1 // output.cc -- manage the output file for gold
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
33 #include "libiberty.h"
35 #include "parameters.h"
40 #include "descriptors.h"
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
54 posix_fallocate(int o
, off_t offset
, off_t len
)
56 return ftruncate(o
, offset
+ len
);
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
63 // Output_data variables.
65 bool Output_data::allocated_sizes_are_fixed
;
67 // Output_data methods.
69 Output_data::~Output_data()
73 // Return the default alignment for the target size.
76 Output_data::default_alignment()
78 return Output_data::default_alignment_for_size(
79 parameters
->target().get_size());
82 // Return the default alignment for a size--32 or 64.
85 Output_data::default_alignment_for_size(int size
)
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
98 Output_section_headers::Output_section_headers(
100 const Layout::Segment_list
* segment_list
,
101 const Layout::Section_list
* section_list
,
102 const Layout::Section_list
* unattached_section_list
,
103 const Stringpool
* secnamepool
,
104 const Output_section
* shstrtab_section
)
106 segment_list_(segment_list
),
107 section_list_(section_list
),
108 unattached_section_list_(unattached_section_list
),
109 secnamepool_(secnamepool
),
110 shstrtab_section_(shstrtab_section
)
112 // Count all the sections. Start with 1 for the null section.
114 if (!parameters
->options().relocatable())
116 for (Layout::Segment_list::const_iterator p
= segment_list
->begin();
117 p
!= segment_list
->end();
119 if ((*p
)->type() == elfcpp::PT_LOAD
)
120 count
+= (*p
)->output_section_count();
124 for (Layout::Section_list::const_iterator p
= section_list
->begin();
125 p
!= section_list
->end();
127 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
130 count
+= unattached_section_list
->size();
132 const int size
= parameters
->target().get_size();
135 shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
137 shdr_size
= elfcpp::Elf_sizes
<64>::shdr_size
;
141 this->set_data_size(count
* shdr_size
);
144 // Write out the section headers.
147 Output_section_headers::do_write(Output_file
* of
)
149 switch (parameters
->size_and_endianness())
151 #ifdef HAVE_TARGET_32_LITTLE
152 case Parameters::TARGET_32_LITTLE
:
153 this->do_sized_write
<32, false>(of
);
156 #ifdef HAVE_TARGET_32_BIG
157 case Parameters::TARGET_32_BIG
:
158 this->do_sized_write
<32, true>(of
);
161 #ifdef HAVE_TARGET_64_LITTLE
162 case Parameters::TARGET_64_LITTLE
:
163 this->do_sized_write
<64, false>(of
);
166 #ifdef HAVE_TARGET_64_BIG
167 case Parameters::TARGET_64_BIG
:
168 this->do_sized_write
<64, true>(of
);
176 template<int size
, bool big_endian
>
178 Output_section_headers::do_sized_write(Output_file
* of
)
180 off_t all_shdrs_size
= this->data_size();
181 unsigned char* view
= of
->get_output_view(this->offset(), all_shdrs_size
);
183 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
184 unsigned char* v
= view
;
187 typename
elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
188 oshdr
.put_sh_name(0);
189 oshdr
.put_sh_type(elfcpp::SHT_NULL
);
190 oshdr
.put_sh_flags(0);
191 oshdr
.put_sh_addr(0);
192 oshdr
.put_sh_offset(0);
194 size_t section_count
= (this->data_size()
195 / elfcpp::Elf_sizes
<size
>::shdr_size
);
196 if (section_count
< elfcpp::SHN_LORESERVE
)
197 oshdr
.put_sh_size(0);
199 oshdr
.put_sh_size(section_count
);
201 unsigned int shstrndx
= this->shstrtab_section_
->out_shndx();
202 if (shstrndx
< elfcpp::SHN_LORESERVE
)
203 oshdr
.put_sh_link(0);
205 oshdr
.put_sh_link(shstrndx
);
207 oshdr
.put_sh_info(0);
208 oshdr
.put_sh_addralign(0);
209 oshdr
.put_sh_entsize(0);
214 unsigned int shndx
= 1;
215 if (!parameters
->options().relocatable())
217 for (Layout::Segment_list::const_iterator p
=
218 this->segment_list_
->begin();
219 p
!= this->segment_list_
->end();
221 v
= (*p
)->write_section_headers
<size
, big_endian
>(this->layout_
,
228 for (Layout::Section_list::const_iterator p
=
229 this->section_list_
->begin();
230 p
!= this->section_list_
->end();
233 // We do unallocated sections below, except that group
234 // sections have to come first.
235 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
236 && (*p
)->type() != elfcpp::SHT_GROUP
)
238 gold_assert(shndx
== (*p
)->out_shndx());
239 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
240 (*p
)->write_header(this->layout_
, this->secnamepool_
, &oshdr
);
246 for (Layout::Section_list::const_iterator p
=
247 this->unattached_section_list_
->begin();
248 p
!= this->unattached_section_list_
->end();
251 // For a relocatable link, we did unallocated group sections
252 // above, since they have to come first.
253 if ((*p
)->type() == elfcpp::SHT_GROUP
254 && parameters
->options().relocatable())
256 gold_assert(shndx
== (*p
)->out_shndx());
257 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
258 (*p
)->write_header(this->layout_
, this->secnamepool_
, &oshdr
);
263 of
->write_output_view(this->offset(), all_shdrs_size
, view
);
266 // Output_segment_header methods.
268 Output_segment_headers::Output_segment_headers(
269 const Layout::Segment_list
& segment_list
)
270 : segment_list_(segment_list
)
272 const int size
= parameters
->target().get_size();
275 phdr_size
= elfcpp::Elf_sizes
<32>::phdr_size
;
277 phdr_size
= elfcpp::Elf_sizes
<64>::phdr_size
;
281 this->set_data_size(segment_list
.size() * phdr_size
);
285 Output_segment_headers::do_write(Output_file
* of
)
287 switch (parameters
->size_and_endianness())
289 #ifdef HAVE_TARGET_32_LITTLE
290 case Parameters::TARGET_32_LITTLE
:
291 this->do_sized_write
<32, false>(of
);
294 #ifdef HAVE_TARGET_32_BIG
295 case Parameters::TARGET_32_BIG
:
296 this->do_sized_write
<32, true>(of
);
299 #ifdef HAVE_TARGET_64_LITTLE
300 case Parameters::TARGET_64_LITTLE
:
301 this->do_sized_write
<64, false>(of
);
304 #ifdef HAVE_TARGET_64_BIG
305 case Parameters::TARGET_64_BIG
:
306 this->do_sized_write
<64, true>(of
);
314 template<int size
, bool big_endian
>
316 Output_segment_headers::do_sized_write(Output_file
* of
)
318 const int phdr_size
= elfcpp::Elf_sizes
<size
>::phdr_size
;
319 off_t all_phdrs_size
= this->segment_list_
.size() * phdr_size
;
320 gold_assert(all_phdrs_size
== this->data_size());
321 unsigned char* view
= of
->get_output_view(this->offset(),
323 unsigned char* v
= view
;
324 for (Layout::Segment_list::const_iterator p
= this->segment_list_
.begin();
325 p
!= this->segment_list_
.end();
328 elfcpp::Phdr_write
<size
, big_endian
> ophdr(v
);
329 (*p
)->write_header(&ophdr
);
333 gold_assert(v
- view
== all_phdrs_size
);
335 of
->write_output_view(this->offset(), all_phdrs_size
, view
);
338 // Output_file_header methods.
340 Output_file_header::Output_file_header(const Target
* target
,
341 const Symbol_table
* symtab
,
342 const Output_segment_headers
* osh
,
346 segment_header_(osh
),
347 section_header_(NULL
),
351 const int size
= parameters
->target().get_size();
354 ehdr_size
= elfcpp::Elf_sizes
<32>::ehdr_size
;
356 ehdr_size
= elfcpp::Elf_sizes
<64>::ehdr_size
;
360 this->set_data_size(ehdr_size
);
363 // Set the section table information for a file header.
366 Output_file_header::set_section_info(const Output_section_headers
* shdrs
,
367 const Output_section
* shstrtab
)
369 this->section_header_
= shdrs
;
370 this->shstrtab_
= shstrtab
;
373 // Write out the file header.
376 Output_file_header::do_write(Output_file
* of
)
378 gold_assert(this->offset() == 0);
380 switch (parameters
->size_and_endianness())
382 #ifdef HAVE_TARGET_32_LITTLE
383 case Parameters::TARGET_32_LITTLE
:
384 this->do_sized_write
<32, false>(of
);
387 #ifdef HAVE_TARGET_32_BIG
388 case Parameters::TARGET_32_BIG
:
389 this->do_sized_write
<32, true>(of
);
392 #ifdef HAVE_TARGET_64_LITTLE
393 case Parameters::TARGET_64_LITTLE
:
394 this->do_sized_write
<64, false>(of
);
397 #ifdef HAVE_TARGET_64_BIG
398 case Parameters::TARGET_64_BIG
:
399 this->do_sized_write
<64, true>(of
);
407 // Write out the file header with appropriate size and endianess.
409 template<int size
, bool big_endian
>
411 Output_file_header::do_sized_write(Output_file
* of
)
413 gold_assert(this->offset() == 0);
415 int ehdr_size
= elfcpp::Elf_sizes
<size
>::ehdr_size
;
416 unsigned char* view
= of
->get_output_view(0, ehdr_size
);
417 elfcpp::Ehdr_write
<size
, big_endian
> oehdr(view
);
419 unsigned char e_ident
[elfcpp::EI_NIDENT
];
420 memset(e_ident
, 0, elfcpp::EI_NIDENT
);
421 e_ident
[elfcpp::EI_MAG0
] = elfcpp::ELFMAG0
;
422 e_ident
[elfcpp::EI_MAG1
] = elfcpp::ELFMAG1
;
423 e_ident
[elfcpp::EI_MAG2
] = elfcpp::ELFMAG2
;
424 e_ident
[elfcpp::EI_MAG3
] = elfcpp::ELFMAG3
;
426 e_ident
[elfcpp::EI_CLASS
] = elfcpp::ELFCLASS32
;
428 e_ident
[elfcpp::EI_CLASS
] = elfcpp::ELFCLASS64
;
431 e_ident
[elfcpp::EI_DATA
] = (big_endian
432 ? elfcpp::ELFDATA2MSB
433 : elfcpp::ELFDATA2LSB
);
434 e_ident
[elfcpp::EI_VERSION
] = elfcpp::EV_CURRENT
;
435 oehdr
.put_e_ident(e_ident
);
438 if (parameters
->options().relocatable())
439 e_type
= elfcpp::ET_REL
;
440 else if (parameters
->options().shared())
441 e_type
= elfcpp::ET_DYN
;
443 e_type
= elfcpp::ET_EXEC
;
444 oehdr
.put_e_type(e_type
);
446 oehdr
.put_e_machine(this->target_
->machine_code());
447 oehdr
.put_e_version(elfcpp::EV_CURRENT
);
449 oehdr
.put_e_entry(this->entry
<size
>());
451 if (this->segment_header_
== NULL
)
452 oehdr
.put_e_phoff(0);
454 oehdr
.put_e_phoff(this->segment_header_
->offset());
456 oehdr
.put_e_shoff(this->section_header_
->offset());
458 // FIXME: The target needs to set the flags.
459 oehdr
.put_e_flags(0);
461 oehdr
.put_e_ehsize(elfcpp::Elf_sizes
<size
>::ehdr_size
);
463 if (this->segment_header_
== NULL
)
465 oehdr
.put_e_phentsize(0);
466 oehdr
.put_e_phnum(0);
470 oehdr
.put_e_phentsize(elfcpp::Elf_sizes
<size
>::phdr_size
);
471 oehdr
.put_e_phnum(this->segment_header_
->data_size()
472 / elfcpp::Elf_sizes
<size
>::phdr_size
);
475 oehdr
.put_e_shentsize(elfcpp::Elf_sizes
<size
>::shdr_size
);
476 size_t section_count
= (this->section_header_
->data_size()
477 / elfcpp::Elf_sizes
<size
>::shdr_size
);
479 if (section_count
< elfcpp::SHN_LORESERVE
)
480 oehdr
.put_e_shnum(this->section_header_
->data_size()
481 / elfcpp::Elf_sizes
<size
>::shdr_size
);
483 oehdr
.put_e_shnum(0);
485 unsigned int shstrndx
= this->shstrtab_
->out_shndx();
486 if (shstrndx
< elfcpp::SHN_LORESERVE
)
487 oehdr
.put_e_shstrndx(this->shstrtab_
->out_shndx());
489 oehdr
.put_e_shstrndx(elfcpp::SHN_XINDEX
);
491 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
492 // the e_ident field.
493 parameters
->target().adjust_elf_header(view
, ehdr_size
);
495 of
->write_output_view(0, ehdr_size
, view
);
498 // Return the value to use for the entry address. THIS->ENTRY_ is the
499 // symbol specified on the command line, if any.
502 typename
elfcpp::Elf_types
<size
>::Elf_Addr
503 Output_file_header::entry()
505 const bool should_issue_warning
= (this->entry_
!= NULL
506 && !parameters
->options().relocatable()
507 && !parameters
->options().shared());
509 // FIXME: Need to support target specific entry symbol.
510 const char* entry
= this->entry_
;
514 Symbol
* sym
= this->symtab_
->lookup(entry
);
516 typename Sized_symbol
<size
>::Value_type v
;
519 Sized_symbol
<size
>* ssym
;
520 ssym
= this->symtab_
->get_sized_symbol
<size
>(sym
);
521 if (!ssym
->is_defined() && should_issue_warning
)
522 gold_warning("entry symbol '%s' exists but is not defined", entry
);
527 // We couldn't find the entry symbol. See if we can parse it as
528 // a number. This supports, e.g., -e 0x1000.
530 v
= strtoull(entry
, &endptr
, 0);
533 if (should_issue_warning
)
534 gold_warning("cannot find entry symbol '%s'", entry
);
542 // Output_data_const methods.
545 Output_data_const::do_write(Output_file
* of
)
547 of
->write(this->offset(), this->data_
.data(), this->data_
.size());
550 // Output_data_const_buffer methods.
553 Output_data_const_buffer::do_write(Output_file
* of
)
555 of
->write(this->offset(), this->p_
, this->data_size());
558 // Output_section_data methods.
560 // Record the output section, and set the entry size and such.
563 Output_section_data::set_output_section(Output_section
* os
)
565 gold_assert(this->output_section_
== NULL
);
566 this->output_section_
= os
;
567 this->do_adjust_output_section(os
);
570 // Return the section index of the output section.
573 Output_section_data::do_out_shndx() const
575 gold_assert(this->output_section_
!= NULL
);
576 return this->output_section_
->out_shndx();
579 // Set the alignment, which means we may need to update the alignment
580 // of the output section.
583 Output_section_data::set_addralign(uint64_t addralign
)
585 this->addralign_
= addralign
;
586 if (this->output_section_
!= NULL
587 && this->output_section_
->addralign() < addralign
)
588 this->output_section_
->set_addralign(addralign
);
591 // Output_data_strtab methods.
593 // Set the final data size.
596 Output_data_strtab::set_final_data_size()
598 this->strtab_
->set_string_offsets();
599 this->set_data_size(this->strtab_
->get_strtab_size());
602 // Write out a string table.
605 Output_data_strtab::do_write(Output_file
* of
)
607 this->strtab_
->write(of
, this->offset());
610 // Output_reloc methods.
612 // A reloc against a global symbol.
614 template<bool dynamic
, int size
, bool big_endian
>
615 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
621 : address_(address
), local_sym_index_(GSYM_CODE
), type_(type
),
622 is_relative_(is_relative
), is_section_symbol_(false), shndx_(INVALID_CODE
)
624 // this->type_ is a bitfield; make sure TYPE fits.
625 gold_assert(this->type_
== type
);
626 this->u1_
.gsym
= gsym
;
629 this->set_needs_dynsym_index();
632 template<bool dynamic
, int size
, bool big_endian
>
633 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
636 Sized_relobj
<size
, big_endian
>* relobj
,
640 : address_(address
), local_sym_index_(GSYM_CODE
), type_(type
),
641 is_relative_(is_relative
), is_section_symbol_(false), shndx_(shndx
)
643 gold_assert(shndx
!= INVALID_CODE
);
644 // this->type_ is a bitfield; make sure TYPE fits.
645 gold_assert(this->type_
== type
);
646 this->u1_
.gsym
= gsym
;
647 this->u2_
.relobj
= relobj
;
649 this->set_needs_dynsym_index();
652 // A reloc against a local symbol.
654 template<bool dynamic
, int size
, bool big_endian
>
655 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
656 Sized_relobj
<size
, big_endian
>* relobj
,
657 unsigned int local_sym_index
,
662 bool is_section_symbol
)
663 : address_(address
), local_sym_index_(local_sym_index
), type_(type
),
664 is_relative_(is_relative
), is_section_symbol_(is_section_symbol
),
667 gold_assert(local_sym_index
!= GSYM_CODE
668 && local_sym_index
!= INVALID_CODE
);
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_
== type
);
671 this->u1_
.relobj
= relobj
;
674 this->set_needs_dynsym_index();
677 template<bool dynamic
, int size
, bool big_endian
>
678 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
679 Sized_relobj
<size
, big_endian
>* relobj
,
680 unsigned int local_sym_index
,
685 bool is_section_symbol
)
686 : address_(address
), local_sym_index_(local_sym_index
), type_(type
),
687 is_relative_(is_relative
), is_section_symbol_(is_section_symbol
),
690 gold_assert(local_sym_index
!= GSYM_CODE
691 && local_sym_index
!= INVALID_CODE
);
692 gold_assert(shndx
!= INVALID_CODE
);
693 // this->type_ is a bitfield; make sure TYPE fits.
694 gold_assert(this->type_
== type
);
695 this->u1_
.relobj
= relobj
;
696 this->u2_
.relobj
= relobj
;
698 this->set_needs_dynsym_index();
701 // A reloc against the STT_SECTION symbol of an output section.
703 template<bool dynamic
, int size
, bool big_endian
>
704 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
709 : address_(address
), local_sym_index_(SECTION_CODE
), type_(type
),
710 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE
)
712 // this->type_ is a bitfield; make sure TYPE fits.
713 gold_assert(this->type_
== type
);
717 this->set_needs_dynsym_index();
719 os
->set_needs_symtab_index();
722 template<bool dynamic
, int size
, bool big_endian
>
723 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
726 Sized_relobj
<size
, big_endian
>* relobj
,
729 : address_(address
), local_sym_index_(SECTION_CODE
), type_(type
),
730 is_relative_(false), is_section_symbol_(true), shndx_(shndx
)
732 gold_assert(shndx
!= INVALID_CODE
);
733 // this->type_ is a bitfield; make sure TYPE fits.
734 gold_assert(this->type_
== type
);
736 this->u2_
.relobj
= relobj
;
738 this->set_needs_dynsym_index();
740 os
->set_needs_symtab_index();
743 // Record that we need a dynamic symbol index for this relocation.
745 template<bool dynamic
, int size
, bool big_endian
>
747 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
748 set_needs_dynsym_index()
750 if (this->is_relative_
)
752 switch (this->local_sym_index_
)
758 this->u1_
.gsym
->set_needs_dynsym_entry();
762 this->u1_
.os
->set_needs_dynsym_index();
770 const unsigned int lsi
= this->local_sym_index_
;
771 if (!this->is_section_symbol_
)
772 this->u1_
.relobj
->set_needs_output_dynsym_entry(lsi
);
774 this->u1_
.relobj
->output_section(lsi
)->set_needs_dynsym_index();
780 // Get the symbol index of a relocation.
782 template<bool dynamic
, int size
, bool big_endian
>
784 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::get_symbol_index()
788 switch (this->local_sym_index_
)
794 if (this->u1_
.gsym
== NULL
)
797 index
= this->u1_
.gsym
->dynsym_index();
799 index
= this->u1_
.gsym
->symtab_index();
804 index
= this->u1_
.os
->dynsym_index();
806 index
= this->u1_
.os
->symtab_index();
810 // Relocations without symbols use a symbol index of 0.
816 const unsigned int lsi
= this->local_sym_index_
;
817 if (!this->is_section_symbol_
)
820 index
= this->u1_
.relobj
->dynsym_index(lsi
);
822 index
= this->u1_
.relobj
->symtab_index(lsi
);
826 Output_section
* os
= this->u1_
.relobj
->output_section(lsi
);
827 gold_assert(os
!= NULL
);
829 index
= os
->dynsym_index();
831 index
= os
->symtab_index();
836 gold_assert(index
!= -1U);
840 // For a local section symbol, get the address of the offset ADDEND
841 // within the input section.
843 template<bool dynamic
, int size
, bool big_endian
>
844 typename
elfcpp::Elf_types
<size
>::Elf_Addr
845 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
846 local_section_offset(Addend addend
) const
848 gold_assert(this->local_sym_index_
!= GSYM_CODE
849 && this->local_sym_index_
!= SECTION_CODE
850 && this->local_sym_index_
!= INVALID_CODE
851 && this->is_section_symbol_
);
852 const unsigned int lsi
= this->local_sym_index_
;
853 Output_section
* os
= this->u1_
.relobj
->output_section(lsi
);
854 gold_assert(os
!= NULL
);
855 Address offset
= this->u1_
.relobj
->get_output_section_offset(lsi
);
856 if (offset
!= invalid_address
)
857 return offset
+ addend
;
858 // This is a merge section.
859 offset
= os
->output_address(this->u1_
.relobj
, lsi
, addend
);
860 gold_assert(offset
!= invalid_address
);
864 // Get the output address of a relocation.
866 template<bool dynamic
, int size
, bool big_endian
>
867 typename
elfcpp::Elf_types
<size
>::Elf_Addr
868 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::get_address() const
870 Address address
= this->address_
;
871 if (this->shndx_
!= INVALID_CODE
)
873 Output_section
* os
= this->u2_
.relobj
->output_section(this->shndx_
);
874 gold_assert(os
!= NULL
);
875 Address off
= this->u2_
.relobj
->get_output_section_offset(this->shndx_
);
876 if (off
!= invalid_address
)
877 address
+= os
->address() + off
;
880 address
= os
->output_address(this->u2_
.relobj
, this->shndx_
,
882 gold_assert(address
!= invalid_address
);
885 else if (this->u2_
.od
!= NULL
)
886 address
+= this->u2_
.od
->address();
890 // Write out the offset and info fields of a Rel or Rela relocation
893 template<bool dynamic
, int size
, bool big_endian
>
894 template<typename Write_rel
>
896 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::write_rel(
899 wr
->put_r_offset(this->get_address());
900 unsigned int sym_index
= this->is_relative_
? 0 : this->get_symbol_index();
901 wr
->put_r_info(elfcpp::elf_r_info
<size
>(sym_index
, this->type_
));
904 // Write out a Rel relocation.
906 template<bool dynamic
, int size
, bool big_endian
>
908 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::write(
909 unsigned char* pov
) const
911 elfcpp::Rel_write
<size
, big_endian
> orel(pov
);
912 this->write_rel(&orel
);
915 // Get the value of the symbol referred to by a Rel relocation.
917 template<bool dynamic
, int size
, bool big_endian
>
918 typename
elfcpp::Elf_types
<size
>::Elf_Addr
919 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::symbol_value(
922 if (this->local_sym_index_
== GSYM_CODE
)
924 const Sized_symbol
<size
>* sym
;
925 sym
= static_cast<const Sized_symbol
<size
>*>(this->u1_
.gsym
);
926 return sym
->value() + addend
;
928 gold_assert(this->local_sym_index_
!= SECTION_CODE
929 && this->local_sym_index_
!= INVALID_CODE
930 && !this->is_section_symbol_
);
931 const unsigned int lsi
= this->local_sym_index_
;
932 const Symbol_value
<size
>* symval
= this->u1_
.relobj
->local_symbol(lsi
);
933 return symval
->value(this->u1_
.relobj
, addend
);
936 // Reloc comparison. This function sorts the dynamic relocs for the
937 // benefit of the dynamic linker. First we sort all relative relocs
938 // to the front. Among relative relocs, we sort by output address.
939 // Among non-relative relocs, we sort by symbol index, then by output
942 template<bool dynamic
, int size
, bool big_endian
>
944 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
945 compare(const Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>& r2
)
948 if (this->is_relative_
)
950 if (!r2
.is_relative_
)
952 // Otherwise sort by reloc address below.
954 else if (r2
.is_relative_
)
958 unsigned int sym1
= this->get_symbol_index();
959 unsigned int sym2
= r2
.get_symbol_index();
962 else if (sym1
> sym2
)
964 // Otherwise sort by reloc address.
967 section_offset_type addr1
= this->get_address();
968 section_offset_type addr2
= r2
.get_address();
971 else if (addr1
> addr2
)
974 // Final tie breaker, in order to generate the same output on any
976 unsigned int type1
= this->type_
;
977 unsigned int type2
= r2
.type_
;
980 else if (type1
> type2
)
983 // These relocs appear to be exactly the same.
987 // Write out a Rela relocation.
989 template<bool dynamic
, int size
, bool big_endian
>
991 Output_reloc
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>::write(
992 unsigned char* pov
) const
994 elfcpp::Rela_write
<size
, big_endian
> orel(pov
);
995 this->rel_
.write_rel(&orel
);
996 Addend addend
= this->addend_
;
997 if (this->rel_
.is_relative())
998 addend
= this->rel_
.symbol_value(addend
);
999 else if (this->rel_
.is_local_section_symbol())
1000 addend
= this->rel_
.local_section_offset(addend
);
1001 orel
.put_r_addend(addend
);
1004 // Output_data_reloc_base methods.
1006 // Adjust the output section.
1008 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1010 Output_data_reloc_base
<sh_type
, dynamic
, size
, big_endian
>
1011 ::do_adjust_output_section(Output_section
* os
)
1013 if (sh_type
== elfcpp::SHT_REL
)
1014 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
1015 else if (sh_type
== elfcpp::SHT_RELA
)
1016 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
1020 os
->set_should_link_to_dynsym();
1022 os
->set_should_link_to_symtab();
1025 // Write out relocation data.
1027 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1029 Output_data_reloc_base
<sh_type
, dynamic
, size
, big_endian
>::do_write(
1032 const off_t off
= this->offset();
1033 const off_t oview_size
= this->data_size();
1034 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1036 if (this->sort_relocs_
)
1038 gold_assert(dynamic
);
1039 std::sort(this->relocs_
.begin(), this->relocs_
.end(),
1040 Sort_relocs_comparison());
1043 unsigned char* pov
= oview
;
1044 for (typename
Relocs::const_iterator p
= this->relocs_
.begin();
1045 p
!= this->relocs_
.end();
1052 gold_assert(pov
- oview
== oview_size
);
1054 of
->write_output_view(off
, oview_size
, oview
);
1056 // We no longer need the relocation entries.
1057 this->relocs_
.clear();
1060 // Class Output_relocatable_relocs.
1062 template<int sh_type
, int size
, bool big_endian
>
1064 Output_relocatable_relocs
<sh_type
, size
, big_endian
>::set_final_data_size()
1066 this->set_data_size(this->rr_
->output_reloc_count()
1067 * Reloc_types
<sh_type
, size
, big_endian
>::reloc_size
);
1070 // class Output_data_group.
1072 template<int size
, bool big_endian
>
1073 Output_data_group
<size
, big_endian
>::Output_data_group(
1074 Sized_relobj
<size
, big_endian
>* relobj
,
1075 section_size_type entry_count
,
1076 elfcpp::Elf_Word flags
,
1077 std::vector
<unsigned int>* input_shndxes
)
1078 : Output_section_data(entry_count
* 4, 4),
1082 this->input_shndxes_
.swap(*input_shndxes
);
1085 // Write out the section group, which means translating the section
1086 // indexes to apply to the output file.
1088 template<int size
, bool big_endian
>
1090 Output_data_group
<size
, big_endian
>::do_write(Output_file
* of
)
1092 const off_t off
= this->offset();
1093 const section_size_type oview_size
=
1094 convert_to_section_size_type(this->data_size());
1095 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1097 elfcpp::Elf_Word
* contents
= reinterpret_cast<elfcpp::Elf_Word
*>(oview
);
1098 elfcpp::Swap
<32, big_endian
>::writeval(contents
, this->flags_
);
1101 for (std::vector
<unsigned int>::const_iterator p
=
1102 this->input_shndxes_
.begin();
1103 p
!= this->input_shndxes_
.end();
1106 Output_section
* os
= this->relobj_
->output_section(*p
);
1108 unsigned int output_shndx
;
1110 output_shndx
= os
->out_shndx();
1113 this->relobj_
->error(_("section group retained but "
1114 "group element discarded"));
1118 elfcpp::Swap
<32, big_endian
>::writeval(contents
, output_shndx
);
1121 size_t wrote
= reinterpret_cast<unsigned char*>(contents
) - oview
;
1122 gold_assert(wrote
== oview_size
);
1124 of
->write_output_view(off
, oview_size
, oview
);
1126 // We no longer need this information.
1127 this->input_shndxes_
.clear();
1130 // Output_data_got::Got_entry methods.
1132 // Write out the entry.
1134 template<int size
, bool big_endian
>
1136 Output_data_got
<size
, big_endian
>::Got_entry::write(unsigned char* pov
) const
1140 switch (this->local_sym_index_
)
1144 // If the symbol is resolved locally, we need to write out the
1145 // link-time value, which will be relocated dynamically by a
1146 // RELATIVE relocation.
1147 Symbol
* gsym
= this->u_
.gsym
;
1148 Sized_symbol
<size
>* sgsym
;
1149 // This cast is a bit ugly. We don't want to put a
1150 // virtual method in Symbol, because we want Symbol to be
1151 // as small as possible.
1152 sgsym
= static_cast<Sized_symbol
<size
>*>(gsym
);
1153 val
= sgsym
->value();
1158 val
= this->u_
.constant
;
1163 const unsigned int lsi
= this->local_sym_index_
;
1164 const Symbol_value
<size
>* symval
= this->u_
.object
->local_symbol(lsi
);
1165 val
= symval
->value(this->u_
.object
, 0);
1170 elfcpp::Swap
<size
, big_endian
>::writeval(pov
, val
);
1173 // Output_data_got methods.
1175 // Add an entry for a global symbol to the GOT. This returns true if
1176 // this is a new GOT entry, false if the symbol already had a GOT
1179 template<int size
, bool big_endian
>
1181 Output_data_got
<size
, big_endian
>::add_global(
1183 unsigned int got_type
)
1185 if (gsym
->has_got_offset(got_type
))
1188 this->entries_
.push_back(Got_entry(gsym
));
1189 this->set_got_size();
1190 gsym
->set_got_offset(got_type
, this->last_got_offset());
1194 // Add an entry for a global symbol to the GOT, and add a dynamic
1195 // relocation of type R_TYPE for the GOT entry.
1196 template<int size
, bool big_endian
>
1198 Output_data_got
<size
, big_endian
>::add_global_with_rel(
1200 unsigned int got_type
,
1202 unsigned int r_type
)
1204 if (gsym
->has_got_offset(got_type
))
1207 this->entries_
.push_back(Got_entry());
1208 this->set_got_size();
1209 unsigned int got_offset
= this->last_got_offset();
1210 gsym
->set_got_offset(got_type
, got_offset
);
1211 rel_dyn
->add_global(gsym
, r_type
, this, got_offset
);
1214 template<int size
, bool big_endian
>
1216 Output_data_got
<size
, big_endian
>::add_global_with_rela(
1218 unsigned int got_type
,
1220 unsigned int r_type
)
1222 if (gsym
->has_got_offset(got_type
))
1225 this->entries_
.push_back(Got_entry());
1226 this->set_got_size();
1227 unsigned int got_offset
= this->last_got_offset();
1228 gsym
->set_got_offset(got_type
, got_offset
);
1229 rela_dyn
->add_global(gsym
, r_type
, this, got_offset
, 0);
1232 // Add a pair of entries for a global symbol to the GOT, and add
1233 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1234 // If R_TYPE_2 == 0, add the second entry with no relocation.
1235 template<int size
, bool big_endian
>
1237 Output_data_got
<size
, big_endian
>::add_global_pair_with_rel(
1239 unsigned int got_type
,
1241 unsigned int r_type_1
,
1242 unsigned int r_type_2
)
1244 if (gsym
->has_got_offset(got_type
))
1247 this->entries_
.push_back(Got_entry());
1248 unsigned int got_offset
= this->last_got_offset();
1249 gsym
->set_got_offset(got_type
, got_offset
);
1250 rel_dyn
->add_global(gsym
, r_type_1
, this, got_offset
);
1252 this->entries_
.push_back(Got_entry());
1255 got_offset
= this->last_got_offset();
1256 rel_dyn
->add_global(gsym
, r_type_2
, this, got_offset
);
1259 this->set_got_size();
1262 template<int size
, bool big_endian
>
1264 Output_data_got
<size
, big_endian
>::add_global_pair_with_rela(
1266 unsigned int got_type
,
1268 unsigned int r_type_1
,
1269 unsigned int r_type_2
)
1271 if (gsym
->has_got_offset(got_type
))
1274 this->entries_
.push_back(Got_entry());
1275 unsigned int got_offset
= this->last_got_offset();
1276 gsym
->set_got_offset(got_type
, got_offset
);
1277 rela_dyn
->add_global(gsym
, r_type_1
, this, got_offset
, 0);
1279 this->entries_
.push_back(Got_entry());
1282 got_offset
= this->last_got_offset();
1283 rela_dyn
->add_global(gsym
, r_type_2
, this, got_offset
, 0);
1286 this->set_got_size();
1289 // Add an entry for a local symbol to the GOT. This returns true if
1290 // this is a new GOT entry, false if the symbol already has a GOT
1293 template<int size
, bool big_endian
>
1295 Output_data_got
<size
, big_endian
>::add_local(
1296 Sized_relobj
<size
, big_endian
>* object
,
1297 unsigned int symndx
,
1298 unsigned int got_type
)
1300 if (object
->local_has_got_offset(symndx
, got_type
))
1303 this->entries_
.push_back(Got_entry(object
, symndx
));
1304 this->set_got_size();
1305 object
->set_local_got_offset(symndx
, got_type
, this->last_got_offset());
1309 // Add an entry for a local symbol to the GOT, and add a dynamic
1310 // relocation of type R_TYPE for the GOT entry.
1311 template<int size
, bool big_endian
>
1313 Output_data_got
<size
, big_endian
>::add_local_with_rel(
1314 Sized_relobj
<size
, big_endian
>* object
,
1315 unsigned int symndx
,
1316 unsigned int got_type
,
1318 unsigned int r_type
)
1320 if (object
->local_has_got_offset(symndx
, got_type
))
1323 this->entries_
.push_back(Got_entry());
1324 this->set_got_size();
1325 unsigned int got_offset
= this->last_got_offset();
1326 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1327 rel_dyn
->add_local(object
, symndx
, r_type
, this, got_offset
);
1330 template<int size
, bool big_endian
>
1332 Output_data_got
<size
, big_endian
>::add_local_with_rela(
1333 Sized_relobj
<size
, big_endian
>* object
,
1334 unsigned int symndx
,
1335 unsigned int got_type
,
1337 unsigned int r_type
)
1339 if (object
->local_has_got_offset(symndx
, got_type
))
1342 this->entries_
.push_back(Got_entry());
1343 this->set_got_size();
1344 unsigned int got_offset
= this->last_got_offset();
1345 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1346 rela_dyn
->add_local(object
, symndx
, r_type
, this, got_offset
, 0);
1349 // Add a pair of entries for a local symbol to the GOT, and add
1350 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1351 // If R_TYPE_2 == 0, add the second entry with no relocation.
1352 template<int size
, bool big_endian
>
1354 Output_data_got
<size
, big_endian
>::add_local_pair_with_rel(
1355 Sized_relobj
<size
, big_endian
>* object
,
1356 unsigned int symndx
,
1358 unsigned int got_type
,
1360 unsigned int r_type_1
,
1361 unsigned int r_type_2
)
1363 if (object
->local_has_got_offset(symndx
, got_type
))
1366 this->entries_
.push_back(Got_entry());
1367 unsigned int got_offset
= this->last_got_offset();
1368 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1369 Output_section
* os
= object
->output_section(shndx
);
1370 rel_dyn
->add_output_section(os
, r_type_1
, this, got_offset
);
1372 this->entries_
.push_back(Got_entry(object
, symndx
));
1375 got_offset
= this->last_got_offset();
1376 rel_dyn
->add_output_section(os
, r_type_2
, this, got_offset
);
1379 this->set_got_size();
1382 template<int size
, bool big_endian
>
1384 Output_data_got
<size
, big_endian
>::add_local_pair_with_rela(
1385 Sized_relobj
<size
, big_endian
>* object
,
1386 unsigned int symndx
,
1388 unsigned int got_type
,
1390 unsigned int r_type_1
,
1391 unsigned int r_type_2
)
1393 if (object
->local_has_got_offset(symndx
, got_type
))
1396 this->entries_
.push_back(Got_entry());
1397 unsigned int got_offset
= this->last_got_offset();
1398 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1399 Output_section
* os
= object
->output_section(shndx
);
1400 rela_dyn
->add_output_section(os
, r_type_1
, this, got_offset
, 0);
1402 this->entries_
.push_back(Got_entry(object
, symndx
));
1405 got_offset
= this->last_got_offset();
1406 rela_dyn
->add_output_section(os
, r_type_2
, this, got_offset
, 0);
1409 this->set_got_size();
1412 // Write out the GOT.
1414 template<int size
, bool big_endian
>
1416 Output_data_got
<size
, big_endian
>::do_write(Output_file
* of
)
1418 const int add
= size
/ 8;
1420 const off_t off
= this->offset();
1421 const off_t oview_size
= this->data_size();
1422 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1424 unsigned char* pov
= oview
;
1425 for (typename
Got_entries::const_iterator p
= this->entries_
.begin();
1426 p
!= this->entries_
.end();
1433 gold_assert(pov
- oview
== oview_size
);
1435 of
->write_output_view(off
, oview_size
, oview
);
1437 // We no longer need the GOT entries.
1438 this->entries_
.clear();
1441 // Output_data_dynamic::Dynamic_entry methods.
1443 // Write out the entry.
1445 template<int size
, bool big_endian
>
1447 Output_data_dynamic::Dynamic_entry::write(
1449 const Stringpool
* pool
) const
1451 typename
elfcpp::Elf_types
<size
>::Elf_WXword val
;
1452 switch (this->offset_
)
1454 case DYNAMIC_NUMBER
:
1458 case DYNAMIC_SECTION_SIZE
:
1459 val
= this->u_
.od
->data_size();
1462 case DYNAMIC_SYMBOL
:
1464 const Sized_symbol
<size
>* s
=
1465 static_cast<const Sized_symbol
<size
>*>(this->u_
.sym
);
1470 case DYNAMIC_STRING
:
1471 val
= pool
->get_offset(this->u_
.str
);
1475 val
= this->u_
.od
->address() + this->offset_
;
1479 elfcpp::Dyn_write
<size
, big_endian
> dw(pov
);
1480 dw
.put_d_tag(this->tag_
);
1484 // Output_data_dynamic methods.
1486 // Adjust the output section to set the entry size.
1489 Output_data_dynamic::do_adjust_output_section(Output_section
* os
)
1491 if (parameters
->target().get_size() == 32)
1492 os
->set_entsize(elfcpp::Elf_sizes
<32>::dyn_size
);
1493 else if (parameters
->target().get_size() == 64)
1494 os
->set_entsize(elfcpp::Elf_sizes
<64>::dyn_size
);
1499 // Set the final data size.
1502 Output_data_dynamic::set_final_data_size()
1504 // Add the terminating entry.
1505 this->add_constant(elfcpp::DT_NULL
, 0);
1508 if (parameters
->target().get_size() == 32)
1509 dyn_size
= elfcpp::Elf_sizes
<32>::dyn_size
;
1510 else if (parameters
->target().get_size() == 64)
1511 dyn_size
= elfcpp::Elf_sizes
<64>::dyn_size
;
1514 this->set_data_size(this->entries_
.size() * dyn_size
);
1517 // Write out the dynamic entries.
1520 Output_data_dynamic::do_write(Output_file
* of
)
1522 switch (parameters
->size_and_endianness())
1524 #ifdef HAVE_TARGET_32_LITTLE
1525 case Parameters::TARGET_32_LITTLE
:
1526 this->sized_write
<32, false>(of
);
1529 #ifdef HAVE_TARGET_32_BIG
1530 case Parameters::TARGET_32_BIG
:
1531 this->sized_write
<32, true>(of
);
1534 #ifdef HAVE_TARGET_64_LITTLE
1535 case Parameters::TARGET_64_LITTLE
:
1536 this->sized_write
<64, false>(of
);
1539 #ifdef HAVE_TARGET_64_BIG
1540 case Parameters::TARGET_64_BIG
:
1541 this->sized_write
<64, true>(of
);
1549 template<int size
, bool big_endian
>
1551 Output_data_dynamic::sized_write(Output_file
* of
)
1553 const int dyn_size
= elfcpp::Elf_sizes
<size
>::dyn_size
;
1555 const off_t offset
= this->offset();
1556 const off_t oview_size
= this->data_size();
1557 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
1559 unsigned char* pov
= oview
;
1560 for (typename
Dynamic_entries::const_iterator p
= this->entries_
.begin();
1561 p
!= this->entries_
.end();
1564 p
->write
<size
, big_endian
>(pov
, this->pool_
);
1568 gold_assert(pov
- oview
== oview_size
);
1570 of
->write_output_view(offset
, oview_size
, oview
);
1572 // We no longer need the dynamic entries.
1573 this->entries_
.clear();
1576 // Class Output_symtab_xindex.
1579 Output_symtab_xindex::do_write(Output_file
* of
)
1581 const off_t offset
= this->offset();
1582 const off_t oview_size
= this->data_size();
1583 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
1585 memset(oview
, 0, oview_size
);
1587 if (parameters
->target().is_big_endian())
1588 this->endian_do_write
<true>(oview
);
1590 this->endian_do_write
<false>(oview
);
1592 of
->write_output_view(offset
, oview_size
, oview
);
1594 // We no longer need the data.
1595 this->entries_
.clear();
1598 template<bool big_endian
>
1600 Output_symtab_xindex::endian_do_write(unsigned char* const oview
)
1602 for (Xindex_entries::const_iterator p
= this->entries_
.begin();
1603 p
!= this->entries_
.end();
1605 elfcpp::Swap
<32, big_endian
>::writeval(oview
+ p
->first
* 4, p
->second
);
1608 // Output_section::Input_section methods.
1610 // Return the data size. For an input section we store the size here.
1611 // For an Output_section_data, we have to ask it for the size.
1614 Output_section::Input_section::data_size() const
1616 if (this->is_input_section())
1617 return this->u1_
.data_size
;
1619 return this->u2_
.posd
->data_size();
1622 // Set the address and file offset.
1625 Output_section::Input_section::set_address_and_file_offset(
1628 off_t section_file_offset
)
1630 if (this->is_input_section())
1631 this->u2_
.object
->set_section_offset(this->shndx_
,
1632 file_offset
- section_file_offset
);
1634 this->u2_
.posd
->set_address_and_file_offset(address
, file_offset
);
1637 // Reset the address and file offset.
1640 Output_section::Input_section::reset_address_and_file_offset()
1642 if (!this->is_input_section())
1643 this->u2_
.posd
->reset_address_and_file_offset();
1646 // Finalize the data size.
1649 Output_section::Input_section::finalize_data_size()
1651 if (!this->is_input_section())
1652 this->u2_
.posd
->finalize_data_size();
1655 // Try to turn an input offset into an output offset. We want to
1656 // return the output offset relative to the start of this
1657 // Input_section in the output section.
1660 Output_section::Input_section::output_offset(
1661 const Relobj
* object
,
1663 section_offset_type offset
,
1664 section_offset_type
*poutput
) const
1666 if (!this->is_input_section())
1667 return this->u2_
.posd
->output_offset(object
, shndx
, offset
, poutput
);
1670 if (this->shndx_
!= shndx
|| this->u2_
.object
!= object
)
1677 // Return whether this is the merge section for the input section
1681 Output_section::Input_section::is_merge_section_for(const Relobj
* object
,
1682 unsigned int shndx
) const
1684 if (this->is_input_section())
1686 return this->u2_
.posd
->is_merge_section_for(object
, shndx
);
1689 // Write out the data. We don't have to do anything for an input
1690 // section--they are handled via Object::relocate--but this is where
1691 // we write out the data for an Output_section_data.
1694 Output_section::Input_section::write(Output_file
* of
)
1696 if (!this->is_input_section())
1697 this->u2_
.posd
->write(of
);
1700 // Write the data to a buffer. As for write(), we don't have to do
1701 // anything for an input section.
1704 Output_section::Input_section::write_to_buffer(unsigned char* buffer
)
1706 if (!this->is_input_section())
1707 this->u2_
.posd
->write_to_buffer(buffer
);
1710 // Print to a map file.
1713 Output_section::Input_section::print_to_mapfile(Mapfile
* mapfile
) const
1715 switch (this->shndx_
)
1717 case OUTPUT_SECTION_CODE
:
1718 case MERGE_DATA_SECTION_CODE
:
1719 case MERGE_STRING_SECTION_CODE
:
1720 this->u2_
.posd
->print_to_mapfile(mapfile
);
1724 mapfile
->print_input_section(this->u2_
.object
, this->shndx_
);
1729 // Output_section methods.
1731 // Construct an Output_section. NAME will point into a Stringpool.
1733 Output_section::Output_section(const char* name
, elfcpp::Elf_Word type
,
1734 elfcpp::Elf_Xword flags
)
1739 link_section_(NULL
),
1741 info_section_(NULL
),
1750 first_input_offset_(0),
1752 postprocessing_buffer_(NULL
),
1753 needs_symtab_index_(false),
1754 needs_dynsym_index_(false),
1755 should_link_to_symtab_(false),
1756 should_link_to_dynsym_(false),
1757 after_input_sections_(false),
1758 requires_postprocessing_(false),
1759 found_in_sections_clause_(false),
1760 has_load_address_(false),
1761 info_uses_section_index_(false),
1762 may_sort_attached_input_sections_(false),
1763 must_sort_attached_input_sections_(false),
1764 attached_input_sections_are_sorted_(false),
1766 is_relro_local_(false),
1767 is_small_section_(false),
1768 is_large_section_(false),
1771 // An unallocated section has no address. Forcing this means that
1772 // we don't need special treatment for symbols defined in debug
1774 if ((flags
& elfcpp::SHF_ALLOC
) == 0)
1775 this->set_address(0);
1778 Output_section::~Output_section()
1782 // Set the entry size.
1785 Output_section::set_entsize(uint64_t v
)
1787 if (this->entsize_
== 0)
1790 gold_assert(this->entsize_
== v
);
1793 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1794 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1795 // relocation section which applies to this section, or 0 if none, or
1796 // -1U if more than one. Return the offset of the input section
1797 // within the output section. Return -1 if the input section will
1798 // receive special handling. In the normal case we don't always keep
1799 // track of input sections for an Output_section. Instead, each
1800 // Object keeps track of the Output_section for each of its input
1801 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1802 // track of input sections here; this is used when SECTIONS appears in
1805 template<int size
, bool big_endian
>
1807 Output_section::add_input_section(Sized_relobj
<size
, big_endian
>* object
,
1809 const char* secname
,
1810 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
1811 unsigned int reloc_shndx
,
1812 bool have_sections_script
)
1814 elfcpp::Elf_Xword addralign
= shdr
.get_sh_addralign();
1815 if ((addralign
& (addralign
- 1)) != 0)
1817 object
->error(_("invalid alignment %lu for section \"%s\""),
1818 static_cast<unsigned long>(addralign
), secname
);
1822 if (addralign
> this->addralign_
)
1823 this->addralign_
= addralign
;
1825 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_flags
= shdr
.get_sh_flags();
1826 this->update_flags_for_input_section(sh_flags
);
1828 uint64_t entsize
= shdr
.get_sh_entsize();
1830 // .debug_str is a mergeable string section, but is not always so
1831 // marked by compilers. Mark manually here so we can optimize.
1832 if (strcmp(secname
, ".debug_str") == 0)
1834 sh_flags
|= (elfcpp::SHF_MERGE
| elfcpp::SHF_STRINGS
);
1838 // If this is a SHF_MERGE section, we pass all the input sections to
1839 // a Output_data_merge. We don't try to handle relocations for such
1840 // a section. We don't try to handle empty merge sections--they
1841 // mess up the mappings, and are useless anyhow.
1842 if ((sh_flags
& elfcpp::SHF_MERGE
) != 0
1844 && shdr
.get_sh_size() > 0)
1846 if (this->add_merge_input_section(object
, shndx
, sh_flags
,
1847 entsize
, addralign
))
1849 // Tell the relocation routines that they need to call the
1850 // output_offset method to determine the final address.
1855 off_t offset_in_section
= this->current_data_size_for_child();
1856 off_t aligned_offset_in_section
= align_address(offset_in_section
,
1859 if (aligned_offset_in_section
> offset_in_section
1860 && !have_sections_script
1861 && (sh_flags
& elfcpp::SHF_EXECINSTR
) != 0
1862 && object
->target()->has_code_fill())
1864 // We need to add some fill data. Using fill_list_ when
1865 // possible is an optimization, since we will often have fill
1866 // sections without input sections.
1867 off_t fill_len
= aligned_offset_in_section
- offset_in_section
;
1868 if (this->input_sections_
.empty())
1869 this->fills_
.push_back(Fill(offset_in_section
, fill_len
));
1872 // FIXME: When relaxing, the size needs to adjust to
1873 // maintain a constant alignment.
1874 std::string
fill_data(object
->target()->code_fill(fill_len
));
1875 Output_data_const
* odc
= new Output_data_const(fill_data
, 1);
1876 this->input_sections_
.push_back(Input_section(odc
));
1880 this->set_current_data_size_for_child(aligned_offset_in_section
1881 + shdr
.get_sh_size());
1883 // We need to keep track of this section if we are already keeping
1884 // track of sections, or if we are relaxing. Also, if this is a
1885 // section which requires sorting, or which may require sorting in
1886 // the future, we keep track of the sections. FIXME: Add test for
1888 if (have_sections_script
1889 || !this->input_sections_
.empty()
1890 || this->may_sort_attached_input_sections()
1891 || this->must_sort_attached_input_sections()
1892 || parameters
->options().user_set_Map())
1893 this->input_sections_
.push_back(Input_section(object
, shndx
,
1897 return aligned_offset_in_section
;
1900 // Add arbitrary data to an output section.
1903 Output_section::add_output_section_data(Output_section_data
* posd
)
1905 Input_section
inp(posd
);
1906 this->add_output_section_data(&inp
);
1908 if (posd
->is_data_size_valid())
1910 off_t offset_in_section
= this->current_data_size_for_child();
1911 off_t aligned_offset_in_section
= align_address(offset_in_section
,
1913 this->set_current_data_size_for_child(aligned_offset_in_section
1914 + posd
->data_size());
1918 // Add arbitrary data to an output section by Input_section.
1921 Output_section::add_output_section_data(Input_section
* inp
)
1923 if (this->input_sections_
.empty())
1924 this->first_input_offset_
= this->current_data_size_for_child();
1926 this->input_sections_
.push_back(*inp
);
1928 uint64_t addralign
= inp
->addralign();
1929 if (addralign
> this->addralign_
)
1930 this->addralign_
= addralign
;
1932 inp
->set_output_section(this);
1935 // Add a merge section to an output section.
1938 Output_section::add_output_merge_section(Output_section_data
* posd
,
1939 bool is_string
, uint64_t entsize
)
1941 Input_section
inp(posd
, is_string
, entsize
);
1942 this->add_output_section_data(&inp
);
1945 // Add an input section to a SHF_MERGE section.
1948 Output_section::add_merge_input_section(Relobj
* object
, unsigned int shndx
,
1949 uint64_t flags
, uint64_t entsize
,
1952 bool is_string
= (flags
& elfcpp::SHF_STRINGS
) != 0;
1954 // We only merge strings if the alignment is not more than the
1955 // character size. This could be handled, but it's unusual.
1956 if (is_string
&& addralign
> entsize
)
1959 Input_section_list::iterator p
;
1960 for (p
= this->input_sections_
.begin();
1961 p
!= this->input_sections_
.end();
1963 if (p
->is_merge_section(is_string
, entsize
, addralign
))
1965 p
->add_input_section(object
, shndx
);
1969 // We handle the actual constant merging in Output_merge_data or
1970 // Output_merge_string_data.
1971 Output_section_data
* posd
;
1973 posd
= new Output_merge_data(entsize
, addralign
);
1979 posd
= new Output_merge_string
<char>(addralign
);
1982 posd
= new Output_merge_string
<uint16_t>(addralign
);
1985 posd
= new Output_merge_string
<uint32_t>(addralign
);
1992 this->add_output_merge_section(posd
, is_string
, entsize
);
1993 posd
->add_input_section(object
, shndx
);
1998 // Update the output section flags based on input section flags.
2001 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags
)
2003 // If we created the section with SHF_ALLOC clear, we set the
2004 // address. If we are now setting the SHF_ALLOC flag, we need to
2006 if ((this->flags_
& elfcpp::SHF_ALLOC
) == 0
2007 && (flags
& elfcpp::SHF_ALLOC
) != 0)
2008 this->mark_address_invalid();
2010 this->flags_
|= (flags
2011 & (elfcpp::SHF_WRITE
2013 | elfcpp::SHF_EXECINSTR
));
2016 // Given an address OFFSET relative to the start of input section
2017 // SHNDX in OBJECT, return whether this address is being included in
2018 // the final link. This should only be called if SHNDX in OBJECT has
2019 // a special mapping.
2022 Output_section::is_input_address_mapped(const Relobj
* object
,
2026 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2027 p
!= this->input_sections_
.end();
2030 section_offset_type output_offset
;
2031 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
2032 return output_offset
!= -1;
2035 // By default we assume that the address is mapped. This should
2036 // only be called after we have passed all sections to Layout. At
2037 // that point we should know what we are discarding.
2041 // Given an address OFFSET relative to the start of input section
2042 // SHNDX in object OBJECT, return the output offset relative to the
2043 // start of the input section in the output section. This should only
2044 // be called if SHNDX in OBJECT has a special mapping.
2047 Output_section::output_offset(const Relobj
* object
, unsigned int shndx
,
2048 section_offset_type offset
) const
2050 // This can only be called meaningfully when layout is complete.
2051 gold_assert(Output_data::is_layout_complete());
2053 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2054 p
!= this->input_sections_
.end();
2057 section_offset_type output_offset
;
2058 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
2059 return output_offset
;
2064 // Return the output virtual address of OFFSET relative to the start
2065 // of input section SHNDX in object OBJECT.
2068 Output_section::output_address(const Relobj
* object
, unsigned int shndx
,
2071 uint64_t addr
= this->address() + this->first_input_offset_
;
2072 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2073 p
!= this->input_sections_
.end();
2076 addr
= align_address(addr
, p
->addralign());
2077 section_offset_type output_offset
;
2078 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
2080 if (output_offset
== -1)
2082 return addr
+ output_offset
;
2084 addr
+= p
->data_size();
2087 // If we get here, it means that we don't know the mapping for this
2088 // input section. This might happen in principle if
2089 // add_input_section were called before add_output_section_data.
2090 // But it should never actually happen.
2095 // Find the output address of the start of the merged section for
2096 // input section SHNDX in object OBJECT.
2099 Output_section::find_starting_output_address(const Relobj
* object
,
2101 uint64_t* paddr
) const
2103 uint64_t addr
= this->address() + this->first_input_offset_
;
2104 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2105 p
!= this->input_sections_
.end();
2108 addr
= align_address(addr
, p
->addralign());
2110 // It would be nice if we could use the existing output_offset
2111 // method to get the output offset of input offset 0.
2112 // Unfortunately we don't know for sure that input offset 0 is
2114 if (p
->is_merge_section_for(object
, shndx
))
2120 addr
+= p
->data_size();
2123 // We couldn't find a merge output section for this input section.
2127 // Set the data size of an Output_section. This is where we handle
2128 // setting the addresses of any Output_section_data objects.
2131 Output_section::set_final_data_size()
2133 if (this->input_sections_
.empty())
2135 this->set_data_size(this->current_data_size_for_child());
2139 if (this->must_sort_attached_input_sections())
2140 this->sort_attached_input_sections();
2142 uint64_t address
= this->address();
2143 off_t startoff
= this->offset();
2144 off_t off
= startoff
+ this->first_input_offset_
;
2145 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2146 p
!= this->input_sections_
.end();
2149 off
= align_address(off
, p
->addralign());
2150 p
->set_address_and_file_offset(address
+ (off
- startoff
), off
,
2152 off
+= p
->data_size();
2155 this->set_data_size(off
- startoff
);
2158 // Reset the address and file offset.
2161 Output_section::do_reset_address_and_file_offset()
2163 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2164 p
!= this->input_sections_
.end();
2166 p
->reset_address_and_file_offset();
2169 // Set the TLS offset. Called only for SHT_TLS sections.
2172 Output_section::do_set_tls_offset(uint64_t tls_base
)
2174 this->tls_offset_
= this->address() - tls_base
;
2177 // In a few cases we need to sort the input sections attached to an
2178 // output section. This is used to implement the type of constructor
2179 // priority ordering implemented by the GNU linker, in which the
2180 // priority becomes part of the section name and the sections are
2181 // sorted by name. We only do this for an output section if we see an
2182 // attached input section matching ".ctor.*", ".dtor.*",
2183 // ".init_array.*" or ".fini_array.*".
2185 class Output_section::Input_section_sort_entry
2188 Input_section_sort_entry()
2189 : input_section_(), index_(-1U), section_has_name_(false),
2193 Input_section_sort_entry(const Input_section
& input_section
,
2195 : input_section_(input_section
), index_(index
),
2196 section_has_name_(input_section
.is_input_section())
2198 if (this->section_has_name_
)
2200 // This is only called single-threaded from Layout::finalize,
2201 // so it is OK to lock. Unfortunately we have no way to pass
2203 const Task
* dummy_task
= reinterpret_cast<const Task
*>(-1);
2204 Object
* obj
= input_section
.relobj();
2205 Task_lock_obj
<Object
> tl(dummy_task
, obj
);
2207 // This is a slow operation, which should be cached in
2208 // Layout::layout if this becomes a speed problem.
2209 this->section_name_
= obj
->section_name(input_section
.shndx());
2213 // Return the Input_section.
2214 const Input_section
&
2215 input_section() const
2217 gold_assert(this->index_
!= -1U);
2218 return this->input_section_
;
2221 // The index of this entry in the original list. This is used to
2222 // make the sort stable.
2226 gold_assert(this->index_
!= -1U);
2227 return this->index_
;
2230 // Whether there is a section name.
2232 section_has_name() const
2233 { return this->section_has_name_
; }
2235 // The section name.
2237 section_name() const
2239 gold_assert(this->section_has_name_
);
2240 return this->section_name_
;
2243 // Return true if the section name has a priority. This is assumed
2244 // to be true if it has a dot after the initial dot.
2246 has_priority() const
2248 gold_assert(this->section_has_name_
);
2249 return this->section_name_
.find('.', 1);
2252 // Return true if this an input file whose base name matches
2253 // FILE_NAME. The base name must have an extension of ".o", and
2254 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2255 // This is to match crtbegin.o as well as crtbeginS.o without
2256 // getting confused by other possibilities. Overall matching the
2257 // file name this way is a dreadful hack, but the GNU linker does it
2258 // in order to better support gcc, and we need to be compatible.
2260 match_file_name(const char* match_file_name
) const
2262 const std::string
& file_name(this->input_section_
.relobj()->name());
2263 const char* base_name
= lbasename(file_name
.c_str());
2264 size_t match_len
= strlen(match_file_name
);
2265 if (strncmp(base_name
, match_file_name
, match_len
) != 0)
2267 size_t base_len
= strlen(base_name
);
2268 if (base_len
!= match_len
+ 2 && base_len
!= match_len
+ 3)
2270 return memcmp(base_name
+ base_len
- 2, ".o", 2) == 0;
2274 // The Input_section we are sorting.
2275 Input_section input_section_
;
2276 // The index of this Input_section in the original list.
2277 unsigned int index_
;
2278 // Whether this Input_section has a section name--it won't if this
2279 // is some random Output_section_data.
2280 bool section_has_name_
;
2281 // The section name if there is one.
2282 std::string section_name_
;
2285 // Return true if S1 should come before S2 in the output section.
2288 Output_section::Input_section_sort_compare::operator()(
2289 const Output_section::Input_section_sort_entry
& s1
,
2290 const Output_section::Input_section_sort_entry
& s2
) const
2292 // crtbegin.o must come first.
2293 bool s1_begin
= s1
.match_file_name("crtbegin");
2294 bool s2_begin
= s2
.match_file_name("crtbegin");
2295 if (s1_begin
|| s2_begin
)
2301 return s1
.index() < s2
.index();
2304 // crtend.o must come last.
2305 bool s1_end
= s1
.match_file_name("crtend");
2306 bool s2_end
= s2
.match_file_name("crtend");
2307 if (s1_end
|| s2_end
)
2313 return s1
.index() < s2
.index();
2316 // We sort all the sections with no names to the end.
2317 if (!s1
.section_has_name() || !s2
.section_has_name())
2319 if (s1
.section_has_name())
2321 if (s2
.section_has_name())
2323 return s1
.index() < s2
.index();
2326 // A section with a priority follows a section without a priority.
2327 // The GNU linker does this for all but .init_array sections; until
2328 // further notice we'll assume that that is an mistake.
2329 bool s1_has_priority
= s1
.has_priority();
2330 bool s2_has_priority
= s2
.has_priority();
2331 if (s1_has_priority
&& !s2_has_priority
)
2333 if (!s1_has_priority
&& s2_has_priority
)
2336 // Otherwise we sort by name.
2337 int compare
= s1
.section_name().compare(s2
.section_name());
2341 // Otherwise we keep the input order.
2342 return s1
.index() < s2
.index();
2345 // Sort the input sections attached to an output section.
2348 Output_section::sort_attached_input_sections()
2350 if (this->attached_input_sections_are_sorted_
)
2353 // The only thing we know about an input section is the object and
2354 // the section index. We need the section name. Recomputing this
2355 // is slow but this is an unusual case. If this becomes a speed
2356 // problem we can cache the names as required in Layout::layout.
2358 // We start by building a larger vector holding a copy of each
2359 // Input_section, plus its current index in the list and its name.
2360 std::vector
<Input_section_sort_entry
> sort_list
;
2363 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2364 p
!= this->input_sections_
.end();
2366 sort_list
.push_back(Input_section_sort_entry(*p
, i
));
2368 // Sort the input sections.
2369 std::sort(sort_list
.begin(), sort_list
.end(), Input_section_sort_compare());
2371 // Copy the sorted input sections back to our list.
2372 this->input_sections_
.clear();
2373 for (std::vector
<Input_section_sort_entry
>::iterator p
= sort_list
.begin();
2374 p
!= sort_list
.end();
2376 this->input_sections_
.push_back(p
->input_section());
2378 // Remember that we sorted the input sections, since we might get
2380 this->attached_input_sections_are_sorted_
= true;
2383 // Write the section header to *OSHDR.
2385 template<int size
, bool big_endian
>
2387 Output_section::write_header(const Layout
* layout
,
2388 const Stringpool
* secnamepool
,
2389 elfcpp::Shdr_write
<size
, big_endian
>* oshdr
) const
2391 oshdr
->put_sh_name(secnamepool
->get_offset(this->name_
));
2392 oshdr
->put_sh_type(this->type_
);
2394 elfcpp::Elf_Xword flags
= this->flags_
;
2395 if (this->info_section_
!= NULL
&& this->info_uses_section_index_
)
2396 flags
|= elfcpp::SHF_INFO_LINK
;
2397 oshdr
->put_sh_flags(flags
);
2399 oshdr
->put_sh_addr(this->address());
2400 oshdr
->put_sh_offset(this->offset());
2401 oshdr
->put_sh_size(this->data_size());
2402 if (this->link_section_
!= NULL
)
2403 oshdr
->put_sh_link(this->link_section_
->out_shndx());
2404 else if (this->should_link_to_symtab_
)
2405 oshdr
->put_sh_link(layout
->symtab_section()->out_shndx());
2406 else if (this->should_link_to_dynsym_
)
2407 oshdr
->put_sh_link(layout
->dynsym_section()->out_shndx());
2409 oshdr
->put_sh_link(this->link_
);
2411 elfcpp::Elf_Word info
;
2412 if (this->info_section_
!= NULL
)
2414 if (this->info_uses_section_index_
)
2415 info
= this->info_section_
->out_shndx();
2417 info
= this->info_section_
->symtab_index();
2419 else if (this->info_symndx_
!= NULL
)
2420 info
= this->info_symndx_
->symtab_index();
2423 oshdr
->put_sh_info(info
);
2425 oshdr
->put_sh_addralign(this->addralign_
);
2426 oshdr
->put_sh_entsize(this->entsize_
);
2429 // Write out the data. For input sections the data is written out by
2430 // Object::relocate, but we have to handle Output_section_data objects
2434 Output_section::do_write(Output_file
* of
)
2436 gold_assert(!this->requires_postprocessing());
2438 off_t output_section_file_offset
= this->offset();
2439 for (Fill_list::iterator p
= this->fills_
.begin();
2440 p
!= this->fills_
.end();
2443 std::string
fill_data(parameters
->target().code_fill(p
->length()));
2444 of
->write(output_section_file_offset
+ p
->section_offset(),
2445 fill_data
.data(), fill_data
.size());
2448 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2449 p
!= this->input_sections_
.end();
2454 // If a section requires postprocessing, create the buffer to use.
2457 Output_section::create_postprocessing_buffer()
2459 gold_assert(this->requires_postprocessing());
2461 if (this->postprocessing_buffer_
!= NULL
)
2464 if (!this->input_sections_
.empty())
2466 off_t off
= this->first_input_offset_
;
2467 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2468 p
!= this->input_sections_
.end();
2471 off
= align_address(off
, p
->addralign());
2472 p
->finalize_data_size();
2473 off
+= p
->data_size();
2475 this->set_current_data_size_for_child(off
);
2478 off_t buffer_size
= this->current_data_size_for_child();
2479 this->postprocessing_buffer_
= new unsigned char[buffer_size
];
2482 // Write all the data of an Output_section into the postprocessing
2483 // buffer. This is used for sections which require postprocessing,
2484 // such as compression. Input sections are handled by
2485 // Object::Relocate.
2488 Output_section::write_to_postprocessing_buffer()
2490 gold_assert(this->requires_postprocessing());
2492 unsigned char* buffer
= this->postprocessing_buffer();
2493 for (Fill_list::iterator p
= this->fills_
.begin();
2494 p
!= this->fills_
.end();
2497 std::string
fill_data(parameters
->target().code_fill(p
->length()));
2498 memcpy(buffer
+ p
->section_offset(), fill_data
.data(),
2502 off_t off
= this->first_input_offset_
;
2503 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2504 p
!= this->input_sections_
.end();
2507 off
= align_address(off
, p
->addralign());
2508 p
->write_to_buffer(buffer
+ off
);
2509 off
+= p
->data_size();
2513 // Get the input sections for linker script processing. We leave
2514 // behind the Output_section_data entries. Note that this may be
2515 // slightly incorrect for merge sections. We will leave them behind,
2516 // but it is possible that the script says that they should follow
2517 // some other input sections, as in:
2518 // .rodata { *(.rodata) *(.rodata.cst*) }
2519 // For that matter, we don't handle this correctly:
2520 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2521 // With luck this will never matter.
2524 Output_section::get_input_sections(
2526 const std::string
& fill
,
2527 std::list
<std::pair
<Relobj
*, unsigned int> >* input_sections
)
2529 uint64_t orig_address
= address
;
2531 address
= align_address(address
, this->addralign());
2533 Input_section_list remaining
;
2534 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2535 p
!= this->input_sections_
.end();
2538 if (p
->is_input_section())
2539 input_sections
->push_back(std::make_pair(p
->relobj(), p
->shndx()));
2542 uint64_t aligned_address
= align_address(address
, p
->addralign());
2543 if (aligned_address
!= address
&& !fill
.empty())
2545 section_size_type length
=
2546 convert_to_section_size_type(aligned_address
- address
);
2547 std::string this_fill
;
2548 this_fill
.reserve(length
);
2549 while (this_fill
.length() + fill
.length() <= length
)
2551 if (this_fill
.length() < length
)
2552 this_fill
.append(fill
, 0, length
- this_fill
.length());
2554 Output_section_data
* posd
= new Output_data_const(this_fill
, 0);
2555 remaining
.push_back(Input_section(posd
));
2557 address
= aligned_address
;
2559 remaining
.push_back(*p
);
2561 p
->finalize_data_size();
2562 address
+= p
->data_size();
2566 this->input_sections_
.swap(remaining
);
2567 this->first_input_offset_
= 0;
2569 uint64_t data_size
= address
- orig_address
;
2570 this->set_current_data_size_for_child(data_size
);
2574 // Add an input section from a script.
2577 Output_section::add_input_section_for_script(Relobj
* object
,
2582 if (addralign
> this->addralign_
)
2583 this->addralign_
= addralign
;
2585 off_t offset_in_section
= this->current_data_size_for_child();
2586 off_t aligned_offset_in_section
= align_address(offset_in_section
,
2589 this->set_current_data_size_for_child(aligned_offset_in_section
2592 this->input_sections_
.push_back(Input_section(object
, shndx
,
2593 data_size
, addralign
));
2596 // Print to the map file.
2599 Output_section::do_print_to_mapfile(Mapfile
* mapfile
) const
2601 mapfile
->print_output_section(this);
2603 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2604 p
!= this->input_sections_
.end();
2606 p
->print_to_mapfile(mapfile
);
2609 // Print stats for merge sections to stderr.
2612 Output_section::print_merge_stats()
2614 Input_section_list::iterator p
;
2615 for (p
= this->input_sections_
.begin();
2616 p
!= this->input_sections_
.end();
2618 p
->print_merge_stats(this->name_
);
2621 // Output segment methods.
2623 Output_segment::Output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
2635 is_max_align_known_(false),
2636 are_addresses_set_(false),
2637 is_large_data_segment_(false)
2641 // Add an Output_section to an Output_segment.
2644 Output_segment::add_output_section(Output_section
* os
,
2645 elfcpp::Elf_Word seg_flags
)
2647 gold_assert((os
->flags() & elfcpp::SHF_ALLOC
) != 0);
2648 gold_assert(!this->is_max_align_known_
);
2649 gold_assert(os
->is_large_data_section() == this->is_large_data_segment());
2651 // Update the segment flags.
2652 this->flags_
|= seg_flags
;
2654 Output_segment::Output_data_list
* pdl
;
2655 if (os
->type() == elfcpp::SHT_NOBITS
)
2656 pdl
= &this->output_bss_
;
2658 pdl
= &this->output_data_
;
2660 // So that PT_NOTE segments will work correctly, we need to ensure
2661 // that all SHT_NOTE sections are adjacent. This will normally
2662 // happen automatically, because all the SHT_NOTE input sections
2663 // will wind up in the same output section. However, it is possible
2664 // for multiple SHT_NOTE input sections to have different section
2665 // flags, and thus be in different output sections, but for the
2666 // different section flags to map into the same segment flags and
2667 // thus the same output segment.
2669 // Note that while there may be many input sections in an output
2670 // section, there are normally only a few output sections in an
2671 // output segment. This loop is expected to be fast.
2673 if (os
->type() == elfcpp::SHT_NOTE
&& !pdl
->empty())
2675 Output_segment::Output_data_list::iterator p
= pdl
->end();
2679 if ((*p
)->is_section_type(elfcpp::SHT_NOTE
))
2686 while (p
!= pdl
->begin());
2689 // Similarly, so that PT_TLS segments will work, we need to group
2690 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
2691 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2692 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
2693 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
2694 // and the PT_TLS segment -- we do this grouping only for the
2696 if (this->type_
!= elfcpp::PT_TLS
2697 && (os
->flags() & elfcpp::SHF_TLS
) != 0)
2699 pdl
= &this->output_data_
;
2700 bool nobits
= os
->type() == elfcpp::SHT_NOBITS
;
2701 bool sawtls
= false;
2702 Output_segment::Output_data_list::iterator p
= pdl
->end();
2707 if ((*p
)->is_section_flag_set(elfcpp::SHF_TLS
))
2710 // Put a NOBITS section after the first TLS section.
2711 // Put a PROGBITS section after the first TLS/PROGBITS
2713 insert
= nobits
|| !(*p
)->is_section_type(elfcpp::SHT_NOBITS
);
2717 // If we've gone past the TLS sections, but we've seen a
2718 // TLS section, then we need to insert this section now.
2729 while (p
!= pdl
->begin());
2731 // There are no TLS sections yet; put this one at the requested
2732 // location in the section list.
2735 // For the PT_GNU_RELRO segment, we need to group relro sections,
2736 // and we need to put them before any non-relro sections. Also,
2737 // relro local sections go before relro non-local sections.
2738 if (parameters
->options().relro() && os
->is_relro())
2740 gold_assert(pdl
== &this->output_data_
);
2741 Output_segment::Output_data_list::iterator p
;
2742 for (p
= pdl
->begin(); p
!= pdl
->end(); ++p
)
2744 if (!(*p
)->is_section())
2747 Output_section
* pos
= (*p
)->output_section();
2748 if (!pos
->is_relro()
2749 || (os
->is_relro_local() && !pos
->is_relro_local()))
2757 // Small data sections go at the end of the list of data sections.
2758 // If OS is not small, and there are small sections, we have to
2759 // insert it before the first small section.
2760 if (os
->type() != elfcpp::SHT_NOBITS
2761 && !os
->is_small_section()
2763 && pdl
->back()->is_section()
2764 && pdl
->back()->output_section()->is_small_section())
2766 for (Output_segment::Output_data_list::iterator p
= pdl
->begin();
2770 if ((*p
)->is_section()
2771 && (*p
)->output_section()->is_small_section())
2780 // A small BSS section goes at the start of the BSS sections, after
2781 // other small BSS sections.
2782 if (os
->type() == elfcpp::SHT_NOBITS
&& os
->is_small_section())
2784 for (Output_segment::Output_data_list::iterator p
= pdl
->begin();
2788 if (!(*p
)->is_section()
2789 || !(*p
)->output_section()->is_small_section())
2797 // A large BSS section goes at the end of the BSS sections, which
2798 // means that one that is not large must come before the first large
2800 if (os
->type() == elfcpp::SHT_NOBITS
2801 && !os
->is_large_section()
2803 && pdl
->back()->is_section()
2804 && pdl
->back()->output_section()->is_large_section())
2806 for (Output_segment::Output_data_list::iterator p
= pdl
->begin();
2810 if ((*p
)->is_section()
2811 && (*p
)->output_section()->is_large_section())
2823 // Remove an Output_section from this segment. It is an error if it
2827 Output_segment::remove_output_section(Output_section
* os
)
2829 // We only need this for SHT_PROGBITS.
2830 gold_assert(os
->type() == elfcpp::SHT_PROGBITS
);
2831 for (Output_data_list::iterator p
= this->output_data_
.begin();
2832 p
!= this->output_data_
.end();
2837 this->output_data_
.erase(p
);
2844 // Add an Output_data (which is not an Output_section) to the start of
2848 Output_segment::add_initial_output_data(Output_data
* od
)
2850 gold_assert(!this->is_max_align_known_
);
2851 this->output_data_
.push_front(od
);
2854 // Return whether the first data section is a relro section.
2857 Output_segment::is_first_section_relro() const
2859 return (!this->output_data_
.empty()
2860 && this->output_data_
.front()->is_section()
2861 && this->output_data_
.front()->output_section()->is_relro());
2864 // Return the maximum alignment of the Output_data in Output_segment.
2867 Output_segment::maximum_alignment()
2869 if (!this->is_max_align_known_
)
2873 addralign
= Output_segment::maximum_alignment_list(&this->output_data_
);
2874 if (addralign
> this->max_align_
)
2875 this->max_align_
= addralign
;
2877 addralign
= Output_segment::maximum_alignment_list(&this->output_bss_
);
2878 if (addralign
> this->max_align_
)
2879 this->max_align_
= addralign
;
2881 // If -z relro is in effect, and the first section in this
2882 // segment is a relro section, then the segment must be aligned
2883 // to at least the common page size. This ensures that the
2884 // PT_GNU_RELRO segment will start at a page boundary.
2885 if (this->type_
== elfcpp::PT_LOAD
2886 && parameters
->options().relro()
2887 && this->is_first_section_relro())
2889 addralign
= parameters
->target().common_pagesize();
2890 if (addralign
> this->max_align_
)
2891 this->max_align_
= addralign
;
2894 this->is_max_align_known_
= true;
2897 return this->max_align_
;
2900 // Return the maximum alignment of a list of Output_data.
2903 Output_segment::maximum_alignment_list(const Output_data_list
* pdl
)
2906 for (Output_data_list::const_iterator p
= pdl
->begin();
2910 uint64_t addralign
= (*p
)->addralign();
2911 if (addralign
> ret
)
2917 // Return the number of dynamic relocs applied to this segment.
2920 Output_segment::dynamic_reloc_count() const
2922 return (this->dynamic_reloc_count_list(&this->output_data_
)
2923 + this->dynamic_reloc_count_list(&this->output_bss_
));
2926 // Return the number of dynamic relocs applied to an Output_data_list.
2929 Output_segment::dynamic_reloc_count_list(const Output_data_list
* pdl
) const
2931 unsigned int count
= 0;
2932 for (Output_data_list::const_iterator p
= pdl
->begin();
2935 count
+= (*p
)->dynamic_reloc_count();
2939 // Set the section addresses for an Output_segment. If RESET is true,
2940 // reset the addresses first. ADDR is the address and *POFF is the
2941 // file offset. Set the section indexes starting with *PSHNDX.
2942 // Return the address of the immediately following segment. Update
2943 // *POFF and *PSHNDX.
2946 Output_segment::set_section_addresses(const Layout
* layout
, bool reset
,
2947 uint64_t addr
, off_t
* poff
,
2948 unsigned int* pshndx
)
2950 gold_assert(this->type_
== elfcpp::PT_LOAD
);
2952 if (!reset
&& this->are_addresses_set_
)
2954 gold_assert(this->paddr_
== addr
);
2955 addr
= this->vaddr_
;
2959 this->vaddr_
= addr
;
2960 this->paddr_
= addr
;
2961 this->are_addresses_set_
= true;
2964 bool in_tls
= false;
2966 bool in_relro
= (parameters
->options().relro()
2967 && this->is_first_section_relro());
2969 off_t orig_off
= *poff
;
2970 this->offset_
= orig_off
;
2972 addr
= this->set_section_list_addresses(layout
, reset
, &this->output_data_
,
2973 addr
, poff
, pshndx
, &in_tls
,
2975 this->filesz_
= *poff
- orig_off
;
2979 uint64_t ret
= this->set_section_list_addresses(layout
, reset
,
2982 &in_tls
, &in_relro
);
2984 // If the last section was a TLS section, align upward to the
2985 // alignment of the TLS segment, so that the overall size of the TLS
2986 // segment is aligned.
2989 uint64_t segment_align
= layout
->tls_segment()->maximum_alignment();
2990 *poff
= align_address(*poff
, segment_align
);
2993 // If all the sections were relro sections, align upward to the
2994 // common page size.
2997 uint64_t page_align
= parameters
->target().common_pagesize();
2998 *poff
= align_address(*poff
, page_align
);
3001 this->memsz_
= *poff
- orig_off
;
3003 // Ignore the file offset adjustments made by the BSS Output_data
3010 // Set the addresses and file offsets in a list of Output_data
3014 Output_segment::set_section_list_addresses(const Layout
* layout
, bool reset
,
3015 Output_data_list
* pdl
,
3016 uint64_t addr
, off_t
* poff
,
3017 unsigned int* pshndx
,
3018 bool* in_tls
, bool* in_relro
)
3020 off_t startoff
= *poff
;
3022 off_t off
= startoff
;
3023 for (Output_data_list::iterator p
= pdl
->begin();
3028 (*p
)->reset_address_and_file_offset();
3030 // When using a linker script the section will most likely
3031 // already have an address.
3032 if (!(*p
)->is_address_valid())
3034 uint64_t align
= (*p
)->addralign();
3036 if ((*p
)->is_section_flag_set(elfcpp::SHF_TLS
))
3038 // Give the first TLS section the alignment of the
3039 // entire TLS segment. Otherwise the TLS segment as a
3040 // whole may be misaligned.
3043 Output_segment
* tls_segment
= layout
->tls_segment();
3044 gold_assert(tls_segment
!= NULL
);
3045 uint64_t segment_align
= tls_segment
->maximum_alignment();
3046 gold_assert(segment_align
>= align
);
3047 align
= segment_align
;
3054 // If this is the first section after the TLS segment,
3055 // align it to at least the alignment of the TLS
3056 // segment, so that the size of the overall TLS segment
3060 uint64_t segment_align
=
3061 layout
->tls_segment()->maximum_alignment();
3062 if (segment_align
> align
)
3063 align
= segment_align
;
3069 // If this is a non-relro section after a relro section,
3070 // align it to a common page boundary so that the dynamic
3071 // linker has a page to mark as read-only.
3073 && (!(*p
)->is_section()
3074 || !(*p
)->output_section()->is_relro()))
3076 uint64_t page_align
= parameters
->target().common_pagesize();
3077 if (page_align
> align
)
3082 off
= align_address(off
, align
);
3083 (*p
)->set_address_and_file_offset(addr
+ (off
- startoff
), off
);
3087 // The script may have inserted a skip forward, but it
3088 // better not have moved backward.
3089 gold_assert((*p
)->address() >= addr
+ (off
- startoff
));
3090 off
+= (*p
)->address() - (addr
+ (off
- startoff
));
3091 (*p
)->set_file_offset(off
);
3092 (*p
)->finalize_data_size();
3095 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3096 // section. Such a section does not affect the size of a
3098 if (!(*p
)->is_section_flag_set(elfcpp::SHF_TLS
)
3099 || !(*p
)->is_section_type(elfcpp::SHT_NOBITS
))
3100 off
+= (*p
)->data_size();
3102 if ((*p
)->is_section())
3104 (*p
)->set_out_shndx(*pshndx
);
3110 return addr
+ (off
- startoff
);
3113 // For a non-PT_LOAD segment, set the offset from the sections, if
3117 Output_segment::set_offset()
3119 gold_assert(this->type_
!= elfcpp::PT_LOAD
);
3121 gold_assert(!this->are_addresses_set_
);
3123 if (this->output_data_
.empty() && this->output_bss_
.empty())
3127 this->are_addresses_set_
= true;
3129 this->min_p_align_
= 0;
3135 const Output_data
* first
;
3136 if (this->output_data_
.empty())
3137 first
= this->output_bss_
.front();
3139 first
= this->output_data_
.front();
3140 this->vaddr_
= first
->address();
3141 this->paddr_
= (first
->has_load_address()
3142 ? first
->load_address()
3144 this->are_addresses_set_
= true;
3145 this->offset_
= first
->offset();
3147 if (this->output_data_
.empty())
3151 const Output_data
* last_data
= this->output_data_
.back();
3152 this->filesz_
= (last_data
->address()
3153 + last_data
->data_size()
3157 const Output_data
* last
;
3158 if (this->output_bss_
.empty())
3159 last
= this->output_data_
.back();
3161 last
= this->output_bss_
.back();
3162 this->memsz_
= (last
->address()
3166 // If this is a TLS segment, align the memory size. The code in
3167 // set_section_list ensures that the section after the TLS segment
3168 // is aligned to give us room.
3169 if (this->type_
== elfcpp::PT_TLS
)
3171 uint64_t segment_align
= this->maximum_alignment();
3172 gold_assert(this->vaddr_
== align_address(this->vaddr_
, segment_align
));
3173 this->memsz_
= align_address(this->memsz_
, segment_align
);
3176 // If this is a RELRO segment, align the memory size. The code in
3177 // set_section_list ensures that the section after the RELRO segment
3178 // is aligned to give us room.
3179 if (this->type_
== elfcpp::PT_GNU_RELRO
)
3181 uint64_t page_align
= parameters
->target().common_pagesize();
3182 gold_assert(this->vaddr_
== align_address(this->vaddr_
, page_align
));
3183 this->memsz_
= align_address(this->memsz_
, page_align
);
3187 // Set the TLS offsets of the sections in the PT_TLS segment.
3190 Output_segment::set_tls_offsets()
3192 gold_assert(this->type_
== elfcpp::PT_TLS
);
3194 for (Output_data_list::iterator p
= this->output_data_
.begin();
3195 p
!= this->output_data_
.end();
3197 (*p
)->set_tls_offset(this->vaddr_
);
3199 for (Output_data_list::iterator p
= this->output_bss_
.begin();
3200 p
!= this->output_bss_
.end();
3202 (*p
)->set_tls_offset(this->vaddr_
);
3205 // Return the address of the first section.
3208 Output_segment::first_section_load_address() const
3210 for (Output_data_list::const_iterator p
= this->output_data_
.begin();
3211 p
!= this->output_data_
.end();
3213 if ((*p
)->is_section())
3214 return (*p
)->has_load_address() ? (*p
)->load_address() : (*p
)->address();
3216 for (Output_data_list::const_iterator p
= this->output_bss_
.begin();
3217 p
!= this->output_bss_
.end();
3219 if ((*p
)->is_section())
3220 return (*p
)->has_load_address() ? (*p
)->load_address() : (*p
)->address();
3225 // Return the number of Output_sections in an Output_segment.
3228 Output_segment::output_section_count() const
3230 return (this->output_section_count_list(&this->output_data_
)
3231 + this->output_section_count_list(&this->output_bss_
));
3234 // Return the number of Output_sections in an Output_data_list.
3237 Output_segment::output_section_count_list(const Output_data_list
* pdl
) const
3239 unsigned int count
= 0;
3240 for (Output_data_list::const_iterator p
= pdl
->begin();
3244 if ((*p
)->is_section())
3250 // Return the section attached to the list segment with the lowest
3251 // load address. This is used when handling a PHDRS clause in a
3255 Output_segment::section_with_lowest_load_address() const
3257 Output_section
* found
= NULL
;
3258 uint64_t found_lma
= 0;
3259 this->lowest_load_address_in_list(&this->output_data_
, &found
, &found_lma
);
3261 Output_section
* found_data
= found
;
3262 this->lowest_load_address_in_list(&this->output_bss_
, &found
, &found_lma
);
3263 if (found
!= found_data
&& found_data
!= NULL
)
3265 gold_error(_("nobits section %s may not precede progbits section %s "
3267 found
->name(), found_data
->name());
3274 // Look through a list for a section with a lower load address.
3277 Output_segment::lowest_load_address_in_list(const Output_data_list
* pdl
,
3278 Output_section
** found
,
3279 uint64_t* found_lma
) const
3281 for (Output_data_list::const_iterator p
= pdl
->begin();
3285 if (!(*p
)->is_section())
3287 Output_section
* os
= static_cast<Output_section
*>(*p
);
3288 uint64_t lma
= (os
->has_load_address()
3289 ? os
->load_address()
3291 if (*found
== NULL
|| lma
< *found_lma
)
3299 // Write the segment data into *OPHDR.
3301 template<int size
, bool big_endian
>
3303 Output_segment::write_header(elfcpp::Phdr_write
<size
, big_endian
>* ophdr
)
3305 ophdr
->put_p_type(this->type_
);
3306 ophdr
->put_p_offset(this->offset_
);
3307 ophdr
->put_p_vaddr(this->vaddr_
);
3308 ophdr
->put_p_paddr(this->paddr_
);
3309 ophdr
->put_p_filesz(this->filesz_
);
3310 ophdr
->put_p_memsz(this->memsz_
);
3311 ophdr
->put_p_flags(this->flags_
);
3312 ophdr
->put_p_align(std::max(this->min_p_align_
, this->maximum_alignment()));
3315 // Write the section headers into V.
3317 template<int size
, bool big_endian
>
3319 Output_segment::write_section_headers(const Layout
* layout
,
3320 const Stringpool
* secnamepool
,
3322 unsigned int *pshndx
) const
3324 // Every section that is attached to a segment must be attached to a
3325 // PT_LOAD segment, so we only write out section headers for PT_LOAD
3327 if (this->type_
!= elfcpp::PT_LOAD
)
3330 v
= this->write_section_headers_list
<size
, big_endian
>(layout
, secnamepool
,
3331 &this->output_data_
,
3333 v
= this->write_section_headers_list
<size
, big_endian
>(layout
, secnamepool
,
3339 template<int size
, bool big_endian
>
3341 Output_segment::write_section_headers_list(const Layout
* layout
,
3342 const Stringpool
* secnamepool
,
3343 const Output_data_list
* pdl
,
3345 unsigned int* pshndx
) const
3347 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
3348 for (Output_data_list::const_iterator p
= pdl
->begin();
3352 if ((*p
)->is_section())
3354 const Output_section
* ps
= static_cast<const Output_section
*>(*p
);
3355 gold_assert(*pshndx
== ps
->out_shndx());
3356 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
3357 ps
->write_header(layout
, secnamepool
, &oshdr
);
3365 // Print the output sections to the map file.
3368 Output_segment::print_sections_to_mapfile(Mapfile
* mapfile
) const
3370 if (this->type() != elfcpp::PT_LOAD
)
3372 this->print_section_list_to_mapfile(mapfile
, &this->output_data_
);
3373 this->print_section_list_to_mapfile(mapfile
, &this->output_bss_
);
3376 // Print an output section list to the map file.
3379 Output_segment::print_section_list_to_mapfile(Mapfile
* mapfile
,
3380 const Output_data_list
* pdl
) const
3382 for (Output_data_list::const_iterator p
= pdl
->begin();
3385 (*p
)->print_to_mapfile(mapfile
);
3388 // Output_file methods.
3390 Output_file::Output_file(const char* name
)
3395 map_is_anonymous_(false),
3396 is_temporary_(false)
3400 // Try to open an existing file. Returns false if the file doesn't
3401 // exist, has a size of 0 or can't be mmapped.
3404 Output_file::open_for_modification()
3406 // The name "-" means "stdout".
3407 if (strcmp(this->name_
, "-") == 0)
3410 // Don't bother opening files with a size of zero.
3412 if (::stat(this->name_
, &s
) != 0 || s
.st_size
== 0)
3415 int o
= open_descriptor(-1, this->name_
, O_RDWR
, 0);
3417 gold_fatal(_("%s: open: %s"), this->name_
, strerror(errno
));
3419 this->file_size_
= s
.st_size
;
3421 // If the file can't be mmapped, copying the content to an anonymous
3422 // map will probably negate the performance benefits of incremental
3423 // linking. This could be helped by using views and loading only
3424 // the necessary parts, but this is not supported as of now.
3425 if (!this->map_no_anonymous())
3427 release_descriptor(o
, true);
3429 this->file_size_
= 0;
3436 // Open the output file.
3439 Output_file::open(off_t file_size
)
3441 this->file_size_
= file_size
;
3443 // Unlink the file first; otherwise the open() may fail if the file
3444 // is busy (e.g. it's an executable that's currently being executed).
3446 // However, the linker may be part of a system where a zero-length
3447 // file is created for it to write to, with tight permissions (gcc
3448 // 2.95 did something like this). Unlinking the file would work
3449 // around those permission controls, so we only unlink if the file
3450 // has a non-zero size. We also unlink only regular files to avoid
3451 // trouble with directories/etc.
3453 // If we fail, continue; this command is merely a best-effort attempt
3454 // to improve the odds for open().
3456 // We let the name "-" mean "stdout"
3457 if (!this->is_temporary_
)
3459 if (strcmp(this->name_
, "-") == 0)
3460 this->o_
= STDOUT_FILENO
;
3464 if (::stat(this->name_
, &s
) == 0
3465 && (S_ISREG (s
.st_mode
) || S_ISLNK (s
.st_mode
)))
3468 ::unlink(this->name_
);
3469 else if (!parameters
->options().relocatable())
3471 // If we don't unlink the existing file, add execute
3472 // permission where read permissions already exist
3473 // and where the umask permits.
3474 int mask
= ::umask(0);
3476 s
.st_mode
|= (s
.st_mode
& 0444) >> 2;
3477 ::chmod(this->name_
, s
.st_mode
& ~mask
);
3481 int mode
= parameters
->options().relocatable() ? 0666 : 0777;
3482 int o
= open_descriptor(-1, this->name_
, O_RDWR
| O_CREAT
| O_TRUNC
,
3485 gold_fatal(_("%s: open: %s"), this->name_
, strerror(errno
));
3493 // Resize the output file.
3496 Output_file::resize(off_t file_size
)
3498 // If the mmap is mapping an anonymous memory buffer, this is easy:
3499 // just mremap to the new size. If it's mapping to a file, we want
3500 // to unmap to flush to the file, then remap after growing the file.
3501 if (this->map_is_anonymous_
)
3503 void* base
= ::mremap(this->base_
, this->file_size_
, file_size
,
3505 if (base
== MAP_FAILED
)
3506 gold_fatal(_("%s: mremap: %s"), this->name_
, strerror(errno
));
3507 this->base_
= static_cast<unsigned char*>(base
);
3508 this->file_size_
= file_size
;
3513 this->file_size_
= file_size
;
3514 if (!this->map_no_anonymous())
3515 gold_fatal(_("%s: mmap: %s"), this->name_
, strerror(errno
));
3519 // Map an anonymous block of memory which will later be written to the
3520 // file. Return whether the map succeeded.
3523 Output_file::map_anonymous()
3525 void* base
= ::mmap(NULL
, this->file_size_
, PROT_READ
| PROT_WRITE
,
3526 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
3527 if (base
!= MAP_FAILED
)
3529 this->map_is_anonymous_
= true;
3530 this->base_
= static_cast<unsigned char*>(base
);
3536 // Map the file into memory. Return whether the mapping succeeded.
3539 Output_file::map_no_anonymous()
3541 const int o
= this->o_
;
3543 // If the output file is not a regular file, don't try to mmap it;
3544 // instead, we'll mmap a block of memory (an anonymous buffer), and
3545 // then later write the buffer to the file.
3547 struct stat statbuf
;
3548 if (o
== STDOUT_FILENO
|| o
== STDERR_FILENO
3549 || ::fstat(o
, &statbuf
) != 0
3550 || !S_ISREG(statbuf
.st_mode
)
3551 || this->is_temporary_
)
3554 // Ensure that we have disk space available for the file. If we
3555 // don't do this, it is possible that we will call munmap, close,
3556 // and exit with dirty buffers still in the cache with no assigned
3557 // disk blocks. If the disk is out of space at that point, the
3558 // output file will wind up incomplete, but we will have already
3559 // exited. The alternative to fallocate would be to use fdatasync,
3560 // but that would be a more significant performance hit.
3561 if (::posix_fallocate(o
, 0, this->file_size_
) < 0)
3562 gold_fatal(_("%s: %s"), this->name_
, strerror(errno
));
3564 // Map the file into memory.
3565 base
= ::mmap(NULL
, this->file_size_
, PROT_READ
| PROT_WRITE
,
3568 // The mmap call might fail because of file system issues: the file
3569 // system might not support mmap at all, or it might not support
3570 // mmap with PROT_WRITE.
3571 if (base
== MAP_FAILED
)
3574 this->map_is_anonymous_
= false;
3575 this->base_
= static_cast<unsigned char*>(base
);
3579 // Map the file into memory.
3584 if (this->map_no_anonymous())
3587 // The mmap call might fail because of file system issues: the file
3588 // system might not support mmap at all, or it might not support
3589 // mmap with PROT_WRITE. I'm not sure which errno values we will
3590 // see in all cases, so if the mmap fails for any reason and we
3591 // don't care about file contents, try for an anonymous map.
3592 if (this->map_anonymous())
3595 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
3596 this->name_
, static_cast<unsigned long>(this->file_size_
),
3600 // Unmap the file from memory.
3603 Output_file::unmap()
3605 if (::munmap(this->base_
, this->file_size_
) < 0)
3606 gold_error(_("%s: munmap: %s"), this->name_
, strerror(errno
));
3610 // Close the output file.
3613 Output_file::close()
3615 // If the map isn't file-backed, we need to write it now.
3616 if (this->map_is_anonymous_
&& !this->is_temporary_
)
3618 size_t bytes_to_write
= this->file_size_
;
3620 while (bytes_to_write
> 0)
3622 ssize_t bytes_written
= ::write(this->o_
, this->base_
+ offset
,
3624 if (bytes_written
== 0)
3625 gold_error(_("%s: write: unexpected 0 return-value"), this->name_
);
3626 else if (bytes_written
< 0)
3627 gold_error(_("%s: write: %s"), this->name_
, strerror(errno
));
3630 bytes_to_write
-= bytes_written
;
3631 offset
+= bytes_written
;
3637 // We don't close stdout or stderr
3638 if (this->o_
!= STDOUT_FILENO
3639 && this->o_
!= STDERR_FILENO
3640 && !this->is_temporary_
)
3641 if (::close(this->o_
) < 0)
3642 gold_error(_("%s: close: %s"), this->name_
, strerror(errno
));
3646 // Instantiate the templates we need. We could use the configure
3647 // script to restrict this to only the ones for implemented targets.
3649 #ifdef HAVE_TARGET_32_LITTLE
3652 Output_section::add_input_section
<32, false>(
3653 Sized_relobj
<32, false>* object
,
3655 const char* secname
,
3656 const elfcpp::Shdr
<32, false>& shdr
,
3657 unsigned int reloc_shndx
,
3658 bool have_sections_script
);
3661 #ifdef HAVE_TARGET_32_BIG
3664 Output_section::add_input_section
<32, true>(
3665 Sized_relobj
<32, true>* object
,
3667 const char* secname
,
3668 const elfcpp::Shdr
<32, true>& shdr
,
3669 unsigned int reloc_shndx
,
3670 bool have_sections_script
);
3673 #ifdef HAVE_TARGET_64_LITTLE
3676 Output_section::add_input_section
<64, false>(
3677 Sized_relobj
<64, false>* object
,
3679 const char* secname
,
3680 const elfcpp::Shdr
<64, false>& shdr
,
3681 unsigned int reloc_shndx
,
3682 bool have_sections_script
);
3685 #ifdef HAVE_TARGET_64_BIG
3688 Output_section::add_input_section
<64, true>(
3689 Sized_relobj
<64, true>* object
,
3691 const char* secname
,
3692 const elfcpp::Shdr
<64, true>& shdr
,
3693 unsigned int reloc_shndx
,
3694 bool have_sections_script
);
3697 #ifdef HAVE_TARGET_32_LITTLE
3699 class Output_reloc
<elfcpp::SHT_REL
, false, 32, false>;
3702 #ifdef HAVE_TARGET_32_BIG
3704 class Output_reloc
<elfcpp::SHT_REL
, false, 32, true>;
3707 #ifdef HAVE_TARGET_64_LITTLE
3709 class Output_reloc
<elfcpp::SHT_REL
, false, 64, false>;
3712 #ifdef HAVE_TARGET_64_BIG
3714 class Output_reloc
<elfcpp::SHT_REL
, false, 64, true>;
3717 #ifdef HAVE_TARGET_32_LITTLE
3719 class Output_reloc
<elfcpp::SHT_REL
, true, 32, false>;
3722 #ifdef HAVE_TARGET_32_BIG
3724 class Output_reloc
<elfcpp::SHT_REL
, true, 32, true>;
3727 #ifdef HAVE_TARGET_64_LITTLE
3729 class Output_reloc
<elfcpp::SHT_REL
, true, 64, false>;
3732 #ifdef HAVE_TARGET_64_BIG
3734 class Output_reloc
<elfcpp::SHT_REL
, true, 64, true>;
3737 #ifdef HAVE_TARGET_32_LITTLE
3739 class Output_reloc
<elfcpp::SHT_RELA
, false, 32, false>;
3742 #ifdef HAVE_TARGET_32_BIG
3744 class Output_reloc
<elfcpp::SHT_RELA
, false, 32, true>;
3747 #ifdef HAVE_TARGET_64_LITTLE
3749 class Output_reloc
<elfcpp::SHT_RELA
, false, 64, false>;
3752 #ifdef HAVE_TARGET_64_BIG
3754 class Output_reloc
<elfcpp::SHT_RELA
, false, 64, true>;
3757 #ifdef HAVE_TARGET_32_LITTLE
3759 class Output_reloc
<elfcpp::SHT_RELA
, true, 32, false>;
3762 #ifdef HAVE_TARGET_32_BIG
3764 class Output_reloc
<elfcpp::SHT_RELA
, true, 32, true>;
3767 #ifdef HAVE_TARGET_64_LITTLE
3769 class Output_reloc
<elfcpp::SHT_RELA
, true, 64, false>;
3772 #ifdef HAVE_TARGET_64_BIG
3774 class Output_reloc
<elfcpp::SHT_RELA
, true, 64, true>;
3777 #ifdef HAVE_TARGET_32_LITTLE
3779 class Output_data_reloc
<elfcpp::SHT_REL
, false, 32, false>;
3782 #ifdef HAVE_TARGET_32_BIG
3784 class Output_data_reloc
<elfcpp::SHT_REL
, false, 32, true>;
3787 #ifdef HAVE_TARGET_64_LITTLE
3789 class Output_data_reloc
<elfcpp::SHT_REL
, false, 64, false>;
3792 #ifdef HAVE_TARGET_64_BIG
3794 class Output_data_reloc
<elfcpp::SHT_REL
, false, 64, true>;
3797 #ifdef HAVE_TARGET_32_LITTLE
3799 class Output_data_reloc
<elfcpp::SHT_REL
, true, 32, false>;
3802 #ifdef HAVE_TARGET_32_BIG
3804 class Output_data_reloc
<elfcpp::SHT_REL
, true, 32, true>;
3807 #ifdef HAVE_TARGET_64_LITTLE
3809 class Output_data_reloc
<elfcpp::SHT_REL
, true, 64, false>;
3812 #ifdef HAVE_TARGET_64_BIG
3814 class Output_data_reloc
<elfcpp::SHT_REL
, true, 64, true>;
3817 #ifdef HAVE_TARGET_32_LITTLE
3819 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 32, false>;
3822 #ifdef HAVE_TARGET_32_BIG
3824 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 32, true>;
3827 #ifdef HAVE_TARGET_64_LITTLE
3829 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 64, false>;
3832 #ifdef HAVE_TARGET_64_BIG
3834 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 64, true>;
3837 #ifdef HAVE_TARGET_32_LITTLE
3839 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 32, false>;
3842 #ifdef HAVE_TARGET_32_BIG
3844 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 32, true>;
3847 #ifdef HAVE_TARGET_64_LITTLE
3849 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 64, false>;
3852 #ifdef HAVE_TARGET_64_BIG
3854 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 64, true>;
3857 #ifdef HAVE_TARGET_32_LITTLE
3859 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 32, false>;
3862 #ifdef HAVE_TARGET_32_BIG
3864 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 32, true>;
3867 #ifdef HAVE_TARGET_64_LITTLE
3869 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 64, false>;
3872 #ifdef HAVE_TARGET_64_BIG
3874 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 64, true>;
3877 #ifdef HAVE_TARGET_32_LITTLE
3879 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 32, false>;
3882 #ifdef HAVE_TARGET_32_BIG
3884 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 32, true>;
3887 #ifdef HAVE_TARGET_64_LITTLE
3889 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 64, false>;
3892 #ifdef HAVE_TARGET_64_BIG
3894 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 64, true>;
3897 #ifdef HAVE_TARGET_32_LITTLE
3899 class Output_data_group
<32, false>;
3902 #ifdef HAVE_TARGET_32_BIG
3904 class Output_data_group
<32, true>;
3907 #ifdef HAVE_TARGET_64_LITTLE
3909 class Output_data_group
<64, false>;
3912 #ifdef HAVE_TARGET_64_BIG
3914 class Output_data_group
<64, true>;
3917 #ifdef HAVE_TARGET_32_LITTLE
3919 class Output_data_got
<32, false>;
3922 #ifdef HAVE_TARGET_32_BIG
3924 class Output_data_got
<32, true>;
3927 #ifdef HAVE_TARGET_64_LITTLE
3929 class Output_data_got
<64, false>;
3932 #ifdef HAVE_TARGET_64_BIG
3934 class Output_data_got
<64, true>;
3937 } // End namespace gold.