1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka <jh@suse.cz>.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
28 #include "bfd_stdint.h"
30 #include "elf/x86-64.h"
32 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
33 #define MINUS_ONE (~ (bfd_vma) 0)
35 /* The relocation "howto" table. Order of fields:
36 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
37 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
38 static reloc_howto_type x86_64_elf_howto_table
[] =
40 HOWTO(R_X86_64_NONE
, 0, 0, 0, FALSE
, 0, complain_overflow_dont
,
41 bfd_elf_generic_reloc
, "R_X86_64_NONE", FALSE
, 0x00000000, 0x00000000,
43 HOWTO(R_X86_64_64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
44 bfd_elf_generic_reloc
, "R_X86_64_64", FALSE
, MINUS_ONE
, MINUS_ONE
,
46 HOWTO(R_X86_64_PC32
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
47 bfd_elf_generic_reloc
, "R_X86_64_PC32", FALSE
, 0xffffffff, 0xffffffff,
49 HOWTO(R_X86_64_GOT32
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
50 bfd_elf_generic_reloc
, "R_X86_64_GOT32", FALSE
, 0xffffffff, 0xffffffff,
52 HOWTO(R_X86_64_PLT32
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
53 bfd_elf_generic_reloc
, "R_X86_64_PLT32", FALSE
, 0xffffffff, 0xffffffff,
55 HOWTO(R_X86_64_COPY
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
56 bfd_elf_generic_reloc
, "R_X86_64_COPY", FALSE
, 0xffffffff, 0xffffffff,
58 HOWTO(R_X86_64_GLOB_DAT
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
59 bfd_elf_generic_reloc
, "R_X86_64_GLOB_DAT", FALSE
, MINUS_ONE
,
61 HOWTO(R_X86_64_JUMP_SLOT
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
62 bfd_elf_generic_reloc
, "R_X86_64_JUMP_SLOT", FALSE
, MINUS_ONE
,
64 HOWTO(R_X86_64_RELATIVE
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
65 bfd_elf_generic_reloc
, "R_X86_64_RELATIVE", FALSE
, MINUS_ONE
,
67 HOWTO(R_X86_64_GOTPCREL
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
68 bfd_elf_generic_reloc
, "R_X86_64_GOTPCREL", FALSE
, 0xffffffff,
70 HOWTO(R_X86_64_32
, 0, 2, 32, FALSE
, 0, complain_overflow_unsigned
,
71 bfd_elf_generic_reloc
, "R_X86_64_32", FALSE
, 0xffffffff, 0xffffffff,
73 HOWTO(R_X86_64_32S
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
74 bfd_elf_generic_reloc
, "R_X86_64_32S", FALSE
, 0xffffffff, 0xffffffff,
76 HOWTO(R_X86_64_16
, 0, 1, 16, FALSE
, 0, complain_overflow_bitfield
,
77 bfd_elf_generic_reloc
, "R_X86_64_16", FALSE
, 0xffff, 0xffff, FALSE
),
78 HOWTO(R_X86_64_PC16
,0, 1, 16, TRUE
, 0, complain_overflow_bitfield
,
79 bfd_elf_generic_reloc
, "R_X86_64_PC16", FALSE
, 0xffff, 0xffff, TRUE
),
80 HOWTO(R_X86_64_8
, 0, 0, 8, FALSE
, 0, complain_overflow_bitfield
,
81 bfd_elf_generic_reloc
, "R_X86_64_8", FALSE
, 0xff, 0xff, FALSE
),
82 HOWTO(R_X86_64_PC8
, 0, 0, 8, TRUE
, 0, complain_overflow_signed
,
83 bfd_elf_generic_reloc
, "R_X86_64_PC8", FALSE
, 0xff, 0xff, TRUE
),
84 HOWTO(R_X86_64_DTPMOD64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
85 bfd_elf_generic_reloc
, "R_X86_64_DTPMOD64", FALSE
, MINUS_ONE
,
87 HOWTO(R_X86_64_DTPOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
88 bfd_elf_generic_reloc
, "R_X86_64_DTPOFF64", FALSE
, MINUS_ONE
,
90 HOWTO(R_X86_64_TPOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
91 bfd_elf_generic_reloc
, "R_X86_64_TPOFF64", FALSE
, MINUS_ONE
,
93 HOWTO(R_X86_64_TLSGD
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
94 bfd_elf_generic_reloc
, "R_X86_64_TLSGD", FALSE
, 0xffffffff,
96 HOWTO(R_X86_64_TLSLD
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
97 bfd_elf_generic_reloc
, "R_X86_64_TLSLD", FALSE
, 0xffffffff,
99 HOWTO(R_X86_64_DTPOFF32
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
100 bfd_elf_generic_reloc
, "R_X86_64_DTPOFF32", FALSE
, 0xffffffff,
102 HOWTO(R_X86_64_GOTTPOFF
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
103 bfd_elf_generic_reloc
, "R_X86_64_GOTTPOFF", FALSE
, 0xffffffff,
105 HOWTO(R_X86_64_TPOFF32
, 0, 2, 32, FALSE
, 0, complain_overflow_signed
,
106 bfd_elf_generic_reloc
, "R_X86_64_TPOFF32", FALSE
, 0xffffffff,
108 HOWTO(R_X86_64_PC64
, 0, 4, 64, TRUE
, 0, complain_overflow_bitfield
,
109 bfd_elf_generic_reloc
, "R_X86_64_PC64", FALSE
, MINUS_ONE
, MINUS_ONE
,
111 HOWTO(R_X86_64_GOTOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_bitfield
,
112 bfd_elf_generic_reloc
, "R_X86_64_GOTOFF64",
113 FALSE
, MINUS_ONE
, MINUS_ONE
, FALSE
),
114 HOWTO(R_X86_64_GOTPC32
, 0, 2, 32, TRUE
, 0, complain_overflow_signed
,
115 bfd_elf_generic_reloc
, "R_X86_64_GOTPC32",
116 FALSE
, 0xffffffff, 0xffffffff, TRUE
),
117 HOWTO(R_X86_64_GOT64
, 0, 4, 64, FALSE
, 0, complain_overflow_signed
,
118 bfd_elf_generic_reloc
, "R_X86_64_GOT64", FALSE
, MINUS_ONE
, MINUS_ONE
,
120 HOWTO(R_X86_64_GOTPCREL64
, 0, 4, 64, TRUE
, 0, complain_overflow_signed
,
121 bfd_elf_generic_reloc
, "R_X86_64_GOTPCREL64", FALSE
, MINUS_ONE
,
123 HOWTO(R_X86_64_GOTPC64
, 0, 4, 64, TRUE
, 0, complain_overflow_signed
,
124 bfd_elf_generic_reloc
, "R_X86_64_GOTPC64",
125 FALSE
, MINUS_ONE
, MINUS_ONE
, TRUE
),
126 HOWTO(R_X86_64_GOTPLT64
, 0, 4, 64, FALSE
, 0, complain_overflow_signed
,
127 bfd_elf_generic_reloc
, "R_X86_64_GOTPLT64", FALSE
, MINUS_ONE
,
129 HOWTO(R_X86_64_PLTOFF64
, 0, 4, 64, FALSE
, 0, complain_overflow_signed
,
130 bfd_elf_generic_reloc
, "R_X86_64_PLTOFF64", FALSE
, MINUS_ONE
,
134 HOWTO(R_X86_64_GOTPC32_TLSDESC
, 0, 2, 32, TRUE
, 0,
135 complain_overflow_bitfield
, bfd_elf_generic_reloc
,
136 "R_X86_64_GOTPC32_TLSDESC",
137 FALSE
, 0xffffffff, 0xffffffff, TRUE
),
138 HOWTO(R_X86_64_TLSDESC_CALL
, 0, 0, 0, FALSE
, 0,
139 complain_overflow_dont
, bfd_elf_generic_reloc
,
140 "R_X86_64_TLSDESC_CALL",
142 HOWTO(R_X86_64_TLSDESC
, 0, 4, 64, FALSE
, 0,
143 complain_overflow_bitfield
, bfd_elf_generic_reloc
,
145 FALSE
, MINUS_ONE
, MINUS_ONE
, FALSE
),
147 /* We have a gap in the reloc numbers here.
148 R_X86_64_standard counts the number up to this point, and
149 R_X86_64_vt_offset is the value to subtract from a reloc type of
150 R_X86_64_GNU_VT* to form an index into this table. */
151 #define R_X86_64_standard (R_X86_64_TLSDESC + 1)
152 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
154 /* GNU extension to record C++ vtable hierarchy. */
155 HOWTO (R_X86_64_GNU_VTINHERIT
, 0, 4, 0, FALSE
, 0, complain_overflow_dont
,
156 NULL
, "R_X86_64_GNU_VTINHERIT", FALSE
, 0, 0, FALSE
),
158 /* GNU extension to record C++ vtable member usage. */
159 HOWTO (R_X86_64_GNU_VTENTRY
, 0, 4, 0, FALSE
, 0, complain_overflow_dont
,
160 _bfd_elf_rel_vtable_reloc_fn
, "R_X86_64_GNU_VTENTRY", FALSE
, 0, 0,
164 /* Map BFD relocs to the x86_64 elf relocs. */
167 bfd_reloc_code_real_type bfd_reloc_val
;
168 unsigned char elf_reloc_val
;
171 static const struct elf_reloc_map x86_64_reloc_map
[] =
173 { BFD_RELOC_NONE
, R_X86_64_NONE
, },
174 { BFD_RELOC_64
, R_X86_64_64
, },
175 { BFD_RELOC_32_PCREL
, R_X86_64_PC32
, },
176 { BFD_RELOC_X86_64_GOT32
, R_X86_64_GOT32
,},
177 { BFD_RELOC_X86_64_PLT32
, R_X86_64_PLT32
,},
178 { BFD_RELOC_X86_64_COPY
, R_X86_64_COPY
, },
179 { BFD_RELOC_X86_64_GLOB_DAT
, R_X86_64_GLOB_DAT
, },
180 { BFD_RELOC_X86_64_JUMP_SLOT
, R_X86_64_JUMP_SLOT
, },
181 { BFD_RELOC_X86_64_RELATIVE
, R_X86_64_RELATIVE
, },
182 { BFD_RELOC_X86_64_GOTPCREL
, R_X86_64_GOTPCREL
, },
183 { BFD_RELOC_32
, R_X86_64_32
, },
184 { BFD_RELOC_X86_64_32S
, R_X86_64_32S
, },
185 { BFD_RELOC_16
, R_X86_64_16
, },
186 { BFD_RELOC_16_PCREL
, R_X86_64_PC16
, },
187 { BFD_RELOC_8
, R_X86_64_8
, },
188 { BFD_RELOC_8_PCREL
, R_X86_64_PC8
, },
189 { BFD_RELOC_X86_64_DTPMOD64
, R_X86_64_DTPMOD64
, },
190 { BFD_RELOC_X86_64_DTPOFF64
, R_X86_64_DTPOFF64
, },
191 { BFD_RELOC_X86_64_TPOFF64
, R_X86_64_TPOFF64
, },
192 { BFD_RELOC_X86_64_TLSGD
, R_X86_64_TLSGD
, },
193 { BFD_RELOC_X86_64_TLSLD
, R_X86_64_TLSLD
, },
194 { BFD_RELOC_X86_64_DTPOFF32
, R_X86_64_DTPOFF32
, },
195 { BFD_RELOC_X86_64_GOTTPOFF
, R_X86_64_GOTTPOFF
, },
196 { BFD_RELOC_X86_64_TPOFF32
, R_X86_64_TPOFF32
, },
197 { BFD_RELOC_64_PCREL
, R_X86_64_PC64
, },
198 { BFD_RELOC_X86_64_GOTOFF64
, R_X86_64_GOTOFF64
, },
199 { BFD_RELOC_X86_64_GOTPC32
, R_X86_64_GOTPC32
, },
200 { BFD_RELOC_X86_64_GOT64
, R_X86_64_GOT64
, },
201 { BFD_RELOC_X86_64_GOTPCREL64
,R_X86_64_GOTPCREL64
, },
202 { BFD_RELOC_X86_64_GOTPC64
, R_X86_64_GOTPC64
, },
203 { BFD_RELOC_X86_64_GOTPLT64
, R_X86_64_GOTPLT64
, },
204 { BFD_RELOC_X86_64_PLTOFF64
, R_X86_64_PLTOFF64
, },
205 { BFD_RELOC_X86_64_GOTPC32_TLSDESC
, R_X86_64_GOTPC32_TLSDESC
, },
206 { BFD_RELOC_X86_64_TLSDESC_CALL
, R_X86_64_TLSDESC_CALL
, },
207 { BFD_RELOC_X86_64_TLSDESC
, R_X86_64_TLSDESC
, },
208 { BFD_RELOC_VTABLE_INHERIT
, R_X86_64_GNU_VTINHERIT
, },
209 { BFD_RELOC_VTABLE_ENTRY
, R_X86_64_GNU_VTENTRY
, },
212 static reloc_howto_type
*
213 elf64_x86_64_rtype_to_howto (bfd
*abfd
, unsigned r_type
)
217 if (r_type
< (unsigned int) R_X86_64_GNU_VTINHERIT
218 || r_type
>= (unsigned int) R_X86_64_max
)
220 if (r_type
>= (unsigned int) R_X86_64_standard
)
222 (*_bfd_error_handler
) (_("%B: invalid relocation type %d"),
224 r_type
= R_X86_64_NONE
;
229 i
= r_type
- (unsigned int) R_X86_64_vt_offset
;
230 BFD_ASSERT (x86_64_elf_howto_table
[i
].type
== r_type
);
231 return &x86_64_elf_howto_table
[i
];
234 /* Given a BFD reloc type, return a HOWTO structure. */
235 static reloc_howto_type
*
236 elf64_x86_64_reloc_type_lookup (bfd
*abfd
,
237 bfd_reloc_code_real_type code
)
241 for (i
= 0; i
< sizeof (x86_64_reloc_map
) / sizeof (struct elf_reloc_map
);
244 if (x86_64_reloc_map
[i
].bfd_reloc_val
== code
)
245 return elf64_x86_64_rtype_to_howto (abfd
,
246 x86_64_reloc_map
[i
].elf_reloc_val
);
251 static reloc_howto_type
*
252 elf64_x86_64_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
258 i
< (sizeof (x86_64_elf_howto_table
)
259 / sizeof (x86_64_elf_howto_table
[0]));
261 if (x86_64_elf_howto_table
[i
].name
!= NULL
262 && strcasecmp (x86_64_elf_howto_table
[i
].name
, r_name
) == 0)
263 return &x86_64_elf_howto_table
[i
];
268 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
271 elf64_x86_64_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*cache_ptr
,
272 Elf_Internal_Rela
*dst
)
276 r_type
= ELF64_R_TYPE (dst
->r_info
);
277 cache_ptr
->howto
= elf64_x86_64_rtype_to_howto (abfd
, r_type
);
278 BFD_ASSERT (r_type
== cache_ptr
->howto
->type
);
281 /* Support for core dump NOTE sections. */
283 elf64_x86_64_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
288 switch (note
->descsz
)
293 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
295 elf_tdata (abfd
)->core_signal
296 = bfd_get_16 (abfd
, note
->descdata
+ 12);
299 elf_tdata (abfd
)->core_pid
300 = bfd_get_32 (abfd
, note
->descdata
+ 32);
309 /* Make a ".reg/999" section. */
310 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
311 size
, note
->descpos
+ offset
);
315 elf64_x86_64_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
317 switch (note
->descsz
)
322 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
323 elf_tdata (abfd
)->core_program
324 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 40, 16);
325 elf_tdata (abfd
)->core_command
326 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 56, 80);
329 /* Note that for some reason, a spurious space is tacked
330 onto the end of the args in some (at least one anyway)
331 implementations, so strip it off if it exists. */
334 char *command
= elf_tdata (abfd
)->core_command
;
335 int n
= strlen (command
);
337 if (0 < n
&& command
[n
- 1] == ' ')
338 command
[n
- 1] = '\0';
344 /* Functions for the x86-64 ELF linker. */
346 /* The name of the dynamic interpreter. This is put in the .interp
349 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
351 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
352 copying dynamic variables from a shared lib into an app's dynbss
353 section, and instead use a dynamic relocation to point into the
355 #define ELIMINATE_COPY_RELOCS 1
357 /* The size in bytes of an entry in the global offset table. */
359 #define GOT_ENTRY_SIZE 8
361 /* The size in bytes of an entry in the procedure linkage table. */
363 #define PLT_ENTRY_SIZE 16
365 /* The first entry in a procedure linkage table looks like this. See the
366 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
368 static const bfd_byte elf64_x86_64_plt0_entry
[PLT_ENTRY_SIZE
] =
370 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
371 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
372 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
375 /* Subsequent entries in a procedure linkage table look like this. */
377 static const bfd_byte elf64_x86_64_plt_entry
[PLT_ENTRY_SIZE
] =
379 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
380 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
381 0x68, /* pushq immediate */
382 0, 0, 0, 0, /* replaced with index into relocation table. */
383 0xe9, /* jmp relative */
384 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
387 /* The x86-64 linker needs to keep track of the number of relocs that
388 it decides to copy as dynamic relocs in check_relocs for each symbol.
389 This is so that it can later discard them if they are found to be
390 unnecessary. We store the information in a field extending the
391 regular ELF linker hash table. */
393 struct elf64_x86_64_dyn_relocs
396 struct elf64_x86_64_dyn_relocs
*next
;
398 /* The input section of the reloc. */
401 /* Total number of relocs copied for the input section. */
404 /* Number of pc-relative relocs copied for the input section. */
405 bfd_size_type pc_count
;
408 /* x86-64 ELF linker hash entry. */
410 struct elf64_x86_64_link_hash_entry
412 struct elf_link_hash_entry elf
;
414 /* Track dynamic relocs copied for this symbol. */
415 struct elf64_x86_64_dyn_relocs
*dyn_relocs
;
417 #define GOT_UNKNOWN 0
421 #define GOT_TLS_GDESC 4
422 #define GOT_TLS_GD_BOTH_P(type) \
423 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
424 #define GOT_TLS_GD_P(type) \
425 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
426 #define GOT_TLS_GDESC_P(type) \
427 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
428 #define GOT_TLS_GD_ANY_P(type) \
429 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
430 unsigned char tls_type
;
432 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
433 starting at the end of the jump table. */
437 #define elf64_x86_64_hash_entry(ent) \
438 ((struct elf64_x86_64_link_hash_entry *)(ent))
440 struct elf64_x86_64_obj_tdata
442 struct elf_obj_tdata root
;
444 /* tls_type for each local got entry. */
445 char *local_got_tls_type
;
447 /* GOTPLT entries for TLS descriptors. */
448 bfd_vma
*local_tlsdesc_gotent
;
451 #define elf64_x86_64_tdata(abfd) \
452 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
454 #define elf64_x86_64_local_got_tls_type(abfd) \
455 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
457 #define elf64_x86_64_local_tlsdesc_gotent(abfd) \
458 (elf64_x86_64_tdata (abfd)->local_tlsdesc_gotent)
460 /* x86-64 ELF linker hash table. */
462 struct elf64_x86_64_link_hash_table
464 struct elf_link_hash_table elf
;
466 /* Short-cuts to get to dynamic linker sections. */
475 /* The offset into splt of the PLT entry for the TLS descriptor
476 resolver. Special values are 0, if not necessary (or not found
477 to be necessary yet), and -1 if needed but not determined
480 /* The offset into sgot of the GOT entry used by the PLT entry
485 bfd_signed_vma refcount
;
489 /* The amount of space used by the jump slots in the GOT. */
490 bfd_vma sgotplt_jump_table_size
;
492 /* Small local sym to section mapping cache. */
493 struct sym_sec_cache sym_sec
;
496 /* Get the x86-64 ELF linker hash table from a link_info structure. */
498 #define elf64_x86_64_hash_table(p) \
499 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
501 #define elf64_x86_64_compute_jump_table_size(htab) \
502 ((htab)->srelplt->reloc_count * GOT_ENTRY_SIZE)
504 /* Create an entry in an x86-64 ELF linker hash table. */
506 static struct bfd_hash_entry
*
507 link_hash_newfunc (struct bfd_hash_entry
*entry
, struct bfd_hash_table
*table
,
510 /* Allocate the structure if it has not already been allocated by a
514 entry
= bfd_hash_allocate (table
,
515 sizeof (struct elf64_x86_64_link_hash_entry
));
520 /* Call the allocation method of the superclass. */
521 entry
= _bfd_elf_link_hash_newfunc (entry
, table
, string
);
524 struct elf64_x86_64_link_hash_entry
*eh
;
526 eh
= (struct elf64_x86_64_link_hash_entry
*) entry
;
527 eh
->dyn_relocs
= NULL
;
528 eh
->tls_type
= GOT_UNKNOWN
;
529 eh
->tlsdesc_got
= (bfd_vma
) -1;
535 /* Create an X86-64 ELF linker hash table. */
537 static struct bfd_link_hash_table
*
538 elf64_x86_64_link_hash_table_create (bfd
*abfd
)
540 struct elf64_x86_64_link_hash_table
*ret
;
541 bfd_size_type amt
= sizeof (struct elf64_x86_64_link_hash_table
);
543 ret
= (struct elf64_x86_64_link_hash_table
*) bfd_malloc (amt
);
547 if (!_bfd_elf_link_hash_table_init (&ret
->elf
, abfd
, link_hash_newfunc
,
548 sizeof (struct elf64_x86_64_link_hash_entry
)))
561 ret
->sym_sec
.abfd
= NULL
;
562 ret
->tlsdesc_plt
= 0;
563 ret
->tlsdesc_got
= 0;
564 ret
->tls_ld_got
.refcount
= 0;
565 ret
->sgotplt_jump_table_size
= 0;
567 return &ret
->elf
.root
;
570 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
571 shortcuts to them in our hash table. */
574 create_got_section (bfd
*dynobj
, struct bfd_link_info
*info
)
576 struct elf64_x86_64_link_hash_table
*htab
;
578 if (! _bfd_elf_create_got_section (dynobj
, info
))
581 htab
= elf64_x86_64_hash_table (info
);
582 htab
->sgot
= bfd_get_section_by_name (dynobj
, ".got");
583 htab
->sgotplt
= bfd_get_section_by_name (dynobj
, ".got.plt");
584 if (!htab
->sgot
|| !htab
->sgotplt
)
587 htab
->srelgot
= bfd_make_section_with_flags (dynobj
, ".rela.got",
588 (SEC_ALLOC
| SEC_LOAD
593 if (htab
->srelgot
== NULL
594 || ! bfd_set_section_alignment (dynobj
, htab
->srelgot
, 3))
599 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
600 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
604 elf64_x86_64_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
606 struct elf64_x86_64_link_hash_table
*htab
;
608 htab
= elf64_x86_64_hash_table (info
);
609 if (!htab
->sgot
&& !create_got_section (dynobj
, info
))
612 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
615 htab
->splt
= bfd_get_section_by_name (dynobj
, ".plt");
616 htab
->srelplt
= bfd_get_section_by_name (dynobj
, ".rela.plt");
617 htab
->sdynbss
= bfd_get_section_by_name (dynobj
, ".dynbss");
619 htab
->srelbss
= bfd_get_section_by_name (dynobj
, ".rela.bss");
621 if (!htab
->splt
|| !htab
->srelplt
|| !htab
->sdynbss
622 || (!info
->shared
&& !htab
->srelbss
))
628 /* Copy the extra info we tack onto an elf_link_hash_entry. */
631 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info
*info
,
632 struct elf_link_hash_entry
*dir
,
633 struct elf_link_hash_entry
*ind
)
635 struct elf64_x86_64_link_hash_entry
*edir
, *eind
;
637 edir
= (struct elf64_x86_64_link_hash_entry
*) dir
;
638 eind
= (struct elf64_x86_64_link_hash_entry
*) ind
;
640 if (eind
->dyn_relocs
!= NULL
)
642 if (edir
->dyn_relocs
!= NULL
)
644 struct elf64_x86_64_dyn_relocs
**pp
;
645 struct elf64_x86_64_dyn_relocs
*p
;
647 /* Add reloc counts against the indirect sym to the direct sym
648 list. Merge any entries against the same section. */
649 for (pp
= &eind
->dyn_relocs
; (p
= *pp
) != NULL
; )
651 struct elf64_x86_64_dyn_relocs
*q
;
653 for (q
= edir
->dyn_relocs
; q
!= NULL
; q
= q
->next
)
654 if (q
->sec
== p
->sec
)
656 q
->pc_count
+= p
->pc_count
;
657 q
->count
+= p
->count
;
664 *pp
= edir
->dyn_relocs
;
667 edir
->dyn_relocs
= eind
->dyn_relocs
;
668 eind
->dyn_relocs
= NULL
;
671 if (ind
->root
.type
== bfd_link_hash_indirect
672 && dir
->got
.refcount
<= 0)
674 edir
->tls_type
= eind
->tls_type
;
675 eind
->tls_type
= GOT_UNKNOWN
;
678 if (ELIMINATE_COPY_RELOCS
679 && ind
->root
.type
!= bfd_link_hash_indirect
680 && dir
->dynamic_adjusted
)
682 /* If called to transfer flags for a weakdef during processing
683 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
684 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
685 dir
->ref_dynamic
|= ind
->ref_dynamic
;
686 dir
->ref_regular
|= ind
->ref_regular
;
687 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
688 dir
->needs_plt
|= ind
->needs_plt
;
689 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
692 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
696 elf64_x86_64_mkobject (bfd
*abfd
)
698 if (abfd
->tdata
.any
== NULL
)
700 bfd_size_type amt
= sizeof (struct elf64_x86_64_obj_tdata
);
701 abfd
->tdata
.any
= bfd_zalloc (abfd
, amt
);
702 if (abfd
->tdata
.any
== NULL
)
705 return bfd_elf_mkobject (abfd
);
709 elf64_x86_64_elf_object_p (bfd
*abfd
)
711 /* Set the right machine number for an x86-64 elf64 file. */
712 bfd_default_set_arch_mach (abfd
, bfd_arch_i386
, bfd_mach_x86_64
);
730 /* Return TRUE if the TLS access code sequence support transition
734 elf64_x86_64_check_tls_transition (bfd
*abfd
, asection
*sec
,
736 Elf_Internal_Shdr
*symtab_hdr
,
737 struct elf_link_hash_entry
**sym_hashes
,
739 const Elf_Internal_Rela
*rel
,
740 const Elf_Internal_Rela
*relend
)
743 unsigned long r_symndx
;
744 struct elf_link_hash_entry
*h
;
747 /* Get the section contents. */
748 if (contents
== NULL
)
750 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
751 contents
= elf_section_data (sec
)->this_hdr
.contents
;
754 /* FIXME: How to better handle error condition? */
755 if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
758 /* Cache the section contents for elf_link_input_bfd. */
759 elf_section_data (sec
)->this_hdr
.contents
= contents
;
763 offset
= rel
->r_offset
;
768 if ((rel
+ 1) >= relend
)
771 if (r_type
== R_X86_64_TLSGD
)
773 /* Check transition from GD access model. Only
774 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
775 .word 0x6666; rex64; call __tls_get_addr
776 can transit to different access model. */
778 static x86_64_opcode32 leaq
= { { 0x66, 0x48, 0x8d, 0x3d } },
779 call
= { { 0x66, 0x66, 0x48, 0xe8 } };
781 || (offset
+ 12) > sec
->size
782 || bfd_get_32 (abfd
, contents
+ offset
- 4) != leaq
.i
783 || bfd_get_32 (abfd
, contents
+ offset
+ 4) != call
.i
)
788 /* Check transition from LD access model. Only
789 leaq foo@tlsld(%rip), %rdi;
791 can transit to different access model. */
793 static x86_64_opcode32 ld
= { { 0x48, 0x8d, 0x3d, 0xe8 } };
796 if (offset
< 3 || (offset
+ 9) > sec
->size
)
799 op
.i
= bfd_get_32 (abfd
, contents
+ offset
- 3);
800 op
.c
[3] = bfd_get_8 (abfd
, contents
+ offset
+ 4);
805 r_symndx
= ELF64_R_SYM (rel
[1].r_info
);
806 if (r_symndx
< symtab_hdr
->sh_info
)
809 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
811 && h
->root
.root
.string
!= NULL
812 && (ELF64_R_TYPE (rel
[1].r_info
) == R_X86_64_PC32
813 || ELF64_R_TYPE (rel
[1].r_info
) == R_X86_64_PLT32
)
814 && (strcmp (h
->root
.root
.string
, "__tls_get_addr") == 0));
816 case R_X86_64_GOTTPOFF
:
817 /* Check transition from IE access model:
818 movq foo@gottpoff(%rip), %reg
819 addq foo@gottpoff(%rip), %reg
822 if (offset
< 3 || (offset
+ 4) > sec
->size
)
825 val
= bfd_get_8 (abfd
, contents
+ offset
- 3);
826 if (val
!= 0x48 && val
!= 0x4c)
829 val
= bfd_get_8 (abfd
, contents
+ offset
- 2);
830 if (val
!= 0x8b && val
!= 0x03)
833 val
= bfd_get_8 (abfd
, contents
+ offset
- 1);
834 return (val
& 0xc7) == 5;
836 case R_X86_64_GOTPC32_TLSDESC
:
837 /* Check transition from GDesc access model:
838 leaq x@tlsdesc(%rip), %rax
840 Make sure it's a leaq adding rip to a 32-bit offset
841 into any register, although it's probably almost always
844 if (offset
< 3 || (offset
+ 4) > sec
->size
)
847 val
= bfd_get_8 (abfd
, contents
+ offset
- 3);
848 if ((val
& 0xfb) != 0x48)
851 if (bfd_get_8 (abfd
, contents
+ offset
- 2) != 0x8d)
854 val
= bfd_get_8 (abfd
, contents
+ offset
- 1);
855 return (val
& 0xc7) == 0x05;
857 case R_X86_64_TLSDESC_CALL
:
858 /* Check transition from GDesc access model:
859 call *x@tlsdesc(%rax)
861 if (offset
+ 2 <= sec
->size
)
863 /* Make sure that it's a call *x@tlsdesc(%rax). */
864 static x86_64_opcode16 call
= { { 0xff, 0x10 } };
865 return bfd_get_16 (abfd
, contents
+ offset
) == call
.i
;
875 /* Return TRUE if the TLS access transition is OK or no transition
876 will be performed. Update R_TYPE if there is a transition. */
879 elf64_x86_64_tls_transition (struct bfd_link_info
*info
, bfd
*abfd
,
880 asection
*sec
, bfd_byte
*contents
,
881 Elf_Internal_Shdr
*symtab_hdr
,
882 struct elf_link_hash_entry
**sym_hashes
,
883 unsigned int *r_type
, int tls_type
,
884 const Elf_Internal_Rela
*rel
,
885 const Elf_Internal_Rela
*relend
,
886 struct elf_link_hash_entry
*h
)
888 unsigned int from_type
= *r_type
;
889 unsigned int to_type
= from_type
;
890 bfd_boolean check
= TRUE
;
895 case R_X86_64_GOTPC32_TLSDESC
:
896 case R_X86_64_TLSDESC_CALL
:
897 case R_X86_64_GOTTPOFF
:
901 to_type
= R_X86_64_TPOFF32
;
903 to_type
= R_X86_64_GOTTPOFF
;
906 /* When we are called from elf64_x86_64_relocate_section,
907 CONTENTS isn't NULL and there may be additional transitions
908 based on TLS_TYPE. */
909 if (contents
!= NULL
)
911 unsigned int new_to_type
= to_type
;
916 && tls_type
== GOT_TLS_IE
)
917 new_to_type
= R_X86_64_TPOFF32
;
919 if (to_type
== R_X86_64_TLSGD
920 || to_type
== R_X86_64_GOTPC32_TLSDESC
921 || to_type
== R_X86_64_TLSDESC_CALL
)
923 if (tls_type
== GOT_TLS_IE
)
924 new_to_type
= R_X86_64_GOTTPOFF
;
927 /* We checked the transition before when we were called from
928 elf64_x86_64_check_relocs. We only want to check the new
929 transition which hasn't been checked before. */
930 check
= new_to_type
!= to_type
&& from_type
== to_type
;
931 to_type
= new_to_type
;
938 to_type
= R_X86_64_TPOFF32
;
945 /* Return TRUE if there is no transition. */
946 if (from_type
== to_type
)
949 /* Check if the transition can be performed. */
951 && ! elf64_x86_64_check_tls_transition (abfd
, sec
, contents
,
952 symtab_hdr
, sym_hashes
,
953 from_type
, rel
, relend
))
955 reloc_howto_type
*from
, *to
;
957 from
= elf64_x86_64_rtype_to_howto (abfd
, from_type
);
958 to
= elf64_x86_64_rtype_to_howto (abfd
, to_type
);
960 (*_bfd_error_handler
)
961 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
962 "in section `%A' failed"),
963 abfd
, sec
, from
->name
, to
->name
,
964 h
? h
->root
.root
.string
: "a local symbol",
965 (unsigned long) rel
->r_offset
);
966 bfd_set_error (bfd_error_bad_value
);
974 /* Look through the relocs for a section during the first phase, and
975 calculate needed space in the global offset table, procedure
976 linkage table, and dynamic reloc sections. */
979 elf64_x86_64_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
981 const Elf_Internal_Rela
*relocs
)
983 struct elf64_x86_64_link_hash_table
*htab
;
984 Elf_Internal_Shdr
*symtab_hdr
;
985 struct elf_link_hash_entry
**sym_hashes
;
986 const Elf_Internal_Rela
*rel
;
987 const Elf_Internal_Rela
*rel_end
;
990 if (info
->relocatable
)
993 htab
= elf64_x86_64_hash_table (info
);
994 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
995 sym_hashes
= elf_sym_hashes (abfd
);
999 rel_end
= relocs
+ sec
->reloc_count
;
1000 for (rel
= relocs
; rel
< rel_end
; rel
++)
1002 unsigned int r_type
;
1003 unsigned long r_symndx
;
1004 struct elf_link_hash_entry
*h
;
1006 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1007 r_type
= ELF64_R_TYPE (rel
->r_info
);
1009 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
1011 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"),
1016 if (r_symndx
< symtab_hdr
->sh_info
)
1020 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1021 while (h
->root
.type
== bfd_link_hash_indirect
1022 || h
->root
.type
== bfd_link_hash_warning
)
1023 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1026 if (! elf64_x86_64_tls_transition (info
, abfd
, sec
, NULL
,
1027 symtab_hdr
, sym_hashes
,
1028 &r_type
, GOT_UNKNOWN
,
1034 case R_X86_64_TLSLD
:
1035 htab
->tls_ld_got
.refcount
+= 1;
1038 case R_X86_64_TPOFF32
:
1041 (*_bfd_error_handler
)
1042 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1044 x86_64_elf_howto_table
[r_type
].name
,
1045 (h
) ? h
->root
.root
.string
: "a local symbol");
1046 bfd_set_error (bfd_error_bad_value
);
1051 case R_X86_64_GOTTPOFF
:
1053 info
->flags
|= DF_STATIC_TLS
;
1056 case R_X86_64_GOT32
:
1057 case R_X86_64_GOTPCREL
:
1058 case R_X86_64_TLSGD
:
1059 case R_X86_64_GOT64
:
1060 case R_X86_64_GOTPCREL64
:
1061 case R_X86_64_GOTPLT64
:
1062 case R_X86_64_GOTPC32_TLSDESC
:
1063 case R_X86_64_TLSDESC_CALL
:
1064 /* This symbol requires a global offset table entry. */
1066 int tls_type
, old_tls_type
;
1070 default: tls_type
= GOT_NORMAL
; break;
1071 case R_X86_64_TLSGD
: tls_type
= GOT_TLS_GD
; break;
1072 case R_X86_64_GOTTPOFF
: tls_type
= GOT_TLS_IE
; break;
1073 case R_X86_64_GOTPC32_TLSDESC
:
1074 case R_X86_64_TLSDESC_CALL
:
1075 tls_type
= GOT_TLS_GDESC
; break;
1080 if (r_type
== R_X86_64_GOTPLT64
)
1082 /* This relocation indicates that we also need
1083 a PLT entry, as this is a function. We don't need
1084 a PLT entry for local symbols. */
1086 h
->plt
.refcount
+= 1;
1088 h
->got
.refcount
+= 1;
1089 old_tls_type
= elf64_x86_64_hash_entry (h
)->tls_type
;
1093 bfd_signed_vma
*local_got_refcounts
;
1095 /* This is a global offset table entry for a local symbol. */
1096 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1097 if (local_got_refcounts
== NULL
)
1101 size
= symtab_hdr
->sh_info
;
1102 size
*= sizeof (bfd_signed_vma
)
1103 + sizeof (bfd_vma
) + sizeof (char);
1104 local_got_refcounts
= ((bfd_signed_vma
*)
1105 bfd_zalloc (abfd
, size
));
1106 if (local_got_refcounts
== NULL
)
1108 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
1109 elf64_x86_64_local_tlsdesc_gotent (abfd
)
1110 = (bfd_vma
*) (local_got_refcounts
+ symtab_hdr
->sh_info
);
1111 elf64_x86_64_local_got_tls_type (abfd
)
1112 = (char *) (local_got_refcounts
+ 2 * symtab_hdr
->sh_info
);
1114 local_got_refcounts
[r_symndx
] += 1;
1116 = elf64_x86_64_local_got_tls_type (abfd
) [r_symndx
];
1119 /* If a TLS symbol is accessed using IE at least once,
1120 there is no point to use dynamic model for it. */
1121 if (old_tls_type
!= tls_type
&& old_tls_type
!= GOT_UNKNOWN
1122 && (! GOT_TLS_GD_ANY_P (old_tls_type
)
1123 || tls_type
!= GOT_TLS_IE
))
1125 if (old_tls_type
== GOT_TLS_IE
&& GOT_TLS_GD_ANY_P (tls_type
))
1126 tls_type
= old_tls_type
;
1127 else if (GOT_TLS_GD_ANY_P (old_tls_type
)
1128 && GOT_TLS_GD_ANY_P (tls_type
))
1129 tls_type
|= old_tls_type
;
1132 (*_bfd_error_handler
)
1133 (_("%B: %s' accessed both as normal and thread local symbol"),
1134 abfd
, h
? h
->root
.root
.string
: "<local>");
1139 if (old_tls_type
!= tls_type
)
1142 elf64_x86_64_hash_entry (h
)->tls_type
= tls_type
;
1144 elf64_x86_64_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
1149 case R_X86_64_GOTOFF64
:
1150 case R_X86_64_GOTPC32
:
1151 case R_X86_64_GOTPC64
:
1153 if (htab
->sgot
== NULL
)
1155 if (htab
->elf
.dynobj
== NULL
)
1156 htab
->elf
.dynobj
= abfd
;
1157 if (!create_got_section (htab
->elf
.dynobj
, info
))
1162 case R_X86_64_PLT32
:
1163 /* This symbol requires a procedure linkage table entry. We
1164 actually build the entry in adjust_dynamic_symbol,
1165 because this might be a case of linking PIC code which is
1166 never referenced by a dynamic object, in which case we
1167 don't need to generate a procedure linkage table entry
1170 /* If this is a local symbol, we resolve it directly without
1171 creating a procedure linkage table entry. */
1176 h
->plt
.refcount
+= 1;
1179 case R_X86_64_PLTOFF64
:
1180 /* This tries to form the 'address' of a function relative
1181 to GOT. For global symbols we need a PLT entry. */
1185 h
->plt
.refcount
+= 1;
1193 /* Let's help debug shared library creation. These relocs
1194 cannot be used in shared libs. Don't error out for
1195 sections we don't care about, such as debug sections or
1196 non-constant sections. */
1198 && (sec
->flags
& SEC_ALLOC
) != 0
1199 && (sec
->flags
& SEC_READONLY
) != 0)
1201 (*_bfd_error_handler
)
1202 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
1204 x86_64_elf_howto_table
[r_type
].name
,
1205 (h
) ? h
->root
.root
.string
: "a local symbol");
1206 bfd_set_error (bfd_error_bad_value
);
1216 if (h
!= NULL
&& !info
->shared
)
1218 /* If this reloc is in a read-only section, we might
1219 need a copy reloc. We can't check reliably at this
1220 stage whether the section is read-only, as input
1221 sections have not yet been mapped to output sections.
1222 Tentatively set the flag for now, and correct in
1223 adjust_dynamic_symbol. */
1226 /* We may need a .plt entry if the function this reloc
1227 refers to is in a shared lib. */
1228 h
->plt
.refcount
+= 1;
1229 if (r_type
!= R_X86_64_PC32
&& r_type
!= R_X86_64_PC64
)
1230 h
->pointer_equality_needed
= 1;
1233 /* If we are creating a shared library, and this is a reloc
1234 against a global symbol, or a non PC relative reloc
1235 against a local symbol, then we need to copy the reloc
1236 into the shared library. However, if we are linking with
1237 -Bsymbolic, we do not need to copy a reloc against a
1238 global symbol which is defined in an object we are
1239 including in the link (i.e., DEF_REGULAR is set). At
1240 this point we have not seen all the input files, so it is
1241 possible that DEF_REGULAR is not set now but will be set
1242 later (it is never cleared). In case of a weak definition,
1243 DEF_REGULAR may be cleared later by a strong definition in
1244 a shared library. We account for that possibility below by
1245 storing information in the relocs_copied field of the hash
1246 table entry. A similar situation occurs when creating
1247 shared libraries and symbol visibility changes render the
1250 If on the other hand, we are creating an executable, we
1251 may need to keep relocations for symbols satisfied by a
1252 dynamic library if we manage to avoid copy relocs for the
1255 && (sec
->flags
& SEC_ALLOC
) != 0
1256 && (((r_type
!= R_X86_64_PC8
)
1257 && (r_type
!= R_X86_64_PC16
)
1258 && (r_type
!= R_X86_64_PC32
)
1259 && (r_type
!= R_X86_64_PC64
))
1261 && (! SYMBOLIC_BIND (info
, h
)
1262 || h
->root
.type
== bfd_link_hash_defweak
1263 || !h
->def_regular
))))
1264 || (ELIMINATE_COPY_RELOCS
1266 && (sec
->flags
& SEC_ALLOC
) != 0
1268 && (h
->root
.type
== bfd_link_hash_defweak
1269 || !h
->def_regular
)))
1271 struct elf64_x86_64_dyn_relocs
*p
;
1272 struct elf64_x86_64_dyn_relocs
**head
;
1274 /* We must copy these reloc types into the output file.
1275 Create a reloc section in dynobj and make room for
1282 name
= (bfd_elf_string_from_elf_section
1284 elf_elfheader (abfd
)->e_shstrndx
,
1285 elf_section_data (sec
)->rel_hdr
.sh_name
));
1289 if (! CONST_STRNEQ (name
, ".rela")
1290 || strcmp (bfd_get_section_name (abfd
, sec
),
1293 (*_bfd_error_handler
)
1294 (_("%B: bad relocation section name `%s\'"),
1298 if (htab
->elf
.dynobj
== NULL
)
1299 htab
->elf
.dynobj
= abfd
;
1301 dynobj
= htab
->elf
.dynobj
;
1303 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1308 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
1309 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
1310 if ((sec
->flags
& SEC_ALLOC
) != 0)
1311 flags
|= SEC_ALLOC
| SEC_LOAD
;
1312 sreloc
= bfd_make_section_with_flags (dynobj
,
1316 || ! bfd_set_section_alignment (dynobj
, sreloc
, 3))
1319 elf_section_data (sec
)->sreloc
= sreloc
;
1322 /* If this is a global symbol, we count the number of
1323 relocations we need for this symbol. */
1326 head
= &((struct elf64_x86_64_link_hash_entry
*) h
)->dyn_relocs
;
1331 /* Track dynamic relocs needed for local syms too.
1332 We really need local syms available to do this
1336 s
= bfd_section_from_r_symndx (abfd
, &htab
->sym_sec
,
1341 /* Beware of type punned pointers vs strict aliasing
1343 vpp
= &(elf_section_data (s
)->local_dynrel
);
1344 head
= (struct elf64_x86_64_dyn_relocs
**)vpp
;
1348 if (p
== NULL
|| p
->sec
!= sec
)
1350 bfd_size_type amt
= sizeof *p
;
1351 p
= ((struct elf64_x86_64_dyn_relocs
*)
1352 bfd_alloc (htab
->elf
.dynobj
, amt
));
1363 if (r_type
== R_X86_64_PC8
1364 || r_type
== R_X86_64_PC16
1365 || r_type
== R_X86_64_PC32
1366 || r_type
== R_X86_64_PC64
)
1371 /* This relocation describes the C++ object vtable hierarchy.
1372 Reconstruct it for later use during GC. */
1373 case R_X86_64_GNU_VTINHERIT
:
1374 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
1378 /* This relocation describes which C++ vtable entries are actually
1379 used. Record for later use during GC. */
1380 case R_X86_64_GNU_VTENTRY
:
1381 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
1393 /* Return the section that should be marked against GC for a given
1397 elf64_x86_64_gc_mark_hook (asection
*sec
,
1398 struct bfd_link_info
*info
,
1399 Elf_Internal_Rela
*rel
,
1400 struct elf_link_hash_entry
*h
,
1401 Elf_Internal_Sym
*sym
)
1404 switch (ELF64_R_TYPE (rel
->r_info
))
1406 case R_X86_64_GNU_VTINHERIT
:
1407 case R_X86_64_GNU_VTENTRY
:
1411 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
1414 /* Update the got entry reference counts for the section being removed. */
1417 elf64_x86_64_gc_sweep_hook (bfd
*abfd
, struct bfd_link_info
*info
,
1419 const Elf_Internal_Rela
*relocs
)
1421 Elf_Internal_Shdr
*symtab_hdr
;
1422 struct elf_link_hash_entry
**sym_hashes
;
1423 bfd_signed_vma
*local_got_refcounts
;
1424 const Elf_Internal_Rela
*rel
, *relend
;
1426 elf_section_data (sec
)->local_dynrel
= NULL
;
1428 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1429 sym_hashes
= elf_sym_hashes (abfd
);
1430 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1432 relend
= relocs
+ sec
->reloc_count
;
1433 for (rel
= relocs
; rel
< relend
; rel
++)
1435 unsigned long r_symndx
;
1436 unsigned int r_type
;
1437 struct elf_link_hash_entry
*h
= NULL
;
1439 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1440 if (r_symndx
>= symtab_hdr
->sh_info
)
1442 struct elf64_x86_64_link_hash_entry
*eh
;
1443 struct elf64_x86_64_dyn_relocs
**pp
;
1444 struct elf64_x86_64_dyn_relocs
*p
;
1446 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1447 while (h
->root
.type
== bfd_link_hash_indirect
1448 || h
->root
.type
== bfd_link_hash_warning
)
1449 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1450 eh
= (struct elf64_x86_64_link_hash_entry
*) h
;
1452 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; pp
= &p
->next
)
1455 /* Everything must go for SEC. */
1461 r_type
= ELF64_R_TYPE (rel
->r_info
);
1462 if (! elf64_x86_64_tls_transition (info
, abfd
, sec
, NULL
,
1463 symtab_hdr
, sym_hashes
,
1464 &r_type
, GOT_UNKNOWN
,
1470 case R_X86_64_TLSLD
:
1471 if (elf64_x86_64_hash_table (info
)->tls_ld_got
.refcount
> 0)
1472 elf64_x86_64_hash_table (info
)->tls_ld_got
.refcount
-= 1;
1475 case R_X86_64_TLSGD
:
1476 case R_X86_64_GOTPC32_TLSDESC
:
1477 case R_X86_64_TLSDESC_CALL
:
1478 case R_X86_64_GOTTPOFF
:
1479 case R_X86_64_GOT32
:
1480 case R_X86_64_GOTPCREL
:
1481 case R_X86_64_GOT64
:
1482 case R_X86_64_GOTPCREL64
:
1483 case R_X86_64_GOTPLT64
:
1486 if (r_type
== R_X86_64_GOTPLT64
&& h
->plt
.refcount
> 0)
1487 h
->plt
.refcount
-= 1;
1488 if (h
->got
.refcount
> 0)
1489 h
->got
.refcount
-= 1;
1491 else if (local_got_refcounts
!= NULL
)
1493 if (local_got_refcounts
[r_symndx
] > 0)
1494 local_got_refcounts
[r_symndx
] -= 1;
1511 case R_X86_64_PLT32
:
1512 case R_X86_64_PLTOFF64
:
1515 if (h
->plt
.refcount
> 0)
1516 h
->plt
.refcount
-= 1;
1528 /* Adjust a symbol defined by a dynamic object and referenced by a
1529 regular object. The current definition is in some section of the
1530 dynamic object, but we're not including those sections. We have to
1531 change the definition to something the rest of the link can
1535 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info
*info
,
1536 struct elf_link_hash_entry
*h
)
1538 struct elf64_x86_64_link_hash_table
*htab
;
1541 /* If this is a function, put it in the procedure linkage table. We
1542 will fill in the contents of the procedure linkage table later,
1543 when we know the address of the .got section. */
1544 if (h
->type
== STT_FUNC
1547 if (h
->plt
.refcount
<= 0
1548 || SYMBOL_CALLS_LOCAL (info
, h
)
1549 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1550 && h
->root
.type
== bfd_link_hash_undefweak
))
1552 /* This case can occur if we saw a PLT32 reloc in an input
1553 file, but the symbol was never referred to by a dynamic
1554 object, or if all references were garbage collected. In
1555 such a case, we don't actually need to build a procedure
1556 linkage table, and we can just do a PC32 reloc instead. */
1557 h
->plt
.offset
= (bfd_vma
) -1;
1564 /* It's possible that we incorrectly decided a .plt reloc was
1565 needed for an R_X86_64_PC32 reloc to a non-function sym in
1566 check_relocs. We can't decide accurately between function and
1567 non-function syms in check-relocs; Objects loaded later in
1568 the link may change h->type. So fix it now. */
1569 h
->plt
.offset
= (bfd_vma
) -1;
1571 /* If this is a weak symbol, and there is a real definition, the
1572 processor independent code will have arranged for us to see the
1573 real definition first, and we can just use the same value. */
1574 if (h
->u
.weakdef
!= NULL
)
1576 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
1577 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
1578 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
1579 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
1580 if (ELIMINATE_COPY_RELOCS
|| info
->nocopyreloc
)
1581 h
->non_got_ref
= h
->u
.weakdef
->non_got_ref
;
1585 /* This is a reference to a symbol defined by a dynamic object which
1586 is not a function. */
1588 /* If we are creating a shared library, we must presume that the
1589 only references to the symbol are via the global offset table.
1590 For such cases we need not do anything here; the relocations will
1591 be handled correctly by relocate_section. */
1595 /* If there are no references to this symbol that do not use the
1596 GOT, we don't need to generate a copy reloc. */
1597 if (!h
->non_got_ref
)
1600 /* If -z nocopyreloc was given, we won't generate them either. */
1601 if (info
->nocopyreloc
)
1607 if (ELIMINATE_COPY_RELOCS
)
1609 struct elf64_x86_64_link_hash_entry
* eh
;
1610 struct elf64_x86_64_dyn_relocs
*p
;
1612 eh
= (struct elf64_x86_64_link_hash_entry
*) h
;
1613 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
1615 s
= p
->sec
->output_section
;
1616 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
1620 /* If we didn't find any dynamic relocs in read-only sections, then
1621 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1631 (*_bfd_error_handler
) (_("dynamic variable `%s' is zero size"),
1632 h
->root
.root
.string
);
1636 /* We must allocate the symbol in our .dynbss section, which will
1637 become part of the .bss section of the executable. There will be
1638 an entry for this symbol in the .dynsym section. The dynamic
1639 object will contain position independent code, so all references
1640 from the dynamic object to this symbol will go through the global
1641 offset table. The dynamic linker will use the .dynsym entry to
1642 determine the address it must put in the global offset table, so
1643 both the dynamic object and the regular object will refer to the
1644 same memory location for the variable. */
1646 htab
= elf64_x86_64_hash_table (info
);
1648 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1649 to copy the initial value out of the dynamic object and into the
1650 runtime process image. */
1651 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1653 htab
->srelbss
->size
+= sizeof (Elf64_External_Rela
);
1659 return _bfd_elf_adjust_dynamic_copy (h
, s
);
1662 /* Allocate space in .plt, .got and associated reloc sections for
1666 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void * inf
)
1668 struct bfd_link_info
*info
;
1669 struct elf64_x86_64_link_hash_table
*htab
;
1670 struct elf64_x86_64_link_hash_entry
*eh
;
1671 struct elf64_x86_64_dyn_relocs
*p
;
1673 if (h
->root
.type
== bfd_link_hash_indirect
)
1676 if (h
->root
.type
== bfd_link_hash_warning
)
1677 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1679 info
= (struct bfd_link_info
*) inf
;
1680 htab
= elf64_x86_64_hash_table (info
);
1682 if (htab
->elf
.dynamic_sections_created
1683 && h
->plt
.refcount
> 0)
1685 /* Make sure this symbol is output as a dynamic symbol.
1686 Undefined weak syms won't yet be marked as dynamic. */
1687 if (h
->dynindx
== -1
1688 && !h
->forced_local
)
1690 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1695 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
1697 asection
*s
= htab
->splt
;
1699 /* If this is the first .plt entry, make room for the special
1702 s
->size
+= PLT_ENTRY_SIZE
;
1704 h
->plt
.offset
= s
->size
;
1706 /* If this symbol is not defined in a regular file, and we are
1707 not generating a shared library, then set the symbol to this
1708 location in the .plt. This is required to make function
1709 pointers compare as equal between the normal executable and
1710 the shared library. */
1714 h
->root
.u
.def
.section
= s
;
1715 h
->root
.u
.def
.value
= h
->plt
.offset
;
1718 /* Make room for this entry. */
1719 s
->size
+= PLT_ENTRY_SIZE
;
1721 /* We also need to make an entry in the .got.plt section, which
1722 will be placed in the .got section by the linker script. */
1723 htab
->sgotplt
->size
+= GOT_ENTRY_SIZE
;
1725 /* We also need to make an entry in the .rela.plt section. */
1726 htab
->srelplt
->size
+= sizeof (Elf64_External_Rela
);
1727 htab
->srelplt
->reloc_count
++;
1731 h
->plt
.offset
= (bfd_vma
) -1;
1737 h
->plt
.offset
= (bfd_vma
) -1;
1741 eh
= (struct elf64_x86_64_link_hash_entry
*) h
;
1742 eh
->tlsdesc_got
= (bfd_vma
) -1;
1744 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1745 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1746 if (h
->got
.refcount
> 0
1749 && elf64_x86_64_hash_entry (h
)->tls_type
== GOT_TLS_IE
)
1750 h
->got
.offset
= (bfd_vma
) -1;
1751 else if (h
->got
.refcount
> 0)
1755 int tls_type
= elf64_x86_64_hash_entry (h
)->tls_type
;
1757 /* Make sure this symbol is output as a dynamic symbol.
1758 Undefined weak syms won't yet be marked as dynamic. */
1759 if (h
->dynindx
== -1
1760 && !h
->forced_local
)
1762 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1766 if (GOT_TLS_GDESC_P (tls_type
))
1768 eh
->tlsdesc_got
= htab
->sgotplt
->size
1769 - elf64_x86_64_compute_jump_table_size (htab
);
1770 htab
->sgotplt
->size
+= 2 * GOT_ENTRY_SIZE
;
1771 h
->got
.offset
= (bfd_vma
) -2;
1773 if (! GOT_TLS_GDESC_P (tls_type
)
1774 || GOT_TLS_GD_P (tls_type
))
1777 h
->got
.offset
= s
->size
;
1778 s
->size
+= GOT_ENTRY_SIZE
;
1779 if (GOT_TLS_GD_P (tls_type
))
1780 s
->size
+= GOT_ENTRY_SIZE
;
1782 dyn
= htab
->elf
.dynamic_sections_created
;
1783 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1785 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1786 if ((GOT_TLS_GD_P (tls_type
) && h
->dynindx
== -1)
1787 || tls_type
== GOT_TLS_IE
)
1788 htab
->srelgot
->size
+= sizeof (Elf64_External_Rela
);
1789 else if (GOT_TLS_GD_P (tls_type
))
1790 htab
->srelgot
->size
+= 2 * sizeof (Elf64_External_Rela
);
1791 else if (! GOT_TLS_GDESC_P (tls_type
)
1792 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
1793 || h
->root
.type
!= bfd_link_hash_undefweak
)
1795 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
)))
1796 htab
->srelgot
->size
+= sizeof (Elf64_External_Rela
);
1797 if (GOT_TLS_GDESC_P (tls_type
))
1799 htab
->srelplt
->size
+= sizeof (Elf64_External_Rela
);
1800 htab
->tlsdesc_plt
= (bfd_vma
) -1;
1804 h
->got
.offset
= (bfd_vma
) -1;
1806 if (eh
->dyn_relocs
== NULL
)
1809 /* In the shared -Bsymbolic case, discard space allocated for
1810 dynamic pc-relative relocs against symbols which turn out to be
1811 defined in regular objects. For the normal shared case, discard
1812 space for pc-relative relocs that have become local due to symbol
1813 visibility changes. */
1817 /* Relocs that use pc_count are those that appear on a call
1818 insn, or certain REL relocs that can generated via assembly.
1819 We want calls to protected symbols to resolve directly to the
1820 function rather than going via the plt. If people want
1821 function pointer comparisons to work as expected then they
1822 should avoid writing weird assembly. */
1823 if (SYMBOL_CALLS_LOCAL (info
, h
))
1825 struct elf64_x86_64_dyn_relocs
**pp
;
1827 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
1829 p
->count
-= p
->pc_count
;
1838 /* Also discard relocs on undefined weak syms with non-default
1840 if (eh
->dyn_relocs
!= NULL
1841 && h
->root
.type
== bfd_link_hash_undefweak
)
1843 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
1844 eh
->dyn_relocs
= NULL
;
1846 /* Make sure undefined weak symbols are output as a dynamic
1848 else if (h
->dynindx
== -1
1849 && !h
->forced_local
)
1851 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1856 else if (ELIMINATE_COPY_RELOCS
)
1858 /* For the non-shared case, discard space for relocs against
1859 symbols which turn out to need copy relocs or are not
1865 || (htab
->elf
.dynamic_sections_created
1866 && (h
->root
.type
== bfd_link_hash_undefweak
1867 || h
->root
.type
== bfd_link_hash_undefined
))))
1869 /* Make sure this symbol is output as a dynamic symbol.
1870 Undefined weak syms won't yet be marked as dynamic. */
1871 if (h
->dynindx
== -1
1872 && !h
->forced_local
)
1874 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1878 /* If that succeeded, we know we'll be keeping all the
1880 if (h
->dynindx
!= -1)
1884 eh
->dyn_relocs
= NULL
;
1889 /* Finally, allocate space. */
1890 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
1892 asection
*sreloc
= elf_section_data (p
->sec
)->sreloc
;
1893 sreloc
->size
+= p
->count
* sizeof (Elf64_External_Rela
);
1899 /* Find any dynamic relocs that apply to read-only sections. */
1902 readonly_dynrelocs (struct elf_link_hash_entry
*h
, void * inf
)
1904 struct elf64_x86_64_link_hash_entry
*eh
;
1905 struct elf64_x86_64_dyn_relocs
*p
;
1907 if (h
->root
.type
== bfd_link_hash_warning
)
1908 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1910 eh
= (struct elf64_x86_64_link_hash_entry
*) h
;
1911 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
1913 asection
*s
= p
->sec
->output_section
;
1915 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
1917 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
1919 info
->flags
|= DF_TEXTREL
;
1921 /* Not an error, just cut short the traversal. */
1928 /* Set the sizes of the dynamic sections. */
1931 elf64_x86_64_size_dynamic_sections (bfd
*output_bfd ATTRIBUTE_UNUSED
,
1932 struct bfd_link_info
*info
)
1934 struct elf64_x86_64_link_hash_table
*htab
;
1940 htab
= elf64_x86_64_hash_table (info
);
1941 dynobj
= htab
->elf
.dynobj
;
1945 if (htab
->elf
.dynamic_sections_created
)
1947 /* Set the contents of the .interp section to the interpreter. */
1948 if (info
->executable
)
1950 s
= bfd_get_section_by_name (dynobj
, ".interp");
1953 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1954 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1958 /* Set up .got offsets for local syms, and space for local dynamic
1960 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
1962 bfd_signed_vma
*local_got
;
1963 bfd_signed_vma
*end_local_got
;
1964 char *local_tls_type
;
1965 bfd_vma
*local_tlsdesc_gotent
;
1966 bfd_size_type locsymcount
;
1967 Elf_Internal_Shdr
*symtab_hdr
;
1970 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
1973 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
1975 struct elf64_x86_64_dyn_relocs
*p
;
1977 for (p
= (struct elf64_x86_64_dyn_relocs
*)
1978 (elf_section_data (s
)->local_dynrel
);
1982 if (!bfd_is_abs_section (p
->sec
)
1983 && bfd_is_abs_section (p
->sec
->output_section
))
1985 /* Input section has been discarded, either because
1986 it is a copy of a linkonce section or due to
1987 linker script /DISCARD/, so we'll be discarding
1990 else if (p
->count
!= 0)
1992 srel
= elf_section_data (p
->sec
)->sreloc
;
1993 srel
->size
+= p
->count
* sizeof (Elf64_External_Rela
);
1994 if ((p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
1995 info
->flags
|= DF_TEXTREL
;
2001 local_got
= elf_local_got_refcounts (ibfd
);
2005 symtab_hdr
= &elf_tdata (ibfd
)->symtab_hdr
;
2006 locsymcount
= symtab_hdr
->sh_info
;
2007 end_local_got
= local_got
+ locsymcount
;
2008 local_tls_type
= elf64_x86_64_local_got_tls_type (ibfd
);
2009 local_tlsdesc_gotent
= elf64_x86_64_local_tlsdesc_gotent (ibfd
);
2011 srel
= htab
->srelgot
;
2012 for (; local_got
< end_local_got
;
2013 ++local_got
, ++local_tls_type
, ++local_tlsdesc_gotent
)
2015 *local_tlsdesc_gotent
= (bfd_vma
) -1;
2018 if (GOT_TLS_GDESC_P (*local_tls_type
))
2020 *local_tlsdesc_gotent
= htab
->sgotplt
->size
2021 - elf64_x86_64_compute_jump_table_size (htab
);
2022 htab
->sgotplt
->size
+= 2 * GOT_ENTRY_SIZE
;
2023 *local_got
= (bfd_vma
) -2;
2025 if (! GOT_TLS_GDESC_P (*local_tls_type
)
2026 || GOT_TLS_GD_P (*local_tls_type
))
2028 *local_got
= s
->size
;
2029 s
->size
+= GOT_ENTRY_SIZE
;
2030 if (GOT_TLS_GD_P (*local_tls_type
))
2031 s
->size
+= GOT_ENTRY_SIZE
;
2034 || GOT_TLS_GD_ANY_P (*local_tls_type
)
2035 || *local_tls_type
== GOT_TLS_IE
)
2037 if (GOT_TLS_GDESC_P (*local_tls_type
))
2039 htab
->srelplt
->size
+= sizeof (Elf64_External_Rela
);
2040 htab
->tlsdesc_plt
= (bfd_vma
) -1;
2042 if (! GOT_TLS_GDESC_P (*local_tls_type
)
2043 || GOT_TLS_GD_P (*local_tls_type
))
2044 srel
->size
+= sizeof (Elf64_External_Rela
);
2048 *local_got
= (bfd_vma
) -1;
2052 if (htab
->tls_ld_got
.refcount
> 0)
2054 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
2056 htab
->tls_ld_got
.offset
= htab
->sgot
->size
;
2057 htab
->sgot
->size
+= 2 * GOT_ENTRY_SIZE
;
2058 htab
->srelgot
->size
+= sizeof (Elf64_External_Rela
);
2061 htab
->tls_ld_got
.offset
= -1;
2063 /* Allocate global sym .plt and .got entries, and space for global
2064 sym dynamic relocs. */
2065 elf_link_hash_traverse (&htab
->elf
, allocate_dynrelocs
, (PTR
) info
);
2067 /* For every jump slot reserved in the sgotplt, reloc_count is
2068 incremented. However, when we reserve space for TLS descriptors,
2069 it's not incremented, so in order to compute the space reserved
2070 for them, it suffices to multiply the reloc count by the jump
2073 htab
->sgotplt_jump_table_size
2074 = elf64_x86_64_compute_jump_table_size (htab
);
2076 if (htab
->tlsdesc_plt
)
2078 /* If we're not using lazy TLS relocations, don't generate the
2079 PLT and GOT entries they require. */
2080 if ((info
->flags
& DF_BIND_NOW
))
2081 htab
->tlsdesc_plt
= 0;
2084 htab
->tlsdesc_got
= htab
->sgot
->size
;
2085 htab
->sgot
->size
+= GOT_ENTRY_SIZE
;
2086 /* Reserve room for the initial entry.
2087 FIXME: we could probably do away with it in this case. */
2088 if (htab
->splt
->size
== 0)
2089 htab
->splt
->size
+= PLT_ENTRY_SIZE
;
2090 htab
->tlsdesc_plt
= htab
->splt
->size
;
2091 htab
->splt
->size
+= PLT_ENTRY_SIZE
;
2095 /* We now have determined the sizes of the various dynamic sections.
2096 Allocate memory for them. */
2098 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
2100 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
2105 || s
== htab
->sgotplt
2106 || s
== htab
->sdynbss
)
2108 /* Strip this section if we don't need it; see the
2111 else if (CONST_STRNEQ (bfd_get_section_name (dynobj
, s
), ".rela"))
2113 if (s
->size
!= 0 && s
!= htab
->srelplt
)
2116 /* We use the reloc_count field as a counter if we need
2117 to copy relocs into the output file. */
2118 if (s
!= htab
->srelplt
)
2123 /* It's not one of our sections, so don't allocate space. */
2129 /* If we don't need this section, strip it from the
2130 output file. This is mostly to handle .rela.bss and
2131 .rela.plt. We must create both sections in
2132 create_dynamic_sections, because they must be created
2133 before the linker maps input sections to output
2134 sections. The linker does that before
2135 adjust_dynamic_symbol is called, and it is that
2136 function which decides whether anything needs to go
2137 into these sections. */
2139 s
->flags
|= SEC_EXCLUDE
;
2143 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
2146 /* Allocate memory for the section contents. We use bfd_zalloc
2147 here in case unused entries are not reclaimed before the
2148 section's contents are written out. This should not happen,
2149 but this way if it does, we get a R_X86_64_NONE reloc instead
2151 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
2152 if (s
->contents
== NULL
)
2156 if (htab
->elf
.dynamic_sections_created
)
2158 /* Add some entries to the .dynamic section. We fill in the
2159 values later, in elf64_x86_64_finish_dynamic_sections, but we
2160 must add the entries now so that we get the correct size for
2161 the .dynamic section. The DT_DEBUG entry is filled in by the
2162 dynamic linker and used by the debugger. */
2163 #define add_dynamic_entry(TAG, VAL) \
2164 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2166 if (info
->executable
)
2168 if (!add_dynamic_entry (DT_DEBUG
, 0))
2172 if (htab
->splt
->size
!= 0)
2174 if (!add_dynamic_entry (DT_PLTGOT
, 0)
2175 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
2176 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
2177 || !add_dynamic_entry (DT_JMPREL
, 0))
2180 if (htab
->tlsdesc_plt
2181 && (!add_dynamic_entry (DT_TLSDESC_PLT
, 0)
2182 || !add_dynamic_entry (DT_TLSDESC_GOT
, 0)))
2188 if (!add_dynamic_entry (DT_RELA
, 0)
2189 || !add_dynamic_entry (DT_RELASZ
, 0)
2190 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf64_External_Rela
)))
2193 /* If any dynamic relocs apply to a read-only section,
2194 then we need a DT_TEXTREL entry. */
2195 if ((info
->flags
& DF_TEXTREL
) == 0)
2196 elf_link_hash_traverse (&htab
->elf
, readonly_dynrelocs
,
2199 if ((info
->flags
& DF_TEXTREL
) != 0)
2201 if (!add_dynamic_entry (DT_TEXTREL
, 0))
2206 #undef add_dynamic_entry
2212 elf64_x86_64_always_size_sections (bfd
*output_bfd
,
2213 struct bfd_link_info
*info
)
2215 asection
*tls_sec
= elf_hash_table (info
)->tls_sec
;
2219 struct elf_link_hash_entry
*tlsbase
;
2221 tlsbase
= elf_link_hash_lookup (elf_hash_table (info
),
2222 "_TLS_MODULE_BASE_",
2223 FALSE
, FALSE
, FALSE
);
2225 if (tlsbase
&& tlsbase
->type
== STT_TLS
)
2227 struct bfd_link_hash_entry
*bh
= NULL
;
2228 const struct elf_backend_data
*bed
2229 = get_elf_backend_data (output_bfd
);
2231 if (!(_bfd_generic_link_add_one_symbol
2232 (info
, output_bfd
, "_TLS_MODULE_BASE_", BSF_LOCAL
,
2233 tls_sec
, 0, NULL
, FALSE
,
2234 bed
->collect
, &bh
)))
2236 tlsbase
= (struct elf_link_hash_entry
*)bh
;
2237 tlsbase
->def_regular
= 1;
2238 tlsbase
->other
= STV_HIDDEN
;
2239 (*bed
->elf_backend_hide_symbol
) (info
, tlsbase
, TRUE
);
2246 /* Return the base VMA address which should be subtracted from real addresses
2247 when resolving @dtpoff relocation.
2248 This is PT_TLS segment p_vaddr. */
2251 dtpoff_base (struct bfd_link_info
*info
)
2253 /* If tls_sec is NULL, we should have signalled an error already. */
2254 if (elf_hash_table (info
)->tls_sec
== NULL
)
2256 return elf_hash_table (info
)->tls_sec
->vma
;
2259 /* Return the relocation value for @tpoff relocation
2260 if STT_TLS virtual address is ADDRESS. */
2263 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
2265 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
2267 /* If tls_segment is NULL, we should have signalled an error already. */
2268 if (htab
->tls_sec
== NULL
)
2270 return address
- htab
->tls_size
- htab
->tls_sec
->vma
;
2273 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2277 is_32bit_relative_branch (bfd_byte
*contents
, bfd_vma offset
)
2279 /* Opcode Instruction
2282 0x0f 0x8x conditional jump */
2284 && (contents
[offset
- 1] == 0xe8
2285 || contents
[offset
- 1] == 0xe9))
2287 && contents
[offset
- 2] == 0x0f
2288 && (contents
[offset
- 1] & 0xf0) == 0x80));
2291 /* Relocate an x86_64 ELF section. */
2294 elf64_x86_64_relocate_section (bfd
*output_bfd
, struct bfd_link_info
*info
,
2295 bfd
*input_bfd
, asection
*input_section
,
2296 bfd_byte
*contents
, Elf_Internal_Rela
*relocs
,
2297 Elf_Internal_Sym
*local_syms
,
2298 asection
**local_sections
)
2300 struct elf64_x86_64_link_hash_table
*htab
;
2301 Elf_Internal_Shdr
*symtab_hdr
;
2302 struct elf_link_hash_entry
**sym_hashes
;
2303 bfd_vma
*local_got_offsets
;
2304 bfd_vma
*local_tlsdesc_gotents
;
2305 Elf_Internal_Rela
*rel
;
2306 Elf_Internal_Rela
*relend
;
2308 htab
= elf64_x86_64_hash_table (info
);
2309 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2310 sym_hashes
= elf_sym_hashes (input_bfd
);
2311 local_got_offsets
= elf_local_got_offsets (input_bfd
);
2312 local_tlsdesc_gotents
= elf64_x86_64_local_tlsdesc_gotent (input_bfd
);
2315 relend
= relocs
+ input_section
->reloc_count
;
2316 for (; rel
< relend
; rel
++)
2318 unsigned int r_type
;
2319 reloc_howto_type
*howto
;
2320 unsigned long r_symndx
;
2321 struct elf_link_hash_entry
*h
;
2322 Elf_Internal_Sym
*sym
;
2324 bfd_vma off
, offplt
;
2326 bfd_boolean unresolved_reloc
;
2327 bfd_reloc_status_type r
;
2330 r_type
= ELF64_R_TYPE (rel
->r_info
);
2331 if (r_type
== (int) R_X86_64_GNU_VTINHERIT
2332 || r_type
== (int) R_X86_64_GNU_VTENTRY
)
2335 if (r_type
>= R_X86_64_max
)
2337 bfd_set_error (bfd_error_bad_value
);
2341 howto
= x86_64_elf_howto_table
+ r_type
;
2342 r_symndx
= ELF64_R_SYM (rel
->r_info
);
2346 unresolved_reloc
= FALSE
;
2347 if (r_symndx
< symtab_hdr
->sh_info
)
2349 sym
= local_syms
+ r_symndx
;
2350 sec
= local_sections
[r_symndx
];
2352 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
2358 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
2359 r_symndx
, symtab_hdr
, sym_hashes
,
2361 unresolved_reloc
, warned
);
2364 if (sec
!= NULL
&& elf_discarded_section (sec
))
2366 /* For relocs against symbols from removed linkonce sections,
2367 or sections discarded by a linker script, we just want the
2368 section contents zeroed. Avoid any special processing. */
2369 _bfd_clear_contents (howto
, input_bfd
, contents
+ rel
->r_offset
);
2375 if (info
->relocatable
)
2378 /* When generating a shared object, the relocations handled here are
2379 copied into the output file to be resolved at run time. */
2383 case R_X86_64_GOT32
:
2384 case R_X86_64_GOT64
:
2385 /* Relocation is to the entry for this symbol in the global
2387 case R_X86_64_GOTPCREL
:
2388 case R_X86_64_GOTPCREL64
:
2389 /* Use global offset table entry as symbol value. */
2390 case R_X86_64_GOTPLT64
:
2391 /* This is the same as GOT64 for relocation purposes, but
2392 indicates the existence of a PLT entry. The difficulty is,
2393 that we must calculate the GOT slot offset from the PLT
2394 offset, if this symbol got a PLT entry (it was global).
2395 Additionally if it's computed from the PLT entry, then that
2396 GOT offset is relative to .got.plt, not to .got. */
2397 base_got
= htab
->sgot
;
2399 if (htab
->sgot
== NULL
)
2406 off
= h
->got
.offset
;
2408 && h
->plt
.offset
!= (bfd_vma
)-1
2409 && off
== (bfd_vma
)-1)
2411 /* We can't use h->got.offset here to save
2412 state, or even just remember the offset, as
2413 finish_dynamic_symbol would use that as offset into
2415 bfd_vma plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
- 1;
2416 off
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
2417 base_got
= htab
->sgotplt
;
2420 dyn
= htab
->elf
.dynamic_sections_created
;
2422 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
2424 && SYMBOL_REFERENCES_LOCAL (info
, h
))
2425 || (ELF_ST_VISIBILITY (h
->other
)
2426 && h
->root
.type
== bfd_link_hash_undefweak
))
2428 /* This is actually a static link, or it is a -Bsymbolic
2429 link and the symbol is defined locally, or the symbol
2430 was forced to be local because of a version file. We
2431 must initialize this entry in the global offset table.
2432 Since the offset must always be a multiple of 8, we
2433 use the least significant bit to record whether we
2434 have initialized it already.
2436 When doing a dynamic link, we create a .rela.got
2437 relocation entry to initialize the value. This is
2438 done in the finish_dynamic_symbol routine. */
2443 bfd_put_64 (output_bfd
, relocation
,
2444 base_got
->contents
+ off
);
2445 /* Note that this is harmless for the GOTPLT64 case,
2446 as -1 | 1 still is -1. */
2451 unresolved_reloc
= FALSE
;
2455 if (local_got_offsets
== NULL
)
2458 off
= local_got_offsets
[r_symndx
];
2460 /* The offset must always be a multiple of 8. We use
2461 the least significant bit to record whether we have
2462 already generated the necessary reloc. */
2467 bfd_put_64 (output_bfd
, relocation
,
2468 base_got
->contents
+ off
);
2473 Elf_Internal_Rela outrel
;
2476 /* We need to generate a R_X86_64_RELATIVE reloc
2477 for the dynamic linker. */
2482 outrel
.r_offset
= (base_got
->output_section
->vma
2483 + base_got
->output_offset
2485 outrel
.r_info
= ELF64_R_INFO (0, R_X86_64_RELATIVE
);
2486 outrel
.r_addend
= relocation
;
2488 loc
+= s
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2489 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
2492 local_got_offsets
[r_symndx
] |= 1;
2496 if (off
>= (bfd_vma
) -2)
2499 relocation
= base_got
->output_section
->vma
2500 + base_got
->output_offset
+ off
;
2501 if (r_type
!= R_X86_64_GOTPCREL
&& r_type
!= R_X86_64_GOTPCREL64
)
2502 relocation
-= htab
->sgotplt
->output_section
->vma
2503 - htab
->sgotplt
->output_offset
;
2507 case R_X86_64_GOTOFF64
:
2508 /* Relocation is relative to the start of the global offset
2511 /* Check to make sure it isn't a protected function symbol
2512 for shared library since it may not be local when used
2513 as function address. */
2517 && h
->type
== STT_FUNC
2518 && ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
2520 (*_bfd_error_handler
)
2521 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
2522 input_bfd
, h
->root
.root
.string
);
2523 bfd_set_error (bfd_error_bad_value
);
2527 /* Note that sgot is not involved in this
2528 calculation. We always want the start of .got.plt. If we
2529 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
2530 permitted by the ABI, we might have to change this
2532 relocation
-= htab
->sgotplt
->output_section
->vma
2533 + htab
->sgotplt
->output_offset
;
2536 case R_X86_64_GOTPC32
:
2537 case R_X86_64_GOTPC64
:
2538 /* Use global offset table as symbol value. */
2539 relocation
= htab
->sgotplt
->output_section
->vma
2540 + htab
->sgotplt
->output_offset
;
2541 unresolved_reloc
= FALSE
;
2544 case R_X86_64_PLTOFF64
:
2545 /* Relocation is PLT entry relative to GOT. For local
2546 symbols it's the symbol itself relative to GOT. */
2548 /* See PLT32 handling. */
2549 && h
->plt
.offset
!= (bfd_vma
) -1
2550 && htab
->splt
!= NULL
)
2552 relocation
= (htab
->splt
->output_section
->vma
2553 + htab
->splt
->output_offset
2555 unresolved_reloc
= FALSE
;
2558 relocation
-= htab
->sgotplt
->output_section
->vma
2559 + htab
->sgotplt
->output_offset
;
2562 case R_X86_64_PLT32
:
2563 /* Relocation is to the entry for this symbol in the
2564 procedure linkage table. */
2566 /* Resolve a PLT32 reloc against a local symbol directly,
2567 without using the procedure linkage table. */
2571 if (h
->plt
.offset
== (bfd_vma
) -1
2572 || htab
->splt
== NULL
)
2574 /* We didn't make a PLT entry for this symbol. This
2575 happens when statically linking PIC code, or when
2576 using -Bsymbolic. */
2580 relocation
= (htab
->splt
->output_section
->vma
2581 + htab
->splt
->output_offset
2583 unresolved_reloc
= FALSE
;
2590 && !SYMBOL_REFERENCES_LOCAL (info
, h
)
2591 && (input_section
->flags
& SEC_ALLOC
) != 0
2592 && (input_section
->flags
& SEC_READONLY
) != 0
2594 || r_type
!= R_X86_64_PC32
2595 || h
->type
!= STT_FUNC
2596 || ELF_ST_VISIBILITY (h
->other
) != STV_PROTECTED
2597 || !is_32bit_relative_branch (contents
,
2601 && r_type
== R_X86_64_PC32
2602 && h
->type
== STT_FUNC
2603 && ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
2604 (*_bfd_error_handler
)
2605 (_("%B: relocation R_X86_64_PC32 against protected function `%s' can not be used when making a shared object"),
2606 input_bfd
, h
->root
.root
.string
);
2608 (*_bfd_error_handler
)
2609 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
2610 input_bfd
, x86_64_elf_howto_table
[r_type
].name
,
2611 h
->root
.root
.string
);
2612 bfd_set_error (bfd_error_bad_value
);
2622 /* FIXME: The ABI says the linker should make sure the value is
2623 the same when it's zeroextended to 64 bit. */
2625 if ((input_section
->flags
& SEC_ALLOC
) == 0)
2630 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
2631 || h
->root
.type
!= bfd_link_hash_undefweak
)
2632 && ((r_type
!= R_X86_64_PC8
2633 && r_type
!= R_X86_64_PC16
2634 && r_type
!= R_X86_64_PC32
2635 && r_type
!= R_X86_64_PC64
)
2636 || !SYMBOL_CALLS_LOCAL (info
, h
)))
2637 || (ELIMINATE_COPY_RELOCS
2644 || h
->root
.type
== bfd_link_hash_undefweak
2645 || h
->root
.type
== bfd_link_hash_undefined
)))
2647 Elf_Internal_Rela outrel
;
2649 bfd_boolean skip
, relocate
;
2652 /* When generating a shared object, these relocations
2653 are copied into the output file to be resolved at run
2659 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
2661 if (outrel
.r_offset
== (bfd_vma
) -1)
2663 else if (outrel
.r_offset
== (bfd_vma
) -2)
2664 skip
= TRUE
, relocate
= TRUE
;
2666 outrel
.r_offset
+= (input_section
->output_section
->vma
2667 + input_section
->output_offset
);
2670 memset (&outrel
, 0, sizeof outrel
);
2672 /* h->dynindx may be -1 if this symbol was marked to
2676 && (r_type
== R_X86_64_PC8
2677 || r_type
== R_X86_64_PC16
2678 || r_type
== R_X86_64_PC32
2679 || r_type
== R_X86_64_PC64
2681 || !SYMBOLIC_BIND (info
, h
)
2682 || !h
->def_regular
))
2684 outrel
.r_info
= ELF64_R_INFO (h
->dynindx
, r_type
);
2685 outrel
.r_addend
= rel
->r_addend
;
2689 /* This symbol is local, or marked to become local. */
2690 if (r_type
== R_X86_64_64
)
2693 outrel
.r_info
= ELF64_R_INFO (0, R_X86_64_RELATIVE
);
2694 outrel
.r_addend
= relocation
+ rel
->r_addend
;
2700 if (bfd_is_abs_section (sec
))
2702 else if (sec
== NULL
|| sec
->owner
== NULL
)
2704 bfd_set_error (bfd_error_bad_value
);
2711 /* We are turning this relocation into one
2712 against a section symbol. It would be
2713 proper to subtract the symbol's value,
2714 osec->vma, from the emitted reloc addend,
2715 but ld.so expects buggy relocs. */
2716 osec
= sec
->output_section
;
2717 sindx
= elf_section_data (osec
)->dynindx
;
2720 asection
*oi
= htab
->elf
.text_index_section
;
2721 sindx
= elf_section_data (oi
)->dynindx
;
2723 BFD_ASSERT (sindx
!= 0);
2726 outrel
.r_info
= ELF64_R_INFO (sindx
, r_type
);
2727 outrel
.r_addend
= relocation
+ rel
->r_addend
;
2731 sreloc
= elf_section_data (input_section
)->sreloc
;
2735 loc
= sreloc
->contents
;
2736 loc
+= sreloc
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2737 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
2739 /* If this reloc is against an external symbol, we do
2740 not want to fiddle with the addend. Otherwise, we
2741 need to include the symbol value so that it becomes
2742 an addend for the dynamic reloc. */
2749 case R_X86_64_TLSGD
:
2750 case R_X86_64_GOTPC32_TLSDESC
:
2751 case R_X86_64_TLSDESC_CALL
:
2752 case R_X86_64_GOTTPOFF
:
2753 tls_type
= GOT_UNKNOWN
;
2754 if (h
== NULL
&& local_got_offsets
)
2755 tls_type
= elf64_x86_64_local_got_tls_type (input_bfd
) [r_symndx
];
2757 tls_type
= elf64_x86_64_hash_entry (h
)->tls_type
;
2759 if (! elf64_x86_64_tls_transition (info
, input_bfd
,
2760 input_section
, contents
,
2761 symtab_hdr
, sym_hashes
,
2762 &r_type
, tls_type
, rel
,
2766 if (r_type
== R_X86_64_TPOFF32
)
2768 bfd_vma roff
= rel
->r_offset
;
2770 BFD_ASSERT (! unresolved_reloc
);
2772 if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_TLSGD
)
2774 /* GD->LE transition.
2775 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2776 .word 0x6666; rex64; call __tls_get_addr
2779 leaq foo@tpoff(%rax), %rax */
2780 memcpy (contents
+ roff
- 4,
2781 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
2783 bfd_put_32 (output_bfd
, tpoff (info
, relocation
),
2784 contents
+ roff
+ 8);
2785 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
2789 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_GOTPC32_TLSDESC
)
2791 /* GDesc -> LE transition.
2792 It's originally something like:
2793 leaq x@tlsdesc(%rip), %rax
2799 unsigned int val
, type
, type2
;
2801 type
= bfd_get_8 (input_bfd
, contents
+ roff
- 3);
2802 type2
= bfd_get_8 (input_bfd
, contents
+ roff
- 2);
2803 val
= bfd_get_8 (input_bfd
, contents
+ roff
- 1);
2804 bfd_put_8 (output_bfd
, 0x48 | ((type
>> 2) & 1),
2805 contents
+ roff
- 3);
2806 bfd_put_8 (output_bfd
, 0xc7, contents
+ roff
- 2);
2807 bfd_put_8 (output_bfd
, 0xc0 | ((val
>> 3) & 7),
2808 contents
+ roff
- 1);
2809 bfd_put_32 (output_bfd
, tpoff (info
, relocation
),
2813 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_TLSDESC_CALL
)
2815 /* GDesc -> LE transition.
2820 bfd_put_8 (output_bfd
, 0x66, contents
+ roff
);
2821 bfd_put_8 (output_bfd
, 0x90, contents
+ roff
+ 1);
2824 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_GOTTPOFF
)
2826 /* IE->LE transition:
2827 Originally it can be one of:
2828 movq foo@gottpoff(%rip), %reg
2829 addq foo@gottpoff(%rip), %reg
2832 leaq foo(%reg), %reg
2835 unsigned int val
, type
, reg
;
2837 val
= bfd_get_8 (input_bfd
, contents
+ roff
- 3);
2838 type
= bfd_get_8 (input_bfd
, contents
+ roff
- 2);
2839 reg
= bfd_get_8 (input_bfd
, contents
+ roff
- 1);
2845 bfd_put_8 (output_bfd
, 0x49,
2846 contents
+ roff
- 3);
2847 bfd_put_8 (output_bfd
, 0xc7,
2848 contents
+ roff
- 2);
2849 bfd_put_8 (output_bfd
, 0xc0 | reg
,
2850 contents
+ roff
- 1);
2854 /* addq -> addq - addressing with %rsp/%r12 is
2857 bfd_put_8 (output_bfd
, 0x49,
2858 contents
+ roff
- 3);
2859 bfd_put_8 (output_bfd
, 0x81,
2860 contents
+ roff
- 2);
2861 bfd_put_8 (output_bfd
, 0xc0 | reg
,
2862 contents
+ roff
- 1);
2868 bfd_put_8 (output_bfd
, 0x4d,
2869 contents
+ roff
- 3);
2870 bfd_put_8 (output_bfd
, 0x8d,
2871 contents
+ roff
- 2);
2872 bfd_put_8 (output_bfd
, 0x80 | reg
| (reg
<< 3),
2873 contents
+ roff
- 1);
2875 bfd_put_32 (output_bfd
, tpoff (info
, relocation
),
2883 if (htab
->sgot
== NULL
)
2888 off
= h
->got
.offset
;
2889 offplt
= elf64_x86_64_hash_entry (h
)->tlsdesc_got
;
2893 if (local_got_offsets
== NULL
)
2896 off
= local_got_offsets
[r_symndx
];
2897 offplt
= local_tlsdesc_gotents
[r_symndx
];
2904 Elf_Internal_Rela outrel
;
2909 if (htab
->srelgot
== NULL
)
2912 indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
2914 if (GOT_TLS_GDESC_P (tls_type
))
2916 outrel
.r_info
= ELF64_R_INFO (indx
, R_X86_64_TLSDESC
);
2917 BFD_ASSERT (htab
->sgotplt_jump_table_size
+ offplt
2918 + 2 * GOT_ENTRY_SIZE
<= htab
->sgotplt
->size
);
2919 outrel
.r_offset
= (htab
->sgotplt
->output_section
->vma
2920 + htab
->sgotplt
->output_offset
2922 + htab
->sgotplt_jump_table_size
);
2923 sreloc
= htab
->srelplt
;
2924 loc
= sreloc
->contents
;
2925 loc
+= sreloc
->reloc_count
++
2926 * sizeof (Elf64_External_Rela
);
2927 BFD_ASSERT (loc
+ sizeof (Elf64_External_Rela
)
2928 <= sreloc
->contents
+ sreloc
->size
);
2930 outrel
.r_addend
= relocation
- dtpoff_base (info
);
2932 outrel
.r_addend
= 0;
2933 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
2936 sreloc
= htab
->srelgot
;
2938 outrel
.r_offset
= (htab
->sgot
->output_section
->vma
2939 + htab
->sgot
->output_offset
+ off
);
2941 if (GOT_TLS_GD_P (tls_type
))
2942 dr_type
= R_X86_64_DTPMOD64
;
2943 else if (GOT_TLS_GDESC_P (tls_type
))
2946 dr_type
= R_X86_64_TPOFF64
;
2948 bfd_put_64 (output_bfd
, 0, htab
->sgot
->contents
+ off
);
2949 outrel
.r_addend
= 0;
2950 if ((dr_type
== R_X86_64_TPOFF64
2951 || dr_type
== R_X86_64_TLSDESC
) && indx
== 0)
2952 outrel
.r_addend
= relocation
- dtpoff_base (info
);
2953 outrel
.r_info
= ELF64_R_INFO (indx
, dr_type
);
2955 loc
= sreloc
->contents
;
2956 loc
+= sreloc
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2957 BFD_ASSERT (loc
+ sizeof (Elf64_External_Rela
)
2958 <= sreloc
->contents
+ sreloc
->size
);
2959 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
2961 if (GOT_TLS_GD_P (tls_type
))
2965 BFD_ASSERT (! unresolved_reloc
);
2966 bfd_put_64 (output_bfd
,
2967 relocation
- dtpoff_base (info
),
2968 htab
->sgot
->contents
+ off
+ GOT_ENTRY_SIZE
);
2972 bfd_put_64 (output_bfd
, 0,
2973 htab
->sgot
->contents
+ off
+ GOT_ENTRY_SIZE
);
2974 outrel
.r_info
= ELF64_R_INFO (indx
,
2976 outrel
.r_offset
+= GOT_ENTRY_SIZE
;
2977 sreloc
->reloc_count
++;
2978 loc
+= sizeof (Elf64_External_Rela
);
2979 BFD_ASSERT (loc
+ sizeof (Elf64_External_Rela
)
2980 <= sreloc
->contents
+ sreloc
->size
);
2981 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
2989 local_got_offsets
[r_symndx
] |= 1;
2992 if (off
>= (bfd_vma
) -2
2993 && ! GOT_TLS_GDESC_P (tls_type
))
2995 if (r_type
== ELF64_R_TYPE (rel
->r_info
))
2997 if (r_type
== R_X86_64_GOTPC32_TLSDESC
2998 || r_type
== R_X86_64_TLSDESC_CALL
)
2999 relocation
= htab
->sgotplt
->output_section
->vma
3000 + htab
->sgotplt
->output_offset
3001 + offplt
+ htab
->sgotplt_jump_table_size
;
3003 relocation
= htab
->sgot
->output_section
->vma
3004 + htab
->sgot
->output_offset
+ off
;
3005 unresolved_reloc
= FALSE
;
3009 bfd_vma roff
= rel
->r_offset
;
3011 if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_TLSGD
)
3013 /* GD->IE transition.
3014 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
3015 .word 0x6666; rex64; call __tls_get_addr@plt
3018 addq foo@gottpoff(%rip), %rax */
3019 memcpy (contents
+ roff
- 4,
3020 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
3023 relocation
= (htab
->sgot
->output_section
->vma
3024 + htab
->sgot
->output_offset
+ off
3026 - input_section
->output_section
->vma
3027 - input_section
->output_offset
3029 bfd_put_32 (output_bfd
, relocation
,
3030 contents
+ roff
+ 8);
3031 /* Skip R_X86_64_PLT32. */
3035 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_GOTPC32_TLSDESC
)
3037 /* GDesc -> IE transition.
3038 It's originally something like:
3039 leaq x@tlsdesc(%rip), %rax
3042 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax
3045 unsigned int val
, type
, type2
;
3047 type
= bfd_get_8 (input_bfd
, contents
+ roff
- 3);
3048 type2
= bfd_get_8 (input_bfd
, contents
+ roff
- 2);
3049 val
= bfd_get_8 (input_bfd
, contents
+ roff
- 1);
3051 /* Now modify the instruction as appropriate. To
3052 turn a leaq into a movq in the form we use it, it
3053 suffices to change the second byte from 0x8d to
3055 bfd_put_8 (output_bfd
, 0x8b, contents
+ roff
- 2);
3057 bfd_put_32 (output_bfd
,
3058 htab
->sgot
->output_section
->vma
3059 + htab
->sgot
->output_offset
+ off
3061 - input_section
->output_section
->vma
3062 - input_section
->output_offset
3067 else if (ELF64_R_TYPE (rel
->r_info
) == R_X86_64_TLSDESC_CALL
)
3069 /* GDesc -> IE transition.
3076 unsigned int val
, type
;
3078 type
= bfd_get_8 (input_bfd
, contents
+ roff
);
3079 val
= bfd_get_8 (input_bfd
, contents
+ roff
+ 1);
3080 bfd_put_8 (output_bfd
, 0x66, contents
+ roff
);
3081 bfd_put_8 (output_bfd
, 0x90, contents
+ roff
+ 1);
3089 case R_X86_64_TLSLD
:
3090 if (! elf64_x86_64_tls_transition (info
, input_bfd
,
3091 input_section
, contents
,
3092 symtab_hdr
, sym_hashes
,
3093 &r_type
, GOT_UNKNOWN
,
3097 if (r_type
!= R_X86_64_TLSLD
)
3099 /* LD->LE transition:
3100 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
3102 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
3104 BFD_ASSERT (r_type
== R_X86_64_TPOFF32
);
3105 memcpy (contents
+ rel
->r_offset
- 3,
3106 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
3107 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
3112 if (htab
->sgot
== NULL
)
3115 off
= htab
->tls_ld_got
.offset
;
3120 Elf_Internal_Rela outrel
;
3123 if (htab
->srelgot
== NULL
)
3126 outrel
.r_offset
= (htab
->sgot
->output_section
->vma
3127 + htab
->sgot
->output_offset
+ off
);
3129 bfd_put_64 (output_bfd
, 0,
3130 htab
->sgot
->contents
+ off
);
3131 bfd_put_64 (output_bfd
, 0,
3132 htab
->sgot
->contents
+ off
+ GOT_ENTRY_SIZE
);
3133 outrel
.r_info
= ELF64_R_INFO (0, R_X86_64_DTPMOD64
);
3134 outrel
.r_addend
= 0;
3135 loc
= htab
->srelgot
->contents
;
3136 loc
+= htab
->srelgot
->reloc_count
++ * sizeof (Elf64_External_Rela
);
3137 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
3138 htab
->tls_ld_got
.offset
|= 1;
3140 relocation
= htab
->sgot
->output_section
->vma
3141 + htab
->sgot
->output_offset
+ off
;
3142 unresolved_reloc
= FALSE
;
3145 case R_X86_64_DTPOFF32
:
3146 if (info
->shared
|| (input_section
->flags
& SEC_CODE
) == 0)
3147 relocation
-= dtpoff_base (info
);
3149 relocation
= tpoff (info
, relocation
);
3152 case R_X86_64_TPOFF32
:
3153 BFD_ASSERT (! info
->shared
);
3154 relocation
= tpoff (info
, relocation
);
3161 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3162 because such sections are not SEC_ALLOC and thus ld.so will
3163 not process them. */
3164 if (unresolved_reloc
3165 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
3167 (*_bfd_error_handler
)
3168 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3171 (long) rel
->r_offset
,
3173 h
->root
.root
.string
);
3175 r
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
3176 contents
, rel
->r_offset
,
3177 relocation
, rel
->r_addend
);
3179 if (r
!= bfd_reloc_ok
)
3184 name
= h
->root
.root
.string
;
3187 name
= bfd_elf_string_from_elf_section (input_bfd
,
3188 symtab_hdr
->sh_link
,
3193 name
= bfd_section_name (input_bfd
, sec
);
3196 if (r
== bfd_reloc_overflow
)
3198 if (! ((*info
->callbacks
->reloc_overflow
)
3199 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
3200 (bfd_vma
) 0, input_bfd
, input_section
,
3206 (*_bfd_error_handler
)
3207 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3208 input_bfd
, input_section
,
3209 (long) rel
->r_offset
, name
, (int) r
);
3218 /* Finish up dynamic symbol handling. We set the contents of various
3219 dynamic sections here. */
3222 elf64_x86_64_finish_dynamic_symbol (bfd
*output_bfd
,
3223 struct bfd_link_info
*info
,
3224 struct elf_link_hash_entry
*h
,
3225 Elf_Internal_Sym
*sym
)
3227 struct elf64_x86_64_link_hash_table
*htab
;
3229 htab
= elf64_x86_64_hash_table (info
);
3231 if (h
->plt
.offset
!= (bfd_vma
) -1)
3235 Elf_Internal_Rela rela
;
3238 /* This symbol has an entry in the procedure linkage table. Set
3240 if (h
->dynindx
== -1
3241 || htab
->splt
== NULL
3242 || htab
->sgotplt
== NULL
3243 || htab
->srelplt
== NULL
)
3246 /* Get the index in the procedure linkage table which
3247 corresponds to this symbol. This is the index of this symbol
3248 in all the symbols for which we are making plt entries. The
3249 first entry in the procedure linkage table is reserved. */
3250 plt_index
= h
->plt
.offset
/ PLT_ENTRY_SIZE
- 1;
3252 /* Get the offset into the .got table of the entry that
3253 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
3254 bytes. The first three are reserved for the dynamic linker. */
3255 got_offset
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
3257 /* Fill in the entry in the procedure linkage table. */
3258 memcpy (htab
->splt
->contents
+ h
->plt
.offset
, elf64_x86_64_plt_entry
,
3261 /* Insert the relocation positions of the plt section. The magic
3262 numbers at the end of the statements are the positions of the
3263 relocations in the plt section. */
3264 /* Put offset for jmp *name@GOTPCREL(%rip), since the
3265 instruction uses 6 bytes, subtract this value. */
3266 bfd_put_32 (output_bfd
,
3267 (htab
->sgotplt
->output_section
->vma
3268 + htab
->sgotplt
->output_offset
3270 - htab
->splt
->output_section
->vma
3271 - htab
->splt
->output_offset
3274 htab
->splt
->contents
+ h
->plt
.offset
+ 2);
3275 /* Put relocation index. */
3276 bfd_put_32 (output_bfd
, plt_index
,
3277 htab
->splt
->contents
+ h
->plt
.offset
+ 7);
3278 /* Put offset for jmp .PLT0. */
3279 bfd_put_32 (output_bfd
, - (h
->plt
.offset
+ PLT_ENTRY_SIZE
),
3280 htab
->splt
->contents
+ h
->plt
.offset
+ 12);
3282 /* Fill in the entry in the global offset table, initially this
3283 points to the pushq instruction in the PLT which is at offset 6. */
3284 bfd_put_64 (output_bfd
, (htab
->splt
->output_section
->vma
3285 + htab
->splt
->output_offset
3286 + h
->plt
.offset
+ 6),
3287 htab
->sgotplt
->contents
+ got_offset
);
3289 /* Fill in the entry in the .rela.plt section. */
3290 rela
.r_offset
= (htab
->sgotplt
->output_section
->vma
3291 + htab
->sgotplt
->output_offset
3293 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_X86_64_JUMP_SLOT
);
3295 loc
= htab
->srelplt
->contents
+ plt_index
* sizeof (Elf64_External_Rela
);
3296 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
3298 if (!h
->def_regular
)
3300 /* Mark the symbol as undefined, rather than as defined in
3301 the .plt section. Leave the value if there were any
3302 relocations where pointer equality matters (this is a clue
3303 for the dynamic linker, to make function pointer
3304 comparisons work between an application and shared
3305 library), otherwise set it to zero. If a function is only
3306 called from a binary, there is no need to slow down
3307 shared libraries because of that. */
3308 sym
->st_shndx
= SHN_UNDEF
;
3309 if (!h
->pointer_equality_needed
)
3314 if (h
->got
.offset
!= (bfd_vma
) -1
3315 && ! GOT_TLS_GD_ANY_P (elf64_x86_64_hash_entry (h
)->tls_type
)
3316 && elf64_x86_64_hash_entry (h
)->tls_type
!= GOT_TLS_IE
)
3318 Elf_Internal_Rela rela
;
3321 /* This symbol has an entry in the global offset table. Set it
3323 if (htab
->sgot
== NULL
|| htab
->srelgot
== NULL
)
3326 rela
.r_offset
= (htab
->sgot
->output_section
->vma
3327 + htab
->sgot
->output_offset
3328 + (h
->got
.offset
&~ (bfd_vma
) 1));
3330 /* If this is a static link, or it is a -Bsymbolic link and the
3331 symbol is defined locally or was forced to be local because
3332 of a version file, we just want to emit a RELATIVE reloc.
3333 The entry in the global offset table will already have been
3334 initialized in the relocate_section function. */
3336 && SYMBOL_REFERENCES_LOCAL (info
, h
))
3338 BFD_ASSERT((h
->got
.offset
& 1) != 0);
3339 rela
.r_info
= ELF64_R_INFO (0, R_X86_64_RELATIVE
);
3340 rela
.r_addend
= (h
->root
.u
.def
.value
3341 + h
->root
.u
.def
.section
->output_section
->vma
3342 + h
->root
.u
.def
.section
->output_offset
);
3346 BFD_ASSERT((h
->got
.offset
& 1) == 0);
3347 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
3348 htab
->sgot
->contents
+ h
->got
.offset
);
3349 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_X86_64_GLOB_DAT
);
3353 loc
= htab
->srelgot
->contents
;
3354 loc
+= htab
->srelgot
->reloc_count
++ * sizeof (Elf64_External_Rela
);
3355 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
3360 Elf_Internal_Rela rela
;
3363 /* This symbol needs a copy reloc. Set it up. */
3365 if (h
->dynindx
== -1
3366 || (h
->root
.type
!= bfd_link_hash_defined
3367 && h
->root
.type
!= bfd_link_hash_defweak
)
3368 || htab
->srelbss
== NULL
)
3371 rela
.r_offset
= (h
->root
.u
.def
.value
3372 + h
->root
.u
.def
.section
->output_section
->vma
3373 + h
->root
.u
.def
.section
->output_offset
);
3374 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_X86_64_COPY
);
3376 loc
= htab
->srelbss
->contents
;
3377 loc
+= htab
->srelbss
->reloc_count
++ * sizeof (Elf64_External_Rela
);
3378 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
3381 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3382 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
3383 || h
== htab
->elf
.hgot
)
3384 sym
->st_shndx
= SHN_ABS
;
3389 /* Used to decide how to sort relocs in an optimal manner for the
3390 dynamic linker, before writing them out. */
3392 static enum elf_reloc_type_class
3393 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela
*rela
)
3395 switch ((int) ELF64_R_TYPE (rela
->r_info
))
3397 case R_X86_64_RELATIVE
:
3398 return reloc_class_relative
;
3399 case R_X86_64_JUMP_SLOT
:
3400 return reloc_class_plt
;
3402 return reloc_class_copy
;
3404 return reloc_class_normal
;
3408 /* Finish up the dynamic sections. */
3411 elf64_x86_64_finish_dynamic_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
3413 struct elf64_x86_64_link_hash_table
*htab
;
3417 htab
= elf64_x86_64_hash_table (info
);
3418 dynobj
= htab
->elf
.dynobj
;
3419 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3421 if (htab
->elf
.dynamic_sections_created
)
3423 Elf64_External_Dyn
*dyncon
, *dynconend
;
3425 if (sdyn
== NULL
|| htab
->sgot
== NULL
)
3428 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
3429 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
3430 for (; dyncon
< dynconend
; dyncon
++)
3432 Elf_Internal_Dyn dyn
;
3435 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
3444 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
3448 dyn
.d_un
.d_ptr
= htab
->srelplt
->output_section
->vma
;
3452 s
= htab
->srelplt
->output_section
;
3453 dyn
.d_un
.d_val
= s
->size
;
3457 /* The procedure linkage table relocs (DT_JMPREL) should
3458 not be included in the overall relocs (DT_RELA).
3459 Therefore, we override the DT_RELASZ entry here to
3460 make it not include the JMPREL relocs. Since the
3461 linker script arranges for .rela.plt to follow all
3462 other relocation sections, we don't have to worry
3463 about changing the DT_RELA entry. */
3464 if (htab
->srelplt
!= NULL
)
3466 s
= htab
->srelplt
->output_section
;
3467 dyn
.d_un
.d_val
-= s
->size
;
3471 case DT_TLSDESC_PLT
:
3473 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
3474 + htab
->tlsdesc_plt
;
3477 case DT_TLSDESC_GOT
:
3479 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
3480 + htab
->tlsdesc_got
;
3484 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
3487 /* Fill in the special first entry in the procedure linkage table. */
3488 if (htab
->splt
&& htab
->splt
->size
> 0)
3490 /* Fill in the first entry in the procedure linkage table. */
3491 memcpy (htab
->splt
->contents
, elf64_x86_64_plt0_entry
,
3493 /* Add offset for pushq GOT+8(%rip), since the instruction
3494 uses 6 bytes subtract this value. */
3495 bfd_put_32 (output_bfd
,
3496 (htab
->sgotplt
->output_section
->vma
3497 + htab
->sgotplt
->output_offset
3499 - htab
->splt
->output_section
->vma
3500 - htab
->splt
->output_offset
3502 htab
->splt
->contents
+ 2);
3503 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
3504 the end of the instruction. */
3505 bfd_put_32 (output_bfd
,
3506 (htab
->sgotplt
->output_section
->vma
3507 + htab
->sgotplt
->output_offset
3509 - htab
->splt
->output_section
->vma
3510 - htab
->splt
->output_offset
3512 htab
->splt
->contents
+ 8);
3514 elf_section_data (htab
->splt
->output_section
)->this_hdr
.sh_entsize
=
3517 if (htab
->tlsdesc_plt
)
3519 bfd_put_64 (output_bfd
, (bfd_vma
) 0,
3520 htab
->sgot
->contents
+ htab
->tlsdesc_got
);
3522 memcpy (htab
->splt
->contents
+ htab
->tlsdesc_plt
,
3523 elf64_x86_64_plt0_entry
,
3526 /* Add offset for pushq GOT+8(%rip), since the
3527 instruction uses 6 bytes subtract this value. */
3528 bfd_put_32 (output_bfd
,
3529 (htab
->sgotplt
->output_section
->vma
3530 + htab
->sgotplt
->output_offset
3532 - htab
->splt
->output_section
->vma
3533 - htab
->splt
->output_offset
3536 htab
->splt
->contents
+ htab
->tlsdesc_plt
+ 2);
3537 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
3538 htab->tlsdesc_got. The 12 is the offset to the end of
3540 bfd_put_32 (output_bfd
,
3541 (htab
->sgot
->output_section
->vma
3542 + htab
->sgot
->output_offset
3544 - htab
->splt
->output_section
->vma
3545 - htab
->splt
->output_offset
3548 htab
->splt
->contents
+ htab
->tlsdesc_plt
+ 8);
3555 /* Fill in the first three entries in the global offset table. */
3556 if (htab
->sgotplt
->size
> 0)
3558 /* Set the first entry in the global offset table to the address of
3559 the dynamic section. */
3561 bfd_put_64 (output_bfd
, (bfd_vma
) 0, htab
->sgotplt
->contents
);
3563 bfd_put_64 (output_bfd
,
3564 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
3565 htab
->sgotplt
->contents
);
3566 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
3567 bfd_put_64 (output_bfd
, (bfd_vma
) 0, htab
->sgotplt
->contents
+ GOT_ENTRY_SIZE
);
3568 bfd_put_64 (output_bfd
, (bfd_vma
) 0, htab
->sgotplt
->contents
+ GOT_ENTRY_SIZE
*2);
3571 elf_section_data (htab
->sgotplt
->output_section
)->this_hdr
.sh_entsize
=
3575 if (htab
->sgot
&& htab
->sgot
->size
> 0)
3576 elf_section_data (htab
->sgot
->output_section
)->this_hdr
.sh_entsize
3582 /* Return address for Ith PLT stub in section PLT, for relocation REL
3583 or (bfd_vma) -1 if it should not be included. */
3586 elf64_x86_64_plt_sym_val (bfd_vma i
, const asection
*plt
,
3587 const arelent
*rel ATTRIBUTE_UNUSED
)
3589 return plt
->vma
+ (i
+ 1) * PLT_ENTRY_SIZE
;
3592 /* Handle an x86-64 specific section when reading an object file. This
3593 is called when elfcode.h finds a section with an unknown type. */
3596 elf64_x86_64_section_from_shdr (bfd
*abfd
,
3597 Elf_Internal_Shdr
*hdr
,
3601 if (hdr
->sh_type
!= SHT_X86_64_UNWIND
)
3604 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
3610 /* Hook called by the linker routine which adds symbols from an object
3611 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
3615 elf64_x86_64_add_symbol_hook (bfd
*abfd
,
3616 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
3617 Elf_Internal_Sym
*sym
,
3618 const char **namep ATTRIBUTE_UNUSED
,
3619 flagword
*flagsp ATTRIBUTE_UNUSED
,
3620 asection
**secp
, bfd_vma
*valp
)
3624 switch (sym
->st_shndx
)
3626 case SHN_X86_64_LCOMMON
:
3627 lcomm
= bfd_get_section_by_name (abfd
, "LARGE_COMMON");
3630 lcomm
= bfd_make_section_with_flags (abfd
,
3634 | SEC_LINKER_CREATED
));
3637 elf_section_flags (lcomm
) |= SHF_X86_64_LARGE
;
3640 *valp
= sym
->st_size
;
3647 /* Given a BFD section, try to locate the corresponding ELF section
3651 elf64_x86_64_elf_section_from_bfd_section (bfd
*abfd ATTRIBUTE_UNUSED
,
3652 asection
*sec
, int *index
)
3654 if (sec
== &_bfd_elf_large_com_section
)
3656 *index
= SHN_X86_64_LCOMMON
;
3662 /* Process a symbol. */
3665 elf64_x86_64_symbol_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
3668 elf_symbol_type
*elfsym
= (elf_symbol_type
*) asym
;
3670 switch (elfsym
->internal_elf_sym
.st_shndx
)
3672 case SHN_X86_64_LCOMMON
:
3673 asym
->section
= &_bfd_elf_large_com_section
;
3674 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
3675 /* Common symbol doesn't set BSF_GLOBAL. */
3676 asym
->flags
&= ~BSF_GLOBAL
;
3682 elf64_x86_64_common_definition (Elf_Internal_Sym
*sym
)
3684 return (sym
->st_shndx
== SHN_COMMON
3685 || sym
->st_shndx
== SHN_X86_64_LCOMMON
);
3689 elf64_x86_64_common_section_index (asection
*sec
)
3691 if ((elf_section_flags (sec
) & SHF_X86_64_LARGE
) == 0)
3694 return SHN_X86_64_LCOMMON
;
3698 elf64_x86_64_common_section (asection
*sec
)
3700 if ((elf_section_flags (sec
) & SHF_X86_64_LARGE
) == 0)
3701 return bfd_com_section_ptr
;
3703 return &_bfd_elf_large_com_section
;
3707 elf64_x86_64_merge_symbol (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
3708 struct elf_link_hash_entry
**sym_hash ATTRIBUTE_UNUSED
,
3709 struct elf_link_hash_entry
*h
,
3710 Elf_Internal_Sym
*sym
,
3712 bfd_vma
*pvalue ATTRIBUTE_UNUSED
,
3713 unsigned int *pold_alignment ATTRIBUTE_UNUSED
,
3714 bfd_boolean
*skip ATTRIBUTE_UNUSED
,
3715 bfd_boolean
*override ATTRIBUTE_UNUSED
,
3716 bfd_boolean
*type_change_ok ATTRIBUTE_UNUSED
,
3717 bfd_boolean
*size_change_ok ATTRIBUTE_UNUSED
,
3718 bfd_boolean
*newdef ATTRIBUTE_UNUSED
,
3719 bfd_boolean
*newdyn
,
3720 bfd_boolean
*newdyncommon ATTRIBUTE_UNUSED
,
3721 bfd_boolean
*newweak ATTRIBUTE_UNUSED
,
3722 bfd
*abfd ATTRIBUTE_UNUSED
,
3724 bfd_boolean
*olddef ATTRIBUTE_UNUSED
,
3725 bfd_boolean
*olddyn
,
3726 bfd_boolean
*olddyncommon ATTRIBUTE_UNUSED
,
3727 bfd_boolean
*oldweak ATTRIBUTE_UNUSED
,
3731 /* A normal common symbol and a large common symbol result in a
3732 normal common symbol. We turn the large common symbol into a
3735 && h
->root
.type
== bfd_link_hash_common
3737 && bfd_is_com_section (*sec
)
3740 if (sym
->st_shndx
== SHN_COMMON
3741 && (elf_section_flags (*oldsec
) & SHF_X86_64_LARGE
) != 0)
3743 h
->root
.u
.c
.p
->section
3744 = bfd_make_section_old_way (oldbfd
, "COMMON");
3745 h
->root
.u
.c
.p
->section
->flags
= SEC_ALLOC
;
3747 else if (sym
->st_shndx
== SHN_X86_64_LCOMMON
3748 && (elf_section_flags (*oldsec
) & SHF_X86_64_LARGE
) == 0)
3749 *psec
= *sec
= bfd_com_section_ptr
;
3756 elf64_x86_64_additional_program_headers (bfd
*abfd
,
3757 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
3762 /* Check to see if we need a large readonly segment. */
3763 s
= bfd_get_section_by_name (abfd
, ".lrodata");
3764 if (s
&& (s
->flags
& SEC_LOAD
))
3767 /* Check to see if we need a large data segment. Since .lbss sections
3768 is placed right after the .bss section, there should be no need for
3769 a large data segment just because of .lbss. */
3770 s
= bfd_get_section_by_name (abfd
, ".ldata");
3771 if (s
&& (s
->flags
& SEC_LOAD
))
3777 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
3780 elf64_x86_64_hash_symbol (struct elf_link_hash_entry
*h
)
3782 if (h
->plt
.offset
!= (bfd_vma
) -1
3784 && !h
->pointer_equality_needed
)
3787 return _bfd_elf_hash_symbol (h
);
3790 static const struct bfd_elf_special_section
3791 elf64_x86_64_special_sections
[]=
3793 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_X86_64_LARGE
},
3794 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_X86_64_LARGE
},
3795 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
+ SHF_X86_64_LARGE
},
3796 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_X86_64_LARGE
},
3797 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_X86_64_LARGE
},
3798 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_X86_64_LARGE
},
3799 { NULL
, 0, 0, 0, 0 }
3802 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
3803 #define TARGET_LITTLE_NAME "elf64-x86-64"
3804 #define ELF_ARCH bfd_arch_i386
3805 #define ELF_MACHINE_CODE EM_X86_64
3806 #define ELF_MAXPAGESIZE 0x200000
3807 #define ELF_MINPAGESIZE 0x1000
3808 #define ELF_COMMONPAGESIZE 0x1000
3810 #define elf_backend_can_gc_sections 1
3811 #define elf_backend_can_refcount 1
3812 #define elf_backend_want_got_plt 1
3813 #define elf_backend_plt_readonly 1
3814 #define elf_backend_want_plt_sym 0
3815 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
3816 #define elf_backend_rela_normal 1
3818 #define elf_info_to_howto elf64_x86_64_info_to_howto
3820 #define bfd_elf64_bfd_link_hash_table_create \
3821 elf64_x86_64_link_hash_table_create
3822 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
3823 #define bfd_elf64_bfd_reloc_name_lookup \
3824 elf64_x86_64_reloc_name_lookup
3826 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
3827 #define elf_backend_check_relocs elf64_x86_64_check_relocs
3828 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
3829 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
3830 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
3831 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
3832 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
3833 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
3834 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
3835 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
3836 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
3837 #define elf_backend_relocate_section elf64_x86_64_relocate_section
3838 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
3839 #define elf_backend_always_size_sections elf64_x86_64_always_size_sections
3840 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
3841 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
3842 #define elf_backend_object_p elf64_x86_64_elf_object_p
3843 #define bfd_elf64_mkobject elf64_x86_64_mkobject
3845 #define elf_backend_section_from_shdr \
3846 elf64_x86_64_section_from_shdr
3848 #define elf_backend_section_from_bfd_section \
3849 elf64_x86_64_elf_section_from_bfd_section
3850 #define elf_backend_add_symbol_hook \
3851 elf64_x86_64_add_symbol_hook
3852 #define elf_backend_symbol_processing \
3853 elf64_x86_64_symbol_processing
3854 #define elf_backend_common_section_index \
3855 elf64_x86_64_common_section_index
3856 #define elf_backend_common_section \
3857 elf64_x86_64_common_section
3858 #define elf_backend_common_definition \
3859 elf64_x86_64_common_definition
3860 #define elf_backend_merge_symbol \
3861 elf64_x86_64_merge_symbol
3862 #define elf_backend_special_sections \
3863 elf64_x86_64_special_sections
3864 #define elf_backend_additional_program_headers \
3865 elf64_x86_64_additional_program_headers
3866 #define elf_backend_hash_symbol \
3867 elf64_x86_64_hash_symbol
3869 #include "elf64-target.h"
3871 /* FreeBSD support. */
3873 #undef TARGET_LITTLE_SYM
3874 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
3875 #undef TARGET_LITTLE_NAME
3876 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
3879 #define ELF_OSABI ELFOSABI_FREEBSD
3881 #undef elf_backend_post_process_headers
3882 #define elf_backend_post_process_headers _bfd_elf_set_osabi
3885 #define elf64_bed elf64_x86_64_fbsd_bed
3887 #include "elf64-target.h"