2004-09-07 Paolo Bonzini <bonzini@gnu.org>
[binutils.git] / bfd / elf64-sparc.c
blobca35eecba2c5b8a92069568be9e75dcda8785cab
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
32 #include "elf/sparc.h"
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
42 static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44 static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
47 static void sparc64_elf_build_plt
48 PARAMS ((bfd *, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
50 PARAMS ((bfd_vma));
51 static bfd_vma sparc64_elf_plt_ptr_offset
52 PARAMS ((bfd_vma, bfd_vma));
54 static bfd_boolean sparc64_elf_check_relocs
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
57 static bfd_boolean sparc64_elf_adjust_dynamic_symbol
58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
59 static bfd_boolean sparc64_elf_size_dynamic_sections
60 PARAMS ((bfd *, struct bfd_link_info *));
61 static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym *, int));
63 static bfd_boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
65 const char **, flagword *, asection **, bfd_vma *));
66 static bfd_boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 bfd_boolean (*) (PTR, const char *, Elf_Internal_Sym *,
69 asection *, struct elf_link_hash_entry *)));
70 static void sparc64_elf_symbol_processing
71 PARAMS ((bfd *, asymbol *));
73 static bfd_boolean sparc64_elf_merge_private_bfd_data
74 PARAMS ((bfd *, bfd *));
76 static bfd_boolean sparc64_elf_fake_sections
77 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
79 static const char *sparc64_elf_print_symbol_all
80 PARAMS ((bfd *, PTR, asymbol *));
81 static bfd_boolean sparc64_elf_new_section_hook
82 PARAMS ((bfd *, asection *));
83 static bfd_boolean sparc64_elf_relax_section
84 PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *));
85 static bfd_boolean sparc64_elf_relocate_section
86 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
87 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
88 static bfd_boolean sparc64_elf_finish_dynamic_symbol
89 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
90 Elf_Internal_Sym *));
91 static bfd_boolean sparc64_elf_finish_dynamic_sections
92 PARAMS ((bfd *, struct bfd_link_info *));
93 static bfd_boolean sparc64_elf_object_p PARAMS ((bfd *));
94 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
95 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
96 static bfd_boolean sparc64_elf_slurp_one_reloc_table
97 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, bfd_boolean));
98 static bfd_boolean sparc64_elf_slurp_reloc_table
99 PARAMS ((bfd *, asection *, asymbol **, bfd_boolean));
100 static long sparc64_elf_canonicalize_reloc
101 PARAMS ((bfd *, asection *, arelent **, asymbol **));
102 static long sparc64_elf_canonicalize_dynamic_reloc
103 PARAMS ((bfd *, arelent **, asymbol **));
104 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
105 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
106 PARAMS ((const Elf_Internal_Rela *));
108 /* The relocation "howto" table. */
110 static bfd_reloc_status_type sparc_elf_notsup_reloc
111 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
112 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
113 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
114 static bfd_reloc_status_type sparc_elf_hix22_reloc
115 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
116 static bfd_reloc_status_type sparc_elf_lox10_reloc
117 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
119 static reloc_howto_type sparc64_elf_howto_table[] =
121 HOWTO(R_SPARC_NONE, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", FALSE,0,0x00000000,TRUE),
122 HOWTO(R_SPARC_8, 0,0, 8,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", FALSE,0,0x000000ff,TRUE),
123 HOWTO(R_SPARC_16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", FALSE,0,0x0000ffff,TRUE),
124 HOWTO(R_SPARC_32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", FALSE,0,0xffffffff,TRUE),
125 HOWTO(R_SPARC_DISP8, 0,0, 8,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", FALSE,0,0x000000ff,TRUE),
126 HOWTO(R_SPARC_DISP16, 0,1,16,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", FALSE,0,0x0000ffff,TRUE),
127 HOWTO(R_SPARC_DISP32, 0,2,32,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", FALSE,0,0xffffffff,TRUE),
128 HOWTO(R_SPARC_WDISP30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", FALSE,0,0x3fffffff,TRUE),
129 HOWTO(R_SPARC_WDISP22, 2,2,22,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", FALSE,0,0x003fffff,TRUE),
130 HOWTO(R_SPARC_HI22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", FALSE,0,0x003fffff,TRUE),
131 HOWTO(R_SPARC_22, 0,2,22,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", FALSE,0,0x003fffff,TRUE),
132 HOWTO(R_SPARC_13, 0,2,13,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", FALSE,0,0x00001fff,TRUE),
133 HOWTO(R_SPARC_LO10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", FALSE,0,0x000003ff,TRUE),
134 HOWTO(R_SPARC_GOT10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", FALSE,0,0x000003ff,TRUE),
135 HOWTO(R_SPARC_GOT13, 0,2,13,FALSE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", FALSE,0,0x00001fff,TRUE),
136 HOWTO(R_SPARC_GOT22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", FALSE,0,0x003fffff,TRUE),
137 HOWTO(R_SPARC_PC10, 0,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", FALSE,0,0x000003ff,TRUE),
138 HOWTO(R_SPARC_PC22, 10,2,22,TRUE, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", FALSE,0,0x003fffff,TRUE),
139 HOWTO(R_SPARC_WPLT30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", FALSE,0,0x3fffffff,TRUE),
140 HOWTO(R_SPARC_COPY, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", FALSE,0,0x00000000,TRUE),
141 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",FALSE,0,0x00000000,TRUE),
142 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",FALSE,0,0x00000000,TRUE),
143 HOWTO(R_SPARC_RELATIVE, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",FALSE,0,0x00000000,TRUE),
144 HOWTO(R_SPARC_UA32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", FALSE,0,0xffffffff,TRUE),
145 #ifndef SPARC64_OLD_RELOCS
146 HOWTO(R_SPARC_PLT32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", FALSE,0,0xffffffff,TRUE),
147 /* These aren't implemented yet. */
148 HOWTO(R_SPARC_HIPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", FALSE,0,0x00000000,TRUE),
149 HOWTO(R_SPARC_LOPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", FALSE,0,0x00000000,TRUE),
150 HOWTO(R_SPARC_PCPLT32, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", FALSE,0,0x00000000,TRUE),
151 HOWTO(R_SPARC_PCPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", FALSE,0,0x00000000,TRUE),
152 HOWTO(R_SPARC_PCPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", FALSE,0,0x00000000,TRUE),
153 #endif
154 HOWTO(R_SPARC_10, 0,2,10,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", FALSE,0,0x000003ff,TRUE),
155 HOWTO(R_SPARC_11, 0,2,11,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", FALSE,0,0x000007ff,TRUE),
156 HOWTO(R_SPARC_64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", FALSE,0,MINUS_ONE, TRUE),
157 HOWTO(R_SPARC_OLO10, 0,2,13,FALSE,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", FALSE,0,0x00001fff,TRUE),
158 HOWTO(R_SPARC_HH22, 42,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", FALSE,0,0x003fffff,TRUE),
159 HOWTO(R_SPARC_HM10, 32,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", FALSE,0,0x000003ff,TRUE),
160 HOWTO(R_SPARC_LM22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", FALSE,0,0x003fffff,TRUE),
161 HOWTO(R_SPARC_PC_HH22, 42,2,22,TRUE, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", FALSE,0,0x003fffff,TRUE),
162 HOWTO(R_SPARC_PC_HM10, 32,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", FALSE,0,0x000003ff,TRUE),
163 HOWTO(R_SPARC_PC_LM22, 10,2,22,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", FALSE,0,0x003fffff,TRUE),
164 HOWTO(R_SPARC_WDISP16, 2,2,16,TRUE, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", FALSE,0,0x00000000,TRUE),
165 HOWTO(R_SPARC_WDISP19, 2,2,19,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", FALSE,0,0x0007ffff,TRUE),
166 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",FALSE,0,0x00000000,TRUE),
167 HOWTO(R_SPARC_7, 0,2, 7,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", FALSE,0,0x0000007f,TRUE),
168 HOWTO(R_SPARC_5, 0,2, 5,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", FALSE,0,0x0000001f,TRUE),
169 HOWTO(R_SPARC_6, 0,2, 6,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", FALSE,0,0x0000003f,TRUE),
170 HOWTO(R_SPARC_DISP64, 0,4,64,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", FALSE,0,MINUS_ONE, TRUE),
171 HOWTO(R_SPARC_PLT64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", FALSE,0,MINUS_ONE, TRUE),
172 HOWTO(R_SPARC_HIX22, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", FALSE,0,MINUS_ONE, FALSE),
173 HOWTO(R_SPARC_LOX10, 0,4, 0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", FALSE,0,MINUS_ONE, FALSE),
174 HOWTO(R_SPARC_H44, 22,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", FALSE,0,0x003fffff,FALSE),
175 HOWTO(R_SPARC_M44, 12,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", FALSE,0,0x000003ff,FALSE),
176 HOWTO(R_SPARC_L44, 0,2,13,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", FALSE,0,0x00000fff,FALSE),
177 HOWTO(R_SPARC_REGISTER, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",FALSE,0,MINUS_ONE, FALSE),
178 HOWTO(R_SPARC_UA64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", FALSE,0,MINUS_ONE, TRUE),
179 HOWTO(R_SPARC_UA16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", FALSE,0,0x0000ffff,TRUE),
180 HOWTO(R_SPARC_TLS_GD_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_HI22",FALSE,0,0x003fffff,TRUE),
181 HOWTO(R_SPARC_TLS_GD_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_LO10",FALSE,0,0x000003ff,TRUE),
182 HOWTO(R_SPARC_TLS_GD_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_ADD",FALSE,0,0x00000000,TRUE),
183 HOWTO(R_SPARC_TLS_GD_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_CALL",FALSE,0,0x3fffffff,TRUE),
184 HOWTO(R_SPARC_TLS_LDM_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_HI22",FALSE,0,0x003fffff,TRUE),
185 HOWTO(R_SPARC_TLS_LDM_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_LO10",FALSE,0,0x000003ff,TRUE),
186 HOWTO(R_SPARC_TLS_LDM_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_ADD",FALSE,0,0x00000000,TRUE),
187 HOWTO(R_SPARC_TLS_LDM_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_CALL",FALSE,0,0x3fffffff,TRUE),
188 HOWTO(R_SPARC_TLS_LDO_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,"R_SPARC_TLS_LDO_HIX22",FALSE,0,0x003fffff, FALSE),
189 HOWTO(R_SPARC_TLS_LDO_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LDO_LOX10",FALSE,0,0x000003ff, FALSE),
190 HOWTO(R_SPARC_TLS_LDO_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDO_ADD",FALSE,0,0x00000000,TRUE),
191 HOWTO(R_SPARC_TLS_IE_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_HI22",FALSE,0,0x003fffff,TRUE),
192 HOWTO(R_SPARC_TLS_IE_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LO10",FALSE,0,0x000003ff,TRUE),
193 HOWTO(R_SPARC_TLS_IE_LD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LD",FALSE,0,0x00000000,TRUE),
194 HOWTO(R_SPARC_TLS_IE_LDX,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LDX",FALSE,0,0x00000000,TRUE),
195 HOWTO(R_SPARC_TLS_IE_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_ADD",FALSE,0,0x00000000,TRUE),
196 HOWTO(R_SPARC_TLS_LE_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_TLS_LE_HIX22",FALSE,0,0x003fffff, FALSE),
197 HOWTO(R_SPARC_TLS_LE_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LE_LOX10",FALSE,0,0x000003ff, FALSE),
198 HOWTO(R_SPARC_TLS_DTPMOD32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD32",FALSE,0,0x00000000,TRUE),
199 HOWTO(R_SPARC_TLS_DTPMOD64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD64",FALSE,0,0x00000000,TRUE),
200 HOWTO(R_SPARC_TLS_DTPOFF32,0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF32",FALSE,0,0xffffffff,TRUE),
201 HOWTO(R_SPARC_TLS_DTPOFF64,0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF64",FALSE,0,MINUS_ONE,TRUE),
202 HOWTO(R_SPARC_TLS_TPOFF32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF32",FALSE,0,0x00000000,TRUE),
203 HOWTO(R_SPARC_TLS_TPOFF64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF64",FALSE,0,0x00000000,TRUE)
206 struct elf_reloc_map {
207 bfd_reloc_code_real_type bfd_reloc_val;
208 unsigned char elf_reloc_val;
211 static const struct elf_reloc_map sparc_reloc_map[] =
213 { BFD_RELOC_NONE, R_SPARC_NONE, },
214 { BFD_RELOC_16, R_SPARC_16, },
215 { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
216 { BFD_RELOC_8, R_SPARC_8 },
217 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
218 { BFD_RELOC_CTOR, R_SPARC_64 },
219 { BFD_RELOC_32, R_SPARC_32 },
220 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
221 { BFD_RELOC_HI22, R_SPARC_HI22 },
222 { BFD_RELOC_LO10, R_SPARC_LO10, },
223 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
224 { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
225 { BFD_RELOC_SPARC22, R_SPARC_22 },
226 { BFD_RELOC_SPARC13, R_SPARC_13 },
227 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
228 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
229 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
230 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
231 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
232 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
233 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
234 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
235 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
236 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
237 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
238 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
239 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
240 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
241 { BFD_RELOC_SPARC_10, R_SPARC_10 },
242 { BFD_RELOC_SPARC_11, R_SPARC_11 },
243 { BFD_RELOC_SPARC_64, R_SPARC_64 },
244 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
245 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
246 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
247 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
248 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
249 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
250 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
251 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
252 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
253 { BFD_RELOC_SPARC_7, R_SPARC_7 },
254 { BFD_RELOC_SPARC_5, R_SPARC_5 },
255 { BFD_RELOC_SPARC_6, R_SPARC_6 },
256 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
257 { BFD_RELOC_SPARC_TLS_GD_HI22, R_SPARC_TLS_GD_HI22 },
258 { BFD_RELOC_SPARC_TLS_GD_LO10, R_SPARC_TLS_GD_LO10 },
259 { BFD_RELOC_SPARC_TLS_GD_ADD, R_SPARC_TLS_GD_ADD },
260 { BFD_RELOC_SPARC_TLS_GD_CALL, R_SPARC_TLS_GD_CALL },
261 { BFD_RELOC_SPARC_TLS_LDM_HI22, R_SPARC_TLS_LDM_HI22 },
262 { BFD_RELOC_SPARC_TLS_LDM_LO10, R_SPARC_TLS_LDM_LO10 },
263 { BFD_RELOC_SPARC_TLS_LDM_ADD, R_SPARC_TLS_LDM_ADD },
264 { BFD_RELOC_SPARC_TLS_LDM_CALL, R_SPARC_TLS_LDM_CALL },
265 { BFD_RELOC_SPARC_TLS_LDO_HIX22, R_SPARC_TLS_LDO_HIX22 },
266 { BFD_RELOC_SPARC_TLS_LDO_LOX10, R_SPARC_TLS_LDO_LOX10 },
267 { BFD_RELOC_SPARC_TLS_LDO_ADD, R_SPARC_TLS_LDO_ADD },
268 { BFD_RELOC_SPARC_TLS_IE_HI22, R_SPARC_TLS_IE_HI22 },
269 { BFD_RELOC_SPARC_TLS_IE_LO10, R_SPARC_TLS_IE_LO10 },
270 { BFD_RELOC_SPARC_TLS_IE_LD, R_SPARC_TLS_IE_LD },
271 { BFD_RELOC_SPARC_TLS_IE_LDX, R_SPARC_TLS_IE_LDX },
272 { BFD_RELOC_SPARC_TLS_IE_ADD, R_SPARC_TLS_IE_ADD },
273 { BFD_RELOC_SPARC_TLS_LE_HIX22, R_SPARC_TLS_LE_HIX22 },
274 { BFD_RELOC_SPARC_TLS_LE_LOX10, R_SPARC_TLS_LE_LOX10 },
275 { BFD_RELOC_SPARC_TLS_DTPMOD32, R_SPARC_TLS_DTPMOD32 },
276 { BFD_RELOC_SPARC_TLS_DTPMOD64, R_SPARC_TLS_DTPMOD64 },
277 { BFD_RELOC_SPARC_TLS_DTPOFF32, R_SPARC_TLS_DTPOFF32 },
278 { BFD_RELOC_SPARC_TLS_DTPOFF64, R_SPARC_TLS_DTPOFF64 },
279 { BFD_RELOC_SPARC_TLS_TPOFF32, R_SPARC_TLS_TPOFF32 },
280 { BFD_RELOC_SPARC_TLS_TPOFF64, R_SPARC_TLS_TPOFF64 },
281 #ifndef SPARC64_OLD_RELOCS
282 { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
283 #endif
284 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
285 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
286 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
287 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
288 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
289 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
290 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
293 static reloc_howto_type *
294 sparc64_elf_reloc_type_lookup (abfd, code)
295 bfd *abfd ATTRIBUTE_UNUSED;
296 bfd_reloc_code_real_type code;
298 unsigned int i;
299 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
301 if (sparc_reloc_map[i].bfd_reloc_val == code)
302 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
304 return 0;
307 static void
308 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
309 bfd *abfd ATTRIBUTE_UNUSED;
310 arelent *cache_ptr;
311 Elf_Internal_Rela *dst;
313 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
314 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
317 struct sparc64_elf_section_data
319 struct bfd_elf_section_data elf;
320 unsigned int do_relax, reloc_count;
323 #define sec_do_relax(sec) \
324 ((struct sparc64_elf_section_data *) elf_section_data (sec))->do_relax
325 #define canon_reloc_count(sec) \
326 ((struct sparc64_elf_section_data *) elf_section_data (sec))->reloc_count
328 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
329 section can represent up to two relocs, we must tell the user to allocate
330 more space. */
332 static long
333 sparc64_elf_get_reloc_upper_bound (abfd, sec)
334 bfd *abfd ATTRIBUTE_UNUSED;
335 asection *sec;
337 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
340 static long
341 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
342 bfd *abfd;
344 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
347 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
348 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
349 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
350 for the same location, R_SPARC_LO10 and R_SPARC_13. */
352 static bfd_boolean
353 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
354 bfd *abfd;
355 asection *asect;
356 Elf_Internal_Shdr *rel_hdr;
357 asymbol **symbols;
358 bfd_boolean dynamic;
360 PTR allocated = NULL;
361 bfd_byte *native_relocs;
362 arelent *relent;
363 unsigned int i;
364 int entsize;
365 bfd_size_type count;
366 arelent *relents;
368 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
369 if (allocated == NULL)
370 goto error_return;
372 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
373 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
374 goto error_return;
376 native_relocs = (bfd_byte *) allocated;
378 relents = asect->relocation + canon_reloc_count (asect);
380 entsize = rel_hdr->sh_entsize;
381 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
383 count = rel_hdr->sh_size / entsize;
385 for (i = 0, relent = relents; i < count;
386 i++, relent++, native_relocs += entsize)
388 Elf_Internal_Rela rela;
390 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
392 /* The address of an ELF reloc is section relative for an object
393 file, and absolute for an executable file or shared library.
394 The address of a normal BFD reloc is always section relative,
395 and the address of a dynamic reloc is absolute.. */
396 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
397 relent->address = rela.r_offset;
398 else
399 relent->address = rela.r_offset - asect->vma;
401 if (ELF64_R_SYM (rela.r_info) == 0)
402 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
403 else
405 asymbol **ps, *s;
407 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
408 s = *ps;
410 /* Canonicalize ELF section symbols. FIXME: Why? */
411 if ((s->flags & BSF_SECTION_SYM) == 0)
412 relent->sym_ptr_ptr = ps;
413 else
414 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
417 relent->addend = rela.r_addend;
419 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
420 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
422 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
423 relent[1].address = relent->address;
424 relent++;
425 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
426 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
427 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
429 else
430 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
433 canon_reloc_count (asect) += relent - relents;
435 if (allocated != NULL)
436 free (allocated);
438 return TRUE;
440 error_return:
441 if (allocated != NULL)
442 free (allocated);
443 return FALSE;
446 /* Read in and swap the external relocs. */
448 static bfd_boolean
449 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
450 bfd *abfd;
451 asection *asect;
452 asymbol **symbols;
453 bfd_boolean dynamic;
455 struct bfd_elf_section_data * const d = elf_section_data (asect);
456 Elf_Internal_Shdr *rel_hdr;
457 Elf_Internal_Shdr *rel_hdr2;
458 bfd_size_type amt;
460 if (asect->relocation != NULL)
461 return TRUE;
463 if (! dynamic)
465 if ((asect->flags & SEC_RELOC) == 0
466 || asect->reloc_count == 0)
467 return TRUE;
469 rel_hdr = &d->rel_hdr;
470 rel_hdr2 = d->rel_hdr2;
472 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
473 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
475 else
477 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
478 case because relocations against this section may use the
479 dynamic symbol table, and in that case bfd_section_from_shdr
480 in elf.c does not update the RELOC_COUNT. */
481 if (asect->size == 0)
482 return TRUE;
484 rel_hdr = &d->this_hdr;
485 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
486 rel_hdr2 = NULL;
489 amt = asect->reloc_count;
490 amt *= 2 * sizeof (arelent);
491 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
492 if (asect->relocation == NULL)
493 return FALSE;
495 /* The sparc64_elf_slurp_one_reloc_table routine increments
496 canon_reloc_count. */
497 canon_reloc_count (asect) = 0;
499 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
500 dynamic))
501 return FALSE;
503 if (rel_hdr2
504 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
505 dynamic))
506 return FALSE;
508 return TRUE;
511 /* Canonicalize the relocs. */
513 static long
514 sparc64_elf_canonicalize_reloc (abfd, section, relptr, symbols)
515 bfd *abfd;
516 sec_ptr section;
517 arelent **relptr;
518 asymbol **symbols;
520 arelent *tblptr;
521 unsigned int i;
522 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
524 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
525 return -1;
527 tblptr = section->relocation;
528 for (i = 0; i < canon_reloc_count (section); i++)
529 *relptr++ = tblptr++;
531 *relptr = NULL;
533 return canon_reloc_count (section);
537 /* Canonicalize the dynamic relocation entries. Note that we return
538 the dynamic relocations as a single block, although they are
539 actually associated with particular sections; the interface, which
540 was designed for SunOS style shared libraries, expects that there
541 is only one set of dynamic relocs. Any section that was actually
542 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
543 the dynamic symbol table, is considered to be a dynamic reloc
544 section. */
546 static long
547 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
548 bfd *abfd;
549 arelent **storage;
550 asymbol **syms;
552 asection *s;
553 long ret;
555 if (elf_dynsymtab (abfd) == 0)
557 bfd_set_error (bfd_error_invalid_operation);
558 return -1;
561 ret = 0;
562 for (s = abfd->sections; s != NULL; s = s->next)
564 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
565 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
567 arelent *p;
568 long count, i;
570 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, TRUE))
571 return -1;
572 count = canon_reloc_count (s);
573 p = s->relocation;
574 for (i = 0; i < count; i++)
575 *storage++ = p++;
576 ret += count;
580 *storage = NULL;
582 return ret;
585 /* Write out the relocs. */
587 static void
588 sparc64_elf_write_relocs (abfd, sec, data)
589 bfd *abfd;
590 asection *sec;
591 PTR data;
593 bfd_boolean *failedp = (bfd_boolean *) data;
594 Elf_Internal_Shdr *rela_hdr;
595 Elf64_External_Rela *outbound_relocas, *src_rela;
596 unsigned int idx, count;
597 asymbol *last_sym = 0;
598 int last_sym_idx = 0;
600 /* If we have already failed, don't do anything. */
601 if (*failedp)
602 return;
604 if ((sec->flags & SEC_RELOC) == 0)
605 return;
607 /* The linker backend writes the relocs out itself, and sets the
608 reloc_count field to zero to inhibit writing them here. Also,
609 sometimes the SEC_RELOC flag gets set even when there aren't any
610 relocs. */
611 if (sec->reloc_count == 0)
612 return;
614 /* We can combine two relocs that refer to the same address
615 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
616 latter is R_SPARC_13 with no associated symbol. */
617 count = 0;
618 for (idx = 0; idx < sec->reloc_count; idx++)
620 bfd_vma addr;
622 ++count;
624 addr = sec->orelocation[idx]->address;
625 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
626 && idx < sec->reloc_count - 1)
628 arelent *r = sec->orelocation[idx + 1];
630 if (r->howto->type == R_SPARC_13
631 && r->address == addr
632 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
633 && (*r->sym_ptr_ptr)->value == 0)
634 ++idx;
638 rela_hdr = &elf_section_data (sec)->rel_hdr;
640 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
641 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
642 if (rela_hdr->contents == NULL)
644 *failedp = TRUE;
645 return;
648 /* Figure out whether the relocations are RELA or REL relocations. */
649 if (rela_hdr->sh_type != SHT_RELA)
650 abort ();
652 /* orelocation has the data, reloc_count has the count... */
653 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
654 src_rela = outbound_relocas;
656 for (idx = 0; idx < sec->reloc_count; idx++)
658 Elf_Internal_Rela dst_rela;
659 arelent *ptr;
660 asymbol *sym;
661 int n;
663 ptr = sec->orelocation[idx];
665 /* The address of an ELF reloc is section relative for an object
666 file, and absolute for an executable file or shared library.
667 The address of a BFD reloc is always section relative. */
668 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
669 dst_rela.r_offset = ptr->address;
670 else
671 dst_rela.r_offset = ptr->address + sec->vma;
673 sym = *ptr->sym_ptr_ptr;
674 if (sym == last_sym)
675 n = last_sym_idx;
676 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
677 n = STN_UNDEF;
678 else
680 last_sym = sym;
681 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
682 if (n < 0)
684 *failedp = TRUE;
685 return;
687 last_sym_idx = n;
690 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
691 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
692 && ! _bfd_elf_validate_reloc (abfd, ptr))
694 *failedp = TRUE;
695 return;
698 if (ptr->howto->type == R_SPARC_LO10
699 && idx < sec->reloc_count - 1)
701 arelent *r = sec->orelocation[idx + 1];
703 if (r->howto->type == R_SPARC_13
704 && r->address == ptr->address
705 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
706 && (*r->sym_ptr_ptr)->value == 0)
708 idx++;
709 dst_rela.r_info
710 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
711 R_SPARC_OLO10));
713 else
714 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
716 else
717 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
719 dst_rela.r_addend = ptr->addend;
720 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
721 ++src_rela;
725 /* Sparc64 ELF linker hash table. */
727 struct sparc64_elf_app_reg
729 unsigned char bind;
730 unsigned short shndx;
731 bfd *abfd;
732 char *name;
735 struct sparc64_elf_link_hash_table
737 struct elf_link_hash_table root;
739 struct sparc64_elf_app_reg app_regs [4];
742 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
744 #define sparc64_elf_hash_table(p) \
745 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
747 /* Create a Sparc64 ELF linker hash table. */
749 static struct bfd_link_hash_table *
750 sparc64_elf_bfd_link_hash_table_create (abfd)
751 bfd *abfd;
753 struct sparc64_elf_link_hash_table *ret;
754 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
756 ret = (struct sparc64_elf_link_hash_table *) bfd_zmalloc (amt);
757 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
758 return NULL;
760 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
761 _bfd_elf_link_hash_newfunc))
763 free (ret);
764 return NULL;
767 return &ret->root.root;
770 /* Utility for performing the standard initial work of an instruction
771 relocation.
772 *PRELOCATION will contain the relocated item.
773 *PINSN will contain the instruction from the input stream.
774 If the result is `bfd_reloc_other' the caller can continue with
775 performing the relocation. Otherwise it must stop and return the
776 value to its caller. */
778 static bfd_reloc_status_type
779 init_insn_reloc (abfd,
780 reloc_entry,
781 symbol,
782 data,
783 input_section,
784 output_bfd,
785 prelocation,
786 pinsn)
787 bfd *abfd;
788 arelent *reloc_entry;
789 asymbol *symbol;
790 PTR data;
791 asection *input_section;
792 bfd *output_bfd;
793 bfd_vma *prelocation;
794 bfd_vma *pinsn;
796 bfd_vma relocation;
797 reloc_howto_type *howto = reloc_entry->howto;
799 if (output_bfd != (bfd *) NULL
800 && (symbol->flags & BSF_SECTION_SYM) == 0
801 && (! howto->partial_inplace
802 || reloc_entry->addend == 0))
804 reloc_entry->address += input_section->output_offset;
805 return bfd_reloc_ok;
808 /* This works because partial_inplace is FALSE. */
809 if (output_bfd != NULL)
810 return bfd_reloc_continue;
812 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
813 return bfd_reloc_outofrange;
815 relocation = (symbol->value
816 + symbol->section->output_section->vma
817 + symbol->section->output_offset);
818 relocation += reloc_entry->addend;
819 if (howto->pc_relative)
821 relocation -= (input_section->output_section->vma
822 + input_section->output_offset);
823 relocation -= reloc_entry->address;
826 *prelocation = relocation;
827 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
828 return bfd_reloc_other;
831 /* For unsupported relocs. */
833 static bfd_reloc_status_type
834 sparc_elf_notsup_reloc (abfd,
835 reloc_entry,
836 symbol,
837 data,
838 input_section,
839 output_bfd,
840 error_message)
841 bfd *abfd ATTRIBUTE_UNUSED;
842 arelent *reloc_entry ATTRIBUTE_UNUSED;
843 asymbol *symbol ATTRIBUTE_UNUSED;
844 PTR data ATTRIBUTE_UNUSED;
845 asection *input_section ATTRIBUTE_UNUSED;
846 bfd *output_bfd ATTRIBUTE_UNUSED;
847 char **error_message ATTRIBUTE_UNUSED;
849 return bfd_reloc_notsupported;
852 /* Handle the WDISP16 reloc. */
854 static bfd_reloc_status_type
855 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
856 output_bfd, error_message)
857 bfd *abfd;
858 arelent *reloc_entry;
859 asymbol *symbol;
860 PTR data;
861 asection *input_section;
862 bfd *output_bfd;
863 char **error_message ATTRIBUTE_UNUSED;
865 bfd_vma relocation;
866 bfd_vma insn;
867 bfd_reloc_status_type status;
869 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
870 input_section, output_bfd, &relocation, &insn);
871 if (status != bfd_reloc_other)
872 return status;
874 insn &= ~ (bfd_vma) 0x303fff;
875 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
876 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
878 if ((bfd_signed_vma) relocation < - 0x40000
879 || (bfd_signed_vma) relocation > 0x3ffff)
880 return bfd_reloc_overflow;
881 else
882 return bfd_reloc_ok;
885 /* Handle the HIX22 reloc. */
887 static bfd_reloc_status_type
888 sparc_elf_hix22_reloc (abfd,
889 reloc_entry,
890 symbol,
891 data,
892 input_section,
893 output_bfd,
894 error_message)
895 bfd *abfd;
896 arelent *reloc_entry;
897 asymbol *symbol;
898 PTR data;
899 asection *input_section;
900 bfd *output_bfd;
901 char **error_message ATTRIBUTE_UNUSED;
903 bfd_vma relocation;
904 bfd_vma insn;
905 bfd_reloc_status_type status;
907 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
908 input_section, output_bfd, &relocation, &insn);
909 if (status != bfd_reloc_other)
910 return status;
912 relocation ^= MINUS_ONE;
913 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
914 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
916 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
917 return bfd_reloc_overflow;
918 else
919 return bfd_reloc_ok;
922 /* Handle the LOX10 reloc. */
924 static bfd_reloc_status_type
925 sparc_elf_lox10_reloc (abfd,
926 reloc_entry,
927 symbol,
928 data,
929 input_section,
930 output_bfd,
931 error_message)
932 bfd *abfd;
933 arelent *reloc_entry;
934 asymbol *symbol;
935 PTR data;
936 asection *input_section;
937 bfd *output_bfd;
938 char **error_message ATTRIBUTE_UNUSED;
940 bfd_vma relocation;
941 bfd_vma insn;
942 bfd_reloc_status_type status;
944 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
945 input_section, output_bfd, &relocation, &insn);
946 if (status != bfd_reloc_other)
947 return status;
949 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
950 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
952 return bfd_reloc_ok;
955 /* PLT/GOT stuff */
957 /* Both the headers and the entries are icache aligned. */
958 #define PLT_ENTRY_SIZE 32
959 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
960 #define LARGE_PLT_THRESHOLD 32768
961 #define GOT_RESERVED_ENTRIES 1
963 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
965 /* Fill in the .plt section. */
967 static void
968 sparc64_elf_build_plt (output_bfd, contents, nentries)
969 bfd *output_bfd;
970 unsigned char *contents;
971 int nentries;
973 const unsigned int nop = 0x01000000;
974 int i, j;
976 /* The first four entries are reserved, and are initially undefined.
977 We fill them with `illtrap 0' to force ld.so to do something. */
979 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
980 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
982 /* The first 32768 entries are close enough to plt1 to get there via
983 a straight branch. */
985 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
987 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
988 unsigned int sethi, ba;
990 /* sethi (. - plt0), %g1 */
991 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
993 /* ba,a,pt %xcc, plt1 */
994 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
996 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
997 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
998 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
999 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
1000 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
1001 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
1002 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
1003 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
1006 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
1007 160: 160 entries and 160 pointers. This is to separate code from data,
1008 which is much friendlier on the cache. */
1010 for (; i < nentries; i += 160)
1012 int block = (i + 160 <= nentries ? 160 : nentries - i);
1013 for (j = 0; j < block; ++j)
1015 unsigned char *entry, *ptr;
1016 unsigned int ldx;
1018 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
1019 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
1021 /* ldx [%o7 + ptr - (entry+4)], %g1 */
1022 ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
1024 /* mov %o7,%g5
1025 call .+8
1027 ldx [%o7+P],%g1
1028 jmpl %o7+%g1,%g1
1029 mov %g5,%o7 */
1030 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
1031 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
1032 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
1033 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
1034 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
1035 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
1037 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
1042 /* Return the offset of a particular plt entry within the .plt section. */
1044 static bfd_vma
1045 sparc64_elf_plt_entry_offset (index)
1046 bfd_vma index;
1048 bfd_vma block, ofs;
1050 if (index < LARGE_PLT_THRESHOLD)
1051 return index * PLT_ENTRY_SIZE;
1053 /* See above for details. */
1055 block = (index - LARGE_PLT_THRESHOLD) / 160;
1056 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
1058 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
1061 static bfd_vma
1062 sparc64_elf_plt_ptr_offset (index, max)
1063 bfd_vma index;
1064 bfd_vma max;
1066 bfd_vma block, ofs, last;
1068 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
1070 /* See above for details. */
1072 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
1073 ofs = index - block;
1074 if (block + 160 > max)
1075 last = (max - LARGE_PLT_THRESHOLD) % 160;
1076 else
1077 last = 160;
1079 return (block * PLT_ENTRY_SIZE
1080 + last * 6*4
1081 + ofs * 8);
1084 /* Look through the relocs for a section during the first phase, and
1085 allocate space in the global offset table or procedure linkage
1086 table. */
1088 static bfd_boolean
1089 sparc64_elf_check_relocs (abfd, info, sec, relocs)
1090 bfd *abfd;
1091 struct bfd_link_info *info;
1092 asection *sec;
1093 const Elf_Internal_Rela *relocs;
1095 bfd *dynobj;
1096 Elf_Internal_Shdr *symtab_hdr;
1097 struct elf_link_hash_entry **sym_hashes;
1098 bfd_vma *local_got_offsets;
1099 const Elf_Internal_Rela *rel;
1100 const Elf_Internal_Rela *rel_end;
1101 asection *sgot;
1102 asection *srelgot;
1103 asection *sreloc;
1105 if (info->relocatable || !(sec->flags & SEC_ALLOC))
1106 return TRUE;
1108 dynobj = elf_hash_table (info)->dynobj;
1109 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1110 sym_hashes = elf_sym_hashes (abfd);
1111 local_got_offsets = elf_local_got_offsets (abfd);
1113 sgot = NULL;
1114 srelgot = NULL;
1115 sreloc = NULL;
1117 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1118 for (rel = relocs; rel < rel_end; rel++)
1120 unsigned long r_symndx;
1121 struct elf_link_hash_entry *h;
1123 r_symndx = ELF64_R_SYM (rel->r_info);
1124 if (r_symndx < symtab_hdr->sh_info)
1125 h = NULL;
1126 else
1127 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1129 switch (ELF64_R_TYPE_ID (rel->r_info))
1131 case R_SPARC_GOT10:
1132 case R_SPARC_GOT13:
1133 case R_SPARC_GOT22:
1134 /* This symbol requires a global offset table entry. */
1136 if (dynobj == NULL)
1138 /* Create the .got section. */
1139 elf_hash_table (info)->dynobj = dynobj = abfd;
1140 if (! _bfd_elf_create_got_section (dynobj, info))
1141 return FALSE;
1144 if (sgot == NULL)
1146 sgot = bfd_get_section_by_name (dynobj, ".got");
1147 BFD_ASSERT (sgot != NULL);
1150 if (srelgot == NULL && (h != NULL || info->shared))
1152 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1153 if (srelgot == NULL)
1155 srelgot = bfd_make_section (dynobj, ".rela.got");
1156 if (srelgot == NULL
1157 || ! bfd_set_section_flags (dynobj, srelgot,
1158 (SEC_ALLOC
1159 | SEC_LOAD
1160 | SEC_HAS_CONTENTS
1161 | SEC_IN_MEMORY
1162 | SEC_LINKER_CREATED
1163 | SEC_READONLY))
1164 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1165 return FALSE;
1169 if (h != NULL)
1171 if (h->got.offset != (bfd_vma) -1)
1173 /* We have already allocated space in the .got. */
1174 break;
1176 h->got.offset = sgot->size;
1178 /* Make sure this symbol is output as a dynamic symbol. */
1179 if (h->dynindx == -1)
1181 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1182 return FALSE;
1185 srelgot->size += sizeof (Elf64_External_Rela);
1187 else
1189 /* This is a global offset table entry for a local
1190 symbol. */
1191 if (local_got_offsets == NULL)
1193 bfd_size_type size;
1194 register unsigned int i;
1196 size = symtab_hdr->sh_info;
1197 size *= sizeof (bfd_vma);
1198 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1199 if (local_got_offsets == NULL)
1200 return FALSE;
1201 elf_local_got_offsets (abfd) = local_got_offsets;
1202 for (i = 0; i < symtab_hdr->sh_info; i++)
1203 local_got_offsets[i] = (bfd_vma) -1;
1205 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1207 /* We have already allocated space in the .got. */
1208 break;
1210 local_got_offsets[r_symndx] = sgot->size;
1212 if (info->shared)
1214 /* If we are generating a shared object, we need to
1215 output a R_SPARC_RELATIVE reloc so that the
1216 dynamic linker can adjust this GOT entry. */
1217 srelgot->size += sizeof (Elf64_External_Rela);
1221 sgot->size += 8;
1223 #if 0
1224 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1225 unsigned numbers. If we permit ourselves to modify
1226 code so we get sethi/xor, this could work.
1227 Question: do we consider conditionally re-enabling
1228 this for -fpic, once we know about object code models? */
1229 /* If the .got section is more than 0x1000 bytes, we add
1230 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1231 bit relocations have a greater chance of working. */
1232 if (sgot->size >= 0x1000
1233 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1234 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1235 #endif
1237 break;
1239 case R_SPARC_WPLT30:
1240 case R_SPARC_PLT32:
1241 case R_SPARC_HIPLT22:
1242 case R_SPARC_LOPLT10:
1243 case R_SPARC_PCPLT32:
1244 case R_SPARC_PCPLT22:
1245 case R_SPARC_PCPLT10:
1246 case R_SPARC_PLT64:
1247 /* This symbol requires a procedure linkage table entry. We
1248 actually build the entry in adjust_dynamic_symbol,
1249 because this might be a case of linking PIC code without
1250 linking in any dynamic objects, in which case we don't
1251 need to generate a procedure linkage table after all. */
1253 if (h == NULL)
1255 /* It does not make sense to have a procedure linkage
1256 table entry for a local symbol. */
1257 bfd_set_error (bfd_error_bad_value);
1258 return FALSE;
1261 /* Make sure this symbol is output as a dynamic symbol. */
1262 if (h->dynindx == -1)
1264 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1265 return FALSE;
1268 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1269 if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1270 && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1271 break;
1272 /* Fall through. */
1273 case R_SPARC_PC10:
1274 case R_SPARC_PC22:
1275 case R_SPARC_PC_HH22:
1276 case R_SPARC_PC_HM10:
1277 case R_SPARC_PC_LM22:
1278 if (h != NULL
1279 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1280 break;
1281 /* Fall through. */
1282 case R_SPARC_DISP8:
1283 case R_SPARC_DISP16:
1284 case R_SPARC_DISP32:
1285 case R_SPARC_DISP64:
1286 case R_SPARC_WDISP30:
1287 case R_SPARC_WDISP22:
1288 case R_SPARC_WDISP19:
1289 case R_SPARC_WDISP16:
1290 if (h == NULL)
1291 break;
1292 /* Fall through. */
1293 case R_SPARC_8:
1294 case R_SPARC_16:
1295 case R_SPARC_32:
1296 case R_SPARC_HI22:
1297 case R_SPARC_22:
1298 case R_SPARC_13:
1299 case R_SPARC_LO10:
1300 case R_SPARC_UA32:
1301 case R_SPARC_10:
1302 case R_SPARC_11:
1303 case R_SPARC_64:
1304 case R_SPARC_OLO10:
1305 case R_SPARC_HH22:
1306 case R_SPARC_HM10:
1307 case R_SPARC_LM22:
1308 case R_SPARC_7:
1309 case R_SPARC_5:
1310 case R_SPARC_6:
1311 case R_SPARC_HIX22:
1312 case R_SPARC_LOX10:
1313 case R_SPARC_H44:
1314 case R_SPARC_M44:
1315 case R_SPARC_L44:
1316 case R_SPARC_UA64:
1317 case R_SPARC_UA16:
1318 /* When creating a shared object, we must copy these relocs
1319 into the output file. We create a reloc section in
1320 dynobj and make room for the reloc.
1322 But don't do this for debugging sections -- this shows up
1323 with DWARF2 -- first because they are not loaded, and
1324 second because DWARF sez the debug info is not to be
1325 biased by the load address. */
1326 if (info->shared && (sec->flags & SEC_ALLOC))
1328 if (sreloc == NULL)
1330 const char *name;
1332 name = (bfd_elf_string_from_elf_section
1333 (abfd,
1334 elf_elfheader (abfd)->e_shstrndx,
1335 elf_section_data (sec)->rel_hdr.sh_name));
1336 if (name == NULL)
1337 return FALSE;
1339 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1340 && strcmp (bfd_get_section_name (abfd, sec),
1341 name + 5) == 0);
1343 sreloc = bfd_get_section_by_name (dynobj, name);
1344 if (sreloc == NULL)
1346 flagword flags;
1348 sreloc = bfd_make_section (dynobj, name);
1349 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1350 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1351 if ((sec->flags & SEC_ALLOC) != 0)
1352 flags |= SEC_ALLOC | SEC_LOAD;
1353 if (sreloc == NULL
1354 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1355 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1356 return FALSE;
1358 if (sec->flags & SEC_READONLY)
1359 info->flags |= DF_TEXTREL;
1362 sreloc->size += sizeof (Elf64_External_Rela);
1364 break;
1366 case R_SPARC_REGISTER:
1367 /* Nothing to do. */
1368 break;
1370 default:
1371 (*_bfd_error_handler) (_("%B: check_relocs: unhandled reloc type %d"),
1372 abfd, ELF64_R_TYPE_ID (rel->r_info));
1373 return FALSE;
1377 return TRUE;
1380 /* Hook called by the linker routine which adds symbols from an object
1381 file. We use it for STT_REGISTER symbols. */
1383 static bfd_boolean
1384 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1385 bfd *abfd;
1386 struct bfd_link_info *info;
1387 Elf_Internal_Sym *sym;
1388 const char **namep;
1389 flagword *flagsp ATTRIBUTE_UNUSED;
1390 asection **secp ATTRIBUTE_UNUSED;
1391 bfd_vma *valp ATTRIBUTE_UNUSED;
1393 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1395 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1397 int reg;
1398 struct sparc64_elf_app_reg *p;
1400 reg = (int)sym->st_value;
1401 switch (reg & ~1)
1403 case 2: reg -= 2; break;
1404 case 6: reg -= 4; break;
1405 default:
1406 (*_bfd_error_handler)
1407 (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
1408 abfd);
1409 return FALSE;
1412 if (info->hash->creator != abfd->xvec
1413 || (abfd->flags & DYNAMIC) != 0)
1415 /* STT_REGISTER only works when linking an elf64_sparc object.
1416 If STT_REGISTER comes from a dynamic object, don't put it into
1417 the output bfd. The dynamic linker will recheck it. */
1418 *namep = NULL;
1419 return TRUE;
1422 p = sparc64_elf_hash_table(info)->app_regs + reg;
1424 if (p->name != NULL && strcmp (p->name, *namep))
1426 (*_bfd_error_handler)
1427 (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
1428 abfd, p->abfd, (int) sym->st_value,
1429 **namep ? *namep : "#scratch",
1430 *p->name ? p->name : "#scratch");
1431 return FALSE;
1434 if (p->name == NULL)
1436 if (**namep)
1438 struct elf_link_hash_entry *h;
1440 h = (struct elf_link_hash_entry *)
1441 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
1443 if (h != NULL)
1445 unsigned char type = h->type;
1447 if (type > STT_FUNC)
1448 type = 0;
1449 (*_bfd_error_handler)
1450 (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
1451 abfd, p->abfd, *namep, stt_types[type]);
1452 return FALSE;
1455 p->name = bfd_hash_allocate (&info->hash->table,
1456 strlen (*namep) + 1);
1457 if (!p->name)
1458 return FALSE;
1460 strcpy (p->name, *namep);
1462 else
1463 p->name = "";
1464 p->bind = ELF_ST_BIND (sym->st_info);
1465 p->abfd = abfd;
1466 p->shndx = sym->st_shndx;
1468 else
1470 if (p->bind == STB_WEAK
1471 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1473 p->bind = STB_GLOBAL;
1474 p->abfd = abfd;
1477 *namep = NULL;
1478 return TRUE;
1480 else if (*namep && **namep
1481 && info->hash->creator == abfd->xvec)
1483 int i;
1484 struct sparc64_elf_app_reg *p;
1486 p = sparc64_elf_hash_table(info)->app_regs;
1487 for (i = 0; i < 4; i++, p++)
1488 if (p->name != NULL && ! strcmp (p->name, *namep))
1490 unsigned char type = ELF_ST_TYPE (sym->st_info);
1492 if (type > STT_FUNC)
1493 type = 0;
1494 (*_bfd_error_handler)
1495 (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
1496 abfd, p->abfd, *namep, stt_types[type]);
1497 return FALSE;
1500 return TRUE;
1503 /* This function takes care of emitting STT_REGISTER symbols
1504 which we cannot easily keep in the symbol hash table. */
1506 static bfd_boolean
1507 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1508 bfd *output_bfd ATTRIBUTE_UNUSED;
1509 struct bfd_link_info *info;
1510 PTR finfo;
1511 bfd_boolean (*func)
1512 PARAMS ((PTR, const char *, Elf_Internal_Sym *, asection *,
1513 struct elf_link_hash_entry *));
1515 int reg;
1516 struct sparc64_elf_app_reg *app_regs =
1517 sparc64_elf_hash_table(info)->app_regs;
1518 Elf_Internal_Sym sym;
1520 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1521 at the end of the dynlocal list, so they came at the end of the local
1522 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1523 to back up symtab->sh_info. */
1524 if (elf_hash_table (info)->dynlocal)
1526 bfd * dynobj = elf_hash_table (info)->dynobj;
1527 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1528 struct elf_link_local_dynamic_entry *e;
1530 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1531 if (e->input_indx == -1)
1532 break;
1533 if (e)
1535 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1536 = e->dynindx;
1540 if (info->strip == strip_all)
1541 return TRUE;
1543 for (reg = 0; reg < 4; reg++)
1544 if (app_regs [reg].name != NULL)
1546 if (info->strip == strip_some
1547 && bfd_hash_lookup (info->keep_hash,
1548 app_regs [reg].name,
1549 FALSE, FALSE) == NULL)
1550 continue;
1552 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1553 sym.st_size = 0;
1554 sym.st_other = 0;
1555 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1556 sym.st_shndx = app_regs [reg].shndx;
1557 if (! (*func) (finfo, app_regs [reg].name, &sym,
1558 sym.st_shndx == SHN_ABS
1559 ? bfd_abs_section_ptr : bfd_und_section_ptr,
1560 NULL))
1561 return FALSE;
1564 return TRUE;
1567 static int
1568 sparc64_elf_get_symbol_type (elf_sym, type)
1569 Elf_Internal_Sym * elf_sym;
1570 int type;
1572 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1573 return STT_REGISTER;
1574 else
1575 return type;
1578 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1579 even in SHN_UNDEF section. */
1581 static void
1582 sparc64_elf_symbol_processing (abfd, asym)
1583 bfd *abfd ATTRIBUTE_UNUSED;
1584 asymbol *asym;
1586 elf_symbol_type *elfsym;
1588 elfsym = (elf_symbol_type *) asym;
1589 if (elfsym->internal_elf_sym.st_info
1590 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1592 asym->flags |= BSF_GLOBAL;
1596 /* Adjust a symbol defined by a dynamic object and referenced by a
1597 regular object. The current definition is in some section of the
1598 dynamic object, but we're not including those sections. We have to
1599 change the definition to something the rest of the link can
1600 understand. */
1602 static bfd_boolean
1603 sparc64_elf_adjust_dynamic_symbol (info, h)
1604 struct bfd_link_info *info;
1605 struct elf_link_hash_entry *h;
1607 bfd *dynobj;
1608 asection *s;
1609 unsigned int power_of_two;
1611 dynobj = elf_hash_table (info)->dynobj;
1613 /* Make sure we know what is going on here. */
1614 BFD_ASSERT (dynobj != NULL
1615 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1616 || h->weakdef != NULL
1617 || ((h->elf_link_hash_flags
1618 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1619 && (h->elf_link_hash_flags
1620 & ELF_LINK_HASH_REF_REGULAR) != 0
1621 && (h->elf_link_hash_flags
1622 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1624 /* If this is a function, put it in the procedure linkage table. We
1625 will fill in the contents of the procedure linkage table later
1626 (although we could actually do it here). The STT_NOTYPE
1627 condition is a hack specifically for the Oracle libraries
1628 delivered for Solaris; for some inexplicable reason, they define
1629 some of their functions as STT_NOTYPE when they really should be
1630 STT_FUNC. */
1631 if (h->type == STT_FUNC
1632 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1633 || (h->type == STT_NOTYPE
1634 && (h->root.type == bfd_link_hash_defined
1635 || h->root.type == bfd_link_hash_defweak)
1636 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1638 if (! elf_hash_table (info)->dynamic_sections_created)
1640 /* This case can occur if we saw a WPLT30 reloc in an input
1641 file, but none of the input files were dynamic objects.
1642 In such a case, we don't actually need to build a
1643 procedure linkage table, and we can just do a WDISP30
1644 reloc instead. */
1645 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1646 return TRUE;
1649 s = bfd_get_section_by_name (dynobj, ".plt");
1650 BFD_ASSERT (s != NULL);
1652 /* The first four bit in .plt is reserved. */
1653 if (s->size == 0)
1654 s->size = PLT_HEADER_SIZE;
1656 /* To simplify matters later, just store the plt index here. */
1657 h->plt.offset = s->size / PLT_ENTRY_SIZE;
1659 /* If this symbol is not defined in a regular file, and we are
1660 not generating a shared library, then set the symbol to this
1661 location in the .plt. This is required to make function
1662 pointers compare as equal between the normal executable and
1663 the shared library. */
1664 if (! info->shared
1665 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1667 h->root.u.def.section = s;
1668 h->root.u.def.value = sparc64_elf_plt_entry_offset (h->plt.offset);
1671 /* Make room for this entry. */
1672 s->size += PLT_ENTRY_SIZE;
1674 /* We also need to make an entry in the .rela.plt section. */
1676 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1677 BFD_ASSERT (s != NULL);
1679 s->size += sizeof (Elf64_External_Rela);
1681 /* The procedure linkage table size is bounded by the magnitude
1682 of the offset we can describe in the entry. */
1683 if (s->size >= (bfd_vma)1 << 32)
1685 bfd_set_error (bfd_error_bad_value);
1686 return FALSE;
1689 return TRUE;
1692 /* If this is a weak symbol, and there is a real definition, the
1693 processor independent code will have arranged for us to see the
1694 real definition first, and we can just use the same value. */
1695 if (h->weakdef != NULL)
1697 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1698 || h->weakdef->root.type == bfd_link_hash_defweak);
1699 h->root.u.def.section = h->weakdef->root.u.def.section;
1700 h->root.u.def.value = h->weakdef->root.u.def.value;
1701 return TRUE;
1704 /* This is a reference to a symbol defined by a dynamic object which
1705 is not a function. */
1707 /* If we are creating a shared library, we must presume that the
1708 only references to the symbol are via the global offset table.
1709 For such cases we need not do anything here; the relocations will
1710 be handled correctly by relocate_section. */
1711 if (info->shared)
1712 return TRUE;
1714 /* We must allocate the symbol in our .dynbss section, which will
1715 become part of the .bss section of the executable. There will be
1716 an entry for this symbol in the .dynsym section. The dynamic
1717 object will contain position independent code, so all references
1718 from the dynamic object to this symbol will go through the global
1719 offset table. The dynamic linker will use the .dynsym entry to
1720 determine the address it must put in the global offset table, so
1721 both the dynamic object and the regular object will refer to the
1722 same memory location for the variable. */
1724 s = bfd_get_section_by_name (dynobj, ".dynbss");
1725 BFD_ASSERT (s != NULL);
1727 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1728 to copy the initial value out of the dynamic object and into the
1729 runtime process image. We need to remember the offset into the
1730 .rel.bss section we are going to use. */
1731 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1733 asection *srel;
1735 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1736 BFD_ASSERT (srel != NULL);
1737 srel->size += sizeof (Elf64_External_Rela);
1738 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1741 /* We need to figure out the alignment required for this symbol. I
1742 have no idea how ELF linkers handle this. 16-bytes is the size
1743 of the largest type that requires hard alignment -- long double. */
1744 power_of_two = bfd_log2 (h->size);
1745 if (power_of_two > 4)
1746 power_of_two = 4;
1748 /* Apply the required alignment. */
1749 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
1750 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1752 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1753 return FALSE;
1756 /* Define the symbol as being at this point in the section. */
1757 h->root.u.def.section = s;
1758 h->root.u.def.value = s->size;
1760 /* Increment the section size to make room for the symbol. */
1761 s->size += h->size;
1763 return TRUE;
1766 /* Set the sizes of the dynamic sections. */
1768 static bfd_boolean
1769 sparc64_elf_size_dynamic_sections (output_bfd, info)
1770 bfd *output_bfd;
1771 struct bfd_link_info *info;
1773 bfd *dynobj;
1774 asection *s;
1775 bfd_boolean relplt;
1777 dynobj = elf_hash_table (info)->dynobj;
1778 BFD_ASSERT (dynobj != NULL);
1780 if (elf_hash_table (info)->dynamic_sections_created)
1782 /* Set the contents of the .interp section to the interpreter. */
1783 if (info->executable)
1785 s = bfd_get_section_by_name (dynobj, ".interp");
1786 BFD_ASSERT (s != NULL);
1787 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1788 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1791 else
1793 /* We may have created entries in the .rela.got section.
1794 However, if we are not creating the dynamic sections, we will
1795 not actually use these entries. Reset the size of .rela.got,
1796 which will cause it to get stripped from the output file
1797 below. */
1798 s = bfd_get_section_by_name (dynobj, ".rela.got");
1799 if (s != NULL)
1800 s->size = 0;
1803 /* The check_relocs and adjust_dynamic_symbol entry points have
1804 determined the sizes of the various dynamic sections. Allocate
1805 memory for them. */
1806 relplt = FALSE;
1807 for (s = dynobj->sections; s != NULL; s = s->next)
1809 const char *name;
1810 bfd_boolean strip;
1812 if ((s->flags & SEC_LINKER_CREATED) == 0)
1813 continue;
1815 /* It's OK to base decisions on the section name, because none
1816 of the dynobj section names depend upon the input files. */
1817 name = bfd_get_section_name (dynobj, s);
1819 strip = FALSE;
1821 if (strncmp (name, ".rela", 5) == 0)
1823 if (s->size == 0)
1825 /* If we don't need this section, strip it from the
1826 output file. This is to handle .rela.bss and
1827 .rel.plt. We must create it in
1828 create_dynamic_sections, because it must be created
1829 before the linker maps input sections to output
1830 sections. The linker does that before
1831 adjust_dynamic_symbol is called, and it is that
1832 function which decides whether anything needs to go
1833 into these sections. */
1834 strip = TRUE;
1836 else
1838 if (strcmp (name, ".rela.plt") == 0)
1839 relplt = TRUE;
1841 /* We use the reloc_count field as a counter if we need
1842 to copy relocs into the output file. */
1843 s->reloc_count = 0;
1846 else if (strcmp (name, ".plt") != 0
1847 && strncmp (name, ".got", 4) != 0)
1849 /* It's not one of our sections, so don't allocate space. */
1850 continue;
1853 if (strip)
1855 _bfd_strip_section_from_output (info, s);
1856 continue;
1859 /* Allocate memory for the section contents. Zero the memory
1860 for the benefit of .rela.plt, which has 4 unused entries
1861 at the beginning, and we don't want garbage. */
1862 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1863 if (s->contents == NULL && s->size != 0)
1864 return FALSE;
1867 if (elf_hash_table (info)->dynamic_sections_created)
1869 /* Add some entries to the .dynamic section. We fill in the
1870 values later, in sparc64_elf_finish_dynamic_sections, but we
1871 must add the entries now so that we get the correct size for
1872 the .dynamic section. The DT_DEBUG entry is filled in by the
1873 dynamic linker and used by the debugger. */
1874 #define add_dynamic_entry(TAG, VAL) \
1875 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1877 int reg;
1878 struct sparc64_elf_app_reg * app_regs;
1879 struct elf_strtab_hash *dynstr;
1880 struct elf_link_hash_table *eht = elf_hash_table (info);
1882 if (info->executable)
1884 if (!add_dynamic_entry (DT_DEBUG, 0))
1885 return FALSE;
1888 if (relplt)
1890 if (!add_dynamic_entry (DT_PLTGOT, 0)
1891 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1892 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1893 || !add_dynamic_entry (DT_JMPREL, 0))
1894 return FALSE;
1897 if (!add_dynamic_entry (DT_RELA, 0)
1898 || !add_dynamic_entry (DT_RELASZ, 0)
1899 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1900 return FALSE;
1902 if (info->flags & DF_TEXTREL)
1904 if (!add_dynamic_entry (DT_TEXTREL, 0))
1905 return FALSE;
1908 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1909 entries if needed. */
1910 app_regs = sparc64_elf_hash_table (info)->app_regs;
1911 dynstr = eht->dynstr;
1913 for (reg = 0; reg < 4; reg++)
1914 if (app_regs [reg].name != NULL)
1916 struct elf_link_local_dynamic_entry *entry, *e;
1918 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1919 return FALSE;
1921 entry = (struct elf_link_local_dynamic_entry *)
1922 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1923 if (entry == NULL)
1924 return FALSE;
1926 /* We cheat here a little bit: the symbol will not be local, so we
1927 put it at the end of the dynlocal linked list. We will fix it
1928 later on, as we have to fix other fields anyway. */
1929 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1930 entry->isym.st_size = 0;
1931 if (*app_regs [reg].name != '\0')
1932 entry->isym.st_name
1933 = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, FALSE);
1934 else
1935 entry->isym.st_name = 0;
1936 entry->isym.st_other = 0;
1937 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1938 STT_REGISTER);
1939 entry->isym.st_shndx = app_regs [reg].shndx;
1940 entry->next = NULL;
1941 entry->input_bfd = output_bfd;
1942 entry->input_indx = -1;
1944 if (eht->dynlocal == NULL)
1945 eht->dynlocal = entry;
1946 else
1948 for (e = eht->dynlocal; e->next; e = e->next)
1950 e->next = entry;
1952 eht->dynsymcount++;
1955 #undef add_dynamic_entry
1957 return TRUE;
1960 static bfd_boolean
1961 sparc64_elf_new_section_hook (abfd, sec)
1962 bfd *abfd;
1963 asection *sec;
1965 struct sparc64_elf_section_data *sdata;
1966 bfd_size_type amt = sizeof (*sdata);
1968 sdata = (struct sparc64_elf_section_data *) bfd_zalloc (abfd, amt);
1969 if (sdata == NULL)
1970 return FALSE;
1971 sec->used_by_bfd = (PTR) sdata;
1973 return _bfd_elf_new_section_hook (abfd, sec);
1976 static bfd_boolean
1977 sparc64_elf_relax_section (abfd, section, link_info, again)
1978 bfd *abfd ATTRIBUTE_UNUSED;
1979 asection *section ATTRIBUTE_UNUSED;
1980 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1981 bfd_boolean *again;
1983 *again = FALSE;
1984 sec_do_relax (section) = 1;
1985 return TRUE;
1988 /* Relocate a SPARC64 ELF section. */
1990 static bfd_boolean
1991 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1992 contents, relocs, local_syms, local_sections)
1993 bfd *output_bfd;
1994 struct bfd_link_info *info;
1995 bfd *input_bfd;
1996 asection *input_section;
1997 bfd_byte *contents;
1998 Elf_Internal_Rela *relocs;
1999 Elf_Internal_Sym *local_syms;
2000 asection **local_sections;
2002 bfd *dynobj;
2003 Elf_Internal_Shdr *symtab_hdr;
2004 struct elf_link_hash_entry **sym_hashes;
2005 bfd_vma *local_got_offsets;
2006 bfd_vma got_base;
2007 asection *sgot;
2008 asection *splt;
2009 asection *sreloc;
2010 Elf_Internal_Rela *rel;
2011 Elf_Internal_Rela *relend;
2013 if (info->relocatable)
2014 return TRUE;
2016 dynobj = elf_hash_table (info)->dynobj;
2017 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2018 sym_hashes = elf_sym_hashes (input_bfd);
2019 local_got_offsets = elf_local_got_offsets (input_bfd);
2021 if (elf_hash_table(info)->hgot == NULL)
2022 got_base = 0;
2023 else
2024 got_base = elf_hash_table (info)->hgot->root.u.def.value;
2026 sgot = splt = sreloc = NULL;
2027 if (dynobj != NULL)
2028 splt = bfd_get_section_by_name (dynobj, ".plt");
2030 rel = relocs;
2031 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
2032 for (; rel < relend; rel++)
2034 int r_type;
2035 reloc_howto_type *howto;
2036 unsigned long r_symndx;
2037 struct elf_link_hash_entry *h;
2038 Elf_Internal_Sym *sym;
2039 asection *sec;
2040 bfd_vma relocation, off;
2041 bfd_reloc_status_type r;
2042 bfd_boolean is_plt = FALSE;
2043 bfd_boolean unresolved_reloc;
2045 r_type = ELF64_R_TYPE_ID (rel->r_info);
2046 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
2048 bfd_set_error (bfd_error_bad_value);
2049 return FALSE;
2051 howto = sparc64_elf_howto_table + r_type;
2053 /* This is a final link. */
2054 r_symndx = ELF64_R_SYM (rel->r_info);
2055 h = NULL;
2056 sym = NULL;
2057 sec = NULL;
2058 unresolved_reloc = FALSE;
2059 if (r_symndx < symtab_hdr->sh_info)
2061 sym = local_syms + r_symndx;
2062 sec = local_sections[r_symndx];
2063 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2065 else
2067 bfd_boolean warned;
2069 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2070 r_symndx, symtab_hdr, sym_hashes,
2071 h, sec, relocation,
2072 unresolved_reloc, warned);
2073 if (warned)
2075 /* To avoid generating warning messages about truncated
2076 relocations, set the relocation's address to be the same as
2077 the start of this section. */
2078 if (input_section->output_section != NULL)
2079 relocation = input_section->output_section->vma;
2080 else
2081 relocation = 0;
2085 do_dynreloc:
2086 /* When generating a shared object, these relocations are copied
2087 into the output file to be resolved at run time. */
2088 if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
2090 switch (r_type)
2092 case R_SPARC_PC10:
2093 case R_SPARC_PC22:
2094 case R_SPARC_PC_HH22:
2095 case R_SPARC_PC_HM10:
2096 case R_SPARC_PC_LM22:
2097 if (h != NULL
2098 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2099 break;
2100 /* Fall through. */
2101 case R_SPARC_DISP8:
2102 case R_SPARC_DISP16:
2103 case R_SPARC_DISP32:
2104 case R_SPARC_DISP64:
2105 case R_SPARC_WDISP30:
2106 case R_SPARC_WDISP22:
2107 case R_SPARC_WDISP19:
2108 case R_SPARC_WDISP16:
2109 if (h == NULL)
2110 break;
2111 /* Fall through. */
2112 case R_SPARC_8:
2113 case R_SPARC_16:
2114 case R_SPARC_32:
2115 case R_SPARC_HI22:
2116 case R_SPARC_22:
2117 case R_SPARC_13:
2118 case R_SPARC_LO10:
2119 case R_SPARC_UA32:
2120 case R_SPARC_10:
2121 case R_SPARC_11:
2122 case R_SPARC_64:
2123 case R_SPARC_OLO10:
2124 case R_SPARC_HH22:
2125 case R_SPARC_HM10:
2126 case R_SPARC_LM22:
2127 case R_SPARC_7:
2128 case R_SPARC_5:
2129 case R_SPARC_6:
2130 case R_SPARC_HIX22:
2131 case R_SPARC_LOX10:
2132 case R_SPARC_H44:
2133 case R_SPARC_M44:
2134 case R_SPARC_L44:
2135 case R_SPARC_UA64:
2136 case R_SPARC_UA16:
2138 Elf_Internal_Rela outrel;
2139 bfd_byte *loc;
2140 bfd_boolean skip, relocate;
2142 if (sreloc == NULL)
2144 const char *name =
2145 (bfd_elf_string_from_elf_section
2146 (input_bfd,
2147 elf_elfheader (input_bfd)->e_shstrndx,
2148 elf_section_data (input_section)->rel_hdr.sh_name));
2150 if (name == NULL)
2151 return FALSE;
2153 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2154 && strcmp (bfd_get_section_name(input_bfd,
2155 input_section),
2156 name + 5) == 0);
2158 sreloc = bfd_get_section_by_name (dynobj, name);
2159 BFD_ASSERT (sreloc != NULL);
2162 skip = FALSE;
2163 relocate = FALSE;
2165 outrel.r_offset =
2166 _bfd_elf_section_offset (output_bfd, info, input_section,
2167 rel->r_offset);
2168 if (outrel.r_offset == (bfd_vma) -1)
2169 skip = TRUE;
2170 else if (outrel.r_offset == (bfd_vma) -2)
2171 skip = TRUE, relocate = TRUE;
2173 outrel.r_offset += (input_section->output_section->vma
2174 + input_section->output_offset);
2176 /* Optimize unaligned reloc usage now that we know where
2177 it finally resides. */
2178 switch (r_type)
2180 case R_SPARC_16:
2181 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2182 break;
2183 case R_SPARC_UA16:
2184 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2185 break;
2186 case R_SPARC_32:
2187 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2188 break;
2189 case R_SPARC_UA32:
2190 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2191 break;
2192 case R_SPARC_64:
2193 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2194 break;
2195 case R_SPARC_UA64:
2196 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2197 break;
2198 case R_SPARC_DISP8:
2199 case R_SPARC_DISP16:
2200 case R_SPARC_DISP32:
2201 case R_SPARC_DISP64:
2202 /* If the symbol is not dynamic, we should not keep
2203 a dynamic relocation. But an .rela.* slot has been
2204 allocated for it, output R_SPARC_NONE.
2205 FIXME: Add code tracking needed dynamic relocs as
2206 e.g. i386 has. */
2207 if (h->dynindx == -1)
2208 skip = TRUE, relocate = TRUE;
2209 break;
2212 /* FIXME: Dynamic reloc handling really needs to be rewritten. */
2213 if (!skip
2214 && h != NULL
2215 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2216 && h->root.type == bfd_link_hash_undefweak)
2217 skip = TRUE, relocate = TRUE;
2219 if (skip)
2220 memset (&outrel, 0, sizeof outrel);
2221 /* h->dynindx may be -1 if the symbol was marked to
2222 become local. */
2223 else if (h != NULL && ! is_plt
2224 && ((! info->symbolic && h->dynindx != -1)
2225 || (h->elf_link_hash_flags
2226 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2228 BFD_ASSERT (h->dynindx != -1);
2229 outrel.r_info
2230 = ELF64_R_INFO (h->dynindx,
2231 ELF64_R_TYPE_INFO (
2232 ELF64_R_TYPE_DATA (rel->r_info),
2233 r_type));
2234 outrel.r_addend = rel->r_addend;
2236 else
2238 outrel.r_addend = relocation + rel->r_addend;
2239 if (r_type == R_SPARC_64)
2240 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2241 else
2243 long indx;
2245 if (is_plt)
2246 sec = splt;
2248 if (bfd_is_abs_section (sec))
2249 indx = 0;
2250 else if (sec == NULL || sec->owner == NULL)
2252 bfd_set_error (bfd_error_bad_value);
2253 return FALSE;
2255 else
2257 asection *osec;
2259 osec = sec->output_section;
2260 indx = elf_section_data (osec)->dynindx;
2262 /* We are turning this relocation into one
2263 against a section symbol, so subtract out
2264 the output section's address but not the
2265 offset of the input section in the output
2266 section. */
2267 outrel.r_addend -= osec->vma;
2269 /* FIXME: we really should be able to link non-pic
2270 shared libraries. */
2271 if (indx == 0)
2273 BFD_FAIL ();
2274 (*_bfd_error_handler)
2275 (_("%B: probably compiled without -fPIC?"),
2276 input_bfd);
2277 bfd_set_error (bfd_error_bad_value);
2278 return FALSE;
2282 outrel.r_info
2283 = ELF64_R_INFO (indx,
2284 ELF64_R_TYPE_INFO (
2285 ELF64_R_TYPE_DATA (rel->r_info),
2286 r_type));
2290 loc = sreloc->contents;
2291 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2292 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2294 /* This reloc will be computed at runtime, so there's no
2295 need to do anything now. */
2296 if (! relocate)
2297 continue;
2299 break;
2303 switch (r_type)
2305 case R_SPARC_GOT10:
2306 case R_SPARC_GOT13:
2307 case R_SPARC_GOT22:
2308 /* Relocation is to the entry for this symbol in the global
2309 offset table. */
2310 if (sgot == NULL)
2312 sgot = bfd_get_section_by_name (dynobj, ".got");
2313 BFD_ASSERT (sgot != NULL);
2316 if (h != NULL)
2318 bfd_boolean dyn;
2320 off = h->got.offset;
2321 BFD_ASSERT (off != (bfd_vma) -1);
2322 dyn = elf_hash_table (info)->dynamic_sections_created;
2324 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2325 || (info->shared
2326 && (info->symbolic
2327 || h->dynindx == -1
2328 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2329 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
2331 /* This is actually a static link, or it is a -Bsymbolic
2332 link and the symbol is defined locally, or the symbol
2333 was forced to be local because of a version file. We
2334 must initialize this entry in the global offset table.
2335 Since the offset must always be a multiple of 8, we
2336 use the least significant bit to record whether we
2337 have initialized it already.
2339 When doing a dynamic link, we create a .rela.got
2340 relocation entry to initialize the value. This is
2341 done in the finish_dynamic_symbol routine. */
2343 if ((off & 1) != 0)
2344 off &= ~1;
2345 else
2347 bfd_put_64 (output_bfd, relocation,
2348 sgot->contents + off);
2349 h->got.offset |= 1;
2352 else
2353 unresolved_reloc = FALSE;
2355 else
2357 BFD_ASSERT (local_got_offsets != NULL);
2358 off = local_got_offsets[r_symndx];
2359 BFD_ASSERT (off != (bfd_vma) -1);
2361 /* The offset must always be a multiple of 8. We use
2362 the least significant bit to record whether we have
2363 already processed this entry. */
2364 if ((off & 1) != 0)
2365 off &= ~1;
2366 else
2368 local_got_offsets[r_symndx] |= 1;
2370 if (info->shared)
2372 asection *s;
2373 Elf_Internal_Rela outrel;
2374 bfd_byte *loc;
2376 /* The Solaris 2.7 64-bit linker adds the contents
2377 of the location to the value of the reloc.
2378 Note this is different behaviour to the
2379 32-bit linker, which both adds the contents
2380 and ignores the addend. So clear the location. */
2381 bfd_put_64 (output_bfd, (bfd_vma) 0,
2382 sgot->contents + off);
2384 /* We need to generate a R_SPARC_RELATIVE reloc
2385 for the dynamic linker. */
2386 s = bfd_get_section_by_name(dynobj, ".rela.got");
2387 BFD_ASSERT (s != NULL);
2389 outrel.r_offset = (sgot->output_section->vma
2390 + sgot->output_offset
2391 + off);
2392 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2393 outrel.r_addend = relocation;
2394 loc = s->contents;
2395 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2396 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2398 else
2399 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2402 relocation = sgot->output_offset + off - got_base;
2403 goto do_default;
2405 case R_SPARC_WPLT30:
2406 case R_SPARC_PLT32:
2407 case R_SPARC_HIPLT22:
2408 case R_SPARC_LOPLT10:
2409 case R_SPARC_PCPLT32:
2410 case R_SPARC_PCPLT22:
2411 case R_SPARC_PCPLT10:
2412 case R_SPARC_PLT64:
2413 /* Relocation is to the entry for this symbol in the
2414 procedure linkage table. */
2415 BFD_ASSERT (h != NULL);
2417 if (h->plt.offset == (bfd_vma) -1 || splt == NULL)
2419 /* We didn't make a PLT entry for this symbol. This
2420 happens when statically linking PIC code, or when
2421 using -Bsymbolic. */
2422 goto do_default;
2425 relocation = (splt->output_section->vma
2426 + splt->output_offset
2427 + sparc64_elf_plt_entry_offset (h->plt.offset));
2428 unresolved_reloc = FALSE;
2429 if (r_type == R_SPARC_WPLT30)
2430 goto do_wplt30;
2431 if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2433 r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2434 is_plt = TRUE;
2435 goto do_dynreloc;
2437 goto do_default;
2439 case R_SPARC_OLO10:
2441 bfd_vma x;
2443 relocation += rel->r_addend;
2444 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2446 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2447 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2448 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2450 r = bfd_check_overflow (howto->complain_on_overflow,
2451 howto->bitsize, howto->rightshift,
2452 bfd_arch_bits_per_address (input_bfd),
2453 relocation);
2455 break;
2457 case R_SPARC_WDISP16:
2459 bfd_vma x;
2461 relocation += rel->r_addend;
2462 /* Adjust for pc-relative-ness. */
2463 relocation -= (input_section->output_section->vma
2464 + input_section->output_offset);
2465 relocation -= rel->r_offset;
2467 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2468 x &= ~(bfd_vma) 0x303fff;
2469 x |= ((((relocation >> 2) & 0xc000) << 6)
2470 | ((relocation >> 2) & 0x3fff));
2471 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2473 r = bfd_check_overflow (howto->complain_on_overflow,
2474 howto->bitsize, howto->rightshift,
2475 bfd_arch_bits_per_address (input_bfd),
2476 relocation);
2478 break;
2480 case R_SPARC_HIX22:
2482 bfd_vma x;
2484 relocation += rel->r_addend;
2485 relocation = relocation ^ MINUS_ONE;
2487 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2488 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2489 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2491 r = bfd_check_overflow (howto->complain_on_overflow,
2492 howto->bitsize, howto->rightshift,
2493 bfd_arch_bits_per_address (input_bfd),
2494 relocation);
2496 break;
2498 case R_SPARC_LOX10:
2500 bfd_vma x;
2502 relocation += rel->r_addend;
2503 relocation = (relocation & 0x3ff) | 0x1c00;
2505 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2506 x = (x & ~(bfd_vma) 0x1fff) | relocation;
2507 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2509 r = bfd_reloc_ok;
2511 break;
2513 case R_SPARC_WDISP30:
2514 do_wplt30:
2515 if (sec_do_relax (input_section)
2516 && rel->r_offset + 4 < input_section->size)
2518 #define G0 0
2519 #define O7 15
2520 #define XCC (2 << 20)
2521 #define COND(x) (((x)&0xf)<<25)
2522 #define CONDA COND(0x8)
2523 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2524 #define INSN_BA (F2(0,2) | CONDA)
2525 #define INSN_OR F3(2, 0x2, 0)
2526 #define INSN_NOP F2(0,4)
2528 bfd_vma x, y;
2530 /* If the instruction is a call with either:
2531 restore
2532 arithmetic instruction with rd == %o7
2533 where rs1 != %o7 and rs2 if it is register != %o7
2534 then we can optimize if the call destination is near
2535 by changing the call into a branch always. */
2536 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2537 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2538 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2540 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2541 || ((y & OP3(0x28)) == 0 /* arithmetic */
2542 && (y & RD(~0)) == RD(O7)))
2543 && (y & RS1(~0)) != RS1(O7)
2544 && ((y & F3I(~0))
2545 || (y & RS2(~0)) != RS2(O7)))
2547 bfd_vma reloc;
2549 reloc = relocation + rel->r_addend - rel->r_offset;
2550 reloc -= (input_section->output_section->vma
2551 + input_section->output_offset);
2552 if (reloc & 3)
2553 goto do_default;
2555 /* Ensure the branch fits into simm22. */
2556 if ((reloc & ~(bfd_vma)0x7fffff)
2557 && ((reloc | 0x7fffff) != MINUS_ONE))
2558 goto do_default;
2559 reloc >>= 2;
2561 /* Check whether it fits into simm19. */
2562 if ((reloc & 0x3c0000) == 0
2563 || (reloc & 0x3c0000) == 0x3c0000)
2564 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2565 else
2566 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2567 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2568 r = bfd_reloc_ok;
2569 if (rel->r_offset >= 4
2570 && (y & (0xffffffff ^ RS1(~0)))
2571 == (INSN_OR | RD(O7) | RS2(G0)))
2573 bfd_vma z;
2574 unsigned int reg;
2576 z = bfd_get_32 (input_bfd,
2577 contents + rel->r_offset - 4);
2578 if ((z & (0xffffffff ^ RD(~0)))
2579 != (INSN_OR | RS1(O7) | RS2(G0)))
2580 break;
2582 /* The sequence was
2583 or %o7, %g0, %rN
2584 call foo
2585 or %rN, %g0, %o7
2587 If call foo was replaced with ba, replace
2588 or %rN, %g0, %o7 with nop. */
2590 reg = (y & RS1(~0)) >> 14;
2591 if (reg != ((z & RD(~0)) >> 25)
2592 || reg == G0 || reg == O7)
2593 break;
2595 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2596 contents + rel->r_offset + 4);
2598 break;
2602 /* Fall through. */
2604 default:
2605 do_default:
2606 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2607 contents, rel->r_offset,
2608 relocation, rel->r_addend);
2609 break;
2612 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2613 because such sections are not SEC_ALLOC and thus ld.so will
2614 not process them. */
2615 if (unresolved_reloc
2616 && !((input_section->flags & SEC_DEBUGGING) != 0
2617 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2618 (*_bfd_error_handler)
2619 (_("%B(%A+0x%lx): unresolvable relocation against symbol `%s'"),
2620 input_bfd, input_section,
2621 (long) rel->r_offset,
2622 h->root.root.string);
2624 switch (r)
2626 case bfd_reloc_ok:
2627 break;
2629 default:
2630 case bfd_reloc_outofrange:
2631 abort ();
2633 case bfd_reloc_overflow:
2635 const char *name;
2637 /* The Solaris native linker silently disregards
2638 overflows. We don't, but this breaks stabs debugging
2639 info, whose relocations are only 32-bits wide. Ignore
2640 overflows for discarded entries. */
2641 if ((r_type == R_SPARC_32 || r_type == R_SPARC_DISP32)
2642 && _bfd_elf_section_offset (output_bfd, info, input_section,
2643 rel->r_offset) == (bfd_vma) -1)
2644 break;
2646 if (h != NULL)
2648 if (h->root.type == bfd_link_hash_undefweak
2649 && howto->pc_relative)
2651 /* Assume this is a call protected by other code that
2652 detect the symbol is undefined. If this is the case,
2653 we can safely ignore the overflow. If not, the
2654 program is hosed anyway, and a little warning isn't
2655 going to help. */
2656 break;
2659 name = h->root.root.string;
2661 else
2663 name = (bfd_elf_string_from_elf_section
2664 (input_bfd,
2665 symtab_hdr->sh_link,
2666 sym->st_name));
2667 if (name == NULL)
2668 return FALSE;
2669 if (*name == '\0')
2670 name = bfd_section_name (input_bfd, sec);
2672 if (! ((*info->callbacks->reloc_overflow)
2673 (info, name, howto->name, (bfd_vma) 0,
2674 input_bfd, input_section, rel->r_offset)))
2675 return FALSE;
2677 break;
2681 return TRUE;
2684 /* Finish up dynamic symbol handling. We set the contents of various
2685 dynamic sections here. */
2687 static bfd_boolean
2688 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2689 bfd *output_bfd;
2690 struct bfd_link_info *info;
2691 struct elf_link_hash_entry *h;
2692 Elf_Internal_Sym *sym;
2694 bfd *dynobj;
2696 dynobj = elf_hash_table (info)->dynobj;
2698 if (h->plt.offset != (bfd_vma) -1)
2700 asection *splt;
2701 asection *srela;
2702 Elf_Internal_Rela rela;
2703 bfd_byte *loc;
2705 /* This symbol has an entry in the PLT. Set it up. */
2707 BFD_ASSERT (h->dynindx != -1);
2709 splt = bfd_get_section_by_name (dynobj, ".plt");
2710 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2711 BFD_ASSERT (splt != NULL && srela != NULL);
2713 /* Fill in the entry in the .rela.plt section. */
2715 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2717 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2718 rela.r_addend = 0;
2720 else
2722 bfd_vma max = splt->size / PLT_ENTRY_SIZE;
2723 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2724 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2725 -(splt->output_section->vma + splt->output_offset);
2727 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2728 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2730 /* Adjust for the first 4 reserved elements in the .plt section
2731 when setting the offset in the .rela.plt section.
2732 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2733 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2735 loc = srela->contents;
2736 loc += (h->plt.offset - 4) * sizeof (Elf64_External_Rela);
2737 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2739 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2741 /* Mark the symbol as undefined, rather than as defined in
2742 the .plt section. Leave the value alone. */
2743 sym->st_shndx = SHN_UNDEF;
2744 /* If the symbol is weak, we do need to clear the value.
2745 Otherwise, the PLT entry would provide a definition for
2746 the symbol even if the symbol wasn't defined anywhere,
2747 and so the symbol would never be NULL. */
2748 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2749 == 0)
2750 sym->st_value = 0;
2754 if (h->got.offset != (bfd_vma) -1)
2756 asection *sgot;
2757 asection *srela;
2758 Elf_Internal_Rela rela;
2759 bfd_byte *loc;
2761 /* This symbol has an entry in the GOT. Set it up. */
2763 sgot = bfd_get_section_by_name (dynobj, ".got");
2764 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2765 BFD_ASSERT (sgot != NULL && srela != NULL);
2767 rela.r_offset = (sgot->output_section->vma
2768 + sgot->output_offset
2769 + (h->got.offset &~ (bfd_vma) 1));
2771 /* If this is a -Bsymbolic link, and the symbol is defined
2772 locally, we just want to emit a RELATIVE reloc. Likewise if
2773 the symbol was forced to be local because of a version file.
2774 The entry in the global offset table will already have been
2775 initialized in the relocate_section function. */
2776 if (info->shared
2777 && (info->symbolic || h->dynindx == -1)
2778 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2780 asection *sec = h->root.u.def.section;
2781 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2782 rela.r_addend = (h->root.u.def.value
2783 + sec->output_section->vma
2784 + sec->output_offset);
2786 else
2788 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2789 rela.r_addend = 0;
2792 bfd_put_64 (output_bfd, (bfd_vma) 0,
2793 sgot->contents + (h->got.offset &~ (bfd_vma) 1));
2794 loc = srela->contents;
2795 loc += srela->reloc_count++ * sizeof (Elf64_External_Rela);
2796 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2799 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2801 asection *s;
2802 Elf_Internal_Rela rela;
2803 bfd_byte *loc;
2805 /* This symbols needs a copy reloc. Set it up. */
2806 BFD_ASSERT (h->dynindx != -1);
2808 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2809 ".rela.bss");
2810 BFD_ASSERT (s != NULL);
2812 rela.r_offset = (h->root.u.def.value
2813 + h->root.u.def.section->output_section->vma
2814 + h->root.u.def.section->output_offset);
2815 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2816 rela.r_addend = 0;
2817 loc = s->contents + s->reloc_count++ * sizeof (Elf64_External_Rela);
2818 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2821 /* Mark some specially defined symbols as absolute. */
2822 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2823 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2824 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2825 sym->st_shndx = SHN_ABS;
2827 return TRUE;
2830 /* Finish up the dynamic sections. */
2832 static bfd_boolean
2833 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2834 bfd *output_bfd;
2835 struct bfd_link_info *info;
2837 bfd *dynobj;
2838 int stt_regidx = -1;
2839 asection *sdyn;
2840 asection *sgot;
2842 dynobj = elf_hash_table (info)->dynobj;
2844 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2846 if (elf_hash_table (info)->dynamic_sections_created)
2848 asection *splt;
2849 Elf64_External_Dyn *dyncon, *dynconend;
2851 splt = bfd_get_section_by_name (dynobj, ".plt");
2852 BFD_ASSERT (splt != NULL && sdyn != NULL);
2854 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2855 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2856 for (; dyncon < dynconend; dyncon++)
2858 Elf_Internal_Dyn dyn;
2859 const char *name;
2860 bfd_boolean size;
2862 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2864 switch (dyn.d_tag)
2866 case DT_PLTGOT: name = ".plt"; size = FALSE; break;
2867 case DT_PLTRELSZ: name = ".rela.plt"; size = TRUE; break;
2868 case DT_JMPREL: name = ".rela.plt"; size = FALSE; break;
2869 case DT_SPARC_REGISTER:
2870 if (stt_regidx == -1)
2872 stt_regidx =
2873 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2874 if (stt_regidx == -1)
2875 return FALSE;
2877 dyn.d_un.d_val = stt_regidx++;
2878 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2879 /* fallthrough */
2880 default: name = NULL; size = FALSE; break;
2883 if (name != NULL)
2885 asection *s;
2887 s = bfd_get_section_by_name (output_bfd, name);
2888 if (s == NULL)
2889 dyn.d_un.d_val = 0;
2890 else
2892 if (! size)
2893 dyn.d_un.d_ptr = s->vma;
2894 else
2895 dyn.d_un.d_val = s->size;
2897 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2901 /* Initialize the contents of the .plt section. */
2902 if (splt->size > 0)
2903 sparc64_elf_build_plt (output_bfd, splt->contents,
2904 (int) (splt->size / PLT_ENTRY_SIZE));
2906 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2907 PLT_ENTRY_SIZE;
2910 /* Set the first entry in the global offset table to the address of
2911 the dynamic section. */
2912 sgot = bfd_get_section_by_name (dynobj, ".got");
2913 BFD_ASSERT (sgot != NULL);
2914 if (sgot->size > 0)
2916 if (sdyn == NULL)
2917 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2918 else
2919 bfd_put_64 (output_bfd,
2920 sdyn->output_section->vma + sdyn->output_offset,
2921 sgot->contents);
2924 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2926 return TRUE;
2929 static enum elf_reloc_type_class
2930 sparc64_elf_reloc_type_class (rela)
2931 const Elf_Internal_Rela *rela;
2933 switch ((int) ELF64_R_TYPE (rela->r_info))
2935 case R_SPARC_RELATIVE:
2936 return reloc_class_relative;
2937 case R_SPARC_JMP_SLOT:
2938 return reloc_class_plt;
2939 case R_SPARC_COPY:
2940 return reloc_class_copy;
2941 default:
2942 return reloc_class_normal;
2946 /* Functions for dealing with the e_flags field. */
2948 /* Merge backend specific data from an object file to the output
2949 object file when linking. */
2951 static bfd_boolean
2952 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2953 bfd *ibfd;
2954 bfd *obfd;
2956 bfd_boolean error;
2957 flagword new_flags, old_flags;
2958 int new_mm, old_mm;
2960 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2961 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2962 return TRUE;
2964 new_flags = elf_elfheader (ibfd)->e_flags;
2965 old_flags = elf_elfheader (obfd)->e_flags;
2967 if (!elf_flags_init (obfd)) /* First call, no flags set */
2969 elf_flags_init (obfd) = TRUE;
2970 elf_elfheader (obfd)->e_flags = new_flags;
2973 else if (new_flags == old_flags) /* Compatible flags are ok */
2976 else /* Incompatible flags */
2978 error = FALSE;
2980 #define EF_SPARC_ISA_EXTENSIONS \
2981 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2983 if ((ibfd->flags & DYNAMIC) != 0)
2985 /* We don't want dynamic objects memory ordering and
2986 architecture to have any role. That's what dynamic linker
2987 should do. */
2988 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
2989 new_flags |= (old_flags
2990 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
2992 else
2994 /* Choose the highest architecture requirements. */
2995 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
2996 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
2997 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
2998 && (old_flags & EF_SPARC_HAL_R1))
3000 error = TRUE;
3001 (*_bfd_error_handler)
3002 (_("%B: linking UltraSPARC specific with HAL specific code"),
3003 ibfd);
3005 /* Choose the most restrictive memory ordering. */
3006 old_mm = (old_flags & EF_SPARCV9_MM);
3007 new_mm = (new_flags & EF_SPARCV9_MM);
3008 old_flags &= ~EF_SPARCV9_MM;
3009 new_flags &= ~EF_SPARCV9_MM;
3010 if (new_mm < old_mm)
3011 old_mm = new_mm;
3012 old_flags |= old_mm;
3013 new_flags |= old_mm;
3016 /* Warn about any other mismatches */
3017 if (new_flags != old_flags)
3019 error = TRUE;
3020 (*_bfd_error_handler)
3021 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3022 ibfd, (long) new_flags, (long) old_flags);
3025 elf_elfheader (obfd)->e_flags = old_flags;
3027 if (error)
3029 bfd_set_error (bfd_error_bad_value);
3030 return FALSE;
3033 return TRUE;
3036 /* MARCO: Set the correct entry size for the .stab section. */
3038 static bfd_boolean
3039 sparc64_elf_fake_sections (abfd, hdr, sec)
3040 bfd *abfd ATTRIBUTE_UNUSED;
3041 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
3042 asection *sec;
3044 const char *name;
3046 name = bfd_get_section_name (abfd, sec);
3048 if (strcmp (name, ".stab") == 0)
3050 /* Even in the 64bit case the stab entries are only 12 bytes long. */
3051 elf_section_data (sec)->this_hdr.sh_entsize = 12;
3054 return TRUE;
3057 /* Print a STT_REGISTER symbol to file FILE. */
3059 static const char *
3060 sparc64_elf_print_symbol_all (abfd, filep, symbol)
3061 bfd *abfd ATTRIBUTE_UNUSED;
3062 PTR filep;
3063 asymbol *symbol;
3065 FILE *file = (FILE *) filep;
3066 int reg, type;
3068 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3069 != STT_REGISTER)
3070 return NULL;
3072 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3073 type = symbol->flags;
3074 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3075 ((type & BSF_LOCAL)
3076 ? (type & BSF_GLOBAL) ? '!' : 'l'
3077 : (type & BSF_GLOBAL) ? 'g' : ' '),
3078 (type & BSF_WEAK) ? 'w' : ' ');
3079 if (symbol->name == NULL || symbol->name [0] == '\0')
3080 return "#scratch";
3081 else
3082 return symbol->name;
3085 /* Set the right machine number for a SPARC64 ELF file. */
3087 static bfd_boolean
3088 sparc64_elf_object_p (abfd)
3089 bfd *abfd;
3091 unsigned long mach = bfd_mach_sparc_v9;
3093 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3094 mach = bfd_mach_sparc_v9b;
3095 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3096 mach = bfd_mach_sparc_v9a;
3097 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3100 /* Return address for Ith PLT stub in section PLT, for relocation REL
3101 or (bfd_vma) -1 if it should not be included. */
3103 static bfd_vma
3104 sparc64_elf_plt_sym_val (bfd_vma i, const asection *plt,
3105 const arelent *rel ATTRIBUTE_UNUSED)
3107 bfd_vma j;
3109 i += PLT_HEADER_SIZE / PLT_ENTRY_SIZE;
3110 if (i < LARGE_PLT_THRESHOLD)
3111 return plt->vma + i * PLT_ENTRY_SIZE;
3113 j = (i - LARGE_PLT_THRESHOLD) % 160;
3114 i -= j;
3115 return plt->vma + i * PLT_ENTRY_SIZE + j * 4 * 6;
3118 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3119 standard ELF, because R_SPARC_OLO10 has secondary addend in
3120 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3121 relocation handling routines. */
3123 const struct elf_size_info sparc64_elf_size_info =
3125 sizeof (Elf64_External_Ehdr),
3126 sizeof (Elf64_External_Phdr),
3127 sizeof (Elf64_External_Shdr),
3128 sizeof (Elf64_External_Rel),
3129 sizeof (Elf64_External_Rela),
3130 sizeof (Elf64_External_Sym),
3131 sizeof (Elf64_External_Dyn),
3132 sizeof (Elf_External_Note),
3133 4, /* hash-table entry size. */
3134 /* Internal relocations per external relocations.
3135 For link purposes we use just 1 internal per
3136 1 external, for assembly and slurp symbol table
3137 we use 2. */
3139 64, /* arch_size. */
3140 3, /* log_file_align. */
3141 ELFCLASS64,
3142 EV_CURRENT,
3143 bfd_elf64_write_out_phdrs,
3144 bfd_elf64_write_shdrs_and_ehdr,
3145 sparc64_elf_write_relocs,
3146 bfd_elf64_swap_symbol_in,
3147 bfd_elf64_swap_symbol_out,
3148 sparc64_elf_slurp_reloc_table,
3149 bfd_elf64_slurp_symbol_table,
3150 bfd_elf64_swap_dyn_in,
3151 bfd_elf64_swap_dyn_out,
3152 bfd_elf64_swap_reloc_in,
3153 bfd_elf64_swap_reloc_out,
3154 bfd_elf64_swap_reloca_in,
3155 bfd_elf64_swap_reloca_out
3158 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3159 #define TARGET_BIG_NAME "elf64-sparc"
3160 #define ELF_ARCH bfd_arch_sparc
3161 #define ELF_MAXPAGESIZE 0x100000
3163 /* This is the official ABI value. */
3164 #define ELF_MACHINE_CODE EM_SPARCV9
3166 /* This is the value that we used before the ABI was released. */
3167 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3169 #define bfd_elf64_bfd_link_hash_table_create \
3170 sparc64_elf_bfd_link_hash_table_create
3172 #define elf_info_to_howto \
3173 sparc64_elf_info_to_howto
3174 #define bfd_elf64_get_reloc_upper_bound \
3175 sparc64_elf_get_reloc_upper_bound
3176 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3177 sparc64_elf_get_dynamic_reloc_upper_bound
3178 #define bfd_elf64_canonicalize_reloc \
3179 sparc64_elf_canonicalize_reloc
3180 #define bfd_elf64_canonicalize_dynamic_reloc \
3181 sparc64_elf_canonicalize_dynamic_reloc
3182 #define bfd_elf64_bfd_reloc_type_lookup \
3183 sparc64_elf_reloc_type_lookup
3184 #define bfd_elf64_bfd_relax_section \
3185 sparc64_elf_relax_section
3186 #define bfd_elf64_new_section_hook \
3187 sparc64_elf_new_section_hook
3189 #define elf_backend_create_dynamic_sections \
3190 _bfd_elf_create_dynamic_sections
3191 #define elf_backend_add_symbol_hook \
3192 sparc64_elf_add_symbol_hook
3193 #define elf_backend_get_symbol_type \
3194 sparc64_elf_get_symbol_type
3195 #define elf_backend_symbol_processing \
3196 sparc64_elf_symbol_processing
3197 #define elf_backend_check_relocs \
3198 sparc64_elf_check_relocs
3199 #define elf_backend_adjust_dynamic_symbol \
3200 sparc64_elf_adjust_dynamic_symbol
3201 #define elf_backend_size_dynamic_sections \
3202 sparc64_elf_size_dynamic_sections
3203 #define elf_backend_relocate_section \
3204 sparc64_elf_relocate_section
3205 #define elf_backend_finish_dynamic_symbol \
3206 sparc64_elf_finish_dynamic_symbol
3207 #define elf_backend_finish_dynamic_sections \
3208 sparc64_elf_finish_dynamic_sections
3209 #define elf_backend_print_symbol_all \
3210 sparc64_elf_print_symbol_all
3211 #define elf_backend_output_arch_syms \
3212 sparc64_elf_output_arch_syms
3213 #define bfd_elf64_bfd_merge_private_bfd_data \
3214 sparc64_elf_merge_private_bfd_data
3215 #define elf_backend_fake_sections \
3216 sparc64_elf_fake_sections
3217 #define elf_backend_plt_sym_val \
3218 sparc64_elf_plt_sym_val
3220 #define elf_backend_size_info \
3221 sparc64_elf_size_info
3222 #define elf_backend_object_p \
3223 sparc64_elf_object_p
3224 #define elf_backend_reloc_type_class \
3225 sparc64_elf_reloc_type_class
3227 #define elf_backend_want_got_plt 0
3228 #define elf_backend_plt_readonly 0
3229 #define elf_backend_want_plt_sym 1
3230 #define elf_backend_rela_normal 1
3232 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3233 #define elf_backend_plt_alignment 8
3235 #define elf_backend_got_header_size 8
3237 #include "elf64-target.h"