1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
26 #include "libiberty.h"
29 #include "elf-vxworks.h"
32 /* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34 #define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37 /* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39 #define RELOC_SIZE(HTAB) \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
44 /* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46 #define SWAP_RELOC_IN(HTAB) \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
51 /* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53 #define SWAP_RELOC_OUT(HTAB) \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
58 #define elf_info_to_howto 0
59 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61 #define ARM_ELF_ABI_VERSION 0
62 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64 static bfd_boolean
elf32_arm_write_section (bfd
*output_bfd
,
65 struct bfd_link_info
*link_info
,
69 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
70 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
73 static reloc_howto_type elf32_arm_howto_table_1
[] =
76 HOWTO (R_ARM_NONE
, /* type */
78 0, /* size (0 = byte, 1 = short, 2 = long) */
80 FALSE
, /* pc_relative */
82 complain_overflow_dont
,/* complain_on_overflow */
83 bfd_elf_generic_reloc
, /* special_function */
84 "R_ARM_NONE", /* name */
85 FALSE
, /* partial_inplace */
88 FALSE
), /* pcrel_offset */
90 HOWTO (R_ARM_PC24
, /* type */
92 2, /* size (0 = byte, 1 = short, 2 = long) */
94 TRUE
, /* pc_relative */
96 complain_overflow_signed
,/* complain_on_overflow */
97 bfd_elf_generic_reloc
, /* special_function */
98 "R_ARM_PC24", /* name */
99 FALSE
, /* partial_inplace */
100 0x00ffffff, /* src_mask */
101 0x00ffffff, /* dst_mask */
102 TRUE
), /* pcrel_offset */
104 /* 32 bit absolute */
105 HOWTO (R_ARM_ABS32
, /* type */
107 2, /* size (0 = byte, 1 = short, 2 = long) */
109 FALSE
, /* pc_relative */
111 complain_overflow_bitfield
,/* complain_on_overflow */
112 bfd_elf_generic_reloc
, /* special_function */
113 "R_ARM_ABS32", /* name */
114 FALSE
, /* partial_inplace */
115 0xffffffff, /* src_mask */
116 0xffffffff, /* dst_mask */
117 FALSE
), /* pcrel_offset */
119 /* standard 32bit pc-relative reloc */
120 HOWTO (R_ARM_REL32
, /* type */
122 2, /* size (0 = byte, 1 = short, 2 = long) */
124 TRUE
, /* pc_relative */
126 complain_overflow_bitfield
,/* complain_on_overflow */
127 bfd_elf_generic_reloc
, /* special_function */
128 "R_ARM_REL32", /* name */
129 FALSE
, /* partial_inplace */
130 0xffffffff, /* src_mask */
131 0xffffffff, /* dst_mask */
132 TRUE
), /* pcrel_offset */
134 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
135 HOWTO (R_ARM_LDR_PC_G0
, /* type */
137 0, /* size (0 = byte, 1 = short, 2 = long) */
139 TRUE
, /* pc_relative */
141 complain_overflow_dont
,/* complain_on_overflow */
142 bfd_elf_generic_reloc
, /* special_function */
143 "R_ARM_LDR_PC_G0", /* name */
144 FALSE
, /* partial_inplace */
145 0xffffffff, /* src_mask */
146 0xffffffff, /* dst_mask */
147 TRUE
), /* pcrel_offset */
149 /* 16 bit absolute */
150 HOWTO (R_ARM_ABS16
, /* type */
152 1, /* size (0 = byte, 1 = short, 2 = long) */
154 FALSE
, /* pc_relative */
156 complain_overflow_bitfield
,/* complain_on_overflow */
157 bfd_elf_generic_reloc
, /* special_function */
158 "R_ARM_ABS16", /* name */
159 FALSE
, /* partial_inplace */
160 0x0000ffff, /* src_mask */
161 0x0000ffff, /* dst_mask */
162 FALSE
), /* pcrel_offset */
164 /* 12 bit absolute */
165 HOWTO (R_ARM_ABS12
, /* type */
167 2, /* size (0 = byte, 1 = short, 2 = long) */
169 FALSE
, /* pc_relative */
171 complain_overflow_bitfield
,/* complain_on_overflow */
172 bfd_elf_generic_reloc
, /* special_function */
173 "R_ARM_ABS12", /* name */
174 FALSE
, /* partial_inplace */
175 0x00000fff, /* src_mask */
176 0x00000fff, /* dst_mask */
177 FALSE
), /* pcrel_offset */
179 HOWTO (R_ARM_THM_ABS5
, /* type */
181 1, /* size (0 = byte, 1 = short, 2 = long) */
183 FALSE
, /* pc_relative */
185 complain_overflow_bitfield
,/* complain_on_overflow */
186 bfd_elf_generic_reloc
, /* special_function */
187 "R_ARM_THM_ABS5", /* name */
188 FALSE
, /* partial_inplace */
189 0x000007e0, /* src_mask */
190 0x000007e0, /* dst_mask */
191 FALSE
), /* pcrel_offset */
194 HOWTO (R_ARM_ABS8
, /* type */
196 0, /* size (0 = byte, 1 = short, 2 = long) */
198 FALSE
, /* pc_relative */
200 complain_overflow_bitfield
,/* complain_on_overflow */
201 bfd_elf_generic_reloc
, /* special_function */
202 "R_ARM_ABS8", /* name */
203 FALSE
, /* partial_inplace */
204 0x000000ff, /* src_mask */
205 0x000000ff, /* dst_mask */
206 FALSE
), /* pcrel_offset */
208 HOWTO (R_ARM_SBREL32
, /* type */
210 2, /* size (0 = byte, 1 = short, 2 = long) */
212 FALSE
, /* pc_relative */
214 complain_overflow_dont
,/* complain_on_overflow */
215 bfd_elf_generic_reloc
, /* special_function */
216 "R_ARM_SBREL32", /* name */
217 FALSE
, /* partial_inplace */
218 0xffffffff, /* src_mask */
219 0xffffffff, /* dst_mask */
220 FALSE
), /* pcrel_offset */
222 HOWTO (R_ARM_THM_CALL
, /* type */
224 2, /* size (0 = byte, 1 = short, 2 = long) */
226 TRUE
, /* pc_relative */
228 complain_overflow_signed
,/* complain_on_overflow */
229 bfd_elf_generic_reloc
, /* special_function */
230 "R_ARM_THM_CALL", /* name */
231 FALSE
, /* partial_inplace */
232 0x07ff2fff, /* src_mask */
233 0x07ff2fff, /* dst_mask */
234 TRUE
), /* pcrel_offset */
236 HOWTO (R_ARM_THM_PC8
, /* type */
238 1, /* size (0 = byte, 1 = short, 2 = long) */
240 TRUE
, /* pc_relative */
242 complain_overflow_signed
,/* complain_on_overflow */
243 bfd_elf_generic_reloc
, /* special_function */
244 "R_ARM_THM_PC8", /* name */
245 FALSE
, /* partial_inplace */
246 0x000000ff, /* src_mask */
247 0x000000ff, /* dst_mask */
248 TRUE
), /* pcrel_offset */
250 HOWTO (R_ARM_BREL_ADJ
, /* type */
252 1, /* size (0 = byte, 1 = short, 2 = long) */
254 FALSE
, /* pc_relative */
256 complain_overflow_signed
,/* complain_on_overflow */
257 bfd_elf_generic_reloc
, /* special_function */
258 "R_ARM_BREL_ADJ", /* name */
259 FALSE
, /* partial_inplace */
260 0xffffffff, /* src_mask */
261 0xffffffff, /* dst_mask */
262 FALSE
), /* pcrel_offset */
264 HOWTO (R_ARM_TLS_DESC
, /* type */
266 2, /* size (0 = byte, 1 = short, 2 = long) */
268 FALSE
, /* pc_relative */
270 complain_overflow_bitfield
,/* complain_on_overflow */
271 bfd_elf_generic_reloc
, /* special_function */
272 "R_ARM_TLS_DESC", /* name */
273 FALSE
, /* partial_inplace */
274 0xffffffff, /* src_mask */
275 0xffffffff, /* dst_mask */
276 FALSE
), /* pcrel_offset */
278 HOWTO (R_ARM_THM_SWI8
, /* type */
280 0, /* size (0 = byte, 1 = short, 2 = long) */
282 FALSE
, /* pc_relative */
284 complain_overflow_signed
,/* complain_on_overflow */
285 bfd_elf_generic_reloc
, /* special_function */
286 "R_ARM_SWI8", /* name */
287 FALSE
, /* partial_inplace */
288 0x00000000, /* src_mask */
289 0x00000000, /* dst_mask */
290 FALSE
), /* pcrel_offset */
292 /* BLX instruction for the ARM. */
293 HOWTO (R_ARM_XPC25
, /* type */
295 2, /* size (0 = byte, 1 = short, 2 = long) */
297 TRUE
, /* pc_relative */
299 complain_overflow_signed
,/* complain_on_overflow */
300 bfd_elf_generic_reloc
, /* special_function */
301 "R_ARM_XPC25", /* name */
302 FALSE
, /* partial_inplace */
303 0x00ffffff, /* src_mask */
304 0x00ffffff, /* dst_mask */
305 TRUE
), /* pcrel_offset */
307 /* BLX instruction for the Thumb. */
308 HOWTO (R_ARM_THM_XPC22
, /* type */
310 2, /* size (0 = byte, 1 = short, 2 = long) */
312 TRUE
, /* pc_relative */
314 complain_overflow_signed
,/* complain_on_overflow */
315 bfd_elf_generic_reloc
, /* special_function */
316 "R_ARM_THM_XPC22", /* name */
317 FALSE
, /* partial_inplace */
318 0x07ff2fff, /* src_mask */
319 0x07ff2fff, /* dst_mask */
320 TRUE
), /* pcrel_offset */
322 /* Dynamic TLS relocations. */
324 HOWTO (R_ARM_TLS_DTPMOD32
, /* type */
326 2, /* size (0 = byte, 1 = short, 2 = long) */
328 FALSE
, /* pc_relative */
330 complain_overflow_bitfield
,/* complain_on_overflow */
331 bfd_elf_generic_reloc
, /* special_function */
332 "R_ARM_TLS_DTPMOD32", /* name */
333 TRUE
, /* partial_inplace */
334 0xffffffff, /* src_mask */
335 0xffffffff, /* dst_mask */
336 FALSE
), /* pcrel_offset */
338 HOWTO (R_ARM_TLS_DTPOFF32
, /* type */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
342 FALSE
, /* pc_relative */
344 complain_overflow_bitfield
,/* complain_on_overflow */
345 bfd_elf_generic_reloc
, /* special_function */
346 "R_ARM_TLS_DTPOFF32", /* name */
347 TRUE
, /* partial_inplace */
348 0xffffffff, /* src_mask */
349 0xffffffff, /* dst_mask */
350 FALSE
), /* pcrel_offset */
352 HOWTO (R_ARM_TLS_TPOFF32
, /* type */
354 2, /* size (0 = byte, 1 = short, 2 = long) */
356 FALSE
, /* pc_relative */
358 complain_overflow_bitfield
,/* complain_on_overflow */
359 bfd_elf_generic_reloc
, /* special_function */
360 "R_ARM_TLS_TPOFF32", /* name */
361 TRUE
, /* partial_inplace */
362 0xffffffff, /* src_mask */
363 0xffffffff, /* dst_mask */
364 FALSE
), /* pcrel_offset */
366 /* Relocs used in ARM Linux */
368 HOWTO (R_ARM_COPY
, /* type */
370 2, /* size (0 = byte, 1 = short, 2 = long) */
372 FALSE
, /* pc_relative */
374 complain_overflow_bitfield
,/* complain_on_overflow */
375 bfd_elf_generic_reloc
, /* special_function */
376 "R_ARM_COPY", /* name */
377 TRUE
, /* partial_inplace */
378 0xffffffff, /* src_mask */
379 0xffffffff, /* dst_mask */
380 FALSE
), /* pcrel_offset */
382 HOWTO (R_ARM_GLOB_DAT
, /* type */
384 2, /* size (0 = byte, 1 = short, 2 = long) */
386 FALSE
, /* pc_relative */
388 complain_overflow_bitfield
,/* complain_on_overflow */
389 bfd_elf_generic_reloc
, /* special_function */
390 "R_ARM_GLOB_DAT", /* name */
391 TRUE
, /* partial_inplace */
392 0xffffffff, /* src_mask */
393 0xffffffff, /* dst_mask */
394 FALSE
), /* pcrel_offset */
396 HOWTO (R_ARM_JUMP_SLOT
, /* type */
398 2, /* size (0 = byte, 1 = short, 2 = long) */
400 FALSE
, /* pc_relative */
402 complain_overflow_bitfield
,/* complain_on_overflow */
403 bfd_elf_generic_reloc
, /* special_function */
404 "R_ARM_JUMP_SLOT", /* name */
405 TRUE
, /* partial_inplace */
406 0xffffffff, /* src_mask */
407 0xffffffff, /* dst_mask */
408 FALSE
), /* pcrel_offset */
410 HOWTO (R_ARM_RELATIVE
, /* type */
412 2, /* size (0 = byte, 1 = short, 2 = long) */
414 FALSE
, /* pc_relative */
416 complain_overflow_bitfield
,/* complain_on_overflow */
417 bfd_elf_generic_reloc
, /* special_function */
418 "R_ARM_RELATIVE", /* name */
419 TRUE
, /* partial_inplace */
420 0xffffffff, /* src_mask */
421 0xffffffff, /* dst_mask */
422 FALSE
), /* pcrel_offset */
424 HOWTO (R_ARM_GOTOFF32
, /* type */
426 2, /* size (0 = byte, 1 = short, 2 = long) */
428 FALSE
, /* pc_relative */
430 complain_overflow_bitfield
,/* complain_on_overflow */
431 bfd_elf_generic_reloc
, /* special_function */
432 "R_ARM_GOTOFF32", /* name */
433 TRUE
, /* partial_inplace */
434 0xffffffff, /* src_mask */
435 0xffffffff, /* dst_mask */
436 FALSE
), /* pcrel_offset */
438 HOWTO (R_ARM_GOTPC
, /* type */
440 2, /* size (0 = byte, 1 = short, 2 = long) */
442 TRUE
, /* pc_relative */
444 complain_overflow_bitfield
,/* complain_on_overflow */
445 bfd_elf_generic_reloc
, /* special_function */
446 "R_ARM_GOTPC", /* name */
447 TRUE
, /* partial_inplace */
448 0xffffffff, /* src_mask */
449 0xffffffff, /* dst_mask */
450 TRUE
), /* pcrel_offset */
452 HOWTO (R_ARM_GOT32
, /* type */
454 2, /* size (0 = byte, 1 = short, 2 = long) */
456 FALSE
, /* pc_relative */
458 complain_overflow_bitfield
,/* complain_on_overflow */
459 bfd_elf_generic_reloc
, /* special_function */
460 "R_ARM_GOT32", /* name */
461 TRUE
, /* partial_inplace */
462 0xffffffff, /* src_mask */
463 0xffffffff, /* dst_mask */
464 FALSE
), /* pcrel_offset */
466 HOWTO (R_ARM_PLT32
, /* type */
468 2, /* size (0 = byte, 1 = short, 2 = long) */
470 TRUE
, /* pc_relative */
472 complain_overflow_bitfield
,/* complain_on_overflow */
473 bfd_elf_generic_reloc
, /* special_function */
474 "R_ARM_PLT32", /* name */
475 FALSE
, /* partial_inplace */
476 0x00ffffff, /* src_mask */
477 0x00ffffff, /* dst_mask */
478 TRUE
), /* pcrel_offset */
480 HOWTO (R_ARM_CALL
, /* type */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
484 TRUE
, /* pc_relative */
486 complain_overflow_signed
,/* complain_on_overflow */
487 bfd_elf_generic_reloc
, /* special_function */
488 "R_ARM_CALL", /* name */
489 FALSE
, /* partial_inplace */
490 0x00ffffff, /* src_mask */
491 0x00ffffff, /* dst_mask */
492 TRUE
), /* pcrel_offset */
494 HOWTO (R_ARM_JUMP24
, /* type */
496 2, /* size (0 = byte, 1 = short, 2 = long) */
498 TRUE
, /* pc_relative */
500 complain_overflow_signed
,/* complain_on_overflow */
501 bfd_elf_generic_reloc
, /* special_function */
502 "R_ARM_JUMP24", /* name */
503 FALSE
, /* partial_inplace */
504 0x00ffffff, /* src_mask */
505 0x00ffffff, /* dst_mask */
506 TRUE
), /* pcrel_offset */
508 HOWTO (R_ARM_THM_JUMP24
, /* type */
510 2, /* size (0 = byte, 1 = short, 2 = long) */
512 TRUE
, /* pc_relative */
514 complain_overflow_signed
,/* complain_on_overflow */
515 bfd_elf_generic_reloc
, /* special_function */
516 "R_ARM_THM_JUMP24", /* name */
517 FALSE
, /* partial_inplace */
518 0x07ff2fff, /* src_mask */
519 0x07ff2fff, /* dst_mask */
520 TRUE
), /* pcrel_offset */
522 HOWTO (R_ARM_BASE_ABS
, /* type */
524 2, /* size (0 = byte, 1 = short, 2 = long) */
526 FALSE
, /* pc_relative */
528 complain_overflow_dont
,/* complain_on_overflow */
529 bfd_elf_generic_reloc
, /* special_function */
530 "R_ARM_BASE_ABS", /* name */
531 FALSE
, /* partial_inplace */
532 0xffffffff, /* src_mask */
533 0xffffffff, /* dst_mask */
534 FALSE
), /* pcrel_offset */
536 HOWTO (R_ARM_ALU_PCREL7_0
, /* type */
538 2, /* size (0 = byte, 1 = short, 2 = long) */
540 TRUE
, /* pc_relative */
542 complain_overflow_dont
,/* complain_on_overflow */
543 bfd_elf_generic_reloc
, /* special_function */
544 "R_ARM_ALU_PCREL_7_0", /* name */
545 FALSE
, /* partial_inplace */
546 0x00000fff, /* src_mask */
547 0x00000fff, /* dst_mask */
548 TRUE
), /* pcrel_offset */
550 HOWTO (R_ARM_ALU_PCREL15_8
, /* type */
552 2, /* size (0 = byte, 1 = short, 2 = long) */
554 TRUE
, /* pc_relative */
556 complain_overflow_dont
,/* complain_on_overflow */
557 bfd_elf_generic_reloc
, /* special_function */
558 "R_ARM_ALU_PCREL_15_8",/* name */
559 FALSE
, /* partial_inplace */
560 0x00000fff, /* src_mask */
561 0x00000fff, /* dst_mask */
562 TRUE
), /* pcrel_offset */
564 HOWTO (R_ARM_ALU_PCREL23_15
, /* type */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
568 TRUE
, /* pc_relative */
570 complain_overflow_dont
,/* complain_on_overflow */
571 bfd_elf_generic_reloc
, /* special_function */
572 "R_ARM_ALU_PCREL_23_15",/* name */
573 FALSE
, /* partial_inplace */
574 0x00000fff, /* src_mask */
575 0x00000fff, /* dst_mask */
576 TRUE
), /* pcrel_offset */
578 HOWTO (R_ARM_LDR_SBREL_11_0
, /* type */
580 2, /* size (0 = byte, 1 = short, 2 = long) */
582 FALSE
, /* pc_relative */
584 complain_overflow_dont
,/* complain_on_overflow */
585 bfd_elf_generic_reloc
, /* special_function */
586 "R_ARM_LDR_SBREL_11_0",/* name */
587 FALSE
, /* partial_inplace */
588 0x00000fff, /* src_mask */
589 0x00000fff, /* dst_mask */
590 FALSE
), /* pcrel_offset */
592 HOWTO (R_ARM_ALU_SBREL_19_12
, /* type */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
596 FALSE
, /* pc_relative */
598 complain_overflow_dont
,/* complain_on_overflow */
599 bfd_elf_generic_reloc
, /* special_function */
600 "R_ARM_ALU_SBREL_19_12",/* name */
601 FALSE
, /* partial_inplace */
602 0x000ff000, /* src_mask */
603 0x000ff000, /* dst_mask */
604 FALSE
), /* pcrel_offset */
606 HOWTO (R_ARM_ALU_SBREL_27_20
, /* type */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
610 FALSE
, /* pc_relative */
612 complain_overflow_dont
,/* complain_on_overflow */
613 bfd_elf_generic_reloc
, /* special_function */
614 "R_ARM_ALU_SBREL_27_20",/* name */
615 FALSE
, /* partial_inplace */
616 0x0ff00000, /* src_mask */
617 0x0ff00000, /* dst_mask */
618 FALSE
), /* pcrel_offset */
620 HOWTO (R_ARM_TARGET1
, /* type */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
624 FALSE
, /* pc_relative */
626 complain_overflow_dont
,/* complain_on_overflow */
627 bfd_elf_generic_reloc
, /* special_function */
628 "R_ARM_TARGET1", /* name */
629 FALSE
, /* partial_inplace */
630 0xffffffff, /* src_mask */
631 0xffffffff, /* dst_mask */
632 FALSE
), /* pcrel_offset */
634 HOWTO (R_ARM_ROSEGREL32
, /* type */
636 2, /* size (0 = byte, 1 = short, 2 = long) */
638 FALSE
, /* pc_relative */
640 complain_overflow_dont
,/* complain_on_overflow */
641 bfd_elf_generic_reloc
, /* special_function */
642 "R_ARM_ROSEGREL32", /* name */
643 FALSE
, /* partial_inplace */
644 0xffffffff, /* src_mask */
645 0xffffffff, /* dst_mask */
646 FALSE
), /* pcrel_offset */
648 HOWTO (R_ARM_V4BX
, /* type */
650 2, /* size (0 = byte, 1 = short, 2 = long) */
652 FALSE
, /* pc_relative */
654 complain_overflow_dont
,/* complain_on_overflow */
655 bfd_elf_generic_reloc
, /* special_function */
656 "R_ARM_V4BX", /* name */
657 FALSE
, /* partial_inplace */
658 0xffffffff, /* src_mask */
659 0xffffffff, /* dst_mask */
660 FALSE
), /* pcrel_offset */
662 HOWTO (R_ARM_TARGET2
, /* type */
664 2, /* size (0 = byte, 1 = short, 2 = long) */
666 FALSE
, /* pc_relative */
668 complain_overflow_signed
,/* complain_on_overflow */
669 bfd_elf_generic_reloc
, /* special_function */
670 "R_ARM_TARGET2", /* name */
671 FALSE
, /* partial_inplace */
672 0xffffffff, /* src_mask */
673 0xffffffff, /* dst_mask */
674 TRUE
), /* pcrel_offset */
676 HOWTO (R_ARM_PREL31
, /* type */
678 2, /* size (0 = byte, 1 = short, 2 = long) */
680 TRUE
, /* pc_relative */
682 complain_overflow_signed
,/* complain_on_overflow */
683 bfd_elf_generic_reloc
, /* special_function */
684 "R_ARM_PREL31", /* name */
685 FALSE
, /* partial_inplace */
686 0x7fffffff, /* src_mask */
687 0x7fffffff, /* dst_mask */
688 TRUE
), /* pcrel_offset */
690 HOWTO (R_ARM_MOVW_ABS_NC
, /* type */
692 2, /* size (0 = byte, 1 = short, 2 = long) */
694 FALSE
, /* pc_relative */
696 complain_overflow_dont
,/* complain_on_overflow */
697 bfd_elf_generic_reloc
, /* special_function */
698 "R_ARM_MOVW_ABS_NC", /* name */
699 FALSE
, /* partial_inplace */
700 0x000f0fff, /* src_mask */
701 0x000f0fff, /* dst_mask */
702 FALSE
), /* pcrel_offset */
704 HOWTO (R_ARM_MOVT_ABS
, /* type */
706 2, /* size (0 = byte, 1 = short, 2 = long) */
708 FALSE
, /* pc_relative */
710 complain_overflow_bitfield
,/* complain_on_overflow */
711 bfd_elf_generic_reloc
, /* special_function */
712 "R_ARM_MOVT_ABS", /* name */
713 FALSE
, /* partial_inplace */
714 0x000f0fff, /* src_mask */
715 0x000f0fff, /* dst_mask */
716 FALSE
), /* pcrel_offset */
718 HOWTO (R_ARM_MOVW_PREL_NC
, /* type */
720 2, /* size (0 = byte, 1 = short, 2 = long) */
722 TRUE
, /* pc_relative */
724 complain_overflow_dont
,/* complain_on_overflow */
725 bfd_elf_generic_reloc
, /* special_function */
726 "R_ARM_MOVW_PREL_NC", /* name */
727 FALSE
, /* partial_inplace */
728 0x000f0fff, /* src_mask */
729 0x000f0fff, /* dst_mask */
730 TRUE
), /* pcrel_offset */
732 HOWTO (R_ARM_MOVT_PREL
, /* type */
734 2, /* size (0 = byte, 1 = short, 2 = long) */
736 TRUE
, /* pc_relative */
738 complain_overflow_bitfield
,/* complain_on_overflow */
739 bfd_elf_generic_reloc
, /* special_function */
740 "R_ARM_MOVT_PREL", /* name */
741 FALSE
, /* partial_inplace */
742 0x000f0fff, /* src_mask */
743 0x000f0fff, /* dst_mask */
744 TRUE
), /* pcrel_offset */
746 HOWTO (R_ARM_THM_MOVW_ABS_NC
, /* type */
748 2, /* size (0 = byte, 1 = short, 2 = long) */
750 FALSE
, /* pc_relative */
752 complain_overflow_dont
,/* complain_on_overflow */
753 bfd_elf_generic_reloc
, /* special_function */
754 "R_ARM_THM_MOVW_ABS_NC",/* name */
755 FALSE
, /* partial_inplace */
756 0x040f70ff, /* src_mask */
757 0x040f70ff, /* dst_mask */
758 FALSE
), /* pcrel_offset */
760 HOWTO (R_ARM_THM_MOVT_ABS
, /* type */
762 2, /* size (0 = byte, 1 = short, 2 = long) */
764 FALSE
, /* pc_relative */
766 complain_overflow_bitfield
,/* complain_on_overflow */
767 bfd_elf_generic_reloc
, /* special_function */
768 "R_ARM_THM_MOVT_ABS", /* name */
769 FALSE
, /* partial_inplace */
770 0x040f70ff, /* src_mask */
771 0x040f70ff, /* dst_mask */
772 FALSE
), /* pcrel_offset */
774 HOWTO (R_ARM_THM_MOVW_PREL_NC
,/* type */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
778 TRUE
, /* pc_relative */
780 complain_overflow_dont
,/* complain_on_overflow */
781 bfd_elf_generic_reloc
, /* special_function */
782 "R_ARM_THM_MOVW_PREL_NC",/* name */
783 FALSE
, /* partial_inplace */
784 0x040f70ff, /* src_mask */
785 0x040f70ff, /* dst_mask */
786 TRUE
), /* pcrel_offset */
788 HOWTO (R_ARM_THM_MOVT_PREL
, /* type */
790 2, /* size (0 = byte, 1 = short, 2 = long) */
792 TRUE
, /* pc_relative */
794 complain_overflow_bitfield
,/* complain_on_overflow */
795 bfd_elf_generic_reloc
, /* special_function */
796 "R_ARM_THM_MOVT_PREL", /* name */
797 FALSE
, /* partial_inplace */
798 0x040f70ff, /* src_mask */
799 0x040f70ff, /* dst_mask */
800 TRUE
), /* pcrel_offset */
802 HOWTO (R_ARM_THM_JUMP19
, /* type */
804 2, /* size (0 = byte, 1 = short, 2 = long) */
806 TRUE
, /* pc_relative */
808 complain_overflow_signed
,/* complain_on_overflow */
809 bfd_elf_generic_reloc
, /* special_function */
810 "R_ARM_THM_JUMP19", /* name */
811 FALSE
, /* partial_inplace */
812 0x043f2fff, /* src_mask */
813 0x043f2fff, /* dst_mask */
814 TRUE
), /* pcrel_offset */
816 HOWTO (R_ARM_THM_JUMP6
, /* type */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
820 TRUE
, /* pc_relative */
822 complain_overflow_unsigned
,/* complain_on_overflow */
823 bfd_elf_generic_reloc
, /* special_function */
824 "R_ARM_THM_JUMP6", /* name */
825 FALSE
, /* partial_inplace */
826 0x02f8, /* src_mask */
827 0x02f8, /* dst_mask */
828 TRUE
), /* pcrel_offset */
830 /* These are declared as 13-bit signed relocations because we can
831 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
833 HOWTO (R_ARM_THM_ALU_PREL_11_0
,/* type */
835 2, /* size (0 = byte, 1 = short, 2 = long) */
837 TRUE
, /* pc_relative */
839 complain_overflow_dont
,/* complain_on_overflow */
840 bfd_elf_generic_reloc
, /* special_function */
841 "R_ARM_THM_ALU_PREL_11_0",/* name */
842 FALSE
, /* partial_inplace */
843 0xffffffff, /* src_mask */
844 0xffffffff, /* dst_mask */
845 TRUE
), /* pcrel_offset */
847 HOWTO (R_ARM_THM_PC12
, /* type */
849 2, /* size (0 = byte, 1 = short, 2 = long) */
851 TRUE
, /* pc_relative */
853 complain_overflow_dont
,/* complain_on_overflow */
854 bfd_elf_generic_reloc
, /* special_function */
855 "R_ARM_THM_PC12", /* name */
856 FALSE
, /* partial_inplace */
857 0xffffffff, /* src_mask */
858 0xffffffff, /* dst_mask */
859 TRUE
), /* pcrel_offset */
861 HOWTO (R_ARM_ABS32_NOI
, /* type */
863 2, /* size (0 = byte, 1 = short, 2 = long) */
865 FALSE
, /* pc_relative */
867 complain_overflow_dont
,/* complain_on_overflow */
868 bfd_elf_generic_reloc
, /* special_function */
869 "R_ARM_ABS32_NOI", /* name */
870 FALSE
, /* partial_inplace */
871 0xffffffff, /* src_mask */
872 0xffffffff, /* dst_mask */
873 FALSE
), /* pcrel_offset */
875 HOWTO (R_ARM_REL32_NOI
, /* type */
877 2, /* size (0 = byte, 1 = short, 2 = long) */
879 TRUE
, /* pc_relative */
881 complain_overflow_dont
,/* complain_on_overflow */
882 bfd_elf_generic_reloc
, /* special_function */
883 "R_ARM_REL32_NOI", /* name */
884 FALSE
, /* partial_inplace */
885 0xffffffff, /* src_mask */
886 0xffffffff, /* dst_mask */
887 FALSE
), /* pcrel_offset */
889 /* Group relocations. */
891 HOWTO (R_ARM_ALU_PC_G0_NC
, /* type */
893 2, /* size (0 = byte, 1 = short, 2 = long) */
895 TRUE
, /* pc_relative */
897 complain_overflow_dont
,/* complain_on_overflow */
898 bfd_elf_generic_reloc
, /* special_function */
899 "R_ARM_ALU_PC_G0_NC", /* name */
900 FALSE
, /* partial_inplace */
901 0xffffffff, /* src_mask */
902 0xffffffff, /* dst_mask */
903 TRUE
), /* pcrel_offset */
905 HOWTO (R_ARM_ALU_PC_G0
, /* type */
907 2, /* size (0 = byte, 1 = short, 2 = long) */
909 TRUE
, /* pc_relative */
911 complain_overflow_dont
,/* complain_on_overflow */
912 bfd_elf_generic_reloc
, /* special_function */
913 "R_ARM_ALU_PC_G0", /* name */
914 FALSE
, /* partial_inplace */
915 0xffffffff, /* src_mask */
916 0xffffffff, /* dst_mask */
917 TRUE
), /* pcrel_offset */
919 HOWTO (R_ARM_ALU_PC_G1_NC
, /* type */
921 2, /* size (0 = byte, 1 = short, 2 = long) */
923 TRUE
, /* pc_relative */
925 complain_overflow_dont
,/* complain_on_overflow */
926 bfd_elf_generic_reloc
, /* special_function */
927 "R_ARM_ALU_PC_G1_NC", /* name */
928 FALSE
, /* partial_inplace */
929 0xffffffff, /* src_mask */
930 0xffffffff, /* dst_mask */
931 TRUE
), /* pcrel_offset */
933 HOWTO (R_ARM_ALU_PC_G1
, /* type */
935 2, /* size (0 = byte, 1 = short, 2 = long) */
937 TRUE
, /* pc_relative */
939 complain_overflow_dont
,/* complain_on_overflow */
940 bfd_elf_generic_reloc
, /* special_function */
941 "R_ARM_ALU_PC_G1", /* name */
942 FALSE
, /* partial_inplace */
943 0xffffffff, /* src_mask */
944 0xffffffff, /* dst_mask */
945 TRUE
), /* pcrel_offset */
947 HOWTO (R_ARM_ALU_PC_G2
, /* type */
949 2, /* size (0 = byte, 1 = short, 2 = long) */
951 TRUE
, /* pc_relative */
953 complain_overflow_dont
,/* complain_on_overflow */
954 bfd_elf_generic_reloc
, /* special_function */
955 "R_ARM_ALU_PC_G2", /* name */
956 FALSE
, /* partial_inplace */
957 0xffffffff, /* src_mask */
958 0xffffffff, /* dst_mask */
959 TRUE
), /* pcrel_offset */
961 HOWTO (R_ARM_LDR_PC_G1
, /* type */
963 2, /* size (0 = byte, 1 = short, 2 = long) */
965 TRUE
, /* pc_relative */
967 complain_overflow_dont
,/* complain_on_overflow */
968 bfd_elf_generic_reloc
, /* special_function */
969 "R_ARM_LDR_PC_G1", /* name */
970 FALSE
, /* partial_inplace */
971 0xffffffff, /* src_mask */
972 0xffffffff, /* dst_mask */
973 TRUE
), /* pcrel_offset */
975 HOWTO (R_ARM_LDR_PC_G2
, /* type */
977 2, /* size (0 = byte, 1 = short, 2 = long) */
979 TRUE
, /* pc_relative */
981 complain_overflow_dont
,/* complain_on_overflow */
982 bfd_elf_generic_reloc
, /* special_function */
983 "R_ARM_LDR_PC_G2", /* name */
984 FALSE
, /* partial_inplace */
985 0xffffffff, /* src_mask */
986 0xffffffff, /* dst_mask */
987 TRUE
), /* pcrel_offset */
989 HOWTO (R_ARM_LDRS_PC_G0
, /* type */
991 2, /* size (0 = byte, 1 = short, 2 = long) */
993 TRUE
, /* pc_relative */
995 complain_overflow_dont
,/* complain_on_overflow */
996 bfd_elf_generic_reloc
, /* special_function */
997 "R_ARM_LDRS_PC_G0", /* name */
998 FALSE
, /* partial_inplace */
999 0xffffffff, /* src_mask */
1000 0xffffffff, /* dst_mask */
1001 TRUE
), /* pcrel_offset */
1003 HOWTO (R_ARM_LDRS_PC_G1
, /* type */
1005 2, /* size (0 = byte, 1 = short, 2 = long) */
1007 TRUE
, /* pc_relative */
1009 complain_overflow_dont
,/* complain_on_overflow */
1010 bfd_elf_generic_reloc
, /* special_function */
1011 "R_ARM_LDRS_PC_G1", /* name */
1012 FALSE
, /* partial_inplace */
1013 0xffffffff, /* src_mask */
1014 0xffffffff, /* dst_mask */
1015 TRUE
), /* pcrel_offset */
1017 HOWTO (R_ARM_LDRS_PC_G2
, /* type */
1019 2, /* size (0 = byte, 1 = short, 2 = long) */
1021 TRUE
, /* pc_relative */
1023 complain_overflow_dont
,/* complain_on_overflow */
1024 bfd_elf_generic_reloc
, /* special_function */
1025 "R_ARM_LDRS_PC_G2", /* name */
1026 FALSE
, /* partial_inplace */
1027 0xffffffff, /* src_mask */
1028 0xffffffff, /* dst_mask */
1029 TRUE
), /* pcrel_offset */
1031 HOWTO (R_ARM_LDC_PC_G0
, /* type */
1033 2, /* size (0 = byte, 1 = short, 2 = long) */
1035 TRUE
, /* pc_relative */
1037 complain_overflow_dont
,/* complain_on_overflow */
1038 bfd_elf_generic_reloc
, /* special_function */
1039 "R_ARM_LDC_PC_G0", /* name */
1040 FALSE
, /* partial_inplace */
1041 0xffffffff, /* src_mask */
1042 0xffffffff, /* dst_mask */
1043 TRUE
), /* pcrel_offset */
1045 HOWTO (R_ARM_LDC_PC_G1
, /* type */
1047 2, /* size (0 = byte, 1 = short, 2 = long) */
1049 TRUE
, /* pc_relative */
1051 complain_overflow_dont
,/* complain_on_overflow */
1052 bfd_elf_generic_reloc
, /* special_function */
1053 "R_ARM_LDC_PC_G1", /* name */
1054 FALSE
, /* partial_inplace */
1055 0xffffffff, /* src_mask */
1056 0xffffffff, /* dst_mask */
1057 TRUE
), /* pcrel_offset */
1059 HOWTO (R_ARM_LDC_PC_G2
, /* type */
1061 2, /* size (0 = byte, 1 = short, 2 = long) */
1063 TRUE
, /* pc_relative */
1065 complain_overflow_dont
,/* complain_on_overflow */
1066 bfd_elf_generic_reloc
, /* special_function */
1067 "R_ARM_LDC_PC_G2", /* name */
1068 FALSE
, /* partial_inplace */
1069 0xffffffff, /* src_mask */
1070 0xffffffff, /* dst_mask */
1071 TRUE
), /* pcrel_offset */
1073 HOWTO (R_ARM_ALU_SB_G0_NC
, /* type */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1077 TRUE
, /* pc_relative */
1079 complain_overflow_dont
,/* complain_on_overflow */
1080 bfd_elf_generic_reloc
, /* special_function */
1081 "R_ARM_ALU_SB_G0_NC", /* name */
1082 FALSE
, /* partial_inplace */
1083 0xffffffff, /* src_mask */
1084 0xffffffff, /* dst_mask */
1085 TRUE
), /* pcrel_offset */
1087 HOWTO (R_ARM_ALU_SB_G0
, /* type */
1089 2, /* size (0 = byte, 1 = short, 2 = long) */
1091 TRUE
, /* pc_relative */
1093 complain_overflow_dont
,/* complain_on_overflow */
1094 bfd_elf_generic_reloc
, /* special_function */
1095 "R_ARM_ALU_SB_G0", /* name */
1096 FALSE
, /* partial_inplace */
1097 0xffffffff, /* src_mask */
1098 0xffffffff, /* dst_mask */
1099 TRUE
), /* pcrel_offset */
1101 HOWTO (R_ARM_ALU_SB_G1_NC
, /* type */
1103 2, /* size (0 = byte, 1 = short, 2 = long) */
1105 TRUE
, /* pc_relative */
1107 complain_overflow_dont
,/* complain_on_overflow */
1108 bfd_elf_generic_reloc
, /* special_function */
1109 "R_ARM_ALU_SB_G1_NC", /* name */
1110 FALSE
, /* partial_inplace */
1111 0xffffffff, /* src_mask */
1112 0xffffffff, /* dst_mask */
1113 TRUE
), /* pcrel_offset */
1115 HOWTO (R_ARM_ALU_SB_G1
, /* type */
1117 2, /* size (0 = byte, 1 = short, 2 = long) */
1119 TRUE
, /* pc_relative */
1121 complain_overflow_dont
,/* complain_on_overflow */
1122 bfd_elf_generic_reloc
, /* special_function */
1123 "R_ARM_ALU_SB_G1", /* name */
1124 FALSE
, /* partial_inplace */
1125 0xffffffff, /* src_mask */
1126 0xffffffff, /* dst_mask */
1127 TRUE
), /* pcrel_offset */
1129 HOWTO (R_ARM_ALU_SB_G2
, /* type */
1131 2, /* size (0 = byte, 1 = short, 2 = long) */
1133 TRUE
, /* pc_relative */
1135 complain_overflow_dont
,/* complain_on_overflow */
1136 bfd_elf_generic_reloc
, /* special_function */
1137 "R_ARM_ALU_SB_G2", /* name */
1138 FALSE
, /* partial_inplace */
1139 0xffffffff, /* src_mask */
1140 0xffffffff, /* dst_mask */
1141 TRUE
), /* pcrel_offset */
1143 HOWTO (R_ARM_LDR_SB_G0
, /* type */
1145 2, /* size (0 = byte, 1 = short, 2 = long) */
1147 TRUE
, /* pc_relative */
1149 complain_overflow_dont
,/* complain_on_overflow */
1150 bfd_elf_generic_reloc
, /* special_function */
1151 "R_ARM_LDR_SB_G0", /* name */
1152 FALSE
, /* partial_inplace */
1153 0xffffffff, /* src_mask */
1154 0xffffffff, /* dst_mask */
1155 TRUE
), /* pcrel_offset */
1157 HOWTO (R_ARM_LDR_SB_G1
, /* type */
1159 2, /* size (0 = byte, 1 = short, 2 = long) */
1161 TRUE
, /* pc_relative */
1163 complain_overflow_dont
,/* complain_on_overflow */
1164 bfd_elf_generic_reloc
, /* special_function */
1165 "R_ARM_LDR_SB_G1", /* name */
1166 FALSE
, /* partial_inplace */
1167 0xffffffff, /* src_mask */
1168 0xffffffff, /* dst_mask */
1169 TRUE
), /* pcrel_offset */
1171 HOWTO (R_ARM_LDR_SB_G2
, /* type */
1173 2, /* size (0 = byte, 1 = short, 2 = long) */
1175 TRUE
, /* pc_relative */
1177 complain_overflow_dont
,/* complain_on_overflow */
1178 bfd_elf_generic_reloc
, /* special_function */
1179 "R_ARM_LDR_SB_G2", /* name */
1180 FALSE
, /* partial_inplace */
1181 0xffffffff, /* src_mask */
1182 0xffffffff, /* dst_mask */
1183 TRUE
), /* pcrel_offset */
1185 HOWTO (R_ARM_LDRS_SB_G0
, /* type */
1187 2, /* size (0 = byte, 1 = short, 2 = long) */
1189 TRUE
, /* pc_relative */
1191 complain_overflow_dont
,/* complain_on_overflow */
1192 bfd_elf_generic_reloc
, /* special_function */
1193 "R_ARM_LDRS_SB_G0", /* name */
1194 FALSE
, /* partial_inplace */
1195 0xffffffff, /* src_mask */
1196 0xffffffff, /* dst_mask */
1197 TRUE
), /* pcrel_offset */
1199 HOWTO (R_ARM_LDRS_SB_G1
, /* type */
1201 2, /* size (0 = byte, 1 = short, 2 = long) */
1203 TRUE
, /* pc_relative */
1205 complain_overflow_dont
,/* complain_on_overflow */
1206 bfd_elf_generic_reloc
, /* special_function */
1207 "R_ARM_LDRS_SB_G1", /* name */
1208 FALSE
, /* partial_inplace */
1209 0xffffffff, /* src_mask */
1210 0xffffffff, /* dst_mask */
1211 TRUE
), /* pcrel_offset */
1213 HOWTO (R_ARM_LDRS_SB_G2
, /* type */
1215 2, /* size (0 = byte, 1 = short, 2 = long) */
1217 TRUE
, /* pc_relative */
1219 complain_overflow_dont
,/* complain_on_overflow */
1220 bfd_elf_generic_reloc
, /* special_function */
1221 "R_ARM_LDRS_SB_G2", /* name */
1222 FALSE
, /* partial_inplace */
1223 0xffffffff, /* src_mask */
1224 0xffffffff, /* dst_mask */
1225 TRUE
), /* pcrel_offset */
1227 HOWTO (R_ARM_LDC_SB_G0
, /* type */
1229 2, /* size (0 = byte, 1 = short, 2 = long) */
1231 TRUE
, /* pc_relative */
1233 complain_overflow_dont
,/* complain_on_overflow */
1234 bfd_elf_generic_reloc
, /* special_function */
1235 "R_ARM_LDC_SB_G0", /* name */
1236 FALSE
, /* partial_inplace */
1237 0xffffffff, /* src_mask */
1238 0xffffffff, /* dst_mask */
1239 TRUE
), /* pcrel_offset */
1241 HOWTO (R_ARM_LDC_SB_G1
, /* type */
1243 2, /* size (0 = byte, 1 = short, 2 = long) */
1245 TRUE
, /* pc_relative */
1247 complain_overflow_dont
,/* complain_on_overflow */
1248 bfd_elf_generic_reloc
, /* special_function */
1249 "R_ARM_LDC_SB_G1", /* name */
1250 FALSE
, /* partial_inplace */
1251 0xffffffff, /* src_mask */
1252 0xffffffff, /* dst_mask */
1253 TRUE
), /* pcrel_offset */
1255 HOWTO (R_ARM_LDC_SB_G2
, /* type */
1257 2, /* size (0 = byte, 1 = short, 2 = long) */
1259 TRUE
, /* pc_relative */
1261 complain_overflow_dont
,/* complain_on_overflow */
1262 bfd_elf_generic_reloc
, /* special_function */
1263 "R_ARM_LDC_SB_G2", /* name */
1264 FALSE
, /* partial_inplace */
1265 0xffffffff, /* src_mask */
1266 0xffffffff, /* dst_mask */
1267 TRUE
), /* pcrel_offset */
1269 /* End of group relocations. */
1271 HOWTO (R_ARM_MOVW_BREL_NC
, /* type */
1273 2, /* size (0 = byte, 1 = short, 2 = long) */
1275 FALSE
, /* pc_relative */
1277 complain_overflow_dont
,/* complain_on_overflow */
1278 bfd_elf_generic_reloc
, /* special_function */
1279 "R_ARM_MOVW_BREL_NC", /* name */
1280 FALSE
, /* partial_inplace */
1281 0x0000ffff, /* src_mask */
1282 0x0000ffff, /* dst_mask */
1283 FALSE
), /* pcrel_offset */
1285 HOWTO (R_ARM_MOVT_BREL
, /* type */
1287 2, /* size (0 = byte, 1 = short, 2 = long) */
1289 FALSE
, /* pc_relative */
1291 complain_overflow_bitfield
,/* complain_on_overflow */
1292 bfd_elf_generic_reloc
, /* special_function */
1293 "R_ARM_MOVT_BREL", /* name */
1294 FALSE
, /* partial_inplace */
1295 0x0000ffff, /* src_mask */
1296 0x0000ffff, /* dst_mask */
1297 FALSE
), /* pcrel_offset */
1299 HOWTO (R_ARM_MOVW_BREL
, /* type */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1303 FALSE
, /* pc_relative */
1305 complain_overflow_dont
,/* complain_on_overflow */
1306 bfd_elf_generic_reloc
, /* special_function */
1307 "R_ARM_MOVW_BREL", /* name */
1308 FALSE
, /* partial_inplace */
1309 0x0000ffff, /* src_mask */
1310 0x0000ffff, /* dst_mask */
1311 FALSE
), /* pcrel_offset */
1313 HOWTO (R_ARM_THM_MOVW_BREL_NC
,/* type */
1315 2, /* size (0 = byte, 1 = short, 2 = long) */
1317 FALSE
, /* pc_relative */
1319 complain_overflow_dont
,/* complain_on_overflow */
1320 bfd_elf_generic_reloc
, /* special_function */
1321 "R_ARM_THM_MOVW_BREL_NC",/* name */
1322 FALSE
, /* partial_inplace */
1323 0x040f70ff, /* src_mask */
1324 0x040f70ff, /* dst_mask */
1325 FALSE
), /* pcrel_offset */
1327 HOWTO (R_ARM_THM_MOVT_BREL
, /* type */
1329 2, /* size (0 = byte, 1 = short, 2 = long) */
1331 FALSE
, /* pc_relative */
1333 complain_overflow_bitfield
,/* complain_on_overflow */
1334 bfd_elf_generic_reloc
, /* special_function */
1335 "R_ARM_THM_MOVT_BREL", /* name */
1336 FALSE
, /* partial_inplace */
1337 0x040f70ff, /* src_mask */
1338 0x040f70ff, /* dst_mask */
1339 FALSE
), /* pcrel_offset */
1341 HOWTO (R_ARM_THM_MOVW_BREL
, /* type */
1343 2, /* size (0 = byte, 1 = short, 2 = long) */
1345 FALSE
, /* pc_relative */
1347 complain_overflow_dont
,/* complain_on_overflow */
1348 bfd_elf_generic_reloc
, /* special_function */
1349 "R_ARM_THM_MOVW_BREL", /* name */
1350 FALSE
, /* partial_inplace */
1351 0x040f70ff, /* src_mask */
1352 0x040f70ff, /* dst_mask */
1353 FALSE
), /* pcrel_offset */
1355 HOWTO (R_ARM_TLS_GOTDESC
, /* type */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1359 FALSE
, /* pc_relative */
1361 complain_overflow_bitfield
,/* complain_on_overflow */
1362 NULL
, /* special_function */
1363 "R_ARM_TLS_GOTDESC", /* name */
1364 TRUE
, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE
), /* pcrel_offset */
1369 HOWTO (R_ARM_TLS_CALL
, /* type */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1373 FALSE
, /* pc_relative */
1375 complain_overflow_dont
,/* complain_on_overflow */
1376 bfd_elf_generic_reloc
, /* special_function */
1377 "R_ARM_TLS_CALL", /* name */
1378 FALSE
, /* partial_inplace */
1379 0x00ffffff, /* src_mask */
1380 0x00ffffff, /* dst_mask */
1381 FALSE
), /* pcrel_offset */
1383 HOWTO (R_ARM_TLS_DESCSEQ
, /* type */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1387 FALSE
, /* pc_relative */
1389 complain_overflow_bitfield
,/* complain_on_overflow */
1390 bfd_elf_generic_reloc
, /* special_function */
1391 "R_ARM_TLS_DESCSEQ", /* name */
1392 FALSE
, /* partial_inplace */
1393 0x00000000, /* src_mask */
1394 0x00000000, /* dst_mask */
1395 FALSE
), /* pcrel_offset */
1397 HOWTO (R_ARM_THM_TLS_CALL
, /* type */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1401 FALSE
, /* pc_relative */
1403 complain_overflow_dont
,/* complain_on_overflow */
1404 bfd_elf_generic_reloc
, /* special_function */
1405 "R_ARM_THM_TLS_CALL", /* name */
1406 FALSE
, /* partial_inplace */
1407 0x07ff07ff, /* src_mask */
1408 0x07ff07ff, /* dst_mask */
1409 FALSE
), /* pcrel_offset */
1411 HOWTO (R_ARM_PLT32_ABS
, /* type */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1415 FALSE
, /* pc_relative */
1417 complain_overflow_dont
,/* complain_on_overflow */
1418 bfd_elf_generic_reloc
, /* special_function */
1419 "R_ARM_PLT32_ABS", /* name */
1420 FALSE
, /* partial_inplace */
1421 0xffffffff, /* src_mask */
1422 0xffffffff, /* dst_mask */
1423 FALSE
), /* pcrel_offset */
1425 HOWTO (R_ARM_GOT_ABS
, /* type */
1427 2, /* size (0 = byte, 1 = short, 2 = long) */
1429 FALSE
, /* pc_relative */
1431 complain_overflow_dont
,/* complain_on_overflow */
1432 bfd_elf_generic_reloc
, /* special_function */
1433 "R_ARM_GOT_ABS", /* name */
1434 FALSE
, /* partial_inplace */
1435 0xffffffff, /* src_mask */
1436 0xffffffff, /* dst_mask */
1437 FALSE
), /* pcrel_offset */
1439 HOWTO (R_ARM_GOT_PREL
, /* type */
1441 2, /* size (0 = byte, 1 = short, 2 = long) */
1443 TRUE
, /* pc_relative */
1445 complain_overflow_dont
, /* complain_on_overflow */
1446 bfd_elf_generic_reloc
, /* special_function */
1447 "R_ARM_GOT_PREL", /* name */
1448 FALSE
, /* partial_inplace */
1449 0xffffffff, /* src_mask */
1450 0xffffffff, /* dst_mask */
1451 TRUE
), /* pcrel_offset */
1453 HOWTO (R_ARM_GOT_BREL12
, /* type */
1455 2, /* size (0 = byte, 1 = short, 2 = long) */
1457 FALSE
, /* pc_relative */
1459 complain_overflow_bitfield
,/* complain_on_overflow */
1460 bfd_elf_generic_reloc
, /* special_function */
1461 "R_ARM_GOT_BREL12", /* name */
1462 FALSE
, /* partial_inplace */
1463 0x00000fff, /* src_mask */
1464 0x00000fff, /* dst_mask */
1465 FALSE
), /* pcrel_offset */
1467 HOWTO (R_ARM_GOTOFF12
, /* type */
1469 2, /* size (0 = byte, 1 = short, 2 = long) */
1471 FALSE
, /* pc_relative */
1473 complain_overflow_bitfield
,/* complain_on_overflow */
1474 bfd_elf_generic_reloc
, /* special_function */
1475 "R_ARM_GOTOFF12", /* name */
1476 FALSE
, /* partial_inplace */
1477 0x00000fff, /* src_mask */
1478 0x00000fff, /* dst_mask */
1479 FALSE
), /* pcrel_offset */
1481 EMPTY_HOWTO (R_ARM_GOTRELAX
), /* reserved for future GOT-load optimizations */
1483 /* GNU extension to record C++ vtable member usage */
1484 HOWTO (R_ARM_GNU_VTENTRY
, /* type */
1486 2, /* size (0 = byte, 1 = short, 2 = long) */
1488 FALSE
, /* pc_relative */
1490 complain_overflow_dont
, /* complain_on_overflow */
1491 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
1492 "R_ARM_GNU_VTENTRY", /* name */
1493 FALSE
, /* partial_inplace */
1496 FALSE
), /* pcrel_offset */
1498 /* GNU extension to record C++ vtable hierarchy */
1499 HOWTO (R_ARM_GNU_VTINHERIT
, /* type */
1501 2, /* size (0 = byte, 1 = short, 2 = long) */
1503 FALSE
, /* pc_relative */
1505 complain_overflow_dont
, /* complain_on_overflow */
1506 NULL
, /* special_function */
1507 "R_ARM_GNU_VTINHERIT", /* name */
1508 FALSE
, /* partial_inplace */
1511 FALSE
), /* pcrel_offset */
1513 HOWTO (R_ARM_THM_JUMP11
, /* type */
1515 1, /* size (0 = byte, 1 = short, 2 = long) */
1517 TRUE
, /* pc_relative */
1519 complain_overflow_signed
, /* complain_on_overflow */
1520 bfd_elf_generic_reloc
, /* special_function */
1521 "R_ARM_THM_JUMP11", /* name */
1522 FALSE
, /* partial_inplace */
1523 0x000007ff, /* src_mask */
1524 0x000007ff, /* dst_mask */
1525 TRUE
), /* pcrel_offset */
1527 HOWTO (R_ARM_THM_JUMP8
, /* type */
1529 1, /* size (0 = byte, 1 = short, 2 = long) */
1531 TRUE
, /* pc_relative */
1533 complain_overflow_signed
, /* complain_on_overflow */
1534 bfd_elf_generic_reloc
, /* special_function */
1535 "R_ARM_THM_JUMP8", /* name */
1536 FALSE
, /* partial_inplace */
1537 0x000000ff, /* src_mask */
1538 0x000000ff, /* dst_mask */
1539 TRUE
), /* pcrel_offset */
1541 /* TLS relocations */
1542 HOWTO (R_ARM_TLS_GD32
, /* type */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1546 FALSE
, /* pc_relative */
1548 complain_overflow_bitfield
,/* complain_on_overflow */
1549 NULL
, /* special_function */
1550 "R_ARM_TLS_GD32", /* name */
1551 TRUE
, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE
), /* pcrel_offset */
1556 HOWTO (R_ARM_TLS_LDM32
, /* type */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1560 FALSE
, /* pc_relative */
1562 complain_overflow_bitfield
,/* complain_on_overflow */
1563 bfd_elf_generic_reloc
, /* special_function */
1564 "R_ARM_TLS_LDM32", /* name */
1565 TRUE
, /* partial_inplace */
1566 0xffffffff, /* src_mask */
1567 0xffffffff, /* dst_mask */
1568 FALSE
), /* pcrel_offset */
1570 HOWTO (R_ARM_TLS_LDO32
, /* type */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1574 FALSE
, /* pc_relative */
1576 complain_overflow_bitfield
,/* complain_on_overflow */
1577 bfd_elf_generic_reloc
, /* special_function */
1578 "R_ARM_TLS_LDO32", /* name */
1579 TRUE
, /* partial_inplace */
1580 0xffffffff, /* src_mask */
1581 0xffffffff, /* dst_mask */
1582 FALSE
), /* pcrel_offset */
1584 HOWTO (R_ARM_TLS_IE32
, /* type */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1588 FALSE
, /* pc_relative */
1590 complain_overflow_bitfield
,/* complain_on_overflow */
1591 NULL
, /* special_function */
1592 "R_ARM_TLS_IE32", /* name */
1593 TRUE
, /* partial_inplace */
1594 0xffffffff, /* src_mask */
1595 0xffffffff, /* dst_mask */
1596 FALSE
), /* pcrel_offset */
1598 HOWTO (R_ARM_TLS_LE32
, /* type */
1600 2, /* size (0 = byte, 1 = short, 2 = long) */
1602 FALSE
, /* pc_relative */
1604 complain_overflow_bitfield
,/* complain_on_overflow */
1605 bfd_elf_generic_reloc
, /* special_function */
1606 "R_ARM_TLS_LE32", /* name */
1607 TRUE
, /* partial_inplace */
1608 0xffffffff, /* src_mask */
1609 0xffffffff, /* dst_mask */
1610 FALSE
), /* pcrel_offset */
1612 HOWTO (R_ARM_TLS_LDO12
, /* type */
1614 2, /* size (0 = byte, 1 = short, 2 = long) */
1616 FALSE
, /* pc_relative */
1618 complain_overflow_bitfield
,/* complain_on_overflow */
1619 bfd_elf_generic_reloc
, /* special_function */
1620 "R_ARM_TLS_LDO12", /* name */
1621 FALSE
, /* partial_inplace */
1622 0x00000fff, /* src_mask */
1623 0x00000fff, /* dst_mask */
1624 FALSE
), /* pcrel_offset */
1626 HOWTO (R_ARM_TLS_LE12
, /* type */
1628 2, /* size (0 = byte, 1 = short, 2 = long) */
1630 FALSE
, /* pc_relative */
1632 complain_overflow_bitfield
,/* complain_on_overflow */
1633 bfd_elf_generic_reloc
, /* special_function */
1634 "R_ARM_TLS_LE12", /* name */
1635 FALSE
, /* partial_inplace */
1636 0x00000fff, /* src_mask */
1637 0x00000fff, /* dst_mask */
1638 FALSE
), /* pcrel_offset */
1640 HOWTO (R_ARM_TLS_IE12GP
, /* type */
1642 2, /* size (0 = byte, 1 = short, 2 = long) */
1644 FALSE
, /* pc_relative */
1646 complain_overflow_bitfield
,/* complain_on_overflow */
1647 bfd_elf_generic_reloc
, /* special_function */
1648 "R_ARM_TLS_IE12GP", /* name */
1649 FALSE
, /* partial_inplace */
1650 0x00000fff, /* src_mask */
1651 0x00000fff, /* dst_mask */
1652 FALSE
), /* pcrel_offset */
1654 /* 112-127 private relocations. */
1672 /* R_ARM_ME_TOO, obsolete. */
1675 HOWTO (R_ARM_THM_TLS_DESCSEQ
, /* type */
1677 1, /* size (0 = byte, 1 = short, 2 = long) */
1679 FALSE
, /* pc_relative */
1681 complain_overflow_bitfield
,/* complain_on_overflow */
1682 bfd_elf_generic_reloc
, /* special_function */
1683 "R_ARM_THM_TLS_DESCSEQ",/* name */
1684 FALSE
, /* partial_inplace */
1685 0x00000000, /* src_mask */
1686 0x00000000, /* dst_mask */
1687 FALSE
), /* pcrel_offset */
1691 static reloc_howto_type elf32_arm_howto_table_2
[1] =
1693 HOWTO (R_ARM_IRELATIVE
, /* type */
1695 2, /* size (0 = byte, 1 = short, 2 = long) */
1697 FALSE
, /* pc_relative */
1699 complain_overflow_bitfield
,/* complain_on_overflow */
1700 bfd_elf_generic_reloc
, /* special_function */
1701 "R_ARM_IRELATIVE", /* name */
1702 TRUE
, /* partial_inplace */
1703 0xffffffff, /* src_mask */
1704 0xffffffff, /* dst_mask */
1705 FALSE
) /* pcrel_offset */
1708 /* 249-255 extended, currently unused, relocations: */
1709 static reloc_howto_type elf32_arm_howto_table_3
[4] =
1711 HOWTO (R_ARM_RREL32
, /* type */
1713 0, /* size (0 = byte, 1 = short, 2 = long) */
1715 FALSE
, /* pc_relative */
1717 complain_overflow_dont
,/* complain_on_overflow */
1718 bfd_elf_generic_reloc
, /* special_function */
1719 "R_ARM_RREL32", /* name */
1720 FALSE
, /* partial_inplace */
1723 FALSE
), /* pcrel_offset */
1725 HOWTO (R_ARM_RABS32
, /* type */
1727 0, /* size (0 = byte, 1 = short, 2 = long) */
1729 FALSE
, /* pc_relative */
1731 complain_overflow_dont
,/* complain_on_overflow */
1732 bfd_elf_generic_reloc
, /* special_function */
1733 "R_ARM_RABS32", /* name */
1734 FALSE
, /* partial_inplace */
1737 FALSE
), /* pcrel_offset */
1739 HOWTO (R_ARM_RPC24
, /* type */
1741 0, /* size (0 = byte, 1 = short, 2 = long) */
1743 FALSE
, /* pc_relative */
1745 complain_overflow_dont
,/* complain_on_overflow */
1746 bfd_elf_generic_reloc
, /* special_function */
1747 "R_ARM_RPC24", /* name */
1748 FALSE
, /* partial_inplace */
1751 FALSE
), /* pcrel_offset */
1753 HOWTO (R_ARM_RBASE
, /* type */
1755 0, /* size (0 = byte, 1 = short, 2 = long) */
1757 FALSE
, /* pc_relative */
1759 complain_overflow_dont
,/* complain_on_overflow */
1760 bfd_elf_generic_reloc
, /* special_function */
1761 "R_ARM_RBASE", /* name */
1762 FALSE
, /* partial_inplace */
1765 FALSE
) /* pcrel_offset */
1768 static reloc_howto_type
*
1769 elf32_arm_howto_from_type (unsigned int r_type
)
1771 if (r_type
< ARRAY_SIZE (elf32_arm_howto_table_1
))
1772 return &elf32_arm_howto_table_1
[r_type
];
1774 if (r_type
== R_ARM_IRELATIVE
)
1775 return &elf32_arm_howto_table_2
[r_type
- R_ARM_IRELATIVE
];
1777 if (r_type
>= R_ARM_RREL32
1778 && r_type
< R_ARM_RREL32
+ ARRAY_SIZE (elf32_arm_howto_table_3
))
1779 return &elf32_arm_howto_table_3
[r_type
- R_ARM_RREL32
];
1785 elf32_arm_info_to_howto (bfd
* abfd ATTRIBUTE_UNUSED
, arelent
* bfd_reloc
,
1786 Elf_Internal_Rela
* elf_reloc
)
1788 unsigned int r_type
;
1790 r_type
= ELF32_R_TYPE (elf_reloc
->r_info
);
1791 bfd_reloc
->howto
= elf32_arm_howto_from_type (r_type
);
1794 struct elf32_arm_reloc_map
1796 bfd_reloc_code_real_type bfd_reloc_val
;
1797 unsigned char elf_reloc_val
;
1800 /* All entries in this list must also be present in elf32_arm_howto_table. */
1801 static const struct elf32_arm_reloc_map elf32_arm_reloc_map
[] =
1803 {BFD_RELOC_NONE
, R_ARM_NONE
},
1804 {BFD_RELOC_ARM_PCREL_BRANCH
, R_ARM_PC24
},
1805 {BFD_RELOC_ARM_PCREL_CALL
, R_ARM_CALL
},
1806 {BFD_RELOC_ARM_PCREL_JUMP
, R_ARM_JUMP24
},
1807 {BFD_RELOC_ARM_PCREL_BLX
, R_ARM_XPC25
},
1808 {BFD_RELOC_THUMB_PCREL_BLX
, R_ARM_THM_XPC22
},
1809 {BFD_RELOC_32
, R_ARM_ABS32
},
1810 {BFD_RELOC_32_PCREL
, R_ARM_REL32
},
1811 {BFD_RELOC_8
, R_ARM_ABS8
},
1812 {BFD_RELOC_16
, R_ARM_ABS16
},
1813 {BFD_RELOC_ARM_OFFSET_IMM
, R_ARM_ABS12
},
1814 {BFD_RELOC_ARM_THUMB_OFFSET
, R_ARM_THM_ABS5
},
1815 {BFD_RELOC_THUMB_PCREL_BRANCH25
, R_ARM_THM_JUMP24
},
1816 {BFD_RELOC_THUMB_PCREL_BRANCH23
, R_ARM_THM_CALL
},
1817 {BFD_RELOC_THUMB_PCREL_BRANCH12
, R_ARM_THM_JUMP11
},
1818 {BFD_RELOC_THUMB_PCREL_BRANCH20
, R_ARM_THM_JUMP19
},
1819 {BFD_RELOC_THUMB_PCREL_BRANCH9
, R_ARM_THM_JUMP8
},
1820 {BFD_RELOC_THUMB_PCREL_BRANCH7
, R_ARM_THM_JUMP6
},
1821 {BFD_RELOC_ARM_GLOB_DAT
, R_ARM_GLOB_DAT
},
1822 {BFD_RELOC_ARM_JUMP_SLOT
, R_ARM_JUMP_SLOT
},
1823 {BFD_RELOC_ARM_RELATIVE
, R_ARM_RELATIVE
},
1824 {BFD_RELOC_ARM_GOTOFF
, R_ARM_GOTOFF32
},
1825 {BFD_RELOC_ARM_GOTPC
, R_ARM_GOTPC
},
1826 {BFD_RELOC_ARM_GOT_PREL
, R_ARM_GOT_PREL
},
1827 {BFD_RELOC_ARM_GOT32
, R_ARM_GOT32
},
1828 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1829 {BFD_RELOC_ARM_TARGET1
, R_ARM_TARGET1
},
1830 {BFD_RELOC_ARM_ROSEGREL32
, R_ARM_ROSEGREL32
},
1831 {BFD_RELOC_ARM_SBREL32
, R_ARM_SBREL32
},
1832 {BFD_RELOC_ARM_PREL31
, R_ARM_PREL31
},
1833 {BFD_RELOC_ARM_TARGET2
, R_ARM_TARGET2
},
1834 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1835 {BFD_RELOC_ARM_TLS_GOTDESC
, R_ARM_TLS_GOTDESC
},
1836 {BFD_RELOC_ARM_TLS_CALL
, R_ARM_TLS_CALL
},
1837 {BFD_RELOC_ARM_THM_TLS_CALL
, R_ARM_THM_TLS_CALL
},
1838 {BFD_RELOC_ARM_TLS_DESCSEQ
, R_ARM_TLS_DESCSEQ
},
1839 {BFD_RELOC_ARM_THM_TLS_DESCSEQ
, R_ARM_THM_TLS_DESCSEQ
},
1840 {BFD_RELOC_ARM_TLS_DESC
, R_ARM_TLS_DESC
},
1841 {BFD_RELOC_ARM_TLS_GD32
, R_ARM_TLS_GD32
},
1842 {BFD_RELOC_ARM_TLS_LDO32
, R_ARM_TLS_LDO32
},
1843 {BFD_RELOC_ARM_TLS_LDM32
, R_ARM_TLS_LDM32
},
1844 {BFD_RELOC_ARM_TLS_DTPMOD32
, R_ARM_TLS_DTPMOD32
},
1845 {BFD_RELOC_ARM_TLS_DTPOFF32
, R_ARM_TLS_DTPOFF32
},
1846 {BFD_RELOC_ARM_TLS_TPOFF32
, R_ARM_TLS_TPOFF32
},
1847 {BFD_RELOC_ARM_TLS_IE32
, R_ARM_TLS_IE32
},
1848 {BFD_RELOC_ARM_TLS_LE32
, R_ARM_TLS_LE32
},
1849 {BFD_RELOC_ARM_IRELATIVE
, R_ARM_IRELATIVE
},
1850 {BFD_RELOC_VTABLE_INHERIT
, R_ARM_GNU_VTINHERIT
},
1851 {BFD_RELOC_VTABLE_ENTRY
, R_ARM_GNU_VTENTRY
},
1852 {BFD_RELOC_ARM_MOVW
, R_ARM_MOVW_ABS_NC
},
1853 {BFD_RELOC_ARM_MOVT
, R_ARM_MOVT_ABS
},
1854 {BFD_RELOC_ARM_MOVW_PCREL
, R_ARM_MOVW_PREL_NC
},
1855 {BFD_RELOC_ARM_MOVT_PCREL
, R_ARM_MOVT_PREL
},
1856 {BFD_RELOC_ARM_THUMB_MOVW
, R_ARM_THM_MOVW_ABS_NC
},
1857 {BFD_RELOC_ARM_THUMB_MOVT
, R_ARM_THM_MOVT_ABS
},
1858 {BFD_RELOC_ARM_THUMB_MOVW_PCREL
, R_ARM_THM_MOVW_PREL_NC
},
1859 {BFD_RELOC_ARM_THUMB_MOVT_PCREL
, R_ARM_THM_MOVT_PREL
},
1860 {BFD_RELOC_ARM_ALU_PC_G0_NC
, R_ARM_ALU_PC_G0_NC
},
1861 {BFD_RELOC_ARM_ALU_PC_G0
, R_ARM_ALU_PC_G0
},
1862 {BFD_RELOC_ARM_ALU_PC_G1_NC
, R_ARM_ALU_PC_G1_NC
},
1863 {BFD_RELOC_ARM_ALU_PC_G1
, R_ARM_ALU_PC_G1
},
1864 {BFD_RELOC_ARM_ALU_PC_G2
, R_ARM_ALU_PC_G2
},
1865 {BFD_RELOC_ARM_LDR_PC_G0
, R_ARM_LDR_PC_G0
},
1866 {BFD_RELOC_ARM_LDR_PC_G1
, R_ARM_LDR_PC_G1
},
1867 {BFD_RELOC_ARM_LDR_PC_G2
, R_ARM_LDR_PC_G2
},
1868 {BFD_RELOC_ARM_LDRS_PC_G0
, R_ARM_LDRS_PC_G0
},
1869 {BFD_RELOC_ARM_LDRS_PC_G1
, R_ARM_LDRS_PC_G1
},
1870 {BFD_RELOC_ARM_LDRS_PC_G2
, R_ARM_LDRS_PC_G2
},
1871 {BFD_RELOC_ARM_LDC_PC_G0
, R_ARM_LDC_PC_G0
},
1872 {BFD_RELOC_ARM_LDC_PC_G1
, R_ARM_LDC_PC_G1
},
1873 {BFD_RELOC_ARM_LDC_PC_G2
, R_ARM_LDC_PC_G2
},
1874 {BFD_RELOC_ARM_ALU_SB_G0_NC
, R_ARM_ALU_SB_G0_NC
},
1875 {BFD_RELOC_ARM_ALU_SB_G0
, R_ARM_ALU_SB_G0
},
1876 {BFD_RELOC_ARM_ALU_SB_G1_NC
, R_ARM_ALU_SB_G1_NC
},
1877 {BFD_RELOC_ARM_ALU_SB_G1
, R_ARM_ALU_SB_G1
},
1878 {BFD_RELOC_ARM_ALU_SB_G2
, R_ARM_ALU_SB_G2
},
1879 {BFD_RELOC_ARM_LDR_SB_G0
, R_ARM_LDR_SB_G0
},
1880 {BFD_RELOC_ARM_LDR_SB_G1
, R_ARM_LDR_SB_G1
},
1881 {BFD_RELOC_ARM_LDR_SB_G2
, R_ARM_LDR_SB_G2
},
1882 {BFD_RELOC_ARM_LDRS_SB_G0
, R_ARM_LDRS_SB_G0
},
1883 {BFD_RELOC_ARM_LDRS_SB_G1
, R_ARM_LDRS_SB_G1
},
1884 {BFD_RELOC_ARM_LDRS_SB_G2
, R_ARM_LDRS_SB_G2
},
1885 {BFD_RELOC_ARM_LDC_SB_G0
, R_ARM_LDC_SB_G0
},
1886 {BFD_RELOC_ARM_LDC_SB_G1
, R_ARM_LDC_SB_G1
},
1887 {BFD_RELOC_ARM_LDC_SB_G2
, R_ARM_LDC_SB_G2
},
1888 {BFD_RELOC_ARM_V4BX
, R_ARM_V4BX
}
1891 static reloc_howto_type
*
1892 elf32_arm_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1893 bfd_reloc_code_real_type code
)
1897 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_reloc_map
); i
++)
1898 if (elf32_arm_reloc_map
[i
].bfd_reloc_val
== code
)
1899 return elf32_arm_howto_from_type (elf32_arm_reloc_map
[i
].elf_reloc_val
);
1904 static reloc_howto_type
*
1905 elf32_arm_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1910 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_1
); i
++)
1911 if (elf32_arm_howto_table_1
[i
].name
!= NULL
1912 && strcasecmp (elf32_arm_howto_table_1
[i
].name
, r_name
) == 0)
1913 return &elf32_arm_howto_table_1
[i
];
1915 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_2
); i
++)
1916 if (elf32_arm_howto_table_2
[i
].name
!= NULL
1917 && strcasecmp (elf32_arm_howto_table_2
[i
].name
, r_name
) == 0)
1918 return &elf32_arm_howto_table_2
[i
];
1920 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_3
); i
++)
1921 if (elf32_arm_howto_table_3
[i
].name
!= NULL
1922 && strcasecmp (elf32_arm_howto_table_3
[i
].name
, r_name
) == 0)
1923 return &elf32_arm_howto_table_3
[i
];
1928 /* Support for core dump NOTE sections. */
1931 elf32_arm_nabi_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
1936 switch (note
->descsz
)
1941 case 148: /* Linux/ARM 32-bit. */
1943 elf_tdata (abfd
)->core_signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
1946 elf_tdata (abfd
)->core_lwpid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
1955 /* Make a ".reg/999" section. */
1956 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
1957 size
, note
->descpos
+ offset
);
1961 elf32_arm_nabi_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
1963 switch (note
->descsz
)
1968 case 124: /* Linux/ARM elf_prpsinfo. */
1969 elf_tdata (abfd
)->core_program
1970 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 28, 16);
1971 elf_tdata (abfd
)->core_command
1972 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 44, 80);
1975 /* Note that for some reason, a spurious space is tacked
1976 onto the end of the args in some (at least one anyway)
1977 implementations, so strip it off if it exists. */
1979 char *command
= elf_tdata (abfd
)->core_command
;
1980 int n
= strlen (command
);
1982 if (0 < n
&& command
[n
- 1] == ' ')
1983 command
[n
- 1] = '\0';
1989 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1990 #define TARGET_LITTLE_NAME "elf32-littlearm"
1991 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1992 #define TARGET_BIG_NAME "elf32-bigarm"
1994 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1995 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1997 typedef unsigned long int insn32
;
1998 typedef unsigned short int insn16
;
2000 /* In lieu of proper flags, assume all EABIv4 or later objects are
2002 #define INTERWORK_FLAG(abfd) \
2003 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2004 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2005 || ((abfd)->flags & BFD_LINKER_CREATED))
2007 /* The linker script knows the section names for placement.
2008 The entry_names are used to do simple name mangling on the stubs.
2009 Given a function name, and its type, the stub can be found. The
2010 name can be changed. The only requirement is the %s be present. */
2011 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2012 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2014 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2015 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2017 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2018 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2020 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2021 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2023 #define STUB_ENTRY_NAME "__%s_veneer"
2025 /* The name of the dynamic interpreter. This is put in the .interp
2027 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2029 static const unsigned long tls_trampoline
[] =
2031 0xe08e0000, /* add r0, lr, r0 */
2032 0xe5901004, /* ldr r1, [r0,#4] */
2033 0xe12fff11, /* bx r1 */
2036 static const unsigned long dl_tlsdesc_lazy_trampoline
[] =
2038 0xe52d2004, /* push {r2} */
2039 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2040 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2041 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2042 0xe081100f, /* 2: add r1, pc */
2043 0xe12fff12, /* bx r2 */
2044 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2045 + dl_tlsdesc_lazy_resolver(GOT) */
2046 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2049 #ifdef FOUR_WORD_PLT
2051 /* The first entry in a procedure linkage table looks like
2052 this. It is set up so that any shared library function that is
2053 called before the relocation has been set up calls the dynamic
2055 static const bfd_vma elf32_arm_plt0_entry
[] =
2057 0xe52de004, /* str lr, [sp, #-4]! */
2058 0xe59fe010, /* ldr lr, [pc, #16] */
2059 0xe08fe00e, /* add lr, pc, lr */
2060 0xe5bef008, /* ldr pc, [lr, #8]! */
2063 /* Subsequent entries in a procedure linkage table look like
2065 static const bfd_vma elf32_arm_plt_entry
[] =
2067 0xe28fc600, /* add ip, pc, #NN */
2068 0xe28cca00, /* add ip, ip, #NN */
2069 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2070 0x00000000, /* unused */
2075 /* The first entry in a procedure linkage table looks like
2076 this. It is set up so that any shared library function that is
2077 called before the relocation has been set up calls the dynamic
2079 static const bfd_vma elf32_arm_plt0_entry
[] =
2081 0xe52de004, /* str lr, [sp, #-4]! */
2082 0xe59fe004, /* ldr lr, [pc, #4] */
2083 0xe08fe00e, /* add lr, pc, lr */
2084 0xe5bef008, /* ldr pc, [lr, #8]! */
2085 0x00000000, /* &GOT[0] - . */
2088 /* Subsequent entries in a procedure linkage table look like
2090 static const bfd_vma elf32_arm_plt_entry
[] =
2092 0xe28fc600, /* add ip, pc, #0xNN00000 */
2093 0xe28cca00, /* add ip, ip, #0xNN000 */
2094 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2099 /* The format of the first entry in the procedure linkage table
2100 for a VxWorks executable. */
2101 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry
[] =
2103 0xe52dc008, /* str ip,[sp,#-8]! */
2104 0xe59fc000, /* ldr ip,[pc] */
2105 0xe59cf008, /* ldr pc,[ip,#8] */
2106 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2109 /* The format of subsequent entries in a VxWorks executable. */
2110 static const bfd_vma elf32_arm_vxworks_exec_plt_entry
[] =
2112 0xe59fc000, /* ldr ip,[pc] */
2113 0xe59cf000, /* ldr pc,[ip] */
2114 0x00000000, /* .long @got */
2115 0xe59fc000, /* ldr ip,[pc] */
2116 0xea000000, /* b _PLT */
2117 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2120 /* The format of entries in a VxWorks shared library. */
2121 static const bfd_vma elf32_arm_vxworks_shared_plt_entry
[] =
2123 0xe59fc000, /* ldr ip,[pc] */
2124 0xe79cf009, /* ldr pc,[ip,r9] */
2125 0x00000000, /* .long @got */
2126 0xe59fc000, /* ldr ip,[pc] */
2127 0xe599f008, /* ldr pc,[r9,#8] */
2128 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2131 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2132 #define PLT_THUMB_STUB_SIZE 4
2133 static const bfd_vma elf32_arm_plt_thumb_stub
[] =
2139 /* The entries in a PLT when using a DLL-based target with multiple
2141 static const bfd_vma elf32_arm_symbian_plt_entry
[] =
2143 0xe51ff004, /* ldr pc, [pc, #-4] */
2144 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2147 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2148 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2149 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2150 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2151 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2152 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2162 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2163 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2164 is inserted in arm_build_one_stub(). */
2165 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2166 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2167 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2168 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2169 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2170 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2175 enum stub_insn_type type
;
2176 unsigned int r_type
;
2180 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2181 to reach the stub if necessary. */
2182 static const insn_sequence elf32_arm_stub_long_branch_any_any
[] =
2184 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2185 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2188 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2190 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb
[] =
2192 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2193 ARM_INSN(0xe12fff1c), /* bx ip */
2194 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2197 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2198 static const insn_sequence elf32_arm_stub_long_branch_thumb_only
[] =
2200 THUMB16_INSN(0xb401), /* push {r0} */
2201 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2202 THUMB16_INSN(0x4684), /* mov ip, r0 */
2203 THUMB16_INSN(0xbc01), /* pop {r0} */
2204 THUMB16_INSN(0x4760), /* bx ip */
2205 THUMB16_INSN(0xbf00), /* nop */
2206 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2209 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2211 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb
[] =
2213 THUMB16_INSN(0x4778), /* bx pc */
2214 THUMB16_INSN(0x46c0), /* nop */
2215 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2216 ARM_INSN(0xe12fff1c), /* bx ip */
2217 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2220 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2222 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm
[] =
2224 THUMB16_INSN(0x4778), /* bx pc */
2225 THUMB16_INSN(0x46c0), /* nop */
2226 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2227 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2230 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2231 one, when the destination is close enough. */
2232 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm
[] =
2234 THUMB16_INSN(0x4778), /* bx pc */
2235 THUMB16_INSN(0x46c0), /* nop */
2236 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
2239 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2240 blx to reach the stub if necessary. */
2241 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic
[] =
2243 ARM_INSN(0xe59fc000), /* ldr ip, [pc] */
2244 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2245 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X-4) */
2248 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2249 blx to reach the stub if necessary. We can not add into pc;
2250 it is not guaranteed to mode switch (different in ARMv6 and
2252 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic
[] =
2254 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2255 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2256 ARM_INSN(0xe12fff1c), /* bx ip */
2257 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2260 /* V4T ARM -> ARM long branch stub, PIC. */
2261 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic
[] =
2263 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2264 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2265 ARM_INSN(0xe12fff1c), /* bx ip */
2266 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2269 /* V4T Thumb -> ARM long branch stub, PIC. */
2270 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic
[] =
2272 THUMB16_INSN(0x4778), /* bx pc */
2273 THUMB16_INSN(0x46c0), /* nop */
2274 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2275 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2276 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X) */
2279 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2281 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic
[] =
2283 THUMB16_INSN(0xb401), /* push {r0} */
2284 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2285 THUMB16_INSN(0x46fc), /* mov ip, pc */
2286 THUMB16_INSN(0x4484), /* add ip, r0 */
2287 THUMB16_INSN(0xbc01), /* pop {r0} */
2288 THUMB16_INSN(0x4760), /* bx ip */
2289 DATA_WORD(0, R_ARM_REL32
, 4), /* dcd R_ARM_REL32(X) */
2292 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2294 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic
[] =
2296 THUMB16_INSN(0x4778), /* bx pc */
2297 THUMB16_INSN(0x46c0), /* nop */
2298 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2299 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2300 ARM_INSN(0xe12fff1c), /* bx ip */
2301 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2304 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2305 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2306 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic
[] =
2308 ARM_INSN(0xe59f1000), /* ldr r1, [pc] */
2309 ARM_INSN(0xe08ff001), /* add pc, pc, r1 */
2310 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X-4) */
2313 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2314 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2315 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic
[] =
2317 THUMB16_INSN(0x4778), /* bx pc */
2318 THUMB16_INSN(0x46c0), /* nop */
2319 ARM_INSN(0xe59f1000), /* ldr r1, [pc, #0] */
2320 ARM_INSN(0xe081f00f), /* add pc, r1, pc */
2321 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X) */
2324 /* Cortex-A8 erratum-workaround stubs. */
2326 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2327 can't use a conditional branch to reach this stub). */
2329 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond
[] =
2331 THUMB16_BCOND_INSN(0xd001), /* b<cond>.n true. */
2332 THUMB32_B_INSN(0xf000b800, -4), /* b.w insn_after_original_branch. */
2333 THUMB32_B_INSN(0xf000b800, -4) /* true: b.w original_branch_dest. */
2336 /* Stub used for b.w and bl.w instructions. */
2338 static const insn_sequence elf32_arm_stub_a8_veneer_b
[] =
2340 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2343 static const insn_sequence elf32_arm_stub_a8_veneer_bl
[] =
2345 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2348 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2349 instruction (which switches to ARM mode) to point to this stub. Jump to the
2350 real destination using an ARM-mode branch. */
2352 static const insn_sequence elf32_arm_stub_a8_veneer_blx
[] =
2354 ARM_REL_INSN(0xea000000, -8) /* b original_branch_dest. */
2357 /* Section name for stubs is the associated section name plus this
2359 #define STUB_SUFFIX ".stub"
2361 /* One entry per long/short branch stub defined above. */
2363 DEF_STUB(long_branch_any_any) \
2364 DEF_STUB(long_branch_v4t_arm_thumb) \
2365 DEF_STUB(long_branch_thumb_only) \
2366 DEF_STUB(long_branch_v4t_thumb_thumb) \
2367 DEF_STUB(long_branch_v4t_thumb_arm) \
2368 DEF_STUB(short_branch_v4t_thumb_arm) \
2369 DEF_STUB(long_branch_any_arm_pic) \
2370 DEF_STUB(long_branch_any_thumb_pic) \
2371 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2372 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2373 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2374 DEF_STUB(long_branch_thumb_only_pic) \
2375 DEF_STUB(long_branch_any_tls_pic) \
2376 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2377 DEF_STUB(a8_veneer_b_cond) \
2378 DEF_STUB(a8_veneer_b) \
2379 DEF_STUB(a8_veneer_bl) \
2380 DEF_STUB(a8_veneer_blx)
2382 #define DEF_STUB(x) arm_stub_##x,
2383 enum elf32_arm_stub_type
{
2386 /* Note the first a8_veneer type */
2387 arm_stub_a8_veneer_lwm
= arm_stub_a8_veneer_b_cond
2393 const insn_sequence
* template_sequence
;
2397 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2398 static const stub_def stub_definitions
[] = {
2403 struct elf32_arm_stub_hash_entry
2405 /* Base hash table entry structure. */
2406 struct bfd_hash_entry root
;
2408 /* The stub section. */
2411 /* Offset within stub_sec of the beginning of this stub. */
2412 bfd_vma stub_offset
;
2414 /* Given the symbol's value and its section we can determine its final
2415 value when building the stubs (so the stub knows where to jump). */
2416 bfd_vma target_value
;
2417 asection
*target_section
;
2419 /* Offset to apply to relocation referencing target_value. */
2420 bfd_vma target_addend
;
2422 /* The instruction which caused this stub to be generated (only valid for
2423 Cortex-A8 erratum workaround stubs at present). */
2424 unsigned long orig_insn
;
2426 /* The stub type. */
2427 enum elf32_arm_stub_type stub_type
;
2428 /* Its encoding size in bytes. */
2431 const insn_sequence
*stub_template
;
2432 /* The size of the template (number of entries). */
2433 int stub_template_size
;
2435 /* The symbol table entry, if any, that this was derived from. */
2436 struct elf32_arm_link_hash_entry
*h
;
2438 /* Type of branch. */
2439 enum arm_st_branch_type branch_type
;
2441 /* Where this stub is being called from, or, in the case of combined
2442 stub sections, the first input section in the group. */
2445 /* The name for the local symbol at the start of this stub. The
2446 stub name in the hash table has to be unique; this does not, so
2447 it can be friendlier. */
2451 /* Used to build a map of a section. This is required for mixed-endian
2454 typedef struct elf32_elf_section_map
2459 elf32_arm_section_map
;
2461 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2465 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
,
2466 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
,
2467 VFP11_ERRATUM_ARM_VENEER
,
2468 VFP11_ERRATUM_THUMB_VENEER
2470 elf32_vfp11_erratum_type
;
2472 typedef struct elf32_vfp11_erratum_list
2474 struct elf32_vfp11_erratum_list
*next
;
2480 struct elf32_vfp11_erratum_list
*veneer
;
2481 unsigned int vfp_insn
;
2485 struct elf32_vfp11_erratum_list
*branch
;
2489 elf32_vfp11_erratum_type type
;
2491 elf32_vfp11_erratum_list
;
2496 INSERT_EXIDX_CANTUNWIND_AT_END
2498 arm_unwind_edit_type
;
2500 /* A (sorted) list of edits to apply to an unwind table. */
2501 typedef struct arm_unwind_table_edit
2503 arm_unwind_edit_type type
;
2504 /* Note: we sometimes want to insert an unwind entry corresponding to a
2505 section different from the one we're currently writing out, so record the
2506 (text) section this edit relates to here. */
2507 asection
*linked_section
;
2509 struct arm_unwind_table_edit
*next
;
2511 arm_unwind_table_edit
;
2513 typedef struct _arm_elf_section_data
2515 /* Information about mapping symbols. */
2516 struct bfd_elf_section_data elf
;
2517 unsigned int mapcount
;
2518 unsigned int mapsize
;
2519 elf32_arm_section_map
*map
;
2520 /* Information about CPU errata. */
2521 unsigned int erratumcount
;
2522 elf32_vfp11_erratum_list
*erratumlist
;
2523 /* Information about unwind tables. */
2526 /* Unwind info attached to a text section. */
2529 asection
*arm_exidx_sec
;
2532 /* Unwind info attached to an .ARM.exidx section. */
2535 arm_unwind_table_edit
*unwind_edit_list
;
2536 arm_unwind_table_edit
*unwind_edit_tail
;
2540 _arm_elf_section_data
;
2542 #define elf32_arm_section_data(sec) \
2543 ((_arm_elf_section_data *) elf_section_data (sec))
2545 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2546 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2547 so may be created multiple times: we use an array of these entries whilst
2548 relaxing which we can refresh easily, then create stubs for each potentially
2549 erratum-triggering instruction once we've settled on a solution. */
2551 struct a8_erratum_fix
{
2556 unsigned long orig_insn
;
2558 enum elf32_arm_stub_type stub_type
;
2559 enum arm_st_branch_type branch_type
;
2562 /* A table of relocs applied to branches which might trigger Cortex-A8
2565 struct a8_erratum_reloc
{
2567 bfd_vma destination
;
2568 struct elf32_arm_link_hash_entry
*hash
;
2569 const char *sym_name
;
2570 unsigned int r_type
;
2571 enum arm_st_branch_type branch_type
;
2572 bfd_boolean non_a8_stub
;
2575 /* The size of the thread control block. */
2578 /* ARM-specific information about a PLT entry, over and above the usual
2580 struct arm_plt_info
{
2581 /* We reference count Thumb references to a PLT entry separately,
2582 so that we can emit the Thumb trampoline only if needed. */
2583 bfd_signed_vma thumb_refcount
;
2585 /* Some references from Thumb code may be eliminated by BL->BLX
2586 conversion, so record them separately. */
2587 bfd_signed_vma maybe_thumb_refcount
;
2589 /* How many of the recorded PLT accesses were from non-call relocations.
2590 This information is useful when deciding whether anything takes the
2591 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2592 non-call references to the function should resolve directly to the
2593 real runtime target. */
2594 unsigned int noncall_refcount
;
2596 /* Since PLT entries have variable size if the Thumb prologue is
2597 used, we need to record the index into .got.plt instead of
2598 recomputing it from the PLT offset. */
2599 bfd_signed_vma got_offset
;
2602 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2603 struct arm_local_iplt_info
{
2604 /* The information that is usually found in the generic ELF part of
2605 the hash table entry. */
2606 union gotplt_union root
;
2608 /* The information that is usually found in the ARM-specific part of
2609 the hash table entry. */
2610 struct arm_plt_info arm
;
2612 /* A list of all potential dynamic relocations against this symbol. */
2613 struct elf_dyn_relocs
*dyn_relocs
;
2616 struct elf_arm_obj_tdata
2618 struct elf_obj_tdata root
;
2620 /* tls_type for each local got entry. */
2621 char *local_got_tls_type
;
2623 /* GOTPLT entries for TLS descriptors. */
2624 bfd_vma
*local_tlsdesc_gotent
;
2626 /* Information for local symbols that need entries in .iplt. */
2627 struct arm_local_iplt_info
**local_iplt
;
2629 /* Zero to warn when linking objects with incompatible enum sizes. */
2630 int no_enum_size_warning
;
2632 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2633 int no_wchar_size_warning
;
2636 #define elf_arm_tdata(bfd) \
2637 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2639 #define elf32_arm_local_got_tls_type(bfd) \
2640 (elf_arm_tdata (bfd)->local_got_tls_type)
2642 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2643 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2645 #define elf32_arm_local_iplt(bfd) \
2646 (elf_arm_tdata (bfd)->local_iplt)
2648 #define is_arm_elf(bfd) \
2649 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2650 && elf_tdata (bfd) != NULL \
2651 && elf_object_id (bfd) == ARM_ELF_DATA)
2654 elf32_arm_mkobject (bfd
*abfd
)
2656 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_arm_obj_tdata
),
2660 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2662 /* Arm ELF linker hash entry. */
2663 struct elf32_arm_link_hash_entry
2665 struct elf_link_hash_entry root
;
2667 /* Track dynamic relocs copied for this symbol. */
2668 struct elf_dyn_relocs
*dyn_relocs
;
2670 /* ARM-specific PLT information. */
2671 struct arm_plt_info plt
;
2673 #define GOT_UNKNOWN 0
2674 #define GOT_NORMAL 1
2675 #define GOT_TLS_GD 2
2676 #define GOT_TLS_IE 4
2677 #define GOT_TLS_GDESC 8
2678 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
2679 unsigned int tls_type
: 8;
2681 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
2682 unsigned int is_iplt
: 1;
2684 unsigned int unused
: 23;
2686 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2687 starting at the end of the jump table. */
2688 bfd_vma tlsdesc_got
;
2690 /* The symbol marking the real symbol location for exported thumb
2691 symbols with Arm stubs. */
2692 struct elf_link_hash_entry
*export_glue
;
2694 /* A pointer to the most recently used stub hash entry against this
2696 struct elf32_arm_stub_hash_entry
*stub_cache
;
2699 /* Traverse an arm ELF linker hash table. */
2700 #define elf32_arm_link_hash_traverse(table, func, info) \
2701 (elf_link_hash_traverse \
2703 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2706 /* Get the ARM elf linker hash table from a link_info structure. */
2707 #define elf32_arm_hash_table(info) \
2708 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2709 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2711 #define arm_stub_hash_lookup(table, string, create, copy) \
2712 ((struct elf32_arm_stub_hash_entry *) \
2713 bfd_hash_lookup ((table), (string), (create), (copy)))
2715 /* Array to keep track of which stub sections have been created, and
2716 information on stub grouping. */
2719 /* This is the section to which stubs in the group will be
2722 /* The stub section. */
2726 #define elf32_arm_compute_jump_table_size(htab) \
2727 ((htab)->next_tls_desc_index * 4)
2729 /* ARM ELF linker hash table. */
2730 struct elf32_arm_link_hash_table
2732 /* The main hash table. */
2733 struct elf_link_hash_table root
;
2735 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2736 bfd_size_type thumb_glue_size
;
2738 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2739 bfd_size_type arm_glue_size
;
2741 /* The size in bytes of section containing the ARMv4 BX veneers. */
2742 bfd_size_type bx_glue_size
;
2744 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2745 veneer has been populated. */
2746 bfd_vma bx_glue_offset
[15];
2748 /* The size in bytes of the section containing glue for VFP11 erratum
2750 bfd_size_type vfp11_erratum_glue_size
;
2752 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2753 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2754 elf32_arm_write_section(). */
2755 struct a8_erratum_fix
*a8_erratum_fixes
;
2756 unsigned int num_a8_erratum_fixes
;
2758 /* An arbitrary input BFD chosen to hold the glue sections. */
2759 bfd
* bfd_of_glue_owner
;
2761 /* Nonzero to output a BE8 image. */
2764 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2765 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2768 /* The relocation to use for R_ARM_TARGET2 relocations. */
2771 /* 0 = Ignore R_ARM_V4BX.
2772 1 = Convert BX to MOV PC.
2773 2 = Generate v4 interworing stubs. */
2776 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2779 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2782 /* What sort of code sequences we should look for which may trigger the
2783 VFP11 denorm erratum. */
2784 bfd_arm_vfp11_fix vfp11_fix
;
2786 /* Global counter for the number of fixes we have emitted. */
2787 int num_vfp11_fixes
;
2789 /* Nonzero to force PIC branch veneers. */
2792 /* The number of bytes in the initial entry in the PLT. */
2793 bfd_size_type plt_header_size
;
2795 /* The number of bytes in the subsequent PLT etries. */
2796 bfd_size_type plt_entry_size
;
2798 /* True if the target system is VxWorks. */
2801 /* True if the target system is Symbian OS. */
2804 /* True if the target uses REL relocations. */
2807 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
2808 bfd_vma next_tls_desc_index
;
2810 /* How many R_ARM_TLS_DESC relocations were generated so far. */
2811 bfd_vma num_tls_desc
;
2813 /* Short-cuts to get to dynamic linker sections. */
2817 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2820 /* The offset into splt of the PLT entry for the TLS descriptor
2821 resolver. Special values are 0, if not necessary (or not found
2822 to be necessary yet), and -1 if needed but not determined
2824 bfd_vma dt_tlsdesc_plt
;
2826 /* The offset into sgot of the GOT entry used by the PLT entry
2828 bfd_vma dt_tlsdesc_got
;
2830 /* Offset in .plt section of tls_arm_trampoline. */
2831 bfd_vma tls_trampoline
;
2833 /* Data for R_ARM_TLS_LDM32 relocations. */
2836 bfd_signed_vma refcount
;
2840 /* Small local sym cache. */
2841 struct sym_cache sym_cache
;
2843 /* For convenience in allocate_dynrelocs. */
2846 /* The amount of space used by the reserved portion of the sgotplt
2847 section, plus whatever space is used by the jump slots. */
2848 bfd_vma sgotplt_jump_table_size
;
2850 /* The stub hash table. */
2851 struct bfd_hash_table stub_hash_table
;
2853 /* Linker stub bfd. */
2856 /* Linker call-backs. */
2857 asection
* (*add_stub_section
) (const char *, asection
*);
2858 void (*layout_sections_again
) (void);
2860 /* Array to keep track of which stub sections have been created, and
2861 information on stub grouping. */
2862 struct map_stub
*stub_group
;
2864 /* Number of elements in stub_group. */
2867 /* Assorted information used by elf32_arm_size_stubs. */
2868 unsigned int bfd_count
;
2870 asection
**input_list
;
2873 /* Create an entry in an ARM ELF linker hash table. */
2875 static struct bfd_hash_entry
*
2876 elf32_arm_link_hash_newfunc (struct bfd_hash_entry
* entry
,
2877 struct bfd_hash_table
* table
,
2878 const char * string
)
2880 struct elf32_arm_link_hash_entry
* ret
=
2881 (struct elf32_arm_link_hash_entry
*) entry
;
2883 /* Allocate the structure if it has not already been allocated by a
2886 ret
= (struct elf32_arm_link_hash_entry
*)
2887 bfd_hash_allocate (table
, sizeof (struct elf32_arm_link_hash_entry
));
2889 return (struct bfd_hash_entry
*) ret
;
2891 /* Call the allocation method of the superclass. */
2892 ret
= ((struct elf32_arm_link_hash_entry
*)
2893 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
2897 ret
->dyn_relocs
= NULL
;
2898 ret
->tls_type
= GOT_UNKNOWN
;
2899 ret
->tlsdesc_got
= (bfd_vma
) -1;
2900 ret
->plt
.thumb_refcount
= 0;
2901 ret
->plt
.maybe_thumb_refcount
= 0;
2902 ret
->plt
.noncall_refcount
= 0;
2903 ret
->plt
.got_offset
= -1;
2904 ret
->is_iplt
= FALSE
;
2905 ret
->export_glue
= NULL
;
2907 ret
->stub_cache
= NULL
;
2910 return (struct bfd_hash_entry
*) ret
;
2913 /* Ensure that we have allocated bookkeeping structures for ABFD's local
2917 elf32_arm_allocate_local_sym_info (bfd
*abfd
)
2919 if (elf_local_got_refcounts (abfd
) == NULL
)
2921 bfd_size_type num_syms
;
2925 num_syms
= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
2926 size
= num_syms
* (sizeof (bfd_signed_vma
)
2927 + sizeof (struct arm_local_iplt_info
*)
2930 data
= bfd_zalloc (abfd
, size
);
2934 elf_local_got_refcounts (abfd
) = (bfd_signed_vma
*) data
;
2935 data
+= num_syms
* sizeof (bfd_signed_vma
);
2937 elf32_arm_local_iplt (abfd
) = (struct arm_local_iplt_info
**) data
;
2938 data
+= num_syms
* sizeof (struct arm_local_iplt_info
*);
2940 elf32_arm_local_tlsdesc_gotent (abfd
) = (bfd_vma
*) data
;
2941 data
+= num_syms
* sizeof (bfd_vma
);
2943 elf32_arm_local_got_tls_type (abfd
) = data
;
2948 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
2949 to input bfd ABFD. Create the information if it doesn't already exist.
2950 Return null if an allocation fails. */
2952 static struct arm_local_iplt_info
*
2953 elf32_arm_create_local_iplt (bfd
*abfd
, unsigned long r_symndx
)
2955 struct arm_local_iplt_info
**ptr
;
2957 if (!elf32_arm_allocate_local_sym_info (abfd
))
2960 BFD_ASSERT (r_symndx
< elf_tdata (abfd
)->symtab_hdr
.sh_info
);
2961 ptr
= &elf32_arm_local_iplt (abfd
)[r_symndx
];
2963 *ptr
= bfd_zalloc (abfd
, sizeof (**ptr
));
2967 /* Try to obtain PLT information for the symbol with index R_SYMNDX
2968 in ABFD's symbol table. If the symbol is global, H points to its
2969 hash table entry, otherwise H is null.
2971 Return true if the symbol does have PLT information. When returning
2972 true, point *ROOT_PLT at the target-independent reference count/offset
2973 union and *ARM_PLT at the ARM-specific information. */
2976 elf32_arm_get_plt_info (bfd
*abfd
, struct elf32_arm_link_hash_entry
*h
,
2977 unsigned long r_symndx
, union gotplt_union
**root_plt
,
2978 struct arm_plt_info
**arm_plt
)
2980 struct arm_local_iplt_info
*local_iplt
;
2984 *root_plt
= &h
->root
.plt
;
2989 if (elf32_arm_local_iplt (abfd
) == NULL
)
2992 local_iplt
= elf32_arm_local_iplt (abfd
)[r_symndx
];
2993 if (local_iplt
== NULL
)
2996 *root_plt
= &local_iplt
->root
;
2997 *arm_plt
= &local_iplt
->arm
;
3001 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3005 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info
*info
,
3006 struct arm_plt_info
*arm_plt
)
3008 struct elf32_arm_link_hash_table
*htab
;
3010 htab
= elf32_arm_hash_table (info
);
3011 return (arm_plt
->thumb_refcount
!= 0
3012 || (!htab
->use_blx
&& arm_plt
->maybe_thumb_refcount
!= 0));
3015 /* Return a pointer to the head of the dynamic reloc list that should
3016 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3017 ABFD's symbol table. Return null if an error occurs. */
3019 static struct elf_dyn_relocs
**
3020 elf32_arm_get_local_dynreloc_list (bfd
*abfd
, unsigned long r_symndx
,
3021 Elf_Internal_Sym
*isym
)
3023 if (ELF32_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
)
3025 struct arm_local_iplt_info
*local_iplt
;
3027 local_iplt
= elf32_arm_create_local_iplt (abfd
, r_symndx
);
3028 if (local_iplt
== NULL
)
3030 return &local_iplt
->dyn_relocs
;
3034 /* Track dynamic relocs needed for local syms too.
3035 We really need local syms available to do this
3040 s
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3044 vpp
= &elf_section_data (s
)->local_dynrel
;
3045 return (struct elf_dyn_relocs
**) vpp
;
3049 /* Initialize an entry in the stub hash table. */
3051 static struct bfd_hash_entry
*
3052 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
3053 struct bfd_hash_table
*table
,
3056 /* Allocate the structure if it has not already been allocated by a
3060 entry
= (struct bfd_hash_entry
*)
3061 bfd_hash_allocate (table
, sizeof (struct elf32_arm_stub_hash_entry
));
3066 /* Call the allocation method of the superclass. */
3067 entry
= bfd_hash_newfunc (entry
, table
, string
);
3070 struct elf32_arm_stub_hash_entry
*eh
;
3072 /* Initialize the local fields. */
3073 eh
= (struct elf32_arm_stub_hash_entry
*) entry
;
3074 eh
->stub_sec
= NULL
;
3075 eh
->stub_offset
= 0;
3076 eh
->target_value
= 0;
3077 eh
->target_section
= NULL
;
3078 eh
->target_addend
= 0;
3080 eh
->stub_type
= arm_stub_none
;
3082 eh
->stub_template
= NULL
;
3083 eh
->stub_template_size
= 0;
3086 eh
->output_name
= NULL
;
3092 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3093 shortcuts to them in our hash table. */
3096 create_got_section (bfd
*dynobj
, struct bfd_link_info
*info
)
3098 struct elf32_arm_link_hash_table
*htab
;
3100 htab
= elf32_arm_hash_table (info
);
3104 /* BPABI objects never have a GOT, or associated sections. */
3105 if (htab
->symbian_p
)
3108 if (! _bfd_elf_create_got_section (dynobj
, info
))
3114 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3117 create_ifunc_sections (struct bfd_link_info
*info
)
3119 struct elf32_arm_link_hash_table
*htab
;
3120 const struct elf_backend_data
*bed
;
3125 htab
= elf32_arm_hash_table (info
);
3126 dynobj
= htab
->root
.dynobj
;
3127 bed
= get_elf_backend_data (dynobj
);
3128 flags
= bed
->dynamic_sec_flags
;
3130 if (htab
->root
.iplt
== NULL
)
3132 s
= bfd_make_section_with_flags (dynobj
, ".iplt",
3133 flags
| SEC_READONLY
| SEC_CODE
);
3135 || !bfd_set_section_alignment (abfd
, s
, bed
->plt_alignment
))
3137 htab
->root
.iplt
= s
;
3140 if (htab
->root
.irelplt
== NULL
)
3142 s
= bfd_make_section_with_flags (dynobj
, RELOC_SECTION (htab
, ".iplt"),
3143 flags
| SEC_READONLY
);
3145 || !bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
3147 htab
->root
.irelplt
= s
;
3150 if (htab
->root
.igotplt
== NULL
)
3152 s
= bfd_make_section_with_flags (dynobj
, ".igot.plt", flags
);
3154 || !bfd_set_section_alignment (dynobj
, s
, bed
->s
->log_file_align
))
3156 htab
->root
.igotplt
= s
;
3161 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3162 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3166 elf32_arm_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
3168 struct elf32_arm_link_hash_table
*htab
;
3170 htab
= elf32_arm_hash_table (info
);
3174 if (!htab
->root
.sgot
&& !create_got_section (dynobj
, info
))
3177 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
3180 htab
->sdynbss
= bfd_get_section_by_name (dynobj
, ".dynbss");
3182 htab
->srelbss
= bfd_get_section_by_name (dynobj
,
3183 RELOC_SECTION (htab
, ".bss"));
3185 if (htab
->vxworks_p
)
3187 if (!elf_vxworks_create_dynamic_sections (dynobj
, info
, &htab
->srelplt2
))
3192 htab
->plt_header_size
= 0;
3193 htab
->plt_entry_size
3194 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry
);
3198 htab
->plt_header_size
3199 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry
);
3200 htab
->plt_entry_size
3201 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry
);
3205 if (!htab
->root
.splt
3206 || !htab
->root
.srelplt
3208 || (!info
->shared
&& !htab
->srelbss
))
3214 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3217 elf32_arm_copy_indirect_symbol (struct bfd_link_info
*info
,
3218 struct elf_link_hash_entry
*dir
,
3219 struct elf_link_hash_entry
*ind
)
3221 struct elf32_arm_link_hash_entry
*edir
, *eind
;
3223 edir
= (struct elf32_arm_link_hash_entry
*) dir
;
3224 eind
= (struct elf32_arm_link_hash_entry
*) ind
;
3226 if (eind
->dyn_relocs
!= NULL
)
3228 if (edir
->dyn_relocs
!= NULL
)
3230 struct elf_dyn_relocs
**pp
;
3231 struct elf_dyn_relocs
*p
;
3233 /* Add reloc counts against the indirect sym to the direct sym
3234 list. Merge any entries against the same section. */
3235 for (pp
= &eind
->dyn_relocs
; (p
= *pp
) != NULL
; )
3237 struct elf_dyn_relocs
*q
;
3239 for (q
= edir
->dyn_relocs
; q
!= NULL
; q
= q
->next
)
3240 if (q
->sec
== p
->sec
)
3242 q
->pc_count
+= p
->pc_count
;
3243 q
->count
+= p
->count
;
3250 *pp
= edir
->dyn_relocs
;
3253 edir
->dyn_relocs
= eind
->dyn_relocs
;
3254 eind
->dyn_relocs
= NULL
;
3257 if (ind
->root
.type
== bfd_link_hash_indirect
)
3259 /* Copy over PLT info. */
3260 edir
->plt
.thumb_refcount
+= eind
->plt
.thumb_refcount
;
3261 eind
->plt
.thumb_refcount
= 0;
3262 edir
->plt
.maybe_thumb_refcount
+= eind
->plt
.maybe_thumb_refcount
;
3263 eind
->plt
.maybe_thumb_refcount
= 0;
3264 edir
->plt
.noncall_refcount
+= eind
->plt
.noncall_refcount
;
3265 eind
->plt
.noncall_refcount
= 0;
3267 /* We should only allocate a function to .iplt once the final
3268 symbol information is known. */
3269 BFD_ASSERT (!eind
->is_iplt
);
3271 if (dir
->got
.refcount
<= 0)
3273 edir
->tls_type
= eind
->tls_type
;
3274 eind
->tls_type
= GOT_UNKNOWN
;
3278 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
3281 /* Create an ARM elf linker hash table. */
3283 static struct bfd_link_hash_table
*
3284 elf32_arm_link_hash_table_create (bfd
*abfd
)
3286 struct elf32_arm_link_hash_table
*ret
;
3287 bfd_size_type amt
= sizeof (struct elf32_arm_link_hash_table
);
3289 ret
= (struct elf32_arm_link_hash_table
*) bfd_malloc (amt
);
3293 if (!_bfd_elf_link_hash_table_init (& ret
->root
, abfd
,
3294 elf32_arm_link_hash_newfunc
,
3295 sizeof (struct elf32_arm_link_hash_entry
),
3302 ret
->sdynbss
= NULL
;
3303 ret
->srelbss
= NULL
;
3304 ret
->srelplt2
= NULL
;
3305 ret
->dt_tlsdesc_plt
= 0;
3306 ret
->dt_tlsdesc_got
= 0;
3307 ret
->tls_trampoline
= 0;
3308 ret
->next_tls_desc_index
= 0;
3309 ret
->num_tls_desc
= 0;
3310 ret
->thumb_glue_size
= 0;
3311 ret
->arm_glue_size
= 0;
3312 ret
->bx_glue_size
= 0;
3313 memset (ret
->bx_glue_offset
, 0, sizeof (ret
->bx_glue_offset
));
3314 ret
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
3315 ret
->vfp11_erratum_glue_size
= 0;
3316 ret
->num_vfp11_fixes
= 0;
3317 ret
->fix_cortex_a8
= 0;
3318 ret
->bfd_of_glue_owner
= NULL
;
3319 ret
->byteswap_code
= 0;
3320 ret
->target1_is_rel
= 0;
3321 ret
->target2_reloc
= R_ARM_NONE
;
3322 #ifdef FOUR_WORD_PLT
3323 ret
->plt_header_size
= 16;
3324 ret
->plt_entry_size
= 16;
3326 ret
->plt_header_size
= 20;
3327 ret
->plt_entry_size
= 12;
3334 ret
->sym_cache
.abfd
= NULL
;
3336 ret
->tls_ldm_got
.refcount
= 0;
3337 ret
->stub_bfd
= NULL
;
3338 ret
->add_stub_section
= NULL
;
3339 ret
->layout_sections_again
= NULL
;
3340 ret
->stub_group
= NULL
;
3344 ret
->input_list
= NULL
;
3346 if (!bfd_hash_table_init (&ret
->stub_hash_table
, stub_hash_newfunc
,
3347 sizeof (struct elf32_arm_stub_hash_entry
)))
3353 return &ret
->root
.root
;
3356 /* Free the derived linker hash table. */
3359 elf32_arm_hash_table_free (struct bfd_link_hash_table
*hash
)
3361 struct elf32_arm_link_hash_table
*ret
3362 = (struct elf32_arm_link_hash_table
*) hash
;
3364 bfd_hash_table_free (&ret
->stub_hash_table
);
3365 _bfd_generic_link_hash_table_free (hash
);
3368 /* Determine if we're dealing with a Thumb only architecture. */
3371 using_thumb_only (struct elf32_arm_link_hash_table
*globals
)
3373 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3377 if (arch
== TAG_CPU_ARCH_V6_M
|| arch
== TAG_CPU_ARCH_V6S_M
)
3380 if (arch
!= TAG_CPU_ARCH_V7
&& arch
!= TAG_CPU_ARCH_V7E_M
)
3383 profile
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3384 Tag_CPU_arch_profile
);
3386 return profile
== 'M';
3389 /* Determine if we're dealing with a Thumb-2 object. */
3392 using_thumb2 (struct elf32_arm_link_hash_table
*globals
)
3394 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3396 return arch
== TAG_CPU_ARCH_V6T2
|| arch
>= TAG_CPU_ARCH_V7
;
3399 /* Determine what kind of NOPs are available. */
3402 arch_has_arm_nop (struct elf32_arm_link_hash_table
*globals
)
3404 const int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3406 return arch
== TAG_CPU_ARCH_V6T2
3407 || arch
== TAG_CPU_ARCH_V6K
3408 || arch
== TAG_CPU_ARCH_V7
3409 || arch
== TAG_CPU_ARCH_V7E_M
;
3413 arch_has_thumb2_nop (struct elf32_arm_link_hash_table
*globals
)
3415 const int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3417 return (arch
== TAG_CPU_ARCH_V6T2
|| arch
== TAG_CPU_ARCH_V7
3418 || arch
== TAG_CPU_ARCH_V7E_M
);
3422 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type
)
3426 case arm_stub_long_branch_thumb_only
:
3427 case arm_stub_long_branch_v4t_thumb_arm
:
3428 case arm_stub_short_branch_v4t_thumb_arm
:
3429 case arm_stub_long_branch_v4t_thumb_arm_pic
:
3430 case arm_stub_long_branch_v4t_thumb_tls_pic
:
3431 case arm_stub_long_branch_thumb_only_pic
:
3442 /* Determine the type of stub needed, if any, for a call. */
3444 static enum elf32_arm_stub_type
3445 arm_type_of_stub (struct bfd_link_info
*info
,
3446 asection
*input_sec
,
3447 const Elf_Internal_Rela
*rel
,
3448 unsigned char st_type
,
3449 enum arm_st_branch_type
*actual_branch_type
,
3450 struct elf32_arm_link_hash_entry
*hash
,
3451 bfd_vma destination
,
3457 bfd_signed_vma branch_offset
;
3458 unsigned int r_type
;
3459 struct elf32_arm_link_hash_table
* globals
;
3462 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
3464 enum arm_st_branch_type branch_type
= *actual_branch_type
;
3465 union gotplt_union
*root_plt
;
3466 struct arm_plt_info
*arm_plt
;
3468 if (branch_type
== ST_BRANCH_LONG
)
3471 globals
= elf32_arm_hash_table (info
);
3472 if (globals
== NULL
)
3475 thumb_only
= using_thumb_only (globals
);
3477 thumb2
= using_thumb2 (globals
);
3479 /* Determine where the call point is. */
3480 location
= (input_sec
->output_offset
3481 + input_sec
->output_section
->vma
3484 r_type
= ELF32_R_TYPE (rel
->r_info
);
3486 /* For TLS call relocs, it is the caller's responsibility to provide
3487 the address of the appropriate trampoline. */
3488 if (r_type
!= R_ARM_TLS_CALL
3489 && r_type
!= R_ARM_THM_TLS_CALL
3490 && elf32_arm_get_plt_info (input_bfd
, hash
, ELF32_R_SYM (rel
->r_info
),
3491 &root_plt
, &arm_plt
)
3492 && root_plt
->offset
!= (bfd_vma
) -1)
3496 if (hash
== NULL
|| hash
->is_iplt
)
3497 splt
= globals
->root
.iplt
;
3499 splt
= globals
->root
.splt
;
3504 /* Note when dealing with PLT entries: the main PLT stub is in
3505 ARM mode, so if the branch is in Thumb mode, another
3506 Thumb->ARM stub will be inserted later just before the ARM
3507 PLT stub. We don't take this extra distance into account
3508 here, because if a long branch stub is needed, we'll add a
3509 Thumb->Arm one and branch directly to the ARM PLT entry
3510 because it avoids spreading offset corrections in several
3513 destination
= (splt
->output_section
->vma
3514 + splt
->output_offset
3515 + root_plt
->offset
);
3517 branch_type
= ST_BRANCH_TO_ARM
;
3520 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3521 BFD_ASSERT (st_type
!= STT_GNU_IFUNC
);
3523 branch_offset
= (bfd_signed_vma
)(destination
- location
);
3525 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
3526 || r_type
== R_ARM_THM_TLS_CALL
)
3528 /* Handle cases where:
3529 - this call goes too far (different Thumb/Thumb2 max
3531 - it's a Thumb->Arm call and blx is not available, or it's a
3532 Thumb->Arm branch (not bl). A stub is needed in this case,
3533 but only if this call is not through a PLT entry. Indeed,
3534 PLT stubs handle mode switching already.
3537 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
3538 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
3540 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
3541 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
3542 || (branch_type
== ST_BRANCH_TO_ARM
3543 && (((r_type
== R_ARM_THM_CALL
3544 || r_type
== R_ARM_THM_TLS_CALL
) && !globals
->use_blx
)
3545 || (r_type
== R_ARM_THM_JUMP24
))
3548 if (branch_type
== ST_BRANCH_TO_THUMB
)
3550 /* Thumb to thumb. */
3553 stub_type
= (info
->shared
| globals
->pic_veneer
)
3555 ? ((globals
->use_blx
3556 && (r_type
==R_ARM_THM_CALL
))
3557 /* V5T and above. Stub starts with ARM code, so
3558 we must be able to switch mode before
3559 reaching it, which is only possible for 'bl'
3560 (ie R_ARM_THM_CALL relocation). */
3561 ? arm_stub_long_branch_any_thumb_pic
3562 /* On V4T, use Thumb code only. */
3563 : arm_stub_long_branch_v4t_thumb_thumb_pic
)
3565 /* non-PIC stubs. */
3566 : ((globals
->use_blx
3567 && (r_type
==R_ARM_THM_CALL
))
3568 /* V5T and above. */
3569 ? arm_stub_long_branch_any_any
3571 : arm_stub_long_branch_v4t_thumb_thumb
);
3575 stub_type
= (info
->shared
| globals
->pic_veneer
)
3577 ? arm_stub_long_branch_thumb_only_pic
3579 : arm_stub_long_branch_thumb_only
;
3586 && sym_sec
->owner
!= NULL
3587 && !INTERWORK_FLAG (sym_sec
->owner
))
3589 (*_bfd_error_handler
)
3590 (_("%B(%s): warning: interworking not enabled.\n"
3591 " first occurrence: %B: Thumb call to ARM"),
3592 sym_sec
->owner
, input_bfd
, name
);
3596 (info
->shared
| globals
->pic_veneer
)
3598 ? (r_type
== R_ARM_THM_TLS_CALL
3600 ? (globals
->use_blx
? arm_stub_long_branch_any_tls_pic
3601 : arm_stub_long_branch_v4t_thumb_tls_pic
)
3602 : ((globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
3603 /* V5T PIC and above. */
3604 ? arm_stub_long_branch_any_arm_pic
3606 : arm_stub_long_branch_v4t_thumb_arm_pic
))
3608 /* non-PIC stubs. */
3609 : ((globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
3610 /* V5T and above. */
3611 ? arm_stub_long_branch_any_any
3613 : arm_stub_long_branch_v4t_thumb_arm
);
3615 /* Handle v4t short branches. */
3616 if ((stub_type
== arm_stub_long_branch_v4t_thumb_arm
)
3617 && (branch_offset
<= THM_MAX_FWD_BRANCH_OFFSET
)
3618 && (branch_offset
>= THM_MAX_BWD_BRANCH_OFFSET
))
3619 stub_type
= arm_stub_short_branch_v4t_thumb_arm
;
3623 else if (r_type
== R_ARM_CALL
3624 || r_type
== R_ARM_JUMP24
3625 || r_type
== R_ARM_PLT32
3626 || r_type
== R_ARM_TLS_CALL
)
3628 if (branch_type
== ST_BRANCH_TO_THUMB
)
3633 && sym_sec
->owner
!= NULL
3634 && !INTERWORK_FLAG (sym_sec
->owner
))
3636 (*_bfd_error_handler
)
3637 (_("%B(%s): warning: interworking not enabled.\n"
3638 " first occurrence: %B: ARM call to Thumb"),
3639 sym_sec
->owner
, input_bfd
, name
);
3642 /* We have an extra 2-bytes reach because of
3643 the mode change (bit 24 (H) of BLX encoding). */
3644 if (branch_offset
> (ARM_MAX_FWD_BRANCH_OFFSET
+ 2)
3645 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
)
3646 || (r_type
== R_ARM_CALL
&& !globals
->use_blx
)
3647 || (r_type
== R_ARM_JUMP24
)
3648 || (r_type
== R_ARM_PLT32
))
3650 stub_type
= (info
->shared
| globals
->pic_veneer
)
3652 ? ((globals
->use_blx
)
3653 /* V5T and above. */
3654 ? arm_stub_long_branch_any_thumb_pic
3656 : arm_stub_long_branch_v4t_arm_thumb_pic
)
3658 /* non-PIC stubs. */
3659 : ((globals
->use_blx
)
3660 /* V5T and above. */
3661 ? arm_stub_long_branch_any_any
3663 : arm_stub_long_branch_v4t_arm_thumb
);
3669 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
3670 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
))
3673 (info
->shared
| globals
->pic_veneer
)
3675 ? (r_type
== R_ARM_TLS_CALL
3677 ? arm_stub_long_branch_any_tls_pic
3678 : arm_stub_long_branch_any_arm_pic
)
3679 /* non-PIC stubs. */
3680 : arm_stub_long_branch_any_any
;
3685 /* If a stub is needed, record the actual destination type. */
3686 if (stub_type
!= arm_stub_none
)
3687 *actual_branch_type
= branch_type
;
3692 /* Build a name for an entry in the stub hash table. */
3695 elf32_arm_stub_name (const asection
*input_section
,
3696 const asection
*sym_sec
,
3697 const struct elf32_arm_link_hash_entry
*hash
,
3698 const Elf_Internal_Rela
*rel
,
3699 enum elf32_arm_stub_type stub_type
)
3706 len
= 8 + 1 + strlen (hash
->root
.root
.root
.string
) + 1 + 8 + 1 + 2 + 1;
3707 stub_name
= (char *) bfd_malloc (len
);
3708 if (stub_name
!= NULL
)
3709 sprintf (stub_name
, "%08x_%s+%x_%d",
3710 input_section
->id
& 0xffffffff,
3711 hash
->root
.root
.root
.string
,
3712 (int) rel
->r_addend
& 0xffffffff,
3717 len
= 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3718 stub_name
= (char *) bfd_malloc (len
);
3719 if (stub_name
!= NULL
)
3720 sprintf (stub_name
, "%08x_%x:%x+%x_%d",
3721 input_section
->id
& 0xffffffff,
3722 sym_sec
->id
& 0xffffffff,
3723 ELF32_R_TYPE (rel
->r_info
) == R_ARM_TLS_CALL
3724 || ELF32_R_TYPE (rel
->r_info
) == R_ARM_THM_TLS_CALL
3725 ? 0 : (int) ELF32_R_SYM (rel
->r_info
) & 0xffffffff,
3726 (int) rel
->r_addend
& 0xffffffff,
3733 /* Look up an entry in the stub hash. Stub entries are cached because
3734 creating the stub name takes a bit of time. */
3736 static struct elf32_arm_stub_hash_entry
*
3737 elf32_arm_get_stub_entry (const asection
*input_section
,
3738 const asection
*sym_sec
,
3739 struct elf_link_hash_entry
*hash
,
3740 const Elf_Internal_Rela
*rel
,
3741 struct elf32_arm_link_hash_table
*htab
,
3742 enum elf32_arm_stub_type stub_type
)
3744 struct elf32_arm_stub_hash_entry
*stub_entry
;
3745 struct elf32_arm_link_hash_entry
*h
= (struct elf32_arm_link_hash_entry
*) hash
;
3746 const asection
*id_sec
;
3748 if ((input_section
->flags
& SEC_CODE
) == 0)
3751 /* If this input section is part of a group of sections sharing one
3752 stub section, then use the id of the first section in the group.
3753 Stub names need to include a section id, as there may well be
3754 more than one stub used to reach say, printf, and we need to
3755 distinguish between them. */
3756 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
3758 if (h
!= NULL
&& h
->stub_cache
!= NULL
3759 && h
->stub_cache
->h
== h
3760 && h
->stub_cache
->id_sec
== id_sec
3761 && h
->stub_cache
->stub_type
== stub_type
)
3763 stub_entry
= h
->stub_cache
;
3769 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, h
, rel
, stub_type
);
3770 if (stub_name
== NULL
)
3773 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
,
3774 stub_name
, FALSE
, FALSE
);
3776 h
->stub_cache
= stub_entry
;
3784 /* Find or create a stub section. Returns a pointer to the stub section, and
3785 the section to which the stub section will be attached (in *LINK_SEC_P).
3786 LINK_SEC_P may be NULL. */
3789 elf32_arm_create_or_find_stub_sec (asection
**link_sec_p
, asection
*section
,
3790 struct elf32_arm_link_hash_table
*htab
)
3795 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
3796 stub_sec
= htab
->stub_group
[section
->id
].stub_sec
;
3797 if (stub_sec
== NULL
)
3799 stub_sec
= htab
->stub_group
[link_sec
->id
].stub_sec
;
3800 if (stub_sec
== NULL
)
3806 namelen
= strlen (link_sec
->name
);
3807 len
= namelen
+ sizeof (STUB_SUFFIX
);
3808 s_name
= (char *) bfd_alloc (htab
->stub_bfd
, len
);
3812 memcpy (s_name
, link_sec
->name
, namelen
);
3813 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
3814 stub_sec
= (*htab
->add_stub_section
) (s_name
, link_sec
);
3815 if (stub_sec
== NULL
)
3817 htab
->stub_group
[link_sec
->id
].stub_sec
= stub_sec
;
3819 htab
->stub_group
[section
->id
].stub_sec
= stub_sec
;
3823 *link_sec_p
= link_sec
;
3828 /* Add a new stub entry to the stub hash. Not all fields of the new
3829 stub entry are initialised. */
3831 static struct elf32_arm_stub_hash_entry
*
3832 elf32_arm_add_stub (const char *stub_name
,
3834 struct elf32_arm_link_hash_table
*htab
)
3838 struct elf32_arm_stub_hash_entry
*stub_entry
;
3840 stub_sec
= elf32_arm_create_or_find_stub_sec (&link_sec
, section
, htab
);
3841 if (stub_sec
== NULL
)
3844 /* Enter this entry into the linker stub hash table. */
3845 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
3847 if (stub_entry
== NULL
)
3849 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
3855 stub_entry
->stub_sec
= stub_sec
;
3856 stub_entry
->stub_offset
= 0;
3857 stub_entry
->id_sec
= link_sec
;
3862 /* Store an Arm insn into an output section not processed by
3863 elf32_arm_write_section. */
3866 put_arm_insn (struct elf32_arm_link_hash_table
* htab
,
3867 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3869 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3870 bfd_putl32 (val
, ptr
);
3872 bfd_putb32 (val
, ptr
);
3875 /* Store a 16-bit Thumb insn into an output section not processed by
3876 elf32_arm_write_section. */
3879 put_thumb_insn (struct elf32_arm_link_hash_table
* htab
,
3880 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3882 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3883 bfd_putl16 (val
, ptr
);
3885 bfd_putb16 (val
, ptr
);
3888 /* If it's possible to change R_TYPE to a more efficient access
3889 model, return the new reloc type. */
3892 elf32_arm_tls_transition (struct bfd_link_info
*info
, int r_type
,
3893 struct elf_link_hash_entry
*h
)
3895 int is_local
= (h
== NULL
);
3897 if (info
->shared
|| (h
&& h
->root
.type
== bfd_link_hash_undefweak
))
3900 /* We do not support relaxations for Old TLS models. */
3903 case R_ARM_TLS_GOTDESC
:
3904 case R_ARM_TLS_CALL
:
3905 case R_ARM_THM_TLS_CALL
:
3906 case R_ARM_TLS_DESCSEQ
:
3907 case R_ARM_THM_TLS_DESCSEQ
:
3908 return is_local
? R_ARM_TLS_LE32
: R_ARM_TLS_IE32
;
3914 static bfd_reloc_status_type elf32_arm_final_link_relocate
3915 (reloc_howto_type
*, bfd
*, bfd
*, asection
*, bfd_byte
*,
3916 Elf_Internal_Rela
*, bfd_vma
, struct bfd_link_info
*, asection
*,
3917 const char *, unsigned char, enum arm_st_branch_type
,
3918 struct elf_link_hash_entry
*, bfd_boolean
*, char **);
3921 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type
)
3925 case arm_stub_a8_veneer_b_cond
:
3926 case arm_stub_a8_veneer_b
:
3927 case arm_stub_a8_veneer_bl
:
3930 case arm_stub_long_branch_any_any
:
3931 case arm_stub_long_branch_v4t_arm_thumb
:
3932 case arm_stub_long_branch_thumb_only
:
3933 case arm_stub_long_branch_v4t_thumb_thumb
:
3934 case arm_stub_long_branch_v4t_thumb_arm
:
3935 case arm_stub_short_branch_v4t_thumb_arm
:
3936 case arm_stub_long_branch_any_arm_pic
:
3937 case arm_stub_long_branch_any_thumb_pic
:
3938 case arm_stub_long_branch_v4t_thumb_thumb_pic
:
3939 case arm_stub_long_branch_v4t_arm_thumb_pic
:
3940 case arm_stub_long_branch_v4t_thumb_arm_pic
:
3941 case arm_stub_long_branch_thumb_only_pic
:
3942 case arm_stub_long_branch_any_tls_pic
:
3943 case arm_stub_long_branch_v4t_thumb_tls_pic
:
3944 case arm_stub_a8_veneer_blx
:
3948 abort (); /* Should be unreachable. */
3953 arm_build_one_stub (struct bfd_hash_entry
*gen_entry
,
3957 struct elf32_arm_stub_hash_entry
*stub_entry
;
3958 struct elf32_arm_link_hash_table
*globals
;
3959 struct bfd_link_info
*info
;
3966 const insn_sequence
*template_sequence
;
3968 int stub_reloc_idx
[MAXRELOCS
] = {-1, -1};
3969 int stub_reloc_offset
[MAXRELOCS
] = {0, 0};
3972 /* Massage our args to the form they really have. */
3973 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
3974 info
= (struct bfd_link_info
*) in_arg
;
3976 globals
= elf32_arm_hash_table (info
);
3977 if (globals
== NULL
)
3980 stub_sec
= stub_entry
->stub_sec
;
3982 if ((globals
->fix_cortex_a8
< 0)
3983 != (arm_stub_required_alignment (stub_entry
->stub_type
) == 2))
3984 /* We have to do less-strictly-aligned fixes last. */
3987 /* Make a note of the offset within the stubs for this entry. */
3988 stub_entry
->stub_offset
= stub_sec
->size
;
3989 loc
= stub_sec
->contents
+ stub_entry
->stub_offset
;
3991 stub_bfd
= stub_sec
->owner
;
3993 /* This is the address of the stub destination. */
3994 sym_value
= (stub_entry
->target_value
3995 + stub_entry
->target_section
->output_offset
3996 + stub_entry
->target_section
->output_section
->vma
);
3998 template_sequence
= stub_entry
->stub_template
;
3999 template_size
= stub_entry
->stub_template_size
;
4002 for (i
= 0; i
< template_size
; i
++)
4004 switch (template_sequence
[i
].type
)
4008 bfd_vma data
= (bfd_vma
) template_sequence
[i
].data
;
4009 if (template_sequence
[i
].reloc_addend
!= 0)
4011 /* We've borrowed the reloc_addend field to mean we should
4012 insert a condition code into this (Thumb-1 branch)
4013 instruction. See THUMB16_BCOND_INSN. */
4014 BFD_ASSERT ((data
& 0xff00) == 0xd000);
4015 data
|= ((stub_entry
->orig_insn
>> 22) & 0xf) << 8;
4017 bfd_put_16 (stub_bfd
, data
, loc
+ size
);
4023 bfd_put_16 (stub_bfd
,
4024 (template_sequence
[i
].data
>> 16) & 0xffff,
4026 bfd_put_16 (stub_bfd
, template_sequence
[i
].data
& 0xffff,
4028 if (template_sequence
[i
].r_type
!= R_ARM_NONE
)
4030 stub_reloc_idx
[nrelocs
] = i
;
4031 stub_reloc_offset
[nrelocs
++] = size
;
4037 bfd_put_32 (stub_bfd
, template_sequence
[i
].data
,
4039 /* Handle cases where the target is encoded within the
4041 if (template_sequence
[i
].r_type
== R_ARM_JUMP24
)
4043 stub_reloc_idx
[nrelocs
] = i
;
4044 stub_reloc_offset
[nrelocs
++] = size
;
4050 bfd_put_32 (stub_bfd
, template_sequence
[i
].data
, loc
+ size
);
4051 stub_reloc_idx
[nrelocs
] = i
;
4052 stub_reloc_offset
[nrelocs
++] = size
;
4062 stub_sec
->size
+= size
;
4064 /* Stub size has already been computed in arm_size_one_stub. Check
4066 BFD_ASSERT (size
== stub_entry
->stub_size
);
4068 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4069 if (stub_entry
->branch_type
== ST_BRANCH_TO_THUMB
)
4072 /* Assume there is at least one and at most MAXRELOCS entries to relocate
4074 BFD_ASSERT (nrelocs
!= 0 && nrelocs
<= MAXRELOCS
);
4076 for (i
= 0; i
< nrelocs
; i
++)
4077 if (template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_JUMP24
4078 || template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_JUMP19
4079 || template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_CALL
4080 || template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_XPC22
)
4082 Elf_Internal_Rela rel
;
4083 bfd_boolean unresolved_reloc
;
4084 char *error_message
;
4085 enum arm_st_branch_type branch_type
4086 = (template_sequence
[stub_reloc_idx
[i
]].r_type
!= R_ARM_THM_XPC22
4087 ? ST_BRANCH_TO_THUMB
: ST_BRANCH_TO_ARM
);
4088 bfd_vma points_to
= sym_value
+ stub_entry
->target_addend
;
4090 rel
.r_offset
= stub_entry
->stub_offset
+ stub_reloc_offset
[i
];
4091 rel
.r_info
= ELF32_R_INFO (0,
4092 template_sequence
[stub_reloc_idx
[i
]].r_type
);
4093 rel
.r_addend
= template_sequence
[stub_reloc_idx
[i
]].reloc_addend
;
4095 if (stub_entry
->stub_type
== arm_stub_a8_veneer_b_cond
&& i
== 0)
4096 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4097 template should refer back to the instruction after the original
4099 points_to
= sym_value
;
4101 /* There may be unintended consequences if this is not true. */
4102 BFD_ASSERT (stub_entry
->h
== NULL
);
4104 /* Note: _bfd_final_link_relocate doesn't handle these relocations
4105 properly. We should probably use this function unconditionally,
4106 rather than only for certain relocations listed in the enclosing
4107 conditional, for the sake of consistency. */
4108 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4109 (template_sequence
[stub_reloc_idx
[i
]].r_type
),
4110 stub_bfd
, info
->output_bfd
, stub_sec
, stub_sec
->contents
, &rel
,
4111 points_to
, info
, stub_entry
->target_section
, "", STT_FUNC
,
4112 branch_type
, (struct elf_link_hash_entry
*) stub_entry
->h
,
4113 &unresolved_reloc
, &error_message
);
4117 Elf_Internal_Rela rel
;
4118 bfd_boolean unresolved_reloc
;
4119 char *error_message
;
4120 bfd_vma points_to
= sym_value
+ stub_entry
->target_addend
4121 + template_sequence
[stub_reloc_idx
[i
]].reloc_addend
;
4123 rel
.r_offset
= stub_entry
->stub_offset
+ stub_reloc_offset
[i
];
4124 rel
.r_info
= ELF32_R_INFO (0,
4125 template_sequence
[stub_reloc_idx
[i
]].r_type
);
4128 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4129 (template_sequence
[stub_reloc_idx
[i
]].r_type
),
4130 stub_bfd
, info
->output_bfd
, stub_sec
, stub_sec
->contents
, &rel
,
4131 points_to
, info
, stub_entry
->target_section
, "", STT_FUNC
,
4132 stub_entry
->branch_type
,
4133 (struct elf_link_hash_entry
*) stub_entry
->h
, &unresolved_reloc
,
4141 /* Calculate the template, template size and instruction size for a stub.
4142 Return value is the instruction size. */
4145 find_stub_size_and_template (enum elf32_arm_stub_type stub_type
,
4146 const insn_sequence
**stub_template
,
4147 int *stub_template_size
)
4149 const insn_sequence
*template_sequence
= NULL
;
4150 int template_size
= 0, i
;
4153 template_sequence
= stub_definitions
[stub_type
].template_sequence
;
4155 *stub_template
= template_sequence
;
4157 template_size
= stub_definitions
[stub_type
].template_size
;
4158 if (stub_template_size
)
4159 *stub_template_size
= template_size
;
4162 for (i
= 0; i
< template_size
; i
++)
4164 switch (template_sequence
[i
].type
)
4185 /* As above, but don't actually build the stub. Just bump offset so
4186 we know stub section sizes. */
4189 arm_size_one_stub (struct bfd_hash_entry
*gen_entry
,
4190 void *in_arg ATTRIBUTE_UNUSED
)
4192 struct elf32_arm_stub_hash_entry
*stub_entry
;
4193 const insn_sequence
*template_sequence
;
4194 int template_size
, size
;
4196 /* Massage our args to the form they really have. */
4197 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
4199 BFD_ASSERT((stub_entry
->stub_type
> arm_stub_none
)
4200 && stub_entry
->stub_type
< ARRAY_SIZE(stub_definitions
));
4202 size
= find_stub_size_and_template (stub_entry
->stub_type
, &template_sequence
,
4205 stub_entry
->stub_size
= size
;
4206 stub_entry
->stub_template
= template_sequence
;
4207 stub_entry
->stub_template_size
= template_size
;
4209 size
= (size
+ 7) & ~7;
4210 stub_entry
->stub_sec
->size
+= size
;
4215 /* External entry points for sizing and building linker stubs. */
4217 /* Set up various things so that we can make a list of input sections
4218 for each output section included in the link. Returns -1 on error,
4219 0 when no stubs will be needed, and 1 on success. */
4222 elf32_arm_setup_section_lists (bfd
*output_bfd
,
4223 struct bfd_link_info
*info
)
4226 unsigned int bfd_count
;
4227 int top_id
, top_index
;
4229 asection
**input_list
, **list
;
4231 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4235 if (! is_elf_hash_table (htab
))
4238 /* Count the number of input BFDs and find the top input section id. */
4239 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
4241 input_bfd
= input_bfd
->link_next
)
4244 for (section
= input_bfd
->sections
;
4246 section
= section
->next
)
4248 if (top_id
< section
->id
)
4249 top_id
= section
->id
;
4252 htab
->bfd_count
= bfd_count
;
4254 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
4255 htab
->stub_group
= (struct map_stub
*) bfd_zmalloc (amt
);
4256 if (htab
->stub_group
== NULL
)
4258 htab
->top_id
= top_id
;
4260 /* We can't use output_bfd->section_count here to find the top output
4261 section index as some sections may have been removed, and
4262 _bfd_strip_section_from_output doesn't renumber the indices. */
4263 for (section
= output_bfd
->sections
, top_index
= 0;
4265 section
= section
->next
)
4267 if (top_index
< section
->index
)
4268 top_index
= section
->index
;
4271 htab
->top_index
= top_index
;
4272 amt
= sizeof (asection
*) * (top_index
+ 1);
4273 input_list
= (asection
**) bfd_malloc (amt
);
4274 htab
->input_list
= input_list
;
4275 if (input_list
== NULL
)
4278 /* For sections we aren't interested in, mark their entries with a
4279 value we can check later. */
4280 list
= input_list
+ top_index
;
4282 *list
= bfd_abs_section_ptr
;
4283 while (list
-- != input_list
);
4285 for (section
= output_bfd
->sections
;
4287 section
= section
->next
)
4289 if ((section
->flags
& SEC_CODE
) != 0)
4290 input_list
[section
->index
] = NULL
;
4296 /* The linker repeatedly calls this function for each input section,
4297 in the order that input sections are linked into output sections.
4298 Build lists of input sections to determine groupings between which
4299 we may insert linker stubs. */
4302 elf32_arm_next_input_section (struct bfd_link_info
*info
,
4305 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4310 if (isec
->output_section
->index
<= htab
->top_index
)
4312 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
4314 if (*list
!= bfd_abs_section_ptr
&& (isec
->flags
& SEC_CODE
) != 0)
4316 /* Steal the link_sec pointer for our list. */
4317 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4318 /* This happens to make the list in reverse order,
4319 which we reverse later. */
4320 PREV_SEC (isec
) = *list
;
4326 /* See whether we can group stub sections together. Grouping stub
4327 sections may result in fewer stubs. More importantly, we need to
4328 put all .init* and .fini* stubs at the end of the .init or
4329 .fini output sections respectively, because glibc splits the
4330 _init and _fini functions into multiple parts. Putting a stub in
4331 the middle of a function is not a good idea. */
4334 group_sections (struct elf32_arm_link_hash_table
*htab
,
4335 bfd_size_type stub_group_size
,
4336 bfd_boolean stubs_always_after_branch
)
4338 asection
**list
= htab
->input_list
;
4342 asection
*tail
= *list
;
4345 if (tail
== bfd_abs_section_ptr
)
4348 /* Reverse the list: we must avoid placing stubs at the
4349 beginning of the section because the beginning of the text
4350 section may be required for an interrupt vector in bare metal
4352 #define NEXT_SEC PREV_SEC
4354 while (tail
!= NULL
)
4356 /* Pop from tail. */
4357 asection
*item
= tail
;
4358 tail
= PREV_SEC (item
);
4361 NEXT_SEC (item
) = head
;
4365 while (head
!= NULL
)
4369 bfd_vma stub_group_start
= head
->output_offset
;
4370 bfd_vma end_of_next
;
4373 while (NEXT_SEC (curr
) != NULL
)
4375 next
= NEXT_SEC (curr
);
4376 end_of_next
= next
->output_offset
+ next
->size
;
4377 if (end_of_next
- stub_group_start
>= stub_group_size
)
4378 /* End of NEXT is too far from start, so stop. */
4380 /* Add NEXT to the group. */
4384 /* OK, the size from the start to the start of CURR is less
4385 than stub_group_size and thus can be handled by one stub
4386 section. (Or the head section is itself larger than
4387 stub_group_size, in which case we may be toast.)
4388 We should really be keeping track of the total size of
4389 stubs added here, as stubs contribute to the final output
4393 next
= NEXT_SEC (head
);
4394 /* Set up this stub group. */
4395 htab
->stub_group
[head
->id
].link_sec
= curr
;
4397 while (head
!= curr
&& (head
= next
) != NULL
);
4399 /* But wait, there's more! Input sections up to stub_group_size
4400 bytes after the stub section can be handled by it too. */
4401 if (!stubs_always_after_branch
)
4403 stub_group_start
= curr
->output_offset
+ curr
->size
;
4405 while (next
!= NULL
)
4407 end_of_next
= next
->output_offset
+ next
->size
;
4408 if (end_of_next
- stub_group_start
>= stub_group_size
)
4409 /* End of NEXT is too far from stubs, so stop. */
4411 /* Add NEXT to the stub group. */
4413 next
= NEXT_SEC (head
);
4414 htab
->stub_group
[head
->id
].link_sec
= curr
;
4420 while (list
++ != htab
->input_list
+ htab
->top_index
);
4422 free (htab
->input_list
);
4427 /* Comparison function for sorting/searching relocations relating to Cortex-A8
4431 a8_reloc_compare (const void *a
, const void *b
)
4433 const struct a8_erratum_reloc
*ra
= (const struct a8_erratum_reloc
*) a
;
4434 const struct a8_erratum_reloc
*rb
= (const struct a8_erratum_reloc
*) b
;
4436 if (ra
->from
< rb
->from
)
4438 else if (ra
->from
> rb
->from
)
4444 static struct elf_link_hash_entry
*find_thumb_glue (struct bfd_link_info
*,
4445 const char *, char **);
4447 /* Helper function to scan code for sequences which might trigger the Cortex-A8
4448 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
4449 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
4453 cortex_a8_erratum_scan (bfd
*input_bfd
,
4454 struct bfd_link_info
*info
,
4455 struct a8_erratum_fix
**a8_fixes_p
,
4456 unsigned int *num_a8_fixes_p
,
4457 unsigned int *a8_fix_table_size_p
,
4458 struct a8_erratum_reloc
*a8_relocs
,
4459 unsigned int num_a8_relocs
,
4460 unsigned prev_num_a8_fixes
,
4461 bfd_boolean
*stub_changed_p
)
4464 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4465 struct a8_erratum_fix
*a8_fixes
= *a8_fixes_p
;
4466 unsigned int num_a8_fixes
= *num_a8_fixes_p
;
4467 unsigned int a8_fix_table_size
= *a8_fix_table_size_p
;
4472 for (section
= input_bfd
->sections
;
4474 section
= section
->next
)
4476 bfd_byte
*contents
= NULL
;
4477 struct _arm_elf_section_data
*sec_data
;
4481 if (elf_section_type (section
) != SHT_PROGBITS
4482 || (elf_section_flags (section
) & SHF_EXECINSTR
) == 0
4483 || (section
->flags
& SEC_EXCLUDE
) != 0
4484 || (section
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
4485 || (section
->output_section
== bfd_abs_section_ptr
))
4488 base_vma
= section
->output_section
->vma
+ section
->output_offset
;
4490 if (elf_section_data (section
)->this_hdr
.contents
!= NULL
)
4491 contents
= elf_section_data (section
)->this_hdr
.contents
;
4492 else if (! bfd_malloc_and_get_section (input_bfd
, section
, &contents
))
4495 sec_data
= elf32_arm_section_data (section
);
4497 for (span
= 0; span
< sec_data
->mapcount
; span
++)
4499 unsigned int span_start
= sec_data
->map
[span
].vma
;
4500 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
4501 ? section
->size
: sec_data
->map
[span
+ 1].vma
;
4503 char span_type
= sec_data
->map
[span
].type
;
4504 bfd_boolean last_was_32bit
= FALSE
, last_was_branch
= FALSE
;
4506 if (span_type
!= 't')
4509 /* Span is entirely within a single 4KB region: skip scanning. */
4510 if (((base_vma
+ span_start
) & ~0xfff)
4511 == ((base_vma
+ span_end
) & ~0xfff))
4514 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4516 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4517 * The branch target is in the same 4KB region as the
4518 first half of the branch.
4519 * The instruction before the branch is a 32-bit
4520 length non-branch instruction. */
4521 for (i
= span_start
; i
< span_end
;)
4523 unsigned int insn
= bfd_getl16 (&contents
[i
]);
4524 bfd_boolean insn_32bit
= FALSE
, is_blx
= FALSE
, is_b
= FALSE
;
4525 bfd_boolean is_bl
= FALSE
, is_bcc
= FALSE
, is_32bit_branch
;
4527 if ((insn
& 0xe000) == 0xe000 && (insn
& 0x1800) != 0x0000)
4532 /* Load the rest of the insn (in manual-friendly order). */
4533 insn
= (insn
<< 16) | bfd_getl16 (&contents
[i
+ 2]);
4535 /* Encoding T4: B<c>.W. */
4536 is_b
= (insn
& 0xf800d000) == 0xf0009000;
4537 /* Encoding T1: BL<c>.W. */
4538 is_bl
= (insn
& 0xf800d000) == 0xf000d000;
4539 /* Encoding T2: BLX<c>.W. */
4540 is_blx
= (insn
& 0xf800d000) == 0xf000c000;
4541 /* Encoding T3: B<c>.W (not permitted in IT block). */
4542 is_bcc
= (insn
& 0xf800d000) == 0xf0008000
4543 && (insn
& 0x07f00000) != 0x03800000;
4546 is_32bit_branch
= is_b
|| is_bl
|| is_blx
|| is_bcc
;
4548 if (((base_vma
+ i
) & 0xfff) == 0xffe
4552 && ! last_was_branch
)
4554 bfd_signed_vma offset
= 0;
4555 bfd_boolean force_target_arm
= FALSE
;
4556 bfd_boolean force_target_thumb
= FALSE
;
4558 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
4559 struct a8_erratum_reloc key
, *found
;
4560 bfd_boolean use_plt
= FALSE
;
4562 key
.from
= base_vma
+ i
;
4563 found
= (struct a8_erratum_reloc
*)
4564 bsearch (&key
, a8_relocs
, num_a8_relocs
,
4565 sizeof (struct a8_erratum_reloc
),
4570 char *error_message
= NULL
;
4571 struct elf_link_hash_entry
*entry
;
4573 /* We don't care about the error returned from this
4574 function, only if there is glue or not. */
4575 entry
= find_thumb_glue (info
, found
->sym_name
,
4579 found
->non_a8_stub
= TRUE
;
4581 /* Keep a simpler condition, for the sake of clarity. */
4582 if (htab
->root
.splt
!= NULL
&& found
->hash
!= NULL
4583 && found
->hash
->root
.plt
.offset
!= (bfd_vma
) -1)
4586 if (found
->r_type
== R_ARM_THM_CALL
)
4588 if (found
->branch_type
== ST_BRANCH_TO_ARM
4590 force_target_arm
= TRUE
;
4592 force_target_thumb
= TRUE
;
4596 /* Check if we have an offending branch instruction. */
4598 if (found
&& found
->non_a8_stub
)
4599 /* We've already made a stub for this instruction, e.g.
4600 it's a long branch or a Thumb->ARM stub. Assume that
4601 stub will suffice to work around the A8 erratum (see
4602 setting of always_after_branch above). */
4606 offset
= (insn
& 0x7ff) << 1;
4607 offset
|= (insn
& 0x3f0000) >> 4;
4608 offset
|= (insn
& 0x2000) ? 0x40000 : 0;
4609 offset
|= (insn
& 0x800) ? 0x80000 : 0;
4610 offset
|= (insn
& 0x4000000) ? 0x100000 : 0;
4611 if (offset
& 0x100000)
4612 offset
|= ~ ((bfd_signed_vma
) 0xfffff);
4613 stub_type
= arm_stub_a8_veneer_b_cond
;
4615 else if (is_b
|| is_bl
|| is_blx
)
4617 int s
= (insn
& 0x4000000) != 0;
4618 int j1
= (insn
& 0x2000) != 0;
4619 int j2
= (insn
& 0x800) != 0;
4623 offset
= (insn
& 0x7ff) << 1;
4624 offset
|= (insn
& 0x3ff0000) >> 4;
4628 if (offset
& 0x1000000)
4629 offset
|= ~ ((bfd_signed_vma
) 0xffffff);
4632 offset
&= ~ ((bfd_signed_vma
) 3);
4634 stub_type
= is_blx
? arm_stub_a8_veneer_blx
:
4635 is_bl
? arm_stub_a8_veneer_bl
: arm_stub_a8_veneer_b
;
4638 if (stub_type
!= arm_stub_none
)
4640 bfd_vma pc_for_insn
= base_vma
+ i
+ 4;
4642 /* The original instruction is a BL, but the target is
4643 an ARM instruction. If we were not making a stub,
4644 the BL would have been converted to a BLX. Use the
4645 BLX stub instead in that case. */
4646 if (htab
->use_blx
&& force_target_arm
4647 && stub_type
== arm_stub_a8_veneer_bl
)
4649 stub_type
= arm_stub_a8_veneer_blx
;
4653 /* Conversely, if the original instruction was
4654 BLX but the target is Thumb mode, use the BL
4656 else if (force_target_thumb
4657 && stub_type
== arm_stub_a8_veneer_blx
)
4659 stub_type
= arm_stub_a8_veneer_bl
;
4665 pc_for_insn
&= ~ ((bfd_vma
) 3);
4667 /* If we found a relocation, use the proper destination,
4668 not the offset in the (unrelocated) instruction.
4669 Note this is always done if we switched the stub type
4673 (bfd_signed_vma
) (found
->destination
- pc_for_insn
);
4675 /* If the stub will use a Thumb-mode branch to a
4676 PLT target, redirect it to the preceding Thumb
4678 if (stub_type
!= arm_stub_a8_veneer_blx
&& use_plt
)
4679 offset
-= PLT_THUMB_STUB_SIZE
;
4681 target
= pc_for_insn
+ offset
;
4683 /* The BLX stub is ARM-mode code. Adjust the offset to
4684 take the different PC value (+8 instead of +4) into
4686 if (stub_type
== arm_stub_a8_veneer_blx
)
4689 if (((base_vma
+ i
) & ~0xfff) == (target
& ~0xfff))
4691 char *stub_name
= NULL
;
4693 if (num_a8_fixes
== a8_fix_table_size
)
4695 a8_fix_table_size
*= 2;
4696 a8_fixes
= (struct a8_erratum_fix
*)
4697 bfd_realloc (a8_fixes
,
4698 sizeof (struct a8_erratum_fix
)
4699 * a8_fix_table_size
);
4702 if (num_a8_fixes
< prev_num_a8_fixes
)
4704 /* If we're doing a subsequent scan,
4705 check if we've found the same fix as
4706 before, and try and reuse the stub
4708 stub_name
= a8_fixes
[num_a8_fixes
].stub_name
;
4709 if ((a8_fixes
[num_a8_fixes
].section
!= section
)
4710 || (a8_fixes
[num_a8_fixes
].offset
!= i
))
4714 *stub_changed_p
= TRUE
;
4720 stub_name
= (char *) bfd_malloc (8 + 1 + 8 + 1);
4721 if (stub_name
!= NULL
)
4722 sprintf (stub_name
, "%x:%x", section
->id
, i
);
4725 a8_fixes
[num_a8_fixes
].input_bfd
= input_bfd
;
4726 a8_fixes
[num_a8_fixes
].section
= section
;
4727 a8_fixes
[num_a8_fixes
].offset
= i
;
4728 a8_fixes
[num_a8_fixes
].addend
= offset
;
4729 a8_fixes
[num_a8_fixes
].orig_insn
= insn
;
4730 a8_fixes
[num_a8_fixes
].stub_name
= stub_name
;
4731 a8_fixes
[num_a8_fixes
].stub_type
= stub_type
;
4732 a8_fixes
[num_a8_fixes
].branch_type
=
4733 is_blx
? ST_BRANCH_TO_ARM
: ST_BRANCH_TO_THUMB
;
4740 i
+= insn_32bit
? 4 : 2;
4741 last_was_32bit
= insn_32bit
;
4742 last_was_branch
= is_32bit_branch
;
4746 if (elf_section_data (section
)->this_hdr
.contents
== NULL
)
4750 *a8_fixes_p
= a8_fixes
;
4751 *num_a8_fixes_p
= num_a8_fixes
;
4752 *a8_fix_table_size_p
= a8_fix_table_size
;
4757 /* Determine and set the size of the stub section for a final link.
4759 The basic idea here is to examine all the relocations looking for
4760 PC-relative calls to a target that is unreachable with a "bl"
4764 elf32_arm_size_stubs (bfd
*output_bfd
,
4766 struct bfd_link_info
*info
,
4767 bfd_signed_vma group_size
,
4768 asection
* (*add_stub_section
) (const char *, asection
*),
4769 void (*layout_sections_again
) (void))
4771 bfd_size_type stub_group_size
;
4772 bfd_boolean stubs_always_after_branch
;
4773 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4774 struct a8_erratum_fix
*a8_fixes
= NULL
;
4775 unsigned int num_a8_fixes
= 0, a8_fix_table_size
= 10;
4776 struct a8_erratum_reloc
*a8_relocs
= NULL
;
4777 unsigned int num_a8_relocs
= 0, a8_reloc_table_size
= 10, i
;
4782 if (htab
->fix_cortex_a8
)
4784 a8_fixes
= (struct a8_erratum_fix
*)
4785 bfd_zmalloc (sizeof (struct a8_erratum_fix
) * a8_fix_table_size
);
4786 a8_relocs
= (struct a8_erratum_reloc
*)
4787 bfd_zmalloc (sizeof (struct a8_erratum_reloc
) * a8_reloc_table_size
);
4790 /* Propagate mach to stub bfd, because it may not have been
4791 finalized when we created stub_bfd. */
4792 bfd_set_arch_mach (stub_bfd
, bfd_get_arch (output_bfd
),
4793 bfd_get_mach (output_bfd
));
4795 /* Stash our params away. */
4796 htab
->stub_bfd
= stub_bfd
;
4797 htab
->add_stub_section
= add_stub_section
;
4798 htab
->layout_sections_again
= layout_sections_again
;
4799 stubs_always_after_branch
= group_size
< 0;
4801 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4802 as the first half of a 32-bit branch straddling two 4K pages. This is a
4803 crude way of enforcing that. */
4804 if (htab
->fix_cortex_a8
)
4805 stubs_always_after_branch
= 1;
4808 stub_group_size
= -group_size
;
4810 stub_group_size
= group_size
;
4812 if (stub_group_size
== 1)
4814 /* Default values. */
4815 /* Thumb branch range is +-4MB has to be used as the default
4816 maximum size (a given section can contain both ARM and Thumb
4817 code, so the worst case has to be taken into account).
4819 This value is 24K less than that, which allows for 2025
4820 12-byte stubs. If we exceed that, then we will fail to link.
4821 The user will have to relink with an explicit group size
4823 stub_group_size
= 4170000;
4826 group_sections (htab
, stub_group_size
, stubs_always_after_branch
);
4828 /* If we're applying the cortex A8 fix, we need to determine the
4829 program header size now, because we cannot change it later --
4830 that could alter section placements. Notice the A8 erratum fix
4831 ends up requiring the section addresses to remain unchanged
4832 modulo the page size. That's something we cannot represent
4833 inside BFD, and we don't want to force the section alignment to
4834 be the page size. */
4835 if (htab
->fix_cortex_a8
)
4836 (*htab
->layout_sections_again
) ();
4841 unsigned int bfd_indx
;
4843 bfd_boolean stub_changed
= FALSE
;
4844 unsigned prev_num_a8_fixes
= num_a8_fixes
;
4847 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
4849 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
4851 Elf_Internal_Shdr
*symtab_hdr
;
4853 Elf_Internal_Sym
*local_syms
= NULL
;
4857 /* We'll need the symbol table in a second. */
4858 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
4859 if (symtab_hdr
->sh_info
== 0)
4862 /* Walk over each section attached to the input bfd. */
4863 for (section
= input_bfd
->sections
;
4865 section
= section
->next
)
4867 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
4869 /* If there aren't any relocs, then there's nothing more
4871 if ((section
->flags
& SEC_RELOC
) == 0
4872 || section
->reloc_count
== 0
4873 || (section
->flags
& SEC_CODE
) == 0)
4876 /* If this section is a link-once section that will be
4877 discarded, then don't create any stubs. */
4878 if (section
->output_section
== NULL
4879 || section
->output_section
->owner
!= output_bfd
)
4882 /* Get the relocs. */
4884 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
,
4885 NULL
, info
->keep_memory
);
4886 if (internal_relocs
== NULL
)
4887 goto error_ret_free_local
;
4889 /* Now examine each relocation. */
4890 irela
= internal_relocs
;
4891 irelaend
= irela
+ section
->reloc_count
;
4892 for (; irela
< irelaend
; irela
++)
4894 unsigned int r_type
, r_indx
;
4895 enum elf32_arm_stub_type stub_type
;
4896 struct elf32_arm_stub_hash_entry
*stub_entry
;
4899 bfd_vma destination
;
4900 struct elf32_arm_link_hash_entry
*hash
;
4901 const char *sym_name
;
4903 const asection
*id_sec
;
4904 unsigned char st_type
;
4905 enum arm_st_branch_type branch_type
;
4906 bfd_boolean created_stub
= FALSE
;
4908 r_type
= ELF32_R_TYPE (irela
->r_info
);
4909 r_indx
= ELF32_R_SYM (irela
->r_info
);
4911 if (r_type
>= (unsigned int) R_ARM_max
)
4913 bfd_set_error (bfd_error_bad_value
);
4914 error_ret_free_internal
:
4915 if (elf_section_data (section
)->relocs
== NULL
)
4916 free (internal_relocs
);
4917 goto error_ret_free_local
;
4921 if (r_indx
>= symtab_hdr
->sh_info
)
4922 hash
= elf32_arm_hash_entry
4923 (elf_sym_hashes (input_bfd
)
4924 [r_indx
- symtab_hdr
->sh_info
]);
4926 /* Only look for stubs on branch instructions, or
4927 non-relaxed TLSCALL */
4928 if ((r_type
!= (unsigned int) R_ARM_CALL
)
4929 && (r_type
!= (unsigned int) R_ARM_THM_CALL
)
4930 && (r_type
!= (unsigned int) R_ARM_JUMP24
)
4931 && (r_type
!= (unsigned int) R_ARM_THM_JUMP19
)
4932 && (r_type
!= (unsigned int) R_ARM_THM_XPC22
)
4933 && (r_type
!= (unsigned int) R_ARM_THM_JUMP24
)
4934 && (r_type
!= (unsigned int) R_ARM_PLT32
)
4935 && !((r_type
== (unsigned int) R_ARM_TLS_CALL
4936 || r_type
== (unsigned int) R_ARM_THM_TLS_CALL
)
4937 && r_type
== elf32_arm_tls_transition
4938 (info
, r_type
, &hash
->root
)
4939 && ((hash
? hash
->tls_type
4940 : (elf32_arm_local_got_tls_type
4941 (input_bfd
)[r_indx
]))
4942 & GOT_TLS_GDESC
) != 0))
4945 /* Now determine the call target, its name, value,
4952 if (r_type
== (unsigned int) R_ARM_TLS_CALL
4953 || r_type
== (unsigned int) R_ARM_THM_TLS_CALL
)
4955 /* A non-relaxed TLS call. The target is the
4956 plt-resident trampoline and nothing to do
4958 BFD_ASSERT (htab
->tls_trampoline
> 0);
4959 sym_sec
= htab
->root
.splt
;
4960 sym_value
= htab
->tls_trampoline
;
4963 branch_type
= ST_BRANCH_TO_ARM
;
4967 /* It's a local symbol. */
4968 Elf_Internal_Sym
*sym
;
4970 if (local_syms
== NULL
)
4973 = (Elf_Internal_Sym
*) symtab_hdr
->contents
;
4974 if (local_syms
== NULL
)
4976 = bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
4977 symtab_hdr
->sh_info
, 0,
4979 if (local_syms
== NULL
)
4980 goto error_ret_free_internal
;
4983 sym
= local_syms
+ r_indx
;
4984 if (sym
->st_shndx
== SHN_UNDEF
)
4985 sym_sec
= bfd_und_section_ptr
;
4986 else if (sym
->st_shndx
== SHN_ABS
)
4987 sym_sec
= bfd_abs_section_ptr
;
4988 else if (sym
->st_shndx
== SHN_COMMON
)
4989 sym_sec
= bfd_com_section_ptr
;
4992 bfd_section_from_elf_index (input_bfd
, sym
->st_shndx
);
4995 /* This is an undefined symbol. It can never
4999 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
5000 sym_value
= sym
->st_value
;
5001 destination
= (sym_value
+ irela
->r_addend
5002 + sym_sec
->output_offset
5003 + sym_sec
->output_section
->vma
);
5004 st_type
= ELF_ST_TYPE (sym
->st_info
);
5005 branch_type
= ARM_SYM_BRANCH_TYPE (sym
);
5007 = bfd_elf_string_from_elf_section (input_bfd
,
5008 symtab_hdr
->sh_link
,
5013 /* It's an external symbol. */
5014 while (hash
->root
.root
.type
== bfd_link_hash_indirect
5015 || hash
->root
.root
.type
== bfd_link_hash_warning
)
5016 hash
= ((struct elf32_arm_link_hash_entry
*)
5017 hash
->root
.root
.u
.i
.link
);
5019 if (hash
->root
.root
.type
== bfd_link_hash_defined
5020 || hash
->root
.root
.type
== bfd_link_hash_defweak
)
5022 sym_sec
= hash
->root
.root
.u
.def
.section
;
5023 sym_value
= hash
->root
.root
.u
.def
.value
;
5025 struct elf32_arm_link_hash_table
*globals
=
5026 elf32_arm_hash_table (info
);
5028 /* For a destination in a shared library,
5029 use the PLT stub as target address to
5030 decide whether a branch stub is
5033 && globals
->root
.splt
!= NULL
5035 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
5037 sym_sec
= globals
->root
.splt
;
5038 sym_value
= hash
->root
.plt
.offset
;
5039 if (sym_sec
->output_section
!= NULL
)
5040 destination
= (sym_value
5041 + sym_sec
->output_offset
5042 + sym_sec
->output_section
->vma
);
5044 else if (sym_sec
->output_section
!= NULL
)
5045 destination
= (sym_value
+ irela
->r_addend
5046 + sym_sec
->output_offset
5047 + sym_sec
->output_section
->vma
);
5049 else if ((hash
->root
.root
.type
== bfd_link_hash_undefined
)
5050 || (hash
->root
.root
.type
== bfd_link_hash_undefweak
))
5052 /* For a shared library, use the PLT stub as
5053 target address to decide whether a long
5054 branch stub is needed.
5055 For absolute code, they cannot be handled. */
5056 struct elf32_arm_link_hash_table
*globals
=
5057 elf32_arm_hash_table (info
);
5060 && globals
->root
.splt
!= NULL
5062 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
5064 sym_sec
= globals
->root
.splt
;
5065 sym_value
= hash
->root
.plt
.offset
;
5066 if (sym_sec
->output_section
!= NULL
)
5067 destination
= (sym_value
5068 + sym_sec
->output_offset
5069 + sym_sec
->output_section
->vma
);
5076 bfd_set_error (bfd_error_bad_value
);
5077 goto error_ret_free_internal
;
5079 st_type
= hash
->root
.type
;
5080 branch_type
= hash
->root
.target_internal
;
5081 sym_name
= hash
->root
.root
.root
.string
;
5086 /* Determine what (if any) linker stub is needed. */
5087 stub_type
= arm_type_of_stub (info
, section
, irela
,
5088 st_type
, &branch_type
,
5089 hash
, destination
, sym_sec
,
5090 input_bfd
, sym_name
);
5091 if (stub_type
== arm_stub_none
)
5094 /* Support for grouping stub sections. */
5095 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
5097 /* Get the name of this stub. */
5098 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, hash
,
5101 goto error_ret_free_internal
;
5103 /* We've either created a stub for this reloc already,
5104 or we are about to. */
5105 created_stub
= TRUE
;
5107 stub_entry
= arm_stub_hash_lookup
5108 (&htab
->stub_hash_table
, stub_name
,
5110 if (stub_entry
!= NULL
)
5112 /* The proper stub has already been created. */
5114 stub_entry
->target_value
= sym_value
;
5118 stub_entry
= elf32_arm_add_stub (stub_name
, section
,
5120 if (stub_entry
== NULL
)
5123 goto error_ret_free_internal
;
5126 stub_entry
->target_value
= sym_value
;
5127 stub_entry
->target_section
= sym_sec
;
5128 stub_entry
->stub_type
= stub_type
;
5129 stub_entry
->h
= hash
;
5130 stub_entry
->branch_type
= branch_type
;
5132 if (sym_name
== NULL
)
5133 sym_name
= "unnamed";
5134 stub_entry
->output_name
= (char *)
5135 bfd_alloc (htab
->stub_bfd
,
5136 sizeof (THUMB2ARM_GLUE_ENTRY_NAME
)
5137 + strlen (sym_name
));
5138 if (stub_entry
->output_name
== NULL
)
5141 goto error_ret_free_internal
;
5144 /* For historical reasons, use the existing names for
5145 ARM-to-Thumb and Thumb-to-ARM stubs. */
5146 if ((r_type
== (unsigned int) R_ARM_THM_CALL
5147 || r_type
== (unsigned int) R_ARM_THM_JUMP24
)
5148 && branch_type
== ST_BRANCH_TO_ARM
)
5149 sprintf (stub_entry
->output_name
,
5150 THUMB2ARM_GLUE_ENTRY_NAME
, sym_name
);
5151 else if ((r_type
== (unsigned int) R_ARM_CALL
5152 || r_type
== (unsigned int) R_ARM_JUMP24
)
5153 && branch_type
== ST_BRANCH_TO_THUMB
)
5154 sprintf (stub_entry
->output_name
,
5155 ARM2THUMB_GLUE_ENTRY_NAME
, sym_name
);
5157 sprintf (stub_entry
->output_name
, STUB_ENTRY_NAME
,
5160 stub_changed
= TRUE
;
5164 /* Look for relocations which might trigger Cortex-A8
5166 if (htab
->fix_cortex_a8
5167 && (r_type
== (unsigned int) R_ARM_THM_JUMP24
5168 || r_type
== (unsigned int) R_ARM_THM_JUMP19
5169 || r_type
== (unsigned int) R_ARM_THM_CALL
5170 || r_type
== (unsigned int) R_ARM_THM_XPC22
))
5172 bfd_vma from
= section
->output_section
->vma
5173 + section
->output_offset
5176 if ((from
& 0xfff) == 0xffe)
5178 /* Found a candidate. Note we haven't checked the
5179 destination is within 4K here: if we do so (and
5180 don't create an entry in a8_relocs) we can't tell
5181 that a branch should have been relocated when
5183 if (num_a8_relocs
== a8_reloc_table_size
)
5185 a8_reloc_table_size
*= 2;
5186 a8_relocs
= (struct a8_erratum_reloc
*)
5187 bfd_realloc (a8_relocs
,
5188 sizeof (struct a8_erratum_reloc
)
5189 * a8_reloc_table_size
);
5192 a8_relocs
[num_a8_relocs
].from
= from
;
5193 a8_relocs
[num_a8_relocs
].destination
= destination
;
5194 a8_relocs
[num_a8_relocs
].r_type
= r_type
;
5195 a8_relocs
[num_a8_relocs
].branch_type
= branch_type
;
5196 a8_relocs
[num_a8_relocs
].sym_name
= sym_name
;
5197 a8_relocs
[num_a8_relocs
].non_a8_stub
= created_stub
;
5198 a8_relocs
[num_a8_relocs
].hash
= hash
;
5205 /* We're done with the internal relocs, free them. */
5206 if (elf_section_data (section
)->relocs
== NULL
)
5207 free (internal_relocs
);
5210 if (htab
->fix_cortex_a8
)
5212 /* Sort relocs which might apply to Cortex-A8 erratum. */
5213 qsort (a8_relocs
, num_a8_relocs
,
5214 sizeof (struct a8_erratum_reloc
),
5217 /* Scan for branches which might trigger Cortex-A8 erratum. */
5218 if (cortex_a8_erratum_scan (input_bfd
, info
, &a8_fixes
,
5219 &num_a8_fixes
, &a8_fix_table_size
,
5220 a8_relocs
, num_a8_relocs
,
5221 prev_num_a8_fixes
, &stub_changed
)
5223 goto error_ret_free_local
;
5227 if (prev_num_a8_fixes
!= num_a8_fixes
)
5228 stub_changed
= TRUE
;
5233 /* OK, we've added some stubs. Find out the new size of the
5235 for (stub_sec
= htab
->stub_bfd
->sections
;
5237 stub_sec
= stub_sec
->next
)
5239 /* Ignore non-stub sections. */
5240 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
5246 bfd_hash_traverse (&htab
->stub_hash_table
, arm_size_one_stub
, htab
);
5248 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
5249 if (htab
->fix_cortex_a8
)
5250 for (i
= 0; i
< num_a8_fixes
; i
++)
5252 stub_sec
= elf32_arm_create_or_find_stub_sec (NULL
,
5253 a8_fixes
[i
].section
, htab
);
5255 if (stub_sec
== NULL
)
5256 goto error_ret_free_local
;
5259 += find_stub_size_and_template (a8_fixes
[i
].stub_type
, NULL
,
5264 /* Ask the linker to do its stuff. */
5265 (*htab
->layout_sections_again
) ();
5268 /* Add stubs for Cortex-A8 erratum fixes now. */
5269 if (htab
->fix_cortex_a8
)
5271 for (i
= 0; i
< num_a8_fixes
; i
++)
5273 struct elf32_arm_stub_hash_entry
*stub_entry
;
5274 char *stub_name
= a8_fixes
[i
].stub_name
;
5275 asection
*section
= a8_fixes
[i
].section
;
5276 unsigned int section_id
= a8_fixes
[i
].section
->id
;
5277 asection
*link_sec
= htab
->stub_group
[section_id
].link_sec
;
5278 asection
*stub_sec
= htab
->stub_group
[section_id
].stub_sec
;
5279 const insn_sequence
*template_sequence
;
5280 int template_size
, size
= 0;
5282 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
5284 if (stub_entry
== NULL
)
5286 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
5292 stub_entry
->stub_sec
= stub_sec
;
5293 stub_entry
->stub_offset
= 0;
5294 stub_entry
->id_sec
= link_sec
;
5295 stub_entry
->stub_type
= a8_fixes
[i
].stub_type
;
5296 stub_entry
->target_section
= a8_fixes
[i
].section
;
5297 stub_entry
->target_value
= a8_fixes
[i
].offset
;
5298 stub_entry
->target_addend
= a8_fixes
[i
].addend
;
5299 stub_entry
->orig_insn
= a8_fixes
[i
].orig_insn
;
5300 stub_entry
->branch_type
= a8_fixes
[i
].branch_type
;
5302 size
= find_stub_size_and_template (a8_fixes
[i
].stub_type
,
5306 stub_entry
->stub_size
= size
;
5307 stub_entry
->stub_template
= template_sequence
;
5308 stub_entry
->stub_template_size
= template_size
;
5311 /* Stash the Cortex-A8 erratum fix array for use later in
5312 elf32_arm_write_section(). */
5313 htab
->a8_erratum_fixes
= a8_fixes
;
5314 htab
->num_a8_erratum_fixes
= num_a8_fixes
;
5318 htab
->a8_erratum_fixes
= NULL
;
5319 htab
->num_a8_erratum_fixes
= 0;
5323 error_ret_free_local
:
5327 /* Build all the stubs associated with the current output file. The
5328 stubs are kept in a hash table attached to the main linker hash
5329 table. We also set up the .plt entries for statically linked PIC
5330 functions here. This function is called via arm_elf_finish in the
5334 elf32_arm_build_stubs (struct bfd_link_info
*info
)
5337 struct bfd_hash_table
*table
;
5338 struct elf32_arm_link_hash_table
*htab
;
5340 htab
= elf32_arm_hash_table (info
);
5344 for (stub_sec
= htab
->stub_bfd
->sections
;
5346 stub_sec
= stub_sec
->next
)
5350 /* Ignore non-stub sections. */
5351 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
5354 /* Allocate memory to hold the linker stubs. */
5355 size
= stub_sec
->size
;
5356 stub_sec
->contents
= (unsigned char *) bfd_zalloc (htab
->stub_bfd
, size
);
5357 if (stub_sec
->contents
== NULL
&& size
!= 0)
5362 /* Build the stubs as directed by the stub hash table. */
5363 table
= &htab
->stub_hash_table
;
5364 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
5365 if (htab
->fix_cortex_a8
)
5367 /* Place the cortex a8 stubs last. */
5368 htab
->fix_cortex_a8
= -1;
5369 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
5375 /* Locate the Thumb encoded calling stub for NAME. */
5377 static struct elf_link_hash_entry
*
5378 find_thumb_glue (struct bfd_link_info
*link_info
,
5380 char **error_message
)
5383 struct elf_link_hash_entry
*hash
;
5384 struct elf32_arm_link_hash_table
*hash_table
;
5386 /* We need a pointer to the armelf specific hash table. */
5387 hash_table
= elf32_arm_hash_table (link_info
);
5388 if (hash_table
== NULL
)
5391 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
5392 + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
5394 BFD_ASSERT (tmp_name
);
5396 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
5398 hash
= elf_link_hash_lookup
5399 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5402 && asprintf (error_message
, _("unable to find THUMB glue '%s' for '%s'"),
5403 tmp_name
, name
) == -1)
5404 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
5411 /* Locate the ARM encoded calling stub for NAME. */
5413 static struct elf_link_hash_entry
*
5414 find_arm_glue (struct bfd_link_info
*link_info
,
5416 char **error_message
)
5419 struct elf_link_hash_entry
*myh
;
5420 struct elf32_arm_link_hash_table
*hash_table
;
5422 /* We need a pointer to the elfarm specific hash table. */
5423 hash_table
= elf32_arm_hash_table (link_info
);
5424 if (hash_table
== NULL
)
5427 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
5428 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
5430 BFD_ASSERT (tmp_name
);
5432 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
5434 myh
= elf_link_hash_lookup
5435 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5438 && asprintf (error_message
, _("unable to find ARM glue '%s' for '%s'"),
5439 tmp_name
, name
) == -1)
5440 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
5447 /* ARM->Thumb glue (static images):
5451 ldr r12, __func_addr
5454 .word func @ behave as if you saw a ARM_32 reloc.
5461 .word func @ behave as if you saw a ARM_32 reloc.
5463 (relocatable images)
5466 ldr r12, __func_offset
5472 #define ARM2THUMB_STATIC_GLUE_SIZE 12
5473 static const insn32 a2t1_ldr_insn
= 0xe59fc000;
5474 static const insn32 a2t2_bx_r12_insn
= 0xe12fff1c;
5475 static const insn32 a2t3_func_addr_insn
= 0x00000001;
5477 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5478 static const insn32 a2t1v5_ldr_insn
= 0xe51ff004;
5479 static const insn32 a2t2v5_func_addr_insn
= 0x00000001;
5481 #define ARM2THUMB_PIC_GLUE_SIZE 16
5482 static const insn32 a2t1p_ldr_insn
= 0xe59fc004;
5483 static const insn32 a2t2p_add_pc_insn
= 0xe08cc00f;
5484 static const insn32 a2t3p_bx_r12_insn
= 0xe12fff1c;
5486 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
5490 __func_from_thumb: __func_from_thumb:
5492 nop ldr r6, __func_addr
5502 #define THUMB2ARM_GLUE_SIZE 8
5503 static const insn16 t2a1_bx_pc_insn
= 0x4778;
5504 static const insn16 t2a2_noop_insn
= 0x46c0;
5505 static const insn32 t2a3_b_insn
= 0xea000000;
5507 #define VFP11_ERRATUM_VENEER_SIZE 8
5509 #define ARM_BX_VENEER_SIZE 12
5510 static const insn32 armbx1_tst_insn
= 0xe3100001;
5511 static const insn32 armbx2_moveq_insn
= 0x01a0f000;
5512 static const insn32 armbx3_bx_insn
= 0xe12fff10;
5514 #ifndef ELFARM_NABI_C_INCLUDED
5516 arm_allocate_glue_section_space (bfd
* abfd
, bfd_size_type size
, const char * name
)
5519 bfd_byte
* contents
;
5523 /* Do not include empty glue sections in the output. */
5526 s
= bfd_get_section_by_name (abfd
, name
);
5528 s
->flags
|= SEC_EXCLUDE
;
5533 BFD_ASSERT (abfd
!= NULL
);
5535 s
= bfd_get_section_by_name (abfd
, name
);
5536 BFD_ASSERT (s
!= NULL
);
5538 contents
= (bfd_byte
*) bfd_alloc (abfd
, size
);
5540 BFD_ASSERT (s
->size
== size
);
5541 s
->contents
= contents
;
5545 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info
* info
)
5547 struct elf32_arm_link_hash_table
* globals
;
5549 globals
= elf32_arm_hash_table (info
);
5550 BFD_ASSERT (globals
!= NULL
);
5552 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5553 globals
->arm_glue_size
,
5554 ARM2THUMB_GLUE_SECTION_NAME
);
5556 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5557 globals
->thumb_glue_size
,
5558 THUMB2ARM_GLUE_SECTION_NAME
);
5560 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5561 globals
->vfp11_erratum_glue_size
,
5562 VFP11_ERRATUM_VENEER_SECTION_NAME
);
5564 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5565 globals
->bx_glue_size
,
5566 ARM_BX_GLUE_SECTION_NAME
);
5571 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5572 returns the symbol identifying the stub. */
5574 static struct elf_link_hash_entry
*
5575 record_arm_to_thumb_glue (struct bfd_link_info
* link_info
,
5576 struct elf_link_hash_entry
* h
)
5578 const char * name
= h
->root
.root
.string
;
5581 struct elf_link_hash_entry
* myh
;
5582 struct bfd_link_hash_entry
* bh
;
5583 struct elf32_arm_link_hash_table
* globals
;
5587 globals
= elf32_arm_hash_table (link_info
);
5588 BFD_ASSERT (globals
!= NULL
);
5589 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5591 s
= bfd_get_section_by_name
5592 (globals
->bfd_of_glue_owner
, ARM2THUMB_GLUE_SECTION_NAME
);
5594 BFD_ASSERT (s
!= NULL
);
5596 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
5597 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
5599 BFD_ASSERT (tmp_name
);
5601 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
5603 myh
= elf_link_hash_lookup
5604 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5608 /* We've already seen this guy. */
5613 /* The only trick here is using hash_table->arm_glue_size as the value.
5614 Even though the section isn't allocated yet, this is where we will be
5615 putting it. The +1 on the value marks that the stub has not been
5616 output yet - not that it is a Thumb function. */
5618 val
= globals
->arm_glue_size
+ 1;
5619 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
5620 tmp_name
, BSF_GLOBAL
, s
, val
,
5621 NULL
, TRUE
, FALSE
, &bh
);
5623 myh
= (struct elf_link_hash_entry
*) bh
;
5624 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5625 myh
->forced_local
= 1;
5629 if (link_info
->shared
|| globals
->root
.is_relocatable_executable
5630 || globals
->pic_veneer
)
5631 size
= ARM2THUMB_PIC_GLUE_SIZE
;
5632 else if (globals
->use_blx
)
5633 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
5635 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
5638 globals
->arm_glue_size
+= size
;
5643 /* Allocate space for ARMv4 BX veneers. */
5646 record_arm_bx_glue (struct bfd_link_info
* link_info
, int reg
)
5649 struct elf32_arm_link_hash_table
*globals
;
5651 struct elf_link_hash_entry
*myh
;
5652 struct bfd_link_hash_entry
*bh
;
5655 /* BX PC does not need a veneer. */
5659 globals
= elf32_arm_hash_table (link_info
);
5660 BFD_ASSERT (globals
!= NULL
);
5661 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5663 /* Check if this veneer has already been allocated. */
5664 if (globals
->bx_glue_offset
[reg
])
5667 s
= bfd_get_section_by_name
5668 (globals
->bfd_of_glue_owner
, ARM_BX_GLUE_SECTION_NAME
);
5670 BFD_ASSERT (s
!= NULL
);
5672 /* Add symbol for veneer. */
5674 bfd_malloc ((bfd_size_type
) strlen (ARM_BX_GLUE_ENTRY_NAME
) + 1);
5676 BFD_ASSERT (tmp_name
);
5678 sprintf (tmp_name
, ARM_BX_GLUE_ENTRY_NAME
, reg
);
5680 myh
= elf_link_hash_lookup
5681 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5683 BFD_ASSERT (myh
== NULL
);
5686 val
= globals
->bx_glue_size
;
5687 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
5688 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
5689 NULL
, TRUE
, FALSE
, &bh
);
5691 myh
= (struct elf_link_hash_entry
*) bh
;
5692 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5693 myh
->forced_local
= 1;
5695 s
->size
+= ARM_BX_VENEER_SIZE
;
5696 globals
->bx_glue_offset
[reg
] = globals
->bx_glue_size
| 2;
5697 globals
->bx_glue_size
+= ARM_BX_VENEER_SIZE
;
5701 /* Add an entry to the code/data map for section SEC. */
5704 elf32_arm_section_map_add (asection
*sec
, char type
, bfd_vma vma
)
5706 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
5707 unsigned int newidx
;
5709 if (sec_data
->map
== NULL
)
5711 sec_data
->map
= (elf32_arm_section_map
*)
5712 bfd_malloc (sizeof (elf32_arm_section_map
));
5713 sec_data
->mapcount
= 0;
5714 sec_data
->mapsize
= 1;
5717 newidx
= sec_data
->mapcount
++;
5719 if (sec_data
->mapcount
> sec_data
->mapsize
)
5721 sec_data
->mapsize
*= 2;
5722 sec_data
->map
= (elf32_arm_section_map
*)
5723 bfd_realloc_or_free (sec_data
->map
, sec_data
->mapsize
5724 * sizeof (elf32_arm_section_map
));
5729 sec_data
->map
[newidx
].vma
= vma
;
5730 sec_data
->map
[newidx
].type
= type
;
5735 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5736 veneers are handled for now. */
5739 record_vfp11_erratum_veneer (struct bfd_link_info
*link_info
,
5740 elf32_vfp11_erratum_list
*branch
,
5742 asection
*branch_sec
,
5743 unsigned int offset
)
5746 struct elf32_arm_link_hash_table
*hash_table
;
5748 struct elf_link_hash_entry
*myh
;
5749 struct bfd_link_hash_entry
*bh
;
5751 struct _arm_elf_section_data
*sec_data
;
5752 elf32_vfp11_erratum_list
*newerr
;
5754 hash_table
= elf32_arm_hash_table (link_info
);
5755 BFD_ASSERT (hash_table
!= NULL
);
5756 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
5758 s
= bfd_get_section_by_name
5759 (hash_table
->bfd_of_glue_owner
, VFP11_ERRATUM_VENEER_SECTION_NAME
);
5761 sec_data
= elf32_arm_section_data (s
);
5763 BFD_ASSERT (s
!= NULL
);
5765 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen
5766 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
5768 BFD_ASSERT (tmp_name
);
5770 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
5771 hash_table
->num_vfp11_fixes
);
5773 myh
= elf_link_hash_lookup
5774 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5776 BFD_ASSERT (myh
== NULL
);
5779 val
= hash_table
->vfp11_erratum_glue_size
;
5780 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
5781 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
5782 NULL
, TRUE
, FALSE
, &bh
);
5784 myh
= (struct elf_link_hash_entry
*) bh
;
5785 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5786 myh
->forced_local
= 1;
5788 /* Link veneer back to calling location. */
5789 sec_data
->erratumcount
+= 1;
5790 newerr
= (elf32_vfp11_erratum_list
*)
5791 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
5793 newerr
->type
= VFP11_ERRATUM_ARM_VENEER
;
5795 newerr
->u
.v
.branch
= branch
;
5796 newerr
->u
.v
.id
= hash_table
->num_vfp11_fixes
;
5797 branch
->u
.b
.veneer
= newerr
;
5799 newerr
->next
= sec_data
->erratumlist
;
5800 sec_data
->erratumlist
= newerr
;
5802 /* A symbol for the return from the veneer. */
5803 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
5804 hash_table
->num_vfp11_fixes
);
5806 myh
= elf_link_hash_lookup
5807 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5814 _bfd_generic_link_add_one_symbol (link_info
, branch_bfd
, tmp_name
, BSF_LOCAL
,
5815 branch_sec
, val
, NULL
, TRUE
, FALSE
, &bh
);
5817 myh
= (struct elf_link_hash_entry
*) bh
;
5818 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5819 myh
->forced_local
= 1;
5823 /* Generate a mapping symbol for the veneer section, and explicitly add an
5824 entry for that symbol to the code/data map for the section. */
5825 if (hash_table
->vfp11_erratum_glue_size
== 0)
5828 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5829 ever requires this erratum fix. */
5830 _bfd_generic_link_add_one_symbol (link_info
,
5831 hash_table
->bfd_of_glue_owner
, "$a",
5832 BSF_LOCAL
, s
, 0, NULL
,
5835 myh
= (struct elf_link_hash_entry
*) bh
;
5836 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
5837 myh
->forced_local
= 1;
5839 /* The elf32_arm_init_maps function only cares about symbols from input
5840 BFDs. We must make a note of this generated mapping symbol
5841 ourselves so that code byteswapping works properly in
5842 elf32_arm_write_section. */
5843 elf32_arm_section_map_add (s
, 'a', 0);
5846 s
->size
+= VFP11_ERRATUM_VENEER_SIZE
;
5847 hash_table
->vfp11_erratum_glue_size
+= VFP11_ERRATUM_VENEER_SIZE
;
5848 hash_table
->num_vfp11_fixes
++;
5850 /* The offset of the veneer. */
5854 #define ARM_GLUE_SECTION_FLAGS \
5855 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5856 | SEC_READONLY | SEC_LINKER_CREATED)
5858 /* Create a fake section for use by the ARM backend of the linker. */
5861 arm_make_glue_section (bfd
* abfd
, const char * name
)
5865 sec
= bfd_get_section_by_name (abfd
, name
);
5870 sec
= bfd_make_section_with_flags (abfd
, name
, ARM_GLUE_SECTION_FLAGS
);
5873 || !bfd_set_section_alignment (abfd
, sec
, 2))
5876 /* Set the gc mark to prevent the section from being removed by garbage
5877 collection, despite the fact that no relocs refer to this section. */
5883 /* Add the glue sections to ABFD. This function is called from the
5884 linker scripts in ld/emultempl/{armelf}.em. */
5887 bfd_elf32_arm_add_glue_sections_to_bfd (bfd
*abfd
,
5888 struct bfd_link_info
*info
)
5890 /* If we are only performing a partial
5891 link do not bother adding the glue. */
5892 if (info
->relocatable
)
5895 return arm_make_glue_section (abfd
, ARM2THUMB_GLUE_SECTION_NAME
)
5896 && arm_make_glue_section (abfd
, THUMB2ARM_GLUE_SECTION_NAME
)
5897 && arm_make_glue_section (abfd
, VFP11_ERRATUM_VENEER_SECTION_NAME
)
5898 && arm_make_glue_section (abfd
, ARM_BX_GLUE_SECTION_NAME
);
5901 /* Select a BFD to be used to hold the sections used by the glue code.
5902 This function is called from the linker scripts in ld/emultempl/
5906 bfd_elf32_arm_get_bfd_for_interworking (bfd
*abfd
, struct bfd_link_info
*info
)
5908 struct elf32_arm_link_hash_table
*globals
;
5910 /* If we are only performing a partial link
5911 do not bother getting a bfd to hold the glue. */
5912 if (info
->relocatable
)
5915 /* Make sure we don't attach the glue sections to a dynamic object. */
5916 BFD_ASSERT (!(abfd
->flags
& DYNAMIC
));
5918 globals
= elf32_arm_hash_table (info
);
5919 BFD_ASSERT (globals
!= NULL
);
5921 if (globals
->bfd_of_glue_owner
!= NULL
)
5924 /* Save the bfd for later use. */
5925 globals
->bfd_of_glue_owner
= abfd
;
5931 check_use_blx (struct elf32_arm_link_hash_table
*globals
)
5933 if (bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
5935 globals
->use_blx
= 1;
5939 bfd_elf32_arm_process_before_allocation (bfd
*abfd
,
5940 struct bfd_link_info
*link_info
)
5942 Elf_Internal_Shdr
*symtab_hdr
;
5943 Elf_Internal_Rela
*internal_relocs
= NULL
;
5944 Elf_Internal_Rela
*irel
, *irelend
;
5945 bfd_byte
*contents
= NULL
;
5948 struct elf32_arm_link_hash_table
*globals
;
5950 /* If we are only performing a partial link do not bother
5951 to construct any glue. */
5952 if (link_info
->relocatable
)
5955 /* Here we have a bfd that is to be included on the link. We have a
5956 hook to do reloc rummaging, before section sizes are nailed down. */
5957 globals
= elf32_arm_hash_table (link_info
);
5958 BFD_ASSERT (globals
!= NULL
);
5960 check_use_blx (globals
);
5962 if (globals
->byteswap_code
&& !bfd_big_endian (abfd
))
5964 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
5969 /* PR 5398: If we have not decided to include any loadable sections in
5970 the output then we will not have a glue owner bfd. This is OK, it
5971 just means that there is nothing else for us to do here. */
5972 if (globals
->bfd_of_glue_owner
== NULL
)
5975 /* Rummage around all the relocs and map the glue vectors. */
5976 sec
= abfd
->sections
;
5981 for (; sec
!= NULL
; sec
= sec
->next
)
5983 if (sec
->reloc_count
== 0)
5986 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
5989 symtab_hdr
= & elf_symtab_hdr (abfd
);
5991 /* Load the relocs. */
5993 = _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
, FALSE
);
5995 if (internal_relocs
== NULL
)
5998 irelend
= internal_relocs
+ sec
->reloc_count
;
5999 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
6002 unsigned long r_index
;
6004 struct elf_link_hash_entry
*h
;
6006 r_type
= ELF32_R_TYPE (irel
->r_info
);
6007 r_index
= ELF32_R_SYM (irel
->r_info
);
6009 /* These are the only relocation types we care about. */
6010 if ( r_type
!= R_ARM_PC24
6011 && (r_type
!= R_ARM_V4BX
|| globals
->fix_v4bx
< 2))
6014 /* Get the section contents if we haven't done so already. */
6015 if (contents
== NULL
)
6017 /* Get cached copy if it exists. */
6018 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
6019 contents
= elf_section_data (sec
)->this_hdr
.contents
;
6022 /* Go get them off disk. */
6023 if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
6028 if (r_type
== R_ARM_V4BX
)
6032 reg
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
) & 0xf;
6033 record_arm_bx_glue (link_info
, reg
);
6037 /* If the relocation is not against a symbol it cannot concern us. */
6040 /* We don't care about local symbols. */
6041 if (r_index
< symtab_hdr
->sh_info
)
6044 /* This is an external symbol. */
6045 r_index
-= symtab_hdr
->sh_info
;
6046 h
= (struct elf_link_hash_entry
*)
6047 elf_sym_hashes (abfd
)[r_index
];
6049 /* If the relocation is against a static symbol it must be within
6050 the current section and so cannot be a cross ARM/Thumb relocation. */
6054 /* If the call will go through a PLT entry then we do not need
6056 if (globals
->root
.splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
6062 /* This one is a call from arm code. We need to look up
6063 the target of the call. If it is a thumb target, we
6065 if (h
->target_internal
== ST_BRANCH_TO_THUMB
)
6066 record_arm_to_thumb_glue (link_info
, h
);
6074 if (contents
!= NULL
6075 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6079 if (internal_relocs
!= NULL
6080 && elf_section_data (sec
)->relocs
!= internal_relocs
)
6081 free (internal_relocs
);
6082 internal_relocs
= NULL
;
6088 if (contents
!= NULL
6089 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6091 if (internal_relocs
!= NULL
6092 && elf_section_data (sec
)->relocs
!= internal_relocs
)
6093 free (internal_relocs
);
6100 /* Initialise maps of ARM/Thumb/data for input BFDs. */
6103 bfd_elf32_arm_init_maps (bfd
*abfd
)
6105 Elf_Internal_Sym
*isymbuf
;
6106 Elf_Internal_Shdr
*hdr
;
6107 unsigned int i
, localsyms
;
6109 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
6110 if (! is_arm_elf (abfd
))
6113 if ((abfd
->flags
& DYNAMIC
) != 0)
6116 hdr
= & elf_symtab_hdr (abfd
);
6117 localsyms
= hdr
->sh_info
;
6119 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6120 should contain the number of local symbols, which should come before any
6121 global symbols. Mapping symbols are always local. */
6122 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, localsyms
, 0, NULL
, NULL
,
6125 /* No internal symbols read? Skip this BFD. */
6126 if (isymbuf
== NULL
)
6129 for (i
= 0; i
< localsyms
; i
++)
6131 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
6132 asection
*sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
6136 && ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
)
6138 name
= bfd_elf_string_from_elf_section (abfd
,
6139 hdr
->sh_link
, isym
->st_name
);
6141 if (bfd_is_arm_special_symbol_name (name
,
6142 BFD_ARM_SPECIAL_SYM_TYPE_MAP
))
6143 elf32_arm_section_map_add (sec
, name
[1], isym
->st_value
);
6149 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6150 say what they wanted. */
6153 bfd_elf32_arm_set_cortex_a8_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
6155 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
6156 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
6158 if (globals
== NULL
)
6161 if (globals
->fix_cortex_a8
== -1)
6163 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
6164 if (out_attr
[Tag_CPU_arch
].i
== TAG_CPU_ARCH_V7
6165 && (out_attr
[Tag_CPU_arch_profile
].i
== 'A'
6166 || out_attr
[Tag_CPU_arch_profile
].i
== 0))
6167 globals
->fix_cortex_a8
= 1;
6169 globals
->fix_cortex_a8
= 0;
6175 bfd_elf32_arm_set_vfp11_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
6177 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
6178 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
6180 if (globals
== NULL
)
6182 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
6183 if (out_attr
[Tag_CPU_arch
].i
>= TAG_CPU_ARCH_V7
)
6185 switch (globals
->vfp11_fix
)
6187 case BFD_ARM_VFP11_FIX_DEFAULT
:
6188 case BFD_ARM_VFP11_FIX_NONE
:
6189 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
6193 /* Give a warning, but do as the user requests anyway. */
6194 (*_bfd_error_handler
) (_("%B: warning: selected VFP11 erratum "
6195 "workaround is not necessary for target architecture"), obfd
);
6198 else if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_DEFAULT
)
6199 /* For earlier architectures, we might need the workaround, but do not
6200 enable it by default. If users is running with broken hardware, they
6201 must enable the erratum fix explicitly. */
6202 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
6206 enum bfd_arm_vfp11_pipe
6214 /* Return a VFP register number. This is encoded as RX:X for single-precision
6215 registers, or X:RX for double-precision registers, where RX is the group of
6216 four bits in the instruction encoding and X is the single extension bit.
6217 RX and X fields are specified using their lowest (starting) bit. The return
6220 0...31: single-precision registers s0...s31
6221 32...63: double-precision registers d0...d31.
6223 Although X should be zero for VFP11 (encoding d0...d15 only), we might
6224 encounter VFP3 instructions, so we allow the full range for DP registers. */
6227 bfd_arm_vfp11_regno (unsigned int insn
, bfd_boolean is_double
, unsigned int rx
,
6231 return (((insn
>> rx
) & 0xf) | (((insn
>> x
) & 1) << 4)) + 32;
6233 return (((insn
>> rx
) & 0xf) << 1) | ((insn
>> x
) & 1);
6236 /* Set bits in *WMASK according to a register number REG as encoded by
6237 bfd_arm_vfp11_regno(). Ignore d16-d31. */
6240 bfd_arm_vfp11_write_mask (unsigned int *wmask
, unsigned int reg
)
6245 *wmask
|= 3 << ((reg
- 32) * 2);
6248 /* Return TRUE if WMASK overwrites anything in REGS. */
6251 bfd_arm_vfp11_antidependency (unsigned int wmask
, int *regs
, int numregs
)
6255 for (i
= 0; i
< numregs
; i
++)
6257 unsigned int reg
= regs
[i
];
6259 if (reg
< 32 && (wmask
& (1 << reg
)) != 0)
6267 if ((wmask
& (3 << (reg
* 2))) != 0)
6274 /* In this function, we're interested in two things: finding input registers
6275 for VFP data-processing instructions, and finding the set of registers which
6276 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
6277 hold the written set, so FLDM etc. are easy to deal with (we're only
6278 interested in 32 SP registers or 16 dp registers, due to the VFP version
6279 implemented by the chip in question). DP registers are marked by setting
6280 both SP registers in the write mask). */
6282 static enum bfd_arm_vfp11_pipe
6283 bfd_arm_vfp11_insn_decode (unsigned int insn
, unsigned int *destmask
, int *regs
,
6286 enum bfd_arm_vfp11_pipe vpipe
= VFP11_BAD
;
6287 bfd_boolean is_double
= ((insn
& 0xf00) == 0xb00) ? 1 : 0;
6289 if ((insn
& 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6292 unsigned int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
6293 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
6295 pqrs
= ((insn
& 0x00800000) >> 20)
6296 | ((insn
& 0x00300000) >> 19)
6297 | ((insn
& 0x00000040) >> 6);
6301 case 0: /* fmac[sd]. */
6302 case 1: /* fnmac[sd]. */
6303 case 2: /* fmsc[sd]. */
6304 case 3: /* fnmsc[sd]. */
6306 bfd_arm_vfp11_write_mask (destmask
, fd
);
6308 regs
[1] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
6313 case 4: /* fmul[sd]. */
6314 case 5: /* fnmul[sd]. */
6315 case 6: /* fadd[sd]. */
6316 case 7: /* fsub[sd]. */
6320 case 8: /* fdiv[sd]. */
6323 bfd_arm_vfp11_write_mask (destmask
, fd
);
6324 regs
[0] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
6329 case 15: /* extended opcode. */
6331 unsigned int extn
= ((insn
>> 15) & 0x1e)
6332 | ((insn
>> 7) & 1);
6336 case 0: /* fcpy[sd]. */
6337 case 1: /* fabs[sd]. */
6338 case 2: /* fneg[sd]. */
6339 case 8: /* fcmp[sd]. */
6340 case 9: /* fcmpe[sd]. */
6341 case 10: /* fcmpz[sd]. */
6342 case 11: /* fcmpez[sd]. */
6343 case 16: /* fuito[sd]. */
6344 case 17: /* fsito[sd]. */
6345 case 24: /* ftoui[sd]. */
6346 case 25: /* ftouiz[sd]. */
6347 case 26: /* ftosi[sd]. */
6348 case 27: /* ftosiz[sd]. */
6349 /* These instructions will not bounce due to underflow. */
6354 case 3: /* fsqrt[sd]. */
6355 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6356 registers to cause the erratum in previous instructions. */
6357 bfd_arm_vfp11_write_mask (destmask
, fd
);
6361 case 15: /* fcvt{ds,sd}. */
6365 bfd_arm_vfp11_write_mask (destmask
, fd
);
6367 /* Only FCVTSD can underflow. */
6368 if ((insn
& 0x100) != 0)
6387 /* Two-register transfer. */
6388 else if ((insn
& 0x0fe00ed0) == 0x0c400a10)
6390 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
6392 if ((insn
& 0x100000) == 0)
6395 bfd_arm_vfp11_write_mask (destmask
, fm
);
6398 bfd_arm_vfp11_write_mask (destmask
, fm
);
6399 bfd_arm_vfp11_write_mask (destmask
, fm
+ 1);
6405 else if ((insn
& 0x0e100e00) == 0x0c100a00) /* A load insn. */
6407 int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
6408 unsigned int puw
= ((insn
>> 21) & 0x1) | (((insn
>> 23) & 3) << 1);
6412 case 0: /* Two-reg transfer. We should catch these above. */
6415 case 2: /* fldm[sdx]. */
6419 unsigned int i
, offset
= insn
& 0xff;
6424 for (i
= fd
; i
< fd
+ offset
; i
++)
6425 bfd_arm_vfp11_write_mask (destmask
, i
);
6429 case 4: /* fld[sd]. */
6431 bfd_arm_vfp11_write_mask (destmask
, fd
);
6440 /* Single-register transfer. Note L==0. */
6441 else if ((insn
& 0x0f100e10) == 0x0e000a10)
6443 unsigned int opcode
= (insn
>> 21) & 7;
6444 unsigned int fn
= bfd_arm_vfp11_regno (insn
, is_double
, 16, 7);
6448 case 0: /* fmsr/fmdlr. */
6449 case 1: /* fmdhr. */
6450 /* Mark fmdhr and fmdlr as writing to the whole of the DP
6451 destination register. I don't know if this is exactly right,
6452 but it is the conservative choice. */
6453 bfd_arm_vfp11_write_mask (destmask
, fn
);
6467 static int elf32_arm_compare_mapping (const void * a
, const void * b
);
6470 /* Look for potentially-troublesome code sequences which might trigger the
6471 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
6472 (available from ARM) for details of the erratum. A short version is
6473 described in ld.texinfo. */
6476 bfd_elf32_arm_vfp11_erratum_scan (bfd
*abfd
, struct bfd_link_info
*link_info
)
6479 bfd_byte
*contents
= NULL
;
6481 int regs
[3], numregs
= 0;
6482 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
6483 int use_vector
= (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_VECTOR
);
6485 if (globals
== NULL
)
6488 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6489 The states transition as follows:
6491 0 -> 1 (vector) or 0 -> 2 (scalar)
6492 A VFP FMAC-pipeline instruction has been seen. Fill
6493 regs[0]..regs[numregs-1] with its input operands. Remember this
6494 instruction in 'first_fmac'.
6497 Any instruction, except for a VFP instruction which overwrites
6502 A VFP instruction has been seen which overwrites any of regs[*].
6503 We must make a veneer! Reset state to 0 before examining next
6507 If we fail to match anything in state 2, reset to state 0 and reset
6508 the instruction pointer to the instruction after 'first_fmac'.
6510 If the VFP11 vector mode is in use, there must be at least two unrelated
6511 instructions between anti-dependent VFP11 instructions to properly avoid
6512 triggering the erratum, hence the use of the extra state 1. */
6514 /* If we are only performing a partial link do not bother
6515 to construct any glue. */
6516 if (link_info
->relocatable
)
6519 /* Skip if this bfd does not correspond to an ELF image. */
6520 if (! is_arm_elf (abfd
))
6523 /* We should have chosen a fix type by the time we get here. */
6524 BFD_ASSERT (globals
->vfp11_fix
!= BFD_ARM_VFP11_FIX_DEFAULT
);
6526 if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_NONE
)
6529 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6530 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
6533 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6535 unsigned int i
, span
, first_fmac
= 0, veneer_of_insn
= 0;
6536 struct _arm_elf_section_data
*sec_data
;
6538 /* If we don't have executable progbits, we're not interested in this
6539 section. Also skip if section is to be excluded. */
6540 if (elf_section_type (sec
) != SHT_PROGBITS
6541 || (elf_section_flags (sec
) & SHF_EXECINSTR
) == 0
6542 || (sec
->flags
& SEC_EXCLUDE
) != 0
6543 || sec
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
6544 || sec
->output_section
== bfd_abs_section_ptr
6545 || strcmp (sec
->name
, VFP11_ERRATUM_VENEER_SECTION_NAME
) == 0)
6548 sec_data
= elf32_arm_section_data (sec
);
6550 if (sec_data
->mapcount
== 0)
6553 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
6554 contents
= elf_section_data (sec
)->this_hdr
.contents
;
6555 else if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
6558 qsort (sec_data
->map
, sec_data
->mapcount
, sizeof (elf32_arm_section_map
),
6559 elf32_arm_compare_mapping
);
6561 for (span
= 0; span
< sec_data
->mapcount
; span
++)
6563 unsigned int span_start
= sec_data
->map
[span
].vma
;
6564 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
6565 ? sec
->size
: sec_data
->map
[span
+ 1].vma
;
6566 char span_type
= sec_data
->map
[span
].type
;
6568 /* FIXME: Only ARM mode is supported at present. We may need to
6569 support Thumb-2 mode also at some point. */
6570 if (span_type
!= 'a')
6573 for (i
= span_start
; i
< span_end
;)
6575 unsigned int next_i
= i
+ 4;
6576 unsigned int insn
= bfd_big_endian (abfd
)
6577 ? (contents
[i
] << 24)
6578 | (contents
[i
+ 1] << 16)
6579 | (contents
[i
+ 2] << 8)
6581 : (contents
[i
+ 3] << 24)
6582 | (contents
[i
+ 2] << 16)
6583 | (contents
[i
+ 1] << 8)
6585 unsigned int writemask
= 0;
6586 enum bfd_arm_vfp11_pipe vpipe
;
6591 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
, regs
,
6593 /* I'm assuming the VFP11 erratum can trigger with denorm
6594 operands on either the FMAC or the DS pipeline. This might
6595 lead to slightly overenthusiastic veneer insertion. */
6596 if (vpipe
== VFP11_FMAC
|| vpipe
== VFP11_DS
)
6598 state
= use_vector
? 1 : 2;
6600 veneer_of_insn
= insn
;
6606 int other_regs
[3], other_numregs
;
6607 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
6610 if (vpipe
!= VFP11_BAD
6611 && bfd_arm_vfp11_antidependency (writemask
, regs
,
6621 int other_regs
[3], other_numregs
;
6622 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
6625 if (vpipe
!= VFP11_BAD
6626 && bfd_arm_vfp11_antidependency (writemask
, regs
,
6632 next_i
= first_fmac
+ 4;
6638 abort (); /* Should be unreachable. */
6643 elf32_vfp11_erratum_list
*newerr
=(elf32_vfp11_erratum_list
*)
6644 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
6646 elf32_arm_section_data (sec
)->erratumcount
+= 1;
6648 newerr
->u
.b
.vfp_insn
= veneer_of_insn
;
6653 newerr
->type
= VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
;
6660 record_vfp11_erratum_veneer (link_info
, newerr
, abfd
, sec
,
6665 newerr
->next
= sec_data
->erratumlist
;
6666 sec_data
->erratumlist
= newerr
;
6675 if (contents
!= NULL
6676 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6684 if (contents
!= NULL
6685 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6691 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6692 after sections have been laid out, using specially-named symbols. */
6695 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd
*abfd
,
6696 struct bfd_link_info
*link_info
)
6699 struct elf32_arm_link_hash_table
*globals
;
6702 if (link_info
->relocatable
)
6705 /* Skip if this bfd does not correspond to an ELF image. */
6706 if (! is_arm_elf (abfd
))
6709 globals
= elf32_arm_hash_table (link_info
);
6710 if (globals
== NULL
)
6713 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen
6714 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
6716 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6718 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
6719 elf32_vfp11_erratum_list
*errnode
= sec_data
->erratumlist
;
6721 for (; errnode
!= NULL
; errnode
= errnode
->next
)
6723 struct elf_link_hash_entry
*myh
;
6726 switch (errnode
->type
)
6728 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
6729 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
:
6730 /* Find veneer symbol. */
6731 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
6732 errnode
->u
.b
.veneer
->u
.v
.id
);
6734 myh
= elf_link_hash_lookup
6735 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
6738 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
6739 "`%s'"), abfd
, tmp_name
);
6741 vma
= myh
->root
.u
.def
.section
->output_section
->vma
6742 + myh
->root
.u
.def
.section
->output_offset
6743 + myh
->root
.u
.def
.value
;
6745 errnode
->u
.b
.veneer
->vma
= vma
;
6748 case VFP11_ERRATUM_ARM_VENEER
:
6749 case VFP11_ERRATUM_THUMB_VENEER
:
6750 /* Find return location. */
6751 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
6754 myh
= elf_link_hash_lookup
6755 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
6758 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
6759 "`%s'"), abfd
, tmp_name
);
6761 vma
= myh
->root
.u
.def
.section
->output_section
->vma
6762 + myh
->root
.u
.def
.section
->output_offset
6763 + myh
->root
.u
.def
.value
;
6765 errnode
->u
.v
.branch
->vma
= vma
;
6778 /* Set target relocation values needed during linking. */
6781 bfd_elf32_arm_set_target_relocs (struct bfd
*output_bfd
,
6782 struct bfd_link_info
*link_info
,
6784 char * target2_type
,
6787 bfd_arm_vfp11_fix vfp11_fix
,
6788 int no_enum_warn
, int no_wchar_warn
,
6789 int pic_veneer
, int fix_cortex_a8
)
6791 struct elf32_arm_link_hash_table
*globals
;
6793 globals
= elf32_arm_hash_table (link_info
);
6794 if (globals
== NULL
)
6797 globals
->target1_is_rel
= target1_is_rel
;
6798 if (strcmp (target2_type
, "rel") == 0)
6799 globals
->target2_reloc
= R_ARM_REL32
;
6800 else if (strcmp (target2_type
, "abs") == 0)
6801 globals
->target2_reloc
= R_ARM_ABS32
;
6802 else if (strcmp (target2_type
, "got-rel") == 0)
6803 globals
->target2_reloc
= R_ARM_GOT_PREL
;
6806 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6809 globals
->fix_v4bx
= fix_v4bx
;
6810 globals
->use_blx
|= use_blx
;
6811 globals
->vfp11_fix
= vfp11_fix
;
6812 globals
->pic_veneer
= pic_veneer
;
6813 globals
->fix_cortex_a8
= fix_cortex_a8
;
6815 BFD_ASSERT (is_arm_elf (output_bfd
));
6816 elf_arm_tdata (output_bfd
)->no_enum_size_warning
= no_enum_warn
;
6817 elf_arm_tdata (output_bfd
)->no_wchar_size_warning
= no_wchar_warn
;
6820 /* Replace the target offset of a Thumb bl or b.w instruction. */
6823 insert_thumb_branch (bfd
*abfd
, long int offset
, bfd_byte
*insn
)
6829 BFD_ASSERT ((offset
& 1) == 0);
6831 upper
= bfd_get_16 (abfd
, insn
);
6832 lower
= bfd_get_16 (abfd
, insn
+ 2);
6833 reloc_sign
= (offset
< 0) ? 1 : 0;
6834 upper
= (upper
& ~(bfd_vma
) 0x7ff)
6835 | ((offset
>> 12) & 0x3ff)
6836 | (reloc_sign
<< 10);
6837 lower
= (lower
& ~(bfd_vma
) 0x2fff)
6838 | (((!((offset
>> 23) & 1)) ^ reloc_sign
) << 13)
6839 | (((!((offset
>> 22) & 1)) ^ reloc_sign
) << 11)
6840 | ((offset
>> 1) & 0x7ff);
6841 bfd_put_16 (abfd
, upper
, insn
);
6842 bfd_put_16 (abfd
, lower
, insn
+ 2);
6845 /* Thumb code calling an ARM function. */
6848 elf32_thumb_to_arm_stub (struct bfd_link_info
* info
,
6852 asection
* input_section
,
6853 bfd_byte
* hit_data
,
6856 bfd_signed_vma addend
,
6858 char **error_message
)
6862 long int ret_offset
;
6863 struct elf_link_hash_entry
* myh
;
6864 struct elf32_arm_link_hash_table
* globals
;
6866 myh
= find_thumb_glue (info
, name
, error_message
);
6870 globals
= elf32_arm_hash_table (info
);
6871 BFD_ASSERT (globals
!= NULL
);
6872 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6874 my_offset
= myh
->root
.u
.def
.value
;
6876 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6877 THUMB2ARM_GLUE_SECTION_NAME
);
6879 BFD_ASSERT (s
!= NULL
);
6880 BFD_ASSERT (s
->contents
!= NULL
);
6881 BFD_ASSERT (s
->output_section
!= NULL
);
6883 if ((my_offset
& 0x01) == 0x01)
6886 && sym_sec
->owner
!= NULL
6887 && !INTERWORK_FLAG (sym_sec
->owner
))
6889 (*_bfd_error_handler
)
6890 (_("%B(%s): warning: interworking not enabled.\n"
6891 " first occurrence: %B: thumb call to arm"),
6892 sym_sec
->owner
, input_bfd
, name
);
6898 myh
->root
.u
.def
.value
= my_offset
;
6900 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a1_bx_pc_insn
,
6901 s
->contents
+ my_offset
);
6903 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a2_noop_insn
,
6904 s
->contents
+ my_offset
+ 2);
6907 /* Address of destination of the stub. */
6908 ((bfd_signed_vma
) val
)
6910 /* Offset from the start of the current section
6911 to the start of the stubs. */
6913 /* Offset of the start of this stub from the start of the stubs. */
6915 /* Address of the start of the current section. */
6916 + s
->output_section
->vma
)
6917 /* The branch instruction is 4 bytes into the stub. */
6919 /* ARM branches work from the pc of the instruction + 8. */
6922 put_arm_insn (globals
, output_bfd
,
6923 (bfd_vma
) t2a3_b_insn
| ((ret_offset
>> 2) & 0x00FFFFFF),
6924 s
->contents
+ my_offset
+ 4);
6927 BFD_ASSERT (my_offset
<= globals
->thumb_glue_size
);
6929 /* Now go back and fix up the original BL insn to point to here. */
6931 /* Address of where the stub is located. */
6932 (s
->output_section
->vma
+ s
->output_offset
+ my_offset
)
6933 /* Address of where the BL is located. */
6934 - (input_section
->output_section
->vma
+ input_section
->output_offset
6936 /* Addend in the relocation. */
6938 /* Biassing for PC-relative addressing. */
6941 insert_thumb_branch (input_bfd
, ret_offset
, hit_data
- input_section
->vma
);
6946 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
6948 static struct elf_link_hash_entry
*
6949 elf32_arm_create_thumb_stub (struct bfd_link_info
* info
,
6956 char ** error_message
)
6959 long int ret_offset
;
6960 struct elf_link_hash_entry
* myh
;
6961 struct elf32_arm_link_hash_table
* globals
;
6963 myh
= find_arm_glue (info
, name
, error_message
);
6967 globals
= elf32_arm_hash_table (info
);
6968 BFD_ASSERT (globals
!= NULL
);
6969 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6971 my_offset
= myh
->root
.u
.def
.value
;
6973 if ((my_offset
& 0x01) == 0x01)
6976 && sym_sec
->owner
!= NULL
6977 && !INTERWORK_FLAG (sym_sec
->owner
))
6979 (*_bfd_error_handler
)
6980 (_("%B(%s): warning: interworking not enabled.\n"
6981 " first occurrence: %B: arm call to thumb"),
6982 sym_sec
->owner
, input_bfd
, name
);
6986 myh
->root
.u
.def
.value
= my_offset
;
6988 if (info
->shared
|| globals
->root
.is_relocatable_executable
6989 || globals
->pic_veneer
)
6991 /* For relocatable objects we can't use absolute addresses,
6992 so construct the address from a relative offset. */
6993 /* TODO: If the offset is small it's probably worth
6994 constructing the address with adds. */
6995 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1p_ldr_insn
,
6996 s
->contents
+ my_offset
);
6997 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2p_add_pc_insn
,
6998 s
->contents
+ my_offset
+ 4);
6999 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t3p_bx_r12_insn
,
7000 s
->contents
+ my_offset
+ 8);
7001 /* Adjust the offset by 4 for the position of the add,
7002 and 8 for the pipeline offset. */
7003 ret_offset
= (val
- (s
->output_offset
7004 + s
->output_section
->vma
7007 bfd_put_32 (output_bfd
, ret_offset
,
7008 s
->contents
+ my_offset
+ 12);
7010 else if (globals
->use_blx
)
7012 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1v5_ldr_insn
,
7013 s
->contents
+ my_offset
);
7015 /* It's a thumb address. Add the low order bit. */
7016 bfd_put_32 (output_bfd
, val
| a2t2v5_func_addr_insn
,
7017 s
->contents
+ my_offset
+ 4);
7021 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1_ldr_insn
,
7022 s
->contents
+ my_offset
);
7024 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2_bx_r12_insn
,
7025 s
->contents
+ my_offset
+ 4);
7027 /* It's a thumb address. Add the low order bit. */
7028 bfd_put_32 (output_bfd
, val
| a2t3_func_addr_insn
,
7029 s
->contents
+ my_offset
+ 8);
7035 BFD_ASSERT (my_offset
<= globals
->arm_glue_size
);
7040 /* Arm code calling a Thumb function. */
7043 elf32_arm_to_thumb_stub (struct bfd_link_info
* info
,
7047 asection
* input_section
,
7048 bfd_byte
* hit_data
,
7051 bfd_signed_vma addend
,
7053 char **error_message
)
7055 unsigned long int tmp
;
7058 long int ret_offset
;
7059 struct elf_link_hash_entry
* myh
;
7060 struct elf32_arm_link_hash_table
* globals
;
7062 globals
= elf32_arm_hash_table (info
);
7063 BFD_ASSERT (globals
!= NULL
);
7064 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
7066 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
7067 ARM2THUMB_GLUE_SECTION_NAME
);
7068 BFD_ASSERT (s
!= NULL
);
7069 BFD_ASSERT (s
->contents
!= NULL
);
7070 BFD_ASSERT (s
->output_section
!= NULL
);
7072 myh
= elf32_arm_create_thumb_stub (info
, name
, input_bfd
, output_bfd
,
7073 sym_sec
, val
, s
, error_message
);
7077 my_offset
= myh
->root
.u
.def
.value
;
7078 tmp
= bfd_get_32 (input_bfd
, hit_data
);
7079 tmp
= tmp
& 0xFF000000;
7081 /* Somehow these are both 4 too far, so subtract 8. */
7082 ret_offset
= (s
->output_offset
7084 + s
->output_section
->vma
7085 - (input_section
->output_offset
7086 + input_section
->output_section
->vma
7090 tmp
= tmp
| ((ret_offset
>> 2) & 0x00FFFFFF);
7092 bfd_put_32 (output_bfd
, (bfd_vma
) tmp
, hit_data
- input_section
->vma
);
7097 /* Populate Arm stub for an exported Thumb function. */
7100 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry
*h
, void * inf
)
7102 struct bfd_link_info
* info
= (struct bfd_link_info
*) inf
;
7104 struct elf_link_hash_entry
* myh
;
7105 struct elf32_arm_link_hash_entry
*eh
;
7106 struct elf32_arm_link_hash_table
* globals
;
7109 char *error_message
;
7111 eh
= elf32_arm_hash_entry (h
);
7112 /* Allocate stubs for exported Thumb functions on v4t. */
7113 if (eh
->export_glue
== NULL
)
7116 globals
= elf32_arm_hash_table (info
);
7117 BFD_ASSERT (globals
!= NULL
);
7118 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
7120 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
7121 ARM2THUMB_GLUE_SECTION_NAME
);
7122 BFD_ASSERT (s
!= NULL
);
7123 BFD_ASSERT (s
->contents
!= NULL
);
7124 BFD_ASSERT (s
->output_section
!= NULL
);
7126 sec
= eh
->export_glue
->root
.u
.def
.section
;
7128 BFD_ASSERT (sec
->output_section
!= NULL
);
7130 val
= eh
->export_glue
->root
.u
.def
.value
+ sec
->output_offset
7131 + sec
->output_section
->vma
;
7133 myh
= elf32_arm_create_thumb_stub (info
, h
->root
.root
.string
,
7134 h
->root
.u
.def
.section
->owner
,
7135 globals
->obfd
, sec
, val
, s
,
7141 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
7144 elf32_arm_bx_glue (struct bfd_link_info
* info
, int reg
)
7149 struct elf32_arm_link_hash_table
*globals
;
7151 globals
= elf32_arm_hash_table (info
);
7152 BFD_ASSERT (globals
!= NULL
);
7153 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
7155 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
7156 ARM_BX_GLUE_SECTION_NAME
);
7157 BFD_ASSERT (s
!= NULL
);
7158 BFD_ASSERT (s
->contents
!= NULL
);
7159 BFD_ASSERT (s
->output_section
!= NULL
);
7161 BFD_ASSERT (globals
->bx_glue_offset
[reg
] & 2);
7163 glue_addr
= globals
->bx_glue_offset
[reg
] & ~(bfd_vma
)3;
7165 if ((globals
->bx_glue_offset
[reg
] & 1) == 0)
7167 p
= s
->contents
+ glue_addr
;
7168 bfd_put_32 (globals
->obfd
, armbx1_tst_insn
+ (reg
<< 16), p
);
7169 bfd_put_32 (globals
->obfd
, armbx2_moveq_insn
+ reg
, p
+ 4);
7170 bfd_put_32 (globals
->obfd
, armbx3_bx_insn
+ reg
, p
+ 8);
7171 globals
->bx_glue_offset
[reg
] |= 1;
7174 return glue_addr
+ s
->output_section
->vma
+ s
->output_offset
;
7177 /* Generate Arm stubs for exported Thumb symbols. */
7179 elf32_arm_begin_write_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
7180 struct bfd_link_info
*link_info
)
7182 struct elf32_arm_link_hash_table
* globals
;
7184 if (link_info
== NULL
)
7185 /* Ignore this if we are not called by the ELF backend linker. */
7188 globals
= elf32_arm_hash_table (link_info
);
7189 if (globals
== NULL
)
7192 /* If blx is available then exported Thumb symbols are OK and there is
7194 if (globals
->use_blx
)
7197 elf_link_hash_traverse (&globals
->root
, elf32_arm_to_thumb_export_stub
,
7201 /* Reserve space for COUNT dynamic relocations in relocation selection
7205 elf32_arm_allocate_dynrelocs (struct bfd_link_info
*info
, asection
*sreloc
,
7206 bfd_size_type count
)
7208 struct elf32_arm_link_hash_table
*htab
;
7210 htab
= elf32_arm_hash_table (info
);
7211 BFD_ASSERT (htab
->root
.dynamic_sections_created
);
7214 sreloc
->size
+= RELOC_SIZE (htab
) * count
;
7217 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
7218 dynamic, the relocations should go in SRELOC, otherwise they should
7219 go in the special .rel.iplt section. */
7222 elf32_arm_allocate_irelocs (struct bfd_link_info
*info
, asection
*sreloc
,
7223 bfd_size_type count
)
7225 struct elf32_arm_link_hash_table
*htab
;
7227 htab
= elf32_arm_hash_table (info
);
7228 if (!htab
->root
.dynamic_sections_created
)
7229 htab
->root
.irelplt
->size
+= RELOC_SIZE (htab
) * count
;
7232 BFD_ASSERT (sreloc
!= NULL
);
7233 sreloc
->size
+= RELOC_SIZE (htab
) * count
;
7237 /* Add relocation REL to the end of relocation section SRELOC. */
7240 elf32_arm_add_dynreloc (bfd
*output_bfd
, struct bfd_link_info
*info
,
7241 asection
*sreloc
, Elf_Internal_Rela
*rel
)
7244 struct elf32_arm_link_hash_table
*htab
;
7246 htab
= elf32_arm_hash_table (info
);
7247 if (!htab
->root
.dynamic_sections_created
7248 && ELF32_R_TYPE (rel
->r_info
) == R_ARM_IRELATIVE
)
7249 sreloc
= htab
->root
.irelplt
;
7252 loc
= sreloc
->contents
;
7253 loc
+= sreloc
->reloc_count
++ * RELOC_SIZE (htab
);
7254 if (sreloc
->reloc_count
* RELOC_SIZE (htab
) > sreloc
->size
)
7256 SWAP_RELOC_OUT (htab
) (output_bfd
, rel
, loc
);
7259 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
7260 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
7264 elf32_arm_allocate_plt_entry (struct bfd_link_info
*info
,
7265 bfd_boolean is_iplt_entry
,
7266 union gotplt_union
*root_plt
,
7267 struct arm_plt_info
*arm_plt
)
7269 struct elf32_arm_link_hash_table
*htab
;
7273 htab
= elf32_arm_hash_table (info
);
7277 splt
= htab
->root
.iplt
;
7278 sgotplt
= htab
->root
.igotplt
;
7280 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
7281 elf32_arm_allocate_irelocs (info
, htab
->root
.irelplt
, 1);
7285 splt
= htab
->root
.splt
;
7286 sgotplt
= htab
->root
.sgotplt
;
7288 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
7289 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelplt
, 1);
7291 /* If this is the first .plt entry, make room for the special
7293 if (splt
->size
== 0)
7294 splt
->size
+= htab
->plt_header_size
;
7297 /* Allocate the PLT entry itself, including any leading Thumb stub. */
7298 if (elf32_arm_plt_needs_thumb_stub_p (info
, arm_plt
))
7299 splt
->size
+= PLT_THUMB_STUB_SIZE
;
7300 root_plt
->offset
= splt
->size
;
7301 splt
->size
+= htab
->plt_entry_size
;
7303 if (!htab
->symbian_p
)
7305 /* We also need to make an entry in the .got.plt section, which
7306 will be placed in the .got section by the linker script. */
7307 arm_plt
->got_offset
= sgotplt
->size
- 8 * htab
->num_tls_desc
;
7312 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
7313 the entry lives in .iplt and resolves to (*SYM_VALUE)().
7314 Otherwise, DYNINDX is the index of the symbol in the dynamic
7315 symbol table and SYM_VALUE is undefined.
7317 ROOT_PLT points to the offset of the PLT entry from the start of its
7318 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
7319 bookkeeping information. */
7322 elf32_arm_populate_plt_entry (bfd
*output_bfd
, struct bfd_link_info
*info
,
7323 union gotplt_union
*root_plt
,
7324 struct arm_plt_info
*arm_plt
,
7325 int dynindx
, bfd_vma sym_value
)
7327 struct elf32_arm_link_hash_table
*htab
;
7333 Elf_Internal_Rela rel
;
7334 bfd_vma plt_header_size
;
7335 bfd_vma got_header_size
;
7337 htab
= elf32_arm_hash_table (info
);
7339 /* Pick the appropriate sections and sizes. */
7342 splt
= htab
->root
.iplt
;
7343 sgot
= htab
->root
.igotplt
;
7344 srel
= htab
->root
.irelplt
;
7346 /* There are no reserved entries in .igot.plt, and no special
7347 first entry in .iplt. */
7348 got_header_size
= 0;
7349 plt_header_size
= 0;
7353 splt
= htab
->root
.splt
;
7354 sgot
= htab
->root
.sgotplt
;
7355 srel
= htab
->root
.srelplt
;
7357 got_header_size
= get_elf_backend_data (output_bfd
)->got_header_size
;
7358 plt_header_size
= htab
->plt_header_size
;
7360 BFD_ASSERT (splt
!= NULL
&& srel
!= NULL
);
7362 /* Fill in the entry in the procedure linkage table. */
7363 if (htab
->symbian_p
)
7365 BFD_ASSERT (dynindx
>= 0);
7366 put_arm_insn (htab
, output_bfd
,
7367 elf32_arm_symbian_plt_entry
[0],
7368 splt
->contents
+ root_plt
->offset
);
7369 bfd_put_32 (output_bfd
,
7370 elf32_arm_symbian_plt_entry
[1],
7371 splt
->contents
+ root_plt
->offset
+ 4);
7373 /* Fill in the entry in the .rel.plt section. */
7374 rel
.r_offset
= (splt
->output_section
->vma
7375 + splt
->output_offset
7376 + root_plt
->offset
+ 4);
7377 rel
.r_info
= ELF32_R_INFO (dynindx
, R_ARM_GLOB_DAT
);
7379 /* Get the index in the procedure linkage table which
7380 corresponds to this symbol. This is the index of this symbol
7381 in all the symbols for which we are making plt entries. The
7382 first entry in the procedure linkage table is reserved. */
7383 plt_index
= ((root_plt
->offset
- plt_header_size
)
7384 / htab
->plt_entry_size
);
7388 bfd_vma got_offset
, got_address
, plt_address
;
7389 bfd_vma got_displacement
, initial_got_entry
;
7392 BFD_ASSERT (sgot
!= NULL
);
7394 /* Get the offset into the .(i)got.plt table of the entry that
7395 corresponds to this function. */
7396 got_offset
= (arm_plt
->got_offset
& -2);
7398 /* Get the index in the procedure linkage table which
7399 corresponds to this symbol. This is the index of this symbol
7400 in all the symbols for which we are making plt entries.
7401 After the reserved .got.plt entries, all symbols appear in
7402 the same order as in .plt. */
7403 plt_index
= (got_offset
- got_header_size
) / 4;
7405 /* Calculate the address of the GOT entry. */
7406 got_address
= (sgot
->output_section
->vma
7407 + sgot
->output_offset
7410 /* ...and the address of the PLT entry. */
7411 plt_address
= (splt
->output_section
->vma
7412 + splt
->output_offset
7413 + root_plt
->offset
);
7415 ptr
= splt
->contents
+ root_plt
->offset
;
7416 if (htab
->vxworks_p
&& info
->shared
)
7421 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
7423 val
= elf32_arm_vxworks_shared_plt_entry
[i
];
7425 val
|= got_address
- sgot
->output_section
->vma
;
7427 val
|= plt_index
* RELOC_SIZE (htab
);
7428 if (i
== 2 || i
== 5)
7429 bfd_put_32 (output_bfd
, val
, ptr
);
7431 put_arm_insn (htab
, output_bfd
, val
, ptr
);
7434 else if (htab
->vxworks_p
)
7439 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
7441 val
= elf32_arm_vxworks_exec_plt_entry
[i
];
7445 val
|= 0xffffff & -((root_plt
->offset
+ i
* 4 + 8) >> 2);
7447 val
|= plt_index
* RELOC_SIZE (htab
);
7448 if (i
== 2 || i
== 5)
7449 bfd_put_32 (output_bfd
, val
, ptr
);
7451 put_arm_insn (htab
, output_bfd
, val
, ptr
);
7454 loc
= (htab
->srelplt2
->contents
7455 + (plt_index
* 2 + 1) * RELOC_SIZE (htab
));
7457 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
7458 referencing the GOT for this PLT entry. */
7459 rel
.r_offset
= plt_address
+ 8;
7460 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
7461 rel
.r_addend
= got_offset
;
7462 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
7463 loc
+= RELOC_SIZE (htab
);
7465 /* Create the R_ARM_ABS32 relocation referencing the
7466 beginning of the PLT for this GOT entry. */
7467 rel
.r_offset
= got_address
;
7468 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
7470 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
7474 /* Calculate the displacement between the PLT slot and the
7475 entry in the GOT. The eight-byte offset accounts for the
7476 value produced by adding to pc in the first instruction
7478 got_displacement
= got_address
- (plt_address
+ 8);
7480 BFD_ASSERT ((got_displacement
& 0xf0000000) == 0);
7482 if (elf32_arm_plt_needs_thumb_stub_p (info
, arm_plt
))
7484 put_thumb_insn (htab
, output_bfd
,
7485 elf32_arm_plt_thumb_stub
[0], ptr
- 4);
7486 put_thumb_insn (htab
, output_bfd
,
7487 elf32_arm_plt_thumb_stub
[1], ptr
- 2);
7490 put_arm_insn (htab
, output_bfd
,
7491 elf32_arm_plt_entry
[0]
7492 | ((got_displacement
& 0x0ff00000) >> 20),
7494 put_arm_insn (htab
, output_bfd
,
7495 elf32_arm_plt_entry
[1]
7496 | ((got_displacement
& 0x000ff000) >> 12),
7498 put_arm_insn (htab
, output_bfd
,
7499 elf32_arm_plt_entry
[2]
7500 | (got_displacement
& 0x00000fff),
7502 #ifdef FOUR_WORD_PLT
7503 bfd_put_32 (output_bfd
, elf32_arm_plt_entry
[3], ptr
+ 12);
7507 /* Fill in the entry in the .rel(a).(i)plt section. */
7508 rel
.r_offset
= got_address
;
7512 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
7513 The dynamic linker or static executable then calls SYM_VALUE
7514 to determine the correct run-time value of the .igot.plt entry. */
7515 rel
.r_info
= ELF32_R_INFO (0, R_ARM_IRELATIVE
);
7516 initial_got_entry
= sym_value
;
7520 rel
.r_info
= ELF32_R_INFO (dynindx
, R_ARM_JUMP_SLOT
);
7521 initial_got_entry
= (splt
->output_section
->vma
7522 + splt
->output_offset
);
7525 /* Fill in the entry in the global offset table. */
7526 bfd_put_32 (output_bfd
, initial_got_entry
,
7527 sgot
->contents
+ got_offset
);
7530 loc
= srel
->contents
+ plt_index
* RELOC_SIZE (htab
);
7531 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
7534 /* Some relocations map to different relocations depending on the
7535 target. Return the real relocation. */
7538 arm_real_reloc_type (struct elf32_arm_link_hash_table
* globals
,
7544 if (globals
->target1_is_rel
)
7550 return globals
->target2_reloc
;
7557 /* Return the base VMA address which should be subtracted from real addresses
7558 when resolving @dtpoff relocation.
7559 This is PT_TLS segment p_vaddr. */
7562 dtpoff_base (struct bfd_link_info
*info
)
7564 /* If tls_sec is NULL, we should have signalled an error already. */
7565 if (elf_hash_table (info
)->tls_sec
== NULL
)
7567 return elf_hash_table (info
)->tls_sec
->vma
;
7570 /* Return the relocation value for @tpoff relocation
7571 if STT_TLS virtual address is ADDRESS. */
7574 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
7576 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
7579 /* If tls_sec is NULL, we should have signalled an error already. */
7580 if (htab
->tls_sec
== NULL
)
7582 base
= align_power ((bfd_vma
) TCB_SIZE
, htab
->tls_sec
->alignment_power
);
7583 return address
- htab
->tls_sec
->vma
+ base
;
7586 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
7587 VALUE is the relocation value. */
7589 static bfd_reloc_status_type
7590 elf32_arm_abs12_reloc (bfd
*abfd
, void *data
, bfd_vma value
)
7593 return bfd_reloc_overflow
;
7595 value
|= bfd_get_32 (abfd
, data
) & 0xfffff000;
7596 bfd_put_32 (abfd
, value
, data
);
7597 return bfd_reloc_ok
;
7600 /* Handle TLS relaxations. Relaxing is possible for symbols that use
7601 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
7602 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
7604 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
7605 is to then call final_link_relocate. Return other values in the
7608 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
7609 the pre-relaxed code. It would be nice if the relocs were updated
7610 to match the optimization. */
7612 static bfd_reloc_status_type
7613 elf32_arm_tls_relax (struct elf32_arm_link_hash_table
*globals
,
7614 bfd
*input_bfd
, asection
*input_sec
, bfd_byte
*contents
,
7615 Elf_Internal_Rela
*rel
, unsigned long is_local
)
7619 switch (ELF32_R_TYPE (rel
->r_info
))
7622 return bfd_reloc_notsupported
;
7624 case R_ARM_TLS_GOTDESC
:
7629 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
7631 insn
-= 5; /* THUMB */
7633 insn
-= 8; /* ARM */
7635 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
);
7636 return bfd_reloc_continue
;
7638 case R_ARM_THM_TLS_DESCSEQ
:
7640 insn
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
);
7641 if ((insn
& 0xff78) == 0x4478) /* add rx, pc */
7645 bfd_put_16 (input_bfd
, 0x46c0, contents
+ rel
->r_offset
);
7647 else if ((insn
& 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
7651 bfd_put_16 (input_bfd
, 0x46c0, contents
+ rel
->r_offset
);
7654 bfd_put_16 (input_bfd
, insn
& 0xf83f, contents
+ rel
->r_offset
);
7656 else if ((insn
& 0xff87) == 0x4780) /* blx rx */
7660 bfd_put_16 (input_bfd
, 0x46c0, contents
+ rel
->r_offset
);
7663 bfd_put_16 (input_bfd
, 0x4600 | (insn
& 0x78),
7664 contents
+ rel
->r_offset
);
7668 if ((insn
& 0xf000) == 0xf000 || (insn
& 0xf800) == 0xe800)
7669 /* It's a 32 bit instruction, fetch the rest of it for
7670 error generation. */
7672 | bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
+ 2);
7673 (*_bfd_error_handler
)
7674 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
7675 input_bfd
, input_sec
, (unsigned long)rel
->r_offset
, insn
);
7676 return bfd_reloc_notsupported
;
7680 case R_ARM_TLS_DESCSEQ
:
7682 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
7683 if ((insn
& 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
7687 bfd_put_32 (input_bfd
, 0xe1a00000 | (insn
& 0xffff),
7688 contents
+ rel
->r_offset
);
7690 else if ((insn
& 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
7694 bfd_put_32 (input_bfd
, 0xe1a00000, contents
+ rel
->r_offset
);
7697 bfd_put_32 (input_bfd
, insn
& 0xfffff000,
7698 contents
+ rel
->r_offset
);
7700 else if ((insn
& 0xfffffff0) == 0xe12fff30) /* blx rx */
7704 bfd_put_32 (input_bfd
, 0xe1a00000, contents
+ rel
->r_offset
);
7707 bfd_put_32 (input_bfd
, 0xe1a00000 | (insn
& 0xf),
7708 contents
+ rel
->r_offset
);
7712 (*_bfd_error_handler
)
7713 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
7714 input_bfd
, input_sec
, (unsigned long)rel
->r_offset
, insn
);
7715 return bfd_reloc_notsupported
;
7719 case R_ARM_TLS_CALL
:
7720 /* GD->IE relaxation, turn the instruction into 'nop' or
7721 'ldr r0, [pc,r0]' */
7722 insn
= is_local
? 0xe1a00000 : 0xe79f0000;
7723 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
);
7726 case R_ARM_THM_TLS_CALL
:
7727 /* GD->IE relaxation */
7729 /* add r0,pc; ldr r0, [r0] */
7731 else if (arch_has_thumb2_nop (globals
))
7738 bfd_put_16 (input_bfd
, insn
>> 16, contents
+ rel
->r_offset
);
7739 bfd_put_16 (input_bfd
, insn
& 0xffff, contents
+ rel
->r_offset
+ 2);
7742 return bfd_reloc_ok
;
7745 /* For a given value of n, calculate the value of G_n as required to
7746 deal with group relocations. We return it in the form of an
7747 encoded constant-and-rotation, together with the final residual. If n is
7748 specified as less than zero, then final_residual is filled with the
7749 input value and no further action is performed. */
7752 calculate_group_reloc_mask (bfd_vma value
, int n
, bfd_vma
*final_residual
)
7756 bfd_vma encoded_g_n
= 0;
7757 bfd_vma residual
= value
; /* Also known as Y_n. */
7759 for (current_n
= 0; current_n
<= n
; current_n
++)
7763 /* Calculate which part of the value to mask. */
7770 /* Determine the most significant bit in the residual and
7771 align the resulting value to a 2-bit boundary. */
7772 for (msb
= 30; msb
>= 0; msb
-= 2)
7773 if (residual
& (3 << msb
))
7776 /* The desired shift is now (msb - 6), or zero, whichever
7783 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
7784 g_n
= residual
& (0xff << shift
);
7785 encoded_g_n
= (g_n
>> shift
)
7786 | ((g_n
<= 0xff ? 0 : (32 - shift
) / 2) << 8);
7788 /* Calculate the residual for the next time around. */
7792 *final_residual
= residual
;
7797 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
7798 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
7801 identify_add_or_sub (bfd_vma insn
)
7803 int opcode
= insn
& 0x1e00000;
7805 if (opcode
== 1 << 23) /* ADD */
7808 if (opcode
== 1 << 22) /* SUB */
7814 /* Perform a relocation as part of a final link. */
7816 static bfd_reloc_status_type
7817 elf32_arm_final_link_relocate (reloc_howto_type
* howto
,
7820 asection
* input_section
,
7821 bfd_byte
* contents
,
7822 Elf_Internal_Rela
* rel
,
7824 struct bfd_link_info
* info
,
7826 const char * sym_name
,
7827 unsigned char st_type
,
7828 enum arm_st_branch_type branch_type
,
7829 struct elf_link_hash_entry
* h
,
7830 bfd_boolean
* unresolved_reloc_p
,
7831 char ** error_message
)
7833 unsigned long r_type
= howto
->type
;
7834 unsigned long r_symndx
;
7835 bfd_byte
* hit_data
= contents
+ rel
->r_offset
;
7836 bfd_vma
* local_got_offsets
;
7837 bfd_vma
* local_tlsdesc_gotents
;
7840 asection
* sreloc
= NULL
;
7843 bfd_signed_vma signed_addend
;
7844 unsigned char dynreloc_st_type
;
7845 bfd_vma dynreloc_value
;
7846 struct elf32_arm_link_hash_table
* globals
;
7847 struct elf32_arm_link_hash_entry
*eh
;
7848 union gotplt_union
*root_plt
;
7849 struct arm_plt_info
*arm_plt
;
7851 bfd_vma gotplt_offset
;
7852 bfd_boolean has_iplt_entry
;
7854 globals
= elf32_arm_hash_table (info
);
7855 if (globals
== NULL
)
7856 return bfd_reloc_notsupported
;
7858 BFD_ASSERT (is_arm_elf (input_bfd
));
7860 /* Some relocation types map to different relocations depending on the
7861 target. We pick the right one here. */
7862 r_type
= arm_real_reloc_type (globals
, r_type
);
7864 /* It is possible to have linker relaxations on some TLS access
7865 models. Update our information here. */
7866 r_type
= elf32_arm_tls_transition (info
, r_type
, h
);
7868 if (r_type
!= howto
->type
)
7869 howto
= elf32_arm_howto_from_type (r_type
);
7871 /* If the start address has been set, then set the EF_ARM_HASENTRY
7872 flag. Setting this more than once is redundant, but the cost is
7873 not too high, and it keeps the code simple.
7875 The test is done here, rather than somewhere else, because the
7876 start address is only set just before the final link commences.
7878 Note - if the user deliberately sets a start address of 0, the
7879 flag will not be set. */
7880 if (bfd_get_start_address (output_bfd
) != 0)
7881 elf_elfheader (output_bfd
)->e_flags
|= EF_ARM_HASENTRY
;
7883 eh
= (struct elf32_arm_link_hash_entry
*) h
;
7884 sgot
= globals
->root
.sgot
;
7885 local_got_offsets
= elf_local_got_offsets (input_bfd
);
7886 local_tlsdesc_gotents
= elf32_arm_local_tlsdesc_gotent (input_bfd
);
7888 if (globals
->root
.dynamic_sections_created
)
7889 srelgot
= globals
->root
.srelgot
;
7893 r_symndx
= ELF32_R_SYM (rel
->r_info
);
7895 if (globals
->use_rel
)
7897 addend
= bfd_get_32 (input_bfd
, hit_data
) & howto
->src_mask
;
7899 if (addend
& ((howto
->src_mask
+ 1) >> 1))
7902 signed_addend
&= ~ howto
->src_mask
;
7903 signed_addend
|= addend
;
7906 signed_addend
= addend
;
7909 addend
= signed_addend
= rel
->r_addend
;
7911 /* Record the symbol information that should be used in dynamic
7913 dynreloc_st_type
= st_type
;
7914 dynreloc_value
= value
;
7915 if (branch_type
== ST_BRANCH_TO_THUMB
)
7916 dynreloc_value
|= 1;
7918 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
7919 VALUE appropriately for relocations that we resolve at link time. */
7920 has_iplt_entry
= FALSE
;
7921 if (elf32_arm_get_plt_info (input_bfd
, eh
, r_symndx
, &root_plt
, &arm_plt
)
7922 && root_plt
->offset
!= (bfd_vma
) -1)
7924 plt_offset
= root_plt
->offset
;
7925 gotplt_offset
= arm_plt
->got_offset
;
7927 if (h
== NULL
|| eh
->is_iplt
)
7929 has_iplt_entry
= TRUE
;
7930 splt
= globals
->root
.iplt
;
7932 /* Populate .iplt entries here, because not all of them will
7933 be seen by finish_dynamic_symbol. The lower bit is set if
7934 we have already populated the entry. */
7939 elf32_arm_populate_plt_entry (output_bfd
, info
, root_plt
, arm_plt
,
7940 -1, dynreloc_value
);
7941 root_plt
->offset
|= 1;
7944 /* Static relocations always resolve to the .iplt entry. */
7946 value
= (splt
->output_section
->vma
7947 + splt
->output_offset
7949 branch_type
= ST_BRANCH_TO_ARM
;
7951 /* If there are non-call relocations that resolve to the .iplt
7952 entry, then all dynamic ones must too. */
7953 if (arm_plt
->noncall_refcount
!= 0)
7955 dynreloc_st_type
= st_type
;
7956 dynreloc_value
= value
;
7960 /* We populate the .plt entry in finish_dynamic_symbol. */
7961 splt
= globals
->root
.splt
;
7966 plt_offset
= (bfd_vma
) -1;
7967 gotplt_offset
= (bfd_vma
) -1;
7973 /* We don't need to find a value for this symbol. It's just a
7975 *unresolved_reloc_p
= FALSE
;
7976 return bfd_reloc_ok
;
7979 if (!globals
->vxworks_p
)
7980 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
7984 case R_ARM_ABS32_NOI
:
7986 case R_ARM_REL32_NOI
:
7992 /* Handle relocations which should use the PLT entry. ABS32/REL32
7993 will use the symbol's value, which may point to a PLT entry, but we
7994 don't need to handle that here. If we created a PLT entry, all
7995 branches in this object should go to it, except if the PLT is too
7996 far away, in which case a long branch stub should be inserted. */
7997 if ((r_type
!= R_ARM_ABS32
&& r_type
!= R_ARM_REL32
7998 && r_type
!= R_ARM_ABS32_NOI
&& r_type
!= R_ARM_REL32_NOI
7999 && r_type
!= R_ARM_CALL
8000 && r_type
!= R_ARM_JUMP24
8001 && r_type
!= R_ARM_PLT32
)
8002 && plt_offset
!= (bfd_vma
) -1)
8004 /* If we've created a .plt section, and assigned a PLT entry
8005 to this function, it must either be a STT_GNU_IFUNC reference
8006 or not be known to bind locally. In other cases, we should
8007 have cleared the PLT entry by now. */
8008 BFD_ASSERT (has_iplt_entry
|| !SYMBOL_CALLS_LOCAL (info
, h
));
8010 value
= (splt
->output_section
->vma
8011 + splt
->output_offset
8013 *unresolved_reloc_p
= FALSE
;
8014 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8015 contents
, rel
->r_offset
, value
,
8019 /* When generating a shared object or relocatable executable, these
8020 relocations are copied into the output file to be resolved at
8022 if ((info
->shared
|| globals
->root
.is_relocatable_executable
)
8023 && (input_section
->flags
& SEC_ALLOC
)
8024 && !(globals
->vxworks_p
8025 && strcmp (input_section
->output_section
->name
,
8027 && ((r_type
!= R_ARM_REL32
&& r_type
!= R_ARM_REL32_NOI
)
8028 || !SYMBOL_CALLS_LOCAL (info
, h
))
8029 && (!strstr (input_section
->name
, STUB_SUFFIX
))
8031 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8032 || h
->root
.type
!= bfd_link_hash_undefweak
)
8033 && r_type
!= R_ARM_PC24
8034 && r_type
!= R_ARM_CALL
8035 && r_type
!= R_ARM_JUMP24
8036 && r_type
!= R_ARM_PREL31
8037 && r_type
!= R_ARM_PLT32
)
8039 Elf_Internal_Rela outrel
;
8040 bfd_boolean skip
, relocate
;
8042 *unresolved_reloc_p
= FALSE
;
8044 if (sreloc
== NULL
&& globals
->root
.dynamic_sections_created
)
8046 sreloc
= _bfd_elf_get_dynamic_reloc_section (input_bfd
, input_section
,
8047 ! globals
->use_rel
);
8050 return bfd_reloc_notsupported
;
8056 outrel
.r_addend
= addend
;
8058 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
8060 if (outrel
.r_offset
== (bfd_vma
) -1)
8062 else if (outrel
.r_offset
== (bfd_vma
) -2)
8063 skip
= TRUE
, relocate
= TRUE
;
8064 outrel
.r_offset
+= (input_section
->output_section
->vma
8065 + input_section
->output_offset
);
8068 memset (&outrel
, 0, sizeof outrel
);
8073 || !h
->def_regular
))
8074 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, r_type
);
8079 /* This symbol is local, or marked to become local. */
8080 BFD_ASSERT (r_type
== R_ARM_ABS32
|| r_type
== R_ARM_ABS32_NOI
);
8081 if (globals
->symbian_p
)
8085 /* On Symbian OS, the data segment and text segement
8086 can be relocated independently. Therefore, we
8087 must indicate the segment to which this
8088 relocation is relative. The BPABI allows us to
8089 use any symbol in the right segment; we just use
8090 the section symbol as it is convenient. (We
8091 cannot use the symbol given by "h" directly as it
8092 will not appear in the dynamic symbol table.)
8094 Note that the dynamic linker ignores the section
8095 symbol value, so we don't subtract osec->vma
8096 from the emitted reloc addend. */
8098 osec
= sym_sec
->output_section
;
8100 osec
= input_section
->output_section
;
8101 symbol
= elf_section_data (osec
)->dynindx
;
8104 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
8106 if ((osec
->flags
& SEC_READONLY
) == 0
8107 && htab
->data_index_section
!= NULL
)
8108 osec
= htab
->data_index_section
;
8110 osec
= htab
->text_index_section
;
8111 symbol
= elf_section_data (osec
)->dynindx
;
8113 BFD_ASSERT (symbol
!= 0);
8116 /* On SVR4-ish systems, the dynamic loader cannot
8117 relocate the text and data segments independently,
8118 so the symbol does not matter. */
8120 if (dynreloc_st_type
== STT_GNU_IFUNC
)
8121 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
8122 to the .iplt entry. Instead, every non-call reference
8123 must use an R_ARM_IRELATIVE relocation to obtain the
8124 correct run-time address. */
8125 outrel
.r_info
= ELF32_R_INFO (symbol
, R_ARM_IRELATIVE
);
8127 outrel
.r_info
= ELF32_R_INFO (symbol
, R_ARM_RELATIVE
);
8128 if (globals
->use_rel
)
8131 outrel
.r_addend
+= dynreloc_value
;
8134 elf32_arm_add_dynreloc (output_bfd
, info
, sreloc
, &outrel
);
8136 /* If this reloc is against an external symbol, we do not want to
8137 fiddle with the addend. Otherwise, we need to include the symbol
8138 value so that it becomes an addend for the dynamic reloc. */
8140 return bfd_reloc_ok
;
8142 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8143 contents
, rel
->r_offset
,
8144 dynreloc_value
, (bfd_vma
) 0);
8146 else switch (r_type
)
8149 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
8151 case R_ARM_XPC25
: /* Arm BLX instruction. */
8154 case R_ARM_PC24
: /* Arm B/BL instruction. */
8157 struct elf32_arm_stub_hash_entry
*stub_entry
= NULL
;
8159 if (r_type
== R_ARM_XPC25
)
8161 /* Check for Arm calling Arm function. */
8162 /* FIXME: Should we translate the instruction into a BL
8163 instruction instead ? */
8164 if (branch_type
!= ST_BRANCH_TO_THUMB
)
8165 (*_bfd_error_handler
)
8166 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
8168 h
? h
->root
.root
.string
: "(local)");
8170 else if (r_type
== R_ARM_PC24
)
8172 /* Check for Arm calling Thumb function. */
8173 if (branch_type
== ST_BRANCH_TO_THUMB
)
8175 if (elf32_arm_to_thumb_stub (info
, sym_name
, input_bfd
,
8176 output_bfd
, input_section
,
8177 hit_data
, sym_sec
, rel
->r_offset
,
8178 signed_addend
, value
,
8180 return bfd_reloc_ok
;
8182 return bfd_reloc_dangerous
;
8186 /* Check if a stub has to be inserted because the
8187 destination is too far or we are changing mode. */
8188 if ( r_type
== R_ARM_CALL
8189 || r_type
== R_ARM_JUMP24
8190 || r_type
== R_ARM_PLT32
)
8192 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
8193 struct elf32_arm_link_hash_entry
*hash
;
8195 hash
= (struct elf32_arm_link_hash_entry
*) h
;
8196 stub_type
= arm_type_of_stub (info
, input_section
, rel
,
8197 st_type
, &branch_type
,
8198 hash
, value
, sym_sec
,
8199 input_bfd
, sym_name
);
8201 if (stub_type
!= arm_stub_none
)
8203 /* The target is out of reach, so redirect the
8204 branch to the local stub for this function. */
8206 stub_entry
= elf32_arm_get_stub_entry (input_section
,
8210 if (stub_entry
!= NULL
)
8211 value
= (stub_entry
->stub_offset
8212 + stub_entry
->stub_sec
->output_offset
8213 + stub_entry
->stub_sec
->output_section
->vma
);
8217 /* If the call goes through a PLT entry, make sure to
8218 check distance to the right destination address. */
8219 if (plt_offset
!= (bfd_vma
) -1)
8221 value
= (splt
->output_section
->vma
8222 + splt
->output_offset
8224 *unresolved_reloc_p
= FALSE
;
8225 /* The PLT entry is in ARM mode, regardless of the
8227 branch_type
= ST_BRANCH_TO_ARM
;
8232 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
8234 S is the address of the symbol in the relocation.
8235 P is address of the instruction being relocated.
8236 A is the addend (extracted from the instruction) in bytes.
8238 S is held in 'value'.
8239 P is the base address of the section containing the
8240 instruction plus the offset of the reloc into that
8242 (input_section->output_section->vma +
8243 input_section->output_offset +
8245 A is the addend, converted into bytes, ie:
8248 Note: None of these operations have knowledge of the pipeline
8249 size of the processor, thus it is up to the assembler to
8250 encode this information into the addend. */
8251 value
-= (input_section
->output_section
->vma
8252 + input_section
->output_offset
);
8253 value
-= rel
->r_offset
;
8254 if (globals
->use_rel
)
8255 value
+= (signed_addend
<< howto
->size
);
8257 /* RELA addends do not have to be adjusted by howto->size. */
8258 value
+= signed_addend
;
8260 signed_addend
= value
;
8261 signed_addend
>>= howto
->rightshift
;
8263 /* A branch to an undefined weak symbol is turned into a jump to
8264 the next instruction unless a PLT entry will be created.
8265 Do the same for local undefined symbols (but not for STN_UNDEF).
8266 The jump to the next instruction is optimized as a NOP depending
8267 on the architecture. */
8268 if (h
? (h
->root
.type
== bfd_link_hash_undefweak
8269 && plt_offset
== (bfd_vma
) -1)
8270 : r_symndx
!= STN_UNDEF
&& bfd_is_und_section (sym_sec
))
8272 value
= (bfd_get_32 (input_bfd
, hit_data
) & 0xf0000000);
8274 if (arch_has_arm_nop (globals
))
8275 value
|= 0x0320f000;
8277 value
|= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
8281 /* Perform a signed range check. */
8282 if ( signed_addend
> ((bfd_signed_vma
) (howto
->dst_mask
>> 1))
8283 || signed_addend
< - ((bfd_signed_vma
) ((howto
->dst_mask
+ 1) >> 1)))
8284 return bfd_reloc_overflow
;
8286 addend
= (value
& 2);
8288 value
= (signed_addend
& howto
->dst_mask
)
8289 | (bfd_get_32 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
8291 if (r_type
== R_ARM_CALL
)
8293 /* Set the H bit in the BLX instruction. */
8294 if (branch_type
== ST_BRANCH_TO_THUMB
)
8299 value
&= ~(bfd_vma
)(1 << 24);
8302 /* Select the correct instruction (BL or BLX). */
8303 /* Only if we are not handling a BL to a stub. In this
8304 case, mode switching is performed by the stub. */
8305 if (branch_type
== ST_BRANCH_TO_THUMB
&& !stub_entry
)
8307 else if (stub_entry
|| branch_type
!= ST_BRANCH_UNKNOWN
)
8309 value
&= ~(bfd_vma
)(1 << 28);
8319 if (branch_type
== ST_BRANCH_TO_THUMB
)
8323 case R_ARM_ABS32_NOI
:
8329 if (branch_type
== ST_BRANCH_TO_THUMB
)
8331 value
-= (input_section
->output_section
->vma
8332 + input_section
->output_offset
+ rel
->r_offset
);
8335 case R_ARM_REL32_NOI
:
8337 value
-= (input_section
->output_section
->vma
8338 + input_section
->output_offset
+ rel
->r_offset
);
8342 value
-= (input_section
->output_section
->vma
8343 + input_section
->output_offset
+ rel
->r_offset
);
8344 value
+= signed_addend
;
8345 if (! h
|| h
->root
.type
!= bfd_link_hash_undefweak
)
8347 /* Check for overflow. */
8348 if ((value
^ (value
>> 1)) & (1 << 30))
8349 return bfd_reloc_overflow
;
8351 value
&= 0x7fffffff;
8352 value
|= (bfd_get_32 (input_bfd
, hit_data
) & 0x80000000);
8353 if (branch_type
== ST_BRANCH_TO_THUMB
)
8358 bfd_put_32 (input_bfd
, value
, hit_data
);
8359 return bfd_reloc_ok
;
8364 /* There is no way to tell whether the user intended to use a signed or
8365 unsigned addend. When checking for overflow we accept either,
8366 as specified by the AAELF. */
8367 if ((long) value
> 0xff || (long) value
< -0x80)
8368 return bfd_reloc_overflow
;
8370 bfd_put_8 (input_bfd
, value
, hit_data
);
8371 return bfd_reloc_ok
;
8376 /* See comment for R_ARM_ABS8. */
8377 if ((long) value
> 0xffff || (long) value
< -0x8000)
8378 return bfd_reloc_overflow
;
8380 bfd_put_16 (input_bfd
, value
, hit_data
);
8381 return bfd_reloc_ok
;
8383 case R_ARM_THM_ABS5
:
8384 /* Support ldr and str instructions for the thumb. */
8385 if (globals
->use_rel
)
8387 /* Need to refetch addend. */
8388 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
8389 /* ??? Need to determine shift amount from operand size. */
8390 addend
>>= howto
->rightshift
;
8394 /* ??? Isn't value unsigned? */
8395 if ((long) value
> 0x1f || (long) value
< -0x10)
8396 return bfd_reloc_overflow
;
8398 /* ??? Value needs to be properly shifted into place first. */
8399 value
|= bfd_get_16 (input_bfd
, hit_data
) & 0xf83f;
8400 bfd_put_16 (input_bfd
, value
, hit_data
);
8401 return bfd_reloc_ok
;
8403 case R_ARM_THM_ALU_PREL_11_0
:
8404 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
8407 bfd_signed_vma relocation
;
8409 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
8410 | bfd_get_16 (input_bfd
, hit_data
+ 2);
8412 if (globals
->use_rel
)
8414 signed_addend
= (insn
& 0xff) | ((insn
& 0x7000) >> 4)
8415 | ((insn
& (1 << 26)) >> 15);
8416 if (insn
& 0xf00000)
8417 signed_addend
= -signed_addend
;
8420 relocation
= value
+ signed_addend
;
8421 relocation
-= (input_section
->output_section
->vma
8422 + input_section
->output_offset
8425 value
= abs (relocation
);
8427 if (value
>= 0x1000)
8428 return bfd_reloc_overflow
;
8430 insn
= (insn
& 0xfb0f8f00) | (value
& 0xff)
8431 | ((value
& 0x700) << 4)
8432 | ((value
& 0x800) << 15);
8436 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
8437 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
8439 return bfd_reloc_ok
;
8443 /* PR 10073: This reloc is not generated by the GNU toolchain,
8444 but it is supported for compatibility with third party libraries
8445 generated by other compilers, specifically the ARM/IAR. */
8448 bfd_signed_vma relocation
;
8450 insn
= bfd_get_16 (input_bfd
, hit_data
);
8452 if (globals
->use_rel
)
8453 addend
= (insn
& 0x00ff) << 2;
8455 relocation
= value
+ addend
;
8456 relocation
-= (input_section
->output_section
->vma
8457 + input_section
->output_offset
8460 value
= abs (relocation
);
8462 /* We do not check for overflow of this reloc. Although strictly
8463 speaking this is incorrect, it appears to be necessary in order
8464 to work with IAR generated relocs. Since GCC and GAS do not
8465 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
8466 a problem for them. */
8469 insn
= (insn
& 0xff00) | (value
>> 2);
8471 bfd_put_16 (input_bfd
, insn
, hit_data
);
8473 return bfd_reloc_ok
;
8476 case R_ARM_THM_PC12
:
8477 /* Corresponds to: ldr.w reg, [pc, #offset]. */
8480 bfd_signed_vma relocation
;
8482 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
8483 | bfd_get_16 (input_bfd
, hit_data
+ 2);
8485 if (globals
->use_rel
)
8487 signed_addend
= insn
& 0xfff;
8488 if (!(insn
& (1 << 23)))
8489 signed_addend
= -signed_addend
;
8492 relocation
= value
+ signed_addend
;
8493 relocation
-= (input_section
->output_section
->vma
8494 + input_section
->output_offset
8497 value
= abs (relocation
);
8499 if (value
>= 0x1000)
8500 return bfd_reloc_overflow
;
8502 insn
= (insn
& 0xff7ff000) | value
;
8503 if (relocation
>= 0)
8506 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
8507 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
8509 return bfd_reloc_ok
;
8512 case R_ARM_THM_XPC22
:
8513 case R_ARM_THM_CALL
:
8514 case R_ARM_THM_JUMP24
:
8515 /* Thumb BL (branch long instruction). */
8519 bfd_boolean overflow
= FALSE
;
8520 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
8521 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
8522 bfd_signed_vma reloc_signed_max
;
8523 bfd_signed_vma reloc_signed_min
;
8525 bfd_signed_vma signed_check
;
8527 const int thumb2
= using_thumb2 (globals
);
8529 /* A branch to an undefined weak symbol is turned into a jump to
8530 the next instruction unless a PLT entry will be created.
8531 The jump to the next instruction is optimized as a NOP.W for
8532 Thumb-2 enabled architectures. */
8533 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
8534 && plt_offset
== (bfd_vma
) -1)
8536 if (arch_has_thumb2_nop (globals
))
8538 bfd_put_16 (input_bfd
, 0xf3af, hit_data
);
8539 bfd_put_16 (input_bfd
, 0x8000, hit_data
+ 2);
8543 bfd_put_16 (input_bfd
, 0xe000, hit_data
);
8544 bfd_put_16 (input_bfd
, 0xbf00, hit_data
+ 2);
8546 return bfd_reloc_ok
;
8549 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
8550 with Thumb-1) involving the J1 and J2 bits. */
8551 if (globals
->use_rel
)
8553 bfd_vma s
= (upper_insn
& (1 << 10)) >> 10;
8554 bfd_vma upper
= upper_insn
& 0x3ff;
8555 bfd_vma lower
= lower_insn
& 0x7ff;
8556 bfd_vma j1
= (lower_insn
& (1 << 13)) >> 13;
8557 bfd_vma j2
= (lower_insn
& (1 << 11)) >> 11;
8558 bfd_vma i1
= j1
^ s
? 0 : 1;
8559 bfd_vma i2
= j2
^ s
? 0 : 1;
8561 addend
= (i1
<< 23) | (i2
<< 22) | (upper
<< 12) | (lower
<< 1);
8563 addend
= (addend
| ((s
? 0 : 1) << 24)) - (1 << 24);
8565 signed_addend
= addend
;
8568 if (r_type
== R_ARM_THM_XPC22
)
8570 /* Check for Thumb to Thumb call. */
8571 /* FIXME: Should we translate the instruction into a BL
8572 instruction instead ? */
8573 if (branch_type
== ST_BRANCH_TO_THUMB
)
8574 (*_bfd_error_handler
)
8575 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
8577 h
? h
->root
.root
.string
: "(local)");
8581 /* If it is not a call to Thumb, assume call to Arm.
8582 If it is a call relative to a section name, then it is not a
8583 function call at all, but rather a long jump. Calls through
8584 the PLT do not require stubs. */
8585 if (branch_type
== ST_BRANCH_TO_ARM
&& plt_offset
== (bfd_vma
) -1)
8587 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
8589 /* Convert BL to BLX. */
8590 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
8592 else if (( r_type
!= R_ARM_THM_CALL
)
8593 && (r_type
!= R_ARM_THM_JUMP24
))
8595 if (elf32_thumb_to_arm_stub
8596 (info
, sym_name
, input_bfd
, output_bfd
, input_section
,
8597 hit_data
, sym_sec
, rel
->r_offset
, signed_addend
, value
,
8599 return bfd_reloc_ok
;
8601 return bfd_reloc_dangerous
;
8604 else if (branch_type
== ST_BRANCH_TO_THUMB
8606 && r_type
== R_ARM_THM_CALL
)
8608 /* Make sure this is a BL. */
8609 lower_insn
|= 0x1800;
8613 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
8614 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
)
8616 /* Check if a stub has to be inserted because the destination
8618 struct elf32_arm_stub_hash_entry
*stub_entry
;
8619 struct elf32_arm_link_hash_entry
*hash
;
8621 hash
= (struct elf32_arm_link_hash_entry
*) h
;
8623 stub_type
= arm_type_of_stub (info
, input_section
, rel
,
8624 st_type
, &branch_type
,
8625 hash
, value
, sym_sec
,
8626 input_bfd
, sym_name
);
8628 if (stub_type
!= arm_stub_none
)
8630 /* The target is out of reach or we are changing modes, so
8631 redirect the branch to the local stub for this
8633 stub_entry
= elf32_arm_get_stub_entry (input_section
,
8637 if (stub_entry
!= NULL
)
8638 value
= (stub_entry
->stub_offset
8639 + stub_entry
->stub_sec
->output_offset
8640 + stub_entry
->stub_sec
->output_section
->vma
);
8642 /* If this call becomes a call to Arm, force BLX. */
8643 if (globals
->use_blx
&& (r_type
== R_ARM_THM_CALL
))
8646 && !arm_stub_is_thumb (stub_entry
->stub_type
))
8647 || branch_type
!= ST_BRANCH_TO_THUMB
)
8648 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
8653 /* Handle calls via the PLT. */
8654 if (stub_type
== arm_stub_none
&& plt_offset
!= (bfd_vma
) -1)
8656 value
= (splt
->output_section
->vma
8657 + splt
->output_offset
8660 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
8662 /* If the Thumb BLX instruction is available, convert
8663 the BL to a BLX instruction to call the ARM-mode
8665 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
8666 branch_type
= ST_BRANCH_TO_ARM
;
8670 /* Target the Thumb stub before the ARM PLT entry. */
8671 value
-= PLT_THUMB_STUB_SIZE
;
8672 branch_type
= ST_BRANCH_TO_THUMB
;
8674 *unresolved_reloc_p
= FALSE
;
8677 relocation
= value
+ signed_addend
;
8679 relocation
-= (input_section
->output_section
->vma
8680 + input_section
->output_offset
8683 check
= relocation
>> howto
->rightshift
;
8685 /* If this is a signed value, the rightshift just dropped
8686 leading 1 bits (assuming twos complement). */
8687 if ((bfd_signed_vma
) relocation
>= 0)
8688 signed_check
= check
;
8690 signed_check
= check
| ~((bfd_vma
) -1 >> howto
->rightshift
);
8692 /* Calculate the permissable maximum and minimum values for
8693 this relocation according to whether we're relocating for
8695 bitsize
= howto
->bitsize
;
8698 reloc_signed_max
= (1 << (bitsize
- 1)) - 1;
8699 reloc_signed_min
= ~reloc_signed_max
;
8701 /* Assumes two's complement. */
8702 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
8705 if ((lower_insn
& 0x5000) == 0x4000)
8706 /* For a BLX instruction, make sure that the relocation is rounded up
8707 to a word boundary. This follows the semantics of the instruction
8708 which specifies that bit 1 of the target address will come from bit
8709 1 of the base address. */
8710 relocation
= (relocation
+ 2) & ~ 3;
8712 /* Put RELOCATION back into the insn. Assumes two's complement.
8713 We use the Thumb-2 encoding, which is safe even if dealing with
8714 a Thumb-1 instruction by virtue of our overflow check above. */
8715 reloc_sign
= (signed_check
< 0) ? 1 : 0;
8716 upper_insn
= (upper_insn
& ~(bfd_vma
) 0x7ff)
8717 | ((relocation
>> 12) & 0x3ff)
8718 | (reloc_sign
<< 10);
8719 lower_insn
= (lower_insn
& ~(bfd_vma
) 0x2fff)
8720 | (((!((relocation
>> 23) & 1)) ^ reloc_sign
) << 13)
8721 | (((!((relocation
>> 22) & 1)) ^ reloc_sign
) << 11)
8722 | ((relocation
>> 1) & 0x7ff);
8724 /* Put the relocated value back in the object file: */
8725 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
8726 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
8728 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
8732 case R_ARM_THM_JUMP19
:
8733 /* Thumb32 conditional branch instruction. */
8736 bfd_boolean overflow
= FALSE
;
8737 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
8738 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
8739 bfd_signed_vma reloc_signed_max
= 0xffffe;
8740 bfd_signed_vma reloc_signed_min
= -0x100000;
8741 bfd_signed_vma signed_check
;
8743 /* Need to refetch the addend, reconstruct the top three bits,
8744 and squish the two 11 bit pieces together. */
8745 if (globals
->use_rel
)
8747 bfd_vma S
= (upper_insn
& 0x0400) >> 10;
8748 bfd_vma upper
= (upper_insn
& 0x003f);
8749 bfd_vma J1
= (lower_insn
& 0x2000) >> 13;
8750 bfd_vma J2
= (lower_insn
& 0x0800) >> 11;
8751 bfd_vma lower
= (lower_insn
& 0x07ff);
8756 upper
-= 0x0100; /* Sign extend. */
8758 addend
= (upper
<< 12) | (lower
<< 1);
8759 signed_addend
= addend
;
8762 /* Handle calls via the PLT. */
8763 if (plt_offset
!= (bfd_vma
) -1)
8765 value
= (splt
->output_section
->vma
8766 + splt
->output_offset
8768 /* Target the Thumb stub before the ARM PLT entry. */
8769 value
-= PLT_THUMB_STUB_SIZE
;
8770 *unresolved_reloc_p
= FALSE
;
8773 /* ??? Should handle interworking? GCC might someday try to
8774 use this for tail calls. */
8776 relocation
= value
+ signed_addend
;
8777 relocation
-= (input_section
->output_section
->vma
8778 + input_section
->output_offset
8780 signed_check
= (bfd_signed_vma
) relocation
;
8782 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
8785 /* Put RELOCATION back into the insn. */
8787 bfd_vma S
= (relocation
& 0x00100000) >> 20;
8788 bfd_vma J2
= (relocation
& 0x00080000) >> 19;
8789 bfd_vma J1
= (relocation
& 0x00040000) >> 18;
8790 bfd_vma hi
= (relocation
& 0x0003f000) >> 12;
8791 bfd_vma lo
= (relocation
& 0x00000ffe) >> 1;
8793 upper_insn
= (upper_insn
& 0xfbc0) | (S
<< 10) | hi
;
8794 lower_insn
= (lower_insn
& 0xd000) | (J1
<< 13) | (J2
<< 11) | lo
;
8797 /* Put the relocated value back in the object file: */
8798 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
8799 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
8801 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
8804 case R_ARM_THM_JUMP11
:
8805 case R_ARM_THM_JUMP8
:
8806 case R_ARM_THM_JUMP6
:
8807 /* Thumb B (branch) instruction). */
8809 bfd_signed_vma relocation
;
8810 bfd_signed_vma reloc_signed_max
= (1 << (howto
->bitsize
- 1)) - 1;
8811 bfd_signed_vma reloc_signed_min
= ~ reloc_signed_max
;
8812 bfd_signed_vma signed_check
;
8814 /* CZB cannot jump backward. */
8815 if (r_type
== R_ARM_THM_JUMP6
)
8816 reloc_signed_min
= 0;
8818 if (globals
->use_rel
)
8820 /* Need to refetch addend. */
8821 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
8822 if (addend
& ((howto
->src_mask
+ 1) >> 1))
8825 signed_addend
&= ~ howto
->src_mask
;
8826 signed_addend
|= addend
;
8829 signed_addend
= addend
;
8830 /* The value in the insn has been right shifted. We need to
8831 undo this, so that we can perform the address calculation
8832 in terms of bytes. */
8833 signed_addend
<<= howto
->rightshift
;
8835 relocation
= value
+ signed_addend
;
8837 relocation
-= (input_section
->output_section
->vma
8838 + input_section
->output_offset
8841 relocation
>>= howto
->rightshift
;
8842 signed_check
= relocation
;
8844 if (r_type
== R_ARM_THM_JUMP6
)
8845 relocation
= ((relocation
& 0x0020) << 4) | ((relocation
& 0x001f) << 3);
8847 relocation
&= howto
->dst_mask
;
8848 relocation
|= (bfd_get_16 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
8850 bfd_put_16 (input_bfd
, relocation
, hit_data
);
8852 /* Assumes two's complement. */
8853 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
8854 return bfd_reloc_overflow
;
8856 return bfd_reloc_ok
;
8859 case R_ARM_ALU_PCREL7_0
:
8860 case R_ARM_ALU_PCREL15_8
:
8861 case R_ARM_ALU_PCREL23_15
:
8866 insn
= bfd_get_32 (input_bfd
, hit_data
);
8867 if (globals
->use_rel
)
8869 /* Extract the addend. */
8870 addend
= (insn
& 0xff) << ((insn
& 0xf00) >> 7);
8871 signed_addend
= addend
;
8873 relocation
= value
+ signed_addend
;
8875 relocation
-= (input_section
->output_section
->vma
8876 + input_section
->output_offset
8878 insn
= (insn
& ~0xfff)
8879 | ((howto
->bitpos
<< 7) & 0xf00)
8880 | ((relocation
>> howto
->bitpos
) & 0xff);
8881 bfd_put_32 (input_bfd
, value
, hit_data
);
8883 return bfd_reloc_ok
;
8885 case R_ARM_GNU_VTINHERIT
:
8886 case R_ARM_GNU_VTENTRY
:
8887 return bfd_reloc_ok
;
8889 case R_ARM_GOTOFF32
:
8890 /* Relocation is relative to the start of the
8891 global offset table. */
8893 BFD_ASSERT (sgot
!= NULL
);
8895 return bfd_reloc_notsupported
;
8897 /* If we are addressing a Thumb function, we need to adjust the
8898 address by one, so that attempts to call the function pointer will
8899 correctly interpret it as Thumb code. */
8900 if (branch_type
== ST_BRANCH_TO_THUMB
)
8903 /* Note that sgot->output_offset is not involved in this
8904 calculation. We always want the start of .got. If we
8905 define _GLOBAL_OFFSET_TABLE in a different way, as is
8906 permitted by the ABI, we might have to change this
8908 value
-= sgot
->output_section
->vma
;
8909 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8910 contents
, rel
->r_offset
, value
,
8914 /* Use global offset table as symbol value. */
8915 BFD_ASSERT (sgot
!= NULL
);
8918 return bfd_reloc_notsupported
;
8920 *unresolved_reloc_p
= FALSE
;
8921 value
= sgot
->output_section
->vma
;
8922 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8923 contents
, rel
->r_offset
, value
,
8927 case R_ARM_GOT_PREL
:
8928 /* Relocation is to the entry for this symbol in the
8929 global offset table. */
8931 return bfd_reloc_notsupported
;
8933 if (dynreloc_st_type
== STT_GNU_IFUNC
8934 && plt_offset
!= (bfd_vma
) -1
8935 && (h
== NULL
|| SYMBOL_REFERENCES_LOCAL (info
, h
)))
8937 /* We have a relocation against a locally-binding STT_GNU_IFUNC
8938 symbol, and the relocation resolves directly to the runtime
8939 target rather than to the .iplt entry. This means that any
8940 .got entry would be the same value as the .igot.plt entry,
8941 so there's no point creating both. */
8942 sgot
= globals
->root
.igotplt
;
8943 value
= sgot
->output_offset
+ gotplt_offset
;
8949 off
= h
->got
.offset
;
8950 BFD_ASSERT (off
!= (bfd_vma
) -1);
8953 /* We have already processsed one GOT relocation against
8956 if (globals
->root
.dynamic_sections_created
8957 && !SYMBOL_REFERENCES_LOCAL (info
, h
))
8958 *unresolved_reloc_p
= FALSE
;
8962 Elf_Internal_Rela outrel
;
8964 if (!SYMBOL_REFERENCES_LOCAL (info
, h
))
8966 /* If the symbol doesn't resolve locally in a static
8967 object, we have an undefined reference. If the
8968 symbol doesn't resolve locally in a dynamic object,
8969 it should be resolved by the dynamic linker. */
8970 if (globals
->root
.dynamic_sections_created
)
8972 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
8973 *unresolved_reloc_p
= FALSE
;
8977 outrel
.r_addend
= 0;
8981 if (dynreloc_st_type
== STT_GNU_IFUNC
)
8982 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_IRELATIVE
);
8983 else if (info
->shared
)
8984 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
8987 outrel
.r_addend
= dynreloc_value
;
8990 /* The GOT entry is initialized to zero by default.
8991 See if we should install a different value. */
8992 if (outrel
.r_addend
!= 0
8993 && (outrel
.r_info
== 0 || globals
->use_rel
))
8995 bfd_put_32 (output_bfd
, outrel
.r_addend
,
8996 sgot
->contents
+ off
);
8997 outrel
.r_addend
= 0;
9000 if (outrel
.r_info
!= 0)
9002 outrel
.r_offset
= (sgot
->output_section
->vma
9003 + sgot
->output_offset
9005 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9009 value
= sgot
->output_offset
+ off
;
9015 BFD_ASSERT (local_got_offsets
!= NULL
&&
9016 local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
9018 off
= local_got_offsets
[r_symndx
];
9020 /* The offset must always be a multiple of 4. We use the
9021 least significant bit to record whether we have already
9022 generated the necessary reloc. */
9027 if (globals
->use_rel
)
9028 bfd_put_32 (output_bfd
, dynreloc_value
, sgot
->contents
+ off
);
9030 if (info
->shared
|| dynreloc_st_type
== STT_GNU_IFUNC
)
9032 Elf_Internal_Rela outrel
;
9034 outrel
.r_addend
= addend
+ dynreloc_value
;
9035 outrel
.r_offset
= (sgot
->output_section
->vma
9036 + sgot
->output_offset
9038 if (dynreloc_st_type
== STT_GNU_IFUNC
)
9039 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_IRELATIVE
);
9041 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
9042 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9045 local_got_offsets
[r_symndx
] |= 1;
9048 value
= sgot
->output_offset
+ off
;
9050 if (r_type
!= R_ARM_GOT32
)
9051 value
+= sgot
->output_section
->vma
;
9053 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9054 contents
, rel
->r_offset
, value
,
9057 case R_ARM_TLS_LDO32
:
9058 value
= value
- dtpoff_base (info
);
9060 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9061 contents
, rel
->r_offset
, value
,
9064 case R_ARM_TLS_LDM32
:
9071 off
= globals
->tls_ldm_got
.offset
;
9077 /* If we don't know the module number, create a relocation
9081 Elf_Internal_Rela outrel
;
9083 if (srelgot
== NULL
)
9086 outrel
.r_addend
= 0;
9087 outrel
.r_offset
= (sgot
->output_section
->vma
9088 + sgot
->output_offset
+ off
);
9089 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32
);
9091 if (globals
->use_rel
)
9092 bfd_put_32 (output_bfd
, outrel
.r_addend
,
9093 sgot
->contents
+ off
);
9095 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9098 bfd_put_32 (output_bfd
, 1, sgot
->contents
+ off
);
9100 globals
->tls_ldm_got
.offset
|= 1;
9103 value
= sgot
->output_section
->vma
+ sgot
->output_offset
+ off
9104 - (input_section
->output_section
->vma
+ input_section
->output_offset
+ rel
->r_offset
);
9106 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9107 contents
, rel
->r_offset
, value
,
9111 case R_ARM_TLS_CALL
:
9112 case R_ARM_THM_TLS_CALL
:
9113 case R_ARM_TLS_GD32
:
9114 case R_ARM_TLS_IE32
:
9115 case R_ARM_TLS_GOTDESC
:
9116 case R_ARM_TLS_DESCSEQ
:
9117 case R_ARM_THM_TLS_DESCSEQ
:
9119 bfd_vma off
, offplt
;
9123 BFD_ASSERT (sgot
!= NULL
);
9128 dyn
= globals
->root
.dynamic_sections_created
;
9129 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
9131 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
9133 *unresolved_reloc_p
= FALSE
;
9136 off
= h
->got
.offset
;
9137 offplt
= elf32_arm_hash_entry (h
)->tlsdesc_got
;
9138 tls_type
= ((struct elf32_arm_link_hash_entry
*) h
)->tls_type
;
9142 BFD_ASSERT (local_got_offsets
!= NULL
);
9143 off
= local_got_offsets
[r_symndx
];
9144 offplt
= local_tlsdesc_gotents
[r_symndx
];
9145 tls_type
= elf32_arm_local_got_tls_type (input_bfd
)[r_symndx
];
9148 /* Linker relaxations happens from one of the
9149 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
9150 if (ELF32_R_TYPE(rel
->r_info
) != r_type
)
9151 tls_type
= GOT_TLS_IE
;
9153 BFD_ASSERT (tls_type
!= GOT_UNKNOWN
);
9159 bfd_boolean need_relocs
= FALSE
;
9160 Elf_Internal_Rela outrel
;
9163 /* The GOT entries have not been initialized yet. Do it
9164 now, and emit any relocations. If both an IE GOT and a
9165 GD GOT are necessary, we emit the GD first. */
9167 if ((info
->shared
|| indx
!= 0)
9169 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
9170 || h
->root
.type
!= bfd_link_hash_undefweak
))
9173 BFD_ASSERT (srelgot
!= NULL
);
9176 if (tls_type
& GOT_TLS_GDESC
)
9180 /* We should have relaxed, unless this is an undefined
9182 BFD_ASSERT ((h
&& (h
->root
.type
== bfd_link_hash_undefweak
))
9184 BFD_ASSERT (globals
->sgotplt_jump_table_size
+ offplt
+ 8
9185 <= globals
->root
.sgotplt
->size
);
9187 outrel
.r_addend
= 0;
9188 outrel
.r_offset
= (globals
->root
.sgotplt
->output_section
->vma
9189 + globals
->root
.sgotplt
->output_offset
9191 + globals
->sgotplt_jump_table_size
);
9193 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_DESC
);
9194 sreloc
= globals
->root
.srelplt
;
9195 loc
= sreloc
->contents
;
9196 loc
+= globals
->next_tls_desc_index
++ * RELOC_SIZE (globals
);
9197 BFD_ASSERT (loc
+ RELOC_SIZE (globals
)
9198 <= sreloc
->contents
+ sreloc
->size
);
9200 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
9202 /* For globals, the first word in the relocation gets
9203 the relocation index and the top bit set, or zero,
9204 if we're binding now. For locals, it gets the
9205 symbol's offset in the tls section. */
9206 bfd_put_32 (output_bfd
,
9207 !h
? value
- elf_hash_table (info
)->tls_sec
->vma
9208 : info
->flags
& DF_BIND_NOW
? 0
9209 : 0x80000000 | ELF32_R_SYM (outrel
.r_info
),
9210 globals
->root
.sgotplt
->contents
+ offplt
+
9211 globals
->sgotplt_jump_table_size
);
9213 /* Second word in the relocation is always zero. */
9214 bfd_put_32 (output_bfd
, 0,
9215 globals
->root
.sgotplt
->contents
+ offplt
+
9216 globals
->sgotplt_jump_table_size
+ 4);
9218 if (tls_type
& GOT_TLS_GD
)
9222 outrel
.r_addend
= 0;
9223 outrel
.r_offset
= (sgot
->output_section
->vma
9224 + sgot
->output_offset
9226 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_DTPMOD32
);
9228 if (globals
->use_rel
)
9229 bfd_put_32 (output_bfd
, outrel
.r_addend
,
9230 sgot
->contents
+ cur_off
);
9232 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9235 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
9236 sgot
->contents
+ cur_off
+ 4);
9239 outrel
.r_addend
= 0;
9240 outrel
.r_info
= ELF32_R_INFO (indx
,
9241 R_ARM_TLS_DTPOFF32
);
9242 outrel
.r_offset
+= 4;
9244 if (globals
->use_rel
)
9245 bfd_put_32 (output_bfd
, outrel
.r_addend
,
9246 sgot
->contents
+ cur_off
+ 4);
9248 elf32_arm_add_dynreloc (output_bfd
, info
,
9254 /* If we are not emitting relocations for a
9255 general dynamic reference, then we must be in a
9256 static link or an executable link with the
9257 symbol binding locally. Mark it as belonging
9258 to module 1, the executable. */
9259 bfd_put_32 (output_bfd
, 1,
9260 sgot
->contents
+ cur_off
);
9261 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
9262 sgot
->contents
+ cur_off
+ 4);
9268 if (tls_type
& GOT_TLS_IE
)
9273 outrel
.r_addend
= value
- dtpoff_base (info
);
9275 outrel
.r_addend
= 0;
9276 outrel
.r_offset
= (sgot
->output_section
->vma
9277 + sgot
->output_offset
9279 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_TPOFF32
);
9281 if (globals
->use_rel
)
9282 bfd_put_32 (output_bfd
, outrel
.r_addend
,
9283 sgot
->contents
+ cur_off
);
9285 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9288 bfd_put_32 (output_bfd
, tpoff (info
, value
),
9289 sgot
->contents
+ cur_off
);
9296 local_got_offsets
[r_symndx
] |= 1;
9299 if ((tls_type
& GOT_TLS_GD
) && r_type
!= R_ARM_TLS_GD32
)
9301 else if (tls_type
& GOT_TLS_GDESC
)
9304 if (ELF32_R_TYPE(rel
->r_info
) == R_ARM_TLS_CALL
9305 || ELF32_R_TYPE(rel
->r_info
) == R_ARM_THM_TLS_CALL
)
9307 bfd_signed_vma offset
;
9308 /* TLS stubs are arm mode. The original symbol is a
9309 data object, so branch_type is bogus. */
9310 branch_type
= ST_BRANCH_TO_ARM
;
9311 enum elf32_arm_stub_type stub_type
9312 = arm_type_of_stub (info
, input_section
, rel
,
9313 st_type
, &branch_type
,
9314 (struct elf32_arm_link_hash_entry
*)h
,
9315 globals
->tls_trampoline
, globals
->root
.splt
,
9316 input_bfd
, sym_name
);
9318 if (stub_type
!= arm_stub_none
)
9320 struct elf32_arm_stub_hash_entry
*stub_entry
9321 = elf32_arm_get_stub_entry
9322 (input_section
, globals
->root
.splt
, 0, rel
,
9323 globals
, stub_type
);
9324 offset
= (stub_entry
->stub_offset
9325 + stub_entry
->stub_sec
->output_offset
9326 + stub_entry
->stub_sec
->output_section
->vma
);
9329 offset
= (globals
->root
.splt
->output_section
->vma
9330 + globals
->root
.splt
->output_offset
9331 + globals
->tls_trampoline
);
9333 if (ELF32_R_TYPE(rel
->r_info
) == R_ARM_TLS_CALL
)
9337 offset
-= (input_section
->output_section
->vma
+
9338 input_section
->output_offset
+ rel
->r_offset
+ 8);
9342 value
= inst
| (globals
->use_blx
? 0xfa000000 : 0xeb000000);
9346 /* Thumb blx encodes the offset in a complicated
9348 unsigned upper_insn
, lower_insn
;
9351 offset
-= (input_section
->output_section
->vma
+
9352 input_section
->output_offset
9353 + rel
->r_offset
+ 4);
9355 if (stub_type
!= arm_stub_none
9356 && arm_stub_is_thumb (stub_type
))
9358 lower_insn
= 0xd000;
9362 lower_insn
= 0xc000;
9363 /* Round up the offset to a word boundary */
9364 offset
= (offset
+ 2) & ~2;
9368 upper_insn
= (0xf000
9369 | ((offset
>> 12) & 0x3ff)
9371 lower_insn
|= (((!((offset
>> 23) & 1)) ^ neg
) << 13)
9372 | (((!((offset
>> 22) & 1)) ^ neg
) << 11)
9373 | ((offset
>> 1) & 0x7ff);
9374 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
9375 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
9376 return bfd_reloc_ok
;
9379 /* These relocations needs special care, as besides the fact
9380 they point somewhere in .gotplt, the addend must be
9381 adjusted accordingly depending on the type of instruction
9383 else if ((r_type
== R_ARM_TLS_GOTDESC
) && (tls_type
& GOT_TLS_GDESC
))
9385 unsigned long data
, insn
;
9388 data
= bfd_get_32 (input_bfd
, hit_data
);
9394 insn
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
- data
);
9395 if ((insn
& 0xf000) == 0xf000 || (insn
& 0xf800) == 0xe800)
9397 | bfd_get_16 (input_bfd
,
9398 contents
+ rel
->r_offset
- data
+ 2);
9399 if ((insn
& 0xf800c000) == 0xf000c000)
9402 else if ((insn
& 0xffffff00) == 0x4400)
9407 (*_bfd_error_handler
)
9408 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
9409 input_bfd
, input_section
,
9410 (unsigned long)rel
->r_offset
, insn
);
9411 return bfd_reloc_notsupported
;
9416 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
- data
);
9421 case 0xfa: /* blx */
9425 case 0xe0: /* add */
9430 (*_bfd_error_handler
)
9431 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
9432 input_bfd
, input_section
,
9433 (unsigned long)rel
->r_offset
, insn
);
9434 return bfd_reloc_notsupported
;
9438 value
+= ((globals
->root
.sgotplt
->output_section
->vma
9439 + globals
->root
.sgotplt
->output_offset
+ off
)
9440 - (input_section
->output_section
->vma
9441 + input_section
->output_offset
9443 + globals
->sgotplt_jump_table_size
);
9446 value
= ((globals
->root
.sgot
->output_section
->vma
9447 + globals
->root
.sgot
->output_offset
+ off
)
9448 - (input_section
->output_section
->vma
9449 + input_section
->output_offset
+ rel
->r_offset
));
9451 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9452 contents
, rel
->r_offset
, value
,
9456 case R_ARM_TLS_LE32
:
9457 if (info
->shared
&& !info
->pie
)
9459 (*_bfd_error_handler
)
9460 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
9461 input_bfd
, input_section
,
9462 (long) rel
->r_offset
, howto
->name
);
9463 return (bfd_reloc_status_type
) FALSE
;
9466 value
= tpoff (info
, value
);
9468 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9469 contents
, rel
->r_offset
, value
,
9473 if (globals
->fix_v4bx
)
9475 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9477 /* Ensure that we have a BX instruction. */
9478 BFD_ASSERT ((insn
& 0x0ffffff0) == 0x012fff10);
9480 if (globals
->fix_v4bx
== 2 && (insn
& 0xf) != 0xf)
9482 /* Branch to veneer. */
9484 glue_addr
= elf32_arm_bx_glue (info
, insn
& 0xf);
9485 glue_addr
-= input_section
->output_section
->vma
9486 + input_section
->output_offset
9487 + rel
->r_offset
+ 8;
9488 insn
= (insn
& 0xf0000000) | 0x0a000000
9489 | ((glue_addr
>> 2) & 0x00ffffff);
9493 /* Preserve Rm (lowest four bits) and the condition code
9494 (highest four bits). Other bits encode MOV PC,Rm. */
9495 insn
= (insn
& 0xf000000f) | 0x01a0f000;
9498 bfd_put_32 (input_bfd
, insn
, hit_data
);
9500 return bfd_reloc_ok
;
9502 case R_ARM_MOVW_ABS_NC
:
9503 case R_ARM_MOVT_ABS
:
9504 case R_ARM_MOVW_PREL_NC
:
9505 case R_ARM_MOVT_PREL
:
9506 /* Until we properly support segment-base-relative addressing then
9507 we assume the segment base to be zero, as for the group relocations.
9508 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
9509 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
9510 case R_ARM_MOVW_BREL_NC
:
9511 case R_ARM_MOVW_BREL
:
9512 case R_ARM_MOVT_BREL
:
9514 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9516 if (globals
->use_rel
)
9518 addend
= ((insn
>> 4) & 0xf000) | (insn
& 0xfff);
9519 signed_addend
= (addend
^ 0x8000) - 0x8000;
9522 value
+= signed_addend
;
9524 if (r_type
== R_ARM_MOVW_PREL_NC
|| r_type
== R_ARM_MOVT_PREL
)
9525 value
-= (input_section
->output_section
->vma
9526 + input_section
->output_offset
+ rel
->r_offset
);
9528 if (r_type
== R_ARM_MOVW_BREL
&& value
>= 0x10000)
9529 return bfd_reloc_overflow
;
9531 if (branch_type
== ST_BRANCH_TO_THUMB
)
9534 if (r_type
== R_ARM_MOVT_ABS
|| r_type
== R_ARM_MOVT_PREL
9535 || r_type
== R_ARM_MOVT_BREL
)
9539 insn
|= value
& 0xfff;
9540 insn
|= (value
& 0xf000) << 4;
9541 bfd_put_32 (input_bfd
, insn
, hit_data
);
9543 return bfd_reloc_ok
;
9545 case R_ARM_THM_MOVW_ABS_NC
:
9546 case R_ARM_THM_MOVT_ABS
:
9547 case R_ARM_THM_MOVW_PREL_NC
:
9548 case R_ARM_THM_MOVT_PREL
:
9549 /* Until we properly support segment-base-relative addressing then
9550 we assume the segment base to be zero, as for the above relocations.
9551 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
9552 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
9553 as R_ARM_THM_MOVT_ABS. */
9554 case R_ARM_THM_MOVW_BREL_NC
:
9555 case R_ARM_THM_MOVW_BREL
:
9556 case R_ARM_THM_MOVT_BREL
:
9560 insn
= bfd_get_16 (input_bfd
, hit_data
) << 16;
9561 insn
|= bfd_get_16 (input_bfd
, hit_data
+ 2);
9563 if (globals
->use_rel
)
9565 addend
= ((insn
>> 4) & 0xf000)
9566 | ((insn
>> 15) & 0x0800)
9567 | ((insn
>> 4) & 0x0700)
9569 signed_addend
= (addend
^ 0x8000) - 0x8000;
9572 value
+= signed_addend
;
9574 if (r_type
== R_ARM_THM_MOVW_PREL_NC
|| r_type
== R_ARM_THM_MOVT_PREL
)
9575 value
-= (input_section
->output_section
->vma
9576 + input_section
->output_offset
+ rel
->r_offset
);
9578 if (r_type
== R_ARM_THM_MOVW_BREL
&& value
>= 0x10000)
9579 return bfd_reloc_overflow
;
9581 if (branch_type
== ST_BRANCH_TO_THUMB
)
9584 if (r_type
== R_ARM_THM_MOVT_ABS
|| r_type
== R_ARM_THM_MOVT_PREL
9585 || r_type
== R_ARM_THM_MOVT_BREL
)
9589 insn
|= (value
& 0xf000) << 4;
9590 insn
|= (value
& 0x0800) << 15;
9591 insn
|= (value
& 0x0700) << 4;
9592 insn
|= (value
& 0x00ff);
9594 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
9595 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
9597 return bfd_reloc_ok
;
9599 case R_ARM_ALU_PC_G0_NC
:
9600 case R_ARM_ALU_PC_G1_NC
:
9601 case R_ARM_ALU_PC_G0
:
9602 case R_ARM_ALU_PC_G1
:
9603 case R_ARM_ALU_PC_G2
:
9604 case R_ARM_ALU_SB_G0_NC
:
9605 case R_ARM_ALU_SB_G1_NC
:
9606 case R_ARM_ALU_SB_G0
:
9607 case R_ARM_ALU_SB_G1
:
9608 case R_ARM_ALU_SB_G2
:
9610 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9611 bfd_vma pc
= input_section
->output_section
->vma
9612 + input_section
->output_offset
+ rel
->r_offset
;
9613 /* sb should be the origin of the *segment* containing the symbol.
9614 It is not clear how to obtain this OS-dependent value, so we
9615 make an arbitrary choice of zero. */
9619 bfd_signed_vma signed_value
;
9622 /* Determine which group of bits to select. */
9625 case R_ARM_ALU_PC_G0_NC
:
9626 case R_ARM_ALU_PC_G0
:
9627 case R_ARM_ALU_SB_G0_NC
:
9628 case R_ARM_ALU_SB_G0
:
9632 case R_ARM_ALU_PC_G1_NC
:
9633 case R_ARM_ALU_PC_G1
:
9634 case R_ARM_ALU_SB_G1_NC
:
9635 case R_ARM_ALU_SB_G1
:
9639 case R_ARM_ALU_PC_G2
:
9640 case R_ARM_ALU_SB_G2
:
9648 /* If REL, extract the addend from the insn. If RELA, it will
9649 have already been fetched for us. */
9650 if (globals
->use_rel
)
9653 bfd_vma constant
= insn
& 0xff;
9654 bfd_vma rotation
= (insn
& 0xf00) >> 8;
9657 signed_addend
= constant
;
9660 /* Compensate for the fact that in the instruction, the
9661 rotation is stored in multiples of 2 bits. */
9664 /* Rotate "constant" right by "rotation" bits. */
9665 signed_addend
= (constant
>> rotation
) |
9666 (constant
<< (8 * sizeof (bfd_vma
) - rotation
));
9669 /* Determine if the instruction is an ADD or a SUB.
9670 (For REL, this determines the sign of the addend.) */
9671 negative
= identify_add_or_sub (insn
);
9674 (*_bfd_error_handler
)
9675 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
9676 input_bfd
, input_section
,
9677 (long) rel
->r_offset
, howto
->name
);
9678 return bfd_reloc_overflow
;
9681 signed_addend
*= negative
;
9684 /* Compute the value (X) to go in the place. */
9685 if (r_type
== R_ARM_ALU_PC_G0_NC
9686 || r_type
== R_ARM_ALU_PC_G1_NC
9687 || r_type
== R_ARM_ALU_PC_G0
9688 || r_type
== R_ARM_ALU_PC_G1
9689 || r_type
== R_ARM_ALU_PC_G2
)
9691 signed_value
= value
- pc
+ signed_addend
;
9693 /* Section base relative. */
9694 signed_value
= value
- sb
+ signed_addend
;
9696 /* If the target symbol is a Thumb function, then set the
9697 Thumb bit in the address. */
9698 if (branch_type
== ST_BRANCH_TO_THUMB
)
9701 /* Calculate the value of the relevant G_n, in encoded
9702 constant-with-rotation format. */
9703 g_n
= calculate_group_reloc_mask (abs (signed_value
), group
,
9706 /* Check for overflow if required. */
9707 if ((r_type
== R_ARM_ALU_PC_G0
9708 || r_type
== R_ARM_ALU_PC_G1
9709 || r_type
== R_ARM_ALU_PC_G2
9710 || r_type
== R_ARM_ALU_SB_G0
9711 || r_type
== R_ARM_ALU_SB_G1
9712 || r_type
== R_ARM_ALU_SB_G2
) && residual
!= 0)
9714 (*_bfd_error_handler
)
9715 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9716 input_bfd
, input_section
,
9717 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
9718 return bfd_reloc_overflow
;
9721 /* Mask out the value and the ADD/SUB part of the opcode; take care
9722 not to destroy the S bit. */
9725 /* Set the opcode according to whether the value to go in the
9726 place is negative. */
9727 if (signed_value
< 0)
9732 /* Encode the offset. */
9735 bfd_put_32 (input_bfd
, insn
, hit_data
);
9737 return bfd_reloc_ok
;
9739 case R_ARM_LDR_PC_G0
:
9740 case R_ARM_LDR_PC_G1
:
9741 case R_ARM_LDR_PC_G2
:
9742 case R_ARM_LDR_SB_G0
:
9743 case R_ARM_LDR_SB_G1
:
9744 case R_ARM_LDR_SB_G2
:
9746 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9747 bfd_vma pc
= input_section
->output_section
->vma
9748 + input_section
->output_offset
+ rel
->r_offset
;
9749 bfd_vma sb
= 0; /* See note above. */
9751 bfd_signed_vma signed_value
;
9754 /* Determine which groups of bits to calculate. */
9757 case R_ARM_LDR_PC_G0
:
9758 case R_ARM_LDR_SB_G0
:
9762 case R_ARM_LDR_PC_G1
:
9763 case R_ARM_LDR_SB_G1
:
9767 case R_ARM_LDR_PC_G2
:
9768 case R_ARM_LDR_SB_G2
:
9776 /* If REL, extract the addend from the insn. If RELA, it will
9777 have already been fetched for us. */
9778 if (globals
->use_rel
)
9780 int negative
= (insn
& (1 << 23)) ? 1 : -1;
9781 signed_addend
= negative
* (insn
& 0xfff);
9784 /* Compute the value (X) to go in the place. */
9785 if (r_type
== R_ARM_LDR_PC_G0
9786 || r_type
== R_ARM_LDR_PC_G1
9787 || r_type
== R_ARM_LDR_PC_G2
)
9789 signed_value
= value
- pc
+ signed_addend
;
9791 /* Section base relative. */
9792 signed_value
= value
- sb
+ signed_addend
;
9794 /* Calculate the value of the relevant G_{n-1} to obtain
9795 the residual at that stage. */
9796 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
9798 /* Check for overflow. */
9799 if (residual
>= 0x1000)
9801 (*_bfd_error_handler
)
9802 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9803 input_bfd
, input_section
,
9804 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
9805 return bfd_reloc_overflow
;
9808 /* Mask out the value and U bit. */
9811 /* Set the U bit if the value to go in the place is non-negative. */
9812 if (signed_value
>= 0)
9815 /* Encode the offset. */
9818 bfd_put_32 (input_bfd
, insn
, hit_data
);
9820 return bfd_reloc_ok
;
9822 case R_ARM_LDRS_PC_G0
:
9823 case R_ARM_LDRS_PC_G1
:
9824 case R_ARM_LDRS_PC_G2
:
9825 case R_ARM_LDRS_SB_G0
:
9826 case R_ARM_LDRS_SB_G1
:
9827 case R_ARM_LDRS_SB_G2
:
9829 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9830 bfd_vma pc
= input_section
->output_section
->vma
9831 + input_section
->output_offset
+ rel
->r_offset
;
9832 bfd_vma sb
= 0; /* See note above. */
9834 bfd_signed_vma signed_value
;
9837 /* Determine which groups of bits to calculate. */
9840 case R_ARM_LDRS_PC_G0
:
9841 case R_ARM_LDRS_SB_G0
:
9845 case R_ARM_LDRS_PC_G1
:
9846 case R_ARM_LDRS_SB_G1
:
9850 case R_ARM_LDRS_PC_G2
:
9851 case R_ARM_LDRS_SB_G2
:
9859 /* If REL, extract the addend from the insn. If RELA, it will
9860 have already been fetched for us. */
9861 if (globals
->use_rel
)
9863 int negative
= (insn
& (1 << 23)) ? 1 : -1;
9864 signed_addend
= negative
* (((insn
& 0xf00) >> 4) + (insn
& 0xf));
9867 /* Compute the value (X) to go in the place. */
9868 if (r_type
== R_ARM_LDRS_PC_G0
9869 || r_type
== R_ARM_LDRS_PC_G1
9870 || r_type
== R_ARM_LDRS_PC_G2
)
9872 signed_value
= value
- pc
+ signed_addend
;
9874 /* Section base relative. */
9875 signed_value
= value
- sb
+ signed_addend
;
9877 /* Calculate the value of the relevant G_{n-1} to obtain
9878 the residual at that stage. */
9879 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
9881 /* Check for overflow. */
9882 if (residual
>= 0x100)
9884 (*_bfd_error_handler
)
9885 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9886 input_bfd
, input_section
,
9887 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
9888 return bfd_reloc_overflow
;
9891 /* Mask out the value and U bit. */
9894 /* Set the U bit if the value to go in the place is non-negative. */
9895 if (signed_value
>= 0)
9898 /* Encode the offset. */
9899 insn
|= ((residual
& 0xf0) << 4) | (residual
& 0xf);
9901 bfd_put_32 (input_bfd
, insn
, hit_data
);
9903 return bfd_reloc_ok
;
9905 case R_ARM_LDC_PC_G0
:
9906 case R_ARM_LDC_PC_G1
:
9907 case R_ARM_LDC_PC_G2
:
9908 case R_ARM_LDC_SB_G0
:
9909 case R_ARM_LDC_SB_G1
:
9910 case R_ARM_LDC_SB_G2
:
9912 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9913 bfd_vma pc
= input_section
->output_section
->vma
9914 + input_section
->output_offset
+ rel
->r_offset
;
9915 bfd_vma sb
= 0; /* See note above. */
9917 bfd_signed_vma signed_value
;
9920 /* Determine which groups of bits to calculate. */
9923 case R_ARM_LDC_PC_G0
:
9924 case R_ARM_LDC_SB_G0
:
9928 case R_ARM_LDC_PC_G1
:
9929 case R_ARM_LDC_SB_G1
:
9933 case R_ARM_LDC_PC_G2
:
9934 case R_ARM_LDC_SB_G2
:
9942 /* If REL, extract the addend from the insn. If RELA, it will
9943 have already been fetched for us. */
9944 if (globals
->use_rel
)
9946 int negative
= (insn
& (1 << 23)) ? 1 : -1;
9947 signed_addend
= negative
* ((insn
& 0xff) << 2);
9950 /* Compute the value (X) to go in the place. */
9951 if (r_type
== R_ARM_LDC_PC_G0
9952 || r_type
== R_ARM_LDC_PC_G1
9953 || r_type
== R_ARM_LDC_PC_G2
)
9955 signed_value
= value
- pc
+ signed_addend
;
9957 /* Section base relative. */
9958 signed_value
= value
- sb
+ signed_addend
;
9960 /* Calculate the value of the relevant G_{n-1} to obtain
9961 the residual at that stage. */
9962 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
9964 /* Check for overflow. (The absolute value to go in the place must be
9965 divisible by four and, after having been divided by four, must
9966 fit in eight bits.) */
9967 if ((residual
& 0x3) != 0 || residual
>= 0x400)
9969 (*_bfd_error_handler
)
9970 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9971 input_bfd
, input_section
,
9972 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
9973 return bfd_reloc_overflow
;
9976 /* Mask out the value and U bit. */
9979 /* Set the U bit if the value to go in the place is non-negative. */
9980 if (signed_value
>= 0)
9983 /* Encode the offset. */
9984 insn
|= residual
>> 2;
9986 bfd_put_32 (input_bfd
, insn
, hit_data
);
9988 return bfd_reloc_ok
;
9991 return bfd_reloc_notsupported
;
9995 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
9997 arm_add_to_rel (bfd
* abfd
,
9999 reloc_howto_type
* howto
,
10000 bfd_signed_vma increment
)
10002 bfd_signed_vma addend
;
10004 if (howto
->type
== R_ARM_THM_CALL
10005 || howto
->type
== R_ARM_THM_JUMP24
)
10007 int upper_insn
, lower_insn
;
10010 upper_insn
= bfd_get_16 (abfd
, address
);
10011 lower_insn
= bfd_get_16 (abfd
, address
+ 2);
10012 upper
= upper_insn
& 0x7ff;
10013 lower
= lower_insn
& 0x7ff;
10015 addend
= (upper
<< 12) | (lower
<< 1);
10016 addend
+= increment
;
10019 upper_insn
= (upper_insn
& 0xf800) | ((addend
>> 11) & 0x7ff);
10020 lower_insn
= (lower_insn
& 0xf800) | (addend
& 0x7ff);
10022 bfd_put_16 (abfd
, (bfd_vma
) upper_insn
, address
);
10023 bfd_put_16 (abfd
, (bfd_vma
) lower_insn
, address
+ 2);
10029 contents
= bfd_get_32 (abfd
, address
);
10031 /* Get the (signed) value from the instruction. */
10032 addend
= contents
& howto
->src_mask
;
10033 if (addend
& ((howto
->src_mask
+ 1) >> 1))
10035 bfd_signed_vma mask
;
10038 mask
&= ~ howto
->src_mask
;
10042 /* Add in the increment, (which is a byte value). */
10043 switch (howto
->type
)
10046 addend
+= increment
;
10053 addend
<<= howto
->size
;
10054 addend
+= increment
;
10056 /* Should we check for overflow here ? */
10058 /* Drop any undesired bits. */
10059 addend
>>= howto
->rightshift
;
10063 contents
= (contents
& ~ howto
->dst_mask
) | (addend
& howto
->dst_mask
);
10065 bfd_put_32 (abfd
, contents
, address
);
10069 #define IS_ARM_TLS_RELOC(R_TYPE) \
10070 ((R_TYPE) == R_ARM_TLS_GD32 \
10071 || (R_TYPE) == R_ARM_TLS_LDO32 \
10072 || (R_TYPE) == R_ARM_TLS_LDM32 \
10073 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
10074 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
10075 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
10076 || (R_TYPE) == R_ARM_TLS_LE32 \
10077 || (R_TYPE) == R_ARM_TLS_IE32 \
10078 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
10080 /* Specific set of relocations for the gnu tls dialect. */
10081 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
10082 ((R_TYPE) == R_ARM_TLS_GOTDESC \
10083 || (R_TYPE) == R_ARM_TLS_CALL \
10084 || (R_TYPE) == R_ARM_THM_TLS_CALL \
10085 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
10086 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
10088 /* Relocate an ARM ELF section. */
10091 elf32_arm_relocate_section (bfd
* output_bfd
,
10092 struct bfd_link_info
* info
,
10094 asection
* input_section
,
10095 bfd_byte
* contents
,
10096 Elf_Internal_Rela
* relocs
,
10097 Elf_Internal_Sym
* local_syms
,
10098 asection
** local_sections
)
10100 Elf_Internal_Shdr
*symtab_hdr
;
10101 struct elf_link_hash_entry
**sym_hashes
;
10102 Elf_Internal_Rela
*rel
;
10103 Elf_Internal_Rela
*relend
;
10105 struct elf32_arm_link_hash_table
* globals
;
10107 globals
= elf32_arm_hash_table (info
);
10108 if (globals
== NULL
)
10111 symtab_hdr
= & elf_symtab_hdr (input_bfd
);
10112 sym_hashes
= elf_sym_hashes (input_bfd
);
10115 relend
= relocs
+ input_section
->reloc_count
;
10116 for (; rel
< relend
; rel
++)
10119 reloc_howto_type
* howto
;
10120 unsigned long r_symndx
;
10121 Elf_Internal_Sym
* sym
;
10123 struct elf_link_hash_entry
* h
;
10124 bfd_vma relocation
;
10125 bfd_reloc_status_type r
;
10128 bfd_boolean unresolved_reloc
= FALSE
;
10129 char *error_message
= NULL
;
10131 r_symndx
= ELF32_R_SYM (rel
->r_info
);
10132 r_type
= ELF32_R_TYPE (rel
->r_info
);
10133 r_type
= arm_real_reloc_type (globals
, r_type
);
10135 if ( r_type
== R_ARM_GNU_VTENTRY
10136 || r_type
== R_ARM_GNU_VTINHERIT
)
10139 bfd_reloc
.howto
= elf32_arm_howto_from_type (r_type
);
10140 howto
= bfd_reloc
.howto
;
10146 if (r_symndx
< symtab_hdr
->sh_info
)
10148 sym
= local_syms
+ r_symndx
;
10149 sym_type
= ELF32_ST_TYPE (sym
->st_info
);
10150 sec
= local_sections
[r_symndx
];
10152 /* An object file might have a reference to a local
10153 undefined symbol. This is a daft object file, but we
10154 should at least do something about it. V4BX & NONE
10155 relocations do not use the symbol and are explicitly
10156 allowed to use the undefined symbol, so allow those.
10157 Likewise for relocations against STN_UNDEF. */
10158 if (r_type
!= R_ARM_V4BX
10159 && r_type
!= R_ARM_NONE
10160 && r_symndx
!= STN_UNDEF
10161 && bfd_is_und_section (sec
)
10162 && ELF_ST_BIND (sym
->st_info
) != STB_WEAK
)
10164 if (!info
->callbacks
->undefined_symbol
10165 (info
, bfd_elf_string_from_elf_section
10166 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
),
10167 input_bfd
, input_section
,
10168 rel
->r_offset
, TRUE
))
10172 if (globals
->use_rel
)
10174 relocation
= (sec
->output_section
->vma
10175 + sec
->output_offset
10177 if (!info
->relocatable
10178 && (sec
->flags
& SEC_MERGE
)
10179 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
10182 bfd_vma addend
, value
;
10186 case R_ARM_MOVW_ABS_NC
:
10187 case R_ARM_MOVT_ABS
:
10188 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
10189 addend
= ((value
& 0xf0000) >> 4) | (value
& 0xfff);
10190 addend
= (addend
^ 0x8000) - 0x8000;
10193 case R_ARM_THM_MOVW_ABS_NC
:
10194 case R_ARM_THM_MOVT_ABS
:
10195 value
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
)
10197 value
|= bfd_get_16 (input_bfd
,
10198 contents
+ rel
->r_offset
+ 2);
10199 addend
= ((value
& 0xf7000) >> 4) | (value
& 0xff)
10200 | ((value
& 0x04000000) >> 15);
10201 addend
= (addend
^ 0x8000) - 0x8000;
10205 if (howto
->rightshift
10206 || (howto
->src_mask
& (howto
->src_mask
+ 1)))
10208 (*_bfd_error_handler
)
10209 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
10210 input_bfd
, input_section
,
10211 (long) rel
->r_offset
, howto
->name
);
10215 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
10217 /* Get the (signed) value from the instruction. */
10218 addend
= value
& howto
->src_mask
;
10219 if (addend
& ((howto
->src_mask
+ 1) >> 1))
10221 bfd_signed_vma mask
;
10224 mask
&= ~ howto
->src_mask
;
10232 _bfd_elf_rel_local_sym (output_bfd
, sym
, &msec
, addend
)
10234 addend
+= msec
->output_section
->vma
+ msec
->output_offset
;
10236 /* Cases here must match those in the preceding
10237 switch statement. */
10240 case R_ARM_MOVW_ABS_NC
:
10241 case R_ARM_MOVT_ABS
:
10242 value
= (value
& 0xfff0f000) | ((addend
& 0xf000) << 4)
10243 | (addend
& 0xfff);
10244 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
10247 case R_ARM_THM_MOVW_ABS_NC
:
10248 case R_ARM_THM_MOVT_ABS
:
10249 value
= (value
& 0xfbf08f00) | ((addend
& 0xf700) << 4)
10250 | (addend
& 0xff) | ((addend
& 0x0800) << 15);
10251 bfd_put_16 (input_bfd
, value
>> 16,
10252 contents
+ rel
->r_offset
);
10253 bfd_put_16 (input_bfd
, value
,
10254 contents
+ rel
->r_offset
+ 2);
10258 value
= (value
& ~ howto
->dst_mask
)
10259 | (addend
& howto
->dst_mask
);
10260 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
10266 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
10270 bfd_boolean warned
;
10272 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
10273 r_symndx
, symtab_hdr
, sym_hashes
,
10274 h
, sec
, relocation
,
10275 unresolved_reloc
, warned
);
10277 sym_type
= h
->type
;
10280 if (sec
!= NULL
&& elf_discarded_section (sec
))
10281 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
10282 rel
, relend
, howto
, contents
);
10284 if (info
->relocatable
)
10286 /* This is a relocatable link. We don't have to change
10287 anything, unless the reloc is against a section symbol,
10288 in which case we have to adjust according to where the
10289 section symbol winds up in the output section. */
10290 if (sym
!= NULL
&& ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
10292 if (globals
->use_rel
)
10293 arm_add_to_rel (input_bfd
, contents
+ rel
->r_offset
,
10294 howto
, (bfd_signed_vma
) sec
->output_offset
);
10296 rel
->r_addend
+= sec
->output_offset
;
10302 name
= h
->root
.root
.string
;
10305 name
= (bfd_elf_string_from_elf_section
10306 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
10307 if (name
== NULL
|| *name
== '\0')
10308 name
= bfd_section_name (input_bfd
, sec
);
10311 if (r_symndx
!= STN_UNDEF
10312 && r_type
!= R_ARM_NONE
10314 || h
->root
.type
== bfd_link_hash_defined
10315 || h
->root
.type
== bfd_link_hash_defweak
)
10316 && IS_ARM_TLS_RELOC (r_type
) != (sym_type
== STT_TLS
))
10318 (*_bfd_error_handler
)
10319 ((sym_type
== STT_TLS
10320 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10321 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
10324 (long) rel
->r_offset
,
10329 /* We call elf32_arm_final_link_relocate unless we're completely
10330 done, i.e., the relaxation produced the final output we want,
10331 and we won't let anybody mess with it. Also, we have to do
10332 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
10333 both in relaxed and non-relaxed cases */
10334 if ((elf32_arm_tls_transition (info
, r_type
, h
) != (unsigned)r_type
)
10335 || (IS_ARM_TLS_GNU_RELOC (r_type
)
10336 && !((h
? elf32_arm_hash_entry (h
)->tls_type
:
10337 elf32_arm_local_got_tls_type (input_bfd
)[r_symndx
])
10340 r
= elf32_arm_tls_relax (globals
, input_bfd
, input_section
,
10341 contents
, rel
, h
== NULL
);
10342 /* This may have been marked unresolved because it came from
10343 a shared library. But we've just dealt with that. */
10344 unresolved_reloc
= 0;
10347 r
= bfd_reloc_continue
;
10349 if (r
== bfd_reloc_continue
)
10350 r
= elf32_arm_final_link_relocate (howto
, input_bfd
, output_bfd
,
10351 input_section
, contents
, rel
,
10352 relocation
, info
, sec
, name
, sym_type
,
10353 (h
? h
->target_internal
10354 : ARM_SYM_BRANCH_TYPE (sym
)), h
,
10355 &unresolved_reloc
, &error_message
);
10357 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10358 because such sections are not SEC_ALLOC and thus ld.so will
10359 not process them. */
10360 if (unresolved_reloc
10361 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
10362 && h
->def_dynamic
))
10364 (*_bfd_error_handler
)
10365 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10368 (long) rel
->r_offset
,
10370 h
->root
.root
.string
);
10374 if (r
!= bfd_reloc_ok
)
10378 case bfd_reloc_overflow
:
10379 /* If the overflowing reloc was to an undefined symbol,
10380 we have already printed one error message and there
10381 is no point complaining again. */
10383 h
->root
.type
!= bfd_link_hash_undefined
)
10384 && (!((*info
->callbacks
->reloc_overflow
)
10385 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
10386 (bfd_vma
) 0, input_bfd
, input_section
,
10391 case bfd_reloc_undefined
:
10392 if (!((*info
->callbacks
->undefined_symbol
)
10393 (info
, name
, input_bfd
, input_section
,
10394 rel
->r_offset
, TRUE
)))
10398 case bfd_reloc_outofrange
:
10399 error_message
= _("out of range");
10402 case bfd_reloc_notsupported
:
10403 error_message
= _("unsupported relocation");
10406 case bfd_reloc_dangerous
:
10407 /* error_message should already be set. */
10411 error_message
= _("unknown error");
10412 /* Fall through. */
10415 BFD_ASSERT (error_message
!= NULL
);
10416 if (!((*info
->callbacks
->reloc_dangerous
)
10417 (info
, error_message
, input_bfd
, input_section
,
10428 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
10429 adds the edit to the start of the list. (The list must be built in order of
10430 ascending TINDEX: the function's callers are primarily responsible for
10431 maintaining that condition). */
10434 add_unwind_table_edit (arm_unwind_table_edit
**head
,
10435 arm_unwind_table_edit
**tail
,
10436 arm_unwind_edit_type type
,
10437 asection
*linked_section
,
10438 unsigned int tindex
)
10440 arm_unwind_table_edit
*new_edit
= (arm_unwind_table_edit
*)
10441 xmalloc (sizeof (arm_unwind_table_edit
));
10443 new_edit
->type
= type
;
10444 new_edit
->linked_section
= linked_section
;
10445 new_edit
->index
= tindex
;
10449 new_edit
->next
= NULL
;
10452 (*tail
)->next
= new_edit
;
10454 (*tail
) = new_edit
;
10457 (*head
) = new_edit
;
10461 new_edit
->next
= *head
;
10470 static _arm_elf_section_data
*get_arm_elf_section_data (asection
*);
10472 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
10474 adjust_exidx_size(asection
*exidx_sec
, int adjust
)
10478 if (!exidx_sec
->rawsize
)
10479 exidx_sec
->rawsize
= exidx_sec
->size
;
10481 bfd_set_section_size (exidx_sec
->owner
, exidx_sec
, exidx_sec
->size
+ adjust
);
10482 out_sec
= exidx_sec
->output_section
;
10483 /* Adjust size of output section. */
10484 bfd_set_section_size (out_sec
->owner
, out_sec
, out_sec
->size
+adjust
);
10487 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
10489 insert_cantunwind_after(asection
*text_sec
, asection
*exidx_sec
)
10491 struct _arm_elf_section_data
*exidx_arm_data
;
10493 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
10494 add_unwind_table_edit (
10495 &exidx_arm_data
->u
.exidx
.unwind_edit_list
,
10496 &exidx_arm_data
->u
.exidx
.unwind_edit_tail
,
10497 INSERT_EXIDX_CANTUNWIND_AT_END
, text_sec
, UINT_MAX
);
10499 adjust_exidx_size(exidx_sec
, 8);
10502 /* Scan .ARM.exidx tables, and create a list describing edits which should be
10503 made to those tables, such that:
10505 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
10506 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
10507 codes which have been inlined into the index).
10509 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
10511 The edits are applied when the tables are written
10512 (in elf32_arm_write_section).
10516 elf32_arm_fix_exidx_coverage (asection
**text_section_order
,
10517 unsigned int num_text_sections
,
10518 struct bfd_link_info
*info
,
10519 bfd_boolean merge_exidx_entries
)
10522 unsigned int last_second_word
= 0, i
;
10523 asection
*last_exidx_sec
= NULL
;
10524 asection
*last_text_sec
= NULL
;
10525 int last_unwind_type
= -1;
10527 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
10529 for (inp
= info
->input_bfds
; inp
!= NULL
; inp
= inp
->link_next
)
10533 for (sec
= inp
->sections
; sec
!= NULL
; sec
= sec
->next
)
10535 struct bfd_elf_section_data
*elf_sec
= elf_section_data (sec
);
10536 Elf_Internal_Shdr
*hdr
= &elf_sec
->this_hdr
;
10538 if (!hdr
|| hdr
->sh_type
!= SHT_ARM_EXIDX
)
10541 if (elf_sec
->linked_to
)
10543 Elf_Internal_Shdr
*linked_hdr
10544 = &elf_section_data (elf_sec
->linked_to
)->this_hdr
;
10545 struct _arm_elf_section_data
*linked_sec_arm_data
10546 = get_arm_elf_section_data (linked_hdr
->bfd_section
);
10548 if (linked_sec_arm_data
== NULL
)
10551 /* Link this .ARM.exidx section back from the text section it
10553 linked_sec_arm_data
->u
.text
.arm_exidx_sec
= sec
;
10558 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
10559 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
10560 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
10562 for (i
= 0; i
< num_text_sections
; i
++)
10564 asection
*sec
= text_section_order
[i
];
10565 asection
*exidx_sec
;
10566 struct _arm_elf_section_data
*arm_data
= get_arm_elf_section_data (sec
);
10567 struct _arm_elf_section_data
*exidx_arm_data
;
10568 bfd_byte
*contents
= NULL
;
10569 int deleted_exidx_bytes
= 0;
10571 arm_unwind_table_edit
*unwind_edit_head
= NULL
;
10572 arm_unwind_table_edit
*unwind_edit_tail
= NULL
;
10573 Elf_Internal_Shdr
*hdr
;
10576 if (arm_data
== NULL
)
10579 exidx_sec
= arm_data
->u
.text
.arm_exidx_sec
;
10580 if (exidx_sec
== NULL
)
10582 /* Section has no unwind data. */
10583 if (last_unwind_type
== 0 || !last_exidx_sec
)
10586 /* Ignore zero sized sections. */
10587 if (sec
->size
== 0)
10590 insert_cantunwind_after(last_text_sec
, last_exidx_sec
);
10591 last_unwind_type
= 0;
10595 /* Skip /DISCARD/ sections. */
10596 if (bfd_is_abs_section (exidx_sec
->output_section
))
10599 hdr
= &elf_section_data (exidx_sec
)->this_hdr
;
10600 if (hdr
->sh_type
!= SHT_ARM_EXIDX
)
10603 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
10604 if (exidx_arm_data
== NULL
)
10607 ibfd
= exidx_sec
->owner
;
10609 if (hdr
->contents
!= NULL
)
10610 contents
= hdr
->contents
;
10611 else if (! bfd_malloc_and_get_section (ibfd
, exidx_sec
, &contents
))
10615 for (j
= 0; j
< hdr
->sh_size
; j
+= 8)
10617 unsigned int second_word
= bfd_get_32 (ibfd
, contents
+ j
+ 4);
10621 /* An EXIDX_CANTUNWIND entry. */
10622 if (second_word
== 1)
10624 if (last_unwind_type
== 0)
10628 /* Inlined unwinding data. Merge if equal to previous. */
10629 else if ((second_word
& 0x80000000) != 0)
10631 if (merge_exidx_entries
10632 && last_second_word
== second_word
&& last_unwind_type
== 1)
10635 last_second_word
= second_word
;
10637 /* Normal table entry. In theory we could merge these too,
10638 but duplicate entries are likely to be much less common. */
10644 add_unwind_table_edit (&unwind_edit_head
, &unwind_edit_tail
,
10645 DELETE_EXIDX_ENTRY
, NULL
, j
/ 8);
10647 deleted_exidx_bytes
+= 8;
10650 last_unwind_type
= unwind_type
;
10653 /* Free contents if we allocated it ourselves. */
10654 if (contents
!= hdr
->contents
)
10657 /* Record edits to be applied later (in elf32_arm_write_section). */
10658 exidx_arm_data
->u
.exidx
.unwind_edit_list
= unwind_edit_head
;
10659 exidx_arm_data
->u
.exidx
.unwind_edit_tail
= unwind_edit_tail
;
10661 if (deleted_exidx_bytes
> 0)
10662 adjust_exidx_size(exidx_sec
, -deleted_exidx_bytes
);
10664 last_exidx_sec
= exidx_sec
;
10665 last_text_sec
= sec
;
10668 /* Add terminating CANTUNWIND entry. */
10669 if (last_exidx_sec
&& last_unwind_type
!= 0)
10670 insert_cantunwind_after(last_text_sec
, last_exidx_sec
);
10676 elf32_arm_output_glue_section (struct bfd_link_info
*info
, bfd
*obfd
,
10677 bfd
*ibfd
, const char *name
)
10679 asection
*sec
, *osec
;
10681 sec
= bfd_get_section_by_name (ibfd
, name
);
10682 if (sec
== NULL
|| (sec
->flags
& SEC_EXCLUDE
) != 0)
10685 osec
= sec
->output_section
;
10686 if (elf32_arm_write_section (obfd
, info
, sec
, sec
->contents
))
10689 if (! bfd_set_section_contents (obfd
, osec
, sec
->contents
,
10690 sec
->output_offset
, sec
->size
))
10697 elf32_arm_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
10699 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (info
);
10700 asection
*sec
, *osec
;
10702 if (globals
== NULL
)
10705 /* Invoke the regular ELF backend linker to do all the work. */
10706 if (!bfd_elf_final_link (abfd
, info
))
10709 /* Process stub sections (eg BE8 encoding, ...). */
10710 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
10712 for (i
=0; i
<htab
->top_id
; i
++)
10714 sec
= htab
->stub_group
[i
].stub_sec
;
10715 /* Only process it once, in its link_sec slot. */
10716 if (sec
&& i
== htab
->stub_group
[i
].link_sec
->id
)
10718 osec
= sec
->output_section
;
10719 elf32_arm_write_section (abfd
, info
, sec
, sec
->contents
);
10720 if (! bfd_set_section_contents (abfd
, osec
, sec
->contents
,
10721 sec
->output_offset
, sec
->size
))
10726 /* Write out any glue sections now that we have created all the
10728 if (globals
->bfd_of_glue_owner
!= NULL
)
10730 if (! elf32_arm_output_glue_section (info
, abfd
,
10731 globals
->bfd_of_glue_owner
,
10732 ARM2THUMB_GLUE_SECTION_NAME
))
10735 if (! elf32_arm_output_glue_section (info
, abfd
,
10736 globals
->bfd_of_glue_owner
,
10737 THUMB2ARM_GLUE_SECTION_NAME
))
10740 if (! elf32_arm_output_glue_section (info
, abfd
,
10741 globals
->bfd_of_glue_owner
,
10742 VFP11_ERRATUM_VENEER_SECTION_NAME
))
10745 if (! elf32_arm_output_glue_section (info
, abfd
,
10746 globals
->bfd_of_glue_owner
,
10747 ARM_BX_GLUE_SECTION_NAME
))
10754 /* Set the right machine number. */
10757 elf32_arm_object_p (bfd
*abfd
)
10761 mach
= bfd_arm_get_mach_from_notes (abfd
, ARM_NOTE_SECTION
);
10763 if (mach
!= bfd_mach_arm_unknown
)
10764 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
10766 else if (elf_elfheader (abfd
)->e_flags
& EF_ARM_MAVERICK_FLOAT
)
10767 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, bfd_mach_arm_ep9312
);
10770 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
10775 /* Function to keep ARM specific flags in the ELF header. */
10778 elf32_arm_set_private_flags (bfd
*abfd
, flagword flags
)
10780 if (elf_flags_init (abfd
)
10781 && elf_elfheader (abfd
)->e_flags
!= flags
)
10783 if (EF_ARM_EABI_VERSION (flags
) == EF_ARM_EABI_UNKNOWN
)
10785 if (flags
& EF_ARM_INTERWORK
)
10786 (*_bfd_error_handler
)
10787 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
10791 (_("Warning: Clearing the interworking flag of %B due to outside request"),
10797 elf_elfheader (abfd
)->e_flags
= flags
;
10798 elf_flags_init (abfd
) = TRUE
;
10804 /* Copy backend specific data from one object module to another. */
10807 elf32_arm_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
10810 flagword out_flags
;
10812 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
10815 in_flags
= elf_elfheader (ibfd
)->e_flags
;
10816 out_flags
= elf_elfheader (obfd
)->e_flags
;
10818 if (elf_flags_init (obfd
)
10819 && EF_ARM_EABI_VERSION (out_flags
) == EF_ARM_EABI_UNKNOWN
10820 && in_flags
!= out_flags
)
10822 /* Cannot mix APCS26 and APCS32 code. */
10823 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
10826 /* Cannot mix float APCS and non-float APCS code. */
10827 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
10830 /* If the src and dest have different interworking flags
10831 then turn off the interworking bit. */
10832 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
10834 if (out_flags
& EF_ARM_INTERWORK
)
10836 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
10839 in_flags
&= ~EF_ARM_INTERWORK
;
10842 /* Likewise for PIC, though don't warn for this case. */
10843 if ((in_flags
& EF_ARM_PIC
) != (out_flags
& EF_ARM_PIC
))
10844 in_flags
&= ~EF_ARM_PIC
;
10847 elf_elfheader (obfd
)->e_flags
= in_flags
;
10848 elf_flags_init (obfd
) = TRUE
;
10850 /* Also copy the EI_OSABI field. */
10851 elf_elfheader (obfd
)->e_ident
[EI_OSABI
] =
10852 elf_elfheader (ibfd
)->e_ident
[EI_OSABI
];
10854 /* Copy object attributes. */
10855 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
10860 /* Values for Tag_ABI_PCS_R9_use. */
10869 /* Values for Tag_ABI_PCS_RW_data. */
10872 AEABI_PCS_RW_data_absolute
,
10873 AEABI_PCS_RW_data_PCrel
,
10874 AEABI_PCS_RW_data_SBrel
,
10875 AEABI_PCS_RW_data_unused
10878 /* Values for Tag_ABI_enum_size. */
10884 AEABI_enum_forced_wide
10887 /* Determine whether an object attribute tag takes an integer, a
10891 elf32_arm_obj_attrs_arg_type (int tag
)
10893 if (tag
== Tag_compatibility
)
10894 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_STR_VAL
;
10895 else if (tag
== Tag_nodefaults
)
10896 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_NO_DEFAULT
;
10897 else if (tag
== Tag_CPU_raw_name
|| tag
== Tag_CPU_name
)
10898 return ATTR_TYPE_FLAG_STR_VAL
;
10900 return ATTR_TYPE_FLAG_INT_VAL
;
10902 return (tag
& 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL
: ATTR_TYPE_FLAG_INT_VAL
;
10905 /* The ABI defines that Tag_conformance should be emitted first, and that
10906 Tag_nodefaults should be second (if either is defined). This sets those
10907 two positions, and bumps up the position of all the remaining tags to
10910 elf32_arm_obj_attrs_order (int num
)
10912 if (num
== LEAST_KNOWN_OBJ_ATTRIBUTE
)
10913 return Tag_conformance
;
10914 if (num
== LEAST_KNOWN_OBJ_ATTRIBUTE
+ 1)
10915 return Tag_nodefaults
;
10916 if ((num
- 2) < Tag_nodefaults
)
10918 if ((num
- 1) < Tag_conformance
)
10923 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10925 elf32_arm_obj_attrs_handle_unknown (bfd
*abfd
, int tag
)
10927 if ((tag
& 127) < 64)
10930 (_("%B: Unknown mandatory EABI object attribute %d"),
10932 bfd_set_error (bfd_error_bad_value
);
10938 (_("Warning: %B: Unknown EABI object attribute %d"),
10944 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
10945 Returns -1 if no architecture could be read. */
10948 get_secondary_compatible_arch (bfd
*abfd
)
10950 obj_attribute
*attr
=
10951 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
10953 /* Note: the tag and its argument below are uleb128 values, though
10954 currently-defined values fit in one byte for each. */
10956 && attr
->s
[0] == Tag_CPU_arch
10957 && (attr
->s
[1] & 128) != 128
10958 && attr
->s
[2] == 0)
10961 /* This tag is "safely ignorable", so don't complain if it looks funny. */
10965 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10966 The tag is removed if ARCH is -1. */
10969 set_secondary_compatible_arch (bfd
*abfd
, int arch
)
10971 obj_attribute
*attr
=
10972 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
10980 /* Note: the tag and its argument below are uleb128 values, though
10981 currently-defined values fit in one byte for each. */
10983 attr
->s
= (char *) bfd_alloc (abfd
, 3);
10984 attr
->s
[0] = Tag_CPU_arch
;
10989 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10993 tag_cpu_arch_combine (bfd
*ibfd
, int oldtag
, int *secondary_compat_out
,
10994 int newtag
, int secondary_compat
)
10996 #define T(X) TAG_CPU_ARCH_##X
10997 int tagl
, tagh
, result
;
11000 T(V6T2
), /* PRE_V4. */
11002 T(V6T2
), /* V4T. */
11003 T(V6T2
), /* V5T. */
11004 T(V6T2
), /* V5TE. */
11005 T(V6T2
), /* V5TEJ. */
11008 T(V6T2
) /* V6T2. */
11012 T(V6K
), /* PRE_V4. */
11016 T(V6K
), /* V5TE. */
11017 T(V6K
), /* V5TEJ. */
11019 T(V6KZ
), /* V6KZ. */
11025 T(V7
), /* PRE_V4. */
11030 T(V7
), /* V5TEJ. */
11043 T(V6K
), /* V5TE. */
11044 T(V6K
), /* V5TEJ. */
11046 T(V6KZ
), /* V6KZ. */
11050 T(V6_M
) /* V6_M. */
11052 const int v6s_m
[] =
11058 T(V6K
), /* V5TE. */
11059 T(V6K
), /* V5TEJ. */
11061 T(V6KZ
), /* V6KZ. */
11065 T(V6S_M
), /* V6_M. */
11066 T(V6S_M
) /* V6S_M. */
11068 const int v7e_m
[] =
11072 T(V7E_M
), /* V4T. */
11073 T(V7E_M
), /* V5T. */
11074 T(V7E_M
), /* V5TE. */
11075 T(V7E_M
), /* V5TEJ. */
11076 T(V7E_M
), /* V6. */
11077 T(V7E_M
), /* V6KZ. */
11078 T(V7E_M
), /* V6T2. */
11079 T(V7E_M
), /* V6K. */
11080 T(V7E_M
), /* V7. */
11081 T(V7E_M
), /* V6_M. */
11082 T(V7E_M
), /* V6S_M. */
11083 T(V7E_M
) /* V7E_M. */
11085 const int v4t_plus_v6_m
[] =
11091 T(V5TE
), /* V5TE. */
11092 T(V5TEJ
), /* V5TEJ. */
11094 T(V6KZ
), /* V6KZ. */
11095 T(V6T2
), /* V6T2. */
11098 T(V6_M
), /* V6_M. */
11099 T(V6S_M
), /* V6S_M. */
11100 T(V7E_M
), /* V7E_M. */
11101 T(V4T_PLUS_V6_M
) /* V4T plus V6_M. */
11103 const int *comb
[] =
11111 /* Pseudo-architecture. */
11115 /* Check we've not got a higher architecture than we know about. */
11117 if (oldtag
> MAX_TAG_CPU_ARCH
|| newtag
> MAX_TAG_CPU_ARCH
)
11119 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd
);
11123 /* Override old tag if we have a Tag_also_compatible_with on the output. */
11125 if ((oldtag
== T(V6_M
) && *secondary_compat_out
== T(V4T
))
11126 || (oldtag
== T(V4T
) && *secondary_compat_out
== T(V6_M
)))
11127 oldtag
= T(V4T_PLUS_V6_M
);
11129 /* And override the new tag if we have a Tag_also_compatible_with on the
11132 if ((newtag
== T(V6_M
) && secondary_compat
== T(V4T
))
11133 || (newtag
== T(V4T
) && secondary_compat
== T(V6_M
)))
11134 newtag
= T(V4T_PLUS_V6_M
);
11136 tagl
= (oldtag
< newtag
) ? oldtag
: newtag
;
11137 result
= tagh
= (oldtag
> newtag
) ? oldtag
: newtag
;
11139 /* Architectures before V6KZ add features monotonically. */
11140 if (tagh
<= TAG_CPU_ARCH_V6KZ
)
11143 result
= comb
[tagh
- T(V6T2
)][tagl
];
11145 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11146 as the canonical version. */
11147 if (result
== T(V4T_PLUS_V6_M
))
11150 *secondary_compat_out
= T(V6_M
);
11153 *secondary_compat_out
= -1;
11157 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
11158 ibfd
, oldtag
, newtag
);
11166 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
11167 are conflicting attributes. */
11170 elf32_arm_merge_eabi_attributes (bfd
*ibfd
, bfd
*obfd
)
11172 obj_attribute
*in_attr
;
11173 obj_attribute
*out_attr
;
11174 /* Some tags have 0 = don't care, 1 = strong requirement,
11175 2 = weak requirement. */
11176 static const int order_021
[3] = {0, 2, 1};
11178 bfd_boolean result
= TRUE
;
11180 /* Skip the linker stubs file. This preserves previous behavior
11181 of accepting unknown attributes in the first input file - but
11183 if (ibfd
->flags
& BFD_LINKER_CREATED
)
11186 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
11188 /* This is the first object. Copy the attributes. */
11189 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
11191 out_attr
= elf_known_obj_attributes_proc (obfd
);
11193 /* Use the Tag_null value to indicate the attributes have been
11197 /* We do not output objects with Tag_MPextension_use_legacy - we move
11198 the attribute's value to Tag_MPextension_use. */
11199 if (out_attr
[Tag_MPextension_use_legacy
].i
!= 0)
11201 if (out_attr
[Tag_MPextension_use
].i
!= 0
11202 && out_attr
[Tag_MPextension_use_legacy
].i
11203 != out_attr
[Tag_MPextension_use
].i
)
11206 (_("Error: %B has both the current and legacy "
11207 "Tag_MPextension_use attributes"), ibfd
);
11211 out_attr
[Tag_MPextension_use
] =
11212 out_attr
[Tag_MPextension_use_legacy
];
11213 out_attr
[Tag_MPextension_use_legacy
].type
= 0;
11214 out_attr
[Tag_MPextension_use_legacy
].i
= 0;
11220 in_attr
= elf_known_obj_attributes_proc (ibfd
);
11221 out_attr
= elf_known_obj_attributes_proc (obfd
);
11222 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
11223 if (in_attr
[Tag_ABI_VFP_args
].i
!= out_attr
[Tag_ABI_VFP_args
].i
)
11225 /* Ignore mismatches if the object doesn't use floating point. */
11226 if (out_attr
[Tag_ABI_FP_number_model
].i
== 0)
11227 out_attr
[Tag_ABI_VFP_args
].i
= in_attr
[Tag_ABI_VFP_args
].i
;
11228 else if (in_attr
[Tag_ABI_FP_number_model
].i
!= 0)
11231 (_("error: %B uses VFP register arguments, %B does not"),
11232 in_attr
[Tag_ABI_VFP_args
].i
? ibfd
: obfd
,
11233 in_attr
[Tag_ABI_VFP_args
].i
? obfd
: ibfd
);
11238 for (i
= LEAST_KNOWN_OBJ_ATTRIBUTE
; i
< NUM_KNOWN_OBJ_ATTRIBUTES
; i
++)
11240 /* Merge this attribute with existing attributes. */
11243 case Tag_CPU_raw_name
:
11245 /* These are merged after Tag_CPU_arch. */
11248 case Tag_ABI_optimization_goals
:
11249 case Tag_ABI_FP_optimization_goals
:
11250 /* Use the first value seen. */
11255 int secondary_compat
= -1, secondary_compat_out
= -1;
11256 unsigned int saved_out_attr
= out_attr
[i
].i
;
11257 static const char *name_table
[] = {
11258 /* These aren't real CPU names, but we can't guess
11259 that from the architecture version alone. */
11275 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
11276 secondary_compat
= get_secondary_compatible_arch (ibfd
);
11277 secondary_compat_out
= get_secondary_compatible_arch (obfd
);
11278 out_attr
[i
].i
= tag_cpu_arch_combine (ibfd
, out_attr
[i
].i
,
11279 &secondary_compat_out
,
11282 set_secondary_compatible_arch (obfd
, secondary_compat_out
);
11284 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
11285 if (out_attr
[i
].i
== saved_out_attr
)
11286 ; /* Leave the names alone. */
11287 else if (out_attr
[i
].i
== in_attr
[i
].i
)
11289 /* The output architecture has been changed to match the
11290 input architecture. Use the input names. */
11291 out_attr
[Tag_CPU_name
].s
= in_attr
[Tag_CPU_name
].s
11292 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_name
].s
)
11294 out_attr
[Tag_CPU_raw_name
].s
= in_attr
[Tag_CPU_raw_name
].s
11295 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_raw_name
].s
)
11300 out_attr
[Tag_CPU_name
].s
= NULL
;
11301 out_attr
[Tag_CPU_raw_name
].s
= NULL
;
11304 /* If we still don't have a value for Tag_CPU_name,
11305 make one up now. Tag_CPU_raw_name remains blank. */
11306 if (out_attr
[Tag_CPU_name
].s
== NULL
11307 && out_attr
[i
].i
< ARRAY_SIZE (name_table
))
11308 out_attr
[Tag_CPU_name
].s
=
11309 _bfd_elf_attr_strdup (obfd
, name_table
[out_attr
[i
].i
]);
11313 case Tag_ARM_ISA_use
:
11314 case Tag_THUMB_ISA_use
:
11315 case Tag_WMMX_arch
:
11316 case Tag_Advanced_SIMD_arch
:
11317 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
11318 case Tag_ABI_FP_rounding
:
11319 case Tag_ABI_FP_exceptions
:
11320 case Tag_ABI_FP_user_exceptions
:
11321 case Tag_ABI_FP_number_model
:
11322 case Tag_FP_HP_extension
:
11323 case Tag_CPU_unaligned_access
:
11325 case Tag_MPextension_use
:
11326 /* Use the largest value specified. */
11327 if (in_attr
[i
].i
> out_attr
[i
].i
)
11328 out_attr
[i
].i
= in_attr
[i
].i
;
11331 case Tag_ABI_align_preserved
:
11332 case Tag_ABI_PCS_RO_data
:
11333 /* Use the smallest value specified. */
11334 if (in_attr
[i
].i
< out_attr
[i
].i
)
11335 out_attr
[i
].i
= in_attr
[i
].i
;
11338 case Tag_ABI_align_needed
:
11339 if ((in_attr
[i
].i
> 0 || out_attr
[i
].i
> 0)
11340 && (in_attr
[Tag_ABI_align_preserved
].i
== 0
11341 || out_attr
[Tag_ABI_align_preserved
].i
== 0))
11343 /* This error message should be enabled once all non-conformant
11344 binaries in the toolchain have had the attributes set
11347 (_("error: %B: 8-byte data alignment conflicts with %B"),
11351 /* Fall through. */
11352 case Tag_ABI_FP_denormal
:
11353 case Tag_ABI_PCS_GOT_use
:
11354 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
11355 value if greater than 2 (for future-proofing). */
11356 if ((in_attr
[i
].i
> 2 && in_attr
[i
].i
> out_attr
[i
].i
)
11357 || (in_attr
[i
].i
<= 2 && out_attr
[i
].i
<= 2
11358 && order_021
[in_attr
[i
].i
] > order_021
[out_attr
[i
].i
]))
11359 out_attr
[i
].i
= in_attr
[i
].i
;
11362 case Tag_Virtualization_use
:
11363 /* The virtualization tag effectively stores two bits of
11364 information: the intended use of TrustZone (in bit 0), and the
11365 intended use of Virtualization (in bit 1). */
11366 if (out_attr
[i
].i
== 0)
11367 out_attr
[i
].i
= in_attr
[i
].i
;
11368 else if (in_attr
[i
].i
!= 0
11369 && in_attr
[i
].i
!= out_attr
[i
].i
)
11371 if (in_attr
[i
].i
<= 3 && out_attr
[i
].i
<= 3)
11376 (_("error: %B: unable to merge virtualization attributes "
11384 case Tag_CPU_arch_profile
:
11385 if (out_attr
[i
].i
!= in_attr
[i
].i
)
11387 /* 0 will merge with anything.
11388 'A' and 'S' merge to 'A'.
11389 'R' and 'S' merge to 'R'.
11390 'M' and 'A|R|S' is an error. */
11391 if (out_attr
[i
].i
== 0
11392 || (out_attr
[i
].i
== 'S'
11393 && (in_attr
[i
].i
== 'A' || in_attr
[i
].i
== 'R')))
11394 out_attr
[i
].i
= in_attr
[i
].i
;
11395 else if (in_attr
[i
].i
== 0
11396 || (in_attr
[i
].i
== 'S'
11397 && (out_attr
[i
].i
== 'A' || out_attr
[i
].i
== 'R')))
11398 ; /* Do nothing. */
11402 (_("error: %B: Conflicting architecture profiles %c/%c"),
11404 in_attr
[i
].i
? in_attr
[i
].i
: '0',
11405 out_attr
[i
].i
? out_attr
[i
].i
: '0');
11412 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
11413 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
11414 when it's 0. It might mean absence of FP hardware if
11415 Tag_FP_arch is zero, otherwise it is effectively SP + DP. */
11417 static const struct
11421 } vfp_versions
[7] =
11435 /* If the output has no requirement about FP hardware,
11436 follow the requirement of the input. */
11437 if (out_attr
[i
].i
== 0)
11439 BFD_ASSERT (out_attr
[Tag_ABI_HardFP_use
].i
== 0);
11440 out_attr
[i
].i
= in_attr
[i
].i
;
11441 out_attr
[Tag_ABI_HardFP_use
].i
11442 = in_attr
[Tag_ABI_HardFP_use
].i
;
11445 /* If the input has no requirement about FP hardware, do
11447 else if (in_attr
[i
].i
== 0)
11449 BFD_ASSERT (in_attr
[Tag_ABI_HardFP_use
].i
== 0);
11453 /* Both the input and the output have nonzero Tag_FP_arch.
11454 So Tag_ABI_HardFP_use is (SP & DP) when it's zero. */
11456 /* If both the input and the output have zero Tag_ABI_HardFP_use,
11458 if (in_attr
[Tag_ABI_HardFP_use
].i
== 0
11459 && out_attr
[Tag_ABI_HardFP_use
].i
== 0)
11461 /* If the input and the output have different Tag_ABI_HardFP_use,
11462 the combination of them is 3 (SP & DP). */
11463 else if (in_attr
[Tag_ABI_HardFP_use
].i
11464 != out_attr
[Tag_ABI_HardFP_use
].i
)
11465 out_attr
[Tag_ABI_HardFP_use
].i
= 3;
11467 /* Now we can handle Tag_FP_arch. */
11469 /* Values greater than 6 aren't defined, so just pick the
11471 if (in_attr
[i
].i
> 6 && in_attr
[i
].i
> out_attr
[i
].i
)
11473 out_attr
[i
] = in_attr
[i
];
11476 /* The output uses the superset of input features
11477 (ISA version) and registers. */
11478 ver
= vfp_versions
[in_attr
[i
].i
].ver
;
11479 if (ver
< vfp_versions
[out_attr
[i
].i
].ver
)
11480 ver
= vfp_versions
[out_attr
[i
].i
].ver
;
11481 regs
= vfp_versions
[in_attr
[i
].i
].regs
;
11482 if (regs
< vfp_versions
[out_attr
[i
].i
].regs
)
11483 regs
= vfp_versions
[out_attr
[i
].i
].regs
;
11484 /* This assumes all possible supersets are also a valid
11486 for (newval
= 6; newval
> 0; newval
--)
11488 if (regs
== vfp_versions
[newval
].regs
11489 && ver
== vfp_versions
[newval
].ver
)
11492 out_attr
[i
].i
= newval
;
11495 case Tag_PCS_config
:
11496 if (out_attr
[i
].i
== 0)
11497 out_attr
[i
].i
= in_attr
[i
].i
;
11498 else if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
11500 /* It's sometimes ok to mix different configs, so this is only
11503 (_("Warning: %B: Conflicting platform configuration"), ibfd
);
11506 case Tag_ABI_PCS_R9_use
:
11507 if (in_attr
[i
].i
!= out_attr
[i
].i
11508 && out_attr
[i
].i
!= AEABI_R9_unused
11509 && in_attr
[i
].i
!= AEABI_R9_unused
)
11512 (_("error: %B: Conflicting use of R9"), ibfd
);
11515 if (out_attr
[i
].i
== AEABI_R9_unused
)
11516 out_attr
[i
].i
= in_attr
[i
].i
;
11518 case Tag_ABI_PCS_RW_data
:
11519 if (in_attr
[i
].i
== AEABI_PCS_RW_data_SBrel
11520 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_SB
11521 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_unused
)
11524 (_("error: %B: SB relative addressing conflicts with use of R9"),
11528 /* Use the smallest value specified. */
11529 if (in_attr
[i
].i
< out_attr
[i
].i
)
11530 out_attr
[i
].i
= in_attr
[i
].i
;
11532 case Tag_ABI_PCS_wchar_t
:
11533 if (out_attr
[i
].i
&& in_attr
[i
].i
&& out_attr
[i
].i
!= in_attr
[i
].i
11534 && !elf_arm_tdata (obfd
)->no_wchar_size_warning
)
11537 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
11538 ibfd
, in_attr
[i
].i
, out_attr
[i
].i
);
11540 else if (in_attr
[i
].i
&& !out_attr
[i
].i
)
11541 out_attr
[i
].i
= in_attr
[i
].i
;
11543 case Tag_ABI_enum_size
:
11544 if (in_attr
[i
].i
!= AEABI_enum_unused
)
11546 if (out_attr
[i
].i
== AEABI_enum_unused
11547 || out_attr
[i
].i
== AEABI_enum_forced_wide
)
11549 /* The existing object is compatible with anything.
11550 Use whatever requirements the new object has. */
11551 out_attr
[i
].i
= in_attr
[i
].i
;
11553 else if (in_attr
[i
].i
!= AEABI_enum_forced_wide
11554 && out_attr
[i
].i
!= in_attr
[i
].i
11555 && !elf_arm_tdata (obfd
)->no_enum_size_warning
)
11557 static const char *aeabi_enum_names
[] =
11558 { "", "variable-size", "32-bit", "" };
11559 const char *in_name
=
11560 in_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
11561 ? aeabi_enum_names
[in_attr
[i
].i
]
11563 const char *out_name
=
11564 out_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
11565 ? aeabi_enum_names
[out_attr
[i
].i
]
11568 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
11569 ibfd
, in_name
, out_name
);
11573 case Tag_ABI_VFP_args
:
11576 case Tag_ABI_WMMX_args
:
11577 if (in_attr
[i
].i
!= out_attr
[i
].i
)
11580 (_("error: %B uses iWMMXt register arguments, %B does not"),
11585 case Tag_compatibility
:
11586 /* Merged in target-independent code. */
11588 case Tag_ABI_HardFP_use
:
11589 /* This is handled along with Tag_FP_arch. */
11591 case Tag_ABI_FP_16bit_format
:
11592 if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
11594 if (in_attr
[i
].i
!= out_attr
[i
].i
)
11597 (_("error: fp16 format mismatch between %B and %B"),
11602 if (in_attr
[i
].i
!= 0)
11603 out_attr
[i
].i
= in_attr
[i
].i
;
11607 /* This tag is set to zero if we can use UDIV and SDIV in Thumb
11608 mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
11609 SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
11610 CPU. We will merge as follows: If the input attribute's value
11611 is one then the output attribute's value remains unchanged. If
11612 the input attribute's value is zero or two then if the output
11613 attribute's value is one the output value is set to the input
11614 value, otherwise the output value must be the same as the
11616 if (in_attr
[i
].i
!= 1 && out_attr
[i
].i
!= 1)
11618 if (in_attr
[i
].i
!= out_attr
[i
].i
)
11621 (_("DIV usage mismatch between %B and %B"),
11627 if (in_attr
[i
].i
!= 1)
11628 out_attr
[i
].i
= in_attr
[i
].i
;
11632 case Tag_MPextension_use_legacy
:
11633 /* We don't output objects with Tag_MPextension_use_legacy - we
11634 move the value to Tag_MPextension_use. */
11635 if (in_attr
[i
].i
!= 0 && in_attr
[Tag_MPextension_use
].i
!= 0)
11637 if (in_attr
[Tag_MPextension_use
].i
!= in_attr
[i
].i
)
11640 (_("%B has has both the current and legacy "
11641 "Tag_MPextension_use attributes"),
11647 if (in_attr
[i
].i
> out_attr
[Tag_MPextension_use
].i
)
11648 out_attr
[Tag_MPextension_use
] = in_attr
[i
];
11652 case Tag_nodefaults
:
11653 /* This tag is set if it exists, but the value is unused (and is
11654 typically zero). We don't actually need to do anything here -
11655 the merge happens automatically when the type flags are merged
11658 case Tag_also_compatible_with
:
11659 /* Already done in Tag_CPU_arch. */
11661 case Tag_conformance
:
11662 /* Keep the attribute if it matches. Throw it away otherwise.
11663 No attribute means no claim to conform. */
11664 if (!in_attr
[i
].s
|| !out_attr
[i
].s
11665 || strcmp (in_attr
[i
].s
, out_attr
[i
].s
) != 0)
11666 out_attr
[i
].s
= NULL
;
11671 = result
&& _bfd_elf_merge_unknown_attribute_low (ibfd
, obfd
, i
);
11674 /* If out_attr was copied from in_attr then it won't have a type yet. */
11675 if (in_attr
[i
].type
&& !out_attr
[i
].type
)
11676 out_attr
[i
].type
= in_attr
[i
].type
;
11679 /* Merge Tag_compatibility attributes and any common GNU ones. */
11680 if (!_bfd_elf_merge_object_attributes (ibfd
, obfd
))
11683 /* Check for any attributes not known on ARM. */
11684 result
&= _bfd_elf_merge_unknown_attribute_list (ibfd
, obfd
);
11690 /* Return TRUE if the two EABI versions are incompatible. */
11693 elf32_arm_versions_compatible (unsigned iver
, unsigned over
)
11695 /* v4 and v5 are the same spec before and after it was released,
11696 so allow mixing them. */
11697 if ((iver
== EF_ARM_EABI_VER4
&& over
== EF_ARM_EABI_VER5
)
11698 || (iver
== EF_ARM_EABI_VER5
&& over
== EF_ARM_EABI_VER4
))
11701 return (iver
== over
);
11704 /* Merge backend specific data from an object file to the output
11705 object file when linking. */
11708 elf32_arm_merge_private_bfd_data (bfd
* ibfd
, bfd
* obfd
);
11710 /* Display the flags field. */
11713 elf32_arm_print_private_bfd_data (bfd
*abfd
, void * ptr
)
11715 FILE * file
= (FILE *) ptr
;
11716 unsigned long flags
;
11718 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
11720 /* Print normal ELF private data. */
11721 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
11723 flags
= elf_elfheader (abfd
)->e_flags
;
11724 /* Ignore init flag - it may not be set, despite the flags field
11725 containing valid data. */
11727 /* xgettext:c-format */
11728 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
11730 switch (EF_ARM_EABI_VERSION (flags
))
11732 case EF_ARM_EABI_UNKNOWN
:
11733 /* The following flag bits are GNU extensions and not part of the
11734 official ARM ELF extended ABI. Hence they are only decoded if
11735 the EABI version is not set. */
11736 if (flags
& EF_ARM_INTERWORK
)
11737 fprintf (file
, _(" [interworking enabled]"));
11739 if (flags
& EF_ARM_APCS_26
)
11740 fprintf (file
, " [APCS-26]");
11742 fprintf (file
, " [APCS-32]");
11744 if (flags
& EF_ARM_VFP_FLOAT
)
11745 fprintf (file
, _(" [VFP float format]"));
11746 else if (flags
& EF_ARM_MAVERICK_FLOAT
)
11747 fprintf (file
, _(" [Maverick float format]"));
11749 fprintf (file
, _(" [FPA float format]"));
11751 if (flags
& EF_ARM_APCS_FLOAT
)
11752 fprintf (file
, _(" [floats passed in float registers]"));
11754 if (flags
& EF_ARM_PIC
)
11755 fprintf (file
, _(" [position independent]"));
11757 if (flags
& EF_ARM_NEW_ABI
)
11758 fprintf (file
, _(" [new ABI]"));
11760 if (flags
& EF_ARM_OLD_ABI
)
11761 fprintf (file
, _(" [old ABI]"));
11763 if (flags
& EF_ARM_SOFT_FLOAT
)
11764 fprintf (file
, _(" [software FP]"));
11766 flags
&= ~(EF_ARM_INTERWORK
| EF_ARM_APCS_26
| EF_ARM_APCS_FLOAT
11767 | EF_ARM_PIC
| EF_ARM_NEW_ABI
| EF_ARM_OLD_ABI
11768 | EF_ARM_SOFT_FLOAT
| EF_ARM_VFP_FLOAT
11769 | EF_ARM_MAVERICK_FLOAT
);
11772 case EF_ARM_EABI_VER1
:
11773 fprintf (file
, _(" [Version1 EABI]"));
11775 if (flags
& EF_ARM_SYMSARESORTED
)
11776 fprintf (file
, _(" [sorted symbol table]"));
11778 fprintf (file
, _(" [unsorted symbol table]"));
11780 flags
&= ~ EF_ARM_SYMSARESORTED
;
11783 case EF_ARM_EABI_VER2
:
11784 fprintf (file
, _(" [Version2 EABI]"));
11786 if (flags
& EF_ARM_SYMSARESORTED
)
11787 fprintf (file
, _(" [sorted symbol table]"));
11789 fprintf (file
, _(" [unsorted symbol table]"));
11791 if (flags
& EF_ARM_DYNSYMSUSESEGIDX
)
11792 fprintf (file
, _(" [dynamic symbols use segment index]"));
11794 if (flags
& EF_ARM_MAPSYMSFIRST
)
11795 fprintf (file
, _(" [mapping symbols precede others]"));
11797 flags
&= ~(EF_ARM_SYMSARESORTED
| EF_ARM_DYNSYMSUSESEGIDX
11798 | EF_ARM_MAPSYMSFIRST
);
11801 case EF_ARM_EABI_VER3
:
11802 fprintf (file
, _(" [Version3 EABI]"));
11805 case EF_ARM_EABI_VER4
:
11806 fprintf (file
, _(" [Version4 EABI]"));
11809 case EF_ARM_EABI_VER5
:
11810 fprintf (file
, _(" [Version5 EABI]"));
11812 if (flags
& EF_ARM_BE8
)
11813 fprintf (file
, _(" [BE8]"));
11815 if (flags
& EF_ARM_LE8
)
11816 fprintf (file
, _(" [LE8]"));
11818 flags
&= ~(EF_ARM_LE8
| EF_ARM_BE8
);
11822 fprintf (file
, _(" <EABI version unrecognised>"));
11826 flags
&= ~ EF_ARM_EABIMASK
;
11828 if (flags
& EF_ARM_RELEXEC
)
11829 fprintf (file
, _(" [relocatable executable]"));
11831 if (flags
& EF_ARM_HASENTRY
)
11832 fprintf (file
, _(" [has entry point]"));
11834 flags
&= ~ (EF_ARM_RELEXEC
| EF_ARM_HASENTRY
);
11837 fprintf (file
, _("<Unrecognised flag bits set>"));
11839 fputc ('\n', file
);
11845 elf32_arm_get_symbol_type (Elf_Internal_Sym
* elf_sym
, int type
)
11847 switch (ELF_ST_TYPE (elf_sym
->st_info
))
11849 case STT_ARM_TFUNC
:
11850 return ELF_ST_TYPE (elf_sym
->st_info
);
11852 case STT_ARM_16BIT
:
11853 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
11854 This allows us to distinguish between data used by Thumb instructions
11855 and non-data (which is probably code) inside Thumb regions of an
11857 if (type
!= STT_OBJECT
&& type
!= STT_TLS
)
11858 return ELF_ST_TYPE (elf_sym
->st_info
);
11869 elf32_arm_gc_mark_hook (asection
*sec
,
11870 struct bfd_link_info
*info
,
11871 Elf_Internal_Rela
*rel
,
11872 struct elf_link_hash_entry
*h
,
11873 Elf_Internal_Sym
*sym
)
11876 switch (ELF32_R_TYPE (rel
->r_info
))
11878 case R_ARM_GNU_VTINHERIT
:
11879 case R_ARM_GNU_VTENTRY
:
11883 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
11886 /* Update the got entry reference counts for the section being removed. */
11889 elf32_arm_gc_sweep_hook (bfd
* abfd
,
11890 struct bfd_link_info
* info
,
11892 const Elf_Internal_Rela
* relocs
)
11894 Elf_Internal_Shdr
*symtab_hdr
;
11895 struct elf_link_hash_entry
**sym_hashes
;
11896 bfd_signed_vma
*local_got_refcounts
;
11897 const Elf_Internal_Rela
*rel
, *relend
;
11898 struct elf32_arm_link_hash_table
* globals
;
11900 if (info
->relocatable
)
11903 globals
= elf32_arm_hash_table (info
);
11904 if (globals
== NULL
)
11907 elf_section_data (sec
)->local_dynrel
= NULL
;
11909 symtab_hdr
= & elf_symtab_hdr (abfd
);
11910 sym_hashes
= elf_sym_hashes (abfd
);
11911 local_got_refcounts
= elf_local_got_refcounts (abfd
);
11913 check_use_blx (globals
);
11915 relend
= relocs
+ sec
->reloc_count
;
11916 for (rel
= relocs
; rel
< relend
; rel
++)
11918 unsigned long r_symndx
;
11919 struct elf_link_hash_entry
*h
= NULL
;
11920 struct elf32_arm_link_hash_entry
*eh
;
11922 bfd_boolean call_reloc_p
;
11923 bfd_boolean may_become_dynamic_p
;
11924 bfd_boolean may_need_local_target_p
;
11925 union gotplt_union
*root_plt
;
11926 struct arm_plt_info
*arm_plt
;
11928 r_symndx
= ELF32_R_SYM (rel
->r_info
);
11929 if (r_symndx
>= symtab_hdr
->sh_info
)
11931 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
11932 while (h
->root
.type
== bfd_link_hash_indirect
11933 || h
->root
.type
== bfd_link_hash_warning
)
11934 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11936 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11938 call_reloc_p
= FALSE
;
11939 may_become_dynamic_p
= FALSE
;
11940 may_need_local_target_p
= FALSE
;
11942 r_type
= ELF32_R_TYPE (rel
->r_info
);
11943 r_type
= arm_real_reloc_type (globals
, r_type
);
11947 case R_ARM_GOT_PREL
:
11948 case R_ARM_TLS_GD32
:
11949 case R_ARM_TLS_IE32
:
11952 if (h
->got
.refcount
> 0)
11953 h
->got
.refcount
-= 1;
11955 else if (local_got_refcounts
!= NULL
)
11957 if (local_got_refcounts
[r_symndx
] > 0)
11958 local_got_refcounts
[r_symndx
] -= 1;
11962 case R_ARM_TLS_LDM32
:
11963 globals
->tls_ldm_got
.refcount
-= 1;
11971 case R_ARM_THM_CALL
:
11972 case R_ARM_THM_JUMP24
:
11973 case R_ARM_THM_JUMP19
:
11974 call_reloc_p
= TRUE
;
11975 may_need_local_target_p
= TRUE
;
11979 if (!globals
->vxworks_p
)
11981 may_need_local_target_p
= TRUE
;
11984 /* Fall through. */
11986 case R_ARM_ABS32_NOI
:
11988 case R_ARM_REL32_NOI
:
11989 case R_ARM_MOVW_ABS_NC
:
11990 case R_ARM_MOVT_ABS
:
11991 case R_ARM_MOVW_PREL_NC
:
11992 case R_ARM_MOVT_PREL
:
11993 case R_ARM_THM_MOVW_ABS_NC
:
11994 case R_ARM_THM_MOVT_ABS
:
11995 case R_ARM_THM_MOVW_PREL_NC
:
11996 case R_ARM_THM_MOVT_PREL
:
11997 /* Should the interworking branches be here also? */
11998 if ((info
->shared
|| globals
->root
.is_relocatable_executable
)
11999 && (sec
->flags
& SEC_ALLOC
) != 0)
12002 && (r_type
== R_ARM_REL32
|| r_type
== R_ARM_REL32_NOI
))
12004 call_reloc_p
= TRUE
;
12005 may_need_local_target_p
= TRUE
;
12008 may_become_dynamic_p
= TRUE
;
12011 may_need_local_target_p
= TRUE
;
12018 if (may_need_local_target_p
12019 && elf32_arm_get_plt_info (abfd
, eh
, r_symndx
, &root_plt
, &arm_plt
))
12021 BFD_ASSERT (root_plt
->refcount
> 0);
12022 root_plt
->refcount
-= 1;
12025 arm_plt
->noncall_refcount
--;
12027 if (r_type
== R_ARM_THM_CALL
)
12028 arm_plt
->maybe_thumb_refcount
--;
12030 if (r_type
== R_ARM_THM_JUMP24
12031 || r_type
== R_ARM_THM_JUMP19
)
12032 arm_plt
->thumb_refcount
--;
12035 if (may_become_dynamic_p
)
12037 struct elf_dyn_relocs
**pp
;
12038 struct elf_dyn_relocs
*p
;
12041 pp
= &(eh
->dyn_relocs
);
12044 Elf_Internal_Sym
*isym
;
12046 isym
= bfd_sym_from_r_symndx (&globals
->sym_cache
,
12050 pp
= elf32_arm_get_local_dynreloc_list (abfd
, r_symndx
, isym
);
12054 for (; (p
= *pp
) != NULL
; pp
= &p
->next
)
12057 /* Everything must go for SEC. */
12067 /* Look through the relocs for a section during the first phase. */
12070 elf32_arm_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
12071 asection
*sec
, const Elf_Internal_Rela
*relocs
)
12073 Elf_Internal_Shdr
*symtab_hdr
;
12074 struct elf_link_hash_entry
**sym_hashes
;
12075 const Elf_Internal_Rela
*rel
;
12076 const Elf_Internal_Rela
*rel_end
;
12079 struct elf32_arm_link_hash_table
*htab
;
12080 bfd_boolean call_reloc_p
;
12081 bfd_boolean may_become_dynamic_p
;
12082 bfd_boolean may_need_local_target_p
;
12083 unsigned long nsyms
;
12085 if (info
->relocatable
)
12088 BFD_ASSERT (is_arm_elf (abfd
));
12090 htab
= elf32_arm_hash_table (info
);
12096 /* Create dynamic sections for relocatable executables so that we can
12097 copy relocations. */
12098 if (htab
->root
.is_relocatable_executable
12099 && ! htab
->root
.dynamic_sections_created
)
12101 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
12105 if (htab
->root
.dynobj
== NULL
)
12106 htab
->root
.dynobj
= abfd
;
12107 if (!create_ifunc_sections (info
))
12110 dynobj
= htab
->root
.dynobj
;
12112 symtab_hdr
= & elf_symtab_hdr (abfd
);
12113 sym_hashes
= elf_sym_hashes (abfd
);
12114 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
12116 rel_end
= relocs
+ sec
->reloc_count
;
12117 for (rel
= relocs
; rel
< rel_end
; rel
++)
12119 Elf_Internal_Sym
*isym
;
12120 struct elf_link_hash_entry
*h
;
12121 struct elf32_arm_link_hash_entry
*eh
;
12122 unsigned long r_symndx
;
12125 r_symndx
= ELF32_R_SYM (rel
->r_info
);
12126 r_type
= ELF32_R_TYPE (rel
->r_info
);
12127 r_type
= arm_real_reloc_type (htab
, r_type
);
12129 if (r_symndx
>= nsyms
12130 /* PR 9934: It is possible to have relocations that do not
12131 refer to symbols, thus it is also possible to have an
12132 object file containing relocations but no symbol table. */
12133 && (r_symndx
> STN_UNDEF
|| nsyms
> 0))
12135 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"), abfd
,
12144 if (r_symndx
< symtab_hdr
->sh_info
)
12146 /* A local symbol. */
12147 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
12154 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
12155 while (h
->root
.type
== bfd_link_hash_indirect
12156 || h
->root
.type
== bfd_link_hash_warning
)
12157 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12161 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12163 call_reloc_p
= FALSE
;
12164 may_become_dynamic_p
= FALSE
;
12165 may_need_local_target_p
= FALSE
;
12167 /* Could be done earlier, if h were already available. */
12168 r_type
= elf32_arm_tls_transition (info
, r_type
, h
);
12172 case R_ARM_GOT_PREL
:
12173 case R_ARM_TLS_GD32
:
12174 case R_ARM_TLS_IE32
:
12175 case R_ARM_TLS_GOTDESC
:
12176 case R_ARM_TLS_DESCSEQ
:
12177 case R_ARM_THM_TLS_DESCSEQ
:
12178 case R_ARM_TLS_CALL
:
12179 case R_ARM_THM_TLS_CALL
:
12180 /* This symbol requires a global offset table entry. */
12182 int tls_type
, old_tls_type
;
12186 case R_ARM_TLS_GD32
: tls_type
= GOT_TLS_GD
; break;
12188 case R_ARM_TLS_IE32
: tls_type
= GOT_TLS_IE
; break;
12190 case R_ARM_TLS_GOTDESC
:
12191 case R_ARM_TLS_CALL
: case R_ARM_THM_TLS_CALL
:
12192 case R_ARM_TLS_DESCSEQ
: case R_ARM_THM_TLS_DESCSEQ
:
12193 tls_type
= GOT_TLS_GDESC
; break;
12195 default: tls_type
= GOT_NORMAL
; break;
12201 old_tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
12205 /* This is a global offset table entry for a local symbol. */
12206 if (!elf32_arm_allocate_local_sym_info (abfd
))
12208 elf_local_got_refcounts (abfd
)[r_symndx
] += 1;
12209 old_tls_type
= elf32_arm_local_got_tls_type (abfd
) [r_symndx
];
12212 /* If a variable is accessed with both tls methods, two
12213 slots may be created. */
12214 if (GOT_TLS_GD_ANY_P (old_tls_type
)
12215 && GOT_TLS_GD_ANY_P (tls_type
))
12216 tls_type
|= old_tls_type
;
12218 /* We will already have issued an error message if there
12219 is a TLS/non-TLS mismatch, based on the symbol
12220 type. So just combine any TLS types needed. */
12221 if (old_tls_type
!= GOT_UNKNOWN
&& old_tls_type
!= GOT_NORMAL
12222 && tls_type
!= GOT_NORMAL
)
12223 tls_type
|= old_tls_type
;
12225 /* If the symbol is accessed in both IE and GDESC
12226 method, we're able to relax. Turn off the GDESC flag,
12227 without messing up with any other kind of tls types
12228 that may be involved */
12229 if ((tls_type
& GOT_TLS_IE
) && (tls_type
& GOT_TLS_GDESC
))
12230 tls_type
&= ~GOT_TLS_GDESC
;
12232 if (old_tls_type
!= tls_type
)
12235 elf32_arm_hash_entry (h
)->tls_type
= tls_type
;
12237 elf32_arm_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
12240 /* Fall through. */
12242 case R_ARM_TLS_LDM32
:
12243 if (r_type
== R_ARM_TLS_LDM32
)
12244 htab
->tls_ldm_got
.refcount
++;
12245 /* Fall through. */
12247 case R_ARM_GOTOFF32
:
12249 if (htab
->root
.sgot
== NULL
12250 && !create_got_section (htab
->root
.dynobj
, info
))
12259 case R_ARM_THM_CALL
:
12260 case R_ARM_THM_JUMP24
:
12261 case R_ARM_THM_JUMP19
:
12262 call_reloc_p
= TRUE
;
12263 may_need_local_target_p
= TRUE
;
12267 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
12268 ldr __GOTT_INDEX__ offsets. */
12269 if (!htab
->vxworks_p
)
12271 may_need_local_target_p
= TRUE
;
12274 /* Fall through. */
12276 case R_ARM_MOVW_ABS_NC
:
12277 case R_ARM_MOVT_ABS
:
12278 case R_ARM_THM_MOVW_ABS_NC
:
12279 case R_ARM_THM_MOVT_ABS
:
12282 (*_bfd_error_handler
)
12283 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
12284 abfd
, elf32_arm_howto_table_1
[r_type
].name
,
12285 (h
) ? h
->root
.root
.string
: "a local symbol");
12286 bfd_set_error (bfd_error_bad_value
);
12290 /* Fall through. */
12292 case R_ARM_ABS32_NOI
:
12294 case R_ARM_REL32_NOI
:
12295 case R_ARM_MOVW_PREL_NC
:
12296 case R_ARM_MOVT_PREL
:
12297 case R_ARM_THM_MOVW_PREL_NC
:
12298 case R_ARM_THM_MOVT_PREL
:
12300 /* Should the interworking branches be listed here? */
12301 if ((info
->shared
|| htab
->root
.is_relocatable_executable
)
12302 && (sec
->flags
& SEC_ALLOC
) != 0)
12305 && (r_type
== R_ARM_REL32
|| r_type
== R_ARM_REL32_NOI
))
12307 /* In shared libraries and relocatable executables,
12308 we treat local relative references as calls;
12309 see the related SYMBOL_CALLS_LOCAL code in
12310 allocate_dynrelocs. */
12311 call_reloc_p
= TRUE
;
12312 may_need_local_target_p
= TRUE
;
12315 /* We are creating a shared library or relocatable
12316 executable, and this is a reloc against a global symbol,
12317 or a non-PC-relative reloc against a local symbol.
12318 We may need to copy the reloc into the output. */
12319 may_become_dynamic_p
= TRUE
;
12322 may_need_local_target_p
= TRUE
;
12325 /* This relocation describes the C++ object vtable hierarchy.
12326 Reconstruct it for later use during GC. */
12327 case R_ARM_GNU_VTINHERIT
:
12328 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
12332 /* This relocation describes which C++ vtable entries are actually
12333 used. Record for later use during GC. */
12334 case R_ARM_GNU_VTENTRY
:
12335 BFD_ASSERT (h
!= NULL
);
12337 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
12345 /* We may need a .plt entry if the function this reloc
12346 refers to is in a different object, regardless of the
12347 symbol's type. We can't tell for sure yet, because
12348 something later might force the symbol local. */
12350 else if (may_need_local_target_p
)
12351 /* If this reloc is in a read-only section, we might
12352 need a copy reloc. We can't check reliably at this
12353 stage whether the section is read-only, as input
12354 sections have not yet been mapped to output sections.
12355 Tentatively set the flag for now, and correct in
12356 adjust_dynamic_symbol. */
12357 h
->non_got_ref
= 1;
12360 if (may_need_local_target_p
12361 && (h
!= NULL
|| ELF32_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
))
12363 union gotplt_union
*root_plt
;
12364 struct arm_plt_info
*arm_plt
;
12365 struct arm_local_iplt_info
*local_iplt
;
12369 root_plt
= &h
->plt
;
12370 arm_plt
= &eh
->plt
;
12374 local_iplt
= elf32_arm_create_local_iplt (abfd
, r_symndx
);
12375 if (local_iplt
== NULL
)
12377 root_plt
= &local_iplt
->root
;
12378 arm_plt
= &local_iplt
->arm
;
12381 /* If the symbol is a function that doesn't bind locally,
12382 this relocation will need a PLT entry. */
12383 root_plt
->refcount
+= 1;
12386 arm_plt
->noncall_refcount
++;
12388 /* It's too early to use htab->use_blx here, so we have to
12389 record possible blx references separately from
12390 relocs that definitely need a thumb stub. */
12392 if (r_type
== R_ARM_THM_CALL
)
12393 arm_plt
->maybe_thumb_refcount
+= 1;
12395 if (r_type
== R_ARM_THM_JUMP24
12396 || r_type
== R_ARM_THM_JUMP19
)
12397 arm_plt
->thumb_refcount
+= 1;
12400 if (may_become_dynamic_p
)
12402 struct elf_dyn_relocs
*p
, **head
;
12404 /* Create a reloc section in dynobj. */
12405 if (sreloc
== NULL
)
12407 sreloc
= _bfd_elf_make_dynamic_reloc_section
12408 (sec
, dynobj
, 2, abfd
, ! htab
->use_rel
);
12410 if (sreloc
== NULL
)
12413 /* BPABI objects never have dynamic relocations mapped. */
12414 if (htab
->symbian_p
)
12418 flags
= bfd_get_section_flags (dynobj
, sreloc
);
12419 flags
&= ~(SEC_LOAD
| SEC_ALLOC
);
12420 bfd_set_section_flags (dynobj
, sreloc
, flags
);
12424 /* If this is a global symbol, count the number of
12425 relocations we need for this symbol. */
12427 head
= &((struct elf32_arm_link_hash_entry
*) h
)->dyn_relocs
;
12430 head
= elf32_arm_get_local_dynreloc_list (abfd
, r_symndx
, isym
);
12436 if (p
== NULL
|| p
->sec
!= sec
)
12438 bfd_size_type amt
= sizeof *p
;
12440 p
= (struct elf_dyn_relocs
*) bfd_alloc (htab
->root
.dynobj
, amt
);
12450 if (r_type
== R_ARM_REL32
|| r_type
== R_ARM_REL32_NOI
)
12459 /* Unwinding tables are not referenced directly. This pass marks them as
12460 required if the corresponding code section is marked. */
12463 elf32_arm_gc_mark_extra_sections (struct bfd_link_info
*info
,
12464 elf_gc_mark_hook_fn gc_mark_hook
)
12467 Elf_Internal_Shdr
**elf_shdrp
;
12470 _bfd_elf_gc_mark_extra_sections (info
, gc_mark_hook
);
12472 /* Marking EH data may cause additional code sections to be marked,
12473 requiring multiple passes. */
12478 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
12482 if (! is_arm_elf (sub
))
12485 elf_shdrp
= elf_elfsections (sub
);
12486 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
12488 Elf_Internal_Shdr
*hdr
;
12490 hdr
= &elf_section_data (o
)->this_hdr
;
12491 if (hdr
->sh_type
== SHT_ARM_EXIDX
12493 && hdr
->sh_link
< elf_numsections (sub
)
12495 && elf_shdrp
[hdr
->sh_link
]->bfd_section
->gc_mark
)
12498 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
12508 /* Treat mapping symbols as special target symbols. */
12511 elf32_arm_is_target_special_symbol (bfd
* abfd ATTRIBUTE_UNUSED
, asymbol
* sym
)
12513 return bfd_is_arm_special_symbol_name (sym
->name
,
12514 BFD_ARM_SPECIAL_SYM_TYPE_ANY
);
12517 /* This is a copy of elf_find_function() from elf.c except that
12518 ARM mapping symbols are ignored when looking for function names
12519 and STT_ARM_TFUNC is considered to a function type. */
12522 arm_elf_find_function (bfd
* abfd ATTRIBUTE_UNUSED
,
12523 asection
* section
,
12524 asymbol
** symbols
,
12526 const char ** filename_ptr
,
12527 const char ** functionname_ptr
)
12529 const char * filename
= NULL
;
12530 asymbol
* func
= NULL
;
12531 bfd_vma low_func
= 0;
12534 for (p
= symbols
; *p
!= NULL
; p
++)
12536 elf_symbol_type
*q
;
12538 q
= (elf_symbol_type
*) *p
;
12540 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
12545 filename
= bfd_asymbol_name (&q
->symbol
);
12548 case STT_ARM_TFUNC
:
12550 /* Skip mapping symbols. */
12551 if ((q
->symbol
.flags
& BSF_LOCAL
)
12552 && bfd_is_arm_special_symbol_name (q
->symbol
.name
,
12553 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
12555 /* Fall through. */
12556 if (bfd_get_section (&q
->symbol
) == section
12557 && q
->symbol
.value
>= low_func
12558 && q
->symbol
.value
<= offset
)
12560 func
= (asymbol
*) q
;
12561 low_func
= q
->symbol
.value
;
12571 *filename_ptr
= filename
;
12572 if (functionname_ptr
)
12573 *functionname_ptr
= bfd_asymbol_name (func
);
12579 /* Find the nearest line to a particular section and offset, for error
12580 reporting. This code is a duplicate of the code in elf.c, except
12581 that it uses arm_elf_find_function. */
12584 elf32_arm_find_nearest_line (bfd
* abfd
,
12585 asection
* section
,
12586 asymbol
** symbols
,
12588 const char ** filename_ptr
,
12589 const char ** functionname_ptr
,
12590 unsigned int * line_ptr
)
12592 bfd_boolean found
= FALSE
;
12594 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
12596 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
12597 filename_ptr
, functionname_ptr
,
12599 & elf_tdata (abfd
)->dwarf2_find_line_info
))
12601 if (!*functionname_ptr
)
12602 arm_elf_find_function (abfd
, section
, symbols
, offset
,
12603 *filename_ptr
? NULL
: filename_ptr
,
12609 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
12610 & found
, filename_ptr
,
12611 functionname_ptr
, line_ptr
,
12612 & elf_tdata (abfd
)->line_info
))
12615 if (found
&& (*functionname_ptr
|| *line_ptr
))
12618 if (symbols
== NULL
)
12621 if (! arm_elf_find_function (abfd
, section
, symbols
, offset
,
12622 filename_ptr
, functionname_ptr
))
12630 elf32_arm_find_inliner_info (bfd
* abfd
,
12631 const char ** filename_ptr
,
12632 const char ** functionname_ptr
,
12633 unsigned int * line_ptr
)
12636 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
12637 functionname_ptr
, line_ptr
,
12638 & elf_tdata (abfd
)->dwarf2_find_line_info
);
12642 /* Adjust a symbol defined by a dynamic object and referenced by a
12643 regular object. The current definition is in some section of the
12644 dynamic object, but we're not including those sections. We have to
12645 change the definition to something the rest of the link can
12649 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info
* info
,
12650 struct elf_link_hash_entry
* h
)
12654 struct elf32_arm_link_hash_entry
* eh
;
12655 struct elf32_arm_link_hash_table
*globals
;
12657 globals
= elf32_arm_hash_table (info
);
12658 if (globals
== NULL
)
12661 dynobj
= elf_hash_table (info
)->dynobj
;
12663 /* Make sure we know what is going on here. */
12664 BFD_ASSERT (dynobj
!= NULL
12666 || h
->type
== STT_GNU_IFUNC
12667 || h
->u
.weakdef
!= NULL
12670 && !h
->def_regular
)));
12672 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12674 /* If this is a function, put it in the procedure linkage table. We
12675 will fill in the contents of the procedure linkage table later,
12676 when we know the address of the .got section. */
12677 if (h
->type
== STT_FUNC
|| h
->type
== STT_GNU_IFUNC
|| h
->needs_plt
)
12679 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
12680 symbol binds locally. */
12681 if (h
->plt
.refcount
<= 0
12682 || (h
->type
!= STT_GNU_IFUNC
12683 && (SYMBOL_CALLS_LOCAL (info
, h
)
12684 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
12685 && h
->root
.type
== bfd_link_hash_undefweak
))))
12687 /* This case can occur if we saw a PLT32 reloc in an input
12688 file, but the symbol was never referred to by a dynamic
12689 object, or if all references were garbage collected. In
12690 such a case, we don't actually need to build a procedure
12691 linkage table, and we can just do a PC24 reloc instead. */
12692 h
->plt
.offset
= (bfd_vma
) -1;
12693 eh
->plt
.thumb_refcount
= 0;
12694 eh
->plt
.maybe_thumb_refcount
= 0;
12695 eh
->plt
.noncall_refcount
= 0;
12703 /* It's possible that we incorrectly decided a .plt reloc was
12704 needed for an R_ARM_PC24 or similar reloc to a non-function sym
12705 in check_relocs. We can't decide accurately between function
12706 and non-function syms in check-relocs; Objects loaded later in
12707 the link may change h->type. So fix it now. */
12708 h
->plt
.offset
= (bfd_vma
) -1;
12709 eh
->plt
.thumb_refcount
= 0;
12710 eh
->plt
.maybe_thumb_refcount
= 0;
12711 eh
->plt
.noncall_refcount
= 0;
12714 /* If this is a weak symbol, and there is a real definition, the
12715 processor independent code will have arranged for us to see the
12716 real definition first, and we can just use the same value. */
12717 if (h
->u
.weakdef
!= NULL
)
12719 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
12720 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
12721 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
12722 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
12726 /* If there are no non-GOT references, we do not need a copy
12728 if (!h
->non_got_ref
)
12731 /* This is a reference to a symbol defined by a dynamic object which
12732 is not a function. */
12734 /* If we are creating a shared library, we must presume that the
12735 only references to the symbol are via the global offset table.
12736 For such cases we need not do anything here; the relocations will
12737 be handled correctly by relocate_section. Relocatable executables
12738 can reference data in shared objects directly, so we don't need to
12739 do anything here. */
12740 if (info
->shared
|| globals
->root
.is_relocatable_executable
)
12745 (*_bfd_error_handler
) (_("dynamic variable `%s' is zero size"),
12746 h
->root
.root
.string
);
12750 /* We must allocate the symbol in our .dynbss section, which will
12751 become part of the .bss section of the executable. There will be
12752 an entry for this symbol in the .dynsym section. The dynamic
12753 object will contain position independent code, so all references
12754 from the dynamic object to this symbol will go through the global
12755 offset table. The dynamic linker will use the .dynsym entry to
12756 determine the address it must put in the global offset table, so
12757 both the dynamic object and the regular object will refer to the
12758 same memory location for the variable. */
12759 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
12760 BFD_ASSERT (s
!= NULL
);
12762 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
12763 copy the initial value out of the dynamic object and into the
12764 runtime process image. We need to remember the offset into the
12765 .rel(a).bss section we are going to use. */
12766 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
12770 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (globals
, ".bss"));
12771 elf32_arm_allocate_dynrelocs (info
, srel
, 1);
12775 return _bfd_elf_adjust_dynamic_copy (h
, s
);
12778 /* Allocate space in .plt, .got and associated reloc sections for
12782 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry
*h
, void * inf
)
12784 struct bfd_link_info
*info
;
12785 struct elf32_arm_link_hash_table
*htab
;
12786 struct elf32_arm_link_hash_entry
*eh
;
12787 struct elf_dyn_relocs
*p
;
12789 if (h
->root
.type
== bfd_link_hash_indirect
)
12792 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12794 info
= (struct bfd_link_info
*) inf
;
12795 htab
= elf32_arm_hash_table (info
);
12799 if ((htab
->root
.dynamic_sections_created
|| h
->type
== STT_GNU_IFUNC
)
12800 && h
->plt
.refcount
> 0)
12802 /* Make sure this symbol is output as a dynamic symbol.
12803 Undefined weak syms won't yet be marked as dynamic. */
12804 if (h
->dynindx
== -1
12805 && !h
->forced_local
)
12807 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
12811 /* If the call in the PLT entry binds locally, the associated
12812 GOT entry should use an R_ARM_IRELATIVE relocation instead of
12813 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
12814 than the .plt section. */
12815 if (h
->type
== STT_GNU_IFUNC
&& SYMBOL_CALLS_LOCAL (info
, h
))
12818 if (eh
->plt
.noncall_refcount
== 0
12819 && SYMBOL_REFERENCES_LOCAL (info
, h
))
12820 /* All non-call references can be resolved directly.
12821 This means that they can (and in some cases, must)
12822 resolve directly to the run-time target, rather than
12823 to the PLT. That in turns means that any .got entry
12824 would be equal to the .igot.plt entry, so there's
12825 no point having both. */
12826 h
->got
.refcount
= 0;
12831 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
12833 elf32_arm_allocate_plt_entry (info
, eh
->is_iplt
, &h
->plt
, &eh
->plt
);
12835 /* If this symbol is not defined in a regular file, and we are
12836 not generating a shared library, then set the symbol to this
12837 location in the .plt. This is required to make function
12838 pointers compare as equal between the normal executable and
12839 the shared library. */
12841 && !h
->def_regular
)
12843 h
->root
.u
.def
.section
= htab
->root
.splt
;
12844 h
->root
.u
.def
.value
= h
->plt
.offset
;
12846 /* Make sure the function is not marked as Thumb, in case
12847 it is the target of an ABS32 relocation, which will
12848 point to the PLT entry. */
12849 h
->target_internal
= ST_BRANCH_TO_ARM
;
12852 htab
->next_tls_desc_index
++;
12854 /* VxWorks executables have a second set of relocations for
12855 each PLT entry. They go in a separate relocation section,
12856 which is processed by the kernel loader. */
12857 if (htab
->vxworks_p
&& !info
->shared
)
12859 /* There is a relocation for the initial PLT entry:
12860 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
12861 if (h
->plt
.offset
== htab
->plt_header_size
)
12862 elf32_arm_allocate_dynrelocs (info
, htab
->srelplt2
, 1);
12864 /* There are two extra relocations for each subsequent
12865 PLT entry: an R_ARM_32 relocation for the GOT entry,
12866 and an R_ARM_32 relocation for the PLT entry. */
12867 elf32_arm_allocate_dynrelocs (info
, htab
->srelplt2
, 2);
12872 h
->plt
.offset
= (bfd_vma
) -1;
12878 h
->plt
.offset
= (bfd_vma
) -1;
12882 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12883 eh
->tlsdesc_got
= (bfd_vma
) -1;
12885 if (h
->got
.refcount
> 0)
12889 int tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
12892 /* Make sure this symbol is output as a dynamic symbol.
12893 Undefined weak syms won't yet be marked as dynamic. */
12894 if (h
->dynindx
== -1
12895 && !h
->forced_local
)
12897 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
12901 if (!htab
->symbian_p
)
12903 s
= htab
->root
.sgot
;
12904 h
->got
.offset
= s
->size
;
12906 if (tls_type
== GOT_UNKNOWN
)
12909 if (tls_type
== GOT_NORMAL
)
12910 /* Non-TLS symbols need one GOT slot. */
12914 if (tls_type
& GOT_TLS_GDESC
)
12916 /* R_ARM_TLS_DESC needs 2 GOT slots. */
12918 = (htab
->root
.sgotplt
->size
12919 - elf32_arm_compute_jump_table_size (htab
));
12920 htab
->root
.sgotplt
->size
+= 8;
12921 h
->got
.offset
= (bfd_vma
) -2;
12922 /* plt.got_offset needs to know there's a TLS_DESC
12923 reloc in the middle of .got.plt. */
12924 htab
->num_tls_desc
++;
12927 if (tls_type
& GOT_TLS_GD
)
12929 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
12930 the symbol is both GD and GDESC, got.offset may
12931 have been overwritten. */
12932 h
->got
.offset
= s
->size
;
12936 if (tls_type
& GOT_TLS_IE
)
12937 /* R_ARM_TLS_IE32 needs one GOT slot. */
12941 dyn
= htab
->root
.dynamic_sections_created
;
12944 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
12946 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
12949 if (tls_type
!= GOT_NORMAL
12950 && (info
->shared
|| indx
!= 0)
12951 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
12952 || h
->root
.type
!= bfd_link_hash_undefweak
))
12954 if (tls_type
& GOT_TLS_IE
)
12955 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
12957 if (tls_type
& GOT_TLS_GD
)
12958 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
12960 if (tls_type
& GOT_TLS_GDESC
)
12962 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelplt
, 1);
12963 /* GDESC needs a trampoline to jump to. */
12964 htab
->tls_trampoline
= -1;
12967 /* Only GD needs it. GDESC just emits one relocation per
12969 if ((tls_type
& GOT_TLS_GD
) && indx
!= 0)
12970 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
12972 else if (!SYMBOL_REFERENCES_LOCAL (info
, h
))
12974 if (htab
->root
.dynamic_sections_created
)
12975 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
12976 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
12978 else if (h
->type
== STT_GNU_IFUNC
12979 && eh
->plt
.noncall_refcount
== 0)
12980 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
12981 they all resolve dynamically instead. Reserve room for the
12982 GOT entry's R_ARM_IRELATIVE relocation. */
12983 elf32_arm_allocate_irelocs (info
, htab
->root
.srelgot
, 1);
12984 else if (info
->shared
)
12985 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
12986 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
12990 h
->got
.offset
= (bfd_vma
) -1;
12992 /* Allocate stubs for exported Thumb functions on v4t. */
12993 if (!htab
->use_blx
&& h
->dynindx
!= -1
12995 && h
->target_internal
== ST_BRANCH_TO_THUMB
12996 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
12998 struct elf_link_hash_entry
* th
;
12999 struct bfd_link_hash_entry
* bh
;
13000 struct elf_link_hash_entry
* myh
;
13004 /* Create a new symbol to regist the real location of the function. */
13005 s
= h
->root
.u
.def
.section
;
13006 sprintf (name
, "__real_%s", h
->root
.root
.string
);
13007 _bfd_generic_link_add_one_symbol (info
, s
->owner
,
13008 name
, BSF_GLOBAL
, s
,
13009 h
->root
.u
.def
.value
,
13010 NULL
, TRUE
, FALSE
, &bh
);
13012 myh
= (struct elf_link_hash_entry
*) bh
;
13013 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
13014 myh
->forced_local
= 1;
13015 myh
->target_internal
= ST_BRANCH_TO_THUMB
;
13016 eh
->export_glue
= myh
;
13017 th
= record_arm_to_thumb_glue (info
, h
);
13018 /* Point the symbol at the stub. */
13019 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
13020 h
->target_internal
= ST_BRANCH_TO_ARM
;
13021 h
->root
.u
.def
.section
= th
->root
.u
.def
.section
;
13022 h
->root
.u
.def
.value
= th
->root
.u
.def
.value
& ~1;
13025 if (eh
->dyn_relocs
== NULL
)
13028 /* In the shared -Bsymbolic case, discard space allocated for
13029 dynamic pc-relative relocs against symbols which turn out to be
13030 defined in regular objects. For the normal shared case, discard
13031 space for pc-relative relocs that have become local due to symbol
13032 visibility changes. */
13034 if (info
->shared
|| htab
->root
.is_relocatable_executable
)
13036 /* The only relocs that use pc_count are R_ARM_REL32 and
13037 R_ARM_REL32_NOI, which will appear on something like
13038 ".long foo - .". We want calls to protected symbols to resolve
13039 directly to the function rather than going via the plt. If people
13040 want function pointer comparisons to work as expected then they
13041 should avoid writing assembly like ".long foo - .". */
13042 if (SYMBOL_CALLS_LOCAL (info
, h
))
13044 struct elf_dyn_relocs
**pp
;
13046 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
13048 p
->count
-= p
->pc_count
;
13057 if (htab
->vxworks_p
)
13059 struct elf_dyn_relocs
**pp
;
13061 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
13063 if (strcmp (p
->sec
->output_section
->name
, ".tls_vars") == 0)
13070 /* Also discard relocs on undefined weak syms with non-default
13072 if (eh
->dyn_relocs
!= NULL
13073 && h
->root
.type
== bfd_link_hash_undefweak
)
13075 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
13076 eh
->dyn_relocs
= NULL
;
13078 /* Make sure undefined weak symbols are output as a dynamic
13080 else if (h
->dynindx
== -1
13081 && !h
->forced_local
)
13083 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
13088 else if (htab
->root
.is_relocatable_executable
&& h
->dynindx
== -1
13089 && h
->root
.type
== bfd_link_hash_new
)
13091 /* Output absolute symbols so that we can create relocations
13092 against them. For normal symbols we output a relocation
13093 against the section that contains them. */
13094 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
13101 /* For the non-shared case, discard space for relocs against
13102 symbols which turn out to need copy relocs or are not
13105 if (!h
->non_got_ref
13106 && ((h
->def_dynamic
13107 && !h
->def_regular
)
13108 || (htab
->root
.dynamic_sections_created
13109 && (h
->root
.type
== bfd_link_hash_undefweak
13110 || h
->root
.type
== bfd_link_hash_undefined
))))
13112 /* Make sure this symbol is output as a dynamic symbol.
13113 Undefined weak syms won't yet be marked as dynamic. */
13114 if (h
->dynindx
== -1
13115 && !h
->forced_local
)
13117 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
13121 /* If that succeeded, we know we'll be keeping all the
13123 if (h
->dynindx
!= -1)
13127 eh
->dyn_relocs
= NULL
;
13132 /* Finally, allocate space. */
13133 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
13135 asection
*sreloc
= elf_section_data (p
->sec
)->sreloc
;
13136 if (h
->type
== STT_GNU_IFUNC
13137 && eh
->plt
.noncall_refcount
== 0
13138 && SYMBOL_REFERENCES_LOCAL (info
, h
))
13139 elf32_arm_allocate_irelocs (info
, sreloc
, p
->count
);
13141 elf32_arm_allocate_dynrelocs (info
, sreloc
, p
->count
);
13147 /* Find any dynamic relocs that apply to read-only sections. */
13150 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry
* h
, void * inf
)
13152 struct elf32_arm_link_hash_entry
* eh
;
13153 struct elf_dyn_relocs
* p
;
13155 eh
= (struct elf32_arm_link_hash_entry
*) h
;
13156 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
13158 asection
*s
= p
->sec
;
13160 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
13162 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
13164 info
->flags
|= DF_TEXTREL
;
13166 /* Not an error, just cut short the traversal. */
13174 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info
*info
,
13177 struct elf32_arm_link_hash_table
*globals
;
13179 globals
= elf32_arm_hash_table (info
);
13180 if (globals
== NULL
)
13183 globals
->byteswap_code
= byteswap_code
;
13186 /* Set the sizes of the dynamic sections. */
13189 elf32_arm_size_dynamic_sections (bfd
* output_bfd ATTRIBUTE_UNUSED
,
13190 struct bfd_link_info
* info
)
13195 bfd_boolean relocs
;
13197 struct elf32_arm_link_hash_table
*htab
;
13199 htab
= elf32_arm_hash_table (info
);
13203 dynobj
= elf_hash_table (info
)->dynobj
;
13204 BFD_ASSERT (dynobj
!= NULL
);
13205 check_use_blx (htab
);
13207 if (elf_hash_table (info
)->dynamic_sections_created
)
13209 /* Set the contents of the .interp section to the interpreter. */
13210 if (info
->executable
)
13212 s
= bfd_get_section_by_name (dynobj
, ".interp");
13213 BFD_ASSERT (s
!= NULL
);
13214 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
13215 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
13219 /* Set up .got offsets for local syms, and space for local dynamic
13221 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
13223 bfd_signed_vma
*local_got
;
13224 bfd_signed_vma
*end_local_got
;
13225 struct arm_local_iplt_info
**local_iplt_ptr
, *local_iplt
;
13226 char *local_tls_type
;
13227 bfd_vma
*local_tlsdesc_gotent
;
13228 bfd_size_type locsymcount
;
13229 Elf_Internal_Shdr
*symtab_hdr
;
13231 bfd_boolean is_vxworks
= htab
->vxworks_p
;
13232 unsigned int symndx
;
13234 if (! is_arm_elf (ibfd
))
13237 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
13239 struct elf_dyn_relocs
*p
;
13241 for (p
= (struct elf_dyn_relocs
*)
13242 elf_section_data (s
)->local_dynrel
; p
!= NULL
; p
= p
->next
)
13244 if (!bfd_is_abs_section (p
->sec
)
13245 && bfd_is_abs_section (p
->sec
->output_section
))
13247 /* Input section has been discarded, either because
13248 it is a copy of a linkonce section or due to
13249 linker script /DISCARD/, so we'll be discarding
13252 else if (is_vxworks
13253 && strcmp (p
->sec
->output_section
->name
,
13256 /* Relocations in vxworks .tls_vars sections are
13257 handled specially by the loader. */
13259 else if (p
->count
!= 0)
13261 srel
= elf_section_data (p
->sec
)->sreloc
;
13262 elf32_arm_allocate_dynrelocs (info
, srel
, p
->count
);
13263 if ((p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
13264 info
->flags
|= DF_TEXTREL
;
13269 local_got
= elf_local_got_refcounts (ibfd
);
13273 symtab_hdr
= & elf_symtab_hdr (ibfd
);
13274 locsymcount
= symtab_hdr
->sh_info
;
13275 end_local_got
= local_got
+ locsymcount
;
13276 local_iplt_ptr
= elf32_arm_local_iplt (ibfd
);
13277 local_tls_type
= elf32_arm_local_got_tls_type (ibfd
);
13278 local_tlsdesc_gotent
= elf32_arm_local_tlsdesc_gotent (ibfd
);
13280 s
= htab
->root
.sgot
;
13281 srel
= htab
->root
.srelgot
;
13282 for (; local_got
< end_local_got
;
13283 ++local_got
, ++local_iplt_ptr
, ++local_tls_type
,
13284 ++local_tlsdesc_gotent
, ++symndx
)
13286 *local_tlsdesc_gotent
= (bfd_vma
) -1;
13287 local_iplt
= *local_iplt_ptr
;
13288 if (local_iplt
!= NULL
)
13290 struct elf_dyn_relocs
*p
;
13292 if (local_iplt
->root
.refcount
> 0)
13294 elf32_arm_allocate_plt_entry (info
, TRUE
,
13297 if (local_iplt
->arm
.noncall_refcount
== 0)
13298 /* All references to the PLT are calls, so all
13299 non-call references can resolve directly to the
13300 run-time target. This means that the .got entry
13301 would be the same as the .igot.plt entry, so there's
13302 no point creating both. */
13307 BFD_ASSERT (local_iplt
->arm
.noncall_refcount
== 0);
13308 local_iplt
->root
.offset
= (bfd_vma
) -1;
13311 for (p
= local_iplt
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
13315 psrel
= elf_section_data (p
->sec
)->sreloc
;
13316 if (local_iplt
->arm
.noncall_refcount
== 0)
13317 elf32_arm_allocate_irelocs (info
, psrel
, p
->count
);
13319 elf32_arm_allocate_dynrelocs (info
, psrel
, p
->count
);
13322 if (*local_got
> 0)
13324 Elf_Internal_Sym
*isym
;
13326 *local_got
= s
->size
;
13327 if (*local_tls_type
& GOT_TLS_GD
)
13328 /* TLS_GD relocs need an 8-byte structure in the GOT. */
13330 if (*local_tls_type
& GOT_TLS_GDESC
)
13332 *local_tlsdesc_gotent
= htab
->root
.sgotplt
->size
13333 - elf32_arm_compute_jump_table_size (htab
);
13334 htab
->root
.sgotplt
->size
+= 8;
13335 *local_got
= (bfd_vma
) -2;
13336 /* plt.got_offset needs to know there's a TLS_DESC
13337 reloc in the middle of .got.plt. */
13338 htab
->num_tls_desc
++;
13340 if (*local_tls_type
& GOT_TLS_IE
)
13343 if (*local_tls_type
& GOT_NORMAL
)
13345 /* If the symbol is both GD and GDESC, *local_got
13346 may have been overwritten. */
13347 *local_got
= s
->size
;
13351 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
, ibfd
, symndx
);
13355 /* If all references to an STT_GNU_IFUNC PLT are calls,
13356 then all non-call references, including this GOT entry,
13357 resolve directly to the run-time target. */
13358 if (ELF32_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
13359 && (local_iplt
== NULL
13360 || local_iplt
->arm
.noncall_refcount
== 0))
13361 elf32_arm_allocate_irelocs (info
, srel
, 1);
13362 else if ((info
->shared
&& !(*local_tls_type
& GOT_TLS_GDESC
))
13363 || *local_tls_type
& GOT_TLS_GD
)
13364 elf32_arm_allocate_dynrelocs (info
, srel
, 1);
13366 if (info
->shared
&& *local_tls_type
& GOT_TLS_GDESC
)
13368 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelplt
, 1);
13369 htab
->tls_trampoline
= -1;
13373 *local_got
= (bfd_vma
) -1;
13377 if (htab
->tls_ldm_got
.refcount
> 0)
13379 /* Allocate two GOT entries and one dynamic relocation (if necessary)
13380 for R_ARM_TLS_LDM32 relocations. */
13381 htab
->tls_ldm_got
.offset
= htab
->root
.sgot
->size
;
13382 htab
->root
.sgot
->size
+= 8;
13384 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
13387 htab
->tls_ldm_got
.offset
= -1;
13389 /* Allocate global sym .plt and .got entries, and space for global
13390 sym dynamic relocs. */
13391 elf_link_hash_traverse (& htab
->root
, allocate_dynrelocs_for_symbol
, info
);
13393 /* Here we rummage through the found bfds to collect glue information. */
13394 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
13396 if (! is_arm_elf (ibfd
))
13399 /* Initialise mapping tables for code/data. */
13400 bfd_elf32_arm_init_maps (ibfd
);
13402 if (!bfd_elf32_arm_process_before_allocation (ibfd
, info
)
13403 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd
, info
))
13404 /* xgettext:c-format */
13405 _bfd_error_handler (_("Errors encountered processing file %s"),
13409 /* Allocate space for the glue sections now that we've sized them. */
13410 bfd_elf32_arm_allocate_interworking_sections (info
);
13412 /* For every jump slot reserved in the sgotplt, reloc_count is
13413 incremented. However, when we reserve space for TLS descriptors,
13414 it's not incremented, so in order to compute the space reserved
13415 for them, it suffices to multiply the reloc count by the jump
13417 if (htab
->root
.srelplt
)
13418 htab
->sgotplt_jump_table_size
= elf32_arm_compute_jump_table_size(htab
);
13420 if (htab
->tls_trampoline
)
13422 if (htab
->root
.splt
->size
== 0)
13423 htab
->root
.splt
->size
+= htab
->plt_header_size
;
13425 htab
->tls_trampoline
= htab
->root
.splt
->size
;
13426 htab
->root
.splt
->size
+= htab
->plt_entry_size
;
13428 /* If we're not using lazy TLS relocations, don't generate the
13429 PLT and GOT entries they require. */
13430 if (!(info
->flags
& DF_BIND_NOW
))
13432 htab
->dt_tlsdesc_got
= htab
->root
.sgot
->size
;
13433 htab
->root
.sgot
->size
+= 4;
13435 htab
->dt_tlsdesc_plt
= htab
->root
.splt
->size
;
13436 htab
->root
.splt
->size
+= 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline
);
13440 /* The check_relocs and adjust_dynamic_symbol entry points have
13441 determined the sizes of the various dynamic sections. Allocate
13442 memory for them. */
13445 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
13449 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
13452 /* It's OK to base decisions on the section name, because none
13453 of the dynobj section names depend upon the input files. */
13454 name
= bfd_get_section_name (dynobj
, s
);
13456 if (s
== htab
->root
.splt
)
13458 /* Remember whether there is a PLT. */
13459 plt
= s
->size
!= 0;
13461 else if (CONST_STRNEQ (name
, ".rel"))
13465 /* Remember whether there are any reloc sections other
13466 than .rel(a).plt and .rela.plt.unloaded. */
13467 if (s
!= htab
->root
.srelplt
&& s
!= htab
->srelplt2
)
13470 /* We use the reloc_count field as a counter if we need
13471 to copy relocs into the output file. */
13472 s
->reloc_count
= 0;
13475 else if (s
!= htab
->root
.sgot
13476 && s
!= htab
->root
.sgotplt
13477 && s
!= htab
->root
.iplt
13478 && s
!= htab
->root
.igotplt
13479 && s
!= htab
->sdynbss
)
13481 /* It's not one of our sections, so don't allocate space. */
13487 /* If we don't need this section, strip it from the
13488 output file. This is mostly to handle .rel(a).bss and
13489 .rel(a).plt. We must create both sections in
13490 create_dynamic_sections, because they must be created
13491 before the linker maps input sections to output
13492 sections. The linker does that before
13493 adjust_dynamic_symbol is called, and it is that
13494 function which decides whether anything needs to go
13495 into these sections. */
13496 s
->flags
|= SEC_EXCLUDE
;
13500 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
13503 /* Allocate memory for the section contents. */
13504 s
->contents
= (unsigned char *) bfd_zalloc (dynobj
, s
->size
);
13505 if (s
->contents
== NULL
)
13509 if (elf_hash_table (info
)->dynamic_sections_created
)
13511 /* Add some entries to the .dynamic section. We fill in the
13512 values later, in elf32_arm_finish_dynamic_sections, but we
13513 must add the entries now so that we get the correct size for
13514 the .dynamic section. The DT_DEBUG entry is filled in by the
13515 dynamic linker and used by the debugger. */
13516 #define add_dynamic_entry(TAG, VAL) \
13517 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
13519 if (info
->executable
)
13521 if (!add_dynamic_entry (DT_DEBUG
, 0))
13527 if ( !add_dynamic_entry (DT_PLTGOT
, 0)
13528 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
13529 || !add_dynamic_entry (DT_PLTREL
,
13530 htab
->use_rel
? DT_REL
: DT_RELA
)
13531 || !add_dynamic_entry (DT_JMPREL
, 0))
13534 if (htab
->dt_tlsdesc_plt
&&
13535 (!add_dynamic_entry (DT_TLSDESC_PLT
,0)
13536 || !add_dynamic_entry (DT_TLSDESC_GOT
,0)))
13544 if (!add_dynamic_entry (DT_REL
, 0)
13545 || !add_dynamic_entry (DT_RELSZ
, 0)
13546 || !add_dynamic_entry (DT_RELENT
, RELOC_SIZE (htab
)))
13551 if (!add_dynamic_entry (DT_RELA
, 0)
13552 || !add_dynamic_entry (DT_RELASZ
, 0)
13553 || !add_dynamic_entry (DT_RELAENT
, RELOC_SIZE (htab
)))
13558 /* If any dynamic relocs apply to a read-only section,
13559 then we need a DT_TEXTREL entry. */
13560 if ((info
->flags
& DF_TEXTREL
) == 0)
13561 elf_link_hash_traverse (& htab
->root
, elf32_arm_readonly_dynrelocs
,
13564 if ((info
->flags
& DF_TEXTREL
) != 0)
13566 if (!add_dynamic_entry (DT_TEXTREL
, 0))
13569 if (htab
->vxworks_p
13570 && !elf_vxworks_add_dynamic_entries (output_bfd
, info
))
13573 #undef add_dynamic_entry
13578 /* Size sections even though they're not dynamic. We use it to setup
13579 _TLS_MODULE_BASE_, if needed. */
13582 elf32_arm_always_size_sections (bfd
*output_bfd
,
13583 struct bfd_link_info
*info
)
13587 if (info
->relocatable
)
13590 tls_sec
= elf_hash_table (info
)->tls_sec
;
13594 struct elf_link_hash_entry
*tlsbase
;
13596 tlsbase
= elf_link_hash_lookup
13597 (elf_hash_table (info
), "_TLS_MODULE_BASE_", TRUE
, TRUE
, FALSE
);
13601 struct bfd_link_hash_entry
*bh
= NULL
;
13602 const struct elf_backend_data
*bed
13603 = get_elf_backend_data (output_bfd
);
13605 if (!(_bfd_generic_link_add_one_symbol
13606 (info
, output_bfd
, "_TLS_MODULE_BASE_", BSF_LOCAL
,
13607 tls_sec
, 0, NULL
, FALSE
,
13608 bed
->collect
, &bh
)))
13611 tlsbase
->type
= STT_TLS
;
13612 tlsbase
= (struct elf_link_hash_entry
*)bh
;
13613 tlsbase
->def_regular
= 1;
13614 tlsbase
->other
= STV_HIDDEN
;
13615 (*bed
->elf_backend_hide_symbol
) (info
, tlsbase
, TRUE
);
13621 /* Finish up dynamic symbol handling. We set the contents of various
13622 dynamic sections here. */
13625 elf32_arm_finish_dynamic_symbol (bfd
* output_bfd
,
13626 struct bfd_link_info
* info
,
13627 struct elf_link_hash_entry
* h
,
13628 Elf_Internal_Sym
* sym
)
13630 struct elf32_arm_link_hash_table
*htab
;
13631 struct elf32_arm_link_hash_entry
*eh
;
13633 htab
= elf32_arm_hash_table (info
);
13637 eh
= (struct elf32_arm_link_hash_entry
*) h
;
13639 if (h
->plt
.offset
!= (bfd_vma
) -1)
13643 BFD_ASSERT (h
->dynindx
!= -1);
13644 elf32_arm_populate_plt_entry (output_bfd
, info
, &h
->plt
, &eh
->plt
,
13648 if (!h
->def_regular
)
13650 /* Mark the symbol as undefined, rather than as defined in
13651 the .plt section. Leave the value alone. */
13652 sym
->st_shndx
= SHN_UNDEF
;
13653 /* If the symbol is weak, we do need to clear the value.
13654 Otherwise, the PLT entry would provide a definition for
13655 the symbol even if the symbol wasn't defined anywhere,
13656 and so the symbol would never be NULL. */
13657 if (!h
->ref_regular_nonweak
)
13660 else if (eh
->is_iplt
&& eh
->plt
.noncall_refcount
!= 0)
13662 /* At least one non-call relocation references this .iplt entry,
13663 so the .iplt entry is the function's canonical address. */
13664 sym
->st_info
= ELF_ST_INFO (ELF_ST_BIND (sym
->st_info
), STT_FUNC
);
13665 sym
->st_target_internal
= ST_BRANCH_TO_ARM
;
13666 sym
->st_shndx
= (_bfd_elf_section_from_bfd_section
13667 (output_bfd
, htab
->root
.iplt
->output_section
));
13668 sym
->st_value
= (h
->plt
.offset
13669 + htab
->root
.iplt
->output_section
->vma
13670 + htab
->root
.iplt
->output_offset
);
13677 Elf_Internal_Rela rel
;
13679 /* This symbol needs a copy reloc. Set it up. */
13680 BFD_ASSERT (h
->dynindx
!= -1
13681 && (h
->root
.type
== bfd_link_hash_defined
13682 || h
->root
.type
== bfd_link_hash_defweak
));
13685 BFD_ASSERT (s
!= NULL
);
13688 rel
.r_offset
= (h
->root
.u
.def
.value
13689 + h
->root
.u
.def
.section
->output_section
->vma
13690 + h
->root
.u
.def
.section
->output_offset
);
13691 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_COPY
);
13692 elf32_arm_add_dynreloc (output_bfd
, info
, s
, &rel
);
13695 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
13696 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
13697 to the ".got" section. */
13698 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
13699 || (!htab
->vxworks_p
&& h
== htab
->root
.hgot
))
13700 sym
->st_shndx
= SHN_ABS
;
13706 arm_put_trampoline (struct elf32_arm_link_hash_table
*htab
, bfd
*output_bfd
,
13708 const unsigned long *template, unsigned count
)
13712 for (ix
= 0; ix
!= count
; ix
++)
13714 unsigned long insn
= template[ix
];
13716 /* Emit mov pc,rx if bx is not permitted. */
13717 if (htab
->fix_v4bx
== 1 && (insn
& 0x0ffffff0) == 0x012fff10)
13718 insn
= (insn
& 0xf000000f) | 0x01a0f000;
13719 put_arm_insn (htab
, output_bfd
, insn
, (char *)contents
+ ix
*4);
13723 /* Finish up the dynamic sections. */
13726 elf32_arm_finish_dynamic_sections (bfd
* output_bfd
, struct bfd_link_info
* info
)
13731 struct elf32_arm_link_hash_table
*htab
;
13733 htab
= elf32_arm_hash_table (info
);
13737 dynobj
= elf_hash_table (info
)->dynobj
;
13739 sgot
= htab
->root
.sgotplt
;
13740 /* A broken linker script might have discarded the dynamic sections.
13741 Catch this here so that we do not seg-fault later on. */
13742 if (sgot
!= NULL
&& bfd_is_abs_section (sgot
->output_section
))
13744 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
13746 if (elf_hash_table (info
)->dynamic_sections_created
)
13749 Elf32_External_Dyn
*dyncon
, *dynconend
;
13751 splt
= htab
->root
.splt
;
13752 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
13753 BFD_ASSERT (htab
->symbian_p
|| sgot
!= NULL
);
13755 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
13756 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
13758 for (; dyncon
< dynconend
; dyncon
++)
13760 Elf_Internal_Dyn dyn
;
13764 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
13771 if (htab
->vxworks_p
13772 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
13773 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13778 goto get_vma_if_bpabi
;
13781 goto get_vma_if_bpabi
;
13784 goto get_vma_if_bpabi
;
13786 name
= ".gnu.version";
13787 goto get_vma_if_bpabi
;
13789 name
= ".gnu.version_d";
13790 goto get_vma_if_bpabi
;
13792 name
= ".gnu.version_r";
13793 goto get_vma_if_bpabi
;
13799 name
= RELOC_SECTION (htab
, ".plt");
13801 s
= bfd_get_section_by_name (output_bfd
, name
);
13802 BFD_ASSERT (s
!= NULL
);
13803 if (!htab
->symbian_p
)
13804 dyn
.d_un
.d_ptr
= s
->vma
;
13806 /* In the BPABI, tags in the PT_DYNAMIC section point
13807 at the file offset, not the memory address, for the
13808 convenience of the post linker. */
13809 dyn
.d_un
.d_ptr
= s
->filepos
;
13810 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13814 if (htab
->symbian_p
)
13819 s
= htab
->root
.srelplt
;
13820 BFD_ASSERT (s
!= NULL
);
13821 dyn
.d_un
.d_val
= s
->size
;
13822 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13827 if (!htab
->symbian_p
)
13829 /* My reading of the SVR4 ABI indicates that the
13830 procedure linkage table relocs (DT_JMPREL) should be
13831 included in the overall relocs (DT_REL). This is
13832 what Solaris does. However, UnixWare can not handle
13833 that case. Therefore, we override the DT_RELSZ entry
13834 here to make it not include the JMPREL relocs. Since
13835 the linker script arranges for .rel(a).plt to follow all
13836 other relocation sections, we don't have to worry
13837 about changing the DT_REL entry. */
13838 s
= htab
->root
.srelplt
;
13840 dyn
.d_un
.d_val
-= s
->size
;
13841 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13844 /* Fall through. */
13848 /* In the BPABI, the DT_REL tag must point at the file
13849 offset, not the VMA, of the first relocation
13850 section. So, we use code similar to that in
13851 elflink.c, but do not check for SHF_ALLOC on the
13852 relcoation section, since relocations sections are
13853 never allocated under the BPABI. The comments above
13854 about Unixware notwithstanding, we include all of the
13855 relocations here. */
13856 if (htab
->symbian_p
)
13859 type
= ((dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
13860 ? SHT_REL
: SHT_RELA
);
13861 dyn
.d_un
.d_val
= 0;
13862 for (i
= 1; i
< elf_numsections (output_bfd
); i
++)
13864 Elf_Internal_Shdr
*hdr
13865 = elf_elfsections (output_bfd
)[i
];
13866 if (hdr
->sh_type
== type
)
13868 if (dyn
.d_tag
== DT_RELSZ
13869 || dyn
.d_tag
== DT_RELASZ
)
13870 dyn
.d_un
.d_val
+= hdr
->sh_size
;
13871 else if ((ufile_ptr
) hdr
->sh_offset
13872 <= dyn
.d_un
.d_val
- 1)
13873 dyn
.d_un
.d_val
= hdr
->sh_offset
;
13876 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13880 case DT_TLSDESC_PLT
:
13881 s
= htab
->root
.splt
;
13882 dyn
.d_un
.d_ptr
= (s
->output_section
->vma
+ s
->output_offset
13883 + htab
->dt_tlsdesc_plt
);
13884 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13887 case DT_TLSDESC_GOT
:
13888 s
= htab
->root
.sgot
;
13889 dyn
.d_un
.d_ptr
= (s
->output_section
->vma
+ s
->output_offset
13890 + htab
->dt_tlsdesc_got
);
13891 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13894 /* Set the bottom bit of DT_INIT/FINI if the
13895 corresponding function is Thumb. */
13897 name
= info
->init_function
;
13900 name
= info
->fini_function
;
13902 /* If it wasn't set by elf_bfd_final_link
13903 then there is nothing to adjust. */
13904 if (dyn
.d_un
.d_val
!= 0)
13906 struct elf_link_hash_entry
* eh
;
13908 eh
= elf_link_hash_lookup (elf_hash_table (info
), name
,
13909 FALSE
, FALSE
, TRUE
);
13910 if (eh
!= NULL
&& eh
->target_internal
== ST_BRANCH_TO_THUMB
)
13912 dyn
.d_un
.d_val
|= 1;
13913 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
13920 /* Fill in the first entry in the procedure linkage table. */
13921 if (splt
->size
> 0 && htab
->plt_header_size
)
13923 const bfd_vma
*plt0_entry
;
13924 bfd_vma got_address
, plt_address
, got_displacement
;
13926 /* Calculate the addresses of the GOT and PLT. */
13927 got_address
= sgot
->output_section
->vma
+ sgot
->output_offset
;
13928 plt_address
= splt
->output_section
->vma
+ splt
->output_offset
;
13930 if (htab
->vxworks_p
)
13932 /* The VxWorks GOT is relocated by the dynamic linker.
13933 Therefore, we must emit relocations rather than simply
13934 computing the values now. */
13935 Elf_Internal_Rela rel
;
13937 plt0_entry
= elf32_arm_vxworks_exec_plt0_entry
;
13938 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
13939 splt
->contents
+ 0);
13940 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
13941 splt
->contents
+ 4);
13942 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
13943 splt
->contents
+ 8);
13944 bfd_put_32 (output_bfd
, got_address
, splt
->contents
+ 12);
13946 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
13947 rel
.r_offset
= plt_address
+ 12;
13948 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
13950 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
,
13951 htab
->srelplt2
->contents
);
13955 got_displacement
= got_address
- (plt_address
+ 16);
13957 plt0_entry
= elf32_arm_plt0_entry
;
13958 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
13959 splt
->contents
+ 0);
13960 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
13961 splt
->contents
+ 4);
13962 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
13963 splt
->contents
+ 8);
13964 put_arm_insn (htab
, output_bfd
, plt0_entry
[3],
13965 splt
->contents
+ 12);
13967 #ifdef FOUR_WORD_PLT
13968 /* The displacement value goes in the otherwise-unused
13969 last word of the second entry. */
13970 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 28);
13972 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 16);
13977 /* UnixWare sets the entsize of .plt to 4, although that doesn't
13978 really seem like the right value. */
13979 if (splt
->output_section
->owner
== output_bfd
)
13980 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
= 4;
13982 if (htab
->dt_tlsdesc_plt
)
13984 bfd_vma got_address
13985 = sgot
->output_section
->vma
+ sgot
->output_offset
;
13986 bfd_vma gotplt_address
= (htab
->root
.sgot
->output_section
->vma
13987 + htab
->root
.sgot
->output_offset
);
13988 bfd_vma plt_address
13989 = splt
->output_section
->vma
+ splt
->output_offset
;
13991 arm_put_trampoline (htab
, output_bfd
,
13992 splt
->contents
+ htab
->dt_tlsdesc_plt
,
13993 dl_tlsdesc_lazy_trampoline
, 6);
13995 bfd_put_32 (output_bfd
,
13996 gotplt_address
+ htab
->dt_tlsdesc_got
13997 - (plt_address
+ htab
->dt_tlsdesc_plt
)
13998 - dl_tlsdesc_lazy_trampoline
[6],
13999 splt
->contents
+ htab
->dt_tlsdesc_plt
+ 24);
14000 bfd_put_32 (output_bfd
,
14001 got_address
- (plt_address
+ htab
->dt_tlsdesc_plt
)
14002 - dl_tlsdesc_lazy_trampoline
[7],
14003 splt
->contents
+ htab
->dt_tlsdesc_plt
+ 24 + 4);
14006 if (htab
->tls_trampoline
)
14008 arm_put_trampoline (htab
, output_bfd
,
14009 splt
->contents
+ htab
->tls_trampoline
,
14010 tls_trampoline
, 3);
14011 #ifdef FOUR_WORD_PLT
14012 bfd_put_32 (output_bfd
, 0x00000000,
14013 splt
->contents
+ htab
->tls_trampoline
+ 12);
14017 if (htab
->vxworks_p
&& !info
->shared
&& htab
->root
.splt
->size
> 0)
14019 /* Correct the .rel(a).plt.unloaded relocations. They will have
14020 incorrect symbol indexes. */
14024 num_plts
= ((htab
->root
.splt
->size
- htab
->plt_header_size
)
14025 / htab
->plt_entry_size
);
14026 p
= htab
->srelplt2
->contents
+ RELOC_SIZE (htab
);
14028 for (; num_plts
; num_plts
--)
14030 Elf_Internal_Rela rel
;
14032 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
14033 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
14034 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
14035 p
+= RELOC_SIZE (htab
);
14037 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
14038 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
14039 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
14040 p
+= RELOC_SIZE (htab
);
14045 /* Fill in the first three entries in the global offset table. */
14048 if (sgot
->size
> 0)
14051 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
14053 bfd_put_32 (output_bfd
,
14054 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
14056 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 4);
14057 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 8);
14060 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 4;
14067 elf32_arm_post_process_headers (bfd
* abfd
, struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
14069 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
14070 struct elf32_arm_link_hash_table
*globals
;
14072 i_ehdrp
= elf_elfheader (abfd
);
14074 if (EF_ARM_EABI_VERSION (i_ehdrp
->e_flags
) == EF_ARM_EABI_UNKNOWN
)
14075 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_ARM
;
14077 i_ehdrp
->e_ident
[EI_OSABI
] = 0;
14078 i_ehdrp
->e_ident
[EI_ABIVERSION
] = ARM_ELF_ABI_VERSION
;
14082 globals
= elf32_arm_hash_table (link_info
);
14083 if (globals
!= NULL
&& globals
->byteswap_code
)
14084 i_ehdrp
->e_flags
|= EF_ARM_BE8
;
14088 static enum elf_reloc_type_class
14089 elf32_arm_reloc_type_class (const Elf_Internal_Rela
*rela
)
14091 switch ((int) ELF32_R_TYPE (rela
->r_info
))
14093 case R_ARM_RELATIVE
:
14094 return reloc_class_relative
;
14095 case R_ARM_JUMP_SLOT
:
14096 return reloc_class_plt
;
14098 return reloc_class_copy
;
14100 return reloc_class_normal
;
14105 elf32_arm_final_write_processing (bfd
*abfd
, bfd_boolean linker ATTRIBUTE_UNUSED
)
14107 bfd_arm_update_notes (abfd
, ARM_NOTE_SECTION
);
14110 /* Return TRUE if this is an unwinding table entry. */
14113 is_arm_elf_unwind_section_name (bfd
* abfd ATTRIBUTE_UNUSED
, const char * name
)
14115 return (CONST_STRNEQ (name
, ELF_STRING_ARM_unwind
)
14116 || CONST_STRNEQ (name
, ELF_STRING_ARM_unwind_once
));
14120 /* Set the type and flags for an ARM section. We do this by
14121 the section name, which is a hack, but ought to work. */
14124 elf32_arm_fake_sections (bfd
* abfd
, Elf_Internal_Shdr
* hdr
, asection
* sec
)
14128 name
= bfd_get_section_name (abfd
, sec
);
14130 if (is_arm_elf_unwind_section_name (abfd
, name
))
14132 hdr
->sh_type
= SHT_ARM_EXIDX
;
14133 hdr
->sh_flags
|= SHF_LINK_ORDER
;
14138 /* Handle an ARM specific section when reading an object file. This is
14139 called when bfd_section_from_shdr finds a section with an unknown
14143 elf32_arm_section_from_shdr (bfd
*abfd
,
14144 Elf_Internal_Shdr
* hdr
,
14148 /* There ought to be a place to keep ELF backend specific flags, but
14149 at the moment there isn't one. We just keep track of the
14150 sections by their name, instead. Fortunately, the ABI gives
14151 names for all the ARM specific sections, so we will probably get
14153 switch (hdr
->sh_type
)
14155 case SHT_ARM_EXIDX
:
14156 case SHT_ARM_PREEMPTMAP
:
14157 case SHT_ARM_ATTRIBUTES
:
14164 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
14170 static _arm_elf_section_data
*
14171 get_arm_elf_section_data (asection
* sec
)
14173 if (sec
&& sec
->owner
&& is_arm_elf (sec
->owner
))
14174 return elf32_arm_section_data (sec
);
14182 struct bfd_link_info
*info
;
14185 int (*func
) (void *, const char *, Elf_Internal_Sym
*,
14186 asection
*, struct elf_link_hash_entry
*);
14187 } output_arch_syminfo
;
14189 enum map_symbol_type
14197 /* Output a single mapping symbol. */
14200 elf32_arm_output_map_sym (output_arch_syminfo
*osi
,
14201 enum map_symbol_type type
,
14204 static const char *names
[3] = {"$a", "$t", "$d"};
14205 Elf_Internal_Sym sym
;
14207 sym
.st_value
= osi
->sec
->output_section
->vma
14208 + osi
->sec
->output_offset
14212 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
14213 sym
.st_shndx
= osi
->sec_shndx
;
14214 sym
.st_target_internal
= 0;
14215 elf32_arm_section_map_add (osi
->sec
, names
[type
][1], offset
);
14216 return osi
->func (osi
->finfo
, names
[type
], &sym
, osi
->sec
, NULL
) == 1;
14219 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
14220 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
14223 elf32_arm_output_plt_map_1 (output_arch_syminfo
*osi
,
14224 bfd_boolean is_iplt_entry_p
,
14225 union gotplt_union
*root_plt
,
14226 struct arm_plt_info
*arm_plt
)
14228 struct elf32_arm_link_hash_table
*htab
;
14229 bfd_vma addr
, plt_header_size
;
14231 if (root_plt
->offset
== (bfd_vma
) -1)
14234 htab
= elf32_arm_hash_table (osi
->info
);
14238 if (is_iplt_entry_p
)
14240 osi
->sec
= htab
->root
.iplt
;
14241 plt_header_size
= 0;
14245 osi
->sec
= htab
->root
.splt
;
14246 plt_header_size
= htab
->plt_header_size
;
14248 osi
->sec_shndx
= (_bfd_elf_section_from_bfd_section
14249 (osi
->info
->output_bfd
, osi
->sec
->output_section
));
14251 addr
= root_plt
->offset
& -2;
14252 if (htab
->symbian_p
)
14254 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
14256 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 4))
14259 else if (htab
->vxworks_p
)
14261 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
14263 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 8))
14265 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
+ 12))
14267 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 20))
14272 bfd_boolean thumb_stub_p
;
14274 thumb_stub_p
= elf32_arm_plt_needs_thumb_stub_p (osi
->info
, arm_plt
);
14277 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
- 4))
14280 #ifdef FOUR_WORD_PLT
14281 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
14283 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 12))
14286 /* A three-word PLT with no Thumb thunk contains only Arm code,
14287 so only need to output a mapping symbol for the first PLT entry and
14288 entries with thumb thunks. */
14289 if (thumb_stub_p
|| addr
== plt_header_size
)
14291 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
14300 /* Output mapping symbols for PLT entries associated with H. */
14303 elf32_arm_output_plt_map (struct elf_link_hash_entry
*h
, void *inf
)
14305 output_arch_syminfo
*osi
= (output_arch_syminfo
*) inf
;
14306 struct elf32_arm_link_hash_entry
*eh
;
14308 if (h
->root
.type
== bfd_link_hash_indirect
)
14311 if (h
->root
.type
== bfd_link_hash_warning
)
14312 /* When warning symbols are created, they **replace** the "real"
14313 entry in the hash table, thus we never get to see the real
14314 symbol in a hash traversal. So look at it now. */
14315 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
14317 eh
= (struct elf32_arm_link_hash_entry
*) h
;
14318 return elf32_arm_output_plt_map_1 (osi
, SYMBOL_CALLS_LOCAL (osi
->info
, h
),
14319 &h
->plt
, &eh
->plt
);
14322 /* Output a single local symbol for a generated stub. */
14325 elf32_arm_output_stub_sym (output_arch_syminfo
*osi
, const char *name
,
14326 bfd_vma offset
, bfd_vma size
)
14328 Elf_Internal_Sym sym
;
14330 sym
.st_value
= osi
->sec
->output_section
->vma
14331 + osi
->sec
->output_offset
14333 sym
.st_size
= size
;
14335 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
14336 sym
.st_shndx
= osi
->sec_shndx
;
14337 sym
.st_target_internal
= 0;
14338 return osi
->func (osi
->finfo
, name
, &sym
, osi
->sec
, NULL
) == 1;
14342 arm_map_one_stub (struct bfd_hash_entry
* gen_entry
,
14345 struct elf32_arm_stub_hash_entry
*stub_entry
;
14346 asection
*stub_sec
;
14349 output_arch_syminfo
*osi
;
14350 const insn_sequence
*template_sequence
;
14351 enum stub_insn_type prev_type
;
14354 enum map_symbol_type sym_type
;
14356 /* Massage our args to the form they really have. */
14357 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
14358 osi
= (output_arch_syminfo
*) in_arg
;
14360 stub_sec
= stub_entry
->stub_sec
;
14362 /* Ensure this stub is attached to the current section being
14364 if (stub_sec
!= osi
->sec
)
14367 addr
= (bfd_vma
) stub_entry
->stub_offset
;
14368 stub_name
= stub_entry
->output_name
;
14370 template_sequence
= stub_entry
->stub_template
;
14371 switch (template_sequence
[0].type
)
14374 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
, stub_entry
->stub_size
))
14379 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
| 1,
14380 stub_entry
->stub_size
))
14388 prev_type
= DATA_TYPE
;
14390 for (i
= 0; i
< stub_entry
->stub_template_size
; i
++)
14392 switch (template_sequence
[i
].type
)
14395 sym_type
= ARM_MAP_ARM
;
14400 sym_type
= ARM_MAP_THUMB
;
14404 sym_type
= ARM_MAP_DATA
;
14412 if (template_sequence
[i
].type
!= prev_type
)
14414 prev_type
= template_sequence
[i
].type
;
14415 if (!elf32_arm_output_map_sym (osi
, sym_type
, addr
+ size
))
14419 switch (template_sequence
[i
].type
)
14443 /* Output mapping symbols for linker generated sections,
14444 and for those data-only sections that do not have a
14448 elf32_arm_output_arch_local_syms (bfd
*output_bfd
,
14449 struct bfd_link_info
*info
,
14451 int (*func
) (void *, const char *,
14452 Elf_Internal_Sym
*,
14454 struct elf_link_hash_entry
*))
14456 output_arch_syminfo osi
;
14457 struct elf32_arm_link_hash_table
*htab
;
14459 bfd_size_type size
;
14462 htab
= elf32_arm_hash_table (info
);
14466 check_use_blx (htab
);
14472 /* Add a $d mapping symbol to data-only sections that
14473 don't have any mapping symbol. This may result in (harmless) redundant
14474 mapping symbols. */
14475 for (input_bfd
= info
->input_bfds
;
14477 input_bfd
= input_bfd
->link_next
)
14479 if ((input_bfd
->flags
& (BFD_LINKER_CREATED
| HAS_SYMS
)) == HAS_SYMS
)
14480 for (osi
.sec
= input_bfd
->sections
;
14482 osi
.sec
= osi
.sec
->next
)
14484 if (osi
.sec
->output_section
!= NULL
14485 && ((osi
.sec
->output_section
->flags
& (SEC_ALLOC
| SEC_CODE
))
14487 && (osi
.sec
->flags
& (SEC_HAS_CONTENTS
| SEC_LINKER_CREATED
))
14488 == SEC_HAS_CONTENTS
14489 && get_arm_elf_section_data (osi
.sec
) != NULL
14490 && get_arm_elf_section_data (osi
.sec
)->mapcount
== 0
14491 && osi
.sec
->size
> 0)
14493 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
14494 (output_bfd
, osi
.sec
->output_section
);
14495 if (osi
.sec_shndx
!= (int)SHN_BAD
)
14496 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 0);
14501 /* ARM->Thumb glue. */
14502 if (htab
->arm_glue_size
> 0)
14504 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
14505 ARM2THUMB_GLUE_SECTION_NAME
);
14507 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
14508 (output_bfd
, osi
.sec
->output_section
);
14509 if (info
->shared
|| htab
->root
.is_relocatable_executable
14510 || htab
->pic_veneer
)
14511 size
= ARM2THUMB_PIC_GLUE_SIZE
;
14512 else if (htab
->use_blx
)
14513 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
14515 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
14517 for (offset
= 0; offset
< htab
->arm_glue_size
; offset
+= size
)
14519 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
);
14520 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, offset
+ size
- 4);
14524 /* Thumb->ARM glue. */
14525 if (htab
->thumb_glue_size
> 0)
14527 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
14528 THUMB2ARM_GLUE_SECTION_NAME
);
14530 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
14531 (output_bfd
, osi
.sec
->output_section
);
14532 size
= THUMB2ARM_GLUE_SIZE
;
14534 for (offset
= 0; offset
< htab
->thumb_glue_size
; offset
+= size
)
14536 elf32_arm_output_map_sym (&osi
, ARM_MAP_THUMB
, offset
);
14537 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
+ 4);
14541 /* ARMv4 BX veneers. */
14542 if (htab
->bx_glue_size
> 0)
14544 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
14545 ARM_BX_GLUE_SECTION_NAME
);
14547 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
14548 (output_bfd
, osi
.sec
->output_section
);
14550 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0);
14553 /* Long calls stubs. */
14554 if (htab
->stub_bfd
&& htab
->stub_bfd
->sections
)
14556 asection
* stub_sec
;
14558 for (stub_sec
= htab
->stub_bfd
->sections
;
14560 stub_sec
= stub_sec
->next
)
14562 /* Ignore non-stub sections. */
14563 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
14566 osi
.sec
= stub_sec
;
14568 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
14569 (output_bfd
, osi
.sec
->output_section
);
14571 bfd_hash_traverse (&htab
->stub_hash_table
, arm_map_one_stub
, &osi
);
14575 /* Finally, output mapping symbols for the PLT. */
14576 if (htab
->root
.splt
&& htab
->root
.splt
->size
> 0)
14578 osi
.sec
= htab
->root
.splt
;
14579 osi
.sec_shndx
= (_bfd_elf_section_from_bfd_section
14580 (output_bfd
, osi
.sec
->output_section
));
14582 /* Output mapping symbols for the plt header. SymbianOS does not have a
14584 if (htab
->vxworks_p
)
14586 /* VxWorks shared libraries have no PLT header. */
14589 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
14591 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 12))
14595 else if (!htab
->symbian_p
)
14597 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
14599 #ifndef FOUR_WORD_PLT
14600 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 16))
14605 if ((htab
->root
.splt
&& htab
->root
.splt
->size
> 0)
14606 || (htab
->root
.iplt
&& htab
->root
.iplt
->size
> 0))
14608 elf_link_hash_traverse (&htab
->root
, elf32_arm_output_plt_map
, &osi
);
14609 for (input_bfd
= info
->input_bfds
;
14611 input_bfd
= input_bfd
->link_next
)
14613 struct arm_local_iplt_info
**local_iplt
;
14614 unsigned int i
, num_syms
;
14616 local_iplt
= elf32_arm_local_iplt (input_bfd
);
14617 if (local_iplt
!= NULL
)
14619 num_syms
= elf_symtab_hdr (input_bfd
).sh_info
;
14620 for (i
= 0; i
< num_syms
; i
++)
14621 if (local_iplt
[i
] != NULL
14622 && !elf32_arm_output_plt_map_1 (&osi
, TRUE
,
14623 &local_iplt
[i
]->root
,
14624 &local_iplt
[i
]->arm
))
14629 if (htab
->dt_tlsdesc_plt
!= 0)
14631 /* Mapping symbols for the lazy tls trampoline. */
14632 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, htab
->dt_tlsdesc_plt
))
14635 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
,
14636 htab
->dt_tlsdesc_plt
+ 24))
14639 if (htab
->tls_trampoline
!= 0)
14641 /* Mapping symbols for the tls trampoline. */
14642 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, htab
->tls_trampoline
))
14644 #ifdef FOUR_WORD_PLT
14645 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
,
14646 htab
->tls_trampoline
+ 12))
14654 /* Allocate target specific section data. */
14657 elf32_arm_new_section_hook (bfd
*abfd
, asection
*sec
)
14659 if (!sec
->used_by_bfd
)
14661 _arm_elf_section_data
*sdata
;
14662 bfd_size_type amt
= sizeof (*sdata
);
14664 sdata
= (_arm_elf_section_data
*) bfd_zalloc (abfd
, amt
);
14667 sec
->used_by_bfd
= sdata
;
14670 return _bfd_elf_new_section_hook (abfd
, sec
);
14674 /* Used to order a list of mapping symbols by address. */
14677 elf32_arm_compare_mapping (const void * a
, const void * b
)
14679 const elf32_arm_section_map
*amap
= (const elf32_arm_section_map
*) a
;
14680 const elf32_arm_section_map
*bmap
= (const elf32_arm_section_map
*) b
;
14682 if (amap
->vma
> bmap
->vma
)
14684 else if (amap
->vma
< bmap
->vma
)
14686 else if (amap
->type
> bmap
->type
)
14687 /* Ensure results do not depend on the host qsort for objects with
14688 multiple mapping symbols at the same address by sorting on type
14691 else if (amap
->type
< bmap
->type
)
14697 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
14699 static unsigned long
14700 offset_prel31 (unsigned long addr
, bfd_vma offset
)
14702 return (addr
& ~0x7ffffffful
) | ((addr
+ offset
) & 0x7ffffffful
);
14705 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
14709 copy_exidx_entry (bfd
*output_bfd
, bfd_byte
*to
, bfd_byte
*from
, bfd_vma offset
)
14711 unsigned long first_word
= bfd_get_32 (output_bfd
, from
);
14712 unsigned long second_word
= bfd_get_32 (output_bfd
, from
+ 4);
14714 /* High bit of first word is supposed to be zero. */
14715 if ((first_word
& 0x80000000ul
) == 0)
14716 first_word
= offset_prel31 (first_word
, offset
);
14718 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
14719 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
14720 if ((second_word
!= 0x1) && ((second_word
& 0x80000000ul
) == 0))
14721 second_word
= offset_prel31 (second_word
, offset
);
14723 bfd_put_32 (output_bfd
, first_word
, to
);
14724 bfd_put_32 (output_bfd
, second_word
, to
+ 4);
14727 /* Data for make_branch_to_a8_stub(). */
14729 struct a8_branch_to_stub_data
{
14730 asection
*writing_section
;
14731 bfd_byte
*contents
;
14735 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
14736 places for a particular section. */
14739 make_branch_to_a8_stub (struct bfd_hash_entry
*gen_entry
,
14742 struct elf32_arm_stub_hash_entry
*stub_entry
;
14743 struct a8_branch_to_stub_data
*data
;
14744 bfd_byte
*contents
;
14745 unsigned long branch_insn
;
14746 bfd_vma veneered_insn_loc
, veneer_entry_loc
;
14747 bfd_signed_vma branch_offset
;
14749 unsigned int target
;
14751 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
14752 data
= (struct a8_branch_to_stub_data
*) in_arg
;
14754 if (stub_entry
->target_section
!= data
->writing_section
14755 || stub_entry
->stub_type
< arm_stub_a8_veneer_lwm
)
14758 contents
= data
->contents
;
14760 veneered_insn_loc
= stub_entry
->target_section
->output_section
->vma
14761 + stub_entry
->target_section
->output_offset
14762 + stub_entry
->target_value
;
14764 veneer_entry_loc
= stub_entry
->stub_sec
->output_section
->vma
14765 + stub_entry
->stub_sec
->output_offset
14766 + stub_entry
->stub_offset
;
14768 if (stub_entry
->stub_type
== arm_stub_a8_veneer_blx
)
14769 veneered_insn_loc
&= ~3u;
14771 branch_offset
= veneer_entry_loc
- veneered_insn_loc
- 4;
14773 abfd
= stub_entry
->target_section
->owner
;
14774 target
= stub_entry
->target_value
;
14776 /* We attempt to avoid this condition by setting stubs_always_after_branch
14777 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
14778 This check is just to be on the safe side... */
14779 if ((veneered_insn_loc
& ~0xfff) == (veneer_entry_loc
& ~0xfff))
14781 (*_bfd_error_handler
) (_("%B: error: Cortex-A8 erratum stub is "
14782 "allocated in unsafe location"), abfd
);
14786 switch (stub_entry
->stub_type
)
14788 case arm_stub_a8_veneer_b
:
14789 case arm_stub_a8_veneer_b_cond
:
14790 branch_insn
= 0xf0009000;
14793 case arm_stub_a8_veneer_blx
:
14794 branch_insn
= 0xf000e800;
14797 case arm_stub_a8_veneer_bl
:
14799 unsigned int i1
, j1
, i2
, j2
, s
;
14801 branch_insn
= 0xf000d000;
14804 if (branch_offset
< -16777216 || branch_offset
> 16777214)
14806 /* There's not much we can do apart from complain if this
14808 (*_bfd_error_handler
) (_("%B: error: Cortex-A8 erratum stub out "
14809 "of range (input file too large)"), abfd
);
14813 /* i1 = not(j1 eor s), so:
14815 j1 = (not i1) eor s. */
14817 branch_insn
|= (branch_offset
>> 1) & 0x7ff;
14818 branch_insn
|= ((branch_offset
>> 12) & 0x3ff) << 16;
14819 i2
= (branch_offset
>> 22) & 1;
14820 i1
= (branch_offset
>> 23) & 1;
14821 s
= (branch_offset
>> 24) & 1;
14824 branch_insn
|= j2
<< 11;
14825 branch_insn
|= j1
<< 13;
14826 branch_insn
|= s
<< 26;
14835 bfd_put_16 (abfd
, (branch_insn
>> 16) & 0xffff, &contents
[target
]);
14836 bfd_put_16 (abfd
, branch_insn
& 0xffff, &contents
[target
+ 2]);
14841 /* Do code byteswapping. Return FALSE afterwards so that the section is
14842 written out as normal. */
14845 elf32_arm_write_section (bfd
*output_bfd
,
14846 struct bfd_link_info
*link_info
,
14848 bfd_byte
*contents
)
14850 unsigned int mapcount
, errcount
;
14851 _arm_elf_section_data
*arm_data
;
14852 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
14853 elf32_arm_section_map
*map
;
14854 elf32_vfp11_erratum_list
*errnode
;
14857 bfd_vma offset
= sec
->output_section
->vma
+ sec
->output_offset
;
14861 if (globals
== NULL
)
14864 /* If this section has not been allocated an _arm_elf_section_data
14865 structure then we cannot record anything. */
14866 arm_data
= get_arm_elf_section_data (sec
);
14867 if (arm_data
== NULL
)
14870 mapcount
= arm_data
->mapcount
;
14871 map
= arm_data
->map
;
14872 errcount
= arm_data
->erratumcount
;
14876 unsigned int endianflip
= bfd_big_endian (output_bfd
) ? 3 : 0;
14878 for (errnode
= arm_data
->erratumlist
; errnode
!= 0;
14879 errnode
= errnode
->next
)
14881 bfd_vma target
= errnode
->vma
- offset
;
14883 switch (errnode
->type
)
14885 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
14887 bfd_vma branch_to_veneer
;
14888 /* Original condition code of instruction, plus bit mask for
14889 ARM B instruction. */
14890 unsigned int insn
= (errnode
->u
.b
.vfp_insn
& 0xf0000000)
14893 /* The instruction is before the label. */
14896 /* Above offset included in -4 below. */
14897 branch_to_veneer
= errnode
->u
.b
.veneer
->vma
14898 - errnode
->vma
- 4;
14900 if ((signed) branch_to_veneer
< -(1 << 25)
14901 || (signed) branch_to_veneer
>= (1 << 25))
14902 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
14903 "range"), output_bfd
);
14905 insn
|= (branch_to_veneer
>> 2) & 0xffffff;
14906 contents
[endianflip
^ target
] = insn
& 0xff;
14907 contents
[endianflip
^ (target
+ 1)] = (insn
>> 8) & 0xff;
14908 contents
[endianflip
^ (target
+ 2)] = (insn
>> 16) & 0xff;
14909 contents
[endianflip
^ (target
+ 3)] = (insn
>> 24) & 0xff;
14913 case VFP11_ERRATUM_ARM_VENEER
:
14915 bfd_vma branch_from_veneer
;
14918 /* Take size of veneer into account. */
14919 branch_from_veneer
= errnode
->u
.v
.branch
->vma
14920 - errnode
->vma
- 12;
14922 if ((signed) branch_from_veneer
< -(1 << 25)
14923 || (signed) branch_from_veneer
>= (1 << 25))
14924 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
14925 "range"), output_bfd
);
14927 /* Original instruction. */
14928 insn
= errnode
->u
.v
.branch
->u
.b
.vfp_insn
;
14929 contents
[endianflip
^ target
] = insn
& 0xff;
14930 contents
[endianflip
^ (target
+ 1)] = (insn
>> 8) & 0xff;
14931 contents
[endianflip
^ (target
+ 2)] = (insn
>> 16) & 0xff;
14932 contents
[endianflip
^ (target
+ 3)] = (insn
>> 24) & 0xff;
14934 /* Branch back to insn after original insn. */
14935 insn
= 0xea000000 | ((branch_from_veneer
>> 2) & 0xffffff);
14936 contents
[endianflip
^ (target
+ 4)] = insn
& 0xff;
14937 contents
[endianflip
^ (target
+ 5)] = (insn
>> 8) & 0xff;
14938 contents
[endianflip
^ (target
+ 6)] = (insn
>> 16) & 0xff;
14939 contents
[endianflip
^ (target
+ 7)] = (insn
>> 24) & 0xff;
14949 if (arm_data
->elf
.this_hdr
.sh_type
== SHT_ARM_EXIDX
)
14951 arm_unwind_table_edit
*edit_node
14952 = arm_data
->u
.exidx
.unwind_edit_list
;
14953 /* Now, sec->size is the size of the section we will write. The original
14954 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
14955 markers) was sec->rawsize. (This isn't the case if we perform no
14956 edits, then rawsize will be zero and we should use size). */
14957 bfd_byte
*edited_contents
= (bfd_byte
*) bfd_malloc (sec
->size
);
14958 unsigned int input_size
= sec
->rawsize
? sec
->rawsize
: sec
->size
;
14959 unsigned int in_index
, out_index
;
14960 bfd_vma add_to_offsets
= 0;
14962 for (in_index
= 0, out_index
= 0; in_index
* 8 < input_size
|| edit_node
;)
14966 unsigned int edit_index
= edit_node
->index
;
14968 if (in_index
< edit_index
&& in_index
* 8 < input_size
)
14970 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
14971 contents
+ in_index
* 8, add_to_offsets
);
14975 else if (in_index
== edit_index
14976 || (in_index
* 8 >= input_size
14977 && edit_index
== UINT_MAX
))
14979 switch (edit_node
->type
)
14981 case DELETE_EXIDX_ENTRY
:
14983 add_to_offsets
+= 8;
14986 case INSERT_EXIDX_CANTUNWIND_AT_END
:
14988 asection
*text_sec
= edit_node
->linked_section
;
14989 bfd_vma text_offset
= text_sec
->output_section
->vma
14990 + text_sec
->output_offset
14992 bfd_vma exidx_offset
= offset
+ out_index
* 8;
14993 unsigned long prel31_offset
;
14995 /* Note: this is meant to be equivalent to an
14996 R_ARM_PREL31 relocation. These synthetic
14997 EXIDX_CANTUNWIND markers are not relocated by the
14998 usual BFD method. */
14999 prel31_offset
= (text_offset
- exidx_offset
)
15002 /* First address we can't unwind. */
15003 bfd_put_32 (output_bfd
, prel31_offset
,
15004 &edited_contents
[out_index
* 8]);
15006 /* Code for EXIDX_CANTUNWIND. */
15007 bfd_put_32 (output_bfd
, 0x1,
15008 &edited_contents
[out_index
* 8 + 4]);
15011 add_to_offsets
-= 8;
15016 edit_node
= edit_node
->next
;
15021 /* No more edits, copy remaining entries verbatim. */
15022 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
15023 contents
+ in_index
* 8, add_to_offsets
);
15029 if (!(sec
->flags
& SEC_EXCLUDE
) && !(sec
->flags
& SEC_NEVER_LOAD
))
15030 bfd_set_section_contents (output_bfd
, sec
->output_section
,
15032 (file_ptr
) sec
->output_offset
, sec
->size
);
15037 /* Fix code to point to Cortex-A8 erratum stubs. */
15038 if (globals
->fix_cortex_a8
)
15040 struct a8_branch_to_stub_data data
;
15042 data
.writing_section
= sec
;
15043 data
.contents
= contents
;
15045 bfd_hash_traverse (&globals
->stub_hash_table
, make_branch_to_a8_stub
,
15052 if (globals
->byteswap_code
)
15054 qsort (map
, mapcount
, sizeof (* map
), elf32_arm_compare_mapping
);
15057 for (i
= 0; i
< mapcount
; i
++)
15059 if (i
== mapcount
- 1)
15062 end
= map
[i
+ 1].vma
;
15064 switch (map
[i
].type
)
15067 /* Byte swap code words. */
15068 while (ptr
+ 3 < end
)
15070 tmp
= contents
[ptr
];
15071 contents
[ptr
] = contents
[ptr
+ 3];
15072 contents
[ptr
+ 3] = tmp
;
15073 tmp
= contents
[ptr
+ 1];
15074 contents
[ptr
+ 1] = contents
[ptr
+ 2];
15075 contents
[ptr
+ 2] = tmp
;
15081 /* Byte swap code halfwords. */
15082 while (ptr
+ 1 < end
)
15084 tmp
= contents
[ptr
];
15085 contents
[ptr
] = contents
[ptr
+ 1];
15086 contents
[ptr
+ 1] = tmp
;
15092 /* Leave data alone. */
15100 arm_data
->mapcount
= -1;
15101 arm_data
->mapsize
= 0;
15102 arm_data
->map
= NULL
;
15107 /* Mangle thumb function symbols as we read them in. */
15110 elf32_arm_swap_symbol_in (bfd
* abfd
,
15113 Elf_Internal_Sym
*dst
)
15115 if (!bfd_elf32_swap_symbol_in (abfd
, psrc
, pshn
, dst
))
15118 /* New EABI objects mark thumb function symbols by setting the low bit of
15120 if (ELF_ST_TYPE (dst
->st_info
) == STT_FUNC
15121 || ELF_ST_TYPE (dst
->st_info
) == STT_GNU_IFUNC
)
15123 if (dst
->st_value
& 1)
15125 dst
->st_value
&= ~(bfd_vma
) 1;
15126 dst
->st_target_internal
= ST_BRANCH_TO_THUMB
;
15129 dst
->st_target_internal
= ST_BRANCH_TO_ARM
;
15131 else if (ELF_ST_TYPE (dst
->st_info
) == STT_ARM_TFUNC
)
15133 dst
->st_info
= ELF_ST_INFO (ELF_ST_BIND (dst
->st_info
), STT_FUNC
);
15134 dst
->st_target_internal
= ST_BRANCH_TO_THUMB
;
15136 else if (ELF_ST_TYPE (dst
->st_info
) == STT_SECTION
)
15137 dst
->st_target_internal
= ST_BRANCH_LONG
;
15139 dst
->st_target_internal
= ST_BRANCH_UNKNOWN
;
15145 /* Mangle thumb function symbols as we write them out. */
15148 elf32_arm_swap_symbol_out (bfd
*abfd
,
15149 const Elf_Internal_Sym
*src
,
15153 Elf_Internal_Sym newsym
;
15155 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
15156 of the address set, as per the new EABI. We do this unconditionally
15157 because objcopy does not set the elf header flags until after
15158 it writes out the symbol table. */
15159 if (src
->st_target_internal
== ST_BRANCH_TO_THUMB
)
15162 if (ELF_ST_TYPE (src
->st_info
) != STT_GNU_IFUNC
)
15163 newsym
.st_info
= ELF_ST_INFO (ELF_ST_BIND (src
->st_info
), STT_FUNC
);
15164 if (newsym
.st_shndx
!= SHN_UNDEF
)
15166 /* Do this only for defined symbols. At link type, the static
15167 linker will simulate the work of dynamic linker of resolving
15168 symbols and will carry over the thumbness of found symbols to
15169 the output symbol table. It's not clear how it happens, but
15170 the thumbness of undefined symbols can well be different at
15171 runtime, and writing '1' for them will be confusing for users
15172 and possibly for dynamic linker itself.
15174 newsym
.st_value
|= 1;
15179 bfd_elf32_swap_symbol_out (abfd
, src
, cdst
, shndx
);
15182 /* Add the PT_ARM_EXIDX program header. */
15185 elf32_arm_modify_segment_map (bfd
*abfd
,
15186 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
15188 struct elf_segment_map
*m
;
15191 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
15192 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
15194 /* If there is already a PT_ARM_EXIDX header, then we do not
15195 want to add another one. This situation arises when running
15196 "strip"; the input binary already has the header. */
15197 m
= elf_tdata (abfd
)->segment_map
;
15198 while (m
&& m
->p_type
!= PT_ARM_EXIDX
)
15202 m
= (struct elf_segment_map
*)
15203 bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
15206 m
->p_type
= PT_ARM_EXIDX
;
15208 m
->sections
[0] = sec
;
15210 m
->next
= elf_tdata (abfd
)->segment_map
;
15211 elf_tdata (abfd
)->segment_map
= m
;
15218 /* We may add a PT_ARM_EXIDX program header. */
15221 elf32_arm_additional_program_headers (bfd
*abfd
,
15222 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
15226 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
15227 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
15233 /* Hook called by the linker routine which adds symbols from an object
15237 elf32_arm_add_symbol_hook (bfd
*abfd
, struct bfd_link_info
*info
,
15238 Elf_Internal_Sym
*sym
, const char **namep
,
15239 flagword
*flagsp
, asection
**secp
, bfd_vma
*valp
)
15241 if ((abfd
->flags
& DYNAMIC
) == 0
15242 && (ELF_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
15243 || ELF_ST_BIND (sym
->st_info
) == STB_GNU_UNIQUE
))
15244 elf_tdata (info
->output_bfd
)->has_gnu_symbols
= TRUE
;
15246 if (elf32_arm_hash_table (info
)->vxworks_p
15247 && !elf_vxworks_add_symbol_hook (abfd
, info
, sym
, namep
,
15248 flagsp
, secp
, valp
))
15254 /* We use this to override swap_symbol_in and swap_symbol_out. */
15255 const struct elf_size_info elf32_arm_size_info
=
15257 sizeof (Elf32_External_Ehdr
),
15258 sizeof (Elf32_External_Phdr
),
15259 sizeof (Elf32_External_Shdr
),
15260 sizeof (Elf32_External_Rel
),
15261 sizeof (Elf32_External_Rela
),
15262 sizeof (Elf32_External_Sym
),
15263 sizeof (Elf32_External_Dyn
),
15264 sizeof (Elf_External_Note
),
15268 ELFCLASS32
, EV_CURRENT
,
15269 bfd_elf32_write_out_phdrs
,
15270 bfd_elf32_write_shdrs_and_ehdr
,
15271 bfd_elf32_checksum_contents
,
15272 bfd_elf32_write_relocs
,
15273 elf32_arm_swap_symbol_in
,
15274 elf32_arm_swap_symbol_out
,
15275 bfd_elf32_slurp_reloc_table
,
15276 bfd_elf32_slurp_symbol_table
,
15277 bfd_elf32_swap_dyn_in
,
15278 bfd_elf32_swap_dyn_out
,
15279 bfd_elf32_swap_reloc_in
,
15280 bfd_elf32_swap_reloc_out
,
15281 bfd_elf32_swap_reloca_in
,
15282 bfd_elf32_swap_reloca_out
15285 #define ELF_ARCH bfd_arch_arm
15286 #define ELF_TARGET_ID ARM_ELF_DATA
15287 #define ELF_MACHINE_CODE EM_ARM
15288 #ifdef __QNXTARGET__
15289 #define ELF_MAXPAGESIZE 0x1000
15291 #define ELF_MAXPAGESIZE 0x8000
15293 #define ELF_MINPAGESIZE 0x1000
15294 #define ELF_COMMONPAGESIZE 0x1000
15296 #define bfd_elf32_mkobject elf32_arm_mkobject
15298 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
15299 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
15300 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
15301 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
15302 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
15303 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
15304 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
15305 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
15306 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
15307 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
15308 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
15309 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
15310 #define bfd_elf32_bfd_final_link elf32_arm_final_link
15312 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
15313 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
15314 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
15315 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
15316 #define elf_backend_check_relocs elf32_arm_check_relocs
15317 #define elf_backend_relocate_section elf32_arm_relocate_section
15318 #define elf_backend_write_section elf32_arm_write_section
15319 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
15320 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
15321 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
15322 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
15323 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
15324 #define elf_backend_always_size_sections elf32_arm_always_size_sections
15325 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
15326 #define elf_backend_post_process_headers elf32_arm_post_process_headers
15327 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
15328 #define elf_backend_object_p elf32_arm_object_p
15329 #define elf_backend_fake_sections elf32_arm_fake_sections
15330 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
15331 #define elf_backend_final_write_processing elf32_arm_final_write_processing
15332 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
15333 #define elf_backend_size_info elf32_arm_size_info
15334 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
15335 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
15336 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
15337 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
15338 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
15340 #define elf_backend_can_refcount 1
15341 #define elf_backend_can_gc_sections 1
15342 #define elf_backend_plt_readonly 1
15343 #define elf_backend_want_got_plt 1
15344 #define elf_backend_want_plt_sym 0
15345 #define elf_backend_may_use_rel_p 1
15346 #define elf_backend_may_use_rela_p 0
15347 #define elf_backend_default_use_rela_p 0
15349 #define elf_backend_got_header_size 12
15351 #undef elf_backend_obj_attrs_vendor
15352 #define elf_backend_obj_attrs_vendor "aeabi"
15353 #undef elf_backend_obj_attrs_section
15354 #define elf_backend_obj_attrs_section ".ARM.attributes"
15355 #undef elf_backend_obj_attrs_arg_type
15356 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
15357 #undef elf_backend_obj_attrs_section_type
15358 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
15359 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
15360 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
15362 #include "elf32-target.h"
15364 /* VxWorks Targets. */
15366 #undef TARGET_LITTLE_SYM
15367 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
15368 #undef TARGET_LITTLE_NAME
15369 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
15370 #undef TARGET_BIG_SYM
15371 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
15372 #undef TARGET_BIG_NAME
15373 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
15375 /* Like elf32_arm_link_hash_table_create -- but overrides
15376 appropriately for VxWorks. */
15378 static struct bfd_link_hash_table
*
15379 elf32_arm_vxworks_link_hash_table_create (bfd
*abfd
)
15381 struct bfd_link_hash_table
*ret
;
15383 ret
= elf32_arm_link_hash_table_create (abfd
);
15386 struct elf32_arm_link_hash_table
*htab
15387 = (struct elf32_arm_link_hash_table
*) ret
;
15389 htab
->vxworks_p
= 1;
15395 elf32_arm_vxworks_final_write_processing (bfd
*abfd
, bfd_boolean linker
)
15397 elf32_arm_final_write_processing (abfd
, linker
);
15398 elf_vxworks_final_write_processing (abfd
, linker
);
15402 #define elf32_bed elf32_arm_vxworks_bed
15404 #undef bfd_elf32_bfd_link_hash_table_create
15405 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
15406 #undef elf_backend_final_write_processing
15407 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
15408 #undef elf_backend_emit_relocs
15409 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
15411 #undef elf_backend_may_use_rel_p
15412 #define elf_backend_may_use_rel_p 0
15413 #undef elf_backend_may_use_rela_p
15414 #define elf_backend_may_use_rela_p 1
15415 #undef elf_backend_default_use_rela_p
15416 #define elf_backend_default_use_rela_p 1
15417 #undef elf_backend_want_plt_sym
15418 #define elf_backend_want_plt_sym 1
15419 #undef ELF_MAXPAGESIZE
15420 #define ELF_MAXPAGESIZE 0x1000
15422 #include "elf32-target.h"
15425 /* Merge backend specific data from an object file to the output
15426 object file when linking. */
15429 elf32_arm_merge_private_bfd_data (bfd
* ibfd
, bfd
* obfd
)
15431 flagword out_flags
;
15433 bfd_boolean flags_compatible
= TRUE
;
15436 /* Check if we have the same endianness. */
15437 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
15440 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
15443 if (!elf32_arm_merge_eabi_attributes (ibfd
, obfd
))
15446 /* The input BFD must have had its flags initialised. */
15447 /* The following seems bogus to me -- The flags are initialized in
15448 the assembler but I don't think an elf_flags_init field is
15449 written into the object. */
15450 /* BFD_ASSERT (elf_flags_init (ibfd)); */
15452 in_flags
= elf_elfheader (ibfd
)->e_flags
;
15453 out_flags
= elf_elfheader (obfd
)->e_flags
;
15455 /* In theory there is no reason why we couldn't handle this. However
15456 in practice it isn't even close to working and there is no real
15457 reason to want it. */
15458 if (EF_ARM_EABI_VERSION (in_flags
) >= EF_ARM_EABI_VER4
15459 && !(ibfd
->flags
& DYNAMIC
)
15460 && (in_flags
& EF_ARM_BE8
))
15462 _bfd_error_handler (_("error: %B is already in final BE8 format"),
15467 if (!elf_flags_init (obfd
))
15469 /* If the input is the default architecture and had the default
15470 flags then do not bother setting the flags for the output
15471 architecture, instead allow future merges to do this. If no
15472 future merges ever set these flags then they will retain their
15473 uninitialised values, which surprise surprise, correspond
15474 to the default values. */
15475 if (bfd_get_arch_info (ibfd
)->the_default
15476 && elf_elfheader (ibfd
)->e_flags
== 0)
15479 elf_flags_init (obfd
) = TRUE
;
15480 elf_elfheader (obfd
)->e_flags
= in_flags
;
15482 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
15483 && bfd_get_arch_info (obfd
)->the_default
)
15484 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
), bfd_get_mach (ibfd
));
15489 /* Determine what should happen if the input ARM architecture
15490 does not match the output ARM architecture. */
15491 if (! bfd_arm_merge_machines (ibfd
, obfd
))
15494 /* Identical flags must be compatible. */
15495 if (in_flags
== out_flags
)
15498 /* Check to see if the input BFD actually contains any sections. If
15499 not, its flags may not have been initialised either, but it
15500 cannot actually cause any incompatiblity. Do not short-circuit
15501 dynamic objects; their section list may be emptied by
15502 elf_link_add_object_symbols.
15504 Also check to see if there are no code sections in the input.
15505 In this case there is no need to check for code specific flags.
15506 XXX - do we need to worry about floating-point format compatability
15507 in data sections ? */
15508 if (!(ibfd
->flags
& DYNAMIC
))
15510 bfd_boolean null_input_bfd
= TRUE
;
15511 bfd_boolean only_data_sections
= TRUE
;
15513 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
15515 /* Ignore synthetic glue sections. */
15516 if (strcmp (sec
->name
, ".glue_7")
15517 && strcmp (sec
->name
, ".glue_7t"))
15519 if ((bfd_get_section_flags (ibfd
, sec
)
15520 & (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
15521 == (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
15522 only_data_sections
= FALSE
;
15524 null_input_bfd
= FALSE
;
15529 if (null_input_bfd
|| only_data_sections
)
15533 /* Complain about various flag mismatches. */
15534 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags
),
15535 EF_ARM_EABI_VERSION (out_flags
)))
15538 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
15540 (in_flags
& EF_ARM_EABIMASK
) >> 24,
15541 (out_flags
& EF_ARM_EABIMASK
) >> 24);
15545 /* Not sure what needs to be checked for EABI versions >= 1. */
15546 /* VxWorks libraries do not use these flags. */
15547 if (get_elf_backend_data (obfd
) != &elf32_arm_vxworks_bed
15548 && get_elf_backend_data (ibfd
) != &elf32_arm_vxworks_bed
15549 && EF_ARM_EABI_VERSION (in_flags
) == EF_ARM_EABI_UNKNOWN
)
15551 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
15554 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
15556 in_flags
& EF_ARM_APCS_26
? 26 : 32,
15557 out_flags
& EF_ARM_APCS_26
? 26 : 32);
15558 flags_compatible
= FALSE
;
15561 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
15563 if (in_flags
& EF_ARM_APCS_FLOAT
)
15565 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
15569 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
15572 flags_compatible
= FALSE
;
15575 if ((in_flags
& EF_ARM_VFP_FLOAT
) != (out_flags
& EF_ARM_VFP_FLOAT
))
15577 if (in_flags
& EF_ARM_VFP_FLOAT
)
15579 (_("error: %B uses VFP instructions, whereas %B does not"),
15583 (_("error: %B uses FPA instructions, whereas %B does not"),
15586 flags_compatible
= FALSE
;
15589 if ((in_flags
& EF_ARM_MAVERICK_FLOAT
) != (out_flags
& EF_ARM_MAVERICK_FLOAT
))
15591 if (in_flags
& EF_ARM_MAVERICK_FLOAT
)
15593 (_("error: %B uses Maverick instructions, whereas %B does not"),
15597 (_("error: %B does not use Maverick instructions, whereas %B does"),
15600 flags_compatible
= FALSE
;
15603 #ifdef EF_ARM_SOFT_FLOAT
15604 if ((in_flags
& EF_ARM_SOFT_FLOAT
) != (out_flags
& EF_ARM_SOFT_FLOAT
))
15606 /* We can allow interworking between code that is VFP format
15607 layout, and uses either soft float or integer regs for
15608 passing floating point arguments and results. We already
15609 know that the APCS_FLOAT flags match; similarly for VFP
15611 if ((in_flags
& EF_ARM_APCS_FLOAT
) != 0
15612 || (in_flags
& EF_ARM_VFP_FLOAT
) == 0)
15614 if (in_flags
& EF_ARM_SOFT_FLOAT
)
15616 (_("error: %B uses software FP, whereas %B uses hardware FP"),
15620 (_("error: %B uses hardware FP, whereas %B uses software FP"),
15623 flags_compatible
= FALSE
;
15628 /* Interworking mismatch is only a warning. */
15629 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
15631 if (in_flags
& EF_ARM_INTERWORK
)
15634 (_("Warning: %B supports interworking, whereas %B does not"),
15640 (_("Warning: %B does not support interworking, whereas %B does"),
15646 return flags_compatible
;
15650 /* Symbian OS Targets. */
15652 #undef TARGET_LITTLE_SYM
15653 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
15654 #undef TARGET_LITTLE_NAME
15655 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
15656 #undef TARGET_BIG_SYM
15657 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
15658 #undef TARGET_BIG_NAME
15659 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
15661 /* Like elf32_arm_link_hash_table_create -- but overrides
15662 appropriately for Symbian OS. */
15664 static struct bfd_link_hash_table
*
15665 elf32_arm_symbian_link_hash_table_create (bfd
*abfd
)
15667 struct bfd_link_hash_table
*ret
;
15669 ret
= elf32_arm_link_hash_table_create (abfd
);
15672 struct elf32_arm_link_hash_table
*htab
15673 = (struct elf32_arm_link_hash_table
*)ret
;
15674 /* There is no PLT header for Symbian OS. */
15675 htab
->plt_header_size
= 0;
15676 /* The PLT entries are each one instruction and one word. */
15677 htab
->plt_entry_size
= 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
);
15678 htab
->symbian_p
= 1;
15679 /* Symbian uses armv5t or above, so use_blx is always true. */
15681 htab
->root
.is_relocatable_executable
= 1;
15686 static const struct bfd_elf_special_section
15687 elf32_arm_symbian_special_sections
[] =
15689 /* In a BPABI executable, the dynamic linking sections do not go in
15690 the loadable read-only segment. The post-linker may wish to
15691 refer to these sections, but they are not part of the final
15693 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, 0 },
15694 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, 0 },
15695 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, 0 },
15696 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, 0 },
15697 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, 0 },
15698 /* These sections do not need to be writable as the SymbianOS
15699 postlinker will arrange things so that no dynamic relocation is
15701 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
},
15702 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
},
15703 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
},
15704 { NULL
, 0, 0, 0, 0 }
15708 elf32_arm_symbian_begin_write_processing (bfd
*abfd
,
15709 struct bfd_link_info
*link_info
)
15711 /* BPABI objects are never loaded directly by an OS kernel; they are
15712 processed by a postlinker first, into an OS-specific format. If
15713 the D_PAGED bit is set on the file, BFD will align segments on
15714 page boundaries, so that an OS can directly map the file. With
15715 BPABI objects, that just results in wasted space. In addition,
15716 because we clear the D_PAGED bit, map_sections_to_segments will
15717 recognize that the program headers should not be mapped into any
15718 loadable segment. */
15719 abfd
->flags
&= ~D_PAGED
;
15720 elf32_arm_begin_write_processing (abfd
, link_info
);
15724 elf32_arm_symbian_modify_segment_map (bfd
*abfd
,
15725 struct bfd_link_info
*info
)
15727 struct elf_segment_map
*m
;
15730 /* BPABI shared libraries and executables should have a PT_DYNAMIC
15731 segment. However, because the .dynamic section is not marked
15732 with SEC_LOAD, the generic ELF code will not create such a
15734 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
15737 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
15738 if (m
->p_type
== PT_DYNAMIC
)
15743 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
15744 m
->next
= elf_tdata (abfd
)->segment_map
;
15745 elf_tdata (abfd
)->segment_map
= m
;
15749 /* Also call the generic arm routine. */
15750 return elf32_arm_modify_segment_map (abfd
, info
);
15753 /* Return address for Ith PLT stub in section PLT, for relocation REL
15754 or (bfd_vma) -1 if it should not be included. */
15757 elf32_arm_symbian_plt_sym_val (bfd_vma i
, const asection
*plt
,
15758 const arelent
*rel ATTRIBUTE_UNUSED
)
15760 return plt
->vma
+ 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
) * i
;
15765 #define elf32_bed elf32_arm_symbian_bed
15767 /* The dynamic sections are not allocated on SymbianOS; the postlinker
15768 will process them and then discard them. */
15769 #undef ELF_DYNAMIC_SEC_FLAGS
15770 #define ELF_DYNAMIC_SEC_FLAGS \
15771 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
15773 #undef elf_backend_emit_relocs
15775 #undef bfd_elf32_bfd_link_hash_table_create
15776 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
15777 #undef elf_backend_special_sections
15778 #define elf_backend_special_sections elf32_arm_symbian_special_sections
15779 #undef elf_backend_begin_write_processing
15780 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
15781 #undef elf_backend_final_write_processing
15782 #define elf_backend_final_write_processing elf32_arm_final_write_processing
15784 #undef elf_backend_modify_segment_map
15785 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
15787 /* There is no .got section for BPABI objects, and hence no header. */
15788 #undef elf_backend_got_header_size
15789 #define elf_backend_got_header_size 0
15791 /* Similarly, there is no .got.plt section. */
15792 #undef elf_backend_want_got_plt
15793 #define elf_backend_want_got_plt 0
15795 #undef elf_backend_plt_sym_val
15796 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
15798 #undef elf_backend_may_use_rel_p
15799 #define elf_backend_may_use_rel_p 1
15800 #undef elf_backend_may_use_rela_p
15801 #define elf_backend_may_use_rela_p 0
15802 #undef elf_backend_default_use_rela_p
15803 #define elf_backend_default_use_rela_p 0
15804 #undef elf_backend_want_plt_sym
15805 #define elf_backend_want_plt_sym 0
15806 #undef ELF_MAXPAGESIZE
15807 #define ELF_MAXPAGESIZE 0x8000
15809 #include "elf32-target.h"