1 // icf.cc -- Identical Code Folding.
3 // Copyright 2009 Free Software Foundation, Inc.
4 // Written by Sriraman Tallam <tmsriram@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 // Identical Code Folding Algorithm
24 // ----------------------------------
25 // Detecting identical functions is done here and the basic algorithm
26 // is as follows. A checksum is computed on each .text section using
27 // its contents and relocations. If the symbol name corresponding to
28 // a relocation is known it is used to compute the checksum. If the
29 // symbol name is not known the stringified name of the object and the
30 // section number pointed to by the relocation is used. The checksums
31 // are stored as keys in a hash map and a section is identical to some
32 // other section if its checksum is already present in the hash map.
33 // Checksum collisions are handled by using a multimap and explicitly
34 // checking the contents when two sections have the same checksum.
36 // However, two functions A and B with identical text but with
37 // relocations pointing to different .text sections can be identical if
38 // the corresponding .text sections to which their relocations point to
39 // turn out to be identical. Hence, this checksumming process must be
40 // done repeatedly until convergence is obtained. Here is an example for
41 // the following case :
43 // int funcA () int funcB ()
45 // return foo(); return goo();
48 // The functions funcA and funcB are identical if functions foo() and
49 // goo() are identical.
51 // Hence, as described above, we repeatedly do the checksumming,
52 // assigning identical functions to the same group, until convergence is
53 // obtained. Now, we have two different ways to do this depending on how
58 // We can start with marking all functions as different and repeatedly do
59 // the checksumming. This has the advantage that we do not need to wait
60 // for convergence. We can stop at any point and correctness will be
61 // guaranteed although not all cases would have been found. However, this
62 // has a problem that some cases can never be found even if it is run until
63 // convergence. Here is an example with mutually recursive functions :
65 // int funcA (int a) int funcB (int a)
67 // if (a == 1) if (a == 1)
68 // return 1; return 1;
69 // return 1 + funcB(a - 1); return 1 + funcA(a - 1);
72 // In this example funcA and funcB are identical and one of them could be
73 // folded into the other. However, if we start with assuming that funcA
74 // and funcB are not identical, the algorithm, even after it is run to
75 // convergence, cannot detect that they are identical. It should be noted
76 // that even if the functions were self-recursive, Algorithm I cannot catch
77 // that they are identical, at least as is.
81 // Here we start with marking all functions as identical and then repeat
82 // the checksumming until convergence. This can detect the above case
83 // mentioned above. It can detect all cases that Algorithm I can and more.
84 // However, the caveat is that it has to be run to convergence. It cannot
85 // be stopped arbitrarily like Algorithm I as correctness cannot be
86 // guaranteed. Algorithm II is not implemented.
88 // Algorithm I is used because experiments show that about three
89 // iterations are more than enough to achieve convergence. Algorithm I can
90 // handle recursive calls if it is changed to use a special common symbol
91 // for recursive relocs. This seems to be the most common case that
92 // Algorithm I could not catch as is. Mutually recursive calls are not
93 // frequent and Algorithm I wins because of its ability to be stopped
96 // Caveat with using function pointers :
97 // ------------------------------------
99 // Programs using function pointer comparisons/checks should use function
100 // folding with caution as the result of such comparisons could be different
101 // when folding takes place. This could lead to unexpected run-time
105 // How to run : --icf
106 // Optional parameters : --icf-iterations <num> --print-icf-sections
108 // Performance : Less than 20 % link-time overhead on industry strength
109 // applications. Up to 6 % text size reductions.
116 #include "libiberty.h"
121 // This function determines if a section or a group of identical
122 // sections has unique contents. Such unique sections or groups can be
123 // declared final and need not be processed any further.
125 // ID_SECTION : Vector mapping a section index to a Section_id pair.
126 // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
127 // sections is already known to be unique.
128 // SECTION_CONTENTS : Contains the section's text and relocs to sections
129 // that cannot be folded. SECTION_CONTENTS are NULL
130 // implies that this function is being called for the
131 // first time before the first iteration of icf.
134 preprocess_for_unique_sections(const std::vector
<Section_id
>& id_section
,
135 std::vector
<bool>* is_secn_or_group_unique
,
136 std::vector
<std::string
>* section_contents
)
138 Unordered_map
<uint32_t, unsigned int> uniq_map
;
139 std::pair
<Unordered_map
<uint32_t, unsigned int>::iterator
, bool>
142 for (unsigned int i
= 0; i
< id_section
.size(); i
++)
144 if ((*is_secn_or_group_unique
)[i
])
148 Section_id secn
= id_section
[i
];
149 section_size_type plen
;
150 if (section_contents
== NULL
)
152 const unsigned char* contents
;
153 contents
= secn
.first
->section_contents(secn
.second
,
156 cksum
= xcrc32(contents
, plen
, 0xffffffff);
160 const unsigned char* contents_array
= reinterpret_cast
161 <const unsigned char*>((*section_contents
)[i
].c_str());
162 cksum
= xcrc32(contents_array
, (*section_contents
)[i
].length(),
165 uniq_map_insert
= uniq_map
.insert(std::make_pair(cksum
, i
));
166 if (uniq_map_insert
.second
)
168 (*is_secn_or_group_unique
)[i
] = true;
172 (*is_secn_or_group_unique
)[i
] = false;
173 (*is_secn_or_group_unique
)[uniq_map_insert
.first
->second
] = false;
178 // This returns the buffer containing the section's contents, both
179 // text and relocs. Relocs are differentiated as those pointing to
180 // sections that could be folded and those that cannot. Only relocs
181 // pointing to sections that could be folded are recomputed on
182 // subsequent invocations of this function.
184 // FIRST_ITERATION : true if it is the first invocation.
185 // SECN : Section for which contents are desired.
186 // SECTION_NUM : Unique section number of this section.
187 // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
189 // KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
190 // SECTION_CONTENTS : Store the section's text and relocs to non-ICF
194 get_section_contents(bool first_iteration
,
195 const Section_id
& secn
,
196 unsigned int section_num
,
197 unsigned int* num_tracked_relocs
,
198 Symbol_table
* symtab
,
199 const std::vector
<unsigned int>& kept_section_id
,
200 std::vector
<std::string
>* section_contents
)
202 section_size_type plen
;
203 const unsigned char* contents
= NULL
;
207 contents
= secn
.first
->section_contents(secn
.second
,
212 // The buffer to hold all the contents including relocs. A checksum
213 // is then computed on this buffer.
215 std::string icf_reloc_buffer
;
217 if (num_tracked_relocs
)
218 *num_tracked_relocs
= 0;
220 Icf::Section_list
& seclist
= symtab
->icf()->section_reloc_list();
221 Icf::Symbol_list
& symlist
= symtab
->icf()->symbol_reloc_list();
222 Icf::Addend_list
& addendlist
= symtab
->icf()->addend_reloc_list();
224 Icf::Section_list::iterator it_seclist
= seclist
.find(secn
);
225 Icf::Symbol_list::iterator it_symlist
= symlist
.find(secn
);
226 Icf::Addend_list::iterator it_addendlist
= addendlist
.find(secn
);
229 icf_reloc_buffer
.clear();
231 // Process relocs and put them into the buffer.
233 if (it_seclist
!= seclist
.end())
235 gold_assert(it_symlist
!= symlist
.end());
236 gold_assert(it_addendlist
!= addendlist
.end());
237 Icf::Sections_reachable_list v
= it_seclist
->second
;
238 Icf::Symbol_info s
= it_symlist
->second
;
239 Icf::Addend_info a
= it_addendlist
->second
;
240 Icf::Sections_reachable_list::iterator it_v
= v
.begin();
241 Icf::Symbol_info::iterator it_s
= s
.begin();
242 Icf::Addend_info::iterator it_a
= a
.begin();
244 for (; it_v
!= v
.end(); ++it_v
, ++it_s
, ++it_a
)
246 // ADDEND_STR stores the symbol value and addend, each
247 // atmost 16 hex digits long. it_v points to a pair
248 // where first is the symbol value and second is the
251 snprintf(addend_str
, sizeof(addend_str
), "%llx %llx",
252 (*it_a
).first
, (*it_a
).second
);
253 Section_id
reloc_secn(it_v
->first
, it_v
->second
);
255 // If this reloc turns back and points to the same section,
256 // like a recursive call, use a special symbol to mark this.
257 if (reloc_secn
.first
== secn
.first
258 && reloc_secn
.second
== secn
.second
)
263 buffer
.append(addend_str
);
268 Icf::Uniq_secn_id_map
& section_id_map
=
269 symtab
->icf()->section_to_int_map();
270 Icf::Uniq_secn_id_map::iterator section_id_map_it
=
271 section_id_map
.find(reloc_secn
);
272 if (section_id_map_it
!= section_id_map
.end())
274 // This is a reloc to a section that might be folded.
275 if (num_tracked_relocs
)
276 (*num_tracked_relocs
)++;
278 char kept_section_str
[10];
279 unsigned int secn_id
= section_id_map_it
->second
;
280 snprintf(kept_section_str
, sizeof(kept_section_str
), "%u",
281 kept_section_id
[secn_id
]);
284 buffer
.append("ICF_R");
285 buffer
.append(addend_str
);
287 icf_reloc_buffer
.append(kept_section_str
);
288 // Append the addend.
289 icf_reloc_buffer
.append(addend_str
);
290 icf_reloc_buffer
.append("@");
294 // This is a reloc to a section that cannot be folded.
295 // Process it only in the first iteration.
296 if (!first_iteration
)
299 uint64_t secn_flags
= (it_v
->first
)->section_flags(it_v
->second
);
300 // This reloc points to a merge section. Hash the
301 // contents of this section.
302 if ((secn_flags
& elfcpp::SHF_MERGE
) != 0)
305 (it_v
->first
)->section_entsize(it_v
->second
);
306 long long offset
= it_a
->first
+ it_a
->second
;
307 section_size_type secn_len
;
308 const unsigned char* str_contents
=
309 (it_v
->first
)->section_contents(it_v
->second
,
312 if ((secn_flags
& elfcpp::SHF_STRINGS
) != 0)
314 // String merge section.
315 const char* str_char
=
316 reinterpret_cast<const char*>(str_contents
);
321 buffer
.append(str_char
);
326 const uint16_t* ptr_16
=
327 reinterpret_cast<const uint16_t*>(str_char
);
328 unsigned int strlen_16
= 0;
329 // Find the NULL character.
330 while(*(ptr_16
+ strlen_16
) != 0)
332 buffer
.append(str_char
, strlen_16
* 2);
337 const uint32_t* ptr_32
=
338 reinterpret_cast<const uint32_t*>(str_char
);
339 unsigned int strlen_32
= 0;
340 // Find the NULL character.
341 while(*(ptr_32
+ strlen_32
) != 0)
343 buffer
.append(str_char
, strlen_32
* 4);
352 // Use the entsize to determine the length.
353 buffer
.append(reinterpret_cast<const
354 char*>(str_contents
),
358 else if ((*it_s
) != NULL
)
360 // If symbol name is available use that.
361 const char *sym_name
= (*it_s
)->name();
362 buffer
.append(sym_name
);
363 // Append the addend.
364 buffer
.append(addend_str
);
369 // Symbol name is not available, like for a local symbol,
370 // use object and section id.
371 buffer
.append(it_v
->first
->name());
373 snprintf(secn_id
, sizeof(secn_id
), "%u",it_v
->second
);
374 buffer
.append(secn_id
);
375 // Append the addend.
376 buffer
.append(addend_str
);
385 buffer
.append("Contents = ");
386 buffer
.append(reinterpret_cast<const char*>(contents
), plen
);
387 // Store the section contents that dont change to avoid recomputing
388 // during the next call to this function.
389 (*section_contents
)[section_num
] = buffer
;
393 gold_assert(buffer
.empty());
394 // Reuse the contents computed in the previous iteration.
395 buffer
.append((*section_contents
)[section_num
]);
398 buffer
.append(icf_reloc_buffer
);
402 // This function computes a checksum on each section to detect and form
403 // groups of identical sections. The first iteration does this for all
405 // Further iterations do this only for the kept sections from each group to
406 // determine if larger groups of identical sections could be formed. The
407 // first section in each group is the kept section for that group.
409 // CRC32 is the checksumming algorithm and can have collisions. That is,
410 // two sections with different contents can have the same checksum. Hence,
411 // a multimap is used to maintain more than one group of checksum
412 // identical sections. A section is added to a group only after its
413 // contents are explicitly compared with the kept section of the group.
416 // ITERATION_NUM : Invocation instance of this function.
417 // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
419 // KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
420 // ID_SECTION : Vector mapping a section to an unique integer.
421 // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
422 // sectionsis already known to be unique.
423 // SECTION_CONTENTS : Store the section's text and relocs to non-ICF
427 match_sections(unsigned int iteration_num
,
428 Symbol_table
* symtab
,
429 std::vector
<unsigned int>* num_tracked_relocs
,
430 std::vector
<unsigned int>* kept_section_id
,
431 const std::vector
<Section_id
>& id_section
,
432 std::vector
<bool>* is_secn_or_group_unique
,
433 std::vector
<std::string
>* section_contents
)
435 Unordered_multimap
<uint32_t, unsigned int> section_cksum
;
436 std::pair
<Unordered_multimap
<uint32_t, unsigned int>::iterator
,
437 Unordered_multimap
<uint32_t, unsigned int>::iterator
> key_range
;
438 bool converged
= true;
440 if (iteration_num
== 1)
441 preprocess_for_unique_sections(id_section
,
442 is_secn_or_group_unique
,
445 preprocess_for_unique_sections(id_section
,
446 is_secn_or_group_unique
,
449 std::vector
<std::string
> full_section_contents
;
451 for (unsigned int i
= 0; i
< id_section
.size(); i
++)
453 full_section_contents
.push_back("");
454 if ((*is_secn_or_group_unique
)[i
])
457 Section_id secn
= id_section
[i
];
458 std::string this_secn_contents
;
460 if (iteration_num
== 1)
462 unsigned int num_relocs
= 0;
463 this_secn_contents
= get_section_contents(true, secn
, i
, &num_relocs
,
464 symtab
, (*kept_section_id
),
466 (*num_tracked_relocs
)[i
] = num_relocs
;
470 if ((*kept_section_id
)[i
] != i
)
472 // This section is already folded into something. See
473 // if it should point to a different kept section.
474 unsigned int kept_section
= (*kept_section_id
)[i
];
475 if (kept_section
!= (*kept_section_id
)[kept_section
])
477 (*kept_section_id
)[i
] = (*kept_section_id
)[kept_section
];
481 this_secn_contents
= get_section_contents(false, secn
, i
, NULL
,
482 symtab
, (*kept_section_id
),
486 const unsigned char* this_secn_contents_array
=
487 reinterpret_cast<const unsigned char*>(this_secn_contents
.c_str());
488 cksum
= xcrc32(this_secn_contents_array
, this_secn_contents
.length(),
490 size_t count
= section_cksum
.count(cksum
);
494 // Start a group with this cksum.
495 section_cksum
.insert(std::make_pair(cksum
, i
));
496 full_section_contents
[i
] = this_secn_contents
;
500 key_range
= section_cksum
.equal_range(cksum
);
501 Unordered_multimap
<uint32_t, unsigned int>::iterator it
;
502 // Search all the groups with this cksum for a match.
503 for (it
= key_range
.first
; it
!= key_range
.second
; ++it
)
505 unsigned int kept_section
= it
->second
;
506 if (full_section_contents
[kept_section
].length()
507 != this_secn_contents
.length())
509 if (memcmp(full_section_contents
[kept_section
].c_str(),
510 this_secn_contents
.c_str(),
511 this_secn_contents
.length()) != 0)
513 (*kept_section_id
)[i
] = kept_section
;
517 if (it
== key_range
.second
)
519 // Create a new group for this cksum.
520 section_cksum
.insert(std::make_pair(cksum
, i
));
521 full_section_contents
[i
] = this_secn_contents
;
524 // If there are no relocs to foldable sections do not process
525 // this section any further.
526 if (iteration_num
== 1 && (*num_tracked_relocs
)[i
] == 0)
527 (*is_secn_or_group_unique
)[i
] = true;
534 // This is the main ICF function called in gold.cc. This does the
535 // initialization and calls match_sections repeatedly (twice by default)
536 // which computes the crc checksums and detects identical functions.
539 Icf::find_identical_sections(const Input_objects
* input_objects
,
540 Symbol_table
* symtab
)
542 unsigned int section_num
= 0;
543 std::vector
<unsigned int> num_tracked_relocs
;
544 std::vector
<bool> is_secn_or_group_unique
;
545 std::vector
<std::string
> section_contents
;
547 // Decide which sections are possible candidates first.
549 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
550 p
!= input_objects
->relobj_end();
553 for (unsigned int i
= 0;i
< (*p
)->shnum(); ++i
)
555 // Only looking to fold functions, so just look at .text sections.
556 if (!is_prefix_of(".text.", (*p
)->section_name(i
).c_str()))
558 if (!(*p
)->is_section_included(i
))
560 if (parameters
->options().gc_sections()
561 && symtab
->gc()->is_section_garbage(*p
, i
))
563 this->id_section_
.push_back(Section_id(*p
, i
));
564 this->section_id_
[Section_id(*p
, i
)] = section_num
;
565 this->kept_section_id_
.push_back(section_num
);
566 num_tracked_relocs
.push_back(0);
567 is_secn_or_group_unique
.push_back(false);
568 section_contents
.push_back("");
573 unsigned int num_iterations
= 0;
575 // Default number of iterations to run ICF is 2.
576 unsigned int max_iterations
= (parameters
->options().icf_iterations() > 0)
577 ? parameters
->options().icf_iterations()
580 bool converged
= false;
582 while (!converged
&& (num_iterations
< max_iterations
))
585 converged
= match_sections(num_iterations
, symtab
,
586 &num_tracked_relocs
, &this->kept_section_id_
,
587 this->id_section_
, &is_secn_or_group_unique
,
591 if (parameters
->options().print_icf_sections())
594 gold_info(_("%s: ICF Converged after %u iteration(s)"),
595 program_name
, num_iterations
);
597 gold_info(_("%s: ICF stopped after %u iteration(s)"),
598 program_name
, num_iterations
);
601 // Unfold --keep-unique symbols.
602 for (options::String_set::const_iterator p
=
603 parameters
->options().keep_unique_begin();
604 p
!= parameters
->options().keep_unique_end();
607 const char* name
= p
->c_str();
608 Symbol
* sym
= symtab
->lookup(name
);
611 gold_warning(_("Could not find symbol %s to unfold\n"), name
);
613 else if (sym
->source() == Symbol::FROM_OBJECT
614 && !sym
->object()->is_dynamic())
616 Object
* obj
= sym
->object();
618 unsigned int shndx
= sym
->shndx(&is_ordinary
);
621 this->unfold_section(obj
, shndx
);
630 // Unfolds the section denoted by OBJ and SHNDX if folded.
633 Icf::unfold_section(Object
* obj
, unsigned int shndx
)
635 Section_id
secn(obj
, shndx
);
636 Uniq_secn_id_map::iterator it
= this->section_id_
.find(secn
);
637 if (it
== this->section_id_
.end())
639 unsigned int section_num
= it
->second
;
640 unsigned int kept_section_id
= this->kept_section_id_
[section_num
];
641 if (kept_section_id
!= section_num
)
642 this->kept_section_id_
[section_num
] = section_num
;
645 // This function determines if the section corresponding to the
646 // given object and index is folded based on if the kept section
647 // is different from this section.
650 Icf::is_section_folded(Object
* obj
, unsigned int shndx
)
652 Section_id
secn(obj
, shndx
);
653 Uniq_secn_id_map::iterator it
= this->section_id_
.find(secn
);
654 if (it
== this->section_id_
.end())
656 unsigned int section_num
= it
->second
;
657 unsigned int kept_section_id
= this->kept_section_id_
[section_num
];
658 return kept_section_id
!= section_num
;
661 // This function returns the folded section for the given section.
664 Icf::get_folded_section(Object
* dup_obj
, unsigned int dup_shndx
)
666 Section_id
dup_secn(dup_obj
, dup_shndx
);
667 Uniq_secn_id_map::iterator it
= this->section_id_
.find(dup_secn
);
668 gold_assert(it
!= this->section_id_
.end());
669 unsigned int section_num
= it
->second
;
670 unsigned int kept_section_id
= this->kept_section_id_
[section_num
];
671 Section_id folded_section
= this->id_section_
[kept_section_id
];
672 return folded_section
;
675 } // End of namespace gold.