1 // symtab.cc -- the gold symbol table
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
35 #include "dwarf_reader.h"
39 #include "workqueue.h"
43 #include "incremental.h"
50 // Initialize fields in Symbol. This initializes everything except u_
54 Symbol::init_fields(const char* name
, const char* version
,
55 elfcpp::STT type
, elfcpp::STB binding
,
56 elfcpp::STV visibility
, unsigned char nonvis
)
59 this->version_
= version
;
60 this->symtab_index_
= 0;
61 this->dynsym_index_
= 0;
62 this->got_offsets_
.init();
63 this->plt_offset_
= -1U;
65 this->binding_
= binding
;
66 this->visibility_
= visibility
;
67 this->nonvis_
= nonvis
;
68 this->is_def_
= false;
69 this->is_forwarder_
= false;
70 this->has_alias_
= false;
71 this->needs_dynsym_entry_
= false;
72 this->in_reg_
= false;
73 this->in_dyn_
= false;
74 this->has_warning_
= false;
75 this->is_copied_from_dynobj_
= false;
76 this->is_forced_local_
= false;
77 this->is_ordinary_shndx_
= false;
78 this->in_real_elf_
= false;
79 this->is_defined_in_discarded_section_
= false;
80 this->undef_binding_set_
= false;
81 this->undef_binding_weak_
= false;
82 this->is_predefined_
= false;
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
89 demangle(const char* name
)
91 if (!parameters
->options().do_demangle())
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name
= cplus_demangle(name
, DMGL_ANSI
| DMGL_PARAMS
);
97 if (demangled_name
== NULL
)
100 std::string
retval(demangled_name
);
101 free(demangled_name
);
106 Symbol::demangled_name() const
108 return demangle(this->name());
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
113 template<int size
, bool big_endian
>
115 Symbol::init_base_object(const char* name
, const char* version
, Object
* object
,
116 const elfcpp::Sym
<size
, big_endian
>& sym
,
117 unsigned int st_shndx
, bool is_ordinary
)
119 this->init_fields(name
, version
, sym
.get_st_type(), sym
.get_st_bind(),
120 sym
.get_st_visibility(), sym
.get_st_nonvis());
121 this->u_
.from_object
.object
= object
;
122 this->u_
.from_object
.shndx
= st_shndx
;
123 this->is_ordinary_shndx_
= is_ordinary
;
124 this->source_
= FROM_OBJECT
;
125 this->in_reg_
= !object
->is_dynamic();
126 this->in_dyn_
= object
->is_dynamic();
127 this->in_real_elf_
= object
->pluginobj() == NULL
;
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
134 Symbol::init_base_output_data(const char* name
, const char* version
,
135 Output_data
* od
, elfcpp::STT type
,
136 elfcpp::STB binding
, elfcpp::STV visibility
,
137 unsigned char nonvis
, bool offset_is_from_end
,
140 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
141 this->u_
.in_output_data
.output_data
= od
;
142 this->u_
.in_output_data
.offset_is_from_end
= offset_is_from_end
;
143 this->source_
= IN_OUTPUT_DATA
;
144 this->in_reg_
= true;
145 this->in_real_elf_
= true;
146 this->is_predefined_
= is_predefined
;
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
153 Symbol::init_base_output_segment(const char* name
, const char* version
,
154 Output_segment
* os
, elfcpp::STT type
,
155 elfcpp::STB binding
, elfcpp::STV visibility
,
156 unsigned char nonvis
,
157 Segment_offset_base offset_base
,
160 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
161 this->u_
.in_output_segment
.output_segment
= os
;
162 this->u_
.in_output_segment
.offset_base
= offset_base
;
163 this->source_
= IN_OUTPUT_SEGMENT
;
164 this->in_reg_
= true;
165 this->in_real_elf_
= true;
166 this->is_predefined_
= is_predefined
;
169 // Initialize the fields in the base class Symbol for a symbol defined
173 Symbol::init_base_constant(const char* name
, const char* version
,
174 elfcpp::STT type
, elfcpp::STB binding
,
175 elfcpp::STV visibility
, unsigned char nonvis
,
178 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
179 this->source_
= IS_CONSTANT
;
180 this->in_reg_
= true;
181 this->in_real_elf_
= true;
182 this->is_predefined_
= is_predefined
;
185 // Initialize the fields in the base class Symbol for an undefined
189 Symbol::init_base_undefined(const char* name
, const char* version
,
190 elfcpp::STT type
, elfcpp::STB binding
,
191 elfcpp::STV visibility
, unsigned char nonvis
)
193 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
194 this->dynsym_index_
= -1U;
195 this->source_
= IS_UNDEFINED
;
196 this->in_reg_
= true;
197 this->in_real_elf_
= true;
200 // Allocate a common symbol in the base.
203 Symbol::allocate_base_common(Output_data
* od
)
205 gold_assert(this->is_common());
206 this->source_
= IN_OUTPUT_DATA
;
207 this->u_
.in_output_data
.output_data
= od
;
208 this->u_
.in_output_data
.offset_is_from_end
= false;
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
214 template<bool big_endian
>
216 Sized_symbol
<size
>::init_object(const char* name
, const char* version
,
218 const elfcpp::Sym
<size
, big_endian
>& sym
,
219 unsigned int st_shndx
, bool is_ordinary
)
221 this->init_base_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
222 this->value_
= sym
.get_st_value();
223 this->symsize_
= sym
.get_st_size();
226 // Initialize the fields in Sized_symbol for a symbol defined in an
231 Sized_symbol
<size
>::init_output_data(const char* name
, const char* version
,
232 Output_data
* od
, Value_type value
,
233 Size_type symsize
, elfcpp::STT type
,
235 elfcpp::STV visibility
,
236 unsigned char nonvis
,
237 bool offset_is_from_end
,
240 this->init_base_output_data(name
, version
, od
, type
, binding
, visibility
,
241 nonvis
, offset_is_from_end
, is_predefined
);
242 this->value_
= value
;
243 this->symsize_
= symsize
;
246 // Initialize the fields in Sized_symbol for a symbol defined in an
251 Sized_symbol
<size
>::init_output_segment(const char* name
, const char* version
,
252 Output_segment
* os
, Value_type value
,
253 Size_type symsize
, elfcpp::STT type
,
255 elfcpp::STV visibility
,
256 unsigned char nonvis
,
257 Segment_offset_base offset_base
,
260 this->init_base_output_segment(name
, version
, os
, type
, binding
, visibility
,
261 nonvis
, offset_base
, is_predefined
);
262 this->value_
= value
;
263 this->symsize_
= symsize
;
266 // Initialize the fields in Sized_symbol for a symbol defined as a
271 Sized_symbol
<size
>::init_constant(const char* name
, const char* version
,
272 Value_type value
, Size_type symsize
,
273 elfcpp::STT type
, elfcpp::STB binding
,
274 elfcpp::STV visibility
, unsigned char nonvis
,
277 this->init_base_constant(name
, version
, type
, binding
, visibility
, nonvis
,
279 this->value_
= value
;
280 this->symsize_
= symsize
;
283 // Initialize the fields in Sized_symbol for an undefined symbol.
287 Sized_symbol
<size
>::init_undefined(const char* name
, const char* version
,
288 elfcpp::STT type
, elfcpp::STB binding
,
289 elfcpp::STV visibility
, unsigned char nonvis
)
291 this->init_base_undefined(name
, version
, type
, binding
, visibility
, nonvis
);
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
300 Symbol::versioned_name() const
302 gold_assert(this->version_
!= NULL
);
303 std::string ret
= this->name_
;
307 ret
+= this->version_
;
311 // Return true if SHNDX represents a common symbol.
314 Symbol::is_common_shndx(unsigned int shndx
)
316 return (shndx
== elfcpp::SHN_COMMON
317 || shndx
== parameters
->target().small_common_shndx()
318 || shndx
== parameters
->target().large_common_shndx());
321 // Allocate a common symbol.
325 Sized_symbol
<size
>::allocate_common(Output_data
* od
, Value_type value
)
327 this->allocate_base_common(od
);
328 this->value_
= value
;
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
334 // Return true if this symbol should be added to the dynamic symbol
338 Symbol::should_add_dynsym_entry(Symbol_table
* symtab
) const
340 // If the symbol is only present on plugin files, the plugin decided we
342 if (!this->in_real_elf())
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters
->options().gc_sections()
353 && !parameters
->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
357 Relobj
* relobj
= static_cast<Relobj
*>(this->object());
359 unsigned int shndx
= this->shndx(&is_ordinary
);
360 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
361 && !relobj
->is_section_included(shndx
)
362 && !symtab
->is_section_folded(relobj
, shndx
))
366 // If the symbol was forced local in a version script, do not add it.
367 if (this->is_forced_local())
370 // If the symbol was forced dynamic in a --dynamic-list file, add it.
371 if (parameters
->options().in_dynamic_list(this->name()))
374 // If dynamic-list-data was specified, add any STT_OBJECT.
375 if (parameters
->options().dynamic_list_data()
376 && !this->is_from_dynobj()
377 && this->type() == elfcpp::STT_OBJECT
)
380 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
381 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
382 if ((parameters
->options().dynamic_list_cpp_new()
383 || parameters
->options().dynamic_list_cpp_typeinfo())
384 && !this->is_from_dynobj())
386 // TODO(csilvers): We could probably figure out if we're an operator
387 // new/delete or typeinfo without the need to demangle.
388 char* demangled_name
= cplus_demangle(this->name(),
389 DMGL_ANSI
| DMGL_PARAMS
);
390 if (demangled_name
== NULL
)
392 // Not a C++ symbol, so it can't satisfy these flags
394 else if (parameters
->options().dynamic_list_cpp_new()
395 && (strprefix(demangled_name
, "operator new")
396 || strprefix(demangled_name
, "operator delete")))
398 free(demangled_name
);
401 else if (parameters
->options().dynamic_list_cpp_typeinfo()
402 && (strprefix(demangled_name
, "typeinfo name for")
403 || strprefix(demangled_name
, "typeinfo for")))
405 free(demangled_name
);
409 free(demangled_name
);
412 // If exporting all symbols or building a shared library,
413 // and the symbol is defined in a regular object and is
414 // externally visible, we need to add it.
415 if ((parameters
->options().export_dynamic() || parameters
->options().shared())
416 && !this->is_from_dynobj()
417 && !this->is_undefined()
418 && this->is_externally_visible())
424 // Return true if the final value of this symbol is known at link
428 Symbol::final_value_is_known() const
430 // If we are not generating an executable, then no final values are
431 // known, since they will change at runtime.
432 if (parameters
->options().output_is_position_independent()
433 || parameters
->options().relocatable())
436 // If the symbol is not from an object file, and is not undefined,
437 // then it is defined, and known.
438 if (this->source_
!= FROM_OBJECT
)
440 if (this->source_
!= IS_UNDEFINED
)
445 // If the symbol is from a dynamic object, then the final value
447 if (this->object()->is_dynamic())
450 // If the symbol is not undefined (it is defined or common),
451 // then the final value is known.
452 if (!this->is_undefined())
456 // If the symbol is undefined, then whether the final value is known
457 // depends on whether we are doing a static link. If we are doing a
458 // dynamic link, then the final value could be filled in at runtime.
459 // This could reasonably be the case for a weak undefined symbol.
460 return parameters
->doing_static_link();
463 // Return the output section where this symbol is defined.
466 Symbol::output_section() const
468 switch (this->source_
)
472 unsigned int shndx
= this->u_
.from_object
.shndx
;
473 if (shndx
!= elfcpp::SHN_UNDEF
&& this->is_ordinary_shndx_
)
475 gold_assert(!this->u_
.from_object
.object
->is_dynamic());
476 gold_assert(this->u_
.from_object
.object
->pluginobj() == NULL
);
477 Relobj
* relobj
= static_cast<Relobj
*>(this->u_
.from_object
.object
);
478 return relobj
->output_section(shndx
);
484 return this->u_
.in_output_data
.output_data
->output_section();
486 case IN_OUTPUT_SEGMENT
:
496 // Set the symbol's output section. This is used for symbols defined
497 // in scripts. This should only be called after the symbol table has
501 Symbol::set_output_section(Output_section
* os
)
503 switch (this->source_
)
507 gold_assert(this->output_section() == os
);
510 this->source_
= IN_OUTPUT_DATA
;
511 this->u_
.in_output_data
.output_data
= os
;
512 this->u_
.in_output_data
.offset_is_from_end
= false;
514 case IN_OUTPUT_SEGMENT
:
521 // Class Symbol_table.
523 Symbol_table::Symbol_table(unsigned int count
,
524 const Version_script_info
& version_script
)
525 : saw_undefined_(0), offset_(0), table_(count
), namepool_(),
526 forwarders_(), commons_(), tls_commons_(), small_commons_(),
527 large_commons_(), forced_locals_(), warnings_(),
528 version_script_(version_script
), gc_(NULL
), icf_(NULL
)
530 namepool_
.reserve(count
);
533 Symbol_table::~Symbol_table()
537 // The symbol table key equality function. This is called with
541 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key
& k1
,
542 const Symbol_table_key
& k2
) const
544 return k1
.first
== k2
.first
&& k1
.second
== k2
.second
;
548 Symbol_table::is_section_folded(Object
* obj
, unsigned int shndx
) const
550 return (parameters
->options().icf_enabled()
551 && this->icf_
->is_section_folded(obj
, shndx
));
554 // For symbols that have been listed with -u option, add them to the
555 // work list to avoid gc'ing them.
558 Symbol_table::gc_mark_undef_symbols(Layout
* layout
)
560 for (options::String_set::const_iterator p
=
561 parameters
->options().undefined_begin();
562 p
!= parameters
->options().undefined_end();
565 const char* name
= p
->c_str();
566 Symbol
* sym
= this->lookup(name
);
567 gold_assert(sym
!= NULL
);
568 if (sym
->source() == Symbol::FROM_OBJECT
569 && !sym
->object()->is_dynamic())
571 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
573 unsigned int shndx
= sym
->shndx(&is_ordinary
);
576 gold_assert(this->gc_
!= NULL
);
577 this->gc_
->worklist().push(Section_id(obj
, shndx
));
582 for (Script_options::referenced_const_iterator p
=
583 layout
->script_options()->referenced_begin();
584 p
!= layout
->script_options()->referenced_end();
587 Symbol
* sym
= this->lookup(p
->c_str());
588 gold_assert(sym
!= NULL
);
589 if (sym
->source() == Symbol::FROM_OBJECT
590 && !sym
->object()->is_dynamic())
592 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
594 unsigned int shndx
= sym
->shndx(&is_ordinary
);
597 gold_assert(this->gc_
!= NULL
);
598 this->gc_
->worklist().push(Section_id(obj
, shndx
));
605 Symbol_table::gc_mark_symbol_for_shlib(Symbol
* sym
)
607 if (!sym
->is_from_dynobj()
608 && sym
->is_externally_visible())
610 //Add the object and section to the work list.
611 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
613 unsigned int shndx
= sym
->shndx(&is_ordinary
);
614 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
)
616 gold_assert(this->gc_
!= NULL
);
617 this->gc_
->worklist().push(Section_id(obj
, shndx
));
622 // When doing garbage collection, keep symbols that have been seen in
625 Symbol_table::gc_mark_dyn_syms(Symbol
* sym
)
627 if (sym
->in_dyn() && sym
->source() == Symbol::FROM_OBJECT
628 && !sym
->object()->is_dynamic())
630 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
632 unsigned int shndx
= sym
->shndx(&is_ordinary
);
633 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
)
635 gold_assert(this->gc_
!= NULL
);
636 this->gc_
->worklist().push(Section_id(obj
, shndx
));
641 // Make TO a symbol which forwards to FROM.
644 Symbol_table::make_forwarder(Symbol
* from
, Symbol
* to
)
646 gold_assert(from
!= to
);
647 gold_assert(!from
->is_forwarder() && !to
->is_forwarder());
648 this->forwarders_
[from
] = to
;
649 from
->set_forwarder();
652 // Resolve the forwards from FROM, returning the real symbol.
655 Symbol_table::resolve_forwards(const Symbol
* from
) const
657 gold_assert(from
->is_forwarder());
658 Unordered_map
<const Symbol
*, Symbol
*>::const_iterator p
=
659 this->forwarders_
.find(from
);
660 gold_assert(p
!= this->forwarders_
.end());
664 // Look up a symbol by name.
667 Symbol_table::lookup(const char* name
, const char* version
) const
669 Stringpool::Key name_key
;
670 name
= this->namepool_
.find(name
, &name_key
);
674 Stringpool::Key version_key
= 0;
677 version
= this->namepool_
.find(version
, &version_key
);
682 Symbol_table_key
key(name_key
, version_key
);
683 Symbol_table::Symbol_table_type::const_iterator p
= this->table_
.find(key
);
684 if (p
== this->table_
.end())
689 // Resolve a Symbol with another Symbol. This is only used in the
690 // unusual case where there are references to both an unversioned
691 // symbol and a symbol with a version, and we then discover that that
692 // version is the default version. Because this is unusual, we do
693 // this the slow way, by converting back to an ELF symbol.
695 template<int size
, bool big_endian
>
697 Symbol_table::resolve(Sized_symbol
<size
>* to
, const Sized_symbol
<size
>* from
)
699 unsigned char buf
[elfcpp::Elf_sizes
<size
>::sym_size
];
700 elfcpp::Sym_write
<size
, big_endian
> esym(buf
);
701 // We don't bother to set the st_name or the st_shndx field.
702 esym
.put_st_value(from
->value());
703 esym
.put_st_size(from
->symsize());
704 esym
.put_st_info(from
->binding(), from
->type());
705 esym
.put_st_other(from
->visibility(), from
->nonvis());
707 unsigned int shndx
= from
->shndx(&is_ordinary
);
708 this->resolve(to
, esym
.sym(), shndx
, is_ordinary
, shndx
, from
->object(),
714 if (parameters
->options().gc_sections())
715 this->gc_mark_dyn_syms(to
);
718 // Record that a symbol is forced to be local by a version script or
722 Symbol_table::force_local(Symbol
* sym
)
724 if (!sym
->is_defined() && !sym
->is_common())
726 if (sym
->is_forced_local())
728 // We already got this one.
731 sym
->set_is_forced_local();
732 this->forced_locals_
.push_back(sym
);
735 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
736 // is only called for undefined symbols, when at least one --wrap
740 Symbol_table::wrap_symbol(const char* name
, Stringpool::Key
* name_key
)
742 // For some targets, we need to ignore a specific character when
743 // wrapping, and add it back later.
745 if (name
[0] == parameters
->target().wrap_char())
751 if (parameters
->options().is_wrap(name
))
753 // Turn NAME into __wrap_NAME.
760 // This will give us both the old and new name in NAMEPOOL_, but
761 // that is OK. Only the versions we need will wind up in the
762 // real string table in the output file.
763 return this->namepool_
.add(s
.c_str(), true, name_key
);
766 const char* const real_prefix
= "__real_";
767 const size_t real_prefix_length
= strlen(real_prefix
);
768 if (strncmp(name
, real_prefix
, real_prefix_length
) == 0
769 && parameters
->options().is_wrap(name
+ real_prefix_length
))
771 // Turn __real_NAME into NAME.
775 s
+= name
+ real_prefix_length
;
776 return this->namepool_
.add(s
.c_str(), true, name_key
);
782 // This is called when we see a symbol NAME/VERSION, and the symbol
783 // already exists in the symbol table, and VERSION is marked as being
784 // the default version. SYM is the NAME/VERSION symbol we just added.
785 // DEFAULT_IS_NEW is true if this is the first time we have seen the
786 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
788 template<int size
, bool big_endian
>
790 Symbol_table::define_default_version(Sized_symbol
<size
>* sym
,
792 Symbol_table_type::iterator pdef
)
796 // This is the first time we have seen NAME/NULL. Make
797 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
800 sym
->set_is_default();
802 else if (pdef
->second
== sym
)
804 // NAME/NULL already points to NAME/VERSION. Don't mark the
805 // symbol as the default if it is not already the default.
809 // This is the unfortunate case where we already have entries
810 // for both NAME/VERSION and NAME/NULL. We now see a symbol
811 // NAME/VERSION where VERSION is the default version. We have
812 // already resolved this new symbol with the existing
813 // NAME/VERSION symbol.
815 // It's possible that NAME/NULL and NAME/VERSION are both
816 // defined in regular objects. This can only happen if one
817 // object file defines foo and another defines foo@@ver. This
818 // is somewhat obscure, but we call it a multiple definition
821 // It's possible that NAME/NULL actually has a version, in which
822 // case it won't be the same as VERSION. This happens with
823 // ver_test_7.so in the testsuite for the symbol t2_2. We see
824 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
825 // then see an unadorned t2_2 in an object file and give it
826 // version VER1 from the version script. This looks like a
827 // default definition for VER1, so it looks like we should merge
828 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
829 // not obvious that this is an error, either. So we just punt.
831 // If one of the symbols has non-default visibility, and the
832 // other is defined in a shared object, then they are different
835 // Otherwise, we just resolve the symbols as though they were
838 if (pdef
->second
->version() != NULL
)
839 gold_assert(pdef
->second
->version() != sym
->version());
840 else if (sym
->visibility() != elfcpp::STV_DEFAULT
841 && pdef
->second
->is_from_dynobj())
843 else if (pdef
->second
->visibility() != elfcpp::STV_DEFAULT
844 && sym
->is_from_dynobj())
848 const Sized_symbol
<size
>* symdef
;
849 symdef
= this->get_sized_symbol
<size
>(pdef
->second
);
850 Symbol_table::resolve
<size
, big_endian
>(sym
, symdef
);
851 this->make_forwarder(pdef
->second
, sym
);
853 sym
->set_is_default();
858 // Add one symbol from OBJECT to the symbol table. NAME is symbol
859 // name and VERSION is the version; both are canonicalized. DEF is
860 // whether this is the default version. ST_SHNDX is the symbol's
861 // section index; IS_ORDINARY is whether this is a normal section
862 // rather than a special code.
864 // If IS_DEFAULT_VERSION is true, then this is the definition of a
865 // default version of a symbol. That means that any lookup of
866 // NAME/NULL and any lookup of NAME/VERSION should always return the
867 // same symbol. This is obvious for references, but in particular we
868 // want to do this for definitions: overriding NAME/NULL should also
869 // override NAME/VERSION. If we don't do that, it would be very hard
870 // to override functions in a shared library which uses versioning.
872 // We implement this by simply making both entries in the hash table
873 // point to the same Symbol structure. That is easy enough if this is
874 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
875 // that we have seen both already, in which case they will both have
876 // independent entries in the symbol table. We can't simply change
877 // the symbol table entry, because we have pointers to the entries
878 // attached to the object files. So we mark the entry attached to the
879 // object file as a forwarder, and record it in the forwarders_ map.
880 // Note that entries in the hash table will never be marked as
883 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
884 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
885 // for a special section code. ST_SHNDX may be modified if the symbol
886 // is defined in a section being discarded.
888 template<int size
, bool big_endian
>
890 Symbol_table::add_from_object(Object
* object
,
892 Stringpool::Key name_key
,
894 Stringpool::Key version_key
,
895 bool is_default_version
,
896 const elfcpp::Sym
<size
, big_endian
>& sym
,
897 unsigned int st_shndx
,
899 unsigned int orig_st_shndx
)
901 // Print a message if this symbol is being traced.
902 if (parameters
->options().is_trace_symbol(name
))
904 if (orig_st_shndx
== elfcpp::SHN_UNDEF
)
905 gold_info(_("%s: reference to %s"), object
->name().c_str(), name
);
907 gold_info(_("%s: definition of %s"), object
->name().c_str(), name
);
910 // For an undefined symbol, we may need to adjust the name using
912 if (orig_st_shndx
== elfcpp::SHN_UNDEF
913 && parameters
->options().any_wrap())
915 const char* wrap_name
= this->wrap_symbol(name
, &name_key
);
916 if (wrap_name
!= name
)
918 // If we see a reference to malloc with version GLIBC_2.0,
919 // and we turn it into a reference to __wrap_malloc, then we
920 // discard the version number. Otherwise the user would be
921 // required to specify the correct version for
929 Symbol
* const snull
= NULL
;
930 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
931 this->table_
.insert(std::make_pair(std::make_pair(name_key
, version_key
),
934 std::pair
<typename
Symbol_table_type::iterator
, bool> insdefault
=
935 std::make_pair(this->table_
.end(), false);
936 if (is_default_version
)
938 const Stringpool::Key vnull_key
= 0;
939 insdefault
= this->table_
.insert(std::make_pair(std::make_pair(name_key
,
944 // ins.first: an iterator, which is a pointer to a pair.
945 // ins.first->first: the key (a pair of name and version).
946 // ins.first->second: the value (Symbol*).
947 // ins.second: true if new entry was inserted, false if not.
949 Sized_symbol
<size
>* ret
;
954 // We already have an entry for NAME/VERSION.
955 ret
= this->get_sized_symbol
<size
>(ins
.first
->second
);
956 gold_assert(ret
!= NULL
);
958 was_undefined
= ret
->is_undefined();
959 was_common
= ret
->is_common();
961 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
, object
,
963 if (parameters
->options().gc_sections())
964 this->gc_mark_dyn_syms(ret
);
966 if (is_default_version
)
967 this->define_default_version
<size
, big_endian
>(ret
, insdefault
.second
,
972 // This is the first time we have seen NAME/VERSION.
973 gold_assert(ins
.first
->second
== NULL
);
975 if (is_default_version
&& !insdefault
.second
)
977 // We already have an entry for NAME/NULL. If we override
978 // it, then change it to NAME/VERSION.
979 ret
= this->get_sized_symbol
<size
>(insdefault
.first
->second
);
981 was_undefined
= ret
->is_undefined();
982 was_common
= ret
->is_common();
984 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
, object
,
986 if (parameters
->options().gc_sections())
987 this->gc_mark_dyn_syms(ret
);
988 ins
.first
->second
= ret
;
992 was_undefined
= false;
995 Sized_target
<size
, big_endian
>* target
=
996 parameters
->sized_target
<size
, big_endian
>();
997 if (!target
->has_make_symbol())
998 ret
= new Sized_symbol
<size
>();
1001 ret
= target
->make_symbol();
1004 // This means that we don't want a symbol table
1006 if (!is_default_version
)
1007 this->table_
.erase(ins
.first
);
1010 this->table_
.erase(insdefault
.first
);
1011 // Inserting INSDEFAULT invalidated INS.
1012 this->table_
.erase(std::make_pair(name_key
,
1019 ret
->init_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
1021 ins
.first
->second
= ret
;
1022 if (is_default_version
)
1024 // This is the first time we have seen NAME/NULL. Point
1025 // it at the new entry for NAME/VERSION.
1026 gold_assert(insdefault
.second
);
1027 insdefault
.first
->second
= ret
;
1031 if (is_default_version
)
1032 ret
->set_is_default();
1035 // Record every time we see a new undefined symbol, to speed up
1037 if (!was_undefined
&& ret
->is_undefined())
1039 ++this->saw_undefined_
;
1040 if (parameters
->options().has_plugins())
1041 parameters
->options().plugins()->new_undefined_symbol(ret
);
1044 // Keep track of common symbols, to speed up common symbol
1046 if (!was_common
&& ret
->is_common())
1048 if (ret
->type() == elfcpp::STT_TLS
)
1049 this->tls_commons_
.push_back(ret
);
1050 else if (!is_ordinary
1051 && st_shndx
== parameters
->target().small_common_shndx())
1052 this->small_commons_
.push_back(ret
);
1053 else if (!is_ordinary
1054 && st_shndx
== parameters
->target().large_common_shndx())
1055 this->large_commons_
.push_back(ret
);
1057 this->commons_
.push_back(ret
);
1060 // If we're not doing a relocatable link, then any symbol with
1061 // hidden or internal visibility is local.
1062 if ((ret
->visibility() == elfcpp::STV_HIDDEN
1063 || ret
->visibility() == elfcpp::STV_INTERNAL
)
1064 && (ret
->binding() == elfcpp::STB_GLOBAL
1065 || ret
->binding() == elfcpp::STB_GNU_UNIQUE
1066 || ret
->binding() == elfcpp::STB_WEAK
)
1067 && !parameters
->options().relocatable())
1068 this->force_local(ret
);
1073 // Add all the symbols in a relocatable object to the hash table.
1075 template<int size
, bool big_endian
>
1077 Symbol_table::add_from_relobj(
1078 Sized_relobj_file
<size
, big_endian
>* relobj
,
1079 const unsigned char* syms
,
1081 size_t symndx_offset
,
1082 const char* sym_names
,
1083 size_t sym_name_size
,
1084 typename Sized_relobj_file
<size
, big_endian
>::Symbols
* sympointers
,
1089 gold_assert(size
== parameters
->target().get_size());
1091 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1093 const bool just_symbols
= relobj
->just_symbols();
1095 const unsigned char* p
= syms
;
1096 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
1098 (*sympointers
)[i
] = NULL
;
1100 elfcpp::Sym
<size
, big_endian
> sym(p
);
1102 unsigned int st_name
= sym
.get_st_name();
1103 if (st_name
>= sym_name_size
)
1105 relobj
->error(_("bad global symbol name offset %u at %zu"),
1110 const char* name
= sym_names
+ st_name
;
1113 unsigned int st_shndx
= relobj
->adjust_sym_shndx(i
+ symndx_offset
,
1116 unsigned int orig_st_shndx
= st_shndx
;
1118 orig_st_shndx
= elfcpp::SHN_UNDEF
;
1120 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1123 // A symbol defined in a section which we are not including must
1124 // be treated as an undefined symbol.
1125 bool is_defined_in_discarded_section
= false;
1126 if (st_shndx
!= elfcpp::SHN_UNDEF
1128 && !relobj
->is_section_included(st_shndx
)
1129 && !this->is_section_folded(relobj
, st_shndx
))
1131 st_shndx
= elfcpp::SHN_UNDEF
;
1132 is_defined_in_discarded_section
= true;
1135 // In an object file, an '@' in the name separates the symbol
1136 // name from the version name. If there are two '@' characters,
1137 // this is the default version.
1138 const char* ver
= strchr(name
, '@');
1139 Stringpool::Key ver_key
= 0;
1141 // IS_DEFAULT_VERSION: is the version default?
1142 // IS_FORCED_LOCAL: is the symbol forced local?
1143 bool is_default_version
= false;
1144 bool is_forced_local
= false;
1146 // FIXME: For incremental links, we don't store version information,
1147 // so we need to ignore version symbols for now.
1148 if (parameters
->incremental_update() && ver
!= NULL
)
1150 namelen
= ver
- name
;
1156 // The symbol name is of the form foo@VERSION or foo@@VERSION
1157 namelen
= ver
- name
;
1161 is_default_version
= true;
1164 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1166 // We don't want to assign a version to an undefined symbol,
1167 // even if it is listed in the version script. FIXME: What
1168 // about a common symbol?
1171 namelen
= strlen(name
);
1172 if (!this->version_script_
.empty()
1173 && st_shndx
!= elfcpp::SHN_UNDEF
)
1175 // The symbol name did not have a version, but the
1176 // version script may assign a version anyway.
1177 std::string version
;
1179 if (this->version_script_
.get_symbol_version(name
, &version
,
1183 is_forced_local
= true;
1184 else if (!version
.empty())
1186 ver
= this->namepool_
.add_with_length(version
.c_str(),
1190 is_default_version
= true;
1196 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1197 unsigned char symbuf
[sym_size
];
1198 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1201 memcpy(symbuf
, p
, sym_size
);
1202 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1203 if (orig_st_shndx
!= elfcpp::SHN_UNDEF
1205 && relobj
->e_type() == elfcpp::ET_REL
)
1207 // Symbol values in relocatable object files are section
1208 // relative. This is normally what we want, but since here
1209 // we are converting the symbol to absolute we need to add
1210 // the section address. The section address in an object
1211 // file is normally zero, but people can use a linker
1212 // script to change it.
1213 sw
.put_st_value(sym
.get_st_value()
1214 + relobj
->section_address(orig_st_shndx
));
1216 st_shndx
= elfcpp::SHN_ABS
;
1217 is_ordinary
= false;
1221 // Fix up visibility if object has no-export set.
1222 if (relobj
->no_export()
1223 && (orig_st_shndx
!= elfcpp::SHN_UNDEF
|| !is_ordinary
))
1225 // We may have copied symbol already above.
1228 memcpy(symbuf
, p
, sym_size
);
1232 elfcpp::STV visibility
= sym2
.get_st_visibility();
1233 if (visibility
== elfcpp::STV_DEFAULT
1234 || visibility
== elfcpp::STV_PROTECTED
)
1236 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1237 unsigned char nonvis
= sym2
.get_st_nonvis();
1238 sw
.put_st_other(elfcpp::STV_HIDDEN
, nonvis
);
1242 Stringpool::Key name_key
;
1243 name
= this->namepool_
.add_with_length(name
, namelen
, true,
1246 Sized_symbol
<size
>* res
;
1247 res
= this->add_from_object(relobj
, name
, name_key
, ver
, ver_key
,
1248 is_default_version
, *psym
, st_shndx
,
1249 is_ordinary
, orig_st_shndx
);
1251 if (is_forced_local
)
1252 this->force_local(res
);
1254 // If building a shared library using garbage collection, do not
1255 // treat externally visible symbols as garbage.
1256 if (parameters
->options().gc_sections()
1257 && parameters
->options().shared())
1258 this->gc_mark_symbol_for_shlib(res
);
1260 if (is_defined_in_discarded_section
)
1261 res
->set_is_defined_in_discarded_section();
1263 (*sympointers
)[i
] = res
;
1267 // Add a symbol from a plugin-claimed file.
1269 template<int size
, bool big_endian
>
1271 Symbol_table::add_from_pluginobj(
1272 Sized_pluginobj
<size
, big_endian
>* obj
,
1275 elfcpp::Sym
<size
, big_endian
>* sym
)
1277 unsigned int st_shndx
= sym
->get_st_shndx();
1278 bool is_ordinary
= st_shndx
< elfcpp::SHN_LORESERVE
;
1280 Stringpool::Key ver_key
= 0;
1281 bool is_default_version
= false;
1282 bool is_forced_local
= false;
1286 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1288 // We don't want to assign a version to an undefined symbol,
1289 // even if it is listed in the version script. FIXME: What
1290 // about a common symbol?
1293 if (!this->version_script_
.empty()
1294 && st_shndx
!= elfcpp::SHN_UNDEF
)
1296 // The symbol name did not have a version, but the
1297 // version script may assign a version anyway.
1298 std::string version
;
1300 if (this->version_script_
.get_symbol_version(name
, &version
,
1304 is_forced_local
= true;
1305 else if (!version
.empty())
1307 ver
= this->namepool_
.add_with_length(version
.c_str(),
1311 is_default_version
= true;
1317 Stringpool::Key name_key
;
1318 name
= this->namepool_
.add(name
, true, &name_key
);
1320 Sized_symbol
<size
>* res
;
1321 res
= this->add_from_object(obj
, name
, name_key
, ver
, ver_key
,
1322 is_default_version
, *sym
, st_shndx
,
1323 is_ordinary
, st_shndx
);
1325 if (is_forced_local
)
1326 this->force_local(res
);
1331 // Add all the symbols in a dynamic object to the hash table.
1333 template<int size
, bool big_endian
>
1335 Symbol_table::add_from_dynobj(
1336 Sized_dynobj
<size
, big_endian
>* dynobj
,
1337 const unsigned char* syms
,
1339 const char* sym_names
,
1340 size_t sym_name_size
,
1341 const unsigned char* versym
,
1343 const std::vector
<const char*>* version_map
,
1344 typename Sized_relobj_file
<size
, big_endian
>::Symbols
* sympointers
,
1349 gold_assert(size
== parameters
->target().get_size());
1351 if (dynobj
->just_symbols())
1353 gold_error(_("--just-symbols does not make sense with a shared object"));
1357 // FIXME: For incremental links, we don't store version information,
1358 // so we need to ignore version symbols for now.
1359 if (parameters
->incremental_update())
1362 if (versym
!= NULL
&& versym_size
/ 2 < count
)
1364 dynobj
->error(_("too few symbol versions"));
1368 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1370 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1371 // weak aliases. This is necessary because if the dynamic object
1372 // provides the same variable under two names, one of which is a
1373 // weak definition, and the regular object refers to the weak
1374 // definition, we have to put both the weak definition and the
1375 // strong definition into the dynamic symbol table. Given a weak
1376 // definition, the only way that we can find the corresponding
1377 // strong definition, if any, is to search the symbol table.
1378 std::vector
<Sized_symbol
<size
>*> object_symbols
;
1380 const unsigned char* p
= syms
;
1381 const unsigned char* vs
= versym
;
1382 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
, vs
+= 2)
1384 elfcpp::Sym
<size
, big_endian
> sym(p
);
1386 if (sympointers
!= NULL
)
1387 (*sympointers
)[i
] = NULL
;
1389 // Ignore symbols with local binding or that have
1390 // internal or hidden visibility.
1391 if (sym
.get_st_bind() == elfcpp::STB_LOCAL
1392 || sym
.get_st_visibility() == elfcpp::STV_INTERNAL
1393 || sym
.get_st_visibility() == elfcpp::STV_HIDDEN
)
1396 // A protected symbol in a shared library must be treated as a
1397 // normal symbol when viewed from outside the shared library.
1398 // Implement this by overriding the visibility here.
1399 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1400 unsigned char symbuf
[sym_size
];
1401 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1402 if (sym
.get_st_visibility() == elfcpp::STV_PROTECTED
)
1404 memcpy(symbuf
, p
, sym_size
);
1405 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1406 sw
.put_st_other(elfcpp::STV_DEFAULT
, sym
.get_st_nonvis());
1410 unsigned int st_name
= psym
->get_st_name();
1411 if (st_name
>= sym_name_size
)
1413 dynobj
->error(_("bad symbol name offset %u at %zu"),
1418 const char* name
= sym_names
+ st_name
;
1421 unsigned int st_shndx
= dynobj
->adjust_sym_shndx(i
, psym
->get_st_shndx(),
1424 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1427 Sized_symbol
<size
>* res
;
1431 Stringpool::Key name_key
;
1432 name
= this->namepool_
.add(name
, true, &name_key
);
1433 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1434 false, *psym
, st_shndx
, is_ordinary
,
1439 // Read the version information.
1441 unsigned int v
= elfcpp::Swap
<16, big_endian
>::readval(vs
);
1443 bool hidden
= (v
& elfcpp::VERSYM_HIDDEN
) != 0;
1444 v
&= elfcpp::VERSYM_VERSION
;
1446 // The Sun documentation says that V can be VER_NDX_LOCAL,
1447 // or VER_NDX_GLOBAL, or a version index. The meaning of
1448 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1449 // The old GNU linker will happily generate VER_NDX_LOCAL
1450 // for an undefined symbol. I don't know what the Sun
1451 // linker will generate.
1453 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1454 && st_shndx
!= elfcpp::SHN_UNDEF
)
1456 // This symbol should not be visible outside the object.
1460 // At this point we are definitely going to add this symbol.
1461 Stringpool::Key name_key
;
1462 name
= this->namepool_
.add(name
, true, &name_key
);
1464 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1465 || v
== static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL
))
1467 // This symbol does not have a version.
1468 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1469 false, *psym
, st_shndx
, is_ordinary
,
1474 if (v
>= version_map
->size())
1476 dynobj
->error(_("versym for symbol %zu out of range: %u"),
1481 const char* version
= (*version_map
)[v
];
1482 if (version
== NULL
)
1484 dynobj
->error(_("versym for symbol %zu has no name: %u"),
1489 Stringpool::Key version_key
;
1490 version
= this->namepool_
.add(version
, true, &version_key
);
1492 // If this is an absolute symbol, and the version name
1493 // and symbol name are the same, then this is the
1494 // version definition symbol. These symbols exist to
1495 // support using -u to pull in particular versions. We
1496 // do not want to record a version for them.
1497 if (st_shndx
== elfcpp::SHN_ABS
1499 && name_key
== version_key
)
1500 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1501 false, *psym
, st_shndx
, is_ordinary
,
1505 const bool is_default_version
=
1506 !hidden
&& st_shndx
!= elfcpp::SHN_UNDEF
;
1507 res
= this->add_from_object(dynobj
, name
, name_key
, version
,
1508 version_key
, is_default_version
,
1510 is_ordinary
, st_shndx
);
1515 // Note that it is possible that RES was overridden by an
1516 // earlier object, in which case it can't be aliased here.
1517 if (st_shndx
!= elfcpp::SHN_UNDEF
1519 && psym
->get_st_type() == elfcpp::STT_OBJECT
1520 && res
->source() == Symbol::FROM_OBJECT
1521 && res
->object() == dynobj
)
1522 object_symbols
.push_back(res
);
1524 if (sympointers
!= NULL
)
1525 (*sympointers
)[i
] = res
;
1528 this->record_weak_aliases(&object_symbols
);
1531 // Add a symbol from a incremental object file.
1533 template<int size
, bool big_endian
>
1535 Symbol_table::add_from_incrobj(
1539 elfcpp::Sym
<size
, big_endian
>* sym
)
1541 unsigned int st_shndx
= sym
->get_st_shndx();
1542 bool is_ordinary
= st_shndx
< elfcpp::SHN_LORESERVE
;
1544 Stringpool::Key ver_key
= 0;
1545 bool is_default_version
= false;
1546 bool is_forced_local
= false;
1548 Stringpool::Key name_key
;
1549 name
= this->namepool_
.add(name
, true, &name_key
);
1551 Sized_symbol
<size
>* res
;
1552 res
= this->add_from_object(obj
, name
, name_key
, ver
, ver_key
,
1553 is_default_version
, *sym
, st_shndx
,
1554 is_ordinary
, st_shndx
);
1556 if (is_forced_local
)
1557 this->force_local(res
);
1562 // This is used to sort weak aliases. We sort them first by section
1563 // index, then by offset, then by weak ahead of strong.
1566 class Weak_alias_sorter
1569 bool operator()(const Sized_symbol
<size
>*, const Sized_symbol
<size
>*) const;
1574 Weak_alias_sorter
<size
>::operator()(const Sized_symbol
<size
>* s1
,
1575 const Sized_symbol
<size
>* s2
) const
1578 unsigned int s1_shndx
= s1
->shndx(&is_ordinary
);
1579 gold_assert(is_ordinary
);
1580 unsigned int s2_shndx
= s2
->shndx(&is_ordinary
);
1581 gold_assert(is_ordinary
);
1582 if (s1_shndx
!= s2_shndx
)
1583 return s1_shndx
< s2_shndx
;
1585 if (s1
->value() != s2
->value())
1586 return s1
->value() < s2
->value();
1587 if (s1
->binding() != s2
->binding())
1589 if (s1
->binding() == elfcpp::STB_WEAK
)
1591 if (s2
->binding() == elfcpp::STB_WEAK
)
1594 return std::string(s1
->name()) < std::string(s2
->name());
1597 // SYMBOLS is a list of object symbols from a dynamic object. Look
1598 // for any weak aliases, and record them so that if we add the weak
1599 // alias to the dynamic symbol table, we also add the corresponding
1604 Symbol_table::record_weak_aliases(std::vector
<Sized_symbol
<size
>*>* symbols
)
1606 // Sort the vector by section index, then by offset, then by weak
1608 std::sort(symbols
->begin(), symbols
->end(), Weak_alias_sorter
<size
>());
1610 // Walk through the vector. For each weak definition, record
1612 for (typename
std::vector
<Sized_symbol
<size
>*>::const_iterator p
=
1614 p
!= symbols
->end();
1617 if ((*p
)->binding() != elfcpp::STB_WEAK
)
1620 // Build a circular list of weak aliases. Each symbol points to
1621 // the next one in the circular list.
1623 Sized_symbol
<size
>* from_sym
= *p
;
1624 typename
std::vector
<Sized_symbol
<size
>*>::const_iterator q
;
1625 for (q
= p
+ 1; q
!= symbols
->end(); ++q
)
1628 if ((*q
)->shndx(&dummy
) != from_sym
->shndx(&dummy
)
1629 || (*q
)->value() != from_sym
->value())
1632 this->weak_aliases_
[from_sym
] = *q
;
1633 from_sym
->set_has_alias();
1639 this->weak_aliases_
[from_sym
] = *p
;
1640 from_sym
->set_has_alias();
1647 // Create and return a specially defined symbol. If ONLY_IF_REF is
1648 // true, then only create the symbol if there is a reference to it.
1649 // If this does not return NULL, it sets *POLDSYM to the existing
1650 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1651 // resolve the newly created symbol to the old one. This
1652 // canonicalizes *PNAME and *PVERSION.
1654 template<int size
, bool big_endian
>
1656 Symbol_table::define_special_symbol(const char** pname
, const char** pversion
,
1658 Sized_symbol
<size
>** poldsym
,
1659 bool* resolve_oldsym
)
1661 *resolve_oldsym
= false;
1663 // If the caller didn't give us a version, see if we get one from
1664 // the version script.
1666 bool is_default_version
= false;
1667 if (*pversion
== NULL
)
1670 if (this->version_script_
.get_symbol_version(*pname
, &v
, &is_global
))
1672 if (is_global
&& !v
.empty())
1674 *pversion
= v
.c_str();
1675 // If we get the version from a version script, then we
1676 // are also the default version.
1677 is_default_version
= true;
1683 Sized_symbol
<size
>* sym
;
1685 bool add_to_table
= false;
1686 typename
Symbol_table_type::iterator add_loc
= this->table_
.end();
1687 bool add_def_to_table
= false;
1688 typename
Symbol_table_type::iterator add_def_loc
= this->table_
.end();
1692 oldsym
= this->lookup(*pname
, *pversion
);
1693 if (oldsym
== NULL
&& is_default_version
)
1694 oldsym
= this->lookup(*pname
, NULL
);
1695 if (oldsym
== NULL
|| !oldsym
->is_undefined())
1698 *pname
= oldsym
->name();
1699 if (is_default_version
)
1700 *pversion
= this->namepool_
.add(*pversion
, true, NULL
);
1702 *pversion
= oldsym
->version();
1706 // Canonicalize NAME and VERSION.
1707 Stringpool::Key name_key
;
1708 *pname
= this->namepool_
.add(*pname
, true, &name_key
);
1710 Stringpool::Key version_key
= 0;
1711 if (*pversion
!= NULL
)
1712 *pversion
= this->namepool_
.add(*pversion
, true, &version_key
);
1714 Symbol
* const snull
= NULL
;
1715 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
1716 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1720 std::pair
<typename
Symbol_table_type::iterator
, bool> insdefault
=
1721 std::make_pair(this->table_
.end(), false);
1722 if (is_default_version
)
1724 const Stringpool::Key vnull
= 0;
1726 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1733 // We already have a symbol table entry for NAME/VERSION.
1734 oldsym
= ins
.first
->second
;
1735 gold_assert(oldsym
!= NULL
);
1737 if (is_default_version
)
1739 Sized_symbol
<size
>* soldsym
=
1740 this->get_sized_symbol
<size
>(oldsym
);
1741 this->define_default_version
<size
, big_endian
>(soldsym
,
1748 // We haven't seen this symbol before.
1749 gold_assert(ins
.first
->second
== NULL
);
1751 add_to_table
= true;
1752 add_loc
= ins
.first
;
1754 if (is_default_version
&& !insdefault
.second
)
1756 // We are adding NAME/VERSION, and it is the default
1757 // version. We already have an entry for NAME/NULL.
1758 oldsym
= insdefault
.first
->second
;
1759 *resolve_oldsym
= true;
1765 if (is_default_version
)
1767 add_def_to_table
= true;
1768 add_def_loc
= insdefault
.first
;
1774 const Target
& target
= parameters
->target();
1775 if (!target
.has_make_symbol())
1776 sym
= new Sized_symbol
<size
>();
1779 Sized_target
<size
, big_endian
>* sized_target
=
1780 parameters
->sized_target
<size
, big_endian
>();
1781 sym
= sized_target
->make_symbol();
1787 add_loc
->second
= sym
;
1789 gold_assert(oldsym
!= NULL
);
1791 if (add_def_to_table
)
1792 add_def_loc
->second
= sym
;
1794 *poldsym
= this->get_sized_symbol
<size
>(oldsym
);
1799 // Define a symbol based on an Output_data.
1802 Symbol_table::define_in_output_data(const char* name
,
1803 const char* version
,
1809 elfcpp::STB binding
,
1810 elfcpp::STV visibility
,
1811 unsigned char nonvis
,
1812 bool offset_is_from_end
,
1815 if (parameters
->target().get_size() == 32)
1817 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1818 return this->do_define_in_output_data
<32>(name
, version
, defined
, od
,
1819 value
, symsize
, type
, binding
,
1827 else if (parameters
->target().get_size() == 64)
1829 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1830 return this->do_define_in_output_data
<64>(name
, version
, defined
, od
,
1831 value
, symsize
, type
, binding
,
1843 // Define a symbol in an Output_data, sized version.
1847 Symbol_table::do_define_in_output_data(
1849 const char* version
,
1852 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1853 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1855 elfcpp::STB binding
,
1856 elfcpp::STV visibility
,
1857 unsigned char nonvis
,
1858 bool offset_is_from_end
,
1861 Sized_symbol
<size
>* sym
;
1862 Sized_symbol
<size
>* oldsym
;
1863 bool resolve_oldsym
;
1865 if (parameters
->target().is_big_endian())
1867 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1868 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1869 only_if_ref
, &oldsym
,
1877 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1878 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1879 only_if_ref
, &oldsym
,
1889 sym
->init_output_data(name
, version
, od
, value
, symsize
, type
, binding
,
1890 visibility
, nonvis
, offset_is_from_end
,
1891 defined
== PREDEFINED
);
1895 if (binding
== elfcpp::STB_LOCAL
1896 || this->version_script_
.symbol_is_local(name
))
1897 this->force_local(sym
);
1898 else if (version
!= NULL
)
1899 sym
->set_is_default();
1903 if (Symbol_table::should_override_with_special(oldsym
, type
, defined
))
1904 this->override_with_special(oldsym
, sym
);
1915 // Define a symbol based on an Output_segment.
1918 Symbol_table::define_in_output_segment(const char* name
,
1919 const char* version
,
1925 elfcpp::STB binding
,
1926 elfcpp::STV visibility
,
1927 unsigned char nonvis
,
1928 Symbol::Segment_offset_base offset_base
,
1931 if (parameters
->target().get_size() == 32)
1933 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1934 return this->do_define_in_output_segment
<32>(name
, version
, defined
, os
,
1935 value
, symsize
, type
,
1936 binding
, visibility
, nonvis
,
1937 offset_base
, only_if_ref
);
1942 else if (parameters
->target().get_size() == 64)
1944 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1945 return this->do_define_in_output_segment
<64>(name
, version
, defined
, os
,
1946 value
, symsize
, type
,
1947 binding
, visibility
, nonvis
,
1948 offset_base
, only_if_ref
);
1957 // Define a symbol in an Output_segment, sized version.
1961 Symbol_table::do_define_in_output_segment(
1963 const char* version
,
1966 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1967 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1969 elfcpp::STB binding
,
1970 elfcpp::STV visibility
,
1971 unsigned char nonvis
,
1972 Symbol::Segment_offset_base offset_base
,
1975 Sized_symbol
<size
>* sym
;
1976 Sized_symbol
<size
>* oldsym
;
1977 bool resolve_oldsym
;
1979 if (parameters
->target().is_big_endian())
1981 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1982 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1983 only_if_ref
, &oldsym
,
1991 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1992 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1993 only_if_ref
, &oldsym
,
2003 sym
->init_output_segment(name
, version
, os
, value
, symsize
, type
, binding
,
2004 visibility
, nonvis
, offset_base
,
2005 defined
== PREDEFINED
);
2009 if (binding
== elfcpp::STB_LOCAL
2010 || this->version_script_
.symbol_is_local(name
))
2011 this->force_local(sym
);
2012 else if (version
!= NULL
)
2013 sym
->set_is_default();
2017 if (Symbol_table::should_override_with_special(oldsym
, type
, defined
))
2018 this->override_with_special(oldsym
, sym
);
2029 // Define a special symbol with a constant value. It is a multiple
2030 // definition error if this symbol is already defined.
2033 Symbol_table::define_as_constant(const char* name
,
2034 const char* version
,
2039 elfcpp::STB binding
,
2040 elfcpp::STV visibility
,
2041 unsigned char nonvis
,
2043 bool force_override
)
2045 if (parameters
->target().get_size() == 32)
2047 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2048 return this->do_define_as_constant
<32>(name
, version
, defined
, value
,
2049 symsize
, type
, binding
,
2050 visibility
, nonvis
, only_if_ref
,
2056 else if (parameters
->target().get_size() == 64)
2058 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2059 return this->do_define_as_constant
<64>(name
, version
, defined
, value
,
2060 symsize
, type
, binding
,
2061 visibility
, nonvis
, only_if_ref
,
2071 // Define a symbol as a constant, sized version.
2075 Symbol_table::do_define_as_constant(
2077 const char* version
,
2079 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
2080 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
2082 elfcpp::STB binding
,
2083 elfcpp::STV visibility
,
2084 unsigned char nonvis
,
2086 bool force_override
)
2088 Sized_symbol
<size
>* sym
;
2089 Sized_symbol
<size
>* oldsym
;
2090 bool resolve_oldsym
;
2092 if (parameters
->target().is_big_endian())
2094 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2095 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2096 only_if_ref
, &oldsym
,
2104 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2105 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2106 only_if_ref
, &oldsym
,
2116 sym
->init_constant(name
, version
, value
, symsize
, type
, binding
, visibility
,
2117 nonvis
, defined
== PREDEFINED
);
2121 // Version symbols are absolute symbols with name == version.
2122 // We don't want to force them to be local.
2123 if ((version
== NULL
2126 && (binding
== elfcpp::STB_LOCAL
2127 || this->version_script_
.symbol_is_local(name
)))
2128 this->force_local(sym
);
2129 else if (version
!= NULL
2130 && (name
!= version
|| value
!= 0))
2131 sym
->set_is_default();
2136 || Symbol_table::should_override_with_special(oldsym
, type
, defined
))
2137 this->override_with_special(oldsym
, sym
);
2148 // Define a set of symbols in output sections.
2151 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2152 const Define_symbol_in_section
* p
,
2155 for (int i
= 0; i
< count
; ++i
, ++p
)
2157 Output_section
* os
= layout
->find_output_section(p
->output_section
);
2159 this->define_in_output_data(p
->name
, NULL
, PREDEFINED
, os
, p
->value
,
2160 p
->size
, p
->type
, p
->binding
,
2161 p
->visibility
, p
->nonvis
,
2162 p
->offset_is_from_end
,
2163 only_if_ref
|| p
->only_if_ref
);
2165 this->define_as_constant(p
->name
, NULL
, PREDEFINED
, 0, p
->size
,
2166 p
->type
, p
->binding
, p
->visibility
, p
->nonvis
,
2167 only_if_ref
|| p
->only_if_ref
,
2172 // Define a set of symbols in output segments.
2175 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2176 const Define_symbol_in_segment
* p
,
2179 for (int i
= 0; i
< count
; ++i
, ++p
)
2181 Output_segment
* os
= layout
->find_output_segment(p
->segment_type
,
2182 p
->segment_flags_set
,
2183 p
->segment_flags_clear
);
2185 this->define_in_output_segment(p
->name
, NULL
, PREDEFINED
, os
, p
->value
,
2186 p
->size
, p
->type
, p
->binding
,
2187 p
->visibility
, p
->nonvis
,
2189 only_if_ref
|| p
->only_if_ref
);
2191 this->define_as_constant(p
->name
, NULL
, PREDEFINED
, 0, p
->size
,
2192 p
->type
, p
->binding
, p
->visibility
, p
->nonvis
,
2193 only_if_ref
|| p
->only_if_ref
,
2198 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2199 // symbol should be defined--typically a .dyn.bss section. VALUE is
2200 // the offset within POSD.
2204 Symbol_table::define_with_copy_reloc(
2205 Sized_symbol
<size
>* csym
,
2207 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
)
2209 gold_assert(csym
->is_from_dynobj());
2210 gold_assert(!csym
->is_copied_from_dynobj());
2211 Object
* object
= csym
->object();
2212 gold_assert(object
->is_dynamic());
2213 Dynobj
* dynobj
= static_cast<Dynobj
*>(object
);
2215 // Our copied variable has to override any variable in a shared
2217 elfcpp::STB binding
= csym
->binding();
2218 if (binding
== elfcpp::STB_WEAK
)
2219 binding
= elfcpp::STB_GLOBAL
;
2221 this->define_in_output_data(csym
->name(), csym
->version(), COPY
,
2222 posd
, value
, csym
->symsize(),
2223 csym
->type(), binding
,
2224 csym
->visibility(), csym
->nonvis(),
2227 csym
->set_is_copied_from_dynobj();
2228 csym
->set_needs_dynsym_entry();
2230 this->copied_symbol_dynobjs_
[csym
] = dynobj
;
2232 // We have now defined all aliases, but we have not entered them all
2233 // in the copied_symbol_dynobjs_ map.
2234 if (csym
->has_alias())
2239 sym
= this->weak_aliases_
[sym
];
2242 gold_assert(sym
->output_data() == posd
);
2244 sym
->set_is_copied_from_dynobj();
2245 this->copied_symbol_dynobjs_
[sym
] = dynobj
;
2250 // SYM is defined using a COPY reloc. Return the dynamic object where
2251 // the original definition was found.
2254 Symbol_table::get_copy_source(const Symbol
* sym
) const
2256 gold_assert(sym
->is_copied_from_dynobj());
2257 Copied_symbol_dynobjs::const_iterator p
=
2258 this->copied_symbol_dynobjs_
.find(sym
);
2259 gold_assert(p
!= this->copied_symbol_dynobjs_
.end());
2263 // Add any undefined symbols named on the command line.
2266 Symbol_table::add_undefined_symbols_from_command_line(Layout
* layout
)
2268 if (parameters
->options().any_undefined()
2269 || layout
->script_options()->any_unreferenced())
2271 if (parameters
->target().get_size() == 32)
2273 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2274 this->do_add_undefined_symbols_from_command_line
<32>(layout
);
2279 else if (parameters
->target().get_size() == 64)
2281 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2282 this->do_add_undefined_symbols_from_command_line
<64>(layout
);
2294 Symbol_table::do_add_undefined_symbols_from_command_line(Layout
* layout
)
2296 for (options::String_set::const_iterator p
=
2297 parameters
->options().undefined_begin();
2298 p
!= parameters
->options().undefined_end();
2300 this->add_undefined_symbol_from_command_line
<size
>(p
->c_str());
2302 for (Script_options::referenced_const_iterator p
=
2303 layout
->script_options()->referenced_begin();
2304 p
!= layout
->script_options()->referenced_end();
2306 this->add_undefined_symbol_from_command_line
<size
>(p
->c_str());
2311 Symbol_table::add_undefined_symbol_from_command_line(const char* name
)
2313 if (this->lookup(name
) != NULL
)
2316 const char* version
= NULL
;
2318 Sized_symbol
<size
>* sym
;
2319 Sized_symbol
<size
>* oldsym
;
2320 bool resolve_oldsym
;
2321 if (parameters
->target().is_big_endian())
2323 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2324 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2333 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2334 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2342 gold_assert(oldsym
== NULL
);
2344 sym
->init_undefined(name
, version
, elfcpp::STT_NOTYPE
, elfcpp::STB_GLOBAL
,
2345 elfcpp::STV_DEFAULT
, 0);
2346 ++this->saw_undefined_
;
2349 // Set the dynamic symbol indexes. INDEX is the index of the first
2350 // global dynamic symbol. Pointers to the symbols are stored into the
2351 // vector SYMS. The names are added to DYNPOOL. This returns an
2352 // updated dynamic symbol index.
2355 Symbol_table::set_dynsym_indexes(unsigned int index
,
2356 std::vector
<Symbol
*>* syms
,
2357 Stringpool
* dynpool
,
2360 for (Symbol_table_type::iterator p
= this->table_
.begin();
2361 p
!= this->table_
.end();
2364 Symbol
* sym
= p
->second
;
2366 // Note that SYM may already have a dynamic symbol index, since
2367 // some symbols appear more than once in the symbol table, with
2368 // and without a version.
2370 if (!sym
->should_add_dynsym_entry(this))
2371 sym
->set_dynsym_index(-1U);
2372 else if (!sym
->has_dynsym_index())
2374 sym
->set_dynsym_index(index
);
2376 syms
->push_back(sym
);
2377 dynpool
->add(sym
->name(), false, NULL
);
2379 // Record any version information.
2380 if (sym
->version() != NULL
)
2381 versions
->record_version(this, dynpool
, sym
);
2383 // If the symbol is defined in a dynamic object and is
2384 // referenced in a regular object, then mark the dynamic
2385 // object as needed. This is used to implement --as-needed.
2386 if (sym
->is_from_dynobj() && sym
->in_reg())
2387 sym
->object()->set_is_needed();
2391 // Finish up the versions. In some cases this may add new dynamic
2393 index
= versions
->finalize(this, index
, syms
);
2398 // Set the final values for all the symbols. The index of the first
2399 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2400 // file offset OFF. Add their names to POOL. Return the new file
2401 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2404 Symbol_table::finalize(off_t off
, off_t dynoff
, size_t dyn_global_index
,
2405 size_t dyncount
, Stringpool
* pool
,
2406 unsigned int* plocal_symcount
)
2410 gold_assert(*plocal_symcount
!= 0);
2411 this->first_global_index_
= *plocal_symcount
;
2413 this->dynamic_offset_
= dynoff
;
2414 this->first_dynamic_global_index_
= dyn_global_index
;
2415 this->dynamic_count_
= dyncount
;
2417 if (parameters
->target().get_size() == 32)
2419 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2420 ret
= this->sized_finalize
<32>(off
, pool
, plocal_symcount
);
2425 else if (parameters
->target().get_size() == 64)
2427 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2428 ret
= this->sized_finalize
<64>(off
, pool
, plocal_symcount
);
2436 // Now that we have the final symbol table, we can reliably note
2437 // which symbols should get warnings.
2438 this->warnings_
.note_warnings(this);
2443 // SYM is going into the symbol table at *PINDEX. Add the name to
2444 // POOL, update *PINDEX and *POFF.
2448 Symbol_table::add_to_final_symtab(Symbol
* sym
, Stringpool
* pool
,
2449 unsigned int* pindex
, off_t
* poff
)
2451 sym
->set_symtab_index(*pindex
);
2452 if (sym
->version() == NULL
|| !parameters
->options().relocatable())
2453 pool
->add(sym
->name(), false, NULL
);
2455 pool
->add(sym
->versioned_name(), true, NULL
);
2457 *poff
+= elfcpp::Elf_sizes
<size
>::sym_size
;
2460 // Set the final value for all the symbols. This is called after
2461 // Layout::finalize, so all the output sections have their final
2466 Symbol_table::sized_finalize(off_t off
, Stringpool
* pool
,
2467 unsigned int* plocal_symcount
)
2469 off
= align_address(off
, size
>> 3);
2470 this->offset_
= off
;
2472 unsigned int index
= *plocal_symcount
;
2473 const unsigned int orig_index
= index
;
2475 // First do all the symbols which have been forced to be local, as
2476 // they must appear before all global symbols.
2477 for (Forced_locals::iterator p
= this->forced_locals_
.begin();
2478 p
!= this->forced_locals_
.end();
2482 gold_assert(sym
->is_forced_local());
2483 if (this->sized_finalize_symbol
<size
>(sym
))
2485 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2490 // Now do all the remaining symbols.
2491 for (Symbol_table_type::iterator p
= this->table_
.begin();
2492 p
!= this->table_
.end();
2495 Symbol
* sym
= p
->second
;
2496 if (this->sized_finalize_symbol
<size
>(sym
))
2497 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2500 this->output_count_
= index
- orig_index
;
2505 // Compute the final value of SYM and store status in location PSTATUS.
2506 // During relaxation, this may be called multiple times for a symbol to
2507 // compute its would-be final value in each relaxation pass.
2510 typename Sized_symbol
<size
>::Value_type
2511 Symbol_table::compute_final_value(
2512 const Sized_symbol
<size
>* sym
,
2513 Compute_final_value_status
* pstatus
) const
2515 typedef typename Sized_symbol
<size
>::Value_type Value_type
;
2518 switch (sym
->source())
2520 case Symbol::FROM_OBJECT
:
2523 unsigned int shndx
= sym
->shndx(&is_ordinary
);
2526 && shndx
!= elfcpp::SHN_ABS
2527 && !Symbol::is_common_shndx(shndx
))
2529 *pstatus
= CFVS_UNSUPPORTED_SYMBOL_SECTION
;
2533 Object
* symobj
= sym
->object();
2534 if (symobj
->is_dynamic())
2537 shndx
= elfcpp::SHN_UNDEF
;
2539 else if (symobj
->pluginobj() != NULL
)
2542 shndx
= elfcpp::SHN_UNDEF
;
2544 else if (shndx
== elfcpp::SHN_UNDEF
)
2546 else if (!is_ordinary
2547 && (shndx
== elfcpp::SHN_ABS
2548 || Symbol::is_common_shndx(shndx
)))
2549 value
= sym
->value();
2552 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2553 Output_section
* os
= relobj
->output_section(shndx
);
2555 if (this->is_section_folded(relobj
, shndx
))
2557 gold_assert(os
== NULL
);
2558 // Get the os of the section it is folded onto.
2559 Section_id folded
= this->icf_
->get_folded_section(relobj
,
2561 gold_assert(folded
.first
!= NULL
);
2562 Relobj
* folded_obj
= reinterpret_cast<Relobj
*>(folded
.first
);
2563 unsigned folded_shndx
= folded
.second
;
2565 os
= folded_obj
->output_section(folded_shndx
);
2566 gold_assert(os
!= NULL
);
2568 // Replace (relobj, shndx) with canonical ICF input section.
2569 shndx
= folded_shndx
;
2570 relobj
= folded_obj
;
2573 uint64_t secoff64
= relobj
->output_section_offset(shndx
);
2576 bool static_or_reloc
= (parameters
->doing_static_link() ||
2577 parameters
->options().relocatable());
2578 gold_assert(static_or_reloc
|| sym
->dynsym_index() == -1U);
2580 *pstatus
= CFVS_NO_OUTPUT_SECTION
;
2584 if (secoff64
== -1ULL)
2586 // The section needs special handling (e.g., a merge section).
2588 value
= os
->output_address(relobj
, shndx
, sym
->value());
2593 convert_types
<Value_type
, uint64_t>(secoff64
);
2594 if (sym
->type() == elfcpp::STT_TLS
)
2595 value
= sym
->value() + os
->tls_offset() + secoff
;
2597 value
= sym
->value() + os
->address() + secoff
;
2603 case Symbol::IN_OUTPUT_DATA
:
2605 Output_data
* od
= sym
->output_data();
2606 value
= sym
->value();
2607 if (sym
->type() != elfcpp::STT_TLS
)
2608 value
+= od
->address();
2611 Output_section
* os
= od
->output_section();
2612 gold_assert(os
!= NULL
);
2613 value
+= os
->tls_offset() + (od
->address() - os
->address());
2615 if (sym
->offset_is_from_end())
2616 value
+= od
->data_size();
2620 case Symbol::IN_OUTPUT_SEGMENT
:
2622 Output_segment
* os
= sym
->output_segment();
2623 value
= sym
->value();
2624 if (sym
->type() != elfcpp::STT_TLS
)
2625 value
+= os
->vaddr();
2626 switch (sym
->offset_base())
2628 case Symbol::SEGMENT_START
:
2630 case Symbol::SEGMENT_END
:
2631 value
+= os
->memsz();
2633 case Symbol::SEGMENT_BSS
:
2634 value
+= os
->filesz();
2642 case Symbol::IS_CONSTANT
:
2643 value
= sym
->value();
2646 case Symbol::IS_UNDEFINED
:
2658 // Finalize the symbol SYM. This returns true if the symbol should be
2659 // added to the symbol table, false otherwise.
2663 Symbol_table::sized_finalize_symbol(Symbol
* unsized_sym
)
2665 typedef typename Sized_symbol
<size
>::Value_type Value_type
;
2667 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(unsized_sym
);
2669 // The default version of a symbol may appear twice in the symbol
2670 // table. We only need to finalize it once.
2671 if (sym
->has_symtab_index())
2676 gold_assert(!sym
->has_symtab_index());
2677 sym
->set_symtab_index(-1U);
2678 gold_assert(sym
->dynsym_index() == -1U);
2682 // If the symbol is only present on plugin files, the plugin decided we
2684 if (!sym
->in_real_elf())
2686 gold_assert(!sym
->has_symtab_index());
2687 sym
->set_symtab_index(-1U);
2691 // Compute final symbol value.
2692 Compute_final_value_status status
;
2693 Value_type value
= this->compute_final_value(sym
, &status
);
2699 case CFVS_UNSUPPORTED_SYMBOL_SECTION
:
2702 unsigned int shndx
= sym
->shndx(&is_ordinary
);
2703 gold_error(_("%s: unsupported symbol section 0x%x"),
2704 sym
->demangled_name().c_str(), shndx
);
2707 case CFVS_NO_OUTPUT_SECTION
:
2708 sym
->set_symtab_index(-1U);
2714 sym
->set_value(value
);
2716 if (parameters
->options().strip_all()
2717 || !parameters
->options().should_retain_symbol(sym
->name()))
2719 sym
->set_symtab_index(-1U);
2726 // Write out the global symbols.
2729 Symbol_table::write_globals(const Stringpool
* sympool
,
2730 const Stringpool
* dynpool
,
2731 Output_symtab_xindex
* symtab_xindex
,
2732 Output_symtab_xindex
* dynsym_xindex
,
2733 Output_file
* of
) const
2735 switch (parameters
->size_and_endianness())
2737 #ifdef HAVE_TARGET_32_LITTLE
2738 case Parameters::TARGET_32_LITTLE
:
2739 this->sized_write_globals
<32, false>(sympool
, dynpool
, symtab_xindex
,
2743 #ifdef HAVE_TARGET_32_BIG
2744 case Parameters::TARGET_32_BIG
:
2745 this->sized_write_globals
<32, true>(sympool
, dynpool
, symtab_xindex
,
2749 #ifdef HAVE_TARGET_64_LITTLE
2750 case Parameters::TARGET_64_LITTLE
:
2751 this->sized_write_globals
<64, false>(sympool
, dynpool
, symtab_xindex
,
2755 #ifdef HAVE_TARGET_64_BIG
2756 case Parameters::TARGET_64_BIG
:
2757 this->sized_write_globals
<64, true>(sympool
, dynpool
, symtab_xindex
,
2766 // Write out the global symbols.
2768 template<int size
, bool big_endian
>
2770 Symbol_table::sized_write_globals(const Stringpool
* sympool
,
2771 const Stringpool
* dynpool
,
2772 Output_symtab_xindex
* symtab_xindex
,
2773 Output_symtab_xindex
* dynsym_xindex
,
2774 Output_file
* of
) const
2776 const Target
& target
= parameters
->target();
2778 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2780 const unsigned int output_count
= this->output_count_
;
2781 const section_size_type oview_size
= output_count
* sym_size
;
2782 const unsigned int first_global_index
= this->first_global_index_
;
2783 unsigned char* psyms
;
2784 if (this->offset_
== 0 || output_count
== 0)
2787 psyms
= of
->get_output_view(this->offset_
, oview_size
);
2789 const unsigned int dynamic_count
= this->dynamic_count_
;
2790 const section_size_type dynamic_size
= dynamic_count
* sym_size
;
2791 const unsigned int first_dynamic_global_index
=
2792 this->first_dynamic_global_index_
;
2793 unsigned char* dynamic_view
;
2794 if (this->dynamic_offset_
== 0 || dynamic_count
== 0)
2795 dynamic_view
= NULL
;
2797 dynamic_view
= of
->get_output_view(this->dynamic_offset_
, dynamic_size
);
2799 for (Symbol_table_type::const_iterator p
= this->table_
.begin();
2800 p
!= this->table_
.end();
2803 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(p
->second
);
2805 // Possibly warn about unresolved symbols in shared libraries.
2806 this->warn_about_undefined_dynobj_symbol(sym
);
2808 unsigned int sym_index
= sym
->symtab_index();
2809 unsigned int dynsym_index
;
2810 if (dynamic_view
== NULL
)
2813 dynsym_index
= sym
->dynsym_index();
2815 if (sym_index
== -1U && dynsym_index
== -1U)
2817 // This symbol is not included in the output file.
2822 typename
elfcpp::Elf_types
<size
>::Elf_Addr sym_value
= sym
->value();
2823 typename
elfcpp::Elf_types
<size
>::Elf_Addr dynsym_value
= sym_value
;
2824 elfcpp::STB binding
= sym
->binding();
2825 switch (sym
->source())
2827 case Symbol::FROM_OBJECT
:
2830 unsigned int in_shndx
= sym
->shndx(&is_ordinary
);
2833 && in_shndx
!= elfcpp::SHN_ABS
2834 && !Symbol::is_common_shndx(in_shndx
))
2836 gold_error(_("%s: unsupported symbol section 0x%x"),
2837 sym
->demangled_name().c_str(), in_shndx
);
2842 Object
* symobj
= sym
->object();
2843 if (symobj
->is_dynamic())
2845 if (sym
->needs_dynsym_value())
2846 dynsym_value
= target
.dynsym_value(sym
);
2847 shndx
= elfcpp::SHN_UNDEF
;
2848 if (sym
->is_undef_binding_weak())
2849 binding
= elfcpp::STB_WEAK
;
2851 binding
= elfcpp::STB_GLOBAL
;
2853 else if (symobj
->pluginobj() != NULL
)
2854 shndx
= elfcpp::SHN_UNDEF
;
2855 else if (in_shndx
== elfcpp::SHN_UNDEF
2857 && (in_shndx
== elfcpp::SHN_ABS
2858 || Symbol::is_common_shndx(in_shndx
))))
2862 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2863 Output_section
* os
= relobj
->output_section(in_shndx
);
2864 if (this->is_section_folded(relobj
, in_shndx
))
2866 // This global symbol must be written out even though
2868 // Get the os of the section it is folded onto.
2870 this->icf_
->get_folded_section(relobj
, in_shndx
);
2871 gold_assert(folded
.first
!=NULL
);
2872 Relobj
* folded_obj
=
2873 reinterpret_cast<Relobj
*>(folded
.first
);
2874 os
= folded_obj
->output_section(folded
.second
);
2875 gold_assert(os
!= NULL
);
2877 gold_assert(os
!= NULL
);
2878 shndx
= os
->out_shndx();
2880 if (shndx
>= elfcpp::SHN_LORESERVE
)
2882 if (sym_index
!= -1U)
2883 symtab_xindex
->add(sym_index
, shndx
);
2884 if (dynsym_index
!= -1U)
2885 dynsym_xindex
->add(dynsym_index
, shndx
);
2886 shndx
= elfcpp::SHN_XINDEX
;
2889 // In object files symbol values are section
2891 if (parameters
->options().relocatable())
2892 sym_value
-= os
->address();
2898 case Symbol::IN_OUTPUT_DATA
:
2899 shndx
= sym
->output_data()->out_shndx();
2900 if (shndx
>= elfcpp::SHN_LORESERVE
)
2902 if (sym_index
!= -1U)
2903 symtab_xindex
->add(sym_index
, shndx
);
2904 if (dynsym_index
!= -1U)
2905 dynsym_xindex
->add(dynsym_index
, shndx
);
2906 shndx
= elfcpp::SHN_XINDEX
;
2910 case Symbol::IN_OUTPUT_SEGMENT
:
2911 shndx
= elfcpp::SHN_ABS
;
2914 case Symbol::IS_CONSTANT
:
2915 shndx
= elfcpp::SHN_ABS
;
2918 case Symbol::IS_UNDEFINED
:
2919 shndx
= elfcpp::SHN_UNDEF
;
2926 if (sym_index
!= -1U)
2928 sym_index
-= first_global_index
;
2929 gold_assert(sym_index
< output_count
);
2930 unsigned char* ps
= psyms
+ (sym_index
* sym_size
);
2931 this->sized_write_symbol
<size
, big_endian
>(sym
, sym_value
, shndx
,
2932 binding
, sympool
, ps
);
2935 if (dynsym_index
!= -1U)
2937 dynsym_index
-= first_dynamic_global_index
;
2938 gold_assert(dynsym_index
< dynamic_count
);
2939 unsigned char* pd
= dynamic_view
+ (dynsym_index
* sym_size
);
2940 this->sized_write_symbol
<size
, big_endian
>(sym
, dynsym_value
, shndx
,
2941 binding
, dynpool
, pd
);
2945 of
->write_output_view(this->offset_
, oview_size
, psyms
);
2946 if (dynamic_view
!= NULL
)
2947 of
->write_output_view(this->dynamic_offset_
, dynamic_size
, dynamic_view
);
2950 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2951 // strtab holding the name.
2953 template<int size
, bool big_endian
>
2955 Symbol_table::sized_write_symbol(
2956 Sized_symbol
<size
>* sym
,
2957 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
2959 elfcpp::STB binding
,
2960 const Stringpool
* pool
,
2961 unsigned char* p
) const
2963 elfcpp::Sym_write
<size
, big_endian
> osym(p
);
2964 if (sym
->version() == NULL
|| !parameters
->options().relocatable())
2965 osym
.put_st_name(pool
->get_offset(sym
->name()));
2967 osym
.put_st_name(pool
->get_offset(sym
->versioned_name()));
2968 osym
.put_st_value(value
);
2969 // Use a symbol size of zero for undefined symbols from shared libraries.
2970 if (shndx
== elfcpp::SHN_UNDEF
&& sym
->is_from_dynobj())
2971 osym
.put_st_size(0);
2973 osym
.put_st_size(sym
->symsize());
2974 elfcpp::STT type
= sym
->type();
2975 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
2976 if (type
== elfcpp::STT_GNU_IFUNC
2977 && sym
->is_from_dynobj())
2978 type
= elfcpp::STT_FUNC
;
2979 // A version script may have overridden the default binding.
2980 if (sym
->is_forced_local())
2981 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
, type
));
2983 osym
.put_st_info(elfcpp::elf_st_info(binding
, type
));
2984 osym
.put_st_other(elfcpp::elf_st_other(sym
->visibility(), sym
->nonvis()));
2985 osym
.put_st_shndx(shndx
);
2988 // Check for unresolved symbols in shared libraries. This is
2989 // controlled by the --allow-shlib-undefined option.
2991 // We only warn about libraries for which we have seen all the
2992 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2993 // which were not seen in this link. If we didn't see a DT_NEEDED
2994 // entry, we aren't going to be able to reliably report whether the
2995 // symbol is undefined.
2997 // We also don't warn about libraries found in a system library
2998 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2999 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3000 // can have undefined references satisfied by ld-linux.so.
3003 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol
* sym
) const
3006 if (sym
->source() == Symbol::FROM_OBJECT
3007 && sym
->object()->is_dynamic()
3008 && sym
->shndx(&dummy
) == elfcpp::SHN_UNDEF
3009 && sym
->binding() != elfcpp::STB_WEAK
3010 && !parameters
->options().allow_shlib_undefined()
3011 && !parameters
->target().is_defined_by_abi(sym
)
3012 && !sym
->object()->is_in_system_directory())
3014 // A very ugly cast.
3015 Dynobj
* dynobj
= static_cast<Dynobj
*>(sym
->object());
3016 if (!dynobj
->has_unknown_needed_entries())
3017 gold_undefined_symbol(sym
);
3021 // Write out a section symbol. Return the update offset.
3024 Symbol_table::write_section_symbol(const Output_section
* os
,
3025 Output_symtab_xindex
* symtab_xindex
,
3029 switch (parameters
->size_and_endianness())
3031 #ifdef HAVE_TARGET_32_LITTLE
3032 case Parameters::TARGET_32_LITTLE
:
3033 this->sized_write_section_symbol
<32, false>(os
, symtab_xindex
, of
,
3037 #ifdef HAVE_TARGET_32_BIG
3038 case Parameters::TARGET_32_BIG
:
3039 this->sized_write_section_symbol
<32, true>(os
, symtab_xindex
, of
,
3043 #ifdef HAVE_TARGET_64_LITTLE
3044 case Parameters::TARGET_64_LITTLE
:
3045 this->sized_write_section_symbol
<64, false>(os
, symtab_xindex
, of
,
3049 #ifdef HAVE_TARGET_64_BIG
3050 case Parameters::TARGET_64_BIG
:
3051 this->sized_write_section_symbol
<64, true>(os
, symtab_xindex
, of
,
3060 // Write out a section symbol, specialized for size and endianness.
3062 template<int size
, bool big_endian
>
3064 Symbol_table::sized_write_section_symbol(const Output_section
* os
,
3065 Output_symtab_xindex
* symtab_xindex
,
3069 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
3071 unsigned char* pov
= of
->get_output_view(offset
, sym_size
);
3073 elfcpp::Sym_write
<size
, big_endian
> osym(pov
);
3074 osym
.put_st_name(0);
3075 if (parameters
->options().relocatable())
3076 osym
.put_st_value(0);
3078 osym
.put_st_value(os
->address());
3079 osym
.put_st_size(0);
3080 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
,
3081 elfcpp::STT_SECTION
));
3082 osym
.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT
, 0));
3084 unsigned int shndx
= os
->out_shndx();
3085 if (shndx
>= elfcpp::SHN_LORESERVE
)
3087 symtab_xindex
->add(os
->symtab_index(), shndx
);
3088 shndx
= elfcpp::SHN_XINDEX
;
3090 osym
.put_st_shndx(shndx
);
3092 of
->write_output_view(offset
, sym_size
, pov
);
3095 // Print statistical information to stderr. This is used for --stats.
3098 Symbol_table::print_stats() const
3100 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3101 fprintf(stderr
, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3102 program_name
, this->table_
.size(), this->table_
.bucket_count());
3104 fprintf(stderr
, _("%s: symbol table entries: %zu\n"),
3105 program_name
, this->table_
.size());
3107 this->namepool_
.print_stats("symbol table stringpool");
3110 // We check for ODR violations by looking for symbols with the same
3111 // name for which the debugging information reports that they were
3112 // defined in disjoint source locations. When comparing the source
3113 // location, we consider instances with the same base filename to be
3114 // the same. This is because different object files/shared libraries
3115 // can include the same header file using different paths, and
3116 // different optimization settings can make the line number appear to
3117 // be a couple lines off, and we don't want to report an ODR violation
3120 // This struct is used to compare line information, as returned by
3121 // Dwarf_line_info::one_addr2line. It implements a < comparison
3122 // operator used with std::sort.
3124 struct Odr_violation_compare
3127 operator()(const std::string
& s1
, const std::string
& s2
) const
3129 // Inputs should be of the form "dirname/filename:linenum" where
3130 // "dirname/" is optional. We want to compare just the filename:linenum.
3132 // Find the last '/' in each string.
3133 std::string::size_type s1begin
= s1
.rfind('/');
3134 std::string::size_type s2begin
= s2
.rfind('/');
3135 // If there was no '/' in a string, start at the beginning.
3136 if (s1begin
== std::string::npos
)
3138 if (s2begin
== std::string::npos
)
3140 return s1
.compare(s1begin
, std::string::npos
,
3141 s2
, s2begin
, std::string::npos
) < 0;
3145 // Returns all of the lines attached to LOC, not just the one the
3146 // instruction actually came from.
3147 std::vector
<std::string
>
3148 Symbol_table::linenos_from_loc(const Task
* task
,
3149 const Symbol_location
& loc
)
3151 // We need to lock the object in order to read it. This
3152 // means that we have to run in a singleton Task. If we
3153 // want to run this in a general Task for better
3154 // performance, we will need one Task for object, plus
3155 // appropriate locking to ensure that we don't conflict with
3156 // other uses of the object. Also note, one_addr2line is not
3157 // currently thread-safe.
3158 Task_lock_obj
<Object
> tl(task
, loc
.object
);
3160 std::vector
<std::string
> result
;
3161 // 16 is the size of the object-cache that one_addr2line should use.
3162 std::string canonical_result
= Dwarf_line_info::one_addr2line(
3163 loc
.object
, loc
.shndx
, loc
.offset
, 16, &result
);
3164 if (!canonical_result
.empty())
3165 result
.push_back(canonical_result
);
3169 // OutputIterator that records if it was ever assigned to. This
3170 // allows it to be used with std::set_intersection() to check for
3171 // intersection rather than computing the intersection.
3172 struct Check_intersection
3174 Check_intersection()
3178 bool had_intersection() const
3179 { return this->value_
; }
3181 Check_intersection
& operator++()
3184 Check_intersection
& operator*()
3187 template<typename T
>
3188 Check_intersection
& operator=(const T
&)
3190 this->value_
= true;
3198 // Check candidate_odr_violations_ to find symbols with the same name
3199 // but apparently different definitions (different source-file/line-no
3200 // for each line assigned to the first instruction).
3203 Symbol_table::detect_odr_violations(const Task
* task
,
3204 const char* output_file_name
) const
3206 for (Odr_map::const_iterator it
= candidate_odr_violations_
.begin();
3207 it
!= candidate_odr_violations_
.end();
3210 const char* const symbol_name
= it
->first
;
3212 std::string first_object_name
;
3213 std::vector
<std::string
> first_object_linenos
;
3215 Unordered_set
<Symbol_location
, Symbol_location_hash
>::const_iterator
3216 locs
= it
->second
.begin();
3217 const Unordered_set
<Symbol_location
, Symbol_location_hash
>::const_iterator
3218 locs_end
= it
->second
.end();
3219 for (; locs
!= locs_end
&& first_object_linenos
.empty(); ++locs
)
3221 // Save the line numbers from the first definition to
3222 // compare to the other definitions. Ideally, we'd compare
3223 // every definition to every other, but we don't want to
3224 // take O(N^2) time to do this. This shortcut may cause
3225 // false negatives that appear or disappear depending on the
3226 // link order, but it won't cause false positives.
3227 first_object_name
= locs
->object
->name();
3228 first_object_linenos
= this->linenos_from_loc(task
, *locs
);
3231 // Sort by Odr_violation_compare to make std::set_intersection work.
3232 std::sort(first_object_linenos
.begin(), first_object_linenos
.end(),
3233 Odr_violation_compare());
3235 for (; locs
!= locs_end
; ++locs
)
3237 std::vector
<std::string
> linenos
=
3238 this->linenos_from_loc(task
, *locs
);
3239 // linenos will be empty if we couldn't parse the debug info.
3240 if (linenos
.empty())
3242 // Sort by Odr_violation_compare to make std::set_intersection work.
3243 std::sort(linenos
.begin(), linenos
.end(), Odr_violation_compare());
3245 Check_intersection intersection_result
=
3246 std::set_intersection(first_object_linenos
.begin(),
3247 first_object_linenos
.end(),
3250 Check_intersection(),
3251 Odr_violation_compare());
3252 if (!intersection_result
.had_intersection())
3254 gold_warning(_("while linking %s: symbol '%s' defined in "
3255 "multiple places (possible ODR violation):"),
3256 output_file_name
, demangle(symbol_name
).c_str());
3257 // This only prints one location from each definition,
3258 // which may not be the location we expect to intersect
3259 // with another definition. We could print the whole
3260 // set of locations, but that seems too verbose.
3261 gold_assert(!first_object_linenos
.empty());
3262 gold_assert(!linenos
.empty());
3263 fprintf(stderr
, _(" %s from %s\n"),
3264 first_object_linenos
[0].c_str(),
3265 first_object_name
.c_str());
3266 fprintf(stderr
, _(" %s from %s\n"),
3268 locs
->object
->name().c_str());
3269 // Only print one broken pair, to avoid needing to
3270 // compare against a list of the disjoint definition
3271 // locations we've found so far. (If we kept comparing
3272 // against just the first one, we'd get a lot of
3273 // redundant complaints about the second definition
3279 // We only call one_addr2line() in this function, so we can clear its cache.
3280 Dwarf_line_info::clear_addr2line_cache();
3283 // Warnings functions.
3285 // Add a new warning.
3288 Warnings::add_warning(Symbol_table
* symtab
, const char* name
, Object
* obj
,
3289 const std::string
& warning
)
3291 name
= symtab
->canonicalize_name(name
);
3292 this->warnings_
[name
].set(obj
, warning
);
3295 // Look through the warnings and mark the symbols for which we should
3296 // warn. This is called during Layout::finalize when we know the
3297 // sources for all the symbols.
3300 Warnings::note_warnings(Symbol_table
* symtab
)
3302 for (Warning_table::iterator p
= this->warnings_
.begin();
3303 p
!= this->warnings_
.end();
3306 Symbol
* sym
= symtab
->lookup(p
->first
, NULL
);
3308 && sym
->source() == Symbol::FROM_OBJECT
3309 && sym
->object() == p
->second
.object
)
3310 sym
->set_has_warning();
3314 // Issue a warning. This is called when we see a relocation against a
3315 // symbol for which has a warning.
3317 template<int size
, bool big_endian
>
3319 Warnings::issue_warning(const Symbol
* sym
,
3320 const Relocate_info
<size
, big_endian
>* relinfo
,
3321 size_t relnum
, off_t reloffset
) const
3323 gold_assert(sym
->has_warning());
3325 // We don't want to issue a warning for a relocation against the
3326 // symbol in the same object file in which the symbol is defined.
3327 if (sym
->object() == relinfo
->object
)
3330 Warning_table::const_iterator p
= this->warnings_
.find(sym
->name());
3331 gold_assert(p
!= this->warnings_
.end());
3332 gold_warning_at_location(relinfo
, relnum
, reloffset
,
3333 "%s", p
->second
.text
.c_str());
3336 // Instantiate the templates we need. We could use the configure
3337 // script to restrict this to only the ones needed for implemented
3340 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3343 Sized_symbol
<32>::allocate_common(Output_data
*, Value_type
);
3346 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3349 Sized_symbol
<64>::allocate_common(Output_data
*, Value_type
);
3352 #ifdef HAVE_TARGET_32_LITTLE
3355 Symbol_table::add_from_relobj
<32, false>(
3356 Sized_relobj_file
<32, false>* relobj
,
3357 const unsigned char* syms
,
3359 size_t symndx_offset
,
3360 const char* sym_names
,
3361 size_t sym_name_size
,
3362 Sized_relobj_file
<32, false>::Symbols
* sympointers
,
3366 #ifdef HAVE_TARGET_32_BIG
3369 Symbol_table::add_from_relobj
<32, true>(
3370 Sized_relobj_file
<32, true>* relobj
,
3371 const unsigned char* syms
,
3373 size_t symndx_offset
,
3374 const char* sym_names
,
3375 size_t sym_name_size
,
3376 Sized_relobj_file
<32, true>::Symbols
* sympointers
,
3380 #ifdef HAVE_TARGET_64_LITTLE
3383 Symbol_table::add_from_relobj
<64, false>(
3384 Sized_relobj_file
<64, false>* relobj
,
3385 const unsigned char* syms
,
3387 size_t symndx_offset
,
3388 const char* sym_names
,
3389 size_t sym_name_size
,
3390 Sized_relobj_file
<64, false>::Symbols
* sympointers
,
3394 #ifdef HAVE_TARGET_64_BIG
3397 Symbol_table::add_from_relobj
<64, true>(
3398 Sized_relobj_file
<64, true>* relobj
,
3399 const unsigned char* syms
,
3401 size_t symndx_offset
,
3402 const char* sym_names
,
3403 size_t sym_name_size
,
3404 Sized_relobj_file
<64, true>::Symbols
* sympointers
,
3408 #ifdef HAVE_TARGET_32_LITTLE
3411 Symbol_table::add_from_pluginobj
<32, false>(
3412 Sized_pluginobj
<32, false>* obj
,
3415 elfcpp::Sym
<32, false>* sym
);
3418 #ifdef HAVE_TARGET_32_BIG
3421 Symbol_table::add_from_pluginobj
<32, true>(
3422 Sized_pluginobj
<32, true>* obj
,
3425 elfcpp::Sym
<32, true>* sym
);
3428 #ifdef HAVE_TARGET_64_LITTLE
3431 Symbol_table::add_from_pluginobj
<64, false>(
3432 Sized_pluginobj
<64, false>* obj
,
3435 elfcpp::Sym
<64, false>* sym
);
3438 #ifdef HAVE_TARGET_64_BIG
3441 Symbol_table::add_from_pluginobj
<64, true>(
3442 Sized_pluginobj
<64, true>* obj
,
3445 elfcpp::Sym
<64, true>* sym
);
3448 #ifdef HAVE_TARGET_32_LITTLE
3451 Symbol_table::add_from_dynobj
<32, false>(
3452 Sized_dynobj
<32, false>* dynobj
,
3453 const unsigned char* syms
,
3455 const char* sym_names
,
3456 size_t sym_name_size
,
3457 const unsigned char* versym
,
3459 const std::vector
<const char*>* version_map
,
3460 Sized_relobj_file
<32, false>::Symbols
* sympointers
,
3464 #ifdef HAVE_TARGET_32_BIG
3467 Symbol_table::add_from_dynobj
<32, true>(
3468 Sized_dynobj
<32, true>* dynobj
,
3469 const unsigned char* syms
,
3471 const char* sym_names
,
3472 size_t sym_name_size
,
3473 const unsigned char* versym
,
3475 const std::vector
<const char*>* version_map
,
3476 Sized_relobj_file
<32, true>::Symbols
* sympointers
,
3480 #ifdef HAVE_TARGET_64_LITTLE
3483 Symbol_table::add_from_dynobj
<64, false>(
3484 Sized_dynobj
<64, false>* dynobj
,
3485 const unsigned char* syms
,
3487 const char* sym_names
,
3488 size_t sym_name_size
,
3489 const unsigned char* versym
,
3491 const std::vector
<const char*>* version_map
,
3492 Sized_relobj_file
<64, false>::Symbols
* sympointers
,
3496 #ifdef HAVE_TARGET_64_BIG
3499 Symbol_table::add_from_dynobj
<64, true>(
3500 Sized_dynobj
<64, true>* dynobj
,
3501 const unsigned char* syms
,
3503 const char* sym_names
,
3504 size_t sym_name_size
,
3505 const unsigned char* versym
,
3507 const std::vector
<const char*>* version_map
,
3508 Sized_relobj_file
<64, true>::Symbols
* sympointers
,
3512 #ifdef HAVE_TARGET_32_LITTLE
3515 Symbol_table::add_from_incrobj(
3519 elfcpp::Sym
<32, false>* sym
);
3522 #ifdef HAVE_TARGET_32_BIG
3525 Symbol_table::add_from_incrobj(
3529 elfcpp::Sym
<32, true>* sym
);
3532 #ifdef HAVE_TARGET_64_LITTLE
3535 Symbol_table::add_from_incrobj(
3539 elfcpp::Sym
<64, false>* sym
);
3542 #ifdef HAVE_TARGET_64_BIG
3545 Symbol_table::add_from_incrobj(
3549 elfcpp::Sym
<64, true>* sym
);
3552 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3555 Symbol_table::define_with_copy_reloc
<32>(
3556 Sized_symbol
<32>* sym
,
3558 elfcpp::Elf_types
<32>::Elf_Addr value
);
3561 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3564 Symbol_table::define_with_copy_reloc
<64>(
3565 Sized_symbol
<64>* sym
,
3567 elfcpp::Elf_types
<64>::Elf_Addr value
);
3570 #ifdef HAVE_TARGET_32_LITTLE
3573 Warnings::issue_warning
<32, false>(const Symbol
* sym
,
3574 const Relocate_info
<32, false>* relinfo
,
3575 size_t relnum
, off_t reloffset
) const;
3578 #ifdef HAVE_TARGET_32_BIG
3581 Warnings::issue_warning
<32, true>(const Symbol
* sym
,
3582 const Relocate_info
<32, true>* relinfo
,
3583 size_t relnum
, off_t reloffset
) const;
3586 #ifdef HAVE_TARGET_64_LITTLE
3589 Warnings::issue_warning
<64, false>(const Symbol
* sym
,
3590 const Relocate_info
<64, false>* relinfo
,
3591 size_t relnum
, off_t reloffset
) const;
3594 #ifdef HAVE_TARGET_64_BIG
3597 Warnings::issue_warning
<64, true>(const Symbol
* sym
,
3598 const Relocate_info
<64, true>* relinfo
,
3599 size_t relnum
, off_t reloffset
) const;
3602 } // End namespace gold.