1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
34 /* For sparc64-cross-sparc32. */
42 #include "libiberty.h"
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
46 static bfd_boolean
prep_headers (bfd
*);
47 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
48 static bfd_boolean
elfcore_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
54 /* Swap in a Verdef structure. */
57 _bfd_elf_swap_verdef_in (bfd
*abfd
,
58 const Elf_External_Verdef
*src
,
59 Elf_Internal_Verdef
*dst
)
61 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
62 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
63 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
64 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
65 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
66 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
67 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
70 /* Swap out a Verdef structure. */
73 _bfd_elf_swap_verdef_out (bfd
*abfd
,
74 const Elf_Internal_Verdef
*src
,
75 Elf_External_Verdef
*dst
)
77 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
78 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
79 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
80 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
81 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
82 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
83 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
86 /* Swap in a Verdaux structure. */
89 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
90 const Elf_External_Verdaux
*src
,
91 Elf_Internal_Verdaux
*dst
)
93 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
94 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
97 /* Swap out a Verdaux structure. */
100 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
101 const Elf_Internal_Verdaux
*src
,
102 Elf_External_Verdaux
*dst
)
104 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
105 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
108 /* Swap in a Verneed structure. */
111 _bfd_elf_swap_verneed_in (bfd
*abfd
,
112 const Elf_External_Verneed
*src
,
113 Elf_Internal_Verneed
*dst
)
115 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
116 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
117 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
118 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
119 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
122 /* Swap out a Verneed structure. */
125 _bfd_elf_swap_verneed_out (bfd
*abfd
,
126 const Elf_Internal_Verneed
*src
,
127 Elf_External_Verneed
*dst
)
129 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
130 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
131 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
132 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
133 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
136 /* Swap in a Vernaux structure. */
139 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
140 const Elf_External_Vernaux
*src
,
141 Elf_Internal_Vernaux
*dst
)
143 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
144 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
145 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
146 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
147 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
150 /* Swap out a Vernaux structure. */
153 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
154 const Elf_Internal_Vernaux
*src
,
155 Elf_External_Vernaux
*dst
)
157 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
158 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
159 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
160 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
161 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
164 /* Swap in a Versym structure. */
167 _bfd_elf_swap_versym_in (bfd
*abfd
,
168 const Elf_External_Versym
*src
,
169 Elf_Internal_Versym
*dst
)
171 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
174 /* Swap out a Versym structure. */
177 _bfd_elf_swap_versym_out (bfd
*abfd
,
178 const Elf_Internal_Versym
*src
,
179 Elf_External_Versym
*dst
)
181 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
188 bfd_elf_hash (const char *namearg
)
190 const unsigned char *name
= (const unsigned char *) namearg
;
195 while ((ch
= *name
++) != '\0')
198 if ((g
= (h
& 0xf0000000)) != 0)
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
206 return h
& 0xffffffff;
209 /* DT_GNU_HASH hash function. Do not change this function; you will
210 cause invalid hash tables to be generated. */
213 bfd_elf_gnu_hash (const char *namearg
)
215 const unsigned char *name
= (const unsigned char *) namearg
;
216 unsigned long h
= 5381;
219 while ((ch
= *name
++) != '\0')
220 h
= (h
<< 5) + h
+ ch
;
221 return h
& 0xffffffff;
225 bfd_elf_mkobject (bfd
*abfd
)
227 if (abfd
->tdata
.any
== NULL
)
229 abfd
->tdata
.any
= bfd_zalloc (abfd
, sizeof (struct elf_obj_tdata
));
230 if (abfd
->tdata
.any
== NULL
)
234 elf_tdata (abfd
)->program_header_size
= (bfd_size_type
) -1;
240 bfd_elf_mkcorefile (bfd
*abfd
)
242 /* I think this can be done just like an object file. */
243 return bfd_elf_mkobject (abfd
);
247 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
249 Elf_Internal_Shdr
**i_shdrp
;
250 bfd_byte
*shstrtab
= NULL
;
252 bfd_size_type shstrtabsize
;
254 i_shdrp
= elf_elfsections (abfd
);
255 if (i_shdrp
== 0 || i_shdrp
[shindex
] == 0)
258 shstrtab
= i_shdrp
[shindex
]->contents
;
259 if (shstrtab
== NULL
)
261 /* No cached one, attempt to read, and cache what we read. */
262 offset
= i_shdrp
[shindex
]->sh_offset
;
263 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
265 /* Allocate and clear an extra byte at the end, to prevent crashes
266 in case the string table is not terminated. */
267 if (shstrtabsize
+ 1 == 0
268 || (shstrtab
= bfd_alloc (abfd
, shstrtabsize
+ 1)) == NULL
269 || bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
271 else if (bfd_bread (shstrtab
, shstrtabsize
, abfd
) != shstrtabsize
)
273 if (bfd_get_error () != bfd_error_system_call
)
274 bfd_set_error (bfd_error_file_truncated
);
278 shstrtab
[shstrtabsize
] = '\0';
279 i_shdrp
[shindex
]->contents
= shstrtab
;
281 return (char *) shstrtab
;
285 bfd_elf_string_from_elf_section (bfd
*abfd
,
286 unsigned int shindex
,
287 unsigned int strindex
)
289 Elf_Internal_Shdr
*hdr
;
294 hdr
= elf_elfsections (abfd
)[shindex
];
296 if (hdr
->contents
== NULL
297 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
300 if (strindex
>= hdr
->sh_size
)
302 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
303 (*_bfd_error_handler
)
304 (_("%B: invalid string offset %u >= %lu for section `%s'"),
305 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
306 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
308 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
312 return ((char *) hdr
->contents
) + strindex
;
315 /* Read and convert symbols to internal format.
316 SYMCOUNT specifies the number of symbols to read, starting from
317 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
318 are non-NULL, they are used to store the internal symbols, external
319 symbols, and symbol section index extensions, respectively. */
322 bfd_elf_get_elf_syms (bfd
*ibfd
,
323 Elf_Internal_Shdr
*symtab_hdr
,
326 Elf_Internal_Sym
*intsym_buf
,
328 Elf_External_Sym_Shndx
*extshndx_buf
)
330 Elf_Internal_Shdr
*shndx_hdr
;
332 const bfd_byte
*esym
;
333 Elf_External_Sym_Shndx
*alloc_extshndx
;
334 Elf_External_Sym_Shndx
*shndx
;
335 Elf_Internal_Sym
*isym
;
336 Elf_Internal_Sym
*isymend
;
337 const struct elf_backend_data
*bed
;
345 /* Normal syms might have section extension entries. */
347 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
348 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
350 /* Read the symbols. */
352 alloc_extshndx
= NULL
;
353 bed
= get_elf_backend_data (ibfd
);
354 extsym_size
= bed
->s
->sizeof_sym
;
355 amt
= symcount
* extsym_size
;
356 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
357 if (extsym_buf
== NULL
)
359 alloc_ext
= bfd_malloc2 (symcount
, extsym_size
);
360 extsym_buf
= alloc_ext
;
362 if (extsym_buf
== NULL
363 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
364 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
370 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
374 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
375 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
376 if (extshndx_buf
== NULL
)
378 alloc_extshndx
= bfd_malloc2 (symcount
,
379 sizeof (Elf_External_Sym_Shndx
));
380 extshndx_buf
= alloc_extshndx
;
382 if (extshndx_buf
== NULL
383 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
384 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
391 if (intsym_buf
== NULL
)
393 intsym_buf
= bfd_malloc2 (symcount
, sizeof (Elf_Internal_Sym
));
394 if (intsym_buf
== NULL
)
398 /* Convert the symbols to internal form. */
399 isymend
= intsym_buf
+ symcount
;
400 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
402 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
403 if (!(*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
))
405 symoffset
+= (esym
- (bfd_byte
*) extsym_buf
) / extsym_size
;
406 (*_bfd_error_handler
) (_("%B symbol number %lu references "
407 "nonexistent SHT_SYMTAB_SHNDX section"),
408 ibfd
, (unsigned long) symoffset
);
414 if (alloc_ext
!= NULL
)
416 if (alloc_extshndx
!= NULL
)
417 free (alloc_extshndx
);
422 /* Look up a symbol name. */
424 bfd_elf_sym_name (bfd
*abfd
,
425 Elf_Internal_Shdr
*symtab_hdr
,
426 Elf_Internal_Sym
*isym
,
430 unsigned int iname
= isym
->st_name
;
431 unsigned int shindex
= symtab_hdr
->sh_link
;
433 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
434 /* Check for a bogus st_shndx to avoid crashing. */
435 && isym
->st_shndx
< elf_numsections (abfd
)
436 && !(isym
->st_shndx
>= SHN_LORESERVE
&& isym
->st_shndx
<= SHN_HIRESERVE
))
438 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
439 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
442 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
445 else if (sym_sec
&& *name
== '\0')
446 name
= bfd_section_name (abfd
, sym_sec
);
451 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
452 sections. The first element is the flags, the rest are section
455 typedef union elf_internal_group
{
456 Elf_Internal_Shdr
*shdr
;
458 } Elf_Internal_Group
;
460 /* Return the name of the group signature symbol. Why isn't the
461 signature just a string? */
464 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
466 Elf_Internal_Shdr
*hdr
;
467 unsigned char esym
[sizeof (Elf64_External_Sym
)];
468 Elf_External_Sym_Shndx eshndx
;
469 Elf_Internal_Sym isym
;
471 /* First we need to ensure the symbol table is available. Make sure
472 that it is a symbol table section. */
473 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
474 if (hdr
->sh_type
!= SHT_SYMTAB
475 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
478 /* Go read the symbol. */
479 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
480 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
481 &isym
, esym
, &eshndx
) == NULL
)
484 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
487 /* Set next_in_group list pointer, and group name for NEWSECT. */
490 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
492 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
494 /* If num_group is zero, read in all SHT_GROUP sections. The count
495 is set to -1 if there are no SHT_GROUP sections. */
498 unsigned int i
, shnum
;
500 /* First count the number of groups. If we have a SHT_GROUP
501 section with just a flag word (ie. sh_size is 4), ignore it. */
502 shnum
= elf_numsections (abfd
);
504 for (i
= 0; i
< shnum
; i
++)
506 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
507 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
513 num_group
= (unsigned) -1;
514 elf_tdata (abfd
)->num_group
= num_group
;
518 /* We keep a list of elf section headers for group sections,
519 so we can find them quickly. */
522 elf_tdata (abfd
)->num_group
= num_group
;
523 elf_tdata (abfd
)->group_sect_ptr
524 = bfd_alloc2 (abfd
, num_group
, sizeof (Elf_Internal_Shdr
*));
525 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
529 for (i
= 0; i
< shnum
; i
++)
531 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
532 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
535 Elf_Internal_Group
*dest
;
537 /* Add to list of sections. */
538 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
541 /* Read the raw contents. */
542 BFD_ASSERT (sizeof (*dest
) >= 4);
543 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
544 shdr
->contents
= bfd_alloc2 (abfd
, shdr
->sh_size
,
546 if (shdr
->contents
== NULL
547 || bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
548 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
552 /* Translate raw contents, a flag word followed by an
553 array of elf section indices all in target byte order,
554 to the flag word followed by an array of elf section
556 src
= shdr
->contents
+ shdr
->sh_size
;
557 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
564 idx
= H_GET_32 (abfd
, src
);
565 if (src
== shdr
->contents
)
568 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
569 shdr
->bfd_section
->flags
570 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
575 ((*_bfd_error_handler
)
576 (_("%B: invalid SHT_GROUP entry"), abfd
));
579 dest
->shdr
= elf_elfsections (abfd
)[idx
];
586 if (num_group
!= (unsigned) -1)
590 for (i
= 0; i
< num_group
; i
++)
592 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
593 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
594 unsigned int n_elt
= shdr
->sh_size
/ 4;
596 /* Look through this group's sections to see if current
597 section is a member. */
599 if ((++idx
)->shdr
== hdr
)
603 /* We are a member of this group. Go looking through
604 other members to see if any others are linked via
606 idx
= (Elf_Internal_Group
*) shdr
->contents
;
607 n_elt
= shdr
->sh_size
/ 4;
609 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
610 && elf_next_in_group (s
) != NULL
)
614 /* Snarf the group name from other member, and
615 insert current section in circular list. */
616 elf_group_name (newsect
) = elf_group_name (s
);
617 elf_next_in_group (newsect
) = elf_next_in_group (s
);
618 elf_next_in_group (s
) = newsect
;
624 gname
= group_signature (abfd
, shdr
);
627 elf_group_name (newsect
) = gname
;
629 /* Start a circular list with one element. */
630 elf_next_in_group (newsect
) = newsect
;
633 /* If the group section has been created, point to the
635 if (shdr
->bfd_section
!= NULL
)
636 elf_next_in_group (shdr
->bfd_section
) = newsect
;
644 if (elf_group_name (newsect
) == NULL
)
646 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
653 _bfd_elf_setup_sections (bfd
*abfd
)
656 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
657 bfd_boolean result
= TRUE
;
660 /* Process SHF_LINK_ORDER. */
661 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
663 Elf_Internal_Shdr
*this_hdr
= &elf_section_data (s
)->this_hdr
;
664 if ((this_hdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
666 unsigned int elfsec
= this_hdr
->sh_link
;
667 /* FIXME: The old Intel compiler and old strip/objcopy may
668 not set the sh_link or sh_info fields. Hence we could
669 get the situation where elfsec is 0. */
672 const struct elf_backend_data
*bed
673 = get_elf_backend_data (abfd
);
674 if (bed
->link_order_error_handler
)
675 bed
->link_order_error_handler
676 (_("%B: warning: sh_link not set for section `%A'"),
683 this_hdr
= elf_elfsections (abfd
)[elfsec
];
686 Some strip/objcopy may leave an incorrect value in
687 sh_link. We don't want to proceed. */
688 link
= this_hdr
->bfd_section
;
691 (*_bfd_error_handler
)
692 (_("%B: sh_link [%d] in section `%A' is incorrect"),
693 s
->owner
, s
, elfsec
);
697 elf_linked_to_section (s
) = link
;
702 /* Process section groups. */
703 if (num_group
== (unsigned) -1)
706 for (i
= 0; i
< num_group
; i
++)
708 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
709 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
710 unsigned int n_elt
= shdr
->sh_size
/ 4;
713 if ((++idx
)->shdr
->bfd_section
)
714 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
715 else if (idx
->shdr
->sh_type
== SHT_RELA
716 || idx
->shdr
->sh_type
== SHT_REL
)
717 /* We won't include relocation sections in section groups in
718 output object files. We adjust the group section size here
719 so that relocatable link will work correctly when
720 relocation sections are in section group in input object
722 shdr
->bfd_section
->size
-= 4;
725 /* There are some unknown sections in the group. */
726 (*_bfd_error_handler
)
727 (_("%B: unknown [%d] section `%s' in group [%s]"),
729 (unsigned int) idx
->shdr
->sh_type
,
730 bfd_elf_string_from_elf_section (abfd
,
731 (elf_elfheader (abfd
)
734 shdr
->bfd_section
->name
);
742 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
744 return elf_next_in_group (sec
) != NULL
;
747 /* Make a BFD section from an ELF section. We store a pointer to the
748 BFD section in the bfd_section field of the header. */
751 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
752 Elf_Internal_Shdr
*hdr
,
758 const struct elf_backend_data
*bed
;
760 if (hdr
->bfd_section
!= NULL
)
762 BFD_ASSERT (strcmp (name
,
763 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
767 newsect
= bfd_make_section_anyway (abfd
, name
);
771 hdr
->bfd_section
= newsect
;
772 elf_section_data (newsect
)->this_hdr
= *hdr
;
773 elf_section_data (newsect
)->this_idx
= shindex
;
775 /* Always use the real type/flags. */
776 elf_section_type (newsect
) = hdr
->sh_type
;
777 elf_section_flags (newsect
) = hdr
->sh_flags
;
779 newsect
->filepos
= hdr
->sh_offset
;
781 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
782 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
783 || ! bfd_set_section_alignment (abfd
, newsect
,
784 bfd_log2 ((bfd_vma
) hdr
->sh_addralign
)))
787 flags
= SEC_NO_FLAGS
;
788 if (hdr
->sh_type
!= SHT_NOBITS
)
789 flags
|= SEC_HAS_CONTENTS
;
790 if (hdr
->sh_type
== SHT_GROUP
)
791 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
792 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
795 if (hdr
->sh_type
!= SHT_NOBITS
)
798 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
799 flags
|= SEC_READONLY
;
800 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
802 else if ((flags
& SEC_LOAD
) != 0)
804 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
807 newsect
->entsize
= hdr
->sh_entsize
;
808 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
809 flags
|= SEC_STRINGS
;
811 if (hdr
->sh_flags
& SHF_GROUP
)
812 if (!setup_group (abfd
, hdr
, newsect
))
814 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
815 flags
|= SEC_THREAD_LOCAL
;
817 if ((flags
& SEC_ALLOC
) == 0)
819 /* The debugging sections appear to be recognized only by name,
820 not any sort of flag. Their SEC_ALLOC bits are cleared. */
825 } debug_sections
[] =
827 { STRING_COMMA_LEN ("debug") }, /* 'd' */
828 { NULL
, 0 }, /* 'e' */
829 { NULL
, 0 }, /* 'f' */
830 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
831 { NULL
, 0 }, /* 'h' */
832 { NULL
, 0 }, /* 'i' */
833 { NULL
, 0 }, /* 'j' */
834 { NULL
, 0 }, /* 'k' */
835 { STRING_COMMA_LEN ("line") }, /* 'l' */
836 { NULL
, 0 }, /* 'm' */
837 { NULL
, 0 }, /* 'n' */
838 { NULL
, 0 }, /* 'o' */
839 { NULL
, 0 }, /* 'p' */
840 { NULL
, 0 }, /* 'q' */
841 { NULL
, 0 }, /* 'r' */
842 { STRING_COMMA_LEN ("stab") } /* 's' */
847 int i
= name
[1] - 'd';
849 && i
< (int) ARRAY_SIZE (debug_sections
)
850 && debug_sections
[i
].name
!= NULL
851 && strncmp (&name
[1], debug_sections
[i
].name
,
852 debug_sections
[i
].len
) == 0)
853 flags
|= SEC_DEBUGGING
;
857 /* As a GNU extension, if the name begins with .gnu.linkonce, we
858 only link a single copy of the section. This is used to support
859 g++. g++ will emit each template expansion in its own section.
860 The symbols will be defined as weak, so that multiple definitions
861 are permitted. The GNU linker extension is to actually discard
862 all but one of the sections. */
863 if (CONST_STRNEQ (name
, ".gnu.linkonce")
864 && elf_next_in_group (newsect
) == NULL
)
865 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
867 bed
= get_elf_backend_data (abfd
);
868 if (bed
->elf_backend_section_flags
)
869 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
872 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
875 if ((flags
& SEC_ALLOC
) != 0)
877 Elf_Internal_Phdr
*phdr
;
880 /* Look through the phdrs to see if we need to adjust the lma.
881 If all the p_paddr fields are zero, we ignore them, since
882 some ELF linkers produce such output. */
883 phdr
= elf_tdata (abfd
)->phdr
;
884 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
886 if (phdr
->p_paddr
!= 0)
889 if (i
< elf_elfheader (abfd
)->e_phnum
)
891 phdr
= elf_tdata (abfd
)->phdr
;
892 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
894 /* This section is part of this segment if its file
895 offset plus size lies within the segment's memory
896 span and, if the section is loaded, the extent of the
897 loaded data lies within the extent of the segment.
899 Note - we used to check the p_paddr field as well, and
900 refuse to set the LMA if it was 0. This is wrong
901 though, as a perfectly valid initialised segment can
902 have a p_paddr of zero. Some architectures, eg ARM,
903 place special significance on the address 0 and
904 executables need to be able to have a segment which
905 covers this address. */
906 if (phdr
->p_type
== PT_LOAD
907 && (bfd_vma
) hdr
->sh_offset
>= phdr
->p_offset
908 && (hdr
->sh_offset
+ hdr
->sh_size
909 <= phdr
->p_offset
+ phdr
->p_memsz
)
910 && ((flags
& SEC_LOAD
) == 0
911 || (hdr
->sh_offset
+ hdr
->sh_size
912 <= phdr
->p_offset
+ phdr
->p_filesz
)))
914 if ((flags
& SEC_LOAD
) == 0)
915 newsect
->lma
= (phdr
->p_paddr
916 + hdr
->sh_addr
- phdr
->p_vaddr
);
918 /* We used to use the same adjustment for SEC_LOAD
919 sections, but that doesn't work if the segment
920 is packed with code from multiple VMAs.
921 Instead we calculate the section LMA based on
922 the segment LMA. It is assumed that the
923 segment will contain sections with contiguous
924 LMAs, even if the VMAs are not. */
925 newsect
->lma
= (phdr
->p_paddr
926 + hdr
->sh_offset
- phdr
->p_offset
);
928 /* With contiguous segments, we can't tell from file
929 offsets whether a section with zero size should
930 be placed at the end of one segment or the
931 beginning of the next. Decide based on vaddr. */
932 if (hdr
->sh_addr
>= phdr
->p_vaddr
933 && (hdr
->sh_addr
+ hdr
->sh_size
934 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
949 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
952 Helper functions for GDB to locate the string tables.
953 Since BFD hides string tables from callers, GDB needs to use an
954 internal hook to find them. Sun's .stabstr, in particular,
955 isn't even pointed to by the .stab section, so ordinary
956 mechanisms wouldn't work to find it, even if we had some.
959 struct elf_internal_shdr
*
960 bfd_elf_find_section (bfd
*abfd
, char *name
)
962 Elf_Internal_Shdr
**i_shdrp
;
967 i_shdrp
= elf_elfsections (abfd
);
970 shstrtab
= bfd_elf_get_str_section (abfd
,
971 elf_elfheader (abfd
)->e_shstrndx
);
972 if (shstrtab
!= NULL
)
974 max
= elf_numsections (abfd
);
975 for (i
= 1; i
< max
; i
++)
976 if (!strcmp (&shstrtab
[i_shdrp
[i
]->sh_name
], name
))
983 const char *const bfd_elf_section_type_names
[] = {
984 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
985 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
986 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
989 /* ELF relocs are against symbols. If we are producing relocatable
990 output, and the reloc is against an external symbol, and nothing
991 has given us any additional addend, the resulting reloc will also
992 be against the same symbol. In such a case, we don't want to
993 change anything about the way the reloc is handled, since it will
994 all be done at final link time. Rather than put special case code
995 into bfd_perform_relocation, all the reloc types use this howto
996 function. It just short circuits the reloc if producing
997 relocatable output against an external symbol. */
999 bfd_reloc_status_type
1000 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
1001 arelent
*reloc_entry
,
1003 void *data ATTRIBUTE_UNUSED
,
1004 asection
*input_section
,
1006 char **error_message ATTRIBUTE_UNUSED
)
1008 if (output_bfd
!= NULL
1009 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1010 && (! reloc_entry
->howto
->partial_inplace
1011 || reloc_entry
->addend
== 0))
1013 reloc_entry
->address
+= input_section
->output_offset
;
1014 return bfd_reloc_ok
;
1017 return bfd_reloc_continue
;
1020 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
1023 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
1026 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
1027 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
1030 /* Finish SHF_MERGE section merging. */
1033 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
1038 if (!is_elf_hash_table (info
->hash
))
1041 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
1042 if ((ibfd
->flags
& DYNAMIC
) == 0)
1043 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
1044 if ((sec
->flags
& SEC_MERGE
) != 0
1045 && !bfd_is_abs_section (sec
->output_section
))
1047 struct bfd_elf_section_data
*secdata
;
1049 secdata
= elf_section_data (sec
);
1050 if (! _bfd_add_merge_section (abfd
,
1051 &elf_hash_table (info
)->merge_info
,
1052 sec
, &secdata
->sec_info
))
1054 else if (secdata
->sec_info
)
1055 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
1058 if (elf_hash_table (info
)->merge_info
!= NULL
)
1059 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
1060 merge_sections_remove_hook
);
1065 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
1067 sec
->output_section
= bfd_abs_section_ptr
;
1068 sec
->output_offset
= sec
->vma
;
1069 if (!is_elf_hash_table (info
->hash
))
1072 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
1075 /* Copy the program header and other data from one object module to
1079 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1081 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1082 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1085 BFD_ASSERT (!elf_flags_init (obfd
)
1086 || (elf_elfheader (obfd
)->e_flags
1087 == elf_elfheader (ibfd
)->e_flags
));
1089 elf_gp (obfd
) = elf_gp (ibfd
);
1090 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1091 elf_flags_init (obfd
) = TRUE
;
1096 get_segment_type (unsigned int p_type
)
1101 case PT_NULL
: pt
= "NULL"; break;
1102 case PT_LOAD
: pt
= "LOAD"; break;
1103 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1104 case PT_INTERP
: pt
= "INTERP"; break;
1105 case PT_NOTE
: pt
= "NOTE"; break;
1106 case PT_SHLIB
: pt
= "SHLIB"; break;
1107 case PT_PHDR
: pt
= "PHDR"; break;
1108 case PT_TLS
: pt
= "TLS"; break;
1109 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1110 case PT_GNU_STACK
: pt
= "STACK"; break;
1111 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1112 default: pt
= NULL
; break;
1117 /* Print out the program headers. */
1120 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1123 Elf_Internal_Phdr
*p
;
1125 bfd_byte
*dynbuf
= NULL
;
1127 p
= elf_tdata (abfd
)->phdr
;
1132 fprintf (f
, _("\nProgram Header:\n"));
1133 c
= elf_elfheader (abfd
)->e_phnum
;
1134 for (i
= 0; i
< c
; i
++, p
++)
1136 const char *pt
= get_segment_type (p
->p_type
);
1141 sprintf (buf
, "0x%lx", p
->p_type
);
1144 fprintf (f
, "%8s off 0x", pt
);
1145 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1146 fprintf (f
, " vaddr 0x");
1147 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1148 fprintf (f
, " paddr 0x");
1149 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1150 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1151 fprintf (f
, " filesz 0x");
1152 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1153 fprintf (f
, " memsz 0x");
1154 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1155 fprintf (f
, " flags %c%c%c",
1156 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1157 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1158 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1159 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1160 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1165 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1169 unsigned long shlink
;
1170 bfd_byte
*extdyn
, *extdynend
;
1172 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1174 fprintf (f
, _("\nDynamic Section:\n"));
1176 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1179 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1182 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1184 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1185 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1188 extdynend
= extdyn
+ s
->size
;
1189 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1191 Elf_Internal_Dyn dyn
;
1194 bfd_boolean stringp
;
1196 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1198 if (dyn
.d_tag
== DT_NULL
)
1205 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1209 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1210 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1211 case DT_PLTGOT
: name
= "PLTGOT"; break;
1212 case DT_HASH
: name
= "HASH"; break;
1213 case DT_STRTAB
: name
= "STRTAB"; break;
1214 case DT_SYMTAB
: name
= "SYMTAB"; break;
1215 case DT_RELA
: name
= "RELA"; break;
1216 case DT_RELASZ
: name
= "RELASZ"; break;
1217 case DT_RELAENT
: name
= "RELAENT"; break;
1218 case DT_STRSZ
: name
= "STRSZ"; break;
1219 case DT_SYMENT
: name
= "SYMENT"; break;
1220 case DT_INIT
: name
= "INIT"; break;
1221 case DT_FINI
: name
= "FINI"; break;
1222 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1223 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1224 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1225 case DT_REL
: name
= "REL"; break;
1226 case DT_RELSZ
: name
= "RELSZ"; break;
1227 case DT_RELENT
: name
= "RELENT"; break;
1228 case DT_PLTREL
: name
= "PLTREL"; break;
1229 case DT_DEBUG
: name
= "DEBUG"; break;
1230 case DT_TEXTREL
: name
= "TEXTREL"; break;
1231 case DT_JMPREL
: name
= "JMPREL"; break;
1232 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1233 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1234 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1235 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1236 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1237 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1238 case DT_FLAGS
: name
= "FLAGS"; break;
1239 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1240 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1241 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1242 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1243 case DT_MOVEENT
: name
= "MOVEENT"; break;
1244 case DT_MOVESZ
: name
= "MOVESZ"; break;
1245 case DT_FEATURE
: name
= "FEATURE"; break;
1246 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1247 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1248 case DT_SYMINENT
: name
= "SYMINENT"; break;
1249 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1250 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1251 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1252 case DT_PLTPAD
: name
= "PLTPAD"; break;
1253 case DT_MOVETAB
: name
= "MOVETAB"; break;
1254 case DT_SYMINFO
: name
= "SYMINFO"; break;
1255 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1256 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1257 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1258 case DT_VERSYM
: name
= "VERSYM"; break;
1259 case DT_VERDEF
: name
= "VERDEF"; break;
1260 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1261 case DT_VERNEED
: name
= "VERNEED"; break;
1262 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1263 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1264 case DT_USED
: name
= "USED"; break;
1265 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1266 case DT_GNU_HASH
: name
= "GNU_HASH"; break;
1269 fprintf (f
, " %-11s ", name
);
1271 fprintf (f
, "0x%lx", (unsigned long) dyn
.d_un
.d_val
);
1275 unsigned int tagv
= dyn
.d_un
.d_val
;
1277 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1280 fprintf (f
, "%s", string
);
1289 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1290 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1292 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1296 if (elf_dynverdef (abfd
) != 0)
1298 Elf_Internal_Verdef
*t
;
1300 fprintf (f
, _("\nVersion definitions:\n"));
1301 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1303 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1304 t
->vd_flags
, t
->vd_hash
,
1305 t
->vd_nodename
? t
->vd_nodename
: "<corrupt>");
1306 if (t
->vd_auxptr
!= NULL
&& t
->vd_auxptr
->vda_nextptr
!= NULL
)
1308 Elf_Internal_Verdaux
*a
;
1311 for (a
= t
->vd_auxptr
->vda_nextptr
;
1315 a
->vda_nodename
? a
->vda_nodename
: "<corrupt>");
1321 if (elf_dynverref (abfd
) != 0)
1323 Elf_Internal_Verneed
*t
;
1325 fprintf (f
, _("\nVersion References:\n"));
1326 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1328 Elf_Internal_Vernaux
*a
;
1330 fprintf (f
, _(" required from %s:\n"),
1331 t
->vn_filename
? t
->vn_filename
: "<corrupt>");
1332 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1333 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1334 a
->vna_flags
, a
->vna_other
,
1335 a
->vna_nodename
? a
->vna_nodename
: "<corrupt>");
1347 /* Display ELF-specific fields of a symbol. */
1350 bfd_elf_print_symbol (bfd
*abfd
,
1353 bfd_print_symbol_type how
)
1358 case bfd_print_symbol_name
:
1359 fprintf (file
, "%s", symbol
->name
);
1361 case bfd_print_symbol_more
:
1362 fprintf (file
, "elf ");
1363 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1364 fprintf (file
, " %lx", (long) symbol
->flags
);
1366 case bfd_print_symbol_all
:
1368 const char *section_name
;
1369 const char *name
= NULL
;
1370 const struct elf_backend_data
*bed
;
1371 unsigned char st_other
;
1374 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1376 bed
= get_elf_backend_data (abfd
);
1377 if (bed
->elf_backend_print_symbol_all
)
1378 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1382 name
= symbol
->name
;
1383 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1386 fprintf (file
, " %s\t", section_name
);
1387 /* Print the "other" value for a symbol. For common symbols,
1388 we've already printed the size; now print the alignment.
1389 For other symbols, we have no specified alignment, and
1390 we've printed the address; now print the size. */
1391 if (bfd_is_com_section (symbol
->section
))
1392 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1394 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1395 bfd_fprintf_vma (abfd
, file
, val
);
1397 /* If we have version information, print it. */
1398 if (elf_tdata (abfd
)->dynversym_section
!= 0
1399 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1400 || elf_tdata (abfd
)->dynverref_section
!= 0))
1402 unsigned int vernum
;
1403 const char *version_string
;
1405 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1408 version_string
= "";
1409 else if (vernum
== 1)
1410 version_string
= "Base";
1411 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1413 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1416 Elf_Internal_Verneed
*t
;
1418 version_string
= "";
1419 for (t
= elf_tdata (abfd
)->verref
;
1423 Elf_Internal_Vernaux
*a
;
1425 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1427 if (a
->vna_other
== vernum
)
1429 version_string
= a
->vna_nodename
;
1436 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1437 fprintf (file
, " %-11s", version_string
);
1442 fprintf (file
, " (%s)", version_string
);
1443 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1448 /* If the st_other field is not zero, print it. */
1449 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1454 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1455 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1456 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1458 /* Some other non-defined flags are also present, so print
1460 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1463 fprintf (file
, " %s", name
);
1469 /* Create an entry in an ELF linker hash table. */
1471 struct bfd_hash_entry
*
1472 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1473 struct bfd_hash_table
*table
,
1476 /* Allocate the structure if it has not already been allocated by a
1480 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
1485 /* Call the allocation method of the superclass. */
1486 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
1489 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
1490 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
1492 /* Set local fields. */
1495 ret
->got
= htab
->init_got_refcount
;
1496 ret
->plt
= htab
->init_plt_refcount
;
1497 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
1498 - offsetof (struct elf_link_hash_entry
, size
)));
1499 /* Assume that we have been called by a non-ELF symbol reader.
1500 This flag is then reset by the code which reads an ELF input
1501 file. This ensures that a symbol created by a non-ELF symbol
1502 reader will have the flag set correctly. */
1509 /* Copy data from an indirect symbol to its direct symbol, hiding the
1510 old indirect symbol. Also used for copying flags to a weakdef. */
1513 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
1514 struct elf_link_hash_entry
*dir
,
1515 struct elf_link_hash_entry
*ind
)
1517 struct elf_link_hash_table
*htab
;
1519 /* Copy down any references that we may have already seen to the
1520 symbol which just became indirect. */
1522 dir
->ref_dynamic
|= ind
->ref_dynamic
;
1523 dir
->ref_regular
|= ind
->ref_regular
;
1524 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
1525 dir
->non_got_ref
|= ind
->non_got_ref
;
1526 dir
->needs_plt
|= ind
->needs_plt
;
1527 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
1529 if (ind
->root
.type
!= bfd_link_hash_indirect
)
1532 /* Copy over the global and procedure linkage table refcount entries.
1533 These may have been already set up by a check_relocs routine. */
1534 htab
= elf_hash_table (info
);
1535 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
1537 if (dir
->got
.refcount
< 0)
1538 dir
->got
.refcount
= 0;
1539 dir
->got
.refcount
+= ind
->got
.refcount
;
1540 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
1543 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
1545 if (dir
->plt
.refcount
< 0)
1546 dir
->plt
.refcount
= 0;
1547 dir
->plt
.refcount
+= ind
->plt
.refcount
;
1548 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
1551 if (ind
->dynindx
!= -1)
1553 if (dir
->dynindx
!= -1)
1554 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
1555 dir
->dynindx
= ind
->dynindx
;
1556 dir
->dynstr_index
= ind
->dynstr_index
;
1558 ind
->dynstr_index
= 0;
1563 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
1564 struct elf_link_hash_entry
*h
,
1565 bfd_boolean force_local
)
1567 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
1571 h
->forced_local
= 1;
1572 if (h
->dynindx
!= -1)
1575 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1581 /* Initialize an ELF linker hash table. */
1584 _bfd_elf_link_hash_table_init
1585 (struct elf_link_hash_table
*table
,
1587 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
1588 struct bfd_hash_table
*,
1590 unsigned int entsize
)
1593 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
1595 memset (table
, 0, sizeof * table
);
1596 table
->init_got_refcount
.refcount
= can_refcount
- 1;
1597 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
1598 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
1599 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
1600 /* The first dynamic symbol is a dummy. */
1601 table
->dynsymcount
= 1;
1603 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
1604 table
->root
.type
= bfd_link_elf_hash_table
;
1609 /* Create an ELF linker hash table. */
1611 struct bfd_link_hash_table
*
1612 _bfd_elf_link_hash_table_create (bfd
*abfd
)
1614 struct elf_link_hash_table
*ret
;
1615 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
1617 ret
= bfd_malloc (amt
);
1621 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
1622 sizeof (struct elf_link_hash_entry
)))
1631 /* This is a hook for the ELF emulation code in the generic linker to
1632 tell the backend linker what file name to use for the DT_NEEDED
1633 entry for a dynamic object. */
1636 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
1638 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1639 && bfd_get_format (abfd
) == bfd_object
)
1640 elf_dt_name (abfd
) = name
;
1644 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
1647 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1648 && bfd_get_format (abfd
) == bfd_object
)
1649 lib_class
= elf_dyn_lib_class (abfd
);
1656 bfd_elf_set_dyn_lib_class (bfd
*abfd
, enum dynamic_lib_link_class lib_class
)
1658 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1659 && bfd_get_format (abfd
) == bfd_object
)
1660 elf_dyn_lib_class (abfd
) = lib_class
;
1663 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1664 the linker ELF emulation code. */
1666 struct bfd_link_needed_list
*
1667 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1668 struct bfd_link_info
*info
)
1670 if (! is_elf_hash_table (info
->hash
))
1672 return elf_hash_table (info
)->needed
;
1675 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1676 hook for the linker ELF emulation code. */
1678 struct bfd_link_needed_list
*
1679 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1680 struct bfd_link_info
*info
)
1682 if (! is_elf_hash_table (info
->hash
))
1684 return elf_hash_table (info
)->runpath
;
1687 /* Get the name actually used for a dynamic object for a link. This
1688 is the SONAME entry if there is one. Otherwise, it is the string
1689 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1692 bfd_elf_get_dt_soname (bfd
*abfd
)
1694 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1695 && bfd_get_format (abfd
) == bfd_object
)
1696 return elf_dt_name (abfd
);
1700 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1701 the ELF linker emulation code. */
1704 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
1705 struct bfd_link_needed_list
**pneeded
)
1708 bfd_byte
*dynbuf
= NULL
;
1710 unsigned long shlink
;
1711 bfd_byte
*extdyn
, *extdynend
;
1713 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1717 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
1718 || bfd_get_format (abfd
) != bfd_object
)
1721 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1722 if (s
== NULL
|| s
->size
== 0)
1725 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1728 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1732 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1734 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1735 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1738 extdynend
= extdyn
+ s
->size
;
1739 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1741 Elf_Internal_Dyn dyn
;
1743 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1745 if (dyn
.d_tag
== DT_NULL
)
1748 if (dyn
.d_tag
== DT_NEEDED
)
1751 struct bfd_link_needed_list
*l
;
1752 unsigned int tagv
= dyn
.d_un
.d_val
;
1755 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1760 l
= bfd_alloc (abfd
, amt
);
1781 /* Allocate an ELF string table--force the first byte to be zero. */
1783 struct bfd_strtab_hash
*
1784 _bfd_elf_stringtab_init (void)
1786 struct bfd_strtab_hash
*ret
;
1788 ret
= _bfd_stringtab_init ();
1793 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1794 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1795 if (loc
== (bfd_size_type
) -1)
1797 _bfd_stringtab_free (ret
);
1804 /* ELF .o/exec file reading */
1806 /* Create a new bfd section from an ELF section header. */
1809 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1811 Elf_Internal_Shdr
*hdr
= elf_elfsections (abfd
)[shindex
];
1812 Elf_Internal_Ehdr
*ehdr
= elf_elfheader (abfd
);
1813 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1816 name
= bfd_elf_string_from_elf_section (abfd
,
1817 elf_elfheader (abfd
)->e_shstrndx
,
1822 switch (hdr
->sh_type
)
1825 /* Inactive section. Throw it away. */
1828 case SHT_PROGBITS
: /* Normal section with contents. */
1829 case SHT_NOBITS
: /* .bss section. */
1830 case SHT_HASH
: /* .hash section. */
1831 case SHT_NOTE
: /* .note section. */
1832 case SHT_INIT_ARRAY
: /* .init_array section. */
1833 case SHT_FINI_ARRAY
: /* .fini_array section. */
1834 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1835 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1836 case SHT_GNU_HASH
: /* .gnu.hash section. */
1837 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1839 case SHT_DYNAMIC
: /* Dynamic linking information. */
1840 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1842 if (hdr
->sh_link
> elf_numsections (abfd
)
1843 || elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1845 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1847 Elf_Internal_Shdr
*dynsymhdr
;
1849 /* The shared libraries distributed with hpux11 have a bogus
1850 sh_link field for the ".dynamic" section. Find the
1851 string table for the ".dynsym" section instead. */
1852 if (elf_dynsymtab (abfd
) != 0)
1854 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1855 hdr
->sh_link
= dynsymhdr
->sh_link
;
1859 unsigned int i
, num_sec
;
1861 num_sec
= elf_numsections (abfd
);
1862 for (i
= 1; i
< num_sec
; i
++)
1864 dynsymhdr
= elf_elfsections (abfd
)[i
];
1865 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1867 hdr
->sh_link
= dynsymhdr
->sh_link
;
1875 case SHT_SYMTAB
: /* A symbol table */
1876 if (elf_onesymtab (abfd
) == shindex
)
1879 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1881 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1882 elf_onesymtab (abfd
) = shindex
;
1883 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1884 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1885 abfd
->flags
|= HAS_SYMS
;
1887 /* Sometimes a shared object will map in the symbol table. If
1888 SHF_ALLOC is set, and this is a shared object, then we also
1889 treat this section as a BFD section. We can not base the
1890 decision purely on SHF_ALLOC, because that flag is sometimes
1891 set in a relocatable object file, which would confuse the
1893 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1894 && (abfd
->flags
& DYNAMIC
) != 0
1895 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1899 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1900 can't read symbols without that section loaded as well. It
1901 is most likely specified by the next section header. */
1902 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1904 unsigned int i
, num_sec
;
1906 num_sec
= elf_numsections (abfd
);
1907 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1909 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1910 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1911 && hdr2
->sh_link
== shindex
)
1915 for (i
= 1; i
< shindex
; i
++)
1917 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1918 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1919 && hdr2
->sh_link
== shindex
)
1923 return bfd_section_from_shdr (abfd
, i
);
1927 case SHT_DYNSYM
: /* A dynamic symbol table */
1928 if (elf_dynsymtab (abfd
) == shindex
)
1931 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1933 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1934 elf_dynsymtab (abfd
) = shindex
;
1935 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1936 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1937 abfd
->flags
|= HAS_SYMS
;
1939 /* Besides being a symbol table, we also treat this as a regular
1940 section, so that objcopy can handle it. */
1941 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1943 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1944 if (elf_symtab_shndx (abfd
) == shindex
)
1947 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1948 elf_symtab_shndx (abfd
) = shindex
;
1949 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1950 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1953 case SHT_STRTAB
: /* A string table */
1954 if (hdr
->bfd_section
!= NULL
)
1956 if (ehdr
->e_shstrndx
== shindex
)
1958 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1959 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1962 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1965 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1966 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1969 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1972 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1973 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1974 elf_elfsections (abfd
)[shindex
] = hdr
;
1975 /* We also treat this as a regular section, so that objcopy
1977 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1981 /* If the string table isn't one of the above, then treat it as a
1982 regular section. We need to scan all the headers to be sure,
1983 just in case this strtab section appeared before the above. */
1984 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
1986 unsigned int i
, num_sec
;
1988 num_sec
= elf_numsections (abfd
);
1989 for (i
= 1; i
< num_sec
; i
++)
1991 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1992 if (hdr2
->sh_link
== shindex
)
1994 /* Prevent endless recursion on broken objects. */
1997 if (! bfd_section_from_shdr (abfd
, i
))
1999 if (elf_onesymtab (abfd
) == i
)
2001 if (elf_dynsymtab (abfd
) == i
)
2002 goto dynsymtab_strtab
;
2006 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2010 /* *These* do a lot of work -- but build no sections! */
2012 asection
*target_sect
;
2013 Elf_Internal_Shdr
*hdr2
;
2014 unsigned int num_sec
= elf_numsections (abfd
);
2017 != (bfd_size_type
) (hdr
->sh_type
== SHT_REL
2018 ? bed
->s
->sizeof_rel
: bed
->s
->sizeof_rela
))
2021 /* Check for a bogus link to avoid crashing. */
2022 if ((hdr
->sh_link
>= SHN_LORESERVE
&& hdr
->sh_link
<= SHN_HIRESERVE
)
2023 || hdr
->sh_link
>= num_sec
)
2025 ((*_bfd_error_handler
)
2026 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2027 abfd
, hdr
->sh_link
, name
, shindex
));
2028 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2032 /* For some incomprehensible reason Oracle distributes
2033 libraries for Solaris in which some of the objects have
2034 bogus sh_link fields. It would be nice if we could just
2035 reject them, but, unfortunately, some people need to use
2036 them. We scan through the section headers; if we find only
2037 one suitable symbol table, we clobber the sh_link to point
2038 to it. I hope this doesn't break anything. */
2039 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
2040 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
2046 for (scan
= 1; scan
< num_sec
; scan
++)
2048 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
2049 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
2060 hdr
->sh_link
= found
;
2063 /* Get the symbol table. */
2064 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
2065 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
2066 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
2069 /* If this reloc section does not use the main symbol table we
2070 don't treat it as a reloc section. BFD can't adequately
2071 represent such a section, so at least for now, we don't
2072 try. We just present it as a normal section. We also
2073 can't use it as a reloc section if it points to the null
2074 section, an invalid section, or another reloc section. */
2075 if (hdr
->sh_link
!= elf_onesymtab (abfd
)
2076 || hdr
->sh_info
== SHN_UNDEF
2077 || (hdr
->sh_info
>= SHN_LORESERVE
&& hdr
->sh_info
<= SHN_HIRESERVE
)
2078 || hdr
->sh_info
>= num_sec
2079 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_REL
2080 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_RELA
)
2081 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2084 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
2086 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
2087 if (target_sect
== NULL
)
2090 if ((target_sect
->flags
& SEC_RELOC
) == 0
2091 || target_sect
->reloc_count
== 0)
2092 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
2096 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
2097 amt
= sizeof (*hdr2
);
2098 hdr2
= bfd_alloc (abfd
, amt
);
2099 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
2102 elf_elfsections (abfd
)[shindex
] = hdr2
;
2103 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
2104 target_sect
->flags
|= SEC_RELOC
;
2105 target_sect
->relocation
= NULL
;
2106 target_sect
->rel_filepos
= hdr
->sh_offset
;
2107 /* In the section to which the relocations apply, mark whether
2108 its relocations are of the REL or RELA variety. */
2109 if (hdr
->sh_size
!= 0)
2110 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
2111 abfd
->flags
|= HAS_RELOC
;
2115 case SHT_GNU_verdef
:
2116 elf_dynverdef (abfd
) = shindex
;
2117 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
2118 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2120 case SHT_GNU_versym
:
2121 if (hdr
->sh_entsize
!= sizeof (Elf_External_Versym
))
2123 elf_dynversym (abfd
) = shindex
;
2124 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
2125 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2127 case SHT_GNU_verneed
:
2128 elf_dynverref (abfd
) = shindex
;
2129 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
2130 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2136 /* We need a BFD section for objcopy and relocatable linking,
2137 and it's handy to have the signature available as the section
2139 if (hdr
->sh_entsize
!= GRP_ENTRY_SIZE
)
2141 name
= group_signature (abfd
, hdr
);
2144 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
2146 if (hdr
->contents
!= NULL
)
2148 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
2149 unsigned int n_elt
= hdr
->sh_size
/ 4;
2152 if (idx
->flags
& GRP_COMDAT
)
2153 hdr
->bfd_section
->flags
2154 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
2156 /* We try to keep the same section order as it comes in. */
2158 while (--n_elt
!= 0)
2159 if ((s
= (--idx
)->shdr
->bfd_section
) != NULL
2160 && elf_next_in_group (s
) != NULL
)
2162 elf_next_in_group (hdr
->bfd_section
) = s
;
2169 /* Check for any processor-specific section types. */
2170 if (bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
, shindex
))
2173 if (hdr
->sh_type
>= SHT_LOUSER
&& hdr
->sh_type
<= SHT_HIUSER
)
2175 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
2176 /* FIXME: How to properly handle allocated section reserved
2177 for applications? */
2178 (*_bfd_error_handler
)
2179 (_("%B: don't know how to handle allocated, application "
2180 "specific section `%s' [0x%8x]"),
2181 abfd
, name
, hdr
->sh_type
);
2183 /* Allow sections reserved for applications. */
2184 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2187 else if (hdr
->sh_type
>= SHT_LOPROC
2188 && hdr
->sh_type
<= SHT_HIPROC
)
2189 /* FIXME: We should handle this section. */
2190 (*_bfd_error_handler
)
2191 (_("%B: don't know how to handle processor specific section "
2193 abfd
, name
, hdr
->sh_type
);
2194 else if (hdr
->sh_type
>= SHT_LOOS
&& hdr
->sh_type
<= SHT_HIOS
)
2196 /* Unrecognised OS-specific sections. */
2197 if ((hdr
->sh_flags
& SHF_OS_NONCONFORMING
) != 0)
2198 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2199 required to correctly process the section and the file should
2200 be rejected with an error message. */
2201 (*_bfd_error_handler
)
2202 (_("%B: don't know how to handle OS specific section "
2204 abfd
, name
, hdr
->sh_type
);
2206 /* Otherwise it should be processed. */
2207 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2210 /* FIXME: We should handle this section. */
2211 (*_bfd_error_handler
)
2212 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2213 abfd
, name
, hdr
->sh_type
);
2221 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2222 Return SEC for sections that have no elf section, and NULL on error. */
2225 bfd_section_from_r_symndx (bfd
*abfd
,
2226 struct sym_sec_cache
*cache
,
2228 unsigned long r_symndx
)
2230 Elf_Internal_Shdr
*symtab_hdr
;
2231 unsigned char esym
[sizeof (Elf64_External_Sym
)];
2232 Elf_External_Sym_Shndx eshndx
;
2233 Elf_Internal_Sym isym
;
2234 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
2236 if (cache
->abfd
== abfd
&& cache
->indx
[ent
] == r_symndx
)
2237 return cache
->sec
[ent
];
2239 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2240 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
2241 &isym
, esym
, &eshndx
) == NULL
)
2244 if (cache
->abfd
!= abfd
)
2246 memset (cache
->indx
, -1, sizeof (cache
->indx
));
2249 cache
->indx
[ent
] = r_symndx
;
2250 cache
->sec
[ent
] = sec
;
2251 if ((isym
.st_shndx
!= SHN_UNDEF
&& isym
.st_shndx
< SHN_LORESERVE
)
2252 || isym
.st_shndx
> SHN_HIRESERVE
)
2255 s
= bfd_section_from_elf_index (abfd
, isym
.st_shndx
);
2257 cache
->sec
[ent
] = s
;
2259 return cache
->sec
[ent
];
2262 /* Given an ELF section number, retrieve the corresponding BFD
2266 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
2268 if (index
>= elf_numsections (abfd
))
2270 return elf_elfsections (abfd
)[index
]->bfd_section
;
2273 static const struct bfd_elf_special_section special_sections_b
[] =
2275 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2276 { NULL
, 0, 0, 0, 0 }
2279 static const struct bfd_elf_special_section special_sections_c
[] =
2281 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS
, 0 },
2282 { NULL
, 0, 0, 0, 0 }
2285 static const struct bfd_elf_special_section special_sections_d
[] =
2287 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2288 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2289 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS
, 0 },
2290 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS
, 0 },
2291 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS
, 0 },
2292 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS
, 0 },
2293 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS
, 0 },
2294 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, SHF_ALLOC
},
2295 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, SHF_ALLOC
},
2296 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, SHF_ALLOC
},
2297 { NULL
, 0, 0, 0, 0 }
2300 static const struct bfd_elf_special_section special_sections_f
[] =
2302 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2303 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2304 { NULL
, 0, 0, 0, 0 }
2307 static const struct bfd_elf_special_section special_sections_g
[] =
2309 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2310 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2311 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym
, 0 },
2312 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef
, 0 },
2313 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed
, 0 },
2314 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2315 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA
, SHF_ALLOC
},
2316 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH
, SHF_ALLOC
},
2317 { NULL
, 0, 0, 0, 0 }
2320 static const struct bfd_elf_special_section special_sections_h
[] =
2322 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, SHF_ALLOC
},
2323 { NULL
, 0, 0, 0, 0 }
2326 static const struct bfd_elf_special_section special_sections_i
[] =
2328 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2329 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2330 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS
, 0 },
2331 { NULL
, 0, 0, 0, 0 }
2334 static const struct bfd_elf_special_section special_sections_l
[] =
2336 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS
, 0 },
2337 { NULL
, 0, 0, 0, 0 }
2340 static const struct bfd_elf_special_section special_sections_n
[] =
2342 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS
, 0 },
2343 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE
, 0 },
2344 { NULL
, 0, 0, 0, 0 }
2347 static const struct bfd_elf_special_section special_sections_p
[] =
2349 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2350 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2351 { NULL
, 0, 0, 0, 0 }
2354 static const struct bfd_elf_special_section special_sections_r
[] =
2356 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS
, SHF_ALLOC
},
2357 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS
, SHF_ALLOC
},
2358 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA
, 0 },
2359 { STRING_COMMA_LEN (".rel"), -1, SHT_REL
, 0 },
2360 { NULL
, 0, 0, 0, 0 }
2363 static const struct bfd_elf_special_section special_sections_s
[] =
2365 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB
, 0 },
2366 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB
, 0 },
2367 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB
, 0 },
2368 /* See struct bfd_elf_special_section declaration for the semantics of
2369 this special case where .prefix_length != strlen (.prefix). */
2370 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2371 { NULL
, 0, 0, 0, 0 }
2374 static const struct bfd_elf_special_section special_sections_t
[] =
2376 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2377 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2378 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2379 { NULL
, 0, 0, 0, 0 }
2382 static const struct bfd_elf_special_section
*special_sections
[] =
2384 special_sections_b
, /* 'b' */
2385 special_sections_c
, /* 'b' */
2386 special_sections_d
, /* 'd' */
2388 special_sections_f
, /* 'f' */
2389 special_sections_g
, /* 'g' */
2390 special_sections_h
, /* 'h' */
2391 special_sections_i
, /* 'i' */
2394 special_sections_l
, /* 'l' */
2396 special_sections_n
, /* 'n' */
2398 special_sections_p
, /* 'p' */
2400 special_sections_r
, /* 'r' */
2401 special_sections_s
, /* 's' */
2402 special_sections_t
, /* 't' */
2405 const struct bfd_elf_special_section
*
2406 _bfd_elf_get_special_section (const char *name
,
2407 const struct bfd_elf_special_section
*spec
,
2413 len
= strlen (name
);
2415 for (i
= 0; spec
[i
].prefix
!= NULL
; i
++)
2418 int prefix_len
= spec
[i
].prefix_length
;
2420 if (len
< prefix_len
)
2422 if (memcmp (name
, spec
[i
].prefix
, prefix_len
) != 0)
2425 suffix_len
= spec
[i
].suffix_length
;
2426 if (suffix_len
<= 0)
2428 if (name
[prefix_len
] != 0)
2430 if (suffix_len
== 0)
2432 if (name
[prefix_len
] != '.'
2433 && (suffix_len
== -2
2434 || (rela
&& spec
[i
].type
== SHT_REL
)))
2440 if (len
< prefix_len
+ suffix_len
)
2442 if (memcmp (name
+ len
- suffix_len
,
2443 spec
[i
].prefix
+ prefix_len
,
2453 const struct bfd_elf_special_section
*
2454 _bfd_elf_get_sec_type_attr (bfd
*abfd
, asection
*sec
)
2457 const struct bfd_elf_special_section
*spec
;
2458 const struct elf_backend_data
*bed
;
2460 /* See if this is one of the special sections. */
2461 if (sec
->name
== NULL
)
2464 bed
= get_elf_backend_data (abfd
);
2465 spec
= bed
->special_sections
;
2468 spec
= _bfd_elf_get_special_section (sec
->name
,
2469 bed
->special_sections
,
2475 if (sec
->name
[0] != '.')
2478 i
= sec
->name
[1] - 'b';
2479 if (i
< 0 || i
> 't' - 'b')
2482 spec
= special_sections
[i
];
2487 return _bfd_elf_get_special_section (sec
->name
, spec
, sec
->use_rela_p
);
2491 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2493 struct bfd_elf_section_data
*sdata
;
2494 const struct elf_backend_data
*bed
;
2495 const struct bfd_elf_special_section
*ssect
;
2497 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2500 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2503 sec
->used_by_bfd
= sdata
;
2506 /* Indicate whether or not this section should use RELA relocations. */
2507 bed
= get_elf_backend_data (abfd
);
2508 sec
->use_rela_p
= bed
->default_use_rela_p
;
2510 /* When we read a file, we don't need to set ELF section type and
2511 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2512 anyway. We will set ELF section type and flags for all linker
2513 created sections. If user specifies BFD section flags, we will
2514 set ELF section type and flags based on BFD section flags in
2515 elf_fake_sections. */
2516 if ((!sec
->flags
&& abfd
->direction
!= read_direction
)
2517 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2519 ssect
= (*bed
->get_sec_type_attr
) (abfd
, sec
);
2522 elf_section_type (sec
) = ssect
->type
;
2523 elf_section_flags (sec
) = ssect
->attr
;
2527 return _bfd_generic_new_section_hook (abfd
, sec
);
2530 /* Create a new bfd section from an ELF program header.
2532 Since program segments have no names, we generate a synthetic name
2533 of the form segment<NUM>, where NUM is generally the index in the
2534 program header table. For segments that are split (see below) we
2535 generate the names segment<NUM>a and segment<NUM>b.
2537 Note that some program segments may have a file size that is different than
2538 (less than) the memory size. All this means is that at execution the
2539 system must allocate the amount of memory specified by the memory size,
2540 but only initialize it with the first "file size" bytes read from the
2541 file. This would occur for example, with program segments consisting
2542 of combined data+bss.
2544 To handle the above situation, this routine generates TWO bfd sections
2545 for the single program segment. The first has the length specified by
2546 the file size of the segment, and the second has the length specified
2547 by the difference between the two sizes. In effect, the segment is split
2548 into it's initialized and uninitialized parts.
2553 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2554 Elf_Internal_Phdr
*hdr
,
2556 const char *typename
)
2564 split
= ((hdr
->p_memsz
> 0)
2565 && (hdr
->p_filesz
> 0)
2566 && (hdr
->p_memsz
> hdr
->p_filesz
));
2567 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2568 len
= strlen (namebuf
) + 1;
2569 name
= bfd_alloc (abfd
, len
);
2572 memcpy (name
, namebuf
, len
);
2573 newsect
= bfd_make_section (abfd
, name
);
2574 if (newsect
== NULL
)
2576 newsect
->vma
= hdr
->p_vaddr
;
2577 newsect
->lma
= hdr
->p_paddr
;
2578 newsect
->size
= hdr
->p_filesz
;
2579 newsect
->filepos
= hdr
->p_offset
;
2580 newsect
->flags
|= SEC_HAS_CONTENTS
;
2581 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2582 if (hdr
->p_type
== PT_LOAD
)
2584 newsect
->flags
|= SEC_ALLOC
;
2585 newsect
->flags
|= SEC_LOAD
;
2586 if (hdr
->p_flags
& PF_X
)
2588 /* FIXME: all we known is that it has execute PERMISSION,
2590 newsect
->flags
|= SEC_CODE
;
2593 if (!(hdr
->p_flags
& PF_W
))
2595 newsect
->flags
|= SEC_READONLY
;
2600 sprintf (namebuf
, "%s%db", typename
, index
);
2601 len
= strlen (namebuf
) + 1;
2602 name
= bfd_alloc (abfd
, len
);
2605 memcpy (name
, namebuf
, len
);
2606 newsect
= bfd_make_section (abfd
, name
);
2607 if (newsect
== NULL
)
2609 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2610 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2611 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2612 if (hdr
->p_type
== PT_LOAD
)
2614 newsect
->flags
|= SEC_ALLOC
;
2615 if (hdr
->p_flags
& PF_X
)
2616 newsect
->flags
|= SEC_CODE
;
2618 if (!(hdr
->p_flags
& PF_W
))
2619 newsect
->flags
|= SEC_READONLY
;
2626 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2628 const struct elf_backend_data
*bed
;
2630 switch (hdr
->p_type
)
2633 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2636 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2639 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2642 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2645 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2647 if (! elfcore_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2652 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2655 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2657 case PT_GNU_EH_FRAME
:
2658 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2662 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2665 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "relro");
2668 /* Check for any processor-specific program segment types. */
2669 bed
= get_elf_backend_data (abfd
);
2670 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, index
, "proc");
2674 /* Initialize REL_HDR, the section-header for new section, containing
2675 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2676 relocations; otherwise, we use REL relocations. */
2679 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2680 Elf_Internal_Shdr
*rel_hdr
,
2682 bfd_boolean use_rela_p
)
2685 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2686 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2688 name
= bfd_alloc (abfd
, amt
);
2691 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2693 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2695 if (rel_hdr
->sh_name
== (unsigned int) -1)
2697 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2698 rel_hdr
->sh_entsize
= (use_rela_p
2699 ? bed
->s
->sizeof_rela
2700 : bed
->s
->sizeof_rel
);
2701 rel_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
2702 rel_hdr
->sh_flags
= 0;
2703 rel_hdr
->sh_addr
= 0;
2704 rel_hdr
->sh_size
= 0;
2705 rel_hdr
->sh_offset
= 0;
2710 /* Set up an ELF internal section header for a section. */
2713 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2715 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2716 bfd_boolean
*failedptr
= failedptrarg
;
2717 Elf_Internal_Shdr
*this_hdr
;
2721 /* We already failed; just get out of the bfd_map_over_sections
2726 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2728 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2729 asect
->name
, FALSE
);
2730 if (this_hdr
->sh_name
== (unsigned int) -1)
2736 /* Don't clear sh_flags. Assembler may set additional bits. */
2738 if ((asect
->flags
& SEC_ALLOC
) != 0
2739 || asect
->user_set_vma
)
2740 this_hdr
->sh_addr
= asect
->vma
;
2742 this_hdr
->sh_addr
= 0;
2744 this_hdr
->sh_offset
= 0;
2745 this_hdr
->sh_size
= asect
->size
;
2746 this_hdr
->sh_link
= 0;
2747 this_hdr
->sh_addralign
= 1 << asect
->alignment_power
;
2748 /* The sh_entsize and sh_info fields may have been set already by
2749 copy_private_section_data. */
2751 this_hdr
->bfd_section
= asect
;
2752 this_hdr
->contents
= NULL
;
2754 /* If the section type is unspecified, we set it based on
2756 if (this_hdr
->sh_type
== SHT_NULL
)
2758 if ((asect
->flags
& SEC_GROUP
) != 0)
2759 this_hdr
->sh_type
= SHT_GROUP
;
2760 else if ((asect
->flags
& SEC_ALLOC
) != 0
2761 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2762 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2763 this_hdr
->sh_type
= SHT_NOBITS
;
2765 this_hdr
->sh_type
= SHT_PROGBITS
;
2768 switch (this_hdr
->sh_type
)
2774 case SHT_INIT_ARRAY
:
2775 case SHT_FINI_ARRAY
:
2776 case SHT_PREINIT_ARRAY
:
2783 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2787 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2791 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2795 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2796 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2800 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2801 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2804 case SHT_GNU_versym
:
2805 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2808 case SHT_GNU_verdef
:
2809 this_hdr
->sh_entsize
= 0;
2810 /* objcopy or strip will copy over sh_info, but may not set
2811 cverdefs. The linker will set cverdefs, but sh_info will be
2813 if (this_hdr
->sh_info
== 0)
2814 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2816 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2817 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2820 case SHT_GNU_verneed
:
2821 this_hdr
->sh_entsize
= 0;
2822 /* objcopy or strip will copy over sh_info, but may not set
2823 cverrefs. The linker will set cverrefs, but sh_info will be
2825 if (this_hdr
->sh_info
== 0)
2826 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2828 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2829 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2833 this_hdr
->sh_entsize
= 4;
2837 this_hdr
->sh_entsize
= bed
->s
->arch_size
== 64 ? 0 : 4;
2841 if ((asect
->flags
& SEC_ALLOC
) != 0)
2842 this_hdr
->sh_flags
|= SHF_ALLOC
;
2843 if ((asect
->flags
& SEC_READONLY
) == 0)
2844 this_hdr
->sh_flags
|= SHF_WRITE
;
2845 if ((asect
->flags
& SEC_CODE
) != 0)
2846 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2847 if ((asect
->flags
& SEC_MERGE
) != 0)
2849 this_hdr
->sh_flags
|= SHF_MERGE
;
2850 this_hdr
->sh_entsize
= asect
->entsize
;
2851 if ((asect
->flags
& SEC_STRINGS
) != 0)
2852 this_hdr
->sh_flags
|= SHF_STRINGS
;
2854 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2855 this_hdr
->sh_flags
|= SHF_GROUP
;
2856 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2858 this_hdr
->sh_flags
|= SHF_TLS
;
2859 if (asect
->size
== 0
2860 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2862 struct bfd_link_order
*o
= asect
->map_tail
.link_order
;
2864 this_hdr
->sh_size
= 0;
2867 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2868 if (this_hdr
->sh_size
!= 0)
2869 this_hdr
->sh_type
= SHT_NOBITS
;
2874 /* Check for processor-specific section types. */
2875 if (bed
->elf_backend_fake_sections
2876 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2879 /* If the section has relocs, set up a section header for the
2880 SHT_REL[A] section. If two relocation sections are required for
2881 this section, it is up to the processor-specific back-end to
2882 create the other. */
2883 if ((asect
->flags
& SEC_RELOC
) != 0
2884 && !_bfd_elf_init_reloc_shdr (abfd
,
2885 &elf_section_data (asect
)->rel_hdr
,
2891 /* Fill in the contents of a SHT_GROUP section. */
2894 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2896 bfd_boolean
*failedptr
= failedptrarg
;
2897 unsigned long symindx
;
2898 asection
*elt
, *first
;
2902 /* Ignore linker created group section. See elfNN_ia64_object_p in
2904 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2909 if (elf_group_id (sec
) != NULL
)
2910 symindx
= elf_group_id (sec
)->udata
.i
;
2914 /* If called from the assembler, swap_out_syms will have set up
2915 elf_section_syms; If called for "ld -r", use target_index. */
2916 if (elf_section_syms (abfd
) != NULL
)
2917 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2919 symindx
= sec
->target_index
;
2921 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2923 /* The contents won't be allocated for "ld -r" or objcopy. */
2925 if (sec
->contents
== NULL
)
2928 sec
->contents
= bfd_alloc (abfd
, sec
->size
);
2930 /* Arrange for the section to be written out. */
2931 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2932 if (sec
->contents
== NULL
)
2939 loc
= sec
->contents
+ sec
->size
;
2941 /* Get the pointer to the first section in the group that gas
2942 squirreled away here. objcopy arranges for this to be set to the
2943 start of the input section group. */
2944 first
= elt
= elf_next_in_group (sec
);
2946 /* First element is a flag word. Rest of section is elf section
2947 indices for all the sections of the group. Write them backwards
2948 just to keep the group in the same order as given in .section
2949 directives, not that it matters. */
2958 s
= s
->output_section
;
2961 idx
= elf_section_data (s
)->this_idx
;
2962 H_PUT_32 (abfd
, idx
, loc
);
2963 elt
= elf_next_in_group (elt
);
2968 if ((loc
-= 4) != sec
->contents
)
2971 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2974 /* Assign all ELF section numbers. The dummy first section is handled here
2975 too. The link/info pointers for the standard section types are filled
2976 in here too, while we're at it. */
2979 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2981 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2983 unsigned int section_number
, secn
;
2984 Elf_Internal_Shdr
**i_shdrp
;
2985 struct bfd_elf_section_data
*d
;
2989 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2991 /* SHT_GROUP sections are in relocatable files only. */
2992 if (link_info
== NULL
|| link_info
->relocatable
)
2994 /* Put SHT_GROUP sections first. */
2995 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2997 d
= elf_section_data (sec
);
2999 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
3001 if (sec
->flags
& SEC_LINKER_CREATED
)
3003 /* Remove the linker created SHT_GROUP sections. */
3004 bfd_section_list_remove (abfd
, sec
);
3005 abfd
->section_count
--;
3009 if (section_number
== SHN_LORESERVE
)
3010 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3011 d
->this_idx
= section_number
++;
3017 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
3019 d
= elf_section_data (sec
);
3021 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
3023 if (section_number
== SHN_LORESERVE
)
3024 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3025 d
->this_idx
= section_number
++;
3027 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
3028 if ((sec
->flags
& SEC_RELOC
) == 0)
3032 if (section_number
== SHN_LORESERVE
)
3033 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3034 d
->rel_idx
= section_number
++;
3035 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
3040 if (section_number
== SHN_LORESERVE
)
3041 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3042 d
->rel_idx2
= section_number
++;
3043 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
3049 if (section_number
== SHN_LORESERVE
)
3050 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3051 t
->shstrtab_section
= section_number
++;
3052 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
3053 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
3055 if (bfd_get_symcount (abfd
) > 0)
3057 if (section_number
== SHN_LORESERVE
)
3058 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3059 t
->symtab_section
= section_number
++;
3060 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
3061 if (section_number
> SHN_LORESERVE
- 2)
3063 if (section_number
== SHN_LORESERVE
)
3064 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3065 t
->symtab_shndx_section
= section_number
++;
3066 t
->symtab_shndx_hdr
.sh_name
3067 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
3068 ".symtab_shndx", FALSE
);
3069 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
3072 if (section_number
== SHN_LORESERVE
)
3073 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3074 t
->strtab_section
= section_number
++;
3075 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
3078 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
3079 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3081 elf_numsections (abfd
) = section_number
;
3082 elf_elfheader (abfd
)->e_shnum
= section_number
;
3083 if (section_number
> SHN_LORESERVE
)
3084 elf_elfheader (abfd
)->e_shnum
-= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3086 /* Set up the list of section header pointers, in agreement with the
3088 i_shdrp
= bfd_zalloc2 (abfd
, section_number
, sizeof (Elf_Internal_Shdr
*));
3089 if (i_shdrp
== NULL
)
3092 i_shdrp
[0] = bfd_zalloc (abfd
, sizeof (Elf_Internal_Shdr
));
3093 if (i_shdrp
[0] == NULL
)
3095 bfd_release (abfd
, i_shdrp
);
3099 elf_elfsections (abfd
) = i_shdrp
;
3101 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
3102 if (bfd_get_symcount (abfd
) > 0)
3104 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
3105 if (elf_numsections (abfd
) > SHN_LORESERVE
)
3107 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
3108 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
3110 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
3111 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
3114 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
3116 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
3120 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
3121 if (d
->rel_idx
!= 0)
3122 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
3123 if (d
->rel_idx2
!= 0)
3124 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
3126 /* Fill in the sh_link and sh_info fields while we're at it. */
3128 /* sh_link of a reloc section is the section index of the symbol
3129 table. sh_info is the section index of the section to which
3130 the relocation entries apply. */
3131 if (d
->rel_idx
!= 0)
3133 d
->rel_hdr
.sh_link
= t
->symtab_section
;
3134 d
->rel_hdr
.sh_info
= d
->this_idx
;
3136 if (d
->rel_idx2
!= 0)
3138 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
3139 d
->rel_hdr2
->sh_info
= d
->this_idx
;
3142 /* We need to set up sh_link for SHF_LINK_ORDER. */
3143 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
3145 s
= elf_linked_to_section (sec
);
3148 /* elf_linked_to_section points to the input section. */
3149 if (link_info
!= NULL
)
3151 /* Check discarded linkonce section. */
3152 if (elf_discarded_section (s
))
3155 (*_bfd_error_handler
)
3156 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3157 abfd
, d
->this_hdr
.bfd_section
,
3159 /* Point to the kept section if it has the same
3160 size as the discarded one. */
3161 kept
= _bfd_elf_check_kept_section (s
, link_info
);
3164 bfd_set_error (bfd_error_bad_value
);
3170 s
= s
->output_section
;
3171 BFD_ASSERT (s
!= NULL
);
3175 /* Handle objcopy. */
3176 if (s
->output_section
== NULL
)
3178 (*_bfd_error_handler
)
3179 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3180 abfd
, d
->this_hdr
.bfd_section
, s
, s
->owner
);
3181 bfd_set_error (bfd_error_bad_value
);
3184 s
= s
->output_section
;
3186 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3191 The Intel C compiler generates SHT_IA_64_UNWIND with
3192 SHF_LINK_ORDER. But it doesn't set the sh_link or
3193 sh_info fields. Hence we could get the situation
3195 const struct elf_backend_data
*bed
3196 = get_elf_backend_data (abfd
);
3197 if (bed
->link_order_error_handler
)
3198 bed
->link_order_error_handler
3199 (_("%B: warning: sh_link not set for section `%A'"),
3204 switch (d
->this_hdr
.sh_type
)
3208 /* A reloc section which we are treating as a normal BFD
3209 section. sh_link is the section index of the symbol
3210 table. sh_info is the section index of the section to
3211 which the relocation entries apply. We assume that an
3212 allocated reloc section uses the dynamic symbol table.
3213 FIXME: How can we be sure? */
3214 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3216 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3218 /* We look up the section the relocs apply to by name. */
3220 if (d
->this_hdr
.sh_type
== SHT_REL
)
3224 s
= bfd_get_section_by_name (abfd
, name
);
3226 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3230 /* We assume that a section named .stab*str is a stabs
3231 string section. We look for a section with the same name
3232 but without the trailing ``str'', and set its sh_link
3233 field to point to this section. */
3234 if (CONST_STRNEQ (sec
->name
, ".stab")
3235 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3240 len
= strlen (sec
->name
);
3241 alc
= bfd_malloc (len
- 2);
3244 memcpy (alc
, sec
->name
, len
- 3);
3245 alc
[len
- 3] = '\0';
3246 s
= bfd_get_section_by_name (abfd
, alc
);
3250 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3252 /* This is a .stab section. */
3253 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3254 elf_section_data (s
)->this_hdr
.sh_entsize
3255 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3262 case SHT_GNU_verneed
:
3263 case SHT_GNU_verdef
:
3264 /* sh_link is the section header index of the string table
3265 used for the dynamic entries, or the symbol table, or the
3267 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3269 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3272 case SHT_GNU_LIBLIST
:
3273 /* sh_link is the section header index of the prelink library
3275 used for the dynamic entries, or the symbol table, or the
3277 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3278 ? ".dynstr" : ".gnu.libstr");
3280 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3285 case SHT_GNU_versym
:
3286 /* sh_link is the section header index of the symbol table
3287 this hash table or version table is for. */
3288 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3290 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3294 d
->this_hdr
.sh_link
= t
->symtab_section
;
3298 for (secn
= 1; secn
< section_number
; ++secn
)
3299 if (i_shdrp
[secn
] == NULL
)
3300 i_shdrp
[secn
] = i_shdrp
[0];
3302 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3303 i_shdrp
[secn
]->sh_name
);
3307 /* Map symbol from it's internal number to the external number, moving
3308 all local symbols to be at the head of the list. */
3311 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3313 /* If the backend has a special mapping, use it. */
3314 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3315 if (bed
->elf_backend_sym_is_global
)
3316 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3318 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
3319 || bfd_is_und_section (bfd_get_section (sym
))
3320 || bfd_is_com_section (bfd_get_section (sym
)));
3323 /* Don't output section symbols for sections that are not going to be
3324 output. Also, don't output section symbols for reloc and other
3325 special sections. */
3328 ignore_section_sym (bfd
*abfd
, asymbol
*sym
)
3330 return ((sym
->flags
& BSF_SECTION_SYM
) != 0
3332 || (sym
->section
->owner
!= abfd
3333 && (sym
->section
->output_section
->owner
!= abfd
3334 || sym
->section
->output_offset
!= 0))));
3338 elf_map_symbols (bfd
*abfd
)
3340 unsigned int symcount
= bfd_get_symcount (abfd
);
3341 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3342 asymbol
**sect_syms
;
3343 unsigned int num_locals
= 0;
3344 unsigned int num_globals
= 0;
3345 unsigned int num_locals2
= 0;
3346 unsigned int num_globals2
= 0;
3353 fprintf (stderr
, "elf_map_symbols\n");
3357 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3359 if (max_index
< asect
->index
)
3360 max_index
= asect
->index
;
3364 sect_syms
= bfd_zalloc2 (abfd
, max_index
, sizeof (asymbol
*));
3365 if (sect_syms
== NULL
)
3367 elf_section_syms (abfd
) = sect_syms
;
3368 elf_num_section_syms (abfd
) = max_index
;
3370 /* Init sect_syms entries for any section symbols we have already
3371 decided to output. */
3372 for (idx
= 0; idx
< symcount
; idx
++)
3374 asymbol
*sym
= syms
[idx
];
3376 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3377 && !ignore_section_sym (abfd
, sym
))
3379 asection
*sec
= sym
->section
;
3381 if (sec
->owner
!= abfd
)
3382 sec
= sec
->output_section
;
3384 sect_syms
[sec
->index
] = syms
[idx
];
3388 /* Classify all of the symbols. */
3389 for (idx
= 0; idx
< symcount
; idx
++)
3391 if (ignore_section_sym (abfd
, syms
[idx
]))
3393 if (!sym_is_global (abfd
, syms
[idx
]))
3399 /* We will be adding a section symbol for each normal BFD section. Most
3400 sections will already have a section symbol in outsymbols, but
3401 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3402 at least in that case. */
3403 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3405 if (sect_syms
[asect
->index
] == NULL
)
3407 if (!sym_is_global (abfd
, asect
->symbol
))
3414 /* Now sort the symbols so the local symbols are first. */
3415 new_syms
= bfd_alloc2 (abfd
, num_locals
+ num_globals
, sizeof (asymbol
*));
3417 if (new_syms
== NULL
)
3420 for (idx
= 0; idx
< symcount
; idx
++)
3422 asymbol
*sym
= syms
[idx
];
3425 if (ignore_section_sym (abfd
, sym
))
3427 if (!sym_is_global (abfd
, sym
))
3430 i
= num_locals
+ num_globals2
++;
3432 sym
->udata
.i
= i
+ 1;
3434 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3436 if (sect_syms
[asect
->index
] == NULL
)
3438 asymbol
*sym
= asect
->symbol
;
3441 sect_syms
[asect
->index
] = sym
;
3442 if (!sym_is_global (abfd
, sym
))
3445 i
= num_locals
+ num_globals2
++;
3447 sym
->udata
.i
= i
+ 1;
3451 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3453 elf_num_locals (abfd
) = num_locals
;
3454 elf_num_globals (abfd
) = num_globals
;
3458 /* Align to the maximum file alignment that could be required for any
3459 ELF data structure. */
3461 static inline file_ptr
3462 align_file_position (file_ptr off
, int align
)
3464 return (off
+ align
- 1) & ~(align
- 1);
3467 /* Assign a file position to a section, optionally aligning to the
3468 required section alignment. */
3471 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3479 al
= i_shdrp
->sh_addralign
;
3481 offset
= BFD_ALIGN (offset
, al
);
3483 i_shdrp
->sh_offset
= offset
;
3484 if (i_shdrp
->bfd_section
!= NULL
)
3485 i_shdrp
->bfd_section
->filepos
= offset
;
3486 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3487 offset
+= i_shdrp
->sh_size
;
3491 /* Compute the file positions we are going to put the sections at, and
3492 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3493 is not NULL, this is being called by the ELF backend linker. */
3496 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3497 struct bfd_link_info
*link_info
)
3499 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3501 struct bfd_strtab_hash
*strtab
= NULL
;
3502 Elf_Internal_Shdr
*shstrtab_hdr
;
3504 if (abfd
->output_has_begun
)
3507 /* Do any elf backend specific processing first. */
3508 if (bed
->elf_backend_begin_write_processing
)
3509 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3511 if (! prep_headers (abfd
))
3514 /* Post process the headers if necessary. */
3515 if (bed
->elf_backend_post_process_headers
)
3516 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3519 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3523 if (!assign_section_numbers (abfd
, link_info
))
3526 /* The backend linker builds symbol table information itself. */
3527 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3529 /* Non-zero if doing a relocatable link. */
3530 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3532 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3536 if (link_info
== NULL
)
3538 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3543 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3544 /* sh_name was set in prep_headers. */
3545 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3546 shstrtab_hdr
->sh_flags
= 0;
3547 shstrtab_hdr
->sh_addr
= 0;
3548 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3549 shstrtab_hdr
->sh_entsize
= 0;
3550 shstrtab_hdr
->sh_link
= 0;
3551 shstrtab_hdr
->sh_info
= 0;
3552 /* sh_offset is set in assign_file_positions_except_relocs. */
3553 shstrtab_hdr
->sh_addralign
= 1;
3555 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3558 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3561 Elf_Internal_Shdr
*hdr
;
3563 off
= elf_tdata (abfd
)->next_file_pos
;
3565 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3566 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3568 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3569 if (hdr
->sh_size
!= 0)
3570 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3572 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3573 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3575 elf_tdata (abfd
)->next_file_pos
= off
;
3577 /* Now that we know where the .strtab section goes, write it
3579 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3580 || ! _bfd_stringtab_emit (abfd
, strtab
))
3582 _bfd_stringtab_free (strtab
);
3585 abfd
->output_has_begun
= TRUE
;
3590 /* Make an initial estimate of the size of the program header. If we
3591 get the number wrong here, we'll redo section placement. */
3593 static bfd_size_type
3594 get_program_header_size (bfd
*abfd
, struct bfd_link_info
*info
)
3598 const struct elf_backend_data
*bed
;
3600 /* Assume we will need exactly two PT_LOAD segments: one for text
3601 and one for data. */
3604 s
= bfd_get_section_by_name (abfd
, ".interp");
3605 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3607 /* If we have a loadable interpreter section, we need a
3608 PT_INTERP segment. In this case, assume we also need a
3609 PT_PHDR segment, although that may not be true for all
3614 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
3616 /* We need a PT_DYNAMIC segment. */
3619 if (elf_tdata (abfd
)->relro
)
3621 /* We need a PT_GNU_RELRO segment only when there is a
3622 PT_DYNAMIC segment. */
3627 if (elf_tdata (abfd
)->eh_frame_hdr
)
3629 /* We need a PT_GNU_EH_FRAME segment. */
3633 if (elf_tdata (abfd
)->stack_flags
)
3635 /* We need a PT_GNU_STACK segment. */
3639 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3641 if ((s
->flags
& SEC_LOAD
) != 0
3642 && CONST_STRNEQ (s
->name
, ".note"))
3644 /* We need a PT_NOTE segment. */
3649 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3651 if (s
->flags
& SEC_THREAD_LOCAL
)
3653 /* We need a PT_TLS segment. */
3659 /* Let the backend count up any program headers it might need. */
3660 bed
= get_elf_backend_data (abfd
);
3661 if (bed
->elf_backend_additional_program_headers
)
3665 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
, info
);
3671 return segs
* bed
->s
->sizeof_phdr
;
3674 /* Create a mapping from a set of sections to a program segment. */
3676 static struct elf_segment_map
*
3677 make_mapping (bfd
*abfd
,
3678 asection
**sections
,
3683 struct elf_segment_map
*m
;
3688 amt
= sizeof (struct elf_segment_map
);
3689 amt
+= (to
- from
- 1) * sizeof (asection
*);
3690 m
= bfd_zalloc (abfd
, amt
);
3694 m
->p_type
= PT_LOAD
;
3695 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3696 m
->sections
[i
- from
] = *hdrpp
;
3697 m
->count
= to
- from
;
3699 if (from
== 0 && phdr
)
3701 /* Include the headers in the first PT_LOAD segment. */
3702 m
->includes_filehdr
= 1;
3703 m
->includes_phdrs
= 1;
3709 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3712 struct elf_segment_map
*
3713 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3715 struct elf_segment_map
*m
;
3717 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
3721 m
->p_type
= PT_DYNAMIC
;
3723 m
->sections
[0] = dynsec
;
3728 /* Possibly add or remove segments from the segment map. */
3731 elf_modify_segment_map (bfd
*abfd
, struct bfd_link_info
*info
)
3733 struct elf_segment_map
**m
;
3734 const struct elf_backend_data
*bed
;
3736 /* The placement algorithm assumes that non allocated sections are
3737 not in PT_LOAD segments. We ensure this here by removing such
3738 sections from the segment map. We also remove excluded
3739 sections. Finally, any PT_LOAD segment without sections is
3741 m
= &elf_tdata (abfd
)->segment_map
;
3744 unsigned int i
, new_count
;
3746 for (new_count
= 0, i
= 0; i
< (*m
)->count
; i
++)
3748 if (((*m
)->sections
[i
]->flags
& SEC_EXCLUDE
) == 0
3749 && (((*m
)->sections
[i
]->flags
& SEC_ALLOC
) != 0
3750 || (*m
)->p_type
!= PT_LOAD
))
3752 (*m
)->sections
[new_count
] = (*m
)->sections
[i
];
3756 (*m
)->count
= new_count
;
3758 if ((*m
)->p_type
== PT_LOAD
&& (*m
)->count
== 0)
3764 bed
= get_elf_backend_data (abfd
);
3765 if (bed
->elf_backend_modify_segment_map
!= NULL
)
3767 if (!(*bed
->elf_backend_modify_segment_map
) (abfd
, info
))
3774 /* Set up a mapping from BFD sections to program segments. */
3777 _bfd_elf_map_sections_to_segments (bfd
*abfd
, struct bfd_link_info
*info
)
3780 struct elf_segment_map
*m
;
3781 asection
**sections
= NULL
;
3782 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3784 if (elf_tdata (abfd
)->segment_map
== NULL
3785 && bfd_count_sections (abfd
) != 0)
3789 struct elf_segment_map
*mfirst
;
3790 struct elf_segment_map
**pm
;
3793 unsigned int phdr_index
;
3794 bfd_vma maxpagesize
;
3796 bfd_boolean phdr_in_segment
= TRUE
;
3797 bfd_boolean writable
;
3799 asection
*first_tls
= NULL
;
3800 asection
*dynsec
, *eh_frame_hdr
;
3803 /* Select the allocated sections, and sort them. */
3805 sections
= bfd_malloc2 (bfd_count_sections (abfd
), sizeof (asection
*));
3806 if (sections
== NULL
)
3810 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3812 if ((s
->flags
& SEC_ALLOC
) != 0)
3818 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3821 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3823 /* Build the mapping. */
3828 /* If we have a .interp section, then create a PT_PHDR segment for
3829 the program headers and a PT_INTERP segment for the .interp
3831 s
= bfd_get_section_by_name (abfd
, ".interp");
3832 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3834 amt
= sizeof (struct elf_segment_map
);
3835 m
= bfd_zalloc (abfd
, amt
);
3839 m
->p_type
= PT_PHDR
;
3840 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3841 m
->p_flags
= PF_R
| PF_X
;
3842 m
->p_flags_valid
= 1;
3843 m
->includes_phdrs
= 1;
3848 amt
= sizeof (struct elf_segment_map
);
3849 m
= bfd_zalloc (abfd
, amt
);
3853 m
->p_type
= PT_INTERP
;
3861 /* Look through the sections. We put sections in the same program
3862 segment when the start of the second section can be placed within
3863 a few bytes of the end of the first section. */
3867 maxpagesize
= bed
->maxpagesize
;
3869 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3871 && (dynsec
->flags
& SEC_LOAD
) == 0)
3874 /* Deal with -Ttext or something similar such that the first section
3875 is not adjacent to the program headers. This is an
3876 approximation, since at this point we don't know exactly how many
3877 program headers we will need. */
3880 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
3882 if (phdr_size
== (bfd_size_type
) -1)
3883 phdr_size
= get_program_header_size (abfd
, info
);
3884 if ((abfd
->flags
& D_PAGED
) == 0
3885 || sections
[0]->lma
< phdr_size
3886 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3887 phdr_in_segment
= FALSE
;
3890 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3893 bfd_boolean new_segment
;
3897 /* See if this section and the last one will fit in the same
3900 if (last_hdr
== NULL
)
3902 /* If we don't have a segment yet, then we don't need a new
3903 one (we build the last one after this loop). */
3904 new_segment
= FALSE
;
3906 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3908 /* If this section has a different relation between the
3909 virtual address and the load address, then we need a new
3913 else if (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
)
3914 < BFD_ALIGN (hdr
->lma
, maxpagesize
))
3916 /* If putting this section in this segment would force us to
3917 skip a page in the segment, then we need a new segment. */
3920 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3921 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3923 /* We don't want to put a loadable section after a
3924 nonloadable section in the same segment.
3925 Consider .tbss sections as loadable for this purpose. */
3928 else if ((abfd
->flags
& D_PAGED
) == 0)
3930 /* If the file is not demand paged, which means that we
3931 don't require the sections to be correctly aligned in the
3932 file, then there is no other reason for a new segment. */
3933 new_segment
= FALSE
;
3936 && (hdr
->flags
& SEC_READONLY
) == 0
3937 && (((last_hdr
->lma
+ last_size
- 1)
3938 & ~(maxpagesize
- 1))
3939 != (hdr
->lma
& ~(maxpagesize
- 1))))
3941 /* We don't want to put a writable section in a read only
3942 segment, unless they are on the same page in memory
3943 anyhow. We already know that the last section does not
3944 bring us past the current section on the page, so the
3945 only case in which the new section is not on the same
3946 page as the previous section is when the previous section
3947 ends precisely on a page boundary. */
3952 /* Otherwise, we can use the same segment. */
3953 new_segment
= FALSE
;
3958 if ((hdr
->flags
& SEC_READONLY
) == 0)
3961 /* .tbss sections effectively have zero size. */
3962 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
))
3963 != SEC_THREAD_LOCAL
)
3964 last_size
= hdr
->size
;
3970 /* We need a new program segment. We must create a new program
3971 header holding all the sections from phdr_index until hdr. */
3973 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3980 if ((hdr
->flags
& SEC_READONLY
) == 0)
3986 /* .tbss sections effectively have zero size. */
3987 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3988 last_size
= hdr
->size
;
3992 phdr_in_segment
= FALSE
;
3995 /* Create a final PT_LOAD program segment. */
3996 if (last_hdr
!= NULL
)
3998 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
4006 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4009 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
4016 /* For each loadable .note section, add a PT_NOTE segment. We don't
4017 use bfd_get_section_by_name, because if we link together
4018 nonloadable .note sections and loadable .note sections, we will
4019 generate two .note sections in the output file. FIXME: Using
4020 names for section types is bogus anyhow. */
4021 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4023 if ((s
->flags
& SEC_LOAD
) != 0
4024 && CONST_STRNEQ (s
->name
, ".note"))
4026 amt
= sizeof (struct elf_segment_map
);
4027 m
= bfd_zalloc (abfd
, amt
);
4031 m
->p_type
= PT_NOTE
;
4038 if (s
->flags
& SEC_THREAD_LOCAL
)
4046 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4051 amt
= sizeof (struct elf_segment_map
);
4052 amt
+= (tls_count
- 1) * sizeof (asection
*);
4053 m
= bfd_zalloc (abfd
, amt
);
4058 m
->count
= tls_count
;
4059 /* Mandated PF_R. */
4061 m
->p_flags_valid
= 1;
4062 for (i
= 0; i
< tls_count
; ++i
)
4064 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
4065 m
->sections
[i
] = first_tls
;
4066 first_tls
= first_tls
->next
;
4073 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4075 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
4076 if (eh_frame_hdr
!= NULL
4077 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
4079 amt
= sizeof (struct elf_segment_map
);
4080 m
= bfd_zalloc (abfd
, amt
);
4084 m
->p_type
= PT_GNU_EH_FRAME
;
4086 m
->sections
[0] = eh_frame_hdr
->output_section
;
4092 if (elf_tdata (abfd
)->stack_flags
)
4094 amt
= sizeof (struct elf_segment_map
);
4095 m
= bfd_zalloc (abfd
, amt
);
4099 m
->p_type
= PT_GNU_STACK
;
4100 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
4101 m
->p_flags_valid
= 1;
4107 if (dynsec
!= NULL
&& elf_tdata (abfd
)->relro
)
4109 /* We make a PT_GNU_RELRO segment only when there is a
4110 PT_DYNAMIC segment. */
4111 amt
= sizeof (struct elf_segment_map
);
4112 m
= bfd_zalloc (abfd
, amt
);
4116 m
->p_type
= PT_GNU_RELRO
;
4118 m
->p_flags_valid
= 1;
4125 elf_tdata (abfd
)->segment_map
= mfirst
;
4128 if (!elf_modify_segment_map (abfd
, info
))
4131 for (count
= 0, m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4133 elf_tdata (abfd
)->program_header_size
= count
* bed
->s
->sizeof_phdr
;
4138 if (sections
!= NULL
)
4143 /* Sort sections by address. */
4146 elf_sort_sections (const void *arg1
, const void *arg2
)
4148 const asection
*sec1
= *(const asection
**) arg1
;
4149 const asection
*sec2
= *(const asection
**) arg2
;
4150 bfd_size_type size1
, size2
;
4152 /* Sort by LMA first, since this is the address used to
4153 place the section into a segment. */
4154 if (sec1
->lma
< sec2
->lma
)
4156 else if (sec1
->lma
> sec2
->lma
)
4159 /* Then sort by VMA. Normally the LMA and the VMA will be
4160 the same, and this will do nothing. */
4161 if (sec1
->vma
< sec2
->vma
)
4163 else if (sec1
->vma
> sec2
->vma
)
4166 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4168 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4174 /* If the indicies are the same, do not return 0
4175 here, but continue to try the next comparison. */
4176 if (sec1
->target_index
- sec2
->target_index
!= 0)
4177 return sec1
->target_index
- sec2
->target_index
;
4182 else if (TOEND (sec2
))
4187 /* Sort by size, to put zero sized sections
4188 before others at the same address. */
4190 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
4191 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
4198 return sec1
->target_index
- sec2
->target_index
;
4201 /* Ian Lance Taylor writes:
4203 We shouldn't be using % with a negative signed number. That's just
4204 not good. We have to make sure either that the number is not
4205 negative, or that the number has an unsigned type. When the types
4206 are all the same size they wind up as unsigned. When file_ptr is a
4207 larger signed type, the arithmetic winds up as signed long long,
4210 What we're trying to say here is something like ``increase OFF by
4211 the least amount that will cause it to be equal to the VMA modulo
4213 /* In other words, something like:
4215 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4216 off_offset = off % bed->maxpagesize;
4217 if (vma_offset < off_offset)
4218 adjustment = vma_offset + bed->maxpagesize - off_offset;
4220 adjustment = vma_offset - off_offset;
4222 which can can be collapsed into the expression below. */
4225 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4227 return ((vma
- off
) % maxpagesize
);
4230 /* Assign file positions to the sections based on the mapping from
4231 sections to segments. This function also sets up some fields in
4235 assign_file_positions_for_load_sections (bfd
*abfd
,
4236 struct bfd_link_info
*link_info
)
4238 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4239 struct elf_segment_map
*m
;
4240 Elf_Internal_Phdr
*phdrs
;
4241 Elf_Internal_Phdr
*p
;
4243 bfd_size_type maxpagesize
;
4247 if (link_info
== NULL
4248 && !elf_modify_segment_map (abfd
, link_info
))
4252 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4255 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4256 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4257 elf_elfheader (abfd
)->e_phnum
= alloc
;
4259 if (elf_tdata (abfd
)->program_header_size
== (bfd_size_type
) -1)
4260 elf_tdata (abfd
)->program_header_size
= alloc
* bed
->s
->sizeof_phdr
;
4262 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
4263 >= alloc
* bed
->s
->sizeof_phdr
);
4267 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4271 phdrs
= bfd_alloc2 (abfd
, alloc
, sizeof (Elf_Internal_Phdr
));
4272 elf_tdata (abfd
)->phdr
= phdrs
;
4277 if ((abfd
->flags
& D_PAGED
) != 0)
4278 maxpagesize
= bed
->maxpagesize
;
4280 off
= bed
->s
->sizeof_ehdr
;
4281 off
+= alloc
* bed
->s
->sizeof_phdr
;
4283 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4289 /* If elf_segment_map is not from map_sections_to_segments, the
4290 sections may not be correctly ordered. NOTE: sorting should
4291 not be done to the PT_NOTE section of a corefile, which may
4292 contain several pseudo-sections artificially created by bfd.
4293 Sorting these pseudo-sections breaks things badly. */
4295 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4296 && m
->p_type
== PT_NOTE
))
4297 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4300 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4301 number of sections with contents contributing to both p_filesz
4302 and p_memsz, followed by a number of sections with no contents
4303 that just contribute to p_memsz. In this loop, OFF tracks next
4304 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4305 an adjustment we use for segments that have no file contents
4306 but need zero filled memory allocation. */
4308 p
->p_type
= m
->p_type
;
4309 p
->p_flags
= m
->p_flags
;
4314 p
->p_vaddr
= m
->sections
[0]->vma
- m
->p_vaddr_offset
;
4316 if (m
->p_paddr_valid
)
4317 p
->p_paddr
= m
->p_paddr
;
4318 else if (m
->count
== 0)
4321 p
->p_paddr
= m
->sections
[0]->lma
;
4323 if (p
->p_type
== PT_LOAD
4324 && (abfd
->flags
& D_PAGED
) != 0)
4326 /* p_align in demand paged PT_LOAD segments effectively stores
4327 the maximum page size. When copying an executable with
4328 objcopy, we set m->p_align from the input file. Use this
4329 value for maxpagesize rather than bed->maxpagesize, which
4330 may be different. Note that we use maxpagesize for PT_TLS
4331 segment alignment later in this function, so we are relying
4332 on at least one PT_LOAD segment appearing before a PT_TLS
4334 if (m
->p_align_valid
)
4335 maxpagesize
= m
->p_align
;
4337 p
->p_align
= maxpagesize
;
4339 else if (m
->count
== 0)
4340 p
->p_align
= 1 << bed
->s
->log_file_align
;
4341 else if (m
->p_align_valid
)
4342 p
->p_align
= m
->p_align
;
4346 if (p
->p_type
== PT_LOAD
4349 bfd_size_type align
;
4351 unsigned int align_power
= 0;
4353 if (m
->p_align_valid
)
4357 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4359 unsigned int secalign
;
4361 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4362 if (secalign
> align_power
)
4363 align_power
= secalign
;
4365 align
= (bfd_size_type
) 1 << align_power
;
4366 if (align
< maxpagesize
)
4367 align
= maxpagesize
;
4370 adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
4373 && !m
->includes_filehdr
4374 && !m
->includes_phdrs
4375 && (ufile_ptr
) off
>= align
)
4377 /* If the first section isn't loadable, the same holds for
4378 any other sections. Since the segment won't need file
4379 space, we can make p_offset overlap some prior segment.
4380 However, .tbss is special. If a segment starts with
4381 .tbss, we need to look at the next section to decide
4382 whether the segment has any loadable sections. */
4384 while ((m
->sections
[i
]->flags
& SEC_LOAD
) == 0
4385 && (m
->sections
[i
]->flags
& SEC_HAS_CONTENTS
) == 0)
4387 if ((m
->sections
[i
]->flags
& SEC_THREAD_LOCAL
) == 0
4391 voff
= adjust
- align
;
4397 /* Make sure the .dynamic section is the first section in the
4398 PT_DYNAMIC segment. */
4399 else if (p
->p_type
== PT_DYNAMIC
4401 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4404 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4406 bfd_set_error (bfd_error_bad_value
);
4414 if (m
->includes_filehdr
)
4416 if (! m
->p_flags_valid
)
4419 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4420 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4423 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4425 if (p
->p_vaddr
< (bfd_vma
) off
)
4427 (*_bfd_error_handler
)
4428 (_("%B: Not enough room for program headers, try linking with -N"),
4430 bfd_set_error (bfd_error_bad_value
);
4435 if (! m
->p_paddr_valid
)
4440 if (m
->includes_phdrs
)
4442 if (! m
->p_flags_valid
)
4445 if (!m
->includes_filehdr
)
4447 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4451 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4452 p
->p_vaddr
-= off
- p
->p_offset
;
4453 if (! m
->p_paddr_valid
)
4454 p
->p_paddr
-= off
- p
->p_offset
;
4458 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4459 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4462 if (p
->p_type
== PT_LOAD
4463 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4465 if (! m
->includes_filehdr
&& ! m
->includes_phdrs
)
4466 p
->p_offset
= off
+ voff
;
4471 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4472 p
->p_filesz
+= adjust
;
4473 p
->p_memsz
+= adjust
;
4477 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4478 maps. Set filepos for sections in PT_LOAD segments, and in
4479 core files, for sections in PT_NOTE segments.
4480 assign_file_positions_for_non_load_sections will set filepos
4481 for other sections and update p_filesz for other segments. */
4482 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4486 bfd_size_type align
;
4490 align
= (bfd_size_type
) 1 << bfd_get_section_alignment (abfd
, sec
);
4492 if (p
->p_type
== PT_LOAD
4493 || p
->p_type
== PT_TLS
)
4495 bfd_signed_vma adjust
;
4497 if ((flags
& SEC_LOAD
) != 0)
4499 adjust
= sec
->lma
- (p
->p_paddr
+ p
->p_filesz
);
4502 (*_bfd_error_handler
)
4503 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4504 abfd
, sec
, (unsigned long) sec
->lma
);
4508 p
->p_filesz
+= adjust
;
4509 p
->p_memsz
+= adjust
;
4511 /* .tbss is special. It doesn't contribute to p_memsz of
4513 else if ((flags
& SEC_ALLOC
) != 0
4514 && ((flags
& SEC_THREAD_LOCAL
) == 0
4515 || p
->p_type
== PT_TLS
))
4517 /* The section VMA must equal the file position
4518 modulo the page size. */
4519 bfd_size_type page
= align
;
4520 if (page
< maxpagesize
)
4522 adjust
= vma_page_aligned_bias (sec
->vma
,
4523 p
->p_vaddr
+ p
->p_memsz
,
4525 p
->p_memsz
+= adjust
;
4529 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4531 /* The section at i == 0 is the one that actually contains
4537 p
->p_filesz
= sec
->size
;
4543 /* The rest are fake sections that shouldn't be written. */
4552 if (p
->p_type
== PT_LOAD
)
4554 sec
->filepos
= off
+ voff
;
4555 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4556 1997, and the exact reason for it isn't clear. One
4557 plausible explanation is that it is to work around
4558 a problem we have with linker scripts using data
4559 statements in NOLOAD sections. I don't think it
4560 makes a great deal of sense to have such a section
4561 assigned to a PT_LOAD segment, but apparently
4562 people do this. The data statement results in a
4563 bfd_data_link_order being built, and these need
4564 section contents to write into. Eventually, we get
4565 to _bfd_elf_write_object_contents which writes any
4566 section with contents to the output. Make room
4567 here for the write, so that following segments are
4569 if ((flags
& SEC_LOAD
) != 0
4570 || (flags
& SEC_HAS_CONTENTS
) != 0)
4574 if ((flags
& SEC_LOAD
) != 0)
4576 p
->p_filesz
+= sec
->size
;
4577 p
->p_memsz
+= sec
->size
;
4580 /* .tbss is special. It doesn't contribute to p_memsz of
4582 else if ((flags
& SEC_ALLOC
) != 0
4583 && ((flags
& SEC_THREAD_LOCAL
) == 0
4584 || p
->p_type
== PT_TLS
))
4585 p
->p_memsz
+= sec
->size
;
4587 if (p
->p_type
== PT_TLS
4589 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
4591 struct bfd_link_order
*o
= sec
->map_tail
.link_order
;
4593 p
->p_memsz
+= o
->offset
+ o
->size
;
4596 if (p
->p_type
== PT_GNU_RELRO
)
4598 else if (align
> p
->p_align
4599 && !m
->p_align_valid
4600 && (p
->p_type
!= PT_LOAD
4601 || (abfd
->flags
& D_PAGED
) == 0))
4605 if (! m
->p_flags_valid
)
4608 if ((flags
& SEC_CODE
) != 0)
4610 if ((flags
& SEC_READONLY
) == 0)
4616 elf_tdata (abfd
)->next_file_pos
= off
;
4620 /* Assign file positions for the other sections. */
4623 assign_file_positions_for_non_load_sections (bfd
*abfd
,
4624 struct bfd_link_info
*link_info
)
4626 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4627 Elf_Internal_Shdr
**i_shdrpp
;
4628 Elf_Internal_Shdr
**hdrpp
;
4629 Elf_Internal_Phdr
*phdrs
;
4630 Elf_Internal_Phdr
*p
;
4631 struct elf_segment_map
*m
;
4632 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4633 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4635 unsigned int num_sec
;
4639 i_shdrpp
= elf_elfsections (abfd
);
4640 num_sec
= elf_numsections (abfd
);
4641 off
= elf_tdata (abfd
)->next_file_pos
;
4642 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4644 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4645 Elf_Internal_Shdr
*hdr
;
4648 if (hdr
->bfd_section
!= NULL
4649 && (hdr
->bfd_section
->filepos
!= 0
4650 || (hdr
->sh_type
== SHT_NOBITS
4651 && hdr
->contents
== NULL
)))
4652 hdr
->sh_offset
= hdr
->bfd_section
->filepos
;
4653 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4655 if (hdr
->sh_size
!= 0)
4656 ((*_bfd_error_handler
)
4657 (_("%B: warning: allocated section `%s' not in segment"),
4659 (hdr
->bfd_section
== NULL
4661 : hdr
->bfd_section
->name
)));
4662 /* We don't need to page align empty sections. */
4663 if ((abfd
->flags
& D_PAGED
) != 0 && hdr
->sh_size
!= 0)
4664 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4667 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4669 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4672 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4673 && hdr
->bfd_section
== NULL
)
4674 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4675 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4676 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4677 hdr
->sh_offset
= -1;
4679 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4681 if (i
== SHN_LORESERVE
- 1)
4683 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4684 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4688 /* Now that we have set the section file positions, we can set up
4689 the file positions for the non PT_LOAD segments. */
4693 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4695 phdrs
= elf_tdata (abfd
)->phdr
;
4696 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4701 if (p
->p_type
!= PT_LOAD
)
4704 if (m
->includes_filehdr
)
4706 filehdr_vaddr
= p
->p_vaddr
;
4707 filehdr_paddr
= p
->p_paddr
;
4709 if (m
->includes_phdrs
)
4711 phdrs_vaddr
= p
->p_vaddr
;
4712 phdrs_paddr
= p
->p_paddr
;
4713 if (m
->includes_filehdr
)
4715 phdrs_vaddr
+= bed
->s
->sizeof_ehdr
;
4716 phdrs_paddr
+= bed
->s
->sizeof_ehdr
;
4721 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4727 if (p
->p_type
!= PT_LOAD
4728 && (p
->p_type
!= PT_NOTE
|| bfd_get_format (abfd
) != bfd_core
))
4730 Elf_Internal_Shdr
*hdr
;
4731 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4733 hdr
= &elf_section_data (m
->sections
[m
->count
- 1])->this_hdr
;
4734 p
->p_filesz
= (m
->sections
[m
->count
- 1]->filepos
4735 - m
->sections
[0]->filepos
);
4736 if (hdr
->sh_type
!= SHT_NOBITS
)
4737 p
->p_filesz
+= hdr
->sh_size
;
4739 p
->p_offset
= m
->sections
[0]->filepos
;
4744 if (m
->includes_filehdr
)
4746 p
->p_vaddr
= filehdr_vaddr
;
4747 if (! m
->p_paddr_valid
)
4748 p
->p_paddr
= filehdr_paddr
;
4750 else if (m
->includes_phdrs
)
4752 p
->p_vaddr
= phdrs_vaddr
;
4753 if (! m
->p_paddr_valid
)
4754 p
->p_paddr
= phdrs_paddr
;
4756 else if (p
->p_type
== PT_GNU_RELRO
)
4758 Elf_Internal_Phdr
*lp
;
4760 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4762 if (lp
->p_type
== PT_LOAD
4763 && lp
->p_vaddr
<= link_info
->relro_end
4764 && lp
->p_vaddr
>= link_info
->relro_start
4765 && (lp
->p_vaddr
+ lp
->p_filesz
4766 >= link_info
->relro_end
))
4770 if (lp
< phdrs
+ count
4771 && link_info
->relro_end
> lp
->p_vaddr
)
4773 p
->p_vaddr
= lp
->p_vaddr
;
4774 p
->p_paddr
= lp
->p_paddr
;
4775 p
->p_offset
= lp
->p_offset
;
4776 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4777 p
->p_memsz
= p
->p_filesz
;
4779 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4783 memset (p
, 0, sizeof *p
);
4784 p
->p_type
= PT_NULL
;
4790 elf_tdata (abfd
)->next_file_pos
= off
;
4795 /* Work out the file positions of all the sections. This is called by
4796 _bfd_elf_compute_section_file_positions. All the section sizes and
4797 VMAs must be known before this is called.
4799 Reloc sections come in two flavours: Those processed specially as
4800 "side-channel" data attached to a section to which they apply, and
4801 those that bfd doesn't process as relocations. The latter sort are
4802 stored in a normal bfd section by bfd_section_from_shdr. We don't
4803 consider the former sort here, unless they form part of the loadable
4804 image. Reloc sections not assigned here will be handled later by
4805 assign_file_positions_for_relocs.
4807 We also don't set the positions of the .symtab and .strtab here. */
4810 assign_file_positions_except_relocs (bfd
*abfd
,
4811 struct bfd_link_info
*link_info
)
4813 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4814 Elf_Internal_Ehdr
*i_ehdrp
= elf_elfheader (abfd
);
4816 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4818 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4819 && bfd_get_format (abfd
) != bfd_core
)
4821 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4822 unsigned int num_sec
= elf_numsections (abfd
);
4823 Elf_Internal_Shdr
**hdrpp
;
4826 /* Start after the ELF header. */
4827 off
= i_ehdrp
->e_ehsize
;
4829 /* We are not creating an executable, which means that we are
4830 not creating a program header, and that the actual order of
4831 the sections in the file is unimportant. */
4832 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4834 Elf_Internal_Shdr
*hdr
;
4837 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4838 && hdr
->bfd_section
== NULL
)
4839 || i
== tdata
->symtab_section
4840 || i
== tdata
->symtab_shndx_section
4841 || i
== tdata
->strtab_section
)
4843 hdr
->sh_offset
= -1;
4846 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4848 if (i
== SHN_LORESERVE
- 1)
4850 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4851 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4859 /* Assign file positions for the loaded sections based on the
4860 assignment of sections to segments. */
4861 if (!assign_file_positions_for_load_sections (abfd
, link_info
))
4864 /* And for non-load sections. */
4865 if (!assign_file_positions_for_non_load_sections (abfd
, link_info
))
4868 if (bed
->elf_backend_modify_program_headers
!= NULL
)
4870 if (!(*bed
->elf_backend_modify_program_headers
) (abfd
, link_info
))
4874 /* Write out the program headers. */
4875 alloc
= tdata
->program_header_size
/ bed
->s
->sizeof_phdr
;
4876 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4877 || bed
->s
->write_out_phdrs (abfd
, tdata
->phdr
, alloc
) != 0)
4880 off
= tdata
->next_file_pos
;
4883 /* Place the section headers. */
4884 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4885 i_ehdrp
->e_shoff
= off
;
4886 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4888 tdata
->next_file_pos
= off
;
4894 prep_headers (bfd
*abfd
)
4896 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4897 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4898 Elf_Internal_Shdr
**i_shdrp
; /* Section header table, internal form */
4899 struct elf_strtab_hash
*shstrtab
;
4900 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4902 i_ehdrp
= elf_elfheader (abfd
);
4903 i_shdrp
= elf_elfsections (abfd
);
4905 shstrtab
= _bfd_elf_strtab_init ();
4906 if (shstrtab
== NULL
)
4909 elf_shstrtab (abfd
) = shstrtab
;
4911 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4912 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4913 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4914 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4916 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4917 i_ehdrp
->e_ident
[EI_DATA
] =
4918 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4919 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4921 if ((abfd
->flags
& DYNAMIC
) != 0)
4922 i_ehdrp
->e_type
= ET_DYN
;
4923 else if ((abfd
->flags
& EXEC_P
) != 0)
4924 i_ehdrp
->e_type
= ET_EXEC
;
4925 else if (bfd_get_format (abfd
) == bfd_core
)
4926 i_ehdrp
->e_type
= ET_CORE
;
4928 i_ehdrp
->e_type
= ET_REL
;
4930 switch (bfd_get_arch (abfd
))
4932 case bfd_arch_unknown
:
4933 i_ehdrp
->e_machine
= EM_NONE
;
4936 /* There used to be a long list of cases here, each one setting
4937 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4938 in the corresponding bfd definition. To avoid duplication,
4939 the switch was removed. Machines that need special handling
4940 can generally do it in elf_backend_final_write_processing(),
4941 unless they need the information earlier than the final write.
4942 Such need can generally be supplied by replacing the tests for
4943 e_machine with the conditions used to determine it. */
4945 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4948 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4949 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4951 /* No program header, for now. */
4952 i_ehdrp
->e_phoff
= 0;
4953 i_ehdrp
->e_phentsize
= 0;
4954 i_ehdrp
->e_phnum
= 0;
4956 /* Each bfd section is section header entry. */
4957 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4958 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4960 /* If we're building an executable, we'll need a program header table. */
4961 if (abfd
->flags
& EXEC_P
)
4962 /* It all happens later. */
4966 i_ehdrp
->e_phentsize
= 0;
4968 i_ehdrp
->e_phoff
= 0;
4971 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4972 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4973 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4974 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4975 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4976 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4977 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4978 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4979 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4985 /* Assign file positions for all the reloc sections which are not part
4986 of the loadable file image. */
4989 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4992 unsigned int i
, num_sec
;
4993 Elf_Internal_Shdr
**shdrpp
;
4995 off
= elf_tdata (abfd
)->next_file_pos
;
4997 num_sec
= elf_numsections (abfd
);
4998 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
5000 Elf_Internal_Shdr
*shdrp
;
5003 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
5004 && shdrp
->sh_offset
== -1)
5005 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
5008 elf_tdata (abfd
)->next_file_pos
= off
;
5012 _bfd_elf_write_object_contents (bfd
*abfd
)
5014 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5015 Elf_Internal_Ehdr
*i_ehdrp
;
5016 Elf_Internal_Shdr
**i_shdrp
;
5018 unsigned int count
, num_sec
;
5020 if (! abfd
->output_has_begun
5021 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
5024 i_shdrp
= elf_elfsections (abfd
);
5025 i_ehdrp
= elf_elfheader (abfd
);
5028 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
5032 _bfd_elf_assign_file_positions_for_relocs (abfd
);
5034 /* After writing the headers, we need to write the sections too... */
5035 num_sec
= elf_numsections (abfd
);
5036 for (count
= 1; count
< num_sec
; count
++)
5038 if (bed
->elf_backend_section_processing
)
5039 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
5040 if (i_shdrp
[count
]->contents
)
5042 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
5044 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
5045 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
5048 if (count
== SHN_LORESERVE
- 1)
5049 count
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
5052 /* Write out the section header names. */
5053 if (elf_shstrtab (abfd
) != NULL
5054 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
5055 || ! _bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
5058 if (bed
->elf_backend_final_write_processing
)
5059 (*bed
->elf_backend_final_write_processing
) (abfd
,
5060 elf_tdata (abfd
)->linker
);
5062 return bed
->s
->write_shdrs_and_ehdr (abfd
);
5066 _bfd_elf_write_corefile_contents (bfd
*abfd
)
5068 /* Hopefully this can be done just like an object file. */
5069 return _bfd_elf_write_object_contents (abfd
);
5072 /* Given a section, search the header to find them. */
5075 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
5077 const struct elf_backend_data
*bed
;
5080 if (elf_section_data (asect
) != NULL
5081 && elf_section_data (asect
)->this_idx
!= 0)
5082 return elf_section_data (asect
)->this_idx
;
5084 if (bfd_is_abs_section (asect
))
5086 else if (bfd_is_com_section (asect
))
5088 else if (bfd_is_und_section (asect
))
5093 bed
= get_elf_backend_data (abfd
);
5094 if (bed
->elf_backend_section_from_bfd_section
)
5098 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
5103 bfd_set_error (bfd_error_nonrepresentable_section
);
5108 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5112 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
5114 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5116 flagword flags
= asym_ptr
->flags
;
5118 /* When gas creates relocations against local labels, it creates its
5119 own symbol for the section, but does put the symbol into the
5120 symbol chain, so udata is 0. When the linker is generating
5121 relocatable output, this section symbol may be for one of the
5122 input sections rather than the output section. */
5123 if (asym_ptr
->udata
.i
== 0
5124 && (flags
& BSF_SECTION_SYM
)
5125 && asym_ptr
->section
)
5130 sec
= asym_ptr
->section
;
5131 if (sec
->owner
!= abfd
&& sec
->output_section
!= NULL
)
5132 sec
= sec
->output_section
;
5133 if (sec
->owner
== abfd
5134 && (indx
= sec
->index
) < elf_num_section_syms (abfd
)
5135 && elf_section_syms (abfd
)[indx
] != NULL
)
5136 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5139 idx
= asym_ptr
->udata
.i
;
5143 /* This case can occur when using --strip-symbol on a symbol
5144 which is used in a relocation entry. */
5145 (*_bfd_error_handler
)
5146 (_("%B: symbol `%s' required but not present"),
5147 abfd
, bfd_asymbol_name (asym_ptr
));
5148 bfd_set_error (bfd_error_no_symbols
);
5155 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5156 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
5157 elf_symbol_flags (flags
));
5165 /* Rewrite program header information. */
5168 rewrite_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5170 Elf_Internal_Ehdr
*iehdr
;
5171 struct elf_segment_map
*map
;
5172 struct elf_segment_map
*map_first
;
5173 struct elf_segment_map
**pointer_to_map
;
5174 Elf_Internal_Phdr
*segment
;
5177 unsigned int num_segments
;
5178 bfd_boolean phdr_included
= FALSE
;
5179 bfd_vma maxpagesize
;
5180 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5181 unsigned int phdr_adjust_num
= 0;
5182 const struct elf_backend_data
*bed
;
5184 bed
= get_elf_backend_data (ibfd
);
5185 iehdr
= elf_elfheader (ibfd
);
5188 pointer_to_map
= &map_first
;
5190 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5191 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5193 /* Returns the end address of the segment + 1. */
5194 #define SEGMENT_END(segment, start) \
5195 (start + (segment->p_memsz > segment->p_filesz \
5196 ? segment->p_memsz : segment->p_filesz))
5198 #define SECTION_SIZE(section, segment) \
5199 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5200 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5201 ? section->size : 0)
5203 /* Returns TRUE if the given section is contained within
5204 the given segment. VMA addresses are compared. */
5205 #define IS_CONTAINED_BY_VMA(section, segment) \
5206 (section->vma >= segment->p_vaddr \
5207 && (section->vma + SECTION_SIZE (section, segment) \
5208 <= (SEGMENT_END (segment, segment->p_vaddr))))
5210 /* Returns TRUE if the given section is contained within
5211 the given segment. LMA addresses are compared. */
5212 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5213 (section->lma >= base \
5214 && (section->lma + SECTION_SIZE (section, segment) \
5215 <= SEGMENT_END (segment, base)))
5217 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5218 #define IS_COREFILE_NOTE(p, s) \
5219 (p->p_type == PT_NOTE \
5220 && bfd_get_format (ibfd) == bfd_core \
5221 && s->vma == 0 && s->lma == 0 \
5222 && (bfd_vma) s->filepos >= p->p_offset \
5223 && ((bfd_vma) s->filepos + s->size \
5224 <= p->p_offset + p->p_filesz))
5226 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5227 linker, which generates a PT_INTERP section with p_vaddr and
5228 p_memsz set to 0. */
5229 #define IS_SOLARIS_PT_INTERP(p, s) \
5231 && p->p_paddr == 0 \
5232 && p->p_memsz == 0 \
5233 && p->p_filesz > 0 \
5234 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5236 && (bfd_vma) s->filepos >= p->p_offset \
5237 && ((bfd_vma) s->filepos + s->size \
5238 <= p->p_offset + p->p_filesz))
5240 /* Decide if the given section should be included in the given segment.
5241 A section will be included if:
5242 1. It is within the address space of the segment -- we use the LMA
5243 if that is set for the segment and the VMA otherwise,
5244 2. It is an allocated segment,
5245 3. There is an output section associated with it,
5246 4. The section has not already been allocated to a previous segment.
5247 5. PT_GNU_STACK segments do not include any sections.
5248 6. PT_TLS segment includes only SHF_TLS sections.
5249 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5250 8. PT_DYNAMIC should not contain empty sections at the beginning
5251 (with the possible exception of .dynamic). */
5252 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5253 ((((segment->p_paddr \
5254 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5255 : IS_CONTAINED_BY_VMA (section, segment)) \
5256 && (section->flags & SEC_ALLOC) != 0) \
5257 || IS_COREFILE_NOTE (segment, section)) \
5258 && segment->p_type != PT_GNU_STACK \
5259 && (segment->p_type != PT_TLS \
5260 || (section->flags & SEC_THREAD_LOCAL)) \
5261 && (segment->p_type == PT_LOAD \
5262 || segment->p_type == PT_TLS \
5263 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5264 && (segment->p_type != PT_DYNAMIC \
5265 || SECTION_SIZE (section, segment) > 0 \
5266 || (segment->p_paddr \
5267 ? segment->p_paddr != section->lma \
5268 : segment->p_vaddr != section->vma) \
5269 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5271 && ! section->segment_mark)
5273 /* If the output section of a section in the input segment is NULL,
5274 it is removed from the corresponding output segment. */
5275 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5276 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5277 && section->output_section != NULL)
5279 /* Returns TRUE iff seg1 starts after the end of seg2. */
5280 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5281 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5283 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5284 their VMA address ranges and their LMA address ranges overlap.
5285 It is possible to have overlapping VMA ranges without overlapping LMA
5286 ranges. RedBoot images for example can have both .data and .bss mapped
5287 to the same VMA range, but with the .data section mapped to a different
5289 #define SEGMENT_OVERLAPS(seg1, seg2) \
5290 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5291 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5292 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5293 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5295 /* Initialise the segment mark field. */
5296 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5297 section
->segment_mark
= FALSE
;
5299 /* Scan through the segments specified in the program header
5300 of the input BFD. For this first scan we look for overlaps
5301 in the loadable segments. These can be created by weird
5302 parameters to objcopy. Also, fix some solaris weirdness. */
5303 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5308 Elf_Internal_Phdr
*segment2
;
5310 if (segment
->p_type
== PT_INTERP
)
5311 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5312 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5314 /* Mininal change so that the normal section to segment
5315 assignment code will work. */
5316 segment
->p_vaddr
= section
->vma
;
5320 if (segment
->p_type
!= PT_LOAD
)
5323 /* Determine if this segment overlaps any previous segments. */
5324 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5326 bfd_signed_vma extra_length
;
5328 if (segment2
->p_type
!= PT_LOAD
5329 || ! SEGMENT_OVERLAPS (segment
, segment2
))
5332 /* Merge the two segments together. */
5333 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5335 /* Extend SEGMENT2 to include SEGMENT and then delete
5338 SEGMENT_END (segment
, segment
->p_vaddr
)
5339 - SEGMENT_END (segment2
, segment2
->p_vaddr
);
5341 if (extra_length
> 0)
5343 segment2
->p_memsz
+= extra_length
;
5344 segment2
->p_filesz
+= extra_length
;
5347 segment
->p_type
= PT_NULL
;
5349 /* Since we have deleted P we must restart the outer loop. */
5351 segment
= elf_tdata (ibfd
)->phdr
;
5356 /* Extend SEGMENT to include SEGMENT2 and then delete
5359 SEGMENT_END (segment2
, segment2
->p_vaddr
)
5360 - SEGMENT_END (segment
, segment
->p_vaddr
);
5362 if (extra_length
> 0)
5364 segment
->p_memsz
+= extra_length
;
5365 segment
->p_filesz
+= extra_length
;
5368 segment2
->p_type
= PT_NULL
;
5373 /* The second scan attempts to assign sections to segments. */
5374 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5378 unsigned int section_count
;
5379 asection
** sections
;
5380 asection
* output_section
;
5382 bfd_vma matching_lma
;
5383 bfd_vma suggested_lma
;
5386 asection
* first_section
;
5388 if (segment
->p_type
== PT_NULL
)
5391 first_section
= NULL
;
5392 /* Compute how many sections might be placed into this segment. */
5393 for (section
= ibfd
->sections
, section_count
= 0;
5395 section
= section
->next
)
5397 /* Find the first section in the input segment, which may be
5398 removed from the corresponding output segment. */
5399 if (IS_SECTION_IN_INPUT_SEGMENT (section
, segment
, bed
))
5401 if (first_section
== NULL
)
5402 first_section
= section
;
5403 if (section
->output_section
!= NULL
)
5408 /* Allocate a segment map big enough to contain
5409 all of the sections we have selected. */
5410 amt
= sizeof (struct elf_segment_map
);
5411 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5412 map
= bfd_zalloc (obfd
, amt
);
5416 /* Initialise the fields of the segment map. Default to
5417 using the physical address of the segment in the input BFD. */
5419 map
->p_type
= segment
->p_type
;
5420 map
->p_flags
= segment
->p_flags
;
5421 map
->p_flags_valid
= 1;
5423 /* If the first section in the input segment is removed, there is
5424 no need to preserve segment physical address in the corresponding
5426 if (!first_section
|| first_section
->output_section
!= NULL
)
5428 map
->p_paddr
= segment
->p_paddr
;
5429 map
->p_paddr_valid
= 1;
5432 /* Determine if this segment contains the ELF file header
5433 and if it contains the program headers themselves. */
5434 map
->includes_filehdr
= (segment
->p_offset
== 0
5435 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5437 map
->includes_phdrs
= 0;
5439 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5441 map
->includes_phdrs
=
5442 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5443 && (segment
->p_offset
+ segment
->p_filesz
5444 >= ((bfd_vma
) iehdr
->e_phoff
5445 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5447 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5448 phdr_included
= TRUE
;
5451 if (section_count
== 0)
5453 /* Special segments, such as the PT_PHDR segment, may contain
5454 no sections, but ordinary, loadable segments should contain
5455 something. They are allowed by the ELF spec however, so only
5456 a warning is produced. */
5457 if (segment
->p_type
== PT_LOAD
)
5458 (*_bfd_error_handler
)
5459 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5463 *pointer_to_map
= map
;
5464 pointer_to_map
= &map
->next
;
5469 /* Now scan the sections in the input BFD again and attempt
5470 to add their corresponding output sections to the segment map.
5471 The problem here is how to handle an output section which has
5472 been moved (ie had its LMA changed). There are four possibilities:
5474 1. None of the sections have been moved.
5475 In this case we can continue to use the segment LMA from the
5478 2. All of the sections have been moved by the same amount.
5479 In this case we can change the segment's LMA to match the LMA
5480 of the first section.
5482 3. Some of the sections have been moved, others have not.
5483 In this case those sections which have not been moved can be
5484 placed in the current segment which will have to have its size,
5485 and possibly its LMA changed, and a new segment or segments will
5486 have to be created to contain the other sections.
5488 4. The sections have been moved, but not by the same amount.
5489 In this case we can change the segment's LMA to match the LMA
5490 of the first section and we will have to create a new segment
5491 or segments to contain the other sections.
5493 In order to save time, we allocate an array to hold the section
5494 pointers that we are interested in. As these sections get assigned
5495 to a segment, they are removed from this array. */
5497 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5498 to work around this long long bug. */
5499 sections
= bfd_malloc2 (section_count
, sizeof (asection
*));
5500 if (sections
== NULL
)
5503 /* Step One: Scan for segment vs section LMA conflicts.
5504 Also add the sections to the section array allocated above.
5505 Also add the sections to the current segment. In the common
5506 case, where the sections have not been moved, this means that
5507 we have completely filled the segment, and there is nothing
5513 for (j
= 0, section
= ibfd
->sections
;
5515 section
= section
->next
)
5517 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5519 output_section
= section
->output_section
;
5521 sections
[j
++] = section
;
5523 /* The Solaris native linker always sets p_paddr to 0.
5524 We try to catch that case here, and set it to the
5525 correct value. Note - some backends require that
5526 p_paddr be left as zero. */
5527 if (segment
->p_paddr
== 0
5528 && segment
->p_vaddr
!= 0
5529 && (! bed
->want_p_paddr_set_to_zero
)
5531 && output_section
->lma
!= 0
5532 && (output_section
->vma
== (segment
->p_vaddr
5533 + (map
->includes_filehdr
5536 + (map
->includes_phdrs
5538 * iehdr
->e_phentsize
)
5540 map
->p_paddr
= segment
->p_vaddr
;
5542 /* Match up the physical address of the segment with the
5543 LMA address of the output section. */
5544 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5545 || IS_COREFILE_NOTE (segment
, section
)
5546 || (bed
->want_p_paddr_set_to_zero
&&
5547 IS_CONTAINED_BY_VMA (output_section
, segment
))
5550 if (matching_lma
== 0)
5551 matching_lma
= output_section
->lma
;
5553 /* We assume that if the section fits within the segment
5554 then it does not overlap any other section within that
5556 map
->sections
[isec
++] = output_section
;
5558 else if (suggested_lma
== 0)
5559 suggested_lma
= output_section
->lma
;
5563 BFD_ASSERT (j
== section_count
);
5565 /* Step Two: Adjust the physical address of the current segment,
5567 if (isec
== section_count
)
5569 /* All of the sections fitted within the segment as currently
5570 specified. This is the default case. Add the segment to
5571 the list of built segments and carry on to process the next
5572 program header in the input BFD. */
5573 map
->count
= section_count
;
5574 *pointer_to_map
= map
;
5575 pointer_to_map
= &map
->next
;
5577 if (matching_lma
!= map
->p_paddr
5578 && !map
->includes_filehdr
&& !map
->includes_phdrs
)
5579 /* There is some padding before the first section in the
5580 segment. So, we must account for that in the output
5582 map
->p_vaddr_offset
= matching_lma
- map
->p_paddr
;
5589 if (matching_lma
!= 0)
5591 /* At least one section fits inside the current segment.
5592 Keep it, but modify its physical address to match the
5593 LMA of the first section that fitted. */
5594 map
->p_paddr
= matching_lma
;
5598 /* None of the sections fitted inside the current segment.
5599 Change the current segment's physical address to match
5600 the LMA of the first section. */
5601 map
->p_paddr
= suggested_lma
;
5604 /* Offset the segment physical address from the lma
5605 to allow for space taken up by elf headers. */
5606 if (map
->includes_filehdr
)
5607 map
->p_paddr
-= iehdr
->e_ehsize
;
5609 if (map
->includes_phdrs
)
5611 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5613 /* iehdr->e_phnum is just an estimate of the number
5614 of program headers that we will need. Make a note
5615 here of the number we used and the segment we chose
5616 to hold these headers, so that we can adjust the
5617 offset when we know the correct value. */
5618 phdr_adjust_num
= iehdr
->e_phnum
;
5619 phdr_adjust_seg
= map
;
5623 /* Step Three: Loop over the sections again, this time assigning
5624 those that fit to the current segment and removing them from the
5625 sections array; but making sure not to leave large gaps. Once all
5626 possible sections have been assigned to the current segment it is
5627 added to the list of built segments and if sections still remain
5628 to be assigned, a new segment is constructed before repeating
5636 /* Fill the current segment with sections that fit. */
5637 for (j
= 0; j
< section_count
; j
++)
5639 section
= sections
[j
];
5641 if (section
== NULL
)
5644 output_section
= section
->output_section
;
5646 BFD_ASSERT (output_section
!= NULL
);
5648 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5649 || IS_COREFILE_NOTE (segment
, section
))
5651 if (map
->count
== 0)
5653 /* If the first section in a segment does not start at
5654 the beginning of the segment, then something is
5656 if (output_section
->lma
!=
5658 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5659 + (map
->includes_phdrs
5660 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5666 asection
* prev_sec
;
5668 prev_sec
= map
->sections
[map
->count
- 1];
5670 /* If the gap between the end of the previous section
5671 and the start of this section is more than
5672 maxpagesize then we need to start a new segment. */
5673 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5675 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5676 || ((prev_sec
->lma
+ prev_sec
->size
)
5677 > output_section
->lma
))
5679 if (suggested_lma
== 0)
5680 suggested_lma
= output_section
->lma
;
5686 map
->sections
[map
->count
++] = output_section
;
5689 section
->segment_mark
= TRUE
;
5691 else if (suggested_lma
== 0)
5692 suggested_lma
= output_section
->lma
;
5695 BFD_ASSERT (map
->count
> 0);
5697 /* Add the current segment to the list of built segments. */
5698 *pointer_to_map
= map
;
5699 pointer_to_map
= &map
->next
;
5701 if (isec
< section_count
)
5703 /* We still have not allocated all of the sections to
5704 segments. Create a new segment here, initialise it
5705 and carry on looping. */
5706 amt
= sizeof (struct elf_segment_map
);
5707 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5708 map
= bfd_alloc (obfd
, amt
);
5715 /* Initialise the fields of the segment map. Set the physical
5716 physical address to the LMA of the first section that has
5717 not yet been assigned. */
5719 map
->p_type
= segment
->p_type
;
5720 map
->p_flags
= segment
->p_flags
;
5721 map
->p_flags_valid
= 1;
5722 map
->p_paddr
= suggested_lma
;
5723 map
->p_paddr_valid
= 1;
5724 map
->includes_filehdr
= 0;
5725 map
->includes_phdrs
= 0;
5728 while (isec
< section_count
);
5733 /* The Solaris linker creates program headers in which all the
5734 p_paddr fields are zero. When we try to objcopy or strip such a
5735 file, we get confused. Check for this case, and if we find it
5736 reset the p_paddr_valid fields. */
5737 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5738 if (map
->p_paddr
!= 0)
5741 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5742 map
->p_paddr_valid
= 0;
5744 elf_tdata (obfd
)->segment_map
= map_first
;
5746 /* If we had to estimate the number of program headers that were
5747 going to be needed, then check our estimate now and adjust
5748 the offset if necessary. */
5749 if (phdr_adjust_seg
!= NULL
)
5753 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5756 if (count
> phdr_adjust_num
)
5757 phdr_adjust_seg
->p_paddr
5758 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5763 #undef IS_CONTAINED_BY_VMA
5764 #undef IS_CONTAINED_BY_LMA
5765 #undef IS_COREFILE_NOTE
5766 #undef IS_SOLARIS_PT_INTERP
5767 #undef IS_SECTION_IN_INPUT_SEGMENT
5768 #undef INCLUDE_SECTION_IN_SEGMENT
5769 #undef SEGMENT_AFTER_SEGMENT
5770 #undef SEGMENT_OVERLAPS
5774 /* Copy ELF program header information. */
5777 copy_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5779 Elf_Internal_Ehdr
*iehdr
;
5780 struct elf_segment_map
*map
;
5781 struct elf_segment_map
*map_first
;
5782 struct elf_segment_map
**pointer_to_map
;
5783 Elf_Internal_Phdr
*segment
;
5785 unsigned int num_segments
;
5786 bfd_boolean phdr_included
= FALSE
;
5788 iehdr
= elf_elfheader (ibfd
);
5791 pointer_to_map
= &map_first
;
5793 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5794 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5799 unsigned int section_count
;
5801 Elf_Internal_Shdr
*this_hdr
;
5802 asection
*first_section
= NULL
;
5804 /* FIXME: Do we need to copy PT_NULL segment? */
5805 if (segment
->p_type
== PT_NULL
)
5808 /* Compute how many sections are in this segment. */
5809 for (section
= ibfd
->sections
, section_count
= 0;
5811 section
= section
->next
)
5813 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5814 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5817 first_section
= section
;
5822 /* Allocate a segment map big enough to contain
5823 all of the sections we have selected. */
5824 amt
= sizeof (struct elf_segment_map
);
5825 if (section_count
!= 0)
5826 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5827 map
= bfd_zalloc (obfd
, amt
);
5831 /* Initialize the fields of the output segment map with the
5834 map
->p_type
= segment
->p_type
;
5835 map
->p_flags
= segment
->p_flags
;
5836 map
->p_flags_valid
= 1;
5837 map
->p_paddr
= segment
->p_paddr
;
5838 map
->p_paddr_valid
= 1;
5839 map
->p_align
= segment
->p_align
;
5840 map
->p_align_valid
= 1;
5841 map
->p_vaddr_offset
= 0;
5843 /* Determine if this segment contains the ELF file header
5844 and if it contains the program headers themselves. */
5845 map
->includes_filehdr
= (segment
->p_offset
== 0
5846 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5848 map
->includes_phdrs
= 0;
5849 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5851 map
->includes_phdrs
=
5852 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5853 && (segment
->p_offset
+ segment
->p_filesz
5854 >= ((bfd_vma
) iehdr
->e_phoff
5855 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5857 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5858 phdr_included
= TRUE
;
5861 if (!map
->includes_phdrs
&& !map
->includes_filehdr
)
5862 /* There is some other padding before the first section. */
5863 map
->p_vaddr_offset
= ((first_section
? first_section
->lma
: 0)
5864 - segment
->p_paddr
);
5866 if (section_count
!= 0)
5868 unsigned int isec
= 0;
5870 for (section
= first_section
;
5872 section
= section
->next
)
5874 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5875 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5877 map
->sections
[isec
++] = section
->output_section
;
5878 if (isec
== section_count
)
5884 map
->count
= section_count
;
5885 *pointer_to_map
= map
;
5886 pointer_to_map
= &map
->next
;
5889 elf_tdata (obfd
)->segment_map
= map_first
;
5893 /* Copy private BFD data. This copies or rewrites ELF program header
5897 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
5899 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5900 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5903 if (elf_tdata (ibfd
)->phdr
== NULL
)
5906 if (ibfd
->xvec
== obfd
->xvec
)
5908 /* Check if any sections in the input BFD covered by ELF program
5909 header are changed. */
5910 Elf_Internal_Phdr
*segment
;
5911 asection
*section
, *osec
;
5912 unsigned int i
, num_segments
;
5913 Elf_Internal_Shdr
*this_hdr
;
5915 /* Initialize the segment mark field. */
5916 for (section
= obfd
->sections
; section
!= NULL
;
5917 section
= section
->next
)
5918 section
->segment_mark
= FALSE
;
5920 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5921 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5925 for (section
= ibfd
->sections
;
5926 section
!= NULL
; section
= section
->next
)
5928 /* We mark the output section so that we know it comes
5929 from the input BFD. */
5930 osec
= section
->output_section
;
5932 osec
->segment_mark
= TRUE
;
5934 /* Check if this section is covered by the segment. */
5935 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5936 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5938 /* FIXME: Check if its output section is changed or
5939 removed. What else do we need to check? */
5941 || section
->flags
!= osec
->flags
5942 || section
->lma
!= osec
->lma
5943 || section
->vma
!= osec
->vma
5944 || section
->size
!= osec
->size
5945 || section
->rawsize
!= osec
->rawsize
5946 || section
->alignment_power
!= osec
->alignment_power
)
5952 /* Check to see if any output section doesn't come from the
5954 for (section
= obfd
->sections
; section
!= NULL
;
5955 section
= section
->next
)
5957 if (section
->segment_mark
== FALSE
)
5960 section
->segment_mark
= FALSE
;
5963 return copy_elf_program_header (ibfd
, obfd
);
5967 return rewrite_elf_program_header (ibfd
, obfd
);
5970 /* Initialize private output section information from input section. */
5973 _bfd_elf_init_private_section_data (bfd
*ibfd
,
5977 struct bfd_link_info
*link_info
)
5980 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5981 bfd_boolean need_group
= link_info
== NULL
|| link_info
->relocatable
;
5983 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5984 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5987 /* Don't copy the output ELF section type from input if the
5988 output BFD section flags have been set to something different.
5989 elf_fake_sections will set ELF section type based on BFD
5991 if (osec
->flags
== isec
->flags
|| !osec
->flags
)
5993 BFD_ASSERT (osec
->flags
== isec
->flags
5995 && elf_section_type (osec
) == SHT_NULL
));
5996 elf_section_type (osec
) = elf_section_type (isec
);
5999 /* FIXME: Is this correct for all OS/PROC specific flags? */
6000 elf_section_flags (osec
) |= (elf_section_flags (isec
)
6001 & (SHF_MASKOS
| SHF_MASKPROC
));
6003 /* Set things up for objcopy and relocatable link. The output
6004 SHT_GROUP section will have its elf_next_in_group pointing back
6005 to the input group members. Ignore linker created group section.
6006 See elfNN_ia64_object_p in elfxx-ia64.c. */
6009 if (elf_sec_group (isec
) == NULL
6010 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
6012 if (elf_section_flags (isec
) & SHF_GROUP
)
6013 elf_section_flags (osec
) |= SHF_GROUP
;
6014 elf_next_in_group (osec
) = elf_next_in_group (isec
);
6015 elf_group_name (osec
) = elf_group_name (isec
);
6019 ihdr
= &elf_section_data (isec
)->this_hdr
;
6021 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6022 don't use the output section of the linked-to section since it
6023 may be NULL at this point. */
6024 if ((ihdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
6026 ohdr
= &elf_section_data (osec
)->this_hdr
;
6027 ohdr
->sh_flags
|= SHF_LINK_ORDER
;
6028 elf_linked_to_section (osec
) = elf_linked_to_section (isec
);
6031 osec
->use_rela_p
= isec
->use_rela_p
;
6036 /* Copy private section information. This copies over the entsize
6037 field, and sometimes the info field. */
6040 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
6045 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6047 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6048 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6051 ihdr
= &elf_section_data (isec
)->this_hdr
;
6052 ohdr
= &elf_section_data (osec
)->this_hdr
;
6054 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
6056 if (ihdr
->sh_type
== SHT_SYMTAB
6057 || ihdr
->sh_type
== SHT_DYNSYM
6058 || ihdr
->sh_type
== SHT_GNU_verneed
6059 || ihdr
->sh_type
== SHT_GNU_verdef
)
6060 ohdr
->sh_info
= ihdr
->sh_info
;
6062 return _bfd_elf_init_private_section_data (ibfd
, isec
, obfd
, osec
,
6066 /* Copy private header information. */
6069 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
6073 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6074 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6077 /* Copy over private BFD data if it has not already been copied.
6078 This must be done here, rather than in the copy_private_bfd_data
6079 entry point, because the latter is called after the section
6080 contents have been set, which means that the program headers have
6081 already been worked out. */
6082 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
6084 if (! copy_private_bfd_data (ibfd
, obfd
))
6088 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6089 but this might be wrong if we deleted the group section. */
6090 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
6091 if (elf_section_type (isec
) == SHT_GROUP
6092 && isec
->output_section
== NULL
)
6094 asection
*first
= elf_next_in_group (isec
);
6095 asection
*s
= first
;
6098 if (s
->output_section
!= NULL
)
6100 elf_section_flags (s
->output_section
) &= ~SHF_GROUP
;
6101 elf_group_name (s
->output_section
) = NULL
;
6103 s
= elf_next_in_group (s
);
6112 /* Copy private symbol information. If this symbol is in a section
6113 which we did not map into a BFD section, try to map the section
6114 index correctly. We use special macro definitions for the mapped
6115 section indices; these definitions are interpreted by the
6116 swap_out_syms function. */
6118 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6119 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6120 #define MAP_STRTAB (SHN_HIOS + 3)
6121 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6122 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6125 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
6130 elf_symbol_type
*isym
, *osym
;
6132 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6133 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6136 isym
= elf_symbol_from (ibfd
, isymarg
);
6137 osym
= elf_symbol_from (obfd
, osymarg
);
6141 && bfd_is_abs_section (isym
->symbol
.section
))
6145 shndx
= isym
->internal_elf_sym
.st_shndx
;
6146 if (shndx
== elf_onesymtab (ibfd
))
6147 shndx
= MAP_ONESYMTAB
;
6148 else if (shndx
== elf_dynsymtab (ibfd
))
6149 shndx
= MAP_DYNSYMTAB
;
6150 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
6152 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
6153 shndx
= MAP_SHSTRTAB
;
6154 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
6155 shndx
= MAP_SYM_SHNDX
;
6156 osym
->internal_elf_sym
.st_shndx
= shndx
;
6162 /* Swap out the symbols. */
6165 swap_out_syms (bfd
*abfd
,
6166 struct bfd_strtab_hash
**sttp
,
6169 const struct elf_backend_data
*bed
;
6172 struct bfd_strtab_hash
*stt
;
6173 Elf_Internal_Shdr
*symtab_hdr
;
6174 Elf_Internal_Shdr
*symtab_shndx_hdr
;
6175 Elf_Internal_Shdr
*symstrtab_hdr
;
6176 bfd_byte
*outbound_syms
;
6177 bfd_byte
*outbound_shndx
;
6180 bfd_boolean name_local_sections
;
6182 if (!elf_map_symbols (abfd
))
6185 /* Dump out the symtabs. */
6186 stt
= _bfd_elf_stringtab_init ();
6190 bed
= get_elf_backend_data (abfd
);
6191 symcount
= bfd_get_symcount (abfd
);
6192 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6193 symtab_hdr
->sh_type
= SHT_SYMTAB
;
6194 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
6195 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
6196 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
6197 symtab_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
6199 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
6200 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6202 outbound_syms
= bfd_alloc2 (abfd
, 1 + symcount
, bed
->s
->sizeof_sym
);
6203 if (outbound_syms
== NULL
)
6205 _bfd_stringtab_free (stt
);
6208 symtab_hdr
->contents
= outbound_syms
;
6210 outbound_shndx
= NULL
;
6211 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
6212 if (symtab_shndx_hdr
->sh_name
!= 0)
6214 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
6215 outbound_shndx
= bfd_zalloc2 (abfd
, 1 + symcount
,
6216 sizeof (Elf_External_Sym_Shndx
));
6217 if (outbound_shndx
== NULL
)
6219 _bfd_stringtab_free (stt
);
6223 symtab_shndx_hdr
->contents
= outbound_shndx
;
6224 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
6225 symtab_shndx_hdr
->sh_size
= amt
;
6226 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
6227 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
6230 /* Now generate the data (for "contents"). */
6232 /* Fill in zeroth symbol and swap it out. */
6233 Elf_Internal_Sym sym
;
6239 sym
.st_shndx
= SHN_UNDEF
;
6240 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6241 outbound_syms
+= bed
->s
->sizeof_sym
;
6242 if (outbound_shndx
!= NULL
)
6243 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6247 = (bed
->elf_backend_name_local_section_symbols
6248 && bed
->elf_backend_name_local_section_symbols (abfd
));
6250 syms
= bfd_get_outsymbols (abfd
);
6251 for (idx
= 0; idx
< symcount
; idx
++)
6253 Elf_Internal_Sym sym
;
6254 bfd_vma value
= syms
[idx
]->value
;
6255 elf_symbol_type
*type_ptr
;
6256 flagword flags
= syms
[idx
]->flags
;
6259 if (!name_local_sections
6260 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
6262 /* Local section symbols have no name. */
6267 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
6270 if (sym
.st_name
== (unsigned long) -1)
6272 _bfd_stringtab_free (stt
);
6277 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
6279 if ((flags
& BSF_SECTION_SYM
) == 0
6280 && bfd_is_com_section (syms
[idx
]->section
))
6282 /* ELF common symbols put the alignment into the `value' field,
6283 and the size into the `size' field. This is backwards from
6284 how BFD handles it, so reverse it here. */
6285 sym
.st_size
= value
;
6286 if (type_ptr
== NULL
6287 || type_ptr
->internal_elf_sym
.st_value
== 0)
6288 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
6290 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
6291 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
6292 (abfd
, syms
[idx
]->section
);
6296 asection
*sec
= syms
[idx
]->section
;
6299 if (sec
->output_section
)
6301 value
+= sec
->output_offset
;
6302 sec
= sec
->output_section
;
6305 /* Don't add in the section vma for relocatable output. */
6306 if (! relocatable_p
)
6308 sym
.st_value
= value
;
6309 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
6311 if (bfd_is_abs_section (sec
)
6313 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
6315 /* This symbol is in a real ELF section which we did
6316 not create as a BFD section. Undo the mapping done
6317 by copy_private_symbol_data. */
6318 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
6322 shndx
= elf_onesymtab (abfd
);
6325 shndx
= elf_dynsymtab (abfd
);
6328 shndx
= elf_tdata (abfd
)->strtab_section
;
6331 shndx
= elf_tdata (abfd
)->shstrtab_section
;
6334 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
6342 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
6348 /* Writing this would be a hell of a lot easier if
6349 we had some decent documentation on bfd, and
6350 knew what to expect of the library, and what to
6351 demand of applications. For example, it
6352 appears that `objcopy' might not set the
6353 section of a symbol to be a section that is
6354 actually in the output file. */
6355 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
6358 _bfd_error_handler (_("\
6359 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6360 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
6362 bfd_set_error (bfd_error_invalid_operation
);
6363 _bfd_stringtab_free (stt
);
6367 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
6368 BFD_ASSERT (shndx
!= -1);
6372 sym
.st_shndx
= shndx
;
6375 if ((flags
& BSF_THREAD_LOCAL
) != 0)
6377 else if ((flags
& BSF_FUNCTION
) != 0)
6379 else if ((flags
& BSF_OBJECT
) != 0)
6384 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
6387 /* Processor-specific types. */
6388 if (type_ptr
!= NULL
6389 && bed
->elf_backend_get_symbol_type
)
6390 type
= ((*bed
->elf_backend_get_symbol_type
)
6391 (&type_ptr
->internal_elf_sym
, type
));
6393 if (flags
& BSF_SECTION_SYM
)
6395 if (flags
& BSF_GLOBAL
)
6396 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6398 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
6400 else if (bfd_is_com_section (syms
[idx
]->section
))
6401 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
6402 else if (bfd_is_und_section (syms
[idx
]->section
))
6403 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
6407 else if (flags
& BSF_FILE
)
6408 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6411 int bind
= STB_LOCAL
;
6413 if (flags
& BSF_LOCAL
)
6415 else if (flags
& BSF_WEAK
)
6417 else if (flags
& BSF_GLOBAL
)
6420 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6423 if (type_ptr
!= NULL
)
6424 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6428 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6429 outbound_syms
+= bed
->s
->sizeof_sym
;
6430 if (outbound_shndx
!= NULL
)
6431 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6435 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6436 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6438 symstrtab_hdr
->sh_flags
= 0;
6439 symstrtab_hdr
->sh_addr
= 0;
6440 symstrtab_hdr
->sh_entsize
= 0;
6441 symstrtab_hdr
->sh_link
= 0;
6442 symstrtab_hdr
->sh_info
= 0;
6443 symstrtab_hdr
->sh_addralign
= 1;
6448 /* Return the number of bytes required to hold the symtab vector.
6450 Note that we base it on the count plus 1, since we will null terminate
6451 the vector allocated based on this size. However, the ELF symbol table
6452 always has a dummy entry as symbol #0, so it ends up even. */
6455 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6459 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6461 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6462 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6464 symtab_size
-= sizeof (asymbol
*);
6470 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6474 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6476 if (elf_dynsymtab (abfd
) == 0)
6478 bfd_set_error (bfd_error_invalid_operation
);
6482 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6483 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6485 symtab_size
-= sizeof (asymbol
*);
6491 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6494 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6497 /* Canonicalize the relocs. */
6500 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6507 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6509 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6512 tblptr
= section
->relocation
;
6513 for (i
= 0; i
< section
->reloc_count
; i
++)
6514 *relptr
++ = tblptr
++;
6518 return section
->reloc_count
;
6522 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6524 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6525 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6528 bfd_get_symcount (abfd
) = symcount
;
6533 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6534 asymbol
**allocation
)
6536 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6537 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6540 bfd_get_dynamic_symcount (abfd
) = symcount
;
6544 /* Return the size required for the dynamic reloc entries. Any loadable
6545 section that was actually installed in the BFD, and has type SHT_REL
6546 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6547 dynamic reloc section. */
6550 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6555 if (elf_dynsymtab (abfd
) == 0)
6557 bfd_set_error (bfd_error_invalid_operation
);
6561 ret
= sizeof (arelent
*);
6562 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6563 if ((s
->flags
& SEC_LOAD
) != 0
6564 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6565 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6566 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6567 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6568 * sizeof (arelent
*));
6573 /* Canonicalize the dynamic relocation entries. Note that we return the
6574 dynamic relocations as a single block, although they are actually
6575 associated with particular sections; the interface, which was
6576 designed for SunOS style shared libraries, expects that there is only
6577 one set of dynamic relocs. Any loadable section that was actually
6578 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6579 dynamic symbol table, is considered to be a dynamic reloc section. */
6582 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6586 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6590 if (elf_dynsymtab (abfd
) == 0)
6592 bfd_set_error (bfd_error_invalid_operation
);
6596 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6598 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6600 if ((s
->flags
& SEC_LOAD
) != 0
6601 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6602 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6603 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6608 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6610 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6612 for (i
= 0; i
< count
; i
++)
6623 /* Read in the version information. */
6626 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6628 bfd_byte
*contents
= NULL
;
6629 unsigned int freeidx
= 0;
6631 if (elf_dynverref (abfd
) != 0)
6633 Elf_Internal_Shdr
*hdr
;
6634 Elf_External_Verneed
*everneed
;
6635 Elf_Internal_Verneed
*iverneed
;
6637 bfd_byte
*contents_end
;
6639 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6641 elf_tdata (abfd
)->verref
= bfd_zalloc2 (abfd
, hdr
->sh_info
,
6642 sizeof (Elf_Internal_Verneed
));
6643 if (elf_tdata (abfd
)->verref
== NULL
)
6646 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6648 contents
= bfd_malloc (hdr
->sh_size
);
6649 if (contents
== NULL
)
6651 error_return_verref
:
6652 elf_tdata (abfd
)->verref
= NULL
;
6653 elf_tdata (abfd
)->cverrefs
= 0;
6656 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6657 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6658 goto error_return_verref
;
6660 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verneed
))
6661 goto error_return_verref
;
6663 BFD_ASSERT (sizeof (Elf_External_Verneed
)
6664 == sizeof (Elf_External_Vernaux
));
6665 contents_end
= contents
+ hdr
->sh_size
- sizeof (Elf_External_Verneed
);
6666 everneed
= (Elf_External_Verneed
*) contents
;
6667 iverneed
= elf_tdata (abfd
)->verref
;
6668 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6670 Elf_External_Vernaux
*evernaux
;
6671 Elf_Internal_Vernaux
*ivernaux
;
6674 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6676 iverneed
->vn_bfd
= abfd
;
6678 iverneed
->vn_filename
=
6679 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6681 if (iverneed
->vn_filename
== NULL
)
6682 goto error_return_verref
;
6684 if (iverneed
->vn_cnt
== 0)
6685 iverneed
->vn_auxptr
= NULL
;
6688 iverneed
->vn_auxptr
= bfd_alloc2 (abfd
, iverneed
->vn_cnt
,
6689 sizeof (Elf_Internal_Vernaux
));
6690 if (iverneed
->vn_auxptr
== NULL
)
6691 goto error_return_verref
;
6694 if (iverneed
->vn_aux
6695 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6696 goto error_return_verref
;
6698 evernaux
= ((Elf_External_Vernaux
*)
6699 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6700 ivernaux
= iverneed
->vn_auxptr
;
6701 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6703 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6705 ivernaux
->vna_nodename
=
6706 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6707 ivernaux
->vna_name
);
6708 if (ivernaux
->vna_nodename
== NULL
)
6709 goto error_return_verref
;
6711 if (j
+ 1 < iverneed
->vn_cnt
)
6712 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6714 ivernaux
->vna_nextptr
= NULL
;
6716 if (ivernaux
->vna_next
6717 > (size_t) (contents_end
- (bfd_byte
*) evernaux
))
6718 goto error_return_verref
;
6720 evernaux
= ((Elf_External_Vernaux
*)
6721 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6723 if (ivernaux
->vna_other
> freeidx
)
6724 freeidx
= ivernaux
->vna_other
;
6727 if (i
+ 1 < hdr
->sh_info
)
6728 iverneed
->vn_nextref
= iverneed
+ 1;
6730 iverneed
->vn_nextref
= NULL
;
6732 if (iverneed
->vn_next
6733 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6734 goto error_return_verref
;
6736 everneed
= ((Elf_External_Verneed
*)
6737 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6744 if (elf_dynverdef (abfd
) != 0)
6746 Elf_Internal_Shdr
*hdr
;
6747 Elf_External_Verdef
*everdef
;
6748 Elf_Internal_Verdef
*iverdef
;
6749 Elf_Internal_Verdef
*iverdefarr
;
6750 Elf_Internal_Verdef iverdefmem
;
6752 unsigned int maxidx
;
6753 bfd_byte
*contents_end_def
, *contents_end_aux
;
6755 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6757 contents
= bfd_malloc (hdr
->sh_size
);
6758 if (contents
== NULL
)
6760 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6761 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6764 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verdef
))
6767 BFD_ASSERT (sizeof (Elf_External_Verdef
)
6768 >= sizeof (Elf_External_Verdaux
));
6769 contents_end_def
= contents
+ hdr
->sh_size
6770 - sizeof (Elf_External_Verdef
);
6771 contents_end_aux
= contents
+ hdr
->sh_size
6772 - sizeof (Elf_External_Verdaux
);
6774 /* We know the number of entries in the section but not the maximum
6775 index. Therefore we have to run through all entries and find
6777 everdef
= (Elf_External_Verdef
*) contents
;
6779 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6781 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6783 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6784 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6786 if (iverdefmem
.vd_next
6787 > (size_t) (contents_end_def
- (bfd_byte
*) everdef
))
6790 everdef
= ((Elf_External_Verdef
*)
6791 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6794 if (default_imported_symver
)
6796 if (freeidx
> maxidx
)
6801 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, maxidx
,
6802 sizeof (Elf_Internal_Verdef
));
6803 if (elf_tdata (abfd
)->verdef
== NULL
)
6806 elf_tdata (abfd
)->cverdefs
= maxidx
;
6808 everdef
= (Elf_External_Verdef
*) contents
;
6809 iverdefarr
= elf_tdata (abfd
)->verdef
;
6810 for (i
= 0; i
< hdr
->sh_info
; i
++)
6812 Elf_External_Verdaux
*everdaux
;
6813 Elf_Internal_Verdaux
*iverdaux
;
6816 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6818 if ((iverdefmem
.vd_ndx
& VERSYM_VERSION
) == 0)
6820 error_return_verdef
:
6821 elf_tdata (abfd
)->verdef
= NULL
;
6822 elf_tdata (abfd
)->cverdefs
= 0;
6826 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6827 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6829 iverdef
->vd_bfd
= abfd
;
6831 if (iverdef
->vd_cnt
== 0)
6832 iverdef
->vd_auxptr
= NULL
;
6835 iverdef
->vd_auxptr
= bfd_alloc2 (abfd
, iverdef
->vd_cnt
,
6836 sizeof (Elf_Internal_Verdaux
));
6837 if (iverdef
->vd_auxptr
== NULL
)
6838 goto error_return_verdef
;
6842 > (size_t) (contents_end_aux
- (bfd_byte
*) everdef
))
6843 goto error_return_verdef
;
6845 everdaux
= ((Elf_External_Verdaux
*)
6846 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6847 iverdaux
= iverdef
->vd_auxptr
;
6848 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6850 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6852 iverdaux
->vda_nodename
=
6853 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6854 iverdaux
->vda_name
);
6855 if (iverdaux
->vda_nodename
== NULL
)
6856 goto error_return_verdef
;
6858 if (j
+ 1 < iverdef
->vd_cnt
)
6859 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6861 iverdaux
->vda_nextptr
= NULL
;
6863 if (iverdaux
->vda_next
6864 > (size_t) (contents_end_aux
- (bfd_byte
*) everdaux
))
6865 goto error_return_verdef
;
6867 everdaux
= ((Elf_External_Verdaux
*)
6868 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6871 if (iverdef
->vd_cnt
)
6872 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6874 if ((size_t) (iverdef
- iverdefarr
) + 1 < maxidx
)
6875 iverdef
->vd_nextdef
= iverdef
+ 1;
6877 iverdef
->vd_nextdef
= NULL
;
6879 everdef
= ((Elf_External_Verdef
*)
6880 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6886 else if (default_imported_symver
)
6893 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, freeidx
,
6894 sizeof (Elf_Internal_Verdef
));
6895 if (elf_tdata (abfd
)->verdef
== NULL
)
6898 elf_tdata (abfd
)->cverdefs
= freeidx
;
6901 /* Create a default version based on the soname. */
6902 if (default_imported_symver
)
6904 Elf_Internal_Verdef
*iverdef
;
6905 Elf_Internal_Verdaux
*iverdaux
;
6907 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
6909 iverdef
->vd_version
= VER_DEF_CURRENT
;
6910 iverdef
->vd_flags
= 0;
6911 iverdef
->vd_ndx
= freeidx
;
6912 iverdef
->vd_cnt
= 1;
6914 iverdef
->vd_bfd
= abfd
;
6916 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
6917 if (iverdef
->vd_nodename
== NULL
)
6918 goto error_return_verdef
;
6919 iverdef
->vd_nextdef
= NULL
;
6920 iverdef
->vd_auxptr
= bfd_alloc (abfd
, sizeof (Elf_Internal_Verdaux
));
6921 if (iverdef
->vd_auxptr
== NULL
)
6922 goto error_return_verdef
;
6924 iverdaux
= iverdef
->vd_auxptr
;
6925 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
6926 iverdaux
->vda_nextptr
= NULL
;
6932 if (contents
!= NULL
)
6938 _bfd_elf_make_empty_symbol (bfd
*abfd
)
6940 elf_symbol_type
*newsym
;
6941 bfd_size_type amt
= sizeof (elf_symbol_type
);
6943 newsym
= bfd_zalloc (abfd
, amt
);
6948 newsym
->symbol
.the_bfd
= abfd
;
6949 return &newsym
->symbol
;
6954 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
6958 bfd_symbol_info (symbol
, ret
);
6961 /* Return whether a symbol name implies a local symbol. Most targets
6962 use this function for the is_local_label_name entry point, but some
6966 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
6969 /* Normal local symbols start with ``.L''. */
6970 if (name
[0] == '.' && name
[1] == 'L')
6973 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6974 DWARF debugging symbols starting with ``..''. */
6975 if (name
[0] == '.' && name
[1] == '.')
6978 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6979 emitting DWARF debugging output. I suspect this is actually a
6980 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6981 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6982 underscore to be emitted on some ELF targets). For ease of use,
6983 we treat such symbols as local. */
6984 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
6991 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
6992 asymbol
*symbol ATTRIBUTE_UNUSED
)
6999 _bfd_elf_set_arch_mach (bfd
*abfd
,
7000 enum bfd_architecture arch
,
7001 unsigned long machine
)
7003 /* If this isn't the right architecture for this backend, and this
7004 isn't the generic backend, fail. */
7005 if (arch
!= get_elf_backend_data (abfd
)->arch
7006 && arch
!= bfd_arch_unknown
7007 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
7010 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
7013 /* Find the function to a particular section and offset,
7014 for error reporting. */
7017 elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
7021 const char **filename_ptr
,
7022 const char **functionname_ptr
)
7024 const char *filename
;
7025 asymbol
*func
, *file
;
7028 /* ??? Given multiple file symbols, it is impossible to reliably
7029 choose the right file name for global symbols. File symbols are
7030 local symbols, and thus all file symbols must sort before any
7031 global symbols. The ELF spec may be interpreted to say that a
7032 file symbol must sort before other local symbols, but currently
7033 ld -r doesn't do this. So, for ld -r output, it is possible to
7034 make a better choice of file name for local symbols by ignoring
7035 file symbols appearing after a given local symbol. */
7036 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
7042 state
= nothing_seen
;
7044 for (p
= symbols
; *p
!= NULL
; p
++)
7048 q
= (elf_symbol_type
*) *p
;
7050 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
7056 if (state
== symbol_seen
)
7057 state
= file_after_symbol_seen
;
7061 if (bfd_get_section (&q
->symbol
) == section
7062 && q
->symbol
.value
>= low_func
7063 && q
->symbol
.value
<= offset
)
7065 func
= (asymbol
*) q
;
7066 low_func
= q
->symbol
.value
;
7069 && (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) == STB_LOCAL
7070 || state
!= file_after_symbol_seen
))
7071 filename
= bfd_asymbol_name (file
);
7075 if (state
== nothing_seen
)
7076 state
= symbol_seen
;
7083 *filename_ptr
= filename
;
7084 if (functionname_ptr
)
7085 *functionname_ptr
= bfd_asymbol_name (func
);
7090 /* Find the nearest line to a particular section and offset,
7091 for error reporting. */
7094 _bfd_elf_find_nearest_line (bfd
*abfd
,
7098 const char **filename_ptr
,
7099 const char **functionname_ptr
,
7100 unsigned int *line_ptr
)
7104 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
7105 filename_ptr
, functionname_ptr
,
7108 if (!*functionname_ptr
)
7109 elf_find_function (abfd
, section
, symbols
, offset
,
7110 *filename_ptr
? NULL
: filename_ptr
,
7116 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
7117 filename_ptr
, functionname_ptr
,
7119 &elf_tdata (abfd
)->dwarf2_find_line_info
))
7121 if (!*functionname_ptr
)
7122 elf_find_function (abfd
, section
, symbols
, offset
,
7123 *filename_ptr
? NULL
: filename_ptr
,
7129 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
7130 &found
, filename_ptr
,
7131 functionname_ptr
, line_ptr
,
7132 &elf_tdata (abfd
)->line_info
))
7134 if (found
&& (*functionname_ptr
|| *line_ptr
))
7137 if (symbols
== NULL
)
7140 if (! elf_find_function (abfd
, section
, symbols
, offset
,
7141 filename_ptr
, functionname_ptr
))
7148 /* Find the line for a symbol. */
7151 _bfd_elf_find_line (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
7152 const char **filename_ptr
, unsigned int *line_ptr
)
7154 return _bfd_dwarf2_find_line (abfd
, symbols
, symbol
,
7155 filename_ptr
, line_ptr
, 0,
7156 &elf_tdata (abfd
)->dwarf2_find_line_info
);
7159 /* After a call to bfd_find_nearest_line, successive calls to
7160 bfd_find_inliner_info can be used to get source information about
7161 each level of function inlining that terminated at the address
7162 passed to bfd_find_nearest_line. Currently this is only supported
7163 for DWARF2 with appropriate DWARF3 extensions. */
7166 _bfd_elf_find_inliner_info (bfd
*abfd
,
7167 const char **filename_ptr
,
7168 const char **functionname_ptr
,
7169 unsigned int *line_ptr
)
7172 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
7173 functionname_ptr
, line_ptr
,
7174 & elf_tdata (abfd
)->dwarf2_find_line_info
);
7179 _bfd_elf_sizeof_headers (bfd
*abfd
, struct bfd_link_info
*info
)
7181 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7182 int ret
= bed
->s
->sizeof_ehdr
;
7184 if (!info
->relocatable
)
7186 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
7188 if (phdr_size
== (bfd_size_type
) -1)
7190 struct elf_segment_map
*m
;
7193 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
7194 phdr_size
+= bed
->s
->sizeof_phdr
;
7197 phdr_size
= get_program_header_size (abfd
, info
);
7200 elf_tdata (abfd
)->program_header_size
= phdr_size
;
7208 _bfd_elf_set_section_contents (bfd
*abfd
,
7210 const void *location
,
7212 bfd_size_type count
)
7214 Elf_Internal_Shdr
*hdr
;
7217 if (! abfd
->output_has_begun
7218 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
7221 hdr
= &elf_section_data (section
)->this_hdr
;
7222 pos
= hdr
->sh_offset
+ offset
;
7223 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
7224 || bfd_bwrite (location
, count
, abfd
) != count
)
7231 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
7232 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
7233 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
7238 /* Try to convert a non-ELF reloc into an ELF one. */
7241 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
7243 /* Check whether we really have an ELF howto. */
7245 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
7247 bfd_reloc_code_real_type code
;
7248 reloc_howto_type
*howto
;
7250 /* Alien reloc: Try to determine its type to replace it with an
7251 equivalent ELF reloc. */
7253 if (areloc
->howto
->pc_relative
)
7255 switch (areloc
->howto
->bitsize
)
7258 code
= BFD_RELOC_8_PCREL
;
7261 code
= BFD_RELOC_12_PCREL
;
7264 code
= BFD_RELOC_16_PCREL
;
7267 code
= BFD_RELOC_24_PCREL
;
7270 code
= BFD_RELOC_32_PCREL
;
7273 code
= BFD_RELOC_64_PCREL
;
7279 howto
= bfd_reloc_type_lookup (abfd
, code
);
7281 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
7283 if (howto
->pcrel_offset
)
7284 areloc
->addend
+= areloc
->address
;
7286 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
7291 switch (areloc
->howto
->bitsize
)
7297 code
= BFD_RELOC_14
;
7300 code
= BFD_RELOC_16
;
7303 code
= BFD_RELOC_26
;
7306 code
= BFD_RELOC_32
;
7309 code
= BFD_RELOC_64
;
7315 howto
= bfd_reloc_type_lookup (abfd
, code
);
7319 areloc
->howto
= howto
;
7327 (*_bfd_error_handler
)
7328 (_("%B: unsupported relocation type %s"),
7329 abfd
, areloc
->howto
->name
);
7330 bfd_set_error (bfd_error_bad_value
);
7335 _bfd_elf_close_and_cleanup (bfd
*abfd
)
7337 if (bfd_get_format (abfd
) == bfd_object
)
7339 if (elf_tdata (abfd
) != NULL
&& elf_shstrtab (abfd
) != NULL
)
7340 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
7341 _bfd_dwarf2_cleanup_debug_info (abfd
);
7344 return _bfd_generic_close_and_cleanup (abfd
);
7347 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7348 in the relocation's offset. Thus we cannot allow any sort of sanity
7349 range-checking to interfere. There is nothing else to do in processing
7352 bfd_reloc_status_type
7353 _bfd_elf_rel_vtable_reloc_fn
7354 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
7355 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
7356 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
7357 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
7359 return bfd_reloc_ok
;
7362 /* Elf core file support. Much of this only works on native
7363 toolchains, since we rely on knowing the
7364 machine-dependent procfs structure in order to pick
7365 out details about the corefile. */
7367 #ifdef HAVE_SYS_PROCFS_H
7368 # include <sys/procfs.h>
7371 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7374 elfcore_make_pid (bfd
*abfd
)
7376 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
7377 + (elf_tdata (abfd
)->core_pid
));
7380 /* If there isn't a section called NAME, make one, using
7381 data from SECT. Note, this function will generate a
7382 reference to NAME, so you shouldn't deallocate or
7386 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
7390 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
7393 sect2
= bfd_make_section_with_flags (abfd
, name
, sect
->flags
);
7397 sect2
->size
= sect
->size
;
7398 sect2
->filepos
= sect
->filepos
;
7399 sect2
->alignment_power
= sect
->alignment_power
;
7403 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7404 actually creates up to two pseudosections:
7405 - For the single-threaded case, a section named NAME, unless
7406 such a section already exists.
7407 - For the multi-threaded case, a section named "NAME/PID", where
7408 PID is elfcore_make_pid (abfd).
7409 Both pseudosections have identical contents. */
7411 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
7417 char *threaded_name
;
7421 /* Build the section name. */
7423 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
7424 len
= strlen (buf
) + 1;
7425 threaded_name
= bfd_alloc (abfd
, len
);
7426 if (threaded_name
== NULL
)
7428 memcpy (threaded_name
, buf
, len
);
7430 sect
= bfd_make_section_anyway_with_flags (abfd
, threaded_name
,
7435 sect
->filepos
= filepos
;
7436 sect
->alignment_power
= 2;
7438 return elfcore_maybe_make_sect (abfd
, name
, sect
);
7441 /* prstatus_t exists on:
7443 linux 2.[01] + glibc
7447 #if defined (HAVE_PRSTATUS_T)
7450 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7455 if (note
->descsz
== sizeof (prstatus_t
))
7459 size
= sizeof (prstat
.pr_reg
);
7460 offset
= offsetof (prstatus_t
, pr_reg
);
7461 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7463 /* Do not overwrite the core signal if it
7464 has already been set by another thread. */
7465 if (elf_tdata (abfd
)->core_signal
== 0)
7466 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7467 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7469 /* pr_who exists on:
7472 pr_who doesn't exist on:
7475 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7476 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7479 #if defined (HAVE_PRSTATUS32_T)
7480 else if (note
->descsz
== sizeof (prstatus32_t
))
7482 /* 64-bit host, 32-bit corefile */
7483 prstatus32_t prstat
;
7485 size
= sizeof (prstat
.pr_reg
);
7486 offset
= offsetof (prstatus32_t
, pr_reg
);
7487 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7489 /* Do not overwrite the core signal if it
7490 has already been set by another thread. */
7491 if (elf_tdata (abfd
)->core_signal
== 0)
7492 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7493 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7495 /* pr_who exists on:
7498 pr_who doesn't exist on:
7501 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7502 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7505 #endif /* HAVE_PRSTATUS32_T */
7508 /* Fail - we don't know how to handle any other
7509 note size (ie. data object type). */
7513 /* Make a ".reg/999" section and a ".reg" section. */
7514 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
7515 size
, note
->descpos
+ offset
);
7517 #endif /* defined (HAVE_PRSTATUS_T) */
7519 /* Create a pseudosection containing the exact contents of NOTE. */
7521 elfcore_make_note_pseudosection (bfd
*abfd
,
7523 Elf_Internal_Note
*note
)
7525 return _bfd_elfcore_make_pseudosection (abfd
, name
,
7526 note
->descsz
, note
->descpos
);
7529 /* There isn't a consistent prfpregset_t across platforms,
7530 but it doesn't matter, because we don't have to pick this
7531 data structure apart. */
7534 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7536 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7539 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7540 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7544 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7546 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
7549 #if defined (HAVE_PRPSINFO_T)
7550 typedef prpsinfo_t elfcore_psinfo_t
;
7551 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7552 typedef prpsinfo32_t elfcore_psinfo32_t
;
7556 #if defined (HAVE_PSINFO_T)
7557 typedef psinfo_t elfcore_psinfo_t
;
7558 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7559 typedef psinfo32_t elfcore_psinfo32_t
;
7563 /* return a malloc'ed copy of a string at START which is at
7564 most MAX bytes long, possibly without a terminating '\0'.
7565 the copy will always have a terminating '\0'. */
7568 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
7571 char *end
= memchr (start
, '\0', max
);
7579 dups
= bfd_alloc (abfd
, len
+ 1);
7583 memcpy (dups
, start
, len
);
7589 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7591 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7593 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
7595 elfcore_psinfo_t psinfo
;
7597 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7599 elf_tdata (abfd
)->core_program
7600 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7601 sizeof (psinfo
.pr_fname
));
7603 elf_tdata (abfd
)->core_command
7604 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7605 sizeof (psinfo
.pr_psargs
));
7607 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7608 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
7610 /* 64-bit host, 32-bit corefile */
7611 elfcore_psinfo32_t psinfo
;
7613 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7615 elf_tdata (abfd
)->core_program
7616 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7617 sizeof (psinfo
.pr_fname
));
7619 elf_tdata (abfd
)->core_command
7620 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7621 sizeof (psinfo
.pr_psargs
));
7627 /* Fail - we don't know how to handle any other
7628 note size (ie. data object type). */
7632 /* Note that for some reason, a spurious space is tacked
7633 onto the end of the args in some (at least one anyway)
7634 implementations, so strip it off if it exists. */
7637 char *command
= elf_tdata (abfd
)->core_command
;
7638 int n
= strlen (command
);
7640 if (0 < n
&& command
[n
- 1] == ' ')
7641 command
[n
- 1] = '\0';
7646 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7648 #if defined (HAVE_PSTATUS_T)
7650 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7652 if (note
->descsz
== sizeof (pstatus_t
)
7653 #if defined (HAVE_PXSTATUS_T)
7654 || note
->descsz
== sizeof (pxstatus_t
)
7660 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7662 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7664 #if defined (HAVE_PSTATUS32_T)
7665 else if (note
->descsz
== sizeof (pstatus32_t
))
7667 /* 64-bit host, 32-bit corefile */
7670 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7672 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7675 /* Could grab some more details from the "representative"
7676 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7677 NT_LWPSTATUS note, presumably. */
7681 #endif /* defined (HAVE_PSTATUS_T) */
7683 #if defined (HAVE_LWPSTATUS_T)
7685 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7687 lwpstatus_t lwpstat
;
7693 if (note
->descsz
!= sizeof (lwpstat
)
7694 #if defined (HAVE_LWPXSTATUS_T)
7695 && note
->descsz
!= sizeof (lwpxstatus_t
)
7700 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
7702 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
7703 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
7705 /* Make a ".reg/999" section. */
7707 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
7708 len
= strlen (buf
) + 1;
7709 name
= bfd_alloc (abfd
, len
);
7712 memcpy (name
, buf
, len
);
7714 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7718 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7719 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
7720 sect
->filepos
= note
->descpos
7721 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
7724 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7725 sect
->size
= sizeof (lwpstat
.pr_reg
);
7726 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
7729 sect
->alignment_power
= 2;
7731 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7734 /* Make a ".reg2/999" section */
7736 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
7737 len
= strlen (buf
) + 1;
7738 name
= bfd_alloc (abfd
, len
);
7741 memcpy (name
, buf
, len
);
7743 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7747 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7748 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
7749 sect
->filepos
= note
->descpos
7750 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
7753 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7754 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
7755 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
7758 sect
->alignment_power
= 2;
7760 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
7762 #endif /* defined (HAVE_LWPSTATUS_T) */
7764 #if defined (HAVE_WIN32_PSTATUS_T)
7766 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7772 win32_pstatus_t pstatus
;
7774 if (note
->descsz
< sizeof (pstatus
))
7777 memcpy (&pstatus
, note
->descdata
, sizeof (pstatus
));
7779 switch (pstatus
.data_type
)
7781 case NOTE_INFO_PROCESS
:
7782 /* FIXME: need to add ->core_command. */
7783 elf_tdata (abfd
)->core_signal
= pstatus
.data
.process_info
.signal
;
7784 elf_tdata (abfd
)->core_pid
= pstatus
.data
.process_info
.pid
;
7787 case NOTE_INFO_THREAD
:
7788 /* Make a ".reg/999" section. */
7789 sprintf (buf
, ".reg/%ld", (long) pstatus
.data
.thread_info
.tid
);
7791 len
= strlen (buf
) + 1;
7792 name
= bfd_alloc (abfd
, len
);
7796 memcpy (name
, buf
, len
);
7798 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7802 sect
->size
= sizeof (pstatus
.data
.thread_info
.thread_context
);
7803 sect
->filepos
= (note
->descpos
7804 + offsetof (struct win32_pstatus
,
7805 data
.thread_info
.thread_context
));
7806 sect
->alignment_power
= 2;
7808 if (pstatus
.data
.thread_info
.is_active_thread
)
7809 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7813 case NOTE_INFO_MODULE
:
7814 /* Make a ".module/xxxxxxxx" section. */
7815 sprintf (buf
, ".module/%08lx",
7816 (long) pstatus
.data
.module_info
.base_address
);
7818 len
= strlen (buf
) + 1;
7819 name
= bfd_alloc (abfd
, len
);
7823 memcpy (name
, buf
, len
);
7825 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7830 sect
->size
= note
->descsz
;
7831 sect
->filepos
= note
->descpos
;
7832 sect
->alignment_power
= 2;
7841 #endif /* HAVE_WIN32_PSTATUS_T */
7844 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7846 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7854 if (bed
->elf_backend_grok_prstatus
)
7855 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7857 #if defined (HAVE_PRSTATUS_T)
7858 return elfcore_grok_prstatus (abfd
, note
);
7863 #if defined (HAVE_PSTATUS_T)
7865 return elfcore_grok_pstatus (abfd
, note
);
7868 #if defined (HAVE_LWPSTATUS_T)
7870 return elfcore_grok_lwpstatus (abfd
, note
);
7873 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7874 return elfcore_grok_prfpreg (abfd
, note
);
7876 #if defined (HAVE_WIN32_PSTATUS_T)
7877 case NT_WIN32PSTATUS
:
7878 return elfcore_grok_win32pstatus (abfd
, note
);
7881 case NT_PRXFPREG
: /* Linux SSE extension */
7882 if (note
->namesz
== 6
7883 && strcmp (note
->namedata
, "LINUX") == 0)
7884 return elfcore_grok_prxfpreg (abfd
, note
);
7890 if (bed
->elf_backend_grok_psinfo
)
7891 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
7893 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7894 return elfcore_grok_psinfo (abfd
, note
);
7901 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
7906 sect
->size
= note
->descsz
;
7907 sect
->filepos
= note
->descpos
;
7908 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
7916 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
7920 cp
= strchr (note
->namedata
, '@');
7923 *lwpidp
= atoi(cp
+ 1);
7930 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7933 /* Signal number at offset 0x08. */
7934 elf_tdata (abfd
)->core_signal
7935 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
7937 /* Process ID at offset 0x50. */
7938 elf_tdata (abfd
)->core_pid
7939 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
7941 /* Command name at 0x7c (max 32 bytes, including nul). */
7942 elf_tdata (abfd
)->core_command
7943 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
7945 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
7950 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7954 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
7955 elf_tdata (abfd
)->core_lwpid
= lwp
;
7957 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
7959 /* NetBSD-specific core "procinfo". Note that we expect to
7960 find this note before any of the others, which is fine,
7961 since the kernel writes this note out first when it
7962 creates a core file. */
7964 return elfcore_grok_netbsd_procinfo (abfd
, note
);
7967 /* As of Jan 2002 there are no other machine-independent notes
7968 defined for NetBSD core files. If the note type is less
7969 than the start of the machine-dependent note types, we don't
7972 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
7976 switch (bfd_get_arch (abfd
))
7978 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7979 PT_GETFPREGS == mach+2. */
7981 case bfd_arch_alpha
:
7982 case bfd_arch_sparc
:
7985 case NT_NETBSDCORE_FIRSTMACH
+0:
7986 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7988 case NT_NETBSDCORE_FIRSTMACH
+2:
7989 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7995 /* On all other arch's, PT_GETREGS == mach+1 and
7996 PT_GETFPREGS == mach+3. */
8001 case NT_NETBSDCORE_FIRSTMACH
+1:
8002 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8004 case NT_NETBSDCORE_FIRSTMACH
+3:
8005 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8015 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, long *tid
)
8017 void *ddata
= note
->descdata
;
8024 /* nto_procfs_status 'pid' field is at offset 0. */
8025 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
8027 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8028 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
8030 /* nto_procfs_status 'flags' field is at offset 8. */
8031 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
8033 /* nto_procfs_status 'what' field is at offset 14. */
8034 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
8036 elf_tdata (abfd
)->core_signal
= sig
;
8037 elf_tdata (abfd
)->core_lwpid
= *tid
;
8040 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8041 do not come from signals so we make sure we set the current
8042 thread just in case. */
8043 if (flags
& 0x00000080)
8044 elf_tdata (abfd
)->core_lwpid
= *tid
;
8046 /* Make a ".qnx_core_status/%d" section. */
8047 sprintf (buf
, ".qnx_core_status/%ld", *tid
);
8049 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
8054 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8058 sect
->size
= note
->descsz
;
8059 sect
->filepos
= note
->descpos
;
8060 sect
->alignment_power
= 2;
8062 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
8066 elfcore_grok_nto_regs (bfd
*abfd
,
8067 Elf_Internal_Note
*note
,
8075 /* Make a "(base)/%d" section. */
8076 sprintf (buf
, "%s/%ld", base
, tid
);
8078 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
8083 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8087 sect
->size
= note
->descsz
;
8088 sect
->filepos
= note
->descpos
;
8089 sect
->alignment_power
= 2;
8091 /* This is the current thread. */
8092 if (elf_tdata (abfd
)->core_lwpid
== tid
)
8093 return elfcore_maybe_make_sect (abfd
, base
, sect
);
8098 #define BFD_QNT_CORE_INFO 7
8099 #define BFD_QNT_CORE_STATUS 8
8100 #define BFD_QNT_CORE_GREG 9
8101 #define BFD_QNT_CORE_FPREG 10
8104 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8106 /* Every GREG section has a STATUS section before it. Store the
8107 tid from the previous call to pass down to the next gregs
8109 static long tid
= 1;
8113 case BFD_QNT_CORE_INFO
:
8114 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
8115 case BFD_QNT_CORE_STATUS
:
8116 return elfcore_grok_nto_status (abfd
, note
, &tid
);
8117 case BFD_QNT_CORE_GREG
:
8118 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
8119 case BFD_QNT_CORE_FPREG
:
8120 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
8126 /* Function: elfcore_write_note
8129 buffer to hold note, and current size of buffer
8133 size of data for note
8135 Writes note to end of buffer. ELF64 notes are written exactly as
8136 for ELF32, despite the current (as of 2006) ELF gabi specifying
8137 that they ought to have 8-byte namesz and descsz field, and have
8138 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8141 Pointer to realloc'd buffer, *BUFSIZ updated. */
8144 elfcore_write_note (bfd
*abfd
,
8152 Elf_External_Note
*xnp
;
8159 namesz
= strlen (name
) + 1;
8161 newspace
= 12 + ((namesz
+ 3) & -4) + ((size
+ 3) & -4);
8163 buf
= realloc (buf
, *bufsiz
+ newspace
);
8164 dest
= buf
+ *bufsiz
;
8165 *bufsiz
+= newspace
;
8166 xnp
= (Elf_External_Note
*) dest
;
8167 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
8168 H_PUT_32 (abfd
, size
, xnp
->descsz
);
8169 H_PUT_32 (abfd
, type
, xnp
->type
);
8173 memcpy (dest
, name
, namesz
);
8181 memcpy (dest
, input
, size
);
8191 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8193 elfcore_write_prpsinfo (bfd
*abfd
,
8199 const char *note_name
= "CORE";
8200 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8202 if (bed
->elf_backend_write_core_note
!= NULL
)
8205 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8206 NT_PRPSINFO
, fname
, psargs
);
8211 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8212 if (bed
->s
->elfclass
== ELFCLASS32
)
8214 #if defined (HAVE_PSINFO32_T)
8216 int note_type
= NT_PSINFO
;
8219 int note_type
= NT_PRPSINFO
;
8222 memset (&data
, 0, sizeof (data
));
8223 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8224 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8225 return elfcore_write_note (abfd
, buf
, bufsiz
,
8226 note_name
, note_type
, &data
, sizeof (data
));
8231 #if defined (HAVE_PSINFO_T)
8233 int note_type
= NT_PSINFO
;
8236 int note_type
= NT_PRPSINFO
;
8239 memset (&data
, 0, sizeof (data
));
8240 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8241 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8242 return elfcore_write_note (abfd
, buf
, bufsiz
,
8243 note_name
, note_type
, &data
, sizeof (data
));
8246 #endif /* PSINFO_T or PRPSINFO_T */
8248 #if defined (HAVE_PRSTATUS_T)
8250 elfcore_write_prstatus (bfd
*abfd
,
8257 const char *note_name
= "CORE";
8258 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8260 if (bed
->elf_backend_write_core_note
!= NULL
)
8263 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8265 pid
, cursig
, gregs
);
8270 #if defined (HAVE_PRSTATUS32_T)
8271 if (bed
->s
->elfclass
== ELFCLASS32
)
8273 prstatus32_t prstat
;
8275 memset (&prstat
, 0, sizeof (prstat
));
8276 prstat
.pr_pid
= pid
;
8277 prstat
.pr_cursig
= cursig
;
8278 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8279 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8280 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8287 memset (&prstat
, 0, sizeof (prstat
));
8288 prstat
.pr_pid
= pid
;
8289 prstat
.pr_cursig
= cursig
;
8290 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8291 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8292 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8295 #endif /* HAVE_PRSTATUS_T */
8297 #if defined (HAVE_LWPSTATUS_T)
8299 elfcore_write_lwpstatus (bfd
*abfd
,
8306 lwpstatus_t lwpstat
;
8307 const char *note_name
= "CORE";
8309 memset (&lwpstat
, 0, sizeof (lwpstat
));
8310 lwpstat
.pr_lwpid
= pid
>> 16;
8311 lwpstat
.pr_cursig
= cursig
;
8312 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8313 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
8314 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8316 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
8317 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
8319 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
8320 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
8323 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8324 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
8326 #endif /* HAVE_LWPSTATUS_T */
8328 #if defined (HAVE_PSTATUS_T)
8330 elfcore_write_pstatus (bfd
*abfd
,
8334 int cursig ATTRIBUTE_UNUSED
,
8335 const void *gregs ATTRIBUTE_UNUSED
)
8337 const char *note_name
= "CORE";
8338 #if defined (HAVE_PSTATUS32_T)
8339 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8341 if (bed
->s
->elfclass
== ELFCLASS32
)
8345 memset (&pstat
, 0, sizeof (pstat
));
8346 pstat
.pr_pid
= pid
& 0xffff;
8347 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8348 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8356 memset (&pstat
, 0, sizeof (pstat
));
8357 pstat
.pr_pid
= pid
& 0xffff;
8358 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8359 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8363 #endif /* HAVE_PSTATUS_T */
8366 elfcore_write_prfpreg (bfd
*abfd
,
8372 const char *note_name
= "CORE";
8373 return elfcore_write_note (abfd
, buf
, bufsiz
,
8374 note_name
, NT_FPREGSET
, fpregs
, size
);
8378 elfcore_write_prxfpreg (bfd
*abfd
,
8381 const void *xfpregs
,
8384 char *note_name
= "LINUX";
8385 return elfcore_write_note (abfd
, buf
, bufsiz
,
8386 note_name
, NT_PRXFPREG
, xfpregs
, size
);
8390 elfcore_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
8398 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
8401 buf
= bfd_malloc (size
);
8405 if (bfd_bread (buf
, size
, abfd
) != size
)
8413 while (p
< buf
+ size
)
8415 /* FIXME: bad alignment assumption. */
8416 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
8417 Elf_Internal_Note in
;
8419 in
.type
= H_GET_32 (abfd
, xnp
->type
);
8421 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
8422 in
.namedata
= xnp
->name
;
8424 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
8425 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
8426 in
.descpos
= offset
+ (in
.descdata
- buf
);
8428 if (CONST_STRNEQ (in
.namedata
, "NetBSD-CORE"))
8430 if (! elfcore_grok_netbsd_note (abfd
, &in
))
8433 else if (CONST_STRNEQ (in
.namedata
, "QNX"))
8435 if (! elfcore_grok_nto_note (abfd
, &in
))
8440 if (! elfcore_grok_note (abfd
, &in
))
8444 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
8451 /* Providing external access to the ELF program header table. */
8453 /* Return an upper bound on the number of bytes required to store a
8454 copy of ABFD's program header table entries. Return -1 if an error
8455 occurs; bfd_get_error will return an appropriate code. */
8458 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
8460 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8462 bfd_set_error (bfd_error_wrong_format
);
8466 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
8469 /* Copy ABFD's program header table entries to *PHDRS. The entries
8470 will be stored as an array of Elf_Internal_Phdr structures, as
8471 defined in include/elf/internal.h. To find out how large the
8472 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8474 Return the number of program header table entries read, or -1 if an
8475 error occurs; bfd_get_error will return an appropriate code. */
8478 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
8482 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8484 bfd_set_error (bfd_error_wrong_format
);
8488 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
8489 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
8490 num_phdrs
* sizeof (Elf_Internal_Phdr
));
8496 _bfd_elf_sprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, char *buf
, bfd_vma value
)
8499 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
8501 i_ehdrp
= elf_elfheader (abfd
);
8502 if (i_ehdrp
== NULL
)
8503 sprintf_vma (buf
, value
);
8506 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
8508 #if BFD_HOST_64BIT_LONG
8509 sprintf (buf
, "%016lx", value
);
8511 sprintf (buf
, "%08lx%08lx", _bfd_int64_high (value
),
8512 _bfd_int64_low (value
));
8516 sprintf (buf
, "%08lx", (unsigned long) (value
& 0xffffffff));
8519 sprintf_vma (buf
, value
);
8524 _bfd_elf_fprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, void *stream
, bfd_vma value
)
8527 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
8529 i_ehdrp
= elf_elfheader (abfd
);
8530 if (i_ehdrp
== NULL
)
8531 fprintf_vma ((FILE *) stream
, value
);
8534 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
8536 #if BFD_HOST_64BIT_LONG
8537 fprintf ((FILE *) stream
, "%016lx", value
);
8539 fprintf ((FILE *) stream
, "%08lx%08lx",
8540 _bfd_int64_high (value
), _bfd_int64_low (value
));
8544 fprintf ((FILE *) stream
, "%08lx",
8545 (unsigned long) (value
& 0xffffffff));
8548 fprintf_vma ((FILE *) stream
, value
);
8552 enum elf_reloc_type_class
8553 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
8555 return reloc_class_normal
;
8558 /* For RELA architectures, return the relocation value for a
8559 relocation against a local symbol. */
8562 _bfd_elf_rela_local_sym (bfd
*abfd
,
8563 Elf_Internal_Sym
*sym
,
8565 Elf_Internal_Rela
*rel
)
8567 asection
*sec
= *psec
;
8570 relocation
= (sec
->output_section
->vma
8571 + sec
->output_offset
8573 if ((sec
->flags
& SEC_MERGE
)
8574 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
8575 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
8578 _bfd_merged_section_offset (abfd
, psec
,
8579 elf_section_data (sec
)->sec_info
,
8580 sym
->st_value
+ rel
->r_addend
);
8583 /* If we have changed the section, and our original section is
8584 marked with SEC_EXCLUDE, it means that the original
8585 SEC_MERGE section has been completely subsumed in some
8586 other SEC_MERGE section. In this case, we need to leave
8587 some info around for --emit-relocs. */
8588 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
8589 sec
->kept_section
= *psec
;
8592 rel
->r_addend
-= relocation
;
8593 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
8599 _bfd_elf_rel_local_sym (bfd
*abfd
,
8600 Elf_Internal_Sym
*sym
,
8604 asection
*sec
= *psec
;
8606 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
8607 return sym
->st_value
+ addend
;
8609 return _bfd_merged_section_offset (abfd
, psec
,
8610 elf_section_data (sec
)->sec_info
,
8611 sym
->st_value
+ addend
);
8615 _bfd_elf_section_offset (bfd
*abfd
,
8616 struct bfd_link_info
*info
,
8620 switch (sec
->sec_info_type
)
8622 case ELF_INFO_TYPE_STABS
:
8623 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
8625 case ELF_INFO_TYPE_EH_FRAME
:
8626 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
8632 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8633 reconstruct an ELF file by reading the segments out of remote memory
8634 based on the ELF file header at EHDR_VMA and the ELF program headers it
8635 points to. If not null, *LOADBASEP is filled in with the difference
8636 between the VMAs from which the segments were read, and the VMAs the
8637 file headers (and hence BFD's idea of each section's VMA) put them at.
8639 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8640 remote memory at target address VMA into the local buffer at MYADDR; it
8641 should return zero on success or an `errno' code on failure. TEMPL must
8642 be a BFD for an ELF target with the word size and byte order found in
8643 the remote memory. */
8646 bfd_elf_bfd_from_remote_memory
8650 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
8652 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
8653 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
8657 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
8658 long symcount ATTRIBUTE_UNUSED
,
8659 asymbol
**syms ATTRIBUTE_UNUSED
,
8664 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8667 const char *relplt_name
;
8668 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
8672 Elf_Internal_Shdr
*hdr
;
8678 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
8681 if (dynsymcount
<= 0)
8684 if (!bed
->plt_sym_val
)
8687 relplt_name
= bed
->relplt_name
;
8688 if (relplt_name
== NULL
)
8689 relplt_name
= bed
->default_use_rela_p
? ".rela.plt" : ".rel.plt";
8690 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
8694 hdr
= &elf_section_data (relplt
)->this_hdr
;
8695 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
8696 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
8699 plt
= bfd_get_section_by_name (abfd
, ".plt");
8703 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
8704 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
8707 count
= relplt
->size
/ hdr
->sh_entsize
;
8708 size
= count
* sizeof (asymbol
);
8709 p
= relplt
->relocation
;
8710 for (i
= 0; i
< count
; i
++, s
++, p
++)
8711 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
8713 s
= *ret
= bfd_malloc (size
);
8717 names
= (char *) (s
+ count
);
8718 p
= relplt
->relocation
;
8720 for (i
= 0; i
< count
; i
++, s
++, p
++)
8725 addr
= bed
->plt_sym_val (i
, plt
, p
);
8726 if (addr
== (bfd_vma
) -1)
8729 *s
= **p
->sym_ptr_ptr
;
8730 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8731 we are defining a symbol, ensure one of them is set. */
8732 if ((s
->flags
& BSF_LOCAL
) == 0)
8733 s
->flags
|= BSF_GLOBAL
;
8735 s
->value
= addr
- plt
->vma
;
8737 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
8738 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
8740 memcpy (names
, "@plt", sizeof ("@plt"));
8741 names
+= sizeof ("@plt");
8748 struct elf_symbuf_symbol
8750 unsigned long st_name
; /* Symbol name, index in string tbl */
8751 unsigned char st_info
; /* Type and binding attributes */
8752 unsigned char st_other
; /* Visibilty, and target specific */
8755 struct elf_symbuf_head
8757 struct elf_symbuf_symbol
*ssym
;
8758 bfd_size_type count
;
8759 unsigned int st_shndx
;
8766 Elf_Internal_Sym
*isym
;
8767 struct elf_symbuf_symbol
*ssym
;
8772 /* Sort references to symbols by ascending section number. */
8775 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
8777 const Elf_Internal_Sym
*s1
= *(const Elf_Internal_Sym
**) arg1
;
8778 const Elf_Internal_Sym
*s2
= *(const Elf_Internal_Sym
**) arg2
;
8780 return s1
->st_shndx
- s2
->st_shndx
;
8784 elf_sym_name_compare (const void *arg1
, const void *arg2
)
8786 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
8787 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
8788 return strcmp (s1
->name
, s2
->name
);
8791 static struct elf_symbuf_head
*
8792 elf_create_symbuf (bfd_size_type symcount
, Elf_Internal_Sym
*isymbuf
)
8794 Elf_Internal_Sym
**ind
, **indbufend
, **indbuf
8795 = bfd_malloc2 (symcount
, sizeof (*indbuf
));
8796 struct elf_symbuf_symbol
*ssym
;
8797 struct elf_symbuf_head
*ssymbuf
, *ssymhead
;
8798 bfd_size_type i
, shndx_count
;
8803 for (ind
= indbuf
, i
= 0; i
< symcount
; i
++)
8804 if (isymbuf
[i
].st_shndx
!= SHN_UNDEF
)
8805 *ind
++ = &isymbuf
[i
];
8808 qsort (indbuf
, indbufend
- indbuf
, sizeof (Elf_Internal_Sym
*),
8809 elf_sort_elf_symbol
);
8812 if (indbufend
> indbuf
)
8813 for (ind
= indbuf
, shndx_count
++; ind
< indbufend
- 1; ind
++)
8814 if (ind
[0]->st_shndx
!= ind
[1]->st_shndx
)
8817 ssymbuf
= bfd_malloc ((shndx_count
+ 1) * sizeof (*ssymbuf
)
8818 + (indbufend
- indbuf
) * sizeof (*ssymbuf
));
8819 if (ssymbuf
== NULL
)
8825 ssym
= (struct elf_symbuf_symbol
*) (ssymbuf
+ shndx_count
);
8826 ssymbuf
->ssym
= NULL
;
8827 ssymbuf
->count
= shndx_count
;
8828 ssymbuf
->st_shndx
= 0;
8829 for (ssymhead
= ssymbuf
, ind
= indbuf
; ind
< indbufend
; ssym
++, ind
++)
8831 if (ind
== indbuf
|| ssymhead
->st_shndx
!= (*ind
)->st_shndx
)
8834 ssymhead
->ssym
= ssym
;
8835 ssymhead
->count
= 0;
8836 ssymhead
->st_shndx
= (*ind
)->st_shndx
;
8838 ssym
->st_name
= (*ind
)->st_name
;
8839 ssym
->st_info
= (*ind
)->st_info
;
8840 ssym
->st_other
= (*ind
)->st_other
;
8843 BFD_ASSERT ((bfd_size_type
) (ssymhead
- ssymbuf
) == shndx_count
);
8849 /* Check if 2 sections define the same set of local and global
8853 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
,
8854 struct bfd_link_info
*info
)
8857 const struct elf_backend_data
*bed1
, *bed2
;
8858 Elf_Internal_Shdr
*hdr1
, *hdr2
;
8859 bfd_size_type symcount1
, symcount2
;
8860 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
8861 struct elf_symbuf_head
*ssymbuf1
, *ssymbuf2
;
8862 Elf_Internal_Sym
*isym
, *isymend
;
8863 struct elf_symbol
*symtable1
= NULL
, *symtable2
= NULL
;
8864 bfd_size_type count1
, count2
, i
;
8871 /* If both are .gnu.linkonce sections, they have to have the same
8873 if (CONST_STRNEQ (sec1
->name
, ".gnu.linkonce")
8874 && CONST_STRNEQ (sec2
->name
, ".gnu.linkonce"))
8875 return strcmp (sec1
->name
+ sizeof ".gnu.linkonce",
8876 sec2
->name
+ sizeof ".gnu.linkonce") == 0;
8878 /* Both sections have to be in ELF. */
8879 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
8880 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
8883 if (elf_section_type (sec1
) != elf_section_type (sec2
))
8886 if ((elf_section_flags (sec1
) & SHF_GROUP
) != 0
8887 && (elf_section_flags (sec2
) & SHF_GROUP
) != 0)
8889 /* If both are members of section groups, they have to have the
8891 if (strcmp (elf_group_name (sec1
), elf_group_name (sec2
)) != 0)
8895 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
8896 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
8897 if (shndx1
== -1 || shndx2
== -1)
8900 bed1
= get_elf_backend_data (bfd1
);
8901 bed2
= get_elf_backend_data (bfd2
);
8902 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
8903 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
8904 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
8905 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
8907 if (symcount1
== 0 || symcount2
== 0)
8913 ssymbuf1
= elf_tdata (bfd1
)->symbuf
;
8914 ssymbuf2
= elf_tdata (bfd2
)->symbuf
;
8916 if (ssymbuf1
== NULL
)
8918 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
8920 if (isymbuf1
== NULL
)
8923 if (!info
->reduce_memory_overheads
)
8924 elf_tdata (bfd1
)->symbuf
= ssymbuf1
8925 = elf_create_symbuf (symcount1
, isymbuf1
);
8928 if (ssymbuf1
== NULL
|| ssymbuf2
== NULL
)
8930 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
8932 if (isymbuf2
== NULL
)
8935 if (ssymbuf1
!= NULL
&& !info
->reduce_memory_overheads
)
8936 elf_tdata (bfd2
)->symbuf
= ssymbuf2
8937 = elf_create_symbuf (symcount2
, isymbuf2
);
8940 if (ssymbuf1
!= NULL
&& ssymbuf2
!= NULL
)
8942 /* Optimized faster version. */
8943 bfd_size_type lo
, hi
, mid
;
8944 struct elf_symbol
*symp
;
8945 struct elf_symbuf_symbol
*ssym
, *ssymend
;
8948 hi
= ssymbuf1
->count
;
8953 mid
= (lo
+ hi
) / 2;
8954 if ((unsigned int) shndx1
< ssymbuf1
[mid
].st_shndx
)
8956 else if ((unsigned int) shndx1
> ssymbuf1
[mid
].st_shndx
)
8960 count1
= ssymbuf1
[mid
].count
;
8967 hi
= ssymbuf2
->count
;
8972 mid
= (lo
+ hi
) / 2;
8973 if ((unsigned int) shndx2
< ssymbuf2
[mid
].st_shndx
)
8975 else if ((unsigned int) shndx2
> ssymbuf2
[mid
].st_shndx
)
8979 count2
= ssymbuf2
[mid
].count
;
8985 if (count1
== 0 || count2
== 0 || count1
!= count2
)
8988 symtable1
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8989 symtable2
= bfd_malloc (count2
* sizeof (struct elf_symbol
));
8990 if (symtable1
== NULL
|| symtable2
== NULL
)
8994 for (ssym
= ssymbuf1
->ssym
, ssymend
= ssym
+ count1
;
8995 ssym
< ssymend
; ssym
++, symp
++)
8997 symp
->u
.ssym
= ssym
;
8998 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
9004 for (ssym
= ssymbuf2
->ssym
, ssymend
= ssym
+ count2
;
9005 ssym
< ssymend
; ssym
++, symp
++)
9007 symp
->u
.ssym
= ssym
;
9008 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
9013 /* Sort symbol by name. */
9014 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
9015 elf_sym_name_compare
);
9016 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
9017 elf_sym_name_compare
);
9019 for (i
= 0; i
< count1
; i
++)
9020 /* Two symbols must have the same binding, type and name. */
9021 if (symtable1
[i
].u
.ssym
->st_info
!= symtable2
[i
].u
.ssym
->st_info
9022 || symtable1
[i
].u
.ssym
->st_other
!= symtable2
[i
].u
.ssym
->st_other
9023 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
9030 symtable1
= bfd_malloc (symcount1
* sizeof (struct elf_symbol
));
9031 symtable2
= bfd_malloc (symcount2
* sizeof (struct elf_symbol
));
9032 if (symtable1
== NULL
|| symtable2
== NULL
)
9035 /* Count definitions in the section. */
9037 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
; isym
< isymend
; isym
++)
9038 if (isym
->st_shndx
== (unsigned int) shndx1
)
9039 symtable1
[count1
++].u
.isym
= isym
;
9042 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
; isym
< isymend
; isym
++)
9043 if (isym
->st_shndx
== (unsigned int) shndx2
)
9044 symtable2
[count2
++].u
.isym
= isym
;
9046 if (count1
== 0 || count2
== 0 || count1
!= count2
)
9049 for (i
= 0; i
< count1
; i
++)
9051 = bfd_elf_string_from_elf_section (bfd1
, hdr1
->sh_link
,
9052 symtable1
[i
].u
.isym
->st_name
);
9054 for (i
= 0; i
< count2
; i
++)
9056 = bfd_elf_string_from_elf_section (bfd2
, hdr2
->sh_link
,
9057 symtable2
[i
].u
.isym
->st_name
);
9059 /* Sort symbol by name. */
9060 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
9061 elf_sym_name_compare
);
9062 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
9063 elf_sym_name_compare
);
9065 for (i
= 0; i
< count1
; i
++)
9066 /* Two symbols must have the same binding, type and name. */
9067 if (symtable1
[i
].u
.isym
->st_info
!= symtable2
[i
].u
.isym
->st_info
9068 || symtable1
[i
].u
.isym
->st_other
!= symtable2
[i
].u
.isym
->st_other
9069 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
9087 /* It is only used by x86-64 so far. */
9088 asection _bfd_elf_large_com_section
9089 = BFD_FAKE_SECTION (_bfd_elf_large_com_section
,
9090 SEC_IS_COMMON
, NULL
, "LARGE_COMMON", 0);
9092 /* Return TRUE if 2 section types are compatible. */
9095 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
9096 bfd
*bbfd
, const asection
*bsec
)
9100 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
9101 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
9104 return elf_section_type (asec
) == elf_section_type (bsec
);