merge from gcc
[binutils.git] / gold / layout.cc
blob6907295dc0a2af8943c0bd6fb253d8269f919a59
1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
36 #include "parameters.h"
37 #include "options.h"
38 #include "mapfile.h"
39 #include "script.h"
40 #include "script-sections.h"
41 #include "output.h"
42 #include "symtab.h"
43 #include "dynobj.h"
44 #include "ehframe.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
47 #include "reloc.h"
48 #include "descriptors.h"
49 #include "plugin.h"
50 #include "incremental.h"
51 #include "layout.h"
53 namespace gold
56 // Layout_task_runner methods.
58 // Lay out the sections. This is called after all the input objects
59 // have been read.
61 void
62 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
64 off_t file_size = this->layout_->finalize(this->input_objects_,
65 this->symtab_,
66 this->target_,
67 task);
69 // Now we know the final size of the output file and we know where
70 // each piece of information goes.
72 if (this->mapfile_ != NULL)
74 this->mapfile_->print_discarded_sections(this->input_objects_);
75 this->layout_->print_to_mapfile(this->mapfile_);
78 Output_file* of = new Output_file(parameters->options().output_file_name());
79 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
80 of->set_is_temporary();
81 of->open(file_size);
83 // Queue up the final set of tasks.
84 gold::queue_final_tasks(this->options_, this->input_objects_,
85 this->symtab_, this->layout_, workqueue, of);
88 // Layout methods.
90 Layout::Layout(int number_of_input_files, Script_options* script_options)
91 : number_of_input_files_(number_of_input_files),
92 script_options_(script_options),
93 namepool_(),
94 sympool_(),
95 dynpool_(),
96 signatures_(),
97 section_name_map_(),
98 segment_list_(),
99 section_list_(),
100 unattached_section_list_(),
101 special_output_list_(),
102 section_headers_(NULL),
103 tls_segment_(NULL),
104 relro_segment_(NULL),
105 symtab_section_(NULL),
106 symtab_xindex_(NULL),
107 dynsym_section_(NULL),
108 dynsym_xindex_(NULL),
109 dynamic_section_(NULL),
110 dynamic_data_(NULL),
111 eh_frame_section_(NULL),
112 eh_frame_data_(NULL),
113 added_eh_frame_data_(false),
114 eh_frame_hdr_section_(NULL),
115 build_id_note_(NULL),
116 debug_abbrev_(NULL),
117 debug_info_(NULL),
118 group_signatures_(),
119 output_file_size_(-1),
120 sections_are_attached_(false),
121 input_requires_executable_stack_(false),
122 input_with_gnu_stack_note_(false),
123 input_without_gnu_stack_note_(false),
124 has_static_tls_(false),
125 any_postprocessing_sections_(false),
126 resized_signatures_(false),
127 have_stabstr_section_(false),
128 incremental_inputs_(NULL)
130 // Make space for more than enough segments for a typical file.
131 // This is just for efficiency--it's OK if we wind up needing more.
132 this->segment_list_.reserve(12);
134 // We expect two unattached Output_data objects: the file header and
135 // the segment headers.
136 this->special_output_list_.reserve(2);
138 // Initialize structure needed for an incremental build.
139 if (parameters->options().incremental())
140 this->incremental_inputs_ = new Incremental_inputs;
142 // The section name pool is worth optimizing in all cases, because
143 // it is small, but there are often overlaps due to .rel sections.
144 this->namepool_.set_optimize();
147 // Hash a key we use to look up an output section mapping.
149 size_t
150 Layout::Hash_key::operator()(const Layout::Key& k) const
152 return k.first + k.second.first + k.second.second;
155 // Returns whether the given section is in the list of
156 // debug-sections-used-by-some-version-of-gdb. Currently,
157 // we've checked versions of gdb up to and including 6.7.1.
159 static const char* gdb_sections[] =
160 { ".debug_abbrev",
161 // ".debug_aranges", // not used by gdb as of 6.7.1
162 ".debug_frame",
163 ".debug_info",
164 ".debug_line",
165 ".debug_loc",
166 ".debug_macinfo",
167 // ".debug_pubnames", // not used by gdb as of 6.7.1
168 ".debug_ranges",
169 ".debug_str",
172 static const char* lines_only_debug_sections[] =
173 { ".debug_abbrev",
174 // ".debug_aranges", // not used by gdb as of 6.7.1
175 // ".debug_frame",
176 ".debug_info",
177 ".debug_line",
178 // ".debug_loc",
179 // ".debug_macinfo",
180 // ".debug_pubnames", // not used by gdb as of 6.7.1
181 // ".debug_ranges",
182 ".debug_str",
185 static inline bool
186 is_gdb_debug_section(const char* str)
188 // We can do this faster: binary search or a hashtable. But why bother?
189 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
190 if (strcmp(str, gdb_sections[i]) == 0)
191 return true;
192 return false;
195 static inline bool
196 is_lines_only_debug_section(const char* str)
198 // We can do this faster: binary search or a hashtable. But why bother?
199 for (size_t i = 0;
200 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
201 ++i)
202 if (strcmp(str, lines_only_debug_sections[i]) == 0)
203 return true;
204 return false;
207 // Whether to include this section in the link.
209 template<int size, bool big_endian>
210 bool
211 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
212 const elfcpp::Shdr<size, big_endian>& shdr)
214 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
215 return false;
217 switch (shdr.get_sh_type())
219 case elfcpp::SHT_NULL:
220 case elfcpp::SHT_SYMTAB:
221 case elfcpp::SHT_DYNSYM:
222 case elfcpp::SHT_HASH:
223 case elfcpp::SHT_DYNAMIC:
224 case elfcpp::SHT_SYMTAB_SHNDX:
225 return false;
227 case elfcpp::SHT_STRTAB:
228 // Discard the sections which have special meanings in the ELF
229 // ABI. Keep others (e.g., .stabstr). We could also do this by
230 // checking the sh_link fields of the appropriate sections.
231 return (strcmp(name, ".dynstr") != 0
232 && strcmp(name, ".strtab") != 0
233 && strcmp(name, ".shstrtab") != 0);
235 case elfcpp::SHT_RELA:
236 case elfcpp::SHT_REL:
237 case elfcpp::SHT_GROUP:
238 // If we are emitting relocations these should be handled
239 // elsewhere.
240 gold_assert(!parameters->options().relocatable()
241 && !parameters->options().emit_relocs());
242 return false;
244 case elfcpp::SHT_PROGBITS:
245 if (parameters->options().strip_debug()
246 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
248 if (is_debug_info_section(name))
249 return false;
251 if (parameters->options().strip_debug_non_line()
252 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
254 // Debugging sections can only be recognized by name.
255 if (is_prefix_of(".debug", name)
256 && !is_lines_only_debug_section(name))
257 return false;
259 if (parameters->options().strip_debug_gdb()
260 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
262 // Debugging sections can only be recognized by name.
263 if (is_prefix_of(".debug", name)
264 && !is_gdb_debug_section(name))
265 return false;
267 if (parameters->options().strip_lto_sections()
268 && !parameters->options().relocatable()
269 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
271 // Ignore LTO sections containing intermediate code.
272 if (is_prefix_of(".gnu.lto_", name))
273 return false;
275 return true;
277 default:
278 return true;
282 // Return an output section named NAME, or NULL if there is none.
284 Output_section*
285 Layout::find_output_section(const char* name) const
287 for (Section_list::const_iterator p = this->section_list_.begin();
288 p != this->section_list_.end();
289 ++p)
290 if (strcmp((*p)->name(), name) == 0)
291 return *p;
292 return NULL;
295 // Return an output segment of type TYPE, with segment flags SET set
296 // and segment flags CLEAR clear. Return NULL if there is none.
298 Output_segment*
299 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
300 elfcpp::Elf_Word clear) const
302 for (Segment_list::const_iterator p = this->segment_list_.begin();
303 p != this->segment_list_.end();
304 ++p)
305 if (static_cast<elfcpp::PT>((*p)->type()) == type
306 && ((*p)->flags() & set) == set
307 && ((*p)->flags() & clear) == 0)
308 return *p;
309 return NULL;
312 // Return the output section to use for section NAME with type TYPE
313 // and section flags FLAGS. NAME must be canonicalized in the string
314 // pool, and NAME_KEY is the key.
316 Output_section*
317 Layout::get_output_section(const char* name, Stringpool::Key name_key,
318 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
320 elfcpp::Elf_Xword lookup_flags = flags;
322 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
323 // read-write with read-only sections. Some other ELF linkers do
324 // not do this. FIXME: Perhaps there should be an option
325 // controlling this.
326 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
328 const Key key(name_key, std::make_pair(type, lookup_flags));
329 const std::pair<Key, Output_section*> v(key, NULL);
330 std::pair<Section_name_map::iterator, bool> ins(
331 this->section_name_map_.insert(v));
333 if (!ins.second)
334 return ins.first->second;
335 else
337 // This is the first time we've seen this name/type/flags
338 // combination. For compatibility with the GNU linker, we
339 // combine sections with contents and zero flags with sections
340 // with non-zero flags. This is a workaround for cases where
341 // assembler code forgets to set section flags. FIXME: Perhaps
342 // there should be an option to control this.
343 Output_section* os = NULL;
345 if (type == elfcpp::SHT_PROGBITS)
347 if (flags == 0)
349 Output_section* same_name = this->find_output_section(name);
350 if (same_name != NULL
351 && same_name->type() == elfcpp::SHT_PROGBITS
352 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
353 os = same_name;
355 else if ((flags & elfcpp::SHF_TLS) == 0)
357 elfcpp::Elf_Xword zero_flags = 0;
358 const Key zero_key(name_key, std::make_pair(type, zero_flags));
359 Section_name_map::iterator p =
360 this->section_name_map_.find(zero_key);
361 if (p != this->section_name_map_.end())
362 os = p->second;
366 if (os == NULL)
367 os = this->make_output_section(name, type, flags);
368 ins.first->second = os;
369 return os;
373 // Pick the output section to use for section NAME, in input file
374 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
375 // linker created section. IS_INPUT_SECTION is true if we are
376 // choosing an output section for an input section found in a input
377 // file. This will return NULL if the input section should be
378 // discarded.
380 Output_section*
381 Layout::choose_output_section(const Relobj* relobj, const char* name,
382 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
383 bool is_input_section)
385 // We should not see any input sections after we have attached
386 // sections to segments.
387 gold_assert(!is_input_section || !this->sections_are_attached_);
389 // Some flags in the input section should not be automatically
390 // copied to the output section.
391 flags &= ~ (elfcpp::SHF_INFO_LINK
392 | elfcpp::SHF_LINK_ORDER
393 | elfcpp::SHF_GROUP
394 | elfcpp::SHF_MERGE
395 | elfcpp::SHF_STRINGS);
397 if (this->script_options_->saw_sections_clause())
399 // We are using a SECTIONS clause, so the output section is
400 // chosen based only on the name.
402 Script_sections* ss = this->script_options_->script_sections();
403 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
404 Output_section** output_section_slot;
405 name = ss->output_section_name(file_name, name, &output_section_slot);
406 if (name == NULL)
408 // The SECTIONS clause says to discard this input section.
409 return NULL;
412 // If this is an orphan section--one not mentioned in the linker
413 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
414 // default processing below.
416 if (output_section_slot != NULL)
418 if (*output_section_slot != NULL)
420 (*output_section_slot)->update_flags_for_input_section(flags);
421 return *output_section_slot;
424 // We don't put sections found in the linker script into
425 // SECTION_NAME_MAP_. That keeps us from getting confused
426 // if an orphan section is mapped to a section with the same
427 // name as one in the linker script.
429 name = this->namepool_.add(name, false, NULL);
431 Output_section* os = this->make_output_section(name, type, flags);
432 os->set_found_in_sections_clause();
433 *output_section_slot = os;
434 return os;
438 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
440 // Turn NAME from the name of the input section into the name of the
441 // output section.
443 size_t len = strlen(name);
444 if (is_input_section
445 && !this->script_options_->saw_sections_clause()
446 && !parameters->options().relocatable())
447 name = Layout::output_section_name(name, &len);
449 Stringpool::Key name_key;
450 name = this->namepool_.add_with_length(name, len, true, &name_key);
452 // Find or make the output section. The output section is selected
453 // based on the section name, type, and flags.
454 return this->get_output_section(name, name_key, type, flags);
457 // Return the output section to use for input section SHNDX, with name
458 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
459 // index of a relocation section which applies to this section, or 0
460 // if none, or -1U if more than one. RELOC_TYPE is the type of the
461 // relocation section if there is one. Set *OFF to the offset of this
462 // input section without the output section. Return NULL if the
463 // section should be discarded. Set *OFF to -1 if the section
464 // contents should not be written directly to the output file, but
465 // will instead receive special handling.
467 template<int size, bool big_endian>
468 Output_section*
469 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
470 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
471 unsigned int reloc_shndx, unsigned int, off_t* off)
473 *off = 0;
475 if (!this->include_section(object, name, shdr))
476 return NULL;
478 Output_section* os;
480 // In a relocatable link a grouped section must not be combined with
481 // any other sections.
482 if (parameters->options().relocatable()
483 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
485 name = this->namepool_.add(name, true, NULL);
486 os = this->make_output_section(name, shdr.get_sh_type(),
487 shdr.get_sh_flags());
489 else
491 os = this->choose_output_section(object, name, shdr.get_sh_type(),
492 shdr.get_sh_flags(), true);
493 if (os == NULL)
494 return NULL;
497 // By default the GNU linker sorts input sections whose names match
498 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
499 // are sorted by name. This is used to implement constructor
500 // priority ordering. We are compatible.
501 if (!this->script_options_->saw_sections_clause()
502 && (is_prefix_of(".ctors.", name)
503 || is_prefix_of(".dtors.", name)
504 || is_prefix_of(".init_array.", name)
505 || is_prefix_of(".fini_array.", name)))
506 os->set_must_sort_attached_input_sections();
508 // FIXME: Handle SHF_LINK_ORDER somewhere.
510 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
511 this->script_options_->saw_sections_clause());
513 return os;
516 // Handle a relocation section when doing a relocatable link.
518 template<int size, bool big_endian>
519 Output_section*
520 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
521 unsigned int,
522 const elfcpp::Shdr<size, big_endian>& shdr,
523 Output_section* data_section,
524 Relocatable_relocs* rr)
526 gold_assert(parameters->options().relocatable()
527 || parameters->options().emit_relocs());
529 int sh_type = shdr.get_sh_type();
531 std::string name;
532 if (sh_type == elfcpp::SHT_REL)
533 name = ".rel";
534 else if (sh_type == elfcpp::SHT_RELA)
535 name = ".rela";
536 else
537 gold_unreachable();
538 name += data_section->name();
540 Output_section* os = this->choose_output_section(object, name.c_str(),
541 sh_type,
542 shdr.get_sh_flags(),
543 false);
545 os->set_should_link_to_symtab();
546 os->set_info_section(data_section);
548 Output_section_data* posd;
549 if (sh_type == elfcpp::SHT_REL)
551 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
552 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
553 size,
554 big_endian>(rr);
556 else if (sh_type == elfcpp::SHT_RELA)
558 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
559 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
560 size,
561 big_endian>(rr);
563 else
564 gold_unreachable();
566 os->add_output_section_data(posd);
567 rr->set_output_data(posd);
569 return os;
572 // Handle a group section when doing a relocatable link.
574 template<int size, bool big_endian>
575 void
576 Layout::layout_group(Symbol_table* symtab,
577 Sized_relobj<size, big_endian>* object,
578 unsigned int,
579 const char* group_section_name,
580 const char* signature,
581 const elfcpp::Shdr<size, big_endian>& shdr,
582 elfcpp::Elf_Word flags,
583 std::vector<unsigned int>* shndxes)
585 gold_assert(parameters->options().relocatable());
586 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
587 group_section_name = this->namepool_.add(group_section_name, true, NULL);
588 Output_section* os = this->make_output_section(group_section_name,
589 elfcpp::SHT_GROUP,
590 shdr.get_sh_flags());
592 // We need to find a symbol with the signature in the symbol table.
593 // If we don't find one now, we need to look again later.
594 Symbol* sym = symtab->lookup(signature, NULL);
595 if (sym != NULL)
596 os->set_info_symndx(sym);
597 else
599 // Reserve some space to minimize reallocations.
600 if (this->group_signatures_.empty())
601 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
603 // We will wind up using a symbol whose name is the signature.
604 // So just put the signature in the symbol name pool to save it.
605 signature = symtab->canonicalize_name(signature);
606 this->group_signatures_.push_back(Group_signature(os, signature));
609 os->set_should_link_to_symtab();
610 os->set_entsize(4);
612 section_size_type entry_count =
613 convert_to_section_size_type(shdr.get_sh_size() / 4);
614 Output_section_data* posd =
615 new Output_data_group<size, big_endian>(object, entry_count, flags,
616 shndxes);
617 os->add_output_section_data(posd);
620 // Special GNU handling of sections name .eh_frame. They will
621 // normally hold exception frame data as defined by the C++ ABI
622 // (http://codesourcery.com/cxx-abi/).
624 template<int size, bool big_endian>
625 Output_section*
626 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
627 const unsigned char* symbols,
628 off_t symbols_size,
629 const unsigned char* symbol_names,
630 off_t symbol_names_size,
631 unsigned int shndx,
632 const elfcpp::Shdr<size, big_endian>& shdr,
633 unsigned int reloc_shndx, unsigned int reloc_type,
634 off_t* off)
636 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
637 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
639 const char* const name = ".eh_frame";
640 Output_section* os = this->choose_output_section(object,
641 name,
642 elfcpp::SHT_PROGBITS,
643 elfcpp::SHF_ALLOC,
644 false);
645 if (os == NULL)
646 return NULL;
648 if (this->eh_frame_section_ == NULL)
650 this->eh_frame_section_ = os;
651 this->eh_frame_data_ = new Eh_frame();
653 if (parameters->options().eh_frame_hdr())
655 Output_section* hdr_os =
656 this->choose_output_section(NULL,
657 ".eh_frame_hdr",
658 elfcpp::SHT_PROGBITS,
659 elfcpp::SHF_ALLOC,
660 false);
662 if (hdr_os != NULL)
664 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
665 this->eh_frame_data_);
666 hdr_os->add_output_section_data(hdr_posd);
668 hdr_os->set_after_input_sections();
670 if (!this->script_options_->saw_phdrs_clause())
672 Output_segment* hdr_oseg;
673 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
674 elfcpp::PF_R);
675 hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
678 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
683 gold_assert(this->eh_frame_section_ == os);
685 if (this->eh_frame_data_->add_ehframe_input_section(object,
686 symbols,
687 symbols_size,
688 symbol_names,
689 symbol_names_size,
690 shndx,
691 reloc_shndx,
692 reloc_type))
694 os->update_flags_for_input_section(shdr.get_sh_flags());
696 // We found a .eh_frame section we are going to optimize, so now
697 // we can add the set of optimized sections to the output
698 // section. We need to postpone adding this until we've found a
699 // section we can optimize so that the .eh_frame section in
700 // crtbegin.o winds up at the start of the output section.
701 if (!this->added_eh_frame_data_)
703 os->add_output_section_data(this->eh_frame_data_);
704 this->added_eh_frame_data_ = true;
706 *off = -1;
708 else
710 // We couldn't handle this .eh_frame section for some reason.
711 // Add it as a normal section.
712 bool saw_sections_clause = this->script_options_->saw_sections_clause();
713 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
714 saw_sections_clause);
717 return os;
720 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
721 // the output section.
723 Output_section*
724 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
725 elfcpp::Elf_Xword flags,
726 Output_section_data* posd)
728 Output_section* os = this->choose_output_section(NULL, name, type, flags,
729 false);
730 if (os != NULL)
731 os->add_output_section_data(posd);
732 return os;
735 // Map section flags to segment flags.
737 elfcpp::Elf_Word
738 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
740 elfcpp::Elf_Word ret = elfcpp::PF_R;
741 if ((flags & elfcpp::SHF_WRITE) != 0)
742 ret |= elfcpp::PF_W;
743 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
744 ret |= elfcpp::PF_X;
745 return ret;
748 // Sometimes we compress sections. This is typically done for
749 // sections that are not part of normal program execution (such as
750 // .debug_* sections), and where the readers of these sections know
751 // how to deal with compressed sections. This routine doesn't say for
752 // certain whether we'll compress -- it depends on commandline options
753 // as well -- just whether this section is a candidate for compression.
754 // (The Output_compressed_section class decides whether to compress
755 // a given section, and picks the name of the compressed section.)
757 static bool
758 is_compressible_debug_section(const char* secname)
760 return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
763 // Make a new Output_section, and attach it to segments as
764 // appropriate.
766 Output_section*
767 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
768 elfcpp::Elf_Xword flags)
770 Output_section* os;
771 if ((flags & elfcpp::SHF_ALLOC) == 0
772 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
773 && is_compressible_debug_section(name))
774 os = new Output_compressed_section(&parameters->options(), name, type,
775 flags);
777 else if ((flags & elfcpp::SHF_ALLOC) == 0
778 && parameters->options().strip_debug_non_line()
779 && strcmp(".debug_abbrev", name) == 0)
781 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
782 name, type, flags);
783 if (this->debug_info_)
784 this->debug_info_->set_abbreviations(this->debug_abbrev_);
786 else if ((flags & elfcpp::SHF_ALLOC) == 0
787 && parameters->options().strip_debug_non_line()
788 && strcmp(".debug_info", name) == 0)
790 os = this->debug_info_ = new Output_reduced_debug_info_section(
791 name, type, flags);
792 if (this->debug_abbrev_)
793 this->debug_info_->set_abbreviations(this->debug_abbrev_);
795 else
796 os = new Output_section(name, type, flags);
798 parameters->target().new_output_section(os);
800 this->section_list_.push_back(os);
802 // The GNU linker by default sorts some sections by priority, so we
803 // do the same. We need to know that this might happen before we
804 // attach any input sections.
805 if (!this->script_options_->saw_sections_clause()
806 && (strcmp(name, ".ctors") == 0
807 || strcmp(name, ".dtors") == 0
808 || strcmp(name, ".init_array") == 0
809 || strcmp(name, ".fini_array") == 0))
810 os->set_may_sort_attached_input_sections();
812 // With -z relro, we have to recognize the special sections by name.
813 // There is no other way.
814 if (!this->script_options_->saw_sections_clause()
815 && parameters->options().relro()
816 && type == elfcpp::SHT_PROGBITS
817 && (flags & elfcpp::SHF_ALLOC) != 0
818 && (flags & elfcpp::SHF_WRITE) != 0)
820 if (strcmp(name, ".data.rel.ro") == 0)
821 os->set_is_relro();
822 else if (strcmp(name, ".data.rel.ro.local") == 0)
824 os->set_is_relro();
825 os->set_is_relro_local();
829 // Check for .stab*str sections, as .stab* sections need to link to
830 // them.
831 if (type == elfcpp::SHT_STRTAB
832 && !this->have_stabstr_section_
833 && strncmp(name, ".stab", 5) == 0
834 && strcmp(name + strlen(name) - 3, "str") == 0)
835 this->have_stabstr_section_ = true;
837 // If we have already attached the sections to segments, then we
838 // need to attach this one now. This happens for sections created
839 // directly by the linker.
840 if (this->sections_are_attached_)
841 this->attach_section_to_segment(os);
843 return os;
846 // Attach output sections to segments. This is called after we have
847 // seen all the input sections.
849 void
850 Layout::attach_sections_to_segments()
852 for (Section_list::iterator p = this->section_list_.begin();
853 p != this->section_list_.end();
854 ++p)
855 this->attach_section_to_segment(*p);
857 this->sections_are_attached_ = true;
860 // Attach an output section to a segment.
862 void
863 Layout::attach_section_to_segment(Output_section* os)
865 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
866 this->unattached_section_list_.push_back(os);
867 else
868 this->attach_allocated_section_to_segment(os);
871 // Attach an allocated output section to a segment.
873 void
874 Layout::attach_allocated_section_to_segment(Output_section* os)
876 elfcpp::Elf_Xword flags = os->flags();
877 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
879 if (parameters->options().relocatable())
880 return;
882 // If we have a SECTIONS clause, we can't handle the attachment to
883 // segments until after we've seen all the sections.
884 if (this->script_options_->saw_sections_clause())
885 return;
887 gold_assert(!this->script_options_->saw_phdrs_clause());
889 // This output section goes into a PT_LOAD segment.
891 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
893 // In general the only thing we really care about for PT_LOAD
894 // segments is whether or not they are writable, so that is how we
895 // search for them. Large data sections also go into their own
896 // PT_LOAD segment. People who need segments sorted on some other
897 // basis will have to use a linker script.
899 Segment_list::const_iterator p;
900 for (p = this->segment_list_.begin();
901 p != this->segment_list_.end();
902 ++p)
904 if ((*p)->type() != elfcpp::PT_LOAD)
905 continue;
906 if (!parameters->options().omagic()
907 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
908 continue;
909 // If -Tbss was specified, we need to separate the data and BSS
910 // segments.
911 if (parameters->options().user_set_Tbss())
913 if ((os->type() == elfcpp::SHT_NOBITS)
914 == (*p)->has_any_data_sections())
915 continue;
917 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
918 continue;
920 (*p)->add_output_section(os, seg_flags);
921 break;
924 if (p == this->segment_list_.end())
926 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
927 seg_flags);
928 if (os->is_large_data_section())
929 oseg->set_is_large_data_segment();
930 oseg->add_output_section(os, seg_flags);
933 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
934 // segment.
935 if (os->type() == elfcpp::SHT_NOTE)
937 // See if we already have an equivalent PT_NOTE segment.
938 for (p = this->segment_list_.begin();
939 p != segment_list_.end();
940 ++p)
942 if ((*p)->type() == elfcpp::PT_NOTE
943 && (((*p)->flags() & elfcpp::PF_W)
944 == (seg_flags & elfcpp::PF_W)))
946 (*p)->add_output_section(os, seg_flags);
947 break;
951 if (p == this->segment_list_.end())
953 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
954 seg_flags);
955 oseg->add_output_section(os, seg_flags);
959 // If we see a loadable SHF_TLS section, we create a PT_TLS
960 // segment. There can only be one such segment.
961 if ((flags & elfcpp::SHF_TLS) != 0)
963 if (this->tls_segment_ == NULL)
964 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
965 this->tls_segment_->add_output_section(os, seg_flags);
968 // If -z relro is in effect, and we see a relro section, we create a
969 // PT_GNU_RELRO segment. There can only be one such segment.
970 if (os->is_relro() && parameters->options().relro())
972 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
973 if (this->relro_segment_ == NULL)
974 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
975 this->relro_segment_->add_output_section(os, seg_flags);
979 // Make an output section for a script.
981 Output_section*
982 Layout::make_output_section_for_script(const char* name)
984 name = this->namepool_.add(name, false, NULL);
985 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
986 elfcpp::SHF_ALLOC);
987 os->set_found_in_sections_clause();
988 return os;
991 // Return the number of segments we expect to see.
993 size_t
994 Layout::expected_segment_count() const
996 size_t ret = this->segment_list_.size();
998 // If we didn't see a SECTIONS clause in a linker script, we should
999 // already have the complete list of segments. Otherwise we ask the
1000 // SECTIONS clause how many segments it expects, and add in the ones
1001 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1003 if (!this->script_options_->saw_sections_clause())
1004 return ret;
1005 else
1007 const Script_sections* ss = this->script_options_->script_sections();
1008 return ret + ss->expected_segment_count(this);
1012 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1013 // is whether we saw a .note.GNU-stack section in the object file.
1014 // GNU_STACK_FLAGS is the section flags. The flags give the
1015 // protection required for stack memory. We record this in an
1016 // executable as a PT_GNU_STACK segment. If an object file does not
1017 // have a .note.GNU-stack segment, we must assume that it is an old
1018 // object. On some targets that will force an executable stack.
1020 void
1021 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
1023 if (!seen_gnu_stack)
1024 this->input_without_gnu_stack_note_ = true;
1025 else
1027 this->input_with_gnu_stack_note_ = true;
1028 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1029 this->input_requires_executable_stack_ = true;
1033 // Create automatic note sections.
1035 void
1036 Layout::create_notes()
1038 this->create_gold_note();
1039 this->create_executable_stack_info();
1040 this->create_build_id();
1043 // Create the dynamic sections which are needed before we read the
1044 // relocs.
1046 void
1047 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1049 if (parameters->doing_static_link())
1050 return;
1052 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1053 elfcpp::SHT_DYNAMIC,
1054 (elfcpp::SHF_ALLOC
1055 | elfcpp::SHF_WRITE),
1056 false);
1057 this->dynamic_section_->set_is_relro();
1059 symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
1060 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1061 elfcpp::STV_HIDDEN, 0, false, false);
1063 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1065 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1068 // For each output section whose name can be represented as C symbol,
1069 // define __start and __stop symbols for the section. This is a GNU
1070 // extension.
1072 void
1073 Layout::define_section_symbols(Symbol_table* symtab)
1075 for (Section_list::const_iterator p = this->section_list_.begin();
1076 p != this->section_list_.end();
1077 ++p)
1079 const char* const name = (*p)->name();
1080 if (name[strspn(name,
1081 ("0123456789"
1082 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1083 "abcdefghijklmnopqrstuvwxyz"
1084 "_"))]
1085 == '\0')
1087 const std::string name_string(name);
1088 const std::string start_name("__start_" + name_string);
1089 const std::string stop_name("__stop_" + name_string);
1091 symtab->define_in_output_data(start_name.c_str(),
1092 NULL, // version
1094 0, // value
1095 0, // symsize
1096 elfcpp::STT_NOTYPE,
1097 elfcpp::STB_GLOBAL,
1098 elfcpp::STV_DEFAULT,
1099 0, // nonvis
1100 false, // offset_is_from_end
1101 true); // only_if_ref
1103 symtab->define_in_output_data(stop_name.c_str(),
1104 NULL, // version
1106 0, // value
1107 0, // symsize
1108 elfcpp::STT_NOTYPE,
1109 elfcpp::STB_GLOBAL,
1110 elfcpp::STV_DEFAULT,
1111 0, // nonvis
1112 true, // offset_is_from_end
1113 true); // only_if_ref
1118 // Define symbols for group signatures.
1120 void
1121 Layout::define_group_signatures(Symbol_table* symtab)
1123 for (Group_signatures::iterator p = this->group_signatures_.begin();
1124 p != this->group_signatures_.end();
1125 ++p)
1127 Symbol* sym = symtab->lookup(p->signature, NULL);
1128 if (sym != NULL)
1129 p->section->set_info_symndx(sym);
1130 else
1132 // Force the name of the group section to the group
1133 // signature, and use the group's section symbol as the
1134 // signature symbol.
1135 if (strcmp(p->section->name(), p->signature) != 0)
1137 const char* name = this->namepool_.add(p->signature,
1138 true, NULL);
1139 p->section->set_name(name);
1141 p->section->set_needs_symtab_index();
1142 p->section->set_info_section_symndx(p->section);
1146 this->group_signatures_.clear();
1149 // Find the first read-only PT_LOAD segment, creating one if
1150 // necessary.
1152 Output_segment*
1153 Layout::find_first_load_seg()
1155 for (Segment_list::const_iterator p = this->segment_list_.begin();
1156 p != this->segment_list_.end();
1157 ++p)
1159 if ((*p)->type() == elfcpp::PT_LOAD
1160 && ((*p)->flags() & elfcpp::PF_R) != 0
1161 && (parameters->options().omagic()
1162 || ((*p)->flags() & elfcpp::PF_W) == 0))
1163 return *p;
1166 gold_assert(!this->script_options_->saw_phdrs_clause());
1168 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1169 elfcpp::PF_R);
1170 return load_seg;
1173 // Finalize the layout. When this is called, we have created all the
1174 // output sections and all the output segments which are based on
1175 // input sections. We have several things to do, and we have to do
1176 // them in the right order, so that we get the right results correctly
1177 // and efficiently.
1179 // 1) Finalize the list of output segments and create the segment
1180 // table header.
1182 // 2) Finalize the dynamic symbol table and associated sections.
1184 // 3) Determine the final file offset of all the output segments.
1186 // 4) Determine the final file offset of all the SHF_ALLOC output
1187 // sections.
1189 // 5) Create the symbol table sections and the section name table
1190 // section.
1192 // 6) Finalize the symbol table: set symbol values to their final
1193 // value and make a final determination of which symbols are going
1194 // into the output symbol table.
1196 // 7) Create the section table header.
1198 // 8) Determine the final file offset of all the output sections which
1199 // are not SHF_ALLOC, including the section table header.
1201 // 9) Finalize the ELF file header.
1203 // This function returns the size of the output file.
1205 off_t
1206 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1207 Target* target, const Task* task)
1209 target->finalize_sections(this);
1211 this->count_local_symbols(task, input_objects);
1213 this->link_stabs_sections();
1215 Output_segment* phdr_seg = NULL;
1216 if (!parameters->options().relocatable() && !parameters->doing_static_link())
1218 // There was a dynamic object in the link. We need to create
1219 // some information for the dynamic linker.
1221 // Create the PT_PHDR segment which will hold the program
1222 // headers.
1223 if (!this->script_options_->saw_phdrs_clause())
1224 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1226 // Create the dynamic symbol table, including the hash table.
1227 Output_section* dynstr;
1228 std::vector<Symbol*> dynamic_symbols;
1229 unsigned int local_dynamic_count;
1230 Versions versions(*this->script_options()->version_script_info(),
1231 &this->dynpool_);
1232 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1233 &local_dynamic_count, &dynamic_symbols,
1234 &versions);
1236 // Create the .interp section to hold the name of the
1237 // interpreter, and put it in a PT_INTERP segment.
1238 if (!parameters->options().shared())
1239 this->create_interp(target);
1241 // Finish the .dynamic section to hold the dynamic data, and put
1242 // it in a PT_DYNAMIC segment.
1243 this->finish_dynamic_section(input_objects, symtab);
1245 // We should have added everything we need to the dynamic string
1246 // table.
1247 this->dynpool_.set_string_offsets();
1249 // Create the version sections. We can't do this until the
1250 // dynamic string table is complete.
1251 this->create_version_sections(&versions, symtab, local_dynamic_count,
1252 dynamic_symbols, dynstr);
1255 if (this->incremental_inputs_)
1257 this->incremental_inputs_->finalize();
1258 this->create_incremental_info_sections();
1261 // If there is a SECTIONS clause, put all the input sections into
1262 // the required order.
1263 Output_segment* load_seg;
1264 if (this->script_options_->saw_sections_clause())
1265 load_seg = this->set_section_addresses_from_script(symtab);
1266 else if (parameters->options().relocatable())
1267 load_seg = NULL;
1268 else
1269 load_seg = this->find_first_load_seg();
1271 if (parameters->options().oformat_enum()
1272 != General_options::OBJECT_FORMAT_ELF)
1273 load_seg = NULL;
1275 gold_assert(phdr_seg == NULL || load_seg != NULL);
1277 // Lay out the segment headers.
1278 Output_segment_headers* segment_headers;
1279 if (parameters->options().relocatable())
1280 segment_headers = NULL;
1281 else
1283 segment_headers = new Output_segment_headers(this->segment_list_);
1284 if (load_seg != NULL)
1285 load_seg->add_initial_output_data(segment_headers);
1286 if (phdr_seg != NULL)
1287 phdr_seg->add_initial_output_data(segment_headers);
1290 // Lay out the file header.
1291 Output_file_header* file_header;
1292 file_header = new Output_file_header(target, symtab, segment_headers,
1293 parameters->options().entry());
1294 if (load_seg != NULL)
1295 load_seg->add_initial_output_data(file_header);
1297 this->special_output_list_.push_back(file_header);
1298 if (segment_headers != NULL)
1299 this->special_output_list_.push_back(segment_headers);
1301 if (this->script_options_->saw_phdrs_clause()
1302 && !parameters->options().relocatable())
1304 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1305 // clause in a linker script.
1306 Script_sections* ss = this->script_options_->script_sections();
1307 ss->put_headers_in_phdrs(file_header, segment_headers);
1310 // We set the output section indexes in set_segment_offsets and
1311 // set_section_indexes.
1312 unsigned int shndx = 1;
1314 // Set the file offsets of all the segments, and all the sections
1315 // they contain.
1316 off_t off;
1317 if (!parameters->options().relocatable())
1318 off = this->set_segment_offsets(target, load_seg, &shndx);
1319 else
1320 off = this->set_relocatable_section_offsets(file_header, &shndx);
1322 // Set the file offsets of all the non-data sections we've seen so
1323 // far which don't have to wait for the input sections. We need
1324 // this in order to finalize local symbols in non-allocated
1325 // sections.
1326 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1328 // Set the section indexes of all unallocated sections seen so far,
1329 // in case any of them are somehow referenced by a symbol.
1330 shndx = this->set_section_indexes(shndx);
1332 // Create the symbol table sections.
1333 this->create_symtab_sections(input_objects, symtab, shndx, &off);
1334 if (!parameters->doing_static_link())
1335 this->assign_local_dynsym_offsets(input_objects);
1337 // Process any symbol assignments from a linker script. This must
1338 // be called after the symbol table has been finalized.
1339 this->script_options_->finalize_symbols(symtab, this);
1341 // Create the .shstrtab section.
1342 Output_section* shstrtab_section = this->create_shstrtab();
1344 // Set the file offsets of the rest of the non-data sections which
1345 // don't have to wait for the input sections.
1346 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1348 // Now that all sections have been created, set the section indexes
1349 // for any sections which haven't been done yet.
1350 shndx = this->set_section_indexes(shndx);
1352 // Create the section table header.
1353 this->create_shdrs(shstrtab_section, &off);
1355 // If there are no sections which require postprocessing, we can
1356 // handle the section names now, and avoid a resize later.
1357 if (!this->any_postprocessing_sections_)
1358 off = this->set_section_offsets(off,
1359 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1361 file_header->set_section_info(this->section_headers_, shstrtab_section);
1363 // Now we know exactly where everything goes in the output file
1364 // (except for non-allocated sections which require postprocessing).
1365 Output_data::layout_complete();
1367 this->output_file_size_ = off;
1369 return off;
1372 // Create a note header following the format defined in the ELF ABI.
1373 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1374 // of the section to create, DESCSZ is the size of the descriptor.
1375 // ALLOCATE is true if the section should be allocated in memory.
1376 // This returns the new note section. It sets *TRAILING_PADDING to
1377 // the number of trailing zero bytes required.
1379 Output_section*
1380 Layout::create_note(const char* name, int note_type,
1381 const char* section_name, size_t descsz,
1382 bool allocate, size_t* trailing_padding)
1384 // Authorities all agree that the values in a .note field should
1385 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1386 // they differ on what the alignment is for 64-bit binaries.
1387 // The GABI says unambiguously they take 8-byte alignment:
1388 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1389 // Other documentation says alignment should always be 4 bytes:
1390 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1391 // GNU ld and GNU readelf both support the latter (at least as of
1392 // version 2.16.91), and glibc always generates the latter for
1393 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1394 // here.
1395 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1396 const int size = parameters->target().get_size();
1397 #else
1398 const int size = 32;
1399 #endif
1401 // The contents of the .note section.
1402 size_t namesz = strlen(name) + 1;
1403 size_t aligned_namesz = align_address(namesz, size / 8);
1404 size_t aligned_descsz = align_address(descsz, size / 8);
1406 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1408 unsigned char* buffer = new unsigned char[notehdrsz];
1409 memset(buffer, 0, notehdrsz);
1411 bool is_big_endian = parameters->target().is_big_endian();
1413 if (size == 32)
1415 if (!is_big_endian)
1417 elfcpp::Swap<32, false>::writeval(buffer, namesz);
1418 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1419 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1421 else
1423 elfcpp::Swap<32, true>::writeval(buffer, namesz);
1424 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1425 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1428 else if (size == 64)
1430 if (!is_big_endian)
1432 elfcpp::Swap<64, false>::writeval(buffer, namesz);
1433 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1434 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1436 else
1438 elfcpp::Swap<64, true>::writeval(buffer, namesz);
1439 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1440 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1443 else
1444 gold_unreachable();
1446 memcpy(buffer + 3 * (size / 8), name, namesz);
1448 elfcpp::Elf_Xword flags = 0;
1449 if (allocate)
1450 flags = elfcpp::SHF_ALLOC;
1451 Output_section* os = this->choose_output_section(NULL, section_name,
1452 elfcpp::SHT_NOTE,
1453 flags, false);
1454 if (os == NULL)
1455 return NULL;
1457 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1458 size / 8,
1459 "** note header");
1460 os->add_output_section_data(posd);
1462 *trailing_padding = aligned_descsz - descsz;
1464 return os;
1467 // For an executable or shared library, create a note to record the
1468 // version of gold used to create the binary.
1470 void
1471 Layout::create_gold_note()
1473 if (parameters->options().relocatable())
1474 return;
1476 std::string desc = std::string("gold ") + gold::get_version_string();
1478 size_t trailing_padding;
1479 Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1480 ".note.gnu.gold-version", desc.size(),
1481 false, &trailing_padding);
1482 if (os == NULL)
1483 return;
1485 Output_section_data* posd = new Output_data_const(desc, 4);
1486 os->add_output_section_data(posd);
1488 if (trailing_padding > 0)
1490 posd = new Output_data_zero_fill(trailing_padding, 0);
1491 os->add_output_section_data(posd);
1495 // Record whether the stack should be executable. This can be set
1496 // from the command line using the -z execstack or -z noexecstack
1497 // options. Otherwise, if any input file has a .note.GNU-stack
1498 // section with the SHF_EXECINSTR flag set, the stack should be
1499 // executable. Otherwise, if at least one input file a
1500 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1501 // section, we use the target default for whether the stack should be
1502 // executable. Otherwise, we don't generate a stack note. When
1503 // generating a object file, we create a .note.GNU-stack section with
1504 // the appropriate marking. When generating an executable or shared
1505 // library, we create a PT_GNU_STACK segment.
1507 void
1508 Layout::create_executable_stack_info()
1510 bool is_stack_executable;
1511 if (parameters->options().is_execstack_set())
1512 is_stack_executable = parameters->options().is_stack_executable();
1513 else if (!this->input_with_gnu_stack_note_)
1514 return;
1515 else
1517 if (this->input_requires_executable_stack_)
1518 is_stack_executable = true;
1519 else if (this->input_without_gnu_stack_note_)
1520 is_stack_executable =
1521 parameters->target().is_default_stack_executable();
1522 else
1523 is_stack_executable = false;
1526 if (parameters->options().relocatable())
1528 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1529 elfcpp::Elf_Xword flags = 0;
1530 if (is_stack_executable)
1531 flags |= elfcpp::SHF_EXECINSTR;
1532 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1534 else
1536 if (this->script_options_->saw_phdrs_clause())
1537 return;
1538 int flags = elfcpp::PF_R | elfcpp::PF_W;
1539 if (is_stack_executable)
1540 flags |= elfcpp::PF_X;
1541 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1545 // If --build-id was used, set up the build ID note.
1547 void
1548 Layout::create_build_id()
1550 if (!parameters->options().user_set_build_id())
1551 return;
1553 const char* style = parameters->options().build_id();
1554 if (strcmp(style, "none") == 0)
1555 return;
1557 // Set DESCSZ to the size of the note descriptor. When possible,
1558 // set DESC to the note descriptor contents.
1559 size_t descsz;
1560 std::string desc;
1561 if (strcmp(style, "md5") == 0)
1562 descsz = 128 / 8;
1563 else if (strcmp(style, "sha1") == 0)
1564 descsz = 160 / 8;
1565 else if (strcmp(style, "uuid") == 0)
1567 const size_t uuidsz = 128 / 8;
1569 char buffer[uuidsz];
1570 memset(buffer, 0, uuidsz);
1572 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
1573 if (descriptor < 0)
1574 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1575 strerror(errno));
1576 else
1578 ssize_t got = ::read(descriptor, buffer, uuidsz);
1579 release_descriptor(descriptor, true);
1580 if (got < 0)
1581 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1582 else if (static_cast<size_t>(got) != uuidsz)
1583 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1584 uuidsz, got);
1587 desc.assign(buffer, uuidsz);
1588 descsz = uuidsz;
1590 else if (strncmp(style, "0x", 2) == 0)
1592 hex_init();
1593 const char* p = style + 2;
1594 while (*p != '\0')
1596 if (hex_p(p[0]) && hex_p(p[1]))
1598 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1599 desc += c;
1600 p += 2;
1602 else if (*p == '-' || *p == ':')
1603 ++p;
1604 else
1605 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1606 style);
1608 descsz = desc.size();
1610 else
1611 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1613 // Create the note.
1614 size_t trailing_padding;
1615 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1616 ".note.gnu.build-id", descsz, true,
1617 &trailing_padding);
1618 if (os == NULL)
1619 return;
1621 if (!desc.empty())
1623 // We know the value already, so we fill it in now.
1624 gold_assert(desc.size() == descsz);
1626 Output_section_data* posd = new Output_data_const(desc, 4);
1627 os->add_output_section_data(posd);
1629 if (trailing_padding != 0)
1631 posd = new Output_data_zero_fill(trailing_padding, 0);
1632 os->add_output_section_data(posd);
1635 else
1637 // We need to compute a checksum after we have completed the
1638 // link.
1639 gold_assert(trailing_padding == 0);
1640 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
1641 os->add_output_section_data(this->build_id_note_);
1645 // If we have both .stabXX and .stabXXstr sections, then the sh_link
1646 // field of the former should point to the latter. I'm not sure who
1647 // started this, but the GNU linker does it, and some tools depend
1648 // upon it.
1650 void
1651 Layout::link_stabs_sections()
1653 if (!this->have_stabstr_section_)
1654 return;
1656 for (Section_list::iterator p = this->section_list_.begin();
1657 p != this->section_list_.end();
1658 ++p)
1660 if ((*p)->type() != elfcpp::SHT_STRTAB)
1661 continue;
1663 const char* name = (*p)->name();
1664 if (strncmp(name, ".stab", 5) != 0)
1665 continue;
1667 size_t len = strlen(name);
1668 if (strcmp(name + len - 3, "str") != 0)
1669 continue;
1671 std::string stab_name(name, len - 3);
1672 Output_section* stab_sec;
1673 stab_sec = this->find_output_section(stab_name.c_str());
1674 if (stab_sec != NULL)
1675 stab_sec->set_link_section(*p);
1679 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
1680 // for the next run of incremental linking to check what has changed.
1682 void
1683 Layout::create_incremental_info_sections()
1685 gold_assert(this->incremental_inputs_ != NULL);
1687 // Add the .gnu_incremental_inputs section.
1688 const char *incremental_inputs_name =
1689 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
1690 Output_section* inputs_os =
1691 this->make_output_section(incremental_inputs_name,
1692 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0);
1693 Output_section_data* posd =
1694 this->incremental_inputs_->create_incremental_inputs_section_data();
1695 inputs_os->add_output_section_data(posd);
1697 // Add the .gnu_incremental_strtab section.
1698 const char *incremental_strtab_name =
1699 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
1700 Output_section* strtab_os = this->make_output_section(incremental_strtab_name,
1701 elfcpp::SHT_STRTAB,
1703 Output_data_strtab* strtab_data =
1704 new Output_data_strtab(this->incremental_inputs_->get_stringpool());
1705 strtab_os->add_output_section_data(strtab_data);
1707 inputs_os->set_link_section(strtab_data);
1710 // Return whether SEG1 should be before SEG2 in the output file. This
1711 // is based entirely on the segment type and flags. When this is
1712 // called the segment addresses has normally not yet been set.
1714 bool
1715 Layout::segment_precedes(const Output_segment* seg1,
1716 const Output_segment* seg2)
1718 elfcpp::Elf_Word type1 = seg1->type();
1719 elfcpp::Elf_Word type2 = seg2->type();
1721 // The single PT_PHDR segment is required to precede any loadable
1722 // segment. We simply make it always first.
1723 if (type1 == elfcpp::PT_PHDR)
1725 gold_assert(type2 != elfcpp::PT_PHDR);
1726 return true;
1728 if (type2 == elfcpp::PT_PHDR)
1729 return false;
1731 // The single PT_INTERP segment is required to precede any loadable
1732 // segment. We simply make it always second.
1733 if (type1 == elfcpp::PT_INTERP)
1735 gold_assert(type2 != elfcpp::PT_INTERP);
1736 return true;
1738 if (type2 == elfcpp::PT_INTERP)
1739 return false;
1741 // We then put PT_LOAD segments before any other segments.
1742 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1743 return true;
1744 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1745 return false;
1747 // We put the PT_TLS segment last except for the PT_GNU_RELRO
1748 // segment, because that is where the dynamic linker expects to find
1749 // it (this is just for efficiency; other positions would also work
1750 // correctly).
1751 if (type1 == elfcpp::PT_TLS
1752 && type2 != elfcpp::PT_TLS
1753 && type2 != elfcpp::PT_GNU_RELRO)
1754 return false;
1755 if (type2 == elfcpp::PT_TLS
1756 && type1 != elfcpp::PT_TLS
1757 && type1 != elfcpp::PT_GNU_RELRO)
1758 return true;
1760 // We put the PT_GNU_RELRO segment last, because that is where the
1761 // dynamic linker expects to find it (as with PT_TLS, this is just
1762 // for efficiency).
1763 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
1764 return false;
1765 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
1766 return true;
1768 const elfcpp::Elf_Word flags1 = seg1->flags();
1769 const elfcpp::Elf_Word flags2 = seg2->flags();
1771 // The order of non-PT_LOAD segments is unimportant. We simply sort
1772 // by the numeric segment type and flags values. There should not
1773 // be more than one segment with the same type and flags.
1774 if (type1 != elfcpp::PT_LOAD)
1776 if (type1 != type2)
1777 return type1 < type2;
1778 gold_assert(flags1 != flags2);
1779 return flags1 < flags2;
1782 // If the addresses are set already, sort by load address.
1783 if (seg1->are_addresses_set())
1785 if (!seg2->are_addresses_set())
1786 return true;
1788 unsigned int section_count1 = seg1->output_section_count();
1789 unsigned int section_count2 = seg2->output_section_count();
1790 if (section_count1 == 0 && section_count2 > 0)
1791 return true;
1792 if (section_count1 > 0 && section_count2 == 0)
1793 return false;
1795 uint64_t paddr1 = seg1->first_section_load_address();
1796 uint64_t paddr2 = seg2->first_section_load_address();
1797 if (paddr1 != paddr2)
1798 return paddr1 < paddr2;
1800 else if (seg2->are_addresses_set())
1801 return false;
1803 // A segment which holds large data comes after a segment which does
1804 // not hold large data.
1805 if (seg1->is_large_data_segment())
1807 if (!seg2->is_large_data_segment())
1808 return false;
1810 else if (seg2->is_large_data_segment())
1811 return true;
1813 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
1814 // segments come before writable segments. Then writable segments
1815 // with data come before writable segments without data. Then
1816 // executable segments come before non-executable segments. Then
1817 // the unlikely case of a non-readable segment comes before the
1818 // normal case of a readable segment. If there are multiple
1819 // segments with the same type and flags, we require that the
1820 // address be set, and we sort by virtual address and then physical
1821 // address.
1822 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1823 return (flags1 & elfcpp::PF_W) == 0;
1824 if ((flags1 & elfcpp::PF_W) != 0
1825 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
1826 return seg1->has_any_data_sections();
1827 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1828 return (flags1 & elfcpp::PF_X) != 0;
1829 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1830 return (flags1 & elfcpp::PF_R) == 0;
1832 // We shouldn't get here--we shouldn't create segments which we
1833 // can't distinguish.
1834 gold_unreachable();
1837 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
1839 static off_t
1840 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
1842 uint64_t unsigned_off = off;
1843 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1844 | (addr & (abi_pagesize - 1)));
1845 if (aligned_off < unsigned_off)
1846 aligned_off += abi_pagesize;
1847 return aligned_off;
1850 // Set the file offsets of all the segments, and all the sections they
1851 // contain. They have all been created. LOAD_SEG must be be laid out
1852 // first. Return the offset of the data to follow.
1854 off_t
1855 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1856 unsigned int *pshndx)
1858 // Sort them into the final order.
1859 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1860 Layout::Compare_segments());
1862 // Find the PT_LOAD segments, and set their addresses and offsets
1863 // and their section's addresses and offsets.
1864 uint64_t addr;
1865 if (parameters->options().user_set_Ttext())
1866 addr = parameters->options().Ttext();
1867 else if (parameters->options().shared())
1868 addr = 0;
1869 else
1870 addr = target->default_text_segment_address();
1871 off_t off = 0;
1873 // If LOAD_SEG is NULL, then the file header and segment headers
1874 // will not be loadable. But they still need to be at offset 0 in
1875 // the file. Set their offsets now.
1876 if (load_seg == NULL)
1878 for (Data_list::iterator p = this->special_output_list_.begin();
1879 p != this->special_output_list_.end();
1880 ++p)
1882 off = align_address(off, (*p)->addralign());
1883 (*p)->set_address_and_file_offset(0, off);
1884 off += (*p)->data_size();
1888 const bool check_sections = parameters->options().check_sections();
1889 Output_segment* last_load_segment = NULL;
1891 bool was_readonly = false;
1892 for (Segment_list::iterator p = this->segment_list_.begin();
1893 p != this->segment_list_.end();
1894 ++p)
1896 if ((*p)->type() == elfcpp::PT_LOAD)
1898 if (load_seg != NULL && load_seg != *p)
1899 gold_unreachable();
1900 load_seg = NULL;
1902 bool are_addresses_set = (*p)->are_addresses_set();
1903 if (are_addresses_set)
1905 // When it comes to setting file offsets, we care about
1906 // the physical address.
1907 addr = (*p)->paddr();
1909 else if (parameters->options().user_set_Tdata()
1910 && ((*p)->flags() & elfcpp::PF_W) != 0
1911 && (!parameters->options().user_set_Tbss()
1912 || (*p)->has_any_data_sections()))
1914 addr = parameters->options().Tdata();
1915 are_addresses_set = true;
1917 else if (parameters->options().user_set_Tbss()
1918 && ((*p)->flags() & elfcpp::PF_W) != 0
1919 && !(*p)->has_any_data_sections())
1921 addr = parameters->options().Tbss();
1922 are_addresses_set = true;
1925 uint64_t orig_addr = addr;
1926 uint64_t orig_off = off;
1928 uint64_t aligned_addr = 0;
1929 uint64_t abi_pagesize = target->abi_pagesize();
1930 uint64_t common_pagesize = target->common_pagesize();
1932 if (!parameters->options().nmagic()
1933 && !parameters->options().omagic())
1934 (*p)->set_minimum_p_align(common_pagesize);
1936 if (!are_addresses_set)
1938 // If the last segment was readonly, and this one is
1939 // not, then skip the address forward one page,
1940 // maintaining the same position within the page. This
1941 // lets us store both segments overlapping on a single
1942 // page in the file, but the loader will put them on
1943 // different pages in memory.
1945 addr = align_address(addr, (*p)->maximum_alignment());
1946 aligned_addr = addr;
1948 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1950 if ((addr & (abi_pagesize - 1)) != 0)
1951 addr = addr + abi_pagesize;
1954 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1957 if (!parameters->options().nmagic()
1958 && !parameters->options().omagic())
1959 off = align_file_offset(off, addr, abi_pagesize);
1961 unsigned int shndx_hold = *pshndx;
1962 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
1963 &off, pshndx);
1965 // Now that we know the size of this segment, we may be able
1966 // to save a page in memory, at the cost of wasting some
1967 // file space, by instead aligning to the start of a new
1968 // page. Here we use the real machine page size rather than
1969 // the ABI mandated page size.
1971 if (!are_addresses_set && aligned_addr != addr)
1973 uint64_t first_off = (common_pagesize
1974 - (aligned_addr
1975 & (common_pagesize - 1)));
1976 uint64_t last_off = new_addr & (common_pagesize - 1);
1977 if (first_off > 0
1978 && last_off > 0
1979 && ((aligned_addr & ~ (common_pagesize - 1))
1980 != (new_addr & ~ (common_pagesize - 1)))
1981 && first_off + last_off <= common_pagesize)
1983 *pshndx = shndx_hold;
1984 addr = align_address(aligned_addr, common_pagesize);
1985 addr = align_address(addr, (*p)->maximum_alignment());
1986 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1987 off = align_file_offset(off, addr, abi_pagesize);
1988 new_addr = (*p)->set_section_addresses(this, true, addr,
1989 &off, pshndx);
1993 addr = new_addr;
1995 if (((*p)->flags() & elfcpp::PF_W) == 0)
1996 was_readonly = true;
1998 // Implement --check-sections. We know that the segments
1999 // are sorted by LMA.
2000 if (check_sections && last_load_segment != NULL)
2002 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
2003 if (last_load_segment->paddr() + last_load_segment->memsz()
2004 > (*p)->paddr())
2006 unsigned long long lb1 = last_load_segment->paddr();
2007 unsigned long long le1 = lb1 + last_load_segment->memsz();
2008 unsigned long long lb2 = (*p)->paddr();
2009 unsigned long long le2 = lb2 + (*p)->memsz();
2010 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2011 "[0x%llx -> 0x%llx]"),
2012 lb1, le1, lb2, le2);
2015 last_load_segment = *p;
2019 // Handle the non-PT_LOAD segments, setting their offsets from their
2020 // section's offsets.
2021 for (Segment_list::iterator p = this->segment_list_.begin();
2022 p != this->segment_list_.end();
2023 ++p)
2025 if ((*p)->type() != elfcpp::PT_LOAD)
2026 (*p)->set_offset();
2029 // Set the TLS offsets for each section in the PT_TLS segment.
2030 if (this->tls_segment_ != NULL)
2031 this->tls_segment_->set_tls_offsets();
2033 return off;
2036 // Set the offsets of all the allocated sections when doing a
2037 // relocatable link. This does the same jobs as set_segment_offsets,
2038 // only for a relocatable link.
2040 off_t
2041 Layout::set_relocatable_section_offsets(Output_data* file_header,
2042 unsigned int *pshndx)
2044 off_t off = 0;
2046 file_header->set_address_and_file_offset(0, 0);
2047 off += file_header->data_size();
2049 for (Section_list::iterator p = this->section_list_.begin();
2050 p != this->section_list_.end();
2051 ++p)
2053 // We skip unallocated sections here, except that group sections
2054 // have to come first.
2055 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
2056 && (*p)->type() != elfcpp::SHT_GROUP)
2057 continue;
2059 off = align_address(off, (*p)->addralign());
2061 // The linker script might have set the address.
2062 if (!(*p)->is_address_valid())
2063 (*p)->set_address(0);
2064 (*p)->set_file_offset(off);
2065 (*p)->finalize_data_size();
2066 off += (*p)->data_size();
2068 (*p)->set_out_shndx(*pshndx);
2069 ++*pshndx;
2072 return off;
2075 // Set the file offset of all the sections not associated with a
2076 // segment.
2078 off_t
2079 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
2081 for (Section_list::iterator p = this->unattached_section_list_.begin();
2082 p != this->unattached_section_list_.end();
2083 ++p)
2085 // The symtab section is handled in create_symtab_sections.
2086 if (*p == this->symtab_section_)
2087 continue;
2089 // If we've already set the data size, don't set it again.
2090 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
2091 continue;
2093 if (pass == BEFORE_INPUT_SECTIONS_PASS
2094 && (*p)->requires_postprocessing())
2096 (*p)->create_postprocessing_buffer();
2097 this->any_postprocessing_sections_ = true;
2100 if (pass == BEFORE_INPUT_SECTIONS_PASS
2101 && (*p)->after_input_sections())
2102 continue;
2103 else if (pass == POSTPROCESSING_SECTIONS_PASS
2104 && (!(*p)->after_input_sections()
2105 || (*p)->type() == elfcpp::SHT_STRTAB))
2106 continue;
2107 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2108 && (!(*p)->after_input_sections()
2109 || (*p)->type() != elfcpp::SHT_STRTAB))
2110 continue;
2112 off = align_address(off, (*p)->addralign());
2113 (*p)->set_file_offset(off);
2114 (*p)->finalize_data_size();
2115 off += (*p)->data_size();
2117 // At this point the name must be set.
2118 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
2119 this->namepool_.add((*p)->name(), false, NULL);
2121 return off;
2124 // Set the section indexes of all the sections not associated with a
2125 // segment.
2127 unsigned int
2128 Layout::set_section_indexes(unsigned int shndx)
2130 for (Section_list::iterator p = this->unattached_section_list_.begin();
2131 p != this->unattached_section_list_.end();
2132 ++p)
2134 if (!(*p)->has_out_shndx())
2136 (*p)->set_out_shndx(shndx);
2137 ++shndx;
2140 return shndx;
2143 // Set the section addresses according to the linker script. This is
2144 // only called when we see a SECTIONS clause. This returns the
2145 // program segment which should hold the file header and segment
2146 // headers, if any. It will return NULL if they should not be in a
2147 // segment.
2149 Output_segment*
2150 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2152 Script_sections* ss = this->script_options_->script_sections();
2153 gold_assert(ss->saw_sections_clause());
2155 // Place each orphaned output section in the script.
2156 for (Section_list::iterator p = this->section_list_.begin();
2157 p != this->section_list_.end();
2158 ++p)
2160 if (!(*p)->found_in_sections_clause())
2161 ss->place_orphan(*p);
2164 return this->script_options_->set_section_addresses(symtab, this);
2167 // Count the local symbols in the regular symbol table and the dynamic
2168 // symbol table, and build the respective string pools.
2170 void
2171 Layout::count_local_symbols(const Task* task,
2172 const Input_objects* input_objects)
2174 // First, figure out an upper bound on the number of symbols we'll
2175 // be inserting into each pool. This helps us create the pools with
2176 // the right size, to avoid unnecessary hashtable resizing.
2177 unsigned int symbol_count = 0;
2178 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2179 p != input_objects->relobj_end();
2180 ++p)
2181 symbol_count += (*p)->local_symbol_count();
2183 // Go from "upper bound" to "estimate." We overcount for two
2184 // reasons: we double-count symbols that occur in more than one
2185 // object file, and we count symbols that are dropped from the
2186 // output. Add it all together and assume we overcount by 100%.
2187 symbol_count /= 2;
2189 // We assume all symbols will go into both the sympool and dynpool.
2190 this->sympool_.reserve(symbol_count);
2191 this->dynpool_.reserve(symbol_count);
2193 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2194 p != input_objects->relobj_end();
2195 ++p)
2197 Task_lock_obj<Object> tlo(task, *p);
2198 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2202 // Create the symbol table sections. Here we also set the final
2203 // values of the symbols. At this point all the loadable sections are
2204 // fully laid out. SHNUM is the number of sections so far.
2206 void
2207 Layout::create_symtab_sections(const Input_objects* input_objects,
2208 Symbol_table* symtab,
2209 unsigned int shnum,
2210 off_t* poff)
2212 int symsize;
2213 unsigned int align;
2214 if (parameters->target().get_size() == 32)
2216 symsize = elfcpp::Elf_sizes<32>::sym_size;
2217 align = 4;
2219 else if (parameters->target().get_size() == 64)
2221 symsize = elfcpp::Elf_sizes<64>::sym_size;
2222 align = 8;
2224 else
2225 gold_unreachable();
2227 off_t off = *poff;
2228 off = align_address(off, align);
2229 off_t startoff = off;
2231 // Save space for the dummy symbol at the start of the section. We
2232 // never bother to write this out--it will just be left as zero.
2233 off += symsize;
2234 unsigned int local_symbol_index = 1;
2236 // Add STT_SECTION symbols for each Output section which needs one.
2237 for (Section_list::iterator p = this->section_list_.begin();
2238 p != this->section_list_.end();
2239 ++p)
2241 if (!(*p)->needs_symtab_index())
2242 (*p)->set_symtab_index(-1U);
2243 else
2245 (*p)->set_symtab_index(local_symbol_index);
2246 ++local_symbol_index;
2247 off += symsize;
2251 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2252 p != input_objects->relobj_end();
2253 ++p)
2255 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2256 off, symtab);
2257 off += (index - local_symbol_index) * symsize;
2258 local_symbol_index = index;
2261 unsigned int local_symcount = local_symbol_index;
2262 gold_assert(local_symcount * symsize == off - startoff);
2264 off_t dynoff;
2265 size_t dyn_global_index;
2266 size_t dyncount;
2267 if (this->dynsym_section_ == NULL)
2269 dynoff = 0;
2270 dyn_global_index = 0;
2271 dyncount = 0;
2273 else
2275 dyn_global_index = this->dynsym_section_->info();
2276 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2277 dynoff = this->dynsym_section_->offset() + locsize;
2278 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2279 gold_assert(static_cast<off_t>(dyncount * symsize)
2280 == this->dynsym_section_->data_size() - locsize);
2283 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2284 &this->sympool_, &local_symcount);
2286 if (!parameters->options().strip_all())
2288 this->sympool_.set_string_offsets();
2290 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2291 Output_section* osymtab = this->make_output_section(symtab_name,
2292 elfcpp::SHT_SYMTAB,
2294 this->symtab_section_ = osymtab;
2296 Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2297 align,
2298 "** symtab");
2299 osymtab->add_output_section_data(pos);
2301 // We generate a .symtab_shndx section if we have more than
2302 // SHN_LORESERVE sections. Technically it is possible that we
2303 // don't need one, because it is possible that there are no
2304 // symbols in any of sections with indexes larger than
2305 // SHN_LORESERVE. That is probably unusual, though, and it is
2306 // easier to always create one than to compute section indexes
2307 // twice (once here, once when writing out the symbols).
2308 if (shnum >= elfcpp::SHN_LORESERVE)
2310 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2311 false, NULL);
2312 Output_section* osymtab_xindex =
2313 this->make_output_section(symtab_xindex_name,
2314 elfcpp::SHT_SYMTAB_SHNDX, 0);
2316 size_t symcount = (off - startoff) / symsize;
2317 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2319 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2321 osymtab_xindex->set_link_section(osymtab);
2322 osymtab_xindex->set_addralign(4);
2323 osymtab_xindex->set_entsize(4);
2325 osymtab_xindex->set_after_input_sections();
2327 // This tells the driver code to wait until the symbol table
2328 // has written out before writing out the postprocessing
2329 // sections, including the .symtab_shndx section.
2330 this->any_postprocessing_sections_ = true;
2333 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2334 Output_section* ostrtab = this->make_output_section(strtab_name,
2335 elfcpp::SHT_STRTAB,
2338 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2339 ostrtab->add_output_section_data(pstr);
2341 osymtab->set_file_offset(startoff);
2342 osymtab->finalize_data_size();
2343 osymtab->set_link_section(ostrtab);
2344 osymtab->set_info(local_symcount);
2345 osymtab->set_entsize(symsize);
2347 *poff = off;
2351 // Create the .shstrtab section, which holds the names of the
2352 // sections. At the time this is called, we have created all the
2353 // output sections except .shstrtab itself.
2355 Output_section*
2356 Layout::create_shstrtab()
2358 // FIXME: We don't need to create a .shstrtab section if we are
2359 // stripping everything.
2361 const char* name = this->namepool_.add(".shstrtab", false, NULL);
2363 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
2365 // We can't write out this section until we've set all the section
2366 // names, and we don't set the names of compressed output sections
2367 // until relocations are complete.
2368 os->set_after_input_sections();
2370 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2371 os->add_output_section_data(posd);
2373 return os;
2376 // Create the section headers. SIZE is 32 or 64. OFF is the file
2377 // offset.
2379 void
2380 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2382 Output_section_headers* oshdrs;
2383 oshdrs = new Output_section_headers(this,
2384 &this->segment_list_,
2385 &this->section_list_,
2386 &this->unattached_section_list_,
2387 &this->namepool_,
2388 shstrtab_section);
2389 off_t off = align_address(*poff, oshdrs->addralign());
2390 oshdrs->set_address_and_file_offset(0, off);
2391 off += oshdrs->data_size();
2392 *poff = off;
2393 this->section_headers_ = oshdrs;
2396 // Count the allocated sections.
2398 size_t
2399 Layout::allocated_output_section_count() const
2401 size_t section_count = 0;
2402 for (Segment_list::const_iterator p = this->segment_list_.begin();
2403 p != this->segment_list_.end();
2404 ++p)
2405 section_count += (*p)->output_section_count();
2406 return section_count;
2409 // Create the dynamic symbol table.
2411 void
2412 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2413 Symbol_table* symtab,
2414 Output_section **pdynstr,
2415 unsigned int* plocal_dynamic_count,
2416 std::vector<Symbol*>* pdynamic_symbols,
2417 Versions* pversions)
2419 // Count all the symbols in the dynamic symbol table, and set the
2420 // dynamic symbol indexes.
2422 // Skip symbol 0, which is always all zeroes.
2423 unsigned int index = 1;
2425 // Add STT_SECTION symbols for each Output section which needs one.
2426 for (Section_list::iterator p = this->section_list_.begin();
2427 p != this->section_list_.end();
2428 ++p)
2430 if (!(*p)->needs_dynsym_index())
2431 (*p)->set_dynsym_index(-1U);
2432 else
2434 (*p)->set_dynsym_index(index);
2435 ++index;
2439 // Count the local symbols that need to go in the dynamic symbol table,
2440 // and set the dynamic symbol indexes.
2441 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2442 p != input_objects->relobj_end();
2443 ++p)
2445 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2446 index = new_index;
2449 unsigned int local_symcount = index;
2450 *plocal_dynamic_count = local_symcount;
2452 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2453 &this->dynpool_, pversions);
2455 int symsize;
2456 unsigned int align;
2457 const int size = parameters->target().get_size();
2458 if (size == 32)
2460 symsize = elfcpp::Elf_sizes<32>::sym_size;
2461 align = 4;
2463 else if (size == 64)
2465 symsize = elfcpp::Elf_sizes<64>::sym_size;
2466 align = 8;
2468 else
2469 gold_unreachable();
2471 // Create the dynamic symbol table section.
2473 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2474 elfcpp::SHT_DYNSYM,
2475 elfcpp::SHF_ALLOC,
2476 false);
2478 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2479 align,
2480 "** dynsym");
2481 dynsym->add_output_section_data(odata);
2483 dynsym->set_info(local_symcount);
2484 dynsym->set_entsize(symsize);
2485 dynsym->set_addralign(align);
2487 this->dynsym_section_ = dynsym;
2489 Output_data_dynamic* const odyn = this->dynamic_data_;
2490 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2491 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2493 // If there are more than SHN_LORESERVE allocated sections, we
2494 // create a .dynsym_shndx section. It is possible that we don't
2495 // need one, because it is possible that there are no dynamic
2496 // symbols in any of the sections with indexes larger than
2497 // SHN_LORESERVE. This is probably unusual, though, and at this
2498 // time we don't know the actual section indexes so it is
2499 // inconvenient to check.
2500 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2502 Output_section* dynsym_xindex =
2503 this->choose_output_section(NULL, ".dynsym_shndx",
2504 elfcpp::SHT_SYMTAB_SHNDX,
2505 elfcpp::SHF_ALLOC,
2506 false);
2508 this->dynsym_xindex_ = new Output_symtab_xindex(index);
2510 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2512 dynsym_xindex->set_link_section(dynsym);
2513 dynsym_xindex->set_addralign(4);
2514 dynsym_xindex->set_entsize(4);
2516 dynsym_xindex->set_after_input_sections();
2518 // This tells the driver code to wait until the symbol table has
2519 // written out before writing out the postprocessing sections,
2520 // including the .dynsym_shndx section.
2521 this->any_postprocessing_sections_ = true;
2524 // Create the dynamic string table section.
2526 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2527 elfcpp::SHT_STRTAB,
2528 elfcpp::SHF_ALLOC,
2529 false);
2531 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2532 dynstr->add_output_section_data(strdata);
2534 dynsym->set_link_section(dynstr);
2535 this->dynamic_section_->set_link_section(dynstr);
2537 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2538 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2540 *pdynstr = dynstr;
2542 // Create the hash tables.
2544 if (strcmp(parameters->options().hash_style(), "sysv") == 0
2545 || strcmp(parameters->options().hash_style(), "both") == 0)
2547 unsigned char* phash;
2548 unsigned int hashlen;
2549 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2550 &phash, &hashlen);
2552 Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2553 elfcpp::SHT_HASH,
2554 elfcpp::SHF_ALLOC,
2555 false);
2557 Output_section_data* hashdata = new Output_data_const_buffer(phash,
2558 hashlen,
2559 align,
2560 "** hash");
2561 hashsec->add_output_section_data(hashdata);
2563 hashsec->set_link_section(dynsym);
2564 hashsec->set_entsize(4);
2566 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2569 if (strcmp(parameters->options().hash_style(), "gnu") == 0
2570 || strcmp(parameters->options().hash_style(), "both") == 0)
2572 unsigned char* phash;
2573 unsigned int hashlen;
2574 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2575 &phash, &hashlen);
2577 Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2578 elfcpp::SHT_GNU_HASH,
2579 elfcpp::SHF_ALLOC,
2580 false);
2582 Output_section_data* hashdata = new Output_data_const_buffer(phash,
2583 hashlen,
2584 align,
2585 "** hash");
2586 hashsec->add_output_section_data(hashdata);
2588 hashsec->set_link_section(dynsym);
2589 hashsec->set_entsize(4);
2591 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
2595 // Assign offsets to each local portion of the dynamic symbol table.
2597 void
2598 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
2600 Output_section* dynsym = this->dynsym_section_;
2601 gold_assert(dynsym != NULL);
2603 off_t off = dynsym->offset();
2605 // Skip the dummy symbol at the start of the section.
2606 off += dynsym->entsize();
2608 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2609 p != input_objects->relobj_end();
2610 ++p)
2612 unsigned int count = (*p)->set_local_dynsym_offset(off);
2613 off += count * dynsym->entsize();
2617 // Create the version sections.
2619 void
2620 Layout::create_version_sections(const Versions* versions,
2621 const Symbol_table* symtab,
2622 unsigned int local_symcount,
2623 const std::vector<Symbol*>& dynamic_symbols,
2624 const Output_section* dynstr)
2626 if (!versions->any_defs() && !versions->any_needs())
2627 return;
2629 switch (parameters->size_and_endianness())
2631 #ifdef HAVE_TARGET_32_LITTLE
2632 case Parameters::TARGET_32_LITTLE:
2633 this->sized_create_version_sections<32, false>(versions, symtab,
2634 local_symcount,
2635 dynamic_symbols, dynstr);
2636 break;
2637 #endif
2638 #ifdef HAVE_TARGET_32_BIG
2639 case Parameters::TARGET_32_BIG:
2640 this->sized_create_version_sections<32, true>(versions, symtab,
2641 local_symcount,
2642 dynamic_symbols, dynstr);
2643 break;
2644 #endif
2645 #ifdef HAVE_TARGET_64_LITTLE
2646 case Parameters::TARGET_64_LITTLE:
2647 this->sized_create_version_sections<64, false>(versions, symtab,
2648 local_symcount,
2649 dynamic_symbols, dynstr);
2650 break;
2651 #endif
2652 #ifdef HAVE_TARGET_64_BIG
2653 case Parameters::TARGET_64_BIG:
2654 this->sized_create_version_sections<64, true>(versions, symtab,
2655 local_symcount,
2656 dynamic_symbols, dynstr);
2657 break;
2658 #endif
2659 default:
2660 gold_unreachable();
2664 // Create the version sections, sized version.
2666 template<int size, bool big_endian>
2667 void
2668 Layout::sized_create_version_sections(
2669 const Versions* versions,
2670 const Symbol_table* symtab,
2671 unsigned int local_symcount,
2672 const std::vector<Symbol*>& dynamic_symbols,
2673 const Output_section* dynstr)
2675 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
2676 elfcpp::SHT_GNU_versym,
2677 elfcpp::SHF_ALLOC,
2678 false);
2680 unsigned char* vbuf;
2681 unsigned int vsize;
2682 versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
2683 local_symcount,
2684 dynamic_symbols,
2685 &vbuf, &vsize);
2687 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
2688 "** versions");
2690 vsec->add_output_section_data(vdata);
2691 vsec->set_entsize(2);
2692 vsec->set_link_section(this->dynsym_section_);
2694 Output_data_dynamic* const odyn = this->dynamic_data_;
2695 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2697 if (versions->any_defs())
2699 Output_section* vdsec;
2700 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2701 elfcpp::SHT_GNU_verdef,
2702 elfcpp::SHF_ALLOC,
2703 false);
2705 unsigned char* vdbuf;
2706 unsigned int vdsize;
2707 unsigned int vdentries;
2708 versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
2709 &vdsize, &vdentries);
2711 Output_section_data* vddata =
2712 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
2714 vdsec->add_output_section_data(vddata);
2715 vdsec->set_link_section(dynstr);
2716 vdsec->set_info(vdentries);
2718 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2719 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2722 if (versions->any_needs())
2724 Output_section* vnsec;
2725 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2726 elfcpp::SHT_GNU_verneed,
2727 elfcpp::SHF_ALLOC,
2728 false);
2730 unsigned char* vnbuf;
2731 unsigned int vnsize;
2732 unsigned int vnentries;
2733 versions->need_section_contents<size, big_endian>(&this->dynpool_,
2734 &vnbuf, &vnsize,
2735 &vnentries);
2737 Output_section_data* vndata =
2738 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
2740 vnsec->add_output_section_data(vndata);
2741 vnsec->set_link_section(dynstr);
2742 vnsec->set_info(vnentries);
2744 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2745 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2749 // Create the .interp section and PT_INTERP segment.
2751 void
2752 Layout::create_interp(const Target* target)
2754 const char* interp = parameters->options().dynamic_linker();
2755 if (interp == NULL)
2757 interp = target->dynamic_linker();
2758 gold_assert(interp != NULL);
2761 size_t len = strlen(interp) + 1;
2763 Output_section_data* odata = new Output_data_const(interp, len, 1);
2765 Output_section* osec = this->choose_output_section(NULL, ".interp",
2766 elfcpp::SHT_PROGBITS,
2767 elfcpp::SHF_ALLOC,
2768 false);
2769 osec->add_output_section_data(odata);
2771 if (!this->script_options_->saw_phdrs_clause())
2773 Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2774 elfcpp::PF_R);
2775 oseg->add_output_section(osec, elfcpp::PF_R);
2779 // Finish the .dynamic section and PT_DYNAMIC segment.
2781 void
2782 Layout::finish_dynamic_section(const Input_objects* input_objects,
2783 const Symbol_table* symtab)
2785 if (!this->script_options_->saw_phdrs_clause())
2787 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2788 (elfcpp::PF_R
2789 | elfcpp::PF_W));
2790 oseg->add_output_section(this->dynamic_section_,
2791 elfcpp::PF_R | elfcpp::PF_W);
2794 Output_data_dynamic* const odyn = this->dynamic_data_;
2796 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2797 p != input_objects->dynobj_end();
2798 ++p)
2800 // FIXME: Handle --as-needed.
2801 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2804 if (parameters->options().shared())
2806 const char* soname = parameters->options().soname();
2807 if (soname != NULL)
2808 odyn->add_string(elfcpp::DT_SONAME, soname);
2811 // FIXME: Support --init and --fini.
2812 Symbol* sym = symtab->lookup("_init");
2813 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2814 odyn->add_symbol(elfcpp::DT_INIT, sym);
2816 sym = symtab->lookup("_fini");
2817 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2818 odyn->add_symbol(elfcpp::DT_FINI, sym);
2820 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2822 // Add a DT_RPATH entry if needed.
2823 const General_options::Dir_list& rpath(parameters->options().rpath());
2824 if (!rpath.empty())
2826 std::string rpath_val;
2827 for (General_options::Dir_list::const_iterator p = rpath.begin();
2828 p != rpath.end();
2829 ++p)
2831 if (rpath_val.empty())
2832 rpath_val = p->name();
2833 else
2835 // Eliminate duplicates.
2836 General_options::Dir_list::const_iterator q;
2837 for (q = rpath.begin(); q != p; ++q)
2838 if (q->name() == p->name())
2839 break;
2840 if (q == p)
2842 rpath_val += ':';
2843 rpath_val += p->name();
2848 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2849 if (parameters->options().enable_new_dtags())
2850 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
2853 // Look for text segments that have dynamic relocations.
2854 bool have_textrel = false;
2855 if (!this->script_options_->saw_sections_clause())
2857 for (Segment_list::const_iterator p = this->segment_list_.begin();
2858 p != this->segment_list_.end();
2859 ++p)
2861 if (((*p)->flags() & elfcpp::PF_W) == 0
2862 && (*p)->dynamic_reloc_count() > 0)
2864 have_textrel = true;
2865 break;
2869 else
2871 // We don't know the section -> segment mapping, so we are
2872 // conservative and just look for readonly sections with
2873 // relocations. If those sections wind up in writable segments,
2874 // then we have created an unnecessary DT_TEXTREL entry.
2875 for (Section_list::const_iterator p = this->section_list_.begin();
2876 p != this->section_list_.end();
2877 ++p)
2879 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
2880 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
2881 && ((*p)->dynamic_reloc_count() > 0))
2883 have_textrel = true;
2884 break;
2889 // Add a DT_FLAGS entry. We add it even if no flags are set so that
2890 // post-link tools can easily modify these flags if desired.
2891 unsigned int flags = 0;
2892 if (have_textrel)
2894 // Add a DT_TEXTREL for compatibility with older loaders.
2895 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2896 flags |= elfcpp::DF_TEXTREL;
2898 if (parameters->options().shared() && this->has_static_tls())
2899 flags |= elfcpp::DF_STATIC_TLS;
2900 if (parameters->options().origin())
2901 flags |= elfcpp::DF_ORIGIN;
2902 if (parameters->options().now())
2903 flags |= elfcpp::DF_BIND_NOW;
2904 odyn->add_constant(elfcpp::DT_FLAGS, flags);
2906 flags = 0;
2907 if (parameters->options().initfirst())
2908 flags |= elfcpp::DF_1_INITFIRST;
2909 if (parameters->options().interpose())
2910 flags |= elfcpp::DF_1_INTERPOSE;
2911 if (parameters->options().loadfltr())
2912 flags |= elfcpp::DF_1_LOADFLTR;
2913 if (parameters->options().nodefaultlib())
2914 flags |= elfcpp::DF_1_NODEFLIB;
2915 if (parameters->options().nodelete())
2916 flags |= elfcpp::DF_1_NODELETE;
2917 if (parameters->options().nodlopen())
2918 flags |= elfcpp::DF_1_NOOPEN;
2919 if (parameters->options().nodump())
2920 flags |= elfcpp::DF_1_NODUMP;
2921 if (!parameters->options().shared())
2922 flags &= ~(elfcpp::DF_1_INITFIRST
2923 | elfcpp::DF_1_NODELETE
2924 | elfcpp::DF_1_NOOPEN);
2925 if (parameters->options().origin())
2926 flags |= elfcpp::DF_1_ORIGIN;
2927 if (parameters->options().now())
2928 flags |= elfcpp::DF_1_NOW;
2929 if (flags)
2930 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
2933 // The mapping of input section name prefixes to output section names.
2934 // In some cases one prefix is itself a prefix of another prefix; in
2935 // such a case the longer prefix must come first. These prefixes are
2936 // based on the GNU linker default ELF linker script.
2938 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2939 const Layout::Section_name_mapping Layout::section_name_mapping[] =
2941 MAPPING_INIT(".text.", ".text"),
2942 MAPPING_INIT(".ctors.", ".ctors"),
2943 MAPPING_INIT(".dtors.", ".dtors"),
2944 MAPPING_INIT(".rodata.", ".rodata"),
2945 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
2946 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
2947 MAPPING_INIT(".data.", ".data"),
2948 MAPPING_INIT(".bss.", ".bss"),
2949 MAPPING_INIT(".tdata.", ".tdata"),
2950 MAPPING_INIT(".tbss.", ".tbss"),
2951 MAPPING_INIT(".init_array.", ".init_array"),
2952 MAPPING_INIT(".fini_array.", ".fini_array"),
2953 MAPPING_INIT(".sdata.", ".sdata"),
2954 MAPPING_INIT(".sbss.", ".sbss"),
2955 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
2956 // differently depending on whether it is creating a shared library.
2957 MAPPING_INIT(".sdata2.", ".sdata"),
2958 MAPPING_INIT(".sbss2.", ".sbss"),
2959 MAPPING_INIT(".lrodata.", ".lrodata"),
2960 MAPPING_INIT(".ldata.", ".ldata"),
2961 MAPPING_INIT(".lbss.", ".lbss"),
2962 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
2963 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
2964 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
2965 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
2966 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
2967 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
2968 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
2969 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
2970 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
2971 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
2972 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
2973 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
2974 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
2975 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
2976 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
2977 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
2978 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
2979 MAPPING_INIT(".ARM.extab.", ".ARM.extab"),
2980 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
2981 MAPPING_INIT(".ARM.exidx.", ".ARM.exidx"),
2982 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
2984 #undef MAPPING_INIT
2986 const int Layout::section_name_mapping_count =
2987 (sizeof(Layout::section_name_mapping)
2988 / sizeof(Layout::section_name_mapping[0]));
2990 // Choose the output section name to use given an input section name.
2991 // Set *PLEN to the length of the name. *PLEN is initialized to the
2992 // length of NAME.
2994 const char*
2995 Layout::output_section_name(const char* name, size_t* plen)
2997 // gcc 4.3 generates the following sorts of section names when it
2998 // needs a section name specific to a function:
2999 // .text.FN
3000 // .rodata.FN
3001 // .sdata2.FN
3002 // .data.FN
3003 // .data.rel.FN
3004 // .data.rel.local.FN
3005 // .data.rel.ro.FN
3006 // .data.rel.ro.local.FN
3007 // .sdata.FN
3008 // .bss.FN
3009 // .sbss.FN
3010 // .tdata.FN
3011 // .tbss.FN
3013 // The GNU linker maps all of those to the part before the .FN,
3014 // except that .data.rel.local.FN is mapped to .data, and
3015 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
3016 // beginning with .data.rel.ro.local are grouped together.
3018 // For an anonymous namespace, the string FN can contain a '.'.
3020 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3021 // GNU linker maps to .rodata.
3023 // The .data.rel.ro sections are used with -z relro. The sections
3024 // are recognized by name. We use the same names that the GNU
3025 // linker does for these sections.
3027 // It is hard to handle this in a principled way, so we don't even
3028 // try. We use a table of mappings. If the input section name is
3029 // not found in the table, we simply use it as the output section
3030 // name.
3032 const Section_name_mapping* psnm = section_name_mapping;
3033 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
3035 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
3037 *plen = psnm->tolen;
3038 return psnm->to;
3042 return name;
3045 // Check if a comdat group or .gnu.linkonce section with the given
3046 // NAME is selected for the link. If there is already a section,
3047 // *KEPT_SECTION is set to point to the existing section and the
3048 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3049 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3050 // *KEPT_SECTION is set to the internal copy and the function returns
3051 // true.
3053 bool
3054 Layout::find_or_add_kept_section(const std::string& name,
3055 Relobj* object,
3056 unsigned int shndx,
3057 bool is_comdat,
3058 bool is_group_name,
3059 Kept_section** kept_section)
3061 // It's normal to see a couple of entries here, for the x86 thunk
3062 // sections. If we see more than a few, we're linking a C++
3063 // program, and we resize to get more space to minimize rehashing.
3064 if (this->signatures_.size() > 4
3065 && !this->resized_signatures_)
3067 reserve_unordered_map(&this->signatures_,
3068 this->number_of_input_files_ * 64);
3069 this->resized_signatures_ = true;
3072 Kept_section candidate;
3073 std::pair<Signatures::iterator, bool> ins =
3074 this->signatures_.insert(std::make_pair(name, candidate));
3076 if (kept_section != NULL)
3077 *kept_section = &ins.first->second;
3078 if (ins.second)
3080 // This is the first time we've seen this signature.
3081 ins.first->second.set_object(object);
3082 ins.first->second.set_shndx(shndx);
3083 if (is_comdat)
3084 ins.first->second.set_is_comdat();
3085 if (is_group_name)
3086 ins.first->second.set_is_group_name();
3087 return true;
3090 // We have already seen this signature.
3092 if (ins.first->second.is_group_name())
3094 // We've already seen a real section group with this signature.
3095 // If the kept group is from a plugin object, and we're in the
3096 // replacement phase, accept the new one as a replacement.
3097 if (ins.first->second.object() == NULL
3098 && parameters->options().plugins()->in_replacement_phase())
3100 ins.first->second.set_object(object);
3101 ins.first->second.set_shndx(shndx);
3102 return true;
3104 return false;
3106 else if (is_group_name)
3108 // This is a real section group, and we've already seen a
3109 // linkonce section with this signature. Record that we've seen
3110 // a section group, and don't include this section group.
3111 ins.first->second.set_is_group_name();
3112 return false;
3114 else
3116 // We've already seen a linkonce section and this is a linkonce
3117 // section. These don't block each other--this may be the same
3118 // symbol name with different section types.
3119 return true;
3123 // Store the allocated sections into the section list.
3125 void
3126 Layout::get_allocated_sections(Section_list* section_list) const
3128 for (Section_list::const_iterator p = this->section_list_.begin();
3129 p != this->section_list_.end();
3130 ++p)
3131 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
3132 section_list->push_back(*p);
3135 // Create an output segment.
3137 Output_segment*
3138 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3140 gold_assert(!parameters->options().relocatable());
3141 Output_segment* oseg = new Output_segment(type, flags);
3142 this->segment_list_.push_back(oseg);
3144 if (type == elfcpp::PT_TLS)
3145 this->tls_segment_ = oseg;
3146 else if (type == elfcpp::PT_GNU_RELRO)
3147 this->relro_segment_ = oseg;
3149 return oseg;
3152 // Write out the Output_sections. Most won't have anything to write,
3153 // since most of the data will come from input sections which are
3154 // handled elsewhere. But some Output_sections do have Output_data.
3156 void
3157 Layout::write_output_sections(Output_file* of) const
3159 for (Section_list::const_iterator p = this->section_list_.begin();
3160 p != this->section_list_.end();
3161 ++p)
3163 if (!(*p)->after_input_sections())
3164 (*p)->write(of);
3168 // Write out data not associated with a section or the symbol table.
3170 void
3171 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
3173 if (!parameters->options().strip_all())
3175 const Output_section* symtab_section = this->symtab_section_;
3176 for (Section_list::const_iterator p = this->section_list_.begin();
3177 p != this->section_list_.end();
3178 ++p)
3180 if ((*p)->needs_symtab_index())
3182 gold_assert(symtab_section != NULL);
3183 unsigned int index = (*p)->symtab_index();
3184 gold_assert(index > 0 && index != -1U);
3185 off_t off = (symtab_section->offset()
3186 + index * symtab_section->entsize());
3187 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3192 const Output_section* dynsym_section = this->dynsym_section_;
3193 for (Section_list::const_iterator p = this->section_list_.begin();
3194 p != this->section_list_.end();
3195 ++p)
3197 if ((*p)->needs_dynsym_index())
3199 gold_assert(dynsym_section != NULL);
3200 unsigned int index = (*p)->dynsym_index();
3201 gold_assert(index > 0 && index != -1U);
3202 off_t off = (dynsym_section->offset()
3203 + index * dynsym_section->entsize());
3204 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
3208 // Write out the Output_data which are not in an Output_section.
3209 for (Data_list::const_iterator p = this->special_output_list_.begin();
3210 p != this->special_output_list_.end();
3211 ++p)
3212 (*p)->write(of);
3215 // Write out the Output_sections which can only be written after the
3216 // input sections are complete.
3218 void
3219 Layout::write_sections_after_input_sections(Output_file* of)
3221 // Determine the final section offsets, and thus the final output
3222 // file size. Note we finalize the .shstrab last, to allow the
3223 // after_input_section sections to modify their section-names before
3224 // writing.
3225 if (this->any_postprocessing_sections_)
3227 off_t off = this->output_file_size_;
3228 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
3230 // Now that we've finalized the names, we can finalize the shstrab.
3231 off =
3232 this->set_section_offsets(off,
3233 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3235 if (off > this->output_file_size_)
3237 of->resize(off);
3238 this->output_file_size_ = off;
3242 for (Section_list::const_iterator p = this->section_list_.begin();
3243 p != this->section_list_.end();
3244 ++p)
3246 if ((*p)->after_input_sections())
3247 (*p)->write(of);
3250 this->section_headers_->write(of);
3253 // If the build ID requires computing a checksum, do so here, and
3254 // write it out. We compute a checksum over the entire file because
3255 // that is simplest.
3257 void
3258 Layout::write_build_id(Output_file* of) const
3260 if (this->build_id_note_ == NULL)
3261 return;
3263 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3265 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3266 this->build_id_note_->data_size());
3268 const char* style = parameters->options().build_id();
3269 if (strcmp(style, "sha1") == 0)
3271 sha1_ctx ctx;
3272 sha1_init_ctx(&ctx);
3273 sha1_process_bytes(iv, this->output_file_size_, &ctx);
3274 sha1_finish_ctx(&ctx, ov);
3276 else if (strcmp(style, "md5") == 0)
3278 md5_ctx ctx;
3279 md5_init_ctx(&ctx);
3280 md5_process_bytes(iv, this->output_file_size_, &ctx);
3281 md5_finish_ctx(&ctx, ov);
3283 else
3284 gold_unreachable();
3286 of->write_output_view(this->build_id_note_->offset(),
3287 this->build_id_note_->data_size(),
3288 ov);
3290 of->free_input_view(0, this->output_file_size_, iv);
3293 // Write out a binary file. This is called after the link is
3294 // complete. IN is the temporary output file we used to generate the
3295 // ELF code. We simply walk through the segments, read them from
3296 // their file offset in IN, and write them to their load address in
3297 // the output file. FIXME: with a bit more work, we could support
3298 // S-records and/or Intel hex format here.
3300 void
3301 Layout::write_binary(Output_file* in) const
3303 gold_assert(parameters->options().oformat_enum()
3304 == General_options::OBJECT_FORMAT_BINARY);
3306 // Get the size of the binary file.
3307 uint64_t max_load_address = 0;
3308 for (Segment_list::const_iterator p = this->segment_list_.begin();
3309 p != this->segment_list_.end();
3310 ++p)
3312 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3314 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3315 if (max_paddr > max_load_address)
3316 max_load_address = max_paddr;
3320 Output_file out(parameters->options().output_file_name());
3321 out.open(max_load_address);
3323 for (Segment_list::const_iterator p = this->segment_list_.begin();
3324 p != this->segment_list_.end();
3325 ++p)
3327 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3329 const unsigned char* vin = in->get_input_view((*p)->offset(),
3330 (*p)->filesz());
3331 unsigned char* vout = out.get_output_view((*p)->paddr(),
3332 (*p)->filesz());
3333 memcpy(vout, vin, (*p)->filesz());
3334 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3335 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3339 out.close();
3342 // Print the output sections to the map file.
3344 void
3345 Layout::print_to_mapfile(Mapfile* mapfile) const
3347 for (Segment_list::const_iterator p = this->segment_list_.begin();
3348 p != this->segment_list_.end();
3349 ++p)
3350 (*p)->print_sections_to_mapfile(mapfile);
3353 // Print statistical information to stderr. This is used for --stats.
3355 void
3356 Layout::print_stats() const
3358 this->namepool_.print_stats("section name pool");
3359 this->sympool_.print_stats("output symbol name pool");
3360 this->dynpool_.print_stats("dynamic name pool");
3362 for (Section_list::const_iterator p = this->section_list_.begin();
3363 p != this->section_list_.end();
3364 ++p)
3365 (*p)->print_merge_stats();
3368 // Write_sections_task methods.
3370 // We can always run this task.
3372 Task_token*
3373 Write_sections_task::is_runnable()
3375 return NULL;
3378 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3379 // when finished.
3381 void
3382 Write_sections_task::locks(Task_locker* tl)
3384 tl->add(this, this->output_sections_blocker_);
3385 tl->add(this, this->final_blocker_);
3388 // Run the task--write out the data.
3390 void
3391 Write_sections_task::run(Workqueue*)
3393 this->layout_->write_output_sections(this->of_);
3396 // Write_data_task methods.
3398 // We can always run this task.
3400 Task_token*
3401 Write_data_task::is_runnable()
3403 return NULL;
3406 // We need to unlock FINAL_BLOCKER when finished.
3408 void
3409 Write_data_task::locks(Task_locker* tl)
3411 tl->add(this, this->final_blocker_);
3414 // Run the task--write out the data.
3416 void
3417 Write_data_task::run(Workqueue*)
3419 this->layout_->write_data(this->symtab_, this->of_);
3422 // Write_symbols_task methods.
3424 // We can always run this task.
3426 Task_token*
3427 Write_symbols_task::is_runnable()
3429 return NULL;
3432 // We need to unlock FINAL_BLOCKER when finished.
3434 void
3435 Write_symbols_task::locks(Task_locker* tl)
3437 tl->add(this, this->final_blocker_);
3440 // Run the task--write out the symbols.
3442 void
3443 Write_symbols_task::run(Workqueue*)
3445 this->symtab_->write_globals(this->sympool_, this->dynpool_,
3446 this->layout_->symtab_xindex(),
3447 this->layout_->dynsym_xindex(), this->of_);
3450 // Write_after_input_sections_task methods.
3452 // We can only run this task after the input sections have completed.
3454 Task_token*
3455 Write_after_input_sections_task::is_runnable()
3457 if (this->input_sections_blocker_->is_blocked())
3458 return this->input_sections_blocker_;
3459 return NULL;
3462 // We need to unlock FINAL_BLOCKER when finished.
3464 void
3465 Write_after_input_sections_task::locks(Task_locker* tl)
3467 tl->add(this, this->final_blocker_);
3470 // Run the task.
3472 void
3473 Write_after_input_sections_task::run(Workqueue*)
3475 this->layout_->write_sections_after_input_sections(this->of_);
3478 // Close_task_runner methods.
3480 // Run the task--close the file.
3482 void
3483 Close_task_runner::run(Workqueue*, const Task*)
3485 // If we need to compute a checksum for the BUILD if, we do so here.
3486 this->layout_->write_build_id(this->of_);
3488 // If we've been asked to create a binary file, we do so here.
3489 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3490 this->layout_->write_binary(this->of_);
3492 this->of_->close();
3495 // Instantiate the templates we need. We could use the configure
3496 // script to restrict this to only the ones for implemented targets.
3498 #ifdef HAVE_TARGET_32_LITTLE
3499 template
3500 Output_section*
3501 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3502 const char* name,
3503 const elfcpp::Shdr<32, false>& shdr,
3504 unsigned int, unsigned int, off_t*);
3505 #endif
3507 #ifdef HAVE_TARGET_32_BIG
3508 template
3509 Output_section*
3510 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3511 const char* name,
3512 const elfcpp::Shdr<32, true>& shdr,
3513 unsigned int, unsigned int, off_t*);
3514 #endif
3516 #ifdef HAVE_TARGET_64_LITTLE
3517 template
3518 Output_section*
3519 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
3520 const char* name,
3521 const elfcpp::Shdr<64, false>& shdr,
3522 unsigned int, unsigned int, off_t*);
3523 #endif
3525 #ifdef HAVE_TARGET_64_BIG
3526 template
3527 Output_section*
3528 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
3529 const char* name,
3530 const elfcpp::Shdr<64, true>& shdr,
3531 unsigned int, unsigned int, off_t*);
3532 #endif
3534 #ifdef HAVE_TARGET_32_LITTLE
3535 template
3536 Output_section*
3537 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
3538 unsigned int reloc_shndx,
3539 const elfcpp::Shdr<32, false>& shdr,
3540 Output_section* data_section,
3541 Relocatable_relocs* rr);
3542 #endif
3544 #ifdef HAVE_TARGET_32_BIG
3545 template
3546 Output_section*
3547 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
3548 unsigned int reloc_shndx,
3549 const elfcpp::Shdr<32, true>& shdr,
3550 Output_section* data_section,
3551 Relocatable_relocs* rr);
3552 #endif
3554 #ifdef HAVE_TARGET_64_LITTLE
3555 template
3556 Output_section*
3557 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
3558 unsigned int reloc_shndx,
3559 const elfcpp::Shdr<64, false>& shdr,
3560 Output_section* data_section,
3561 Relocatable_relocs* rr);
3562 #endif
3564 #ifdef HAVE_TARGET_64_BIG
3565 template
3566 Output_section*
3567 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
3568 unsigned int reloc_shndx,
3569 const elfcpp::Shdr<64, true>& shdr,
3570 Output_section* data_section,
3571 Relocatable_relocs* rr);
3572 #endif
3574 #ifdef HAVE_TARGET_32_LITTLE
3575 template
3576 void
3577 Layout::layout_group<32, false>(Symbol_table* symtab,
3578 Sized_relobj<32, false>* object,
3579 unsigned int,
3580 const char* group_section_name,
3581 const char* signature,
3582 const elfcpp::Shdr<32, false>& shdr,
3583 elfcpp::Elf_Word flags,
3584 std::vector<unsigned int>* shndxes);
3585 #endif
3587 #ifdef HAVE_TARGET_32_BIG
3588 template
3589 void
3590 Layout::layout_group<32, true>(Symbol_table* symtab,
3591 Sized_relobj<32, true>* object,
3592 unsigned int,
3593 const char* group_section_name,
3594 const char* signature,
3595 const elfcpp::Shdr<32, true>& shdr,
3596 elfcpp::Elf_Word flags,
3597 std::vector<unsigned int>* shndxes);
3598 #endif
3600 #ifdef HAVE_TARGET_64_LITTLE
3601 template
3602 void
3603 Layout::layout_group<64, false>(Symbol_table* symtab,
3604 Sized_relobj<64, false>* object,
3605 unsigned int,
3606 const char* group_section_name,
3607 const char* signature,
3608 const elfcpp::Shdr<64, false>& shdr,
3609 elfcpp::Elf_Word flags,
3610 std::vector<unsigned int>* shndxes);
3611 #endif
3613 #ifdef HAVE_TARGET_64_BIG
3614 template
3615 void
3616 Layout::layout_group<64, true>(Symbol_table* symtab,
3617 Sized_relobj<64, true>* object,
3618 unsigned int,
3619 const char* group_section_name,
3620 const char* signature,
3621 const elfcpp::Shdr<64, true>& shdr,
3622 elfcpp::Elf_Word flags,
3623 std::vector<unsigned int>* shndxes);
3624 #endif
3626 #ifdef HAVE_TARGET_32_LITTLE
3627 template
3628 Output_section*
3629 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
3630 const unsigned char* symbols,
3631 off_t symbols_size,
3632 const unsigned char* symbol_names,
3633 off_t symbol_names_size,
3634 unsigned int shndx,
3635 const elfcpp::Shdr<32, false>& shdr,
3636 unsigned int reloc_shndx,
3637 unsigned int reloc_type,
3638 off_t* off);
3639 #endif
3641 #ifdef HAVE_TARGET_32_BIG
3642 template
3643 Output_section*
3644 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
3645 const unsigned char* symbols,
3646 off_t symbols_size,
3647 const unsigned char* symbol_names,
3648 off_t symbol_names_size,
3649 unsigned int shndx,
3650 const elfcpp::Shdr<32, true>& shdr,
3651 unsigned int reloc_shndx,
3652 unsigned int reloc_type,
3653 off_t* off);
3654 #endif
3656 #ifdef HAVE_TARGET_64_LITTLE
3657 template
3658 Output_section*
3659 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
3660 const unsigned char* symbols,
3661 off_t symbols_size,
3662 const unsigned char* symbol_names,
3663 off_t symbol_names_size,
3664 unsigned int shndx,
3665 const elfcpp::Shdr<64, false>& shdr,
3666 unsigned int reloc_shndx,
3667 unsigned int reloc_type,
3668 off_t* off);
3669 #endif
3671 #ifdef HAVE_TARGET_64_BIG
3672 template
3673 Output_section*
3674 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
3675 const unsigned char* symbols,
3676 off_t symbols_size,
3677 const unsigned char* symbol_names,
3678 off_t symbol_names_size,
3679 unsigned int shndx,
3680 const elfcpp::Shdr<64, true>& shdr,
3681 unsigned int reloc_shndx,
3682 unsigned int reloc_type,
3683 off_t* off);
3684 #endif
3686 } // End namespace gold.