
4777 free (internal_relocs
);
4784 /* If this is a non-traditional link, try to optimize the handling
4785 of the .stab/.stabstr sections. */
4787 && ! info
->traditional_format
4788 && is_elf_hash_table (htab
)
4789 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
4793 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
4794 if (stabstr
!= NULL
)
4796 bfd_size_type string_offset
= 0;
4799 for (stab
= abfd
->sections
; stab
; stab
= stab
->next
)
4800 if (CONST_STRNEQ (stab
->name
, ".stab")
4801 && (!stab
->name
[5] ||
4802 (stab
->name
[5] == '.' && ISDIGIT (stab
->name
[6])))
4803 && (stab
->flags
& SEC_MERGE
) == 0
4804 && !bfd_is_abs_section (stab
->output_section
))
4806 struct bfd_elf_section_data
*secdata
;
4808 secdata
= elf_section_data (stab
);
4809 if (! _bfd_link_section_stabs (abfd
, &htab
->stab_info
, stab
,
4810 stabstr
, &secdata
->sec_info
,
4813 if (secdata
->sec_info
)
4814 stab
->sec_info_type
= ELF_INFO_TYPE_STABS
;
4819 if (is_elf_hash_table (htab
) && add_needed
)
4821 /* Add this bfd to the loaded list. */
4822 struct elf_link_loaded_list
*n
;
4824 n
= (struct elf_link_loaded_list
*)
4825 bfd_alloc (abfd
, sizeof (struct elf_link_loaded_list
));
4829 n
->next
= htab
->loaded
;
4836 if (old_tab
!= NULL
)
4838 if (nondeflt_vers
!= NULL
)
4839 free (nondeflt_vers
);
4840 if (extversym
!= NULL
)
4843 if (isymbuf
!= NULL
)
4849 /* Return the linker hash table entry of a symbol that might be
4850 satisfied by an archive symbol. Return -1 on error. */
4852 struct elf_link_hash_entry
*
4853 _bfd_elf_archive_symbol_lookup (bfd
*abfd
,
4854 struct bfd_link_info
*info
,
4857 struct elf_link_hash_entry
*h
;
4861 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
4865 /* If this is a default version (the name contains @@), look up the
4866 symbol again with only one `@' as well as without the version.
4867 The effect is that references to the symbol with and without the
4868 version will be matched by the default symbol in the archive. */
4870 p
= strchr (name
, ELF_VER_CHR
);
4871 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
4874 /* First check with only one `@'. */
4875 len
= strlen (name
);
4876 copy
= (char *) bfd_alloc (abfd
, len
);
4878 return (struct elf_link_hash_entry
*) 0 - 1;
4880 first
= p
- name
+ 1;
4881 memcpy (copy
, name
, first
);
4882 memcpy (copy
+ first
, name
+ first
+ 1, len
- first
);
4884 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
, FALSE
, FALSE
, FALSE
);
4887 /* We also need to check references to the symbol without the
4889 copy
[first
- 1] = '\0';
4890 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
4891 FALSE
, FALSE
, FALSE
);
4894 bfd_release (abfd
, copy
);
4898 /* Add symbols from an ELF archive file to the linker hash table. We
4899 don't use _bfd_generic_link_add_archive_symbols because of a
4900 problem which arises on UnixWare. The UnixWare libc.so is an
4901 archive which includes an entry libc.so.1 which defines a bunch of
4902 symbols. The libc.so archive also includes a number of other
4903 object files, which also define symbols, some of which are the same
4904 as those defined in libc.so.1. Correct linking requires that we
4905 consider each object file in turn, and include it if it defines any
4906 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4907 this; it looks through the list of undefined symbols, and includes
4908 any object file which defines them. When this algorithm is used on
4909 UnixWare, it winds up pulling in libc.so.1 early and defining a
4910 bunch of symbols. This means that some of the other objects in the
4911 archive are not included in the link, which is incorrect since they
4912 precede libc.so.1 in the archive.
4914 Fortunately, ELF archive handling is simpler than that done by
4915 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4916 oddities. In ELF, if we find a symbol in the archive map, and the
4917 symbol is currently undefined, we know that we must pull in that
4920 Unfortunately, we do have to make multiple passes over the symbol
4921 table until nothing further is resolved. */
4924 elf_link_add_archive_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
4927 bfd_boolean
*defined
= NULL
;
4928 bfd_boolean
*included
= NULL
;
4932 const struct elf_backend_data
*bed
;
4933 struct elf_link_hash_entry
* (*archive_symbol_lookup
)
4934 (bfd
*, struct bfd_link_info
*, const char *);
4936 if (! bfd_has_map (abfd
))
4938 /* An empty archive is a special case. */
4939 if (bfd_openr_next_archived_file (abfd
, NULL
) == NULL
)
4941 bfd_set_error (bfd_error_no_armap
);
4945 /* Keep track of all symbols we know to be already defined, and all
4946 files we know to be already included. This is to speed up the
4947 second and subsequent passes. */
4948 c
= bfd_ardata (abfd
)->symdef_count
;
4952 amt
*= sizeof (bfd_boolean
);
4953 defined
= (bfd_boolean
*) bfd_zmalloc (amt
);
4954 included
= (bfd_boolean
*) bfd_zmalloc (amt
);
4955 if (defined
== NULL
|| included
== NULL
)
4958 symdefs
= bfd_ardata (abfd
)->symdefs
;
4959 bed
= get_elf_backend_data (abfd
);
4960 archive_symbol_lookup
= bed
->elf_backend_archive_symbol_lookup
;
4973 symdefend
= symdef
+ c
;
4974 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
4976 struct elf_link_hash_entry
*h
;
4978 struct bfd_link_hash_entry
*undefs_tail
;
4981 if (defined
[i
] || included
[i
])
4983 if (symdef
->file_offset
== last
)
4989 h
= archive_symbol_lookup (abfd
, info
, symdef
->name
);
4990 if (h
== (struct elf_link_hash_entry
*) 0 - 1)
4996 if (h
->root
.type
== bfd_link_hash_common
)
4998 /* We currently have a common symbol. The archive map contains
4999 a reference to this symbol, so we may want to include it. We
5000 only want to include it however, if this archive element
5001 contains a definition of the symbol, not just another common
5004 Unfortunately some archivers (including GNU ar) will put
5005 declarations of common symbols into their archive maps, as
5006 well as real definitions, so we cannot just go by the archive
5007 map alone. Instead we must read in the element's symbol
5008 table and check that to see what kind of symbol definition
5010 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
5013 else if (h
->root
.type
!= bfd_link_hash_undefined
)
5015 if (h
->root
.type
!= bfd_link_hash_undefweak
)
5020 /* We need to include this archive member. */
5021 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
5022 if (element
== NULL
)
5025 if (! bfd_check_format (element
, bfd_object
))
5028 /* Doublecheck that we have not included this object
5029 already--it should be impossible, but there may be
5030 something wrong with the archive. */
5031 if (element
->archive_pass
!= 0)
5033 bfd_set_error (bfd_error_bad_value
);
5036 element
->archive_pass
= 1;
5038 undefs_tail
= info
->hash
->undefs_tail
;
5040 if (! (*info
->callbacks
->add_archive_element
) (info
, element
,
5043 if (! bfd_link_add_symbols (element
, info
))
5046 /* If there are any new undefined symbols, we need to make
5047 another pass through the archive in order to see whether
5048 they can be defined. FIXME: This isn't perfect, because
5049 common symbols wind up on undefs_tail and because an
5050 undefined symbol which is defined later on in this pass
5051 does not require another pass. This isn't a bug, but it
5052 does make the code less efficient than it could be. */
5053 if (undefs_tail
!= info
->hash
->undefs_tail
)
5056 /* Look backward to mark all symbols from this object file
5057 which we have already seen in this pass. */
5061 included
[mark
] = TRUE
;
5066 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
5068 /* We mark subsequent symbols from this object file as we go
5069 on through the loop. */
5070 last
= symdef
->file_offset
;
5081 if (defined
!= NULL
)
5083 if (included
!= NULL
)
5088 /* Given an ELF BFD, add symbols to the global hash table as
5092 bfd_elf_link_add_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
5094 switch (bfd_get_format (abfd
))
5097 return elf_link_add_object_symbols (abfd
, info
);
5099 return elf_link_add_archive_symbols (abfd
, info
);
5101 bfd_set_error (bfd_error_wrong_format
);
5106 struct hash_codes_info
5108 unsigned long *hashcodes
;
5112 /* This function will be called though elf_link_hash_traverse to store
5113 all hash value of the exported symbols in an array. */
5116 elf_collect_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5118 struct hash_codes_info
*inf
= (struct hash_codes_info
*) data
;
5124 if (h
->root
.type
== bfd_link_hash_warning
)
5125 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5127 /* Ignore indirect symbols. These are added by the versioning code. */
5128 if (h
->dynindx
== -1)
5131 name
= h
->root
.root
.string
;
5132 p
= strchr (name
, ELF_VER_CHR
);
5135 alc
= (char *) bfd_malloc (p
- name
+ 1);
5141 memcpy (alc
, name
, p
- name
);
5142 alc
[p
- name
] = '\0';
5146 /* Compute the hash value. */
5147 ha
= bfd_elf_hash (name
);
5149 /* Store the found hash value in the array given as the argument. */
5150 *(inf
->hashcodes
)++ = ha
;
5152 /* And store it in the struct so that we can put it in the hash table
5154 h
->u
.elf_hash_value
= ha
;
5162 struct collect_gnu_hash_codes
5165 const struct elf_backend_data
*bed
;
5166 unsigned long int nsyms
;
5167 unsigned long int maskbits
;
5168 unsigned long int *hashcodes
;
5169 unsigned long int *hashval
;
5170 unsigned long int *indx
;
5171 unsigned long int *counts
;
5174 long int min_dynindx
;
5175 unsigned long int bucketcount
;
5176 unsigned long int symindx
;
5177 long int local_indx
;
5178 long int shift1
, shift2
;
5179 unsigned long int mask
;
5183 /* This function will be called though elf_link_hash_traverse to store
5184 all hash value of the exported symbols in an array. */
5187 elf_collect_gnu_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5189 struct collect_gnu_hash_codes
*s
= (struct collect_gnu_hash_codes
*) data
;
5195 if (h
->root
.type
== bfd_link_hash_warning
)
5196 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5198 /* Ignore indirect symbols. These are added by the versioning code. */
5199 if (h
->dynindx
== -1)
5202 /* Ignore also local symbols and undefined symbols. */
5203 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5206 name
= h
->root
.root
.string
;
5207 p
= strchr (name
, ELF_VER_CHR
);
5210 alc
= (char *) bfd_malloc (p
- name
+ 1);
5216 memcpy (alc
, name
, p
- name
);
5217 alc
[p
- name
] = '\0';
5221 /* Compute the hash value. */
5222 ha
= bfd_elf_gnu_hash (name
);
5224 /* Store the found hash value in the array for compute_bucket_count,
5225 and also for .dynsym reordering purposes. */
5226 s
->hashcodes
[s
->nsyms
] = ha
;
5227 s
->hashval
[h
->dynindx
] = ha
;
5229 if (s
->min_dynindx
< 0 || s
->min_dynindx
> h
->dynindx
)
5230 s
->min_dynindx
= h
->dynindx
;
5238 /* This function will be called though elf_link_hash_traverse to do
5239 final dynaminc symbol renumbering. */
5242 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry
*h
, void *data
)
5244 struct collect_gnu_hash_codes
*s
= (struct collect_gnu_hash_codes
*) data
;
5245 unsigned long int bucket
;
5246 unsigned long int val
;
5248 if (h
->root
.type
== bfd_link_hash_warning
)
5249 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5251 /* Ignore indirect symbols. */
5252 if (h
->dynindx
== -1)
5255 /* Ignore also local symbols and undefined symbols. */
5256 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5258 if (h
->dynindx
>= s
->min_dynindx
)
5259 h
->dynindx
= s
->local_indx
++;
5263 bucket
= s
->hashval
[h
->dynindx
] % s
->bucketcount
;
5264 val
= (s
->hashval
[h
->dynindx
] >> s
->shift1
)
5265 & ((s
->maskbits
>> s
->shift1
) - 1);
5266 s
->bitmask
[val
] |= ((bfd_vma
) 1) << (s
->hashval
[h
->dynindx
] & s
->mask
);
5268 |= ((bfd_vma
) 1) << ((s
->hashval
[h
->dynindx
] >> s
->shift2
) & s
->mask
);
5269 val
= s
->hashval
[h
->dynindx
] & ~(unsigned long int) 1;
5270 if (s
->counts
[bucket
] == 1)
5271 /* Last element terminates the chain. */
5273 bfd_put_32 (s
->output_bfd
, val
,
5274 s
->contents
+ (s
->indx
[bucket
] - s
->symindx
) * 4);
5275 --s
->counts
[bucket
];
5276 h
->dynindx
= s
->indx
[bucket
]++;
5280 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5283 _bfd_elf_hash_symbol (struct elf_link_hash_entry
*h
)
5285 return !(h
->forced_local
5286 || h
->root
.type
== bfd_link_hash_undefined
5287 || h
->root
.type
== bfd_link_hash_undefweak
5288 || ((h
->root
.type
== bfd_link_hash_defined
5289 || h
->root
.type
== bfd_link_hash_defweak
)
5290 && h
->root
.u
.def
.section
->output_section
== NULL
));
5293 /* Array used to determine the number of hash table buckets to use
5294 based on the number of symbols there are. If there are fewer than
5295 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5296 fewer than 37 we use 17 buckets, and so forth. We never use more
5297 than 32771 buckets. */
5299 static const size_t elf_buckets
[] =
5301 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5305 /* Compute bucket count for hashing table. We do not use a static set
5306 of possible tables sizes anymore. Instead we determine for all
5307 possible reasonable sizes of the table the outcome (i.e., the
5308 number of collisions etc) and choose the best solution. The
5309 weighting functions are not too simple to allow the table to grow
5310 without bounds. Instead one of the weighting factors is the size.
5311 Therefore the result is always a good payoff between few collisions
5312 (= short chain lengths) and table size. */
5314 compute_bucket_count (struct bfd_link_info
*info
,
5315 unsigned long int *hashcodes ATTRIBUTE_UNUSED
,
5316 unsigned long int nsyms
,
5319 size_t best_size
= 0;
5320 unsigned long int i
;
5322 /* We have a problem here. The following code to optimize the table
5323 size requires an integer type with more the 32 bits. If
5324 BFD_HOST_U_64_BIT is set we know about such a type. */
5325 #ifdef BFD_HOST_U_64_BIT
5330 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
5331 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
5332 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
5333 const struct elf_backend_data
*bed
= get_elf_backend_data (dynobj
);
5334 unsigned long int *counts
;
5337 /* Possible optimization parameters: if we have NSYMS symbols we say
5338 that the hashing table must at least have NSYMS/4 and at most
5340 minsize
= nsyms
/ 4;
5343 best_size
= maxsize
= nsyms
* 2;
5348 if ((best_size
& 31) == 0)
5352 /* Create array where we count the collisions in. We must use bfd_malloc
5353 since the size could be large. */
5355 amt
*= sizeof (unsigned long int);
5356 counts
= (unsigned long int *) bfd_malloc (amt
);
5360 /* Compute the "optimal" size for the hash table. The criteria is a
5361 minimal chain length. The minor criteria is (of course) the size
5363 for (i
= minsize
; i
< maxsize
; ++i
)
5365 /* Walk through the array of hashcodes and count the collisions. */
5366 BFD_HOST_U_64_BIT max
;
5367 unsigned long int j
;
5368 unsigned long int fact
;
5370 if (gnu_hash
&& (i
& 31) == 0)
5373 memset (counts
, '\0', i
* sizeof (unsigned long int));
5375 /* Determine how often each hash bucket is used. */
5376 for (j
= 0; j
< nsyms
; ++j
)
5377 ++counts
[hashcodes
[j
] % i
];
5379 /* For the weight function we need some information about the
5380 pagesize on the target. This is information need not be 100%
5381 accurate. Since this information is not available (so far) we
5382 define it here to a reasonable default value. If it is crucial
5383 to have a better value some day simply define this value. */
5384 # ifndef BFD_TARGET_PAGESIZE
5385 # define BFD_TARGET_PAGESIZE (4096)
5388 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5390 max
= (2 + dynsymcount
) * bed
->s
->sizeof_hash_entry
;
5393 /* Variant 1: optimize for short chains. We add the squares
5394 of all the chain lengths (which favors many small chain
5395 over a few long chains). */
5396 for (j
= 0; j
< i
; ++j
)
5397 max
+= counts
[j
] * counts
[j
];
5399 /* This adds penalties for the overall size of the table. */
5400 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5403 /* Variant 2: Optimize a lot more for small table. Here we
5404 also add squares of the size but we also add penalties for
5405 empty slots (the +1 term). */
5406 for (j
= 0; j
< i
; ++j
)
5407 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
5409 /* The overall size of the table is considered, but not as
5410 strong as in variant 1, where it is squared. */
5411 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5415 /* Compare with current best results. */
5416 if (max
< best_chlen
)
5426 #endif /* defined (BFD_HOST_U_64_BIT) */
5428 /* This is the fallback solution if no 64bit type is available or if we
5429 are not supposed to spend much time on optimizations. We select the
5430 bucket count using a fixed set of numbers. */
5431 for (i
= 0; elf_buckets
[i
] != 0; i
++)
5433 best_size
= elf_buckets
[i
];
5434 if (nsyms
< elf_buckets
[i
+ 1])
5437 if (gnu_hash
&& best_size
< 2)
5444 /* Set up the sizes and contents of the ELF dynamic sections. This is
5445 called by the ELF linker emulation before_allocation routine. We
5446 must set the sizes of the sections before the linker sets the
5447 addresses of the various sections. */
5450 bfd_elf_size_dynamic_sections (bfd
*output_bfd
,
5453 const char *filter_shlib
,
5454 const char * const *auxiliary_filters
,
5455 struct bfd_link_info
*info
,
5456 asection
**sinterpptr
,
5457 struct bfd_elf_version_tree
*verdefs
)
5459 bfd_size_type soname_indx
;
5461 const struct elf_backend_data
*bed
;
5462 struct elf_info_failed asvinfo
;
5466 soname_indx
= (bfd_size_type
) -1;
5468 if (!is_elf_hash_table (info
->hash
))
5471 bed
= get_elf_backend_data (output_bfd
);
5472 if (info
->execstack
)
5473 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| PF_X
;
5474 else if (info
->noexecstack
)
5475 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
;
5479 asection
*notesec
= NULL
;
5482 for (inputobj
= info
->input_bfds
;
5484 inputobj
= inputobj
->link_next
)
5488 if (inputobj
->flags
& (DYNAMIC
| EXEC_P
| BFD_LINKER_CREATED
))
5490 s
= bfd_get_section_by_name (inputobj
, ".note.GNU-stack");
5493 if (s
->flags
& SEC_CODE
)
5497 else if (bed
->default_execstack
)
5502 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| exec
;
5503 if (exec
&& info
->relocatable
5504 && notesec
->output_section
!= bfd_abs_section_ptr
)
5505 notesec
->output_section
->flags
|= SEC_CODE
;
5509 /* Any syms created from now on start with -1 in
5510 got.refcount/offset and plt.refcount/offset. */
5511 elf_hash_table (info
)->init_got_refcount
5512 = elf_hash_table (info
)->init_got_offset
;
5513 elf_hash_table (info
)->init_plt_refcount
5514 = elf_hash_table (info
)->init_plt_offset
;
5516 /* The backend may have to create some sections regardless of whether
5517 we're dynamic or not. */
5518 if (bed
->elf_backend_always_size_sections
5519 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
5522 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info
))
5525 dynobj
= elf_hash_table (info
)->dynobj
;
5527 /* If there were no dynamic objects in the link, there is nothing to
5532 if (elf_hash_table (info
)->dynamic_sections_created
)
5534 struct elf_info_failed eif
;
5535 struct elf_link_hash_entry
*h
;
5537 struct bfd_elf_version_tree
*t
;
5538 struct bfd_elf_version_expr
*d
;
5540 bfd_boolean all_defined
;
5542 *sinterpptr
= bfd_get_section_by_name (dynobj
, ".interp");
5543 BFD_ASSERT (*sinterpptr
!= NULL
|| !info
->executable
);
5547 soname_indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5549 if (soname_indx
== (bfd_size_type
) -1
5550 || !_bfd_elf_add_dynamic_entry (info
, DT_SONAME
, soname_indx
))
5556 if (!_bfd_elf_add_dynamic_entry (info
, DT_SYMBOLIC
, 0))
5558 info
->flags
|= DF_SYMBOLIC
;
5565 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, rpath
,
5567 if (indx
== (bfd_size_type
) -1
5568 || !_bfd_elf_add_dynamic_entry (info
, DT_RPATH
, indx
))
5571 if (info
->new_dtags
)
5573 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
, indx
);
5574 if (!_bfd_elf_add_dynamic_entry (info
, DT_RUNPATH
, indx
))
5579 if (filter_shlib
!= NULL
)
5583 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5584 filter_shlib
, TRUE
);
5585 if (indx
== (bfd_size_type
) -1
5586 || !_bfd_elf_add_dynamic_entry (info
, DT_FILTER
, indx
))
5590 if (auxiliary_filters
!= NULL
)
5592 const char * const *p
;
5594 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
5598 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5600 if (indx
== (bfd_size_type
) -1
5601 || !_bfd_elf_add_dynamic_entry (info
, DT_AUXILIARY
, indx
))
5607 eif
.verdefs
= verdefs
;
5610 /* If we are supposed to export all symbols into the dynamic symbol
5611 table (this is not the normal case), then do so. */
5612 if (info
->export_dynamic
5613 || (info
->executable
&& info
->dynamic
))
5615 elf_link_hash_traverse (elf_hash_table (info
),
5616 _bfd_elf_export_symbol
,
5622 /* Make all global versions with definition. */
5623 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5624 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5625 if (!d
->symver
&& d
->literal
)
5627 const char *verstr
, *name
;
5628 size_t namelen
, verlen
, newlen
;
5630 struct elf_link_hash_entry
*newh
;
5633 namelen
= strlen (name
);
5635 verlen
= strlen (verstr
);
5636 newlen
= namelen
+ verlen
+ 3;
5638 newname
= (char *) bfd_malloc (newlen
);
5639 if (newname
== NULL
)
5641 memcpy (newname
, name
, namelen
);
5643 /* Check the hidden versioned definition. */
5644 p
= newname
+ namelen
;
5646 memcpy (p
, verstr
, verlen
+ 1);
5647 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5648 newname
, FALSE
, FALSE
,
5651 || (newh
->root
.type
!= bfd_link_hash_defined
5652 && newh
->root
.type
!= bfd_link_hash_defweak
))
5654 /* Check the default versioned definition. */
5656 memcpy (p
, verstr
, verlen
+ 1);
5657 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5658 newname
, FALSE
, FALSE
,
5663 /* Mark this version if there is a definition and it is
5664 not defined in a shared object. */
5666 && !newh
->def_dynamic
5667 && (newh
->root
.type
== bfd_link_hash_defined
5668 || newh
->root
.type
== bfd_link_hash_defweak
))
5672 /* Attach all the symbols to their version information. */
5673 asvinfo
.info
= info
;
5674 asvinfo
.verdefs
= verdefs
;
5675 asvinfo
.failed
= FALSE
;
5677 elf_link_hash_traverse (elf_hash_table (info
),
5678 _bfd_elf_link_assign_sym_version
,
5683 if (!info
->allow_undefined_version
)
5685 /* Check if all global versions have a definition. */
5687 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5688 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5689 if (d
->literal
&& !d
->symver
&& !d
->script
)
5691 (*_bfd_error_handler
)
5692 (_("%s: undefined version: %s"),
5693 d
->pattern
, t
->name
);
5694 all_defined
= FALSE
;
5699 bfd_set_error (bfd_error_bad_value
);
5704 /* Find all symbols which were defined in a dynamic object and make
5705 the backend pick a reasonable value for them. */
5706 elf_link_hash_traverse (elf_hash_table (info
),
5707 _bfd_elf_adjust_dynamic_symbol
,
5712 /* Add some entries to the .dynamic section. We fill in some of the
5713 values later, in bfd_elf_final_link, but we must add the entries
5714 now so that we know the final size of the .dynamic section. */
5716 /* If there are initialization and/or finalization functions to
5717 call then add the corresponding DT_INIT/DT_FINI entries. */
5718 h
= (info
->init_function
5719 ? elf_link_hash_lookup (elf_hash_table (info
),
5720 info
->init_function
, FALSE
,
5727 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT
, 0))
5730 h
= (info
->fini_function
5731 ? elf_link_hash_lookup (elf_hash_table (info
),
5732 info
->fini_function
, FALSE
,
5739 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI
, 0))
5743 s
= bfd_get_section_by_name (output_bfd
, ".preinit_array");
5744 if (s
!= NULL
&& s
->linker_has_input
)
5746 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5747 if (! info
->executable
)
5752 for (sub
= info
->input_bfds
; sub
!= NULL
;
5753 sub
= sub
->link_next
)
5754 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
)
5755 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
5756 if (elf_section_data (o
)->this_hdr
.sh_type
5757 == SHT_PREINIT_ARRAY
)
5759 (*_bfd_error_handler
)
5760 (_("%B: .preinit_array section is not allowed in DSO"),
5765 bfd_set_error (bfd_error_nonrepresentable_section
);
5769 if (!_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAY
, 0)
5770 || !_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAYSZ
, 0))
5773 s
= bfd_get_section_by_name (output_bfd
, ".init_array");
5774 if (s
!= NULL
&& s
->linker_has_input
)
5776 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAY
, 0)
5777 || !_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAYSZ
, 0))
5780 s
= bfd_get_section_by_name (output_bfd
, ".fini_array");
5781 if (s
!= NULL
&& s
->linker_has_input
)
5783 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAY
, 0)
5784 || !_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAYSZ
, 0))
5788 dynstr
= bfd_get_section_by_name (dynobj
, ".dynstr");
5789 /* If .dynstr is excluded from the link, we don't want any of
5790 these tags. Strictly, we should be checking each section
5791 individually; This quick check covers for the case where
5792 someone does a /DISCARD/ : { *(*) }. */
5793 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
5795 bfd_size_type strsize
;
5797 strsize
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
5798 if ((info
->emit_hash
5799 && !_bfd_elf_add_dynamic_entry (info
, DT_HASH
, 0))
5800 || (info
->emit_gnu_hash
5801 && !_bfd_elf_add_dynamic_entry (info
, DT_GNU_HASH
, 0))
5802 || !_bfd_elf_add_dynamic_entry (info
, DT_STRTAB
, 0)
5803 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMTAB
, 0)
5804 || !_bfd_elf_add_dynamic_entry (info
, DT_STRSZ
, strsize
)
5805 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMENT
,
5806 bed
->s
->sizeof_sym
))
5811 /* The backend must work out the sizes of all the other dynamic
5813 if (bed
->elf_backend_size_dynamic_sections
5814 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
5817 if (elf_hash_table (info
)->dynamic_sections_created
)
5819 unsigned long section_sym_count
;
5822 /* Set up the version definition section. */
5823 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
5824 BFD_ASSERT (s
!= NULL
);
5826 /* We may have created additional version definitions if we are
5827 just linking a regular application. */
5828 verdefs
= asvinfo
.verdefs
;
5830 /* Skip anonymous version tag. */
5831 if (verdefs
!= NULL
&& verdefs
->vernum
== 0)
5832 verdefs
= verdefs
->next
;
5834 if (verdefs
== NULL
&& !info
->create_default_symver
)
5835 s
->flags
|= SEC_EXCLUDE
;
5840 struct bfd_elf_version_tree
*t
;
5842 Elf_Internal_Verdef def
;
5843 Elf_Internal_Verdaux defaux
;
5844 struct bfd_link_hash_entry
*bh
;
5845 struct elf_link_hash_entry
*h
;
5851 /* Make space for the base version. */
5852 size
+= sizeof (Elf_External_Verdef
);
5853 size
+= sizeof (Elf_External_Verdaux
);
5856 /* Make space for the default version. */
5857 if (info
->create_default_symver
)
5859 size
+= sizeof (Elf_External_Verdef
);
5863 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5865 struct bfd_elf_version_deps
*n
;
5867 size
+= sizeof (Elf_External_Verdef
);
5868 size
+= sizeof (Elf_External_Verdaux
);
5871 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5872 size
+= sizeof (Elf_External_Verdaux
);
5876 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
5877 if (s
->contents
== NULL
&& s
->size
!= 0)
5880 /* Fill in the version definition section. */
5884 def
.vd_version
= VER_DEF_CURRENT
;
5885 def
.vd_flags
= VER_FLG_BASE
;
5888 if (info
->create_default_symver
)
5890 def
.vd_aux
= 2 * sizeof (Elf_External_Verdef
);
5891 def
.vd_next
= sizeof (Elf_External_Verdef
);
5895 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5896 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5897 + sizeof (Elf_External_Verdaux
));
5900 if (soname_indx
!= (bfd_size_type
) -1)
5902 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
5904 def
.vd_hash
= bfd_elf_hash (soname
);
5905 defaux
.vda_name
= soname_indx
;
5912 name
= lbasename (output_bfd
->filename
);
5913 def
.vd_hash
= bfd_elf_hash (name
);
5914 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5916 if (indx
== (bfd_size_type
) -1)
5918 defaux
.vda_name
= indx
;
5920 defaux
.vda_next
= 0;
5922 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5923 (Elf_External_Verdef
*) p
);
5924 p
+= sizeof (Elf_External_Verdef
);
5925 if (info
->create_default_symver
)
5927 /* Add a symbol representing this version. */
5929 if (! (_bfd_generic_link_add_one_symbol
5930 (info
, dynobj
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
5932 get_elf_backend_data (dynobj
)->collect
, &bh
)))
5934 h
= (struct elf_link_hash_entry
*) bh
;
5937 h
->type
= STT_OBJECT
;
5938 h
->verinfo
.vertree
= NULL
;
5940 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5943 /* Create a duplicate of the base version with the same
5944 aux block, but different flags. */
5947 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5949 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5950 + sizeof (Elf_External_Verdaux
));
5953 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5954 (Elf_External_Verdef
*) p
);
5955 p
+= sizeof (Elf_External_Verdef
);
5957 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
5958 (Elf_External_Verdaux
*) p
);
5959 p
+= sizeof (Elf_External_Verdaux
);
5961 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5964 struct bfd_elf_version_deps
*n
;
5967 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5970 /* Add a symbol representing this version. */
5972 if (! (_bfd_generic_link_add_one_symbol
5973 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
5975 get_elf_backend_data (dynobj
)->collect
, &bh
)))
5977 h
= (struct elf_link_hash_entry
*) bh
;
5980 h
->type
= STT_OBJECT
;
5981 h
->verinfo
.vertree
= t
;
5983 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5986 def
.vd_version
= VER_DEF_CURRENT
;
5988 if (t
->globals
.list
== NULL
5989 && t
->locals
.list
== NULL
5991 def
.vd_flags
|= VER_FLG_WEAK
;
5992 def
.vd_ndx
= t
->vernum
+ (info
->create_default_symver
? 2 : 1);
5993 def
.vd_cnt
= cdeps
+ 1;
5994 def
.vd_hash
= bfd_elf_hash (t
->name
);
5995 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5997 if (t
->next
!= NULL
)
5998 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5999 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
6001 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6002 (Elf_External_Verdef
*) p
);
6003 p
+= sizeof (Elf_External_Verdef
);
6005 defaux
.vda_name
= h
->dynstr_index
;
6006 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6008 defaux
.vda_next
= 0;
6009 if (t
->deps
!= NULL
)
6010 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6011 t
->name_indx
= defaux
.vda_name
;
6013 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6014 (Elf_External_Verdaux
*) p
);
6015 p
+= sizeof (Elf_External_Verdaux
);
6017 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6019 if (n
->version_needed
== NULL
)
6021 /* This can happen if there was an error in the
6023 defaux
.vda_name
= 0;
6027 defaux
.vda_name
= n
->version_needed
->name_indx
;
6028 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6031 if (n
->next
== NULL
)
6032 defaux
.vda_next
= 0;
6034 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6036 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6037 (Elf_External_Verdaux
*) p
);
6038 p
+= sizeof (Elf_External_Verdaux
);
6042 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERDEF
, 0)
6043 || !_bfd_elf_add_dynamic_entry (info
, DT_VERDEFNUM
, cdefs
))
6046 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
6049 if ((info
->new_dtags
&& info
->flags
) || (info
->flags
& DF_STATIC_TLS
))
6051 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS
, info
->flags
))
6054 else if (info
->flags
& DF_BIND_NOW
)
6056 if (!_bfd_elf_add_dynamic_entry (info
, DT_BIND_NOW
, 0))
6062 if (info
->executable
)
6063 info
->flags_1
&= ~ (DF_1_INITFIRST
6066 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS_1
, info
->flags_1
))
6070 /* Work out the size of the version reference section. */
6072 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
6073 BFD_ASSERT (s
!= NULL
);
6075 struct elf_find_verdep_info sinfo
;
6078 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
6079 if (sinfo
.vers
== 0)
6081 sinfo
.failed
= FALSE
;
6083 elf_link_hash_traverse (elf_hash_table (info
),
6084 _bfd_elf_link_find_version_dependencies
,
6089 if (elf_tdata (output_bfd
)->verref
== NULL
)
6090 s
->flags
|= SEC_EXCLUDE
;
6093 Elf_Internal_Verneed
*t
;
6098 /* Build the version definition section. */
6101 for (t
= elf_tdata (output_bfd
)->verref
;
6105 Elf_Internal_Vernaux
*a
;
6107 size
+= sizeof (Elf_External_Verneed
);
6109 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6110 size
+= sizeof (Elf_External_Vernaux
);
6114 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
6115 if (s
->contents
== NULL
)
6119 for (t
= elf_tdata (output_bfd
)->verref
;
6124 Elf_Internal_Vernaux
*a
;
6128 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6131 t
->vn_version
= VER_NEED_CURRENT
;
6133 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6134 elf_dt_name (t
->vn_bfd
) != NULL
6135 ? elf_dt_name (t
->vn_bfd
)
6136 : lbasename (t
->vn_bfd
->filename
),
6138 if (indx
== (bfd_size_type
) -1)
6141 t
->vn_aux
= sizeof (Elf_External_Verneed
);
6142 if (t
->vn_nextref
== NULL
)
6145 t
->vn_next
= (sizeof (Elf_External_Verneed
)
6146 + caux
* sizeof (Elf_External_Vernaux
));
6148 _bfd_elf_swap_verneed_out (output_bfd
, t
,
6149 (Elf_External_Verneed
*) p
);
6150 p
+= sizeof (Elf_External_Verneed
);
6152 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6154 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
6155 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6156 a
->vna_nodename
, FALSE
);
6157 if (indx
== (bfd_size_type
) -1)
6160 if (a
->vna_nextptr
== NULL
)
6163 a
->vna_next
= sizeof (Elf_External_Vernaux
);
6165 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
6166 (Elf_External_Vernaux
*) p
);
6167 p
+= sizeof (Elf_External_Vernaux
);
6171 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERNEED
, 0)
6172 || !_bfd_elf_add_dynamic_entry (info
, DT_VERNEEDNUM
, crefs
))
6175 elf_tdata (output_bfd
)->cverrefs
= crefs
;
6179 if ((elf_tdata (output_bfd
)->cverrefs
== 0
6180 && elf_tdata (output_bfd
)->cverdefs
== 0)
6181 || _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6182 §ion_sym_count
) == 0)
6184 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6185 s
->flags
|= SEC_EXCLUDE
;
6191 /* Find the first non-excluded output section. We'll use its
6192 section symbol for some emitted relocs. */
6194 _bfd_elf_init_1_index_section (bfd
*output_bfd
, struct bfd_link_info
*info
)
6198 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6199 if ((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
)) == SEC_ALLOC
6200 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6202 elf_hash_table (info
)->text_index_section
= s
;
6207 /* Find two non-excluded output sections, one for code, one for data.
6208 We'll use their section symbols for some emitted relocs. */
6210 _bfd_elf_init_2_index_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
6214 /* Data first, since setting text_index_section changes
6215 _bfd_elf_link_omit_section_dynsym. */
6216 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6217 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
)) == SEC_ALLOC
)
6218 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6220 elf_hash_table (info
)->data_index_section
= s
;
6224 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6225 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
))
6226 == (SEC_ALLOC
| SEC_READONLY
))
6227 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6229 elf_hash_table (info
)->text_index_section
= s
;
6233 if (elf_hash_table (info
)->text_index_section
== NULL
)
6234 elf_hash_table (info
)->text_index_section
6235 = elf_hash_table (info
)->data_index_section
;
6239 bfd_elf_size_dynsym_hash_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
6241 const struct elf_backend_data
*bed
;
6243 if (!is_elf_hash_table (info
->hash
))
6246 bed
= get_elf_backend_data (output_bfd
);
6247 (*bed
->elf_backend_init_index_section
) (output_bfd
, info
);
6249 if (elf_hash_table (info
)->dynamic_sections_created
)
6253 bfd_size_type dynsymcount
;
6254 unsigned long section_sym_count
;
6255 unsigned int dtagcount
;
6257 dynobj
= elf_hash_table (info
)->dynobj
;
6259 /* Assign dynsym indicies. In a shared library we generate a
6260 section symbol for each output section, which come first.
6261 Next come all of the back-end allocated local dynamic syms,
6262 followed by the rest of the global symbols. */
6264 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6265 §ion_sym_count
);
6267 /* Work out the size of the symbol version section. */
6268 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6269 BFD_ASSERT (s
!= NULL
);
6270 if (dynsymcount
!= 0
6271 && (s
->flags
& SEC_EXCLUDE
) == 0)
6273 s
->size
= dynsymcount
* sizeof (Elf_External_Versym
);
6274 s
->contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6275 if (s
->contents
== NULL
)
6278 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERSYM
, 0))
6282 /* Set the size of the .dynsym and .hash sections. We counted
6283 the number of dynamic symbols in elf_link_add_object_symbols.
6284 We will build the contents of .dynsym and .hash when we build
6285 the final symbol table, because until then we do not know the
6286 correct value to give the symbols. We built the .dynstr
6287 section as we went along in elf_link_add_object_symbols. */
6288 s
= bfd_get_section_by_name (dynobj
, ".dynsym");
6289 BFD_ASSERT (s
!= NULL
);
6290 s
->size
= dynsymcount
* bed
->s
->sizeof_sym
;
6292 if (dynsymcount
!= 0)
6294 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
6295 if (s
->contents
== NULL
)
6298 /* The first entry in .dynsym is a dummy symbol.
6299 Clear all the section syms, in case we don't output them all. */
6300 ++section_sym_count
;
6301 memset (s
->contents
, 0, section_sym_count
* bed
->s
->sizeof_sym
);
6304 elf_hash_table (info
)->bucketcount
= 0;
6306 /* Compute the size of the hashing table. As a side effect this
6307 computes the hash values for all the names we export. */
6308 if (info
->emit_hash
)
6310 unsigned long int *hashcodes
;
6311 struct hash_codes_info hashinf
;
6313 unsigned long int nsyms
;
6315 size_t hash_entry_size
;
6317 /* Compute the hash values for all exported symbols. At the same
6318 time store the values in an array so that we could use them for
6320 amt
= dynsymcount
* sizeof (unsigned long int);
6321 hashcodes
= (unsigned long int *) bfd_malloc (amt
);
6322 if (hashcodes
== NULL
)
6324 hashinf
.hashcodes
= hashcodes
;
6325 hashinf
.error
= FALSE
;
6327 /* Put all hash values in HASHCODES. */
6328 elf_link_hash_traverse (elf_hash_table (info
),
6329 elf_collect_hash_codes
, &hashinf
);
6336 nsyms
= hashinf
.hashcodes
- hashcodes
;
6338 = compute_bucket_count (info
, hashcodes
, nsyms
, 0);
6341 if (bucketcount
== 0)
6344 elf_hash_table (info
)->bucketcount
= bucketcount
;
6346 s
= bfd_get_section_by_name (dynobj
, ".hash");
6347 BFD_ASSERT (s
!= NULL
);
6348 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
6349 s
->size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
6350 s
->contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6351 if (s
->contents
== NULL
)
6354 bfd_put (8 * hash_entry_size
, output_bfd
, bucketcount
, s
->contents
);
6355 bfd_put (8 * hash_entry_size
, output_bfd
, dynsymcount
,
6356 s
->contents
+ hash_entry_size
);
6359 if (info
->emit_gnu_hash
)
6362 unsigned char *contents
;
6363 struct collect_gnu_hash_codes cinfo
;
6367 memset (&cinfo
, 0, sizeof (cinfo
));
6369 /* Compute the hash values for all exported symbols. At the same
6370 time store the values in an array so that we could use them for
6372 amt
= dynsymcount
* 2 * sizeof (unsigned long int);
6373 cinfo
.hashcodes
= (long unsigned int *) bfd_malloc (amt
);
6374 if (cinfo
.hashcodes
== NULL
)
6377 cinfo
.hashval
= cinfo
.hashcodes
+ dynsymcount
;
6378 cinfo
.min_dynindx
= -1;
6379 cinfo
.output_bfd
= output_bfd
;
6382 /* Put all hash values in HASHCODES. */
6383 elf_link_hash_traverse (elf_hash_table (info
),
6384 elf_collect_gnu_hash_codes
, &cinfo
);
6387 free (cinfo
.hashcodes
);
6392 = compute_bucket_count (info
, cinfo
.hashcodes
, cinfo
.nsyms
, 1);
6394 if (bucketcount
== 0)
6396 free (cinfo
.hashcodes
);
6400 s
= bfd_get_section_by_name (dynobj
, ".gnu.hash");
6401 BFD_ASSERT (s
!= NULL
);
6403 if (cinfo
.nsyms
== 0)
6405 /* Empty .gnu.hash section is special. */
6406 BFD_ASSERT (cinfo
.min_dynindx
== -1);
6407 free (cinfo
.hashcodes
);
6408 s
->size
= 5 * 4 + bed
->s
->arch_size
/ 8;
6409 contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6410 if (contents
== NULL
)
6412 s
->contents
= contents
;
6413 /* 1 empty bucket. */
6414 bfd_put_32 (output_bfd
, 1, contents
);
6415 /* SYMIDX above the special symbol 0. */
6416 bfd_put_32 (output_bfd
, 1, contents
+ 4);
6417 /* Just one word for bitmask. */
6418 bfd_put_32 (output_bfd
, 1, contents
+ 8);
6419 /* Only hash fn bloom filter. */
6420 bfd_put_32 (output_bfd
, 0, contents
+ 12);
6421 /* No hashes are valid - empty bitmask. */
6422 bfd_put (bed
->s
->arch_size
, output_bfd
, 0, contents
+ 16);
6423 /* No hashes in the only bucket. */
6424 bfd_put_32 (output_bfd
, 0,
6425 contents
+ 16 + bed
->s
->arch_size
/ 8);
6429 unsigned long int maskwords
, maskbitslog2
;
6430 BFD_ASSERT (cinfo
.min_dynindx
!= -1);
6432 maskbitslog2
= bfd_log2 (cinfo
.nsyms
) + 1;
6433 if (maskbitslog2
< 3)
6435 else if ((1 << (maskbitslog2
- 2)) & cinfo
.nsyms
)
6436 maskbitslog2
= maskbitslog2
+ 3;
6438 maskbitslog2
= maskbitslog2
+ 2;
6439 if (bed
->s
->arch_size
== 64)
6441 if (maskbitslog2
== 5)
6447 cinfo
.mask
= (1 << cinfo
.shift1
) - 1;
6448 cinfo
.shift2
= maskbitslog2
;
6449 cinfo
.maskbits
= 1 << maskbitslog2
;
6450 maskwords
= 1 << (maskbitslog2
- cinfo
.shift1
);
6451 amt
= bucketcount
* sizeof (unsigned long int) * 2;
6452 amt
+= maskwords
* sizeof (bfd_vma
);
6453 cinfo
.bitmask
= (bfd_vma
*) bfd_malloc (amt
);
6454 if (cinfo
.bitmask
== NULL
)
6456 free (cinfo
.hashcodes
);
6460 cinfo
.counts
= (long unsigned int *) (cinfo
.bitmask
+ maskwords
);
6461 cinfo
.indx
= cinfo
.counts
+ bucketcount
;
6462 cinfo
.symindx
= dynsymcount
- cinfo
.nsyms
;
6463 memset (cinfo
.bitmask
, 0, maskwords
* sizeof (bfd_vma
));
6465 /* Determine how often each hash bucket is used. */
6466 memset (cinfo
.counts
, 0, bucketcount
* sizeof (cinfo
.counts
[0]));
6467 for (i
= 0; i
< cinfo
.nsyms
; ++i
)
6468 ++cinfo
.counts
[cinfo
.hashcodes
[i
] % bucketcount
];
6470 for (i
= 0, cnt
= cinfo
.symindx
; i
< bucketcount
; ++i
)
6471 if (cinfo
.counts
[i
] != 0)
6473 cinfo
.indx
[i
] = cnt
;
6474 cnt
+= cinfo
.counts
[i
];
6476 BFD_ASSERT (cnt
== dynsymcount
);
6477 cinfo
.bucketcount
= bucketcount
;
6478 cinfo
.local_indx
= cinfo
.min_dynindx
;
6480 s
->size
= (4 + bucketcount
+ cinfo
.nsyms
) * 4;
6481 s
->size
+= cinfo
.maskbits
/ 8;
6482 contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6483 if (contents
== NULL
)
6485 free (cinfo
.bitmask
);
6486 free (cinfo
.hashcodes
);
6490 s
->contents
= contents
;
6491 bfd_put_32 (output_bfd
, bucketcount
, contents
);
6492 bfd_put_32 (output_bfd
, cinfo
.symindx
, contents
+ 4);
6493 bfd_put_32 (output_bfd
, maskwords
, contents
+ 8);
6494 bfd_put_32 (output_bfd
, cinfo
.shift2
, contents
+ 12);
6495 contents
+= 16 + cinfo
.maskbits
/ 8;
6497 for (i
= 0; i
< bucketcount
; ++i
)
6499 if (cinfo
.counts
[i
] == 0)
6500 bfd_put_32 (output_bfd
, 0, contents
);
6502 bfd_put_32 (output_bfd
, cinfo
.indx
[i
], contents
);
6506 cinfo
.contents
= contents
;
6508 /* Renumber dynamic symbols, populate .gnu.hash section. */
6509 elf_link_hash_traverse (elf_hash_table (info
),
6510 elf_renumber_gnu_hash_syms
, &cinfo
);
6512 contents
= s
->contents
+ 16;
6513 for (i
= 0; i
< maskwords
; ++i
)
6515 bfd_put (bed
->s
->arch_size
, output_bfd
, cinfo
.bitmask
[i
],
6517 contents
+= bed
->s
->arch_size
/ 8;
6520 free (cinfo
.bitmask
);
6521 free (cinfo
.hashcodes
);
6525 s
= bfd_get_section_by_name (dynobj
, ".dynstr");
6526 BFD_ASSERT (s
!= NULL
);
6528 elf_finalize_dynstr (output_bfd
, info
);
6530 s
->size
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
6532 for (dtagcount
= 0; dtagcount
<= info
->spare_dynamic_tags
; ++dtagcount
)
6533 if (!_bfd_elf_add_dynamic_entry (info
, DT_NULL
, 0))
6540 /* Indicate that we are only retrieving symbol values from this
6544 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
6546 if (is_elf_hash_table (info
->hash
))
6547 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
6548 _bfd_generic_link_just_syms (sec
, info
);
6551 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6554 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
6557 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
6558 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
6561 /* Finish SHF_MERGE section merging. */
6564 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
6569 if (!is_elf_hash_table (info
->hash
))
6572 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
6573 if ((ibfd
->flags
& DYNAMIC
) == 0)
6574 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6575 if ((sec
->flags
& SEC_MERGE
) != 0
6576 && !bfd_is_abs_section (sec
->output_section
))
6578 struct bfd_elf_section_data
*secdata
;
6580 secdata
= elf_section_data (sec
);
6581 if (! _bfd_add_merge_section (abfd
,
6582 &elf_hash_table (info
)->merge_info
,
6583 sec
, &secdata
->sec_info
))
6585 else if (secdata
->sec_info
)
6586 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
6589 if (elf_hash_table (info
)->merge_info
!= NULL
)
6590 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
6591 merge_sections_remove_hook
);
6595 /* Create an entry in an ELF linker hash table. */
6597 struct bfd_hash_entry
*
6598 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
6599 struct bfd_hash_table
*table
,
6602 /* Allocate the structure if it has not already been allocated by a
6606 entry
= (struct bfd_hash_entry
*)
6607 bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
6612 /* Call the allocation method of the superclass. */
6613 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
6616 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
6617 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
6619 /* Set local fields. */
6622 ret
->got
= htab
->init_got_refcount
;
6623 ret
->plt
= htab
->init_plt_refcount
;
6624 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
6625 - offsetof (struct elf_link_hash_entry
, size
)));
6626 /* Assume that we have been called by a non-ELF symbol reader.
6627 This flag is then reset by the code which reads an ELF input
6628 file. This ensures that a symbol created by a non-ELF symbol
6629 reader will have the flag set correctly. */
6636 /* Copy data from an indirect symbol to its direct symbol, hiding the
6637 old indirect symbol. Also used for copying flags to a weakdef. */
6640 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
6641 struct elf_link_hash_entry
*dir
,
6642 struct elf_link_hash_entry
*ind
)
6644 struct elf_link_hash_table
*htab
;
6646 /* Copy down any references that we may have already seen to the
6647 symbol which just became indirect. */
6649 dir
->ref_dynamic
|= ind
->ref_dynamic
;
6650 dir
->ref_regular
|= ind
->ref_regular
;
6651 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
6652 dir
->non_got_ref
|= ind
->non_got_ref
;
6653 dir
->needs_plt
|= ind
->needs_plt
;
6654 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
6656 if (ind
->root
.type
!= bfd_link_hash_indirect
)
6659 /* Copy over the global and procedure linkage table refcount entries.
6660 These may have been already set up by a check_relocs routine. */
6661 htab
= elf_hash_table (info
);
6662 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
6664 if (dir
->got
.refcount
< 0)
6665 dir
->got
.refcount
= 0;
6666 dir
->got
.refcount
+= ind
->got
.refcount
;
6667 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
6670 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
6672 if (dir
->plt
.refcount
< 0)
6673 dir
->plt
.refcount
= 0;
6674 dir
->plt
.refcount
+= ind
->plt
.refcount
;
6675 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
6678 if (ind
->dynindx
!= -1)
6680 if (dir
->dynindx
!= -1)
6681 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
6682 dir
->dynindx
= ind
->dynindx
;
6683 dir
->dynstr_index
= ind
->dynstr_index
;
6685 ind
->dynstr_index
= 0;
6690 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
6691 struct elf_link_hash_entry
*h
,
6692 bfd_boolean force_local
)
6694 /* STT_GNU_IFUNC symbol must go through PLT. */
6695 if (h
->type
!= STT_GNU_IFUNC
)
6697 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
6702 h
->forced_local
= 1;
6703 if (h
->dynindx
!= -1)
6706 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
6712 /* Initialize an ELF linker hash table. */
6715 _bfd_elf_link_hash_table_init
6716 (struct elf_link_hash_table
*table
,
6718 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
6719 struct bfd_hash_table
*,
6721 unsigned int entsize
)
6724 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
6726 memset (table
, 0, sizeof * table
);
6727 table
->init_got_refcount
.refcount
= can_refcount
- 1;
6728 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
6729 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
6730 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
6731 /* The first dynamic symbol is a dummy. */
6732 table
->dynsymcount
= 1;
6734 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
6735 table
->root
.type
= bfd_link_elf_hash_table
;
6740 /* Create an ELF linker hash table. */
6742 struct bfd_link_hash_table
*
6743 _bfd_elf_link_hash_table_create (bfd
*abfd
)
6745 struct elf_link_hash_table
*ret
;
6746 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
6748 ret
= (struct elf_link_hash_table
*) bfd_malloc (amt
);
6752 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
6753 sizeof (struct elf_link_hash_entry
)))
6762 /* This is a hook for the ELF emulation code in the generic linker to
6763 tell the backend linker what file name to use for the DT_NEEDED
6764 entry for a dynamic object. */
6767 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
6769 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6770 && bfd_get_format (abfd
) == bfd_object
)
6771 elf_dt_name (abfd
) = name
;
6775 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
6778 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6779 && bfd_get_format (abfd
) == bfd_object
)
6780 lib_class
= elf_dyn_lib_class (abfd
);
6787 bfd_elf_set_dyn_lib_class (bfd
*abfd
, enum dynamic_lib_link_class lib_class
)
6789 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6790 && bfd_get_format (abfd
) == bfd_object
)
6791 elf_dyn_lib_class (abfd
) = lib_class
;
6794 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6795 the linker ELF emulation code. */
6797 struct bfd_link_needed_list
*
6798 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6799 struct bfd_link_info
*info
)
6801 if (! is_elf_hash_table (info
->hash
))
6803 return elf_hash_table (info
)->needed
;
6806 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6807 hook for the linker ELF emulation code. */
6809 struct bfd_link_needed_list
*
6810 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6811 struct bfd_link_info
*info
)
6813 if (! is_elf_hash_table (info
->hash
))
6815 return elf_hash_table (info
)->runpath
;
6818 /* Get the name actually used for a dynamic object for a link. This
6819 is the SONAME entry if there is one. Otherwise, it is the string
6820 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6823 bfd_elf_get_dt_soname (bfd
*abfd
)
6825 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6826 && bfd_get_format (abfd
) == bfd_object
)
6827 return elf_dt_name (abfd
);
6831 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6832 the ELF linker emulation code. */
6835 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
6836 struct bfd_link_needed_list
**pneeded
)
6839 bfd_byte
*dynbuf
= NULL
;
6840 unsigned int elfsec
;
6841 unsigned long shlink
;
6842 bfd_byte
*extdyn
, *extdynend
;
6844 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
6848 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
6849 || bfd_get_format (abfd
) != bfd_object
)
6852 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6853 if (s
== NULL
|| s
->size
== 0)
6856 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
6859 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
6860 if (elfsec
== SHN_BAD
)
6863 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
6865 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
6866 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
6869 extdynend
= extdyn
+ s
->size
;
6870 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
6872 Elf_Internal_Dyn dyn
;
6874 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
6876 if (dyn
.d_tag
== DT_NULL
)
6879 if (dyn
.d_tag
== DT_NEEDED
)
6882 struct bfd_link_needed_list
*l
;
6883 unsigned int tagv
= dyn
.d_un
.d_val
;
6886 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
6891 l
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
6912 struct elf_symbuf_symbol
6914 unsigned long st_name
; /* Symbol name, index in string tbl */
6915 unsigned char st_info
; /* Type and binding attributes */
6916 unsigned char st_other
; /* Visibilty, and target specific */
6919 struct elf_symbuf_head
6921 struct elf_symbuf_symbol
*ssym
;
6922 bfd_size_type count
;
6923 unsigned int st_shndx
;
6930 Elf_Internal_Sym
*isym
;
6931 struct elf_symbuf_symbol
*ssym
;
6936 /* Sort references to symbols by ascending section number. */
6939 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
6941 const Elf_Internal_Sym
*s1
= *(const Elf_Internal_Sym
**) arg1
;
6942 const Elf_Internal_Sym
*s2
= *(const Elf_Internal_Sym
**) arg2
;
6944 return s1
->st_shndx
- s2
->st_shndx
;
6948 elf_sym_name_compare (const void *arg1
, const void *arg2
)
6950 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
6951 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
6952 return strcmp (s1
->name
, s2
->name
);
6955 static struct elf_symbuf_head
*
6956 elf_create_symbuf (bfd_size_type symcount
, Elf_Internal_Sym
*isymbuf
)
6958 Elf_Internal_Sym
**ind
, **indbufend
, **indbuf
;
6959 struct elf_symbuf_symbol
*ssym
;
6960 struct elf_symbuf_head
*ssymbuf
, *ssymhead
;
6961 bfd_size_type i
, shndx_count
, total_size
;
6963 indbuf
= (Elf_Internal_Sym
**) bfd_malloc2 (symcount
, sizeof (*indbuf
));
6967 for (ind
= indbuf
, i
= 0; i
< symcount
; i
++)
6968 if (isymbuf
[i
].st_shndx
!= SHN_UNDEF
)
6969 *ind
++ = &isymbuf
[i
];
6972 qsort (indbuf
, indbufend
- indbuf
, sizeof (Elf_Internal_Sym
*),
6973 elf_sort_elf_symbol
);
6976 if (indbufend
> indbuf
)
6977 for (ind
= indbuf
, shndx_count
++; ind
< indbufend
- 1; ind
++)
6978 if (ind
[0]->st_shndx
!= ind
[1]->st_shndx
)
6981 total_size
= ((shndx_count
+ 1) * sizeof (*ssymbuf
)
6982 + (indbufend
- indbuf
) * sizeof (*ssym
));
6983 ssymbuf
= (struct elf_symbuf_head
*) bfd_malloc (total_size
);
6984 if (ssymbuf
== NULL
)
6990 ssym
= (struct elf_symbuf_symbol
*) (ssymbuf
+ shndx_count
+ 1);
6991 ssymbuf
->ssym
= NULL
;
6992 ssymbuf
->count
= shndx_count
;
6993 ssymbuf
->st_shndx
= 0;
6994 for (ssymhead
= ssymbuf
, ind
= indbuf
; ind
< indbufend
; ssym
++, ind
++)
6996 if (ind
== indbuf
|| ssymhead
->st_shndx
!= (*ind
)->st_shndx
)
6999 ssymhead
->ssym
= ssym
;
7000 ssymhead
->count
= 0;
7001 ssymhead
->st_shndx
= (*ind
)->st_shndx
;
7003 ssym
->st_name
= (*ind
)->st_name
;
7004 ssym
->st_info
= (*ind
)->st_info
;
7005 ssym
->st_other
= (*ind
)->st_other
;
7008 BFD_ASSERT ((bfd_size_type
) (ssymhead
- ssymbuf
) == shndx_count
7009 && (((bfd_hostptr_t
) ssym
- (bfd_hostptr_t
) ssymbuf
)
7016 /* Check if 2 sections define the same set of local and global
7020 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
,
7021 struct bfd_link_info
*info
)
7024 const struct elf_backend_data
*bed1
, *bed2
;
7025 Elf_Internal_Shdr
*hdr1
, *hdr2
;
7026 bfd_size_type symcount1
, symcount2
;
7027 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
7028 struct elf_symbuf_head
*ssymbuf1
, *ssymbuf2
;
7029 Elf_Internal_Sym
*isym
, *isymend
;
7030 struct elf_symbol
*symtable1
= NULL
, *symtable2
= NULL
;
7031 bfd_size_type count1
, count2
, i
;
7032 unsigned int shndx1
, shndx2
;
7038 /* Both sections have to be in ELF. */
7039 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
7040 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
7043 if (elf_section_type (sec1
) != elf_section_type (sec2
))
7046 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
7047 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
7048 if (shndx1
== SHN_BAD
|| shndx2
== SHN_BAD
)
7051 bed1
= get_elf_backend_data (bfd1
);
7052 bed2
= get_elf_backend_data (bfd2
);
7053 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
7054 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
7055 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
7056 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
7058 if (symcount1
== 0 || symcount2
== 0)
7064 ssymbuf1
= (struct elf_symbuf_head
*) elf_tdata (bfd1
)->symbuf
;
7065 ssymbuf2
= (struct elf_symbuf_head
*) elf_tdata (bfd2
)->symbuf
;
7067 if (ssymbuf1
== NULL
)
7069 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
7071 if (isymbuf1
== NULL
)
7074 if (!info
->reduce_memory_overheads
)
7075 elf_tdata (bfd1
)->symbuf
= ssymbuf1
7076 = elf_create_symbuf (symcount1
, isymbuf1
);
7079 if (ssymbuf1
== NULL
|| ssymbuf2
== NULL
)
7081 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
7083 if (isymbuf2
== NULL
)
7086 if (ssymbuf1
!= NULL
&& !info
->reduce_memory_overheads
)
7087 elf_tdata (bfd2
)->symbuf
= ssymbuf2
7088 = elf_create_symbuf (symcount2
, isymbuf2
);
7091 if (ssymbuf1
!= NULL
&& ssymbuf2
!= NULL
)
7093 /* Optimized faster version. */
7094 bfd_size_type lo
, hi
, mid
;
7095 struct elf_symbol
*symp
;
7096 struct elf_symbuf_symbol
*ssym
, *ssymend
;
7099 hi
= ssymbuf1
->count
;
7104 mid
= (lo
+ hi
) / 2;
7105 if (shndx1
< ssymbuf1
[mid
].st_shndx
)
7107 else if (shndx1
> ssymbuf1
[mid
].st_shndx
)
7111 count1
= ssymbuf1
[mid
].count
;
7118 hi
= ssymbuf2
->count
;
7123 mid
= (lo
+ hi
) / 2;
7124 if (shndx2
< ssymbuf2
[mid
].st_shndx
)
7126 else if (shndx2
> ssymbuf2
[mid
].st_shndx
)
7130 count2
= ssymbuf2
[mid
].count
;
7136 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7139 symtable1
= (struct elf_symbol
*)
7140 bfd_malloc (count1
* sizeof (struct elf_symbol
));
7141 symtable2
= (struct elf_symbol
*)
7142 bfd_malloc (count2
* sizeof (struct elf_symbol
));
7143 if (symtable1
== NULL
|| symtable2
== NULL
)
7147 for (ssym
= ssymbuf1
->ssym
, ssymend
= ssym
+ count1
;
7148 ssym
< ssymend
; ssym
++, symp
++)
7150 symp
->u
.ssym
= ssym
;
7151 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
7157 for (ssym
= ssymbuf2
->ssym
, ssymend
= ssym
+ count2
;
7158 ssym
< ssymend
; ssym
++, symp
++)
7160 symp
->u
.ssym
= ssym
;
7161 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
7166 /* Sort symbol by name. */
7167 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7168 elf_sym_name_compare
);
7169 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7170 elf_sym_name_compare
);
7172 for (i
= 0; i
< count1
; i
++)
7173 /* Two symbols must have the same binding, type and name. */
7174 if (symtable1
[i
].u
.ssym
->st_info
!= symtable2
[i
].u
.ssym
->st_info
7175 || symtable1
[i
].u
.ssym
->st_other
!= symtable2
[i
].u
.ssym
->st_other
7176 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7183 symtable1
= (struct elf_symbol
*)
7184 bfd_malloc (symcount1
* sizeof (struct elf_symbol
));
7185 symtable2
= (struct elf_symbol
*)
7186 bfd_malloc (symcount2
* sizeof (struct elf_symbol
));
7187 if (symtable1
== NULL
|| symtable2
== NULL
)
7190 /* Count definitions in the section. */
7192 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
; isym
< isymend
; isym
++)
7193 if (isym
->st_shndx
== shndx1
)
7194 symtable1
[count1
++].u
.isym
= isym
;
7197 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
; isym
< isymend
; isym
++)
7198 if (isym
->st_shndx
== shndx2
)
7199 symtable2
[count2
++].u
.isym
= isym
;
7201 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7204 for (i
= 0; i
< count1
; i
++)
7206 = bfd_elf_string_from_elf_section (bfd1
, hdr1
->sh_link
,
7207 symtable1
[i
].u
.isym
->st_name
);
7209 for (i
= 0; i
< count2
; i
++)
7211 = bfd_elf_string_from_elf_section (bfd2
, hdr2
->sh_link
,
7212 symtable2
[i
].u
.isym
->st_name
);
7214 /* Sort symbol by name. */
7215 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7216 elf_sym_name_compare
);
7217 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7218 elf_sym_name_compare
);
7220 for (i
= 0; i
< count1
; i
++)
7221 /* Two symbols must have the same binding, type and name. */
7222 if (symtable1
[i
].u
.isym
->st_info
!= symtable2
[i
].u
.isym
->st_info
7223 || symtable1
[i
].u
.isym
->st_other
!= symtable2
[i
].u
.isym
->st_other
7224 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7242 /* Return TRUE if 2 section types are compatible. */
7245 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
7246 bfd
*bbfd
, const asection
*bsec
)
7250 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
7251 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7254 return elf_section_type (asec
) == elf_section_type (bsec
);
7257 /* Final phase of ELF linker. */
7259 /* A structure we use to avoid passing large numbers of arguments. */
7261 struct elf_final_link_info
7263 /* General link information. */
7264 struct bfd_link_info
*info
;
7267 /* Symbol string table. */
7268 struct bfd_strtab_hash
*symstrtab
;
7269 /* .dynsym section. */
7270 asection
*dynsym_sec
;
7271 /* .hash section. */
7273 /* symbol version section (.gnu.version). */
7274 asection
*symver_sec
;
7275 /* Buffer large enough to hold contents of any section. */
7277 /* Buffer large enough to hold external relocs of any section. */
7278 void *external_relocs
;
7279 /* Buffer large enough to hold internal relocs of any section. */
7280 Elf_Internal_Rela
*internal_relocs
;
7281 /* Buffer large enough to hold external local symbols of any input
7283 bfd_byte
*external_syms
;
7284 /* And a buffer for symbol section indices. */
7285 Elf_External_Sym_Shndx
*locsym_shndx
;
7286 /* Buffer large enough to hold internal local symbols of any input
7288 Elf_Internal_Sym
*internal_syms
;
7289 /* Array large enough to hold a symbol index for each local symbol
7290 of any input BFD. */
7292 /* Array large enough to hold a section pointer for each local
7293 symbol of any input BFD. */
7294 asection
**sections
;
7295 /* Buffer to hold swapped out symbols. */
7297 /* And one for symbol section indices. */
7298 Elf_External_Sym_Shndx
*symshndxbuf
;
7299 /* Number of swapped out symbols in buffer. */
7300 size_t symbuf_count
;
7301 /* Number of symbols which fit in symbuf. */
7303 /* And same for symshndxbuf. */
7304 size_t shndxbuf_size
;
7307 /* This struct is used to pass information to elf_link_output_extsym. */
7309 struct elf_outext_info
7312 bfd_boolean localsyms
;
7313 struct elf_final_link_info
*finfo
;
7317 /* Support for evaluating a complex relocation.
7319 Complex relocations are generalized, self-describing relocations. The
7320 implementation of them consists of two parts: complex symbols, and the
7321 relocations themselves.
7323 The relocations are use a reserved elf-wide relocation type code (R_RELC
7324 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7325 information (start bit, end bit, word width, etc) into the addend. This
7326 information is extracted from CGEN-generated operand tables within gas.
7328 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7329 internal) representing prefix-notation expressions, including but not
7330 limited to those sorts of expressions normally encoded as addends in the
7331 addend field. The symbol mangling format is:
7334 | <unary-operator> ':' <node>
7335 | <binary-operator> ':' <node> ':' <node>
7338 <literal> := 's' <digits=N> ':' <N character symbol name>
7339 | 'S' <digits=N> ':' <N character section name>
7343 <binary-operator> := as in C
7344 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7347 set_symbol_value (bfd
*bfd_with_globals
,
7348 Elf_Internal_Sym
*isymbuf
,
7353 struct elf_link_hash_entry
**sym_hashes
;
7354 struct elf_link_hash_entry
*h
;
7355 size_t extsymoff
= locsymcount
;
7357 if (symidx
< locsymcount
)
7359 Elf_Internal_Sym
*sym
;
7361 sym
= isymbuf
+ symidx
;
7362 if (ELF_ST_BIND (sym
->st_info
) == STB_LOCAL
)
7364 /* It is a local symbol: move it to the
7365 "absolute" section and give it a value. */
7366 sym
->st_shndx
= SHN_ABS
;
7367 sym
->st_value
= val
;
7370 BFD_ASSERT (elf_bad_symtab (bfd_with_globals
));
7374 /* It is a global symbol: set its link type
7375 to "defined" and give it a value. */
7377 sym_hashes
= elf_sym_hashes (bfd_with_globals
);
7378 h
= sym_hashes
[symidx
- extsymoff
];
7379 while (h
->root
.type
== bfd_link_hash_indirect
7380 || h
->root
.type
== bfd_link_hash_warning
)
7381 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7382 h
->root
.type
= bfd_link_hash_defined
;
7383 h
->root
.u
.def
.value
= val
;
7384 h
->root
.u
.def
.section
= bfd_abs_section_ptr
;
7388 resolve_symbol (const char *name
,
7390 struct elf_final_link_info
*finfo
,
7392 Elf_Internal_Sym
*isymbuf
,
7395 Elf_Internal_Sym
*sym
;
7396 struct bfd_link_hash_entry
*global_entry
;
7397 const char *candidate
= NULL
;
7398 Elf_Internal_Shdr
*symtab_hdr
;
7401 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
7403 for (i
= 0; i
< locsymcount
; ++ i
)
7407 if (ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
7410 candidate
= bfd_elf_string_from_elf_section (input_bfd
,
7411 symtab_hdr
->sh_link
,
7414 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7415 name
, candidate
, (unsigned long) sym
->st_value
);
7417 if (candidate
&& strcmp (candidate
, name
) == 0)
7419 asection
*sec
= finfo
->sections
[i
];
7421 *result
= _bfd_elf_rel_local_sym (input_bfd
, sym
, &sec
, 0);
7422 *result
+= sec
->output_offset
+ sec
->output_section
->vma
;
7424 printf ("Found symbol with value %8.8lx\n",
7425 (unsigned long) *result
);
7431 /* Hmm, haven't found it yet. perhaps it is a global. */
7432 global_entry
= bfd_link_hash_lookup (finfo
->info
->hash
, name
,
7433 FALSE
, FALSE
, TRUE
);
7437 if (global_entry
->type
== bfd_link_hash_defined
7438 || global_entry
->type
== bfd_link_hash_defweak
)
7440 *result
= (global_entry
->u
.def
.value
7441 + global_entry
->u
.def
.section
->output_section
->vma
7442 + global_entry
->u
.def
.section
->output_offset
);
7444 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7445 global_entry
->root
.string
, (unsigned long) *result
);
7454 resolve_section (const char *name
,
7461 for (curr
= sections
; curr
; curr
= curr
->next
)
7462 if (strcmp (curr
->name
, name
) == 0)
7464 *result
= curr
->vma
;
7468 /* Hmm. still haven't found it. try pseudo-section names. */
7469 for (curr
= sections
; curr
; curr
= curr
->next
)
7471 len
= strlen (curr
->name
);
7472 if (len
> strlen (name
))
7475 if (strncmp (curr
->name
, name
, len
) == 0)
7477 if (strncmp (".end", name
+ len
, 4) == 0)
7479 *result
= curr
->vma
+ curr
->size
;
7483 /* Insert more pseudo-section names here, if you like. */
7491 undefined_reference (const char *reftype
, const char *name
)
7493 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7498 eval_symbol (bfd_vma
*result
,
7501 struct elf_final_link_info
*finfo
,
7503 Elf_Internal_Sym
*isymbuf
,
7512 const char *sym
= *symp
;
7514 bfd_boolean symbol_is_section
= FALSE
;
7519 if (len
< 1 || len
> sizeof (symbuf
))
7521 bfd_set_error (bfd_error_invalid_operation
);
7534 *result
= strtoul (sym
, (char **) symp
, 16);
7538 symbol_is_section
= TRUE
;
7541 symlen
= strtol (sym
, (char **) symp
, 10);
7542 sym
= *symp
+ 1; /* Skip the trailing ':'. */
7544 if (symend
< sym
|| symlen
+ 1 > sizeof (symbuf
))
7546 bfd_set_error (bfd_error_invalid_operation
);
7550 memcpy (symbuf
, sym
, symlen
);
7551 symbuf
[symlen
] = '\0';
7552 *symp
= sym
+ symlen
;
7554 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7555 the symbol as a section, or vice-versa. so we're pretty liberal in our
7556 interpretation here; section means "try section first", not "must be a
7557 section", and likewise with symbol. */
7559 if (symbol_is_section
)
7561 if (!resolve_section (symbuf
, finfo
->output_bfd
->sections
, result
)
7562 && !resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7563 isymbuf
, locsymcount
))
7565 undefined_reference ("section", symbuf
);
7571 if (!resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7572 isymbuf
, locsymcount
)
7573 && !resolve_section (symbuf
, finfo
->output_bfd
->sections
,
7576 undefined_reference ("symbol", symbuf
);
7583 /* All that remains are operators. */
7585 #define UNARY_OP(op) \
7586 if (strncmp (sym, #op, strlen (#op)) == 0) \
7588 sym += strlen (#op); \
7592 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7593 isymbuf, locsymcount, signed_p)) \
7596 *result = op ((bfd_signed_vma) a); \
7602 #define BINARY_OP(op) \
7603 if (strncmp (sym, #op, strlen (#op)) == 0) \
7605 sym += strlen (#op); \
7609 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7610 isymbuf, locsymcount, signed_p)) \
7613 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7614 isymbuf, locsymcount, signed_p)) \
7617 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7647 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym
);
7648 bfd_set_error (bfd_error_invalid_operation
);
7654 put_value (bfd_vma size
,
7655 unsigned long chunksz
,
7660 location
+= (size
- chunksz
);
7662 for (; size
; size
-= chunksz
, location
-= chunksz
, x
>>= (chunksz
* 8))
7670 bfd_put_8 (input_bfd
, x
, location
);
7673 bfd_put_16 (input_bfd
, x
, location
);
7676 bfd_put_32 (input_bfd
, x
, location
);
7680 bfd_put_64 (input_bfd
, x
, location
);
7690 get_value (bfd_vma size
,
7691 unsigned long chunksz
,
7697 for (; size
; size
-= chunksz
, location
+= chunksz
)
7705 x
= (x
<< (8 * chunksz
)) | bfd_get_8 (input_bfd
, location
);
7708 x
= (x
<< (8 * chunksz
)) | bfd_get_16 (input_bfd
, location
);
7711 x
= (x
<< (8 * chunksz
)) | bfd_get_32 (input_bfd
, location
);
7715 x
= (x
<< (8 * chunksz
)) | bfd_get_64 (input_bfd
, location
);
7726 decode_complex_addend (unsigned long *start
, /* in bits */
7727 unsigned long *oplen
, /* in bits */
7728 unsigned long *len
, /* in bits */
7729 unsigned long *wordsz
, /* in bytes */
7730 unsigned long *chunksz
, /* in bytes */
7731 unsigned long *lsb0_p
,
7732 unsigned long *signed_p
,
7733 unsigned long *trunc_p
,
7734 unsigned long encoded
)
7736 * start
= encoded
& 0x3F;
7737 * len
= (encoded
>> 6) & 0x3F;
7738 * oplen
= (encoded
>> 12) & 0x3F;
7739 * wordsz
= (encoded
>> 18) & 0xF;
7740 * chunksz
= (encoded
>> 22) & 0xF;
7741 * lsb0_p
= (encoded
>> 27) & 1;
7742 * signed_p
= (encoded
>> 28) & 1;
7743 * trunc_p
= (encoded
>> 29) & 1;
7746 bfd_reloc_status_type
7747 bfd_elf_perform_complex_relocation (bfd
*input_bfd
,
7748 asection
*input_section ATTRIBUTE_UNUSED
,
7750 Elf_Internal_Rela
*rel
,
7753 bfd_vma shift
, x
, mask
;
7754 unsigned long start
, oplen
, len
, wordsz
, chunksz
, lsb0_p
, signed_p
, trunc_p
;
7755 bfd_reloc_status_type r
;
7757 /* Perform this reloc, since it is complex.
7758 (this is not to say that it necessarily refers to a complex
7759 symbol; merely that it is a self-describing CGEN based reloc.
7760 i.e. the addend has the complete reloc information (bit start, end,
7761 word size, etc) encoded within it.). */
7763 decode_complex_addend (&start
, &oplen
, &len
, &wordsz
,
7764 &chunksz
, &lsb0_p
, &signed_p
,
7765 &trunc_p
, rel
->r_addend
);
7767 mask
= (((1L << (len
- 1)) - 1) << 1) | 1;
7770 shift
= (start
+ 1) - len
;
7772 shift
= (8 * wordsz
) - (start
+ len
);
7774 /* FIXME: octets_per_byte. */
7775 x
= get_value (wordsz
, chunksz
, input_bfd
, contents
+ rel
->r_offset
);
7778 printf ("Doing complex reloc: "
7779 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7780 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7781 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7782 lsb0_p
, signed_p
, trunc_p
, wordsz
, chunksz
, start
, len
,
7783 oplen
, x
, mask
, relocation
);
7788 /* Now do an overflow check. */
7789 r
= bfd_check_overflow ((signed_p
7790 ? complain_overflow_signed
7791 : complain_overflow_unsigned
),
7792 len
, 0, (8 * wordsz
),
7796 x
= (x
& ~(mask
<< shift
)) | ((relocation
& mask
) << shift
);
7799 printf (" relocation: %8.8lx\n"
7800 " shifted mask: %8.8lx\n"
7801 " shifted/masked reloc: %8.8lx\n"
7802 " result: %8.8lx\n",
7803 relocation
, (mask
<< shift
),
7804 ((relocation
& mask
) << shift
), x
);
7806 /* FIXME: octets_per_byte. */
7807 put_value (wordsz
, chunksz
, input_bfd
, x
, contents
+ rel
->r_offset
);
7811 /* When performing a relocatable link, the input relocations are
7812 preserved. But, if they reference global symbols, the indices
7813 referenced must be updated. Update all the relocations in
7814 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7817 elf_link_adjust_relocs (bfd
*abfd
,
7818 Elf_Internal_Shdr
*rel_hdr
,
7820 struct elf_link_hash_entry
**rel_hash
)
7823 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7825 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
7826 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
7827 bfd_vma r_type_mask
;
7830 if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
7832 swap_in
= bed
->s
->swap_reloc_in
;
7833 swap_out
= bed
->s
->swap_reloc_out
;
7835 else if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
7837 swap_in
= bed
->s
->swap_reloca_in
;
7838 swap_out
= bed
->s
->swap_reloca_out
;
7843 if (bed
->s
->int_rels_per_ext_rel
> MAX_INT_RELS_PER_EXT_REL
)
7846 if (bed
->s
->arch_size
== 32)
7853 r_type_mask
= 0xffffffff;
7857 erela
= rel_hdr
->contents
;
7858 for (i
= 0; i
< count
; i
++, rel_hash
++, erela
+= rel_hdr
->sh_entsize
)
7860 Elf_Internal_Rela irela
[MAX_INT_RELS_PER_EXT_REL
];
7863 if (*rel_hash
== NULL
)
7866 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
7868 (*swap_in
) (abfd
, erela
, irela
);
7869 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
7870 irela
[j
].r_info
= ((bfd_vma
) (*rel_hash
)->indx
<< r_sym_shift
7871 | (irela
[j
].r_info
& r_type_mask
));
7872 (*swap_out
) (abfd
, irela
, erela
);
7876 struct elf_link_sort_rela
7882 enum elf_reloc_type_class type
;
7883 /* We use this as an array of size int_rels_per_ext_rel. */
7884 Elf_Internal_Rela rela
[1];
7888 elf_link_sort_cmp1 (const void *A
, const void *B
)
7890 const struct elf_link_sort_rela
*a
= (const struct elf_link_sort_rela
*) A
;
7891 const struct elf_link_sort_rela
*b
= (const struct elf_link_sort_rela
*) B
;
7892 int relativea
, relativeb
;
7894 relativea
= a
->type
== reloc_class_relative
;
7895 relativeb
= b
->type
== reloc_class_relative
;
7897 if (relativea
< relativeb
)
7899 if (relativea
> relativeb
)
7901 if ((a
->rela
->r_info
& a
->u
.sym_mask
) < (b
->rela
->r_info
& b
->u
.sym_mask
))
7903 if ((a
->rela
->r_info
& a
->u
.sym_mask
) > (b
->rela
->r_info
& b
->u
.sym_mask
))
7905 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
7907 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
7913 elf_link_sort_cmp2 (const void *A
, const void *B
)
7915 const struct elf_link_sort_rela
*a
= (const struct elf_link_sort_rela
*) A
;
7916 const struct elf_link_sort_rela
*b
= (const struct elf_link_sort_rela
*) B
;
7919 if (a
->u
.offset
< b
->u
.offset
)
7921 if (a
->u
.offset
> b
->u
.offset
)
7923 copya
= (a
->type
== reloc_class_copy
) * 2 + (a
->type
== reloc_class_plt
);
7924 copyb
= (b
->type
== reloc_class_copy
) * 2 + (b
->type
== reloc_class_plt
);
7929 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
7931 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
7937 elf_link_sort_relocs (bfd
*abfd
, struct bfd_link_info
*info
, asection
**psec
)
7939 asection
*dynamic_relocs
;
7942 bfd_size_type count
, size
;
7943 size_t i
, ret
, sort_elt
, ext_size
;
7944 bfd_byte
*sort
, *s_non_relative
, *p
;
7945 struct elf_link_sort_rela
*sq
;
7946 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7947 int i2e
= bed
->s
->int_rels_per_ext_rel
;
7948 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
7949 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
7950 struct bfd_link_order
*lo
;
7952 bfd_boolean use_rela
;
7954 /* Find a dynamic reloc section. */
7955 rela_dyn
= bfd_get_section_by_name (abfd
, ".rela.dyn");
7956 rel_dyn
= bfd_get_section_by_name (abfd
, ".rel.dyn");
7957 if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0
7958 && rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
7960 bfd_boolean use_rela_initialised
= FALSE
;
7962 /* This is just here to stop gcc from complaining.
7963 It's initialization checking code is not perfect. */
7966 /* Both sections are present. Examine the sizes
7967 of the indirect sections to help us choose. */
7968 for (lo
= rela_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
7969 if (lo
->type
== bfd_indirect_link_order
)
7971 asection
*o
= lo
->u
.indirect
.section
;
7973 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
7975 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
7976 /* Section size is divisible by both rel and rela sizes.
7977 It is of no help to us. */
7981 /* Section size is only divisible by rela. */
7982 if (use_rela_initialised
&& (use_rela
== FALSE
))
7985 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
7986 bfd_set_error (bfd_error_invalid_operation
);
7992 use_rela_initialised
= TRUE
;
7996 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
7998 /* Section size is only divisible by rel. */
7999 if (use_rela_initialised
&& (use_rela
== TRUE
))
8002 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8003 bfd_set_error (bfd_error_invalid_operation
);
8009 use_rela_initialised
= TRUE
;
8014 /* The section size is not divisible by either - something is wrong. */
8016 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
8017 bfd_set_error (bfd_error_invalid_operation
);
8022 for (lo
= rel_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8023 if (lo
->type
== bfd_indirect_link_order
)
8025 asection
*o
= lo
->u
.indirect
.section
;
8027 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
8029 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8030 /* Section size is divisible by both rel and rela sizes.
8031 It is of no help to us. */
8035 /* Section size is only divisible by rela. */
8036 if (use_rela_initialised
&& (use_rela
== FALSE
))
8039 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8040 bfd_set_error (bfd_error_invalid_operation
);
8046 use_rela_initialised
= TRUE
;
8050 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8052 /* Section size is only divisible by rel. */
8053 if (use_rela_initialised
&& (use_rela
== TRUE
))
8056 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8057 bfd_set_error (bfd_error_invalid_operation
);
8063 use_rela_initialised
= TRUE
;
8068 /* The section size is not divisible by either - something is wrong. */
8070 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
8071 bfd_set_error (bfd_error_invalid_operation
);
8076 if (! use_rela_initialised
)
8080 else if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0)
8082 else if (rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
8089 dynamic_relocs
= rela_dyn
;
8090 ext_size
= bed
->s
->sizeof_rela
;
8091 swap_in
= bed
->s
->swap_reloca_in
;
8092 swap_out
= bed
->s
->swap_reloca_out
;
8096 dynamic_relocs
= rel_dyn
;
8097 ext_size
= bed
->s
->sizeof_rel
;
8098 swap_in
= bed
->s
->swap_reloc_in
;
8099 swap_out
= bed
->s
->swap_reloc_out
;
8103 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8104 if (lo
->type
== bfd_indirect_link_order
)
8105 size
+= lo
->u
.indirect
.section
->size
;
8107 if (size
!= dynamic_relocs
->size
)
8110 sort_elt
= (sizeof (struct elf_link_sort_rela
)
8111 + (i2e
- 1) * sizeof (Elf_Internal_Rela
));
8113 count
= dynamic_relocs
->size
/ ext_size
;
8116 sort
= (bfd_byte
*) bfd_zmalloc (sort_elt
* count
);
8120 (*info
->callbacks
->warning
)
8121 (info
, _("Not enough memory to sort relocations"), 0, abfd
, 0, 0);
8125 if (bed
->s
->arch_size
== 32)
8126 r_sym_mask
= ~(bfd_vma
) 0xff;
8128 r_sym_mask
= ~(bfd_vma
) 0xffffffff;
8130 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8131 if (lo
->type
== bfd_indirect_link_order
)
8133 bfd_byte
*erel
, *erelend
;
8134 asection
*o
= lo
->u
.indirect
.section
;
8136 if (o
->contents
== NULL
&& o
->size
!= 0)
8138 /* This is a reloc section that is being handled as a normal
8139 section. See bfd_section_from_shdr. We can't combine
8140 relocs in this case. */
8145 erelend
= o
->contents
+ o
->size
;
8146 /* FIXME: octets_per_byte. */
8147 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8149 while (erel
< erelend
)
8151 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8153 (*swap_in
) (abfd
, erel
, s
->rela
);
8154 s
->type
= (*bed
->elf_backend_reloc_type_class
) (s
->rela
);
8155 s
->u
.sym_mask
= r_sym_mask
;
8161 qsort (sort
, count
, sort_elt
, elf_link_sort_cmp1
);
8163 for (i
= 0, p
= sort
; i
< count
; i
++, p
+= sort_elt
)
8165 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8166 if (s
->type
!= reloc_class_relative
)
8172 sq
= (struct elf_link_sort_rela
*) s_non_relative
;
8173 for (; i
< count
; i
++, p
+= sort_elt
)
8175 struct elf_link_sort_rela
*sp
= (struct elf_link_sort_rela
*) p
;
8176 if (((sp
->rela
->r_info
^ sq
->rela
->r_info
) & r_sym_mask
) != 0)
8178 sp
->u
.offset
= sq
->rela
->r_offset
;
8181 qsort (s_non_relative
, count
- ret
, sort_elt
, elf_link_sort_cmp2
);
8183 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8184 if (lo
->type
== bfd_indirect_link_order
)
8186 bfd_byte
*erel
, *erelend
;
8187 asection
*o
= lo
->u
.indirect
.section
;
8190 erelend
= o
->contents
+ o
->size
;
8191 /* FIXME: octets_per_byte. */
8192 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8193 while (erel
< erelend
)
8195 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8196 (*swap_out
) (abfd
, s
->rela
, erel
);
8203 *psec
= dynamic_relocs
;
8207 /* Flush the output symbols to the file. */
8210 elf_link_flush_output_syms (struct elf_final_link_info
*finfo
,
8211 const struct elf_backend_data
*bed
)
8213 if (finfo
->symbuf_count
> 0)
8215 Elf_Internal_Shdr
*hdr
;
8219 hdr
= &elf_tdata (finfo
->output_bfd
)->symtab_hdr
;
8220 pos
= hdr
->sh_offset
+ hdr
->sh_size
;
8221 amt
= finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8222 if (bfd_seek (finfo
->output_bfd
, pos
, SEEK_SET
) != 0
8223 || bfd_bwrite (finfo
->symbuf
, amt
, finfo
->output_bfd
) != amt
)
8226 hdr
->sh_size
+= amt
;
8227 finfo
->symbuf_count
= 0;
8233 /* Add a symbol to the output symbol table. */
8236 elf_link_output_sym (struct elf_final_link_info
*finfo
,
8238 Elf_Internal_Sym
*elfsym
,
8239 asection
*input_sec
,
8240 struct elf_link_hash_entry
*h
)
8243 Elf_External_Sym_Shndx
*destshndx
;
8244 int (*output_symbol_hook
)
8245 (struct bfd_link_info
*, const char *, Elf_Internal_Sym
*, asection
*,
8246 struct elf_link_hash_entry
*);
8247 const struct elf_backend_data
*bed
;
8249 bed
= get_elf_backend_data (finfo
->output_bfd
);
8250 output_symbol_hook
= bed
->elf_backend_link_output_symbol_hook
;
8251 if (output_symbol_hook
!= NULL
)
8253 int ret
= (*output_symbol_hook
) (finfo
->info
, name
, elfsym
, input_sec
, h
);
8258 if (name
== NULL
|| *name
== '\0')
8259 elfsym
->st_name
= 0;
8260 else if (input_sec
->flags
& SEC_EXCLUDE
)
8261 elfsym
->st_name
= 0;
8264 elfsym
->st_name
= (unsigned long) _bfd_stringtab_add (finfo
->symstrtab
,
8266 if (elfsym
->st_name
== (unsigned long) -1)
8270 if (finfo
->symbuf_count
>= finfo
->symbuf_size
)
8272 if (! elf_link_flush_output_syms (finfo
, bed
))
8276 dest
= finfo
->symbuf
+ finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8277 destshndx
= finfo
->symshndxbuf
;
8278 if (destshndx
!= NULL
)
8280 if (bfd_get_symcount (finfo
->output_bfd
) >= finfo
->shndxbuf_size
)
8284 amt
= finfo
->shndxbuf_size
* sizeof (Elf_External_Sym_Shndx
);
8285 destshndx
= (Elf_External_Sym_Shndx
*) bfd_realloc (destshndx
,
8287 if (destshndx
== NULL
)
8289 finfo
->symshndxbuf
= destshndx
;
8290 memset ((char *) destshndx
+ amt
, 0, amt
);
8291 finfo
->shndxbuf_size
*= 2;
8293 destshndx
+= bfd_get_symcount (finfo
->output_bfd
);
8296 bed
->s
->swap_symbol_out (finfo
->output_bfd
, elfsym
, dest
, destshndx
);
8297 finfo
->symbuf_count
+= 1;
8298 bfd_get_symcount (finfo
->output_bfd
) += 1;
8303 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8306 check_dynsym (bfd
*abfd
, Elf_Internal_Sym
*sym
)
8308 if (sym
->st_shndx
>= (SHN_LORESERVE
& 0xffff)
8309 && sym
->st_shndx
< SHN_LORESERVE
)
8311 /* The gABI doesn't support dynamic symbols in output sections
8313 (*_bfd_error_handler
)
8314 (_("%B: Too many sections: %d (>= %d)"),
8315 abfd
, bfd_count_sections (abfd
), SHN_LORESERVE
& 0xffff);
8316 bfd_set_error (bfd_error_nonrepresentable_section
);
8322 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8323 allowing an unsatisfied unversioned symbol in the DSO to match a
8324 versioned symbol that would normally require an explicit version.
8325 We also handle the case that a DSO references a hidden symbol
8326 which may be satisfied by a versioned symbol in another DSO. */
8329 elf_link_check_versioned_symbol (struct bfd_link_info
*info
,
8330 const struct elf_backend_data
*bed
,
8331 struct elf_link_hash_entry
*h
)
8334 struct elf_link_loaded_list
*loaded
;
8336 if (!is_elf_hash_table (info
->hash
))
8339 switch (h
->root
.type
)
8345 case bfd_link_hash_undefined
:
8346 case bfd_link_hash_undefweak
:
8347 abfd
= h
->root
.u
.undef
.abfd
;
8348 if ((abfd
->flags
& DYNAMIC
) == 0
8349 || (elf_dyn_lib_class (abfd
) & DYN_DT_NEEDED
) == 0)
8353 case bfd_link_hash_defined
:
8354 case bfd_link_hash_defweak
:
8355 abfd
= h
->root
.u
.def
.section
->owner
;
8358 case bfd_link_hash_common
:
8359 abfd
= h
->root
.u
.c
.p
->section
->owner
;
8362 BFD_ASSERT (abfd
!= NULL
);
8364 for (loaded
= elf_hash_table (info
)->loaded
;
8366 loaded
= loaded
->next
)
8369 Elf_Internal_Shdr
*hdr
;
8370 bfd_size_type symcount
;
8371 bfd_size_type extsymcount
;
8372 bfd_size_type extsymoff
;
8373 Elf_Internal_Shdr
*versymhdr
;
8374 Elf_Internal_Sym
*isym
;
8375 Elf_Internal_Sym
*isymend
;
8376 Elf_Internal_Sym
*isymbuf
;
8377 Elf_External_Versym
*ever
;
8378 Elf_External_Versym
*extversym
;
8380 input
= loaded
->abfd
;
8382 /* We check each DSO for a possible hidden versioned definition. */
8384 || (input
->flags
& DYNAMIC
) == 0
8385 || elf_dynversym (input
) == 0)
8388 hdr
= &elf_tdata (input
)->dynsymtab_hdr
;
8390 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8391 if (elf_bad_symtab (input
))
8393 extsymcount
= symcount
;
8398 extsymcount
= symcount
- hdr
->sh_info
;
8399 extsymoff
= hdr
->sh_info
;
8402 if (extsymcount
== 0)
8405 isymbuf
= bfd_elf_get_elf_syms (input
, hdr
, extsymcount
, extsymoff
,
8407 if (isymbuf
== NULL
)
8410 /* Read in any version definitions. */
8411 versymhdr
= &elf_tdata (input
)->dynversym_hdr
;
8412 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
8413 if (extversym
== NULL
)
8416 if (bfd_seek (input
, versymhdr
->sh_offset
, SEEK_SET
) != 0
8417 || (bfd_bread (extversym
, versymhdr
->sh_size
, input
)
8418 != versymhdr
->sh_size
))
8426 ever
= extversym
+ extsymoff
;
8427 isymend
= isymbuf
+ extsymcount
;
8428 for (isym
= isymbuf
; isym
< isymend
; isym
++, ever
++)
8431 Elf_Internal_Versym iver
;
8432 unsigned short version_index
;
8434 if (ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
8435 || isym
->st_shndx
== SHN_UNDEF
)
8438 name
= bfd_elf_string_from_elf_section (input
,
8441 if (strcmp (name
, h
->root
.root
.string
) != 0)
8444 _bfd_elf_swap_versym_in (input
, ever
, &iver
);
8446 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0)
8448 /* If we have a non-hidden versioned sym, then it should
8449 have provided a definition for the undefined sym. */
8453 version_index
= iver
.vs_vers
& VERSYM_VERSION
;
8454 if (version_index
== 1 || version_index
== 2)
8456 /* This is the base or first version. We can use it. */
8470 /* Add an external symbol to the symbol table. This is called from
8471 the hash table traversal routine. When generating a shared object,
8472 we go through the symbol table twice. The first time we output
8473 anything that might have been forced to local scope in a version
8474 script. The second time we output the symbols that are still
8478 elf_link_output_extsym (struct elf_link_hash_entry
*h
, void *data
)
8480 struct elf_outext_info
*eoinfo
= (struct elf_outext_info
*) data
;
8481 struct elf_final_link_info
*finfo
= eoinfo
->finfo
;
8483 Elf_Internal_Sym sym
;
8484 asection
*input_sec
;
8485 const struct elf_backend_data
*bed
;
8489 if (h
->root
.type
== bfd_link_hash_warning
)
8491 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8492 if (h
->root
.type
== bfd_link_hash_new
)
8496 /* Decide whether to output this symbol in this pass. */
8497 if (eoinfo
->localsyms
)
8499 if (!h
->forced_local
)
8504 if (h
->forced_local
)
8508 bed
= get_elf_backend_data (finfo
->output_bfd
);
8510 if (h
->root
.type
== bfd_link_hash_undefined
)
8512 /* If we have an undefined symbol reference here then it must have
8513 come from a shared library that is being linked in. (Undefined
8514 references in regular files have already been handled). */
8515 bfd_boolean ignore_undef
= FALSE
;
8517 /* Some symbols may be special in that the fact that they're
8518 undefined can be safely ignored - let backend determine that. */
8519 if (bed
->elf_backend_ignore_undef_symbol
)
8520 ignore_undef
= bed
->elf_backend_ignore_undef_symbol (h
);
8522 /* If we are reporting errors for this situation then do so now. */
8523 if (ignore_undef
== FALSE
8526 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
)
8527 && finfo
->info
->unresolved_syms_in_shared_libs
!= RM_IGNORE
)
8529 if (! (finfo
->info
->callbacks
->undefined_symbol
8530 (finfo
->info
, h
->root
.root
.string
, h
->root
.u
.undef
.abfd
,
8531 NULL
, 0, finfo
->info
->unresolved_syms_in_shared_libs
== RM_GENERATE_ERROR
)))
8533 eoinfo
->failed
= TRUE
;
8539 /* We should also warn if a forced local symbol is referenced from
8540 shared libraries. */
8541 if (! finfo
->info
->relocatable
8542 && (! finfo
->info
->shared
)
8547 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
))
8549 (*_bfd_error_handler
)
8550 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8552 h
->root
.u
.def
.section
== bfd_abs_section_ptr
8553 ? finfo
->output_bfd
: h
->root
.u
.def
.section
->owner
,
8554 ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
8556 : ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
8557 ? "hidden" : "local",
8558 h
->root
.root
.string
);
8559 eoinfo
->failed
= TRUE
;
8563 /* We don't want to output symbols that have never been mentioned by
8564 a regular file, or that we have been told to strip. However, if
8565 h->indx is set to -2, the symbol is used by a reloc and we must
8569 else if ((h
->def_dynamic
8571 || h
->root
.type
== bfd_link_hash_new
)
8575 else if (finfo
->info
->strip
== strip_all
)
8577 else if (finfo
->info
->strip
== strip_some
8578 && bfd_hash_lookup (finfo
->info
->keep_hash
,
8579 h
->root
.root
.string
, FALSE
, FALSE
) == NULL
)
8581 else if (finfo
->info
->strip_discarded
8582 && (h
->root
.type
== bfd_link_hash_defined
8583 || h
->root
.type
== bfd_link_hash_defweak
)
8584 && elf_discarded_section (h
->root
.u
.def
.section
))
8589 /* If we're stripping it, and it's not a dynamic symbol, there's
8590 nothing else to do unless it is a forced local symbol. */
8593 && !h
->forced_local
)
8597 sym
.st_size
= h
->size
;
8598 sym
.st_other
= h
->other
;
8599 if (h
->forced_local
)
8600 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, h
->type
);
8601 else if (h
->unique_global
)
8602 sym
.st_info
= ELF_ST_INFO (STB_GNU_UNIQUE
, h
->type
);
8603 else if (h
->root
.type
== bfd_link_hash_undefweak
8604 || h
->root
.type
== bfd_link_hash_defweak
)
8605 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, h
->type
);
8607 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, h
->type
);
8609 switch (h
->root
.type
)
8612 case bfd_link_hash_new
:
8613 case bfd_link_hash_warning
:
8617 case bfd_link_hash_undefined
:
8618 case bfd_link_hash_undefweak
:
8619 input_sec
= bfd_und_section_ptr
;
8620 sym
.st_shndx
= SHN_UNDEF
;
8623 case bfd_link_hash_defined
:
8624 case bfd_link_hash_defweak
:
8626 input_sec
= h
->root
.u
.def
.section
;
8627 if (input_sec
->output_section
!= NULL
)
8630 _bfd_elf_section_from_bfd_section (finfo
->output_bfd
,
8631 input_sec
->output_section
);
8632 if (sym
.st_shndx
== SHN_BAD
)
8634 (*_bfd_error_handler
)
8635 (_("%B: could not find output section %A for input section %A"),
8636 finfo
->output_bfd
, input_sec
->output_section
, input_sec
);
8637 eoinfo
->failed
= TRUE
;
8641 /* ELF symbols in relocatable files are section relative,
8642 but in nonrelocatable files they are virtual
8644 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
8645 if (! finfo
->info
->relocatable
)
8647 sym
.st_value
+= input_sec
->output_section
->vma
;
8648 if (h
->type
== STT_TLS
)
8650 asection
*tls_sec
= elf_hash_table (finfo
->info
)->tls_sec
;
8651 if (tls_sec
!= NULL
)
8652 sym
.st_value
-= tls_sec
->vma
;
8655 /* The TLS section may have been garbage collected. */
8656 BFD_ASSERT (finfo
->info
->gc_sections
8657 && !input_sec
->gc_mark
);
8664 BFD_ASSERT (input_sec
->owner
== NULL
8665 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
8666 sym
.st_shndx
= SHN_UNDEF
;
8667 input_sec
= bfd_und_section_ptr
;
8672 case bfd_link_hash_common
:
8673 input_sec
= h
->root
.u
.c
.p
->section
;
8674 sym
.st_shndx
= bed
->common_section_index (input_sec
);
8675 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
8678 case bfd_link_hash_indirect
:
8679 /* These symbols are created by symbol versioning. They point
8680 to the decorated version of the name. For example, if the
8681 symbol foo@@GNU_1.2 is the default, which should be used when
8682 foo is used with no version, then we add an indirect symbol
8683 foo which points to foo@@GNU_1.2. We ignore these symbols,
8684 since the indirected symbol is already in the hash table. */
8688 /* Give the processor backend a chance to tweak the symbol value,
8689 and also to finish up anything that needs to be done for this
8690 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8691 forced local syms when non-shared is due to a historical quirk.
8692 STT_GNU_IFUNC symbol must go through PLT. */
8693 if ((h
->type
== STT_GNU_IFUNC
8695 && !finfo
->info
->relocatable
)
8696 || ((h
->dynindx
!= -1
8698 && ((finfo
->info
->shared
8699 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8700 || h
->root
.type
!= bfd_link_hash_undefweak
))
8701 || !h
->forced_local
)
8702 && elf_hash_table (finfo
->info
)->dynamic_sections_created
))
8704 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
8705 (finfo
->output_bfd
, finfo
->info
, h
, &sym
)))
8707 eoinfo
->failed
= TRUE
;
8712 /* If we are marking the symbol as undefined, and there are no
8713 non-weak references to this symbol from a regular object, then
8714 mark the symbol as weak undefined; if there are non-weak
8715 references, mark the symbol as strong. We can't do this earlier,
8716 because it might not be marked as undefined until the
8717 finish_dynamic_symbol routine gets through with it. */
8718 if (sym
.st_shndx
== SHN_UNDEF
8720 && (ELF_ST_BIND (sym
.st_info
) == STB_GLOBAL
8721 || ELF_ST_BIND (sym
.st_info
) == STB_WEAK
))
8724 unsigned int type
= ELF_ST_TYPE (sym
.st_info
);
8726 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8727 if (type
== STT_GNU_IFUNC
)
8730 if (h
->ref_regular_nonweak
)
8731 bindtype
= STB_GLOBAL
;
8733 bindtype
= STB_WEAK
;
8734 sym
.st_info
= ELF_ST_INFO (bindtype
, type
);
8737 /* If this is a symbol defined in a dynamic library, don't use the
8738 symbol size from the dynamic library. Relinking an executable
8739 against a new library may introduce gratuitous changes in the
8740 executable's symbols if we keep the size. */
8741 if (sym
.st_shndx
== SHN_UNDEF
8746 /* If a non-weak symbol with non-default visibility is not defined
8747 locally, it is a fatal error. */
8748 if (! finfo
->info
->relocatable
8749 && ELF_ST_VISIBILITY (sym
.st_other
) != STV_DEFAULT
8750 && ELF_ST_BIND (sym
.st_info
) != STB_WEAK
8751 && h
->root
.type
== bfd_link_hash_undefined
8754 (*_bfd_error_handler
)
8755 (_("%B: %s symbol `%s' isn't defined"),
8757 ELF_ST_VISIBILITY (sym
.st_other
) == STV_PROTECTED
8759 : ELF_ST_VISIBILITY (sym
.st_other
) == STV_INTERNAL
8760 ? "internal" : "hidden",
8761 h
->root
.root
.string
);
8762 eoinfo
->failed
= TRUE
;
8766 /* If this symbol should be put in the .dynsym section, then put it
8767 there now. We already know the symbol index. We also fill in
8768 the entry in the .hash section. */
8769 if (h
->dynindx
!= -1
8770 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
8774 sym
.st_name
= h
->dynstr_index
;
8775 esym
= finfo
->dynsym_sec
->contents
+ h
->dynindx
* bed
->s
->sizeof_sym
;
8776 if (! check_dynsym (finfo
->output_bfd
, &sym
))
8778 eoinfo
->failed
= TRUE
;
8781 bed
->s
->swap_symbol_out (finfo
->output_bfd
, &sym
, esym
, 0);
8783 if (finfo
->hash_sec
!= NULL
)
8785 size_t hash_entry_size
;
8786 bfd_byte
*bucketpos
;
8791 bucketcount
= elf_hash_table (finfo
->info
)->bucketcount
;
8792 bucket
= h
->u
.elf_hash_value
% bucketcount
;
8795 = elf_section_data (finfo
->hash_sec
)->this_hdr
.sh_entsize
;
8796 bucketpos
= ((bfd_byte
*) finfo
->hash_sec
->contents
8797 + (bucket
+ 2) * hash_entry_size
);
8798 chain
= bfd_get (8 * hash_entry_size
, finfo
->output_bfd
, bucketpos
);
8799 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, h
->dynindx
, bucketpos
);
8800 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, chain
,
8801 ((bfd_byte
*) finfo
->hash_sec
->contents
8802 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
8805 if (finfo
->symver_sec
!= NULL
&& finfo
->symver_sec
->contents
!= NULL
)
8807 Elf_Internal_Versym iversym
;
8808 Elf_External_Versym
*eversym
;
8810 if (!h
->def_regular
)
8812 if (h
->verinfo
.verdef
== NULL
)
8813 iversym
.vs_vers
= 0;
8815 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
8819 if (h
->verinfo
.vertree
== NULL
)
8820 iversym
.vs_vers
= 1;
8822 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
8823 if (finfo
->info
->create_default_symver
)
8828 iversym
.vs_vers
|= VERSYM_HIDDEN
;
8830 eversym
= (Elf_External_Versym
*) finfo
->symver_sec
->contents
;
8831 eversym
+= h
->dynindx
;
8832 _bfd_elf_swap_versym_out (finfo
->output_bfd
, &iversym
, eversym
);
8836 /* If we're stripping it, then it was just a dynamic symbol, and
8837 there's nothing else to do. */
8838 if (strip
|| (input_sec
->flags
& SEC_EXCLUDE
) != 0)
8841 indx
= bfd_get_symcount (finfo
->output_bfd
);
8842 ret
= elf_link_output_sym (finfo
, h
->root
.root
.string
, &sym
, input_sec
, h
);
8845 eoinfo
->failed
= TRUE
;
8850 else if (h
->indx
== -2)
8856 /* Return TRUE if special handling is done for relocs in SEC against
8857 symbols defined in discarded sections. */
8860 elf_section_ignore_discarded_relocs (asection
*sec
)
8862 const struct elf_backend_data
*bed
;
8864 switch (sec
->sec_info_type
)
8866 case ELF_INFO_TYPE_STABS
:
8867 case ELF_INFO_TYPE_EH_FRAME
:
8873 bed
= get_elf_backend_data (sec
->owner
);
8874 if (bed
->elf_backend_ignore_discarded_relocs
!= NULL
8875 && (*bed
->elf_backend_ignore_discarded_relocs
) (sec
))
8881 /* Return a mask saying how ld should treat relocations in SEC against
8882 symbols defined in discarded sections. If this function returns
8883 COMPLAIN set, ld will issue a warning message. If this function
8884 returns PRETEND set, and the discarded section was link-once and the
8885 same size as the kept link-once section, ld will pretend that the
8886 symbol was actually defined in the kept section. Otherwise ld will
8887 zero the reloc (at least that is the intent, but some cooperation by
8888 the target dependent code is needed, particularly for REL targets). */
8891 _bfd_elf_default_action_discarded (asection
*sec
)
8893 if (sec
->flags
& SEC_DEBUGGING
)
8896 if (strcmp (".eh_frame", sec
->name
) == 0)
8899 if (strcmp (".gcc_except_table", sec
->name
) == 0)
8902 return COMPLAIN
| PRETEND
;
8905 /* Find a match between a section and a member of a section group. */
8908 match_group_member (asection
*sec
, asection
*group
,
8909 struct bfd_link_info
*info
)
8911 asection
*first
= elf_next_in_group (group
);
8912 asection
*s
= first
;
8916 if (bfd_elf_match_symbols_in_sections (s
, sec
, info
))
8919 s
= elf_next_in_group (s
);
8927 /* Check if the kept section of a discarded section SEC can be used
8928 to replace it. Return the replacement if it is OK. Otherwise return
8932 _bfd_elf_check_kept_section (asection
*sec
, struct bfd_link_info
*info
)
8936 kept
= sec
->kept_section
;
8939 if ((kept
->flags
& SEC_GROUP
) != 0)
8940 kept
= match_group_member (sec
, kept
, info
);
8942 && ((sec
->rawsize
!= 0 ? sec
->rawsize
: sec
->size
)
8943 != (kept
->rawsize
!= 0 ? kept
->rawsize
: kept
->size
)))
8945 sec
->kept_section
= kept
;
8950 /* Link an input file into the linker output file. This function
8951 handles all the sections and relocations of the input file at once.
8952 This is so that we only have to read the local symbols once, and
8953 don't have to keep them in memory. */
8956 elf_link_input_bfd (struct elf_final_link_info
*finfo
, bfd
*input_bfd
)
8958 int (*relocate_section
)
8959 (bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
8960 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**);
8962 Elf_Internal_Shdr
*symtab_hdr
;
8965 Elf_Internal_Sym
*isymbuf
;
8966 Elf_Internal_Sym
*isym
;
8967 Elf_Internal_Sym
*isymend
;
8969 asection
**ppsection
;
8971 const struct elf_backend_data
*bed
;
8972 struct elf_link_hash_entry
**sym_hashes
;
8974 output_bfd
= finfo
->output_bfd
;
8975 bed
= get_elf_backend_data (output_bfd
);
8976 relocate_section
= bed
->elf_backend_relocate_section
;
8978 /* If this is a dynamic object, we don't want to do anything here:
8979 we don't want the local symbols, and we don't want the section
8981 if ((input_bfd
->flags
& DYNAMIC
) != 0)
8984 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
8985 if (elf_bad_symtab (input_bfd
))
8987 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8992 locsymcount
= symtab_hdr
->sh_info
;
8993 extsymoff
= symtab_hdr
->sh_info
;
8996 /* Read the local symbols. */
8997 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
8998 if (isymbuf
== NULL
&& locsymcount
!= 0)
9000 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
9001 finfo
->internal_syms
,
9002 finfo
->external_syms
,
9003 finfo
->locsym_shndx
);
9004 if (isymbuf
== NULL
)
9008 /* Find local symbol sections and adjust values of symbols in
9009 SEC_MERGE sections. Write out those local symbols we know are
9010 going into the output file. */
9011 isymend
= isymbuf
+ locsymcount
;
9012 for (isym
= isymbuf
, pindex
= finfo
->indices
, ppsection
= finfo
->sections
;
9014 isym
++, pindex
++, ppsection
++)
9018 Elf_Internal_Sym osym
;
9024 if (elf_bad_symtab (input_bfd
))
9026 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
9033 if (isym
->st_shndx
== SHN_UNDEF
)
9034 isec
= bfd_und_section_ptr
;
9035 else if (isym
->st_shndx
== SHN_ABS
)
9036 isec
= bfd_abs_section_ptr
;
9037 else if (isym
->st_shndx
== SHN_COMMON
)
9038 isec
= bfd_com_section_ptr
;
9041 isec
= bfd_section_from_elf_index (input_bfd
, isym
->st_shndx
);
9044 /* Don't attempt to output symbols with st_shnx in the
9045 reserved range other than SHN_ABS and SHN_COMMON. */
9049 else if (isec
->sec_info_type
== ELF_INFO_TYPE_MERGE
9050 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
9052 _bfd_merged_section_offset (output_bfd
, &isec
,
9053 elf_section_data (isec
)->sec_info
,
9059 /* Don't output the first, undefined, symbol. */
9060 if (ppsection
== finfo
->sections
)
9063 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
9065 /* We never output section symbols. Instead, we use the
9066 section symbol of the corresponding section in the output
9071 /* If we are stripping all symbols, we don't want to output this
9073 if (finfo
->info
->strip
== strip_all
)
9076 /* If we are discarding all local symbols, we don't want to
9077 output this one. If we are generating a relocatable output
9078 file, then some of the local symbols may be required by
9079 relocs; we output them below as we discover that they are
9081 if (finfo
->info
->discard
== discard_all
)
9084 /* If this symbol is defined in a section which we are
9085 discarding, we don't need to keep it. */
9086 if (isym
->st_shndx
!= SHN_UNDEF
9087 && isym
->st_shndx
< SHN_LORESERVE
9088 && bfd_section_removed_from_list (output_bfd
,
9089 isec
->output_section
))
9092 /* Get the name of the symbol. */
9093 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
9098 /* See if we are discarding symbols with this name. */
9099 if ((finfo
->info
->strip
== strip_some
9100 && (bfd_hash_lookup (finfo
->info
->keep_hash
, name
, FALSE
, FALSE
)
9102 || (((finfo
->info
->discard
== discard_sec_merge
9103 && (isec
->flags
& SEC_MERGE
) && ! finfo
->info
->relocatable
)
9104 || finfo
->info
->discard
== discard_l
)
9105 && bfd_is_local_label_name (input_bfd
, name
)))
9110 /* Adjust the section index for the output file. */
9111 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9112 isec
->output_section
);
9113 if (osym
.st_shndx
== SHN_BAD
)
9116 /* ELF symbols in relocatable files are section relative, but
9117 in executable files they are virtual addresses. Note that
9118 this code assumes that all ELF sections have an associated
9119 BFD section with a reasonable value for output_offset; below
9120 we assume that they also have a reasonable value for
9121 output_section. Any special sections must be set up to meet
9122 these requirements. */
9123 osym
.st_value
+= isec
->output_offset
;
9124 if (! finfo
->info
->relocatable
)
9126 osym
.st_value
+= isec
->output_section
->vma
;
9127 if (ELF_ST_TYPE (osym
.st_info
) == STT_TLS
)
9129 /* STT_TLS symbols are relative to PT_TLS segment base. */
9130 BFD_ASSERT (elf_hash_table (finfo
->info
)->tls_sec
!= NULL
);
9131 osym
.st_value
-= elf_hash_table (finfo
->info
)->tls_sec
->vma
;
9135 indx
= bfd_get_symcount (output_bfd
);
9136 ret
= elf_link_output_sym (finfo
, name
, &osym
, isec
, NULL
);
9143 /* Relocate the contents of each section. */
9144 sym_hashes
= elf_sym_hashes (input_bfd
);
9145 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
9149 if (! o
->linker_mark
)
9151 /* This section was omitted from the link. */
9155 if (finfo
->info
->relocatable
9156 && (o
->flags
& (SEC_LINKER_CREATED
| SEC_GROUP
)) == SEC_GROUP
)
9158 /* Deal with the group signature symbol. */
9159 struct bfd_elf_section_data
*sec_data
= elf_section_data (o
);
9160 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
9161 asection
*osec
= o
->output_section
;
9163 if (symndx
>= locsymcount
9164 || (elf_bad_symtab (input_bfd
)
9165 && finfo
->sections
[symndx
] == NULL
))
9167 struct elf_link_hash_entry
*h
= sym_hashes
[symndx
- extsymoff
];
9168 while (h
->root
.type
== bfd_link_hash_indirect
9169 || h
->root
.type
== bfd_link_hash_warning
)
9170 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9171 /* Arrange for symbol to be output. */
9173 elf_section_data (osec
)->this_hdr
.sh_info
= -2;
9175 else if (ELF_ST_TYPE (isymbuf
[symndx
].st_info
) == STT_SECTION
)
9177 /* We'll use the output section target_index. */
9178 asection
*sec
= finfo
->sections
[symndx
]->output_section
;
9179 elf_section_data (osec
)->this_hdr
.sh_info
= sec
->target_index
;
9183 if (finfo
->indices
[symndx
] == -1)
9185 /* Otherwise output the local symbol now. */
9186 Elf_Internal_Sym sym
= isymbuf
[symndx
];
9187 asection
*sec
= finfo
->sections
[symndx
]->output_section
;
9192 name
= bfd_elf_string_from_elf_section (input_bfd
,
9193 symtab_hdr
->sh_link
,
9198 sym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9200 if (sym
.st_shndx
== SHN_BAD
)
9203 sym
.st_value
+= o
->output_offset
;
9205 indx
= bfd_get_symcount (output_bfd
);
9206 ret
= elf_link_output_sym (finfo
, name
, &sym
, o
, NULL
);
9210 finfo
->indices
[symndx
] = indx
;
9214 elf_section_data (osec
)->this_hdr
.sh_info
9215 = finfo
->indices
[symndx
];
9219 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
9220 || (o
->size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
9223 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
9225 /* Section was created by _bfd_elf_link_create_dynamic_sections
9230 /* Get the contents of the section. They have been cached by a
9231 relaxation routine. Note that o is a section in an input
9232 file, so the contents field will not have been set by any of
9233 the routines which work on output files. */
9234 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
9235 contents
= elf_section_data (o
)->this_hdr
.contents
;
9238 bfd_size_type amt
= o
->rawsize
? o
->rawsize
: o
->size
;
9240 contents
= finfo
->contents
;
9241 if (! bfd_get_section_contents (input_bfd
, o
, contents
, 0, amt
))
9245 if ((o
->flags
& SEC_RELOC
) != 0)
9247 Elf_Internal_Rela
*internal_relocs
;
9248 Elf_Internal_Rela
*rel
, *relend
;
9249 bfd_vma r_type_mask
;
9251 int action_discarded
;
9254 /* Get the swapped relocs. */
9256 = _bfd_elf_link_read_relocs (input_bfd
, o
, finfo
->external_relocs
,
9257 finfo
->internal_relocs
, FALSE
);
9258 if (internal_relocs
== NULL
9259 && o
->reloc_count
> 0)
9262 if (bed
->s
->arch_size
== 32)
9269 r_type_mask
= 0xffffffff;
9273 action_discarded
= -1;
9274 if (!elf_section_ignore_discarded_relocs (o
))
9275 action_discarded
= (*bed
->action_discarded
) (o
);
9277 /* Run through the relocs evaluating complex reloc symbols and
9278 looking for relocs against symbols from discarded sections
9279 or section symbols from removed link-once sections.
9280 Complain about relocs against discarded sections. Zero
9281 relocs against removed link-once sections. */
9283 rel
= internal_relocs
;
9284 relend
= rel
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9285 for ( ; rel
< relend
; rel
++)
9287 unsigned long r_symndx
= rel
->r_info
>> r_sym_shift
;
9288 unsigned int s_type
;
9289 asection
**ps
, *sec
;
9290 struct elf_link_hash_entry
*h
= NULL
;
9291 const char *sym_name
;
9293 if (r_symndx
== STN_UNDEF
)
9296 if (r_symndx
>= locsymcount
9297 || (elf_bad_symtab (input_bfd
)
9298 && finfo
->sections
[r_symndx
] == NULL
))
9300 h
= sym_hashes
[r_symndx
- extsymoff
];
9302 /* Badly formatted input files can contain relocs that
9303 reference non-existant symbols. Check here so that
9304 we do not seg fault. */
9309 sprintf_vma (buffer
, rel
->r_info
);
9310 (*_bfd_error_handler
)
9311 (_("error: %B contains a reloc (0x%s) for section %A "
9312 "that references a non-existent global symbol"),
9313 input_bfd
, o
, buffer
);
9314 bfd_set_error (bfd_error_bad_value
);
9318 while (h
->root
.type
== bfd_link_hash_indirect
9319 || h
->root
.type
== bfd_link_hash_warning
)
9320 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9325 if (h
->root
.type
== bfd_link_hash_defined
9326 || h
->root
.type
== bfd_link_hash_defweak
)
9327 ps
= &h
->root
.u
.def
.section
;
9329 sym_name
= h
->root
.root
.string
;
9333 Elf_Internal_Sym
*sym
= isymbuf
+ r_symndx
;
9335 s_type
= ELF_ST_TYPE (sym
->st_info
);
9336 ps
= &finfo
->sections
[r_symndx
];
9337 sym_name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
9341 if ((s_type
== STT_RELC
|| s_type
== STT_SRELC
)
9342 && !finfo
->info
->relocatable
)
9345 bfd_vma dot
= (rel
->r_offset
9346 + o
->output_offset
+ o
->output_section
->vma
);
9348 printf ("Encountered a complex symbol!");
9349 printf (" (input_bfd %s, section %s, reloc %ld\n",
9350 input_bfd
->filename
, o
->name
, rel
- internal_relocs
);
9351 printf (" symbol: idx %8.8lx, name %s\n",
9352 r_symndx
, sym_name
);
9353 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9354 (unsigned long) rel
->r_info
,
9355 (unsigned long) rel
->r_offset
);
9357 if (!eval_symbol (&val
, &sym_name
, input_bfd
, finfo
, dot
,
9358 isymbuf
, locsymcount
, s_type
== STT_SRELC
))
9361 /* Symbol evaluated OK. Update to absolute value. */
9362 set_symbol_value (input_bfd
, isymbuf
, locsymcount
,
9367 if (action_discarded
!= -1 && ps
!= NULL
)
9369 /* Complain if the definition comes from a
9370 discarded section. */
9371 if ((sec
= *ps
) != NULL
&& elf_discarded_section (sec
))
9373 BFD_ASSERT (r_symndx
!= 0);
9374 if (action_discarded
& COMPLAIN
)
9375 (*finfo
->info
->callbacks
->einfo
)
9376 (_("%X`%s' referenced in section `%A' of %B: "
9377 "defined in discarded section `%A' of %B\n"),
9378 sym_name
, o
, input_bfd
, sec
, sec
->owner
);
9380 /* Try to do the best we can to support buggy old
9381 versions of gcc. Pretend that the symbol is
9382 really defined in the kept linkonce section.
9383 FIXME: This is quite broken. Modifying the
9384 symbol here means we will be changing all later
9385 uses of the symbol, not just in this section. */
9386 if (action_discarded
& PRETEND
)
9390 kept
= _bfd_elf_check_kept_section (sec
,
9402 /* Relocate the section by invoking a back end routine.
9404 The back end routine is responsible for adjusting the
9405 section contents as necessary, and (if using Rela relocs
9406 and generating a relocatable output file) adjusting the
9407 reloc addend as necessary.
9409 The back end routine does not have to worry about setting
9410 the reloc address or the reloc symbol index.
9412 The back end routine is given a pointer to the swapped in
9413 internal symbols, and can access the hash table entries
9414 for the external symbols via elf_sym_hashes (input_bfd).
9416 When generating relocatable output, the back end routine
9417 must handle STB_LOCAL/STT_SECTION symbols specially. The
9418 output symbol is going to be a section symbol
9419 corresponding to the output section, which will require
9420 the addend to be adjusted. */
9422 ret
= (*relocate_section
) (output_bfd
, finfo
->info
,
9423 input_bfd
, o
, contents
,
9431 || finfo
->info
->relocatable
9432 || finfo
->info
->emitrelocations
)
9434 Elf_Internal_Rela
*irela
;
9435 Elf_Internal_Rela
*irelaend
;
9436 bfd_vma last_offset
;
9437 struct elf_link_hash_entry
**rel_hash
;
9438 struct elf_link_hash_entry
**rel_hash_list
;
9439 Elf_Internal_Shdr
*input_rel_hdr
, *input_rel_hdr2
;
9440 unsigned int next_erel
;
9441 bfd_boolean rela_normal
;
9443 input_rel_hdr
= &elf_section_data (o
)->rel_hdr
;
9444 rela_normal
= (bed
->rela_normal
9445 && (input_rel_hdr
->sh_entsize
9446 == bed
->s
->sizeof_rela
));
9448 /* Adjust the reloc addresses and symbol indices. */
9450 irela
= internal_relocs
;
9451 irelaend
= irela
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9452 rel_hash
= (elf_section_data (o
->output_section
)->rel_hashes
9453 + elf_section_data (o
->output_section
)->rel_count
9454 + elf_section_data (o
->output_section
)->rel_count2
);
9455 rel_hash_list
= rel_hash
;
9456 last_offset
= o
->output_offset
;
9457 if (!finfo
->info
->relocatable
)
9458 last_offset
+= o
->output_section
->vma
;
9459 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
9461 unsigned long r_symndx
;
9463 Elf_Internal_Sym sym
;
9465 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
9471 irela
->r_offset
= _bfd_elf_section_offset (output_bfd
,
9474 if (irela
->r_offset
>= (bfd_vma
) -2)
9476 /* This is a reloc for a deleted entry or somesuch.
9477 Turn it into an R_*_NONE reloc, at the same
9478 offset as the last reloc. elf_eh_frame.c and
9479 bfd_elf_discard_info rely on reloc offsets
9481 irela
->r_offset
= last_offset
;
9483 irela
->r_addend
= 0;
9487 irela
->r_offset
+= o
->output_offset
;
9489 /* Relocs in an executable have to be virtual addresses. */
9490 if (!finfo
->info
->relocatable
)
9491 irela
->r_offset
+= o
->output_section
->vma
;
9493 last_offset
= irela
->r_offset
;
9495 r_symndx
= irela
->r_info
>> r_sym_shift
;
9496 if (r_symndx
== STN_UNDEF
)
9499 if (r_symndx
>= locsymcount
9500 || (elf_bad_symtab (input_bfd
)
9501 && finfo
->sections
[r_symndx
] == NULL
))
9503 struct elf_link_hash_entry
*rh
;
9506 /* This is a reloc against a global symbol. We
9507 have not yet output all the local symbols, so
9508 we do not know the symbol index of any global
9509 symbol. We set the rel_hash entry for this
9510 reloc to point to the global hash table entry
9511 for this symbol. The symbol index is then
9512 set at the end of bfd_elf_final_link. */
9513 indx
= r_symndx
- extsymoff
;
9514 rh
= elf_sym_hashes (input_bfd
)[indx
];
9515 while (rh
->root
.type
== bfd_link_hash_indirect
9516 || rh
->root
.type
== bfd_link_hash_warning
)
9517 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
9519 /* Setting the index to -2 tells
9520 elf_link_output_extsym that this symbol is
9522 BFD_ASSERT (rh
->indx
< 0);
9530 /* This is a reloc against a local symbol. */
9533 sym
= isymbuf
[r_symndx
];
9534 sec
= finfo
->sections
[r_symndx
];
9535 if (ELF_ST_TYPE (sym
.st_info
) == STT_SECTION
)
9537 /* I suppose the backend ought to fill in the
9538 section of any STT_SECTION symbol against a
9539 processor specific section. */
9541 if (bfd_is_abs_section (sec
))
9543 else if (sec
== NULL
|| sec
->owner
== NULL
)
9545 bfd_set_error (bfd_error_bad_value
);
9550 asection
*osec
= sec
->output_section
;
9552 /* If we have discarded a section, the output
9553 section will be the absolute section. In
9554 case of discarded SEC_MERGE sections, use
9555 the kept section. relocate_section should
9556 have already handled discarded linkonce
9558 if (bfd_is_abs_section (osec
)
9559 && sec
->kept_section
!= NULL
9560 && sec
->kept_section
->output_section
!= NULL
)
9562 osec
= sec
->kept_section
->output_section
;
9563 irela
->r_addend
-= osec
->vma
;
9566 if (!bfd_is_abs_section (osec
))
9568 r_symndx
= osec
->target_index
;
9571 struct elf_link_hash_table
*htab
;
9574 htab
= elf_hash_table (finfo
->info
);
9575 oi
= htab
->text_index_section
;
9576 if ((osec
->flags
& SEC_READONLY
) == 0
9577 && htab
->data_index_section
!= NULL
)
9578 oi
= htab
->data_index_section
;
9582 irela
->r_addend
+= osec
->vma
- oi
->vma
;
9583 r_symndx
= oi
->target_index
;
9587 BFD_ASSERT (r_symndx
!= 0);
9591 /* Adjust the addend according to where the
9592 section winds up in the output section. */
9594 irela
->r_addend
+= sec
->output_offset
;
9598 if (finfo
->indices
[r_symndx
] == -1)
9600 unsigned long shlink
;
9605 if (finfo
->info
->strip
== strip_all
)
9607 /* You can't do ld -r -s. */
9608 bfd_set_error (bfd_error_invalid_operation
);
9612 /* This symbol was skipped earlier, but
9613 since it is needed by a reloc, we
9614 must output it now. */
9615 shlink
= symtab_hdr
->sh_link
;
9616 name
= (bfd_elf_string_from_elf_section
9617 (input_bfd
, shlink
, sym
.st_name
));
9621 osec
= sec
->output_section
;
9623 _bfd_elf_section_from_bfd_section (output_bfd
,
9625 if (sym
.st_shndx
== SHN_BAD
)
9628 sym
.st_value
+= sec
->output_offset
;
9629 if (! finfo
->info
->relocatable
)
9631 sym
.st_value
+= osec
->vma
;
9632 if (ELF_ST_TYPE (sym
.st_info
) == STT_TLS
)
9634 /* STT_TLS symbols are relative to PT_TLS
9636 BFD_ASSERT (elf_hash_table (finfo
->info
)
9638 sym
.st_value
-= (elf_hash_table (finfo
->info
)
9643 indx
= bfd_get_symcount (output_bfd
);
9644 ret
= elf_link_output_sym (finfo
, name
, &sym
, sec
,
9649 finfo
->indices
[r_symndx
] = indx
;
9654 r_symndx
= finfo
->indices
[r_symndx
];
9657 irela
->r_info
= ((bfd_vma
) r_symndx
<< r_sym_shift
9658 | (irela
->r_info
& r_type_mask
));
9661 /* Swap out the relocs. */
9662 if (input_rel_hdr
->sh_size
!= 0
9663 && !bed
->elf_backend_emit_relocs (output_bfd
, o
,
9669 input_rel_hdr2
= elf_section_data (o
)->rel_hdr2
;
9670 if (input_rel_hdr2
&& input_rel_hdr2
->sh_size
!= 0)
9672 internal_relocs
+= (NUM_SHDR_ENTRIES (input_rel_hdr
)
9673 * bed
->s
->int_rels_per_ext_rel
);
9674 rel_hash_list
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
9675 if (!bed
->elf_backend_emit_relocs (output_bfd
, o
,
9684 /* Write out the modified section contents. */
9685 if (bed
->elf_backend_write_section
9686 && (*bed
->elf_backend_write_section
) (output_bfd
, finfo
->info
, o
,
9689 /* Section written out. */
9691 else switch (o
->sec_info_type
)
9693 case ELF_INFO_TYPE_STABS
:
9694 if (! (_bfd_write_section_stabs
9696 &elf_hash_table (finfo
->info
)->stab_info
,
9697 o
, &elf_section_data (o
)->sec_info
, contents
)))
9700 case ELF_INFO_TYPE_MERGE
:
9701 if (! _bfd_write_merged_section (output_bfd
, o
,
9702 elf_section_data (o
)->sec_info
))
9705 case ELF_INFO_TYPE_EH_FRAME
:
9707 if (! _bfd_elf_write_section_eh_frame (output_bfd
, finfo
->info
,
9714 /* FIXME: octets_per_byte. */
9715 if (! (o
->flags
& SEC_EXCLUDE
)
9716 && ! (o
->output_section
->flags
& SEC_NEVER_LOAD
)
9717 && ! bfd_set_section_contents (output_bfd
, o
->output_section
,
9719 (file_ptr
) o
->output_offset
,
9730 /* Generate a reloc when linking an ELF file. This is a reloc
9731 requested by the linker, and does not come from any input file. This
9732 is used to build constructor and destructor tables when linking
9736 elf_reloc_link_order (bfd
*output_bfd
,
9737 struct bfd_link_info
*info
,
9738 asection
*output_section
,
9739 struct bfd_link_order
*link_order
)
9741 reloc_howto_type
*howto
;
9745 struct elf_link_hash_entry
**rel_hash_ptr
;
9746 Elf_Internal_Shdr
*rel_hdr
;
9747 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
9748 Elf_Internal_Rela irel
[MAX_INT_RELS_PER_EXT_REL
];
9752 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
9755 bfd_set_error (bfd_error_bad_value
);
9759 addend
= link_order
->u
.reloc
.p
->addend
;
9761 /* Figure out the symbol index. */
9762 rel_hash_ptr
= (elf_section_data (output_section
)->rel_hashes
9763 + elf_section_data (output_section
)->rel_count
9764 + elf_section_data (output_section
)->rel_count2
);
9765 if (link_order
->type
== bfd_section_reloc_link_order
)
9767 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
9768 BFD_ASSERT (indx
!= 0);
9769 *rel_hash_ptr
= NULL
;
9773 struct elf_link_hash_entry
*h
;
9775 /* Treat a reloc against a defined symbol as though it were
9776 actually against the section. */
9777 h
= ((struct elf_link_hash_entry
*)
9778 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
9779 link_order
->u
.reloc
.p
->u
.name
,
9780 FALSE
, FALSE
, TRUE
));
9782 && (h
->root
.type
== bfd_link_hash_defined
9783 || h
->root
.type
== bfd_link_hash_defweak
))
9787 section
= h
->root
.u
.def
.section
;
9788 indx
= section
->output_section
->target_index
;
9789 *rel_hash_ptr
= NULL
;
9790 /* It seems that we ought to add the symbol value to the
9791 addend here, but in practice it has already been added
9792 because it was passed to constructor_callback. */
9793 addend
+= section
->output_section
->vma
+ section
->output_offset
;
9797 /* Setting the index to -2 tells elf_link_output_extsym that
9798 this symbol is used by a reloc. */
9805 if (! ((*info
->callbacks
->unattached_reloc
)
9806 (info
, link_order
->u
.reloc
.p
->u
.name
, NULL
, NULL
, 0)))
9812 /* If this is an inplace reloc, we must write the addend into the
9814 if (howto
->partial_inplace
&& addend
!= 0)
9817 bfd_reloc_status_type rstat
;
9820 const char *sym_name
;
9822 size
= (bfd_size_type
) bfd_get_reloc_size (howto
);
9823 buf
= (bfd_byte
*) bfd_zmalloc (size
);
9826 rstat
= _bfd_relocate_contents (howto
, output_bfd
, addend
, buf
);
9833 case bfd_reloc_outofrange
:
9836 case bfd_reloc_overflow
:
9837 if (link_order
->type
== bfd_section_reloc_link_order
)
9838 sym_name
= bfd_section_name (output_bfd
,
9839 link_order
->u
.reloc
.p
->u
.section
);
9841 sym_name
= link_order
->u
.reloc
.p
->u
.name
;
9842 if (! ((*info
->callbacks
->reloc_overflow
)
9843 (info
, NULL
, sym_name
, howto
->name
, addend
, NULL
,
9844 NULL
, (bfd_vma
) 0)))
9851 ok
= bfd_set_section_contents (output_bfd
, output_section
, buf
,
9852 link_order
->offset
, size
);
9858 /* The address of a reloc is relative to the section in a
9859 relocatable file, and is a virtual address in an executable
9861 offset
= link_order
->offset
;
9862 if (! info
->relocatable
)
9863 offset
+= output_section
->vma
;
9865 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
9867 irel
[i
].r_offset
= offset
;
9869 irel
[i
].r_addend
= 0;
9871 if (bed
->s
->arch_size
== 32)
9872 irel
[0].r_info
= ELF32_R_INFO (indx
, howto
->type
);
9874 irel
[0].r_info
= ELF64_R_INFO (indx
, howto
->type
);
9876 rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
9877 erel
= rel_hdr
->contents
;
9878 if (rel_hdr
->sh_type
== SHT_REL
)
9880 erel
+= (elf_section_data (output_section
)->rel_count
9881 * bed
->s
->sizeof_rel
);
9882 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, erel
);
9886 irel
[0].r_addend
= addend
;
9887 erel
+= (elf_section_data (output_section
)->rel_count
9888 * bed
->s
->sizeof_rela
);
9889 (*bed
->s
->swap_reloca_out
) (output_bfd
, irel
, erel
);
9892 ++elf_section_data (output_section
)->rel_count
;
9898 /* Get the output vma of the section pointed to by the sh_link field. */
9901 elf_get_linked_section_vma (struct bfd_link_order
*p
)
9903 Elf_Internal_Shdr
**elf_shdrp
;
9907 s
= p
->u
.indirect
.section
;
9908 elf_shdrp
= elf_elfsections (s
->owner
);
9909 elfsec
= _bfd_elf_section_from_bfd_section (s
->owner
, s
);
9910 elfsec
= elf_shdrp
[elfsec
]->sh_link
;
9912 The Intel C compiler generates SHT_IA_64_UNWIND with
9913 SHF_LINK_ORDER. But it doesn't set the sh_link or
9914 sh_info fields. Hence we could get the situation
9915 where elfsec is 0. */
9918 const struct elf_backend_data
*bed
9919 = get_elf_backend_data (s
->owner
);
9920 if (bed
->link_order_error_handler
)
9921 bed
->link_order_error_handler
9922 (_("%B: warning: sh_link not set for section `%A'"), s
->owner
, s
);
9927 s
= elf_shdrp
[elfsec
]->bfd_section
;
9928 return s
->output_section
->vma
+ s
->output_offset
;
9933 /* Compare two sections based on the locations of the sections they are
9934 linked to. Used by elf_fixup_link_order. */
9937 compare_link_order (const void * a
, const void * b
)
9942 apos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)a
);
9943 bpos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)b
);
9950 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9951 order as their linked sections. Returns false if this could not be done
9952 because an output section includes both ordered and unordered
9953 sections. Ideally we'd do this in the linker proper. */
9956 elf_fixup_link_order (bfd
*abfd
, asection
*o
)
9961 struct bfd_link_order
*p
;
9963 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9965 struct bfd_link_order
**sections
;
9966 asection
*s
, *other_sec
, *linkorder_sec
;
9970 linkorder_sec
= NULL
;
9973 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
9975 if (p
->type
== bfd_indirect_link_order
)
9977 s
= p
->u
.indirect
.section
;
9979 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
9980 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
9981 && (elfsec
= _bfd_elf_section_from_bfd_section (sub
, s
))
9982 && elfsec
< elf_numsections (sub
)
9983 && elf_elfsections (sub
)[elfsec
]->sh_flags
& SHF_LINK_ORDER
9984 && elf_elfsections (sub
)[elfsec
]->sh_link
< elf_numsections (sub
))
9998 if (seen_other
&& seen_linkorder
)
10000 if (other_sec
&& linkorder_sec
)
10001 (*_bfd_error_handler
) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10003 linkorder_sec
->owner
, other_sec
,
10006 (*_bfd_error_handler
) (_("%A has both ordered and unordered sections"),
10008 bfd_set_error (bfd_error_bad_value
);
10013 if (!seen_linkorder
)
10016 sections
= (struct bfd_link_order
**)
10017 bfd_malloc (seen_linkorder
* sizeof (struct bfd_link_order
*));
10018 if (sections
== NULL
)
10020 seen_linkorder
= 0;
10022 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10024 sections
[seen_linkorder
++] = p
;
10026 /* Sort the input sections in the order of their linked section. */
10027 qsort (sections
, seen_linkorder
, sizeof (struct bfd_link_order
*),
10028 compare_link_order
);
10030 /* Change the offsets of the sections. */
10032 for (n
= 0; n
< seen_linkorder
; n
++)
10034 s
= sections
[n
]->u
.indirect
.section
;
10035 offset
&= ~(bfd_vma
) 0 << s
->alignment_power
;
10036 s
->output_offset
= offset
;
10037 sections
[n
]->offset
= offset
;
10038 /* FIXME: octets_per_byte. */
10039 offset
+= sections
[n
]->size
;
10047 /* Do the final step of an ELF link. */
10050 bfd_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
10052 bfd_boolean dynamic
;
10053 bfd_boolean emit_relocs
;
10055 struct elf_final_link_info finfo
;
10056 register asection
*o
;
10057 register struct bfd_link_order
*p
;
10059 bfd_size_type max_contents_size
;
10060 bfd_size_type max_external_reloc_size
;
10061 bfd_size_type max_internal_reloc_count
;
10062 bfd_size_type max_sym_count
;
10063 bfd_size_type max_sym_shndx_count
;
10065 Elf_Internal_Sym elfsym
;
10067 Elf_Internal_Shdr
*symtab_hdr
;
10068 Elf_Internal_Shdr
*symtab_shndx_hdr
;
10069 Elf_Internal_Shdr
*symstrtab_hdr
;
10070 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
10071 struct elf_outext_info eoinfo
;
10072 bfd_boolean merged
;
10073 size_t relativecount
= 0;
10074 asection
*reldyn
= 0;
10076 asection
*attr_section
= NULL
;
10077 bfd_vma attr_size
= 0;
10078 const char *std_attrs_section
;
10080 if (! is_elf_hash_table (info
->hash
))
10084 abfd
->flags
|= DYNAMIC
;
10086 dynamic
= elf_hash_table (info
)->dynamic_sections_created
;
10087 dynobj
= elf_hash_table (info
)->dynobj
;
10089 emit_relocs
= (info
->relocatable
10090 || info
->emitrelocations
);
10093 finfo
.output_bfd
= abfd
;
10094 finfo
.symstrtab
= _bfd_elf_stringtab_init ();
10095 if (finfo
.symstrtab
== NULL
)
10100 finfo
.dynsym_sec
= NULL
;
10101 finfo
.hash_sec
= NULL
;
10102 finfo
.symver_sec
= NULL
;
10106 finfo
.dynsym_sec
= bfd_get_section_by_name (dynobj
, ".dynsym");
10107 finfo
.hash_sec
= bfd_get_section_by_name (dynobj
, ".hash");
10108 BFD_ASSERT (finfo
.dynsym_sec
!= NULL
);
10109 finfo
.symver_sec
= bfd_get_section_by_name (dynobj
, ".gnu.version");
10110 /* Note that it is OK if symver_sec is NULL. */
10113 finfo
.contents
= NULL
;
10114 finfo
.external_relocs
= NULL
;
10115 finfo
.internal_relocs
= NULL
;
10116 finfo
.external_syms
= NULL
;
10117 finfo
.locsym_shndx
= NULL
;
10118 finfo
.internal_syms
= NULL
;
10119 finfo
.indices
= NULL
;
10120 finfo
.sections
= NULL
;
10121 finfo
.symbuf
= NULL
;
10122 finfo
.symshndxbuf
= NULL
;
10123 finfo
.symbuf_count
= 0;
10124 finfo
.shndxbuf_size
= 0;
10126 /* The object attributes have been merged. Remove the input
10127 sections from the link, and set the contents of the output
10129 std_attrs_section
= get_elf_backend_data (abfd
)->obj_attrs_section
;
10130 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10132 if ((std_attrs_section
&& strcmp (o
->name
, std_attrs_section
) == 0)
10133 || strcmp (o
->name
, ".gnu.attributes") == 0)
10135 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10137 asection
*input_section
;
10139 if (p
->type
!= bfd_indirect_link_order
)
10141 input_section
= p
->u
.indirect
.section
;
10142 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10143 elf_link_input_bfd ignores this section. */
10144 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
10147 attr_size
= bfd_elf_obj_attr_size (abfd
);
10150 bfd_set_section_size (abfd
, o
, attr_size
);
10152 /* Skip this section later on. */
10153 o
->map_head
.link_order
= NULL
;
10156 o
->flags
|= SEC_EXCLUDE
;
10160 /* Count up the number of relocations we will output for each output
10161 section, so that we know the sizes of the reloc sections. We
10162 also figure out some maximum sizes. */
10163 max_contents_size
= 0;
10164 max_external_reloc_size
= 0;
10165 max_internal_reloc_count
= 0;
10167 max_sym_shndx_count
= 0;
10169 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10171 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
10172 o
->reloc_count
= 0;
10174 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10176 unsigned int reloc_count
= 0;
10177 struct bfd_elf_section_data
*esdi
= NULL
;
10178 unsigned int *rel_count1
;
10180 if (p
->type
== bfd_section_reloc_link_order
10181 || p
->type
== bfd_symbol_reloc_link_order
)
10183 else if (p
->type
== bfd_indirect_link_order
)
10187 sec
= p
->u
.indirect
.section
;
10188 esdi
= elf_section_data (sec
);
10190 /* Mark all sections which are to be included in the
10191 link. This will normally be every section. We need
10192 to do this so that we can identify any sections which
10193 the linker has decided to not include. */
10194 sec
->linker_mark
= TRUE
;
10196 if (sec
->flags
& SEC_MERGE
)
10199 if (info
->relocatable
|| info
->emitrelocations
)
10200 reloc_count
= sec
->reloc_count
;
10201 else if (bed
->elf_backend_count_relocs
)
10202 reloc_count
= (*bed
->elf_backend_count_relocs
) (info
, sec
);
10204 if (sec
->rawsize
> max_contents_size
)
10205 max_contents_size
= sec
->rawsize
;
10206 if (sec
->size
> max_contents_size
)
10207 max_contents_size
= sec
->size
;
10209 /* We are interested in just local symbols, not all
10211 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
10212 && (sec
->owner
->flags
& DYNAMIC
) == 0)
10216 if (elf_bad_symtab (sec
->owner
))
10217 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
10218 / bed
->s
->sizeof_sym
);
10220 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
10222 if (sym_count
> max_sym_count
)
10223 max_sym_count
= sym_count
;
10225 if (sym_count
> max_sym_shndx_count
10226 && elf_symtab_shndx (sec
->owner
) != 0)
10227 max_sym_shndx_count
= sym_count
;
10229 if ((sec
->flags
& SEC_RELOC
) != 0)
10233 ext_size
= elf_section_data (sec
)->rel_hdr
.sh_size
;
10234 if (ext_size
> max_external_reloc_size
)
10235 max_external_reloc_size
= ext_size
;
10236 if (sec
->reloc_count
> max_internal_reloc_count
)
10237 max_internal_reloc_count
= sec
->reloc_count
;
10242 if (reloc_count
== 0)
10245 o
->reloc_count
+= reloc_count
;
10247 /* MIPS may have a mix of REL and RELA relocs on sections.
10248 To support this curious ABI we keep reloc counts in
10249 elf_section_data too. We must be careful to add the
10250 relocations from the input section to the right output
10251 count. FIXME: Get rid of one count. We have
10252 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10253 rel_count1
= &esdo
->rel_count
;
10256 bfd_boolean same_size
;
10257 bfd_size_type entsize1
;
10259 entsize1
= esdi
->rel_hdr
.sh_entsize
;
10260 /* PR 9827: If the header size has not been set yet then
10261 assume that it will match the output section's reloc type. */
10263 entsize1
= o
->use_rela_p
? bed
->s
->sizeof_rela
: bed
->s
->sizeof_rel
;
10265 BFD_ASSERT (entsize1
== bed
->s
->sizeof_rel
10266 || entsize1
== bed
->s
->sizeof_rela
);
10267 same_size
= !o
->use_rela_p
== (entsize1
== bed
->s
->sizeof_rel
);
10270 rel_count1
= &esdo
->rel_count2
;
10272 if (esdi
->rel_hdr2
!= NULL
)
10274 bfd_size_type entsize2
= esdi
->rel_hdr2
->sh_entsize
;
10275 unsigned int alt_count
;
10276 unsigned int *rel_count2
;
10278 BFD_ASSERT (entsize2
!= entsize1
10279 && (entsize2
== bed
->s
->sizeof_rel
10280 || entsize2
== bed
->s
->sizeof_rela
));
10282 rel_count2
= &esdo
->rel_count2
;
10284 rel_count2
= &esdo
->rel_count
;
10286 /* The following is probably too simplistic if the
10287 backend counts output relocs unusually. */
10288 BFD_ASSERT (bed
->elf_backend_count_relocs
== NULL
);
10289 alt_count
= NUM_SHDR_ENTRIES (esdi
->rel_hdr2
);
10290 *rel_count2
+= alt_count
;
10291 reloc_count
-= alt_count
;
10294 *rel_count1
+= reloc_count
;
10297 if (o
->reloc_count
> 0)
10298 o
->flags
|= SEC_RELOC
;
10301 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10302 set it (this is probably a bug) and if it is set
10303 assign_section_numbers will create a reloc section. */
10304 o
->flags
&=~ SEC_RELOC
;
10307 /* If the SEC_ALLOC flag is not set, force the section VMA to
10308 zero. This is done in elf_fake_sections as well, but forcing
10309 the VMA to 0 here will ensure that relocs against these
10310 sections are handled correctly. */
10311 if ((o
->flags
& SEC_ALLOC
) == 0
10312 && ! o
->user_set_vma
)
10316 if (! info
->relocatable
&& merged
)
10317 elf_link_hash_traverse (elf_hash_table (info
),
10318 _bfd_elf_link_sec_merge_syms
, abfd
);
10320 /* Figure out the file positions for everything but the symbol table
10321 and the relocs. We set symcount to force assign_section_numbers
10322 to create a symbol table. */
10323 bfd_get_symcount (abfd
) = info
->strip
== strip_all
? 0 : 1;
10324 BFD_ASSERT (! abfd
->output_has_begun
);
10325 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
10328 /* Set sizes, and assign file positions for reloc sections. */
10329 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10331 if ((o
->flags
& SEC_RELOC
) != 0)
10333 if (!(_bfd_elf_link_size_reloc_section
10334 (abfd
, &elf_section_data (o
)->rel_hdr
, o
)))
10337 if (elf_section_data (o
)->rel_hdr2
10338 && !(_bfd_elf_link_size_reloc_section
10339 (abfd
, elf_section_data (o
)->rel_hdr2
, o
)))
10343 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10344 to count upwards while actually outputting the relocations. */
10345 elf_section_data (o
)->rel_count
= 0;
10346 elf_section_data (o
)->rel_count2
= 0;
10349 _bfd_elf_assign_file_positions_for_relocs (abfd
);
10351 /* We have now assigned file positions for all the sections except
10352 .symtab and .strtab. We start the .symtab section at the current
10353 file position, and write directly to it. We build the .strtab
10354 section in memory. */
10355 bfd_get_symcount (abfd
) = 0;
10356 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10357 /* sh_name is set in prep_headers. */
10358 symtab_hdr
->sh_type
= SHT_SYMTAB
;
10359 /* sh_flags, sh_addr and sh_size all start off zero. */
10360 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
10361 /* sh_link is set in assign_section_numbers. */
10362 /* sh_info is set below. */
10363 /* sh_offset is set just below. */
10364 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
10366 off
= elf_tdata (abfd
)->next_file_pos
;
10367 off
= _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, TRUE
);
10369 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10370 incorrect. We do not yet know the size of the .symtab section.
10371 We correct next_file_pos below, after we do know the size. */
10373 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10374 continuously seeking to the right position in the file. */
10375 if (! info
->keep_memory
|| max_sym_count
< 20)
10376 finfo
.symbuf_size
= 20;
10378 finfo
.symbuf_size
= max_sym_count
;
10379 amt
= finfo
.symbuf_size
;
10380 amt
*= bed
->s
->sizeof_sym
;
10381 finfo
.symbuf
= (bfd_byte
*) bfd_malloc (amt
);
10382 if (finfo
.symbuf
== NULL
)
10384 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
10386 /* Wild guess at number of output symbols. realloc'd as needed. */
10387 amt
= 2 * max_sym_count
+ elf_numsections (abfd
) + 1000;
10388 finfo
.shndxbuf_size
= amt
;
10389 amt
*= sizeof (Elf_External_Sym_Shndx
);
10390 finfo
.symshndxbuf
= (Elf_External_Sym_Shndx
*) bfd_zmalloc (amt
);
10391 if (finfo
.symshndxbuf
== NULL
)
10395 /* Start writing out the symbol table. The first symbol is always a
10397 if (info
->strip
!= strip_all
10400 elfsym
.st_value
= 0;
10401 elfsym
.st_size
= 0;
10402 elfsym
.st_info
= 0;
10403 elfsym
.st_other
= 0;
10404 elfsym
.st_shndx
= SHN_UNDEF
;
10405 if (elf_link_output_sym (&finfo
, NULL
, &elfsym
, bfd_und_section_ptr
,
10410 /* Output a symbol for each section. We output these even if we are
10411 discarding local symbols, since they are used for relocs. These
10412 symbols have no names. We store the index of each one in the
10413 index field of the section, so that we can find it again when
10414 outputting relocs. */
10415 if (info
->strip
!= strip_all
10418 elfsym
.st_size
= 0;
10419 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10420 elfsym
.st_other
= 0;
10421 elfsym
.st_value
= 0;
10422 for (i
= 1; i
< elf_numsections (abfd
); i
++)
10424 o
= bfd_section_from_elf_index (abfd
, i
);
10427 o
->target_index
= bfd_get_symcount (abfd
);
10428 elfsym
.st_shndx
= i
;
10429 if (!info
->relocatable
)
10430 elfsym
.st_value
= o
->vma
;
10431 if (elf_link_output_sym (&finfo
, NULL
, &elfsym
, o
, NULL
) != 1)
10437 /* Allocate some memory to hold information read in from the input
10439 if (max_contents_size
!= 0)
10441 finfo
.contents
= (bfd_byte
*) bfd_malloc (max_contents_size
);
10442 if (finfo
.contents
== NULL
)
10446 if (max_external_reloc_size
!= 0)
10448 finfo
.external_relocs
= bfd_malloc (max_external_reloc_size
);
10449 if (finfo
.external_relocs
== NULL
)
10453 if (max_internal_reloc_count
!= 0)
10455 amt
= max_internal_reloc_count
* bed
->s
->int_rels_per_ext_rel
;
10456 amt
*= sizeof (Elf_Internal_Rela
);
10457 finfo
.internal_relocs
= (Elf_Internal_Rela
*) bfd_malloc (amt
);
10458 if (finfo
.internal_relocs
== NULL
)
10462 if (max_sym_count
!= 0)
10464 amt
= max_sym_count
* bed
->s
->sizeof_sym
;
10465 finfo
.external_syms
= (bfd_byte
*) bfd_malloc (amt
);
10466 if (finfo
.external_syms
== NULL
)
10469 amt
= max_sym_count
* sizeof (Elf_Internal_Sym
);
10470 finfo
.internal_syms
= (Elf_Internal_Sym
*) bfd_malloc (amt
);
10471 if (finfo
.internal_syms
== NULL
)
10474 amt
= max_sym_count
* sizeof (long);
10475 finfo
.indices
= (long int *) bfd_malloc (amt
);
10476 if (finfo
.indices
== NULL
)
10479 amt
= max_sym_count
* sizeof (asection
*);
10480 finfo
.sections
= (asection
**) bfd_malloc (amt
);
10481 if (finfo
.sections
== NULL
)
10485 if (max_sym_shndx_count
!= 0)
10487 amt
= max_sym_shndx_count
* sizeof (Elf_External_Sym_Shndx
);
10488 finfo
.locsym_shndx
= (Elf_External_Sym_Shndx
*) bfd_malloc (amt
);
10489 if (finfo
.locsym_shndx
== NULL
)
10493 if (elf_hash_table (info
)->tls_sec
)
10495 bfd_vma base
, end
= 0;
10498 for (sec
= elf_hash_table (info
)->tls_sec
;
10499 sec
&& (sec
->flags
& SEC_THREAD_LOCAL
);
10502 bfd_size_type size
= sec
->size
;
10505 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
10507 struct bfd_link_order
*o
= sec
->map_tail
.link_order
;
10509 size
= o
->offset
+ o
->size
;
10511 end
= sec
->vma
+ size
;
10513 base
= elf_hash_table (info
)->tls_sec
->vma
;
10514 end
= align_power (end
, elf_hash_table (info
)->tls_sec
->alignment_power
);
10515 elf_hash_table (info
)->tls_size
= end
- base
;
10518 /* Reorder SHF_LINK_ORDER sections. */
10519 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10521 if (!elf_fixup_link_order (abfd
, o
))
10525 /* Since ELF permits relocations to be against local symbols, we
10526 must have the local symbols available when we do the relocations.
10527 Since we would rather only read the local symbols once, and we
10528 would rather not keep them in memory, we handle all the
10529 relocations for a single input file at the same time.
10531 Unfortunately, there is no way to know the total number of local
10532 symbols until we have seen all of them, and the local symbol
10533 indices precede the global symbol indices. This means that when
10534 we are generating relocatable output, and we see a reloc against
10535 a global symbol, we can not know the symbol index until we have
10536 finished examining all the local symbols to see which ones we are
10537 going to output. To deal with this, we keep the relocations in
10538 memory, and don't output them until the end of the link. This is
10539 an unfortunate waste of memory, but I don't see a good way around
10540 it. Fortunately, it only happens when performing a relocatable
10541 link, which is not the common case. FIXME: If keep_memory is set
10542 we could write the relocs out and then read them again; I don't
10543 know how bad the memory loss will be. */
10545 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10546 sub
->output_has_begun
= FALSE
;
10547 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10549 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10551 if (p
->type
== bfd_indirect_link_order
10552 && (bfd_get_flavour ((sub
= p
->u
.indirect
.section
->owner
))
10553 == bfd_target_elf_flavour
)
10554 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
)
10556 if (! sub
->output_has_begun
)
10558 if (! elf_link_input_bfd (&finfo
, sub
))
10560 sub
->output_has_begun
= TRUE
;
10563 else if (p
->type
== bfd_section_reloc_link_order
10564 || p
->type
== bfd_symbol_reloc_link_order
)
10566 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
10571 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
10577 /* Free symbol buffer if needed. */
10578 if (!info
->reduce_memory_overheads
)
10580 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10581 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
10582 && elf_tdata (sub
)->symbuf
)
10584 free (elf_tdata (sub
)->symbuf
);
10585 elf_tdata (sub
)->symbuf
= NULL
;
10589 /* Output any global symbols that got converted to local in a
10590 version script or due to symbol visibility. We do this in a
10591 separate step since ELF requires all local symbols to appear
10592 prior to any global symbols. FIXME: We should only do this if
10593 some global symbols were, in fact, converted to become local.
10594 FIXME: Will this work correctly with the Irix 5 linker? */
10595 eoinfo
.failed
= FALSE
;
10596 eoinfo
.finfo
= &finfo
;
10597 eoinfo
.localsyms
= TRUE
;
10598 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
10603 /* If backend needs to output some local symbols not present in the hash
10604 table, do it now. */
10605 if (bed
->elf_backend_output_arch_local_syms
)
10607 typedef int (*out_sym_func
)
10608 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10609 struct elf_link_hash_entry
*);
10611 if (! ((*bed
->elf_backend_output_arch_local_syms
)
10612 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10616 /* That wrote out all the local symbols. Finish up the symbol table
10617 with the global symbols. Even if we want to strip everything we
10618 can, we still need to deal with those global symbols that got
10619 converted to local in a version script. */
10621 /* The sh_info field records the index of the first non local symbol. */
10622 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
10625 && finfo
.dynsym_sec
->output_section
!= bfd_abs_section_ptr
)
10627 Elf_Internal_Sym sym
;
10628 bfd_byte
*dynsym
= finfo
.dynsym_sec
->contents
;
10629 long last_local
= 0;
10631 /* Write out the section symbols for the output sections. */
10632 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
10638 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10641 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
10647 dynindx
= elf_section_data (s
)->dynindx
;
10650 indx
= elf_section_data (s
)->this_idx
;
10651 BFD_ASSERT (indx
> 0);
10652 sym
.st_shndx
= indx
;
10653 if (! check_dynsym (abfd
, &sym
))
10655 sym
.st_value
= s
->vma
;
10656 dest
= dynsym
+ dynindx
* bed
->s
->sizeof_sym
;
10657 if (last_local
< dynindx
)
10658 last_local
= dynindx
;
10659 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10663 /* Write out the local dynsyms. */
10664 if (elf_hash_table (info
)->dynlocal
)
10666 struct elf_link_local_dynamic_entry
*e
;
10667 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
10672 sym
.st_size
= e
->isym
.st_size
;
10673 sym
.st_other
= e
->isym
.st_other
;
10675 /* Copy the internal symbol as is.
10676 Note that we saved a word of storage and overwrote
10677 the original st_name with the dynstr_index. */
10680 s
= bfd_section_from_elf_index (e
->input_bfd
,
10685 elf_section_data (s
->output_section
)->this_idx
;
10686 if (! check_dynsym (abfd
, &sym
))
10688 sym
.st_value
= (s
->output_section
->vma
10690 + e
->isym
.st_value
);
10693 if (last_local
< e
->dynindx
)
10694 last_local
= e
->dynindx
;
10696 dest
= dynsym
+ e
->dynindx
* bed
->s
->sizeof_sym
;
10697 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10701 elf_section_data (finfo
.dynsym_sec
->output_section
)->this_hdr
.sh_info
=
10705 /* We get the global symbols from the hash table. */
10706 eoinfo
.failed
= FALSE
;
10707 eoinfo
.localsyms
= FALSE
;
10708 eoinfo
.finfo
= &finfo
;
10709 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
10714 /* If backend needs to output some symbols not present in the hash
10715 table, do it now. */
10716 if (bed
->elf_backend_output_arch_syms
)
10718 typedef int (*out_sym_func
)
10719 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10720 struct elf_link_hash_entry
*);
10722 if (! ((*bed
->elf_backend_output_arch_syms
)
10723 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10727 /* Flush all symbols to the file. */
10728 if (! elf_link_flush_output_syms (&finfo
, bed
))
10731 /* Now we know the size of the symtab section. */
10732 off
+= symtab_hdr
->sh_size
;
10734 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
10735 if (symtab_shndx_hdr
->sh_name
!= 0)
10737 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
10738 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
10739 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
10740 amt
= bfd_get_symcount (abfd
) * sizeof (Elf_External_Sym_Shndx
);
10741 symtab_shndx_hdr
->sh_size
= amt
;
10743 off
= _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr
,
10746 if (bfd_seek (abfd
, symtab_shndx_hdr
->sh_offset
, SEEK_SET
) != 0
10747 || (bfd_bwrite (finfo
.symshndxbuf
, amt
, abfd
) != amt
))
10752 /* Finish up and write out the symbol string table (.strtab)
10754 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
10755 /* sh_name was set in prep_headers. */
10756 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
10757 symstrtab_hdr
->sh_flags
= 0;
10758 symstrtab_hdr
->sh_addr
= 0;
10759 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (finfo
.symstrtab
);
10760 symstrtab_hdr
->sh_entsize
= 0;
10761 symstrtab_hdr
->sh_link
= 0;
10762 symstrtab_hdr
->sh_info
= 0;
10763 /* sh_offset is set just below. */
10764 symstrtab_hdr
->sh_addralign
= 1;
10766 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
, off
, TRUE
);
10767 elf_tdata (abfd
)->next_file_pos
= off
;
10769 if (bfd_get_symcount (abfd
) > 0)
10771 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
10772 || ! _bfd_stringtab_emit (abfd
, finfo
.symstrtab
))
10776 /* Adjust the relocs to have the correct symbol indices. */
10777 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10779 if ((o
->flags
& SEC_RELOC
) == 0)
10782 elf_link_adjust_relocs (abfd
, &elf_section_data (o
)->rel_hdr
,
10783 elf_section_data (o
)->rel_count
,
10784 elf_section_data (o
)->rel_hashes
);
10785 if (elf_section_data (o
)->rel_hdr2
!= NULL
)
10786 elf_link_adjust_relocs (abfd
, elf_section_data (o
)->rel_hdr2
,
10787 elf_section_data (o
)->rel_count2
,
10788 (elf_section_data (o
)->rel_hashes
10789 + elf_section_data (o
)->rel_count
));
10791 /* Set the reloc_count field to 0 to prevent write_relocs from
10792 trying to swap the relocs out itself. */
10793 o
->reloc_count
= 0;
10796 if (dynamic
&& info
->combreloc
&& dynobj
!= NULL
)
10797 relativecount
= elf_link_sort_relocs (abfd
, info
, &reldyn
);
10799 /* If we are linking against a dynamic object, or generating a
10800 shared library, finish up the dynamic linking information. */
10803 bfd_byte
*dyncon
, *dynconend
;
10805 /* Fix up .dynamic entries. */
10806 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
10807 BFD_ASSERT (o
!= NULL
);
10809 dyncon
= o
->contents
;
10810 dynconend
= o
->contents
+ o
->size
;
10811 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
10813 Elf_Internal_Dyn dyn
;
10817 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
10824 if (relativecount
> 0 && dyncon
+ bed
->s
->sizeof_dyn
< dynconend
)
10826 switch (elf_section_data (reldyn
)->this_hdr
.sh_type
)
10828 case SHT_REL
: dyn
.d_tag
= DT_RELCOUNT
; break;
10829 case SHT_RELA
: dyn
.d_tag
= DT_RELACOUNT
; break;
10832 dyn
.d_un
.d_val
= relativecount
;
10839 name
= info
->init_function
;
10842 name
= info
->fini_function
;
10845 struct elf_link_hash_entry
*h
;
10847 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
10848 FALSE
, FALSE
, TRUE
);
10850 && (h
->root
.type
== bfd_link_hash_defined
10851 || h
->root
.type
== bfd_link_hash_defweak
))
10853 dyn
.d_un
.d_ptr
= h
->root
.u
.def
.value
;
10854 o
= h
->root
.u
.def
.section
;
10855 if (o
->output_section
!= NULL
)
10856 dyn
.d_un
.d_ptr
+= (o
->output_section
->vma
10857 + o
->output_offset
);
10860 /* The symbol is imported from another shared
10861 library and does not apply to this one. */
10862 dyn
.d_un
.d_ptr
= 0;
10869 case DT_PREINIT_ARRAYSZ
:
10870 name
= ".preinit_array";
10872 case DT_INIT_ARRAYSZ
:
10873 name
= ".init_array";
10875 case DT_FINI_ARRAYSZ
:
10876 name
= ".fini_array";
10878 o
= bfd_get_section_by_name (abfd
, name
);
10881 (*_bfd_error_handler
)
10882 (_("%B: could not find output section %s"), abfd
, name
);
10886 (*_bfd_error_handler
)
10887 (_("warning: %s section has zero size"), name
);
10888 dyn
.d_un
.d_val
= o
->size
;
10891 case DT_PREINIT_ARRAY
:
10892 name
= ".preinit_array";
10894 case DT_INIT_ARRAY
:
10895 name
= ".init_array";
10897 case DT_FINI_ARRAY
:
10898 name
= ".fini_array";
10905 name
= ".gnu.hash";
10914 name
= ".gnu.version_d";
10917 name
= ".gnu.version_r";
10920 name
= ".gnu.version";
10922 o
= bfd_get_section_by_name (abfd
, name
);
10925 (*_bfd_error_handler
)
10926 (_("%B: could not find output section %s"), abfd
, name
);
10929 dyn
.d_un
.d_ptr
= o
->vma
;
10936 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
10940 dyn
.d_un
.d_val
= 0;
10941 dyn
.d_un
.d_ptr
= 0;
10942 for (i
= 1; i
< elf_numsections (abfd
); i
++)
10944 Elf_Internal_Shdr
*hdr
;
10946 hdr
= elf_elfsections (abfd
)[i
];
10947 if (hdr
->sh_type
== type
10948 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
10950 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
10951 dyn
.d_un
.d_val
+= hdr
->sh_size
;
10954 if (dyn
.d_un
.d_ptr
== 0
10955 || hdr
->sh_addr
< dyn
.d_un
.d_ptr
)
10956 dyn
.d_un
.d_ptr
= hdr
->sh_addr
;
10962 bed
->s
->swap_dyn_out (dynobj
, &dyn
, dyncon
);
10966 /* If we have created any dynamic sections, then output them. */
10967 if (dynobj
!= NULL
)
10969 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
10972 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10973 if (info
->warn_shared_textrel
&& info
->shared
)
10975 bfd_byte
*dyncon
, *dynconend
;
10977 /* Fix up .dynamic entries. */
10978 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
10979 BFD_ASSERT (o
!= NULL
);
10981 dyncon
= o
->contents
;
10982 dynconend
= o
->contents
+ o
->size
;
10983 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
10985 Elf_Internal_Dyn dyn
;
10987 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
10989 if (dyn
.d_tag
== DT_TEXTREL
)
10991 info
->callbacks
->einfo
10992 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10998 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
11000 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
11002 || o
->output_section
== bfd_abs_section_ptr
)
11004 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
11006 /* At this point, we are only interested in sections
11007 created by _bfd_elf_link_create_dynamic_sections. */
11010 if (elf_hash_table (info
)->stab_info
.stabstr
== o
)
11012 if (elf_hash_table (info
)->eh_info
.hdr_sec
== o
)
11014 if ((elf_section_data (o
->output_section
)->this_hdr
.sh_type
11016 || strcmp (bfd_get_section_name (abfd
, o
), ".dynstr") != 0)
11018 /* FIXME: octets_per_byte. */
11019 if (! bfd_set_section_contents (abfd
, o
->output_section
,
11021 (file_ptr
) o
->output_offset
,
11027 /* The contents of the .dynstr section are actually in a
11029 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
11030 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
11031 || ! _bfd_elf_strtab_emit (abfd
,
11032 elf_hash_table (info
)->dynstr
))
11038 if (info
->relocatable
)
11040 bfd_boolean failed
= FALSE
;
11042 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
11047 /* If we have optimized stabs strings, output them. */
11048 if (elf_hash_table (info
)->stab_info
.stabstr
!= NULL
)
11050 if (! _bfd_write_stab_strings (abfd
, &elf_hash_table (info
)->stab_info
))
11054 if (info
->eh_frame_hdr
)
11056 if (! _bfd_elf_write_section_eh_frame_hdr (abfd
, info
))
11060 if (finfo
.symstrtab
!= NULL
)
11061 _bfd_stringtab_free (finfo
.symstrtab
);
11062 if (finfo
.contents
!= NULL
)
11063 free (finfo
.contents
);
11064 if (finfo
.external_relocs
!= NULL
)
11065 free (finfo
.external_relocs
);
11066 if (finfo
.internal_relocs
!= NULL
)
11067 free (finfo
.internal_relocs
);
11068 if (finfo
.external_syms
!= NULL
)
11069 free (finfo
.external_syms
);
11070 if (finfo
.locsym_shndx
!= NULL
)
11071 free (finfo
.locsym_shndx
);
11072 if (finfo
.internal_syms
!= NULL
)
11073 free (finfo
.internal_syms
);
11074 if (finfo
.indices
!= NULL
)
11075 free (finfo
.indices
);
11076 if (finfo
.sections
!= NULL
)
11077 free (finfo
.sections
);
11078 if (finfo
.symbuf
!= NULL
)
11079 free (finfo
.symbuf
);
11080 if (finfo
.symshndxbuf
!= NULL
)
11081 free (finfo
.symshndxbuf
);
11082 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11084 if ((o
->flags
& SEC_RELOC
) != 0
11085 && elf_section_data (o
)->rel_hashes
!= NULL
)
11086 free (elf_section_data (o
)->rel_hashes
);
11089 elf_tdata (abfd
)->linker
= TRUE
;
11093 bfd_byte
*contents
= (bfd_byte
*) bfd_malloc (attr_size
);
11094 if (contents
== NULL
)
11095 return FALSE
; /* Bail out and fail. */
11096 bfd_elf_set_obj_attr_contents (abfd
, contents
, attr_size
);
11097 bfd_set_section_contents (abfd
, attr_section
, contents
, 0, attr_size
);
11104 if (finfo
.symstrtab
!= NULL
)
11105 _bfd_stringtab_free (finfo
.symstrtab
);
11106 if (finfo
.contents
!= NULL
)
11107 free (finfo
.contents
);
11108 if (finfo
.external_relocs
!= NULL
)
11109 free (finfo
.external_relocs
);
11110 if (finfo
.internal_relocs
!= NULL
)
11111 free (finfo
.internal_relocs
);
11112 if (finfo
.external_syms
!= NULL
)
11113 free (finfo
.external_syms
);
11114 if (finfo
.locsym_shndx
!= NULL
)
11115 free (finfo
.locsym_shndx
);
11116 if (finfo
.internal_syms
!= NULL
)
11117 free (finfo
.internal_syms
);
11118 if (finfo
.indices
!= NULL
)
11119 free (finfo
.indices
);
11120 if (finfo
.sections
!= NULL
)
11121 free (finfo
.sections
);
11122 if (finfo
.symbuf
!= NULL
)
11123 free (finfo
.symbuf
);
11124 if (finfo
.symshndxbuf
!= NULL
)
11125 free (finfo
.symshndxbuf
);
11126 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11128 if ((o
->flags
& SEC_RELOC
) != 0
11129 && elf_section_data (o
)->rel_hashes
!= NULL
)
11130 free (elf_section_data (o
)->rel_hashes
);
11136 /* Initialize COOKIE for input bfd ABFD. */
11139 init_reloc_cookie (struct elf_reloc_cookie
*cookie
,
11140 struct bfd_link_info
*info
, bfd
*abfd
)
11142 Elf_Internal_Shdr
*symtab_hdr
;
11143 const struct elf_backend_data
*bed
;
11145 bed
= get_elf_backend_data (abfd
);
11146 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11148 cookie
->abfd
= abfd
;
11149 cookie
->sym_hashes
= elf_sym_hashes (abfd
);
11150 cookie
->bad_symtab
= elf_bad_symtab (abfd
);
11151 if (cookie
->bad_symtab
)
11153 cookie
->locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
11154 cookie
->extsymoff
= 0;
11158 cookie
->locsymcount
= symtab_hdr
->sh_info
;
11159 cookie
->extsymoff
= symtab_hdr
->sh_info
;
11162 if (bed
->s
->arch_size
== 32)
11163 cookie
->r_sym_shift
= 8;
11165 cookie
->r_sym_shift
= 32;
11167 cookie
->locsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
11168 if (cookie
->locsyms
== NULL
&& cookie
->locsymcount
!= 0)
11170 cookie
->locsyms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
11171 cookie
->locsymcount
, 0,
11173 if (cookie
->locsyms
== NULL
)
11175 info
->callbacks
->einfo (_("%P%X: can not read symbols: %E\n"));
11178 if (info
->keep_memory
)
11179 symtab_hdr
->contents
= (bfd_byte
*) cookie
->locsyms
;
11184 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11187 fini_reloc_cookie (struct elf_reloc_cookie
*cookie
, bfd
*abfd
)
11189 Elf_Internal_Shdr
*symtab_hdr
;
11191 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11192 if (cookie
->locsyms
!= NULL
11193 && symtab_hdr
->contents
!= (unsigned char *) cookie
->locsyms
)
11194 free (cookie
->locsyms
);
11197 /* Initialize the relocation information in COOKIE for input section SEC
11198 of input bfd ABFD. */
11201 init_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11202 struct bfd_link_info
*info
, bfd
*abfd
,
11205 const struct elf_backend_data
*bed
;
11207 if (sec
->reloc_count
== 0)
11209 cookie
->rels
= NULL
;
11210 cookie
->relend
= NULL
;
11214 bed
= get_elf_backend_data (abfd
);
11216 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
11217 info
->keep_memory
);
11218 if (cookie
->rels
== NULL
)
11220 cookie
->rel
= cookie
->rels
;
11221 cookie
->relend
= (cookie
->rels
11222 + sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
);
11224 cookie
->rel
= cookie
->rels
;
11228 /* Free the memory allocated by init_reloc_cookie_rels,
11232 fini_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11235 if (cookie
->rels
&& elf_section_data (sec
)->relocs
!= cookie
->rels
)
11236 free (cookie
->rels
);
11239 /* Initialize the whole of COOKIE for input section SEC. */
11242 init_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11243 struct bfd_link_info
*info
,
11246 if (!init_reloc_cookie (cookie
, info
, sec
->owner
))
11248 if (!init_reloc_cookie_rels (cookie
, info
, sec
->owner
, sec
))
11253 fini_reloc_cookie (cookie
, sec
->owner
);
11258 /* Free the memory allocated by init_reloc_cookie_for_section,
11262 fini_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11265 fini_reloc_cookie_rels (cookie
, sec
);
11266 fini_reloc_cookie (cookie
, sec
->owner
);
11269 /* Garbage collect unused sections. */
11271 /* Default gc_mark_hook. */
11274 _bfd_elf_gc_mark_hook (asection
*sec
,
11275 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
11276 Elf_Internal_Rela
*rel ATTRIBUTE_UNUSED
,
11277 struct elf_link_hash_entry
*h
,
11278 Elf_Internal_Sym
*sym
)
11282 switch (h
->root
.type
)
11284 case bfd_link_hash_defined
:
11285 case bfd_link_hash_defweak
:
11286 return h
->root
.u
.def
.section
;
11288 case bfd_link_hash_common
:
11289 return h
->root
.u
.c
.p
->section
;
11296 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
11301 /* COOKIE->rel describes a relocation against section SEC, which is
11302 a section we've decided to keep. Return the section that contains
11303 the relocation symbol, or NULL if no section contains it. */
11306 _bfd_elf_gc_mark_rsec (struct bfd_link_info
*info
, asection
*sec
,
11307 elf_gc_mark_hook_fn gc_mark_hook
,
11308 struct elf_reloc_cookie
*cookie
)
11310 unsigned long r_symndx
;
11311 struct elf_link_hash_entry
*h
;
11313 r_symndx
= cookie
->rel
->r_info
>> cookie
->r_sym_shift
;
11317 if (r_symndx
>= cookie
->locsymcount
11318 || ELF_ST_BIND (cookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
11320 h
= cookie
->sym_hashes
[r_symndx
- cookie
->extsymoff
];
11321 while (h
->root
.type
== bfd_link_hash_indirect
11322 || h
->root
.type
== bfd_link_hash_warning
)
11323 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11324 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, h
, NULL
);
11327 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, NULL
,
11328 &cookie
->locsyms
[r_symndx
]);
11331 /* COOKIE->rel describes a relocation against section SEC, which is
11332 a section we've decided to keep. Mark the section that contains
11333 the relocation symbol. */
11336 _bfd_elf_gc_mark_reloc (struct bfd_link_info
*info
,
11338 elf_gc_mark_hook_fn gc_mark_hook
,
11339 struct elf_reloc_cookie
*cookie
)
11343 rsec
= _bfd_elf_gc_mark_rsec (info
, sec
, gc_mark_hook
, cookie
);
11344 if (rsec
&& !rsec
->gc_mark
)
11346 if (bfd_get_flavour (rsec
->owner
) != bfd_target_elf_flavour
)
11348 else if (!_bfd_elf_gc_mark (info
, rsec
, gc_mark_hook
))
11354 /* The mark phase of garbage collection. For a given section, mark
11355 it and any sections in this section's group, and all the sections
11356 which define symbols to which it refers. */
11359 _bfd_elf_gc_mark (struct bfd_link_info
*info
,
11361 elf_gc_mark_hook_fn gc_mark_hook
)
11364 asection
*group_sec
, *eh_frame
;
11368 /* Mark all the sections in the group. */
11369 group_sec
= elf_section_data (sec
)->next_in_group
;
11370 if (group_sec
&& !group_sec
->gc_mark
)
11371 if (!_bfd_elf_gc_mark (info
, group_sec
, gc_mark_hook
))
11374 /* Look through the section relocs. */
11376 eh_frame
= elf_eh_frame_section (sec
->owner
);
11377 if ((sec
->flags
& SEC_RELOC
) != 0
11378 && sec
->reloc_count
> 0
11379 && sec
!= eh_frame
)
11381 struct elf_reloc_cookie cookie
;
11383 if (!init_reloc_cookie_for_section (&cookie
, info
, sec
))
11387 for (; cookie
.rel
< cookie
.relend
; cookie
.rel
++)
11388 if (!_bfd_elf_gc_mark_reloc (info
, sec
, gc_mark_hook
, &cookie
))
11393 fini_reloc_cookie_for_section (&cookie
, sec
);
11397 if (ret
&& eh_frame
&& elf_fde_list (sec
))
11399 struct elf_reloc_cookie cookie
;
11401 if (!init_reloc_cookie_for_section (&cookie
, info
, eh_frame
))
11405 if (!_bfd_elf_gc_mark_fdes (info
, sec
, eh_frame
,
11406 gc_mark_hook
, &cookie
))
11408 fini_reloc_cookie_for_section (&cookie
, eh_frame
);
11415 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11417 struct elf_gc_sweep_symbol_info
11419 struct bfd_link_info
*info
;
11420 void (*hide_symbol
) (struct bfd_link_info
*, struct elf_link_hash_entry
*,
11425 elf_gc_sweep_symbol (struct elf_link_hash_entry
*h
, void *data
)
11427 if (h
->root
.type
== bfd_link_hash_warning
)
11428 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11430 if ((h
->root
.type
== bfd_link_hash_defined
11431 || h
->root
.type
== bfd_link_hash_defweak
)
11432 && !h
->root
.u
.def
.section
->gc_mark
11433 && !(h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
))
11435 struct elf_gc_sweep_symbol_info
*inf
=
11436 (struct elf_gc_sweep_symbol_info
*) data
;
11437 (*inf
->hide_symbol
) (inf
->info
, h
, TRUE
);
11443 /* The sweep phase of garbage collection. Remove all garbage sections. */
11445 typedef bfd_boolean (*gc_sweep_hook_fn
)
11446 (bfd
*, struct bfd_link_info
*, asection
*, const Elf_Internal_Rela
*);
11449 elf_gc_sweep (bfd
*abfd
, struct bfd_link_info
*info
)
11452 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11453 gc_sweep_hook_fn gc_sweep_hook
= bed
->gc_sweep_hook
;
11454 unsigned long section_sym_count
;
11455 struct elf_gc_sweep_symbol_info sweep_info
;
11457 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11461 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11464 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11466 /* When any section in a section group is kept, we keep all
11467 sections in the section group. If the first member of
11468 the section group is excluded, we will also exclude the
11470 if (o
->flags
& SEC_GROUP
)
11472 asection
*first
= elf_next_in_group (o
);
11473 o
->gc_mark
= first
->gc_mark
;
11475 else if ((o
->flags
& (SEC_DEBUGGING
| SEC_LINKER_CREATED
)) != 0
11476 || (o
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
)) == 0)
11478 /* Keep debug and special sections. */
11485 /* Skip sweeping sections already excluded. */
11486 if (o
->flags
& SEC_EXCLUDE
)
11489 /* Since this is early in the link process, it is simple
11490 to remove a section from the output. */
11491 o
->flags
|= SEC_EXCLUDE
;
11493 if (info
->print_gc_sections
&& o
->size
!= 0)
11494 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub
, o
->name
);
11496 /* But we also have to update some of the relocation
11497 info we collected before. */
11499 && (o
->flags
& SEC_RELOC
) != 0
11500 && o
->reloc_count
> 0
11501 && !bfd_is_abs_section (o
->output_section
))
11503 Elf_Internal_Rela
*internal_relocs
;
11507 = _bfd_elf_link_read_relocs (o
->owner
, o
, NULL
, NULL
,
11508 info
->keep_memory
);
11509 if (internal_relocs
== NULL
)
11512 r
= (*gc_sweep_hook
) (o
->owner
, info
, o
, internal_relocs
);
11514 if (elf_section_data (o
)->relocs
!= internal_relocs
)
11515 free (internal_relocs
);
11523 /* Remove the symbols that were in the swept sections from the dynamic
11524 symbol table. GCFIXME: Anyone know how to get them out of the
11525 static symbol table as well? */
11526 sweep_info
.info
= info
;
11527 sweep_info
.hide_symbol
= bed
->elf_backend_hide_symbol
;
11528 elf_link_hash_traverse (elf_hash_table (info
), elf_gc_sweep_symbol
,
11531 _bfd_elf_link_renumber_dynsyms (abfd
, info
, §ion_sym_count
);
11535 /* Propagate collected vtable information. This is called through
11536 elf_link_hash_traverse. */
11539 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry
*h
, void *okp
)
11541 if (h
->root
.type
== bfd_link_hash_warning
)
11542 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11544 /* Those that are not vtables. */
11545 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11548 /* Those vtables that do not have parents, we cannot merge. */
11549 if (h
->vtable
->parent
== (struct elf_link_hash_entry
*) -1)
11552 /* If we've already been done, exit. */
11553 if (h
->vtable
->used
&& h
->vtable
->used
[-1])
11556 /* Make sure the parent's table is up to date. */
11557 elf_gc_propagate_vtable_entries_used (h
->vtable
->parent
, okp
);
11559 if (h
->vtable
->used
== NULL
)
11561 /* None of this table's entries were referenced. Re-use the
11563 h
->vtable
->used
= h
->vtable
->parent
->vtable
->used
;
11564 h
->vtable
->size
= h
->vtable
->parent
->vtable
->size
;
11569 bfd_boolean
*cu
, *pu
;
11571 /* Or the parent's entries into ours. */
11572 cu
= h
->vtable
->used
;
11574 pu
= h
->vtable
->parent
->vtable
->used
;
11577 const struct elf_backend_data
*bed
;
11578 unsigned int log_file_align
;
11580 bed
= get_elf_backend_data (h
->root
.u
.def
.section
->owner
);
11581 log_file_align
= bed
->s
->log_file_align
;
11582 n
= h
->vtable
->parent
->vtable
->size
>> log_file_align
;
11597 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry
*h
, void *okp
)
11600 bfd_vma hstart
, hend
;
11601 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
11602 const struct elf_backend_data
*bed
;
11603 unsigned int log_file_align
;
11605 if (h
->root
.type
== bfd_link_hash_warning
)
11606 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11608 /* Take care of both those symbols that do not describe vtables as
11609 well as those that are not loaded. */
11610 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11613 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
11614 || h
->root
.type
== bfd_link_hash_defweak
);
11616 sec
= h
->root
.u
.def
.section
;
11617 hstart
= h
->root
.u
.def
.value
;
11618 hend
= hstart
+ h
->size
;
11620 relstart
= _bfd_elf_link_read_relocs (sec
->owner
, sec
, NULL
, NULL
, TRUE
);
11622 return *(bfd_boolean
*) okp
= FALSE
;
11623 bed
= get_elf_backend_data (sec
->owner
);
11624 log_file_align
= bed
->s
->log_file_align
;
11626 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
11628 for (rel
= relstart
; rel
< relend
; ++rel
)
11629 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
11631 /* If the entry is in use, do nothing. */
11632 if (h
->vtable
->used
11633 && (rel
->r_offset
- hstart
) < h
->vtable
->size
)
11635 bfd_vma entry
= (rel
->r_offset
- hstart
) >> log_file_align
;
11636 if (h
->vtable
->used
[entry
])
11639 /* Otherwise, kill it. */
11640 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
11646 /* Mark sections containing dynamically referenced symbols. When
11647 building shared libraries, we must assume that any visible symbol is
11651 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry
*h
, void *inf
)
11653 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
11655 if (h
->root
.type
== bfd_link_hash_warning
)
11656 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11658 if ((h
->root
.type
== bfd_link_hash_defined
11659 || h
->root
.type
== bfd_link_hash_defweak
)
11661 || (!info
->executable
11663 && ELF_ST_VISIBILITY (h
->other
) != STV_INTERNAL
11664 && ELF_ST_VISIBILITY (h
->other
) != STV_HIDDEN
)))
11665 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11670 /* Keep all sections containing symbols undefined on the command-line,
11671 and the section containing the entry symbol. */
11674 _bfd_elf_gc_keep (struct bfd_link_info
*info
)
11676 struct bfd_sym_chain
*sym
;
11678 for (sym
= info
->gc_sym_list
; sym
!= NULL
; sym
= sym
->next
)
11680 struct elf_link_hash_entry
*h
;
11682 h
= elf_link_hash_lookup (elf_hash_table (info
), sym
->name
,
11683 FALSE
, FALSE
, FALSE
);
11686 && (h
->root
.type
== bfd_link_hash_defined
11687 || h
->root
.type
== bfd_link_hash_defweak
)
11688 && !bfd_is_abs_section (h
->root
.u
.def
.section
))
11689 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11693 /* Do mark and sweep of unused sections. */
11696 bfd_elf_gc_sections (bfd
*abfd
, struct bfd_link_info
*info
)
11698 bfd_boolean ok
= TRUE
;
11700 elf_gc_mark_hook_fn gc_mark_hook
;
11701 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11703 if (!bed
->can_gc_sections
11704 || !is_elf_hash_table (info
->hash
))
11706 (*_bfd_error_handler
)(_("Warning: gc-sections option ignored"));
11710 bed
->gc_keep (info
);
11712 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11713 at the .eh_frame section if we can mark the FDEs individually. */
11714 _bfd_elf_begin_eh_frame_parsing (info
);
11715 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11718 struct elf_reloc_cookie cookie
;
11720 sec
= bfd_get_section_by_name (sub
, ".eh_frame");
11721 if (sec
&& init_reloc_cookie_for_section (&cookie
, info
, sec
))
11723 _bfd_elf_parse_eh_frame (sub
, info
, sec
, &cookie
);
11724 if (elf_section_data (sec
)->sec_info
)
11725 elf_eh_frame_section (sub
) = sec
;
11726 fini_reloc_cookie_for_section (&cookie
, sec
);
11729 _bfd_elf_end_eh_frame_parsing (info
);
11731 /* Apply transitive closure to the vtable entry usage info. */
11732 elf_link_hash_traverse (elf_hash_table (info
),
11733 elf_gc_propagate_vtable_entries_used
,
11738 /* Kill the vtable relocations that were not used. */
11739 elf_link_hash_traverse (elf_hash_table (info
),
11740 elf_gc_smash_unused_vtentry_relocs
,
11745 /* Mark dynamically referenced symbols. */
11746 if (elf_hash_table (info
)->dynamic_sections_created
)
11747 elf_link_hash_traverse (elf_hash_table (info
),
11748 bed
->gc_mark_dynamic_ref
,
11751 /* Grovel through relocs to find out who stays ... */
11752 gc_mark_hook
= bed
->gc_mark_hook
;
11753 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11757 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11760 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11761 if ((o
->flags
& (SEC_EXCLUDE
| SEC_KEEP
)) == SEC_KEEP
&& !o
->gc_mark
)
11762 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
11766 /* Allow the backend to mark additional target specific sections. */
11767 if (bed
->gc_mark_extra_sections
)
11768 bed
->gc_mark_extra_sections (info
, gc_mark_hook
);
11770 /* ... and mark SEC_EXCLUDE for those that go. */
11771 return elf_gc_sweep (abfd
, info
);
11774 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11777 bfd_elf_gc_record_vtinherit (bfd
*abfd
,
11779 struct elf_link_hash_entry
*h
,
11782 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
11783 struct elf_link_hash_entry
**search
, *child
;
11784 bfd_size_type extsymcount
;
11785 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11787 /* The sh_info field of the symtab header tells us where the
11788 external symbols start. We don't care about the local symbols at
11790 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/ bed
->s
->sizeof_sym
;
11791 if (!elf_bad_symtab (abfd
))
11792 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
11794 sym_hashes
= elf_sym_hashes (abfd
);
11795 sym_hashes_end
= sym_hashes
+ extsymcount
;
11797 /* Hunt down the child symbol, which is in this section at the same
11798 offset as the relocation. */
11799 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
11801 if ((child
= *search
) != NULL
11802 && (child
->root
.type
== bfd_link_hash_defined
11803 || child
->root
.type
== bfd_link_hash_defweak
)
11804 && child
->root
.u
.def
.section
== sec
11805 && child
->root
.u
.def
.value
== offset
)
11809 (*_bfd_error_handler
) ("%B: %A+%lu: No symbol found for INHERIT",
11810 abfd
, sec
, (unsigned long) offset
);
11811 bfd_set_error (bfd_error_invalid_operation
);
11815 if (!child
->vtable
)
11817 child
->vtable
= (struct elf_link_virtual_table_entry
*)
11818 bfd_zalloc (abfd
, sizeof (*child
->vtable
));
11819 if (!child
->vtable
)
11824 /* This *should* only be the absolute section. It could potentially
11825 be that someone has defined a non-global vtable though, which
11826 would be bad. It isn't worth paging in the local symbols to be
11827 sure though; that case should simply be handled by the assembler. */
11829 child
->vtable
->parent
= (struct elf_link_hash_entry
*) -1;
11832 child
->vtable
->parent
= h
;
11837 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11840 bfd_elf_gc_record_vtentry (bfd
*abfd ATTRIBUTE_UNUSED
,
11841 asection
*sec ATTRIBUTE_UNUSED
,
11842 struct elf_link_hash_entry
*h
,
11845 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11846 unsigned int log_file_align
= bed
->s
->log_file_align
;
11850 h
->vtable
= (struct elf_link_virtual_table_entry
*)
11851 bfd_zalloc (abfd
, sizeof (*h
->vtable
));
11856 if (addend
>= h
->vtable
->size
)
11858 size_t size
, bytes
, file_align
;
11859 bfd_boolean
*ptr
= h
->vtable
->used
;
11861 /* While the symbol is undefined, we have to be prepared to handle
11863 file_align
= 1 << log_file_align
;
11864 if (h
->root
.type
== bfd_link_hash_undefined
)
11865 size
= addend
+ file_align
;
11869 if (addend
>= size
)
11871 /* Oops! We've got a reference past the defined end of
11872 the table. This is probably a bug -- shall we warn? */
11873 size
= addend
+ file_align
;
11876 size
= (size
+ file_align
- 1) & -file_align
;
11878 /* Allocate one extra entry for use as a "done" flag for the
11879 consolidation pass. */
11880 bytes
= ((size
>> log_file_align
) + 1) * sizeof (bfd_boolean
);
11884 ptr
= (bfd_boolean
*) bfd_realloc (ptr
- 1, bytes
);
11890 oldbytes
= (((h
->vtable
->size
>> log_file_align
) + 1)
11891 * sizeof (bfd_boolean
));
11892 memset (((char *) ptr
) + oldbytes
, 0, bytes
- oldbytes
);
11896 ptr
= (bfd_boolean
*) bfd_zmalloc (bytes
);
11901 /* And arrange for that done flag to be at index -1. */
11902 h
->vtable
->used
= ptr
+ 1;
11903 h
->vtable
->size
= size
;
11906 h
->vtable
->used
[addend
>> log_file_align
] = TRUE
;
11911 struct alloc_got_off_arg
{
11913 struct bfd_link_info
*info
;
11916 /* We need a special top-level link routine to convert got reference counts
11917 to real got offsets. */
11920 elf_gc_allocate_got_offsets (struct elf_link_hash_entry
*h
, void *arg
)
11922 struct alloc_got_off_arg
*gofarg
= (struct alloc_got_off_arg
*) arg
;
11923 bfd
*obfd
= gofarg
->info
->output_bfd
;
11924 const struct elf_backend_data
*bed
= get_elf_backend_data (obfd
);
11926 if (h
->root
.type
== bfd_link_hash_warning
)
11927 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11929 if (h
->got
.refcount
> 0)
11931 h
->got
.offset
= gofarg
->gotoff
;
11932 gofarg
->gotoff
+= bed
->got_elt_size (obfd
, gofarg
->info
, h
, NULL
, 0);
11935 h
->got
.offset
= (bfd_vma
) -1;
11940 /* And an accompanying bit to work out final got entry offsets once
11941 we're done. Should be called from final_link. */
11944 bfd_elf_gc_common_finalize_got_offsets (bfd
*abfd
,
11945 struct bfd_link_info
*info
)
11948 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11950 struct alloc_got_off_arg gofarg
;
11952 BFD_ASSERT (abfd
== info
->output_bfd
);
11954 if (! is_elf_hash_table (info
->hash
))
11957 /* The GOT offset is relative to the .got section, but the GOT header is
11958 put into the .got.plt section, if the backend uses it. */
11959 if (bed
->want_got_plt
)
11962 gotoff
= bed
->got_header_size
;
11964 /* Do the local .got entries first. */
11965 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
11967 bfd_signed_vma
*local_got
;
11968 bfd_size_type j
, locsymcount
;
11969 Elf_Internal_Shdr
*symtab_hdr
;
11971 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
11974 local_got
= elf_local_got_refcounts (i
);
11978 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
11979 if (elf_bad_symtab (i
))
11980 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
11982 locsymcount
= symtab_hdr
->sh_info
;
11984 for (j
= 0; j
< locsymcount
; ++j
)
11986 if (local_got
[j
] > 0)
11988 local_got
[j
] = gotoff
;
11989 gotoff
+= bed
->got_elt_size (abfd
, info
, NULL
, i
, j
);
11992 local_got
[j
] = (bfd_vma
) -1;
11996 /* Then the global .got entries. .plt refcounts are handled by
11997 adjust_dynamic_symbol */
11998 gofarg
.gotoff
= gotoff
;
11999 gofarg
.info
= info
;
12000 elf_link_hash_traverse (elf_hash_table (info
),
12001 elf_gc_allocate_got_offsets
,
12006 /* Many folk need no more in the way of final link than this, once
12007 got entry reference counting is enabled. */
12010 bfd_elf_gc_common_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
12012 if (!bfd_elf_gc_common_finalize_got_offsets (abfd
, info
))
12015 /* Invoke the regular ELF backend linker to do all the work. */
12016 return bfd_elf_final_link (abfd
, info
);
12020 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset
, void *cookie
)
12022 struct elf_reloc_cookie
*rcookie
= (struct elf_reloc_cookie
*) cookie
;
12024 if (rcookie
->bad_symtab
)
12025 rcookie
->rel
= rcookie
->rels
;
12027 for (; rcookie
->rel
< rcookie
->relend
; rcookie
->rel
++)
12029 unsigned long r_symndx
;
12031 if (! rcookie
->bad_symtab
)
12032 if (rcookie
->rel
->r_offset
> offset
)
12034 if (rcookie
->rel
->r_offset
!= offset
)
12037 r_symndx
= rcookie
->rel
->r_info
>> rcookie
->r_sym_shift
;
12038 if (r_symndx
== SHN_UNDEF
)
12041 if (r_symndx
>= rcookie
->locsymcount
12042 || ELF_ST_BIND (rcookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
12044 struct elf_link_hash_entry
*h
;
12046 h
= rcookie
->sym_hashes
[r_symndx
- rcookie
->extsymoff
];
12048 while (h
->root
.type
== bfd_link_hash_indirect
12049 || h
->root
.type
== bfd_link_hash_warning
)
12050 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12052 if ((h
->root
.type
== bfd_link_hash_defined
12053 || h
->root
.type
== bfd_link_hash_defweak
)
12054 && elf_discarded_section (h
->root
.u
.def
.section
))
12061 /* It's not a relocation against a global symbol,
12062 but it could be a relocation against a local
12063 symbol for a discarded section. */
12065 Elf_Internal_Sym
*isym
;
12067 /* Need to: get the symbol; get the section. */
12068 isym
= &rcookie
->locsyms
[r_symndx
];
12069 isec
= bfd_section_from_elf_index (rcookie
->abfd
, isym
->st_shndx
);
12070 if (isec
!= NULL
&& elf_discarded_section (isec
))
12078 /* Discard unneeded references to discarded sections.
12079 Returns TRUE if any section's size was changed. */
12080 /* This function assumes that the relocations are in sorted order,
12081 which is true for all known assemblers. */
12084 bfd_elf_discard_info (bfd
*output_bfd
, struct bfd_link_info
*info
)
12086 struct elf_reloc_cookie cookie
;
12087 asection
*stab
, *eh
;
12088 const struct elf_backend_data
*bed
;
12090 bfd_boolean ret
= FALSE
;
12092 if (info
->traditional_format
12093 || !is_elf_hash_table (info
->hash
))
12096 _bfd_elf_begin_eh_frame_parsing (info
);
12097 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
12099 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
12102 bed
= get_elf_backend_data (abfd
);
12104 if ((abfd
->flags
& DYNAMIC
) != 0)
12108 if (!info
->relocatable
)
12110 eh
= bfd_get_section_by_name (abfd
, ".eh_frame");
12113 || bfd_is_abs_section (eh
->output_section
)))
12117 stab
= bfd_get_section_by_name (abfd
, ".stab");
12119 && (stab
->size
== 0
12120 || bfd_is_abs_section (stab
->output_section
)
12121 || stab
->sec_info_type
!= ELF_INFO_TYPE_STABS
))
12126 && bed
->elf_backend_discard_info
== NULL
)
12129 if (!init_reloc_cookie (&cookie
, info
, abfd
))
12133 && stab
->reloc_count
> 0
12134 && init_reloc_cookie_rels (&cookie
, info
, abfd
, stab
))
12136 if (_bfd_discard_section_stabs (abfd
, stab
,
12137 elf_section_data (stab
)->sec_info
,
12138 bfd_elf_reloc_symbol_deleted_p
,
12141 fini_reloc_cookie_rels (&cookie
, stab
);
12145 && init_reloc_cookie_rels (&cookie
, info
, abfd
, eh
))
12147 _bfd_elf_parse_eh_frame (abfd
, info
, eh
, &cookie
);
12148 if (_bfd_elf_discard_section_eh_frame (abfd
, info
, eh
,
12149 bfd_elf_reloc_symbol_deleted_p
,
12152 fini_reloc_cookie_rels (&cookie
, eh
);
12155 if (bed
->elf_backend_discard_info
!= NULL
12156 && (*bed
->elf_backend_discard_info
) (abfd
, &cookie
, info
))
12159 fini_reloc_cookie (&cookie
, abfd
);
12161 _bfd_elf_end_eh_frame_parsing (info
);
12163 if (info
->eh_frame_hdr
12164 && !info
->relocatable
12165 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd
, info
))
12171 /* For a SHT_GROUP section, return the group signature. For other
12172 sections, return the normal section name. */
12174 static const char *
12175 section_signature (asection
*sec
)
12177 if ((sec
->flags
& SEC_GROUP
) != 0
12178 && elf_next_in_group (sec
) != NULL
12179 && elf_group_name (elf_next_in_group (sec
)) != NULL
)
12180 return elf_group_name (elf_next_in_group (sec
));
12185 _bfd_elf_section_already_linked (bfd
*abfd
, asection
*sec
,
12186 struct bfd_link_info
*info
)
12189 const char *name
, *p
;
12190 struct bfd_section_already_linked
*l
;
12191 struct bfd_section_already_linked_hash_entry
*already_linked_list
;
12193 if (sec
->output_section
== bfd_abs_section_ptr
)
12196 flags
= sec
->flags
;
12198 /* Return if it isn't a linkonce section. A comdat group section
12199 also has SEC_LINK_ONCE set. */
12200 if ((flags
& SEC_LINK_ONCE
) == 0)
12203 /* Don't put group member sections on our list of already linked
12204 sections. They are handled as a group via their group section. */
12205 if (elf_sec_group (sec
) != NULL
)
12208 /* FIXME: When doing a relocatable link, we may have trouble
12209 copying relocations in other sections that refer to local symbols
12210 in the section being discarded. Those relocations will have to
12211 be converted somehow; as of this writing I'm not sure that any of
12212 the backends handle that correctly.
12214 It is tempting to instead not discard link once sections when
12215 doing a relocatable link (technically, they should be discarded
12216 whenever we are building constructors). However, that fails,
12217 because the linker winds up combining all the link once sections
12218 into a single large link once section, which defeats the purpose
12219 of having link once sections in the first place.
12221 Also, not merging link once sections in a relocatable link
12222 causes trouble for MIPS ELF, which relies on link once semantics
12223 to handle the .reginfo section correctly. */
12225 name
= section_signature (sec
);
12227 if (CONST_STRNEQ (name
, ".gnu.linkonce.")
12228 && (p
= strchr (name
+ sizeof (".gnu.linkonce.") - 1, '.')) != NULL
)
12233 already_linked_list
= bfd_section_already_linked_table_lookup (p
);
12235 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12237 /* We may have 2 different types of sections on the list: group
12238 sections and linkonce sections. Match like sections. */
12239 if ((flags
& SEC_GROUP
) == (l
->sec
->flags
& SEC_GROUP
)
12240 && strcmp (name
, section_signature (l
->sec
)) == 0
12241 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
)
12243 /* The section has already been linked. See if we should
12244 issue a warning. */
12245 switch (flags
& SEC_LINK_DUPLICATES
)
12250 case SEC_LINK_DUPLICATES_DISCARD
:
12253 case SEC_LINK_DUPLICATES_ONE_ONLY
:
12254 (*_bfd_error_handler
)
12255 (_("%B: ignoring duplicate section `%A'"),
12259 case SEC_LINK_DUPLICATES_SAME_SIZE
:
12260 if (sec
->size
!= l
->sec
->size
)
12261 (*_bfd_error_handler
)
12262 (_("%B: duplicate section `%A' has different size"),
12266 case SEC_LINK_DUPLICATES_SAME_CONTENTS
:
12267 if (sec
->size
!= l
->sec
->size
)
12268 (*_bfd_error_handler
)
12269 (_("%B: duplicate section `%A' has different size"),
12271 else if (sec
->size
!= 0)
12273 bfd_byte
*sec_contents
, *l_sec_contents
;
12275 if (!bfd_malloc_and_get_section (abfd
, sec
, &sec_contents
))
12276 (*_bfd_error_handler
)
12277 (_("%B: warning: could not read contents of section `%A'"),
12279 else if (!bfd_malloc_and_get_section (l
->sec
->owner
, l
->sec
,
12281 (*_bfd_error_handler
)
12282 (_("%B: warning: could not read contents of section `%A'"),
12283 l
->sec
->owner
, l
->sec
);
12284 else if (memcmp (sec_contents
, l_sec_contents
, sec
->size
) != 0)
12285 (*_bfd_error_handler
)
12286 (_("%B: warning: duplicate section `%A' has different contents"),
12290 free (sec_contents
);
12291 if (l_sec_contents
)
12292 free (l_sec_contents
);
12297 /* Set the output_section field so that lang_add_section
12298 does not create a lang_input_section structure for this
12299 section. Since there might be a symbol in the section
12300 being discarded, we must retain a pointer to the section
12301 which we are really going to use. */
12302 sec
->output_section
= bfd_abs_section_ptr
;
12303 sec
->kept_section
= l
->sec
;
12305 if (flags
& SEC_GROUP
)
12307 asection
*first
= elf_next_in_group (sec
);
12308 asection
*s
= first
;
12312 s
->output_section
= bfd_abs_section_ptr
;
12313 /* Record which group discards it. */
12314 s
->kept_section
= l
->sec
;
12315 s
= elf_next_in_group (s
);
12316 /* These lists are circular. */
12326 /* A single member comdat group section may be discarded by a
12327 linkonce section and vice versa. */
12329 if ((flags
& SEC_GROUP
) != 0)
12331 asection
*first
= elf_next_in_group (sec
);
12333 if (first
!= NULL
&& elf_next_in_group (first
) == first
)
12334 /* Check this single member group against linkonce sections. */
12335 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12336 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12337 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
12338 && bfd_elf_match_symbols_in_sections (l
->sec
, first
, info
))
12340 first
->output_section
= bfd_abs_section_ptr
;
12341 first
->kept_section
= l
->sec
;
12342 sec
->output_section
= bfd_abs_section_ptr
;
12347 /* Check this linkonce section against single member groups. */
12348 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12349 if (l
->sec
->flags
& SEC_GROUP
)
12351 asection
*first
= elf_next_in_group (l
->sec
);
12354 && elf_next_in_group (first
) == first
12355 && bfd_elf_match_symbols_in_sections (first
, sec
, info
))
12357 sec
->output_section
= bfd_abs_section_ptr
;
12358 sec
->kept_section
= first
;
12363 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12364 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12365 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12366 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12367 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12368 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12369 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12370 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12371 The reverse order cannot happen as there is never a bfd with only the
12372 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12373 matter as here were are looking only for cross-bfd sections. */
12375 if ((flags
& SEC_GROUP
) == 0 && CONST_STRNEQ (name
, ".gnu.linkonce.r."))
12376 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12377 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12378 && CONST_STRNEQ (l
->sec
->name
, ".gnu.linkonce.t."))
12380 if (abfd
!= l
->sec
->owner
)
12381 sec
->output_section
= bfd_abs_section_ptr
;
12385 /* This is the first section with this name. Record it. */
12386 if (! bfd_section_already_linked_table_insert (already_linked_list
, sec
))
12387 info
->callbacks
->einfo (_("%F%P: already_linked_table: %E\n"));
12391 _bfd_elf_common_definition (Elf_Internal_Sym
*sym
)
12393 return sym
->st_shndx
== SHN_COMMON
;
12397 _bfd_elf_common_section_index (asection
*sec ATTRIBUTE_UNUSED
)
12403 _bfd_elf_common_section (asection
*sec ATTRIBUTE_UNUSED
)
12405 return bfd_com_section_ptr
;
12409 _bfd_elf_default_got_elt_size (bfd
*abfd
,
12410 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
12411 struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
,
12412 bfd
*ibfd ATTRIBUTE_UNUSED
,
12413 unsigned long symndx ATTRIBUTE_UNUSED
)
12415 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12416 return bed
->s
->arch_size
/ 8;
12419 /* Routines to support the creation of dynamic relocs. */
12421 /* Return true if NAME is a name of a relocation
12422 section associated with section S. */
12425 is_reloc_section (bfd_boolean rela
, const char * name
, asection
* s
)
12428 return CONST_STRNEQ (name
, ".rela")
12429 && strcmp (bfd_get_section_name (NULL
, s
), name
+ 5) == 0;
12431 return CONST_STRNEQ (name
, ".rel")
12432 && strcmp (bfd_get_section_name (NULL
, s
), name
+ 4) == 0;
12435 /* Returns the name of the dynamic reloc section associated with SEC. */
12437 static const char *
12438 get_dynamic_reloc_section_name (bfd
* abfd
,
12440 bfd_boolean is_rela
)
12443 unsigned int strndx
= elf_elfheader (abfd
)->e_shstrndx
;
12444 unsigned int shnam
= elf_section_data (sec
)->rel_hdr
.sh_name
;
12446 name
= bfd_elf_string_from_elf_section (abfd
, strndx
, shnam
);
12450 if (! is_reloc_section (is_rela
, name
, sec
))
12452 static bfd_boolean complained
= FALSE
;
12456 (*_bfd_error_handler
)
12457 (_("%B: bad relocation section name `%s\'"), abfd
, name
);
12466 /* Returns the dynamic reloc section associated with SEC.
12467 If necessary compute the name of the dynamic reloc section based
12468 on SEC's name (looked up in ABFD's string table) and the setting
12472 _bfd_elf_get_dynamic_reloc_section (bfd
* abfd
,
12474 bfd_boolean is_rela
)
12476 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
12478 if (reloc_sec
== NULL
)
12480 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
12484 reloc_sec
= bfd_get_section_by_name (abfd
, name
);
12486 if (reloc_sec
!= NULL
)
12487 elf_section_data (sec
)->sreloc
= reloc_sec
;
12494 /* Returns the dynamic reloc section associated with SEC. If the
12495 section does not exist it is created and attached to the DYNOBJ
12496 bfd and stored in the SRELOC field of SEC's elf_section_data
12499 ALIGNMENT is the alignment for the newly created section and
12500 IS_RELA defines whether the name should be .rela.<SEC's name>
12501 or .rel.<SEC's name>. The section name is looked up in the
12502 string table associated with ABFD. */
12505 _bfd_elf_make_dynamic_reloc_section (asection
* sec
,
12507 unsigned int alignment
,
12509 bfd_boolean is_rela
)
12511 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
12513 if (reloc_sec
== NULL
)
12515 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
12520 reloc_sec
= bfd_get_section_by_name (dynobj
, name
);
12522 if (reloc_sec
== NULL
)
12526 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
12527 if ((sec
->flags
& SEC_ALLOC
) != 0)
12528 flags
|= SEC_ALLOC
| SEC_LOAD
;
12530 reloc_sec
= bfd_make_section_with_flags (dynobj
, name
, flags
);
12531 if (reloc_sec
!= NULL
)
12533 if (! bfd_set_section_alignment (dynobj
, reloc_sec
, alignment
))
12538 elf_section_data (sec
)->sreloc
= reloc_sec
;