1 // dynobj.cc -- dynamic object support for gold
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "parameters.h"
39 // Sets up the default soname_ to use, in the (rare) cases we never
40 // see a DT_SONAME entry.
42 Dynobj::Dynobj(const std::string
& name
, Input_file
* input_file
, off_t offset
)
43 : Object(name
, input_file
, true, offset
),
45 unknown_needed_(UNKNOWN_NEEDED_UNSET
)
47 // This will be overridden by a DT_SONAME entry, hopefully. But if
48 // we never see a DT_SONAME entry, our rule is to use the dynamic
49 // object's filename. The only exception is when the dynamic object
50 // is part of an archive (so the filename is the archive's
51 // filename). In that case, we use just the dynobj's name-in-archive.
52 this->soname_
= this->input_file()->found_name();
53 if (this->offset() != 0)
55 std::string::size_type open_paren
= this->name().find('(');
56 std::string::size_type close_paren
= this->name().find(')');
57 if (open_paren
!= std::string::npos
&& close_paren
!= std::string::npos
)
59 // It's an archive, and name() is of the form 'foo.a(bar.so)'.
60 this->soname_
= this->name().substr(open_paren
+ 1,
61 close_paren
- (open_paren
+ 1));
66 // Class Sized_dynobj.
68 template<int size
, bool big_endian
>
69 Sized_dynobj
<size
, big_endian
>::Sized_dynobj(
70 const std::string
& name
,
71 Input_file
* input_file
,
73 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
74 : Dynobj(name
, input_file
, offset
),
75 elf_file_(this, ehdr
),
84 template<int size
, bool big_endian
>
86 Sized_dynobj
<size
, big_endian
>::setup(Target
*target
)
88 this->set_target(target
);
89 const unsigned int shnum
= this->elf_file_
.shnum();
90 this->set_shnum(shnum
);
93 // Find the SHT_DYNSYM section and the various version sections, and
94 // the dynamic section, given the section headers.
96 template<int size
, bool big_endian
>
98 Sized_dynobj
<size
, big_endian
>::find_dynsym_sections(
99 const unsigned char* pshdrs
,
100 unsigned int* pversym_shndx
,
101 unsigned int* pverdef_shndx
,
102 unsigned int* pverneed_shndx
,
103 unsigned int* pdynamic_shndx
)
105 *pversym_shndx
= -1U;
106 *pverdef_shndx
= -1U;
107 *pverneed_shndx
= -1U;
108 *pdynamic_shndx
= -1U;
110 unsigned int xindex_shndx
= 0;
111 unsigned int xindex_link
= 0;
112 const unsigned int shnum
= this->shnum();
113 const unsigned char* p
= pshdrs
;
114 for (unsigned int i
= 0; i
< shnum
; ++i
, p
+= This::shdr_size
)
116 typename
This::Shdr
shdr(p
);
119 switch (shdr
.get_sh_type())
121 case elfcpp::SHT_DYNSYM
:
122 this->dynsym_shndx_
= i
;
123 if (xindex_shndx
> 0 && xindex_link
== i
)
125 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
126 xindex
->read_symtab_xindex
<size
, big_endian
>(this, xindex_shndx
,
128 this->set_xindex(xindex
);
132 case elfcpp::SHT_GNU_versym
:
135 case elfcpp::SHT_GNU_verdef
:
138 case elfcpp::SHT_GNU_verneed
:
141 case elfcpp::SHT_DYNAMIC
:
144 case elfcpp::SHT_SYMTAB_SHNDX
:
146 xindex_link
= this->adjust_shndx(shdr
.get_sh_link());
147 if (xindex_link
== this->dynsym_shndx_
)
149 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
150 xindex
->read_symtab_xindex
<size
, big_endian
>(this, xindex_shndx
,
152 this->set_xindex(xindex
);
165 this->error(_("unexpected duplicate type %u section: %u, %u"),
166 shdr
.get_sh_type(), *pi
, i
);
172 // Read the contents of section SHNDX. PSHDRS points to the section
173 // headers. TYPE is the expected section type. LINK is the expected
174 // section link. Store the data in *VIEW and *VIEW_SIZE. The
175 // section's sh_info field is stored in *VIEW_INFO.
177 template<int size
, bool big_endian
>
179 Sized_dynobj
<size
, big_endian
>::read_dynsym_section(
180 const unsigned char* pshdrs
,
185 section_size_type
* view_size
,
186 unsigned int* view_info
)
196 typename
This::Shdr
shdr(pshdrs
+ shndx
* This::shdr_size
);
198 gold_assert(shdr
.get_sh_type() == type
);
200 if (this->adjust_shndx(shdr
.get_sh_link()) != link
)
201 this->error(_("unexpected link in section %u header: %u != %u"),
202 shndx
, this->adjust_shndx(shdr
.get_sh_link()), link
);
204 *view
= this->get_lasting_view(shdr
.get_sh_offset(), shdr
.get_sh_size(),
206 *view_size
= convert_to_section_size_type(shdr
.get_sh_size());
207 *view_info
= shdr
.get_sh_info();
210 // Read the dynamic tags. Set the soname field if this shared object
211 // has a DT_SONAME tag. Record the DT_NEEDED tags. PSHDRS points to
212 // the section headers. DYNAMIC_SHNDX is the section index of the
213 // SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the
214 // section index and contents of a string table which may be the one
215 // associated with the SHT_DYNAMIC section.
217 template<int size
, bool big_endian
>
219 Sized_dynobj
<size
, big_endian
>::read_dynamic(const unsigned char* pshdrs
,
220 unsigned int dynamic_shndx
,
221 unsigned int strtab_shndx
,
222 const unsigned char* strtabu
,
225 typename
This::Shdr
dynamicshdr(pshdrs
+ dynamic_shndx
* This::shdr_size
);
226 gold_assert(dynamicshdr
.get_sh_type() == elfcpp::SHT_DYNAMIC
);
228 const off_t dynamic_size
= dynamicshdr
.get_sh_size();
229 const unsigned char* pdynamic
= this->get_view(dynamicshdr
.get_sh_offset(),
230 dynamic_size
, true, false);
232 const unsigned int link
= this->adjust_shndx(dynamicshdr
.get_sh_link());
233 if (link
!= strtab_shndx
)
235 if (link
>= this->shnum())
237 this->error(_("DYNAMIC section %u link out of range: %u"),
238 dynamic_shndx
, link
);
242 typename
This::Shdr
strtabshdr(pshdrs
+ link
* This::shdr_size
);
243 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
245 this->error(_("DYNAMIC section %u link %u is not a strtab"),
246 dynamic_shndx
, link
);
250 strtab_size
= strtabshdr
.get_sh_size();
251 strtabu
= this->get_view(strtabshdr
.get_sh_offset(), strtab_size
, false,
255 const char* const strtab
= reinterpret_cast<const char*>(strtabu
);
257 for (const unsigned char* p
= pdynamic
;
258 p
< pdynamic
+ dynamic_size
;
261 typename
This::Dyn
dyn(p
);
263 switch (dyn
.get_d_tag())
265 case elfcpp::DT_NULL
:
266 // We should always see DT_NULL at the end of the dynamic
270 case elfcpp::DT_SONAME
:
272 off_t val
= dyn
.get_d_val();
273 if (val
>= strtab_size
)
274 this->error(_("DT_SONAME value out of range: %lld >= %lld"),
275 static_cast<long long>(val
),
276 static_cast<long long>(strtab_size
));
278 this->set_soname_string(strtab
+ val
);
282 case elfcpp::DT_NEEDED
:
284 off_t val
= dyn
.get_d_val();
285 if (val
>= strtab_size
)
286 this->error(_("DT_NEEDED value out of range: %lld >= %lld"),
287 static_cast<long long>(val
),
288 static_cast<long long>(strtab_size
));
290 this->add_needed(strtab
+ val
);
299 this->error(_("missing DT_NULL in dynamic segment"));
302 // Read the symbols and sections from a dynamic object. We read the
303 // dynamic symbols, not the normal symbols.
305 template<int size
, bool big_endian
>
307 Sized_dynobj
<size
, big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
309 this->read_section_data(&this->elf_file_
, sd
);
311 const unsigned char* const pshdrs
= sd
->section_headers
->data();
313 unsigned int versym_shndx
;
314 unsigned int verdef_shndx
;
315 unsigned int verneed_shndx
;
316 unsigned int dynamic_shndx
;
317 this->find_dynsym_sections(pshdrs
, &versym_shndx
, &verdef_shndx
,
318 &verneed_shndx
, &dynamic_shndx
);
320 unsigned int strtab_shndx
= -1U;
323 sd
->symbols_size
= 0;
324 sd
->external_symbols_offset
= 0;
325 sd
->symbol_names
= NULL
;
326 sd
->symbol_names_size
= 0;
328 if (this->dynsym_shndx_
!= -1U)
330 // Get the dynamic symbols.
331 typename
This::Shdr
dynsymshdr(pshdrs
332 + this->dynsym_shndx_
* This::shdr_size
);
333 gold_assert(dynsymshdr
.get_sh_type() == elfcpp::SHT_DYNSYM
);
335 sd
->symbols
= this->get_lasting_view(dynsymshdr
.get_sh_offset(),
336 dynsymshdr
.get_sh_size(), true,
339 convert_to_section_size_type(dynsymshdr
.get_sh_size());
341 // Get the symbol names.
342 strtab_shndx
= this->adjust_shndx(dynsymshdr
.get_sh_link());
343 if (strtab_shndx
>= this->shnum())
345 this->error(_("invalid dynamic symbol table name index: %u"),
349 typename
This::Shdr
strtabshdr(pshdrs
+ strtab_shndx
* This::shdr_size
);
350 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
352 this->error(_("dynamic symbol table name section "
353 "has wrong type: %u"),
354 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
358 sd
->symbol_names
= this->get_lasting_view(strtabshdr
.get_sh_offset(),
359 strtabshdr
.get_sh_size(),
361 sd
->symbol_names_size
=
362 convert_to_section_size_type(strtabshdr
.get_sh_size());
364 // Get the version information.
367 this->read_dynsym_section(pshdrs
, versym_shndx
, elfcpp::SHT_GNU_versym
,
369 &sd
->versym
, &sd
->versym_size
, &dummy
);
371 // We require that the version definition and need section link
372 // to the same string table as the dynamic symbol table. This
373 // is not a technical requirement, but it always happens in
374 // practice. We could change this if necessary.
376 this->read_dynsym_section(pshdrs
, verdef_shndx
, elfcpp::SHT_GNU_verdef
,
377 strtab_shndx
, &sd
->verdef
, &sd
->verdef_size
,
380 this->read_dynsym_section(pshdrs
, verneed_shndx
, elfcpp::SHT_GNU_verneed
,
381 strtab_shndx
, &sd
->verneed
, &sd
->verneed_size
,
385 // Read the SHT_DYNAMIC section to find whether this shared object
386 // has a DT_SONAME tag and to record any DT_NEEDED tags. This
387 // doesn't really have anything to do with reading the symbols, but
388 // this is a convenient place to do it.
389 if (dynamic_shndx
!= -1U)
390 this->read_dynamic(pshdrs
, dynamic_shndx
, strtab_shndx
,
391 (sd
->symbol_names
== NULL
393 : sd
->symbol_names
->data()),
394 sd
->symbol_names_size
);
397 // Return the Xindex structure to use for object with lots of
400 template<int size
, bool big_endian
>
402 Sized_dynobj
<size
, big_endian
>::do_initialize_xindex()
404 gold_assert(this->dynsym_shndx_
!= -1U);
405 Xindex
* xindex
= new Xindex(this->elf_file_
.large_shndx_offset());
406 xindex
->initialize_symtab_xindex
<size
, big_endian
>(this, this->dynsym_shndx_
);
410 // Lay out the input sections for a dynamic object. We don't want to
411 // include sections from a dynamic object, so all that we actually do
412 // here is check for .gnu.warning sections.
414 template<int size
, bool big_endian
>
416 Sized_dynobj
<size
, big_endian
>::do_layout(Symbol_table
* symtab
,
418 Read_symbols_data
* sd
)
420 const unsigned int shnum
= this->shnum();
424 // Get the section headers.
425 const unsigned char* pshdrs
= sd
->section_headers
->data();
427 // Get the section names.
428 const unsigned char* pnamesu
= sd
->section_names
->data();
429 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
431 // Skip the first, dummy, section.
432 pshdrs
+= This::shdr_size
;
433 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
435 typename
This::Shdr
shdr(pshdrs
);
437 if (shdr
.get_sh_name() >= sd
->section_names_size
)
439 this->error(_("bad section name offset for section %u: %lu"),
440 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
444 const char* name
= pnames
+ shdr
.get_sh_name();
446 this->handle_gnu_warning_section(name
, i
, symtab
);
449 delete sd
->section_headers
;
450 sd
->section_headers
= NULL
;
451 delete sd
->section_names
;
452 sd
->section_names
= NULL
;
455 // Add an entry to the vector mapping version numbers to version
458 template<int size
, bool big_endian
>
460 Sized_dynobj
<size
, big_endian
>::set_version_map(
461 Version_map
* version_map
,
463 const char* name
) const
465 if (ndx
>= version_map
->size())
466 version_map
->resize(ndx
+ 1);
467 if ((*version_map
)[ndx
] != NULL
)
468 this->error(_("duplicate definition for version %u"), ndx
);
469 (*version_map
)[ndx
] = name
;
472 // Add mappings for the version definitions to VERSION_MAP.
474 template<int size
, bool big_endian
>
476 Sized_dynobj
<size
, big_endian
>::make_verdef_map(
477 Read_symbols_data
* sd
,
478 Version_map
* version_map
) const
480 if (sd
->verdef
== NULL
)
483 const char* names
= reinterpret_cast<const char*>(sd
->symbol_names
->data());
484 section_size_type names_size
= sd
->symbol_names_size
;
486 const unsigned char* pverdef
= sd
->verdef
->data();
487 section_size_type verdef_size
= sd
->verdef_size
;
488 const unsigned int count
= sd
->verdef_info
;
490 const unsigned char* p
= pverdef
;
491 for (unsigned int i
= 0; i
< count
; ++i
)
493 elfcpp::Verdef
<size
, big_endian
> verdef(p
);
495 if (verdef
.get_vd_version() != elfcpp::VER_DEF_CURRENT
)
497 this->error(_("unexpected verdef version %u"),
498 verdef
.get_vd_version());
502 const section_size_type vd_ndx
= verdef
.get_vd_ndx();
504 // The GNU linker clears the VERSYM_HIDDEN bit. I'm not
507 // The first Verdaux holds the name of this version. Subsequent
508 // ones are versions that this one depends upon, which we don't
510 const section_size_type vd_cnt
= verdef
.get_vd_cnt();
513 this->error(_("verdef vd_cnt field too small: %u"),
514 static_cast<unsigned int>(vd_cnt
));
518 const section_size_type vd_aux
= verdef
.get_vd_aux();
519 if ((p
- pverdef
) + vd_aux
>= verdef_size
)
521 this->error(_("verdef vd_aux field out of range: %u"),
522 static_cast<unsigned int>(vd_aux
));
526 const unsigned char* pvda
= p
+ vd_aux
;
527 elfcpp::Verdaux
<size
, big_endian
> verdaux(pvda
);
529 const section_size_type vda_name
= verdaux
.get_vda_name();
530 if (vda_name
>= names_size
)
532 this->error(_("verdaux vda_name field out of range: %u"),
533 static_cast<unsigned int>(vda_name
));
537 this->set_version_map(version_map
, vd_ndx
, names
+ vda_name
);
539 const section_size_type vd_next
= verdef
.get_vd_next();
540 if ((p
- pverdef
) + vd_next
>= verdef_size
)
542 this->error(_("verdef vd_next field out of range: %u"),
543 static_cast<unsigned int>(vd_next
));
551 // Add mappings for the required versions to VERSION_MAP.
553 template<int size
, bool big_endian
>
555 Sized_dynobj
<size
, big_endian
>::make_verneed_map(
556 Read_symbols_data
* sd
,
557 Version_map
* version_map
) const
559 if (sd
->verneed
== NULL
)
562 const char* names
= reinterpret_cast<const char*>(sd
->symbol_names
->data());
563 section_size_type names_size
= sd
->symbol_names_size
;
565 const unsigned char* pverneed
= sd
->verneed
->data();
566 const section_size_type verneed_size
= sd
->verneed_size
;
567 const unsigned int count
= sd
->verneed_info
;
569 const unsigned char* p
= pverneed
;
570 for (unsigned int i
= 0; i
< count
; ++i
)
572 elfcpp::Verneed
<size
, big_endian
> verneed(p
);
574 if (verneed
.get_vn_version() != elfcpp::VER_NEED_CURRENT
)
576 this->error(_("unexpected verneed version %u"),
577 verneed
.get_vn_version());
581 const section_size_type vn_aux
= verneed
.get_vn_aux();
583 if ((p
- pverneed
) + vn_aux
>= verneed_size
)
585 this->error(_("verneed vn_aux field out of range: %u"),
586 static_cast<unsigned int>(vn_aux
));
590 const unsigned int vn_cnt
= verneed
.get_vn_cnt();
591 const unsigned char* pvna
= p
+ vn_aux
;
592 for (unsigned int j
= 0; j
< vn_cnt
; ++j
)
594 elfcpp::Vernaux
<size
, big_endian
> vernaux(pvna
);
596 const unsigned int vna_name
= vernaux
.get_vna_name();
597 if (vna_name
>= names_size
)
599 this->error(_("vernaux vna_name field out of range: %u"),
600 static_cast<unsigned int>(vna_name
));
604 this->set_version_map(version_map
, vernaux
.get_vna_other(),
607 const section_size_type vna_next
= vernaux
.get_vna_next();
608 if ((pvna
- pverneed
) + vna_next
>= verneed_size
)
610 this->error(_("verneed vna_next field out of range: %u"),
611 static_cast<unsigned int>(vna_next
));
618 const section_size_type vn_next
= verneed
.get_vn_next();
619 if ((p
- pverneed
) + vn_next
>= verneed_size
)
621 this->error(_("verneed vn_next field out of range: %u"),
622 static_cast<unsigned int>(vn_next
));
630 // Create a vector mapping version numbers to version strings.
632 template<int size
, bool big_endian
>
634 Sized_dynobj
<size
, big_endian
>::make_version_map(
635 Read_symbols_data
* sd
,
636 Version_map
* version_map
) const
638 if (sd
->verdef
== NULL
&& sd
->verneed
== NULL
)
641 // A guess at the maximum version number we will see. If this is
642 // wrong we will be less efficient but still correct.
643 version_map
->reserve(sd
->verdef_info
+ sd
->verneed_info
* 10);
645 this->make_verdef_map(sd
, version_map
);
646 this->make_verneed_map(sd
, version_map
);
649 // Add the dynamic symbols to the symbol table.
651 template<int size
, bool big_endian
>
653 Sized_dynobj
<size
, big_endian
>::do_add_symbols(Symbol_table
* symtab
,
654 Read_symbols_data
* sd
,
657 if (sd
->symbols
== NULL
)
659 gold_assert(sd
->symbol_names
== NULL
);
660 gold_assert(sd
->versym
== NULL
&& sd
->verdef
== NULL
661 && sd
->verneed
== NULL
);
665 const int sym_size
= This::sym_size
;
666 const size_t symcount
= sd
->symbols_size
/ sym_size
;
667 gold_assert(sd
->external_symbols_offset
== 0);
668 if (symcount
* sym_size
!= sd
->symbols_size
)
670 this->error(_("size of dynamic symbols is not multiple of symbol size"));
674 Version_map version_map
;
675 this->make_version_map(sd
, &version_map
);
677 // If printing symbol counts, we want to track symbols.
679 if (parameters
->options().user_set_print_symbol_counts())
681 this->symbols_
= new Symbols();
682 this->symbols_
->resize(symcount
);
685 const char* sym_names
=
686 reinterpret_cast<const char*>(sd
->symbol_names
->data());
687 symtab
->add_from_dynobj(this, sd
->symbols
->data(), symcount
,
688 sym_names
, sd
->symbol_names_size
,
691 : sd
->versym
->data()),
695 &this->defined_count_
);
699 delete sd
->symbol_names
;
700 sd
->symbol_names
= NULL
;
701 if (sd
->versym
!= NULL
)
706 if (sd
->verdef
!= NULL
)
711 if (sd
->verneed
!= NULL
)
717 // This is normally the last time we will read any data from this
719 this->clear_view_cache_marks();
722 // Get symbol counts.
724 template<int size
, bool big_endian
>
726 Sized_dynobj
<size
, big_endian
>::do_get_global_symbol_counts(
731 *defined
= this->defined_count_
;
733 for (typename
Symbols::const_iterator p
= this->symbols_
->begin();
734 p
!= this->symbols_
->end();
737 && (*p
)->source() == Symbol::FROM_OBJECT
738 && (*p
)->object() == this
739 && (*p
)->is_defined()
740 && (*p
)->dynsym_index() != -1U)
745 // Given a vector of hash codes, compute the number of hash buckets to
749 Dynobj::compute_bucket_count(const std::vector
<uint32_t>& hashcodes
,
750 bool for_gnu_hash_table
)
752 // FIXME: Implement optional hash table optimization.
754 // Array used to determine the number of hash table buckets to use
755 // based on the number of symbols there are. If there are fewer
756 // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3
757 // buckets, fewer than 37 we use 17 buckets, and so forth. We never
758 // use more than 262147 buckets. This is straight from the old GNU
760 static const unsigned int buckets
[] =
762 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
763 16411, 32771, 65537, 131101, 262147
765 const int buckets_count
= sizeof buckets
/ sizeof buckets
[0];
767 unsigned int symcount
= hashcodes
.size();
768 unsigned int ret
= 1;
769 const double full_fraction
770 = 1.0 - parameters
->options().hash_bucket_empty_fraction();
771 for (int i
= 0; i
< buckets_count
; ++i
)
773 if (symcount
< buckets
[i
] * full_fraction
)
778 if (for_gnu_hash_table
&& ret
< 2)
784 // The standard ELF hash function. This hash function must not
785 // change, as the dynamic linker uses it also.
788 Dynobj::elf_hash(const char* name
)
790 const unsigned char* nameu
= reinterpret_cast<const unsigned char*>(name
);
793 while ((c
= *nameu
++) != '\0')
796 uint32_t g
= h
& 0xf0000000;
800 // The ELF ABI says h &= ~g, but using xor is equivalent in
801 // this case (since g was set from h) and may save one
809 // Create a standard ELF hash table, setting *PPHASH and *PHASHLEN.
810 // DYNSYMS is a vector with all the global dynamic symbols.
811 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
815 Dynobj::create_elf_hash_table(const std::vector
<Symbol
*>& dynsyms
,
816 unsigned int local_dynsym_count
,
817 unsigned char** pphash
,
818 unsigned int* phashlen
)
820 unsigned int dynsym_count
= dynsyms
.size();
822 // Get the hash values for all the symbols.
823 std::vector
<uint32_t> dynsym_hashvals(dynsym_count
);
824 for (unsigned int i
= 0; i
< dynsym_count
; ++i
)
825 dynsym_hashvals
[i
] = Dynobj::elf_hash(dynsyms
[i
]->name());
827 const unsigned int bucketcount
=
828 Dynobj::compute_bucket_count(dynsym_hashvals
, false);
830 std::vector
<uint32_t> bucket(bucketcount
);
831 std::vector
<uint32_t> chain(local_dynsym_count
+ dynsym_count
);
833 for (unsigned int i
= 0; i
< dynsym_count
; ++i
)
835 unsigned int dynsym_index
= dynsyms
[i
]->dynsym_index();
836 unsigned int bucketpos
= dynsym_hashvals
[i
] % bucketcount
;
837 chain
[dynsym_index
] = bucket
[bucketpos
];
838 bucket
[bucketpos
] = dynsym_index
;
841 unsigned int hashlen
= ((2
846 unsigned char* phash
= new unsigned char[hashlen
];
848 if (parameters
->target().is_big_endian())
850 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
851 Dynobj::sized_create_elf_hash_table
<true>(bucket
, chain
, phash
,
859 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
860 Dynobj::sized_create_elf_hash_table
<false>(bucket
, chain
, phash
,
871 // Fill in an ELF hash table.
873 template<bool big_endian
>
875 Dynobj::sized_create_elf_hash_table(const std::vector
<uint32_t>& bucket
,
876 const std::vector
<uint32_t>& chain
,
877 unsigned char* phash
,
878 unsigned int hashlen
)
880 unsigned char* p
= phash
;
882 const unsigned int bucketcount
= bucket
.size();
883 const unsigned int chaincount
= chain
.size();
885 elfcpp::Swap
<32, big_endian
>::writeval(p
, bucketcount
);
887 elfcpp::Swap
<32, big_endian
>::writeval(p
, chaincount
);
890 for (unsigned int i
= 0; i
< bucketcount
; ++i
)
892 elfcpp::Swap
<32, big_endian
>::writeval(p
, bucket
[i
]);
896 for (unsigned int i
= 0; i
< chaincount
; ++i
)
898 elfcpp::Swap
<32, big_endian
>::writeval(p
, chain
[i
]);
902 gold_assert(static_cast<unsigned int>(p
- phash
) == hashlen
);
905 // The hash function used for the GNU hash table. This hash function
906 // must not change, as the dynamic linker uses it also.
909 Dynobj::gnu_hash(const char* name
)
911 const unsigned char* nameu
= reinterpret_cast<const unsigned char*>(name
);
914 while ((c
= *nameu
++) != '\0')
915 h
= (h
<< 5) + h
+ c
;
919 // Create a GNU hash table, setting *PPHASH and *PHASHLEN. GNU hash
920 // tables are an extension to ELF which are recognized by the GNU
921 // dynamic linker. They are referenced using dynamic tag DT_GNU_HASH.
922 // TARGET is the target. DYNSYMS is a vector with all the global
923 // symbols which will be going into the dynamic symbol table.
924 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
928 Dynobj::create_gnu_hash_table(const std::vector
<Symbol
*>& dynsyms
,
929 unsigned int local_dynsym_count
,
930 unsigned char** pphash
,
931 unsigned int* phashlen
)
933 const unsigned int count
= dynsyms
.size();
935 // Sort the dynamic symbols into two vectors. Symbols which we do
936 // not want to put into the hash table we store into
937 // UNHASHED_DYNSYMS. Symbols which we do want to store we put into
938 // HASHED_DYNSYMS. DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS,
939 // and records the hash codes.
941 std::vector
<Symbol
*> unhashed_dynsyms
;
942 unhashed_dynsyms
.reserve(count
);
944 std::vector
<Symbol
*> hashed_dynsyms
;
945 hashed_dynsyms
.reserve(count
);
947 std::vector
<uint32_t> dynsym_hashvals
;
948 dynsym_hashvals
.reserve(count
);
950 for (unsigned int i
= 0; i
< count
; ++i
)
952 Symbol
* sym
= dynsyms
[i
];
954 // FIXME: Should put on unhashed_dynsyms if the symbol is
956 if (sym
->is_undefined())
957 unhashed_dynsyms
.push_back(sym
);
960 hashed_dynsyms
.push_back(sym
);
961 dynsym_hashvals
.push_back(Dynobj::gnu_hash(sym
->name()));
965 // Put the unhashed symbols at the start of the global portion of
966 // the dynamic symbol table.
967 const unsigned int unhashed_count
= unhashed_dynsyms
.size();
968 unsigned int unhashed_dynsym_index
= local_dynsym_count
;
969 for (unsigned int i
= 0; i
< unhashed_count
; ++i
)
971 unhashed_dynsyms
[i
]->set_dynsym_index(unhashed_dynsym_index
);
972 ++unhashed_dynsym_index
;
975 // For the actual data generation we call out to a templatized
977 int size
= parameters
->target().get_size();
978 bool big_endian
= parameters
->target().is_big_endian();
983 #ifdef HAVE_TARGET_32_BIG
984 Dynobj::sized_create_gnu_hash_table
<32, true>(hashed_dynsyms
,
986 unhashed_dynsym_index
,
995 #ifdef HAVE_TARGET_32_LITTLE
996 Dynobj::sized_create_gnu_hash_table
<32, false>(hashed_dynsyms
,
998 unhashed_dynsym_index
,
1006 else if (size
== 64)
1010 #ifdef HAVE_TARGET_64_BIG
1011 Dynobj::sized_create_gnu_hash_table
<64, true>(hashed_dynsyms
,
1013 unhashed_dynsym_index
,
1022 #ifdef HAVE_TARGET_64_LITTLE
1023 Dynobj::sized_create_gnu_hash_table
<64, false>(hashed_dynsyms
,
1025 unhashed_dynsym_index
,
1037 // Create the actual data for a GNU hash table. This is just a copy
1038 // of the code from the old GNU linker.
1040 template<int size
, bool big_endian
>
1042 Dynobj::sized_create_gnu_hash_table(
1043 const std::vector
<Symbol
*>& hashed_dynsyms
,
1044 const std::vector
<uint32_t>& dynsym_hashvals
,
1045 unsigned int unhashed_dynsym_count
,
1046 unsigned char** pphash
,
1047 unsigned int* phashlen
)
1049 if (hashed_dynsyms
.empty())
1051 // Special case for the empty hash table.
1052 unsigned int hashlen
= 5 * 4 + size
/ 8;
1053 unsigned char* phash
= new unsigned char[hashlen
];
1054 // One empty bucket.
1055 elfcpp::Swap
<32, big_endian
>::writeval(phash
, 1);
1056 // Symbol index above unhashed symbols.
1057 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 4, unhashed_dynsym_count
);
1058 // One word for bitmask.
1059 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 8, 1);
1060 // Only bloom filter.
1061 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 12, 0);
1063 elfcpp::Swap
<size
, big_endian
>::writeval(phash
+ 16, 0);
1064 // No hashes in only bucket.
1065 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 16 + size
/ 8, 0);
1067 *phashlen
= hashlen
;
1073 const unsigned int bucketcount
=
1074 Dynobj::compute_bucket_count(dynsym_hashvals
, true);
1076 const unsigned int nsyms
= hashed_dynsyms
.size();
1078 uint32_t maskbitslog2
= 1;
1079 uint32_t x
= nsyms
>> 1;
1085 if (maskbitslog2
< 3)
1087 else if (((1U << (maskbitslog2
- 2)) & nsyms
) != 0)
1097 if (maskbitslog2
== 5)
1101 uint32_t mask
= (1U << shift1
) - 1U;
1102 uint32_t shift2
= maskbitslog2
;
1103 uint32_t maskbits
= 1U << maskbitslog2
;
1104 uint32_t maskwords
= 1U << (maskbitslog2
- shift1
);
1106 typedef typename
elfcpp::Elf_types
<size
>::Elf_WXword Word
;
1107 std::vector
<Word
> bitmask(maskwords
);
1108 std::vector
<uint32_t> counts(bucketcount
);
1109 std::vector
<uint32_t> indx(bucketcount
);
1110 uint32_t symindx
= unhashed_dynsym_count
;
1112 // Count the number of times each hash bucket is used.
1113 for (unsigned int i
= 0; i
< nsyms
; ++i
)
1114 ++counts
[dynsym_hashvals
[i
] % bucketcount
];
1116 unsigned int cnt
= symindx
;
1117 for (unsigned int i
= 0; i
< bucketcount
; ++i
)
1123 unsigned int hashlen
= (4 + bucketcount
+ nsyms
) * 4;
1124 hashlen
+= maskbits
/ 8;
1125 unsigned char* phash
= new unsigned char[hashlen
];
1127 elfcpp::Swap
<32, big_endian
>::writeval(phash
, bucketcount
);
1128 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 4, symindx
);
1129 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 8, maskwords
);
1130 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 12, shift2
);
1132 unsigned char* p
= phash
+ 16 + maskbits
/ 8;
1133 for (unsigned int i
= 0; i
< bucketcount
; ++i
)
1136 elfcpp::Swap
<32, big_endian
>::writeval(p
, 0);
1138 elfcpp::Swap
<32, big_endian
>::writeval(p
, indx
[i
]);
1142 for (unsigned int i
= 0; i
< nsyms
; ++i
)
1144 Symbol
* sym
= hashed_dynsyms
[i
];
1145 uint32_t hashval
= dynsym_hashvals
[i
];
1147 unsigned int bucket
= hashval
% bucketcount
;
1148 unsigned int val
= ((hashval
>> shift1
)
1149 & ((maskbits
>> shift1
) - 1));
1150 bitmask
[val
] |= (static_cast<Word
>(1U)) << (hashval
& mask
);
1151 bitmask
[val
] |= (static_cast<Word
>(1U)) << ((hashval
>> shift2
) & mask
);
1152 val
= hashval
& ~ 1U;
1153 if (counts
[bucket
] == 1)
1155 // Last element terminates the chain.
1158 elfcpp::Swap
<32, big_endian
>::writeval(p
+ (indx
[bucket
] - symindx
) * 4,
1162 sym
->set_dynsym_index(indx
[bucket
]);
1167 for (unsigned int i
= 0; i
< maskwords
; ++i
)
1169 elfcpp::Swap
<size
, big_endian
>::writeval(p
, bitmask
[i
]);
1173 *phashlen
= hashlen
;
1179 // Write this definition to a buffer for the output section.
1181 template<int size
, bool big_endian
>
1183 Verdef::write(const Stringpool
* dynpool
, bool is_last
, unsigned char* pb
) const
1185 const int verdef_size
= elfcpp::Elf_sizes
<size
>::verdef_size
;
1186 const int verdaux_size
= elfcpp::Elf_sizes
<size
>::verdaux_size
;
1188 elfcpp::Verdef_write
<size
, big_endian
> vd(pb
);
1189 vd
.set_vd_version(elfcpp::VER_DEF_CURRENT
);
1190 vd
.set_vd_flags((this->is_base_
? elfcpp::VER_FLG_BASE
: 0)
1191 | (this->is_weak_
? elfcpp::VER_FLG_WEAK
: 0));
1192 vd
.set_vd_ndx(this->index());
1193 vd
.set_vd_cnt(1 + this->deps_
.size());
1194 vd
.set_vd_hash(Dynobj::elf_hash(this->name()));
1195 vd
.set_vd_aux(verdef_size
);
1196 vd
.set_vd_next(is_last
1198 : verdef_size
+ (1 + this->deps_
.size()) * verdaux_size
);
1201 elfcpp::Verdaux_write
<size
, big_endian
> vda(pb
);
1202 vda
.set_vda_name(dynpool
->get_offset(this->name()));
1203 vda
.set_vda_next(this->deps_
.empty() ? 0 : verdaux_size
);
1206 Deps::const_iterator p
;
1208 for (p
= this->deps_
.begin(), i
= 0;
1209 p
!= this->deps_
.end();
1212 elfcpp::Verdaux_write
<size
, big_endian
> vda(pb
);
1213 vda
.set_vda_name(dynpool
->get_offset(*p
));
1214 vda
.set_vda_next(i
+ 1 >= this->deps_
.size() ? 0 : verdaux_size
);
1225 for (Need_versions::iterator p
= this->need_versions_
.begin();
1226 p
!= this->need_versions_
.end();
1231 // Add a new version to this file reference.
1234 Verneed::add_name(const char* name
)
1236 Verneed_version
* vv
= new Verneed_version(name
);
1237 this->need_versions_
.push_back(vv
);
1241 // Set the version indexes starting at INDEX.
1244 Verneed::finalize(unsigned int index
)
1246 for (Need_versions::iterator p
= this->need_versions_
.begin();
1247 p
!= this->need_versions_
.end();
1250 (*p
)->set_index(index
);
1256 // Write this list of referenced versions to a buffer for the output
1259 template<int size
, bool big_endian
>
1261 Verneed::write(const Stringpool
* dynpool
, bool is_last
,
1262 unsigned char* pb
) const
1264 const int verneed_size
= elfcpp::Elf_sizes
<size
>::verneed_size
;
1265 const int vernaux_size
= elfcpp::Elf_sizes
<size
>::vernaux_size
;
1267 elfcpp::Verneed_write
<size
, big_endian
> vn(pb
);
1268 vn
.set_vn_version(elfcpp::VER_NEED_CURRENT
);
1269 vn
.set_vn_cnt(this->need_versions_
.size());
1270 vn
.set_vn_file(dynpool
->get_offset(this->filename()));
1271 vn
.set_vn_aux(verneed_size
);
1272 vn
.set_vn_next(is_last
1274 : verneed_size
+ this->need_versions_
.size() * vernaux_size
);
1277 Need_versions::const_iterator p
;
1279 for (p
= this->need_versions_
.begin(), i
= 0;
1280 p
!= this->need_versions_
.end();
1283 elfcpp::Vernaux_write
<size
, big_endian
> vna(pb
);
1284 vna
.set_vna_hash(Dynobj::elf_hash((*p
)->version()));
1285 // FIXME: We need to sometimes set VER_FLG_WEAK here.
1286 vna
.set_vna_flags(0);
1287 vna
.set_vna_other((*p
)->index());
1288 vna
.set_vna_name(dynpool
->get_offset((*p
)->version()));
1289 vna
.set_vna_next(i
+ 1 >= this->need_versions_
.size()
1298 // Versions methods.
1300 Versions::Versions(const Version_script_info
& version_script
,
1301 Stringpool
* dynpool
)
1302 : defs_(), needs_(), version_table_(),
1303 is_finalized_(false), version_script_(version_script
)
1305 // We always need a base version, so define that first. Nothing
1306 // explicitly declares itself as part of base, so it doesn't need to
1307 // be in version_table_.
1308 if (parameters
->options().shared())
1310 const char* name
= parameters
->options().soname();
1312 name
= parameters
->options().output_file_name();
1313 name
= dynpool
->add(name
, false, NULL
);
1314 Verdef
* vdbase
= new Verdef(name
, std::vector
<std::string
>(),
1316 this->defs_
.push_back(vdbase
);
1319 if (!this->version_script_
.empty())
1321 // Parse the version script, and insert each declared version into
1322 // defs_ and version_table_.
1323 std::vector
<std::string
> versions
= this->version_script_
.get_versions();
1324 for (size_t k
= 0; k
< versions
.size(); ++k
)
1326 Stringpool::Key version_key
;
1327 const char* version
= dynpool
->add(versions
[k
].c_str(),
1328 true, &version_key
);
1329 Verdef
* const vd
= new Verdef(
1331 this->version_script_
.get_dependencies(version
),
1332 false, false, false);
1333 this->defs_
.push_back(vd
);
1334 Key
key(version_key
, 0);
1335 this->version_table_
.insert(std::make_pair(key
, vd
));
1340 Versions::~Versions()
1342 for (Defs::iterator p
= this->defs_
.begin();
1343 p
!= this->defs_
.end();
1347 for (Needs::iterator p
= this->needs_
.begin();
1348 p
!= this->needs_
.end();
1353 // Return the dynamic object which a symbol refers to.
1356 Versions::get_dynobj_for_sym(const Symbol_table
* symtab
,
1357 const Symbol
* sym
) const
1359 if (sym
->is_copied_from_dynobj())
1360 return symtab
->get_copy_source(sym
);
1363 Object
* object
= sym
->object();
1364 gold_assert(object
->is_dynamic());
1365 return static_cast<Dynobj
*>(object
);
1369 // Record version information for a symbol going into the dynamic
1373 Versions::record_version(const Symbol_table
* symtab
,
1374 Stringpool
* dynpool
, const Symbol
* sym
)
1376 gold_assert(!this->is_finalized_
);
1377 gold_assert(sym
->version() != NULL
);
1379 Stringpool::Key version_key
;
1380 const char* version
= dynpool
->add(sym
->version(), false, &version_key
);
1382 if (!sym
->is_from_dynobj() && !sym
->is_copied_from_dynobj())
1384 if (parameters
->options().shared())
1385 this->add_def(sym
, version
, version_key
);
1389 // This is a version reference.
1390 Dynobj
* dynobj
= this->get_dynobj_for_sym(symtab
, sym
);
1391 this->add_need(dynpool
, dynobj
->soname(), version
, version_key
);
1395 // We've found a symbol SYM defined in version VERSION.
1398 Versions::add_def(const Symbol
* sym
, const char* version
,
1399 Stringpool::Key version_key
)
1401 Key
k(version_key
, 0);
1402 Version_base
* const vbnull
= NULL
;
1403 std::pair
<Version_table::iterator
, bool> ins
=
1404 this->version_table_
.insert(std::make_pair(k
, vbnull
));
1408 // We already have an entry for this version.
1409 Version_base
* vb
= ins
.first
->second
;
1411 // We have now seen a symbol in this version, so it is not
1413 gold_assert(vb
!= NULL
);
1418 // If we are creating a shared object, it is an error to
1419 // find a definition of a symbol with a version which is not
1420 // in the version script.
1421 if (parameters
->options().shared())
1422 gold_error(_("symbol %s has undefined version %s"),
1423 sym
->demangled_name().c_str(), version
);
1425 // When creating a regular executable, automatically define
1427 Verdef
* vd
= new Verdef(version
, std::vector
<std::string
>(),
1428 false, false, false);
1429 this->defs_
.push_back(vd
);
1430 ins
.first
->second
= vd
;
1434 // Add a reference to version NAME in file FILENAME.
1437 Versions::add_need(Stringpool
* dynpool
, const char* filename
, const char* name
,
1438 Stringpool::Key name_key
)
1440 Stringpool::Key filename_key
;
1441 filename
= dynpool
->add(filename
, true, &filename_key
);
1443 Key
k(name_key
, filename_key
);
1444 Version_base
* const vbnull
= NULL
;
1445 std::pair
<Version_table::iterator
, bool> ins
=
1446 this->version_table_
.insert(std::make_pair(k
, vbnull
));
1450 // We already have an entry for this filename/version.
1454 // See whether we already have this filename. We don't expect many
1455 // version references, so we just do a linear search. This could be
1456 // replaced by a hash table.
1458 for (Needs::iterator p
= this->needs_
.begin();
1459 p
!= this->needs_
.end();
1462 if ((*p
)->filename() == filename
)
1471 // We have a new filename.
1472 vn
= new Verneed(filename
);
1473 this->needs_
.push_back(vn
);
1476 ins
.first
->second
= vn
->add_name(name
);
1479 // Set the version indexes. Create a new dynamic version symbol for
1480 // each new version definition.
1483 Versions::finalize(Symbol_table
* symtab
, unsigned int dynsym_index
,
1484 std::vector
<Symbol
*>* syms
)
1486 gold_assert(!this->is_finalized_
);
1488 unsigned int vi
= 1;
1490 for (Defs::iterator p
= this->defs_
.begin();
1491 p
!= this->defs_
.end();
1494 (*p
)->set_index(vi
);
1497 // Create a version symbol if necessary.
1498 if (!(*p
)->is_symbol_created())
1500 Symbol
* vsym
= symtab
->define_as_constant((*p
)->name(),
1504 elfcpp::STV_DEFAULT
, 0,
1506 vsym
->set_needs_dynsym_entry();
1507 vsym
->set_dynsym_index(dynsym_index
);
1509 syms
->push_back(vsym
);
1510 // The name is already in the dynamic pool.
1514 // Index 1 is used for global symbols.
1517 gold_assert(this->defs_
.empty());
1521 for (Needs::iterator p
= this->needs_
.begin();
1522 p
!= this->needs_
.end();
1524 vi
= (*p
)->finalize(vi
);
1526 this->is_finalized_
= true;
1528 return dynsym_index
;
1531 // Return the version index to use for a symbol. This does two hash
1532 // table lookups: one in DYNPOOL and one in this->version_table_.
1533 // Another approach alternative would be store a pointer in SYM, which
1534 // would increase the size of the symbol table. Or perhaps we could
1535 // use a hash table from dynamic symbol pointer values to Version_base
1539 Versions::version_index(const Symbol_table
* symtab
, const Stringpool
* dynpool
,
1540 const Symbol
* sym
) const
1542 Stringpool::Key version_key
;
1543 const char* version
= dynpool
->find(sym
->version(), &version_key
);
1544 gold_assert(version
!= NULL
);
1547 if (!sym
->is_from_dynobj() && !sym
->is_copied_from_dynobj())
1549 if (!parameters
->options().shared())
1550 return elfcpp::VER_NDX_GLOBAL
;
1551 k
= Key(version_key
, 0);
1555 Dynobj
* dynobj
= this->get_dynobj_for_sym(symtab
, sym
);
1557 Stringpool::Key filename_key
;
1558 const char* filename
= dynpool
->find(dynobj
->soname(), &filename_key
);
1559 gold_assert(filename
!= NULL
);
1561 k
= Key(version_key
, filename_key
);
1564 Version_table::const_iterator p
= this->version_table_
.find(k
);
1565 gold_assert(p
!= this->version_table_
.end());
1567 return p
->second
->index();
1570 // Return an allocated buffer holding the contents of the symbol
1573 template<int size
, bool big_endian
>
1575 Versions::symbol_section_contents(const Symbol_table
* symtab
,
1576 const Stringpool
* dynpool
,
1577 unsigned int local_symcount
,
1578 const std::vector
<Symbol
*>& syms
,
1580 unsigned int* psize
) const
1582 gold_assert(this->is_finalized_
);
1584 unsigned int sz
= (local_symcount
+ syms
.size()) * 2;
1585 unsigned char* pbuf
= new unsigned char[sz
];
1587 for (unsigned int i
= 0; i
< local_symcount
; ++i
)
1588 elfcpp::Swap
<16, big_endian
>::writeval(pbuf
+ i
* 2,
1589 elfcpp::VER_NDX_LOCAL
);
1591 for (std::vector
<Symbol
*>::const_iterator p
= syms
.begin();
1595 unsigned int version_index
;
1596 const char* version
= (*p
)->version();
1597 if (version
== NULL
)
1598 version_index
= elfcpp::VER_NDX_GLOBAL
;
1600 version_index
= this->version_index(symtab
, dynpool
, *p
);
1601 // If the symbol was defined as foo@V1 instead of foo@@V1, add
1603 if ((*p
)->version() != NULL
&& !(*p
)->is_default())
1604 version_index
|= elfcpp::VERSYM_HIDDEN
;
1605 elfcpp::Swap
<16, big_endian
>::writeval(pbuf
+ (*p
)->dynsym_index() * 2,
1613 // Return an allocated buffer holding the contents of the version
1614 // definition section.
1616 template<int size
, bool big_endian
>
1618 Versions::def_section_contents(const Stringpool
* dynpool
,
1619 unsigned char** pp
, unsigned int* psize
,
1620 unsigned int* pentries
) const
1622 gold_assert(this->is_finalized_
);
1623 gold_assert(!this->defs_
.empty());
1625 const int verdef_size
= elfcpp::Elf_sizes
<size
>::verdef_size
;
1626 const int verdaux_size
= elfcpp::Elf_sizes
<size
>::verdaux_size
;
1628 unsigned int sz
= 0;
1629 for (Defs::const_iterator p
= this->defs_
.begin();
1630 p
!= this->defs_
.end();
1633 sz
+= verdef_size
+ verdaux_size
;
1634 sz
+= (*p
)->count_dependencies() * verdaux_size
;
1637 unsigned char* pbuf
= new unsigned char[sz
];
1639 unsigned char* pb
= pbuf
;
1640 Defs::const_iterator p
;
1642 for (p
= this->defs_
.begin(), i
= 0;
1643 p
!= this->defs_
.end();
1645 pb
= (*p
)->write
<size
, big_endian
>(dynpool
,
1646 i
+ 1 >= this->defs_
.size(),
1649 gold_assert(static_cast<unsigned int>(pb
- pbuf
) == sz
);
1653 *pentries
= this->defs_
.size();
1656 // Return an allocated buffer holding the contents of the version
1657 // reference section.
1659 template<int size
, bool big_endian
>
1661 Versions::need_section_contents(const Stringpool
* dynpool
,
1662 unsigned char** pp
, unsigned int *psize
,
1663 unsigned int *pentries
) const
1665 gold_assert(this->is_finalized_
);
1666 gold_assert(!this->needs_
.empty());
1668 const int verneed_size
= elfcpp::Elf_sizes
<size
>::verneed_size
;
1669 const int vernaux_size
= elfcpp::Elf_sizes
<size
>::vernaux_size
;
1671 unsigned int sz
= 0;
1672 for (Needs::const_iterator p
= this->needs_
.begin();
1673 p
!= this->needs_
.end();
1677 sz
+= (*p
)->count_versions() * vernaux_size
;
1680 unsigned char* pbuf
= new unsigned char[sz
];
1682 unsigned char* pb
= pbuf
;
1683 Needs::const_iterator p
;
1685 for (p
= this->needs_
.begin(), i
= 0;
1686 p
!= this->needs_
.end();
1688 pb
= (*p
)->write
<size
, big_endian
>(dynpool
,
1689 i
+ 1 >= this->needs_
.size(),
1692 gold_assert(static_cast<unsigned int>(pb
- pbuf
) == sz
);
1696 *pentries
= this->needs_
.size();
1699 // Instantiate the templates we need. We could use the configure
1700 // script to restrict this to only the ones for implemented targets.
1702 #ifdef HAVE_TARGET_32_LITTLE
1704 class Sized_dynobj
<32, false>;
1707 #ifdef HAVE_TARGET_32_BIG
1709 class Sized_dynobj
<32, true>;
1712 #ifdef HAVE_TARGET_64_LITTLE
1714 class Sized_dynobj
<64, false>;
1717 #ifdef HAVE_TARGET_64_BIG
1719 class Sized_dynobj
<64, true>;
1722 #ifdef HAVE_TARGET_32_LITTLE
1725 Versions::symbol_section_contents
<32, false>(
1726 const Symbol_table
*,
1729 const std::vector
<Symbol
*>&,
1731 unsigned int*) const;
1734 #ifdef HAVE_TARGET_32_BIG
1737 Versions::symbol_section_contents
<32, true>(
1738 const Symbol_table
*,
1741 const std::vector
<Symbol
*>&,
1743 unsigned int*) const;
1746 #ifdef HAVE_TARGET_64_LITTLE
1749 Versions::symbol_section_contents
<64, false>(
1750 const Symbol_table
*,
1753 const std::vector
<Symbol
*>&,
1755 unsigned int*) const;
1758 #ifdef HAVE_TARGET_64_BIG
1761 Versions::symbol_section_contents
<64, true>(
1762 const Symbol_table
*,
1765 const std::vector
<Symbol
*>&,
1767 unsigned int*) const;
1770 #ifdef HAVE_TARGET_32_LITTLE
1773 Versions::def_section_contents
<32, false>(
1777 unsigned int*) const;
1780 #ifdef HAVE_TARGET_32_BIG
1783 Versions::def_section_contents
<32, true>(
1787 unsigned int*) const;
1790 #ifdef HAVE_TARGET_64_LITTLE
1793 Versions::def_section_contents
<64, false>(
1797 unsigned int*) const;
1800 #ifdef HAVE_TARGET_64_BIG
1803 Versions::def_section_contents
<64, true>(
1807 unsigned int*) const;
1810 #ifdef HAVE_TARGET_32_LITTLE
1813 Versions::need_section_contents
<32, false>(
1817 unsigned int*) const;
1820 #ifdef HAVE_TARGET_32_BIG
1823 Versions::need_section_contents
<32, true>(
1827 unsigned int*) const;
1830 #ifdef HAVE_TARGET_64_LITTLE
1833 Versions::need_section_contents
<64, false>(
1837 unsigned int*) const;
1840 #ifdef HAVE_TARGET_64_BIG
1843 Versions::need_section_contents
<64, true>(
1847 unsigned int*) const;
1850 } // End namespace gold.