1 // resolve.cc -- symbol resolution for gold
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
34 // Symbol methods used in this file.
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION. Update the VERSION_ field accordingly.
40 Symbol::override_version(const char* version
)
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_
= version
;
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_
== version
|| this->version_
== NULL
);
62 this->version_
= version
;
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY. Updated the VISIBILITY_ field accordingly.
70 Symbol::override_visibility(elfcpp::STV visibility
)
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
77 if (visibility
!= elfcpp::STV_DEFAULT
)
79 if (this->visibility_
== elfcpp::STV_DEFAULT
)
80 this->visibility_
= visibility
;
81 else if (this->visibility_
> visibility
)
82 this->visibility_
= visibility
;
86 // Override the fields in Symbol.
88 template<int size
, bool big_endian
>
90 Symbol::override_base(const elfcpp::Sym
<size
, big_endian
>& sym
,
91 unsigned int st_shndx
, bool is_ordinary
,
92 Object
* object
, const char* version
)
94 gold_assert(this->source_
== FROM_OBJECT
);
95 this->u_
.from_object
.object
= object
;
96 this->override_version(version
);
97 this->u_
.from_object
.shndx
= st_shndx
;
98 this->is_ordinary_shndx_
= is_ordinary
;
99 this->type_
= sym
.get_st_type();
100 this->binding_
= sym
.get_st_bind();
101 this->override_visibility(sym
.get_st_visibility());
102 this->nonvis_
= sym
.get_st_nonvis();
103 if (object
->is_dynamic())
104 this->in_dyn_
= true;
106 this->in_reg_
= true;
109 // Override the fields in Sized_symbol.
112 template<bool big_endian
>
114 Sized_symbol
<size
>::override(const elfcpp::Sym
<size
, big_endian
>& sym
,
115 unsigned st_shndx
, bool is_ordinary
,
116 Object
* object
, const char* version
)
118 this->override_base(sym
, st_shndx
, is_ordinary
, object
, version
);
119 this->value_
= sym
.get_st_value();
120 this->symsize_
= sym
.get_st_size();
123 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
124 // VERSION. This handles all aliases of TOSYM.
126 template<int size
, bool big_endian
>
128 Symbol_table::override(Sized_symbol
<size
>* tosym
,
129 const elfcpp::Sym
<size
, big_endian
>& fromsym
,
130 unsigned int st_shndx
, bool is_ordinary
,
131 Object
* object
, const char* version
)
133 tosym
->override(fromsym
, st_shndx
, is_ordinary
, object
, version
);
134 if (tosym
->has_alias())
136 Symbol
* sym
= this->weak_aliases_
[tosym
];
137 gold_assert(sym
!= NULL
);
138 Sized_symbol
<size
>* ssym
= this->get_sized_symbol
<size
>(sym
);
141 ssym
->override(fromsym
, st_shndx
, is_ordinary
, object
, version
);
142 sym
= this->weak_aliases_
[ssym
];
143 gold_assert(sym
!= NULL
);
144 ssym
= this->get_sized_symbol
<size
>(sym
);
146 while (ssym
!= tosym
);
150 // The resolve functions build a little code for each symbol.
151 // Bit 0: 0 for global, 1 for weak.
152 // Bit 1: 0 for regular object, 1 for shared object
153 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
154 // This gives us values from 0 to 11.
156 static const int global_or_weak_shift
= 0;
157 static const unsigned int global_flag
= 0 << global_or_weak_shift
;
158 static const unsigned int weak_flag
= 1 << global_or_weak_shift
;
160 static const int regular_or_dynamic_shift
= 1;
161 static const unsigned int regular_flag
= 0 << regular_or_dynamic_shift
;
162 static const unsigned int dynamic_flag
= 1 << regular_or_dynamic_shift
;
164 static const int def_undef_or_common_shift
= 2;
165 static const unsigned int def_flag
= 0 << def_undef_or_common_shift
;
166 static const unsigned int undef_flag
= 1 << def_undef_or_common_shift
;
167 static const unsigned int common_flag
= 2 << def_undef_or_common_shift
;
169 // This convenience function combines all the flags based on facts
173 symbol_to_bits(elfcpp::STB binding
, bool is_dynamic
,
174 unsigned int shndx
, bool is_ordinary
, elfcpp::STT type
)
180 case elfcpp::STB_GLOBAL
:
184 case elfcpp::STB_WEAK
:
188 case elfcpp::STB_LOCAL
:
189 // We should only see externally visible symbols in the symbol
191 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
195 // Any target which wants to handle STB_LOOS, etc., needs to
196 // define a resolve method.
197 gold_error(_("unsupported symbol binding"));
202 bits
|= dynamic_flag
;
204 bits
|= regular_flag
;
208 case elfcpp::SHN_UNDEF
:
212 case elfcpp::SHN_COMMON
:
218 if (type
== elfcpp::STT_COMMON
)
220 else if (!is_ordinary
&& Symbol::is_common_shndx(shndx
))
230 // Resolve a symbol. This is called the second and subsequent times
231 // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
232 // section index for SYM, possibly adjusted for many sections.
233 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
234 // than a special code. ORIG_ST_SHNDX is the original section index,
235 // before any munging because of discarded sections, except that all
236 // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
237 // the version of SYM.
239 template<int size
, bool big_endian
>
241 Symbol_table::resolve(Sized_symbol
<size
>* to
,
242 const elfcpp::Sym
<size
, big_endian
>& sym
,
243 unsigned int st_shndx
, bool is_ordinary
,
244 unsigned int orig_st_shndx
,
245 Object
* object
, const char* version
)
247 if (object
->target()->has_resolve())
249 Sized_target
<size
, big_endian
>* sized_target
;
250 sized_target
= object
->sized_target
<size
, big_endian
>();
251 sized_target
->resolve(to
, sym
, object
, version
);
255 if (!object
->is_dynamic())
257 // Record that we've seen this symbol in a regular object.
260 else if (st_shndx
== elfcpp::SHN_UNDEF
261 && (to
->visibility() == elfcpp::STV_HIDDEN
262 || to
->visibility() == elfcpp::STV_INTERNAL
))
264 // A dynamic object cannot reference a hidden or internal symbol
265 // defined in another object.
266 gold_warning(_("%s symbol '%s' in %s is referenced by DSO %s"),
267 (to
->visibility() == elfcpp::STV_HIDDEN
270 to
->demangled_name().c_str(),
271 to
->object()->name().c_str(),
272 object
->name().c_str());
277 // Record that we've seen this symbol in a dynamic object.
281 // Record if we've seen this symbol in a real ELF object (i.e., the
282 // symbol is referenced from outside the world known to the plugin).
283 if (object
->pluginobj() == NULL
)
284 to
->set_in_real_elf();
286 // If we're processing replacement files, allow new symbols to override
287 // the placeholders from the plugin objects.
288 if (to
->source() == Symbol::FROM_OBJECT
)
290 Pluginobj
* obj
= to
->object()->pluginobj();
292 && parameters
->options().plugins()->in_replacement_phase())
294 this->override(to
, sym
, st_shndx
, is_ordinary
, object
, version
);
299 unsigned int frombits
= symbol_to_bits(sym
.get_st_bind(),
300 object
->is_dynamic(),
301 st_shndx
, is_ordinary
,
304 bool adjust_common_sizes
;
305 if (Symbol_table::should_override(to
, frombits
, object
,
306 &adjust_common_sizes
))
308 typename Sized_symbol
<size
>::Size_type tosize
= to
->symsize();
310 this->override(to
, sym
, st_shndx
, is_ordinary
, object
, version
);
312 if (adjust_common_sizes
&& tosize
> to
->symsize())
313 to
->set_symsize(tosize
);
317 if (adjust_common_sizes
&& sym
.get_st_size() > to
->symsize())
318 to
->set_symsize(sym
.get_st_size());
319 // The ELF ABI says that even for a reference to a symbol we
320 // merge the visibility.
321 to
->override_visibility(sym
.get_st_visibility());
324 // A new weak undefined reference, merging with an old weak
325 // reference, could be a One Definition Rule (ODR) violation --
326 // especially if the types or sizes of the references differ. We'll
327 // store such pairs and look them up later to make sure they
328 // actually refer to the same lines of code. (Note: not all ODR
329 // violations can be found this way, and not everything this finds
330 // is an ODR violation. But it's helpful to warn about.)
332 if (parameters
->options().detect_odr_violations()
333 && sym
.get_st_bind() == elfcpp::STB_WEAK
334 && to
->binding() == elfcpp::STB_WEAK
335 && orig_st_shndx
!= elfcpp::SHN_UNDEF
336 && to
->shndx(&to_is_ordinary
) != elfcpp::SHN_UNDEF
338 && sym
.get_st_size() != 0 // Ignore weird 0-sized symbols.
339 && to
->symsize() != 0
340 && (sym
.get_st_type() != to
->type()
341 || sym
.get_st_size() != to
->symsize())
342 // C does not have a concept of ODR, so we only need to do this
343 // on C++ symbols. These have (mangled) names starting with _Z.
344 && to
->name()[0] == '_' && to
->name()[1] == 'Z')
346 Symbol_location fromloc
347 = { object
, orig_st_shndx
, sym
.get_st_value() };
348 Symbol_location toloc
= { to
->object(), to
->shndx(&to_is_ordinary
),
350 this->candidate_odr_violations_
[to
->name()].insert(fromloc
);
351 this->candidate_odr_violations_
[to
->name()].insert(toloc
);
355 // Handle the core of symbol resolution. This is called with the
356 // existing symbol, TO, and a bitflag describing the new symbol. This
357 // returns true if we should override the existing symbol with the new
358 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
359 // true if we should set the symbol size to the maximum of the TO and
360 // FROM sizes. It handles error conditions.
363 Symbol_table::should_override(const Symbol
* to
, unsigned int frombits
,
364 Object
* object
, bool* adjust_common_sizes
)
366 *adjust_common_sizes
= false;
369 if (to
->source() == Symbol::IS_UNDEFINED
)
370 tobits
= symbol_to_bits(to
->binding(), false, elfcpp::SHN_UNDEF
, true,
372 else if (to
->source() != Symbol::FROM_OBJECT
)
373 tobits
= symbol_to_bits(to
->binding(), false, elfcpp::SHN_ABS
, false,
378 unsigned int shndx
= to
->shndx(&is_ordinary
);
379 tobits
= symbol_to_bits(to
->binding(),
380 to
->object()->is_dynamic(),
386 // FIXME: Warn if either but not both of TO and SYM are STT_TLS.
388 // We use a giant switch table for symbol resolution. This code is
389 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
390 // cases; 3) it is easy to change the handling of a particular case.
391 // The alternative would be a series of conditionals, but it is easy
392 // to get the ordering wrong. This could also be done as a table,
393 // but that is no easier to understand than this large switch
396 // These are the values generated by the bit codes.
399 DEF
= global_flag
| regular_flag
| def_flag
,
400 WEAK_DEF
= weak_flag
| regular_flag
| def_flag
,
401 DYN_DEF
= global_flag
| dynamic_flag
| def_flag
,
402 DYN_WEAK_DEF
= weak_flag
| dynamic_flag
| def_flag
,
403 UNDEF
= global_flag
| regular_flag
| undef_flag
,
404 WEAK_UNDEF
= weak_flag
| regular_flag
| undef_flag
,
405 DYN_UNDEF
= global_flag
| dynamic_flag
| undef_flag
,
406 DYN_WEAK_UNDEF
= weak_flag
| dynamic_flag
| undef_flag
,
407 COMMON
= global_flag
| regular_flag
| common_flag
,
408 WEAK_COMMON
= weak_flag
| regular_flag
| common_flag
,
409 DYN_COMMON
= global_flag
| dynamic_flag
| common_flag
,
410 DYN_WEAK_COMMON
= weak_flag
| dynamic_flag
| common_flag
413 switch (tobits
* 16 + frombits
)
416 // Two definitions of the same symbol.
418 // If either symbol is defined by an object included using
419 // --just-symbols, then don't warn. This is for compatibility
420 // with the GNU linker. FIXME: This is a hack.
421 if ((to
->source() == Symbol::FROM_OBJECT
&& to
->object()->just_symbols())
422 || object
->just_symbols())
425 // FIXME: Do a better job of reporting locations.
426 gold_error(_("%s: multiple definition of %s"),
427 object
!= NULL
? object
->name().c_str() : _("command line"),
428 to
->demangled_name().c_str());
429 gold_error(_("%s: previous definition here"),
430 (to
->source() == Symbol::FROM_OBJECT
431 ? to
->object()->name().c_str()
432 : _("command line")));
435 case WEAK_DEF
* 16 + DEF
:
436 // We've seen a weak definition, and now we see a strong
437 // definition. In the original SVR4 linker, this was treated as
438 // a multiple definition error. In the Solaris linker and the
439 // GNU linker, a weak definition followed by a regular
440 // definition causes the weak definition to be overridden. We
441 // are currently compatible with the GNU linker. In the future
442 // we should add a target specific option to change this.
446 case DYN_DEF
* 16 + DEF
:
447 case DYN_WEAK_DEF
* 16 + DEF
:
448 // We've seen a definition in a dynamic object, and now we see a
449 // definition in a regular object. The definition in the
450 // regular object overrides the definition in the dynamic
454 case UNDEF
* 16 + DEF
:
455 case WEAK_UNDEF
* 16 + DEF
:
456 case DYN_UNDEF
* 16 + DEF
:
457 case DYN_WEAK_UNDEF
* 16 + DEF
:
458 // We've seen an undefined reference, and now we see a
459 // definition. We use the definition.
462 case COMMON
* 16 + DEF
:
463 case WEAK_COMMON
* 16 + DEF
:
464 case DYN_COMMON
* 16 + DEF
:
465 case DYN_WEAK_COMMON
* 16 + DEF
:
466 // We've seen a common symbol and now we see a definition. The
467 // definition overrides. FIXME: We should optionally issue, version a
471 case DEF
* 16 + WEAK_DEF
:
472 case WEAK_DEF
* 16 + WEAK_DEF
:
473 // We've seen a definition and now we see a weak definition. We
474 // ignore the new weak definition.
477 case DYN_DEF
* 16 + WEAK_DEF
:
478 case DYN_WEAK_DEF
* 16 + WEAK_DEF
:
479 // We've seen a dynamic definition and now we see a regular weak
480 // definition. The regular weak definition overrides.
483 case UNDEF
* 16 + WEAK_DEF
:
484 case WEAK_UNDEF
* 16 + WEAK_DEF
:
485 case DYN_UNDEF
* 16 + WEAK_DEF
:
486 case DYN_WEAK_UNDEF
* 16 + WEAK_DEF
:
487 // A weak definition of a currently undefined symbol.
490 case COMMON
* 16 + WEAK_DEF
:
491 case WEAK_COMMON
* 16 + WEAK_DEF
:
492 // A weak definition does not override a common definition.
495 case DYN_COMMON
* 16 + WEAK_DEF
:
496 case DYN_WEAK_COMMON
* 16 + WEAK_DEF
:
497 // A weak definition does override a definition in a dynamic
498 // object. FIXME: We should optionally issue a warning.
501 case DEF
* 16 + DYN_DEF
:
502 case WEAK_DEF
* 16 + DYN_DEF
:
503 case DYN_DEF
* 16 + DYN_DEF
:
504 case DYN_WEAK_DEF
* 16 + DYN_DEF
:
505 // Ignore a dynamic definition if we already have a definition.
508 case UNDEF
* 16 + DYN_DEF
:
509 case WEAK_UNDEF
* 16 + DYN_DEF
:
510 case DYN_UNDEF
* 16 + DYN_DEF
:
511 case DYN_WEAK_UNDEF
* 16 + DYN_DEF
:
512 // Use a dynamic definition if we have a reference.
515 case COMMON
* 16 + DYN_DEF
:
516 case WEAK_COMMON
* 16 + DYN_DEF
:
517 case DYN_COMMON
* 16 + DYN_DEF
:
518 case DYN_WEAK_COMMON
* 16 + DYN_DEF
:
519 // Ignore a dynamic definition if we already have a common
523 case DEF
* 16 + DYN_WEAK_DEF
:
524 case WEAK_DEF
* 16 + DYN_WEAK_DEF
:
525 case DYN_DEF
* 16 + DYN_WEAK_DEF
:
526 case DYN_WEAK_DEF
* 16 + DYN_WEAK_DEF
:
527 // Ignore a weak dynamic definition if we already have a
531 case UNDEF
* 16 + DYN_WEAK_DEF
:
532 case WEAK_UNDEF
* 16 + DYN_WEAK_DEF
:
533 case DYN_UNDEF
* 16 + DYN_WEAK_DEF
:
534 case DYN_WEAK_UNDEF
* 16 + DYN_WEAK_DEF
:
535 // Use a weak dynamic definition if we have a reference.
538 case COMMON
* 16 + DYN_WEAK_DEF
:
539 case WEAK_COMMON
* 16 + DYN_WEAK_DEF
:
540 case DYN_COMMON
* 16 + DYN_WEAK_DEF
:
541 case DYN_WEAK_COMMON
* 16 + DYN_WEAK_DEF
:
542 // Ignore a weak dynamic definition if we already have a common
546 case DEF
* 16 + UNDEF
:
547 case WEAK_DEF
* 16 + UNDEF
:
548 case DYN_DEF
* 16 + UNDEF
:
549 case DYN_WEAK_DEF
* 16 + UNDEF
:
550 case UNDEF
* 16 + UNDEF
:
551 // A new undefined reference tells us nothing.
554 case WEAK_UNDEF
* 16 + UNDEF
:
555 case DYN_UNDEF
* 16 + UNDEF
:
556 case DYN_WEAK_UNDEF
* 16 + UNDEF
:
557 // A strong undef overrides a dynamic or weak undef.
560 case COMMON
* 16 + UNDEF
:
561 case WEAK_COMMON
* 16 + UNDEF
:
562 case DYN_COMMON
* 16 + UNDEF
:
563 case DYN_WEAK_COMMON
* 16 + UNDEF
:
564 // A new undefined reference tells us nothing.
567 case DEF
* 16 + WEAK_UNDEF
:
568 case WEAK_DEF
* 16 + WEAK_UNDEF
:
569 case DYN_DEF
* 16 + WEAK_UNDEF
:
570 case DYN_WEAK_DEF
* 16 + WEAK_UNDEF
:
571 case UNDEF
* 16 + WEAK_UNDEF
:
572 case WEAK_UNDEF
* 16 + WEAK_UNDEF
:
573 case DYN_UNDEF
* 16 + WEAK_UNDEF
:
574 case DYN_WEAK_UNDEF
* 16 + WEAK_UNDEF
:
575 case COMMON
* 16 + WEAK_UNDEF
:
576 case WEAK_COMMON
* 16 + WEAK_UNDEF
:
577 case DYN_COMMON
* 16 + WEAK_UNDEF
:
578 case DYN_WEAK_COMMON
* 16 + WEAK_UNDEF
:
579 // A new weak undefined reference tells us nothing.
582 case DEF
* 16 + DYN_UNDEF
:
583 case WEAK_DEF
* 16 + DYN_UNDEF
:
584 case DYN_DEF
* 16 + DYN_UNDEF
:
585 case DYN_WEAK_DEF
* 16 + DYN_UNDEF
:
586 case UNDEF
* 16 + DYN_UNDEF
:
587 case WEAK_UNDEF
* 16 + DYN_UNDEF
:
588 case DYN_UNDEF
* 16 + DYN_UNDEF
:
589 case DYN_WEAK_UNDEF
* 16 + DYN_UNDEF
:
590 case COMMON
* 16 + DYN_UNDEF
:
591 case WEAK_COMMON
* 16 + DYN_UNDEF
:
592 case DYN_COMMON
* 16 + DYN_UNDEF
:
593 case DYN_WEAK_COMMON
* 16 + DYN_UNDEF
:
594 // A new dynamic undefined reference tells us nothing.
597 case DEF
* 16 + DYN_WEAK_UNDEF
:
598 case WEAK_DEF
* 16 + DYN_WEAK_UNDEF
:
599 case DYN_DEF
* 16 + DYN_WEAK_UNDEF
:
600 case DYN_WEAK_DEF
* 16 + DYN_WEAK_UNDEF
:
601 case UNDEF
* 16 + DYN_WEAK_UNDEF
:
602 case WEAK_UNDEF
* 16 + DYN_WEAK_UNDEF
:
603 case DYN_UNDEF
* 16 + DYN_WEAK_UNDEF
:
604 case DYN_WEAK_UNDEF
* 16 + DYN_WEAK_UNDEF
:
605 case COMMON
* 16 + DYN_WEAK_UNDEF
:
606 case WEAK_COMMON
* 16 + DYN_WEAK_UNDEF
:
607 case DYN_COMMON
* 16 + DYN_WEAK_UNDEF
:
608 case DYN_WEAK_COMMON
* 16 + DYN_WEAK_UNDEF
:
609 // A new weak dynamic undefined reference tells us nothing.
612 case DEF
* 16 + COMMON
:
613 // A common symbol does not override a definition.
616 case WEAK_DEF
* 16 + COMMON
:
617 case DYN_DEF
* 16 + COMMON
:
618 case DYN_WEAK_DEF
* 16 + COMMON
:
619 // A common symbol does override a weak definition or a dynamic
623 case UNDEF
* 16 + COMMON
:
624 case WEAK_UNDEF
* 16 + COMMON
:
625 case DYN_UNDEF
* 16 + COMMON
:
626 case DYN_WEAK_UNDEF
* 16 + COMMON
:
627 // A common symbol is a definition for a reference.
630 case COMMON
* 16 + COMMON
:
631 // Set the size to the maximum.
632 *adjust_common_sizes
= true;
635 case WEAK_COMMON
* 16 + COMMON
:
636 // I'm not sure just what a weak common symbol means, but
637 // presumably it can be overridden by a regular common symbol.
640 case DYN_COMMON
* 16 + COMMON
:
641 case DYN_WEAK_COMMON
* 16 + COMMON
:
642 // Use the real common symbol, but adjust the size if necessary.
643 *adjust_common_sizes
= true;
646 case DEF
* 16 + WEAK_COMMON
:
647 case WEAK_DEF
* 16 + WEAK_COMMON
:
648 case DYN_DEF
* 16 + WEAK_COMMON
:
649 case DYN_WEAK_DEF
* 16 + WEAK_COMMON
:
650 // Whatever a weak common symbol is, it won't override a
654 case UNDEF
* 16 + WEAK_COMMON
:
655 case WEAK_UNDEF
* 16 + WEAK_COMMON
:
656 case DYN_UNDEF
* 16 + WEAK_COMMON
:
657 case DYN_WEAK_UNDEF
* 16 + WEAK_COMMON
:
658 // A weak common symbol is better than an undefined symbol.
661 case COMMON
* 16 + WEAK_COMMON
:
662 case WEAK_COMMON
* 16 + WEAK_COMMON
:
663 case DYN_COMMON
* 16 + WEAK_COMMON
:
664 case DYN_WEAK_COMMON
* 16 + WEAK_COMMON
:
665 // Ignore a weak common symbol in the presence of a real common
669 case DEF
* 16 + DYN_COMMON
:
670 case WEAK_DEF
* 16 + DYN_COMMON
:
671 case DYN_DEF
* 16 + DYN_COMMON
:
672 case DYN_WEAK_DEF
* 16 + DYN_COMMON
:
673 // Ignore a dynamic common symbol in the presence of a
677 case UNDEF
* 16 + DYN_COMMON
:
678 case WEAK_UNDEF
* 16 + DYN_COMMON
:
679 case DYN_UNDEF
* 16 + DYN_COMMON
:
680 case DYN_WEAK_UNDEF
* 16 + DYN_COMMON
:
681 // A dynamic common symbol is a definition of sorts.
684 case COMMON
* 16 + DYN_COMMON
:
685 case WEAK_COMMON
* 16 + DYN_COMMON
:
686 case DYN_COMMON
* 16 + DYN_COMMON
:
687 case DYN_WEAK_COMMON
* 16 + DYN_COMMON
:
688 // Set the size to the maximum.
689 *adjust_common_sizes
= true;
692 case DEF
* 16 + DYN_WEAK_COMMON
:
693 case WEAK_DEF
* 16 + DYN_WEAK_COMMON
:
694 case DYN_DEF
* 16 + DYN_WEAK_COMMON
:
695 case DYN_WEAK_DEF
* 16 + DYN_WEAK_COMMON
:
696 // A common symbol is ignored in the face of a definition.
699 case UNDEF
* 16 + DYN_WEAK_COMMON
:
700 case WEAK_UNDEF
* 16 + DYN_WEAK_COMMON
:
701 case DYN_UNDEF
* 16 + DYN_WEAK_COMMON
:
702 case DYN_WEAK_UNDEF
* 16 + DYN_WEAK_COMMON
:
703 // I guess a weak common symbol is better than a definition.
706 case COMMON
* 16 + DYN_WEAK_COMMON
:
707 case WEAK_COMMON
* 16 + DYN_WEAK_COMMON
:
708 case DYN_COMMON
* 16 + DYN_WEAK_COMMON
:
709 case DYN_WEAK_COMMON
* 16 + DYN_WEAK_COMMON
:
710 // Set the size to the maximum.
711 *adjust_common_sizes
= true;
719 // A special case of should_override which is only called for a strong
720 // defined symbol from a regular object file. This is used when
721 // defining special symbols.
724 Symbol_table::should_override_with_special(const Symbol
* to
)
726 bool adjust_common_sizes
;
727 unsigned int frombits
= global_flag
| regular_flag
| def_flag
;
728 bool ret
= Symbol_table::should_override(to
, frombits
, NULL
,
729 &adjust_common_sizes
);
730 gold_assert(!adjust_common_sizes
);
734 // Override symbol base with a special symbol.
737 Symbol::override_base_with_special(const Symbol
* from
)
739 gold_assert(this->name_
== from
->name_
|| this->has_alias());
741 this->source_
= from
->source_
;
742 switch (from
->source_
)
745 this->u_
.from_object
= from
->u_
.from_object
;
748 this->u_
.in_output_data
= from
->u_
.in_output_data
;
750 case IN_OUTPUT_SEGMENT
:
751 this->u_
.in_output_segment
= from
->u_
.in_output_segment
;
761 this->override_version(from
->version_
);
762 this->type_
= from
->type_
;
763 this->binding_
= from
->binding_
;
764 this->override_visibility(from
->visibility_
);
765 this->nonvis_
= from
->nonvis_
;
767 // Special symbols are always considered to be regular symbols.
768 this->in_reg_
= true;
770 if (from
->needs_dynsym_entry_
)
771 this->needs_dynsym_entry_
= true;
772 if (from
->needs_dynsym_value_
)
773 this->needs_dynsym_value_
= true;
775 // We shouldn't see these flags. If we do, we need to handle them
777 gold_assert(!from
->is_target_special_
|| this->is_target_special_
);
778 gold_assert(!from
->is_forwarder_
);
779 gold_assert(!from
->has_plt_offset_
);
780 gold_assert(!from
->has_warning_
);
781 gold_assert(!from
->is_copied_from_dynobj_
);
782 gold_assert(!from
->is_forced_local_
);
785 // Override a symbol with a special symbol.
789 Sized_symbol
<size
>::override_with_special(const Sized_symbol
<size
>* from
)
791 this->override_base_with_special(from
);
792 this->value_
= from
->value_
;
793 this->symsize_
= from
->symsize_
;
796 // Override TOSYM with the special symbol FROMSYM. This handles all
801 Symbol_table::override_with_special(Sized_symbol
<size
>* tosym
,
802 const Sized_symbol
<size
>* fromsym
)
804 tosym
->override_with_special(fromsym
);
805 if (tosym
->has_alias())
807 Symbol
* sym
= this->weak_aliases_
[tosym
];
808 gold_assert(sym
!= NULL
);
809 Sized_symbol
<size
>* ssym
= this->get_sized_symbol
<size
>(sym
);
812 ssym
->override_with_special(fromsym
);
813 sym
= this->weak_aliases_
[ssym
];
814 gold_assert(sym
!= NULL
);
815 ssym
= this->get_sized_symbol
<size
>(sym
);
817 while (ssym
!= tosym
);
819 if (tosym
->binding() == elfcpp::STB_LOCAL
820 || ((tosym
->visibility() == elfcpp::STV_HIDDEN
821 || tosym
->visibility() == elfcpp::STV_INTERNAL
)
822 && (tosym
->binding() == elfcpp::STB_GLOBAL
823 || tosym
->binding() == elfcpp::STB_WEAK
)
824 && !parameters
->options().relocatable()))
825 this->force_local(tosym
);
828 // Instantiate the templates we need. We could use the configure
829 // script to restrict this to only the ones needed for implemented
832 #ifdef HAVE_TARGET_32_LITTLE
835 Symbol_table::resolve
<32, false>(
836 Sized_symbol
<32>* to
,
837 const elfcpp::Sym
<32, false>& sym
,
838 unsigned int st_shndx
,
840 unsigned int orig_st_shndx
,
842 const char* version
);
845 #ifdef HAVE_TARGET_32_BIG
848 Symbol_table::resolve
<32, true>(
849 Sized_symbol
<32>* to
,
850 const elfcpp::Sym
<32, true>& sym
,
851 unsigned int st_shndx
,
853 unsigned int orig_st_shndx
,
855 const char* version
);
858 #ifdef HAVE_TARGET_64_LITTLE
861 Symbol_table::resolve
<64, false>(
862 Sized_symbol
<64>* to
,
863 const elfcpp::Sym
<64, false>& sym
,
864 unsigned int st_shndx
,
866 unsigned int orig_st_shndx
,
868 const char* version
);
871 #ifdef HAVE_TARGET_64_BIG
874 Symbol_table::resolve
<64, true>(
875 Sized_symbol
<64>* to
,
876 const elfcpp::Sym
<64, true>& sym
,
877 unsigned int st_shndx
,
879 unsigned int orig_st_shndx
,
881 const char* version
);
884 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
887 Symbol_table::override_with_special
<32>(Sized_symbol
<32>*,
888 const Sized_symbol
<32>*);
891 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
894 Symbol_table::override_with_special
<64>(Sized_symbol
<64>*,
895 const Sized_symbol
<64>*);
898 } // End namespace gold.