1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
28 /* This file handles functionality common to the different MIPS ABI's. */
34 #include "elfxx-mips.h"
37 /* Get the ECOFF swapping routines. */
39 #include "coff/symconst.h"
40 #include "coff/ecoff.h"
41 #include "coff/mips.h"
43 /* This structure is used to hold .got information when linking. It
44 is stored in the tdata field of the bfd_elf_section_data structure. */
48 /* The global symbol in the GOT with the lowest index in the dynamic
50 struct elf_link_hash_entry
*global_gotsym
;
51 /* The number of global .got entries. */
52 unsigned int global_gotno
;
53 /* The number of local .got entries. */
54 unsigned int local_gotno
;
55 /* The number of local .got entries we have used. */
56 unsigned int assigned_gotno
;
59 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
60 the dynamic symbols. */
62 struct mips_elf_hash_sort_data
64 /* The symbol in the global GOT with the lowest dynamic symbol table
66 struct elf_link_hash_entry
*low
;
67 /* The least dynamic symbol table index corresponding to a symbol
70 /* The greatest dynamic symbol table index not corresponding to a
71 symbol without a GOT entry. */
72 long max_non_got_dynindx
;
75 /* The MIPS ELF linker needs additional information for each symbol in
76 the global hash table. */
78 struct mips_elf_link_hash_entry
80 struct elf_link_hash_entry root
;
82 /* External symbol information. */
85 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
87 unsigned int possibly_dynamic_relocs
;
89 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
90 a readonly section. */
91 boolean readonly_reloc
;
93 /* The index of the first dynamic relocation (in the .rel.dyn
94 section) against this symbol. */
95 unsigned int min_dyn_reloc_index
;
97 /* We must not create a stub for a symbol that has relocations
98 related to taking the function's address, i.e. any but
99 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
103 /* If there is a stub that 32 bit functions should use to call this
104 16 bit function, this points to the section containing the stub. */
107 /* Whether we need the fn_stub; this is set if this symbol appears
108 in any relocs other than a 16 bit call. */
109 boolean need_fn_stub
;
111 /* If there is a stub that 16 bit functions should use to call this
112 32 bit function, this points to the section containing the stub. */
115 /* This is like the call_stub field, but it is used if the function
116 being called returns a floating point value. */
117 asection
*call_fp_stub
;
119 /* Are we forced local? .*/
120 boolean forced_local
;
123 /* MIPS ELF linker hash table. */
125 struct mips_elf_link_hash_table
127 struct elf_link_hash_table root
;
129 /* We no longer use this. */
130 /* String section indices for the dynamic section symbols. */
131 bfd_size_type dynsym_sec_strindex
[SIZEOF_MIPS_DYNSYM_SECNAMES
];
133 /* The number of .rtproc entries. */
134 bfd_size_type procedure_count
;
135 /* The size of the .compact_rel section (if SGI_COMPAT). */
136 bfd_size_type compact_rel_size
;
137 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
138 entry is set to the address of __rld_obj_head as in IRIX5. */
139 boolean use_rld_obj_head
;
140 /* This is the value of the __rld_map or __rld_obj_head symbol. */
142 /* This is set if we see any mips16 stub sections. */
143 boolean mips16_stubs_seen
;
146 /* Structure used to pass information to mips_elf_output_extsym. */
151 struct bfd_link_info
*info
;
152 struct ecoff_debug_info
*debug
;
153 const struct ecoff_debug_swap
*swap
;
157 /* The names of the runtime procedure table symbols used on IRIX5. */
159 static const char * const mips_elf_dynsym_rtproc_names
[] =
162 "_procedure_string_table",
163 "_procedure_table_size",
167 /* These structures are used to generate the .compact_rel section on
172 unsigned long id1
; /* Always one? */
173 unsigned long num
; /* Number of compact relocation entries. */
174 unsigned long id2
; /* Always two? */
175 unsigned long offset
; /* The file offset of the first relocation. */
176 unsigned long reserved0
; /* Zero? */
177 unsigned long reserved1
; /* Zero? */
186 bfd_byte reserved0
[4];
187 bfd_byte reserved1
[4];
188 } Elf32_External_compact_rel
;
192 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
193 unsigned int rtype
: 4; /* Relocation types. See below. */
194 unsigned int dist2to
: 8;
195 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
196 unsigned long konst
; /* KONST field. See below. */
197 unsigned long vaddr
; /* VADDR to be relocated. */
202 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
203 unsigned int rtype
: 4; /* Relocation types. See below. */
204 unsigned int dist2to
: 8;
205 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
206 unsigned long konst
; /* KONST field. See below. */
214 } Elf32_External_crinfo
;
220 } Elf32_External_crinfo2
;
222 /* These are the constants used to swap the bitfields in a crinfo. */
224 #define CRINFO_CTYPE (0x1)
225 #define CRINFO_CTYPE_SH (31)
226 #define CRINFO_RTYPE (0xf)
227 #define CRINFO_RTYPE_SH (27)
228 #define CRINFO_DIST2TO (0xff)
229 #define CRINFO_DIST2TO_SH (19)
230 #define CRINFO_RELVADDR (0x7ffff)
231 #define CRINFO_RELVADDR_SH (0)
233 /* A compact relocation info has long (3 words) or short (2 words)
234 formats. A short format doesn't have VADDR field and relvaddr
235 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
236 #define CRF_MIPS_LONG 1
237 #define CRF_MIPS_SHORT 0
239 /* There are 4 types of compact relocation at least. The value KONST
240 has different meaning for each type:
243 CT_MIPS_REL32 Address in data
244 CT_MIPS_WORD Address in word (XXX)
245 CT_MIPS_GPHI_LO GP - vaddr
246 CT_MIPS_JMPAD Address to jump
249 #define CRT_MIPS_REL32 0xa
250 #define CRT_MIPS_WORD 0xb
251 #define CRT_MIPS_GPHI_LO 0xc
252 #define CRT_MIPS_JMPAD 0xd
254 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
255 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
256 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
257 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
259 /* The structure of the runtime procedure descriptor created by the
260 loader for use by the static exception system. */
262 typedef struct runtime_pdr
{
263 bfd_vma adr
; /* memory address of start of procedure */
264 long regmask
; /* save register mask */
265 long regoffset
; /* save register offset */
266 long fregmask
; /* save floating point register mask */
267 long fregoffset
; /* save floating point register offset */
268 long frameoffset
; /* frame size */
269 short framereg
; /* frame pointer register */
270 short pcreg
; /* offset or reg of return pc */
271 long irpss
; /* index into the runtime string table */
273 struct exception_info
*exception_info
;/* pointer to exception array */
275 #define cbRPDR sizeof (RPDR)
276 #define rpdNil ((pRPDR) 0)
278 static struct bfd_hash_entry
*mips_elf_link_hash_newfunc
279 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
280 static void ecoff_swap_rpdr_out
281 PARAMS ((bfd
*, const RPDR
*, struct rpdr_ext
*));
282 static boolean mips_elf_create_procedure_table
283 PARAMS ((PTR
, bfd
*, struct bfd_link_info
*, asection
*,
284 struct ecoff_debug_info
*));
285 static boolean mips_elf_check_mips16_stubs
286 PARAMS ((struct mips_elf_link_hash_entry
*, PTR
));
287 static void bfd_mips_elf32_swap_gptab_in
288 PARAMS ((bfd
*, const Elf32_External_gptab
*, Elf32_gptab
*));
289 static void bfd_mips_elf32_swap_gptab_out
290 PARAMS ((bfd
*, const Elf32_gptab
*, Elf32_External_gptab
*));
291 static void bfd_elf32_swap_compact_rel_out
292 PARAMS ((bfd
*, const Elf32_compact_rel
*, Elf32_External_compact_rel
*));
293 static void bfd_elf32_swap_crinfo_out
294 PARAMS ((bfd
*, const Elf32_crinfo
*, Elf32_External_crinfo
*));
296 static void bfd_mips_elf_swap_msym_in
297 PARAMS ((bfd
*, const Elf32_External_Msym
*, Elf32_Internal_Msym
*));
299 static void bfd_mips_elf_swap_msym_out
300 PARAMS ((bfd
*, const Elf32_Internal_Msym
*, Elf32_External_Msym
*));
301 static int sort_dynamic_relocs
302 PARAMS ((const void *, const void *));
303 static boolean mips_elf_output_extsym
304 PARAMS ((struct mips_elf_link_hash_entry
*, PTR
));
305 static int gptab_compare
PARAMS ((const void *, const void *));
306 static asection
* mips_elf_got_section
PARAMS ((bfd
*));
307 static struct mips_got_info
*mips_elf_got_info
308 PARAMS ((bfd
*, asection
**));
309 static bfd_vma mips_elf_local_got_index
310 PARAMS ((bfd
*, struct bfd_link_info
*, bfd_vma
));
311 static bfd_vma mips_elf_global_got_index
312 PARAMS ((bfd
*, struct elf_link_hash_entry
*));
313 static bfd_vma mips_elf_got_page
314 PARAMS ((bfd
*, struct bfd_link_info
*, bfd_vma
, bfd_vma
*));
315 static bfd_vma mips_elf_got16_entry
316 PARAMS ((bfd
*, struct bfd_link_info
*, bfd_vma
, boolean
));
317 static bfd_vma mips_elf_got_offset_from_index
318 PARAMS ((bfd
*, bfd
*, bfd_vma
));
319 static bfd_vma mips_elf_create_local_got_entry
320 PARAMS ((bfd
*, struct mips_got_info
*, asection
*, bfd_vma
));
321 static boolean mips_elf_sort_hash_table
322 PARAMS ((struct bfd_link_info
*, unsigned long));
323 static boolean mips_elf_sort_hash_table_f
324 PARAMS ((struct mips_elf_link_hash_entry
*, PTR
));
325 static boolean mips_elf_record_global_got_symbol
326 PARAMS ((struct elf_link_hash_entry
*, struct bfd_link_info
*,
327 struct mips_got_info
*));
328 static const Elf_Internal_Rela
*mips_elf_next_relocation
329 PARAMS ((bfd
*, unsigned int, const Elf_Internal_Rela
*,
330 const Elf_Internal_Rela
*));
331 static boolean mips_elf_local_relocation_p
332 PARAMS ((bfd
*, const Elf_Internal_Rela
*, asection
**, boolean
));
333 static bfd_vma mips_elf_sign_extend
PARAMS ((bfd_vma
, int));
334 static boolean mips_elf_overflow_p
PARAMS ((bfd_vma
, int));
335 static bfd_vma mips_elf_high
PARAMS ((bfd_vma
));
336 static bfd_vma mips_elf_higher
PARAMS ((bfd_vma
));
337 static bfd_vma mips_elf_highest
PARAMS ((bfd_vma
));
338 static boolean mips_elf_create_compact_rel_section
339 PARAMS ((bfd
*, struct bfd_link_info
*));
340 static boolean mips_elf_create_got_section
341 PARAMS ((bfd
*, struct bfd_link_info
*));
342 static asection
*mips_elf_create_msym_section
344 static bfd_reloc_status_type mips_elf_calculate_relocation
345 PARAMS ((bfd
*, bfd
*, asection
*, struct bfd_link_info
*,
346 const Elf_Internal_Rela
*, bfd_vma
, reloc_howto_type
*,
347 Elf_Internal_Sym
*, asection
**, bfd_vma
*, const char **,
349 static bfd_vma mips_elf_obtain_contents
350 PARAMS ((reloc_howto_type
*, const Elf_Internal_Rela
*, bfd
*, bfd_byte
*));
351 static boolean mips_elf_perform_relocation
352 PARAMS ((struct bfd_link_info
*, reloc_howto_type
*,
353 const Elf_Internal_Rela
*, bfd_vma
, bfd
*, asection
*, bfd_byte
*,
355 static boolean mips_elf_stub_section_p
356 PARAMS ((bfd
*, asection
*));
357 static void mips_elf_allocate_dynamic_relocations
358 PARAMS ((bfd
*, unsigned int));
359 static boolean mips_elf_create_dynamic_relocation
360 PARAMS ((bfd
*, struct bfd_link_info
*, const Elf_Internal_Rela
*,
361 struct mips_elf_link_hash_entry
*, asection
*,
362 bfd_vma
, bfd_vma
*, asection
*));
363 static INLINE
int elf_mips_isa
PARAMS ((flagword
));
364 static INLINE
char* elf_mips_abi_name
PARAMS ((bfd
*));
365 static void mips_elf_irix6_finish_dynamic_symbol
366 PARAMS ((bfd
*, const char *, Elf_Internal_Sym
*));
368 /* This will be used when we sort the dynamic relocation records. */
369 static bfd
*reldyn_sorting_bfd
;
371 /* Nonzero if ABFD is using the N32 ABI. */
373 #define ABI_N32_P(abfd) \
374 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
376 /* Nonzero if ABFD is using the 64-bit ABI. */
377 #define ABI_64_P(abfd) \
378 ((get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) != 0)
380 #define IRIX_COMPAT(abfd) \
381 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
383 #define NEWABI_P(abfd) (ABI_N32_P(abfd) || ABI_64_P(abfd))
385 /* Whether we are trying to be compatible with IRIX at all. */
386 #define SGI_COMPAT(abfd) \
387 (IRIX_COMPAT (abfd) != ict_none)
389 /* The name of the options section. */
390 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
391 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
393 /* The name of the stub section. */
394 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
395 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
397 /* The size of an external REL relocation. */
398 #define MIPS_ELF_REL_SIZE(abfd) \
399 (get_elf_backend_data (abfd)->s->sizeof_rel)
401 /* The size of an external dynamic table entry. */
402 #define MIPS_ELF_DYN_SIZE(abfd) \
403 (get_elf_backend_data (abfd)->s->sizeof_dyn)
405 /* The size of a GOT entry. */
406 #define MIPS_ELF_GOT_SIZE(abfd) \
407 (get_elf_backend_data (abfd)->s->arch_size / 8)
409 /* The size of a symbol-table entry. */
410 #define MIPS_ELF_SYM_SIZE(abfd) \
411 (get_elf_backend_data (abfd)->s->sizeof_sym)
413 /* The default alignment for sections, as a power of two. */
414 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
415 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
417 /* Get word-sized data. */
418 #define MIPS_ELF_GET_WORD(abfd, ptr) \
419 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
421 /* Put out word-sized data. */
422 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
424 ? bfd_put_64 (abfd, val, ptr) \
425 : bfd_put_32 (abfd, val, ptr))
427 /* Add a dynamic symbol table-entry. */
429 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
430 (ABI_64_P (elf_hash_table (info)->dynobj) \
431 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
432 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
434 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
435 (ABI_64_P (elf_hash_table (info)->dynobj) \
436 ? (boolean) (abort (), false) \
437 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
440 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
441 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
443 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
444 from smaller values. Start with zero, widen, *then* decrement. */
445 #define MINUS_ONE (((bfd_vma)0) - 1)
447 /* The number of local .got entries we reserve. */
448 #define MIPS_RESERVED_GOTNO (2)
450 /* Instructions which appear in a stub. For some reason the stub is
451 slightly different on an SGI system. */
452 #define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
453 #define STUB_LW(abfd) \
456 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
457 : 0x8f998010) /* lw t9,0x8010(gp) */ \
458 : 0x8f998010) /* lw t9,0x8000(gp) */
459 #define STUB_MOVE(abfd) \
460 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
461 #define STUB_JALR 0x0320f809 /* jal t9 */
462 #define STUB_LI16(abfd) \
463 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
464 #define MIPS_FUNCTION_STUB_SIZE (16)
466 /* The name of the dynamic interpreter. This is put in the .interp
469 #define ELF_DYNAMIC_INTERPRETER(abfd) \
470 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
471 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
472 : "/usr/lib/libc.so.1")
475 #define ELF_R_SYM(bfd, i) \
476 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
477 #define ELF_R_TYPE(bfd, i) \
478 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
479 #define ELF_R_INFO(bfd, s, t) \
480 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
482 #define ELF_R_SYM(bfd, i) \
484 #define ELF_R_TYPE(bfd, i) \
486 #define ELF_R_INFO(bfd, s, t) \
487 (ELF32_R_INFO (s, t))
490 /* The mips16 compiler uses a couple of special sections to handle
491 floating point arguments.
493 Section names that look like .mips16.fn.FNNAME contain stubs that
494 copy floating point arguments from the fp regs to the gp regs and
495 then jump to FNNAME. If any 32 bit function calls FNNAME, the
496 call should be redirected to the stub instead. If no 32 bit
497 function calls FNNAME, the stub should be discarded. We need to
498 consider any reference to the function, not just a call, because
499 if the address of the function is taken we will need the stub,
500 since the address might be passed to a 32 bit function.
502 Section names that look like .mips16.call.FNNAME contain stubs
503 that copy floating point arguments from the gp regs to the fp
504 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
505 then any 16 bit function that calls FNNAME should be redirected
506 to the stub instead. If FNNAME is not a 32 bit function, the
507 stub should be discarded.
509 .mips16.call.fp.FNNAME sections are similar, but contain stubs
510 which call FNNAME and then copy the return value from the fp regs
511 to the gp regs. These stubs store the return value in $18 while
512 calling FNNAME; any function which might call one of these stubs
513 must arrange to save $18 around the call. (This case is not
514 needed for 32 bit functions that call 16 bit functions, because
515 16 bit functions always return floating point values in both
518 Note that in all cases FNNAME might be defined statically.
519 Therefore, FNNAME is not used literally. Instead, the relocation
520 information will indicate which symbol the section is for.
522 We record any stubs that we find in the symbol table. */
524 #define FN_STUB ".mips16.fn."
525 #define CALL_STUB ".mips16.call."
526 #define CALL_FP_STUB ".mips16.call.fp."
528 /* Look up an entry in a MIPS ELF linker hash table. */
530 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
531 ((struct mips_elf_link_hash_entry *) \
532 elf_link_hash_lookup (&(table)->root, (string), (create), \
535 /* Traverse a MIPS ELF linker hash table. */
537 #define mips_elf_link_hash_traverse(table, func, info) \
538 (elf_link_hash_traverse \
540 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
543 /* Get the MIPS ELF linker hash table from a link_info structure. */
545 #define mips_elf_hash_table(p) \
546 ((struct mips_elf_link_hash_table *) ((p)->hash))
548 /* Create an entry in a MIPS ELF linker hash table. */
550 static struct bfd_hash_entry
*
551 mips_elf_link_hash_newfunc (entry
, table
, string
)
552 struct bfd_hash_entry
*entry
;
553 struct bfd_hash_table
*table
;
556 struct mips_elf_link_hash_entry
*ret
=
557 (struct mips_elf_link_hash_entry
*) entry
;
559 /* Allocate the structure if it has not already been allocated by a
561 if (ret
== (struct mips_elf_link_hash_entry
*) NULL
)
562 ret
= ((struct mips_elf_link_hash_entry
*)
563 bfd_hash_allocate (table
,
564 sizeof (struct mips_elf_link_hash_entry
)));
565 if (ret
== (struct mips_elf_link_hash_entry
*) NULL
)
566 return (struct bfd_hash_entry
*) ret
;
568 /* Call the allocation method of the superclass. */
569 ret
= ((struct mips_elf_link_hash_entry
*)
570 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
572 if (ret
!= (struct mips_elf_link_hash_entry
*) NULL
)
574 /* Set local fields. */
575 memset (&ret
->esym
, 0, sizeof (EXTR
));
576 /* We use -2 as a marker to indicate that the information has
577 not been set. -1 means there is no associated ifd. */
579 ret
->possibly_dynamic_relocs
= 0;
580 ret
->readonly_reloc
= false;
581 ret
->min_dyn_reloc_index
= 0;
582 ret
->no_fn_stub
= false;
584 ret
->need_fn_stub
= false;
585 ret
->call_stub
= NULL
;
586 ret
->call_fp_stub
= NULL
;
587 ret
->forced_local
= false;
590 return (struct bfd_hash_entry
*) ret
;
593 /* Read ECOFF debugging information from a .mdebug section into a
594 ecoff_debug_info structure. */
597 _bfd_mips_elf_read_ecoff_info (abfd
, section
, debug
)
600 struct ecoff_debug_info
*debug
;
603 const struct ecoff_debug_swap
*swap
;
604 char *ext_hdr
= NULL
;
606 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
607 memset (debug
, 0, sizeof (*debug
));
609 ext_hdr
= (char *) bfd_malloc (swap
->external_hdr_size
);
610 if (ext_hdr
== NULL
&& swap
->external_hdr_size
!= 0)
613 if (bfd_get_section_contents (abfd
, section
, ext_hdr
, (file_ptr
) 0,
614 swap
->external_hdr_size
)
618 symhdr
= &debug
->symbolic_header
;
619 (*swap
->swap_hdr_in
) (abfd
, ext_hdr
, symhdr
);
621 /* The symbolic header contains absolute file offsets and sizes to
623 #define READ(ptr, offset, count, size, type) \
624 if (symhdr->count == 0) \
628 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
629 debug->ptr = (type) bfd_malloc (amt); \
630 if (debug->ptr == NULL) \
632 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
633 || bfd_bread (debug->ptr, amt, abfd) != amt) \
637 READ (line
, cbLineOffset
, cbLine
, sizeof (unsigned char), unsigned char *);
638 READ (external_dnr
, cbDnOffset
, idnMax
, swap
->external_dnr_size
, PTR
);
639 READ (external_pdr
, cbPdOffset
, ipdMax
, swap
->external_pdr_size
, PTR
);
640 READ (external_sym
, cbSymOffset
, isymMax
, swap
->external_sym_size
, PTR
);
641 READ (external_opt
, cbOptOffset
, ioptMax
, swap
->external_opt_size
, PTR
);
642 READ (external_aux
, cbAuxOffset
, iauxMax
, sizeof (union aux_ext
),
644 READ (ss
, cbSsOffset
, issMax
, sizeof (char), char *);
645 READ (ssext
, cbSsExtOffset
, issExtMax
, sizeof (char), char *);
646 READ (external_fdr
, cbFdOffset
, ifdMax
, swap
->external_fdr_size
, PTR
);
647 READ (external_rfd
, cbRfdOffset
, crfd
, swap
->external_rfd_size
, PTR
);
648 READ (external_ext
, cbExtOffset
, iextMax
, swap
->external_ext_size
, PTR
);
652 debug
->adjust
= NULL
;
659 if (debug
->line
!= NULL
)
661 if (debug
->external_dnr
!= NULL
)
662 free (debug
->external_dnr
);
663 if (debug
->external_pdr
!= NULL
)
664 free (debug
->external_pdr
);
665 if (debug
->external_sym
!= NULL
)
666 free (debug
->external_sym
);
667 if (debug
->external_opt
!= NULL
)
668 free (debug
->external_opt
);
669 if (debug
->external_aux
!= NULL
)
670 free (debug
->external_aux
);
671 if (debug
->ss
!= NULL
)
673 if (debug
->ssext
!= NULL
)
675 if (debug
->external_fdr
!= NULL
)
676 free (debug
->external_fdr
);
677 if (debug
->external_rfd
!= NULL
)
678 free (debug
->external_rfd
);
679 if (debug
->external_ext
!= NULL
)
680 free (debug
->external_ext
);
684 /* Swap RPDR (runtime procedure table entry) for output. */
687 ecoff_swap_rpdr_out (abfd
, in
, ex
)
692 H_PUT_S32 (abfd
, in
->adr
, ex
->p_adr
);
693 H_PUT_32 (abfd
, in
->regmask
, ex
->p_regmask
);
694 H_PUT_32 (abfd
, in
->regoffset
, ex
->p_regoffset
);
695 H_PUT_32 (abfd
, in
->fregmask
, ex
->p_fregmask
);
696 H_PUT_32 (abfd
, in
->fregoffset
, ex
->p_fregoffset
);
697 H_PUT_32 (abfd
, in
->frameoffset
, ex
->p_frameoffset
);
699 H_PUT_16 (abfd
, in
->framereg
, ex
->p_framereg
);
700 H_PUT_16 (abfd
, in
->pcreg
, ex
->p_pcreg
);
702 H_PUT_32 (abfd
, in
->irpss
, ex
->p_irpss
);
704 H_PUT_S32 (abfd
, in
->exception_info
, ex
->p_exception_info
);
708 /* Create a runtime procedure table from the .mdebug section. */
711 mips_elf_create_procedure_table (handle
, abfd
, info
, s
, debug
)
714 struct bfd_link_info
*info
;
716 struct ecoff_debug_info
*debug
;
718 const struct ecoff_debug_swap
*swap
;
719 HDRR
*hdr
= &debug
->symbolic_header
;
721 struct rpdr_ext
*erp
;
723 struct pdr_ext
*epdr
;
724 struct sym_ext
*esym
;
729 unsigned long sindex
;
733 const char *no_name_func
= _("static procedure (no name)");
741 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
743 sindex
= strlen (no_name_func
) + 1;
747 size
= swap
->external_pdr_size
;
749 epdr
= (struct pdr_ext
*) bfd_malloc (size
* count
);
753 if (! _bfd_ecoff_get_accumulated_pdr (handle
, (PTR
) epdr
))
756 size
= sizeof (RPDR
);
757 rp
= rpdr
= (RPDR
*) bfd_malloc (size
* count
);
761 size
= sizeof (char *);
762 sv
= (char **) bfd_malloc (size
* count
);
766 count
= hdr
->isymMax
;
767 size
= swap
->external_sym_size
;
768 esym
= (struct sym_ext
*) bfd_malloc (size
* count
);
772 if (! _bfd_ecoff_get_accumulated_sym (handle
, (PTR
) esym
))
776 ss
= (char *) bfd_malloc (count
);
779 if (! _bfd_ecoff_get_accumulated_ss (handle
, (PTR
) ss
))
783 for (i
= 0; i
< (unsigned long) count
; i
++, rp
++)
785 (*swap
->swap_pdr_in
) (abfd
, (PTR
) (epdr
+ i
), &pdr
);
786 (*swap
->swap_sym_in
) (abfd
, (PTR
) &esym
[pdr
.isym
], &sym
);
788 rp
->regmask
= pdr
.regmask
;
789 rp
->regoffset
= pdr
.regoffset
;
790 rp
->fregmask
= pdr
.fregmask
;
791 rp
->fregoffset
= pdr
.fregoffset
;
792 rp
->frameoffset
= pdr
.frameoffset
;
793 rp
->framereg
= pdr
.framereg
;
794 rp
->pcreg
= pdr
.pcreg
;
796 sv
[i
] = ss
+ sym
.iss
;
797 sindex
+= strlen (sv
[i
]) + 1;
801 size
= sizeof (struct rpdr_ext
) * (count
+ 2) + sindex
;
802 size
= BFD_ALIGN (size
, 16);
803 rtproc
= (PTR
) bfd_alloc (abfd
, size
);
806 mips_elf_hash_table (info
)->procedure_count
= 0;
810 mips_elf_hash_table (info
)->procedure_count
= count
+ 2;
812 erp
= (struct rpdr_ext
*) rtproc
;
813 memset (erp
, 0, sizeof (struct rpdr_ext
));
815 str
= (char *) rtproc
+ sizeof (struct rpdr_ext
) * (count
+ 2);
816 strcpy (str
, no_name_func
);
817 str
+= strlen (no_name_func
) + 1;
818 for (i
= 0; i
< count
; i
++)
820 ecoff_swap_rpdr_out (abfd
, rpdr
+ i
, erp
+ i
);
822 str
+= strlen (sv
[i
]) + 1;
824 H_PUT_S32 (abfd
, -1, (erp
+ count
)->p_adr
);
826 /* Set the size and contents of .rtproc section. */
828 s
->contents
= (bfd_byte
*) rtproc
;
830 /* Skip this section later on (I don't think this currently
831 matters, but someday it might). */
832 s
->link_order_head
= (struct bfd_link_order
*) NULL
;
861 /* Check the mips16 stubs for a particular symbol, and see if we can
865 mips_elf_check_mips16_stubs (h
, data
)
866 struct mips_elf_link_hash_entry
*h
;
867 PTR data ATTRIBUTE_UNUSED
;
869 if (h
->root
.root
.type
== bfd_link_hash_warning
)
870 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
872 if (h
->fn_stub
!= NULL
873 && ! h
->need_fn_stub
)
875 /* We don't need the fn_stub; the only references to this symbol
876 are 16 bit calls. Clobber the size to 0 to prevent it from
877 being included in the link. */
878 h
->fn_stub
->_raw_size
= 0;
879 h
->fn_stub
->_cooked_size
= 0;
880 h
->fn_stub
->flags
&= ~SEC_RELOC
;
881 h
->fn_stub
->reloc_count
= 0;
882 h
->fn_stub
->flags
|= SEC_EXCLUDE
;
885 if (h
->call_stub
!= NULL
886 && h
->root
.other
== STO_MIPS16
)
888 /* We don't need the call_stub; this is a 16 bit function, so
889 calls from other 16 bit functions are OK. Clobber the size
890 to 0 to prevent it from being included in the link. */
891 h
->call_stub
->_raw_size
= 0;
892 h
->call_stub
->_cooked_size
= 0;
893 h
->call_stub
->flags
&= ~SEC_RELOC
;
894 h
->call_stub
->reloc_count
= 0;
895 h
->call_stub
->flags
|= SEC_EXCLUDE
;
898 if (h
->call_fp_stub
!= NULL
899 && h
->root
.other
== STO_MIPS16
)
901 /* We don't need the call_stub; this is a 16 bit function, so
902 calls from other 16 bit functions are OK. Clobber the size
903 to 0 to prevent it from being included in the link. */
904 h
->call_fp_stub
->_raw_size
= 0;
905 h
->call_fp_stub
->_cooked_size
= 0;
906 h
->call_fp_stub
->flags
&= ~SEC_RELOC
;
907 h
->call_fp_stub
->reloc_count
= 0;
908 h
->call_fp_stub
->flags
|= SEC_EXCLUDE
;
914 bfd_reloc_status_type
915 _bfd_mips_elf_gprel16_with_gp (abfd
, symbol
, reloc_entry
, input_section
,
916 relocateable
, data
, gp
)
919 arelent
*reloc_entry
;
920 asection
*input_section
;
921 boolean relocateable
;
929 if (bfd_is_com_section (symbol
->section
))
932 relocation
= symbol
->value
;
934 relocation
+= symbol
->section
->output_section
->vma
;
935 relocation
+= symbol
->section
->output_offset
;
937 if (reloc_entry
->address
> input_section
->_cooked_size
)
938 return bfd_reloc_outofrange
;
940 insn
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
942 /* Set val to the offset into the section or symbol. */
943 if (reloc_entry
->howto
->src_mask
== 0)
945 /* This case occurs with the 64-bit MIPS ELF ABI. */
946 val
= reloc_entry
->addend
;
950 val
= ((insn
& 0xffff) + reloc_entry
->addend
) & 0xffff;
955 /* Adjust val for the final section location and GP value. If we
956 are producing relocateable output, we don't want to do this for
957 an external symbol. */
959 || (symbol
->flags
& BSF_SECTION_SYM
) != 0)
960 val
+= relocation
- gp
;
962 insn
= (insn
& ~0xffff) | (val
& 0xffff);
963 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
966 reloc_entry
->address
+= input_section
->output_offset
;
968 else if ((long) val
>= 0x8000 || (long) val
< -0x8000)
969 return bfd_reloc_overflow
;
974 /* Swap an entry in a .gptab section. Note that these routines rely
975 on the equivalence of the two elements of the union. */
978 bfd_mips_elf32_swap_gptab_in (abfd
, ex
, in
)
980 const Elf32_External_gptab
*ex
;
983 in
->gt_entry
.gt_g_value
= H_GET_32 (abfd
, ex
->gt_entry
.gt_g_value
);
984 in
->gt_entry
.gt_bytes
= H_GET_32 (abfd
, ex
->gt_entry
.gt_bytes
);
988 bfd_mips_elf32_swap_gptab_out (abfd
, in
, ex
)
990 const Elf32_gptab
*in
;
991 Elf32_External_gptab
*ex
;
993 H_PUT_32 (abfd
, in
->gt_entry
.gt_g_value
, ex
->gt_entry
.gt_g_value
);
994 H_PUT_32 (abfd
, in
->gt_entry
.gt_bytes
, ex
->gt_entry
.gt_bytes
);
998 bfd_elf32_swap_compact_rel_out (abfd
, in
, ex
)
1000 const Elf32_compact_rel
*in
;
1001 Elf32_External_compact_rel
*ex
;
1003 H_PUT_32 (abfd
, in
->id1
, ex
->id1
);
1004 H_PUT_32 (abfd
, in
->num
, ex
->num
);
1005 H_PUT_32 (abfd
, in
->id2
, ex
->id2
);
1006 H_PUT_32 (abfd
, in
->offset
, ex
->offset
);
1007 H_PUT_32 (abfd
, in
->reserved0
, ex
->reserved0
);
1008 H_PUT_32 (abfd
, in
->reserved1
, ex
->reserved1
);
1012 bfd_elf32_swap_crinfo_out (abfd
, in
, ex
)
1014 const Elf32_crinfo
*in
;
1015 Elf32_External_crinfo
*ex
;
1019 l
= (((in
->ctype
& CRINFO_CTYPE
) << CRINFO_CTYPE_SH
)
1020 | ((in
->rtype
& CRINFO_RTYPE
) << CRINFO_RTYPE_SH
)
1021 | ((in
->dist2to
& CRINFO_DIST2TO
) << CRINFO_DIST2TO_SH
)
1022 | ((in
->relvaddr
& CRINFO_RELVADDR
) << CRINFO_RELVADDR_SH
));
1023 H_PUT_32 (abfd
, l
, ex
->info
);
1024 H_PUT_32 (abfd
, in
->konst
, ex
->konst
);
1025 H_PUT_32 (abfd
, in
->vaddr
, ex
->vaddr
);
1029 /* Swap in an MSYM entry. */
1032 bfd_mips_elf_swap_msym_in (abfd
, ex
, in
)
1034 const Elf32_External_Msym
*ex
;
1035 Elf32_Internal_Msym
*in
;
1037 in
->ms_hash_value
= H_GET_32 (abfd
, ex
->ms_hash_value
);
1038 in
->ms_info
= H_GET_32 (abfd
, ex
->ms_info
);
1041 /* Swap out an MSYM entry. */
1044 bfd_mips_elf_swap_msym_out (abfd
, in
, ex
)
1046 const Elf32_Internal_Msym
*in
;
1047 Elf32_External_Msym
*ex
;
1049 H_PUT_32 (abfd
, in
->ms_hash_value
, ex
->ms_hash_value
);
1050 H_PUT_32 (abfd
, in
->ms_info
, ex
->ms_info
);
1053 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1054 routines swap this structure in and out. They are used outside of
1055 BFD, so they are globally visible. */
1058 bfd_mips_elf32_swap_reginfo_in (abfd
, ex
, in
)
1060 const Elf32_External_RegInfo
*ex
;
1063 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
1064 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
1065 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
1066 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
1067 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
1068 in
->ri_gp_value
= H_GET_32 (abfd
, ex
->ri_gp_value
);
1072 bfd_mips_elf32_swap_reginfo_out (abfd
, in
, ex
)
1074 const Elf32_RegInfo
*in
;
1075 Elf32_External_RegInfo
*ex
;
1077 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
1078 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
1079 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
1080 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
1081 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
1082 H_PUT_32 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
1085 /* In the 64 bit ABI, the .MIPS.options section holds register
1086 information in an Elf64_Reginfo structure. These routines swap
1087 them in and out. They are globally visible because they are used
1088 outside of BFD. These routines are here so that gas can call them
1089 without worrying about whether the 64 bit ABI has been included. */
1092 bfd_mips_elf64_swap_reginfo_in (abfd
, ex
, in
)
1094 const Elf64_External_RegInfo
*ex
;
1095 Elf64_Internal_RegInfo
*in
;
1097 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
1098 in
->ri_pad
= H_GET_32 (abfd
, ex
->ri_pad
);
1099 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
1100 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
1101 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
1102 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
1103 in
->ri_gp_value
= H_GET_64 (abfd
, ex
->ri_gp_value
);
1107 bfd_mips_elf64_swap_reginfo_out (abfd
, in
, ex
)
1109 const Elf64_Internal_RegInfo
*in
;
1110 Elf64_External_RegInfo
*ex
;
1112 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
1113 H_PUT_32 (abfd
, in
->ri_pad
, ex
->ri_pad
);
1114 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
1115 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
1116 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
1117 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
1118 H_PUT_64 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
1121 /* Swap in an options header. */
1124 bfd_mips_elf_swap_options_in (abfd
, ex
, in
)
1126 const Elf_External_Options
*ex
;
1127 Elf_Internal_Options
*in
;
1129 in
->kind
= H_GET_8 (abfd
, ex
->kind
);
1130 in
->size
= H_GET_8 (abfd
, ex
->size
);
1131 in
->section
= H_GET_16 (abfd
, ex
->section
);
1132 in
->info
= H_GET_32 (abfd
, ex
->info
);
1135 /* Swap out an options header. */
1138 bfd_mips_elf_swap_options_out (abfd
, in
, ex
)
1140 const Elf_Internal_Options
*in
;
1141 Elf_External_Options
*ex
;
1143 H_PUT_8 (abfd
, in
->kind
, ex
->kind
);
1144 H_PUT_8 (abfd
, in
->size
, ex
->size
);
1145 H_PUT_16 (abfd
, in
->section
, ex
->section
);
1146 H_PUT_32 (abfd
, in
->info
, ex
->info
);
1149 /* This function is called via qsort() to sort the dynamic relocation
1150 entries by increasing r_symndx value. */
1153 sort_dynamic_relocs (arg1
, arg2
)
1157 const Elf32_External_Rel
*ext_reloc1
= (const Elf32_External_Rel
*) arg1
;
1158 const Elf32_External_Rel
*ext_reloc2
= (const Elf32_External_Rel
*) arg2
;
1160 Elf_Internal_Rel int_reloc1
;
1161 Elf_Internal_Rel int_reloc2
;
1163 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, ext_reloc1
, &int_reloc1
);
1164 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, ext_reloc2
, &int_reloc2
);
1166 return (ELF32_R_SYM (int_reloc1
.r_info
) - ELF32_R_SYM (int_reloc2
.r_info
));
1169 /* This routine is used to write out ECOFF debugging external symbol
1170 information. It is called via mips_elf_link_hash_traverse. The
1171 ECOFF external symbol information must match the ELF external
1172 symbol information. Unfortunately, at this point we don't know
1173 whether a symbol is required by reloc information, so the two
1174 tables may wind up being different. We must sort out the external
1175 symbol information before we can set the final size of the .mdebug
1176 section, and we must set the size of the .mdebug section before we
1177 can relocate any sections, and we can't know which symbols are
1178 required by relocation until we relocate the sections.
1179 Fortunately, it is relatively unlikely that any symbol will be
1180 stripped but required by a reloc. In particular, it can not happen
1181 when generating a final executable. */
1184 mips_elf_output_extsym (h
, data
)
1185 struct mips_elf_link_hash_entry
*h
;
1188 struct extsym_info
*einfo
= (struct extsym_info
*) data
;
1190 asection
*sec
, *output_section
;
1192 if (h
->root
.root
.type
== bfd_link_hash_warning
)
1193 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
1195 if (h
->root
.indx
== -2)
1197 else if (((h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
1198 || (h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0)
1199 && (h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
1200 && (h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0)
1202 else if (einfo
->info
->strip
== strip_all
1203 || (einfo
->info
->strip
== strip_some
1204 && bfd_hash_lookup (einfo
->info
->keep_hash
,
1205 h
->root
.root
.root
.string
,
1206 false, false) == NULL
))
1214 if (h
->esym
.ifd
== -2)
1217 h
->esym
.cobol_main
= 0;
1218 h
->esym
.weakext
= 0;
1219 h
->esym
.reserved
= 0;
1220 h
->esym
.ifd
= ifdNil
;
1221 h
->esym
.asym
.value
= 0;
1222 h
->esym
.asym
.st
= stGlobal
;
1224 if (h
->root
.root
.type
== bfd_link_hash_undefined
1225 || h
->root
.root
.type
== bfd_link_hash_undefweak
)
1229 /* Use undefined class. Also, set class and type for some
1231 name
= h
->root
.root
.root
.string
;
1232 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
1233 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
1235 h
->esym
.asym
.sc
= scData
;
1236 h
->esym
.asym
.st
= stLabel
;
1237 h
->esym
.asym
.value
= 0;
1239 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
1241 h
->esym
.asym
.sc
= scAbs
;
1242 h
->esym
.asym
.st
= stLabel
;
1243 h
->esym
.asym
.value
=
1244 mips_elf_hash_table (einfo
->info
)->procedure_count
;
1246 else if (strcmp (name
, "_gp_disp") == 0)
1248 h
->esym
.asym
.sc
= scAbs
;
1249 h
->esym
.asym
.st
= stLabel
;
1250 h
->esym
.asym
.value
= elf_gp (einfo
->abfd
);
1253 h
->esym
.asym
.sc
= scUndefined
;
1255 else if (h
->root
.root
.type
!= bfd_link_hash_defined
1256 && h
->root
.root
.type
!= bfd_link_hash_defweak
)
1257 h
->esym
.asym
.sc
= scAbs
;
1262 sec
= h
->root
.root
.u
.def
.section
;
1263 output_section
= sec
->output_section
;
1265 /* When making a shared library and symbol h is the one from
1266 the another shared library, OUTPUT_SECTION may be null. */
1267 if (output_section
== NULL
)
1268 h
->esym
.asym
.sc
= scUndefined
;
1271 name
= bfd_section_name (output_section
->owner
, output_section
);
1273 if (strcmp (name
, ".text") == 0)
1274 h
->esym
.asym
.sc
= scText
;
1275 else if (strcmp (name
, ".data") == 0)
1276 h
->esym
.asym
.sc
= scData
;
1277 else if (strcmp (name
, ".sdata") == 0)
1278 h
->esym
.asym
.sc
= scSData
;
1279 else if (strcmp (name
, ".rodata") == 0
1280 || strcmp (name
, ".rdata") == 0)
1281 h
->esym
.asym
.sc
= scRData
;
1282 else if (strcmp (name
, ".bss") == 0)
1283 h
->esym
.asym
.sc
= scBss
;
1284 else if (strcmp (name
, ".sbss") == 0)
1285 h
->esym
.asym
.sc
= scSBss
;
1286 else if (strcmp (name
, ".init") == 0)
1287 h
->esym
.asym
.sc
= scInit
;
1288 else if (strcmp (name
, ".fini") == 0)
1289 h
->esym
.asym
.sc
= scFini
;
1291 h
->esym
.asym
.sc
= scAbs
;
1295 h
->esym
.asym
.reserved
= 0;
1296 h
->esym
.asym
.index
= indexNil
;
1299 if (h
->root
.root
.type
== bfd_link_hash_common
)
1300 h
->esym
.asym
.value
= h
->root
.root
.u
.c
.size
;
1301 else if (h
->root
.root
.type
== bfd_link_hash_defined
1302 || h
->root
.root
.type
== bfd_link_hash_defweak
)
1304 if (h
->esym
.asym
.sc
== scCommon
)
1305 h
->esym
.asym
.sc
= scBss
;
1306 else if (h
->esym
.asym
.sc
== scSCommon
)
1307 h
->esym
.asym
.sc
= scSBss
;
1309 sec
= h
->root
.root
.u
.def
.section
;
1310 output_section
= sec
->output_section
;
1311 if (output_section
!= NULL
)
1312 h
->esym
.asym
.value
= (h
->root
.root
.u
.def
.value
1313 + sec
->output_offset
1314 + output_section
->vma
);
1316 h
->esym
.asym
.value
= 0;
1318 else if ((h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0)
1320 struct mips_elf_link_hash_entry
*hd
= h
;
1321 boolean no_fn_stub
= h
->no_fn_stub
;
1323 while (hd
->root
.root
.type
== bfd_link_hash_indirect
)
1325 hd
= (struct mips_elf_link_hash_entry
*)h
->root
.root
.u
.i
.link
;
1326 no_fn_stub
= no_fn_stub
|| hd
->no_fn_stub
;
1331 /* Set type and value for a symbol with a function stub. */
1332 h
->esym
.asym
.st
= stProc
;
1333 sec
= hd
->root
.root
.u
.def
.section
;
1335 h
->esym
.asym
.value
= 0;
1338 output_section
= sec
->output_section
;
1339 if (output_section
!= NULL
)
1340 h
->esym
.asym
.value
= (hd
->root
.plt
.offset
1341 + sec
->output_offset
1342 + output_section
->vma
);
1344 h
->esym
.asym
.value
= 0;
1352 if (! bfd_ecoff_debug_one_external (einfo
->abfd
, einfo
->debug
, einfo
->swap
,
1353 h
->root
.root
.root
.string
,
1356 einfo
->failed
= true;
1363 /* A comparison routine used to sort .gptab entries. */
1366 gptab_compare (p1
, p2
)
1370 const Elf32_gptab
*a1
= (const Elf32_gptab
*) p1
;
1371 const Elf32_gptab
*a2
= (const Elf32_gptab
*) p2
;
1373 return a1
->gt_entry
.gt_g_value
- a2
->gt_entry
.gt_g_value
;
1376 /* Returns the GOT section for ABFD. */
1379 mips_elf_got_section (abfd
)
1382 return bfd_get_section_by_name (abfd
, ".got");
1385 /* Returns the GOT information associated with the link indicated by
1386 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1389 static struct mips_got_info
*
1390 mips_elf_got_info (abfd
, sgotp
)
1395 struct mips_got_info
*g
;
1397 sgot
= mips_elf_got_section (abfd
);
1398 BFD_ASSERT (sgot
!= NULL
);
1399 BFD_ASSERT (elf_section_data (sgot
) != NULL
);
1400 g
= (struct mips_got_info
*) elf_section_data (sgot
)->tdata
;
1401 BFD_ASSERT (g
!= NULL
);
1408 /* Returns the GOT offset at which the indicated address can be found.
1409 If there is not yet a GOT entry for this value, create one. Returns
1410 -1 if no satisfactory GOT offset can be found. */
1413 mips_elf_local_got_index (abfd
, info
, value
)
1415 struct bfd_link_info
*info
;
1419 struct mips_got_info
*g
;
1422 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
1424 /* Look to see if we already have an appropriate entry. */
1425 for (entry
= (sgot
->contents
1426 + MIPS_ELF_GOT_SIZE (abfd
) * MIPS_RESERVED_GOTNO
);
1427 entry
!= sgot
->contents
+ MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
;
1428 entry
+= MIPS_ELF_GOT_SIZE (abfd
))
1430 bfd_vma address
= MIPS_ELF_GET_WORD (abfd
, entry
);
1431 if (address
== value
)
1432 return entry
- sgot
->contents
;
1435 return mips_elf_create_local_got_entry (abfd
, g
, sgot
, value
);
1438 /* Returns the GOT index for the global symbol indicated by H. */
1441 mips_elf_global_got_index (abfd
, h
)
1443 struct elf_link_hash_entry
*h
;
1447 struct mips_got_info
*g
;
1449 g
= mips_elf_got_info (abfd
, &sgot
);
1451 /* Once we determine the global GOT entry with the lowest dynamic
1452 symbol table index, we must put all dynamic symbols with greater
1453 indices into the GOT. That makes it easy to calculate the GOT
1455 BFD_ASSERT (h
->dynindx
>= g
->global_gotsym
->dynindx
);
1456 index
= ((h
->dynindx
- g
->global_gotsym
->dynindx
+ g
->local_gotno
)
1457 * MIPS_ELF_GOT_SIZE (abfd
));
1458 BFD_ASSERT (index
< sgot
->_raw_size
);
1463 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1464 are supposed to be placed at small offsets in the GOT, i.e.,
1465 within 32KB of GP. Return the index into the GOT for this page,
1466 and store the offset from this entry to the desired address in
1467 OFFSETP, if it is non-NULL. */
1470 mips_elf_got_page (abfd
, info
, value
, offsetp
)
1472 struct bfd_link_info
*info
;
1477 struct mips_got_info
*g
;
1479 bfd_byte
*last_entry
;
1483 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
1485 /* Look to see if we aleady have an appropriate entry. */
1486 last_entry
= sgot
->contents
+ MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
;
1487 for (entry
= (sgot
->contents
1488 + MIPS_ELF_GOT_SIZE (abfd
) * MIPS_RESERVED_GOTNO
);
1489 entry
!= last_entry
;
1490 entry
+= MIPS_ELF_GOT_SIZE (abfd
))
1492 address
= MIPS_ELF_GET_WORD (abfd
, entry
);
1494 if (!mips_elf_overflow_p (value
- address
, 16))
1496 /* This entry will serve as the page pointer. We can add a
1497 16-bit number to it to get the actual address. */
1498 index
= entry
- sgot
->contents
;
1503 /* If we didn't have an appropriate entry, we create one now. */
1504 if (entry
== last_entry
)
1505 index
= mips_elf_create_local_got_entry (abfd
, g
, sgot
, value
);
1509 address
= MIPS_ELF_GET_WORD (abfd
, entry
);
1510 *offsetp
= value
- address
;
1516 /* Find a GOT entry whose higher-order 16 bits are the same as those
1517 for value. Return the index into the GOT for this entry. */
1520 mips_elf_got16_entry (abfd
, info
, value
, external
)
1522 struct bfd_link_info
*info
;
1527 struct mips_got_info
*g
;
1529 bfd_byte
*last_entry
;
1535 /* Although the ABI says that it is "the high-order 16 bits" that we
1536 want, it is really the %high value. The complete value is
1537 calculated with a `addiu' of a LO16 relocation, just as with a
1539 value
= mips_elf_high (value
) << 16;
1542 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
1544 /* Look to see if we already have an appropriate entry. */
1545 last_entry
= sgot
->contents
+ MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
;
1546 for (entry
= (sgot
->contents
1547 + MIPS_ELF_GOT_SIZE (abfd
) * MIPS_RESERVED_GOTNO
);
1548 entry
!= last_entry
;
1549 entry
+= MIPS_ELF_GOT_SIZE (abfd
))
1551 address
= MIPS_ELF_GET_WORD (abfd
, entry
);
1552 if (address
== value
)
1554 /* This entry has the right high-order 16 bits, and the low-order
1555 16 bits are set to zero. */
1556 index
= entry
- sgot
->contents
;
1561 /* If we didn't have an appropriate entry, we create one now. */
1562 if (entry
== last_entry
)
1563 index
= mips_elf_create_local_got_entry (abfd
, g
, sgot
, value
);
1568 /* Returns the offset for the entry at the INDEXth position
1572 mips_elf_got_offset_from_index (dynobj
, output_bfd
, index
)
1580 sgot
= mips_elf_got_section (dynobj
);
1581 gp
= _bfd_get_gp_value (output_bfd
);
1582 return (sgot
->output_section
->vma
+ sgot
->output_offset
+ index
-
1586 /* Create a local GOT entry for VALUE. Return the index of the entry,
1587 or -1 if it could not be created. */
1590 mips_elf_create_local_got_entry (abfd
, g
, sgot
, value
)
1592 struct mips_got_info
*g
;
1596 if (g
->assigned_gotno
>= g
->local_gotno
)
1598 /* We didn't allocate enough space in the GOT. */
1599 (*_bfd_error_handler
)
1600 (_("not enough GOT space for local GOT entries"));
1601 bfd_set_error (bfd_error_bad_value
);
1602 return (bfd_vma
) -1;
1605 MIPS_ELF_PUT_WORD (abfd
, value
,
1607 + MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
));
1608 return MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
++;
1611 /* Sort the dynamic symbol table so that symbols that need GOT entries
1612 appear towards the end. This reduces the amount of GOT space
1613 required. MAX_LOCAL is used to set the number of local symbols
1614 known to be in the dynamic symbol table. During
1615 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
1616 section symbols are added and the count is higher. */
1619 mips_elf_sort_hash_table (info
, max_local
)
1620 struct bfd_link_info
*info
;
1621 unsigned long max_local
;
1623 struct mips_elf_hash_sort_data hsd
;
1624 struct mips_got_info
*g
;
1627 dynobj
= elf_hash_table (info
)->dynobj
;
1630 hsd
.min_got_dynindx
= elf_hash_table (info
)->dynsymcount
;
1631 hsd
.max_non_got_dynindx
= max_local
;
1632 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table
*)
1633 elf_hash_table (info
)),
1634 mips_elf_sort_hash_table_f
,
1637 /* There should have been enough room in the symbol table to
1638 accomodate both the GOT and non-GOT symbols. */
1639 BFD_ASSERT (hsd
.max_non_got_dynindx
<= hsd
.min_got_dynindx
);
1641 /* Now we know which dynamic symbol has the lowest dynamic symbol
1642 table index in the GOT. */
1643 g
= mips_elf_got_info (dynobj
, NULL
);
1644 g
->global_gotsym
= hsd
.low
;
1649 /* If H needs a GOT entry, assign it the highest available dynamic
1650 index. Otherwise, assign it the lowest available dynamic
1654 mips_elf_sort_hash_table_f (h
, data
)
1655 struct mips_elf_link_hash_entry
*h
;
1658 struct mips_elf_hash_sort_data
*hsd
1659 = (struct mips_elf_hash_sort_data
*) data
;
1661 if (h
->root
.root
.type
== bfd_link_hash_warning
)
1662 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
1664 /* Symbols without dynamic symbol table entries aren't interesting
1666 if (h
->root
.dynindx
== -1)
1669 if (h
->root
.got
.offset
!= 1)
1670 h
->root
.dynindx
= hsd
->max_non_got_dynindx
++;
1673 h
->root
.dynindx
= --hsd
->min_got_dynindx
;
1674 hsd
->low
= (struct elf_link_hash_entry
*) h
;
1680 /* If H is a symbol that needs a global GOT entry, but has a dynamic
1681 symbol table index lower than any we've seen to date, record it for
1685 mips_elf_record_global_got_symbol (h
, info
, g
)
1686 struct elf_link_hash_entry
*h
;
1687 struct bfd_link_info
*info
;
1688 struct mips_got_info
*g ATTRIBUTE_UNUSED
;
1690 /* A global symbol in the GOT must also be in the dynamic symbol
1692 if (h
->dynindx
== -1)
1694 switch (ELF_ST_VISIBILITY (h
->other
))
1698 _bfd_mips_elf_hide_symbol (info
, h
, true);
1701 if (!bfd_elf32_link_record_dynamic_symbol (info
, h
))
1705 /* If we've already marked this entry as needing GOT space, we don't
1706 need to do it again. */
1707 if (h
->got
.offset
!= MINUS_ONE
)
1710 /* By setting this to a value other than -1, we are indicating that
1711 there needs to be a GOT entry for H. Avoid using zero, as the
1712 generic ELF copy_indirect_symbol tests for <= 0. */
1718 /* Returns the first relocation of type r_type found, beginning with
1719 RELOCATION. RELEND is one-past-the-end of the relocation table. */
1721 static const Elf_Internal_Rela
*
1722 mips_elf_next_relocation (abfd
, r_type
, relocation
, relend
)
1723 bfd
*abfd ATTRIBUTE_UNUSED
;
1724 unsigned int r_type
;
1725 const Elf_Internal_Rela
*relocation
;
1726 const Elf_Internal_Rela
*relend
;
1728 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
1729 immediately following. However, for the IRIX6 ABI, the next
1730 relocation may be a composed relocation consisting of several
1731 relocations for the same address. In that case, the R_MIPS_LO16
1732 relocation may occur as one of these. We permit a similar
1733 extension in general, as that is useful for GCC. */
1734 while (relocation
< relend
)
1736 if (ELF_R_TYPE (abfd
, relocation
->r_info
) == r_type
)
1742 /* We didn't find it. */
1743 bfd_set_error (bfd_error_bad_value
);
1747 /* Return whether a relocation is against a local symbol. */
1750 mips_elf_local_relocation_p (input_bfd
, relocation
, local_sections
,
1753 const Elf_Internal_Rela
*relocation
;
1754 asection
**local_sections
;
1755 boolean check_forced
;
1757 unsigned long r_symndx
;
1758 Elf_Internal_Shdr
*symtab_hdr
;
1759 struct mips_elf_link_hash_entry
*h
;
1762 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
1763 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
1764 extsymoff
= (elf_bad_symtab (input_bfd
)) ? 0 : symtab_hdr
->sh_info
;
1766 if (r_symndx
< extsymoff
)
1768 if (elf_bad_symtab (input_bfd
) && local_sections
[r_symndx
] != NULL
)
1773 /* Look up the hash table to check whether the symbol
1774 was forced local. */
1775 h
= (struct mips_elf_link_hash_entry
*)
1776 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
1777 /* Find the real hash-table entry for this symbol. */
1778 while (h
->root
.root
.type
== bfd_link_hash_indirect
1779 || h
->root
.root
.type
== bfd_link_hash_warning
)
1780 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
1781 if ((h
->root
.elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
1788 /* Sign-extend VALUE, which has the indicated number of BITS. */
1791 mips_elf_sign_extend (value
, bits
)
1795 if (value
& ((bfd_vma
) 1 << (bits
- 1)))
1796 /* VALUE is negative. */
1797 value
|= ((bfd_vma
) - 1) << bits
;
1802 /* Return non-zero if the indicated VALUE has overflowed the maximum
1803 range expressable by a signed number with the indicated number of
1807 mips_elf_overflow_p (value
, bits
)
1811 bfd_signed_vma svalue
= (bfd_signed_vma
) value
;
1813 if (svalue
> (1 << (bits
- 1)) - 1)
1814 /* The value is too big. */
1816 else if (svalue
< -(1 << (bits
- 1)))
1817 /* The value is too small. */
1824 /* Calculate the %high function. */
1827 mips_elf_high (value
)
1830 return ((value
+ (bfd_vma
) 0x8000) >> 16) & 0xffff;
1833 /* Calculate the %higher function. */
1836 mips_elf_higher (value
)
1837 bfd_vma value ATTRIBUTE_UNUSED
;
1840 return ((value
+ (bfd_vma
) 0x80008000) >> 32) & 0xffff;
1843 return (bfd_vma
) -1;
1847 /* Calculate the %highest function. */
1850 mips_elf_highest (value
)
1851 bfd_vma value ATTRIBUTE_UNUSED
;
1854 return ((value
+ (bfd_vma
) 0x800080008000) >> 48) & 0xffff;
1857 return (bfd_vma
) -1;
1861 /* Create the .compact_rel section. */
1864 mips_elf_create_compact_rel_section (abfd
, info
)
1866 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1869 register asection
*s
;
1871 if (bfd_get_section_by_name (abfd
, ".compact_rel") == NULL
)
1873 flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
1876 s
= bfd_make_section (abfd
, ".compact_rel");
1878 || ! bfd_set_section_flags (abfd
, s
, flags
)
1879 || ! bfd_set_section_alignment (abfd
, s
,
1880 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
1883 s
->_raw_size
= sizeof (Elf32_External_compact_rel
);
1889 /* Create the .got section to hold the global offset table. */
1892 mips_elf_create_got_section (abfd
, info
)
1894 struct bfd_link_info
*info
;
1897 register asection
*s
;
1898 struct elf_link_hash_entry
*h
;
1899 struct mips_got_info
*g
;
1902 /* This function may be called more than once. */
1903 if (mips_elf_got_section (abfd
))
1906 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
1907 | SEC_LINKER_CREATED
);
1909 s
= bfd_make_section (abfd
, ".got");
1911 || ! bfd_set_section_flags (abfd
, s
, flags
)
1912 || ! bfd_set_section_alignment (abfd
, s
, 4))
1915 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
1916 linker script because we don't want to define the symbol if we
1917 are not creating a global offset table. */
1919 if (! (_bfd_generic_link_add_one_symbol
1920 (info
, abfd
, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL
, s
,
1921 (bfd_vma
) 0, (const char *) NULL
, false,
1922 get_elf_backend_data (abfd
)->collect
,
1923 (struct bfd_link_hash_entry
**) &h
)))
1925 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
1926 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
1927 h
->type
= STT_OBJECT
;
1930 && ! bfd_elf32_link_record_dynamic_symbol (info
, h
))
1933 /* The first several global offset table entries are reserved. */
1934 s
->_raw_size
= MIPS_RESERVED_GOTNO
* MIPS_ELF_GOT_SIZE (abfd
);
1936 amt
= sizeof (struct mips_got_info
);
1937 g
= (struct mips_got_info
*) bfd_alloc (abfd
, amt
);
1940 g
->global_gotsym
= NULL
;
1941 g
->local_gotno
= MIPS_RESERVED_GOTNO
;
1942 g
->assigned_gotno
= MIPS_RESERVED_GOTNO
;
1943 if (elf_section_data (s
) == NULL
)
1945 amt
= sizeof (struct bfd_elf_section_data
);
1946 s
->used_by_bfd
= (PTR
) bfd_zalloc (abfd
, amt
);
1947 if (elf_section_data (s
) == NULL
)
1950 elf_section_data (s
)->tdata
= (PTR
) g
;
1951 elf_section_data (s
)->this_hdr
.sh_flags
1952 |= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
1957 /* Returns the .msym section for ABFD, creating it if it does not
1958 already exist. Returns NULL to indicate error. */
1961 mips_elf_create_msym_section (abfd
)
1966 s
= bfd_get_section_by_name (abfd
, ".msym");
1969 s
= bfd_make_section (abfd
, ".msym");
1971 || !bfd_set_section_flags (abfd
, s
,
1975 | SEC_LINKER_CREATED
1977 || !bfd_set_section_alignment (abfd
, s
,
1978 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
1985 /* Calculate the value produced by the RELOCATION (which comes from
1986 the INPUT_BFD). The ADDEND is the addend to use for this
1987 RELOCATION; RELOCATION->R_ADDEND is ignored.
1989 The result of the relocation calculation is stored in VALUEP.
1990 REQUIRE_JALXP indicates whether or not the opcode used with this
1991 relocation must be JALX.
1993 This function returns bfd_reloc_continue if the caller need take no
1994 further action regarding this relocation, bfd_reloc_notsupported if
1995 something goes dramatically wrong, bfd_reloc_overflow if an
1996 overflow occurs, and bfd_reloc_ok to indicate success. */
1998 static bfd_reloc_status_type
1999 mips_elf_calculate_relocation (abfd
, input_bfd
, input_section
, info
,
2000 relocation
, addend
, howto
, local_syms
,
2001 local_sections
, valuep
, namep
,
2005 asection
*input_section
;
2006 struct bfd_link_info
*info
;
2007 const Elf_Internal_Rela
*relocation
;
2009 reloc_howto_type
*howto
;
2010 Elf_Internal_Sym
*local_syms
;
2011 asection
**local_sections
;
2014 boolean
*require_jalxp
;
2016 /* The eventual value we will return. */
2018 /* The address of the symbol against which the relocation is
2021 /* The final GP value to be used for the relocatable, executable, or
2022 shared object file being produced. */
2023 bfd_vma gp
= MINUS_ONE
;
2024 /* The place (section offset or address) of the storage unit being
2027 /* The value of GP used to create the relocatable object. */
2028 bfd_vma gp0
= MINUS_ONE
;
2029 /* The offset into the global offset table at which the address of
2030 the relocation entry symbol, adjusted by the addend, resides
2031 during execution. */
2032 bfd_vma g
= MINUS_ONE
;
2033 /* The section in which the symbol referenced by the relocation is
2035 asection
*sec
= NULL
;
2036 struct mips_elf_link_hash_entry
*h
= NULL
;
2037 /* True if the symbol referred to by this relocation is a local
2040 /* True if the symbol referred to by this relocation is "_gp_disp". */
2041 boolean gp_disp_p
= false;
2042 Elf_Internal_Shdr
*symtab_hdr
;
2044 unsigned long r_symndx
;
2046 /* True if overflow occurred during the calculation of the
2047 relocation value. */
2048 boolean overflowed_p
;
2049 /* True if this relocation refers to a MIPS16 function. */
2050 boolean target_is_16_bit_code_p
= false;
2052 /* Parse the relocation. */
2053 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
2054 r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
2055 p
= (input_section
->output_section
->vma
2056 + input_section
->output_offset
2057 + relocation
->r_offset
);
2059 /* Assume that there will be no overflow. */
2060 overflowed_p
= false;
2062 /* Figure out whether or not the symbol is local, and get the offset
2063 used in the array of hash table entries. */
2064 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2065 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
2066 local_sections
, false);
2067 if (! elf_bad_symtab (input_bfd
))
2068 extsymoff
= symtab_hdr
->sh_info
;
2071 /* The symbol table does not follow the rule that local symbols
2072 must come before globals. */
2076 /* Figure out the value of the symbol. */
2079 Elf_Internal_Sym
*sym
;
2081 sym
= local_syms
+ r_symndx
;
2082 sec
= local_sections
[r_symndx
];
2084 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
2085 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
2086 || (sec
->flags
& SEC_MERGE
))
2087 symbol
+= sym
->st_value
;
2088 if ((sec
->flags
& SEC_MERGE
)
2089 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
2091 addend
= _bfd_elf_rel_local_sym (abfd
, sym
, &sec
, addend
);
2093 addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
2096 /* MIPS16 text labels should be treated as odd. */
2097 if (sym
->st_other
== STO_MIPS16
)
2100 /* Record the name of this symbol, for our caller. */
2101 *namep
= bfd_elf_string_from_elf_section (input_bfd
,
2102 symtab_hdr
->sh_link
,
2105 *namep
= bfd_section_name (input_bfd
, sec
);
2107 target_is_16_bit_code_p
= (sym
->st_other
== STO_MIPS16
);
2111 /* For global symbols we look up the symbol in the hash-table. */
2112 h
= ((struct mips_elf_link_hash_entry
*)
2113 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
]);
2114 /* Find the real hash-table entry for this symbol. */
2115 while (h
->root
.root
.type
== bfd_link_hash_indirect
2116 || h
->root
.root
.type
== bfd_link_hash_warning
)
2117 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
2119 /* Record the name of this symbol, for our caller. */
2120 *namep
= h
->root
.root
.root
.string
;
2122 /* See if this is the special _gp_disp symbol. Note that such a
2123 symbol must always be a global symbol. */
2124 if (strcmp (h
->root
.root
.root
.string
, "_gp_disp") == 0
2125 && ! NEWABI_P (input_bfd
))
2127 /* Relocations against _gp_disp are permitted only with
2128 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
2129 if (r_type
!= R_MIPS_HI16
&& r_type
!= R_MIPS_LO16
)
2130 return bfd_reloc_notsupported
;
2134 /* If this symbol is defined, calculate its address. Note that
2135 _gp_disp is a magic symbol, always implicitly defined by the
2136 linker, so it's inappropriate to check to see whether or not
2138 else if ((h
->root
.root
.type
== bfd_link_hash_defined
2139 || h
->root
.root
.type
== bfd_link_hash_defweak
)
2140 && h
->root
.root
.u
.def
.section
)
2142 sec
= h
->root
.root
.u
.def
.section
;
2143 if (sec
->output_section
)
2144 symbol
= (h
->root
.root
.u
.def
.value
2145 + sec
->output_section
->vma
2146 + sec
->output_offset
);
2148 symbol
= h
->root
.root
.u
.def
.value
;
2150 else if (h
->root
.root
.type
== bfd_link_hash_undefweak
)
2151 /* We allow relocations against undefined weak symbols, giving
2152 it the value zero, so that you can undefined weak functions
2153 and check to see if they exist by looking at their
2156 else if (info
->shared
2157 && (!info
->symbolic
|| info
->allow_shlib_undefined
)
2158 && !info
->no_undefined
2159 && ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
2161 else if (strcmp (h
->root
.root
.root
.string
, "_DYNAMIC_LINK") == 0 ||
2162 strcmp (h
->root
.root
.root
.string
, "_DYNAMIC_LINKING") == 0)
2164 /* If this is a dynamic link, we should have created a
2165 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
2166 in in _bfd_mips_elf_create_dynamic_sections.
2167 Otherwise, we should define the symbol with a value of 0.
2168 FIXME: It should probably get into the symbol table
2170 BFD_ASSERT (! info
->shared
);
2171 BFD_ASSERT (bfd_get_section_by_name (abfd
, ".dynamic") == NULL
);
2176 if (! ((*info
->callbacks
->undefined_symbol
)
2177 (info
, h
->root
.root
.root
.string
, input_bfd
,
2178 input_section
, relocation
->r_offset
,
2179 (!info
->shared
|| info
->no_undefined
2180 || ELF_ST_VISIBILITY (h
->root
.other
)))))
2181 return bfd_reloc_undefined
;
2185 target_is_16_bit_code_p
= (h
->root
.other
== STO_MIPS16
);
2188 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
2189 need to redirect the call to the stub, unless we're already *in*
2191 if (r_type
!= R_MIPS16_26
&& !info
->relocateable
2192 && ((h
!= NULL
&& h
->fn_stub
!= NULL
)
2193 || (local_p
&& elf_tdata (input_bfd
)->local_stubs
!= NULL
2194 && elf_tdata (input_bfd
)->local_stubs
[r_symndx
] != NULL
))
2195 && !mips_elf_stub_section_p (input_bfd
, input_section
))
2197 /* This is a 32- or 64-bit call to a 16-bit function. We should
2198 have already noticed that we were going to need the
2201 sec
= elf_tdata (input_bfd
)->local_stubs
[r_symndx
];
2204 BFD_ASSERT (h
->need_fn_stub
);
2208 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
2210 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
2211 need to redirect the call to the stub. */
2212 else if (r_type
== R_MIPS16_26
&& !info
->relocateable
2214 && (h
->call_stub
!= NULL
|| h
->call_fp_stub
!= NULL
)
2215 && !target_is_16_bit_code_p
)
2217 /* If both call_stub and call_fp_stub are defined, we can figure
2218 out which one to use by seeing which one appears in the input
2220 if (h
->call_stub
!= NULL
&& h
->call_fp_stub
!= NULL
)
2225 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
2227 if (strncmp (bfd_get_section_name (input_bfd
, o
),
2228 CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
2230 sec
= h
->call_fp_stub
;
2237 else if (h
->call_stub
!= NULL
)
2240 sec
= h
->call_fp_stub
;
2242 BFD_ASSERT (sec
->_raw_size
> 0);
2243 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
2246 /* Calls from 16-bit code to 32-bit code and vice versa require the
2247 special jalx instruction. */
2248 *require_jalxp
= (!info
->relocateable
2249 && (((r_type
== R_MIPS16_26
) && !target_is_16_bit_code_p
)
2250 || ((r_type
== R_MIPS_26
) && target_is_16_bit_code_p
)));
2252 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
2253 local_sections
, true);
2255 /* If we haven't already determined the GOT offset, or the GP value,
2256 and we're going to need it, get it now. */
2261 case R_MIPS_GOT_DISP
:
2262 case R_MIPS_GOT_HI16
:
2263 case R_MIPS_CALL_HI16
:
2264 case R_MIPS_GOT_LO16
:
2265 case R_MIPS_CALL_LO16
:
2266 /* Find the index into the GOT where this value is located. */
2269 BFD_ASSERT (addend
== 0);
2270 g
= mips_elf_global_got_index (elf_hash_table (info
)->dynobj
,
2271 (struct elf_link_hash_entry
*) h
);
2272 if (! elf_hash_table(info
)->dynamic_sections_created
2274 && (info
->symbolic
|| h
->root
.dynindx
== -1)
2275 && (h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)))
2277 /* This is a static link or a -Bsymbolic link. The
2278 symbol is defined locally, or was forced to be local.
2279 We must initialize this entry in the GOT. */
2280 bfd
*tmpbfd
= elf_hash_table (info
)->dynobj
;
2281 asection
*sgot
= mips_elf_got_section(tmpbfd
);
2282 MIPS_ELF_PUT_WORD (tmpbfd
, symbol
+ addend
, sgot
->contents
+ g
);
2285 else if (r_type
== R_MIPS_GOT16
|| r_type
== R_MIPS_CALL16
)
2286 /* There's no need to create a local GOT entry here; the
2287 calculation for a local GOT16 entry does not involve G. */
2291 g
= mips_elf_local_got_index (abfd
, info
, symbol
+ addend
);
2293 return bfd_reloc_outofrange
;
2296 /* Convert GOT indices to actual offsets. */
2297 g
= mips_elf_got_offset_from_index (elf_hash_table (info
)->dynobj
,
2303 case R_MIPS16_GPREL
:
2304 case R_MIPS_GPREL16
:
2305 case R_MIPS_GPREL32
:
2306 case R_MIPS_LITERAL
:
2307 gp0
= _bfd_get_gp_value (input_bfd
);
2308 gp
= _bfd_get_gp_value (abfd
);
2315 /* Figure out what kind of relocation is being performed. */
2319 return bfd_reloc_continue
;
2322 value
= symbol
+ mips_elf_sign_extend (addend
, 16);
2323 overflowed_p
= mips_elf_overflow_p (value
, 16);
2330 || (elf_hash_table (info
)->dynamic_sections_created
2332 && ((h
->root
.elf_link_hash_flags
2333 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0)
2334 && ((h
->root
.elf_link_hash_flags
2335 & ELF_LINK_HASH_DEF_REGULAR
) == 0)))
2337 && (input_section
->flags
& SEC_ALLOC
) != 0)
2339 /* If we're creating a shared library, or this relocation is
2340 against a symbol in a shared library, then we can't know
2341 where the symbol will end up. So, we create a relocation
2342 record in the output, and leave the job up to the dynamic
2345 if (!mips_elf_create_dynamic_relocation (abfd
,
2353 return bfd_reloc_undefined
;
2357 if (r_type
!= R_MIPS_REL32
)
2358 value
= symbol
+ addend
;
2362 value
&= howto
->dst_mask
;
2367 case R_MIPS_GNU_REL_LO16
:
2368 value
= symbol
+ addend
- p
;
2369 value
&= howto
->dst_mask
;
2372 case R_MIPS_GNU_REL16_S2
:
2373 value
= symbol
+ mips_elf_sign_extend (addend
<< 2, 18) - p
;
2374 overflowed_p
= mips_elf_overflow_p (value
, 18);
2375 value
= (value
>> 2) & howto
->dst_mask
;
2378 case R_MIPS_GNU_REL_HI16
:
2379 /* Instead of subtracting 'p' here, we should be subtracting the
2380 equivalent value for the LO part of the reloc, since the value
2381 here is relative to that address. Because that's not easy to do,
2382 we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
2383 the comment there for more information. */
2384 value
= mips_elf_high (addend
+ symbol
- p
);
2385 value
&= howto
->dst_mask
;
2389 /* The calculation for R_MIPS16_26 is just the same as for an
2390 R_MIPS_26. It's only the storage of the relocated field into
2391 the output file that's different. That's handled in
2392 mips_elf_perform_relocation. So, we just fall through to the
2393 R_MIPS_26 case here. */
2396 value
= (((addend
<< 2) | ((p
+ 4) & 0xf0000000)) + symbol
) >> 2;
2398 value
= (mips_elf_sign_extend (addend
<< 2, 28) + symbol
) >> 2;
2399 value
&= howto
->dst_mask
;
2405 value
= mips_elf_high (addend
+ symbol
);
2406 value
&= howto
->dst_mask
;
2410 value
= mips_elf_high (addend
+ gp
- p
);
2411 overflowed_p
= mips_elf_overflow_p (value
, 16);
2417 value
= (symbol
+ addend
) & howto
->dst_mask
;
2420 value
= addend
+ gp
- p
+ 4;
2421 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
2422 for overflow. But, on, say, IRIX5, relocations against
2423 _gp_disp are normally generated from the .cpload
2424 pseudo-op. It generates code that normally looks like
2427 lui $gp,%hi(_gp_disp)
2428 addiu $gp,$gp,%lo(_gp_disp)
2431 Here $t9 holds the address of the function being called,
2432 as required by the MIPS ELF ABI. The R_MIPS_LO16
2433 relocation can easily overflow in this situation, but the
2434 R_MIPS_HI16 relocation will handle the overflow.
2435 Therefore, we consider this a bug in the MIPS ABI, and do
2436 not check for overflow here. */
2440 case R_MIPS_LITERAL
:
2441 /* Because we don't merge literal sections, we can handle this
2442 just like R_MIPS_GPREL16. In the long run, we should merge
2443 shared literals, and then we will need to additional work
2448 case R_MIPS16_GPREL
:
2449 /* The R_MIPS16_GPREL performs the same calculation as
2450 R_MIPS_GPREL16, but stores the relocated bits in a different
2451 order. We don't need to do anything special here; the
2452 differences are handled in mips_elf_perform_relocation. */
2453 case R_MIPS_GPREL16
:
2455 value
= mips_elf_sign_extend (addend
, 16) + symbol
+ gp0
- gp
;
2457 value
= mips_elf_sign_extend (addend
, 16) + symbol
- gp
;
2458 overflowed_p
= mips_elf_overflow_p (value
, 16);
2467 /* The special case is when the symbol is forced to be local. We
2468 need the full address in the GOT since no R_MIPS_LO16 relocation
2470 forced
= ! mips_elf_local_relocation_p (input_bfd
, relocation
,
2471 local_sections
, false);
2472 value
= mips_elf_got16_entry (abfd
, info
, symbol
+ addend
, forced
);
2473 if (value
== MINUS_ONE
)
2474 return bfd_reloc_outofrange
;
2476 = mips_elf_got_offset_from_index (elf_hash_table (info
)->dynobj
,
2479 overflowed_p
= mips_elf_overflow_p (value
, 16);
2485 case R_MIPS_GOT_DISP
:
2487 overflowed_p
= mips_elf_overflow_p (value
, 16);
2490 case R_MIPS_GPREL32
:
2491 value
= (addend
+ symbol
+ gp0
- gp
) & howto
->dst_mask
;
2495 value
= mips_elf_sign_extend (addend
, 16) + symbol
- p
;
2496 overflowed_p
= mips_elf_overflow_p (value
, 16);
2497 value
= (bfd_vma
) ((bfd_signed_vma
) value
/ 4);
2500 case R_MIPS_GOT_HI16
:
2501 case R_MIPS_CALL_HI16
:
2502 /* We're allowed to handle these two relocations identically.
2503 The dynamic linker is allowed to handle the CALL relocations
2504 differently by creating a lazy evaluation stub. */
2506 value
= mips_elf_high (value
);
2507 value
&= howto
->dst_mask
;
2510 case R_MIPS_GOT_LO16
:
2511 case R_MIPS_CALL_LO16
:
2512 value
= g
& howto
->dst_mask
;
2515 case R_MIPS_GOT_PAGE
:
2516 value
= mips_elf_got_page (abfd
, info
, symbol
+ addend
, NULL
);
2517 if (value
== MINUS_ONE
)
2518 return bfd_reloc_outofrange
;
2519 value
= mips_elf_got_offset_from_index (elf_hash_table (info
)->dynobj
,
2522 overflowed_p
= mips_elf_overflow_p (value
, 16);
2525 case R_MIPS_GOT_OFST
:
2526 mips_elf_got_page (abfd
, info
, symbol
+ addend
, &value
);
2527 overflowed_p
= mips_elf_overflow_p (value
, 16);
2531 value
= symbol
- addend
;
2532 value
&= howto
->dst_mask
;
2536 value
= mips_elf_higher (addend
+ symbol
);
2537 value
&= howto
->dst_mask
;
2540 case R_MIPS_HIGHEST
:
2541 value
= mips_elf_highest (addend
+ symbol
);
2542 value
&= howto
->dst_mask
;
2545 case R_MIPS_SCN_DISP
:
2546 value
= symbol
+ addend
- sec
->output_offset
;
2547 value
&= howto
->dst_mask
;
2552 /* Both of these may be ignored. R_MIPS_JALR is an optimization
2553 hint; we could improve performance by honoring that hint. */
2554 return bfd_reloc_continue
;
2556 case R_MIPS_GNU_VTINHERIT
:
2557 case R_MIPS_GNU_VTENTRY
:
2558 /* We don't do anything with these at present. */
2559 return bfd_reloc_continue
;
2562 /* An unrecognized relocation type. */
2563 return bfd_reloc_notsupported
;
2566 /* Store the VALUE for our caller. */
2568 return overflowed_p
? bfd_reloc_overflow
: bfd_reloc_ok
;
2571 /* Obtain the field relocated by RELOCATION. */
2574 mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
)
2575 reloc_howto_type
*howto
;
2576 const Elf_Internal_Rela
*relocation
;
2581 bfd_byte
*location
= contents
+ relocation
->r_offset
;
2583 /* Obtain the bytes. */
2584 x
= bfd_get ((8 * bfd_get_reloc_size (howto
)), input_bfd
, location
);
2586 if ((ELF_R_TYPE (input_bfd
, relocation
->r_info
) == R_MIPS16_26
2587 || ELF_R_TYPE (input_bfd
, relocation
->r_info
) == R_MIPS16_GPREL
)
2588 && bfd_little_endian (input_bfd
))
2589 /* The two 16-bit words will be reversed on a little-endian system.
2590 See mips_elf_perform_relocation for more details. */
2591 x
= (((x
& 0xffff) << 16) | ((x
& 0xffff0000) >> 16));
2596 /* It has been determined that the result of the RELOCATION is the
2597 VALUE. Use HOWTO to place VALUE into the output file at the
2598 appropriate position. The SECTION is the section to which the
2599 relocation applies. If REQUIRE_JALX is true, then the opcode used
2600 for the relocation must be either JAL or JALX, and it is
2601 unconditionally converted to JALX.
2603 Returns false if anything goes wrong. */
2606 mips_elf_perform_relocation (info
, howto
, relocation
, value
, input_bfd
,
2607 input_section
, contents
, require_jalx
)
2608 struct bfd_link_info
*info
;
2609 reloc_howto_type
*howto
;
2610 const Elf_Internal_Rela
*relocation
;
2613 asection
*input_section
;
2615 boolean require_jalx
;
2619 int r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
2621 /* Figure out where the relocation is occurring. */
2622 location
= contents
+ relocation
->r_offset
;
2624 /* Obtain the current value. */
2625 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
2627 /* Clear the field we are setting. */
2628 x
&= ~howto
->dst_mask
;
2630 /* If this is the R_MIPS16_26 relocation, we must store the
2631 value in a funny way. */
2632 if (r_type
== R_MIPS16_26
)
2634 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2635 Most mips16 instructions are 16 bits, but these instructions
2638 The format of these instructions is:
2640 +--------------+--------------------------------+
2641 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
2642 +--------------+--------------------------------+
2644 +-----------------------------------------------+
2646 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2647 Note that the immediate value in the first word is swapped.
2649 When producing a relocateable object file, R_MIPS16_26 is
2650 handled mostly like R_MIPS_26. In particular, the addend is
2651 stored as a straight 26-bit value in a 32-bit instruction.
2652 (gas makes life simpler for itself by never adjusting a
2653 R_MIPS16_26 reloc to be against a section, so the addend is
2654 always zero). However, the 32 bit instruction is stored as 2
2655 16-bit values, rather than a single 32-bit value. In a
2656 big-endian file, the result is the same; in a little-endian
2657 file, the two 16-bit halves of the 32 bit value are swapped.
2658 This is so that a disassembler can recognize the jal
2661 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2662 instruction stored as two 16-bit values. The addend A is the
2663 contents of the targ26 field. The calculation is the same as
2664 R_MIPS_26. When storing the calculated value, reorder the
2665 immediate value as shown above, and don't forget to store the
2666 value as two 16-bit values.
2668 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2672 +--------+----------------------+
2676 +--------+----------------------+
2679 +----------+------+-------------+
2683 +----------+--------------------+
2684 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2685 ((sub1 << 16) | sub2)).
2687 When producing a relocateable object file, the calculation is
2688 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2689 When producing a fully linked file, the calculation is
2690 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2691 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
2693 if (!info
->relocateable
)
2694 /* Shuffle the bits according to the formula above. */
2695 value
= (((value
& 0x1f0000) << 5)
2696 | ((value
& 0x3e00000) >> 5)
2697 | (value
& 0xffff));
2699 else if (r_type
== R_MIPS16_GPREL
)
2701 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
2702 mode. A typical instruction will have a format like this:
2704 +--------------+--------------------------------+
2705 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
2706 +--------------+--------------------------------+
2707 ! Major ! rx ! ry ! Imm 4:0 !
2708 +--------------+--------------------------------+
2710 EXTEND is the five bit value 11110. Major is the instruction
2713 This is handled exactly like R_MIPS_GPREL16, except that the
2714 addend is retrieved and stored as shown in this diagram; that
2715 is, the Imm fields above replace the V-rel16 field.
2717 All we need to do here is shuffle the bits appropriately. As
2718 above, the two 16-bit halves must be swapped on a
2719 little-endian system. */
2720 value
= (((value
& 0x7e0) << 16)
2721 | ((value
& 0xf800) << 5)
2725 /* Set the field. */
2726 x
|= (value
& howto
->dst_mask
);
2728 /* If required, turn JAL into JALX. */
2732 bfd_vma opcode
= x
>> 26;
2733 bfd_vma jalx_opcode
;
2735 /* Check to see if the opcode is already JAL or JALX. */
2736 if (r_type
== R_MIPS16_26
)
2738 ok
= ((opcode
== 0x6) || (opcode
== 0x7));
2743 ok
= ((opcode
== 0x3) || (opcode
== 0x1d));
2747 /* If the opcode is not JAL or JALX, there's a problem. */
2750 (*_bfd_error_handler
)
2751 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
2752 bfd_archive_filename (input_bfd
),
2753 input_section
->name
,
2754 (unsigned long) relocation
->r_offset
);
2755 bfd_set_error (bfd_error_bad_value
);
2759 /* Make this the JALX opcode. */
2760 x
= (x
& ~(0x3f << 26)) | (jalx_opcode
<< 26);
2763 /* Swap the high- and low-order 16 bits on little-endian systems
2764 when doing a MIPS16 relocation. */
2765 if ((r_type
== R_MIPS16_GPREL
|| r_type
== R_MIPS16_26
)
2766 && bfd_little_endian (input_bfd
))
2767 x
= (((x
& 0xffff) << 16) | ((x
& 0xffff0000) >> 16));
2769 /* Put the value into the output. */
2770 bfd_put (8 * bfd_get_reloc_size (howto
), input_bfd
, x
, location
);
2774 /* Returns true if SECTION is a MIPS16 stub section. */
2777 mips_elf_stub_section_p (abfd
, section
)
2778 bfd
*abfd ATTRIBUTE_UNUSED
;
2781 const char *name
= bfd_get_section_name (abfd
, section
);
2783 return (strncmp (name
, FN_STUB
, sizeof FN_STUB
- 1) == 0
2784 || strncmp (name
, CALL_STUB
, sizeof CALL_STUB
- 1) == 0
2785 || strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0);
2788 /* Add room for N relocations to the .rel.dyn section in ABFD. */
2791 mips_elf_allocate_dynamic_relocations (abfd
, n
)
2797 s
= bfd_get_section_by_name (abfd
, ".rel.dyn");
2798 BFD_ASSERT (s
!= NULL
);
2800 if (s
->_raw_size
== 0)
2802 /* Make room for a null element. */
2803 s
->_raw_size
+= MIPS_ELF_REL_SIZE (abfd
);
2806 s
->_raw_size
+= n
* MIPS_ELF_REL_SIZE (abfd
);
2809 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
2810 is the original relocation, which is now being transformed into a
2811 dynamic relocation. The ADDENDP is adjusted if necessary; the
2812 caller should store the result in place of the original addend. */
2815 mips_elf_create_dynamic_relocation (output_bfd
, info
, rel
, h
, sec
,
2816 symbol
, addendp
, input_section
)
2818 struct bfd_link_info
*info
;
2819 const Elf_Internal_Rela
*rel
;
2820 struct mips_elf_link_hash_entry
*h
;
2824 asection
*input_section
;
2826 Elf_Internal_Rel outrel
[3];
2832 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
2833 dynobj
= elf_hash_table (info
)->dynobj
;
2835 = bfd_get_section_by_name (dynobj
, ".rel.dyn");
2836 BFD_ASSERT (sreloc
!= NULL
);
2837 BFD_ASSERT (sreloc
->contents
!= NULL
);
2838 BFD_ASSERT (sreloc
->reloc_count
* MIPS_ELF_REL_SIZE (output_bfd
)
2839 < sreloc
->_raw_size
);
2842 outrel
[0].r_offset
=
2843 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[0].r_offset
);
2844 outrel
[1].r_offset
=
2845 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[1].r_offset
);
2846 outrel
[2].r_offset
=
2847 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[2].r_offset
);
2850 /* We begin by assuming that the offset for the dynamic relocation
2851 is the same as for the original relocation. We'll adjust this
2852 later to reflect the correct output offsets. */
2853 if (elf_section_data (input_section
)->sec_info_type
!= ELF_INFO_TYPE_STABS
)
2855 outrel
[1].r_offset
= rel
[1].r_offset
;
2856 outrel
[2].r_offset
= rel
[2].r_offset
;
2860 /* Except that in a stab section things are more complex.
2861 Because we compress stab information, the offset given in the
2862 relocation may not be the one we want; we must let the stabs
2863 machinery tell us the offset. */
2864 outrel
[1].r_offset
= outrel
[0].r_offset
;
2865 outrel
[2].r_offset
= outrel
[0].r_offset
;
2866 /* If we didn't need the relocation at all, this value will be
2868 if (outrel
[0].r_offset
== (bfd_vma
) -1)
2873 if (outrel
[0].r_offset
== (bfd_vma
) -1)
2875 /* FIXME: For -2 runtime relocation needs to be skipped, but
2876 properly resolved statically and installed. */
2877 BFD_ASSERT (outrel
[0].r_offset
!= (bfd_vma
) -2);
2879 /* If we've decided to skip this relocation, just output an empty
2880 record. Note that R_MIPS_NONE == 0, so that this call to memset
2881 is a way of setting R_TYPE to R_MIPS_NONE. */
2883 memset (outrel
, 0, sizeof (Elf_Internal_Rel
) * 3);
2887 bfd_vma section_offset
;
2889 /* We must now calculate the dynamic symbol table index to use
2890 in the relocation. */
2892 && (! info
->symbolic
|| (h
->root
.elf_link_hash_flags
2893 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
2895 indx
= h
->root
.dynindx
;
2896 /* h->root.dynindx may be -1 if this symbol was marked to
2903 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
2905 else if (sec
== NULL
|| sec
->owner
== NULL
)
2907 bfd_set_error (bfd_error_bad_value
);
2912 indx
= elf_section_data (sec
->output_section
)->dynindx
;
2917 /* Figure out how far the target of the relocation is from
2918 the beginning of its section. */
2919 section_offset
= symbol
- sec
->output_section
->vma
;
2920 /* The relocation we're building is section-relative.
2921 Therefore, the original addend must be adjusted by the
2923 *addendp
+= section_offset
;
2924 /* Now, the relocation is just against the section. */
2925 symbol
= sec
->output_section
->vma
;
2928 /* If the relocation was previously an absolute relocation and
2929 this symbol will not be referred to by the relocation, we must
2930 adjust it by the value we give it in the dynamic symbol table.
2931 Otherwise leave the job up to the dynamic linker. */
2932 if (!indx
&& r_type
!= R_MIPS_REL32
)
2935 /* The relocation is always an REL32 relocation because we don't
2936 know where the shared library will wind up at load-time. */
2937 outrel
[0].r_info
= ELF_R_INFO (output_bfd
, indx
, R_MIPS_REL32
);
2939 /* Adjust the output offset of the relocation to reference the
2940 correct location in the output file. */
2941 outrel
[0].r_offset
+= (input_section
->output_section
->vma
2942 + input_section
->output_offset
);
2943 outrel
[1].r_offset
+= (input_section
->output_section
->vma
2944 + input_section
->output_offset
);
2945 outrel
[2].r_offset
+= (input_section
->output_section
->vma
2946 + input_section
->output_offset
);
2949 /* Put the relocation back out. We have to use the special
2950 relocation outputter in the 64-bit case since the 64-bit
2951 relocation format is non-standard. */
2952 if (ABI_64_P (output_bfd
))
2954 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
2955 (output_bfd
, &outrel
[0],
2957 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
2960 bfd_elf32_swap_reloc_out (output_bfd
, &outrel
[0],
2961 (((Elf32_External_Rel
*)
2963 + sreloc
->reloc_count
));
2965 /* Record the index of the first relocation referencing H. This
2966 information is later emitted in the .msym section. */
2968 && (h
->min_dyn_reloc_index
== 0
2969 || sreloc
->reloc_count
< h
->min_dyn_reloc_index
))
2970 h
->min_dyn_reloc_index
= sreloc
->reloc_count
;
2972 /* We've now added another relocation. */
2973 ++sreloc
->reloc_count
;
2975 /* Make sure the output section is writable. The dynamic linker
2976 will be writing to it. */
2977 elf_section_data (input_section
->output_section
)->this_hdr
.sh_flags
2980 /* On IRIX5, make an entry of compact relocation info. */
2981 if (! skip
&& IRIX_COMPAT (output_bfd
) == ict_irix5
)
2983 asection
*scpt
= bfd_get_section_by_name (dynobj
, ".compact_rel");
2988 Elf32_crinfo cptrel
;
2990 mips_elf_set_cr_format (cptrel
, CRF_MIPS_LONG
);
2991 cptrel
.vaddr
= (rel
->r_offset
2992 + input_section
->output_section
->vma
2993 + input_section
->output_offset
);
2994 if (r_type
== R_MIPS_REL32
)
2995 mips_elf_set_cr_type (cptrel
, CRT_MIPS_REL32
);
2997 mips_elf_set_cr_type (cptrel
, CRT_MIPS_WORD
);
2998 mips_elf_set_cr_dist2to (cptrel
, 0);
2999 cptrel
.konst
= *addendp
;
3001 cr
= (scpt
->contents
3002 + sizeof (Elf32_External_compact_rel
));
3003 bfd_elf32_swap_crinfo_out (output_bfd
, &cptrel
,
3004 ((Elf32_External_crinfo
*) cr
3005 + scpt
->reloc_count
));
3006 ++scpt
->reloc_count
;
3013 /* Return the ISA for a MIPS e_flags value. */
3016 elf_mips_isa (flags
)
3019 switch (flags
& EF_MIPS_ARCH
)
3031 case E_MIPS_ARCH_32
:
3033 case E_MIPS_ARCH_64
:
3039 /* Return the MACH for a MIPS e_flags value. */
3042 _bfd_elf_mips_mach (flags
)
3045 switch (flags
& EF_MIPS_MACH
)
3047 case E_MIPS_MACH_3900
:
3048 return bfd_mach_mips3900
;
3050 case E_MIPS_MACH_4010
:
3051 return bfd_mach_mips4010
;
3053 case E_MIPS_MACH_4100
:
3054 return bfd_mach_mips4100
;
3056 case E_MIPS_MACH_4111
:
3057 return bfd_mach_mips4111
;
3059 case E_MIPS_MACH_4650
:
3060 return bfd_mach_mips4650
;
3062 case E_MIPS_MACH_SB1
:
3063 return bfd_mach_mips_sb1
;
3066 switch (flags
& EF_MIPS_ARCH
)
3070 return bfd_mach_mips3000
;
3074 return bfd_mach_mips6000
;
3078 return bfd_mach_mips4000
;
3082 return bfd_mach_mips8000
;
3086 return bfd_mach_mips5
;
3089 case E_MIPS_ARCH_32
:
3090 return bfd_mach_mipsisa32
;
3093 case E_MIPS_ARCH_64
:
3094 return bfd_mach_mipsisa64
;
3102 /* Return printable name for ABI. */
3104 static INLINE
char *
3105 elf_mips_abi_name (abfd
)
3110 flags
= elf_elfheader (abfd
)->e_flags
;
3111 switch (flags
& EF_MIPS_ABI
)
3114 if (ABI_N32_P (abfd
))
3116 else if (ABI_64_P (abfd
))
3120 case E_MIPS_ABI_O32
:
3122 case E_MIPS_ABI_O64
:
3124 case E_MIPS_ABI_EABI32
:
3126 case E_MIPS_ABI_EABI64
:
3129 return "unknown abi";
3133 /* MIPS ELF uses two common sections. One is the usual one, and the
3134 other is for small objects. All the small objects are kept
3135 together, and then referenced via the gp pointer, which yields
3136 faster assembler code. This is what we use for the small common
3137 section. This approach is copied from ecoff.c. */
3138 static asection mips_elf_scom_section
;
3139 static asymbol mips_elf_scom_symbol
;
3140 static asymbol
*mips_elf_scom_symbol_ptr
;
3142 /* MIPS ELF also uses an acommon section, which represents an
3143 allocated common symbol which may be overridden by a
3144 definition in a shared library. */
3145 static asection mips_elf_acom_section
;
3146 static asymbol mips_elf_acom_symbol
;
3147 static asymbol
*mips_elf_acom_symbol_ptr
;
3149 /* Handle the special MIPS section numbers that a symbol may use.
3150 This is used for both the 32-bit and the 64-bit ABI. */
3153 _bfd_mips_elf_symbol_processing (abfd
, asym
)
3157 elf_symbol_type
*elfsym
;
3159 elfsym
= (elf_symbol_type
*) asym
;
3160 switch (elfsym
->internal_elf_sym
.st_shndx
)
3162 case SHN_MIPS_ACOMMON
:
3163 /* This section is used in a dynamically linked executable file.
3164 It is an allocated common section. The dynamic linker can
3165 either resolve these symbols to something in a shared
3166 library, or it can just leave them here. For our purposes,
3167 we can consider these symbols to be in a new section. */
3168 if (mips_elf_acom_section
.name
== NULL
)
3170 /* Initialize the acommon section. */
3171 mips_elf_acom_section
.name
= ".acommon";
3172 mips_elf_acom_section
.flags
= SEC_ALLOC
;
3173 mips_elf_acom_section
.output_section
= &mips_elf_acom_section
;
3174 mips_elf_acom_section
.symbol
= &mips_elf_acom_symbol
;
3175 mips_elf_acom_section
.symbol_ptr_ptr
= &mips_elf_acom_symbol_ptr
;
3176 mips_elf_acom_symbol
.name
= ".acommon";
3177 mips_elf_acom_symbol
.flags
= BSF_SECTION_SYM
;
3178 mips_elf_acom_symbol
.section
= &mips_elf_acom_section
;
3179 mips_elf_acom_symbol_ptr
= &mips_elf_acom_symbol
;
3181 asym
->section
= &mips_elf_acom_section
;
3185 /* Common symbols less than the GP size are automatically
3186 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3187 if (asym
->value
> elf_gp_size (abfd
)
3188 || IRIX_COMPAT (abfd
) == ict_irix6
)
3191 case SHN_MIPS_SCOMMON
:
3192 if (mips_elf_scom_section
.name
== NULL
)
3194 /* Initialize the small common section. */
3195 mips_elf_scom_section
.name
= ".scommon";
3196 mips_elf_scom_section
.flags
= SEC_IS_COMMON
;
3197 mips_elf_scom_section
.output_section
= &mips_elf_scom_section
;
3198 mips_elf_scom_section
.symbol
= &mips_elf_scom_symbol
;
3199 mips_elf_scom_section
.symbol_ptr_ptr
= &mips_elf_scom_symbol_ptr
;
3200 mips_elf_scom_symbol
.name
= ".scommon";
3201 mips_elf_scom_symbol
.flags
= BSF_SECTION_SYM
;
3202 mips_elf_scom_symbol
.section
= &mips_elf_scom_section
;
3203 mips_elf_scom_symbol_ptr
= &mips_elf_scom_symbol
;
3205 asym
->section
= &mips_elf_scom_section
;
3206 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
3209 case SHN_MIPS_SUNDEFINED
:
3210 asym
->section
= bfd_und_section_ptr
;
3213 #if 0 /* for SGI_COMPAT */
3215 asym
->section
= mips_elf_text_section_ptr
;
3219 asym
->section
= mips_elf_data_section_ptr
;
3225 /* Work over a section just before writing it out. This routine is
3226 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
3227 sections that need the SHF_MIPS_GPREL flag by name; there has to be
3231 _bfd_mips_elf_section_processing (abfd
, hdr
)
3233 Elf_Internal_Shdr
*hdr
;
3235 if (hdr
->sh_type
== SHT_MIPS_REGINFO
3236 && hdr
->sh_size
> 0)
3240 BFD_ASSERT (hdr
->sh_size
== sizeof (Elf32_External_RegInfo
));
3241 BFD_ASSERT (hdr
->contents
== NULL
);
3244 hdr
->sh_offset
+ sizeof (Elf32_External_RegInfo
) - 4,
3247 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
3248 if (bfd_bwrite (buf
, (bfd_size_type
) 4, abfd
) != 4)
3252 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
3253 && hdr
->bfd_section
!= NULL
3254 && elf_section_data (hdr
->bfd_section
) != NULL
3255 && elf_section_data (hdr
->bfd_section
)->tdata
!= NULL
)
3257 bfd_byte
*contents
, *l
, *lend
;
3259 /* We stored the section contents in the elf_section_data tdata
3260 field in the set_section_contents routine. We save the
3261 section contents so that we don't have to read them again.
3262 At this point we know that elf_gp is set, so we can look
3263 through the section contents to see if there is an
3264 ODK_REGINFO structure. */
3266 contents
= (bfd_byte
*) elf_section_data (hdr
->bfd_section
)->tdata
;
3268 lend
= contents
+ hdr
->sh_size
;
3269 while (l
+ sizeof (Elf_External_Options
) <= lend
)
3271 Elf_Internal_Options intopt
;
3273 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
3275 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
3282 + sizeof (Elf_External_Options
)
3283 + (sizeof (Elf64_External_RegInfo
) - 8)),
3286 H_PUT_64 (abfd
, elf_gp (abfd
), buf
);
3287 if (bfd_bwrite (buf
, (bfd_size_type
) 8, abfd
) != 8)
3290 else if (intopt
.kind
== ODK_REGINFO
)
3297 + sizeof (Elf_External_Options
)
3298 + (sizeof (Elf32_External_RegInfo
) - 4)),
3301 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
3302 if (bfd_bwrite (buf
, (bfd_size_type
) 4, abfd
) != 4)
3309 if (hdr
->bfd_section
!= NULL
)
3311 const char *name
= bfd_get_section_name (abfd
, hdr
->bfd_section
);
3313 if (strcmp (name
, ".sdata") == 0
3314 || strcmp (name
, ".lit8") == 0
3315 || strcmp (name
, ".lit4") == 0)
3317 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
3318 hdr
->sh_type
= SHT_PROGBITS
;
3320 else if (strcmp (name
, ".sbss") == 0)
3322 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
3323 hdr
->sh_type
= SHT_NOBITS
;
3325 else if (strcmp (name
, ".srdata") == 0)
3327 hdr
->sh_flags
|= SHF_ALLOC
| SHF_MIPS_GPREL
;
3328 hdr
->sh_type
= SHT_PROGBITS
;
3330 else if (strcmp (name
, ".compact_rel") == 0)
3333 hdr
->sh_type
= SHT_PROGBITS
;
3335 else if (strcmp (name
, ".rtproc") == 0)
3337 if (hdr
->sh_addralign
!= 0 && hdr
->sh_entsize
== 0)
3339 unsigned int adjust
;
3341 adjust
= hdr
->sh_size
% hdr
->sh_addralign
;
3343 hdr
->sh_size
+= hdr
->sh_addralign
- adjust
;
3351 /* Handle a MIPS specific section when reading an object file. This
3352 is called when elfcode.h finds a section with an unknown type.
3353 This routine supports both the 32-bit and 64-bit ELF ABI.
3355 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
3359 _bfd_mips_elf_section_from_shdr (abfd
, hdr
, name
)
3361 Elf_Internal_Shdr
*hdr
;
3366 /* There ought to be a place to keep ELF backend specific flags, but
3367 at the moment there isn't one. We just keep track of the
3368 sections by their name, instead. Fortunately, the ABI gives
3369 suggested names for all the MIPS specific sections, so we will
3370 probably get away with this. */
3371 switch (hdr
->sh_type
)
3373 case SHT_MIPS_LIBLIST
:
3374 if (strcmp (name
, ".liblist") != 0)
3378 if (strcmp (name
, ".msym") != 0)
3381 case SHT_MIPS_CONFLICT
:
3382 if (strcmp (name
, ".conflict") != 0)
3385 case SHT_MIPS_GPTAB
:
3386 if (strncmp (name
, ".gptab.", sizeof ".gptab." - 1) != 0)
3389 case SHT_MIPS_UCODE
:
3390 if (strcmp (name
, ".ucode") != 0)
3393 case SHT_MIPS_DEBUG
:
3394 if (strcmp (name
, ".mdebug") != 0)
3396 flags
= SEC_DEBUGGING
;
3398 case SHT_MIPS_REGINFO
:
3399 if (strcmp (name
, ".reginfo") != 0
3400 || hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
3402 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
3404 case SHT_MIPS_IFACE
:
3405 if (strcmp (name
, ".MIPS.interfaces") != 0)
3408 case SHT_MIPS_CONTENT
:
3409 if (strncmp (name
, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
3412 case SHT_MIPS_OPTIONS
:
3413 if (strcmp (name
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)) != 0)
3416 case SHT_MIPS_DWARF
:
3417 if (strncmp (name
, ".debug_", sizeof ".debug_" - 1) != 0)
3420 case SHT_MIPS_SYMBOL_LIB
:
3421 if (strcmp (name
, ".MIPS.symlib") != 0)
3424 case SHT_MIPS_EVENTS
:
3425 if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
3426 && strncmp (name
, ".MIPS.post_rel",
3427 sizeof ".MIPS.post_rel" - 1) != 0)
3434 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
3439 if (! bfd_set_section_flags (abfd
, hdr
->bfd_section
,
3440 (bfd_get_section_flags (abfd
,
3446 /* FIXME: We should record sh_info for a .gptab section. */
3448 /* For a .reginfo section, set the gp value in the tdata information
3449 from the contents of this section. We need the gp value while
3450 processing relocs, so we just get it now. The .reginfo section
3451 is not used in the 64-bit MIPS ELF ABI. */
3452 if (hdr
->sh_type
== SHT_MIPS_REGINFO
)
3454 Elf32_External_RegInfo ext
;
3457 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, (PTR
) &ext
,
3459 (bfd_size_type
) sizeof ext
))
3461 bfd_mips_elf32_swap_reginfo_in (abfd
, &ext
, &s
);
3462 elf_gp (abfd
) = s
.ri_gp_value
;
3465 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
3466 set the gp value based on what we find. We may see both
3467 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
3468 they should agree. */
3469 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
)
3471 bfd_byte
*contents
, *l
, *lend
;
3473 contents
= (bfd_byte
*) bfd_malloc (hdr
->sh_size
);
3474 if (contents
== NULL
)
3476 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, contents
,
3477 (file_ptr
) 0, hdr
->sh_size
))
3483 lend
= contents
+ hdr
->sh_size
;
3484 while (l
+ sizeof (Elf_External_Options
) <= lend
)
3486 Elf_Internal_Options intopt
;
3488 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
3490 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
3492 Elf64_Internal_RegInfo intreg
;
3494 bfd_mips_elf64_swap_reginfo_in
3496 ((Elf64_External_RegInfo
*)
3497 (l
+ sizeof (Elf_External_Options
))),
3499 elf_gp (abfd
) = intreg
.ri_gp_value
;
3501 else if (intopt
.kind
== ODK_REGINFO
)
3503 Elf32_RegInfo intreg
;
3505 bfd_mips_elf32_swap_reginfo_in
3507 ((Elf32_External_RegInfo
*)
3508 (l
+ sizeof (Elf_External_Options
))),
3510 elf_gp (abfd
) = intreg
.ri_gp_value
;
3520 /* Set the correct type for a MIPS ELF section. We do this by the
3521 section name, which is a hack, but ought to work. This routine is
3522 used by both the 32-bit and the 64-bit ABI. */
3525 _bfd_mips_elf_fake_sections (abfd
, hdr
, sec
)
3527 Elf32_Internal_Shdr
*hdr
;
3530 register const char *name
;
3532 name
= bfd_get_section_name (abfd
, sec
);
3534 if (strcmp (name
, ".liblist") == 0)
3536 hdr
->sh_type
= SHT_MIPS_LIBLIST
;
3537 hdr
->sh_info
= sec
->_raw_size
/ sizeof (Elf32_Lib
);
3538 /* The sh_link field is set in final_write_processing. */
3540 else if (strcmp (name
, ".conflict") == 0)
3541 hdr
->sh_type
= SHT_MIPS_CONFLICT
;
3542 else if (strncmp (name
, ".gptab.", sizeof ".gptab." - 1) == 0)
3544 hdr
->sh_type
= SHT_MIPS_GPTAB
;
3545 hdr
->sh_entsize
= sizeof (Elf32_External_gptab
);
3546 /* The sh_info field is set in final_write_processing. */
3548 else if (strcmp (name
, ".ucode") == 0)
3549 hdr
->sh_type
= SHT_MIPS_UCODE
;
3550 else if (strcmp (name
, ".mdebug") == 0)
3552 hdr
->sh_type
= SHT_MIPS_DEBUG
;
3553 /* In a shared object on IRIX 5.3, the .mdebug section has an
3554 entsize of 0. FIXME: Does this matter? */
3555 if (SGI_COMPAT (abfd
) && (abfd
->flags
& DYNAMIC
) != 0)
3556 hdr
->sh_entsize
= 0;
3558 hdr
->sh_entsize
= 1;
3560 else if (strcmp (name
, ".reginfo") == 0)
3562 hdr
->sh_type
= SHT_MIPS_REGINFO
;
3563 /* In a shared object on IRIX 5.3, the .reginfo section has an
3564 entsize of 0x18. FIXME: Does this matter? */
3565 if (SGI_COMPAT (abfd
))
3567 if ((abfd
->flags
& DYNAMIC
) != 0)
3568 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
3570 hdr
->sh_entsize
= 1;
3573 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
3575 else if (SGI_COMPAT (abfd
)
3576 && (strcmp (name
, ".hash") == 0
3577 || strcmp (name
, ".dynamic") == 0
3578 || strcmp (name
, ".dynstr") == 0))
3580 if (SGI_COMPAT (abfd
))
3581 hdr
->sh_entsize
= 0;
3583 /* This isn't how the IRIX6 linker behaves. */
3584 hdr
->sh_info
= SIZEOF_MIPS_DYNSYM_SECNAMES
;
3587 else if (strcmp (name
, ".got") == 0
3588 || strcmp (name
, ".srdata") == 0
3589 || strcmp (name
, ".sdata") == 0
3590 || strcmp (name
, ".sbss") == 0
3591 || strcmp (name
, ".lit4") == 0
3592 || strcmp (name
, ".lit8") == 0)
3593 hdr
->sh_flags
|= SHF_MIPS_GPREL
;
3594 else if (strcmp (name
, ".MIPS.interfaces") == 0)
3596 hdr
->sh_type
= SHT_MIPS_IFACE
;
3597 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
3599 else if (strncmp (name
, ".MIPS.content", strlen (".MIPS.content")) == 0)
3601 hdr
->sh_type
= SHT_MIPS_CONTENT
;
3602 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
3603 /* The sh_info field is set in final_write_processing. */
3605 else if (strcmp (name
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)) == 0)
3607 hdr
->sh_type
= SHT_MIPS_OPTIONS
;
3608 hdr
->sh_entsize
= 1;
3609 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
3611 else if (strncmp (name
, ".debug_", sizeof ".debug_" - 1) == 0)
3612 hdr
->sh_type
= SHT_MIPS_DWARF
;
3613 else if (strcmp (name
, ".MIPS.symlib") == 0)
3615 hdr
->sh_type
= SHT_MIPS_SYMBOL_LIB
;
3616 /* The sh_link and sh_info fields are set in
3617 final_write_processing. */
3619 else if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
3620 || strncmp (name
, ".MIPS.post_rel",
3621 sizeof ".MIPS.post_rel" - 1) == 0)
3623 hdr
->sh_type
= SHT_MIPS_EVENTS
;
3624 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
3625 /* The sh_link field is set in final_write_processing. */
3627 else if (strcmp (name
, ".msym") == 0)
3629 hdr
->sh_type
= SHT_MIPS_MSYM
;
3630 hdr
->sh_flags
|= SHF_ALLOC
;
3631 hdr
->sh_entsize
= 8;
3634 /* The generic elf_fake_sections will set up REL_HDR using the
3635 default kind of relocations. But, we may actually need both
3636 kinds of relocations, so we set up the second header here.
3638 This is not necessary for the O32 ABI since that only uses Elf32_Rel
3639 relocations (cf. System V ABI, MIPS RISC Processor Supplement,
3640 3rd Edition, p. 4-17). It breaks the IRIX 5/6 32-bit ld, since one
3641 of the resulting empty .rela.<section> sections starts with
3642 sh_offset == object size, and ld doesn't allow that. While the check
3643 is arguably bogus for empty or SHT_NOBITS sections, it can easily be
3644 avoided by not emitting those useless sections in the first place. */
3645 if (IRIX_COMPAT (abfd
) != ict_irix5
&& (sec
->flags
& SEC_RELOC
) != 0)
3647 struct bfd_elf_section_data
*esd
;
3648 bfd_size_type amt
= sizeof (Elf_Internal_Shdr
);
3650 esd
= elf_section_data (sec
);
3651 BFD_ASSERT (esd
->rel_hdr2
== NULL
);
3652 esd
->rel_hdr2
= (Elf_Internal_Shdr
*) bfd_zalloc (abfd
, amt
);
3655 _bfd_elf_init_reloc_shdr (abfd
, esd
->rel_hdr2
, sec
,
3656 !elf_section_data (sec
)->use_rela_p
);
3662 /* Given a BFD section, try to locate the corresponding ELF section
3663 index. This is used by both the 32-bit and the 64-bit ABI.
3664 Actually, it's not clear to me that the 64-bit ABI supports these,
3665 but for non-PIC objects we will certainly want support for at least
3666 the .scommon section. */
3669 _bfd_mips_elf_section_from_bfd_section (abfd
, sec
, retval
)
3670 bfd
*abfd ATTRIBUTE_UNUSED
;
3674 if (strcmp (bfd_get_section_name (abfd
, sec
), ".scommon") == 0)
3676 *retval
= SHN_MIPS_SCOMMON
;
3679 if (strcmp (bfd_get_section_name (abfd
, sec
), ".acommon") == 0)
3681 *retval
= SHN_MIPS_ACOMMON
;
3687 /* Hook called by the linker routine which adds symbols from an object
3688 file. We must handle the special MIPS section numbers here. */
3691 _bfd_mips_elf_add_symbol_hook (abfd
, info
, sym
, namep
, flagsp
, secp
, valp
)
3693 struct bfd_link_info
*info
;
3694 const Elf_Internal_Sym
*sym
;
3696 flagword
*flagsp ATTRIBUTE_UNUSED
;
3700 if (SGI_COMPAT (abfd
)
3701 && (abfd
->flags
& DYNAMIC
) != 0
3702 && strcmp (*namep
, "_rld_new_interface") == 0)
3704 /* Skip IRIX5 rld entry name. */
3709 switch (sym
->st_shndx
)
3712 /* Common symbols less than the GP size are automatically
3713 treated as SHN_MIPS_SCOMMON symbols. */
3714 if (sym
->st_size
> elf_gp_size (abfd
)
3715 || IRIX_COMPAT (abfd
) == ict_irix6
)
3718 case SHN_MIPS_SCOMMON
:
3719 *secp
= bfd_make_section_old_way (abfd
, ".scommon");
3720 (*secp
)->flags
|= SEC_IS_COMMON
;
3721 *valp
= sym
->st_size
;
3725 /* This section is used in a shared object. */
3726 if (elf_tdata (abfd
)->elf_text_section
== NULL
)
3728 asymbol
*elf_text_symbol
;
3729 asection
*elf_text_section
;
3730 bfd_size_type amt
= sizeof (asection
);
3732 elf_text_section
= bfd_zalloc (abfd
, amt
);
3733 if (elf_text_section
== NULL
)
3736 amt
= sizeof (asymbol
);
3737 elf_text_symbol
= bfd_zalloc (abfd
, amt
);
3738 if (elf_text_symbol
== NULL
)
3741 /* Initialize the section. */
3743 elf_tdata (abfd
)->elf_text_section
= elf_text_section
;
3744 elf_tdata (abfd
)->elf_text_symbol
= elf_text_symbol
;
3746 elf_text_section
->symbol
= elf_text_symbol
;
3747 elf_text_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_text_symbol
;
3749 elf_text_section
->name
= ".text";
3750 elf_text_section
->flags
= SEC_NO_FLAGS
;
3751 elf_text_section
->output_section
= NULL
;
3752 elf_text_section
->owner
= abfd
;
3753 elf_text_symbol
->name
= ".text";
3754 elf_text_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
3755 elf_text_symbol
->section
= elf_text_section
;
3757 /* This code used to do *secp = bfd_und_section_ptr if
3758 info->shared. I don't know why, and that doesn't make sense,
3759 so I took it out. */
3760 *secp
= elf_tdata (abfd
)->elf_text_section
;
3763 case SHN_MIPS_ACOMMON
:
3764 /* Fall through. XXX Can we treat this as allocated data? */
3766 /* This section is used in a shared object. */
3767 if (elf_tdata (abfd
)->elf_data_section
== NULL
)
3769 asymbol
*elf_data_symbol
;
3770 asection
*elf_data_section
;
3771 bfd_size_type amt
= sizeof (asection
);
3773 elf_data_section
= bfd_zalloc (abfd
, amt
);
3774 if (elf_data_section
== NULL
)
3777 amt
= sizeof (asymbol
);
3778 elf_data_symbol
= bfd_zalloc (abfd
, amt
);
3779 if (elf_data_symbol
== NULL
)
3782 /* Initialize the section. */
3784 elf_tdata (abfd
)->elf_data_section
= elf_data_section
;
3785 elf_tdata (abfd
)->elf_data_symbol
= elf_data_symbol
;
3787 elf_data_section
->symbol
= elf_data_symbol
;
3788 elf_data_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_data_symbol
;
3790 elf_data_section
->name
= ".data";
3791 elf_data_section
->flags
= SEC_NO_FLAGS
;
3792 elf_data_section
->output_section
= NULL
;
3793 elf_data_section
->owner
= abfd
;
3794 elf_data_symbol
->name
= ".data";
3795 elf_data_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
3796 elf_data_symbol
->section
= elf_data_section
;
3798 /* This code used to do *secp = bfd_und_section_ptr if
3799 info->shared. I don't know why, and that doesn't make sense,
3800 so I took it out. */
3801 *secp
= elf_tdata (abfd
)->elf_data_section
;
3804 case SHN_MIPS_SUNDEFINED
:
3805 *secp
= bfd_und_section_ptr
;
3809 if (SGI_COMPAT (abfd
)
3811 && info
->hash
->creator
== abfd
->xvec
3812 && strcmp (*namep
, "__rld_obj_head") == 0)
3814 struct elf_link_hash_entry
*h
;
3816 /* Mark __rld_obj_head as dynamic. */
3818 if (! (_bfd_generic_link_add_one_symbol
3819 (info
, abfd
, *namep
, BSF_GLOBAL
, *secp
,
3820 (bfd_vma
) *valp
, (const char *) NULL
, false,
3821 get_elf_backend_data (abfd
)->collect
,
3822 (struct bfd_link_hash_entry
**) &h
)))
3824 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
3825 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3826 h
->type
= STT_OBJECT
;
3828 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
3831 mips_elf_hash_table (info
)->use_rld_obj_head
= true;
3834 /* If this is a mips16 text symbol, add 1 to the value to make it
3835 odd. This will cause something like .word SYM to come up with
3836 the right value when it is loaded into the PC. */
3837 if (sym
->st_other
== STO_MIPS16
)
3843 /* This hook function is called before the linker writes out a global
3844 symbol. We mark symbols as small common if appropriate. This is
3845 also where we undo the increment of the value for a mips16 symbol. */
3848 _bfd_mips_elf_link_output_symbol_hook (abfd
, info
, name
, sym
, input_sec
)
3849 bfd
*abfd ATTRIBUTE_UNUSED
;
3850 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
3851 const char *name ATTRIBUTE_UNUSED
;
3852 Elf_Internal_Sym
*sym
;
3853 asection
*input_sec
;
3855 /* If we see a common symbol, which implies a relocatable link, then
3856 if a symbol was small common in an input file, mark it as small
3857 common in the output file. */
3858 if (sym
->st_shndx
== SHN_COMMON
3859 && strcmp (input_sec
->name
, ".scommon") == 0)
3860 sym
->st_shndx
= SHN_MIPS_SCOMMON
;
3862 if (sym
->st_other
== STO_MIPS16
3863 && (sym
->st_value
& 1) != 0)
3869 /* Functions for the dynamic linker. */
3871 /* Create dynamic sections when linking against a dynamic object. */
3874 _bfd_mips_elf_create_dynamic_sections (abfd
, info
)
3876 struct bfd_link_info
*info
;
3878 struct elf_link_hash_entry
*h
;
3880 register asection
*s
;
3881 const char * const *namep
;
3883 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
3884 | SEC_LINKER_CREATED
| SEC_READONLY
);
3886 /* Mips ABI requests the .dynamic section to be read only. */
3887 s
= bfd_get_section_by_name (abfd
, ".dynamic");
3890 if (! bfd_set_section_flags (abfd
, s
, flags
))
3894 /* We need to create .got section. */
3895 if (! mips_elf_create_got_section (abfd
, info
))
3898 /* Create the .msym section on IRIX6. It is used by the dynamic
3899 linker to speed up dynamic relocations, and to avoid computing
3900 the ELF hash for symbols. */
3901 if (IRIX_COMPAT (abfd
) == ict_irix6
3902 && !mips_elf_create_msym_section (abfd
))
3905 /* Create .stub section. */
3906 if (bfd_get_section_by_name (abfd
,
3907 MIPS_ELF_STUB_SECTION_NAME (abfd
)) == NULL
)
3909 s
= bfd_make_section (abfd
, MIPS_ELF_STUB_SECTION_NAME (abfd
));
3911 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_CODE
)
3912 || ! bfd_set_section_alignment (abfd
, s
,
3913 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
3917 if ((IRIX_COMPAT (abfd
) == ict_irix5
|| IRIX_COMPAT (abfd
) == ict_none
)
3919 && bfd_get_section_by_name (abfd
, ".rld_map") == NULL
)
3921 s
= bfd_make_section (abfd
, ".rld_map");
3923 || ! bfd_set_section_flags (abfd
, s
, flags
&~ (flagword
) SEC_READONLY
)
3924 || ! bfd_set_section_alignment (abfd
, s
,
3925 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
3929 /* On IRIX5, we adjust add some additional symbols and change the
3930 alignments of several sections. There is no ABI documentation
3931 indicating that this is necessary on IRIX6, nor any evidence that
3932 the linker takes such action. */
3933 if (IRIX_COMPAT (abfd
) == ict_irix5
)
3935 for (namep
= mips_elf_dynsym_rtproc_names
; *namep
!= NULL
; namep
++)
3938 if (! (_bfd_generic_link_add_one_symbol
3939 (info
, abfd
, *namep
, BSF_GLOBAL
, bfd_und_section_ptr
,
3940 (bfd_vma
) 0, (const char *) NULL
, false,
3941 get_elf_backend_data (abfd
)->collect
,
3942 (struct bfd_link_hash_entry
**) &h
)))
3944 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
3945 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3946 h
->type
= STT_SECTION
;
3948 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
3952 /* We need to create a .compact_rel section. */
3953 if (SGI_COMPAT (abfd
))
3955 if (!mips_elf_create_compact_rel_section (abfd
, info
))
3959 /* Change aligments of some sections. */
3960 s
= bfd_get_section_by_name (abfd
, ".hash");
3962 bfd_set_section_alignment (abfd
, s
, 4);
3963 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3965 bfd_set_section_alignment (abfd
, s
, 4);
3966 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3968 bfd_set_section_alignment (abfd
, s
, 4);
3969 s
= bfd_get_section_by_name (abfd
, ".reginfo");
3971 bfd_set_section_alignment (abfd
, s
, 4);
3972 s
= bfd_get_section_by_name (abfd
, ".dynamic");
3974 bfd_set_section_alignment (abfd
, s
, 4);
3980 if (SGI_COMPAT (abfd
))
3982 if (!(_bfd_generic_link_add_one_symbol
3983 (info
, abfd
, "_DYNAMIC_LINK", BSF_GLOBAL
, bfd_abs_section_ptr
,
3984 (bfd_vma
) 0, (const char *) NULL
, false,
3985 get_elf_backend_data (abfd
)->collect
,
3986 (struct bfd_link_hash_entry
**) &h
)))
3991 /* For normal mips it is _DYNAMIC_LINKING. */
3992 if (!(_bfd_generic_link_add_one_symbol
3993 (info
, abfd
, "_DYNAMIC_LINKING", BSF_GLOBAL
,
3994 bfd_abs_section_ptr
, (bfd_vma
) 0, (const char *) NULL
, false,
3995 get_elf_backend_data (abfd
)->collect
,
3996 (struct bfd_link_hash_entry
**) &h
)))
3999 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
4000 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
4001 h
->type
= STT_SECTION
;
4003 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
4006 if (! mips_elf_hash_table (info
)->use_rld_obj_head
)
4008 /* __rld_map is a four byte word located in the .data section
4009 and is filled in by the rtld to contain a pointer to
4010 the _r_debug structure. Its symbol value will be set in
4011 _bfd_mips_elf_finish_dynamic_symbol. */
4012 s
= bfd_get_section_by_name (abfd
, ".rld_map");
4013 BFD_ASSERT (s
!= NULL
);
4016 if (SGI_COMPAT (abfd
))
4018 if (!(_bfd_generic_link_add_one_symbol
4019 (info
, abfd
, "__rld_map", BSF_GLOBAL
, s
,
4020 (bfd_vma
) 0, (const char *) NULL
, false,
4021 get_elf_backend_data (abfd
)->collect
,
4022 (struct bfd_link_hash_entry
**) &h
)))
4027 /* For normal mips the symbol is __RLD_MAP. */
4028 if (!(_bfd_generic_link_add_one_symbol
4029 (info
, abfd
, "__RLD_MAP", BSF_GLOBAL
, s
,
4030 (bfd_vma
) 0, (const char *) NULL
, false,
4031 get_elf_backend_data (abfd
)->collect
,
4032 (struct bfd_link_hash_entry
**) &h
)))
4035 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
4036 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
4037 h
->type
= STT_OBJECT
;
4039 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
4047 /* Look through the relocs for a section during the first phase, and
4048 allocate space in the global offset table. */
4051 _bfd_mips_elf_check_relocs (abfd
, info
, sec
, relocs
)
4053 struct bfd_link_info
*info
;
4055 const Elf_Internal_Rela
*relocs
;
4059 Elf_Internal_Shdr
*symtab_hdr
;
4060 struct elf_link_hash_entry
**sym_hashes
;
4061 struct mips_got_info
*g
;
4063 const Elf_Internal_Rela
*rel
;
4064 const Elf_Internal_Rela
*rel_end
;
4067 struct elf_backend_data
*bed
;
4069 if (info
->relocateable
)
4072 dynobj
= elf_hash_table (info
)->dynobj
;
4073 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
4074 sym_hashes
= elf_sym_hashes (abfd
);
4075 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
4077 /* Check for the mips16 stub sections. */
4079 name
= bfd_get_section_name (abfd
, sec
);
4080 if (strncmp (name
, FN_STUB
, sizeof FN_STUB
- 1) == 0)
4082 unsigned long r_symndx
;
4084 /* Look at the relocation information to figure out which symbol
4087 r_symndx
= ELF_R_SYM (abfd
, relocs
->r_info
);
4089 if (r_symndx
< extsymoff
4090 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
4094 /* This stub is for a local symbol. This stub will only be
4095 needed if there is some relocation in this BFD, other
4096 than a 16 bit function call, which refers to this symbol. */
4097 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4099 Elf_Internal_Rela
*sec_relocs
;
4100 const Elf_Internal_Rela
*r
, *rend
;
4102 /* We can ignore stub sections when looking for relocs. */
4103 if ((o
->flags
& SEC_RELOC
) == 0
4104 || o
->reloc_count
== 0
4105 || strncmp (bfd_get_section_name (abfd
, o
), FN_STUB
,
4106 sizeof FN_STUB
- 1) == 0
4107 || strncmp (bfd_get_section_name (abfd
, o
), CALL_STUB
,
4108 sizeof CALL_STUB
- 1) == 0
4109 || strncmp (bfd_get_section_name (abfd
, o
), CALL_FP_STUB
,
4110 sizeof CALL_FP_STUB
- 1) == 0)
4113 sec_relocs
= (_bfd_elf32_link_read_relocs
4114 (abfd
, o
, (PTR
) NULL
,
4115 (Elf_Internal_Rela
*) NULL
,
4116 info
->keep_memory
));
4117 if (sec_relocs
== NULL
)
4120 rend
= sec_relocs
+ o
->reloc_count
;
4121 for (r
= sec_relocs
; r
< rend
; r
++)
4122 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
4123 && ELF_R_TYPE (abfd
, r
->r_info
) != R_MIPS16_26
)
4126 if (! info
->keep_memory
)
4135 /* There is no non-call reloc for this stub, so we do
4136 not need it. Since this function is called before
4137 the linker maps input sections to output sections, we
4138 can easily discard it by setting the SEC_EXCLUDE
4140 sec
->flags
|= SEC_EXCLUDE
;
4144 /* Record this stub in an array of local symbol stubs for
4146 if (elf_tdata (abfd
)->local_stubs
== NULL
)
4148 unsigned long symcount
;
4152 if (elf_bad_symtab (abfd
))
4153 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
4155 symcount
= symtab_hdr
->sh_info
;
4156 amt
= symcount
* sizeof (asection
*);
4157 n
= (asection
**) bfd_zalloc (abfd
, amt
);
4160 elf_tdata (abfd
)->local_stubs
= n
;
4163 elf_tdata (abfd
)->local_stubs
[r_symndx
] = sec
;
4165 /* We don't need to set mips16_stubs_seen in this case.
4166 That flag is used to see whether we need to look through
4167 the global symbol table for stubs. We don't need to set
4168 it here, because we just have a local stub. */
4172 struct mips_elf_link_hash_entry
*h
;
4174 h
= ((struct mips_elf_link_hash_entry
*)
4175 sym_hashes
[r_symndx
- extsymoff
]);
4177 /* H is the symbol this stub is for. */
4180 mips_elf_hash_table (info
)->mips16_stubs_seen
= true;
4183 else if (strncmp (name
, CALL_STUB
, sizeof CALL_STUB
- 1) == 0
4184 || strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
4186 unsigned long r_symndx
;
4187 struct mips_elf_link_hash_entry
*h
;
4190 /* Look at the relocation information to figure out which symbol
4193 r_symndx
= ELF_R_SYM (abfd
, relocs
->r_info
);
4195 if (r_symndx
< extsymoff
4196 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
4198 /* This stub was actually built for a static symbol defined
4199 in the same file. We assume that all static symbols in
4200 mips16 code are themselves mips16, so we can simply
4201 discard this stub. Since this function is called before
4202 the linker maps input sections to output sections, we can
4203 easily discard it by setting the SEC_EXCLUDE flag. */
4204 sec
->flags
|= SEC_EXCLUDE
;
4208 h
= ((struct mips_elf_link_hash_entry
*)
4209 sym_hashes
[r_symndx
- extsymoff
]);
4211 /* H is the symbol this stub is for. */
4213 if (strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
4214 loc
= &h
->call_fp_stub
;
4216 loc
= &h
->call_stub
;
4218 /* If we already have an appropriate stub for this function, we
4219 don't need another one, so we can discard this one. Since
4220 this function is called before the linker maps input sections
4221 to output sections, we can easily discard it by setting the
4222 SEC_EXCLUDE flag. We can also discard this section if we
4223 happen to already know that this is a mips16 function; it is
4224 not necessary to check this here, as it is checked later, but
4225 it is slightly faster to check now. */
4226 if (*loc
!= NULL
|| h
->root
.other
== STO_MIPS16
)
4228 sec
->flags
|= SEC_EXCLUDE
;
4233 mips_elf_hash_table (info
)->mips16_stubs_seen
= true;
4243 sgot
= mips_elf_got_section (dynobj
);
4248 BFD_ASSERT (elf_section_data (sgot
) != NULL
);
4249 g
= (struct mips_got_info
*) elf_section_data (sgot
)->tdata
;
4250 BFD_ASSERT (g
!= NULL
);
4255 bed
= get_elf_backend_data (abfd
);
4256 rel_end
= relocs
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
4257 for (rel
= relocs
; rel
< rel_end
; ++rel
)
4259 unsigned long r_symndx
;
4260 unsigned int r_type
;
4261 struct elf_link_hash_entry
*h
;
4263 r_symndx
= ELF_R_SYM (abfd
, rel
->r_info
);
4264 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
4266 if (r_symndx
< extsymoff
)
4268 else if (r_symndx
>= extsymoff
+ NUM_SHDR_ENTRIES (symtab_hdr
))
4270 (*_bfd_error_handler
)
4271 (_("%s: Malformed reloc detected for section %s"),
4272 bfd_archive_filename (abfd
), name
);
4273 bfd_set_error (bfd_error_bad_value
);
4278 h
= sym_hashes
[r_symndx
- extsymoff
];
4280 /* This may be an indirect symbol created because of a version. */
4283 while (h
->root
.type
== bfd_link_hash_indirect
)
4284 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4288 /* Some relocs require a global offset table. */
4289 if (dynobj
== NULL
|| sgot
== NULL
)
4295 case R_MIPS_CALL_HI16
:
4296 case R_MIPS_CALL_LO16
:
4297 case R_MIPS_GOT_HI16
:
4298 case R_MIPS_GOT_LO16
:
4299 case R_MIPS_GOT_PAGE
:
4300 case R_MIPS_GOT_OFST
:
4301 case R_MIPS_GOT_DISP
:
4303 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
4304 if (! mips_elf_create_got_section (dynobj
, info
))
4306 g
= mips_elf_got_info (dynobj
, &sgot
);
4313 && (info
->shared
|| h
!= NULL
)
4314 && (sec
->flags
& SEC_ALLOC
) != 0)
4315 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
4323 if (!h
&& (r_type
== R_MIPS_CALL_LO16
4324 || r_type
== R_MIPS_GOT_LO16
4325 || r_type
== R_MIPS_GOT_DISP
))
4327 /* We may need a local GOT entry for this relocation. We
4328 don't count R_MIPS_GOT_PAGE because we can estimate the
4329 maximum number of pages needed by looking at the size of
4330 the segment. Similar comments apply to R_MIPS_GOT16 and
4331 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
4332 R_MIPS_CALL_HI16 because these are always followed by an
4333 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
4335 This estimation is very conservative since we can merge
4336 duplicate entries in the GOT. In order to be less
4337 conservative, we could actually build the GOT here,
4338 rather than in relocate_section. */
4340 sgot
->_raw_size
+= MIPS_ELF_GOT_SIZE (dynobj
);
4348 (*_bfd_error_handler
)
4349 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
4350 bfd_archive_filename (abfd
), (unsigned long) rel
->r_offset
);
4351 bfd_set_error (bfd_error_bad_value
);
4356 case R_MIPS_CALL_HI16
:
4357 case R_MIPS_CALL_LO16
:
4360 /* This symbol requires a global offset table entry. */
4361 if (! mips_elf_record_global_got_symbol (h
, info
, g
))
4364 /* We need a stub, not a plt entry for the undefined
4365 function. But we record it as if it needs plt. See
4366 elf_adjust_dynamic_symbol in elflink.h. */
4367 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
4373 case R_MIPS_GOT_HI16
:
4374 case R_MIPS_GOT_LO16
:
4375 case R_MIPS_GOT_DISP
:
4376 /* This symbol requires a global offset table entry. */
4377 if (h
&& ! mips_elf_record_global_got_symbol (h
, info
, g
))
4384 if ((info
->shared
|| h
!= NULL
)
4385 && (sec
->flags
& SEC_ALLOC
) != 0)
4389 const char *dname
= ".rel.dyn";
4391 sreloc
= bfd_get_section_by_name (dynobj
, dname
);
4394 sreloc
= bfd_make_section (dynobj
, dname
);
4396 || ! bfd_set_section_flags (dynobj
, sreloc
,
4401 | SEC_LINKER_CREATED
4403 || ! bfd_set_section_alignment (dynobj
, sreloc
,
4408 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
4411 /* When creating a shared object, we must copy these
4412 reloc types into the output file as R_MIPS_REL32
4413 relocs. We make room for this reloc in the
4414 .rel.dyn reloc section. */
4415 mips_elf_allocate_dynamic_relocations (dynobj
, 1);
4416 if ((sec
->flags
& MIPS_READONLY_SECTION
)
4417 == MIPS_READONLY_SECTION
)
4418 /* We tell the dynamic linker that there are
4419 relocations against the text segment. */
4420 info
->flags
|= DF_TEXTREL
;
4424 struct mips_elf_link_hash_entry
*hmips
;
4426 /* We only need to copy this reloc if the symbol is
4427 defined in a dynamic object. */
4428 hmips
= (struct mips_elf_link_hash_entry
*) h
;
4429 ++hmips
->possibly_dynamic_relocs
;
4430 if ((sec
->flags
& MIPS_READONLY_SECTION
)
4431 == MIPS_READONLY_SECTION
)
4432 /* We need it to tell the dynamic linker if there
4433 are relocations against the text segment. */
4434 hmips
->readonly_reloc
= true;
4437 /* Even though we don't directly need a GOT entry for
4438 this symbol, a symbol must have a dynamic symbol
4439 table index greater that DT_MIPS_GOTSYM if there are
4440 dynamic relocations against it. */
4442 && ! mips_elf_record_global_got_symbol (h
, info
, g
))
4446 if (SGI_COMPAT (abfd
))
4447 mips_elf_hash_table (info
)->compact_rel_size
+=
4448 sizeof (Elf32_External_crinfo
);
4452 case R_MIPS_GPREL16
:
4453 case R_MIPS_LITERAL
:
4454 case R_MIPS_GPREL32
:
4455 if (SGI_COMPAT (abfd
))
4456 mips_elf_hash_table (info
)->compact_rel_size
+=
4457 sizeof (Elf32_External_crinfo
);
4460 /* This relocation describes the C++ object vtable hierarchy.
4461 Reconstruct it for later use during GC. */
4462 case R_MIPS_GNU_VTINHERIT
:
4463 if (!_bfd_elf32_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
4467 /* This relocation describes which C++ vtable entries are actually
4468 used. Record for later use during GC. */
4469 case R_MIPS_GNU_VTENTRY
:
4470 if (!_bfd_elf32_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
4478 /* We must not create a stub for a symbol that has relocations
4479 related to taking the function's address. */
4485 struct mips_elf_link_hash_entry
*mh
;
4487 mh
= (struct mips_elf_link_hash_entry
*) h
;
4488 mh
->no_fn_stub
= true;
4492 case R_MIPS_CALL_HI16
:
4493 case R_MIPS_CALL_LO16
:
4497 /* If this reloc is not a 16 bit call, and it has a global
4498 symbol, then we will need the fn_stub if there is one.
4499 References from a stub section do not count. */
4501 && r_type
!= R_MIPS16_26
4502 && strncmp (bfd_get_section_name (abfd
, sec
), FN_STUB
,
4503 sizeof FN_STUB
- 1) != 0
4504 && strncmp (bfd_get_section_name (abfd
, sec
), CALL_STUB
,
4505 sizeof CALL_STUB
- 1) != 0
4506 && strncmp (bfd_get_section_name (abfd
, sec
), CALL_FP_STUB
,
4507 sizeof CALL_FP_STUB
- 1) != 0)
4509 struct mips_elf_link_hash_entry
*mh
;
4511 mh
= (struct mips_elf_link_hash_entry
*) h
;
4512 mh
->need_fn_stub
= true;
4519 /* Adjust a symbol defined by a dynamic object and referenced by a
4520 regular object. The current definition is in some section of the
4521 dynamic object, but we're not including those sections. We have to
4522 change the definition to something the rest of the link can
4526 _bfd_mips_elf_adjust_dynamic_symbol (info
, h
)
4527 struct bfd_link_info
*info
;
4528 struct elf_link_hash_entry
*h
;
4531 struct mips_elf_link_hash_entry
*hmips
;
4534 dynobj
= elf_hash_table (info
)->dynobj
;
4536 /* Make sure we know what is going on here. */
4537 BFD_ASSERT (dynobj
!= NULL
4538 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
)
4539 || h
->weakdef
!= NULL
4540 || ((h
->elf_link_hash_flags
4541 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0
4542 && (h
->elf_link_hash_flags
4543 & ELF_LINK_HASH_REF_REGULAR
) != 0
4544 && (h
->elf_link_hash_flags
4545 & ELF_LINK_HASH_DEF_REGULAR
) == 0)));
4547 /* If this symbol is defined in a dynamic object, we need to copy
4548 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
4550 hmips
= (struct mips_elf_link_hash_entry
*) h
;
4551 if (! info
->relocateable
4552 && hmips
->possibly_dynamic_relocs
!= 0
4553 && (h
->root
.type
== bfd_link_hash_defweak
4554 || (h
->elf_link_hash_flags
4555 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
4557 mips_elf_allocate_dynamic_relocations (dynobj
,
4558 hmips
->possibly_dynamic_relocs
);
4559 if (hmips
->readonly_reloc
)
4560 /* We tell the dynamic linker that there are relocations
4561 against the text segment. */
4562 info
->flags
|= DF_TEXTREL
;
4565 /* For a function, create a stub, if allowed. */
4566 if (! hmips
->no_fn_stub
4567 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0)
4569 if (! elf_hash_table (info
)->dynamic_sections_created
)
4572 /* If this symbol is not defined in a regular file, then set
4573 the symbol to the stub location. This is required to make
4574 function pointers compare as equal between the normal
4575 executable and the shared library. */
4576 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
4578 /* We need .stub section. */
4579 s
= bfd_get_section_by_name (dynobj
,
4580 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
4581 BFD_ASSERT (s
!= NULL
);
4583 h
->root
.u
.def
.section
= s
;
4584 h
->root
.u
.def
.value
= s
->_raw_size
;
4586 /* XXX Write this stub address somewhere. */
4587 h
->plt
.offset
= s
->_raw_size
;
4589 /* Make room for this stub code. */
4590 s
->_raw_size
+= MIPS_FUNCTION_STUB_SIZE
;
4592 /* The last half word of the stub will be filled with the index
4593 of this symbol in .dynsym section. */
4597 else if ((h
->type
== STT_FUNC
)
4598 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) == 0)
4600 /* This will set the entry for this symbol in the GOT to 0, and
4601 the dynamic linker will take care of this. */
4602 h
->root
.u
.def
.value
= 0;
4606 /* If this is a weak symbol, and there is a real definition, the
4607 processor independent code will have arranged for us to see the
4608 real definition first, and we can just use the same value. */
4609 if (h
->weakdef
!= NULL
)
4611 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
4612 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
4613 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
4614 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
4618 /* This is a reference to a symbol defined by a dynamic object which
4619 is not a function. */
4624 /* This function is called after all the input files have been read,
4625 and the input sections have been assigned to output sections. We
4626 check for any mips16 stub sections that we can discard. */
4629 _bfd_mips_elf_always_size_sections (output_bfd
, info
)
4631 struct bfd_link_info
*info
;
4635 /* The .reginfo section has a fixed size. */
4636 ri
= bfd_get_section_by_name (output_bfd
, ".reginfo");
4638 bfd_set_section_size (output_bfd
, ri
,
4639 (bfd_size_type
) sizeof (Elf32_External_RegInfo
));
4641 if (info
->relocateable
4642 || ! mips_elf_hash_table (info
)->mips16_stubs_seen
)
4645 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
4646 mips_elf_check_mips16_stubs
,
4652 /* Set the sizes of the dynamic sections. */
4655 _bfd_mips_elf_size_dynamic_sections (output_bfd
, info
)
4657 struct bfd_link_info
*info
;
4662 struct mips_got_info
*g
= NULL
;
4664 dynobj
= elf_hash_table (info
)->dynobj
;
4665 BFD_ASSERT (dynobj
!= NULL
);
4667 if (elf_hash_table (info
)->dynamic_sections_created
)
4669 /* Set the contents of the .interp section to the interpreter. */
4672 s
= bfd_get_section_by_name (dynobj
, ".interp");
4673 BFD_ASSERT (s
!= NULL
);
4675 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd
)) + 1;
4677 = (bfd_byte
*) ELF_DYNAMIC_INTERPRETER (output_bfd
);
4681 /* The check_relocs and adjust_dynamic_symbol entry points have
4682 determined the sizes of the various dynamic sections. Allocate
4685 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
4690 /* It's OK to base decisions on the section name, because none
4691 of the dynobj section names depend upon the input files. */
4692 name
= bfd_get_section_name (dynobj
, s
);
4694 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
4699 if (strncmp (name
, ".rel", 4) == 0)
4701 if (s
->_raw_size
== 0)
4703 /* We only strip the section if the output section name
4704 has the same name. Otherwise, there might be several
4705 input sections for this output section. FIXME: This
4706 code is probably not needed these days anyhow, since
4707 the linker now does not create empty output sections. */
4708 if (s
->output_section
!= NULL
4710 bfd_get_section_name (s
->output_section
->owner
,
4711 s
->output_section
)) == 0)
4716 const char *outname
;
4719 /* If this relocation section applies to a read only
4720 section, then we probably need a DT_TEXTREL entry.
4721 If the relocation section is .rel.dyn, we always
4722 assert a DT_TEXTREL entry rather than testing whether
4723 there exists a relocation to a read only section or
4725 outname
= bfd_get_section_name (output_bfd
,
4727 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
4729 && (target
->flags
& SEC_READONLY
) != 0
4730 && (target
->flags
& SEC_ALLOC
) != 0)
4731 || strcmp (outname
, ".rel.dyn") == 0)
4734 /* We use the reloc_count field as a counter if we need
4735 to copy relocs into the output file. */
4736 if (strcmp (name
, ".rel.dyn") != 0)
4740 else if (strncmp (name
, ".got", 4) == 0)
4743 bfd_size_type loadable_size
= 0;
4744 bfd_size_type local_gotno
;
4747 BFD_ASSERT (elf_section_data (s
) != NULL
);
4748 g
= (struct mips_got_info
*) elf_section_data (s
)->tdata
;
4749 BFD_ASSERT (g
!= NULL
);
4751 /* Calculate the total loadable size of the output. That
4752 will give us the maximum number of GOT_PAGE entries
4754 for (sub
= info
->input_bfds
; sub
; sub
= sub
->link_next
)
4756 asection
*subsection
;
4758 for (subsection
= sub
->sections
;
4760 subsection
= subsection
->next
)
4762 if ((subsection
->flags
& SEC_ALLOC
) == 0)
4764 loadable_size
+= ((subsection
->_raw_size
+ 0xf)
4765 &~ (bfd_size_type
) 0xf);
4768 loadable_size
+= MIPS_FUNCTION_STUB_SIZE
;
4770 /* Assume there are two loadable segments consisting of
4771 contiguous sections. Is 5 enough? */
4772 local_gotno
= (loadable_size
>> 16) + 5;
4773 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
4774 /* It's possible we will need GOT_PAGE entries as well as
4775 GOT16 entries. Often, these will be able to share GOT
4776 entries, but not always. */
4779 g
->local_gotno
+= local_gotno
;
4780 s
->_raw_size
+= local_gotno
* MIPS_ELF_GOT_SIZE (dynobj
);
4782 /* There has to be a global GOT entry for every symbol with
4783 a dynamic symbol table index of DT_MIPS_GOTSYM or
4784 higher. Therefore, it make sense to put those symbols
4785 that need GOT entries at the end of the symbol table. We
4787 if (! mips_elf_sort_hash_table (info
, 1))
4790 if (g
->global_gotsym
!= NULL
)
4791 i
= elf_hash_table (info
)->dynsymcount
- g
->global_gotsym
->dynindx
;
4793 /* If there are no global symbols, or none requiring
4794 relocations, then GLOBAL_GOTSYM will be NULL. */
4796 g
->global_gotno
= i
;
4797 s
->_raw_size
+= i
* MIPS_ELF_GOT_SIZE (dynobj
);
4799 else if (strcmp (name
, MIPS_ELF_STUB_SECTION_NAME (output_bfd
)) == 0)
4801 /* IRIX rld assumes that the function stub isn't at the end
4802 of .text section. So put a dummy. XXX */
4803 s
->_raw_size
+= MIPS_FUNCTION_STUB_SIZE
;
4805 else if (! info
->shared
4806 && ! mips_elf_hash_table (info
)->use_rld_obj_head
4807 && strncmp (name
, ".rld_map", 8) == 0)
4809 /* We add a room for __rld_map. It will be filled in by the
4810 rtld to contain a pointer to the _r_debug structure. */
4813 else if (SGI_COMPAT (output_bfd
)
4814 && strncmp (name
, ".compact_rel", 12) == 0)
4815 s
->_raw_size
+= mips_elf_hash_table (info
)->compact_rel_size
;
4816 else if (strcmp (name
, ".msym") == 0)
4817 s
->_raw_size
= (sizeof (Elf32_External_Msym
)
4818 * (elf_hash_table (info
)->dynsymcount
4819 + bfd_count_sections (output_bfd
)));
4820 else if (strncmp (name
, ".init", 5) != 0)
4822 /* It's not one of our sections, so don't allocate space. */
4828 _bfd_strip_section_from_output (info
, s
);
4832 /* Allocate memory for the section contents. */
4833 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->_raw_size
);
4834 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
4836 bfd_set_error (bfd_error_no_memory
);
4841 if (elf_hash_table (info
)->dynamic_sections_created
)
4843 /* Add some entries to the .dynamic section. We fill in the
4844 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
4845 must add the entries now so that we get the correct size for
4846 the .dynamic section. The DT_DEBUG entry is filled in by the
4847 dynamic linker and used by the debugger. */
4850 /* SGI object has the equivalence of DT_DEBUG in the
4851 DT_MIPS_RLD_MAP entry. */
4852 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP
, 0))
4854 if (!SGI_COMPAT (output_bfd
))
4856 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
4862 /* Shared libraries on traditional mips have DT_DEBUG. */
4863 if (!SGI_COMPAT (output_bfd
))
4865 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
4870 if (reltext
&& SGI_COMPAT (output_bfd
))
4871 info
->flags
|= DF_TEXTREL
;
4873 if ((info
->flags
& DF_TEXTREL
) != 0)
4875 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_TEXTREL
, 0))
4879 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTGOT
, 0))
4882 if (bfd_get_section_by_name (dynobj
, ".rel.dyn"))
4884 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_REL
, 0))
4887 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELSZ
, 0))
4890 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELENT
, 0))
4894 if (SGI_COMPAT (output_bfd
))
4896 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_CONFLICTNO
, 0))
4900 if (SGI_COMPAT (output_bfd
))
4902 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LIBLISTNO
, 0))
4906 if (bfd_get_section_by_name (dynobj
, ".conflict") != NULL
)
4908 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_CONFLICT
, 0))
4911 s
= bfd_get_section_by_name (dynobj
, ".liblist");
4912 BFD_ASSERT (s
!= NULL
);
4914 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LIBLIST
, 0))
4918 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_VERSION
, 0))
4921 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_FLAGS
, 0))
4925 /* Time stamps in executable files are a bad idea. */
4926 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_TIME_STAMP
, 0))
4931 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_ICHECKSUM
, 0))
4936 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_IVERSION
, 0))
4940 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_BASE_ADDRESS
, 0))
4943 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LOCAL_GOTNO
, 0))
4946 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_SYMTABNO
, 0))
4949 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_UNREFEXTNO
, 0))
4952 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_GOTSYM
, 0))
4955 if (IRIX_COMPAT (dynobj
) == ict_irix5
4956 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_HIPAGENO
, 0))
4959 if (IRIX_COMPAT (dynobj
) == ict_irix6
4960 && (bfd_get_section_by_name
4961 (dynobj
, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj
)))
4962 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_OPTIONS
, 0))
4965 if (bfd_get_section_by_name (dynobj
, ".msym")
4966 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_MSYM
, 0))
4973 /* Relocate a MIPS ELF section. */
4976 _bfd_mips_elf_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
4977 contents
, relocs
, local_syms
, local_sections
)
4979 struct bfd_link_info
*info
;
4981 asection
*input_section
;
4983 Elf_Internal_Rela
*relocs
;
4984 Elf_Internal_Sym
*local_syms
;
4985 asection
**local_sections
;
4987 Elf_Internal_Rela
*rel
;
4988 const Elf_Internal_Rela
*relend
;
4990 boolean use_saved_addend_p
= false;
4991 struct elf_backend_data
*bed
;
4993 bed
= get_elf_backend_data (output_bfd
);
4994 relend
= relocs
+ input_section
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
4995 for (rel
= relocs
; rel
< relend
; ++rel
)
4999 reloc_howto_type
*howto
;
5000 boolean require_jalx
;
5001 /* True if the relocation is a RELA relocation, rather than a
5003 boolean rela_relocation_p
= true;
5004 unsigned int r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
5005 const char * msg
= (const char *) NULL
;
5007 /* Find the relocation howto for this relocation. */
5008 if (r_type
== R_MIPS_64
&& !ABI_64_P (output_bfd
))
5010 /* Some 32-bit code uses R_MIPS_64. In particular, people use
5011 64-bit code, but make sure all their addresses are in the
5012 lowermost or uppermost 32-bit section of the 64-bit address
5013 space. Thus, when they use an R_MIPS_64 they mean what is
5014 usually meant by R_MIPS_32, with the exception that the
5015 stored value is sign-extended to 64 bits. */
5016 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, R_MIPS_32
, false);
5018 /* On big-endian systems, we need to lie about the position
5020 if (bfd_big_endian (input_bfd
))
5024 /* NewABI defaults to RELA relocations. */
5025 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, r_type
,
5026 NEWABI_P (input_bfd
));
5028 if (!use_saved_addend_p
)
5030 Elf_Internal_Shdr
*rel_hdr
;
5032 /* If these relocations were originally of the REL variety,
5033 we must pull the addend out of the field that will be
5034 relocated. Otherwise, we simply use the contents of the
5035 RELA relocation. To determine which flavor or relocation
5036 this is, we depend on the fact that the INPUT_SECTION's
5037 REL_HDR is read before its REL_HDR2. */
5038 rel_hdr
= &elf_section_data (input_section
)->rel_hdr
;
5039 if ((size_t) (rel
- relocs
)
5040 >= (NUM_SHDR_ENTRIES (rel_hdr
) * bed
->s
->int_rels_per_ext_rel
))
5041 rel_hdr
= elf_section_data (input_section
)->rel_hdr2
;
5042 if (rel_hdr
->sh_entsize
== MIPS_ELF_REL_SIZE (input_bfd
))
5044 /* Note that this is a REL relocation. */
5045 rela_relocation_p
= false;
5047 /* Get the addend, which is stored in the input file. */
5048 addend
= mips_elf_obtain_contents (howto
, rel
, input_bfd
,
5050 addend
&= howto
->src_mask
;
5051 addend
<<= howto
->rightshift
;
5053 /* For some kinds of relocations, the ADDEND is a
5054 combination of the addend stored in two different
5056 if (r_type
== R_MIPS_HI16
5057 || r_type
== R_MIPS_GNU_REL_HI16
5058 || (r_type
== R_MIPS_GOT16
5059 && mips_elf_local_relocation_p (input_bfd
, rel
,
5060 local_sections
, false)))
5063 const Elf_Internal_Rela
*lo16_relocation
;
5064 reloc_howto_type
*lo16_howto
;
5067 /* The combined value is the sum of the HI16 addend,
5068 left-shifted by sixteen bits, and the LO16
5069 addend, sign extended. (Usually, the code does
5070 a `lui' of the HI16 value, and then an `addiu' of
5073 Scan ahead to find a matching LO16 relocation. */
5074 if (r_type
== R_MIPS_GNU_REL_HI16
)
5075 lo
= R_MIPS_GNU_REL_LO16
;
5078 lo16_relocation
= mips_elf_next_relocation (input_bfd
, lo
,
5080 if (lo16_relocation
== NULL
)
5083 /* Obtain the addend kept there. */
5084 lo16_howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, lo
, false);
5085 l
= mips_elf_obtain_contents (lo16_howto
, lo16_relocation
,
5086 input_bfd
, contents
);
5087 l
&= lo16_howto
->src_mask
;
5088 l
<<= lo16_howto
->rightshift
;
5089 l
= mips_elf_sign_extend (l
, 16);
5093 /* Compute the combined addend. */
5096 /* If PC-relative, subtract the difference between the
5097 address of the LO part of the reloc and the address of
5098 the HI part. The relocation is relative to the LO
5099 part, but mips_elf_calculate_relocation() doesn't
5100 know its address or the difference from the HI part, so
5101 we subtract that difference here. See also the
5102 comment in mips_elf_calculate_relocation(). */
5103 if (r_type
== R_MIPS_GNU_REL_HI16
)
5104 addend
-= (lo16_relocation
->r_offset
- rel
->r_offset
);
5106 else if (r_type
== R_MIPS16_GPREL
)
5108 /* The addend is scrambled in the object file. See
5109 mips_elf_perform_relocation for details on the
5111 addend
= (((addend
& 0x1f0000) >> 5)
5112 | ((addend
& 0x7e00000) >> 16)
5117 addend
= rel
->r_addend
;
5120 if (info
->relocateable
)
5122 Elf_Internal_Sym
*sym
;
5123 unsigned long r_symndx
;
5125 if (r_type
== R_MIPS_64
&& !ABI_64_P (output_bfd
)
5126 && bfd_big_endian (input_bfd
))
5129 /* Since we're just relocating, all we need to do is copy
5130 the relocations back out to the object file, unless
5131 they're against a section symbol, in which case we need
5132 to adjust by the section offset, or unless they're GP
5133 relative in which case we need to adjust by the amount
5134 that we're adjusting GP in this relocateable object. */
5136 if (! mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
,
5138 /* There's nothing to do for non-local relocations. */
5141 if (r_type
== R_MIPS16_GPREL
5142 || r_type
== R_MIPS_GPREL16
5143 || r_type
== R_MIPS_GPREL32
5144 || r_type
== R_MIPS_LITERAL
)
5145 addend
-= (_bfd_get_gp_value (output_bfd
)
5146 - _bfd_get_gp_value (input_bfd
));
5148 r_symndx
= ELF_R_SYM (output_bfd
, rel
->r_info
);
5149 sym
= local_syms
+ r_symndx
;
5150 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
5151 /* Adjust the addend appropriately. */
5152 addend
+= local_sections
[r_symndx
]->output_offset
;
5154 if (howto
->partial_inplace
)
5156 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
5157 then we only want to write out the high-order 16 bits.
5158 The subsequent R_MIPS_LO16 will handle the low-order bits.
5160 if (r_type
== R_MIPS_HI16
|| r_type
== R_MIPS_GOT16
5161 || r_type
== R_MIPS_GNU_REL_HI16
)
5162 addend
= mips_elf_high (addend
);
5163 else if (r_type
== R_MIPS_HIGHER
)
5164 addend
= mips_elf_higher (addend
);
5165 else if (r_type
== R_MIPS_HIGHEST
)
5166 addend
= mips_elf_highest (addend
);
5169 if (rela_relocation_p
)
5170 /* If this is a RELA relocation, just update the addend.
5171 We have to cast away constness for REL. */
5172 rel
->r_addend
= addend
;
5175 /* Otherwise, we have to write the value back out. Note
5176 that we use the source mask, rather than the
5177 destination mask because the place to which we are
5178 writing will be source of the addend in the final
5180 addend
>>= howto
->rightshift
;
5181 addend
&= howto
->src_mask
;
5183 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
5184 /* See the comment above about using R_MIPS_64 in the 32-bit
5185 ABI. Here, we need to update the addend. It would be
5186 possible to get away with just using the R_MIPS_32 reloc
5187 but for endianness. */
5193 if (addend
& ((bfd_vma
) 1 << 31))
5195 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
5202 /* If we don't know that we have a 64-bit type,
5203 do two separate stores. */
5204 if (bfd_big_endian (input_bfd
))
5206 /* Store the sign-bits (which are most significant)
5208 low_bits
= sign_bits
;
5214 high_bits
= sign_bits
;
5216 bfd_put_32 (input_bfd
, low_bits
,
5217 contents
+ rel
->r_offset
);
5218 bfd_put_32 (input_bfd
, high_bits
,
5219 contents
+ rel
->r_offset
+ 4);
5223 if (! mips_elf_perform_relocation (info
, howto
, rel
, addend
,
5224 input_bfd
, input_section
,
5229 /* Go on to the next relocation. */
5233 /* In the N32 and 64-bit ABIs there may be multiple consecutive
5234 relocations for the same offset. In that case we are
5235 supposed to treat the output of each relocation as the addend
5237 if (rel
+ 1 < relend
5238 && rel
->r_offset
== rel
[1].r_offset
5239 && ELF_R_TYPE (input_bfd
, rel
[1].r_info
) != R_MIPS_NONE
)
5240 use_saved_addend_p
= true;
5242 use_saved_addend_p
= false;
5244 addend
>>= howto
->rightshift
;
5246 /* Figure out what value we are supposed to relocate. */
5247 switch (mips_elf_calculate_relocation (output_bfd
, input_bfd
,
5248 input_section
, info
, rel
,
5249 addend
, howto
, local_syms
,
5250 local_sections
, &value
,
5251 &name
, &require_jalx
))
5253 case bfd_reloc_continue
:
5254 /* There's nothing to do. */
5257 case bfd_reloc_undefined
:
5258 /* mips_elf_calculate_relocation already called the
5259 undefined_symbol callback. There's no real point in
5260 trying to perform the relocation at this point, so we
5261 just skip ahead to the next relocation. */
5264 case bfd_reloc_notsupported
:
5265 msg
= _("internal error: unsupported relocation error");
5266 info
->callbacks
->warning
5267 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
5270 case bfd_reloc_overflow
:
5271 if (use_saved_addend_p
)
5272 /* Ignore overflow until we reach the last relocation for
5273 a given location. */
5277 BFD_ASSERT (name
!= NULL
);
5278 if (! ((*info
->callbacks
->reloc_overflow
)
5279 (info
, name
, howto
->name
, (bfd_vma
) 0,
5280 input_bfd
, input_section
, rel
->r_offset
)))
5293 /* If we've got another relocation for the address, keep going
5294 until we reach the last one. */
5295 if (use_saved_addend_p
)
5301 if (r_type
== R_MIPS_64
&& !ABI_64_P (output_bfd
))
5302 /* See the comment above about using R_MIPS_64 in the 32-bit
5303 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
5304 that calculated the right value. Now, however, we
5305 sign-extend the 32-bit result to 64-bits, and store it as a
5306 64-bit value. We are especially generous here in that we
5307 go to extreme lengths to support this usage on systems with
5308 only a 32-bit VMA. */
5314 if (value
& ((bfd_vma
) 1 << 31))
5316 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
5323 /* If we don't know that we have a 64-bit type,
5324 do two separate stores. */
5325 if (bfd_big_endian (input_bfd
))
5327 /* Undo what we did above. */
5329 /* Store the sign-bits (which are most significant)
5331 low_bits
= sign_bits
;
5337 high_bits
= sign_bits
;
5339 bfd_put_32 (input_bfd
, low_bits
,
5340 contents
+ rel
->r_offset
);
5341 bfd_put_32 (input_bfd
, high_bits
,
5342 contents
+ rel
->r_offset
+ 4);
5346 /* Actually perform the relocation. */
5347 if (! mips_elf_perform_relocation (info
, howto
, rel
, value
,
5348 input_bfd
, input_section
,
5349 contents
, require_jalx
))
5356 /* If NAME is one of the special IRIX6 symbols defined by the linker,
5357 adjust it appropriately now. */
5360 mips_elf_irix6_finish_dynamic_symbol (abfd
, name
, sym
)
5361 bfd
*abfd ATTRIBUTE_UNUSED
;
5363 Elf_Internal_Sym
*sym
;
5365 /* The linker script takes care of providing names and values for
5366 these, but we must place them into the right sections. */
5367 static const char* const text_section_symbols
[] = {
5370 "__dso_displacement",
5372 "__program_header_table",
5376 static const char* const data_section_symbols
[] = {
5384 const char* const *p
;
5387 for (i
= 0; i
< 2; ++i
)
5388 for (p
= (i
== 0) ? text_section_symbols
: data_section_symbols
;
5391 if (strcmp (*p
, name
) == 0)
5393 /* All of these symbols are given type STT_SECTION by the
5395 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
5397 /* The IRIX linker puts these symbols in special sections. */
5399 sym
->st_shndx
= SHN_MIPS_TEXT
;
5401 sym
->st_shndx
= SHN_MIPS_DATA
;
5407 /* Finish up dynamic symbol handling. We set the contents of various
5408 dynamic sections here. */
5411 _bfd_mips_elf_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
5413 struct bfd_link_info
*info
;
5414 struct elf_link_hash_entry
*h
;
5415 Elf_Internal_Sym
*sym
;
5421 struct mips_got_info
*g
;
5423 struct mips_elf_link_hash_entry
*mh
;
5425 dynobj
= elf_hash_table (info
)->dynobj
;
5426 gval
= sym
->st_value
;
5427 mh
= (struct mips_elf_link_hash_entry
*) h
;
5429 if (h
->plt
.offset
!= (bfd_vma
) -1)
5432 bfd_byte stub
[MIPS_FUNCTION_STUB_SIZE
];
5434 /* This symbol has a stub. Set it up. */
5436 BFD_ASSERT (h
->dynindx
!= -1);
5438 s
= bfd_get_section_by_name (dynobj
,
5439 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
5440 BFD_ASSERT (s
!= NULL
);
5442 /* FIXME: Can h->dynindex be more than 64K? */
5443 if (h
->dynindx
& 0xffff0000)
5446 /* Fill the stub. */
5447 bfd_put_32 (output_bfd
, STUB_LW (output_bfd
), stub
);
5448 bfd_put_32 (output_bfd
, STUB_MOVE (output_bfd
), stub
+ 4);
5449 bfd_put_32 (output_bfd
, STUB_JALR
, stub
+ 8);
5450 bfd_put_32 (output_bfd
, STUB_LI16 (output_bfd
) + h
->dynindx
, stub
+ 12);
5452 BFD_ASSERT (h
->plt
.offset
<= s
->_raw_size
);
5453 memcpy (s
->contents
+ h
->plt
.offset
, stub
, MIPS_FUNCTION_STUB_SIZE
);
5455 /* Mark the symbol as undefined. plt.offset != -1 occurs
5456 only for the referenced symbol. */
5457 sym
->st_shndx
= SHN_UNDEF
;
5459 /* The run-time linker uses the st_value field of the symbol
5460 to reset the global offset table entry for this external
5461 to its stub address when unlinking a shared object. */
5462 gval
= s
->output_section
->vma
+ s
->output_offset
+ h
->plt
.offset
;
5463 sym
->st_value
= gval
;
5466 BFD_ASSERT (h
->dynindx
!= -1
5467 || (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0);
5469 sgot
= mips_elf_got_section (dynobj
);
5470 BFD_ASSERT (sgot
!= NULL
);
5471 BFD_ASSERT (elf_section_data (sgot
) != NULL
);
5472 g
= (struct mips_got_info
*) elf_section_data (sgot
)->tdata
;
5473 BFD_ASSERT (g
!= NULL
);
5475 /* Run through the global symbol table, creating GOT entries for all
5476 the symbols that need them. */
5477 if (g
->global_gotsym
!= NULL
5478 && h
->dynindx
>= g
->global_gotsym
->dynindx
)
5484 value
= sym
->st_value
;
5487 /* For an entity defined in a shared object, this will be
5488 NULL. (For functions in shared objects for
5489 which we have created stubs, ST_VALUE will be non-NULL.
5490 That's because such the functions are now no longer defined
5491 in a shared object.) */
5493 if (info
->shared
&& h
->root
.type
== bfd_link_hash_undefined
)
5496 value
= h
->root
.u
.def
.value
;
5498 offset
= mips_elf_global_got_index (dynobj
, h
);
5499 MIPS_ELF_PUT_WORD (output_bfd
, value
, sgot
->contents
+ offset
);
5502 /* Create a .msym entry, if appropriate. */
5503 smsym
= bfd_get_section_by_name (dynobj
, ".msym");
5506 Elf32_Internal_Msym msym
;
5508 msym
.ms_hash_value
= bfd_elf_hash (h
->root
.root
.string
);
5509 /* It is undocumented what the `1' indicates, but IRIX6 uses
5511 msym
.ms_info
= ELF32_MS_INFO (mh
->min_dyn_reloc_index
, 1);
5512 bfd_mips_elf_swap_msym_out
5514 ((Elf32_External_Msym
*) smsym
->contents
) + h
->dynindx
);
5517 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
5518 name
= h
->root
.root
.string
;
5519 if (strcmp (name
, "_DYNAMIC") == 0
5520 || strcmp (name
, "_GLOBAL_OFFSET_TABLE_") == 0)
5521 sym
->st_shndx
= SHN_ABS
;
5522 else if (strcmp (name
, "_DYNAMIC_LINK") == 0
5523 || strcmp (name
, "_DYNAMIC_LINKING") == 0)
5525 sym
->st_shndx
= SHN_ABS
;
5526 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
5529 else if (strcmp (name
, "_gp_disp") == 0)
5531 sym
->st_shndx
= SHN_ABS
;
5532 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
5533 sym
->st_value
= elf_gp (output_bfd
);
5535 else if (SGI_COMPAT (output_bfd
))
5537 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
5538 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
5540 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
5541 sym
->st_other
= STO_PROTECTED
;
5543 sym
->st_shndx
= SHN_MIPS_DATA
;
5545 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
5547 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
5548 sym
->st_other
= STO_PROTECTED
;
5549 sym
->st_value
= mips_elf_hash_table (info
)->procedure_count
;
5550 sym
->st_shndx
= SHN_ABS
;
5552 else if (sym
->st_shndx
!= SHN_UNDEF
&& sym
->st_shndx
!= SHN_ABS
)
5554 if (h
->type
== STT_FUNC
)
5555 sym
->st_shndx
= SHN_MIPS_TEXT
;
5556 else if (h
->type
== STT_OBJECT
)
5557 sym
->st_shndx
= SHN_MIPS_DATA
;
5561 /* Handle the IRIX6-specific symbols. */
5562 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
5563 mips_elf_irix6_finish_dynamic_symbol (output_bfd
, name
, sym
);
5567 if (! mips_elf_hash_table (info
)->use_rld_obj_head
5568 && (strcmp (name
, "__rld_map") == 0
5569 || strcmp (name
, "__RLD_MAP") == 0))
5571 asection
*s
= bfd_get_section_by_name (dynobj
, ".rld_map");
5572 BFD_ASSERT (s
!= NULL
);
5573 sym
->st_value
= s
->output_section
->vma
+ s
->output_offset
;
5574 bfd_put_32 (output_bfd
, (bfd_vma
) 0, s
->contents
);
5575 if (mips_elf_hash_table (info
)->rld_value
== 0)
5576 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
5578 else if (mips_elf_hash_table (info
)->use_rld_obj_head
5579 && strcmp (name
, "__rld_obj_head") == 0)
5581 /* IRIX6 does not use a .rld_map section. */
5582 if (IRIX_COMPAT (output_bfd
) == ict_irix5
5583 || IRIX_COMPAT (output_bfd
) == ict_none
)
5584 BFD_ASSERT (bfd_get_section_by_name (dynobj
, ".rld_map")
5586 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
5590 /* If this is a mips16 symbol, force the value to be even. */
5591 if (sym
->st_other
== STO_MIPS16
5592 && (sym
->st_value
& 1) != 0)
5598 /* Finish up the dynamic sections. */
5601 _bfd_mips_elf_finish_dynamic_sections (output_bfd
, info
)
5603 struct bfd_link_info
*info
;
5608 struct mips_got_info
*g
;
5610 dynobj
= elf_hash_table (info
)->dynobj
;
5612 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
5614 sgot
= bfd_get_section_by_name (dynobj
, ".got");
5619 BFD_ASSERT (elf_section_data (sgot
) != NULL
);
5620 g
= (struct mips_got_info
*) elf_section_data (sgot
)->tdata
;
5621 BFD_ASSERT (g
!= NULL
);
5624 if (elf_hash_table (info
)->dynamic_sections_created
)
5628 BFD_ASSERT (sdyn
!= NULL
);
5629 BFD_ASSERT (g
!= NULL
);
5631 for (b
= sdyn
->contents
;
5632 b
< sdyn
->contents
+ sdyn
->_raw_size
;
5633 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
5635 Elf_Internal_Dyn dyn
;
5641 /* Read in the current dynamic entry. */
5642 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
5644 /* Assume that we're going to modify it and write it out. */
5650 s
= (bfd_get_section_by_name (dynobj
, ".rel.dyn"));
5651 BFD_ASSERT (s
!= NULL
);
5652 dyn
.d_un
.d_val
= MIPS_ELF_REL_SIZE (dynobj
);
5656 /* Rewrite DT_STRSZ. */
5658 _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
5664 case DT_MIPS_CONFLICT
:
5667 case DT_MIPS_LIBLIST
:
5670 s
= bfd_get_section_by_name (output_bfd
, name
);
5671 BFD_ASSERT (s
!= NULL
);
5672 dyn
.d_un
.d_ptr
= s
->vma
;
5675 case DT_MIPS_RLD_VERSION
:
5676 dyn
.d_un
.d_val
= 1; /* XXX */
5680 dyn
.d_un
.d_val
= RHF_NOTPOT
; /* XXX */
5683 case DT_MIPS_CONFLICTNO
:
5685 elemsize
= sizeof (Elf32_Conflict
);
5688 case DT_MIPS_LIBLISTNO
:
5690 elemsize
= sizeof (Elf32_Lib
);
5692 s
= bfd_get_section_by_name (output_bfd
, name
);
5695 if (s
->_cooked_size
!= 0)
5696 dyn
.d_un
.d_val
= s
->_cooked_size
/ elemsize
;
5698 dyn
.d_un
.d_val
= s
->_raw_size
/ elemsize
;
5704 case DT_MIPS_TIME_STAMP
:
5705 time ((time_t *) &dyn
.d_un
.d_val
);
5708 case DT_MIPS_ICHECKSUM
:
5713 case DT_MIPS_IVERSION
:
5718 case DT_MIPS_BASE_ADDRESS
:
5719 s
= output_bfd
->sections
;
5720 BFD_ASSERT (s
!= NULL
);
5721 dyn
.d_un
.d_ptr
= s
->vma
& ~(bfd_vma
) 0xffff;
5724 case DT_MIPS_LOCAL_GOTNO
:
5725 dyn
.d_un
.d_val
= g
->local_gotno
;
5728 case DT_MIPS_UNREFEXTNO
:
5729 /* The index into the dynamic symbol table which is the
5730 entry of the first external symbol that is not
5731 referenced within the same object. */
5732 dyn
.d_un
.d_val
= bfd_count_sections (output_bfd
) + 1;
5735 case DT_MIPS_GOTSYM
:
5736 if (g
->global_gotsym
)
5738 dyn
.d_un
.d_val
= g
->global_gotsym
->dynindx
;
5741 /* In case if we don't have global got symbols we default
5742 to setting DT_MIPS_GOTSYM to the same value as
5743 DT_MIPS_SYMTABNO, so we just fall through. */
5745 case DT_MIPS_SYMTABNO
:
5747 elemsize
= MIPS_ELF_SYM_SIZE (output_bfd
);
5748 s
= bfd_get_section_by_name (output_bfd
, name
);
5749 BFD_ASSERT (s
!= NULL
);
5751 if (s
->_cooked_size
!= 0)
5752 dyn
.d_un
.d_val
= s
->_cooked_size
/ elemsize
;
5754 dyn
.d_un
.d_val
= s
->_raw_size
/ elemsize
;
5757 case DT_MIPS_HIPAGENO
:
5758 dyn
.d_un
.d_val
= g
->local_gotno
- MIPS_RESERVED_GOTNO
;
5761 case DT_MIPS_RLD_MAP
:
5762 dyn
.d_un
.d_ptr
= mips_elf_hash_table (info
)->rld_value
;
5765 case DT_MIPS_OPTIONS
:
5766 s
= (bfd_get_section_by_name
5767 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd
)));
5768 dyn
.d_un
.d_ptr
= s
->vma
;
5772 s
= (bfd_get_section_by_name (output_bfd
, ".msym"));
5773 dyn
.d_un
.d_ptr
= s
->vma
;
5782 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
5787 /* The first entry of the global offset table will be filled at
5788 runtime. The second entry will be used by some runtime loaders.
5789 This isn't the case of IRIX rld. */
5790 if (sgot
!= NULL
&& sgot
->_raw_size
> 0)
5792 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
5793 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0x80000000,
5794 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
5798 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
5799 = MIPS_ELF_GOT_SIZE (output_bfd
);
5804 Elf32_compact_rel cpt
;
5806 /* ??? The section symbols for the output sections were set up in
5807 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
5808 symbols. Should we do so? */
5810 smsym
= bfd_get_section_by_name (dynobj
, ".msym");
5813 Elf32_Internal_Msym msym
;
5815 msym
.ms_hash_value
= 0;
5816 msym
.ms_info
= ELF32_MS_INFO (0, 1);
5818 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
5820 long dynindx
= elf_section_data (s
)->dynindx
;
5822 bfd_mips_elf_swap_msym_out
5824 (((Elf32_External_Msym
*) smsym
->contents
)
5829 if (SGI_COMPAT (output_bfd
))
5831 /* Write .compact_rel section out. */
5832 s
= bfd_get_section_by_name (dynobj
, ".compact_rel");
5836 cpt
.num
= s
->reloc_count
;
5838 cpt
.offset
= (s
->output_section
->filepos
5839 + sizeof (Elf32_External_compact_rel
));
5842 bfd_elf32_swap_compact_rel_out (output_bfd
, &cpt
,
5843 ((Elf32_External_compact_rel
*)
5846 /* Clean up a dummy stub function entry in .text. */
5847 s
= bfd_get_section_by_name (dynobj
,
5848 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
5851 file_ptr dummy_offset
;
5853 BFD_ASSERT (s
->_raw_size
>= MIPS_FUNCTION_STUB_SIZE
);
5854 dummy_offset
= s
->_raw_size
- MIPS_FUNCTION_STUB_SIZE
;
5855 memset (s
->contents
+ dummy_offset
, 0,
5856 MIPS_FUNCTION_STUB_SIZE
);
5861 /* We need to sort the entries of the dynamic relocation section. */
5863 if (!ABI_64_P (output_bfd
))
5867 reldyn
= bfd_get_section_by_name (dynobj
, ".rel.dyn");
5868 if (reldyn
!= NULL
&& reldyn
->reloc_count
> 2)
5870 reldyn_sorting_bfd
= output_bfd
;
5871 qsort ((Elf32_External_Rel
*) reldyn
->contents
+ 1,
5872 (size_t) reldyn
->reloc_count
- 1,
5873 sizeof (Elf32_External_Rel
), sort_dynamic_relocs
);
5877 /* Clean up a first relocation in .rel.dyn. */
5878 s
= bfd_get_section_by_name (dynobj
, ".rel.dyn");
5879 if (s
!= NULL
&& s
->_raw_size
> 0)
5880 memset (s
->contents
, 0, MIPS_ELF_REL_SIZE (dynobj
));
5886 /* The final processing done just before writing out a MIPS ELF object
5887 file. This gets the MIPS architecture right based on the machine
5888 number. This is used by both the 32-bit and the 64-bit ABI. */
5891 _bfd_mips_elf_final_write_processing (abfd
, linker
)
5893 boolean linker ATTRIBUTE_UNUSED
;
5897 Elf_Internal_Shdr
**hdrpp
;
5901 switch (bfd_get_mach (abfd
))
5904 case bfd_mach_mips3000
:
5905 val
= E_MIPS_ARCH_1
;
5908 case bfd_mach_mips3900
:
5909 val
= E_MIPS_ARCH_1
| E_MIPS_MACH_3900
;
5912 case bfd_mach_mips6000
:
5913 val
= E_MIPS_ARCH_2
;
5916 case bfd_mach_mips4000
:
5917 case bfd_mach_mips4300
:
5918 case bfd_mach_mips4400
:
5919 case bfd_mach_mips4600
:
5920 val
= E_MIPS_ARCH_3
;
5923 case bfd_mach_mips4010
:
5924 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4010
;
5927 case bfd_mach_mips4100
:
5928 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4100
;
5931 case bfd_mach_mips4111
:
5932 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4111
;
5935 case bfd_mach_mips4650
:
5936 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4650
;
5939 case bfd_mach_mips5000
:
5940 case bfd_mach_mips8000
:
5941 case bfd_mach_mips10000
:
5942 case bfd_mach_mips12000
:
5943 val
= E_MIPS_ARCH_4
;
5946 case bfd_mach_mips5
:
5947 val
= E_MIPS_ARCH_5
;
5950 case bfd_mach_mips_sb1
:
5951 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_SB1
;
5954 case bfd_mach_mipsisa32
:
5955 val
= E_MIPS_ARCH_32
;
5958 case bfd_mach_mipsisa64
:
5959 val
= E_MIPS_ARCH_64
;
5962 elf_elfheader (abfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
5963 elf_elfheader (abfd
)->e_flags
|= val
;
5965 /* Set the sh_info field for .gptab sections and other appropriate
5966 info for each special section. */
5967 for (i
= 1, hdrpp
= elf_elfsections (abfd
) + 1;
5968 i
< elf_numsections (abfd
);
5971 switch ((*hdrpp
)->sh_type
)
5974 case SHT_MIPS_LIBLIST
:
5975 sec
= bfd_get_section_by_name (abfd
, ".dynstr");
5977 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
5980 case SHT_MIPS_GPTAB
:
5981 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
5982 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
5983 BFD_ASSERT (name
!= NULL
5984 && strncmp (name
, ".gptab.", sizeof ".gptab." - 1) == 0);
5985 sec
= bfd_get_section_by_name (abfd
, name
+ sizeof ".gptab" - 1);
5986 BFD_ASSERT (sec
!= NULL
);
5987 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
5990 case SHT_MIPS_CONTENT
:
5991 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
5992 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
5993 BFD_ASSERT (name
!= NULL
5994 && strncmp (name
, ".MIPS.content",
5995 sizeof ".MIPS.content" - 1) == 0);
5996 sec
= bfd_get_section_by_name (abfd
,
5997 name
+ sizeof ".MIPS.content" - 1);
5998 BFD_ASSERT (sec
!= NULL
);
5999 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
6002 case SHT_MIPS_SYMBOL_LIB
:
6003 sec
= bfd_get_section_by_name (abfd
, ".dynsym");
6005 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
6006 sec
= bfd_get_section_by_name (abfd
, ".liblist");
6008 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
6011 case SHT_MIPS_EVENTS
:
6012 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
6013 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
6014 BFD_ASSERT (name
!= NULL
);
6015 if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
6016 sec
= bfd_get_section_by_name (abfd
,
6017 name
+ sizeof ".MIPS.events" - 1);
6020 BFD_ASSERT (strncmp (name
, ".MIPS.post_rel",
6021 sizeof ".MIPS.post_rel" - 1) == 0);
6022 sec
= bfd_get_section_by_name (abfd
,
6024 + sizeof ".MIPS.post_rel" - 1));
6026 BFD_ASSERT (sec
!= NULL
);
6027 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
6034 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
6038 _bfd_mips_elf_additional_program_headers (abfd
)
6044 /* See if we need a PT_MIPS_REGINFO segment. */
6045 s
= bfd_get_section_by_name (abfd
, ".reginfo");
6046 if (s
&& (s
->flags
& SEC_LOAD
))
6049 /* See if we need a PT_MIPS_OPTIONS segment. */
6050 if (IRIX_COMPAT (abfd
) == ict_irix6
6051 && bfd_get_section_by_name (abfd
,
6052 MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)))
6055 /* See if we need a PT_MIPS_RTPROC segment. */
6056 if (IRIX_COMPAT (abfd
) == ict_irix5
6057 && bfd_get_section_by_name (abfd
, ".dynamic")
6058 && bfd_get_section_by_name (abfd
, ".mdebug"))
6064 /* Modify the segment map for an IRIX5 executable. */
6067 _bfd_mips_elf_modify_segment_map (abfd
)
6071 struct elf_segment_map
*m
, **pm
;
6074 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
6076 s
= bfd_get_section_by_name (abfd
, ".reginfo");
6077 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
6079 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
6080 if (m
->p_type
== PT_MIPS_REGINFO
)
6085 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
6089 m
->p_type
= PT_MIPS_REGINFO
;
6093 /* We want to put it after the PHDR and INTERP segments. */
6094 pm
= &elf_tdata (abfd
)->segment_map
;
6096 && ((*pm
)->p_type
== PT_PHDR
6097 || (*pm
)->p_type
== PT_INTERP
))
6105 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
6106 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
6107 PT_OPTIONS segement immediately following the program header
6109 if (IRIX_COMPAT (abfd
) == ict_irix6
)
6111 for (s
= abfd
->sections
; s
; s
= s
->next
)
6112 if (elf_section_data (s
)->this_hdr
.sh_type
== SHT_MIPS_OPTIONS
)
6117 struct elf_segment_map
*options_segment
;
6119 /* Usually, there's a program header table. But, sometimes
6120 there's not (like when running the `ld' testsuite). So,
6121 if there's no program header table, we just put the
6122 options segement at the end. */
6123 for (pm
= &elf_tdata (abfd
)->segment_map
;
6126 if ((*pm
)->p_type
== PT_PHDR
)
6129 amt
= sizeof (struct elf_segment_map
);
6130 options_segment
= bfd_zalloc (abfd
, amt
);
6131 options_segment
->next
= *pm
;
6132 options_segment
->p_type
= PT_MIPS_OPTIONS
;
6133 options_segment
->p_flags
= PF_R
;
6134 options_segment
->p_flags_valid
= true;
6135 options_segment
->count
= 1;
6136 options_segment
->sections
[0] = s
;
6137 *pm
= options_segment
;
6142 if (IRIX_COMPAT (abfd
) == ict_irix5
)
6144 /* If there are .dynamic and .mdebug sections, we make a room
6145 for the RTPROC header. FIXME: Rewrite without section names. */
6146 if (bfd_get_section_by_name (abfd
, ".interp") == NULL
6147 && bfd_get_section_by_name (abfd
, ".dynamic") != NULL
6148 && bfd_get_section_by_name (abfd
, ".mdebug") != NULL
)
6150 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
6151 if (m
->p_type
== PT_MIPS_RTPROC
)
6156 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
6160 m
->p_type
= PT_MIPS_RTPROC
;
6162 s
= bfd_get_section_by_name (abfd
, ".rtproc");
6167 m
->p_flags_valid
= 1;
6175 /* We want to put it after the DYNAMIC segment. */
6176 pm
= &elf_tdata (abfd
)->segment_map
;
6177 while (*pm
!= NULL
&& (*pm
)->p_type
!= PT_DYNAMIC
)
6187 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
6188 .dynstr, .dynsym, and .hash sections, and everything in
6190 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
;
6192 if ((*pm
)->p_type
== PT_DYNAMIC
)
6195 if (m
!= NULL
&& IRIX_COMPAT (abfd
) == ict_none
)
6197 /* For a normal mips executable the permissions for the PT_DYNAMIC
6198 segment are read, write and execute. We do that here since
6199 the code in elf.c sets only the read permission. This matters
6200 sometimes for the dynamic linker. */
6201 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
6203 m
->p_flags
= PF_R
| PF_W
| PF_X
;
6204 m
->p_flags_valid
= 1;
6208 && m
->count
== 1 && strcmp (m
->sections
[0]->name
, ".dynamic") == 0)
6210 static const char *sec_names
[] =
6212 ".dynamic", ".dynstr", ".dynsym", ".hash"
6216 struct elf_segment_map
*n
;
6220 for (i
= 0; i
< sizeof sec_names
/ sizeof sec_names
[0]; i
++)
6222 s
= bfd_get_section_by_name (abfd
, sec_names
[i
]);
6223 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
6229 sz
= s
->_cooked_size
;
6232 if (high
< s
->vma
+ sz
)
6238 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6239 if ((s
->flags
& SEC_LOAD
) != 0
6242 + (s
->_cooked_size
!=
6243 0 ? s
->_cooked_size
: s
->_raw_size
)) <= high
))
6246 amt
= sizeof *n
+ (bfd_size_type
) (c
- 1) * sizeof (asection
*);
6247 n
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
6254 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6256 if ((s
->flags
& SEC_LOAD
) != 0
6259 + (s
->_cooked_size
!= 0 ?
6260 s
->_cooked_size
: s
->_raw_size
)) <= high
))
6274 /* Return the section that should be marked against GC for a given
6278 _bfd_mips_elf_gc_mark_hook (abfd
, info
, rel
, h
, sym
)
6280 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
6281 Elf_Internal_Rela
*rel
;
6282 struct elf_link_hash_entry
*h
;
6283 Elf_Internal_Sym
*sym
;
6285 /* ??? Do mips16 stub sections need to be handled special? */
6289 switch (ELF_R_TYPE (abfd
, rel
->r_info
))
6291 case R_MIPS_GNU_VTINHERIT
:
6292 case R_MIPS_GNU_VTENTRY
:
6296 switch (h
->root
.type
)
6298 case bfd_link_hash_defined
:
6299 case bfd_link_hash_defweak
:
6300 return h
->root
.u
.def
.section
;
6302 case bfd_link_hash_common
:
6303 return h
->root
.u
.c
.p
->section
;
6312 return bfd_section_from_elf_index (abfd
, sym
->st_shndx
);
6318 /* Update the got entry reference counts for the section being removed. */
6321 _bfd_mips_elf_gc_sweep_hook (abfd
, info
, sec
, relocs
)
6322 bfd
*abfd ATTRIBUTE_UNUSED
;
6323 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
6324 asection
*sec ATTRIBUTE_UNUSED
;
6325 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
;
6328 Elf_Internal_Shdr
*symtab_hdr
;
6329 struct elf_link_hash_entry
**sym_hashes
;
6330 bfd_signed_vma
*local_got_refcounts
;
6331 const Elf_Internal_Rela
*rel
, *relend
;
6332 unsigned long r_symndx
;
6333 struct elf_link_hash_entry
*h
;
6335 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6336 sym_hashes
= elf_sym_hashes (abfd
);
6337 local_got_refcounts
= elf_local_got_refcounts (abfd
);
6339 relend
= relocs
+ sec
->reloc_count
;
6340 for (rel
= relocs
; rel
< relend
; rel
++)
6341 switch (ELF_R_TYPE (abfd
, rel
->r_info
))
6345 case R_MIPS_CALL_HI16
:
6346 case R_MIPS_CALL_LO16
:
6347 case R_MIPS_GOT_HI16
:
6348 case R_MIPS_GOT_LO16
:
6349 /* ??? It would seem that the existing MIPS code does no sort
6350 of reference counting or whatnot on its GOT and PLT entries,
6351 so it is not possible to garbage collect them at this time. */
6362 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
6363 hiding the old indirect symbol. Process additional relocation
6364 information. Also called for weakdefs, in which case we just let
6365 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
6368 _bfd_mips_elf_copy_indirect_symbol (dir
, ind
)
6369 struct elf_link_hash_entry
*dir
, *ind
;
6371 struct mips_elf_link_hash_entry
*dirmips
, *indmips
;
6373 _bfd_elf_link_hash_copy_indirect (dir
, ind
);
6375 if (ind
->root
.type
!= bfd_link_hash_indirect
)
6378 dirmips
= (struct mips_elf_link_hash_entry
*) dir
;
6379 indmips
= (struct mips_elf_link_hash_entry
*) ind
;
6380 dirmips
->possibly_dynamic_relocs
+= indmips
->possibly_dynamic_relocs
;
6381 if (indmips
->readonly_reloc
)
6382 dirmips
->readonly_reloc
= true;
6383 if (dirmips
->min_dyn_reloc_index
== 0
6384 || (indmips
->min_dyn_reloc_index
!= 0
6385 && indmips
->min_dyn_reloc_index
< dirmips
->min_dyn_reloc_index
))
6386 dirmips
->min_dyn_reloc_index
= indmips
->min_dyn_reloc_index
;
6387 if (indmips
->no_fn_stub
)
6388 dirmips
->no_fn_stub
= true;
6392 _bfd_mips_elf_hide_symbol (info
, entry
, force_local
)
6393 struct bfd_link_info
*info
;
6394 struct elf_link_hash_entry
*entry
;
6395 boolean force_local
;
6399 struct mips_got_info
*g
;
6400 struct mips_elf_link_hash_entry
*h
;
6402 h
= (struct mips_elf_link_hash_entry
*) entry
;
6403 if (h
->forced_local
)
6405 h
->forced_local
= true;
6407 dynobj
= elf_hash_table (info
)->dynobj
;
6408 got
= bfd_get_section_by_name (dynobj
, ".got");
6409 g
= (struct mips_got_info
*) elf_section_data (got
)->tdata
;
6411 _bfd_elf_link_hash_hide_symbol (info
, &h
->root
, force_local
);
6413 /* FIXME: Do we allocate too much GOT space here? */
6415 got
->_raw_size
+= MIPS_ELF_GOT_SIZE (dynobj
);
6419 _bfd_mips_elf_ignore_discarded_relocs (sec
)
6422 if (strcmp (sec
->name
, ".pdr") == 0)
6427 /* MIPS ELF uses a special find_nearest_line routine in order the
6428 handle the ECOFF debugging information. */
6430 struct mips_elf_find_line
6432 struct ecoff_debug_info d
;
6433 struct ecoff_find_line i
;
6437 _bfd_mips_elf_find_nearest_line (abfd
, section
, symbols
, offset
, filename_ptr
,
6438 functionname_ptr
, line_ptr
)
6443 const char **filename_ptr
;
6444 const char **functionname_ptr
;
6445 unsigned int *line_ptr
;
6449 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
6450 filename_ptr
, functionname_ptr
,
6454 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
6455 filename_ptr
, functionname_ptr
,
6457 (unsigned) (ABI_64_P (abfd
) ? 8 : 0),
6458 &elf_tdata (abfd
)->dwarf2_find_line_info
))
6461 msec
= bfd_get_section_by_name (abfd
, ".mdebug");
6465 struct mips_elf_find_line
*fi
;
6466 const struct ecoff_debug_swap
* const swap
=
6467 get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
6469 /* If we are called during a link, mips_elf_final_link may have
6470 cleared the SEC_HAS_CONTENTS field. We force it back on here
6471 if appropriate (which it normally will be). */
6472 origflags
= msec
->flags
;
6473 if (elf_section_data (msec
)->this_hdr
.sh_type
!= SHT_NOBITS
)
6474 msec
->flags
|= SEC_HAS_CONTENTS
;
6476 fi
= elf_tdata (abfd
)->find_line_info
;
6479 bfd_size_type external_fdr_size
;
6482 struct fdr
*fdr_ptr
;
6483 bfd_size_type amt
= sizeof (struct mips_elf_find_line
);
6485 fi
= (struct mips_elf_find_line
*) bfd_zalloc (abfd
, amt
);
6488 msec
->flags
= origflags
;
6492 if (! _bfd_mips_elf_read_ecoff_info (abfd
, msec
, &fi
->d
))
6494 msec
->flags
= origflags
;
6498 /* Swap in the FDR information. */
6499 amt
= fi
->d
.symbolic_header
.ifdMax
* sizeof (struct fdr
);
6500 fi
->d
.fdr
= (struct fdr
*) bfd_alloc (abfd
, amt
);
6501 if (fi
->d
.fdr
== NULL
)
6503 msec
->flags
= origflags
;
6506 external_fdr_size
= swap
->external_fdr_size
;
6507 fdr_ptr
= fi
->d
.fdr
;
6508 fraw_src
= (char *) fi
->d
.external_fdr
;
6509 fraw_end
= (fraw_src
6510 + fi
->d
.symbolic_header
.ifdMax
* external_fdr_size
);
6511 for (; fraw_src
< fraw_end
; fraw_src
+= external_fdr_size
, fdr_ptr
++)
6512 (*swap
->swap_fdr_in
) (abfd
, (PTR
) fraw_src
, fdr_ptr
);
6514 elf_tdata (abfd
)->find_line_info
= fi
;
6516 /* Note that we don't bother to ever free this information.
6517 find_nearest_line is either called all the time, as in
6518 objdump -l, so the information should be saved, or it is
6519 rarely called, as in ld error messages, so the memory
6520 wasted is unimportant. Still, it would probably be a
6521 good idea for free_cached_info to throw it away. */
6524 if (_bfd_ecoff_locate_line (abfd
, section
, offset
, &fi
->d
, swap
,
6525 &fi
->i
, filename_ptr
, functionname_ptr
,
6528 msec
->flags
= origflags
;
6532 msec
->flags
= origflags
;
6535 /* Fall back on the generic ELF find_nearest_line routine. */
6537 return _bfd_elf_find_nearest_line (abfd
, section
, symbols
, offset
,
6538 filename_ptr
, functionname_ptr
,
6542 /* When are writing out the .options or .MIPS.options section,
6543 remember the bytes we are writing out, so that we can install the
6544 GP value in the section_processing routine. */
6547 _bfd_mips_elf_set_section_contents (abfd
, section
, location
, offset
, count
)
6552 bfd_size_type count
;
6554 if (strcmp (section
->name
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)) == 0)
6558 if (elf_section_data (section
) == NULL
)
6560 bfd_size_type amt
= sizeof (struct bfd_elf_section_data
);
6561 section
->used_by_bfd
= (PTR
) bfd_zalloc (abfd
, amt
);
6562 if (elf_section_data (section
) == NULL
)
6565 c
= (bfd_byte
*) elf_section_data (section
)->tdata
;
6570 if (section
->_cooked_size
!= 0)
6571 size
= section
->_cooked_size
;
6573 size
= section
->_raw_size
;
6574 c
= (bfd_byte
*) bfd_zalloc (abfd
, size
);
6577 elf_section_data (section
)->tdata
= (PTR
) c
;
6580 memcpy (c
+ offset
, location
, (size_t) count
);
6583 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
,
6587 /* This is almost identical to bfd_generic_get_... except that some
6588 MIPS relocations need to be handled specially. Sigh. */
6591 _bfd_elf_mips_get_relocated_section_contents (abfd
, link_info
, link_order
,
6592 data
, relocateable
, symbols
)
6594 struct bfd_link_info
*link_info
;
6595 struct bfd_link_order
*link_order
;
6597 boolean relocateable
;
6600 /* Get enough memory to hold the stuff */
6601 bfd
*input_bfd
= link_order
->u
.indirect
.section
->owner
;
6602 asection
*input_section
= link_order
->u
.indirect
.section
;
6604 long reloc_size
= bfd_get_reloc_upper_bound (input_bfd
, input_section
);
6605 arelent
**reloc_vector
= NULL
;
6611 reloc_vector
= (arelent
**) bfd_malloc ((bfd_size_type
) reloc_size
);
6612 if (reloc_vector
== NULL
&& reloc_size
!= 0)
6615 /* read in the section */
6616 if (!bfd_get_section_contents (input_bfd
,
6620 input_section
->_raw_size
))
6623 /* We're not relaxing the section, so just copy the size info */
6624 input_section
->_cooked_size
= input_section
->_raw_size
;
6625 input_section
->reloc_done
= true;
6627 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
6631 if (reloc_count
< 0)
6634 if (reloc_count
> 0)
6639 bfd_vma gp
= 0x12345678; /* initialize just to shut gcc up */
6642 struct bfd_hash_entry
*h
;
6643 struct bfd_link_hash_entry
*lh
;
6644 /* Skip all this stuff if we aren't mixing formats. */
6645 if (abfd
&& input_bfd
6646 && abfd
->xvec
== input_bfd
->xvec
)
6650 h
= bfd_hash_lookup (&link_info
->hash
->table
, "_gp", false, false);
6651 lh
= (struct bfd_link_hash_entry
*) h
;
6658 case bfd_link_hash_undefined
:
6659 case bfd_link_hash_undefweak
:
6660 case bfd_link_hash_common
:
6663 case bfd_link_hash_defined
:
6664 case bfd_link_hash_defweak
:
6666 gp
= lh
->u
.def
.value
;
6668 case bfd_link_hash_indirect
:
6669 case bfd_link_hash_warning
:
6671 /* @@FIXME ignoring warning for now */
6673 case bfd_link_hash_new
:
6682 for (parent
= reloc_vector
; *parent
!= (arelent
*) NULL
;
6685 char *error_message
= (char *) NULL
;
6686 bfd_reloc_status_type r
;
6688 /* Specific to MIPS: Deal with relocation types that require
6689 knowing the gp of the output bfd. */
6690 asymbol
*sym
= *(*parent
)->sym_ptr_ptr
;
6691 if (bfd_is_abs_section (sym
->section
) && abfd
)
6693 /* The special_function wouldn't get called anyways. */
6697 /* The gp isn't there; let the special function code
6698 fall over on its own. */
6700 else if ((*parent
)->howto
->special_function
6701 == _bfd_mips_elf32_gprel16_reloc
)
6703 /* bypass special_function call */
6704 r
= _bfd_mips_elf_gprel16_with_gp (input_bfd
, sym
, *parent
,
6705 input_section
, relocateable
,
6707 goto skip_bfd_perform_relocation
;
6709 /* end mips specific stuff */
6711 r
= bfd_perform_relocation (input_bfd
,
6715 relocateable
? abfd
: (bfd
*) NULL
,
6717 skip_bfd_perform_relocation
:
6721 asection
*os
= input_section
->output_section
;
6723 /* A partial link, so keep the relocs */
6724 os
->orelocation
[os
->reloc_count
] = *parent
;
6728 if (r
!= bfd_reloc_ok
)
6732 case bfd_reloc_undefined
:
6733 if (!((*link_info
->callbacks
->undefined_symbol
)
6734 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
6735 input_bfd
, input_section
, (*parent
)->address
,
6739 case bfd_reloc_dangerous
:
6740 BFD_ASSERT (error_message
!= (char *) NULL
);
6741 if (!((*link_info
->callbacks
->reloc_dangerous
)
6742 (link_info
, error_message
, input_bfd
, input_section
,
6743 (*parent
)->address
)))
6746 case bfd_reloc_overflow
:
6747 if (!((*link_info
->callbacks
->reloc_overflow
)
6748 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
6749 (*parent
)->howto
->name
, (*parent
)->addend
,
6750 input_bfd
, input_section
, (*parent
)->address
)))
6753 case bfd_reloc_outofrange
:
6762 if (reloc_vector
!= NULL
)
6763 free (reloc_vector
);
6767 if (reloc_vector
!= NULL
)
6768 free (reloc_vector
);
6772 /* Create a MIPS ELF linker hash table. */
6774 struct bfd_link_hash_table
*
6775 _bfd_mips_elf_link_hash_table_create (abfd
)
6778 struct mips_elf_link_hash_table
*ret
;
6779 bfd_size_type amt
= sizeof (struct mips_elf_link_hash_table
);
6781 ret
= (struct mips_elf_link_hash_table
*) bfd_malloc (amt
);
6782 if (ret
== (struct mips_elf_link_hash_table
*) NULL
)
6785 if (! _bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
6786 mips_elf_link_hash_newfunc
))
6793 /* We no longer use this. */
6794 for (i
= 0; i
< SIZEOF_MIPS_DYNSYM_SECNAMES
; i
++)
6795 ret
->dynsym_sec_strindex
[i
] = (bfd_size_type
) -1;
6797 ret
->procedure_count
= 0;
6798 ret
->compact_rel_size
= 0;
6799 ret
->use_rld_obj_head
= false;
6801 ret
->mips16_stubs_seen
= false;
6803 return &ret
->root
.root
;
6806 /* We need to use a special link routine to handle the .reginfo and
6807 the .mdebug sections. We need to merge all instances of these
6808 sections together, not write them all out sequentially. */
6811 _bfd_mips_elf_final_link (abfd
, info
)
6813 struct bfd_link_info
*info
;
6817 struct bfd_link_order
*p
;
6818 asection
*reginfo_sec
, *mdebug_sec
, *gptab_data_sec
, *gptab_bss_sec
;
6819 asection
*rtproc_sec
;
6820 Elf32_RegInfo reginfo
;
6821 struct ecoff_debug_info debug
;
6822 const struct ecoff_debug_swap
*swap
6823 = get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
6824 HDRR
*symhdr
= &debug
.symbolic_header
;
6825 PTR mdebug_handle
= NULL
;
6831 static const char * const secname
[] =
6833 ".text", ".init", ".fini", ".data",
6834 ".rodata", ".sdata", ".sbss", ".bss"
6836 static const int sc
[] =
6838 scText
, scInit
, scFini
, scData
,
6839 scRData
, scSData
, scSBss
, scBss
6842 /* If all the things we linked together were PIC, but we're
6843 producing an executable (rather than a shared object), then the
6844 resulting file is CPIC (i.e., it calls PIC code.) */
6846 && !info
->relocateable
6847 && elf_elfheader (abfd
)->e_flags
& EF_MIPS_PIC
)
6849 elf_elfheader (abfd
)->e_flags
&= ~EF_MIPS_PIC
;
6850 elf_elfheader (abfd
)->e_flags
|= EF_MIPS_CPIC
;
6853 /* We'd carefully arranged the dynamic symbol indices, and then the
6854 generic size_dynamic_sections renumbered them out from under us.
6855 Rather than trying somehow to prevent the renumbering, just do
6857 if (elf_hash_table (info
)->dynamic_sections_created
)
6861 struct mips_got_info
*g
;
6863 /* When we resort, we must tell mips_elf_sort_hash_table what
6864 the lowest index it may use is. That's the number of section
6865 symbols we're going to add. The generic ELF linker only
6866 adds these symbols when building a shared object. Note that
6867 we count the sections after (possibly) removing the .options
6869 if (! mips_elf_sort_hash_table (info
, (info
->shared
6870 ? bfd_count_sections (abfd
) + 1
6874 /* Make sure we didn't grow the global .got region. */
6875 dynobj
= elf_hash_table (info
)->dynobj
;
6876 got
= bfd_get_section_by_name (dynobj
, ".got");
6877 g
= (struct mips_got_info
*) elf_section_data (got
)->tdata
;
6879 if (g
->global_gotsym
!= NULL
)
6880 BFD_ASSERT ((elf_hash_table (info
)->dynsymcount
6881 - g
->global_gotsym
->dynindx
)
6882 <= g
->global_gotno
);
6885 /* On IRIX5, we omit the .options section. On IRIX6, however, we
6886 include it, even though we don't process it quite right. (Some
6887 entries are supposed to be merged.) Empirically, we seem to be
6888 better off including it then not. */
6889 if (IRIX_COMPAT (abfd
) == ict_irix5
|| IRIX_COMPAT (abfd
) == ict_none
)
6890 for (secpp
= &abfd
->sections
; *secpp
!= NULL
; secpp
= &(*secpp
)->next
)
6892 if (strcmp ((*secpp
)->name
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)) == 0)
6894 for (p
= (*secpp
)->link_order_head
; p
!= NULL
; p
= p
->next
)
6895 if (p
->type
== bfd_indirect_link_order
)
6896 p
->u
.indirect
.section
->flags
&= ~SEC_HAS_CONTENTS
;
6897 (*secpp
)->link_order_head
= NULL
;
6898 bfd_section_list_remove (abfd
, secpp
);
6899 --abfd
->section_count
;
6905 /* We include .MIPS.options, even though we don't process it quite right.
6906 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
6907 to be better off including it than not. */
6908 for (secpp
= &abfd
->sections
; *secpp
!= NULL
; secpp
= &(*secpp
)->next
)
6910 if (strcmp ((*secpp
)->name
, ".MIPS.options") == 0)
6912 for (p
= (*secpp
)->link_order_head
; p
!= NULL
; p
= p
->next
)
6913 if (p
->type
== bfd_indirect_link_order
)
6914 p
->u
.indirect
.section
->flags
&=~ SEC_HAS_CONTENTS
;
6915 (*secpp
)->link_order_head
= NULL
;
6916 bfd_section_list_remove (abfd
, secpp
);
6917 --abfd
->section_count
;
6923 /* Get a value for the GP register. */
6924 if (elf_gp (abfd
) == 0)
6926 struct bfd_link_hash_entry
*h
;
6928 h
= bfd_link_hash_lookup (info
->hash
, "_gp", false, false, true);
6929 if (h
!= (struct bfd_link_hash_entry
*) NULL
6930 && h
->type
== bfd_link_hash_defined
)
6931 elf_gp (abfd
) = (h
->u
.def
.value
6932 + h
->u
.def
.section
->output_section
->vma
6933 + h
->u
.def
.section
->output_offset
);
6934 else if (info
->relocateable
)
6936 bfd_vma lo
= MINUS_ONE
;
6938 /* Find the GP-relative section with the lowest offset. */
6939 for (o
= abfd
->sections
; o
!= (asection
*) NULL
; o
= o
->next
)
6941 && (elf_section_data (o
)->this_hdr
.sh_flags
& SHF_MIPS_GPREL
))
6944 /* And calculate GP relative to that. */
6945 elf_gp (abfd
) = lo
+ ELF_MIPS_GP_OFFSET (abfd
);
6949 /* If the relocate_section function needs to do a reloc
6950 involving the GP value, it should make a reloc_dangerous
6951 callback to warn that GP is not defined. */
6955 /* Go through the sections and collect the .reginfo and .mdebug
6959 gptab_data_sec
= NULL
;
6960 gptab_bss_sec
= NULL
;
6961 for (o
= abfd
->sections
; o
!= (asection
*) NULL
; o
= o
->next
)
6963 if (strcmp (o
->name
, ".reginfo") == 0)
6965 memset (®info
, 0, sizeof reginfo
);
6967 /* We have found the .reginfo section in the output file.
6968 Look through all the link_orders comprising it and merge
6969 the information together. */
6970 for (p
= o
->link_order_head
;
6971 p
!= (struct bfd_link_order
*) NULL
;
6974 asection
*input_section
;
6976 Elf32_External_RegInfo ext
;
6979 if (p
->type
!= bfd_indirect_link_order
)
6981 if (p
->type
== bfd_data_link_order
)
6986 input_section
= p
->u
.indirect
.section
;
6987 input_bfd
= input_section
->owner
;
6989 /* The linker emulation code has probably clobbered the
6990 size to be zero bytes. */
6991 if (input_section
->_raw_size
== 0)
6992 input_section
->_raw_size
= sizeof (Elf32_External_RegInfo
);
6994 if (! bfd_get_section_contents (input_bfd
, input_section
,
6997 (bfd_size_type
) sizeof ext
))
7000 bfd_mips_elf32_swap_reginfo_in (input_bfd
, &ext
, &sub
);
7002 reginfo
.ri_gprmask
|= sub
.ri_gprmask
;
7003 reginfo
.ri_cprmask
[0] |= sub
.ri_cprmask
[0];
7004 reginfo
.ri_cprmask
[1] |= sub
.ri_cprmask
[1];
7005 reginfo
.ri_cprmask
[2] |= sub
.ri_cprmask
[2];
7006 reginfo
.ri_cprmask
[3] |= sub
.ri_cprmask
[3];
7008 /* ri_gp_value is set by the function
7009 mips_elf32_section_processing when the section is
7010 finally written out. */
7012 /* Hack: reset the SEC_HAS_CONTENTS flag so that
7013 elf_link_input_bfd ignores this section. */
7014 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
7017 /* Size has been set in _bfd_mips_elf_always_size_sections. */
7018 BFD_ASSERT(o
->_raw_size
== sizeof (Elf32_External_RegInfo
));
7020 /* Skip this section later on (I don't think this currently
7021 matters, but someday it might). */
7022 o
->link_order_head
= (struct bfd_link_order
*) NULL
;
7027 if (strcmp (o
->name
, ".mdebug") == 0)
7029 struct extsym_info einfo
;
7032 /* We have found the .mdebug section in the output file.
7033 Look through all the link_orders comprising it and merge
7034 the information together. */
7035 symhdr
->magic
= swap
->sym_magic
;
7036 /* FIXME: What should the version stamp be? */
7038 symhdr
->ilineMax
= 0;
7042 symhdr
->isymMax
= 0;
7043 symhdr
->ioptMax
= 0;
7044 symhdr
->iauxMax
= 0;
7046 symhdr
->issExtMax
= 0;
7049 symhdr
->iextMax
= 0;
7051 /* We accumulate the debugging information itself in the
7052 debug_info structure. */
7054 debug
.external_dnr
= NULL
;
7055 debug
.external_pdr
= NULL
;
7056 debug
.external_sym
= NULL
;
7057 debug
.external_opt
= NULL
;
7058 debug
.external_aux
= NULL
;
7060 debug
.ssext
= debug
.ssext_end
= NULL
;
7061 debug
.external_fdr
= NULL
;
7062 debug
.external_rfd
= NULL
;
7063 debug
.external_ext
= debug
.external_ext_end
= NULL
;
7065 mdebug_handle
= bfd_ecoff_debug_init (abfd
, &debug
, swap
, info
);
7066 if (mdebug_handle
== (PTR
) NULL
)
7070 esym
.cobol_main
= 0;
7074 esym
.asym
.iss
= issNil
;
7075 esym
.asym
.st
= stLocal
;
7076 esym
.asym
.reserved
= 0;
7077 esym
.asym
.index
= indexNil
;
7079 for (i
= 0; i
< sizeof (secname
) / sizeof (secname
[0]); i
++)
7081 esym
.asym
.sc
= sc
[i
];
7082 s
= bfd_get_section_by_name (abfd
, secname
[i
]);
7085 esym
.asym
.value
= s
->vma
;
7086 last
= s
->vma
+ s
->_raw_size
;
7089 esym
.asym
.value
= last
;
7090 if (!bfd_ecoff_debug_one_external (abfd
, &debug
, swap
,
7095 for (p
= o
->link_order_head
;
7096 p
!= (struct bfd_link_order
*) NULL
;
7099 asection
*input_section
;
7101 const struct ecoff_debug_swap
*input_swap
;
7102 struct ecoff_debug_info input_debug
;
7106 if (p
->type
!= bfd_indirect_link_order
)
7108 if (p
->type
== bfd_data_link_order
)
7113 input_section
= p
->u
.indirect
.section
;
7114 input_bfd
= input_section
->owner
;
7116 if (bfd_get_flavour (input_bfd
) != bfd_target_elf_flavour
7117 || (get_elf_backend_data (input_bfd
)
7118 ->elf_backend_ecoff_debug_swap
) == NULL
)
7120 /* I don't know what a non MIPS ELF bfd would be
7121 doing with a .mdebug section, but I don't really
7122 want to deal with it. */
7126 input_swap
= (get_elf_backend_data (input_bfd
)
7127 ->elf_backend_ecoff_debug_swap
);
7129 BFD_ASSERT (p
->size
== input_section
->_raw_size
);
7131 /* The ECOFF linking code expects that we have already
7132 read in the debugging information and set up an
7133 ecoff_debug_info structure, so we do that now. */
7134 if (! _bfd_mips_elf_read_ecoff_info (input_bfd
, input_section
,
7138 if (! (bfd_ecoff_debug_accumulate
7139 (mdebug_handle
, abfd
, &debug
, swap
, input_bfd
,
7140 &input_debug
, input_swap
, info
)))
7143 /* Loop through the external symbols. For each one with
7144 interesting information, try to find the symbol in
7145 the linker global hash table and save the information
7146 for the output external symbols. */
7147 eraw_src
= input_debug
.external_ext
;
7148 eraw_end
= (eraw_src
7149 + (input_debug
.symbolic_header
.iextMax
7150 * input_swap
->external_ext_size
));
7152 eraw_src
< eraw_end
;
7153 eraw_src
+= input_swap
->external_ext_size
)
7157 struct mips_elf_link_hash_entry
*h
;
7159 (*input_swap
->swap_ext_in
) (input_bfd
, (PTR
) eraw_src
, &ext
);
7160 if (ext
.asym
.sc
== scNil
7161 || ext
.asym
.sc
== scUndefined
7162 || ext
.asym
.sc
== scSUndefined
)
7165 name
= input_debug
.ssext
+ ext
.asym
.iss
;
7166 h
= mips_elf_link_hash_lookup (mips_elf_hash_table (info
),
7167 name
, false, false, true);
7168 if (h
== NULL
|| h
->esym
.ifd
!= -2)
7174 < input_debug
.symbolic_header
.ifdMax
);
7175 ext
.ifd
= input_debug
.ifdmap
[ext
.ifd
];
7181 /* Free up the information we just read. */
7182 free (input_debug
.line
);
7183 free (input_debug
.external_dnr
);
7184 free (input_debug
.external_pdr
);
7185 free (input_debug
.external_sym
);
7186 free (input_debug
.external_opt
);
7187 free (input_debug
.external_aux
);
7188 free (input_debug
.ss
);
7189 free (input_debug
.ssext
);
7190 free (input_debug
.external_fdr
);
7191 free (input_debug
.external_rfd
);
7192 free (input_debug
.external_ext
);
7194 /* Hack: reset the SEC_HAS_CONTENTS flag so that
7195 elf_link_input_bfd ignores this section. */
7196 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
7199 if (SGI_COMPAT (abfd
) && info
->shared
)
7201 /* Create .rtproc section. */
7202 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
7203 if (rtproc_sec
== NULL
)
7205 flagword flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
7206 | SEC_LINKER_CREATED
| SEC_READONLY
);
7208 rtproc_sec
= bfd_make_section (abfd
, ".rtproc");
7209 if (rtproc_sec
== NULL
7210 || ! bfd_set_section_flags (abfd
, rtproc_sec
, flags
)
7211 || ! bfd_set_section_alignment (abfd
, rtproc_sec
, 4))
7215 if (! mips_elf_create_procedure_table (mdebug_handle
, abfd
,
7221 /* Build the external symbol information. */
7224 einfo
.debug
= &debug
;
7226 einfo
.failed
= false;
7227 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
7228 mips_elf_output_extsym
,
7233 /* Set the size of the .mdebug section. */
7234 o
->_raw_size
= bfd_ecoff_debug_size (abfd
, &debug
, swap
);
7236 /* Skip this section later on (I don't think this currently
7237 matters, but someday it might). */
7238 o
->link_order_head
= (struct bfd_link_order
*) NULL
;
7243 if (strncmp (o
->name
, ".gptab.", sizeof ".gptab." - 1) == 0)
7245 const char *subname
;
7248 Elf32_External_gptab
*ext_tab
;
7251 /* The .gptab.sdata and .gptab.sbss sections hold
7252 information describing how the small data area would
7253 change depending upon the -G switch. These sections
7254 not used in executables files. */
7255 if (! info
->relocateable
)
7257 for (p
= o
->link_order_head
;
7258 p
!= (struct bfd_link_order
*) NULL
;
7261 asection
*input_section
;
7263 if (p
->type
!= bfd_indirect_link_order
)
7265 if (p
->type
== bfd_data_link_order
)
7270 input_section
= p
->u
.indirect
.section
;
7272 /* Hack: reset the SEC_HAS_CONTENTS flag so that
7273 elf_link_input_bfd ignores this section. */
7274 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
7277 /* Skip this section later on (I don't think this
7278 currently matters, but someday it might). */
7279 o
->link_order_head
= (struct bfd_link_order
*) NULL
;
7281 /* Really remove the section. */
7282 for (secpp
= &abfd
->sections
;
7284 secpp
= &(*secpp
)->next
)
7286 bfd_section_list_remove (abfd
, secpp
);
7287 --abfd
->section_count
;
7292 /* There is one gptab for initialized data, and one for
7293 uninitialized data. */
7294 if (strcmp (o
->name
, ".gptab.sdata") == 0)
7296 else if (strcmp (o
->name
, ".gptab.sbss") == 0)
7300 (*_bfd_error_handler
)
7301 (_("%s: illegal section name `%s'"),
7302 bfd_get_filename (abfd
), o
->name
);
7303 bfd_set_error (bfd_error_nonrepresentable_section
);
7307 /* The linker script always combines .gptab.data and
7308 .gptab.sdata into .gptab.sdata, and likewise for
7309 .gptab.bss and .gptab.sbss. It is possible that there is
7310 no .sdata or .sbss section in the output file, in which
7311 case we must change the name of the output section. */
7312 subname
= o
->name
+ sizeof ".gptab" - 1;
7313 if (bfd_get_section_by_name (abfd
, subname
) == NULL
)
7315 if (o
== gptab_data_sec
)
7316 o
->name
= ".gptab.data";
7318 o
->name
= ".gptab.bss";
7319 subname
= o
->name
+ sizeof ".gptab" - 1;
7320 BFD_ASSERT (bfd_get_section_by_name (abfd
, subname
) != NULL
);
7323 /* Set up the first entry. */
7325 amt
= c
* sizeof (Elf32_gptab
);
7326 tab
= (Elf32_gptab
*) bfd_malloc (amt
);
7329 tab
[0].gt_header
.gt_current_g_value
= elf_gp_size (abfd
);
7330 tab
[0].gt_header
.gt_unused
= 0;
7332 /* Combine the input sections. */
7333 for (p
= o
->link_order_head
;
7334 p
!= (struct bfd_link_order
*) NULL
;
7337 asection
*input_section
;
7341 bfd_size_type gpentry
;
7343 if (p
->type
!= bfd_indirect_link_order
)
7345 if (p
->type
== bfd_data_link_order
)
7350 input_section
= p
->u
.indirect
.section
;
7351 input_bfd
= input_section
->owner
;
7353 /* Combine the gptab entries for this input section one
7354 by one. We know that the input gptab entries are
7355 sorted by ascending -G value. */
7356 size
= bfd_section_size (input_bfd
, input_section
);
7358 for (gpentry
= sizeof (Elf32_External_gptab
);
7360 gpentry
+= sizeof (Elf32_External_gptab
))
7362 Elf32_External_gptab ext_gptab
;
7363 Elf32_gptab int_gptab
;
7369 if (! (bfd_get_section_contents
7370 (input_bfd
, input_section
, (PTR
) &ext_gptab
,
7372 (bfd_size_type
) sizeof (Elf32_External_gptab
))))
7378 bfd_mips_elf32_swap_gptab_in (input_bfd
, &ext_gptab
,
7380 val
= int_gptab
.gt_entry
.gt_g_value
;
7381 add
= int_gptab
.gt_entry
.gt_bytes
- last
;
7384 for (look
= 1; look
< c
; look
++)
7386 if (tab
[look
].gt_entry
.gt_g_value
>= val
)
7387 tab
[look
].gt_entry
.gt_bytes
+= add
;
7389 if (tab
[look
].gt_entry
.gt_g_value
== val
)
7395 Elf32_gptab
*new_tab
;
7398 /* We need a new table entry. */
7399 amt
= (bfd_size_type
) (c
+ 1) * sizeof (Elf32_gptab
);
7400 new_tab
= (Elf32_gptab
*) bfd_realloc ((PTR
) tab
, amt
);
7401 if (new_tab
== NULL
)
7407 tab
[c
].gt_entry
.gt_g_value
= val
;
7408 tab
[c
].gt_entry
.gt_bytes
= add
;
7410 /* Merge in the size for the next smallest -G
7411 value, since that will be implied by this new
7414 for (look
= 1; look
< c
; look
++)
7416 if (tab
[look
].gt_entry
.gt_g_value
< val
7418 || (tab
[look
].gt_entry
.gt_g_value
7419 > tab
[max
].gt_entry
.gt_g_value
)))
7423 tab
[c
].gt_entry
.gt_bytes
+=
7424 tab
[max
].gt_entry
.gt_bytes
;
7429 last
= int_gptab
.gt_entry
.gt_bytes
;
7432 /* Hack: reset the SEC_HAS_CONTENTS flag so that
7433 elf_link_input_bfd ignores this section. */
7434 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
7437 /* The table must be sorted by -G value. */
7439 qsort (tab
+ 1, c
- 1, sizeof (tab
[0]), gptab_compare
);
7441 /* Swap out the table. */
7442 amt
= (bfd_size_type
) c
* sizeof (Elf32_External_gptab
);
7443 ext_tab
= (Elf32_External_gptab
*) bfd_alloc (abfd
, amt
);
7444 if (ext_tab
== NULL
)
7450 for (j
= 0; j
< c
; j
++)
7451 bfd_mips_elf32_swap_gptab_out (abfd
, tab
+ j
, ext_tab
+ j
);
7454 o
->_raw_size
= c
* sizeof (Elf32_External_gptab
);
7455 o
->contents
= (bfd_byte
*) ext_tab
;
7457 /* Skip this section later on (I don't think this currently
7458 matters, but someday it might). */
7459 o
->link_order_head
= (struct bfd_link_order
*) NULL
;
7463 /* Invoke the regular ELF backend linker to do all the work. */
7464 if (ABI_64_P (abfd
))
7467 if (!bfd_elf64_bfd_final_link (abfd
, info
))
7474 else if (!bfd_elf32_bfd_final_link (abfd
, info
))
7477 /* Now write out the computed sections. */
7479 if (reginfo_sec
!= (asection
*) NULL
)
7481 Elf32_External_RegInfo ext
;
7483 bfd_mips_elf32_swap_reginfo_out (abfd
, ®info
, &ext
);
7484 if (! bfd_set_section_contents (abfd
, reginfo_sec
, (PTR
) &ext
,
7486 (bfd_size_type
) sizeof ext
))
7490 if (mdebug_sec
!= (asection
*) NULL
)
7492 BFD_ASSERT (abfd
->output_has_begun
);
7493 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle
, abfd
, &debug
,
7495 mdebug_sec
->filepos
))
7498 bfd_ecoff_debug_free (mdebug_handle
, abfd
, &debug
, swap
, info
);
7501 if (gptab_data_sec
!= (asection
*) NULL
)
7503 if (! bfd_set_section_contents (abfd
, gptab_data_sec
,
7504 gptab_data_sec
->contents
,
7506 gptab_data_sec
->_raw_size
))
7510 if (gptab_bss_sec
!= (asection
*) NULL
)
7512 if (! bfd_set_section_contents (abfd
, gptab_bss_sec
,
7513 gptab_bss_sec
->contents
,
7515 gptab_bss_sec
->_raw_size
))
7519 if (SGI_COMPAT (abfd
))
7521 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
7522 if (rtproc_sec
!= NULL
)
7524 if (! bfd_set_section_contents (abfd
, rtproc_sec
,
7525 rtproc_sec
->contents
,
7527 rtproc_sec
->_raw_size
))
7535 /* Merge backend specific data from an object file to the output
7536 object file when linking. */
7539 _bfd_mips_elf_merge_private_bfd_data (ibfd
, obfd
)
7546 boolean null_input_bfd
= true;
7549 /* Check if we have the same endianess */
7550 if (_bfd_generic_verify_endian_match (ibfd
, obfd
) == false)
7553 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
7554 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
7557 new_flags
= elf_elfheader (ibfd
)->e_flags
;
7558 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_NOREORDER
;
7559 old_flags
= elf_elfheader (obfd
)->e_flags
;
7561 if (! elf_flags_init (obfd
))
7563 elf_flags_init (obfd
) = true;
7564 elf_elfheader (obfd
)->e_flags
= new_flags
;
7565 elf_elfheader (obfd
)->e_ident
[EI_CLASS
]
7566 = elf_elfheader (ibfd
)->e_ident
[EI_CLASS
];
7568 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
7569 && bfd_get_arch_info (obfd
)->the_default
)
7571 if (! bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
7572 bfd_get_mach (ibfd
)))
7579 /* Check flag compatibility. */
7581 new_flags
&= ~EF_MIPS_NOREORDER
;
7582 old_flags
&= ~EF_MIPS_NOREORDER
;
7584 if (new_flags
== old_flags
)
7587 /* Check to see if the input BFD actually contains any sections.
7588 If not, its flags may not have been initialised either, but it cannot
7589 actually cause any incompatibility. */
7590 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
7592 /* Ignore synthetic sections and empty .text, .data and .bss sections
7593 which are automatically generated by gas. */
7594 if (strcmp (sec
->name
, ".reginfo")
7595 && strcmp (sec
->name
, ".mdebug")
7596 && ((!strcmp (sec
->name
, ".text")
7597 || !strcmp (sec
->name
, ".data")
7598 || !strcmp (sec
->name
, ".bss"))
7599 && sec
->_raw_size
!= 0))
7601 null_input_bfd
= false;
7610 if ((new_flags
& EF_MIPS_PIC
) != (old_flags
& EF_MIPS_PIC
))
7612 new_flags
&= ~EF_MIPS_PIC
;
7613 old_flags
&= ~EF_MIPS_PIC
;
7614 (*_bfd_error_handler
)
7615 (_("%s: linking PIC files with non-PIC files"),
7616 bfd_archive_filename (ibfd
));
7620 if ((new_flags
& EF_MIPS_CPIC
) != (old_flags
& EF_MIPS_CPIC
))
7622 new_flags
&= ~EF_MIPS_CPIC
;
7623 old_flags
&= ~EF_MIPS_CPIC
;
7624 (*_bfd_error_handler
)
7625 (_("%s: linking abicalls files with non-abicalls files"),
7626 bfd_archive_filename (ibfd
));
7630 /* Compare the ISA's. */
7631 if ((new_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
))
7632 != (old_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
)))
7634 int new_mach
= new_flags
& EF_MIPS_MACH
;
7635 int old_mach
= old_flags
& EF_MIPS_MACH
;
7636 int new_isa
= elf_mips_isa (new_flags
);
7637 int old_isa
= elf_mips_isa (old_flags
);
7639 /* If either has no machine specified, just compare the general isa's.
7640 Some combinations of machines are ok, if the isa's match. */
7643 || new_mach
== old_mach
7646 /* Don't warn about mixing code using 32-bit ISAs, or mixing code
7647 using 64-bit ISAs. They will normally use the same data sizes
7648 and calling conventions. */
7650 if (( (new_isa
== 1 || new_isa
== 2 || new_isa
== 32)
7651 ^ (old_isa
== 1 || old_isa
== 2 || old_isa
== 32)) != 0)
7653 (*_bfd_error_handler
)
7654 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
7655 bfd_archive_filename (ibfd
), new_isa
, old_isa
);
7660 /* Do we need to update the mach field? */
7661 if (old_mach
== 0 && new_mach
!= 0)
7662 elf_elfheader (obfd
)->e_flags
|= new_mach
;
7664 /* Do we need to update the ISA field? */
7665 if (new_isa
> old_isa
)
7667 elf_elfheader (obfd
)->e_flags
&= ~EF_MIPS_ARCH
;
7668 elf_elfheader (obfd
)->e_flags
7669 |= new_flags
& EF_MIPS_ARCH
;
7675 (*_bfd_error_handler
)
7676 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
7677 bfd_archive_filename (ibfd
),
7678 _bfd_elf_mips_mach (new_flags
),
7679 _bfd_elf_mips_mach (old_flags
));
7683 new_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
7684 old_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
7687 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
7688 does set EI_CLASS differently from any 32-bit ABI. */
7689 if ((new_flags
& EF_MIPS_ABI
) != (old_flags
& EF_MIPS_ABI
)
7690 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
7691 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
7693 /* Only error if both are set (to different values). */
7694 if (((new_flags
& EF_MIPS_ABI
) && (old_flags
& EF_MIPS_ABI
))
7695 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
7696 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
7698 (*_bfd_error_handler
)
7699 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
7700 bfd_archive_filename (ibfd
),
7701 elf_mips_abi_name (ibfd
),
7702 elf_mips_abi_name (obfd
));
7705 new_flags
&= ~EF_MIPS_ABI
;
7706 old_flags
&= ~EF_MIPS_ABI
;
7709 /* Warn about any other mismatches */
7710 if (new_flags
!= old_flags
)
7712 (*_bfd_error_handler
)
7713 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
7714 bfd_archive_filename (ibfd
), (unsigned long) new_flags
,
7715 (unsigned long) old_flags
);
7721 bfd_set_error (bfd_error_bad_value
);
7728 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
7731 _bfd_mips_elf_set_private_flags (abfd
, flags
)
7735 BFD_ASSERT (!elf_flags_init (abfd
)
7736 || elf_elfheader (abfd
)->e_flags
== flags
);
7738 elf_elfheader (abfd
)->e_flags
= flags
;
7739 elf_flags_init (abfd
) = true;
7744 _bfd_mips_elf_print_private_bfd_data (abfd
, ptr
)
7748 FILE *file
= (FILE *) ptr
;
7750 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
7752 /* Print normal ELF private data. */
7753 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
7755 /* xgettext:c-format */
7756 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
7758 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
)
7759 fprintf (file
, _(" [abi=O32]"));
7760 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O64
)
7761 fprintf (file
, _(" [abi=O64]"));
7762 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
)
7763 fprintf (file
, _(" [abi=EABI32]"));
7764 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
7765 fprintf (file
, _(" [abi=EABI64]"));
7766 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
))
7767 fprintf (file
, _(" [abi unknown]"));
7768 else if (ABI_N32_P (abfd
))
7769 fprintf (file
, _(" [abi=N32]"));
7770 else if (ABI_64_P (abfd
))
7771 fprintf (file
, _(" [abi=64]"));
7773 fprintf (file
, _(" [no abi set]"));
7775 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
)
7776 fprintf (file
, _(" [mips1]"));
7777 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
)
7778 fprintf (file
, _(" [mips2]"));
7779 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_3
)
7780 fprintf (file
, _(" [mips3]"));
7781 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_4
)
7782 fprintf (file
, _(" [mips4]"));
7783 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_5
)
7784 fprintf (file
, _(" [mips5]"));
7785 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
)
7786 fprintf (file
, _(" [mips32]"));
7787 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64
)
7788 fprintf (file
, _(" [mips64]"));
7790 fprintf (file
, _(" [unknown ISA]"));
7792 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MDMX
)
7793 fprintf (file
, _(" [mdmx]"));
7795 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_M16
)
7796 fprintf (file
, _(" [mips16]"));
7798 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_32BITMODE
)
7799 fprintf (file
, _(" [32bitmode]"));
7801 fprintf (file
, _(" [not 32bitmode]"));