1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
31 #include "safe-ctype.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "opcode/i386.h"
36 #include "elf/x86-64.h"
38 #ifndef REGISTER_WARNINGS
39 #define REGISTER_WARNINGS 1
42 #ifndef INFER_ADDR_PREFIX
43 #define INFER_ADDR_PREFIX 1
46 #ifndef SCALE1_WHEN_NO_INDEX
47 /* Specifying a scale factor besides 1 when there is no index is
48 futile. eg. `mov (%ebx,2),%al' does exactly the same as
49 `mov (%ebx),%al'. To slavishly follow what the programmer
50 specified, set SCALE1_WHEN_NO_INDEX to 0. */
51 #define SCALE1_WHEN_NO_INDEX 1
55 #define DEFAULT_ARCH "i386"
60 #define INLINE __inline__
66 static INLINE
unsigned int mode_from_disp_size
PARAMS ((unsigned int));
67 static INLINE
int fits_in_signed_byte
PARAMS ((offsetT
));
68 static INLINE
int fits_in_unsigned_byte
PARAMS ((offsetT
));
69 static INLINE
int fits_in_unsigned_word
PARAMS ((offsetT
));
70 static INLINE
int fits_in_signed_word
PARAMS ((offsetT
));
71 static INLINE
int fits_in_unsigned_long
PARAMS ((offsetT
));
72 static INLINE
int fits_in_signed_long
PARAMS ((offsetT
));
73 static int smallest_imm_type
PARAMS ((offsetT
));
74 static offsetT offset_in_range
PARAMS ((offsetT
, int));
75 static int add_prefix
PARAMS ((unsigned int));
76 static void set_code_flag
PARAMS ((int));
77 static void set_16bit_gcc_code_flag
PARAMS ((int));
78 static void set_intel_syntax
PARAMS ((int));
79 static void set_cpu_arch
PARAMS ((int));
81 static void pe_directive_secrel
PARAMS ((int));
83 static char *output_invalid
PARAMS ((int c
));
84 static int i386_operand
PARAMS ((char *operand_string
));
85 static int i386_intel_operand
PARAMS ((char *operand_string
, int got_a_float
));
86 static const reg_entry
*parse_register
PARAMS ((char *reg_string
,
88 static char *parse_insn
PARAMS ((char *, char *));
89 static char *parse_operands
PARAMS ((char *, const char *));
90 static void swap_operands
PARAMS ((void));
91 static void optimize_imm
PARAMS ((void));
92 static void optimize_disp
PARAMS ((void));
93 static int match_template
PARAMS ((void));
94 static int check_string
PARAMS ((void));
95 static int process_suffix
PARAMS ((void));
96 static int check_byte_reg
PARAMS ((void));
97 static int check_long_reg
PARAMS ((void));
98 static int check_qword_reg
PARAMS ((void));
99 static int check_word_reg
PARAMS ((void));
100 static int finalize_imm
PARAMS ((void));
101 static int process_operands
PARAMS ((void));
102 static const seg_entry
*build_modrm_byte
PARAMS ((void));
103 static void output_insn
PARAMS ((void));
104 static void output_branch
PARAMS ((void));
105 static void output_jump
PARAMS ((void));
106 static void output_interseg_jump
PARAMS ((void));
107 static void output_imm
PARAMS ((fragS
*insn_start_frag
,
108 offsetT insn_start_off
));
109 static void output_disp
PARAMS ((fragS
*insn_start_frag
,
110 offsetT insn_start_off
));
112 static void s_bss
PARAMS ((int));
114 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
115 static void handle_large_common (int small ATTRIBUTE_UNUSED
);
118 static const char *default_arch
= DEFAULT_ARCH
;
120 /* 'md_assemble ()' gathers together information and puts it into a
127 const reg_entry
*regs
;
132 /* TM holds the template for the insn were currently assembling. */
135 /* SUFFIX holds the instruction mnemonic suffix if given.
136 (e.g. 'l' for 'movl') */
139 /* OPERANDS gives the number of given operands. */
140 unsigned int operands
;
142 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
143 of given register, displacement, memory operands and immediate
145 unsigned int reg_operands
, disp_operands
, mem_operands
, imm_operands
;
147 /* TYPES [i] is the type (see above #defines) which tells us how to
148 use OP[i] for the corresponding operand. */
149 unsigned int types
[MAX_OPERANDS
];
151 /* Displacement expression, immediate expression, or register for each
153 union i386_op op
[MAX_OPERANDS
];
155 /* Flags for operands. */
156 unsigned int flags
[MAX_OPERANDS
];
157 #define Operand_PCrel 1
159 /* Relocation type for operand */
160 enum bfd_reloc_code_real reloc
[MAX_OPERANDS
];
162 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
163 the base index byte below. */
164 const reg_entry
*base_reg
;
165 const reg_entry
*index_reg
;
166 unsigned int log2_scale_factor
;
168 /* SEG gives the seg_entries of this insn. They are zero unless
169 explicit segment overrides are given. */
170 const seg_entry
*seg
[2];
172 /* PREFIX holds all the given prefix opcodes (usually null).
173 PREFIXES is the number of prefix opcodes. */
174 unsigned int prefixes
;
175 unsigned char prefix
[MAX_PREFIXES
];
177 /* RM and SIB are the modrm byte and the sib byte where the
178 addressing modes of this insn are encoded. */
185 typedef struct _i386_insn i386_insn
;
187 /* List of chars besides those in app.c:symbol_chars that can start an
188 operand. Used to prevent the scrubber eating vital white-space. */
189 const char extra_symbol_chars
[] = "*%-(["
198 #if (defined (TE_I386AIX) \
199 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
200 && !defined (TE_LINUX) \
201 && !defined (TE_NETWARE) \
202 && !defined (TE_FreeBSD) \
203 && !defined (TE_NetBSD)))
204 /* This array holds the chars that always start a comment. If the
205 pre-processor is disabled, these aren't very useful. */
206 const char comment_chars
[] = "#/";
207 #define PREFIX_SEPARATOR '\\'
209 /* This array holds the chars that only start a comment at the beginning of
210 a line. If the line seems to have the form '# 123 filename'
211 .line and .file directives will appear in the pre-processed output.
212 Note that input_file.c hand checks for '#' at the beginning of the
213 first line of the input file. This is because the compiler outputs
214 #NO_APP at the beginning of its output.
215 Also note that comments started like this one will always work if
216 '/' isn't otherwise defined. */
217 const char line_comment_chars
[] = "#";
220 /* Putting '/' here makes it impossible to use the divide operator.
221 However, we need it for compatibility with SVR4 systems. */
222 const char comment_chars
[] = "#";
223 #define PREFIX_SEPARATOR '/'
225 const char line_comment_chars
[] = "/#";
228 const char line_separator_chars
[] = ";";
230 /* Chars that can be used to separate mant from exp in floating point
232 const char EXP_CHARS
[] = "eE";
234 /* Chars that mean this number is a floating point constant
237 const char FLT_CHARS
[] = "fFdDxX";
239 /* Tables for lexical analysis. */
240 static char mnemonic_chars
[256];
241 static char register_chars
[256];
242 static char operand_chars
[256];
243 static char identifier_chars
[256];
244 static char digit_chars
[256];
246 /* Lexical macros. */
247 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
248 #define is_operand_char(x) (operand_chars[(unsigned char) x])
249 #define is_register_char(x) (register_chars[(unsigned char) x])
250 #define is_space_char(x) ((x) == ' ')
251 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
252 #define is_digit_char(x) (digit_chars[(unsigned char) x])
254 /* All non-digit non-letter characters that may occur in an operand. */
255 static char operand_special_chars
[] = "%$-+(,)*._~/<>|&^!:[@]";
257 /* md_assemble() always leaves the strings it's passed unaltered. To
258 effect this we maintain a stack of saved characters that we've smashed
259 with '\0's (indicating end of strings for various sub-fields of the
260 assembler instruction). */
261 static char save_stack
[32];
262 static char *save_stack_p
;
263 #define END_STRING_AND_SAVE(s) \
264 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
265 #define RESTORE_END_STRING(s) \
266 do { *(s) = *--save_stack_p; } while (0)
268 /* The instruction we're assembling. */
271 /* Possible templates for current insn. */
272 static const templates
*current_templates
;
274 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
275 static expressionS disp_expressions
[2], im_expressions
[2];
277 /* Current operand we are working on. */
278 static int this_operand
;
280 /* We support four different modes. FLAG_CODE variable is used to distinguish
287 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
289 static enum flag_code flag_code
;
290 static unsigned int object_64bit
;
291 static int use_rela_relocations
= 0;
293 /* The names used to print error messages. */
294 static const char *flag_code_names
[] =
301 /* 1 for intel syntax,
303 static int intel_syntax
= 0;
305 /* 1 if register prefix % not required. */
306 static int allow_naked_reg
= 0;
308 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
309 leave, push, and pop instructions so that gcc has the same stack
310 frame as in 32 bit mode. */
311 static char stackop_size
= '\0';
313 /* Non-zero to optimize code alignment. */
314 int optimize_align_code
= 1;
316 /* Non-zero to quieten some warnings. */
317 static int quiet_warnings
= 0;
320 static const char *cpu_arch_name
= NULL
;
321 static const char *cpu_sub_arch_name
= NULL
;
323 /* CPU feature flags. */
324 static unsigned int cpu_arch_flags
= CpuUnknownFlags
| CpuNo64
;
326 /* If set, conditional jumps are not automatically promoted to handle
327 larger than a byte offset. */
328 static unsigned int no_cond_jump_promotion
= 0;
330 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
331 static symbolS
*GOT_symbol
;
333 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
334 unsigned int x86_dwarf2_return_column
;
336 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
337 int x86_cie_data_alignment
;
339 /* Interface to relax_segment.
340 There are 3 major relax states for 386 jump insns because the
341 different types of jumps add different sizes to frags when we're
342 figuring out what sort of jump to choose to reach a given label. */
345 #define UNCOND_JUMP 0
347 #define COND_JUMP86 2
352 #define SMALL16 (SMALL | CODE16)
354 #define BIG16 (BIG | CODE16)
358 #define INLINE __inline__
364 #define ENCODE_RELAX_STATE(type, size) \
365 ((relax_substateT) (((type) << 2) | (size)))
366 #define TYPE_FROM_RELAX_STATE(s) \
368 #define DISP_SIZE_FROM_RELAX_STATE(s) \
369 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
371 /* This table is used by relax_frag to promote short jumps to long
372 ones where necessary. SMALL (short) jumps may be promoted to BIG
373 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
374 don't allow a short jump in a 32 bit code segment to be promoted to
375 a 16 bit offset jump because it's slower (requires data size
376 prefix), and doesn't work, unless the destination is in the bottom
377 64k of the code segment (The top 16 bits of eip are zeroed). */
379 const relax_typeS md_relax_table
[] =
382 1) most positive reach of this state,
383 2) most negative reach of this state,
384 3) how many bytes this mode will have in the variable part of the frag
385 4) which index into the table to try if we can't fit into this one. */
387 /* UNCOND_JUMP states. */
388 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG
)},
389 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG16
)},
390 /* dword jmp adds 4 bytes to frag:
391 0 extra opcode bytes, 4 displacement bytes. */
393 /* word jmp adds 2 byte2 to frag:
394 0 extra opcode bytes, 2 displacement bytes. */
397 /* COND_JUMP states. */
398 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP
, BIG
)},
399 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP
, BIG16
)},
400 /* dword conditionals adds 5 bytes to frag:
401 1 extra opcode byte, 4 displacement bytes. */
403 /* word conditionals add 3 bytes to frag:
404 1 extra opcode byte, 2 displacement bytes. */
407 /* COND_JUMP86 states. */
408 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86
, BIG
)},
409 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86
, BIG16
)},
410 /* dword conditionals adds 5 bytes to frag:
411 1 extra opcode byte, 4 displacement bytes. */
413 /* word conditionals add 4 bytes to frag:
414 1 displacement byte and a 3 byte long branch insn. */
418 static const arch_entry cpu_arch
[] = {
420 {"i186", Cpu086
|Cpu186
},
421 {"i286", Cpu086
|Cpu186
|Cpu286
},
422 {"i386", Cpu086
|Cpu186
|Cpu286
|Cpu386
},
423 {"i486", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
},
424 {"i586", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
},
425 {"i686", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|Cpu686
},
426 {"pentium", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
},
427 {"pentiumpro",Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|Cpu686
},
428 {"pentiumii", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|Cpu686
|CpuMMX
},
429 {"pentiumiii",Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|Cpu686
|CpuMMX
|CpuMMX2
|CpuSSE
},
430 {"pentium4", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|Cpu686
|CpuP4
|CpuMMX
|CpuMMX2
|CpuSSE
|CpuSSE2
},
431 {"prescott", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|Cpu686
|CpuP4
|CpuMMX
|CpuMMX2
|CpuSSE
|CpuSSE2
|CpuPNI
},
432 {"k6", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|CpuK6
|CpuMMX
},
433 {"k6_2", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|CpuK6
|CpuMMX
|Cpu3dnow
},
434 {"athlon", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|Cpu686
|CpuK6
|CpuAthlon
|CpuMMX
|CpuMMX2
|Cpu3dnow
|Cpu3dnowA
},
435 {"sledgehammer",Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|Cpu686
|CpuK6
|CpuAthlon
|CpuSledgehammer
|CpuMMX
|CpuMMX2
|Cpu3dnow
|Cpu3dnowA
|CpuSSE
|CpuSSE2
},
436 {"opteron", Cpu086
|Cpu186
|Cpu286
|Cpu386
|Cpu486
|Cpu586
|Cpu686
|CpuK6
|CpuAthlon
|CpuSledgehammer
|CpuMMX
|CpuMMX2
|Cpu3dnow
|Cpu3dnowA
|CpuSSE
|CpuSSE2
},
438 {".sse", CpuMMX
|CpuMMX2
|CpuSSE
},
439 {".sse2", CpuMMX
|CpuMMX2
|CpuSSE
|CpuSSE2
},
440 {".sse3", CpuMMX
|CpuMMX2
|CpuSSE
|CpuSSE2
|CpuSSE3
},
441 {".3dnow", CpuMMX
|Cpu3dnow
},
442 {".3dnowa", CpuMMX
|CpuMMX2
|Cpu3dnow
|Cpu3dnowA
},
443 {".padlock", CpuPadLock
},
444 {".pacifica", CpuSVME
},
449 const pseudo_typeS md_pseudo_table
[] =
451 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
452 {"align", s_align_bytes
, 0},
454 {"align", s_align_ptwo
, 0},
456 {"arch", set_cpu_arch
, 0},
460 {"ffloat", float_cons
, 'f'},
461 {"dfloat", float_cons
, 'd'},
462 {"tfloat", float_cons
, 'x'},
464 {"noopt", s_ignore
, 0},
465 {"optim", s_ignore
, 0},
466 {"code16gcc", set_16bit_gcc_code_flag
, CODE_16BIT
},
467 {"code16", set_code_flag
, CODE_16BIT
},
468 {"code32", set_code_flag
, CODE_32BIT
},
469 {"code64", set_code_flag
, CODE_64BIT
},
470 {"intel_syntax", set_intel_syntax
, 1},
471 {"att_syntax", set_intel_syntax
, 0},
472 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file
, 0},
473 {"loc", dwarf2_directive_loc
, 0},
474 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
475 {"largecomm", handle_large_common
, 0},
478 {"secrel32", pe_directive_secrel
, 0},
483 /* For interface with expression (). */
484 extern char *input_line_pointer
;
486 /* Hash table for instruction mnemonic lookup. */
487 static struct hash_control
*op_hash
;
489 /* Hash table for register lookup. */
490 static struct hash_control
*reg_hash
;
493 i386_align_code (fragP
, count
)
497 /* Various efficient no-op patterns for aligning code labels.
498 Note: Don't try to assemble the instructions in the comments.
499 0L and 0w are not legal. */
500 static const char f32_1
[] =
502 static const char f32_2
[] =
503 {0x89,0xf6}; /* movl %esi,%esi */
504 static const char f32_3
[] =
505 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
506 static const char f32_4
[] =
507 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
508 static const char f32_5
[] =
510 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
511 static const char f32_6
[] =
512 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
513 static const char f32_7
[] =
514 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
515 static const char f32_8
[] =
517 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
518 static const char f32_9
[] =
519 {0x89,0xf6, /* movl %esi,%esi */
520 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
521 static const char f32_10
[] =
522 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
523 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
524 static const char f32_11
[] =
525 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
526 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
527 static const char f32_12
[] =
528 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
529 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
530 static const char f32_13
[] =
531 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
532 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
533 static const char f32_14
[] =
534 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
535 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
536 static const char f32_15
[] =
537 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
538 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
539 static const char f16_3
[] =
540 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
541 static const char f16_4
[] =
542 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
543 static const char f16_5
[] =
545 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
546 static const char f16_6
[] =
547 {0x89,0xf6, /* mov %si,%si */
548 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
549 static const char f16_7
[] =
550 {0x8d,0x74,0x00, /* lea 0(%si),%si */
551 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
552 static const char f16_8
[] =
553 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
554 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
555 static const char *const f32_patt
[] = {
556 f32_1
, f32_2
, f32_3
, f32_4
, f32_5
, f32_6
, f32_7
, f32_8
,
557 f32_9
, f32_10
, f32_11
, f32_12
, f32_13
, f32_14
, f32_15
559 static const char *const f16_patt
[] = {
560 f32_1
, f32_2
, f16_3
, f16_4
, f16_5
, f16_6
, f16_7
, f16_8
,
561 f32_15
, f32_15
, f32_15
, f32_15
, f32_15
, f32_15
, f32_15
564 if (count
<= 0 || count
> 15)
567 /* The recommended way to pad 64bit code is to use NOPs preceded by
568 maximally four 0x66 prefixes. Balance the size of nops. */
569 if (flag_code
== CODE_64BIT
)
572 int nnops
= (count
+ 3) / 4;
573 int len
= count
/ nnops
;
574 int remains
= count
- nnops
* len
;
577 for (i
= 0; i
< remains
; i
++)
579 memset (fragP
->fr_literal
+ fragP
->fr_fix
+ pos
, 0x66, len
);
580 fragP
->fr_literal
[fragP
->fr_fix
+ pos
+ len
] = 0x90;
583 for (; i
< nnops
; i
++)
585 memset (fragP
->fr_literal
+ fragP
->fr_fix
+ pos
, 0x66, len
- 1);
586 fragP
->fr_literal
[fragP
->fr_fix
+ pos
+ len
- 1] = 0x90;
591 if (flag_code
== CODE_16BIT
)
593 memcpy (fragP
->fr_literal
+ fragP
->fr_fix
,
594 f16_patt
[count
- 1], count
);
596 /* Adjust jump offset. */
597 fragP
->fr_literal
[fragP
->fr_fix
+ 1] = count
- 2;
600 memcpy (fragP
->fr_literal
+ fragP
->fr_fix
,
601 f32_patt
[count
- 1], count
);
602 fragP
->fr_var
= count
;
605 static INLINE
unsigned int
606 mode_from_disp_size (t
)
609 return (t
& Disp8
) ? 1 : (t
& (Disp16
| Disp32
| Disp32S
)) ? 2 : 0;
613 fits_in_signed_byte (num
)
616 return (num
>= -128) && (num
<= 127);
620 fits_in_unsigned_byte (num
)
623 return (num
& 0xff) == num
;
627 fits_in_unsigned_word (num
)
630 return (num
& 0xffff) == num
;
634 fits_in_signed_word (num
)
637 return (-32768 <= num
) && (num
<= 32767);
640 fits_in_signed_long (num
)
641 offsetT num ATTRIBUTE_UNUSED
;
646 return (!(((offsetT
) -1 << 31) & num
)
647 || (((offsetT
) -1 << 31) & num
) == ((offsetT
) -1 << 31));
649 } /* fits_in_signed_long() */
651 fits_in_unsigned_long (num
)
652 offsetT num ATTRIBUTE_UNUSED
;
657 return (num
& (((offsetT
) 2 << 31) - 1)) == num
;
659 } /* fits_in_unsigned_long() */
662 smallest_imm_type (num
)
665 if (cpu_arch_flags
!= (Cpu086
| Cpu186
| Cpu286
| Cpu386
| Cpu486
| CpuNo64
))
667 /* This code is disabled on the 486 because all the Imm1 forms
668 in the opcode table are slower on the i486. They're the
669 versions with the implicitly specified single-position
670 displacement, which has another syntax if you really want to
673 return Imm1
| Imm8
| Imm8S
| Imm16
| Imm32
| Imm32S
| Imm64
;
675 return (fits_in_signed_byte (num
)
676 ? (Imm8S
| Imm8
| Imm16
| Imm32
| Imm32S
| Imm64
)
677 : fits_in_unsigned_byte (num
)
678 ? (Imm8
| Imm16
| Imm32
| Imm32S
| Imm64
)
679 : (fits_in_signed_word (num
) || fits_in_unsigned_word (num
))
680 ? (Imm16
| Imm32
| Imm32S
| Imm64
)
681 : fits_in_signed_long (num
)
682 ? (Imm32
| Imm32S
| Imm64
)
683 : fits_in_unsigned_long (num
)
689 offset_in_range (val
, size
)
697 case 1: mask
= ((addressT
) 1 << 8) - 1; break;
698 case 2: mask
= ((addressT
) 1 << 16) - 1; break;
699 case 4: mask
= ((addressT
) 2 << 31) - 1; break;
701 case 8: mask
= ((addressT
) 2 << 63) - 1; break;
706 /* If BFD64, sign extend val. */
707 if (!use_rela_relocations
)
708 if ((val
& ~(((addressT
) 2 << 31) - 1)) == 0)
709 val
= (val
^ ((addressT
) 1 << 31)) - ((addressT
) 1 << 31);
711 if ((val
& ~mask
) != 0 && (val
& ~mask
) != ~mask
)
713 char buf1
[40], buf2
[40];
715 sprint_value (buf1
, val
);
716 sprint_value (buf2
, val
& mask
);
717 as_warn (_("%s shortened to %s"), buf1
, buf2
);
722 /* Returns 0 if attempting to add a prefix where one from the same
723 class already exists, 1 if non rep/repne added, 2 if rep/repne
732 if (prefix
>= REX_OPCODE
&& prefix
< REX_OPCODE
+ 16
733 && flag_code
== CODE_64BIT
)
741 case CS_PREFIX_OPCODE
:
742 case DS_PREFIX_OPCODE
:
743 case ES_PREFIX_OPCODE
:
744 case FS_PREFIX_OPCODE
:
745 case GS_PREFIX_OPCODE
:
746 case SS_PREFIX_OPCODE
:
750 case REPNE_PREFIX_OPCODE
:
751 case REPE_PREFIX_OPCODE
:
754 case LOCK_PREFIX_OPCODE
:
762 case ADDR_PREFIX_OPCODE
:
766 case DATA_PREFIX_OPCODE
:
771 if (i
.prefix
[q
] != 0)
773 as_bad (_("same type of prefix used twice"));
778 i
.prefix
[q
] = prefix
;
783 set_code_flag (value
)
787 cpu_arch_flags
&= ~(Cpu64
| CpuNo64
);
788 cpu_arch_flags
|= (flag_code
== CODE_64BIT
? Cpu64
: CpuNo64
);
789 if (value
== CODE_64BIT
&& !(cpu_arch_flags
& CpuSledgehammer
))
791 as_bad (_("64bit mode not supported on this CPU."));
793 if (value
== CODE_32BIT
&& !(cpu_arch_flags
& Cpu386
))
795 as_bad (_("32bit mode not supported on this CPU."));
801 set_16bit_gcc_code_flag (new_code_flag
)
804 flag_code
= new_code_flag
;
805 cpu_arch_flags
&= ~(Cpu64
| CpuNo64
);
806 cpu_arch_flags
|= (flag_code
== CODE_64BIT
? Cpu64
: CpuNo64
);
807 stackop_size
= LONG_MNEM_SUFFIX
;
811 set_intel_syntax (syntax_flag
)
814 /* Find out if register prefixing is specified. */
815 int ask_naked_reg
= 0;
818 if (!is_end_of_line
[(unsigned char) *input_line_pointer
])
820 char *string
= input_line_pointer
;
821 int e
= get_symbol_end ();
823 if (strcmp (string
, "prefix") == 0)
825 else if (strcmp (string
, "noprefix") == 0)
828 as_bad (_("bad argument to syntax directive."));
829 *input_line_pointer
= e
;
831 demand_empty_rest_of_line ();
833 intel_syntax
= syntax_flag
;
835 if (ask_naked_reg
== 0)
836 allow_naked_reg
= (intel_syntax
837 && (bfd_get_symbol_leading_char (stdoutput
) != '\0'));
839 allow_naked_reg
= (ask_naked_reg
< 0);
841 identifier_chars
['%'] = intel_syntax
&& allow_naked_reg
? '%' : 0;
842 identifier_chars
['$'] = intel_syntax
? '$' : 0;
847 int dummy ATTRIBUTE_UNUSED
;
851 if (!is_end_of_line
[(unsigned char) *input_line_pointer
])
853 char *string
= input_line_pointer
;
854 int e
= get_symbol_end ();
857 for (i
= 0; cpu_arch
[i
].name
; i
++)
859 if (strcmp (string
, cpu_arch
[i
].name
) == 0)
863 cpu_arch_name
= cpu_arch
[i
].name
;
864 cpu_sub_arch_name
= NULL
;
865 cpu_arch_flags
= (cpu_arch
[i
].flags
866 | (flag_code
== CODE_64BIT
? Cpu64
: CpuNo64
));
869 if ((cpu_arch_flags
| cpu_arch
[i
].flags
) != cpu_arch_flags
)
871 cpu_sub_arch_name
= cpu_arch
[i
].name
;
872 cpu_arch_flags
|= cpu_arch
[i
].flags
;
874 *input_line_pointer
= e
;
875 demand_empty_rest_of_line ();
879 if (!cpu_arch
[i
].name
)
880 as_bad (_("no such architecture: `%s'"), string
);
882 *input_line_pointer
= e
;
885 as_bad (_("missing cpu architecture"));
887 no_cond_jump_promotion
= 0;
888 if (*input_line_pointer
== ','
889 && !is_end_of_line
[(unsigned char) input_line_pointer
[1]])
891 char *string
= ++input_line_pointer
;
892 int e
= get_symbol_end ();
894 if (strcmp (string
, "nojumps") == 0)
895 no_cond_jump_promotion
= 1;
896 else if (strcmp (string
, "jumps") == 0)
899 as_bad (_("no such architecture modifier: `%s'"), string
);
901 *input_line_pointer
= e
;
904 demand_empty_rest_of_line ();
910 if (!strcmp (default_arch
, "x86_64"))
911 return bfd_mach_x86_64
;
912 else if (!strcmp (default_arch
, "i386"))
913 return bfd_mach_i386_i386
;
915 as_fatal (_("Unknown architecture"));
921 const char *hash_err
;
923 /* Initialize op_hash hash table. */
924 op_hash
= hash_new ();
927 const template *optab
;
928 templates
*core_optab
;
930 /* Setup for loop. */
932 core_optab
= (templates
*) xmalloc (sizeof (templates
));
933 core_optab
->start
= optab
;
938 if (optab
->name
== NULL
939 || strcmp (optab
->name
, (optab
- 1)->name
) != 0)
941 /* different name --> ship out current template list;
942 add to hash table; & begin anew. */
943 core_optab
->end
= optab
;
944 hash_err
= hash_insert (op_hash
,
949 as_fatal (_("Internal Error: Can't hash %s: %s"),
953 if (optab
->name
== NULL
)
955 core_optab
= (templates
*) xmalloc (sizeof (templates
));
956 core_optab
->start
= optab
;
961 /* Initialize reg_hash hash table. */
962 reg_hash
= hash_new ();
964 const reg_entry
*regtab
;
966 for (regtab
= i386_regtab
;
967 regtab
< i386_regtab
+ sizeof (i386_regtab
) / sizeof (i386_regtab
[0]);
970 hash_err
= hash_insert (reg_hash
, regtab
->reg_name
, (PTR
) regtab
);
972 as_fatal (_("Internal Error: Can't hash %s: %s"),
978 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
983 for (c
= 0; c
< 256; c
++)
988 mnemonic_chars
[c
] = c
;
989 register_chars
[c
] = c
;
990 operand_chars
[c
] = c
;
992 else if (ISLOWER (c
))
994 mnemonic_chars
[c
] = c
;
995 register_chars
[c
] = c
;
996 operand_chars
[c
] = c
;
998 else if (ISUPPER (c
))
1000 mnemonic_chars
[c
] = TOLOWER (c
);
1001 register_chars
[c
] = mnemonic_chars
[c
];
1002 operand_chars
[c
] = c
;
1005 if (ISALPHA (c
) || ISDIGIT (c
))
1006 identifier_chars
[c
] = c
;
1009 identifier_chars
[c
] = c
;
1010 operand_chars
[c
] = c
;
1015 identifier_chars
['@'] = '@';
1018 identifier_chars
['?'] = '?';
1019 operand_chars
['?'] = '?';
1021 digit_chars
['-'] = '-';
1022 mnemonic_chars
['-'] = '-';
1023 identifier_chars
['_'] = '_';
1024 identifier_chars
['.'] = '.';
1026 for (p
= operand_special_chars
; *p
!= '\0'; p
++)
1027 operand_chars
[(unsigned char) *p
] = *p
;
1030 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1033 record_alignment (text_section
, 2);
1034 record_alignment (data_section
, 2);
1035 record_alignment (bss_section
, 2);
1039 if (flag_code
== CODE_64BIT
)
1041 x86_dwarf2_return_column
= 16;
1042 x86_cie_data_alignment
= -8;
1046 x86_dwarf2_return_column
= 8;
1047 x86_cie_data_alignment
= -4;
1052 i386_print_statistics (file
)
1055 hash_print_statistics (file
, "i386 opcode", op_hash
);
1056 hash_print_statistics (file
, "i386 register", reg_hash
);
1061 /* Debugging routines for md_assemble. */
1062 static void pi
PARAMS ((char *, i386_insn
*));
1063 static void pte
PARAMS ((template *));
1064 static void pt
PARAMS ((unsigned int));
1065 static void pe
PARAMS ((expressionS
*));
1066 static void ps
PARAMS ((symbolS
*));
1075 fprintf (stdout
, "%s: template ", line
);
1077 fprintf (stdout
, " address: base %s index %s scale %x\n",
1078 x
->base_reg
? x
->base_reg
->reg_name
: "none",
1079 x
->index_reg
? x
->index_reg
->reg_name
: "none",
1080 x
->log2_scale_factor
);
1081 fprintf (stdout
, " modrm: mode %x reg %x reg/mem %x\n",
1082 x
->rm
.mode
, x
->rm
.reg
, x
->rm
.regmem
);
1083 fprintf (stdout
, " sib: base %x index %x scale %x\n",
1084 x
->sib
.base
, x
->sib
.index
, x
->sib
.scale
);
1085 fprintf (stdout
, " rex: 64bit %x extX %x extY %x extZ %x\n",
1086 (x
->rex
& REX_MODE64
) != 0,
1087 (x
->rex
& REX_EXTX
) != 0,
1088 (x
->rex
& REX_EXTY
) != 0,
1089 (x
->rex
& REX_EXTZ
) != 0);
1090 for (i
= 0; i
< x
->operands
; i
++)
1092 fprintf (stdout
, " #%d: ", i
+ 1);
1094 fprintf (stdout
, "\n");
1096 & (Reg
| SReg2
| SReg3
| Control
| Debug
| Test
| RegMMX
| RegXMM
))
1097 fprintf (stdout
, "%s\n", x
->op
[i
].regs
->reg_name
);
1098 if (x
->types
[i
] & Imm
)
1100 if (x
->types
[i
] & Disp
)
1101 pe (x
->op
[i
].disps
);
1110 fprintf (stdout
, " %d operands ", t
->operands
);
1111 fprintf (stdout
, "opcode %x ", t
->base_opcode
);
1112 if (t
->extension_opcode
!= None
)
1113 fprintf (stdout
, "ext %x ", t
->extension_opcode
);
1114 if (t
->opcode_modifier
& D
)
1115 fprintf (stdout
, "D");
1116 if (t
->opcode_modifier
& W
)
1117 fprintf (stdout
, "W");
1118 fprintf (stdout
, "\n");
1119 for (i
= 0; i
< t
->operands
; i
++)
1121 fprintf (stdout
, " #%d type ", i
+ 1);
1122 pt (t
->operand_types
[i
]);
1123 fprintf (stdout
, "\n");
1131 fprintf (stdout
, " operation %d\n", e
->X_op
);
1132 fprintf (stdout
, " add_number %ld (%lx)\n",
1133 (long) e
->X_add_number
, (long) e
->X_add_number
);
1134 if (e
->X_add_symbol
)
1136 fprintf (stdout
, " add_symbol ");
1137 ps (e
->X_add_symbol
);
1138 fprintf (stdout
, "\n");
1142 fprintf (stdout
, " op_symbol ");
1143 ps (e
->X_op_symbol
);
1144 fprintf (stdout
, "\n");
1152 fprintf (stdout
, "%s type %s%s",
1154 S_IS_EXTERNAL (s
) ? "EXTERNAL " : "",
1155 segment_name (S_GET_SEGMENT (s
)));
1164 static const type_names
[] =
1177 { BaseIndex
, "BaseIndex" },
1181 { Disp32S
, "d32s" },
1183 { InOutPortReg
, "InOutPortReg" },
1184 { ShiftCount
, "ShiftCount" },
1185 { Control
, "control reg" },
1186 { Test
, "test reg" },
1187 { Debug
, "debug reg" },
1188 { FloatReg
, "FReg" },
1189 { FloatAcc
, "FAcc" },
1193 { JumpAbsolute
, "Jump Absolute" },
1204 const struct type_name
*ty
;
1206 for (ty
= type_names
; ty
->mask
; ty
++)
1208 fprintf (stdout
, "%s, ", ty
->tname
);
1212 #endif /* DEBUG386 */
1214 static bfd_reloc_code_real_type
1215 reloc (unsigned int size
,
1218 bfd_reloc_code_real_type other
)
1220 if (other
!= NO_RELOC
)
1222 reloc_howto_type
*reloc
;
1227 case BFD_RELOC_X86_64_TPOFF32
:
1228 other
= BFD_RELOC_X86_64_TPOFF64
;
1230 case BFD_RELOC_X86_64_DTPOFF32
:
1231 other
= BFD_RELOC_X86_64_DTPOFF64
;
1236 reloc
= bfd_reloc_type_lookup (stdoutput
, other
);
1238 as_bad (_("unknown relocation (%u)"), other
);
1239 else if (size
!= bfd_get_reloc_size (reloc
))
1240 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
1241 bfd_get_reloc_size (reloc
),
1243 else if (pcrel
&& !reloc
->pc_relative
)
1244 as_bad (_("non-pc-relative relocation for pc-relative field"));
1245 else if ((reloc
->complain_on_overflow
== complain_overflow_signed
1247 || (reloc
->complain_on_overflow
== complain_overflow_unsigned
1249 as_bad (_("relocated field and relocation type differ in signedness"));
1258 as_bad (_("there are no unsigned pc-relative relocations"));
1261 case 1: return BFD_RELOC_8_PCREL
;
1262 case 2: return BFD_RELOC_16_PCREL
;
1263 case 4: return BFD_RELOC_32_PCREL
;
1264 case 8: return BFD_RELOC_64_PCREL
;
1266 as_bad (_("cannot do %u byte pc-relative relocation"), size
);
1273 case 4: return BFD_RELOC_X86_64_32S
;
1278 case 1: return BFD_RELOC_8
;
1279 case 2: return BFD_RELOC_16
;
1280 case 4: return BFD_RELOC_32
;
1281 case 8: return BFD_RELOC_64
;
1283 as_bad (_("cannot do %s %u byte relocation"),
1284 sign
> 0 ? "signed" : "unsigned", size
);
1288 return BFD_RELOC_NONE
;
1291 /* Here we decide which fixups can be adjusted to make them relative to
1292 the beginning of the section instead of the symbol. Basically we need
1293 to make sure that the dynamic relocations are done correctly, so in
1294 some cases we force the original symbol to be used. */
1297 tc_i386_fix_adjustable (fixP
)
1298 fixS
*fixP ATTRIBUTE_UNUSED
;
1300 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1304 /* Don't adjust pc-relative references to merge sections in 64-bit
1306 if (use_rela_relocations
1307 && (S_GET_SEGMENT (fixP
->fx_addsy
)->flags
& SEC_MERGE
) != 0
1311 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1312 and changed later by validate_fix. */
1313 if (GOT_symbol
&& fixP
->fx_subsy
== GOT_symbol
1314 && fixP
->fx_r_type
== BFD_RELOC_32_PCREL
)
1317 /* adjust_reloc_syms doesn't know about the GOT. */
1318 if (fixP
->fx_r_type
== BFD_RELOC_386_GOTOFF
1319 || fixP
->fx_r_type
== BFD_RELOC_386_PLT32
1320 || fixP
->fx_r_type
== BFD_RELOC_386_GOT32
1321 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_GD
1322 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_LDM
1323 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_LDO_32
1324 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_IE_32
1325 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_IE
1326 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_GOTIE
1327 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_LE_32
1328 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_LE
1329 || fixP
->fx_r_type
== BFD_RELOC_X86_64_PLT32
1330 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOT32
1331 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOTPCREL
1332 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TLSGD
1333 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TLSLD
1334 || fixP
->fx_r_type
== BFD_RELOC_X86_64_DTPOFF32
1335 || fixP
->fx_r_type
== BFD_RELOC_X86_64_DTPOFF64
1336 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOTTPOFF
1337 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TPOFF32
1338 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TPOFF64
1339 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOTOFF64
1340 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
1341 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
1347 static int intel_float_operand
PARAMS ((const char *mnemonic
));
1350 intel_float_operand (mnemonic
)
1351 const char *mnemonic
;
1353 /* Note that the value returned is meaningful only for opcodes with (memory)
1354 operands, hence the code here is free to improperly handle opcodes that
1355 have no operands (for better performance and smaller code). */
1357 if (mnemonic
[0] != 'f')
1358 return 0; /* non-math */
1360 switch (mnemonic
[1])
1362 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1363 the fs segment override prefix not currently handled because no
1364 call path can make opcodes without operands get here */
1366 return 2 /* integer op */;
1368 if (mnemonic
[2] == 'd' && (mnemonic
[3] == 'c' || mnemonic
[3] == 'e'))
1369 return 3; /* fldcw/fldenv */
1372 if (mnemonic
[2] != 'o' /* fnop */)
1373 return 3; /* non-waiting control op */
1376 if (mnemonic
[2] == 's')
1377 return 3; /* frstor/frstpm */
1380 if (mnemonic
[2] == 'a')
1381 return 3; /* fsave */
1382 if (mnemonic
[2] == 't')
1384 switch (mnemonic
[3])
1386 case 'c': /* fstcw */
1387 case 'd': /* fstdw */
1388 case 'e': /* fstenv */
1389 case 's': /* fsts[gw] */
1395 if (mnemonic
[2] == 'r' || mnemonic
[2] == 's')
1396 return 0; /* fxsave/fxrstor are not really math ops */
1403 /* This is the guts of the machine-dependent assembler. LINE points to a
1404 machine dependent instruction. This function is supposed to emit
1405 the frags/bytes it assembles to. */
1412 char mnemonic
[MAX_MNEM_SIZE
];
1414 /* Initialize globals. */
1415 memset (&i
, '\0', sizeof (i
));
1416 for (j
= 0; j
< MAX_OPERANDS
; j
++)
1417 i
.reloc
[j
] = NO_RELOC
;
1418 memset (disp_expressions
, '\0', sizeof (disp_expressions
));
1419 memset (im_expressions
, '\0', sizeof (im_expressions
));
1420 save_stack_p
= save_stack
;
1422 /* First parse an instruction mnemonic & call i386_operand for the operands.
1423 We assume that the scrubber has arranged it so that line[0] is the valid
1424 start of a (possibly prefixed) mnemonic. */
1426 line
= parse_insn (line
, mnemonic
);
1430 line
= parse_operands (line
, mnemonic
);
1434 /* Now we've parsed the mnemonic into a set of templates, and have the
1435 operands at hand. */
1437 /* All intel opcodes have reversed operands except for "bound" and
1438 "enter". We also don't reverse intersegment "jmp" and "call"
1439 instructions with 2 immediate operands so that the immediate segment
1440 precedes the offset, as it does when in AT&T mode. "enter" and the
1441 intersegment "jmp" and "call" instructions are the only ones that
1442 have two immediate operands. */
1443 if (intel_syntax
&& i
.operands
> 1
1444 && (strcmp (mnemonic
, "bound") != 0)
1445 && (strcmp (mnemonic
, "invlpga") != 0)
1446 && !((i
.types
[0] & Imm
) && (i
.types
[1] & Imm
)))
1452 /* Don't optimize displacement for movabs since it only takes 64bit
1455 && (flag_code
!= CODE_64BIT
1456 || strcmp (mnemonic
, "movabs") != 0))
1459 /* Next, we find a template that matches the given insn,
1460 making sure the overlap of the given operands types is consistent
1461 with the template operand types. */
1463 if (!match_template ())
1468 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1470 && (i
.tm
.base_opcode
& 0xfffffde0) == 0xdce0)
1471 i
.tm
.base_opcode
^= FloatR
;
1473 /* Zap movzx and movsx suffix. The suffix may have been set from
1474 "word ptr" or "byte ptr" on the source operand, but we'll use
1475 the suffix later to choose the destination register. */
1476 if ((i
.tm
.base_opcode
& ~9) == 0x0fb6)
1478 if (i
.reg_operands
< 2
1480 && (~i
.tm
.opcode_modifier
1487 as_bad (_("ambiguous operand size for `%s'"), i
.tm
.name
);
1493 if (i
.tm
.opcode_modifier
& FWait
)
1494 if (!add_prefix (FWAIT_OPCODE
))
1497 /* Check string instruction segment overrides. */
1498 if ((i
.tm
.opcode_modifier
& IsString
) != 0 && i
.mem_operands
!= 0)
1500 if (!check_string ())
1504 if (!process_suffix ())
1507 /* Make still unresolved immediate matches conform to size of immediate
1508 given in i.suffix. */
1509 if (!finalize_imm ())
1512 if (i
.types
[0] & Imm1
)
1513 i
.imm_operands
= 0; /* kludge for shift insns. */
1514 if (i
.types
[0] & ImplicitRegister
)
1516 if (i
.types
[1] & ImplicitRegister
)
1518 if (i
.types
[2] & ImplicitRegister
)
1521 if (i
.tm
.opcode_modifier
& ImmExt
)
1525 if ((i
.tm
.cpu_flags
& CpuPNI
) && i
.operands
> 0)
1527 /* These Intel Prescott New Instructions have the fixed
1528 operands with an opcode suffix which is coded in the same
1529 place as an 8-bit immediate field would be. Here we check
1530 those operands and remove them afterwards. */
1533 for (x
= 0; x
< i
.operands
; x
++)
1534 if (i
.op
[x
].regs
->reg_num
!= x
)
1535 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1536 i
.op
[x
].regs
->reg_name
, x
+ 1, i
.tm
.name
);
1540 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1541 opcode suffix which is coded in the same place as an 8-bit
1542 immediate field would be. Here we fake an 8-bit immediate
1543 operand from the opcode suffix stored in tm.extension_opcode. */
1545 assert (i
.imm_operands
== 0 && i
.operands
<= 2 && 2 < MAX_OPERANDS
);
1547 exp
= &im_expressions
[i
.imm_operands
++];
1548 i
.op
[i
.operands
].imms
= exp
;
1549 i
.types
[i
.operands
++] = Imm8
;
1550 exp
->X_op
= O_constant
;
1551 exp
->X_add_number
= i
.tm
.extension_opcode
;
1552 i
.tm
.extension_opcode
= None
;
1555 /* For insns with operands there are more diddles to do to the opcode. */
1558 if (!process_operands ())
1561 else if (!quiet_warnings
&& (i
.tm
.opcode_modifier
& Ugh
) != 0)
1563 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1564 as_warn (_("translating to `%sp'"), i
.tm
.name
);
1567 /* Handle conversion of 'int $3' --> special int3 insn. */
1568 if (i
.tm
.base_opcode
== INT_OPCODE
&& i
.op
[0].imms
->X_add_number
== 3)
1570 i
.tm
.base_opcode
= INT3_OPCODE
;
1574 if ((i
.tm
.opcode_modifier
& (Jump
| JumpByte
| JumpDword
))
1575 && i
.op
[0].disps
->X_op
== O_constant
)
1577 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1578 the absolute address given by the constant. Since ix86 jumps and
1579 calls are pc relative, we need to generate a reloc. */
1580 i
.op
[0].disps
->X_add_symbol
= &abs_symbol
;
1581 i
.op
[0].disps
->X_op
= O_symbol
;
1584 if ((i
.tm
.opcode_modifier
& Rex64
) != 0)
1585 i
.rex
|= REX_MODE64
;
1587 /* For 8 bit registers we need an empty rex prefix. Also if the
1588 instruction already has a prefix, we need to convert old
1589 registers to new ones. */
1591 if (((i
.types
[0] & Reg8
) != 0
1592 && (i
.op
[0].regs
->reg_flags
& RegRex64
) != 0)
1593 || ((i
.types
[1] & Reg8
) != 0
1594 && (i
.op
[1].regs
->reg_flags
& RegRex64
) != 0)
1595 || (((i
.types
[0] & Reg8
) != 0 || (i
.types
[1] & Reg8
) != 0)
1600 i
.rex
|= REX_OPCODE
;
1601 for (x
= 0; x
< 2; x
++)
1603 /* Look for 8 bit operand that uses old registers. */
1604 if ((i
.types
[x
] & Reg8
) != 0
1605 && (i
.op
[x
].regs
->reg_flags
& RegRex64
) == 0)
1607 /* In case it is "hi" register, give up. */
1608 if (i
.op
[x
].regs
->reg_num
> 3)
1609 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix."),
1610 i
.op
[x
].regs
->reg_name
);
1612 /* Otherwise it is equivalent to the extended register.
1613 Since the encoding doesn't change this is merely
1614 cosmetic cleanup for debug output. */
1616 i
.op
[x
].regs
= i
.op
[x
].regs
+ 8;
1622 add_prefix (REX_OPCODE
| i
.rex
);
1624 /* We are ready to output the insn. */
1629 parse_insn (line
, mnemonic
)
1634 char *token_start
= l
;
1639 /* Non-zero if we found a prefix only acceptable with string insns. */
1640 const char *expecting_string_instruction
= NULL
;
1645 while ((*mnem_p
= mnemonic_chars
[(unsigned char) *l
]) != 0)
1648 if (mnem_p
>= mnemonic
+ MAX_MNEM_SIZE
)
1650 as_bad (_("no such instruction: `%s'"), token_start
);
1655 if (!is_space_char (*l
)
1656 && *l
!= END_OF_INSN
1658 || (*l
!= PREFIX_SEPARATOR
1661 as_bad (_("invalid character %s in mnemonic"),
1662 output_invalid (*l
));
1665 if (token_start
== l
)
1667 if (!intel_syntax
&& *l
== PREFIX_SEPARATOR
)
1668 as_bad (_("expecting prefix; got nothing"));
1670 as_bad (_("expecting mnemonic; got nothing"));
1674 /* Look up instruction (or prefix) via hash table. */
1675 current_templates
= hash_find (op_hash
, mnemonic
);
1677 if (*l
!= END_OF_INSN
1678 && (!is_space_char (*l
) || l
[1] != END_OF_INSN
)
1679 && current_templates
1680 && (current_templates
->start
->opcode_modifier
& IsPrefix
))
1682 if (current_templates
->start
->cpu_flags
1683 & (flag_code
!= CODE_64BIT
? Cpu64
: CpuNo64
))
1685 as_bad ((flag_code
!= CODE_64BIT
1686 ? _("`%s' is only supported in 64-bit mode")
1687 : _("`%s' is not supported in 64-bit mode")),
1688 current_templates
->start
->name
);
1691 /* If we are in 16-bit mode, do not allow addr16 or data16.
1692 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1693 if ((current_templates
->start
->opcode_modifier
& (Size16
| Size32
))
1694 && flag_code
!= CODE_64BIT
1695 && (((current_templates
->start
->opcode_modifier
& Size32
) != 0)
1696 ^ (flag_code
== CODE_16BIT
)))
1698 as_bad (_("redundant %s prefix"),
1699 current_templates
->start
->name
);
1702 /* Add prefix, checking for repeated prefixes. */
1703 switch (add_prefix (current_templates
->start
->base_opcode
))
1708 expecting_string_instruction
= current_templates
->start
->name
;
1711 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1718 if (!current_templates
)
1720 /* See if we can get a match by trimming off a suffix. */
1723 case WORD_MNEM_SUFFIX
:
1724 if (intel_syntax
&& (intel_float_operand (mnemonic
) & 2))
1725 i
.suffix
= SHORT_MNEM_SUFFIX
;
1727 case BYTE_MNEM_SUFFIX
:
1728 case QWORD_MNEM_SUFFIX
:
1729 i
.suffix
= mnem_p
[-1];
1731 current_templates
= hash_find (op_hash
, mnemonic
);
1733 case SHORT_MNEM_SUFFIX
:
1734 case LONG_MNEM_SUFFIX
:
1737 i
.suffix
= mnem_p
[-1];
1739 current_templates
= hash_find (op_hash
, mnemonic
);
1747 if (intel_float_operand (mnemonic
) == 1)
1748 i
.suffix
= SHORT_MNEM_SUFFIX
;
1750 i
.suffix
= LONG_MNEM_SUFFIX
;
1752 current_templates
= hash_find (op_hash
, mnemonic
);
1756 if (!current_templates
)
1758 as_bad (_("no such instruction: `%s'"), token_start
);
1763 if (current_templates
->start
->opcode_modifier
& (Jump
| JumpByte
))
1765 /* Check for a branch hint. We allow ",pt" and ",pn" for
1766 predict taken and predict not taken respectively.
1767 I'm not sure that branch hints actually do anything on loop
1768 and jcxz insns (JumpByte) for current Pentium4 chips. They
1769 may work in the future and it doesn't hurt to accept them
1771 if (l
[0] == ',' && l
[1] == 'p')
1775 if (!add_prefix (DS_PREFIX_OPCODE
))
1779 else if (l
[2] == 'n')
1781 if (!add_prefix (CS_PREFIX_OPCODE
))
1787 /* Any other comma loses. */
1790 as_bad (_("invalid character %s in mnemonic"),
1791 output_invalid (*l
));
1795 /* Check if instruction is supported on specified architecture. */
1797 for (t
= current_templates
->start
; t
< current_templates
->end
; ++t
)
1799 if (!((t
->cpu_flags
& ~(Cpu64
| CpuNo64
))
1800 & ~(cpu_arch_flags
& ~(Cpu64
| CpuNo64
))))
1802 if (!(t
->cpu_flags
& (flag_code
== CODE_64BIT
? CpuNo64
: Cpu64
)))
1805 if (!(supported
& 2))
1807 as_bad (flag_code
== CODE_64BIT
1808 ? _("`%s' is not supported in 64-bit mode")
1809 : _("`%s' is only supported in 64-bit mode"),
1810 current_templates
->start
->name
);
1813 if (!(supported
& 1))
1815 as_warn (_("`%s' is not supported on `%s%s'"),
1816 current_templates
->start
->name
,
1818 cpu_sub_arch_name
? cpu_sub_arch_name
: "");
1820 else if ((Cpu386
& ~cpu_arch_flags
) && (flag_code
!= CODE_16BIT
))
1822 as_warn (_("use .code16 to ensure correct addressing mode"));
1825 /* Check for rep/repne without a string instruction. */
1826 if (expecting_string_instruction
)
1828 static templates override
;
1830 for (t
= current_templates
->start
; t
< current_templates
->end
; ++t
)
1831 if (t
->opcode_modifier
& IsString
)
1833 if (t
>= current_templates
->end
)
1835 as_bad (_("expecting string instruction after `%s'"),
1836 expecting_string_instruction
);
1839 for (override
.start
= t
; t
< current_templates
->end
; ++t
)
1840 if (!(t
->opcode_modifier
& IsString
))
1843 current_templates
= &override
;
1850 parse_operands (l
, mnemonic
)
1852 const char *mnemonic
;
1856 /* 1 if operand is pending after ','. */
1857 unsigned int expecting_operand
= 0;
1859 /* Non-zero if operand parens not balanced. */
1860 unsigned int paren_not_balanced
;
1862 while (*l
!= END_OF_INSN
)
1864 /* Skip optional white space before operand. */
1865 if (is_space_char (*l
))
1867 if (!is_operand_char (*l
) && *l
!= END_OF_INSN
)
1869 as_bad (_("invalid character %s before operand %d"),
1870 output_invalid (*l
),
1874 token_start
= l
; /* after white space */
1875 paren_not_balanced
= 0;
1876 while (paren_not_balanced
|| *l
!= ',')
1878 if (*l
== END_OF_INSN
)
1880 if (paren_not_balanced
)
1883 as_bad (_("unbalanced parenthesis in operand %d."),
1886 as_bad (_("unbalanced brackets in operand %d."),
1891 break; /* we are done */
1893 else if (!is_operand_char (*l
) && !is_space_char (*l
))
1895 as_bad (_("invalid character %s in operand %d"),
1896 output_invalid (*l
),
1903 ++paren_not_balanced
;
1905 --paren_not_balanced
;
1910 ++paren_not_balanced
;
1912 --paren_not_balanced
;
1916 if (l
!= token_start
)
1917 { /* Yes, we've read in another operand. */
1918 unsigned int operand_ok
;
1919 this_operand
= i
.operands
++;
1920 if (i
.operands
> MAX_OPERANDS
)
1922 as_bad (_("spurious operands; (%d operands/instruction max)"),
1926 /* Now parse operand adding info to 'i' as we go along. */
1927 END_STRING_AND_SAVE (l
);
1931 i386_intel_operand (token_start
,
1932 intel_float_operand (mnemonic
));
1934 operand_ok
= i386_operand (token_start
);
1936 RESTORE_END_STRING (l
);
1942 if (expecting_operand
)
1944 expecting_operand_after_comma
:
1945 as_bad (_("expecting operand after ','; got nothing"));
1950 as_bad (_("expecting operand before ','; got nothing"));
1955 /* Now *l must be either ',' or END_OF_INSN. */
1958 if (*++l
== END_OF_INSN
)
1960 /* Just skip it, if it's \n complain. */
1961 goto expecting_operand_after_comma
;
1963 expecting_operand
= 1;
1972 union i386_op temp_op
;
1973 unsigned int temp_type
;
1974 enum bfd_reloc_code_real temp_reloc
;
1978 if (i
.operands
== 2)
1983 else if (i
.operands
== 3)
1988 temp_type
= i
.types
[xchg2
];
1989 i
.types
[xchg2
] = i
.types
[xchg1
];
1990 i
.types
[xchg1
] = temp_type
;
1991 temp_op
= i
.op
[xchg2
];
1992 i
.op
[xchg2
] = i
.op
[xchg1
];
1993 i
.op
[xchg1
] = temp_op
;
1994 temp_reloc
= i
.reloc
[xchg2
];
1995 i
.reloc
[xchg2
] = i
.reloc
[xchg1
];
1996 i
.reloc
[xchg1
] = temp_reloc
;
1998 if (i
.mem_operands
== 2)
2000 const seg_entry
*temp_seg
;
2001 temp_seg
= i
.seg
[0];
2002 i
.seg
[0] = i
.seg
[1];
2003 i
.seg
[1] = temp_seg
;
2007 /* Try to ensure constant immediates are represented in the smallest
2012 char guess_suffix
= 0;
2016 guess_suffix
= i
.suffix
;
2017 else if (i
.reg_operands
)
2019 /* Figure out a suffix from the last register operand specified.
2020 We can't do this properly yet, ie. excluding InOutPortReg,
2021 but the following works for instructions with immediates.
2022 In any case, we can't set i.suffix yet. */
2023 for (op
= i
.operands
; --op
>= 0;)
2024 if (i
.types
[op
] & Reg
)
2026 if (i
.types
[op
] & Reg8
)
2027 guess_suffix
= BYTE_MNEM_SUFFIX
;
2028 else if (i
.types
[op
] & Reg16
)
2029 guess_suffix
= WORD_MNEM_SUFFIX
;
2030 else if (i
.types
[op
] & Reg32
)
2031 guess_suffix
= LONG_MNEM_SUFFIX
;
2032 else if (i
.types
[op
] & Reg64
)
2033 guess_suffix
= QWORD_MNEM_SUFFIX
;
2037 else if ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[DATA_PREFIX
] != 0))
2038 guess_suffix
= WORD_MNEM_SUFFIX
;
2040 for (op
= i
.operands
; --op
>= 0;)
2041 if (i
.types
[op
] & Imm
)
2043 switch (i
.op
[op
].imms
->X_op
)
2046 /* If a suffix is given, this operand may be shortened. */
2047 switch (guess_suffix
)
2049 case LONG_MNEM_SUFFIX
:
2050 i
.types
[op
] |= Imm32
| Imm64
;
2052 case WORD_MNEM_SUFFIX
:
2053 i
.types
[op
] |= Imm16
| Imm32S
| Imm32
| Imm64
;
2055 case BYTE_MNEM_SUFFIX
:
2056 i
.types
[op
] |= Imm16
| Imm8
| Imm8S
| Imm32S
| Imm32
| Imm64
;
2060 /* If this operand is at most 16 bits, convert it
2061 to a signed 16 bit number before trying to see
2062 whether it will fit in an even smaller size.
2063 This allows a 16-bit operand such as $0xffe0 to
2064 be recognised as within Imm8S range. */
2065 if ((i
.types
[op
] & Imm16
)
2066 && (i
.op
[op
].imms
->X_add_number
& ~(offsetT
) 0xffff) == 0)
2068 i
.op
[op
].imms
->X_add_number
=
2069 (((i
.op
[op
].imms
->X_add_number
& 0xffff) ^ 0x8000) - 0x8000);
2071 if ((i
.types
[op
] & Imm32
)
2072 && ((i
.op
[op
].imms
->X_add_number
& ~(((offsetT
) 2 << 31) - 1))
2075 i
.op
[op
].imms
->X_add_number
= ((i
.op
[op
].imms
->X_add_number
2076 ^ ((offsetT
) 1 << 31))
2077 - ((offsetT
) 1 << 31));
2079 i
.types
[op
] |= smallest_imm_type (i
.op
[op
].imms
->X_add_number
);
2081 /* We must avoid matching of Imm32 templates when 64bit
2082 only immediate is available. */
2083 if (guess_suffix
== QWORD_MNEM_SUFFIX
)
2084 i
.types
[op
] &= ~Imm32
;
2091 /* Symbols and expressions. */
2093 /* Convert symbolic operand to proper sizes for matching, but don't
2094 prevent matching a set of insns that only supports sizes other
2095 than those matching the insn suffix. */
2097 unsigned int mask
, allowed
= 0;
2100 for (t
= current_templates
->start
; t
< current_templates
->end
; ++t
)
2101 allowed
|= t
->operand_types
[op
];
2102 switch (guess_suffix
)
2104 case QWORD_MNEM_SUFFIX
:
2105 mask
= Imm64
| Imm32S
;
2107 case LONG_MNEM_SUFFIX
:
2110 case WORD_MNEM_SUFFIX
:
2113 case BYTE_MNEM_SUFFIX
:
2121 i
.types
[op
] &= mask
;
2128 /* Try to use the smallest displacement type too. */
2134 for (op
= i
.operands
; --op
>= 0;)
2135 if (i
.types
[op
] & Disp
)
2137 if (i
.op
[op
].disps
->X_op
== O_constant
)
2139 offsetT disp
= i
.op
[op
].disps
->X_add_number
;
2141 if ((i
.types
[op
] & Disp16
)
2142 && (disp
& ~(offsetT
) 0xffff) == 0)
2144 /* If this operand is at most 16 bits, convert
2145 to a signed 16 bit number and don't use 64bit
2147 disp
= (((disp
& 0xffff) ^ 0x8000) - 0x8000);
2148 i
.types
[op
] &= ~Disp64
;
2150 if ((i
.types
[op
] & Disp32
)
2151 && (disp
& ~(((offsetT
) 2 << 31) - 1)) == 0)
2153 /* If this operand is at most 32 bits, convert
2154 to a signed 32 bit number and don't use 64bit
2156 disp
&= (((offsetT
) 2 << 31) - 1);
2157 disp
= (disp
^ ((offsetT
) 1 << 31)) - ((addressT
) 1 << 31);
2158 i
.types
[op
] &= ~Disp64
;
2160 if (!disp
&& (i
.types
[op
] & BaseIndex
))
2162 i
.types
[op
] &= ~Disp
;
2166 else if (flag_code
== CODE_64BIT
)
2168 if (fits_in_signed_long (disp
))
2170 i
.types
[op
] &= ~Disp64
;
2171 i
.types
[op
] |= Disp32S
;
2173 if (fits_in_unsigned_long (disp
))
2174 i
.types
[op
] |= Disp32
;
2176 if ((i
.types
[op
] & (Disp32
| Disp32S
| Disp16
))
2177 && fits_in_signed_byte (disp
))
2178 i
.types
[op
] |= Disp8
;
2181 /* We only support 64bit displacement on constants. */
2182 i
.types
[op
] &= ~Disp64
;
2189 /* Points to template once we've found it. */
2191 unsigned int overlap0
, overlap1
, overlap2
;
2192 unsigned int found_reverse_match
;
2195 #define MATCH(overlap, given, template) \
2196 ((overlap & ~JumpAbsolute) \
2197 && (((given) & (BaseIndex | JumpAbsolute)) \
2198 == ((overlap) & (BaseIndex | JumpAbsolute))))
2200 /* If given types r0 and r1 are registers they must be of the same type
2201 unless the expected operand type register overlap is null.
2202 Note that Acc in a template matches every size of reg. */
2203 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2204 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2205 || ((g0) & Reg) == ((g1) & Reg) \
2206 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2211 found_reverse_match
= 0;
2212 suffix_check
= (i
.suffix
== BYTE_MNEM_SUFFIX
2214 : (i
.suffix
== WORD_MNEM_SUFFIX
2216 : (i
.suffix
== SHORT_MNEM_SUFFIX
2218 : (i
.suffix
== LONG_MNEM_SUFFIX
2220 : (i
.suffix
== QWORD_MNEM_SUFFIX
2222 : (i
.suffix
== LONG_DOUBLE_MNEM_SUFFIX
2223 ? No_xSuf
: 0))))));
2225 t
= current_templates
->start
;
2226 if (i
.suffix
== QWORD_MNEM_SUFFIX
2227 && flag_code
!= CODE_64BIT
2229 ? !(t
->opcode_modifier
& IgnoreSize
)
2230 && !intel_float_operand (t
->name
)
2231 : intel_float_operand (t
->name
) != 2)
2232 && (!(t
->operand_types
[0] & (RegMMX
| RegXMM
))
2233 || !(t
->operand_types
[t
->operands
> 1] & (RegMMX
| RegXMM
)))
2234 && (t
->base_opcode
!= 0x0fc7
2235 || t
->extension_opcode
!= 1 /* cmpxchg8b */))
2236 t
= current_templates
->end
;
2237 for (; t
< current_templates
->end
; t
++)
2239 /* Must have right number of operands. */
2240 if (i
.operands
!= t
->operands
)
2243 /* Check the suffix, except for some instructions in intel mode. */
2244 if ((t
->opcode_modifier
& suffix_check
)
2246 && (t
->opcode_modifier
& IgnoreSize
)))
2249 /* Do not verify operands when there are none. */
2250 else if (!t
->operands
)
2252 if (t
->cpu_flags
& ~cpu_arch_flags
)
2254 /* We've found a match; break out of loop. */
2258 overlap0
= i
.types
[0] & t
->operand_types
[0];
2259 switch (t
->operands
)
2262 if (!MATCH (overlap0
, i
.types
[0], t
->operand_types
[0]))
2267 overlap1
= i
.types
[1] & t
->operand_types
[1];
2268 if (!MATCH (overlap0
, i
.types
[0], t
->operand_types
[0])
2269 || !MATCH (overlap1
, i
.types
[1], t
->operand_types
[1])
2270 || !CONSISTENT_REGISTER_MATCH (overlap0
, i
.types
[0],
2271 t
->operand_types
[0],
2272 overlap1
, i
.types
[1],
2273 t
->operand_types
[1]))
2275 /* Check if other direction is valid ... */
2276 if ((t
->opcode_modifier
& (D
| FloatD
)) == 0)
2279 /* Try reversing direction of operands. */
2280 overlap0
= i
.types
[0] & t
->operand_types
[1];
2281 overlap1
= i
.types
[1] & t
->operand_types
[0];
2282 if (!MATCH (overlap0
, i
.types
[0], t
->operand_types
[1])
2283 || !MATCH (overlap1
, i
.types
[1], t
->operand_types
[0])
2284 || !CONSISTENT_REGISTER_MATCH (overlap0
, i
.types
[0],
2285 t
->operand_types
[1],
2286 overlap1
, i
.types
[1],
2287 t
->operand_types
[0]))
2289 /* Does not match either direction. */
2292 /* found_reverse_match holds which of D or FloatDR
2294 found_reverse_match
= t
->opcode_modifier
& (D
| FloatDR
);
2296 /* Found a forward 2 operand match here. */
2297 else if (t
->operands
== 3)
2299 /* Here we make use of the fact that there are no
2300 reverse match 3 operand instructions, and all 3
2301 operand instructions only need to be checked for
2302 register consistency between operands 2 and 3. */
2303 overlap2
= i
.types
[2] & t
->operand_types
[2];
2304 if (!MATCH (overlap2
, i
.types
[2], t
->operand_types
[2])
2305 || !CONSISTENT_REGISTER_MATCH (overlap1
, i
.types
[1],
2306 t
->operand_types
[1],
2307 overlap2
, i
.types
[2],
2308 t
->operand_types
[2]))
2312 /* Found either forward/reverse 2 or 3 operand match here:
2313 slip through to break. */
2315 if (t
->cpu_flags
& ~cpu_arch_flags
)
2317 found_reverse_match
= 0;
2320 /* We've found a match; break out of loop. */
2324 if (t
== current_templates
->end
)
2326 /* We found no match. */
2327 as_bad (_("suffix or operands invalid for `%s'"),
2328 current_templates
->start
->name
);
2332 if (!quiet_warnings
)
2335 && ((i
.types
[0] & JumpAbsolute
)
2336 != (t
->operand_types
[0] & JumpAbsolute
)))
2338 as_warn (_("indirect %s without `*'"), t
->name
);
2341 if ((t
->opcode_modifier
& (IsPrefix
| IgnoreSize
))
2342 == (IsPrefix
| IgnoreSize
))
2344 /* Warn them that a data or address size prefix doesn't
2345 affect assembly of the next line of code. */
2346 as_warn (_("stand-alone `%s' prefix"), t
->name
);
2350 /* Copy the template we found. */
2352 if (found_reverse_match
)
2354 /* If we found a reverse match we must alter the opcode
2355 direction bit. found_reverse_match holds bits to change
2356 (different for int & float insns). */
2358 i
.tm
.base_opcode
^= found_reverse_match
;
2360 i
.tm
.operand_types
[0] = t
->operand_types
[1];
2361 i
.tm
.operand_types
[1] = t
->operand_types
[0];
2370 int mem_op
= (i
.types
[0] & AnyMem
) ? 0 : 1;
2371 if ((i
.tm
.operand_types
[mem_op
] & EsSeg
) != 0)
2373 if (i
.seg
[0] != NULL
&& i
.seg
[0] != &es
)
2375 as_bad (_("`%s' operand %d must use `%%es' segment"),
2380 /* There's only ever one segment override allowed per instruction.
2381 This instruction possibly has a legal segment override on the
2382 second operand, so copy the segment to where non-string
2383 instructions store it, allowing common code. */
2384 i
.seg
[0] = i
.seg
[1];
2386 else if ((i
.tm
.operand_types
[mem_op
+ 1] & EsSeg
) != 0)
2388 if (i
.seg
[1] != NULL
&& i
.seg
[1] != &es
)
2390 as_bad (_("`%s' operand %d must use `%%es' segment"),
2400 process_suffix (void)
2402 /* If matched instruction specifies an explicit instruction mnemonic
2404 if (i
.tm
.opcode_modifier
& (Size16
| Size32
| Size64
))
2406 if (i
.tm
.opcode_modifier
& Size16
)
2407 i
.suffix
= WORD_MNEM_SUFFIX
;
2408 else if (i
.tm
.opcode_modifier
& Size64
)
2409 i
.suffix
= QWORD_MNEM_SUFFIX
;
2411 i
.suffix
= LONG_MNEM_SUFFIX
;
2413 else if (i
.reg_operands
)
2415 /* If there's no instruction mnemonic suffix we try to invent one
2416 based on register operands. */
2419 /* We take i.suffix from the last register operand specified,
2420 Destination register type is more significant than source
2424 for (op
= i
.operands
; --op
>= 0;)
2425 if ((i
.types
[op
] & Reg
)
2426 && !(i
.tm
.operand_types
[op
] & InOutPortReg
))
2428 i
.suffix
= ((i
.types
[op
] & Reg8
) ? BYTE_MNEM_SUFFIX
:
2429 (i
.types
[op
] & Reg16
) ? WORD_MNEM_SUFFIX
:
2430 (i
.types
[op
] & Reg64
) ? QWORD_MNEM_SUFFIX
:
2435 else if (i
.suffix
== BYTE_MNEM_SUFFIX
)
2437 if (!check_byte_reg ())
2440 else if (i
.suffix
== LONG_MNEM_SUFFIX
)
2442 if (!check_long_reg ())
2445 else if (i
.suffix
== QWORD_MNEM_SUFFIX
)
2447 if (!check_qword_reg ())
2450 else if (i
.suffix
== WORD_MNEM_SUFFIX
)
2452 if (!check_word_reg ())
2455 else if (intel_syntax
&& (i
.tm
.opcode_modifier
& IgnoreSize
))
2456 /* Do nothing if the instruction is going to ignore the prefix. */
2461 else if ((i
.tm
.opcode_modifier
& DefaultSize
)
2463 /* exclude fldenv/frstor/fsave/fstenv */
2464 && (i
.tm
.opcode_modifier
& No_sSuf
))
2466 i
.suffix
= stackop_size
;
2468 else if (intel_syntax
2470 && ((i
.tm
.operand_types
[0] & JumpAbsolute
)
2471 || (i
.tm
.opcode_modifier
& (JumpByte
|JumpInterSegment
))
2472 || (i
.tm
.base_opcode
== 0x0f01 /* [ls][gi]dt */
2473 && i
.tm
.extension_opcode
<= 3)))
2478 if (!(i
.tm
.opcode_modifier
& No_qSuf
))
2480 i
.suffix
= QWORD_MNEM_SUFFIX
;
2484 if (!(i
.tm
.opcode_modifier
& No_lSuf
))
2485 i
.suffix
= LONG_MNEM_SUFFIX
;
2488 if (!(i
.tm
.opcode_modifier
& No_wSuf
))
2489 i
.suffix
= WORD_MNEM_SUFFIX
;
2498 if (i
.tm
.opcode_modifier
& W
)
2500 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2506 unsigned int suffixes
= ~i
.tm
.opcode_modifier
2514 if ((i
.tm
.opcode_modifier
& W
)
2515 || ((suffixes
& (suffixes
- 1))
2516 && !(i
.tm
.opcode_modifier
& (DefaultSize
| IgnoreSize
))))
2518 as_bad (_("ambiguous operand size for `%s'"), i
.tm
.name
);
2524 /* Change the opcode based on the operand size given by i.suffix;
2525 We don't need to change things for byte insns. */
2527 if (i
.suffix
&& i
.suffix
!= BYTE_MNEM_SUFFIX
)
2529 /* It's not a byte, select word/dword operation. */
2530 if (i
.tm
.opcode_modifier
& W
)
2532 if (i
.tm
.opcode_modifier
& ShortForm
)
2533 i
.tm
.base_opcode
|= 8;
2535 i
.tm
.base_opcode
|= 1;
2538 /* Now select between word & dword operations via the operand
2539 size prefix, except for instructions that will ignore this
2541 if (i
.suffix
!= QWORD_MNEM_SUFFIX
2542 && i
.suffix
!= LONG_DOUBLE_MNEM_SUFFIX
2543 && !(i
.tm
.opcode_modifier
& (IgnoreSize
| FloatMF
))
2544 && ((i
.suffix
== LONG_MNEM_SUFFIX
) == (flag_code
== CODE_16BIT
)
2545 || (flag_code
== CODE_64BIT
2546 && (i
.tm
.opcode_modifier
& JumpByte
))))
2548 unsigned int prefix
= DATA_PREFIX_OPCODE
;
2550 if (i
.tm
.opcode_modifier
& JumpByte
) /* jcxz, loop */
2551 prefix
= ADDR_PREFIX_OPCODE
;
2553 if (!add_prefix (prefix
))
2557 /* Set mode64 for an operand. */
2558 if (i
.suffix
== QWORD_MNEM_SUFFIX
2559 && flag_code
== CODE_64BIT
2560 && (i
.tm
.opcode_modifier
& NoRex64
) == 0)
2561 i
.rex
|= REX_MODE64
;
2563 /* Size floating point instruction. */
2564 if (i
.suffix
== LONG_MNEM_SUFFIX
)
2565 if (i
.tm
.opcode_modifier
& FloatMF
)
2566 i
.tm
.base_opcode
^= 4;
2573 check_byte_reg (void)
2577 for (op
= i
.operands
; --op
>= 0;)
2579 /* If this is an eight bit register, it's OK. If it's the 16 or
2580 32 bit version of an eight bit register, we will just use the
2581 low portion, and that's OK too. */
2582 if (i
.types
[op
] & Reg8
)
2585 /* movzx and movsx should not generate this warning. */
2587 && (i
.tm
.base_opcode
== 0xfb7
2588 || i
.tm
.base_opcode
== 0xfb6
2589 || i
.tm
.base_opcode
== 0x63
2590 || i
.tm
.base_opcode
== 0xfbe
2591 || i
.tm
.base_opcode
== 0xfbf))
2594 if ((i
.types
[op
] & WordReg
) && i
.op
[op
].regs
->reg_num
< 4)
2596 /* Prohibit these changes in the 64bit mode, since the
2597 lowering is more complicated. */
2598 if (flag_code
== CODE_64BIT
2599 && (i
.tm
.operand_types
[op
] & InOutPortReg
) == 0)
2601 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2602 i
.op
[op
].regs
->reg_name
,
2606 #if REGISTER_WARNINGS
2608 && (i
.tm
.operand_types
[op
] & InOutPortReg
) == 0)
2609 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2610 (i
.op
[op
].regs
+ (i
.types
[op
] & Reg16
2611 ? REGNAM_AL
- REGNAM_AX
2612 : REGNAM_AL
- REGNAM_EAX
))->reg_name
,
2613 i
.op
[op
].regs
->reg_name
,
2618 /* Any other register is bad. */
2619 if (i
.types
[op
] & (Reg
| RegMMX
| RegXMM
2621 | Control
| Debug
| Test
2622 | FloatReg
| FloatAcc
))
2624 as_bad (_("`%%%s' not allowed with `%s%c'"),
2625 i
.op
[op
].regs
->reg_name
,
2639 for (op
= i
.operands
; --op
>= 0;)
2640 /* Reject eight bit registers, except where the template requires
2641 them. (eg. movzb) */
2642 if ((i
.types
[op
] & Reg8
) != 0
2643 && (i
.tm
.operand_types
[op
] & (Reg16
| Reg32
| Acc
)) != 0)
2645 as_bad (_("`%%%s' not allowed with `%s%c'"),
2646 i
.op
[op
].regs
->reg_name
,
2651 /* Warn if the e prefix on a general reg is missing. */
2652 else if ((!quiet_warnings
|| flag_code
== CODE_64BIT
)
2653 && (i
.types
[op
] & Reg16
) != 0
2654 && (i
.tm
.operand_types
[op
] & (Reg32
| Acc
)) != 0)
2656 /* Prohibit these changes in the 64bit mode, since the
2657 lowering is more complicated. */
2658 if (flag_code
== CODE_64BIT
)
2660 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2661 i
.op
[op
].regs
->reg_name
,
2665 #if REGISTER_WARNINGS
2667 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2668 (i
.op
[op
].regs
+ REGNAM_EAX
- REGNAM_AX
)->reg_name
,
2669 i
.op
[op
].regs
->reg_name
,
2673 /* Warn if the r prefix on a general reg is missing. */
2674 else if ((i
.types
[op
] & Reg64
) != 0
2675 && (i
.tm
.operand_types
[op
] & (Reg32
| Acc
)) != 0)
2677 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2678 i
.op
[op
].regs
->reg_name
,
2690 for (op
= i
.operands
; --op
>= 0; )
2691 /* Reject eight bit registers, except where the template requires
2692 them. (eg. movzb) */
2693 if ((i
.types
[op
] & Reg8
) != 0
2694 && (i
.tm
.operand_types
[op
] & (Reg16
| Reg32
| Acc
)) != 0)
2696 as_bad (_("`%%%s' not allowed with `%s%c'"),
2697 i
.op
[op
].regs
->reg_name
,
2702 /* Warn if the e prefix on a general reg is missing. */
2703 else if (((i
.types
[op
] & Reg16
) != 0
2704 || (i
.types
[op
] & Reg32
) != 0)
2705 && (i
.tm
.operand_types
[op
] & (Reg32
| Acc
)) != 0)
2707 /* Prohibit these changes in the 64bit mode, since the
2708 lowering is more complicated. */
2709 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2710 i
.op
[op
].regs
->reg_name
,
2721 for (op
= i
.operands
; --op
>= 0;)
2722 /* Reject eight bit registers, except where the template requires
2723 them. (eg. movzb) */
2724 if ((i
.types
[op
] & Reg8
) != 0
2725 && (i
.tm
.operand_types
[op
] & (Reg16
| Reg32
| Acc
)) != 0)
2727 as_bad (_("`%%%s' not allowed with `%s%c'"),
2728 i
.op
[op
].regs
->reg_name
,
2733 /* Warn if the e prefix on a general reg is present. */
2734 else if ((!quiet_warnings
|| flag_code
== CODE_64BIT
)
2735 && (i
.types
[op
] & Reg32
) != 0
2736 && (i
.tm
.operand_types
[op
] & (Reg16
| Acc
)) != 0)
2738 /* Prohibit these changes in the 64bit mode, since the
2739 lowering is more complicated. */
2740 if (flag_code
== CODE_64BIT
)
2742 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2743 i
.op
[op
].regs
->reg_name
,
2748 #if REGISTER_WARNINGS
2749 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2750 (i
.op
[op
].regs
+ REGNAM_AX
- REGNAM_EAX
)->reg_name
,
2751 i
.op
[op
].regs
->reg_name
,
2761 unsigned int overlap0
, overlap1
, overlap2
;
2763 overlap0
= i
.types
[0] & i
.tm
.operand_types
[0];
2764 if ((overlap0
& (Imm8
| Imm8S
| Imm16
| Imm32
| Imm32S
| Imm64
))
2765 && overlap0
!= Imm8
&& overlap0
!= Imm8S
2766 && overlap0
!= Imm16
&& overlap0
!= Imm32S
2767 && overlap0
!= Imm32
&& overlap0
!= Imm64
)
2771 overlap0
&= (i
.suffix
== BYTE_MNEM_SUFFIX
2773 : (i
.suffix
== WORD_MNEM_SUFFIX
2775 : (i
.suffix
== QWORD_MNEM_SUFFIX
2779 else if (overlap0
== (Imm16
| Imm32S
| Imm32
)
2780 || overlap0
== (Imm16
| Imm32
)
2781 || overlap0
== (Imm16
| Imm32S
))
2783 overlap0
= ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[DATA_PREFIX
] != 0)
2786 if (overlap0
!= Imm8
&& overlap0
!= Imm8S
2787 && overlap0
!= Imm16
&& overlap0
!= Imm32S
2788 && overlap0
!= Imm32
&& overlap0
!= Imm64
)
2790 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2794 i
.types
[0] = overlap0
;
2796 overlap1
= i
.types
[1] & i
.tm
.operand_types
[1];
2797 if ((overlap1
& (Imm8
| Imm8S
| Imm16
| Imm32S
| Imm32
| Imm64
))
2798 && overlap1
!= Imm8
&& overlap1
!= Imm8S
2799 && overlap1
!= Imm16
&& overlap1
!= Imm32S
2800 && overlap1
!= Imm32
&& overlap1
!= Imm64
)
2804 overlap1
&= (i
.suffix
== BYTE_MNEM_SUFFIX
2806 : (i
.suffix
== WORD_MNEM_SUFFIX
2808 : (i
.suffix
== QWORD_MNEM_SUFFIX
2812 else if (overlap1
== (Imm16
| Imm32
| Imm32S
)
2813 || overlap1
== (Imm16
| Imm32
)
2814 || overlap1
== (Imm16
| Imm32S
))
2816 overlap1
= ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[DATA_PREFIX
] != 0)
2819 if (overlap1
!= Imm8
&& overlap1
!= Imm8S
2820 && overlap1
!= Imm16
&& overlap1
!= Imm32S
2821 && overlap1
!= Imm32
&& overlap1
!= Imm64
)
2823 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1
, i
.suffix
);
2827 i
.types
[1] = overlap1
;
2829 overlap2
= i
.types
[2] & i
.tm
.operand_types
[2];
2830 assert ((overlap2
& Imm
) == 0);
2831 i
.types
[2] = overlap2
;
2839 /* Default segment register this instruction will use for memory
2840 accesses. 0 means unknown. This is only for optimizing out
2841 unnecessary segment overrides. */
2842 const seg_entry
*default_seg
= 0;
2844 /* The imul $imm, %reg instruction is converted into
2845 imul $imm, %reg, %reg, and the clr %reg instruction
2846 is converted into xor %reg, %reg. */
2847 if (i
.tm
.opcode_modifier
& regKludge
)
2849 unsigned int first_reg_op
= (i
.types
[0] & Reg
) ? 0 : 1;
2850 /* Pretend we saw the extra register operand. */
2851 assert (i
.op
[first_reg_op
+ 1].regs
== 0);
2852 i
.op
[first_reg_op
+ 1].regs
= i
.op
[first_reg_op
].regs
;
2853 i
.types
[first_reg_op
+ 1] = i
.types
[first_reg_op
];
2857 if (i
.tm
.opcode_modifier
& ShortForm
)
2859 /* The register or float register operand is in operand 0 or 1. */
2860 unsigned int op
= (i
.types
[0] & (Reg
| FloatReg
)) ? 0 : 1;
2861 /* Register goes in low 3 bits of opcode. */
2862 i
.tm
.base_opcode
|= i
.op
[op
].regs
->reg_num
;
2863 if ((i
.op
[op
].regs
->reg_flags
& RegRex
) != 0)
2865 if (!quiet_warnings
&& (i
.tm
.opcode_modifier
& Ugh
) != 0)
2867 /* Warn about some common errors, but press on regardless.
2868 The first case can be generated by gcc (<= 2.8.1). */
2869 if (i
.operands
== 2)
2871 /* Reversed arguments on faddp, fsubp, etc. */
2872 as_warn (_("translating to `%s %%%s,%%%s'"), i
.tm
.name
,
2873 i
.op
[1].regs
->reg_name
,
2874 i
.op
[0].regs
->reg_name
);
2878 /* Extraneous `l' suffix on fp insn. */
2879 as_warn (_("translating to `%s %%%s'"), i
.tm
.name
,
2880 i
.op
[0].regs
->reg_name
);
2884 else if (i
.tm
.opcode_modifier
& Modrm
)
2886 /* The opcode is completed (modulo i.tm.extension_opcode which
2887 must be put into the modrm byte). Now, we make the modrm and
2888 index base bytes based on all the info we've collected. */
2890 default_seg
= build_modrm_byte ();
2892 else if (i
.tm
.opcode_modifier
& (Seg2ShortForm
| Seg3ShortForm
))
2894 if (i
.tm
.base_opcode
== POP_SEG_SHORT
2895 && i
.op
[0].regs
->reg_num
== 1)
2897 as_bad (_("you can't `pop %%cs'"));
2900 i
.tm
.base_opcode
|= (i
.op
[0].regs
->reg_num
<< 3);
2901 if ((i
.op
[0].regs
->reg_flags
& RegRex
) != 0)
2904 else if ((i
.tm
.base_opcode
& ~(D
| W
)) == MOV_AX_DISP32
)
2908 else if ((i
.tm
.opcode_modifier
& IsString
) != 0)
2910 /* For the string instructions that allow a segment override
2911 on one of their operands, the default segment is ds. */
2915 if ((i
.tm
.base_opcode
== 0x8d /* lea */
2916 || (i
.tm
.cpu_flags
& CpuSVME
))
2917 && i
.seg
[0] && !quiet_warnings
)
2918 as_warn (_("segment override on `%s' is ineffectual"), i
.tm
.name
);
2920 /* If a segment was explicitly specified, and the specified segment
2921 is not the default, use an opcode prefix to select it. If we
2922 never figured out what the default segment is, then default_seg
2923 will be zero at this point, and the specified segment prefix will
2925 if ((i
.seg
[0]) && (i
.seg
[0] != default_seg
))
2927 if (!add_prefix (i
.seg
[0]->seg_prefix
))
2933 static const seg_entry
*
2936 const seg_entry
*default_seg
= 0;
2938 /* i.reg_operands MUST be the number of real register operands;
2939 implicit registers do not count. */
2940 if (i
.reg_operands
== 2)
2942 unsigned int source
, dest
;
2943 source
= ((i
.types
[0]
2944 & (Reg
| RegMMX
| RegXMM
2946 | Control
| Debug
| Test
))
2951 /* One of the register operands will be encoded in the i.tm.reg
2952 field, the other in the combined i.tm.mode and i.tm.regmem
2953 fields. If no form of this instruction supports a memory
2954 destination operand, then we assume the source operand may
2955 sometimes be a memory operand and so we need to store the
2956 destination in the i.rm.reg field. */
2957 if ((i
.tm
.operand_types
[dest
] & AnyMem
) == 0)
2959 i
.rm
.reg
= i
.op
[dest
].regs
->reg_num
;
2960 i
.rm
.regmem
= i
.op
[source
].regs
->reg_num
;
2961 if ((i
.op
[dest
].regs
->reg_flags
& RegRex
) != 0)
2963 if ((i
.op
[source
].regs
->reg_flags
& RegRex
) != 0)
2968 i
.rm
.reg
= i
.op
[source
].regs
->reg_num
;
2969 i
.rm
.regmem
= i
.op
[dest
].regs
->reg_num
;
2970 if ((i
.op
[dest
].regs
->reg_flags
& RegRex
) != 0)
2972 if ((i
.op
[source
].regs
->reg_flags
& RegRex
) != 0)
2975 if (flag_code
!= CODE_64BIT
&& (i
.rex
& (REX_EXTX
| REX_EXTZ
)))
2977 if (!((i
.types
[0] | i
.types
[1]) & Control
))
2979 i
.rex
&= ~(REX_EXTX
| REX_EXTZ
);
2980 add_prefix (LOCK_PREFIX_OPCODE
);
2984 { /* If it's not 2 reg operands... */
2987 unsigned int fake_zero_displacement
= 0;
2988 unsigned int op
= ((i
.types
[0] & AnyMem
)
2990 : (i
.types
[1] & AnyMem
) ? 1 : 2);
2994 if (i
.base_reg
== 0)
2997 if (!i
.disp_operands
)
2998 fake_zero_displacement
= 1;
2999 if (i
.index_reg
== 0)
3001 /* Operand is just <disp> */
3002 if (flag_code
== CODE_64BIT
)
3004 /* 64bit mode overwrites the 32bit absolute
3005 addressing by RIP relative addressing and
3006 absolute addressing is encoded by one of the
3007 redundant SIB forms. */
3008 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
3009 i
.sib
.base
= NO_BASE_REGISTER
;
3010 i
.sib
.index
= NO_INDEX_REGISTER
;
3011 i
.types
[op
] = ((i
.prefix
[ADDR_PREFIX
] == 0) ? Disp32S
: Disp32
);
3013 else if ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[ADDR_PREFIX
] != 0))
3015 i
.rm
.regmem
= NO_BASE_REGISTER_16
;
3016 i
.types
[op
] = Disp16
;
3020 i
.rm
.regmem
= NO_BASE_REGISTER
;
3021 i
.types
[op
] = Disp32
;
3024 else /* !i.base_reg && i.index_reg */
3026 i
.sib
.index
= i
.index_reg
->reg_num
;
3027 i
.sib
.base
= NO_BASE_REGISTER
;
3028 i
.sib
.scale
= i
.log2_scale_factor
;
3029 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
3030 i
.types
[op
] &= ~Disp
;
3031 if (flag_code
!= CODE_64BIT
)
3032 i
.types
[op
] |= Disp32
; /* Must be 32 bit */
3034 i
.types
[op
] |= Disp32S
;
3035 if ((i
.index_reg
->reg_flags
& RegRex
) != 0)
3039 /* RIP addressing for 64bit mode. */
3040 else if (i
.base_reg
->reg_type
== BaseIndex
)
3042 i
.rm
.regmem
= NO_BASE_REGISTER
;
3043 i
.types
[op
] &= ~ Disp
;
3044 i
.types
[op
] |= Disp32S
;
3045 i
.flags
[op
] = Operand_PCrel
;
3046 if (! i
.disp_operands
)
3047 fake_zero_displacement
= 1;
3049 else if (i
.base_reg
->reg_type
& Reg16
)
3051 switch (i
.base_reg
->reg_num
)
3054 if (i
.index_reg
== 0)
3056 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
3057 i
.rm
.regmem
= i
.index_reg
->reg_num
- 6;
3061 if (i
.index_reg
== 0)
3064 if ((i
.types
[op
] & Disp
) == 0)
3066 /* fake (%bp) into 0(%bp) */
3067 i
.types
[op
] |= Disp8
;
3068 fake_zero_displacement
= 1;
3071 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
3072 i
.rm
.regmem
= i
.index_reg
->reg_num
- 6 + 2;
3074 default: /* (%si) -> 4 or (%di) -> 5 */
3075 i
.rm
.regmem
= i
.base_reg
->reg_num
- 6 + 4;
3077 i
.rm
.mode
= mode_from_disp_size (i
.types
[op
]);
3079 else /* i.base_reg and 32/64 bit mode */
3081 if (flag_code
== CODE_64BIT
3082 && (i
.types
[op
] & Disp
))
3083 i
.types
[op
] = (i
.types
[op
] & Disp8
) | (i
.prefix
[ADDR_PREFIX
] == 0 ? Disp32S
: Disp32
);
3085 i
.rm
.regmem
= i
.base_reg
->reg_num
;
3086 if ((i
.base_reg
->reg_flags
& RegRex
) != 0)
3088 i
.sib
.base
= i
.base_reg
->reg_num
;
3089 /* x86-64 ignores REX prefix bit here to avoid decoder
3091 if ((i
.base_reg
->reg_num
& 7) == EBP_REG_NUM
)
3094 if (i
.disp_operands
== 0)
3096 fake_zero_displacement
= 1;
3097 i
.types
[op
] |= Disp8
;
3100 else if (i
.base_reg
->reg_num
== ESP_REG_NUM
)
3104 i
.sib
.scale
= i
.log2_scale_factor
;
3105 if (i
.index_reg
== 0)
3107 /* <disp>(%esp) becomes two byte modrm with no index
3108 register. We've already stored the code for esp
3109 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
3110 Any base register besides %esp will not use the
3111 extra modrm byte. */
3112 i
.sib
.index
= NO_INDEX_REGISTER
;
3113 #if !SCALE1_WHEN_NO_INDEX
3114 /* Another case where we force the second modrm byte. */
3115 if (i
.log2_scale_factor
)
3116 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
3121 i
.sib
.index
= i
.index_reg
->reg_num
;
3122 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
3123 if ((i
.index_reg
->reg_flags
& RegRex
) != 0)
3126 i
.rm
.mode
= mode_from_disp_size (i
.types
[op
]);
3129 if (fake_zero_displacement
)
3131 /* Fakes a zero displacement assuming that i.types[op]
3132 holds the correct displacement size. */
3135 assert (i
.op
[op
].disps
== 0);
3136 exp
= &disp_expressions
[i
.disp_operands
++];
3137 i
.op
[op
].disps
= exp
;
3138 exp
->X_op
= O_constant
;
3139 exp
->X_add_number
= 0;
3140 exp
->X_add_symbol
= (symbolS
*) 0;
3141 exp
->X_op_symbol
= (symbolS
*) 0;
3145 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3146 (if any) based on i.tm.extension_opcode. Again, we must be
3147 careful to make sure that segment/control/debug/test/MMX
3148 registers are coded into the i.rm.reg field. */
3153 & (Reg
| RegMMX
| RegXMM
3155 | Control
| Debug
| Test
))
3158 & (Reg
| RegMMX
| RegXMM
3160 | Control
| Debug
| Test
))
3163 /* If there is an extension opcode to put here, the register
3164 number must be put into the regmem field. */
3165 if (i
.tm
.extension_opcode
!= None
)
3167 i
.rm
.regmem
= i
.op
[op
].regs
->reg_num
;
3168 if ((i
.op
[op
].regs
->reg_flags
& RegRex
) != 0)
3173 i
.rm
.reg
= i
.op
[op
].regs
->reg_num
;
3174 if ((i
.op
[op
].regs
->reg_flags
& RegRex
) != 0)
3178 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3179 must set it to 3 to indicate this is a register operand
3180 in the regmem field. */
3181 if (!i
.mem_operands
)
3185 /* Fill in i.rm.reg field with extension opcode (if any). */
3186 if (i
.tm
.extension_opcode
!= None
)
3187 i
.rm
.reg
= i
.tm
.extension_opcode
;
3198 relax_substateT subtype
;
3203 if (flag_code
== CODE_16BIT
)
3207 if (i
.prefix
[DATA_PREFIX
] != 0)
3213 /* Pentium4 branch hints. */
3214 if (i
.prefix
[SEG_PREFIX
] == CS_PREFIX_OPCODE
/* not taken */
3215 || i
.prefix
[SEG_PREFIX
] == DS_PREFIX_OPCODE
/* taken */)
3220 if (i
.prefix
[REX_PREFIX
] != 0)
3226 if (i
.prefixes
!= 0 && !intel_syntax
)
3227 as_warn (_("skipping prefixes on this instruction"));
3229 /* It's always a symbol; End frag & setup for relax.
3230 Make sure there is enough room in this frag for the largest
3231 instruction we may generate in md_convert_frag. This is 2
3232 bytes for the opcode and room for the prefix and largest
3234 frag_grow (prefix
+ 2 + 4);
3235 /* Prefix and 1 opcode byte go in fr_fix. */
3236 p
= frag_more (prefix
+ 1);
3237 if (i
.prefix
[DATA_PREFIX
] != 0)
3238 *p
++ = DATA_PREFIX_OPCODE
;
3239 if (i
.prefix
[SEG_PREFIX
] == CS_PREFIX_OPCODE
3240 || i
.prefix
[SEG_PREFIX
] == DS_PREFIX_OPCODE
)
3241 *p
++ = i
.prefix
[SEG_PREFIX
];
3242 if (i
.prefix
[REX_PREFIX
] != 0)
3243 *p
++ = i
.prefix
[REX_PREFIX
];
3244 *p
= i
.tm
.base_opcode
;
3246 if ((unsigned char) *p
== JUMP_PC_RELATIVE
)
3247 subtype
= ENCODE_RELAX_STATE (UNCOND_JUMP
, SMALL
);
3248 else if ((cpu_arch_flags
& Cpu386
) != 0)
3249 subtype
= ENCODE_RELAX_STATE (COND_JUMP
, SMALL
);
3251 subtype
= ENCODE_RELAX_STATE (COND_JUMP86
, SMALL
);
3254 sym
= i
.op
[0].disps
->X_add_symbol
;
3255 off
= i
.op
[0].disps
->X_add_number
;
3257 if (i
.op
[0].disps
->X_op
!= O_constant
3258 && i
.op
[0].disps
->X_op
!= O_symbol
)
3260 /* Handle complex expressions. */
3261 sym
= make_expr_symbol (i
.op
[0].disps
);
3265 /* 1 possible extra opcode + 4 byte displacement go in var part.
3266 Pass reloc in fr_var. */
3267 frag_var (rs_machine_dependent
, 5, i
.reloc
[0], subtype
, sym
, off
, p
);
3277 if (i
.tm
.opcode_modifier
& JumpByte
)
3279 /* This is a loop or jecxz type instruction. */
3281 if (i
.prefix
[ADDR_PREFIX
] != 0)
3283 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE
);
3286 /* Pentium4 branch hints. */
3287 if (i
.prefix
[SEG_PREFIX
] == CS_PREFIX_OPCODE
/* not taken */
3288 || i
.prefix
[SEG_PREFIX
] == DS_PREFIX_OPCODE
/* taken */)
3290 FRAG_APPEND_1_CHAR (i
.prefix
[SEG_PREFIX
]);
3299 if (flag_code
== CODE_16BIT
)
3302 if (i
.prefix
[DATA_PREFIX
] != 0)
3304 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE
);
3314 if (i
.prefix
[REX_PREFIX
] != 0)
3316 FRAG_APPEND_1_CHAR (i
.prefix
[REX_PREFIX
]);
3320 if (i
.prefixes
!= 0 && !intel_syntax
)
3321 as_warn (_("skipping prefixes on this instruction"));
3323 p
= frag_more (1 + size
);
3324 *p
++ = i
.tm
.base_opcode
;
3326 fixP
= fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
3327 i
.op
[0].disps
, 1, reloc (size
, 1, 1, i
.reloc
[0]));
3329 /* All jumps handled here are signed, but don't use a signed limit
3330 check for 32 and 16 bit jumps as we want to allow wrap around at
3331 4G and 64k respectively. */
3333 fixP
->fx_signed
= 1;
3337 output_interseg_jump ()
3345 if (flag_code
== CODE_16BIT
)
3349 if (i
.prefix
[DATA_PREFIX
] != 0)
3355 if (i
.prefix
[REX_PREFIX
] != 0)
3365 if (i
.prefixes
!= 0 && !intel_syntax
)
3366 as_warn (_("skipping prefixes on this instruction"));
3368 /* 1 opcode; 2 segment; offset */
3369 p
= frag_more (prefix
+ 1 + 2 + size
);
3371 if (i
.prefix
[DATA_PREFIX
] != 0)
3372 *p
++ = DATA_PREFIX_OPCODE
;
3374 if (i
.prefix
[REX_PREFIX
] != 0)
3375 *p
++ = i
.prefix
[REX_PREFIX
];
3377 *p
++ = i
.tm
.base_opcode
;
3378 if (i
.op
[1].imms
->X_op
== O_constant
)
3380 offsetT n
= i
.op
[1].imms
->X_add_number
;
3383 && !fits_in_unsigned_word (n
)
3384 && !fits_in_signed_word (n
))
3386 as_bad (_("16-bit jump out of range"));
3389 md_number_to_chars (p
, n
, size
);
3392 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
3393 i
.op
[1].imms
, 0, reloc (size
, 0, 0, i
.reloc
[1]));
3394 if (i
.op
[0].imms
->X_op
!= O_constant
)
3395 as_bad (_("can't handle non absolute segment in `%s'"),
3397 md_number_to_chars (p
+ size
, (valueT
) i
.op
[0].imms
->X_add_number
, 2);
3403 fragS
*insn_start_frag
;
3404 offsetT insn_start_off
;
3406 /* Tie dwarf2 debug info to the address at the start of the insn.
3407 We can't do this after the insn has been output as the current
3408 frag may have been closed off. eg. by frag_var. */
3409 dwarf2_emit_insn (0);
3411 insn_start_frag
= frag_now
;
3412 insn_start_off
= frag_now_fix ();
3415 if (i
.tm
.opcode_modifier
& Jump
)
3417 else if (i
.tm
.opcode_modifier
& (JumpByte
| JumpDword
))
3419 else if (i
.tm
.opcode_modifier
& JumpInterSegment
)
3420 output_interseg_jump ();
3423 /* Output normal instructions here. */
3427 /* All opcodes on i386 have either 1 or 2 bytes. We may use one
3428 more higher byte to specify a prefix the instruction
3430 if ((i
.tm
.base_opcode
& 0xff0000) != 0)
3432 if ((i
.tm
.cpu_flags
& CpuPadLock
) != 0)
3434 unsigned int prefix
;
3435 prefix
= (i
.tm
.base_opcode
>> 16) & 0xff;
3437 if (prefix
!= REPE_PREFIX_OPCODE
3438 || i
.prefix
[LOCKREP_PREFIX
] != REPE_PREFIX_OPCODE
)
3439 add_prefix (prefix
);
3442 add_prefix ((i
.tm
.base_opcode
>> 16) & 0xff);
3445 /* The prefix bytes. */
3447 q
< i
.prefix
+ sizeof (i
.prefix
) / sizeof (i
.prefix
[0]);
3453 md_number_to_chars (p
, (valueT
) *q
, 1);
3457 /* Now the opcode; be careful about word order here! */
3458 if (fits_in_unsigned_byte (i
.tm
.base_opcode
))
3460 FRAG_APPEND_1_CHAR (i
.tm
.base_opcode
);
3466 /* Put out high byte first: can't use md_number_to_chars! */
3467 *p
++ = (i
.tm
.base_opcode
>> 8) & 0xff;
3468 *p
= i
.tm
.base_opcode
& 0xff;
3471 /* Now the modrm byte and sib byte (if present). */
3472 if (i
.tm
.opcode_modifier
& Modrm
)
3475 md_number_to_chars (p
,
3476 (valueT
) (i
.rm
.regmem
<< 0
3480 /* If i.rm.regmem == ESP (4)
3481 && i.rm.mode != (Register mode)
3483 ==> need second modrm byte. */
3484 if (i
.rm
.regmem
== ESCAPE_TO_TWO_BYTE_ADDRESSING
3486 && !(i
.base_reg
&& (i
.base_reg
->reg_type
& Reg16
) != 0))
3489 md_number_to_chars (p
,
3490 (valueT
) (i
.sib
.base
<< 0
3492 | i
.sib
.scale
<< 6),
3497 if (i
.disp_operands
)
3498 output_disp (insn_start_frag
, insn_start_off
);
3501 output_imm (insn_start_frag
, insn_start_off
);
3509 #endif /* DEBUG386 */
3513 output_disp (insn_start_frag
, insn_start_off
)
3514 fragS
*insn_start_frag
;
3515 offsetT insn_start_off
;
3520 for (n
= 0; n
< i
.operands
; n
++)
3522 if (i
.types
[n
] & Disp
)
3524 if (i
.op
[n
].disps
->X_op
== O_constant
)
3530 if (i
.types
[n
] & (Disp8
| Disp16
| Disp64
))
3533 if (i
.types
[n
] & Disp8
)
3535 if (i
.types
[n
] & Disp64
)
3538 val
= offset_in_range (i
.op
[n
].disps
->X_add_number
,
3540 p
= frag_more (size
);
3541 md_number_to_chars (p
, val
, size
);
3545 enum bfd_reloc_code_real reloc_type
;
3548 int pcrel
= (i
.flags
[n
] & Operand_PCrel
) != 0;
3550 /* The PC relative address is computed relative
3551 to the instruction boundary, so in case immediate
3552 fields follows, we need to adjust the value. */
3553 if (pcrel
&& i
.imm_operands
)
3558 for (n1
= 0; n1
< i
.operands
; n1
++)
3559 if (i
.types
[n1
] & Imm
)
3561 if (i
.types
[n1
] & (Imm8
| Imm8S
| Imm16
| Imm64
))
3564 if (i
.types
[n1
] & (Imm8
| Imm8S
))
3566 if (i
.types
[n1
] & Imm64
)
3571 /* We should find the immediate. */
3572 if (n1
== i
.operands
)
3574 i
.op
[n
].disps
->X_add_number
-= imm_size
;
3577 if (i
.types
[n
] & Disp32S
)
3580 if (i
.types
[n
] & (Disp16
| Disp64
))
3583 if (i
.types
[n
] & Disp64
)
3587 p
= frag_more (size
);
3588 reloc_type
= reloc (size
, pcrel
, sign
, i
.reloc
[n
]);
3590 && GOT_symbol
== i
.op
[n
].disps
->X_add_symbol
3591 && (((reloc_type
== BFD_RELOC_32
3592 || reloc_type
== BFD_RELOC_X86_64_32S
)
3593 && (i
.op
[n
].disps
->X_op
== O_symbol
3594 || (i
.op
[n
].disps
->X_op
== O_add
3595 && ((symbol_get_value_expression
3596 (i
.op
[n
].disps
->X_op_symbol
)->X_op
)
3598 || reloc_type
== BFD_RELOC_32_PCREL
))
3602 if (insn_start_frag
== frag_now
)
3603 add
= (p
- frag_now
->fr_literal
) - insn_start_off
;
3608 add
= insn_start_frag
->fr_fix
- insn_start_off
;
3609 for (fr
= insn_start_frag
->fr_next
;
3610 fr
&& fr
!= frag_now
; fr
= fr
->fr_next
)
3612 add
+= p
- frag_now
->fr_literal
;
3616 reloc_type
= BFD_RELOC_386_GOTPC
;
3618 reloc_type
= BFD_RELOC_X86_64_GOTPC32
;
3619 i
.op
[n
].disps
->X_add_number
+= add
;
3621 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
3622 i
.op
[n
].disps
, pcrel
, reloc_type
);
3629 output_imm (insn_start_frag
, insn_start_off
)
3630 fragS
*insn_start_frag
;
3631 offsetT insn_start_off
;
3636 for (n
= 0; n
< i
.operands
; n
++)
3638 if (i
.types
[n
] & Imm
)
3640 if (i
.op
[n
].imms
->X_op
== O_constant
)
3646 if (i
.types
[n
] & (Imm8
| Imm8S
| Imm16
| Imm64
))
3649 if (i
.types
[n
] & (Imm8
| Imm8S
))
3651 else if (i
.types
[n
] & Imm64
)
3654 val
= offset_in_range (i
.op
[n
].imms
->X_add_number
,
3656 p
= frag_more (size
);
3657 md_number_to_chars (p
, val
, size
);
3661 /* Not absolute_section.
3662 Need a 32-bit fixup (don't support 8bit
3663 non-absolute imms). Try to support other
3665 enum bfd_reloc_code_real reloc_type
;
3669 if ((i
.types
[n
] & (Imm32S
))
3670 && (i
.suffix
== QWORD_MNEM_SUFFIX
3671 || (!i
.suffix
&& (i
.tm
.opcode_modifier
& No_lSuf
))))
3673 if (i
.types
[n
] & (Imm8
| Imm8S
| Imm16
| Imm64
))
3676 if (i
.types
[n
] & (Imm8
| Imm8S
))
3678 if (i
.types
[n
] & Imm64
)
3682 p
= frag_more (size
);
3683 reloc_type
= reloc (size
, 0, sign
, i
.reloc
[n
]);
3685 /* This is tough to explain. We end up with this one if we
3686 * have operands that look like
3687 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3688 * obtain the absolute address of the GOT, and it is strongly
3689 * preferable from a performance point of view to avoid using
3690 * a runtime relocation for this. The actual sequence of
3691 * instructions often look something like:
3696 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3698 * The call and pop essentially return the absolute address
3699 * of the label .L66 and store it in %ebx. The linker itself
3700 * will ultimately change the first operand of the addl so
3701 * that %ebx points to the GOT, but to keep things simple, the
3702 * .o file must have this operand set so that it generates not
3703 * the absolute address of .L66, but the absolute address of
3704 * itself. This allows the linker itself simply treat a GOTPC
3705 * relocation as asking for a pcrel offset to the GOT to be
3706 * added in, and the addend of the relocation is stored in the
3707 * operand field for the instruction itself.
3709 * Our job here is to fix the operand so that it would add
3710 * the correct offset so that %ebx would point to itself. The
3711 * thing that is tricky is that .-.L66 will point to the
3712 * beginning of the instruction, so we need to further modify
3713 * the operand so that it will point to itself. There are
3714 * other cases where you have something like:
3716 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3718 * and here no correction would be required. Internally in
3719 * the assembler we treat operands of this form as not being
3720 * pcrel since the '.' is explicitly mentioned, and I wonder
3721 * whether it would simplify matters to do it this way. Who
3722 * knows. In earlier versions of the PIC patches, the
3723 * pcrel_adjust field was used to store the correction, but
3724 * since the expression is not pcrel, I felt it would be
3725 * confusing to do it this way. */
3727 if ((reloc_type
== BFD_RELOC_32
3728 || reloc_type
== BFD_RELOC_X86_64_32S
)
3730 && GOT_symbol
== i
.op
[n
].imms
->X_add_symbol
3731 && (i
.op
[n
].imms
->X_op
== O_symbol
3732 || (i
.op
[n
].imms
->X_op
== O_add
3733 && ((symbol_get_value_expression
3734 (i
.op
[n
].imms
->X_op_symbol
)->X_op
)
3739 if (insn_start_frag
== frag_now
)
3740 add
= (p
- frag_now
->fr_literal
) - insn_start_off
;
3745 add
= insn_start_frag
->fr_fix
- insn_start_off
;
3746 for (fr
= insn_start_frag
->fr_next
;
3747 fr
&& fr
!= frag_now
; fr
= fr
->fr_next
)
3749 add
+= p
- frag_now
->fr_literal
;
3753 reloc_type
= BFD_RELOC_386_GOTPC
;
3755 reloc_type
= BFD_RELOC_X86_64_GOTPC32
;
3756 i
.op
[n
].imms
->X_add_number
+= add
;
3758 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
3759 i
.op
[n
].imms
, 0, reloc_type
);
3765 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
3766 # define lex_got(reloc, adjust, types) NULL
3768 /* Parse operands of the form
3769 <symbol>@GOTOFF+<nnn>
3770 and similar .plt or .got references.
3772 If we find one, set up the correct relocation in RELOC and copy the
3773 input string, minus the `@GOTOFF' into a malloc'd buffer for
3774 parsing by the calling routine. Return this buffer, and if ADJUST
3775 is non-null set it to the length of the string we removed from the
3776 input line. Otherwise return NULL. */
3778 lex_got (enum bfd_reloc_code_real
*reloc
,
3780 unsigned int *types
)
3782 static const struct {
3784 const enum bfd_reloc_code_real rel
[2];
3785 const unsigned int types64
;
3787 { "PLT", { BFD_RELOC_386_PLT32
, BFD_RELOC_X86_64_PLT32
}, Imm32
|Imm32S
|Disp32
},
3788 { "GOTOFF", { BFD_RELOC_386_GOTOFF
, BFD_RELOC_X86_64_GOTOFF64
}, Imm64
|Disp64
},
3789 { "GOTPCREL", { 0, BFD_RELOC_X86_64_GOTPCREL
}, Imm32
|Imm32S
|Disp32
},
3790 { "TLSGD", { BFD_RELOC_386_TLS_GD
, BFD_RELOC_X86_64_TLSGD
}, Imm32
|Imm32S
|Disp32
},
3791 { "TLSLDM", { BFD_RELOC_386_TLS_LDM
, 0 }, 0 },
3792 { "TLSLD", { 0, BFD_RELOC_X86_64_TLSLD
}, Imm32
|Imm32S
|Disp32
},
3793 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32
, BFD_RELOC_X86_64_GOTTPOFF
}, Imm32
|Imm32S
|Disp32
},
3794 { "TPOFF", { BFD_RELOC_386_TLS_LE_32
, BFD_RELOC_X86_64_TPOFF32
}, Imm32
|Imm32S
|Imm64
|Disp32
|Disp64
},
3795 { "NTPOFF", { BFD_RELOC_386_TLS_LE
, 0 }, 0 },
3796 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32
, BFD_RELOC_X86_64_DTPOFF32
}, Imm32
|Imm32S
|Imm64
|Disp32
|Disp64
},
3797 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE
, 0 }, 0 },
3798 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE
, 0 }, 0 },
3799 { "GOT", { BFD_RELOC_386_GOT32
, BFD_RELOC_X86_64_GOT32
}, Imm32
|Imm32S
|Disp32
}
3807 for (cp
= input_line_pointer
; *cp
!= '@'; cp
++)
3808 if (is_end_of_line
[(unsigned char) *cp
])
3811 for (j
= 0; j
< sizeof (gotrel
) / sizeof (gotrel
[0]); j
++)
3815 len
= strlen (gotrel
[j
].str
);
3816 if (strncasecmp (cp
+ 1, gotrel
[j
].str
, len
) == 0)
3818 if (gotrel
[j
].rel
[object_64bit
] != 0)
3821 char *tmpbuf
, *past_reloc
;
3823 *reloc
= gotrel
[j
].rel
[object_64bit
];
3829 if (flag_code
!= CODE_64BIT
)
3830 *types
= Imm32
|Disp32
;
3832 *types
= gotrel
[j
].types64
;
3835 if (GOT_symbol
== NULL
)
3836 GOT_symbol
= symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME
);
3838 /* Replace the relocation token with ' ', so that
3839 errors like foo@GOTOFF1 will be detected. */
3841 /* The length of the first part of our input line. */
3842 first
= cp
- input_line_pointer
;
3844 /* The second part goes from after the reloc token until
3845 (and including) an end_of_line char. Don't use strlen
3846 here as the end_of_line char may not be a NUL. */
3847 past_reloc
= cp
+ 1 + len
;
3848 for (cp
= past_reloc
; !is_end_of_line
[(unsigned char) *cp
++]; )
3850 second
= cp
- past_reloc
;
3852 /* Allocate and copy string. The trailing NUL shouldn't
3853 be necessary, but be safe. */
3854 tmpbuf
= xmalloc (first
+ second
+ 2);
3855 memcpy (tmpbuf
, input_line_pointer
, first
);
3856 tmpbuf
[first
] = ' ';
3857 memcpy (tmpbuf
+ first
+ 1, past_reloc
, second
);
3858 tmpbuf
[first
+ second
+ 1] = '\0';
3862 as_bad (_("@%s reloc is not supported with %d-bit output format"),
3863 gotrel
[j
].str
, 1 << (5 + object_64bit
));
3868 /* Might be a symbol version string. Don't as_bad here. */
3872 /* x86_cons_fix_new is called via the expression parsing code when a
3873 reloc is needed. We use this hook to get the correct .got reloc. */
3874 static enum bfd_reloc_code_real got_reloc
= NO_RELOC
;
3877 x86_cons_fix_new (frag
, off
, len
, exp
)
3883 enum bfd_reloc_code_real r
= reloc (len
, 0, -1, got_reloc
);
3884 got_reloc
= NO_RELOC
;
3885 fix_new_exp (frag
, off
, len
, exp
, 0, r
);
3889 x86_cons (exp
, size
)
3893 if (size
== 4 || (object_64bit
&& size
== 8))
3895 /* Handle @GOTOFF and the like in an expression. */
3897 char *gotfree_input_line
;
3900 save
= input_line_pointer
;
3901 gotfree_input_line
= lex_got (&got_reloc
, &adjust
, NULL
);
3902 if (gotfree_input_line
)
3903 input_line_pointer
= gotfree_input_line
;
3907 if (gotfree_input_line
)
3909 /* expression () has merrily parsed up to the end of line,
3910 or a comma - in the wrong buffer. Transfer how far
3911 input_line_pointer has moved to the right buffer. */
3912 input_line_pointer
= (save
3913 + (input_line_pointer
- gotfree_input_line
)
3915 free (gotfree_input_line
);
3926 x86_pe_cons_fix_new (frag
, off
, len
, exp
)
3932 enum bfd_reloc_code_real r
= reloc (len
, 0, -1, NO_RELOC
);
3934 if (exp
->X_op
== O_secrel
)
3936 exp
->X_op
= O_symbol
;
3937 r
= BFD_RELOC_32_SECREL
;
3940 fix_new_exp (frag
, off
, len
, exp
, 0, r
);
3944 pe_directive_secrel (dummy
)
3945 int dummy ATTRIBUTE_UNUSED
;
3952 if (exp
.X_op
== O_symbol
)
3953 exp
.X_op
= O_secrel
;
3955 emit_expr (&exp
, 4);
3957 while (*input_line_pointer
++ == ',');
3959 input_line_pointer
--;
3960 demand_empty_rest_of_line ();
3965 static int i386_immediate
PARAMS ((char *));
3968 i386_immediate (imm_start
)
3971 char *save_input_line_pointer
;
3972 char *gotfree_input_line
;
3975 unsigned int types
= ~0U;
3977 if (i
.imm_operands
== MAX_IMMEDIATE_OPERANDS
)
3979 as_bad (_("only 1 or 2 immediate operands are allowed"));
3983 exp
= &im_expressions
[i
.imm_operands
++];
3984 i
.op
[this_operand
].imms
= exp
;
3986 if (is_space_char (*imm_start
))
3989 save_input_line_pointer
= input_line_pointer
;
3990 input_line_pointer
= imm_start
;
3992 gotfree_input_line
= lex_got (&i
.reloc
[this_operand
], NULL
, &types
);
3993 if (gotfree_input_line
)
3994 input_line_pointer
= gotfree_input_line
;
3996 exp_seg
= expression (exp
);
3999 if (*input_line_pointer
)
4000 as_bad (_("junk `%s' after expression"), input_line_pointer
);
4002 input_line_pointer
= save_input_line_pointer
;
4003 if (gotfree_input_line
)
4004 free (gotfree_input_line
);
4006 if (exp
->X_op
== O_absent
|| exp
->X_op
== O_big
)
4008 /* Missing or bad expr becomes absolute 0. */
4009 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
4011 exp
->X_op
= O_constant
;
4012 exp
->X_add_number
= 0;
4013 exp
->X_add_symbol
= (symbolS
*) 0;
4014 exp
->X_op_symbol
= (symbolS
*) 0;
4016 else if (exp
->X_op
== O_constant
)
4018 /* Size it properly later. */
4019 i
.types
[this_operand
] |= Imm64
;
4020 /* If BFD64, sign extend val. */
4021 if (!use_rela_relocations
)
4022 if ((exp
->X_add_number
& ~(((addressT
) 2 << 31) - 1)) == 0)
4023 exp
->X_add_number
= (exp
->X_add_number
^ ((addressT
) 1 << 31)) - ((addressT
) 1 << 31);
4025 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4026 else if (OUTPUT_FLAVOR
== bfd_target_aout_flavour
4027 && exp_seg
!= absolute_section
4028 && exp_seg
!= text_section
4029 && exp_seg
!= data_section
4030 && exp_seg
!= bss_section
4031 && exp_seg
!= undefined_section
4032 && !bfd_is_com_section (exp_seg
))
4034 as_bad (_("unimplemented segment %s in operand"), exp_seg
->name
);
4040 /* This is an address. The size of the address will be
4041 determined later, depending on destination register,
4042 suffix, or the default for the section. */
4043 i
.types
[this_operand
] |= Imm8
| Imm16
| Imm32
| Imm32S
| Imm64
;
4044 i
.types
[this_operand
] &= types
;
4050 static char *i386_scale
PARAMS ((char *));
4057 char *save
= input_line_pointer
;
4059 input_line_pointer
= scale
;
4060 val
= get_absolute_expression ();
4065 i
.log2_scale_factor
= 0;
4068 i
.log2_scale_factor
= 1;
4071 i
.log2_scale_factor
= 2;
4074 i
.log2_scale_factor
= 3;
4078 char sep
= *input_line_pointer
;
4080 *input_line_pointer
= '\0';
4081 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
4083 *input_line_pointer
= sep
;
4084 input_line_pointer
= save
;
4088 if (i
.log2_scale_factor
!= 0 && i
.index_reg
== 0)
4090 as_warn (_("scale factor of %d without an index register"),
4091 1 << i
.log2_scale_factor
);
4092 #if SCALE1_WHEN_NO_INDEX
4093 i
.log2_scale_factor
= 0;
4096 scale
= input_line_pointer
;
4097 input_line_pointer
= save
;
4101 static int i386_displacement
PARAMS ((char *, char *));
4104 i386_displacement (disp_start
, disp_end
)
4110 char *save_input_line_pointer
;
4111 char *gotfree_input_line
;
4112 int bigdisp
= Disp32
;
4113 unsigned int types
= Disp
;
4115 if (flag_code
== CODE_64BIT
)
4117 if (i
.prefix
[ADDR_PREFIX
] == 0)
4118 bigdisp
= Disp64
| Disp32S
| Disp32
;
4120 else if ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[ADDR_PREFIX
] != 0))
4122 i
.types
[this_operand
] |= bigdisp
;
4124 exp
= &disp_expressions
[i
.disp_operands
];
4125 i
.op
[this_operand
].disps
= exp
;
4127 save_input_line_pointer
= input_line_pointer
;
4128 input_line_pointer
= disp_start
;
4129 END_STRING_AND_SAVE (disp_end
);
4131 #ifndef GCC_ASM_O_HACK
4132 #define GCC_ASM_O_HACK 0
4135 END_STRING_AND_SAVE (disp_end
+ 1);
4136 if ((i
.types
[this_operand
] & BaseIndex
) != 0
4137 && displacement_string_end
[-1] == '+')
4139 /* This hack is to avoid a warning when using the "o"
4140 constraint within gcc asm statements.
4143 #define _set_tssldt_desc(n,addr,limit,type) \
4144 __asm__ __volatile__ ( \
4146 "movw %w1,2+%0\n\t" \
4148 "movb %b1,4+%0\n\t" \
4149 "movb %4,5+%0\n\t" \
4150 "movb $0,6+%0\n\t" \
4151 "movb %h1,7+%0\n\t" \
4153 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4155 This works great except that the output assembler ends
4156 up looking a bit weird if it turns out that there is
4157 no offset. You end up producing code that looks like:
4170 So here we provide the missing zero. */
4172 *displacement_string_end
= '0';
4175 gotfree_input_line
= lex_got (&i
.reloc
[this_operand
], NULL
, &types
);
4176 if (gotfree_input_line
)
4177 input_line_pointer
= gotfree_input_line
;
4179 exp_seg
= expression (exp
);
4182 if (*input_line_pointer
)
4183 as_bad (_("junk `%s' after expression"), input_line_pointer
);
4185 RESTORE_END_STRING (disp_end
+ 1);
4187 RESTORE_END_STRING (disp_end
);
4188 input_line_pointer
= save_input_line_pointer
;
4189 if (gotfree_input_line
)
4190 free (gotfree_input_line
);
4192 /* We do this to make sure that the section symbol is in
4193 the symbol table. We will ultimately change the relocation
4194 to be relative to the beginning of the section. */
4195 if (i
.reloc
[this_operand
] == BFD_RELOC_386_GOTOFF
4196 || i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTPCREL
4197 || i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTOFF64
)
4199 if (exp
->X_op
!= O_symbol
)
4201 as_bad (_("bad expression used with @%s"),
4202 (i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTPCREL
4208 if (S_IS_LOCAL (exp
->X_add_symbol
)
4209 && S_GET_SEGMENT (exp
->X_add_symbol
) != undefined_section
)
4210 section_symbol (S_GET_SEGMENT (exp
->X_add_symbol
));
4211 exp
->X_op
= O_subtract
;
4212 exp
->X_op_symbol
= GOT_symbol
;
4213 if (i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTPCREL
)
4214 i
.reloc
[this_operand
] = BFD_RELOC_32_PCREL
;
4215 else if (i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTOFF64
)
4216 i
.reloc
[this_operand
] = BFD_RELOC_64
;
4218 i
.reloc
[this_operand
] = BFD_RELOC_32
;
4221 if (exp
->X_op
== O_absent
|| exp
->X_op
== O_big
)
4223 /* Missing or bad expr becomes absolute 0. */
4224 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
4226 exp
->X_op
= O_constant
;
4227 exp
->X_add_number
= 0;
4228 exp
->X_add_symbol
= (symbolS
*) 0;
4229 exp
->X_op_symbol
= (symbolS
*) 0;
4232 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4233 if (exp
->X_op
!= O_constant
4234 && OUTPUT_FLAVOR
== bfd_target_aout_flavour
4235 && exp_seg
!= absolute_section
4236 && exp_seg
!= text_section
4237 && exp_seg
!= data_section
4238 && exp_seg
!= bss_section
4239 && exp_seg
!= undefined_section
4240 && !bfd_is_com_section (exp_seg
))
4242 as_bad (_("unimplemented segment %s in operand"), exp_seg
->name
);
4247 if (!(i
.types
[this_operand
] & ~Disp
))
4248 i
.types
[this_operand
] &= types
;
4253 static int i386_index_check
PARAMS ((const char *));
4255 /* Make sure the memory operand we've been dealt is valid.
4256 Return 1 on success, 0 on a failure. */
4259 i386_index_check (operand_string
)
4260 const char *operand_string
;
4263 #if INFER_ADDR_PREFIX
4269 if ((current_templates
->start
->cpu_flags
& CpuSVME
)
4270 && current_templates
->end
[-1].operand_types
[0] == AnyMem
)
4272 /* Memory operands of SVME insns are special in that they only allow
4273 rAX as their memory address and ignore any segment override. */
4276 /* SKINIT is even more restrictive: it always requires EAX. */
4277 if (strcmp (current_templates
->start
->name
, "skinit") == 0)
4279 else if (flag_code
== CODE_64BIT
)
4280 RegXX
= i
.prefix
[ADDR_PREFIX
] == 0 ? Reg64
: Reg32
;
4282 RegXX
= (flag_code
== CODE_16BIT
) ^ (i
.prefix
[ADDR_PREFIX
] != 0)
4286 || !(i
.base_reg
->reg_type
& Acc
)
4287 || !(i
.base_reg
->reg_type
& RegXX
)
4289 || (i
.types
[0] & Disp
))
4292 else if (flag_code
== CODE_64BIT
)
4294 unsigned RegXX
= (i
.prefix
[ADDR_PREFIX
] == 0 ? Reg64
: Reg32
);
4297 && ((i
.base_reg
->reg_type
& RegXX
) == 0)
4298 && (i
.base_reg
->reg_type
!= BaseIndex
4301 && ((i
.index_reg
->reg_type
& (RegXX
| BaseIndex
))
4302 != (RegXX
| BaseIndex
))))
4307 if ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[ADDR_PREFIX
] != 0))
4311 && ((i
.base_reg
->reg_type
& (Reg16
| BaseIndex
| RegRex
))
4312 != (Reg16
| BaseIndex
)))
4314 && (((i
.index_reg
->reg_type
& (Reg16
| BaseIndex
))
4315 != (Reg16
| BaseIndex
))
4317 && i
.base_reg
->reg_num
< 6
4318 && i
.index_reg
->reg_num
>= 6
4319 && i
.log2_scale_factor
== 0))))
4326 && (i
.base_reg
->reg_type
& (Reg32
| RegRex
)) != Reg32
)
4328 && ((i
.index_reg
->reg_type
& (Reg32
| BaseIndex
| RegRex
))
4329 != (Reg32
| BaseIndex
))))
4335 #if INFER_ADDR_PREFIX
4336 if (i
.prefix
[ADDR_PREFIX
] == 0)
4338 i
.prefix
[ADDR_PREFIX
] = ADDR_PREFIX_OPCODE
;
4340 /* Change the size of any displacement too. At most one of
4341 Disp16 or Disp32 is set.
4342 FIXME. There doesn't seem to be any real need for separate
4343 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
4344 Removing them would probably clean up the code quite a lot. */
4345 if (flag_code
!= CODE_64BIT
&& (i
.types
[this_operand
] & (Disp16
| Disp32
)))
4346 i
.types
[this_operand
] ^= (Disp16
| Disp32
);
4351 as_bad (_("`%s' is not a valid base/index expression"),
4355 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4357 flag_code_names
[flag_code
]);
4362 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
4366 i386_operand (operand_string
)
4367 char *operand_string
;
4371 char *op_string
= operand_string
;
4373 if (is_space_char (*op_string
))
4376 /* We check for an absolute prefix (differentiating,
4377 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
4378 if (*op_string
== ABSOLUTE_PREFIX
)
4381 if (is_space_char (*op_string
))
4383 i
.types
[this_operand
] |= JumpAbsolute
;
4386 /* Check if operand is a register. */
4387 if ((*op_string
== REGISTER_PREFIX
|| allow_naked_reg
)
4388 && (r
= parse_register (op_string
, &end_op
)) != NULL
)
4390 /* Check for a segment override by searching for ':' after a
4391 segment register. */
4393 if (is_space_char (*op_string
))
4395 if (*op_string
== ':' && (r
->reg_type
& (SReg2
| SReg3
)))
4400 i
.seg
[i
.mem_operands
] = &es
;
4403 i
.seg
[i
.mem_operands
] = &cs
;
4406 i
.seg
[i
.mem_operands
] = &ss
;
4409 i
.seg
[i
.mem_operands
] = &ds
;
4412 i
.seg
[i
.mem_operands
] = &fs
;
4415 i
.seg
[i
.mem_operands
] = &gs
;
4419 /* Skip the ':' and whitespace. */
4421 if (is_space_char (*op_string
))
4424 if (!is_digit_char (*op_string
)
4425 && !is_identifier_char (*op_string
)
4426 && *op_string
!= '('
4427 && *op_string
!= ABSOLUTE_PREFIX
)
4429 as_bad (_("bad memory operand `%s'"), op_string
);
4432 /* Handle case of %es:*foo. */
4433 if (*op_string
== ABSOLUTE_PREFIX
)
4436 if (is_space_char (*op_string
))
4438 i
.types
[this_operand
] |= JumpAbsolute
;
4440 goto do_memory_reference
;
4444 as_bad (_("junk `%s' after register"), op_string
);
4447 i
.types
[this_operand
] |= r
->reg_type
& ~BaseIndex
;
4448 i
.op
[this_operand
].regs
= r
;
4451 else if (*op_string
== REGISTER_PREFIX
)
4453 as_bad (_("bad register name `%s'"), op_string
);
4456 else if (*op_string
== IMMEDIATE_PREFIX
)
4459 if (i
.types
[this_operand
] & JumpAbsolute
)
4461 as_bad (_("immediate operand illegal with absolute jump"));
4464 if (!i386_immediate (op_string
))
4467 else if (is_digit_char (*op_string
)
4468 || is_identifier_char (*op_string
)
4469 || *op_string
== '(')
4471 /* This is a memory reference of some sort. */
4474 /* Start and end of displacement string expression (if found). */
4475 char *displacement_string_start
;
4476 char *displacement_string_end
;
4478 do_memory_reference
:
4479 if ((i
.mem_operands
== 1
4480 && (current_templates
->start
->opcode_modifier
& IsString
) == 0)
4481 || i
.mem_operands
== 2)
4483 as_bad (_("too many memory references for `%s'"),
4484 current_templates
->start
->name
);
4488 /* Check for base index form. We detect the base index form by
4489 looking for an ')' at the end of the operand, searching
4490 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4492 base_string
= op_string
+ strlen (op_string
);
4495 if (is_space_char (*base_string
))
4498 /* If we only have a displacement, set-up for it to be parsed later. */
4499 displacement_string_start
= op_string
;
4500 displacement_string_end
= base_string
+ 1;
4502 if (*base_string
== ')')
4505 unsigned int parens_balanced
= 1;
4506 /* We've already checked that the number of left & right ()'s are
4507 equal, so this loop will not be infinite. */
4511 if (*base_string
== ')')
4513 if (*base_string
== '(')
4516 while (parens_balanced
);
4518 temp_string
= base_string
;
4520 /* Skip past '(' and whitespace. */
4522 if (is_space_char (*base_string
))
4525 if (*base_string
== ','
4526 || ((*base_string
== REGISTER_PREFIX
|| allow_naked_reg
)
4527 && (i
.base_reg
= parse_register (base_string
, &end_op
)) != NULL
))
4529 displacement_string_end
= temp_string
;
4531 i
.types
[this_operand
] |= BaseIndex
;
4535 base_string
= end_op
;
4536 if (is_space_char (*base_string
))
4540 /* There may be an index reg or scale factor here. */
4541 if (*base_string
== ',')
4544 if (is_space_char (*base_string
))
4547 if ((*base_string
== REGISTER_PREFIX
|| allow_naked_reg
)
4548 && (i
.index_reg
= parse_register (base_string
, &end_op
)) != NULL
)
4550 base_string
= end_op
;
4551 if (is_space_char (*base_string
))
4553 if (*base_string
== ',')
4556 if (is_space_char (*base_string
))
4559 else if (*base_string
!= ')')
4561 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4566 else if (*base_string
== REGISTER_PREFIX
)
4568 as_bad (_("bad register name `%s'"), base_string
);
4572 /* Check for scale factor. */
4573 if (*base_string
!= ')')
4575 char *end_scale
= i386_scale (base_string
);
4580 base_string
= end_scale
;
4581 if (is_space_char (*base_string
))
4583 if (*base_string
!= ')')
4585 as_bad (_("expecting `)' after scale factor in `%s'"),
4590 else if (!i
.index_reg
)
4592 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4597 else if (*base_string
!= ')')
4599 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4604 else if (*base_string
== REGISTER_PREFIX
)
4606 as_bad (_("bad register name `%s'"), base_string
);
4611 /* If there's an expression beginning the operand, parse it,
4612 assuming displacement_string_start and
4613 displacement_string_end are meaningful. */
4614 if (displacement_string_start
!= displacement_string_end
)
4616 if (!i386_displacement (displacement_string_start
,
4617 displacement_string_end
))
4621 /* Special case for (%dx) while doing input/output op. */
4623 && i
.base_reg
->reg_type
== (Reg16
| InOutPortReg
)
4625 && i
.log2_scale_factor
== 0
4626 && i
.seg
[i
.mem_operands
] == 0
4627 && (i
.types
[this_operand
] & Disp
) == 0)
4629 i
.types
[this_operand
] = InOutPortReg
;
4633 if (i386_index_check (operand_string
) == 0)
4639 /* It's not a memory operand; argh! */
4640 as_bad (_("invalid char %s beginning operand %d `%s'"),
4641 output_invalid (*op_string
),
4646 return 1; /* Normal return. */
4649 /* md_estimate_size_before_relax()
4651 Called just before relax() for rs_machine_dependent frags. The x86
4652 assembler uses these frags to handle variable size jump
4655 Any symbol that is now undefined will not become defined.
4656 Return the correct fr_subtype in the frag.
4657 Return the initial "guess for variable size of frag" to caller.
4658 The guess is actually the growth beyond the fixed part. Whatever
4659 we do to grow the fixed or variable part contributes to our
4663 md_estimate_size_before_relax (fragP
, segment
)
4667 /* We've already got fragP->fr_subtype right; all we have to do is
4668 check for un-relaxable symbols. On an ELF system, we can't relax
4669 an externally visible symbol, because it may be overridden by a
4671 if (S_GET_SEGMENT (fragP
->fr_symbol
) != segment
4672 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4674 && (S_IS_EXTERNAL (fragP
->fr_symbol
)
4675 || S_IS_WEAK (fragP
->fr_symbol
)))
4679 /* Symbol is undefined in this segment, or we need to keep a
4680 reloc so that weak symbols can be overridden. */
4681 int size
= (fragP
->fr_subtype
& CODE16
) ? 2 : 4;
4682 enum bfd_reloc_code_real reloc_type
;
4683 unsigned char *opcode
;
4686 if (fragP
->fr_var
!= NO_RELOC
)
4687 reloc_type
= fragP
->fr_var
;
4689 reloc_type
= BFD_RELOC_16_PCREL
;
4691 reloc_type
= BFD_RELOC_32_PCREL
;
4693 old_fr_fix
= fragP
->fr_fix
;
4694 opcode
= (unsigned char *) fragP
->fr_opcode
;
4696 switch (TYPE_FROM_RELAX_STATE (fragP
->fr_subtype
))
4699 /* Make jmp (0xeb) a (d)word displacement jump. */
4701 fragP
->fr_fix
+= size
;
4702 fix_new (fragP
, old_fr_fix
, size
,
4704 fragP
->fr_offset
, 1,
4710 && (!no_cond_jump_promotion
|| fragP
->fr_var
!= NO_RELOC
))
4712 /* Negate the condition, and branch past an
4713 unconditional jump. */
4716 /* Insert an unconditional jump. */
4718 /* We added two extra opcode bytes, and have a two byte
4720 fragP
->fr_fix
+= 2 + 2;
4721 fix_new (fragP
, old_fr_fix
+ 2, 2,
4723 fragP
->fr_offset
, 1,
4730 if (no_cond_jump_promotion
&& fragP
->fr_var
== NO_RELOC
)
4735 fixP
= fix_new (fragP
, old_fr_fix
, 1,
4737 fragP
->fr_offset
, 1,
4739 fixP
->fx_signed
= 1;
4743 /* This changes the byte-displacement jump 0x7N
4744 to the (d)word-displacement jump 0x0f,0x8N. */
4745 opcode
[1] = opcode
[0] + 0x10;
4746 opcode
[0] = TWO_BYTE_OPCODE_ESCAPE
;
4747 /* We've added an opcode byte. */
4748 fragP
->fr_fix
+= 1 + size
;
4749 fix_new (fragP
, old_fr_fix
+ 1, size
,
4751 fragP
->fr_offset
, 1,
4756 BAD_CASE (fragP
->fr_subtype
);
4760 return fragP
->fr_fix
- old_fr_fix
;
4763 /* Guess size depending on current relax state. Initially the relax
4764 state will correspond to a short jump and we return 1, because
4765 the variable part of the frag (the branch offset) is one byte
4766 long. However, we can relax a section more than once and in that
4767 case we must either set fr_subtype back to the unrelaxed state,
4768 or return the value for the appropriate branch. */
4769 return md_relax_table
[fragP
->fr_subtype
].rlx_length
;
4772 /* Called after relax() is finished.
4774 In: Address of frag.
4775 fr_type == rs_machine_dependent.
4776 fr_subtype is what the address relaxed to.
4778 Out: Any fixSs and constants are set up.
4779 Caller will turn frag into a ".space 0". */
4782 md_convert_frag (abfd
, sec
, fragP
)
4783 bfd
*abfd ATTRIBUTE_UNUSED
;
4784 segT sec ATTRIBUTE_UNUSED
;
4787 unsigned char *opcode
;
4788 unsigned char *where_to_put_displacement
= NULL
;
4789 offsetT target_address
;
4790 offsetT opcode_address
;
4791 unsigned int extension
= 0;
4792 offsetT displacement_from_opcode_start
;
4794 opcode
= (unsigned char *) fragP
->fr_opcode
;
4796 /* Address we want to reach in file space. */
4797 target_address
= S_GET_VALUE (fragP
->fr_symbol
) + fragP
->fr_offset
;
4799 /* Address opcode resides at in file space. */
4800 opcode_address
= fragP
->fr_address
+ fragP
->fr_fix
;
4802 /* Displacement from opcode start to fill into instruction. */
4803 displacement_from_opcode_start
= target_address
- opcode_address
;
4805 if ((fragP
->fr_subtype
& BIG
) == 0)
4807 /* Don't have to change opcode. */
4808 extension
= 1; /* 1 opcode + 1 displacement */
4809 where_to_put_displacement
= &opcode
[1];
4813 if (no_cond_jump_promotion
4814 && TYPE_FROM_RELAX_STATE (fragP
->fr_subtype
) != UNCOND_JUMP
)
4815 as_warn_where (fragP
->fr_file
, fragP
->fr_line
, _("long jump required"));
4817 switch (fragP
->fr_subtype
)
4819 case ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG
):
4820 extension
= 4; /* 1 opcode + 4 displacement */
4822 where_to_put_displacement
= &opcode
[1];
4825 case ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG16
):
4826 extension
= 2; /* 1 opcode + 2 displacement */
4828 where_to_put_displacement
= &opcode
[1];
4831 case ENCODE_RELAX_STATE (COND_JUMP
, BIG
):
4832 case ENCODE_RELAX_STATE (COND_JUMP86
, BIG
):
4833 extension
= 5; /* 2 opcode + 4 displacement */
4834 opcode
[1] = opcode
[0] + 0x10;
4835 opcode
[0] = TWO_BYTE_OPCODE_ESCAPE
;
4836 where_to_put_displacement
= &opcode
[2];
4839 case ENCODE_RELAX_STATE (COND_JUMP
, BIG16
):
4840 extension
= 3; /* 2 opcode + 2 displacement */
4841 opcode
[1] = opcode
[0] + 0x10;
4842 opcode
[0] = TWO_BYTE_OPCODE_ESCAPE
;
4843 where_to_put_displacement
= &opcode
[2];
4846 case ENCODE_RELAX_STATE (COND_JUMP86
, BIG16
):
4851 where_to_put_displacement
= &opcode
[3];
4855 BAD_CASE (fragP
->fr_subtype
);
4860 /* Now put displacement after opcode. */
4861 md_number_to_chars ((char *) where_to_put_displacement
,
4862 (valueT
) (displacement_from_opcode_start
- extension
),
4863 DISP_SIZE_FROM_RELAX_STATE (fragP
->fr_subtype
));
4864 fragP
->fr_fix
+= extension
;
4867 /* Size of byte displacement jmp. */
4868 int md_short_jump_size
= 2;
4870 /* Size of dword displacement jmp. */
4871 int md_long_jump_size
= 5;
4874 md_create_short_jump (ptr
, from_addr
, to_addr
, frag
, to_symbol
)
4876 addressT from_addr
, to_addr
;
4877 fragS
*frag ATTRIBUTE_UNUSED
;
4878 symbolS
*to_symbol ATTRIBUTE_UNUSED
;
4882 offset
= to_addr
- (from_addr
+ 2);
4883 /* Opcode for byte-disp jump. */
4884 md_number_to_chars (ptr
, (valueT
) 0xeb, 1);
4885 md_number_to_chars (ptr
+ 1, (valueT
) offset
, 1);
4889 md_create_long_jump (ptr
, from_addr
, to_addr
, frag
, to_symbol
)
4891 addressT from_addr
, to_addr
;
4892 fragS
*frag ATTRIBUTE_UNUSED
;
4893 symbolS
*to_symbol ATTRIBUTE_UNUSED
;
4897 offset
= to_addr
- (from_addr
+ 5);
4898 md_number_to_chars (ptr
, (valueT
) 0xe9, 1);
4899 md_number_to_chars (ptr
+ 1, (valueT
) offset
, 4);
4902 /* Apply a fixup (fixS) to segment data, once it has been determined
4903 by our caller that we have all the info we need to fix it up.
4905 On the 386, immediates, displacements, and data pointers are all in
4906 the same (little-endian) format, so we don't need to care about which
4910 md_apply_fix (fixP
, valP
, seg
)
4911 /* The fix we're to put in. */
4913 /* Pointer to the value of the bits. */
4915 /* Segment fix is from. */
4916 segT seg ATTRIBUTE_UNUSED
;
4918 char *p
= fixP
->fx_where
+ fixP
->fx_frag
->fr_literal
;
4919 valueT value
= *valP
;
4921 #if !defined (TE_Mach)
4924 switch (fixP
->fx_r_type
)
4930 fixP
->fx_r_type
= BFD_RELOC_64_PCREL
;
4933 case BFD_RELOC_X86_64_32S
:
4934 fixP
->fx_r_type
= BFD_RELOC_32_PCREL
;
4937 fixP
->fx_r_type
= BFD_RELOC_16_PCREL
;
4940 fixP
->fx_r_type
= BFD_RELOC_8_PCREL
;
4945 if (fixP
->fx_addsy
!= NULL
4946 && (fixP
->fx_r_type
== BFD_RELOC_32_PCREL
4947 || fixP
->fx_r_type
== BFD_RELOC_64_PCREL
4948 || fixP
->fx_r_type
== BFD_RELOC_16_PCREL
4949 || fixP
->fx_r_type
== BFD_RELOC_8_PCREL
)
4950 && !use_rela_relocations
)
4952 /* This is a hack. There should be a better way to handle this.
4953 This covers for the fact that bfd_install_relocation will
4954 subtract the current location (for partial_inplace, PC relative
4955 relocations); see more below. */
4959 || OUTPUT_FLAVOR
== bfd_target_coff_flavour
4962 value
+= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
4964 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4967 segT sym_seg
= S_GET_SEGMENT (fixP
->fx_addsy
);
4970 || (symbol_section_p (fixP
->fx_addsy
)
4971 && sym_seg
!= absolute_section
))
4972 && !generic_force_reloc (fixP
))
4974 /* Yes, we add the values in twice. This is because
4975 bfd_install_relocation subtracts them out again. I think
4976 bfd_install_relocation is broken, but I don't dare change
4978 value
+= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
4982 #if defined (OBJ_COFF) && defined (TE_PE)
4983 /* For some reason, the PE format does not store a
4984 section address offset for a PC relative symbol. */
4985 if (S_GET_SEGMENT (fixP
->fx_addsy
) != seg
4986 || S_IS_WEAK (fixP
->fx_addsy
))
4987 value
+= md_pcrel_from (fixP
);
4991 /* Fix a few things - the dynamic linker expects certain values here,
4992 and we must not disappoint it. */
4993 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4994 if (IS_ELF
&& fixP
->fx_addsy
)
4995 switch (fixP
->fx_r_type
)
4997 case BFD_RELOC_386_PLT32
:
4998 case BFD_RELOC_X86_64_PLT32
:
4999 /* Make the jump instruction point to the address of the operand. At
5000 runtime we merely add the offset to the actual PLT entry. */
5004 case BFD_RELOC_386_TLS_GD
:
5005 case BFD_RELOC_386_TLS_LDM
:
5006 case BFD_RELOC_386_TLS_IE_32
:
5007 case BFD_RELOC_386_TLS_IE
:
5008 case BFD_RELOC_386_TLS_GOTIE
:
5009 case BFD_RELOC_X86_64_TLSGD
:
5010 case BFD_RELOC_X86_64_TLSLD
:
5011 case BFD_RELOC_X86_64_GOTTPOFF
:
5012 value
= 0; /* Fully resolved at runtime. No addend. */
5014 case BFD_RELOC_386_TLS_LE
:
5015 case BFD_RELOC_386_TLS_LDO_32
:
5016 case BFD_RELOC_386_TLS_LE_32
:
5017 case BFD_RELOC_X86_64_DTPOFF32
:
5018 case BFD_RELOC_X86_64_DTPOFF64
:
5019 case BFD_RELOC_X86_64_TPOFF32
:
5020 case BFD_RELOC_X86_64_TPOFF64
:
5021 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
5024 case BFD_RELOC_386_GOT32
:
5025 case BFD_RELOC_X86_64_GOT32
:
5026 value
= 0; /* Fully resolved at runtime. No addend. */
5029 case BFD_RELOC_VTABLE_INHERIT
:
5030 case BFD_RELOC_VTABLE_ENTRY
:
5037 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
5039 #endif /* !defined (TE_Mach) */
5041 /* Are we finished with this relocation now? */
5042 if (fixP
->fx_addsy
== NULL
)
5044 else if (use_rela_relocations
)
5046 fixP
->fx_no_overflow
= 1;
5047 /* Remember value for tc_gen_reloc. */
5048 fixP
->fx_addnumber
= value
;
5052 md_number_to_chars (p
, value
, fixP
->fx_size
);
5055 #define MAX_LITTLENUMS 6
5057 /* Turn the string pointed to by litP into a floating point constant
5058 of type TYPE, and emit the appropriate bytes. The number of
5059 LITTLENUMS emitted is stored in *SIZEP. An error message is
5060 returned, or NULL on OK. */
5063 md_atof (type
, litP
, sizeP
)
5069 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
5070 LITTLENUM_TYPE
*wordP
;
5092 return _("Bad call to md_atof ()");
5094 t
= atof_ieee (input_line_pointer
, type
, words
);
5096 input_line_pointer
= t
;
5098 *sizeP
= prec
* sizeof (LITTLENUM_TYPE
);
5099 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
5100 the bigendian 386. */
5101 for (wordP
= words
+ prec
- 1; prec
--;)
5103 md_number_to_chars (litP
, (valueT
) (*wordP
--), sizeof (LITTLENUM_TYPE
));
5104 litP
+= sizeof (LITTLENUM_TYPE
);
5109 static char output_invalid_buf
[8];
5116 sprintf (output_invalid_buf
, "'%c'", c
);
5118 sprintf (output_invalid_buf
, "(0x%x)", (unsigned) c
);
5119 return output_invalid_buf
;
5122 /* REG_STRING starts *before* REGISTER_PREFIX. */
5124 static const reg_entry
*
5125 parse_register (reg_string
, end_op
)
5129 char *s
= reg_string
;
5131 char reg_name_given
[MAX_REG_NAME_SIZE
+ 1];
5134 /* Skip possible REGISTER_PREFIX and possible whitespace. */
5135 if (*s
== REGISTER_PREFIX
)
5138 if (is_space_char (*s
))
5142 while ((*p
++ = register_chars
[(unsigned char) *s
]) != '\0')
5144 if (p
>= reg_name_given
+ MAX_REG_NAME_SIZE
)
5145 return (const reg_entry
*) NULL
;
5149 /* For naked regs, make sure that we are not dealing with an identifier.
5150 This prevents confusing an identifier like `eax_var' with register
5152 if (allow_naked_reg
&& identifier_chars
[(unsigned char) *s
])
5153 return (const reg_entry
*) NULL
;
5157 r
= (const reg_entry
*) hash_find (reg_hash
, reg_name_given
);
5159 /* Handle floating point regs, allowing spaces in the (i) part. */
5160 if (r
== i386_regtab
/* %st is first entry of table */)
5162 if (is_space_char (*s
))
5167 if (is_space_char (*s
))
5169 if (*s
>= '0' && *s
<= '7')
5171 r
= &i386_float_regtab
[*s
- '0'];
5173 if (is_space_char (*s
))
5181 /* We have "%st(" then garbage. */
5182 return (const reg_entry
*) NULL
;
5187 && ((r
->reg_flags
& (RegRex64
| RegRex
)) | (r
->reg_type
& Reg64
)) != 0
5188 && (r
->reg_type
!= Control
|| !(cpu_arch_flags
& CpuSledgehammer
))
5189 && flag_code
!= CODE_64BIT
)
5190 return (const reg_entry
*) NULL
;
5195 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5196 const char *md_shortopts
= "kVQ:sqn";
5198 const char *md_shortopts
= "qn";
5201 struct option md_longopts
[] = {
5202 #define OPTION_32 (OPTION_MD_BASE + 0)
5203 {"32", no_argument
, NULL
, OPTION_32
},
5204 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5205 #define OPTION_64 (OPTION_MD_BASE + 1)
5206 {"64", no_argument
, NULL
, OPTION_64
},
5208 {NULL
, no_argument
, NULL
, 0}
5210 size_t md_longopts_size
= sizeof (md_longopts
);
5213 md_parse_option (c
, arg
)
5215 char *arg ATTRIBUTE_UNUSED
;
5220 optimize_align_code
= 0;
5227 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5228 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
5229 should be emitted or not. FIXME: Not implemented. */
5233 /* -V: SVR4 argument to print version ID. */
5235 print_version_id ();
5238 /* -k: Ignore for FreeBSD compatibility. */
5243 /* -s: On i386 Solaris, this tells the native assembler to use
5244 .stab instead of .stab.excl. We always use .stab anyhow. */
5249 const char **list
, **l
;
5251 list
= bfd_target_list ();
5252 for (l
= list
; *l
!= NULL
; l
++)
5253 if (strcmp (*l
, "elf64-x86-64") == 0)
5255 default_arch
= "x86_64";
5259 as_fatal (_("No compiled in support for x86_64"));
5266 default_arch
= "i386";
5276 md_show_usage (stream
)
5279 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5280 fprintf (stream
, _("\
5282 -V print assembler version number\n\
5284 -n Do not optimize code alignment\n\
5285 -q quieten some warnings\n\
5288 fprintf (stream
, _("\
5289 -n Do not optimize code alignment\n\
5290 -q quieten some warnings\n"));
5294 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
5295 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5297 /* Pick the target format to use. */
5300 i386_target_format ()
5302 if (!strcmp (default_arch
, "x86_64"))
5303 set_code_flag (CODE_64BIT
);
5304 else if (!strcmp (default_arch
, "i386"))
5305 set_code_flag (CODE_32BIT
);
5307 as_fatal (_("Unknown architecture"));
5308 switch (OUTPUT_FLAVOR
)
5310 #ifdef OBJ_MAYBE_AOUT
5311 case bfd_target_aout_flavour
:
5312 return AOUT_TARGET_FORMAT
;
5314 #ifdef OBJ_MAYBE_COFF
5315 case bfd_target_coff_flavour
:
5318 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
5319 case bfd_target_elf_flavour
:
5321 if (flag_code
== CODE_64BIT
)
5324 use_rela_relocations
= 1;
5326 return flag_code
== CODE_64BIT
? "elf64-x86-64" : ELF_TARGET_FORMAT
;
5335 #endif /* OBJ_MAYBE_ more than one */
5337 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5338 void i386_elf_emit_arch_note ()
5340 if (IS_ELF
&& cpu_arch_name
!= NULL
)
5343 asection
*seg
= now_seg
;
5344 subsegT subseg
= now_subseg
;
5345 Elf_Internal_Note i_note
;
5346 Elf_External_Note e_note
;
5347 asection
*note_secp
;
5350 /* Create the .note section. */
5351 note_secp
= subseg_new (".note", 0);
5352 bfd_set_section_flags (stdoutput
,
5354 SEC_HAS_CONTENTS
| SEC_READONLY
);
5356 /* Process the arch string. */
5357 len
= strlen (cpu_arch_name
);
5359 i_note
.namesz
= len
+ 1;
5361 i_note
.type
= NT_ARCH
;
5362 p
= frag_more (sizeof (e_note
.namesz
));
5363 md_number_to_chars (p
, (valueT
) i_note
.namesz
, sizeof (e_note
.namesz
));
5364 p
= frag_more (sizeof (e_note
.descsz
));
5365 md_number_to_chars (p
, (valueT
) i_note
.descsz
, sizeof (e_note
.descsz
));
5366 p
= frag_more (sizeof (e_note
.type
));
5367 md_number_to_chars (p
, (valueT
) i_note
.type
, sizeof (e_note
.type
));
5368 p
= frag_more (len
+ 1);
5369 strcpy (p
, cpu_arch_name
);
5371 frag_align (2, 0, 0);
5373 subseg_set (seg
, subseg
);
5379 md_undefined_symbol (name
)
5382 if (name
[0] == GLOBAL_OFFSET_TABLE_NAME
[0]
5383 && name
[1] == GLOBAL_OFFSET_TABLE_NAME
[1]
5384 && name
[2] == GLOBAL_OFFSET_TABLE_NAME
[2]
5385 && strcmp (name
, GLOBAL_OFFSET_TABLE_NAME
) == 0)
5389 if (symbol_find (name
))
5390 as_bad (_("GOT already in symbol table"));
5391 GOT_symbol
= symbol_new (name
, undefined_section
,
5392 (valueT
) 0, &zero_address_frag
);
5399 /* Round up a section size to the appropriate boundary. */
5402 md_section_align (segment
, size
)
5403 segT segment ATTRIBUTE_UNUSED
;
5406 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5407 if (OUTPUT_FLAVOR
== bfd_target_aout_flavour
)
5409 /* For a.out, force the section size to be aligned. If we don't do
5410 this, BFD will align it for us, but it will not write out the
5411 final bytes of the section. This may be a bug in BFD, but it is
5412 easier to fix it here since that is how the other a.out targets
5416 align
= bfd_get_section_alignment (stdoutput
, segment
);
5417 size
= ((size
+ (1 << align
) - 1) & ((valueT
) -1 << align
));
5424 /* On the i386, PC-relative offsets are relative to the start of the
5425 next instruction. That is, the address of the offset, plus its
5426 size, since the offset is always the last part of the insn. */
5429 md_pcrel_from (fixP
)
5432 return fixP
->fx_size
+ fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
5439 int ignore ATTRIBUTE_UNUSED
;
5443 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5445 obj_elf_section_change_hook ();
5447 temp
= get_absolute_expression ();
5448 subseg_set (bss_section
, (subsegT
) temp
);
5449 demand_empty_rest_of_line ();
5455 i386_validate_fix (fixp
)
5458 if (fixp
->fx_subsy
&& fixp
->fx_subsy
== GOT_symbol
)
5460 if (fixp
->fx_r_type
== BFD_RELOC_32_PCREL
)
5464 fixp
->fx_r_type
= BFD_RELOC_X86_64_GOTPCREL
;
5469 fixp
->fx_r_type
= BFD_RELOC_386_GOTOFF
;
5471 fixp
->fx_r_type
= BFD_RELOC_X86_64_GOTOFF64
;
5478 tc_gen_reloc (section
, fixp
)
5479 asection
*section ATTRIBUTE_UNUSED
;
5483 bfd_reloc_code_real_type code
;
5485 switch (fixp
->fx_r_type
)
5487 case BFD_RELOC_X86_64_PLT32
:
5488 case BFD_RELOC_X86_64_GOT32
:
5489 case BFD_RELOC_X86_64_GOTPCREL
:
5490 case BFD_RELOC_386_PLT32
:
5491 case BFD_RELOC_386_GOT32
:
5492 case BFD_RELOC_386_GOTOFF
:
5493 case BFD_RELOC_386_GOTPC
:
5494 case BFD_RELOC_386_TLS_GD
:
5495 case BFD_RELOC_386_TLS_LDM
:
5496 case BFD_RELOC_386_TLS_LDO_32
:
5497 case BFD_RELOC_386_TLS_IE_32
:
5498 case BFD_RELOC_386_TLS_IE
:
5499 case BFD_RELOC_386_TLS_GOTIE
:
5500 case BFD_RELOC_386_TLS_LE_32
:
5501 case BFD_RELOC_386_TLS_LE
:
5502 case BFD_RELOC_X86_64_TLSGD
:
5503 case BFD_RELOC_X86_64_TLSLD
:
5504 case BFD_RELOC_X86_64_DTPOFF32
:
5505 case BFD_RELOC_X86_64_DTPOFF64
:
5506 case BFD_RELOC_X86_64_GOTTPOFF
:
5507 case BFD_RELOC_X86_64_TPOFF32
:
5508 case BFD_RELOC_X86_64_TPOFF64
:
5509 case BFD_RELOC_X86_64_GOTOFF64
:
5510 case BFD_RELOC_X86_64_GOTPC32
:
5512 case BFD_RELOC_VTABLE_ENTRY
:
5513 case BFD_RELOC_VTABLE_INHERIT
:
5515 case BFD_RELOC_32_SECREL
:
5517 code
= fixp
->fx_r_type
;
5519 case BFD_RELOC_X86_64_32S
:
5520 if (!fixp
->fx_pcrel
)
5522 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
5523 code
= fixp
->fx_r_type
;
5529 switch (fixp
->fx_size
)
5532 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
5533 _("can not do %d byte pc-relative relocation"),
5535 code
= BFD_RELOC_32_PCREL
;
5537 case 1: code
= BFD_RELOC_8_PCREL
; break;
5538 case 2: code
= BFD_RELOC_16_PCREL
; break;
5539 case 4: code
= BFD_RELOC_32_PCREL
; break;
5541 case 8: code
= BFD_RELOC_64_PCREL
; break;
5547 switch (fixp
->fx_size
)
5550 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
5551 _("can not do %d byte relocation"),
5553 code
= BFD_RELOC_32
;
5555 case 1: code
= BFD_RELOC_8
; break;
5556 case 2: code
= BFD_RELOC_16
; break;
5557 case 4: code
= BFD_RELOC_32
; break;
5559 case 8: code
= BFD_RELOC_64
; break;
5566 if ((code
== BFD_RELOC_32
|| code
== BFD_RELOC_32_PCREL
)
5568 && fixp
->fx_addsy
== GOT_symbol
)
5571 code
= BFD_RELOC_386_GOTPC
;
5573 code
= BFD_RELOC_X86_64_GOTPC32
;
5576 rel
= (arelent
*) xmalloc (sizeof (arelent
));
5577 rel
->sym_ptr_ptr
= (asymbol
**) xmalloc (sizeof (asymbol
*));
5578 *rel
->sym_ptr_ptr
= symbol_get_bfdsym (fixp
->fx_addsy
);
5580 rel
->address
= fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
5582 if (!use_rela_relocations
)
5584 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5585 vtable entry to be used in the relocation's section offset. */
5586 if (fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
5587 rel
->address
= fixp
->fx_offset
;
5591 /* Use the rela in 64bit mode. */
5594 if (!fixp
->fx_pcrel
)
5595 rel
->addend
= fixp
->fx_offset
;
5599 case BFD_RELOC_X86_64_PLT32
:
5600 case BFD_RELOC_X86_64_GOT32
:
5601 case BFD_RELOC_X86_64_GOTPCREL
:
5602 case BFD_RELOC_X86_64_TLSGD
:
5603 case BFD_RELOC_X86_64_TLSLD
:
5604 case BFD_RELOC_X86_64_GOTTPOFF
:
5605 rel
->addend
= fixp
->fx_offset
- fixp
->fx_size
;
5608 rel
->addend
= (section
->vma
5610 + fixp
->fx_addnumber
5611 + md_pcrel_from (fixp
));
5616 rel
->howto
= bfd_reloc_type_lookup (stdoutput
, code
);
5617 if (rel
->howto
== NULL
)
5619 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
5620 _("cannot represent relocation type %s"),
5621 bfd_get_reloc_code_name (code
));
5622 /* Set howto to a garbage value so that we can keep going. */
5623 rel
->howto
= bfd_reloc_type_lookup (stdoutput
, BFD_RELOC_32
);
5624 assert (rel
->howto
!= NULL
);
5631 /* Parse operands using Intel syntax. This implements a recursive descent
5632 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5635 FIXME: We do not recognize the full operand grammar defined in the MASM
5636 documentation. In particular, all the structure/union and
5637 high-level macro operands are missing.
5639 Uppercase words are terminals, lower case words are non-terminals.
5640 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5641 bars '|' denote choices. Most grammar productions are implemented in
5642 functions called 'intel_<production>'.
5644 Initial production is 'expr'.
5650 binOp & | AND | \| | OR | ^ | XOR
5652 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5654 constant digits [[ radixOverride ]]
5656 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
5694 => expr expr cmpOp e04
5697 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
5698 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
5700 hexdigit a | b | c | d | e | f
5701 | A | B | C | D | E | F
5707 mulOp * | / | % | MOD | << | SHL | >> | SHR
5711 register specialRegister
5715 segmentRegister CS | DS | ES | FS | GS | SS
5717 specialRegister CR0 | CR2 | CR3 | CR4
5718 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
5719 | TR3 | TR4 | TR5 | TR6 | TR7
5721 We simplify the grammar in obvious places (e.g., register parsing is
5722 done by calling parse_register) and eliminate immediate left recursion
5723 to implement a recursive-descent parser.
5727 expr' cmpOp e04 expr'
5778 /* Parsing structure for the intel syntax parser. Used to implement the
5779 semantic actions for the operand grammar. */
5780 struct intel_parser_s
5782 char *op_string
; /* The string being parsed. */
5783 int got_a_float
; /* Whether the operand is a float. */
5784 int op_modifier
; /* Operand modifier. */
5785 int is_mem
; /* 1 if operand is memory reference. */
5786 int in_offset
; /* >=1 if parsing operand of offset. */
5787 int in_bracket
; /* >=1 if parsing operand in brackets. */
5788 const reg_entry
*reg
; /* Last register reference found. */
5789 char *disp
; /* Displacement string being built. */
5790 char *next_operand
; /* Resume point when splitting operands. */
5793 static struct intel_parser_s intel_parser
;
5795 /* Token structure for parsing intel syntax. */
5798 int code
; /* Token code. */
5799 const reg_entry
*reg
; /* Register entry for register tokens. */
5800 char *str
; /* String representation. */
5803 static struct intel_token cur_token
, prev_token
;
5805 /* Token codes for the intel parser. Since T_SHORT is already used
5806 by COFF, undefine it first to prevent a warning. */
5825 /* Prototypes for intel parser functions. */
5826 static int intel_match_token
PARAMS ((int code
));
5827 static void intel_get_token
PARAMS ((void));
5828 static void intel_putback_token
PARAMS ((void));
5829 static int intel_expr
PARAMS ((void));
5830 static int intel_e04
PARAMS ((void));
5831 static int intel_e05
PARAMS ((void));
5832 static int intel_e06
PARAMS ((void));
5833 static int intel_e09
PARAMS ((void));
5834 static int intel_bracket_expr
PARAMS ((void));
5835 static int intel_e10
PARAMS ((void));
5836 static int intel_e11
PARAMS ((void));
5839 i386_intel_operand (operand_string
, got_a_float
)
5840 char *operand_string
;
5846 p
= intel_parser
.op_string
= xstrdup (operand_string
);
5847 intel_parser
.disp
= (char *) xmalloc (strlen (operand_string
) + 1);
5851 /* Initialize token holders. */
5852 cur_token
.code
= prev_token
.code
= T_NIL
;
5853 cur_token
.reg
= prev_token
.reg
= NULL
;
5854 cur_token
.str
= prev_token
.str
= NULL
;
5856 /* Initialize parser structure. */
5857 intel_parser
.got_a_float
= got_a_float
;
5858 intel_parser
.op_modifier
= 0;
5859 intel_parser
.is_mem
= 0;
5860 intel_parser
.in_offset
= 0;
5861 intel_parser
.in_bracket
= 0;
5862 intel_parser
.reg
= NULL
;
5863 intel_parser
.disp
[0] = '\0';
5864 intel_parser
.next_operand
= NULL
;
5866 /* Read the first token and start the parser. */
5868 ret
= intel_expr ();
5873 if (cur_token
.code
!= T_NIL
)
5875 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
5876 current_templates
->start
->name
, cur_token
.str
);
5879 /* If we found a memory reference, hand it over to i386_displacement
5880 to fill in the rest of the operand fields. */
5881 else if (intel_parser
.is_mem
)
5883 if ((i
.mem_operands
== 1
5884 && (current_templates
->start
->opcode_modifier
& IsString
) == 0)
5885 || i
.mem_operands
== 2)
5887 as_bad (_("too many memory references for '%s'"),
5888 current_templates
->start
->name
);
5893 char *s
= intel_parser
.disp
;
5896 if (!quiet_warnings
&& intel_parser
.is_mem
< 0)
5897 /* See the comments in intel_bracket_expr. */
5898 as_warn (_("Treating `%s' as memory reference"), operand_string
);
5900 /* Add the displacement expression. */
5902 ret
= i386_displacement (s
, s
+ strlen (s
));
5905 /* Swap base and index in 16-bit memory operands like
5906 [si+bx]. Since i386_index_check is also used in AT&T
5907 mode we have to do that here. */
5910 && (i
.base_reg
->reg_type
& Reg16
)
5911 && (i
.index_reg
->reg_type
& Reg16
)
5912 && i
.base_reg
->reg_num
>= 6
5913 && i
.index_reg
->reg_num
< 6)
5915 const reg_entry
*base
= i
.index_reg
;
5917 i
.index_reg
= i
.base_reg
;
5920 ret
= i386_index_check (operand_string
);
5925 /* Constant and OFFSET expressions are handled by i386_immediate. */
5926 else if ((intel_parser
.op_modifier
& (1 << T_OFFSET
))
5927 || intel_parser
.reg
== NULL
)
5928 ret
= i386_immediate (intel_parser
.disp
);
5930 if (intel_parser
.next_operand
&& this_operand
>= MAX_OPERANDS
- 1)
5932 if (!ret
|| !intel_parser
.next_operand
)
5934 intel_parser
.op_string
= intel_parser
.next_operand
;
5935 this_operand
= i
.operands
++;
5939 free (intel_parser
.disp
);
5944 #define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
5948 expr' cmpOp e04 expr'
5953 /* XXX Implement the comparison operators. */
5954 return intel_e04 ();
5971 if (nregs
>= 0 && NUM_ADDRESS_REGS
> nregs
)
5972 i
.base_reg
= i386_regtab
+ REGNAM_AL
; /* al is invalid as base */
5974 if (cur_token
.code
== '+')
5976 else if (cur_token
.code
== '-')
5977 nregs
= NUM_ADDRESS_REGS
;
5981 strcat (intel_parser
.disp
, cur_token
.str
);
5982 intel_match_token (cur_token
.code
);
5993 int nregs
= ~NUM_ADDRESS_REGS
;
6000 if (cur_token
.code
== '&' || cur_token
.code
== '|' || cur_token
.code
== '^')
6004 str
[0] = cur_token
.code
;
6006 strcat (intel_parser
.disp
, str
);
6011 intel_match_token (cur_token
.code
);
6016 if (nregs
>= 0 && NUM_ADDRESS_REGS
> nregs
)
6017 i
.base_reg
= i386_regtab
+ REGNAM_AL
+ 1; /* cl is invalid as base */
6028 int nregs
= ~NUM_ADDRESS_REGS
;
6035 if (cur_token
.code
== '*' || cur_token
.code
== '/' || cur_token
.code
== '%')
6039 str
[0] = cur_token
.code
;
6041 strcat (intel_parser
.disp
, str
);
6043 else if (cur_token
.code
== T_SHL
)
6044 strcat (intel_parser
.disp
, "<<");
6045 else if (cur_token
.code
== T_SHR
)
6046 strcat (intel_parser
.disp
, ">>");
6050 intel_match_token (cur_token
.code
);
6055 if (nregs
>= 0 && NUM_ADDRESS_REGS
> nregs
)
6056 i
.base_reg
= i386_regtab
+ REGNAM_AL
+ 2; /* dl is invalid as base */
6074 int nregs
= ~NUM_ADDRESS_REGS
;
6079 /* Don't consume constants here. */
6080 if (cur_token
.code
== '+' || cur_token
.code
== '-')
6082 /* Need to look one token ahead - if the next token
6083 is a constant, the current token is its sign. */
6086 intel_match_token (cur_token
.code
);
6087 next_code
= cur_token
.code
;
6088 intel_putback_token ();
6089 if (next_code
== T_CONST
)
6093 /* e09 OFFSET e09 */
6094 if (cur_token
.code
== T_OFFSET
)
6097 ++intel_parser
.in_offset
;
6101 else if (cur_token
.code
== T_SHORT
)
6102 intel_parser
.op_modifier
|= 1 << T_SHORT
;
6105 else if (cur_token
.code
== '+')
6106 strcat (intel_parser
.disp
, "+");
6111 else if (cur_token
.code
== '-' || cur_token
.code
== '~')
6117 str
[0] = cur_token
.code
;
6119 strcat (intel_parser
.disp
, str
);
6126 intel_match_token (cur_token
.code
);
6134 /* e09' PTR e10 e09' */
6135 if (cur_token
.code
== T_PTR
)
6139 if (prev_token
.code
== T_BYTE
)
6140 suffix
= BYTE_MNEM_SUFFIX
;
6142 else if (prev_token
.code
== T_WORD
)
6144 if (current_templates
->start
->name
[0] == 'l'
6145 && current_templates
->start
->name
[2] == 's'
6146 && current_templates
->start
->name
[3] == 0)
6147 suffix
= BYTE_MNEM_SUFFIX
; /* so it will cause an error */
6148 else if (intel_parser
.got_a_float
== 2) /* "fi..." */
6149 suffix
= SHORT_MNEM_SUFFIX
;
6151 suffix
= WORD_MNEM_SUFFIX
;
6154 else if (prev_token
.code
== T_DWORD
)
6156 if (current_templates
->start
->name
[0] == 'l'
6157 && current_templates
->start
->name
[2] == 's'
6158 && current_templates
->start
->name
[3] == 0)
6159 suffix
= WORD_MNEM_SUFFIX
;
6160 else if (flag_code
== CODE_16BIT
6161 && (current_templates
->start
->opcode_modifier
6162 & (Jump
| JumpDword
)))
6163 suffix
= LONG_DOUBLE_MNEM_SUFFIX
;
6164 else if (intel_parser
.got_a_float
== 1) /* "f..." */
6165 suffix
= SHORT_MNEM_SUFFIX
;
6167 suffix
= LONG_MNEM_SUFFIX
;
6170 else if (prev_token
.code
== T_FWORD
)
6172 if (current_templates
->start
->name
[0] == 'l'
6173 && current_templates
->start
->name
[2] == 's'
6174 && current_templates
->start
->name
[3] == 0)
6175 suffix
= LONG_MNEM_SUFFIX
;
6176 else if (!intel_parser
.got_a_float
)
6178 if (flag_code
== CODE_16BIT
)
6179 add_prefix (DATA_PREFIX_OPCODE
);
6180 suffix
= LONG_DOUBLE_MNEM_SUFFIX
;
6183 suffix
= BYTE_MNEM_SUFFIX
; /* so it will cause an error */
6186 else if (prev_token
.code
== T_QWORD
)
6188 if (intel_parser
.got_a_float
== 1) /* "f..." */
6189 suffix
= LONG_MNEM_SUFFIX
;
6191 suffix
= QWORD_MNEM_SUFFIX
;
6194 else if (prev_token
.code
== T_TBYTE
)
6196 if (intel_parser
.got_a_float
== 1)
6197 suffix
= LONG_DOUBLE_MNEM_SUFFIX
;
6199 suffix
= BYTE_MNEM_SUFFIX
; /* so it will cause an error */
6202 else if (prev_token
.code
== T_XMMWORD
)
6204 /* XXX ignored for now, but accepted since gcc uses it */
6210 as_bad (_("Unknown operand modifier `%s'"), prev_token
.str
);
6214 /* Operands for jump/call using 'ptr' notation denote absolute
6216 if (current_templates
->start
->opcode_modifier
& (Jump
| JumpDword
))
6217 i
.types
[this_operand
] |= JumpAbsolute
;
6219 if (current_templates
->start
->base_opcode
== 0x8d /* lea */)
6223 else if (i
.suffix
!= suffix
)
6225 as_bad (_("Conflicting operand modifiers"));
6231 /* e09' : e10 e09' */
6232 else if (cur_token
.code
== ':')
6234 if (prev_token
.code
!= T_REG
)
6236 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
6237 segment/group identifier (which we don't have), using comma
6238 as the operand separator there is even less consistent, since
6239 there all branches only have a single operand. */
6240 if (this_operand
!= 0
6241 || intel_parser
.in_offset
6242 || intel_parser
.in_bracket
6243 || (!(current_templates
->start
->opcode_modifier
6244 & (Jump
|JumpDword
|JumpInterSegment
))
6245 && !(current_templates
->start
->operand_types
[0]
6247 return intel_match_token (T_NIL
);
6248 /* Remember the start of the 2nd operand and terminate 1st
6250 XXX This isn't right, yet (when SSSS:OOOO is right operand of
6251 another expression), but it gets at least the simplest case
6252 (a plain number or symbol on the left side) right. */
6253 intel_parser
.next_operand
= intel_parser
.op_string
;
6254 *--intel_parser
.op_string
= '\0';
6255 return intel_match_token (':');
6263 intel_match_token (cur_token
.code
);
6269 --intel_parser
.in_offset
;
6272 if (NUM_ADDRESS_REGS
> nregs
)
6274 as_bad (_("Invalid operand to `OFFSET'"));
6277 intel_parser
.op_modifier
|= 1 << T_OFFSET
;
6280 if (nregs
>= 0 && NUM_ADDRESS_REGS
> nregs
)
6281 i
.base_reg
= i386_regtab
+ REGNAM_AL
+ 3; /* bl is invalid as base */
6286 intel_bracket_expr ()
6288 int was_offset
= intel_parser
.op_modifier
& (1 << T_OFFSET
);
6289 const char *start
= intel_parser
.op_string
;
6292 if (i
.op
[this_operand
].regs
)
6293 return intel_match_token (T_NIL
);
6295 intel_match_token ('[');
6297 /* Mark as a memory operand only if it's not already known to be an
6298 offset expression. If it's an offset expression, we need to keep
6300 if (!intel_parser
.in_offset
)
6302 ++intel_parser
.in_bracket
;
6304 /* Operands for jump/call inside brackets denote absolute addresses. */
6305 if (current_templates
->start
->opcode_modifier
& (Jump
| JumpDword
))
6306 i
.types
[this_operand
] |= JumpAbsolute
;
6308 /* Unfortunately gas always diverged from MASM in a respect that can't
6309 be easily fixed without risking to break code sequences likely to be
6310 encountered (the testsuite even check for this): MASM doesn't consider
6311 an expression inside brackets unconditionally as a memory reference.
6312 When that is e.g. a constant, an offset expression, or the sum of the
6313 two, this is still taken as a constant load. gas, however, always
6314 treated these as memory references. As a compromise, we'll try to make
6315 offset expressions inside brackets work the MASM way (since that's
6316 less likely to be found in real world code), but make constants alone
6317 continue to work the traditional gas way. In either case, issue a
6319 intel_parser
.op_modifier
&= ~was_offset
;
6322 strcat (intel_parser
.disp
, "[");
6324 /* Add a '+' to the displacement string if necessary. */
6325 if (*intel_parser
.disp
!= '\0'
6326 && *(intel_parser
.disp
+ strlen (intel_parser
.disp
) - 1) != '+')
6327 strcat (intel_parser
.disp
, "+");
6330 && (len
= intel_parser
.op_string
- start
- 1,
6331 intel_match_token (']')))
6333 /* Preserve brackets when the operand is an offset expression. */
6334 if (intel_parser
.in_offset
)
6335 strcat (intel_parser
.disp
, "]");
6338 --intel_parser
.in_bracket
;
6339 if (i
.base_reg
|| i
.index_reg
)
6340 intel_parser
.is_mem
= 1;
6341 if (!intel_parser
.is_mem
)
6343 if (!(intel_parser
.op_modifier
& (1 << T_OFFSET
)))
6344 /* Defer the warning until all of the operand was parsed. */
6345 intel_parser
.is_mem
= -1;
6346 else if (!quiet_warnings
)
6347 as_warn (_("`[%.*s]' taken to mean just `%.*s'"), len
, start
, len
, start
);
6350 intel_parser
.op_modifier
|= was_offset
;
6367 while (cur_token
.code
== '[')
6369 if (!intel_bracket_expr ())
6394 switch (cur_token
.code
)
6398 intel_match_token ('(');
6399 strcat (intel_parser
.disp
, "(");
6401 if (intel_expr () && intel_match_token (')'))
6403 strcat (intel_parser
.disp
, ")");
6410 return intel_bracket_expr ();
6415 strcat (intel_parser
.disp
, cur_token
.str
);
6416 intel_match_token (cur_token
.code
);
6418 /* Mark as a memory operand only if it's not already known to be an
6419 offset expression. */
6420 if (!intel_parser
.in_offset
)
6421 intel_parser
.is_mem
= 1;
6428 const reg_entry
*reg
= intel_parser
.reg
= cur_token
.reg
;
6430 intel_match_token (T_REG
);
6432 /* Check for segment change. */
6433 if (cur_token
.code
== ':')
6435 if (!(reg
->reg_type
& (SReg2
| SReg3
)))
6437 as_bad (_("`%s' is not a valid segment register"), reg
->reg_name
);
6440 else if (i
.seg
[i
.mem_operands
])
6441 as_warn (_("Extra segment override ignored"));
6444 if (!intel_parser
.in_offset
)
6445 intel_parser
.is_mem
= 1;
6446 switch (reg
->reg_num
)
6449 i
.seg
[i
.mem_operands
] = &es
;
6452 i
.seg
[i
.mem_operands
] = &cs
;
6455 i
.seg
[i
.mem_operands
] = &ss
;
6458 i
.seg
[i
.mem_operands
] = &ds
;
6461 i
.seg
[i
.mem_operands
] = &fs
;
6464 i
.seg
[i
.mem_operands
] = &gs
;
6470 /* Not a segment register. Check for register scaling. */
6471 else if (cur_token
.code
== '*')
6473 if (!intel_parser
.in_bracket
)
6475 as_bad (_("Register scaling only allowed in memory operands"));
6479 if (reg
->reg_type
& Reg16
) /* Disallow things like [si*1]. */
6480 reg
= i386_regtab
+ REGNAM_AX
+ 4; /* sp is invalid as index */
6481 else if (i
.index_reg
)
6482 reg
= i386_regtab
+ REGNAM_EAX
+ 4; /* esp is invalid as index */
6484 /* What follows must be a valid scale. */
6485 intel_match_token ('*');
6487 i
.types
[this_operand
] |= BaseIndex
;
6489 /* Set the scale after setting the register (otherwise,
6490 i386_scale will complain) */
6491 if (cur_token
.code
== '+' || cur_token
.code
== '-')
6493 char *str
, sign
= cur_token
.code
;
6494 intel_match_token (cur_token
.code
);
6495 if (cur_token
.code
!= T_CONST
)
6497 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
6501 str
= (char *) xmalloc (strlen (cur_token
.str
) + 2);
6502 strcpy (str
+ 1, cur_token
.str
);
6504 if (!i386_scale (str
))
6508 else if (!i386_scale (cur_token
.str
))
6510 intel_match_token (cur_token
.code
);
6513 /* No scaling. If this is a memory operand, the register is either a
6514 base register (first occurrence) or an index register (second
6516 else if (intel_parser
.in_bracket
&& !(reg
->reg_type
& (SReg2
| SReg3
)))
6521 else if (!i
.index_reg
)
6525 as_bad (_("Too many register references in memory operand"));
6529 i
.types
[this_operand
] |= BaseIndex
;
6532 /* Offset modifier. Add the register to the displacement string to be
6533 parsed as an immediate expression after we're done. */
6534 else if (intel_parser
.in_offset
)
6536 as_warn (_("Using register names in OFFSET expressions is deprecated"));
6537 strcat (intel_parser
.disp
, reg
->reg_name
);
6540 /* It's neither base nor index nor offset. */
6541 else if (!intel_parser
.is_mem
)
6543 i
.types
[this_operand
] |= reg
->reg_type
& ~BaseIndex
;
6544 i
.op
[this_operand
].regs
= reg
;
6549 as_bad (_("Invalid use of register"));
6553 /* Since registers are not part of the displacement string (except
6554 when we're parsing offset operands), we may need to remove any
6555 preceding '+' from the displacement string. */
6556 if (*intel_parser
.disp
!= '\0'
6557 && !intel_parser
.in_offset
)
6559 char *s
= intel_parser
.disp
;
6560 s
+= strlen (s
) - 1;
6583 intel_match_token (cur_token
.code
);
6585 if (cur_token
.code
== T_PTR
)
6588 /* It must have been an identifier. */
6589 intel_putback_token ();
6590 cur_token
.code
= T_ID
;
6596 if (!intel_parser
.in_offset
&& intel_parser
.is_mem
<= 0)
6600 /* The identifier represents a memory reference only if it's not
6601 preceded by an offset modifier and if it's not an equate. */
6602 symbolP
= symbol_find(cur_token
.str
);
6603 if (!symbolP
|| S_GET_SEGMENT(symbolP
) != absolute_section
)
6604 intel_parser
.is_mem
= 1;
6612 char *save_str
, sign
= 0;
6614 /* Allow constants that start with `+' or `-'. */
6615 if (cur_token
.code
== '-' || cur_token
.code
== '+')
6617 sign
= cur_token
.code
;
6618 intel_match_token (cur_token
.code
);
6619 if (cur_token
.code
!= T_CONST
)
6621 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
6627 save_str
= (char *) xmalloc (strlen (cur_token
.str
) + 2);
6628 strcpy (save_str
+ !!sign
, cur_token
.str
);
6632 /* Get the next token to check for register scaling. */
6633 intel_match_token (cur_token
.code
);
6635 /* Check if this constant is a scaling factor for an index register. */
6636 if (cur_token
.code
== '*')
6638 if (intel_match_token ('*') && cur_token
.code
== T_REG
)
6640 const reg_entry
*reg
= cur_token
.reg
;
6642 if (!intel_parser
.in_bracket
)
6644 as_bad (_("Register scaling only allowed in memory operands"));
6648 if (reg
->reg_type
& Reg16
) /* Disallow things like [1*si]. */
6649 reg
= i386_regtab
+ REGNAM_AX
+ 4; /* sp is invalid as index */
6650 else if (i
.index_reg
)
6651 reg
= i386_regtab
+ REGNAM_EAX
+ 4; /* esp is invalid as index */
6653 /* The constant is followed by `* reg', so it must be
6656 i
.types
[this_operand
] |= BaseIndex
;
6658 /* Set the scale after setting the register (otherwise,
6659 i386_scale will complain) */
6660 if (!i386_scale (save_str
))
6662 intel_match_token (T_REG
);
6664 /* Since registers are not part of the displacement
6665 string, we may need to remove any preceding '+' from
6666 the displacement string. */
6667 if (*intel_parser
.disp
!= '\0')
6669 char *s
= intel_parser
.disp
;
6670 s
+= strlen (s
) - 1;
6680 /* The constant was not used for register scaling. Since we have
6681 already consumed the token following `*' we now need to put it
6682 back in the stream. */
6683 intel_putback_token ();
6686 /* Add the constant to the displacement string. */
6687 strcat (intel_parser
.disp
, save_str
);
6694 as_bad (_("Unrecognized token '%s'"), cur_token
.str
);
6698 /* Match the given token against cur_token. If they match, read the next
6699 token from the operand string. */
6701 intel_match_token (code
)
6704 if (cur_token
.code
== code
)
6711 as_bad (_("Unexpected token `%s'"), cur_token
.str
);
6716 /* Read a new token from intel_parser.op_string and store it in cur_token. */
6721 const reg_entry
*reg
;
6722 struct intel_token new_token
;
6724 new_token
.code
= T_NIL
;
6725 new_token
.reg
= NULL
;
6726 new_token
.str
= NULL
;
6728 /* Free the memory allocated to the previous token and move
6729 cur_token to prev_token. */
6731 free (prev_token
.str
);
6733 prev_token
= cur_token
;
6735 /* Skip whitespace. */
6736 while (is_space_char (*intel_parser
.op_string
))
6737 intel_parser
.op_string
++;
6739 /* Return an empty token if we find nothing else on the line. */
6740 if (*intel_parser
.op_string
== '\0')
6742 cur_token
= new_token
;
6746 /* The new token cannot be larger than the remainder of the operand
6748 new_token
.str
= (char *) xmalloc (strlen (intel_parser
.op_string
) + 1);
6749 new_token
.str
[0] = '\0';
6751 if (strchr ("0123456789", *intel_parser
.op_string
))
6753 char *p
= new_token
.str
;
6754 char *q
= intel_parser
.op_string
;
6755 new_token
.code
= T_CONST
;
6757 /* Allow any kind of identifier char to encompass floating point and
6758 hexadecimal numbers. */
6759 while (is_identifier_char (*q
))
6763 /* Recognize special symbol names [0-9][bf]. */
6764 if (strlen (intel_parser
.op_string
) == 2
6765 && (intel_parser
.op_string
[1] == 'b'
6766 || intel_parser
.op_string
[1] == 'f'))
6767 new_token
.code
= T_ID
;
6770 else if ((*intel_parser
.op_string
== REGISTER_PREFIX
|| allow_naked_reg
)
6771 && ((reg
= parse_register (intel_parser
.op_string
, &end_op
)) != NULL
))
6773 new_token
.code
= T_REG
;
6774 new_token
.reg
= reg
;
6776 if (*intel_parser
.op_string
== REGISTER_PREFIX
)
6778 new_token
.str
[0] = REGISTER_PREFIX
;
6779 new_token
.str
[1] = '\0';
6782 strcat (new_token
.str
, reg
->reg_name
);
6785 else if (is_identifier_char (*intel_parser
.op_string
))
6787 char *p
= new_token
.str
;
6788 char *q
= intel_parser
.op_string
;
6790 /* A '.' or '$' followed by an identifier char is an identifier.
6791 Otherwise, it's operator '.' followed by an expression. */
6792 if ((*q
== '.' || *q
== '$') && !is_identifier_char (*(q
+ 1)))
6794 new_token
.code
= '.';
6795 new_token
.str
[0] = '.';
6796 new_token
.str
[1] = '\0';
6800 while (is_identifier_char (*q
) || *q
== '@')
6804 if (strcasecmp (new_token
.str
, "NOT") == 0)
6805 new_token
.code
= '~';
6807 else if (strcasecmp (new_token
.str
, "MOD") == 0)
6808 new_token
.code
= '%';
6810 else if (strcasecmp (new_token
.str
, "AND") == 0)
6811 new_token
.code
= '&';
6813 else if (strcasecmp (new_token
.str
, "OR") == 0)
6814 new_token
.code
= '|';
6816 else if (strcasecmp (new_token
.str
, "XOR") == 0)
6817 new_token
.code
= '^';
6819 else if (strcasecmp (new_token
.str
, "SHL") == 0)
6820 new_token
.code
= T_SHL
;
6822 else if (strcasecmp (new_token
.str
, "SHR") == 0)
6823 new_token
.code
= T_SHR
;
6825 else if (strcasecmp (new_token
.str
, "BYTE") == 0)
6826 new_token
.code
= T_BYTE
;
6828 else if (strcasecmp (new_token
.str
, "WORD") == 0)
6829 new_token
.code
= T_WORD
;
6831 else if (strcasecmp (new_token
.str
, "DWORD") == 0)
6832 new_token
.code
= T_DWORD
;
6834 else if (strcasecmp (new_token
.str
, "FWORD") == 0)
6835 new_token
.code
= T_FWORD
;
6837 else if (strcasecmp (new_token
.str
, "QWORD") == 0)
6838 new_token
.code
= T_QWORD
;
6840 else if (strcasecmp (new_token
.str
, "TBYTE") == 0
6841 /* XXX remove (gcc still uses it) */
6842 || strcasecmp (new_token
.str
, "XWORD") == 0)
6843 new_token
.code
= T_TBYTE
;
6845 else if (strcasecmp (new_token
.str
, "XMMWORD") == 0
6846 || strcasecmp (new_token
.str
, "OWORD") == 0)
6847 new_token
.code
= T_XMMWORD
;
6849 else if (strcasecmp (new_token
.str
, "PTR") == 0)
6850 new_token
.code
= T_PTR
;
6852 else if (strcasecmp (new_token
.str
, "SHORT") == 0)
6853 new_token
.code
= T_SHORT
;
6855 else if (strcasecmp (new_token
.str
, "OFFSET") == 0)
6857 new_token
.code
= T_OFFSET
;
6859 /* ??? This is not mentioned in the MASM grammar but gcc
6860 makes use of it with -mintel-syntax. OFFSET may be
6861 followed by FLAT: */
6862 if (strncasecmp (q
, " FLAT:", 6) == 0)
6863 strcat (new_token
.str
, " FLAT:");
6866 /* ??? This is not mentioned in the MASM grammar. */
6867 else if (strcasecmp (new_token
.str
, "FLAT") == 0)
6869 new_token
.code
= T_OFFSET
;
6871 strcat (new_token
.str
, ":");
6873 as_bad (_("`:' expected"));
6877 new_token
.code
= T_ID
;
6881 else if (strchr ("+-/*%|&^:[]()~", *intel_parser
.op_string
))
6883 new_token
.code
= *intel_parser
.op_string
;
6884 new_token
.str
[0] = *intel_parser
.op_string
;
6885 new_token
.str
[1] = '\0';
6888 else if (strchr ("<>", *intel_parser
.op_string
)
6889 && *intel_parser
.op_string
== *(intel_parser
.op_string
+ 1))
6891 new_token
.code
= *intel_parser
.op_string
== '<' ? T_SHL
: T_SHR
;
6892 new_token
.str
[0] = *intel_parser
.op_string
;
6893 new_token
.str
[1] = *intel_parser
.op_string
;
6894 new_token
.str
[2] = '\0';
6898 as_bad (_("Unrecognized token `%s'"), intel_parser
.op_string
);
6900 intel_parser
.op_string
+= strlen (new_token
.str
);
6901 cur_token
= new_token
;
6904 /* Put cur_token back into the token stream and make cur_token point to
6907 intel_putback_token ()
6909 if (cur_token
.code
!= T_NIL
)
6911 intel_parser
.op_string
-= strlen (cur_token
.str
);
6912 free (cur_token
.str
);
6914 cur_token
= prev_token
;
6916 /* Forget prev_token. */
6917 prev_token
.code
= T_NIL
;
6918 prev_token
.reg
= NULL
;
6919 prev_token
.str
= NULL
;
6923 tc_x86_regname_to_dw2regnum (const char *regname
)
6925 unsigned int regnum
;
6926 unsigned int regnames_count
;
6927 static const char *const regnames_32
[] =
6929 "eax", "ecx", "edx", "ebx",
6930 "esp", "ebp", "esi", "edi",
6931 "eip", "eflags", NULL
,
6932 "st0", "st1", "st2", "st3",
6933 "st4", "st5", "st6", "st7",
6935 "xmm0", "xmm1", "xmm2", "xmm3",
6936 "xmm4", "xmm5", "xmm6", "xmm7",
6937 "mm0", "mm1", "mm2", "mm3",
6938 "mm4", "mm5", "mm6", "mm7"
6940 static const char *const regnames_64
[] =
6942 "rax", "rdx", "rcx", "rbx",
6943 "rsi", "rdi", "rbp", "rsp",
6944 "r8", "r9", "r10", "r11",
6945 "r12", "r13", "r14", "r15",
6947 "xmm0", "xmm1", "xmm2", "xmm3",
6948 "xmm4", "xmm5", "xmm6", "xmm7",
6949 "xmm8", "xmm9", "xmm10", "xmm11",
6950 "xmm12", "xmm13", "xmm14", "xmm15",
6951 "st0", "st1", "st2", "st3",
6952 "st4", "st5", "st6", "st7",
6953 "mm0", "mm1", "mm2", "mm3",
6954 "mm4", "mm5", "mm6", "mm7"
6956 const char *const *regnames
;
6958 if (flag_code
== CODE_64BIT
)
6960 regnames
= regnames_64
;
6961 regnames_count
= ARRAY_SIZE (regnames_64
);
6965 regnames
= regnames_32
;
6966 regnames_count
= ARRAY_SIZE (regnames_32
);
6969 for (regnum
= 0; regnum
< regnames_count
; regnum
++)
6970 if (regnames
[regnum
] != NULL
6971 && strcmp (regname
, regnames
[regnum
]) == 0)
6978 tc_x86_frame_initial_instructions (void)
6980 static unsigned int sp_regno
;
6983 sp_regno
= tc_x86_regname_to_dw2regnum (flag_code
== CODE_64BIT
6986 cfi_add_CFA_def_cfa (sp_regno
, -x86_cie_data_alignment
);
6987 cfi_add_CFA_offset (x86_dwarf2_return_column
, x86_cie_data_alignment
);
6991 i386_elf_section_type (const char *str
, size_t len
)
6993 if (flag_code
== CODE_64BIT
6994 && len
== sizeof ("unwind") - 1
6995 && strncmp (str
, "unwind", 6) == 0)
6996 return SHT_X86_64_UNWIND
;
7003 tc_pe_dwarf2_emit_offset (symbolS
*symbol
, unsigned int size
)
7007 expr
.X_op
= O_secrel
;
7008 expr
.X_add_symbol
= symbol
;
7009 expr
.X_add_number
= 0;
7010 emit_expr (&expr
, size
);
7014 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7015 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
7018 x86_64_section_letter (int letter
, char **ptr_msg
)
7020 if (flag_code
== CODE_64BIT
)
7023 return SHF_X86_64_LARGE
;
7025 *ptr_msg
= _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
7028 *ptr_msg
= _("Bad .section directive: want a,w,x,M,S,G,T in string");
7033 x86_64_section_word (char *str
, size_t len
)
7035 if (len
== 5 && flag_code
== CODE_64BIT
&& strncmp (str
, "large", 5) == 0)
7036 return SHF_X86_64_LARGE
;
7042 handle_large_common (int small ATTRIBUTE_UNUSED
)
7044 if (flag_code
!= CODE_64BIT
)
7046 s_comm_internal (0, elf_common_parse
);
7047 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
7051 static segT lbss_section
;
7052 asection
*saved_com_section_ptr
= elf_com_section_ptr
;
7053 asection
*saved_bss_section
= bss_section
;
7055 if (lbss_section
== NULL
)
7057 flagword applicable
;
7059 subsegT subseg
= now_subseg
;
7061 /* The .lbss section is for local .largecomm symbols. */
7062 lbss_section
= subseg_new (".lbss", 0);
7063 applicable
= bfd_applicable_section_flags (stdoutput
);
7064 bfd_set_section_flags (stdoutput
, lbss_section
,
7065 applicable
& SEC_ALLOC
);
7066 seg_info (lbss_section
)->bss
= 1;
7068 subseg_set (seg
, subseg
);
7071 elf_com_section_ptr
= &_bfd_elf_large_com_section
;
7072 bss_section
= lbss_section
;
7074 s_comm_internal (0, elf_common_parse
);
7076 elf_com_section_ptr
= saved_com_section_ptr
;
7077 bss_section
= saved_bss_section
;
7080 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */