1 /* tc-mep.c -- Assembler for the Toshiba Media Processor.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2009
3 Free Software Foundation. Inc.
5 This file is part of GAS, the GNU Assembler.
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
24 #include "dwarf2dbg.h"
27 #include "opcodes/mep-desc.h"
28 #include "opcodes/mep-opc.h"
30 #include "elf/common.h"
35 /* Structure to hold all of the different components describing
36 an individual instruction. */
39 const CGEN_INSN
* insn
;
40 const CGEN_INSN
* orig_insn
;
43 CGEN_INSN_INT buffer
[1];
44 #define INSN_VALUE(buf) (*(buf))
46 unsigned char buffer
[CGEN_MAX_INSN_SIZE
];
47 #define INSN_VALUE(buf) (buf)
52 fixS
* fixups
[GAS_CGEN_MAX_FIXUPS
];
53 int indices
[MAX_OPERAND_INSTANCES
];
56 static int mode
= CORE
; /* Start in core mode. */
57 static int pluspresent
= 0;
58 static int allow_disabled_registers
= 0;
59 static int library_flag
= 0;
60 static int mep_cop
= EF_MEP_COP_NONE
;
62 /* We're going to need to store all of the instructions along with
63 their fixups so that we can parallelization grouping rules. */
65 static mep_insn saved_insns
[MAX_SAVED_FIXUP_CHAINS
];
66 static int num_insns_saved
= 0;
68 const char comment_chars
[] = "#";
69 const char line_comment_chars
[] = ";#";
70 const char line_separator_chars
[] = ";";
71 const char EXP_CHARS
[] = "eE";
72 const char FLT_CHARS
[] = "dD";
74 static void mep_switch_to_vliw_mode (int);
75 static void mep_switch_to_core_mode (int);
76 static void mep_s_vtext (int);
77 static void mep_noregerr (int);
79 /* The target specific pseudo-ops which we support. */
80 const pseudo_typeS md_pseudo_table
[] =
83 { "file", (void (*) (int)) dwarf2_directive_file
, 0 },
84 { "loc", dwarf2_directive_loc
, 0 },
85 { "vliw", mep_switch_to_vliw_mode
, 0 },
86 { "core", mep_switch_to_core_mode
, 0 },
87 { "vtext", mep_s_vtext
, 0 },
88 { "noregerr", mep_noregerr
, 0 },
92 /* Relocations against symbols are done in two
93 parts, with a HI relocation and a LO relocation. Each relocation
94 has only 16 bits of space to store an addend. This means that in
95 order for the linker to handle carries correctly, it must be able
96 to locate both the HI and the LO relocation. This means that the
97 relocations must appear in order in the relocation table.
99 In order to implement this, we keep track of each unmatched HI
100 relocation. We then sort them so that they immediately precede the
101 corresponding LO relocation. */
105 struct mep_hi_fixup
* next
; /* Next HI fixup. */
106 fixS
* fixp
; /* This fixup. */
107 segT seg
; /* The section this fixup is in. */
110 /* The list of unmatched HI relocs. */
111 static struct mep_hi_fixup
* mep_hi_fixup_list
;
114 #define OPTION_EB (OPTION_MD_BASE + 0)
115 #define OPTION_EL (OPTION_MD_BASE + 1)
116 #define OPTION_CONFIG (OPTION_MD_BASE + 2)
117 #define OPTION_AVERAGE (OPTION_MD_BASE + 3)
118 #define OPTION_NOAVERAGE (OPTION_MD_BASE + 4)
119 #define OPTION_MULT (OPTION_MD_BASE + 5)
120 #define OPTION_NOMULT (OPTION_MD_BASE + 6)
121 #define OPTION_DIV (OPTION_MD_BASE + 7)
122 #define OPTION_NODIV (OPTION_MD_BASE + 8)
123 #define OPTION_BITOPS (OPTION_MD_BASE + 9)
124 #define OPTION_NOBITOPS (OPTION_MD_BASE + 10)
125 #define OPTION_LEADZ (OPTION_MD_BASE + 11)
126 #define OPTION_NOLEADZ (OPTION_MD_BASE + 12)
127 #define OPTION_ABSDIFF (OPTION_MD_BASE + 13)
128 #define OPTION_NOABSDIFF (OPTION_MD_BASE + 14)
129 #define OPTION_MINMAX (OPTION_MD_BASE + 15)
130 #define OPTION_NOMINMAX (OPTION_MD_BASE + 16)
131 #define OPTION_CLIP (OPTION_MD_BASE + 17)
132 #define OPTION_NOCLIP (OPTION_MD_BASE + 18)
133 #define OPTION_SATUR (OPTION_MD_BASE + 19)
134 #define OPTION_NOSATUR (OPTION_MD_BASE + 20)
135 #define OPTION_COP32 (OPTION_MD_BASE + 21)
136 #define OPTION_REPEAT (OPTION_MD_BASE + 25)
137 #define OPTION_NOREPEAT (OPTION_MD_BASE + 26)
138 #define OPTION_DEBUG (OPTION_MD_BASE + 27)
139 #define OPTION_NODEBUG (OPTION_MD_BASE + 28)
140 #define OPTION_UCI (OPTION_MD_BASE + 29)
141 #define OPTION_NOUCI (OPTION_MD_BASE + 30)
142 #define OPTION_DSP (OPTION_MD_BASE + 31)
143 #define OPTION_NODSP (OPTION_MD_BASE + 32)
144 #define OPTION_LIBRARY (OPTION_MD_BASE + 33)
146 struct option md_longopts
[] = {
147 { "EB", no_argument
, NULL
, OPTION_EB
},
148 { "EL", no_argument
, NULL
, OPTION_EL
},
149 { "mconfig", required_argument
, NULL
, OPTION_CONFIG
},
150 { "maverage", no_argument
, NULL
, OPTION_AVERAGE
},
151 { "mno-average", no_argument
, NULL
, OPTION_NOAVERAGE
},
152 { "mmult", no_argument
, NULL
, OPTION_MULT
},
153 { "mno-mult", no_argument
, NULL
, OPTION_NOMULT
},
154 { "mdiv", no_argument
, NULL
, OPTION_DIV
},
155 { "mno-div", no_argument
, NULL
, OPTION_NODIV
},
156 { "mbitops", no_argument
, NULL
, OPTION_BITOPS
},
157 { "mno-bitops", no_argument
, NULL
, OPTION_NOBITOPS
},
158 { "mleadz", no_argument
, NULL
, OPTION_LEADZ
},
159 { "mno-leadz", no_argument
, NULL
, OPTION_NOLEADZ
},
160 { "mabsdiff", no_argument
, NULL
, OPTION_ABSDIFF
},
161 { "mno-absdiff", no_argument
, NULL
, OPTION_NOABSDIFF
},
162 { "mminmax", no_argument
, NULL
, OPTION_MINMAX
},
163 { "mno-minmax", no_argument
, NULL
, OPTION_NOMINMAX
},
164 { "mclip", no_argument
, NULL
, OPTION_CLIP
},
165 { "mno-clip", no_argument
, NULL
, OPTION_NOCLIP
},
166 { "msatur", no_argument
, NULL
, OPTION_SATUR
},
167 { "mno-satur", no_argument
, NULL
, OPTION_NOSATUR
},
168 { "mcop32", no_argument
, NULL
, OPTION_COP32
},
169 { "mdebug", no_argument
, NULL
, OPTION_DEBUG
},
170 { "mno-debug", no_argument
, NULL
, OPTION_NODEBUG
},
171 { "muci", no_argument
, NULL
, OPTION_UCI
},
172 { "mno-uci", no_argument
, NULL
, OPTION_NOUCI
},
173 { "mdsp", no_argument
, NULL
, OPTION_DSP
},
174 { "mno-dsp", no_argument
, NULL
, OPTION_NODSP
},
175 { "mlibrary", no_argument
, NULL
, OPTION_LIBRARY
},
176 { NULL
, 0, NULL
, 0 } };
177 size_t md_longopts_size
= sizeof (md_longopts
);
179 /* Options which default to on/off together. See the comment where
180 this is used for details. Note that CP and CP64 are not in this
181 list because disabling those overrides the -mivc2 option. */
182 #define OPTION_MASK \
183 ( (1 << CGEN_INSN_OPTIONAL_BIT_INSN) \
184 | (1 << CGEN_INSN_OPTIONAL_MUL_INSN) \
185 | (1 << CGEN_INSN_OPTIONAL_DIV_INSN) \
186 | (1 << CGEN_INSN_OPTIONAL_DEBUG_INSN) \
187 | (1 << CGEN_INSN_OPTIONAL_LDZ_INSN) \
188 | (1 << CGEN_INSN_OPTIONAL_ABS_INSN) \
189 | (1 << CGEN_INSN_OPTIONAL_AVE_INSN) \
190 | (1 << CGEN_INSN_OPTIONAL_MINMAX_INSN) \
191 | (1 << CGEN_INSN_OPTIONAL_CLIP_INSN) \
192 | (1 << CGEN_INSN_OPTIONAL_SAT_INSN) \
193 | (1 << CGEN_INSN_OPTIONAL_UCI_INSN) \
194 | (1 << CGEN_INSN_OPTIONAL_DSP_INSN) )
196 const char * md_shortopts
= "";
197 static int optbits
= 0;
198 static int optbitset
= 0;
201 md_parse_option (int c
, char *arg ATTRIBUTE_UNUSED
)
207 target_big_endian
= 1;
210 target_big_endian
= 0;
214 for (i
=1; mep_config_map
[i
].name
; i
++)
215 if (strcmp (mep_config_map
[i
].name
, arg
) == 0)
222 fprintf (stderr
, "Error: unknown configuration %s\n", arg
);
225 mep_config_index
= idx
;
226 target_big_endian
= mep_config_map
[idx
].big_endian
;
229 optbits
|= 1 << CGEN_INSN_OPTIONAL_AVE_INSN
;
230 optbitset
|= 1 << CGEN_INSN_OPTIONAL_AVE_INSN
;
232 case OPTION_NOAVERAGE
:
233 optbits
&= ~(1 << CGEN_INSN_OPTIONAL_AVE_INSN
);
234 optbitset
|= 1 << CGEN_INSN_OPTIONAL_AVE_INSN
;
237 optbits
|= 1 << CGEN_INSN_OPTIONAL_MUL_INSN
;
238 optbitset
|= 1 << CGEN_INSN_OPTIONAL_MUL_INSN
;
241 optbits
&= ~(1 << CGEN_INSN_OPTIONAL_MUL_INSN
);
242 optbitset
|= 1 << CGEN_INSN_OPTIONAL_MUL_INSN
;
245 optbits
|= 1 << CGEN_INSN_OPTIONAL_DIV_INSN
;
246 optbitset
|= 1 << CGEN_INSN_OPTIONAL_DIV_INSN
;
249 optbits
&= ~(1 << CGEN_INSN_OPTIONAL_DIV_INSN
);
250 optbitset
|= 1 << CGEN_INSN_OPTIONAL_DIV_INSN
;
253 optbits
|= 1 << CGEN_INSN_OPTIONAL_BIT_INSN
;
254 optbitset
|= 1 << CGEN_INSN_OPTIONAL_BIT_INSN
;
256 case OPTION_NOBITOPS
:
257 optbits
&= ~(1 << CGEN_INSN_OPTIONAL_BIT_INSN
);
258 optbitset
|= 1 << CGEN_INSN_OPTIONAL_BIT_INSN
;
261 optbits
|= 1 << CGEN_INSN_OPTIONAL_LDZ_INSN
;
262 optbitset
|= 1 << CGEN_INSN_OPTIONAL_LDZ_INSN
;
265 optbits
&= ~(1 << CGEN_INSN_OPTIONAL_LDZ_INSN
);
266 optbitset
|= 1 << CGEN_INSN_OPTIONAL_LDZ_INSN
;
269 optbits
|= 1 << CGEN_INSN_OPTIONAL_ABS_INSN
;
270 optbitset
|= 1 << CGEN_INSN_OPTIONAL_ABS_INSN
;
272 case OPTION_NOABSDIFF
:
273 optbits
&= ~(1 << CGEN_INSN_OPTIONAL_ABS_INSN
);
274 optbitset
|= 1 << CGEN_INSN_OPTIONAL_ABS_INSN
;
277 optbits
|= 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN
;
278 optbitset
|= 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN
;
280 case OPTION_NOMINMAX
:
281 optbits
&= ~(1 << CGEN_INSN_OPTIONAL_MINMAX_INSN
);
282 optbitset
|= 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN
;
285 optbits
|= 1 << CGEN_INSN_OPTIONAL_CLIP_INSN
;
286 optbitset
|= 1 << CGEN_INSN_OPTIONAL_CLIP_INSN
;
289 optbits
&= ~(1 << CGEN_INSN_OPTIONAL_CLIP_INSN
);
290 optbitset
|= 1 << CGEN_INSN_OPTIONAL_CLIP_INSN
;
293 optbits
|= 1 << CGEN_INSN_OPTIONAL_SAT_INSN
;
294 optbitset
|= 1 << CGEN_INSN_OPTIONAL_SAT_INSN
;
297 optbits
&= ~(1 << CGEN_INSN_OPTIONAL_SAT_INSN
);
298 optbitset
|= 1 << CGEN_INSN_OPTIONAL_SAT_INSN
;
301 optbits
|= 1 << CGEN_INSN_OPTIONAL_CP_INSN
;
302 optbitset
|= 1 << CGEN_INSN_OPTIONAL_CP_INSN
;
305 optbits
|= 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN
;
306 optbitset
|= 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN
;
309 optbits
&= ~(1 << CGEN_INSN_OPTIONAL_DEBUG_INSN
);
310 optbitset
|= 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN
;
313 optbits
|= 1 << CGEN_INSN_OPTIONAL_UCI_INSN
;
314 optbitset
|= 1 << CGEN_INSN_OPTIONAL_UCI_INSN
;
317 optbits
&= ~(1 << CGEN_INSN_OPTIONAL_UCI_INSN
);
318 optbitset
|= 1 << CGEN_INSN_OPTIONAL_UCI_INSN
;
321 optbits
|= 1 << CGEN_INSN_OPTIONAL_DSP_INSN
;
322 optbitset
|= 1 << CGEN_INSN_OPTIONAL_DSP_INSN
;
325 optbits
&= ~(1 << CGEN_INSN_OPTIONAL_DSP_INSN
);
326 optbitset
|= 1 << CGEN_INSN_OPTIONAL_DSP_INSN
;
329 library_flag
= EF_MEP_LIBRARY
;
332 case OPTION_NOREPEAT
:
341 md_show_usage (FILE *stream
)
343 fprintf (stream
, _("MeP specific command line options:\n\
344 -EB assemble for a big endian system\n\
345 -EL assemble for a little endian system (default)\n\
346 -mconfig=<name> specify a chip configuration to use\n\
347 -maverage -mno-average -mmult -mno-mult -mdiv -mno-div\n\
348 -mbitops -mno-bitops -mleadz -mno-leadz -mabsdiff -mno-absdiff\n\
349 -mminmax -mno-minmax -mclip -mno-clip -msatur -mno-satur -mcop32\n\
350 enable/disable the given opcodes\n\
352 If -mconfig is given, the other -m options modify it. Otherwise,\n\
353 if no -m options are given, all core opcodes are enabled;\n\
354 if any enabling -m options are given, only those are enabled;\n\
355 if only disabling -m options are given, only those are disabled.\n\
357 if (mep_config_map
[1].name
)
360 fprintf (stream
, " -mconfig=STR specify the configuration to use\n");
361 fprintf (stream
, " Configurations:");
362 for (i
=0; mep_config_map
[i
].name
; i
++)
363 fprintf (stream
, " %s", mep_config_map
[i
].name
);
364 fprintf (stream
, "\n");
371 mep_check_for_disabled_registers (mep_insn
*insn
)
373 static int initted
= 0;
374 static int has_mul_div
= 0;
375 static int has_cop
= 0;
376 static int has_debug
= 0;
379 if (allow_disabled_registers
)
383 if (target_big_endian
)
384 b
= insn
->buffer
[0] * 256 + insn
->buffer
[1];
386 b
= insn
->buffer
[1] * 256 + insn
->buffer
[0];
391 if ((b
& 0xfffff00e) == 0x7008 /* stc */
392 || (b
& 0xfffff00e) == 0x700a /* ldc */)
397 if ((MEP_OMASK
& (1 << CGEN_INSN_OPTIONAL_MUL_INSN
))
398 || (MEP_OMASK
& (1 << CGEN_INSN_OPTIONAL_DIV_INSN
)))
400 if (MEP_OMASK
& (1 << CGEN_INSN_OPTIONAL_DEBUG_INSN
))
402 if (MEP_OMASK
& (1 << CGEN_INSN_OPTIONAL_CP_INSN
))
406 r
= ((b
& 0x00f0) >> 4) | ((b
& 0x0001) << 4);
412 as_bad (_("$hi and $lo are disabled when MUL and DIV are off"));
419 as_bad (_("$mb0, $me0, $mb1, and $me1 are disabled when COP is off"));
424 as_bad (_("$dbg and $depc are disabled when DEBUG is off"));
433 switch (MEP_CPU
& EF_MEP_CPU_MASK
)
436 case EF_MEP_CPU_C2
: return bfd_mach_mep
;
437 case EF_MEP_CPU_C3
: return bfd_mach_mep
;
438 case EF_MEP_CPU_C4
: return bfd_mach_mep
;
439 case EF_MEP_CPU_C5
: return bfd_mach_mep_c5
;
440 case EF_MEP_CPU_H1
: return bfd_mach_mep_h1
;
446 /* The MeP version of the cgen parse_operand function. The only difference
447 from the standard version is that we want to avoid treating '$foo' and
448 '($foo...)' as references to a symbol called '$foo'. The chances are
449 that '$foo' is really a misspelt register. */
452 mep_parse_operand (CGEN_CPU_DESC cd
, enum cgen_parse_operand_type want
,
453 const char **strP
, int opindex
, int opinfo
,
454 enum cgen_parse_operand_result
*resultP
, bfd_vma
*valueP
)
456 if (want
== CGEN_PARSE_OPERAND_INTEGER
|| want
== CGEN_PARSE_OPERAND_ADDRESS
)
464 return "Not a valid literal";
466 return gas_cgen_parse_operand (cd
, want
, strP
, opindex
, opinfo
,
473 /* Initialize the `cgen' interface. */
475 /* If the user specifies no options, we default to allowing
476 everything. If the user specifies any enabling options, we
477 default to allowing only what is specified. If the user
478 specifies only disabling options, we only disable what is
479 specified. If the user specifies options and a config, the
480 options modify the config. */
481 if (optbits
&& mep_config_index
== 0)
483 MEP_OMASK
&= ~OPTION_MASK
;
484 MEP_OMASK
|= optbits
;
487 MEP_OMASK
= (MEP_OMASK
& ~optbitset
) | optbits
;
489 mep_cop
= mep_config_map
[mep_config_index
].cpu_flag
& EF_MEP_COP_MASK
;
491 /* Set the machine number and endian. */
492 gas_cgen_cpu_desc
= mep_cgen_cpu_open (CGEN_CPU_OPEN_MACHS
, 0,
493 CGEN_CPU_OPEN_ENDIAN
,
496 : CGEN_ENDIAN_LITTLE
,
497 CGEN_CPU_OPEN_ISAS
, 0,
499 mep_cgen_init_asm (gas_cgen_cpu_desc
);
501 /* This is a callback from cgen to gas to parse operands. */
502 cgen_set_parse_operand_fn (gas_cgen_cpu_desc
, mep_parse_operand
);
504 /* Identify the architecture. */
505 bfd_default_set_arch_mach (stdoutput
, bfd_arch_mep
, mep_machine ());
507 /* Store the configuration number and core. */
508 bfd_set_private_flags (stdoutput
, MEP_CPU
| MEP_CONFIG
| library_flag
);
510 /* Initialize the array we'll be using to store fixups. */
511 gas_cgen_initialize_saved_fixups_array();
514 /* Variant of mep_cgen_assemble_insn. Assemble insn STR of cpu CD as a
515 coprocessor instruction, if possible, into FIELDS, BUF, and INSN. */
517 static const CGEN_INSN
*
518 mep_cgen_assemble_cop_insn (CGEN_CPU_DESC cd
,
521 CGEN_INSN_BYTES_PTR buf
,
522 const struct cgen_insn
*pinsn
)
525 CGEN_INSN_LIST
*ilist
;
526 const char *errmsg
= NULL
;
528 /* The instructions are stored in hashed lists. */
529 ilist
= CGEN_ASM_LOOKUP_INSN (gas_cgen_cpu_desc
,
530 CGEN_INSN_MNEMONIC (pinsn
));
533 for ( ; ilist
!= NULL
; ilist
= CGEN_ASM_NEXT_INSN (ilist
))
535 const CGEN_INSN
*insn
= ilist
->insn
;
536 if (strcmp (CGEN_INSN_MNEMONIC (ilist
->insn
),
537 CGEN_INSN_MNEMONIC (pinsn
)) == 0
538 && MEP_INSN_COP_P (ilist
->insn
)
539 && mep_cgen_insn_supported (cd
, insn
))
543 /* skip this insn if str doesn't look right lexically */
544 if (CGEN_INSN_RX (insn
) != NULL
&&
545 regexec ((regex_t
*) CGEN_INSN_RX (insn
), str
, 0, NULL
, 0) == REG_NOMATCH
)
548 /* Allow parse/insert handlers to obtain length of insn. */
549 CGEN_FIELDS_BITSIZE (fields
) = CGEN_INSN_BITSIZE (insn
);
551 errmsg
= CGEN_PARSE_FN (cd
, insn
) (cd
, insn
, & str
, fields
);
555 errmsg
= CGEN_INSERT_FN (cd
, insn
) (cd
, insn
, fields
, buf
,
567 mep_save_insn (mep_insn insn
)
569 /* Consider change MAX_SAVED_FIXUP_CHAINS to MAX_PARALLEL_INSNS. */
570 if (num_insns_saved
< 0 || num_insns_saved
>= MAX_SAVED_FIXUP_CHAINS
)
572 as_fatal("index into saved_insns[] out of bounds.");
575 saved_insns
[num_insns_saved
] = insn
;
576 gas_cgen_save_fixups(num_insns_saved
);
581 mep_check_parallel32_scheduling (void)
583 int insn0iscopro
, insn1iscopro
, insn0length
, insn1length
;
585 /* More than two instructions means that either someone is referring to
586 an internally parallel core or an internally parallel coprocessor,
587 neither of which are supported at this time. */
588 if ( num_insns_saved
> 2 )
589 as_fatal("Internally paralled cores and coprocessors not supported.");
591 /* If there are no insns saved, that's ok. Just return. This will
592 happen when mep_process_saved_insns is called when the end of the
593 source file is reached and there are no insns left to be processed. */
594 if (num_insns_saved
== 0)
597 /* Check some of the attributes of the first insn. */
598 insn0iscopro
= MEP_INSN_COP_P (saved_insns
[0].insn
);
599 insn0length
= CGEN_FIELDS_BITSIZE (& saved_insns
[0].fields
);
601 if (num_insns_saved
== 2)
603 /* Check some of the attributes of the first insn. */
604 insn1iscopro
= MEP_INSN_COP_P (saved_insns
[1].insn
);
605 insn1length
= CGEN_FIELDS_BITSIZE (& saved_insns
[1].fields
);
607 if ((insn0iscopro
&& !insn1iscopro
)
608 || (insn1iscopro
&& !insn0iscopro
))
610 /* We have one core and one copro insn. If their sizes
611 add up to 32, then the combination is valid. */
612 if (insn0length
+ insn1length
== 32)
615 as_bad (_("core and copro insn lengths must total 32 bits."));
618 as_bad (_("vliw group must consist of 1 core and 1 copro insn."));
622 /* If we arrive here, we have one saved instruction. There are a
623 number of possible cases:
625 1. The instruction is a 32 bit core or coprocessor insn and
626 can be executed by itself. Valid.
628 2. The instrucion is a core instruction for which a cop nop
629 exists. In this case, insert the cop nop into the saved
630 insn array after the core insn and return. Valid.
632 3. The instruction is a coprocessor insn for which a core nop
633 exists. In this case, move the coprocessor insn to the
634 second element of the array and put the nop in the first
635 element then return. Valid.
637 4. The instruction is a core or coprocessor instruction for
638 which there is no matching coprocessor or core nop to use
639 to form a valid vliw insn combination. In this case, we
642 if (insn0length
> 32)
643 as_fatal ("Cannot use 48- or 64-bit insns with a 32 bit datapath.");
645 if (insn0length
== 32)
648 /* Insn is smaller than datapath. If there are no matching
649 nops for this insn, then terminate assembly. */
650 if (CGEN_INSN_ATTR_VALUE (saved_insns
[0].insn
,
651 CGEN_INSN_VLIW32_NO_MATCHING_NOP
))
652 as_fatal ("No valid nop.");
654 /* At this point we know that we have a single 16-bit insn that has
655 a matching nop. We have to assemble it and put it into the saved
656 insn and fixup chain arrays. */
663 /* Move the insn and it's fixups to the second element of the
664 saved insns arrary and insert a 16 bit core nope into the
666 insn
.insn
= mep_cgen_assemble_insn (gas_cgen_cpu_desc
, "nop",
667 &insn
.fields
, insn
.buffer
,
671 as_bad ("%s", errmsg
);
675 /* Move the insn in element 0 to element 1 and insert the
676 nop into element 0. Move the fixups in element 0 to
677 element 1 and save the current fixups to element 0.
678 Really there aren't any fixups at this point because we're
679 inserting a nop but we might as well be general so that
680 if there's ever a need to insert a general insn, we'll
682 saved_insns
[1] = saved_insns
[0];
683 saved_insns
[0] = insn
;
685 gas_cgen_swap_fixups (0);
686 gas_cgen_save_fixups (1);
692 int insn_num
= saved_insns
[0].insn
->base
->num
;
694 /* Use 32 bit branches and skip the nop. */
695 if (insn_num
== MEP_INSN_BSR12
696 || insn_num
== MEP_INSN_BEQZ
697 || insn_num
== MEP_INSN_BNEZ
)
700 /* Insert a 16-bit coprocessor nop. Note that at the time */
701 /* this was done, no 16-bit coprocessor nop was defined. */
702 insn
.insn
= mep_cgen_assemble_insn (gas_cgen_cpu_desc
, "cpnop16",
703 &insn
.fields
, insn
.buffer
,
707 as_bad ("%s", errmsg
);
711 /* Now put the insn and fixups into the arrays. */
712 mep_save_insn (insn
);
718 mep_check_parallel64_scheduling (void)
720 int insn0iscopro
, insn1iscopro
, insn0length
, insn1length
;
722 /* More than two instructions means that someone is referring to an
723 internally parallel core or an internally parallel coprocessor. */
724 /* These are not currently supported. */
725 if (num_insns_saved
> 2)
726 as_fatal ("Internally parallel cores of coprocessors not supported.");
728 /* If there are no insns saved, that's ok. Just return. This will
729 happen when mep_process_saved_insns is called when the end of the
730 source file is reached and there are no insns left to be processed. */
731 if (num_insns_saved
== 0)
734 /* Check some of the attributes of the first insn. */
735 insn0iscopro
= MEP_INSN_COP_P (saved_insns
[0].insn
);
736 insn0length
= CGEN_FIELDS_BITSIZE (& saved_insns
[0].fields
);
738 if (num_insns_saved
== 2)
740 /* Check some of the attributes of the first insn. */
741 insn1iscopro
= MEP_INSN_COP_P (saved_insns
[1].insn
);
742 insn1length
= CGEN_FIELDS_BITSIZE (& saved_insns
[1].fields
);
744 if ((insn0iscopro
&& !insn1iscopro
)
745 || (insn1iscopro
&& !insn0iscopro
))
747 /* We have one core and one copro insn. If their sizes
748 add up to 64, then the combination is valid. */
749 if (insn0length
+ insn1length
== 64)
752 as_bad (_("core and copro insn lengths must total 64 bits."));
755 as_bad (_("vliw group must consist of 1 core and 1 copro insn."));
759 /* If we arrive here, we have one saved instruction. There are a
760 number of possible cases:
762 1. The instruction is a 64 bit coprocessor insn and can be
763 executed by itself. Valid.
765 2. The instrucion is a core instruction for which a cop nop
766 exists. In this case, insert the cop nop into the saved
767 insn array after the core insn and return. Valid.
769 3. The instruction is a coprocessor insn for which a core nop
770 exists. In this case, move the coprocessor insn to the
771 second element of the array and put the nop in the first
772 element then return. Valid.
774 4. The instruction is a core or coprocessor instruction for
775 which there is no matching coprocessor or core nop to use
776 to form a valid vliw insn combination. In this case, we
779 /* If the insn is 64 bits long, it can run alone. The size check
780 is done indepependantly of whether the insn is core or copro
781 in case 64 bit coprocessor insns are added later. */
782 if (insn0length
== 64)
785 /* Insn is smaller than datapath. If there are no matching
786 nops for this insn, then terminate assembly. */
787 if (CGEN_INSN_ATTR_VALUE (saved_insns
[0].insn
,
788 CGEN_INSN_VLIW64_NO_MATCHING_NOP
))
789 as_fatal ("No valid nop.");
796 /* Initialize the insn buffer. */
797 memset (insn
.buffer
, 0, sizeof(insn
.buffer
));
799 /* We have a coprocessor insn. At this point in time there
800 are is 32-bit core nop. There is only a 16-bit core
801 nop. The idea is to allow for a relatively arbitrary
802 coprocessor to be specified. We aren't looking at
803 trying to cover future changes in the core at this time
804 since it is assumed that the core will remain fairly
805 static. If there ever are 32 or 48 bit core nops added,
806 they will require entries below. */
808 if (insn0length
== 48)
810 /* Move the insn and fixups to the second element of the
811 arrays then assemble and insert a 16 bit core nop. */
812 insn
.insn
= mep_cgen_assemble_insn (gas_cgen_cpu_desc
, "nop",
813 & insn
.fields
, insn
.buffer
,
818 /* If this is reached, then we have a single coprocessor
819 insn that is not 48 bits long, but for which the assembler
820 thinks there is a matching core nop. If a 32-bit core
821 nop has been added, then make the necessary changes and
822 handle its assembly and insertion here. Otherwise,
823 go figure out why either:
825 1. The assembler thinks that there is a 32-bit core nop
826 to match a 32-bit coprocessor insn, or
827 2. The assembler thinks that there is a 48-bit core nop
828 to match a 16-bit coprocessor insn. */
830 as_fatal ("Assembler expects a non-existent core nop.");
835 as_bad ("%s", errmsg
);
839 /* Move the insn in element 0 to element 1 and insert the
840 nop into element 0. Move the fixups in element 0 to
841 element 1 and save the current fixups to element 0.
842 Really there aren't any fixups at this point because we're
843 inserting a nop but we might as well be general so that
844 if there's ever a need to insert a general insn, we'll
847 saved_insns
[1] = saved_insns
[0];
848 saved_insns
[0] = insn
;
850 gas_cgen_swap_fixups(0);
851 gas_cgen_save_fixups(1);
859 /* Initialize the insn buffer */
860 memset (insn
.buffer
, 0, sizeof(insn
.buffer
));
862 /* We have a core insn. We have to handle all possible nop
863 lengths. If a coprocessor doesn't have a nop of a certain
864 length but there exists core insns that when combined with
865 a nop of that length would fill the datapath, those core
866 insns will be flagged with the VLIW_NO_CORRESPONDING_NOP
867 attribute. That will ensure that when used in a way that
868 requires a nop to be inserted, assembly will terminate
869 before reaching this section of code. This guarantees
870 that cases below which would result in the attempted
871 insertion of nop that doesn't exist will never be entered. */
872 if (insn0length
== 16)
874 /* Insert 48 bit coprocessor nop. */
875 /* Assemble it and put it into the arrays. */
876 insn
.insn
= mep_cgen_assemble_insn (gas_cgen_cpu_desc
, "cpnop48",
877 &insn
.fields
, insn
.buffer
,
880 else if (insn0length
== 32)
882 /* Insert 32 bit coprocessor nop. */
883 insn
.insn
= mep_cgen_assemble_insn (gas_cgen_cpu_desc
, "cpnop32",
884 &insn
.fields
, insn
.buffer
,
887 else if (insn0length
== 48)
889 /* Insert 16 bit coprocessor nop. */
890 insn
.insn
= mep_cgen_assemble_insn (gas_cgen_cpu_desc
, "cpnop16",
891 &insn
.fields
, insn
.buffer
,
895 /* Core insn has an invalid length. Something has gone wrong. */
896 as_fatal ("Core insn has invalid length! Something is wrong!");
900 as_bad ("%s", errmsg
);
904 /* Now put the insn and fixups into the arrays. */
905 mep_save_insn (insn
);
910 #ifdef MEP_IVC2_SUPPORTED
912 /* IVC2 packing is different than other VLIW coprocessors. Many of
913 the COP insns can be placed in any of three different types of
914 slots, and each bundle can hold up to three insns - zero or one
915 core insns and one or two IVC2 insns. The insns in CGEN are tagged
916 with which slots they're allowed in, and we have to decide based on
917 that whether or not the user had given us a possible bundling. */
920 slot_ok (int idx
, int slot
)
922 const CGEN_INSN
*insn
= saved_insns
[idx
].insn
;
923 return CGEN_ATTR_CGEN_INSN_SLOTS_VALUE (CGEN_INSN_ATTRS (insn
)) & (1 << slot
);
927 mep_check_ivc2_scheduling (void)
931 V1 [-----core-----][--------p0s-------][------------p1------------]
932 V2 [-------------core-------------]xxxx[------------p1------------]
933 V3 1111[--p0--]0111[--------p0--------][------------p1------------]
936 int slots
[5]; /* Indexed off the SLOTS_ATTR enum. */
937 int corelength
, realcorelength
;
941 int e
= target_big_endian
? 0 : 1;
943 /* If there are no insns saved, that's ok. Just return. This will
944 happen when mep_process_saved_insns is called when the end of the
945 source file is reached and there are no insns left to be processed. */
946 if (num_insns_saved
== 0)
952 if (slot_ok (0, SLOTS_CORE
))
954 slots
[SLOTS_CORE
] = 0;
955 realcorelength
= corelength
= CGEN_FIELDS_BITSIZE (& saved_insns
[0].fields
);
957 /* If we encounter one of these, it may get relaxed later into a
958 longer instruction. We can't just push the other opcodes
959 away, the bigger insn has to fit into the existing slot. So,
960 we make room for the relaxed instruction here. */
962 if (saved_insns
[0].insn
->base
->num
== MEP_INSN_BSR12
963 || saved_insns
[0].insn
->base
->num
== MEP_INSN_BRA
)
967 realcorelength
= corelength
= 0;
969 if (corelength
== 16)
971 /* V1 mode: we need a P0S slot and a P1 slot. */
972 switch (num_insns_saved
)
975 /* No other insns, fill with NOPs. */
979 if (slot_ok (1, SLOTS_P1
))
981 else if (slot_ok (1, SLOTS_P0S
))
982 slots
[SLOTS_P0S
] = 1;
984 as_bad (_("cannot pack %s with a 16-bit insn"),
985 CGEN_INSN_NAME (saved_insns
[1].insn
));
989 if (slot_ok (1, SLOTS_P0S
)
990 && slot_ok (2, SLOTS_P1
))
992 slots
[SLOTS_P0S
] = 1;
995 else if (slot_ok (1, SLOTS_P1
)
996 && slot_ok (2, SLOTS_P0S
))
999 slots
[SLOTS_P0S
] = 2;
1002 as_bad (_("cannot pack %s and %s together with a 16-bit insn"),
1003 CGEN_INSN_NAME (saved_insns
[1].insn
),
1004 CGEN_INSN_NAME (saved_insns
[2].insn
));
1008 as_bad (_("too many IVC2 insns to pack with a 16-bit core insn"));
1012 else if (corelength
== 32)
1014 /* V2 mode: we need a P1 slot. */
1015 switch (num_insns_saved
)
1018 /* No other insns, fill with NOPs. */
1021 /* The other insn must allow P1. */
1022 if (!slot_ok (1, SLOTS_P1
))
1023 as_bad (_("cannot pack %s into slot P1"),
1024 CGEN_INSN_NAME (saved_insns
[1].insn
));
1026 slots
[SLOTS_P1
] = 1;
1029 as_bad (_("too many IVC2 insns to pack with a 32-bit core insn"));
1033 else if (corelength
== 0)
1035 /* V3 mode: we need a P0 slot and a P1 slot, or a P0S+P1 with a
1037 switch (num_insns_saved
)
1040 if (slot_ok (0, SLOTS_P0
))
1041 slots
[SLOTS_P0
] = 0;
1042 else if (slot_ok (0, SLOTS_P1
))
1043 slots
[SLOTS_P1
] = 0;
1044 else if (slot_ok (0, SLOTS_P0S
))
1045 slots
[SLOTS_P0S
] = 0;
1047 as_bad (_("unable to pack %s by itself?"),
1048 CGEN_INSN_NAME (saved_insns
[0].insn
));
1052 if (slot_ok (0, SLOTS_P0
)
1053 && slot_ok (1, SLOTS_P1
))
1055 slots
[SLOTS_P0
] = 0;
1056 slots
[SLOTS_P1
] = 1;
1058 else if (slot_ok (0, SLOTS_P1
)
1059 && slot_ok (1, SLOTS_P0
))
1061 slots
[SLOTS_P1
] = 0;
1062 slots
[SLOTS_P0
] = 1;
1064 else if (slot_ok (0, SLOTS_P0S
)
1065 && slot_ok (1, SLOTS_P1
))
1067 slots
[SLOTS_P0S
] = 0;
1068 slots
[SLOTS_P1
] = 1;
1070 else if (slot_ok (0, SLOTS_P1
)
1071 && slot_ok (1, SLOTS_P0S
))
1073 slots
[SLOTS_P1
] = 0;
1074 slots
[SLOTS_P0S
] = 1;
1077 as_bad (_("cannot pack %s and %s together"),
1078 CGEN_INSN_NAME (saved_insns
[0].insn
),
1079 CGEN_INSN_NAME (saved_insns
[1].insn
));
1083 as_bad (_("too many IVC2 insns to pack together"));
1088 /* The core insn needs to be done normally so that fixups,
1089 relaxation, etc are done. Other IVC2 insns need only be resolved
1090 to bit patterns; there are no relocations for them. */
1091 if (slots
[SLOTS_CORE
] != -1)
1093 gas_cgen_restore_fixups (0);
1094 gas_cgen_finish_insn (saved_insns
[0].insn
, saved_insns
[0].buffer
,
1095 CGEN_FIELDS_BITSIZE (& saved_insns
[0].fields
),
1099 /* Allocate whatever bytes remain in our insn word. Adjust the
1100 pointer to point (as if it were) to the beginning of the whole
1101 word, so that we don't have to adjust for it elsewhere. */
1102 f
= (bfd_byte
*) frag_more (8 - realcorelength
/ 8);
1103 /* Unused slots are filled with NOPs, which happen to be all zeros. */
1104 memset (f
, 0, 8 - realcorelength
/ 8);
1105 f
-= realcorelength
/ 8;
1114 m
= & saved_insns
[slots
[i
]];
1117 cgen_put_insn_value (gas_cgen_cpu_desc
, (unsigned char *) temp
, 32,
1120 memcpy (temp
, m
->buffer
, byte_len
);
1128 f
[4^e
] |= temp
[3^e
] & 0xf0;
1131 f
[0^e
] = 0xf0 | temp
[0^e
] >> 4;
1132 f
[1^e
] = temp
[0^e
] << 4 | 0x07;
1135 f
[4^e
] |= temp
[3^e
] & 0xf0;
1138 f
[4^e
] |= temp
[0^e
] >> 4;
1139 f
[5^e
] = temp
[0^e
] << 4 | temp
[1^e
] >> 4;
1140 f
[6^e
] = temp
[1^e
] << 4 | temp
[2^e
] >> 4;
1141 f
[7^e
] = temp
[2^e
] << 4 | temp
[3^e
] >> 4;
1149 #endif /* MEP_IVC2_SUPPORTED */
1151 /* The scheduling functions are just filters for invalid combinations.
1152 If there is a violation, they terminate assembly. Otherise they
1153 just fall through. Succesful combinations cause no side effects
1154 other than valid nop insertion. */
1157 mep_check_parallel_scheduling (void)
1159 /* This is where we will eventually read the config information
1160 and choose which scheduling checking function to call. */
1161 #ifdef MEP_IVC2_SUPPORTED
1162 if (mep_cop
== EF_MEP_COP_IVC2
)
1163 mep_check_ivc2_scheduling ();
1165 #endif /* MEP_IVC2_SUPPORTED */
1167 mep_check_parallel64_scheduling ();
1169 mep_check_parallel32_scheduling ();
1173 mep_process_saved_insns (void)
1177 gas_cgen_save_fixups (MAX_SAVED_FIXUP_CHAINS
- 1);
1179 /* We have to check for valid scheduling here. */
1180 mep_check_parallel_scheduling ();
1182 /* IVC2 has to pack instructions in a funny way, so it does it
1184 if (mep_cop
!= EF_MEP_COP_IVC2
)
1186 /* If the last call didn't cause assembly to terminate, we have
1187 a valid vliw insn/insn pair saved. Restore this instructions'
1188 fixups and process the insns. */
1189 for (i
= 0;i
<num_insns_saved
;i
++)
1191 gas_cgen_restore_fixups (i
);
1192 gas_cgen_finish_insn (saved_insns
[i
].insn
, saved_insns
[i
].buffer
,
1193 CGEN_FIELDS_BITSIZE (& saved_insns
[i
].fields
),
1197 gas_cgen_restore_fixups (MAX_SAVED_FIXUP_CHAINS
- 1);
1199 /* Clear the fixups and reset the number insn saved to 0. */
1200 gas_cgen_initialize_saved_fixups_array ();
1201 num_insns_saved
= 0;
1202 listing_prev_line ();
1206 md_assemble (char * str
)
1208 static CGEN_BITSET
* isas
= NULL
;
1211 /* Initialize GAS's cgen interface for a new instruction. */
1212 gas_cgen_init_parse ();
1214 /* There are two possible modes: core and vliw. We have to assemble
1215 differently for each.
1217 Core Mode: We assemble normally. All instructions are on a
1218 single line and are made up of one mnemonic and one
1220 VLIW Mode: Vliw combinations are indicated as follows:
1225 We want to handle the general case where more than
1226 one instruction can be preceeded by a +. This will
1227 happen later if we add support for internally parallel
1228 coprocessors. We'll make the parsing nice and general
1229 so that it can handle an arbitrary number of insns
1230 with leading +'s. The actual checking for valid
1231 combinations is done elsewhere. */
1233 /* Initialize the isa to refer to the core. */
1235 isas
= cgen_bitset_copy (& MEP_CORE_ISA
);
1238 cgen_bitset_clear (isas
);
1239 cgen_bitset_union (isas
, & MEP_CORE_ISA
, isas
);
1241 gas_cgen_cpu_desc
->isas
= isas
;
1247 int thisInsnIsCopro
= 0;
1251 /* Initialize the insn buffer */
1253 if (! CGEN_INT_INSN_P
)
1254 for (i
=0; i
< CGEN_MAX_INSN_SIZE
; i
++)
1255 insn
.buffer
[i
]='\0';
1258 /* IVC2 has two sets of coprocessor opcodes, one for CORE mode
1259 and one for VLIW mode. They have the same names. To specify
1260 which one we want, we use the COP isas - the 32 bit ISA is
1261 for the core instructions (which are always 32 bits), and the
1262 other ISAs are for the VLIW ones (which always pack into 64
1263 bit insns). We use other attributes to determine slotting
1265 if (mep_cop
== EF_MEP_COP_IVC2
)
1267 cgen_bitset_union (isas
, & MEP_COP16_ISA
, isas
);
1268 cgen_bitset_union (isas
, & MEP_COP48_ISA
, isas
);
1269 cgen_bitset_union (isas
, & MEP_COP64_ISA
, isas
);
1273 /* Can't tell core / copro insns apart at parse time! */
1274 cgen_bitset_union (isas
, & MEP_COP_ISA
, isas
);
1277 /* Assemble the insn so we can examine its attributes. */
1278 insn
.insn
= mep_cgen_assemble_insn (gas_cgen_cpu_desc
, str
,
1279 &insn
.fields
, insn
.buffer
,
1283 as_bad ("%s", errmsg
);
1286 mep_check_for_disabled_registers (&insn
);
1288 /* Check to see if it's a coprocessor instruction. */
1289 thisInsnIsCopro
= MEP_INSN_COP_P (insn
.insn
);
1291 if (!thisInsnIsCopro
)
1293 insn
.insn
= mep_cgen_assemble_cop_insn (gas_cgen_cpu_desc
, str
,
1294 &insn
.fields
, insn
.buffer
,
1296 thisInsnIsCopro
= MEP_INSN_COP_P (insn
.insn
);
1297 mep_check_for_disabled_registers (&insn
);
1302 /* A plus was present. */
1303 /* Check for a + with a core insn and abort if found. */
1304 if (!thisInsnIsCopro
)
1306 as_fatal("A core insn cannot be preceeded by a +.\n");
1310 if (num_insns_saved
> 0)
1312 /* There are insns in the queue. Add this one. */
1313 mep_save_insn (insn
);
1317 /* There are no insns in the queue and a plus is present.
1318 This is a syntax error. Let's not tolerate this.
1319 We can relax this later if necessary. */
1320 as_bad (_("Invalid use of parallelization operator."));
1326 /* No plus was present. */
1327 if (num_insns_saved
> 0)
1329 /* There are insns saved and we came across an insn without a
1330 leading +. That's the signal to process the saved insns
1331 before proceeding then treat the current insn as the first
1332 in a new vliw group. */
1333 mep_process_saved_insns ();
1334 num_insns_saved
= 0;
1335 /* mep_save_insn (insn); */
1337 mep_save_insn (insn
);
1342 /* Core Insn. Add it to the beginning of the queue. */
1343 mep_save_insn (insn
);
1344 /* gas_cgen_save_fixups(num_insns_saved); */
1355 /* Only single instructions are assembled in core mode. */
1358 /* See comment in the VLIW clause above about this. */
1359 if (mep_cop
& EF_MEP_COP_IVC2
)
1360 cgen_bitset_union (isas
, & MEP_COP32_ISA
, isas
);
1362 /* If a leading '+' was present, issue an error.
1363 That's not allowed in core mode. */
1366 as_bad (_("Leading plus sign not allowed in core mode"));
1370 insn
.insn
= mep_cgen_assemble_insn
1371 (gas_cgen_cpu_desc
, str
, & insn
.fields
, insn
.buffer
, & errmsg
);
1375 as_bad ("%s", errmsg
);
1378 gas_cgen_finish_insn (insn
.insn
, insn
.buffer
,
1379 CGEN_FIELDS_BITSIZE (& insn
.fields
), 1, NULL
);
1380 mep_check_for_disabled_registers (&insn
);
1385 md_section_align (segT segment
, valueT size
)
1387 int align
= bfd_get_section_alignment (stdoutput
, segment
);
1388 return ((size
+ (1 << align
) - 1) & (-1 << align
));
1393 md_undefined_symbol (char *name ATTRIBUTE_UNUSED
)
1398 /* Interface to relax_segment. */
1401 const relax_typeS md_relax_table
[] =
1404 1) most positive reach of this state,
1405 2) most negative reach of this state,
1406 3) how many bytes this mode will have in the variable part of the frag
1407 4) which index into the table to try if we can't fit into this one. */
1408 /* Note that we use "beq" because "jmp" has a peculiarity - it cannot
1409 jump to addresses with any bits 27..24 set. So, we use beq as a
1410 17-bit pc-relative branch to avoid using jmp, just in case. */
1412 /* 0 */ { 0, 0, 0, 0 }, /* unused */
1413 /* 1 */ { 0, 0, 0, 0 }, /* marker for "don't know yet" */
1415 /* 2 */ { 2047, -2048, 0, 3 }, /* bsr12 */
1416 /* 3 */ { 0, 0, 2, 0 }, /* bsr16 */
1418 /* 4 */ { 2047, -2048, 0, 5 }, /* bra */
1419 /* 5 */ { 65535, -65536, 2, 6 }, /* beq $0,$0 */
1420 /* 6 */ { 0, 0, 2, 0 }, /* jmp24 */
1422 /* 7 */ { 65535, -65536, 0, 8 }, /* beqi */
1423 /* 8 */ { 0, 0, 4, 0 }, /* bnei/jmp */
1425 /* 9 */ { 127, -128, 0, 10 }, /* beqz */
1426 /* 10 */ { 65535, -65536, 2, 11 }, /* beqi */
1427 /* 11 */ { 0, 0, 4, 0 }, /* bnei/jmp */
1429 /* 12 */ { 65535, -65536, 0, 13 }, /* bnei */
1430 /* 13 */ { 0, 0, 4, 0 }, /* beqi/jmp */
1432 /* 14 */ { 127, -128, 0, 15 }, /* bnez */
1433 /* 15 */ { 65535, -65536, 2, 16 }, /* bnei */
1434 /* 16 */ { 0, 0, 4, 0 }, /* beqi/jmp */
1436 /* 17 */ { 65535, -65536, 0, 13 }, /* bgei */
1437 /* 18 */ { 0, 0, 4, 0 },
1438 /* 19 */ { 65535, -65536, 0, 13 }, /* blti */
1439 /* 20 */ { 0, 0, 4, 0 },
1440 /* 19 */ { 65535, -65536, 0, 13 }, /* bcpeq */
1441 /* 20 */ { 0, 0, 4, 0 },
1442 /* 19 */ { 65535, -65536, 0, 13 }, /* bcpne */
1443 /* 20 */ { 0, 0, 4, 0 },
1444 /* 19 */ { 65535, -65536, 0, 13 }, /* bcpat */
1445 /* 20 */ { 0, 0, 4, 0 },
1446 /* 19 */ { 65535, -65536, 0, 13 }, /* bcpaf */
1447 /* 20 */ { 0, 0, 4, 0 }
1450 /* Pseudo-values for 64 bit "insns" which are combinations of two 32
1454 MEP_PSEUDO64_16BITCC
,
1455 MEP_PSEUDO64_32BITCC
,
1456 } MepPseudo64Values
;
1461 int insn_for_extern
;
1462 } subtype_mappings
[] = {
1465 { MEP_INSN_BSR12
, 0, MEP_INSN_BSR24
},
1466 { MEP_INSN_BSR24
, 2, MEP_INSN_BSR24
},
1467 { MEP_INSN_BRA
, 0, MEP_INSN_BRA
},
1468 { MEP_INSN_BEQ
, 2, MEP_INSN_BEQ
},
1469 { MEP_INSN_JMP
, 2, MEP_INSN_JMP
},
1470 { MEP_INSN_BEQI
, 0, MEP_INSN_BEQI
},
1471 { -1, 4, MEP_PSEUDO64_32BITCC
},
1472 { MEP_INSN_BEQZ
, 0, MEP_INSN_BEQZ
},
1473 { MEP_INSN_BEQI
, 2, MEP_INSN_BEQI
},
1474 { -1, 4, MEP_PSEUDO64_16BITCC
},
1475 { MEP_INSN_BNEI
, 0, MEP_INSN_BNEI
},
1476 { -1, 4, MEP_PSEUDO64_32BITCC
},
1477 { MEP_INSN_BNEZ
, 0, MEP_INSN_BNEZ
},
1478 { MEP_INSN_BNEI
, 2, MEP_INSN_BNEI
},
1479 { -1, 4, MEP_PSEUDO64_16BITCC
},
1480 { MEP_INSN_BGEI
, 0, MEP_INSN_BGEI
},
1481 { -1, 4, MEP_PSEUDO64_32BITCC
},
1482 { MEP_INSN_BLTI
, 0, MEP_INSN_BLTI
},
1483 { -1, 4, MEP_PSEUDO64_32BITCC
},
1484 { MEP_INSN_BCPEQ
, 0, MEP_INSN_BCPEQ
},
1485 { -1, 4, MEP_PSEUDO64_32BITCC
},
1486 { MEP_INSN_BCPNE
, 0, MEP_INSN_BCPNE
},
1487 { -1, 4, MEP_PSEUDO64_32BITCC
},
1488 { MEP_INSN_BCPAT
, 0, MEP_INSN_BCPAT
},
1489 { -1, 4, MEP_PSEUDO64_32BITCC
},
1490 { MEP_INSN_BCPAF
, 0, MEP_INSN_BCPAF
},
1491 { -1, 4, MEP_PSEUDO64_32BITCC
}
1493 #define NUM_MAPPINGS (sizeof (subtype_mappings) / sizeof (subtype_mappings[0]))
1496 mep_prepare_relax_scan (fragS
*fragP
, offsetT
*aim
, relax_substateT this_state
)
1498 symbolS
*symbolP
= fragP
->fr_symbol
;
1499 if (symbolP
&& !S_IS_DEFINED (symbolP
))
1501 /* Adjust for MeP pcrel not being relative to the next opcode. */
1502 *aim
+= 2 + md_relax_table
[this_state
].rlx_length
;
1506 insn_to_subtype (int insn
)
1509 for (i
=0; i
<NUM_MAPPINGS
; i
++)
1510 if (insn
== subtype_mappings
[i
].insn
)
1515 /* Return an initial guess of the length by which a fragment must grow
1516 to hold a branch to reach its destination. Also updates fr_type
1517 and fr_subtype as necessary.
1519 Called just before doing relaxation. Any symbol that is now
1520 undefined will not become defined. The guess for fr_var is
1521 ACTUALLY the growth beyond fr_fix. Whatever we do to grow fr_fix
1522 or fr_var contributes to our returned value. Although it may not
1523 be explicit in the frag, pretend fr_var starts with a 0 value. */
1526 md_estimate_size_before_relax (fragS
* fragP
, segT segment
)
1528 if (fragP
->fr_subtype
== 1)
1529 fragP
->fr_subtype
= insn_to_subtype (fragP
->fr_cgen
.insn
->base
->num
);
1531 if (S_GET_SEGMENT (fragP
->fr_symbol
) != segment
1532 || S_IS_WEAK (fragP
->fr_symbol
)
1533 #ifdef MEP_IVC2_SUPPORTED
1534 || (mep_cop
== EF_MEP_COP_IVC2
1535 && bfd_get_section_flags (stdoutput
, segment
) & SEC_MEP_VLIW
)
1536 #endif /* MEP_IVC2_SUPPORTED */
1541 new_insn
= subtype_mappings
[fragP
->fr_subtype
].insn_for_extern
;
1542 fragP
->fr_subtype
= insn_to_subtype (new_insn
);
1545 if (MEP_VLIW
&& ! MEP_VLIW64
1546 && (bfd_get_section_flags (stdoutput
, segment
) & SEC_MEP_VLIW
))
1548 /* Use 32 bit branches for vliw32 so the vliw word is not split. */
1549 switch (fragP
->fr_cgen
.insn
->base
->num
)
1551 case MEP_INSN_BSR12
:
1552 fragP
->fr_subtype
= insn_to_subtype
1553 (subtype_mappings
[fragP
->fr_subtype
].insn_for_extern
);
1556 fragP
->fr_subtype
++;
1559 fragP
->fr_subtype
++;
1564 if (fragP
->fr_cgen
.insn
->base
1565 && fragP
->fr_cgen
.insn
->base
->num
1566 != subtype_mappings
[fragP
->fr_subtype
].insn
)
1568 int new_insn
= subtype_mappings
[fragP
->fr_subtype
].insn
;
1571 fragP
->fr_cgen
.insn
= (fragP
->fr_cgen
.insn
1572 - fragP
->fr_cgen
.insn
->base
->num
1577 #ifdef MEP_IVC2_SUPPORTED
1578 if (mep_cop
== EF_MEP_COP_IVC2
1579 && bfd_get_section_flags (stdoutput
, segment
) & SEC_MEP_VLIW
)
1581 #endif /* MEP_IVC2_SUPPORTED */
1583 return subtype_mappings
[fragP
->fr_subtype
].growth
;
1586 /* VLIW does relaxing, but not growth. */
1589 mep_relax_frag (segT segment
, fragS
*fragP
, long stretch
)
1591 long rv
= relax_frag (segment
, fragP
, stretch
);
1592 #ifdef MEP_IVC2_SUPPORTED
1593 if (mep_cop
== EF_MEP_COP_IVC2
1594 && bfd_get_section_flags (stdoutput
, segment
) & SEC_MEP_VLIW
)
1600 /* *fragP has been relaxed to its final size, and now needs to have
1601 the bytes inside it modified to conform to the new size.
1603 Called after relaxation is finished.
1604 fragP->fr_type == rs_machine_dependent.
1605 fragP->fr_subtype is the subtype of what the address relaxed to. */
1608 target_address_for (fragS
*frag
)
1610 int rv
= frag
->fr_offset
;
1611 symbolS
*sym
= frag
->fr_symbol
;
1614 rv
+= S_GET_VALUE (sym
);
1620 md_convert_frag (bfd
*abfd ATTRIBUTE_UNUSED
,
1621 segT seg ATTRIBUTE_UNUSED
,
1624 int addend
, rn
, bit
= 0;
1626 int where
= fragP
->fr_opcode
- fragP
->fr_literal
;
1627 int e
= target_big_endian
? 0 : 1;
1630 #ifdef MEP_IVC2_SUPPORTED
1631 if (bfd_get_section_flags (stdoutput
, seg
) & SEC_MEP_VLIW
1632 && mep_cop
== EF_MEP_COP_IVC2
)
1635 #endif /* MEP_IVC2_SUPPORTED */
1638 addend
= target_address_for (fragP
) - (fragP
->fr_address
+ where
);
1640 if (subtype_mappings
[fragP
->fr_subtype
].insn
== -1)
1643 fragP
->fr_fix
+= subtype_mappings
[fragP
->fr_subtype
].growth
;
1644 switch (subtype_mappings
[fragP
->fr_subtype
].insn_for_extern
)
1646 case MEP_PSEUDO64_16BITCC
:
1647 fragP
->fr_opcode
[1^e
] = ((fragP
->fr_opcode
[1^e
] & 1) ^ 1) | 0x06;
1648 fragP
->fr_opcode
[2^e
] = 0xd8;
1649 fragP
->fr_opcode
[3^e
] = 0x08;
1650 fragP
->fr_opcode
[4^e
] = 0;
1651 fragP
->fr_opcode
[5^e
] = 0;
1654 case MEP_PSEUDO64_32BITCC
:
1655 if (fragP
->fr_opcode
[0^e
] & 0x10)
1656 fragP
->fr_opcode
[1^e
] ^= 0x01;
1658 fragP
->fr_opcode
[1^e
] ^= 0x04;
1659 fragP
->fr_opcode
[2^e
] = 0;
1660 fragP
->fr_opcode
[3^e
] = 4;
1661 fragP
->fr_opcode
[4^e
] = 0xd8;
1662 fragP
->fr_opcode
[5^e
] = 0x08;
1663 fragP
->fr_opcode
[6^e
] = 0;
1664 fragP
->fr_opcode
[7^e
] = 0;
1670 fragP
->fr_cgen
.insn
= (fragP
->fr_cgen
.insn
1671 - fragP
->fr_cgen
.insn
->base
->num
1673 operand
= MEP_OPERAND_PCABS24A2
;
1676 switch (fragP
->fr_cgen
.insn
->base
->num
)
1678 case MEP_INSN_BSR12
:
1679 fragP
->fr_opcode
[0^e
] = 0xb0 | ((addend
>> 8) & 0x0f);
1680 fragP
->fr_opcode
[1^e
] = 0x01 | (addend
& 0xfe);
1681 operand
= MEP_OPERAND_PCREL12A2
;
1684 case MEP_INSN_BSR24
:
1687 fragP
->fr_opcode
[0^e
] = 0xd8 | ((addend
>> 5) & 0x07);
1688 fragP
->fr_opcode
[1^e
] = 0x09 | ((addend
<< 3) & 0xf0);
1689 fragP
->fr_opcode
[2^e
] = 0x00 | ((addend
>>16) & 0xff);
1690 fragP
->fr_opcode
[3^e
] = 0x00 | ((addend
>> 8) & 0xff);
1691 operand
= MEP_OPERAND_PCREL24A2
;
1695 fragP
->fr_opcode
[0^e
] = 0xb0 | ((addend
>> 8) & 0x0f);
1696 fragP
->fr_opcode
[1^e
] = 0x00 | (addend
& 0xfe);
1697 operand
= MEP_OPERAND_PCREL12A2
;
1701 /* The default relax_frag doesn't change the state if there is no
1702 growth, so we must manually handle converting out-of-range BEQ
1703 instructions to JMP. */
1704 if (addend
<= 65535 && addend
>= -65536)
1708 fragP
->fr_opcode
[0^e
] = 0xe0;
1709 fragP
->fr_opcode
[1^e
] = 0x01;
1710 fragP
->fr_opcode
[2^e
] = 0x00 | ((addend
>> 9) & 0xff);
1711 fragP
->fr_opcode
[3^e
] = 0x00 | ((addend
>> 1) & 0xff);
1712 operand
= MEP_OPERAND_PCREL17A2
;
1715 /* ...FALLTHROUGH... */
1718 addend
= target_address_for (fragP
);
1721 fragP
->fr_opcode
[0^e
] = 0xd8 | ((addend
>> 5) & 0x07);
1722 fragP
->fr_opcode
[1^e
] = 0x08 | ((addend
<< 3) & 0xf0);
1723 fragP
->fr_opcode
[2^e
] = 0x00 | ((addend
>>16) & 0xff);
1724 fragP
->fr_opcode
[3^e
] = 0x00 | ((addend
>> 8) & 0xff);
1725 operand
= MEP_OPERAND_PCABS24A2
;
1731 fragP
->fr_opcode
[1^e
] = bit
| (addend
& 0xfe);
1732 operand
= MEP_OPERAND_PCREL8A2
;
1738 if (subtype_mappings
[fragP
->fr_subtype
].growth
)
1741 fragP
->fr_fix
+= subtype_mappings
[fragP
->fr_subtype
].growth
;
1742 rn
= fragP
->fr_opcode
[0^e
] & 0x0f;
1743 fragP
->fr_opcode
[0^e
] = 0xe0 | rn
;
1744 fragP
->fr_opcode
[1^e
] = bit
;
1746 fragP
->fr_opcode
[2^e
] = 0x00 | ((addend
>> 9) & 0xff);
1747 fragP
->fr_opcode
[3^e
] = 0x00 | ((addend
>> 1) & 0xff);
1748 operand
= MEP_OPERAND_PCREL17A2
;
1753 case MEP_INSN_BCPEQ
:
1754 case MEP_INSN_BCPNE
:
1755 case MEP_INSN_BCPAT
:
1756 case MEP_INSN_BCPAF
:
1757 /* No opcode change needed, just operand. */
1758 fragP
->fr_opcode
[2^e
] = (addend
>> 9) & 0xff;
1759 fragP
->fr_opcode
[3^e
] = (addend
>> 1) & 0xff;
1760 operand
= MEP_OPERAND_PCREL17A2
;
1767 if (S_GET_SEGMENT (fragP
->fr_symbol
) != seg
1768 || S_IS_WEAK (fragP
->fr_symbol
)
1769 || operand
== MEP_OPERAND_PCABS24A2
)
1771 gas_assert (fragP
->fr_cgen
.insn
!= 0);
1772 gas_cgen_record_fixup (fragP
,
1774 fragP
->fr_cgen
.insn
,
1775 (fragP
->fr_fix
- where
) * 8,
1776 cgen_operand_lookup_by_num (gas_cgen_cpu_desc
,
1778 fragP
->fr_cgen
.opinfo
,
1779 fragP
->fr_symbol
, fragP
->fr_offset
);
1784 /* Functions concerning relocs. */
1787 mep_apply_fix (fixS
*fixP
, valueT
*valP
, segT seg ATTRIBUTE_UNUSED
)
1789 /* If we already know the fixup value, adjust it in the same
1790 way that the linker would have done. */
1791 if (fixP
->fx_addsy
== 0)
1792 switch (fixP
->fx_cgen
.opinfo
)
1794 case BFD_RELOC_MEP_LOW16
:
1795 *valP
= ((long)(*valP
& 0xffff)) << 16 >> 16;
1797 case BFD_RELOC_MEP_HI16U
:
1800 case BFD_RELOC_MEP_HI16S
:
1801 *valP
= (*valP
+ 0x8000) >> 16;
1805 /* Now call cgen's md_aply_fix. */
1806 gas_cgen_md_apply_fix (fixP
, valP
, seg
);
1810 md_pcrel_from_section (fixS
*fixP
, segT sec
)
1812 if (fixP
->fx_addsy
!= (symbolS
*) NULL
1813 && (! S_IS_DEFINED (fixP
->fx_addsy
)
1814 || S_IS_WEAK (fixP
->fx_addsy
)
1815 || S_GET_SEGMENT (fixP
->fx_addsy
) != sec
))
1816 /* The symbol is undefined (or is defined but not in this section).
1817 Let the linker figure it out. */
1820 /* If we've got other reasons for emitting this relocation, let the
1821 linker handle pc-rel also. */
1822 if (mep_force_relocation (fixP
))
1825 /* Return the address of the opcode - cgen adjusts for opcode size
1826 itself, to be consistent with the disassembler, which must do
1828 return fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
1831 /* Return the bfd reloc type for OPERAND of INSN at fixup FIXP.
1832 Returns BFD_RELOC_NONE if no reloc type can be found.
1833 *FIXP may be modified if desired. */
1835 #if defined (__STDC__) || defined (ALMOST_STDC) || defined (HAVE_STRINGIZE)
1836 #define MAP(n) case MEP_OPERAND_##n: return BFD_RELOC_MEP_##n;
1838 #define MAP(n) case MEP_OPERAND_/**/n: return BFD_RELOC_MEP_/**/n;
1841 bfd_reloc_code_real_type
1842 md_cgen_lookup_reloc (const CGEN_INSN
*insn ATTRIBUTE_UNUSED
,
1843 const CGEN_OPERAND
*operand
,
1846 enum bfd_reloc_code_real reloc
= fixP
->fx_cgen
.opinfo
;
1847 static char printed
[MEP_OPERAND_MAX
] = { 0 };
1849 /* If there's a reloc here, it's because the parser saw a %foo() and
1850 is giving us the correct reloc to use, or because we converted to
1851 a different size reloc below and want to avoid "converting" more
1853 if (reloc
&& reloc
!= BFD_RELOC_NONE
)
1856 switch (operand
->type
)
1858 MAP (PCREL8A2
); /* beqz */
1859 MAP (PCREL12A2
); /* bsr16 */
1860 MAP (PCREL17A2
); /* beqi */
1861 MAP (PCREL24A2
); /* bsr24 */
1862 MAP (PCABS24A2
); /* jmp */
1863 MAP (UIMM24
); /* mov */
1864 MAP (ADDR24A4
); /* sw/lw */
1866 /* The rest of the relocs should be generated by the parser,
1867 for things such as %tprel(), etc. */
1868 case MEP_OPERAND_SIMM16
:
1869 #ifdef OBJ_COMPLEX_RELC
1870 /* coalescing this into RELOC_MEP_16 is actually a bug,
1871 since it's a signed operand. let the relc code handle it. */
1872 return BFD_RELOC_RELC
;
1875 case MEP_OPERAND_UIMM16
:
1876 case MEP_OPERAND_SDISP16
:
1877 case MEP_OPERAND_CODE16
:
1878 fixP
->fx_where
+= 2;
1879 /* to avoid doing the above add twice */
1880 fixP
->fx_cgen
.opinfo
= BFD_RELOC_MEP_16
;
1881 return BFD_RELOC_MEP_16
;
1884 #ifdef OBJ_COMPLEX_RELC
1885 /* this is not an error, yet.
1886 pass it to the linker. */
1887 return BFD_RELOC_RELC
;
1889 if (printed
[operand
->type
])
1890 return BFD_RELOC_NONE
;
1891 printed
[operand
->type
] = 1;
1893 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
1894 _("Don't know how to relocate plain operands of type %s"),
1897 /* Print some helpful hints for the user. */
1898 switch (operand
->type
)
1900 case MEP_OPERAND_UDISP7
:
1901 case MEP_OPERAND_UDISP7A2
:
1902 case MEP_OPERAND_UDISP7A4
:
1903 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
1904 _("Perhaps you are missing %%tpoff()?"));
1909 return BFD_RELOC_NONE
;
1913 /* Called while parsing an instruction to create a fixup.
1914 We need to check for HI16 relocs and queue them up for later sorting. */
1917 mep_cgen_record_fixup_exp (fragS
*frag
,
1919 const CGEN_INSN
*insn
,
1921 const CGEN_OPERAND
*operand
,
1925 fixS
* fixP
= gas_cgen_record_fixup_exp (frag
, where
, insn
, length
,
1926 operand
, opinfo
, exp
);
1930 /* Return BFD reloc type from opinfo field in a fixS.
1931 It's tricky using fx_r_type in mep_frob_file because the values
1932 are BFD_RELOC_UNUSED + operand number. */
1933 #define FX_OPINFO_R_TYPE(f) ((f)->fx_cgen.opinfo)
1935 /* Sort any unmatched HI16 relocs so that they immediately precede
1936 the corresponding LO16 reloc. This is called before md_apply_fix and
1942 struct mep_hi_fixup
* l
;
1944 for (l
= mep_hi_fixup_list
; l
!= NULL
; l
= l
->next
)
1946 segment_info_type
* seginfo
;
1949 gas_assert (FX_OPINFO_R_TYPE (l
->fixp
) == BFD_RELOC_HI16
1950 || FX_OPINFO_R_TYPE (l
->fixp
) == BFD_RELOC_LO16
);
1952 /* Check quickly whether the next fixup happens to be a matching low. */
1953 if (l
->fixp
->fx_next
!= NULL
1954 && FX_OPINFO_R_TYPE (l
->fixp
->fx_next
) == BFD_RELOC_LO16
1955 && l
->fixp
->fx_addsy
== l
->fixp
->fx_next
->fx_addsy
1956 && l
->fixp
->fx_offset
== l
->fixp
->fx_next
->fx_offset
)
1959 /* Look through the fixups for this segment for a matching
1960 `low'. When we find one, move the high just in front of it.
1961 We do this in two passes. In the first pass, we try to find
1962 a unique `low'. In the second pass, we permit multiple
1963 high's relocs for a single `low'. */
1964 seginfo
= seg_info (l
->seg
);
1965 for (pass
= 0; pass
< 2; pass
++)
1971 for (f
= seginfo
->fix_root
; f
!= NULL
; f
= f
->fx_next
)
1973 /* Check whether this is a `low' fixup which matches l->fixp. */
1974 if (FX_OPINFO_R_TYPE (f
) == BFD_RELOC_LO16
1975 && f
->fx_addsy
== l
->fixp
->fx_addsy
1976 && f
->fx_offset
== l
->fixp
->fx_offset
1979 || (FX_OPINFO_R_TYPE (prev
) != BFD_RELOC_HI16
)
1980 || prev
->fx_addsy
!= f
->fx_addsy
1981 || prev
->fx_offset
!= f
->fx_offset
))
1985 /* Move l->fixp before f. */
1986 for (pf
= &seginfo
->fix_root
;
1988 pf
= & (* pf
)->fx_next
)
1989 gas_assert (* pf
!= NULL
);
1991 * pf
= l
->fixp
->fx_next
;
1993 l
->fixp
->fx_next
= f
;
1995 seginfo
->fix_root
= l
->fixp
;
1997 prev
->fx_next
= l
->fixp
;
2009 as_warn_where (l
->fixp
->fx_file
, l
->fixp
->fx_line
,
2010 _("Unmatched high relocation"));
2015 /* See whether we need to force a relocation into the output file. */
2018 mep_force_relocation (fixS
*fixp
)
2020 if ( fixp
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
2021 || fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
2024 if (generic_force_reloc (fixp
))
2027 /* Allow branches to global symbols to be resolved at assembly time.
2028 This is consistent with way relaxable branches are handled, since
2029 branches to both global and local symbols are relaxed. It also
2030 corresponds to the assumptions made in md_pcrel_from_section. */
2031 return S_FORCE_RELOC (fixp
->fx_addsy
, !fixp
->fx_pcrel
);
2034 /* Write a value out to the object file, using the appropriate endianness. */
2037 md_number_to_chars (char *buf
, valueT val
, int n
)
2039 if (target_big_endian
)
2040 number_to_chars_bigendian (buf
, val
, n
);
2042 number_to_chars_littleendian (buf
, val
, n
);
2046 md_atof (int type
, char *litP
, int *sizeP
)
2048 return ieee_md_atof (type
, litP
, sizeP
, TRUE
);
2052 mep_fix_adjustable (fixS
*fixP
)
2054 bfd_reloc_code_real_type reloc_type
;
2056 if ((int) fixP
->fx_r_type
>= (int) BFD_RELOC_UNUSED
)
2058 const CGEN_INSN
*insn
= NULL
;
2059 int opindex
= (int) fixP
->fx_r_type
- (int) BFD_RELOC_UNUSED
;
2060 const CGEN_OPERAND
*operand
2061 = cgen_operand_lookup_by_num(gas_cgen_cpu_desc
, opindex
);
2062 reloc_type
= md_cgen_lookup_reloc (insn
, operand
, fixP
);
2065 reloc_type
= fixP
->fx_r_type
;
2067 if (fixP
->fx_addsy
== NULL
)
2070 /* Prevent all adjustments to global symbols. */
2071 if (S_IS_EXTERNAL (fixP
->fx_addsy
))
2074 if (S_IS_WEAK (fixP
->fx_addsy
))
2077 /* We need the symbol name for the VTABLE entries */
2078 if (reloc_type
== BFD_RELOC_VTABLE_INHERIT
2079 || reloc_type
== BFD_RELOC_VTABLE_ENTRY
)
2086 mep_elf_section_letter (int letter
, char **ptrmsg
)
2089 return SHF_MEP_VLIW
;
2091 *ptrmsg
= _("Bad .section directive: want a,v,w,x,M,S in string");
2096 mep_elf_section_flags (flagword flags
, bfd_vma attr
, int type ATTRIBUTE_UNUSED
)
2098 if (attr
& SHF_MEP_VLIW
)
2099 flags
|= SEC_MEP_VLIW
;
2103 /* In vliw mode, the default section is .vtext. We have to be able
2104 to switch into .vtext using only the .vtext directive. */
2107 mep_vtext_section (void)
2109 static segT vtext_section
;
2111 if (! vtext_section
)
2113 flagword applicable
= bfd_applicable_section_flags (stdoutput
);
2114 vtext_section
= subseg_new (VTEXT_SECTION_NAME
, 0);
2115 bfd_set_section_flags (stdoutput
, vtext_section
,
2116 applicable
& (SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
2117 | SEC_CODE
| SEC_READONLY
2121 return vtext_section
;
2125 mep_s_vtext (int ignore ATTRIBUTE_UNUSED
)
2129 /* Record previous_section and previous_subsection. */
2130 obj_elf_section_change_hook ();
2132 temp
= get_absolute_expression ();
2133 subseg_set (mep_vtext_section (), (subsegT
) temp
);
2134 demand_empty_rest_of_line ();
2138 mep_switch_to_core_mode (int dummy ATTRIBUTE_UNUSED
)
2140 mep_process_saved_insns ();
2146 mep_switch_to_vliw_mode (int dummy ATTRIBUTE_UNUSED
)
2149 as_bad (_(".vliw unavailable when VLIW is disabled."));
2151 /* Switch into .vtext here too. */
2152 /* mep_s_vtext(); */
2155 /* This is an undocumented pseudo-op used to disable gas's
2156 "disabled_registers" check. Used for code which checks for those
2157 registers at runtime. */
2159 mep_noregerr (int i ATTRIBUTE_UNUSED
)
2161 allow_disabled_registers
= 1;
2164 /* mep_unrecognized_line: This is called when a line that can't be parsed
2165 is encountered. We use it to check for a leading '+' sign which indicates
2166 that the current instruction is a coprocessor instruction that is to be
2167 parallelized with a previous core insn. This function accepts the '+' and
2168 rejects all other characters that might indicate garbage at the beginning
2169 of the line. The '+' character gets lost as the calling loop continues,
2170 so we need to indicate that we saw it. */
2173 mep_unrecognized_line (int ch
)
2179 return 1; /* '+' indicates an instruction to be parallelized. */
2181 return 0; /* If it's not a '+', the line can't be parsed. */
2188 /* Take care of any insns left to be parallelized when the file ends.
2189 This is mainly here to handle the case where the file ends with an
2190 insn preceeded by a + or the file ends unexpectedly. */
2192 mep_process_saved_insns ();
2196 mep_flush_pending_output (void)
2200 mep_process_saved_insns ();