1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002 Free Software Foundation, Inc.
6 Center for Software Science
7 Department of Computer Science
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
33 #include "elf32-hppa.h"
35 #include "elf32-hppa.h"
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
49 /* We use two hash tables to hold information for linking PA ELF objects.
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
59 There are a number of different stubs generated by the linker.
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
111 : ldw -24(%sp),%rp ; restore the original rp
114 : be,n 0(%sr0,%rp) ; inter-space return */
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
120 static const bfd_byte plt_stub
[] =
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
132 /* Section name for stubs is the associated section name plus this
134 #define STUB_SUFFIX ".stub"
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
144 enum elf32_hppa_stub_type
{
145 hppa_stub_long_branch
,
146 hppa_stub_long_branch_shared
,
148 hppa_stub_import_shared
,
153 struct elf32_hppa_stub_hash_entry
{
155 /* Base hash table entry structure. */
156 struct bfd_hash_entry root
;
158 /* The stub section. */
161 /* Offset within stub_sec of the beginning of this stub. */
164 /* Given the symbol's value and its section we can determine its final
165 value when building the stubs (so the stub knows where to jump. */
166 bfd_vma target_value
;
167 asection
*target_section
;
169 enum elf32_hppa_stub_type stub_type
;
171 /* The symbol table entry, if any, that this was derived from. */
172 struct elf32_hppa_link_hash_entry
*h
;
174 /* Where this stub is being called from, or, in the case of combined
175 stub sections, the first input section in the group. */
179 struct elf32_hppa_link_hash_entry
{
181 struct elf_link_hash_entry elf
;
183 /* A pointer to the most recently used stub hash entry against this
185 struct elf32_hppa_stub_hash_entry
*stub_cache
;
187 /* Used to count relocations for delayed sizing of relocation
189 struct elf32_hppa_dyn_reloc_entry
{
191 /* Next relocation in the chain. */
192 struct elf32_hppa_dyn_reloc_entry
*next
;
194 /* The input section of the reloc. */
197 /* Number of relocs copied in this section. */
200 #if RELATIVE_DYNRELOCS
201 /* Number of relative relocs copied for the input section. */
202 bfd_size_type relative_count
;
206 /* Set if the only reason we need a .plt entry is for a non-PIC to
207 PIC function call. */
208 unsigned int pic_call
:1;
210 /* Set if this symbol is used by a plabel reloc. */
211 unsigned int plabel
:1;
214 struct elf32_hppa_link_hash_table
{
216 /* The main hash table. */
217 struct elf_link_hash_table elf
;
219 /* The stub hash table. */
220 struct bfd_hash_table stub_hash_table
;
222 /* Linker stub bfd. */
225 /* Linker call-backs. */
226 asection
* (*add_stub_section
) PARAMS ((const char *, asection
*));
227 void (*layout_sections_again
) PARAMS ((void));
229 /* Array to keep track of which stub sections have been created, and
230 information on stub grouping. */
232 /* This is the section to which stubs in the group will be
235 /* The stub section. */
239 /* Assorted information used by elf32_hppa_size_stubs. */
240 unsigned int bfd_count
;
242 asection
**input_list
;
243 Elf_Internal_Sym
**all_local_syms
;
245 /* Short-cuts to get to dynamic linker sections. */
253 /* Used during a final link to store the base of the text and data
254 segments so that we can perform SEGREL relocations. */
255 bfd_vma text_segment_base
;
256 bfd_vma data_segment_base
;
258 /* Whether we support multiple sub-spaces for shared libs. */
259 unsigned int multi_subspace
:1;
261 /* Flags set when various size branches are detected. Used to
262 select suitable defaults for the stub group size. */
263 unsigned int has_12bit_branch
:1;
264 unsigned int has_17bit_branch
:1;
265 unsigned int has_22bit_branch
:1;
267 /* Set if we need a .plt stub to support lazy dynamic linking. */
268 unsigned int need_plt_stub
:1;
270 /* Small local sym to section mapping cache. */
271 struct sym_sec_cache sym_sec
;
274 /* Various hash macros and functions. */
275 #define hppa_link_hash_table(p) \
276 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
278 #define hppa_stub_hash_lookup(table, string, create, copy) \
279 ((struct elf32_hppa_stub_hash_entry *) \
280 bfd_hash_lookup ((table), (string), (create), (copy)))
282 static struct bfd_hash_entry
*stub_hash_newfunc
283 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
285 static struct bfd_hash_entry
*hppa_link_hash_newfunc
286 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
288 static struct bfd_link_hash_table
*elf32_hppa_link_hash_table_create
291 static void elf32_hppa_link_hash_table_free
292 PARAMS ((struct bfd_link_hash_table
*));
294 /* Stub handling functions. */
295 static char *hppa_stub_name
296 PARAMS ((const asection
*, const asection
*,
297 const struct elf32_hppa_link_hash_entry
*,
298 const Elf_Internal_Rela
*));
300 static struct elf32_hppa_stub_hash_entry
*hppa_get_stub_entry
301 PARAMS ((const asection
*, const asection
*,
302 struct elf32_hppa_link_hash_entry
*,
303 const Elf_Internal_Rela
*,
304 struct elf32_hppa_link_hash_table
*));
306 static struct elf32_hppa_stub_hash_entry
*hppa_add_stub
307 PARAMS ((const char *, asection
*, struct elf32_hppa_link_hash_table
*));
309 static enum elf32_hppa_stub_type hppa_type_of_stub
310 PARAMS ((asection
*, const Elf_Internal_Rela
*,
311 struct elf32_hppa_link_hash_entry
*, bfd_vma
));
313 static boolean hppa_build_one_stub
314 PARAMS ((struct bfd_hash_entry
*, PTR
));
316 static boolean hppa_size_one_stub
317 PARAMS ((struct bfd_hash_entry
*, PTR
));
319 /* BFD and elf backend functions. */
320 static boolean elf32_hppa_object_p
PARAMS ((bfd
*));
322 static boolean elf32_hppa_add_symbol_hook
323 PARAMS ((bfd
*, struct bfd_link_info
*, const Elf_Internal_Sym
*,
324 const char **, flagword
*, asection
**, bfd_vma
*));
326 static boolean elf32_hppa_create_dynamic_sections
327 PARAMS ((bfd
*, struct bfd_link_info
*));
329 static void elf32_hppa_copy_indirect_symbol
330 PARAMS ((struct elf_backend_data
*, struct elf_link_hash_entry
*,
331 struct elf_link_hash_entry
*));
333 static boolean elf32_hppa_check_relocs
334 PARAMS ((bfd
*, struct bfd_link_info
*,
335 asection
*, const Elf_Internal_Rela
*));
337 static asection
*elf32_hppa_gc_mark_hook
338 PARAMS ((asection
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
339 struct elf_link_hash_entry
*, Elf_Internal_Sym
*));
341 static boolean elf32_hppa_gc_sweep_hook
342 PARAMS ((bfd
*, struct bfd_link_info
*,
343 asection
*, const Elf_Internal_Rela
*));
345 static void elf32_hppa_hide_symbol
346 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*, boolean
));
348 static boolean elf32_hppa_adjust_dynamic_symbol
349 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
351 static boolean mark_PIC_calls
352 PARAMS ((struct elf_link_hash_entry
*, PTR
));
354 static boolean allocate_plt_static
355 PARAMS ((struct elf_link_hash_entry
*, PTR
));
357 static boolean allocate_dynrelocs
358 PARAMS ((struct elf_link_hash_entry
*, PTR
));
360 static boolean readonly_dynrelocs
361 PARAMS ((struct elf_link_hash_entry
*, PTR
));
363 static boolean clobber_millicode_symbols
364 PARAMS ((struct elf_link_hash_entry
*, struct bfd_link_info
*));
366 static boolean elf32_hppa_size_dynamic_sections
367 PARAMS ((bfd
*, struct bfd_link_info
*));
369 static void group_sections
370 PARAMS ((struct elf32_hppa_link_hash_table
*, bfd_size_type
, boolean
));
372 static int get_local_syms
373 PARAMS ((bfd
*, bfd
*, struct bfd_link_info
*));
375 static boolean elf32_hppa_final_link
376 PARAMS ((bfd
*, struct bfd_link_info
*));
378 static void hppa_record_segment_addr
379 PARAMS ((bfd
*, asection
*, PTR
));
381 static bfd_reloc_status_type final_link_relocate
382 PARAMS ((asection
*, bfd_byte
*, const Elf_Internal_Rela
*,
383 bfd_vma
, struct elf32_hppa_link_hash_table
*, asection
*,
384 struct elf32_hppa_link_hash_entry
*));
386 static boolean elf32_hppa_relocate_section
387 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*,
388 bfd_byte
*, Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**));
390 static boolean elf32_hppa_finish_dynamic_symbol
391 PARAMS ((bfd
*, struct bfd_link_info
*,
392 struct elf_link_hash_entry
*, Elf_Internal_Sym
*));
394 static enum elf_reloc_type_class elf32_hppa_reloc_type_class
395 PARAMS ((const Elf_Internal_Rela
*));
397 static boolean elf32_hppa_finish_dynamic_sections
398 PARAMS ((bfd
*, struct bfd_link_info
*));
400 static void elf32_hppa_post_process_headers
401 PARAMS ((bfd
*, struct bfd_link_info
*));
403 static int elf32_hppa_elf_get_symbol_type
404 PARAMS ((Elf_Internal_Sym
*, int));
406 /* Assorted hash table functions. */
408 /* Initialize an entry in the stub hash table. */
410 static struct bfd_hash_entry
*
411 stub_hash_newfunc (entry
, table
, string
)
412 struct bfd_hash_entry
*entry
;
413 struct bfd_hash_table
*table
;
416 /* Allocate the structure if it has not already been allocated by a
420 entry
= bfd_hash_allocate (table
,
421 sizeof (struct elf32_hppa_stub_hash_entry
));
426 /* Call the allocation method of the superclass. */
427 entry
= bfd_hash_newfunc (entry
, table
, string
);
430 struct elf32_hppa_stub_hash_entry
*eh
;
432 /* Initialize the local fields. */
433 eh
= (struct elf32_hppa_stub_hash_entry
*) entry
;
436 eh
->target_value
= 0;
437 eh
->target_section
= NULL
;
438 eh
->stub_type
= hppa_stub_long_branch
;
446 /* Initialize an entry in the link hash table. */
448 static struct bfd_hash_entry
*
449 hppa_link_hash_newfunc (entry
, table
, string
)
450 struct bfd_hash_entry
*entry
;
451 struct bfd_hash_table
*table
;
454 /* Allocate the structure if it has not already been allocated by a
458 entry
= bfd_hash_allocate (table
,
459 sizeof (struct elf32_hppa_link_hash_entry
));
464 /* Call the allocation method of the superclass. */
465 entry
= _bfd_elf_link_hash_newfunc (entry
, table
, string
);
468 struct elf32_hppa_link_hash_entry
*eh
;
470 /* Initialize the local fields. */
471 eh
= (struct elf32_hppa_link_hash_entry
*) entry
;
472 eh
->stub_cache
= NULL
;
473 eh
->dyn_relocs
= NULL
;
481 /* Create the derived linker hash table. The PA ELF port uses the derived
482 hash table to keep information specific to the PA ELF linker (without
483 using static variables). */
485 static struct bfd_link_hash_table
*
486 elf32_hppa_link_hash_table_create (abfd
)
489 struct elf32_hppa_link_hash_table
*ret
;
490 bfd_size_type amt
= sizeof (*ret
);
492 ret
= (struct elf32_hppa_link_hash_table
*) bfd_malloc (amt
);
496 if (!_bfd_elf_link_hash_table_init (&ret
->elf
, abfd
, hppa_link_hash_newfunc
))
502 /* Init the stub hash table too. */
503 if (!bfd_hash_table_init (&ret
->stub_hash_table
, stub_hash_newfunc
))
506 ret
->stub_bfd
= NULL
;
507 ret
->add_stub_section
= NULL
;
508 ret
->layout_sections_again
= NULL
;
509 ret
->stub_group
= NULL
;
516 ret
->text_segment_base
= (bfd_vma
) -1;
517 ret
->data_segment_base
= (bfd_vma
) -1;
518 ret
->multi_subspace
= 0;
519 ret
->has_12bit_branch
= 0;
520 ret
->has_17bit_branch
= 0;
521 ret
->has_22bit_branch
= 0;
522 ret
->need_plt_stub
= 0;
523 ret
->sym_sec
.abfd
= NULL
;
525 return &ret
->elf
.root
;
528 /* Free the derived linker hash table. */
531 elf32_hppa_link_hash_table_free (hash
)
532 struct bfd_link_hash_table
*hash
;
534 struct elf32_hppa_link_hash_table
*ret
535 = (struct elf32_hppa_link_hash_table
*) hash
;
537 bfd_hash_table_free (&ret
->stub_hash_table
);
538 _bfd_generic_link_hash_table_free (hash
);
541 /* Build a name for an entry in the stub hash table. */
544 hppa_stub_name (input_section
, sym_sec
, hash
, rel
)
545 const asection
*input_section
;
546 const asection
*sym_sec
;
547 const struct elf32_hppa_link_hash_entry
*hash
;
548 const Elf_Internal_Rela
*rel
;
555 len
= 8 + 1 + strlen (hash
->elf
.root
.root
.string
) + 1 + 8 + 1;
556 stub_name
= bfd_malloc (len
);
557 if (stub_name
!= NULL
)
559 sprintf (stub_name
, "%08x_%s+%x",
560 input_section
->id
& 0xffffffff,
561 hash
->elf
.root
.root
.string
,
562 (int) rel
->r_addend
& 0xffffffff);
567 len
= 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
568 stub_name
= bfd_malloc (len
);
569 if (stub_name
!= NULL
)
571 sprintf (stub_name
, "%08x_%x:%x+%x",
572 input_section
->id
& 0xffffffff,
573 sym_sec
->id
& 0xffffffff,
574 (int) ELF32_R_SYM (rel
->r_info
) & 0xffffffff,
575 (int) rel
->r_addend
& 0xffffffff);
581 /* Look up an entry in the stub hash. Stub entries are cached because
582 creating the stub name takes a bit of time. */
584 static struct elf32_hppa_stub_hash_entry
*
585 hppa_get_stub_entry (input_section
, sym_sec
, hash
, rel
, htab
)
586 const asection
*input_section
;
587 const asection
*sym_sec
;
588 struct elf32_hppa_link_hash_entry
*hash
;
589 const Elf_Internal_Rela
*rel
;
590 struct elf32_hppa_link_hash_table
*htab
;
592 struct elf32_hppa_stub_hash_entry
*stub_entry
;
593 const asection
*id_sec
;
595 /* If this input section is part of a group of sections sharing one
596 stub section, then use the id of the first section in the group.
597 Stub names need to include a section id, as there may well be
598 more than one stub used to reach say, printf, and we need to
599 distinguish between them. */
600 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
602 if (hash
!= NULL
&& hash
->stub_cache
!= NULL
603 && hash
->stub_cache
->h
== hash
604 && hash
->stub_cache
->id_sec
== id_sec
)
606 stub_entry
= hash
->stub_cache
;
612 stub_name
= hppa_stub_name (id_sec
, sym_sec
, hash
, rel
);
613 if (stub_name
== NULL
)
616 stub_entry
= hppa_stub_hash_lookup (&htab
->stub_hash_table
,
617 stub_name
, false, false);
619 hash
->stub_cache
= stub_entry
;
627 /* Add a new stub entry to the stub hash. Not all fields of the new
628 stub entry are initialised. */
630 static struct elf32_hppa_stub_hash_entry
*
631 hppa_add_stub (stub_name
, section
, htab
)
632 const char *stub_name
;
634 struct elf32_hppa_link_hash_table
*htab
;
638 struct elf32_hppa_stub_hash_entry
*stub_entry
;
640 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
641 stub_sec
= htab
->stub_group
[section
->id
].stub_sec
;
642 if (stub_sec
== NULL
)
644 stub_sec
= htab
->stub_group
[link_sec
->id
].stub_sec
;
645 if (stub_sec
== NULL
)
651 namelen
= strlen (link_sec
->name
);
652 len
= namelen
+ sizeof (STUB_SUFFIX
);
653 s_name
= bfd_alloc (htab
->stub_bfd
, len
);
657 memcpy (s_name
, link_sec
->name
, namelen
);
658 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
659 stub_sec
= (*htab
->add_stub_section
) (s_name
, link_sec
);
660 if (stub_sec
== NULL
)
662 htab
->stub_group
[link_sec
->id
].stub_sec
= stub_sec
;
664 htab
->stub_group
[section
->id
].stub_sec
= stub_sec
;
667 /* Enter this entry into the linker stub hash table. */
668 stub_entry
= hppa_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
670 if (stub_entry
== NULL
)
672 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
673 bfd_archive_filename (section
->owner
),
678 stub_entry
->stub_sec
= stub_sec
;
679 stub_entry
->stub_offset
= 0;
680 stub_entry
->id_sec
= link_sec
;
684 /* Determine the type of stub needed, if any, for a call. */
686 static enum elf32_hppa_stub_type
687 hppa_type_of_stub (input_sec
, rel
, hash
, destination
)
689 const Elf_Internal_Rela
*rel
;
690 struct elf32_hppa_link_hash_entry
*hash
;
694 bfd_vma branch_offset
;
695 bfd_vma max_branch_offset
;
699 && hash
->elf
.plt
.offset
!= (bfd_vma
) -1
700 && (hash
->elf
.dynindx
!= -1 || hash
->pic_call
)
703 /* We need an import stub. Decide between hppa_stub_import
704 and hppa_stub_import_shared later. */
705 return hppa_stub_import
;
708 /* Determine where the call point is. */
709 location
= (input_sec
->output_offset
710 + input_sec
->output_section
->vma
713 branch_offset
= destination
- location
- 8;
714 r_type
= ELF32_R_TYPE (rel
->r_info
);
716 /* Determine if a long branch stub is needed. parisc branch offsets
717 are relative to the second instruction past the branch, ie. +8
718 bytes on from the branch instruction location. The offset is
719 signed and counts in units of 4 bytes. */
720 if (r_type
== (unsigned int) R_PARISC_PCREL17F
)
722 max_branch_offset
= (1 << (17-1)) << 2;
724 else if (r_type
== (unsigned int) R_PARISC_PCREL12F
)
726 max_branch_offset
= (1 << (12-1)) << 2;
728 else /* R_PARISC_PCREL22F. */
730 max_branch_offset
= (1 << (22-1)) << 2;
733 if (branch_offset
+ max_branch_offset
>= 2*max_branch_offset
)
734 return hppa_stub_long_branch
;
736 return hppa_stub_none
;
739 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
740 IN_ARG contains the link info pointer. */
742 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
743 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
745 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
746 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
747 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
749 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
750 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
751 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
752 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
754 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
755 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
757 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
758 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
759 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
760 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
762 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
763 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
764 #define NOP 0x08000240 /* nop */
765 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
766 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
767 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
774 #define LDW_R1_DLT LDW_R1_R19
776 #define LDW_R1_DLT LDW_R1_DP
780 hppa_build_one_stub (gen_entry
, in_arg
)
781 struct bfd_hash_entry
*gen_entry
;
784 struct elf32_hppa_stub_hash_entry
*stub_entry
;
785 struct bfd_link_info
*info
;
786 struct elf32_hppa_link_hash_table
*htab
;
796 /* Massage our args to the form they really have. */
797 stub_entry
= (struct elf32_hppa_stub_hash_entry
*) gen_entry
;
798 info
= (struct bfd_link_info
*) in_arg
;
800 htab
= hppa_link_hash_table (info
);
801 stub_sec
= stub_entry
->stub_sec
;
803 /* Make a note of the offset within the stubs for this entry. */
804 stub_entry
->stub_offset
= stub_sec
->_raw_size
;
805 loc
= stub_sec
->contents
+ stub_entry
->stub_offset
;
807 stub_bfd
= stub_sec
->owner
;
809 switch (stub_entry
->stub_type
)
811 case hppa_stub_long_branch
:
812 /* Create the long branch. A long branch is formed with "ldil"
813 loading the upper bits of the target address into a register,
814 then branching with "be" which adds in the lower bits.
815 The "be" has its delay slot nullified. */
816 sym_value
= (stub_entry
->target_value
817 + stub_entry
->target_section
->output_offset
818 + stub_entry
->target_section
->output_section
->vma
);
820 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) 0, e_lrsel
);
821 insn
= hppa_rebuild_insn ((int) LDIL_R1
, val
, 21);
822 bfd_put_32 (stub_bfd
, insn
, loc
);
824 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) 0, e_rrsel
) >> 2;
825 insn
= hppa_rebuild_insn ((int) BE_SR4_R1
, val
, 17);
826 bfd_put_32 (stub_bfd
, insn
, loc
+ 4);
831 case hppa_stub_long_branch_shared
:
832 /* Branches are relative. This is where we are going to. */
833 sym_value
= (stub_entry
->target_value
834 + stub_entry
->target_section
->output_offset
835 + stub_entry
->target_section
->output_section
->vma
);
837 /* And this is where we are coming from, more or less. */
838 sym_value
-= (stub_entry
->stub_offset
839 + stub_sec
->output_offset
840 + stub_sec
->output_section
->vma
);
842 bfd_put_32 (stub_bfd
, (bfd_vma
) BL_R1
, loc
);
843 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) -8, e_lrsel
);
844 insn
= hppa_rebuild_insn ((int) ADDIL_R1
, val
, 21);
845 bfd_put_32 (stub_bfd
, insn
, loc
+ 4);
847 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) -8, e_rrsel
) >> 2;
848 insn
= hppa_rebuild_insn ((int) BE_SR4_R1
, val
, 17);
849 bfd_put_32 (stub_bfd
, insn
, loc
+ 8);
853 case hppa_stub_import
:
854 case hppa_stub_import_shared
:
855 off
= stub_entry
->h
->elf
.plt
.offset
;
856 if (off
>= (bfd_vma
) -2)
859 off
&= ~ (bfd_vma
) 1;
861 + htab
->splt
->output_offset
862 + htab
->splt
->output_section
->vma
863 - elf_gp (htab
->splt
->output_section
->owner
));
867 if (stub_entry
->stub_type
== hppa_stub_import_shared
)
870 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) 0, e_lrsel
),
871 insn
= hppa_rebuild_insn ((int) insn
, val
, 21);
872 bfd_put_32 (stub_bfd
, insn
, loc
);
874 /* It is critical to use lrsel/rrsel here because we are using
875 two different offsets (+0 and +4) from sym_value. If we use
876 lsel/rsel then with unfortunate sym_values we will round
877 sym_value+4 up to the next 2k block leading to a mis-match
878 between the lsel and rsel value. */
879 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) 0, e_rrsel
);
880 insn
= hppa_rebuild_insn ((int) LDW_R1_R21
, val
, 14);
881 bfd_put_32 (stub_bfd
, insn
, loc
+ 4);
883 if (htab
->multi_subspace
)
885 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) 4, e_rrsel
);
886 insn
= hppa_rebuild_insn ((int) LDW_R1_DLT
, val
, 14);
887 bfd_put_32 (stub_bfd
, insn
, loc
+ 8);
889 bfd_put_32 (stub_bfd
, (bfd_vma
) LDSID_R21_R1
, loc
+ 12);
890 bfd_put_32 (stub_bfd
, (bfd_vma
) MTSP_R1
, loc
+ 16);
891 bfd_put_32 (stub_bfd
, (bfd_vma
) BE_SR0_R21
, loc
+ 20);
892 bfd_put_32 (stub_bfd
, (bfd_vma
) STW_RP
, loc
+ 24);
898 bfd_put_32 (stub_bfd
, (bfd_vma
) BV_R0_R21
, loc
+ 8);
899 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) 4, e_rrsel
);
900 insn
= hppa_rebuild_insn ((int) LDW_R1_DLT
, val
, 14);
901 bfd_put_32 (stub_bfd
, insn
, loc
+ 12);
907 && stub_entry
->h
!= NULL
908 && stub_entry
->h
->pic_call
)
910 /* Build the .plt entry needed to call a PIC function from
911 statically linked code. We don't need any relocs. */
913 struct elf32_hppa_link_hash_entry
*eh
;
916 dynobj
= htab
->elf
.dynobj
;
917 eh
= (struct elf32_hppa_link_hash_entry
*) stub_entry
->h
;
919 if (eh
->elf
.root
.type
!= bfd_link_hash_defined
920 && eh
->elf
.root
.type
!= bfd_link_hash_defweak
)
923 value
= (eh
->elf
.root
.u
.def
.value
924 + eh
->elf
.root
.u
.def
.section
->output_offset
925 + eh
->elf
.root
.u
.def
.section
->output_section
->vma
);
927 /* Fill in the entry in the procedure linkage table.
929 The format of a plt entry is
933 bfd_put_32 (htab
->splt
->owner
, value
,
934 htab
->splt
->contents
+ off
);
935 value
= elf_gp (htab
->splt
->output_section
->owner
);
936 bfd_put_32 (htab
->splt
->owner
, value
,
937 htab
->splt
->contents
+ off
+ 4);
941 case hppa_stub_export
:
942 /* Branches are relative. This is where we are going to. */
943 sym_value
= (stub_entry
->target_value
944 + stub_entry
->target_section
->output_offset
945 + stub_entry
->target_section
->output_section
->vma
);
947 /* And this is where we are coming from. */
948 sym_value
-= (stub_entry
->stub_offset
949 + stub_sec
->output_offset
950 + stub_sec
->output_section
->vma
);
952 if (sym_value
- 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
953 && (!htab
->has_22bit_branch
954 || sym_value
- 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
956 (*_bfd_error_handler
)
957 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
958 bfd_archive_filename (stub_entry
->target_section
->owner
),
960 (long) stub_entry
->stub_offset
,
961 stub_entry
->root
.string
);
962 bfd_set_error (bfd_error_bad_value
);
966 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) -8, e_fsel
) >> 2;
967 if (!htab
->has_22bit_branch
)
968 insn
= hppa_rebuild_insn ((int) BL_RP
, val
, 17);
970 insn
= hppa_rebuild_insn ((int) BL22_RP
, val
, 22);
971 bfd_put_32 (stub_bfd
, insn
, loc
);
973 bfd_put_32 (stub_bfd
, (bfd_vma
) NOP
, loc
+ 4);
974 bfd_put_32 (stub_bfd
, (bfd_vma
) LDW_RP
, loc
+ 8);
975 bfd_put_32 (stub_bfd
, (bfd_vma
) LDSID_RP_R1
, loc
+ 12);
976 bfd_put_32 (stub_bfd
, (bfd_vma
) MTSP_R1
, loc
+ 16);
977 bfd_put_32 (stub_bfd
, (bfd_vma
) BE_SR0_RP
, loc
+ 20);
979 /* Point the function symbol at the stub. */
980 stub_entry
->h
->elf
.root
.u
.def
.section
= stub_sec
;
981 stub_entry
->h
->elf
.root
.u
.def
.value
= stub_sec
->_raw_size
;
991 stub_sec
->_raw_size
+= size
;
1017 /* As above, but don't actually build the stub. Just bump offset so
1018 we know stub section sizes. */
1021 hppa_size_one_stub (gen_entry
, in_arg
)
1022 struct bfd_hash_entry
*gen_entry
;
1025 struct elf32_hppa_stub_hash_entry
*stub_entry
;
1026 struct elf32_hppa_link_hash_table
*htab
;
1029 /* Massage our args to the form they really have. */
1030 stub_entry
= (struct elf32_hppa_stub_hash_entry
*) gen_entry
;
1031 htab
= (struct elf32_hppa_link_hash_table
*) in_arg
;
1033 if (stub_entry
->stub_type
== hppa_stub_long_branch
)
1035 else if (stub_entry
->stub_type
== hppa_stub_long_branch_shared
)
1037 else if (stub_entry
->stub_type
== hppa_stub_export
)
1039 else /* hppa_stub_import or hppa_stub_import_shared. */
1041 if (htab
->multi_subspace
)
1047 stub_entry
->stub_sec
->_raw_size
+= size
;
1051 /* Return nonzero if ABFD represents an HPPA ELF32 file.
1052 Additionally we set the default architecture and machine. */
1055 elf32_hppa_object_p (abfd
)
1058 Elf_Internal_Ehdr
* i_ehdrp
;
1061 i_ehdrp
= elf_elfheader (abfd
);
1062 if (strcmp (bfd_get_target (abfd
), "elf32-hppa-linux") == 0)
1064 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_LINUX
)
1069 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_HPUX
)
1073 flags
= i_ehdrp
->e_flags
;
1074 switch (flags
& (EF_PARISC_ARCH
| EF_PARISC_WIDE
))
1076 case EFA_PARISC_1_0
:
1077 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 10);
1078 case EFA_PARISC_1_1
:
1079 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 11);
1080 case EFA_PARISC_2_0
:
1081 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 20);
1082 case EFA_PARISC_2_0
| EF_PARISC_WIDE
:
1083 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 25);
1088 /* Undo the generic ELF code's subtraction of section->vma from the
1089 value of each external symbol. */
1092 elf32_hppa_add_symbol_hook (abfd
, info
, sym
, namep
, flagsp
, secp
, valp
)
1093 bfd
*abfd ATTRIBUTE_UNUSED
;
1094 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1095 const Elf_Internal_Sym
*sym ATTRIBUTE_UNUSED
;
1096 const char **namep ATTRIBUTE_UNUSED
;
1097 flagword
*flagsp ATTRIBUTE_UNUSED
;
1101 *valp
+= (*secp
)->vma
;
1105 /* Create the .plt and .got sections, and set up our hash table
1106 short-cuts to various dynamic sections. */
1109 elf32_hppa_create_dynamic_sections (abfd
, info
)
1111 struct bfd_link_info
*info
;
1113 struct elf32_hppa_link_hash_table
*htab
;
1115 /* Don't try to create the .plt and .got twice. */
1116 htab
= hppa_link_hash_table (info
);
1117 if (htab
->splt
!= NULL
)
1120 /* Call the generic code to do most of the work. */
1121 if (! _bfd_elf_create_dynamic_sections (abfd
, info
))
1124 htab
->splt
= bfd_get_section_by_name (abfd
, ".plt");
1125 htab
->srelplt
= bfd_get_section_by_name (abfd
, ".rela.plt");
1127 htab
->sgot
= bfd_get_section_by_name (abfd
, ".got");
1128 htab
->srelgot
= bfd_make_section (abfd
, ".rela.got");
1129 if (htab
->srelgot
== NULL
1130 || ! bfd_set_section_flags (abfd
, htab
->srelgot
,
1135 | SEC_LINKER_CREATED
1137 || ! bfd_set_section_alignment (abfd
, htab
->srelgot
, 2))
1140 htab
->sdynbss
= bfd_get_section_by_name (abfd
, ".dynbss");
1141 htab
->srelbss
= bfd_get_section_by_name (abfd
, ".rela.bss");
1146 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1149 elf32_hppa_copy_indirect_symbol (bed
, dir
, ind
)
1150 struct elf_backend_data
*bed
;
1151 struct elf_link_hash_entry
*dir
, *ind
;
1153 struct elf32_hppa_link_hash_entry
*edir
, *eind
;
1155 edir
= (struct elf32_hppa_link_hash_entry
*) dir
;
1156 eind
= (struct elf32_hppa_link_hash_entry
*) ind
;
1158 if (eind
->dyn_relocs
!= NULL
)
1160 if (edir
->dyn_relocs
!= NULL
)
1162 struct elf32_hppa_dyn_reloc_entry
**pp
;
1163 struct elf32_hppa_dyn_reloc_entry
*p
;
1165 if (ind
->root
.type
== bfd_link_hash_indirect
)
1168 /* Add reloc counts against the weak sym to the strong sym
1169 list. Merge any entries against the same section. */
1170 for (pp
= &eind
->dyn_relocs
; (p
= *pp
) != NULL
; )
1172 struct elf32_hppa_dyn_reloc_entry
*q
;
1174 for (q
= edir
->dyn_relocs
; q
!= NULL
; q
= q
->next
)
1175 if (q
->sec
== p
->sec
)
1177 #if RELATIVE_DYNRELOCS
1178 q
->relative_count
+= p
->relative_count
;
1180 q
->count
+= p
->count
;
1187 *pp
= edir
->dyn_relocs
;
1190 edir
->dyn_relocs
= eind
->dyn_relocs
;
1191 eind
->dyn_relocs
= NULL
;
1194 _bfd_elf_link_hash_copy_indirect (bed
, dir
, ind
);
1197 /* Look through the relocs for a section during the first phase, and
1198 calculate needed space in the global offset table, procedure linkage
1199 table, and dynamic reloc sections. At this point we haven't
1200 necessarily read all the input files. */
1203 elf32_hppa_check_relocs (abfd
, info
, sec
, relocs
)
1205 struct bfd_link_info
*info
;
1207 const Elf_Internal_Rela
*relocs
;
1209 Elf_Internal_Shdr
*symtab_hdr
;
1210 struct elf_link_hash_entry
**sym_hashes
;
1211 const Elf_Internal_Rela
*rel
;
1212 const Elf_Internal_Rela
*rel_end
;
1213 struct elf32_hppa_link_hash_table
*htab
;
1215 asection
*stubreloc
;
1217 if (info
->relocateable
)
1220 htab
= hppa_link_hash_table (info
);
1221 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1222 sym_hashes
= elf_sym_hashes (abfd
);
1226 rel_end
= relocs
+ sec
->reloc_count
;
1227 for (rel
= relocs
; rel
< rel_end
; rel
++)
1236 unsigned int r_symndx
, r_type
;
1237 struct elf32_hppa_link_hash_entry
*h
;
1240 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1242 if (r_symndx
< symtab_hdr
->sh_info
)
1245 h
= ((struct elf32_hppa_link_hash_entry
*)
1246 sym_hashes
[r_symndx
- symtab_hdr
->sh_info
]);
1248 r_type
= ELF32_R_TYPE (rel
->r_info
);
1252 case R_PARISC_DLTIND14F
:
1253 case R_PARISC_DLTIND14R
:
1254 case R_PARISC_DLTIND21L
:
1255 /* This symbol requires a global offset table entry. */
1256 need_entry
= NEED_GOT
;
1258 /* Mark this section as containing PIC code. */
1259 sec
->flags
|= SEC_HAS_GOT_REF
;
1262 case R_PARISC_PLABEL14R
: /* "Official" procedure labels. */
1263 case R_PARISC_PLABEL21L
:
1264 case R_PARISC_PLABEL32
:
1265 /* If the addend is non-zero, we break badly. */
1266 if (rel
->r_addend
!= 0)
1269 /* If we are creating a shared library, then we need to
1270 create a PLT entry for all PLABELs, because PLABELs with
1271 local symbols may be passed via a pointer to another
1272 object. Additionally, output a dynamic relocation
1273 pointing to the PLT entry.
1274 For executables, the original 32-bit ABI allowed two
1275 different styles of PLABELs (function pointers): For
1276 global functions, the PLABEL word points into the .plt
1277 two bytes past a (function address, gp) pair, and for
1278 local functions the PLABEL points directly at the
1279 function. The magic +2 for the first type allows us to
1280 differentiate between the two. As you can imagine, this
1281 is a real pain when it comes to generating code to call
1282 functions indirectly or to compare function pointers.
1283 We avoid the mess by always pointing a PLABEL into the
1284 .plt, even for local functions. */
1285 need_entry
= PLT_PLABEL
| NEED_PLT
| NEED_DYNREL
;
1288 case R_PARISC_PCREL12F
:
1289 htab
->has_12bit_branch
= 1;
1292 case R_PARISC_PCREL17C
:
1293 case R_PARISC_PCREL17F
:
1294 htab
->has_17bit_branch
= 1;
1297 case R_PARISC_PCREL22F
:
1298 htab
->has_22bit_branch
= 1;
1300 /* Function calls might need to go through the .plt, and
1301 might require long branch stubs. */
1304 /* We know local syms won't need a .plt entry, and if
1305 they need a long branch stub we can't guarantee that
1306 we can reach the stub. So just flag an error later
1307 if we're doing a shared link and find we need a long
1313 /* Global symbols will need a .plt entry if they remain
1314 global, and in most cases won't need a long branch
1315 stub. Unfortunately, we have to cater for the case
1316 where a symbol is forced local by versioning, or due
1317 to symbolic linking, and we lose the .plt entry. */
1318 need_entry
= NEED_PLT
;
1319 if (h
->elf
.type
== STT_PARISC_MILLI
)
1324 case R_PARISC_SEGBASE
: /* Used to set segment base. */
1325 case R_PARISC_SEGREL32
: /* Relative reloc, used for unwind. */
1326 case R_PARISC_PCREL14F
: /* PC relative load/store. */
1327 case R_PARISC_PCREL14R
:
1328 case R_PARISC_PCREL17R
: /* External branches. */
1329 case R_PARISC_PCREL21L
: /* As above, and for load/store too. */
1330 /* We don't need to propagate the relocation if linking a
1331 shared object since these are section relative. */
1334 case R_PARISC_DPREL14F
: /* Used for gp rel data load/store. */
1335 case R_PARISC_DPREL14R
:
1336 case R_PARISC_DPREL21L
:
1339 (*_bfd_error_handler
)
1340 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1341 bfd_archive_filename (abfd
),
1342 elf_hppa_howto_table
[r_type
].name
);
1343 bfd_set_error (bfd_error_bad_value
);
1348 case R_PARISC_DIR17F
: /* Used for external branches. */
1349 case R_PARISC_DIR17R
:
1350 case R_PARISC_DIR14F
: /* Used for load/store from absolute locn. */
1351 case R_PARISC_DIR14R
:
1352 case R_PARISC_DIR21L
: /* As above, and for ext branches too. */
1354 /* Help debug shared library creation. Any of the above
1355 relocs can be used in shared libs, but they may cause
1356 pages to become unshared. */
1359 (*_bfd_error_handler
)
1360 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1361 bfd_archive_filename (abfd
),
1362 elf_hppa_howto_table
[r_type
].name
);
1367 case R_PARISC_DIR32
: /* .word relocs. */
1368 /* We may want to output a dynamic relocation later. */
1369 need_entry
= NEED_DYNREL
;
1372 /* This relocation describes the C++ object vtable hierarchy.
1373 Reconstruct it for later use during GC. */
1374 case R_PARISC_GNU_VTINHERIT
:
1375 if (!_bfd_elf32_gc_record_vtinherit (abfd
, sec
,
1376 &h
->elf
, rel
->r_offset
))
1380 /* This relocation describes which C++ vtable entries are actually
1381 used. Record for later use during GC. */
1382 case R_PARISC_GNU_VTENTRY
:
1383 if (!_bfd_elf32_gc_record_vtentry (abfd
, sec
,
1384 &h
->elf
, rel
->r_addend
))
1392 /* Now carry out our orders. */
1393 if (need_entry
& NEED_GOT
)
1395 /* Allocate space for a GOT entry, as well as a dynamic
1396 relocation for this entry. */
1397 if (htab
->sgot
== NULL
)
1399 if (htab
->elf
.dynobj
== NULL
)
1400 htab
->elf
.dynobj
= abfd
;
1401 if (!elf32_hppa_create_dynamic_sections (htab
->elf
.dynobj
, info
))
1407 h
->elf
.got
.refcount
+= 1;
1411 bfd_signed_vma
*local_got_refcounts
;
1413 /* This is a global offset table entry for a local symbol. */
1414 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1415 if (local_got_refcounts
== NULL
)
1419 /* Allocate space for local got offsets and local
1420 plt offsets. Done this way to save polluting
1421 elf_obj_tdata with another target specific
1423 size
= symtab_hdr
->sh_info
;
1424 size
*= 2 * sizeof (bfd_signed_vma
);
1425 local_got_refcounts
= ((bfd_signed_vma
*)
1426 bfd_zalloc (abfd
, size
));
1427 if (local_got_refcounts
== NULL
)
1429 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
1431 local_got_refcounts
[r_symndx
] += 1;
1435 if (need_entry
& NEED_PLT
)
1437 /* If we are creating a shared library, and this is a reloc
1438 against a weak symbol or a global symbol in a dynamic
1439 object, then we will be creating an import stub and a
1440 .plt entry for the symbol. Similarly, on a normal link
1441 to symbols defined in a dynamic object we'll need the
1442 import stub and a .plt entry. We don't know yet whether
1443 the symbol is defined or not, so make an entry anyway and
1444 clean up later in adjust_dynamic_symbol. */
1445 if ((sec
->flags
& SEC_ALLOC
) != 0)
1449 h
->elf
.elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
1450 h
->elf
.plt
.refcount
+= 1;
1452 /* If this .plt entry is for a plabel, mark it so
1453 that adjust_dynamic_symbol will keep the entry
1454 even if it appears to be local. */
1455 if (need_entry
& PLT_PLABEL
)
1458 else if (need_entry
& PLT_PLABEL
)
1460 bfd_signed_vma
*local_got_refcounts
;
1461 bfd_signed_vma
*local_plt_refcounts
;
1463 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1464 if (local_got_refcounts
== NULL
)
1468 /* Allocate space for local got offsets and local
1470 size
= symtab_hdr
->sh_info
;
1471 size
*= 2 * sizeof (bfd_signed_vma
);
1472 local_got_refcounts
= ((bfd_signed_vma
*)
1473 bfd_zalloc (abfd
, size
));
1474 if (local_got_refcounts
== NULL
)
1476 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
1478 local_plt_refcounts
= (local_got_refcounts
1479 + symtab_hdr
->sh_info
);
1480 local_plt_refcounts
[r_symndx
] += 1;
1485 if (need_entry
& NEED_DYNREL
)
1487 /* Flag this symbol as having a non-got, non-plt reference
1488 so that we generate copy relocs if it turns out to be
1490 if (h
!= NULL
&& !info
->shared
)
1491 h
->elf
.elf_link_hash_flags
|= ELF_LINK_NON_GOT_REF
;
1493 /* If we are creating a shared library then we need to copy
1494 the reloc into the shared library. However, if we are
1495 linking with -Bsymbolic, we need only copy absolute
1496 relocs or relocs against symbols that are not defined in
1497 an object we are including in the link. PC- or DP- or
1498 DLT-relative relocs against any local sym or global sym
1499 with DEF_REGULAR set, can be discarded. At this point we
1500 have not seen all the input files, so it is possible that
1501 DEF_REGULAR is not set now but will be set later (it is
1502 never cleared). We account for that possibility below by
1503 storing information in the dyn_relocs field of the
1506 A similar situation to the -Bsymbolic case occurs when
1507 creating shared libraries and symbol visibility changes
1508 render the symbol local.
1510 As it turns out, all the relocs we will be creating here
1511 are absolute, so we cannot remove them on -Bsymbolic
1512 links or visibility changes anyway. A STUB_REL reloc
1513 is absolute too, as in that case it is the reloc in the
1514 stub we will be creating, rather than copying the PCREL
1515 reloc in the branch.
1517 If on the other hand, we are creating an executable, we
1518 may need to keep relocations for symbols satisfied by a
1519 dynamic library if we manage to avoid copy relocs for the
1522 && (sec
->flags
& SEC_ALLOC
) != 0
1523 && (IS_ABSOLUTE_RELOC (r_type
)
1526 || h
->elf
.root
.type
== bfd_link_hash_defweak
1527 || (h
->elf
.elf_link_hash_flags
1528 & ELF_LINK_HASH_DEF_REGULAR
) == 0))))
1530 && (sec
->flags
& SEC_ALLOC
) != 0
1532 && (h
->elf
.root
.type
== bfd_link_hash_defweak
1533 || (h
->elf
.elf_link_hash_flags
1534 & ELF_LINK_HASH_DEF_REGULAR
) == 0)))
1536 struct elf32_hppa_dyn_reloc_entry
*p
;
1537 struct elf32_hppa_dyn_reloc_entry
**head
;
1539 /* Create a reloc section in dynobj and make room for
1546 name
= (bfd_elf_string_from_elf_section
1548 elf_elfheader (abfd
)->e_shstrndx
,
1549 elf_section_data (sec
)->rel_hdr
.sh_name
));
1552 (*_bfd_error_handler
)
1553 (_("Could not find relocation section for %s"),
1555 bfd_set_error (bfd_error_bad_value
);
1559 if (htab
->elf
.dynobj
== NULL
)
1560 htab
->elf
.dynobj
= abfd
;
1562 dynobj
= htab
->elf
.dynobj
;
1563 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1568 sreloc
= bfd_make_section (dynobj
, name
);
1569 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
1570 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
1571 if ((sec
->flags
& SEC_ALLOC
) != 0)
1572 flags
|= SEC_ALLOC
| SEC_LOAD
;
1574 || !bfd_set_section_flags (dynobj
, sreloc
, flags
)
1575 || !bfd_set_section_alignment (dynobj
, sreloc
, 2))
1579 elf_section_data (sec
)->sreloc
= sreloc
;
1582 /* If this is a global symbol, we count the number of
1583 relocations we need for this symbol. */
1586 head
= &h
->dyn_relocs
;
1590 /* Track dynamic relocs needed for local syms too.
1591 We really need local syms available to do this
1595 s
= bfd_section_from_r_symndx (abfd
, &htab
->sym_sec
,
1600 head
= ((struct elf32_hppa_dyn_reloc_entry
**)
1601 &elf_section_data (s
)->local_dynrel
);
1605 if (p
== NULL
|| p
->sec
!= sec
)
1607 p
= ((struct elf32_hppa_dyn_reloc_entry
*)
1608 bfd_alloc (htab
->elf
.dynobj
,
1609 (bfd_size_type
) sizeof *p
));
1616 #if RELATIVE_DYNRELOCS
1617 p
->relative_count
= 0;
1622 #if RELATIVE_DYNRELOCS
1623 if (!IS_ABSOLUTE_RELOC (rtype
))
1624 p
->relative_count
+= 1;
1633 /* Return the section that should be marked against garbage collection
1634 for a given relocation. */
1637 elf32_hppa_gc_mark_hook (sec
, info
, rel
, h
, sym
)
1639 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1640 Elf_Internal_Rela
*rel
;
1641 struct elf_link_hash_entry
*h
;
1642 Elf_Internal_Sym
*sym
;
1646 switch ((unsigned int) ELF32_R_TYPE (rel
->r_info
))
1648 case R_PARISC_GNU_VTINHERIT
:
1649 case R_PARISC_GNU_VTENTRY
:
1653 switch (h
->root
.type
)
1655 case bfd_link_hash_defined
:
1656 case bfd_link_hash_defweak
:
1657 return h
->root
.u
.def
.section
;
1659 case bfd_link_hash_common
:
1660 return h
->root
.u
.c
.p
->section
;
1668 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
1673 /* Update the got and plt entry reference counts for the section being
1677 elf32_hppa_gc_sweep_hook (abfd
, info
, sec
, relocs
)
1679 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1681 const Elf_Internal_Rela
*relocs
;
1683 Elf_Internal_Shdr
*symtab_hdr
;
1684 struct elf_link_hash_entry
**sym_hashes
;
1685 bfd_signed_vma
*local_got_refcounts
;
1686 bfd_signed_vma
*local_plt_refcounts
;
1687 const Elf_Internal_Rela
*rel
, *relend
;
1688 unsigned long r_symndx
;
1689 struct elf_link_hash_entry
*h
;
1690 struct elf32_hppa_link_hash_table
*htab
;
1693 elf_section_data (sec
)->local_dynrel
= NULL
;
1695 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1696 sym_hashes
= elf_sym_hashes (abfd
);
1697 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1698 local_plt_refcounts
= local_got_refcounts
;
1699 if (local_plt_refcounts
!= NULL
)
1700 local_plt_refcounts
+= symtab_hdr
->sh_info
;
1701 htab
= hppa_link_hash_table (info
);
1702 dynobj
= htab
->elf
.dynobj
;
1706 relend
= relocs
+ sec
->reloc_count
;
1707 for (rel
= relocs
; rel
< relend
; rel
++)
1708 switch ((unsigned int) ELF32_R_TYPE (rel
->r_info
))
1710 case R_PARISC_DLTIND14F
:
1711 case R_PARISC_DLTIND14R
:
1712 case R_PARISC_DLTIND21L
:
1713 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1714 if (r_symndx
>= symtab_hdr
->sh_info
)
1716 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1717 if (h
->got
.refcount
> 0)
1718 h
->got
.refcount
-= 1;
1720 else if (local_got_refcounts
!= NULL
)
1722 if (local_got_refcounts
[r_symndx
] > 0)
1723 local_got_refcounts
[r_symndx
] -= 1;
1727 case R_PARISC_PCREL12F
:
1728 case R_PARISC_PCREL17C
:
1729 case R_PARISC_PCREL17F
:
1730 case R_PARISC_PCREL22F
:
1731 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1732 if (r_symndx
>= symtab_hdr
->sh_info
)
1734 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1735 if (h
->plt
.refcount
> 0)
1736 h
->plt
.refcount
-= 1;
1740 case R_PARISC_PLABEL14R
:
1741 case R_PARISC_PLABEL21L
:
1742 case R_PARISC_PLABEL32
:
1743 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1744 if (r_symndx
>= symtab_hdr
->sh_info
)
1746 struct elf32_hppa_link_hash_entry
*eh
;
1747 struct elf32_hppa_dyn_reloc_entry
**pp
;
1748 struct elf32_hppa_dyn_reloc_entry
*p
;
1750 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1752 if (h
->plt
.refcount
> 0)
1753 h
->plt
.refcount
-= 1;
1755 eh
= (struct elf32_hppa_link_hash_entry
*) h
;
1757 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; pp
= &p
->next
)
1760 #if RELATIVE_DYNRELOCS
1761 if (!IS_ABSOLUTE_RELOC (rtype
))
1762 p
->relative_count
-= 1;
1770 else if (local_plt_refcounts
!= NULL
)
1772 if (local_plt_refcounts
[r_symndx
] > 0)
1773 local_plt_refcounts
[r_symndx
] -= 1;
1777 case R_PARISC_DIR32
:
1778 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1779 if (r_symndx
>= symtab_hdr
->sh_info
)
1781 struct elf32_hppa_link_hash_entry
*eh
;
1782 struct elf32_hppa_dyn_reloc_entry
**pp
;
1783 struct elf32_hppa_dyn_reloc_entry
*p
;
1785 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1787 eh
= (struct elf32_hppa_link_hash_entry
*) h
;
1789 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; pp
= &p
->next
)
1792 #if RELATIVE_DYNRELOCS
1793 if (!IS_ABSOLUTE_RELOC (R_PARISC_DIR32
))
1794 p
->relative_count
-= 1;
1811 /* Our own version of hide_symbol, so that we can keep plt entries for
1815 elf32_hppa_hide_symbol (info
, h
, force_local
)
1816 struct bfd_link_info
*info
;
1817 struct elf_link_hash_entry
*h
;
1818 boolean force_local
;
1822 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
1823 if (h
->dynindx
!= -1)
1826 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1831 if (! ((struct elf32_hppa_link_hash_entry
*) h
)->plabel
)
1833 h
->elf_link_hash_flags
&= ~ELF_LINK_HASH_NEEDS_PLT
;
1834 h
->plt
.offset
= (bfd_vma
) -1;
1838 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1839 will be called from elflink.h. If elflink.h doesn't call our
1840 finish_dynamic_symbol routine, we'll need to do something about
1841 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1842 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1844 && ((INFO)->shared \
1845 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1846 && ((H)->dynindx != -1 \
1847 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1849 /* Adjust a symbol defined by a dynamic object and referenced by a
1850 regular object. The current definition is in some section of the
1851 dynamic object, but we're not including those sections. We have to
1852 change the definition to something the rest of the link can
1856 elf32_hppa_adjust_dynamic_symbol (info
, h
)
1857 struct bfd_link_info
*info
;
1858 struct elf_link_hash_entry
*h
;
1860 struct elf32_hppa_link_hash_table
*htab
;
1861 struct elf32_hppa_link_hash_entry
*eh
;
1862 struct elf32_hppa_dyn_reloc_entry
*p
;
1864 unsigned int power_of_two
;
1866 /* If this is a function, put it in the procedure linkage table. We
1867 will fill in the contents of the procedure linkage table later. */
1868 if (h
->type
== STT_FUNC
1869 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0)
1871 if (h
->plt
.refcount
<= 0
1872 || ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
1873 && h
->root
.type
!= bfd_link_hash_defweak
1874 && ! ((struct elf32_hppa_link_hash_entry
*) h
)->plabel
1875 && (!info
->shared
|| info
->symbolic
)))
1877 /* The .plt entry is not needed when:
1878 a) Garbage collection has removed all references to the
1880 b) We know for certain the symbol is defined in this
1881 object, and it's not a weak definition, nor is the symbol
1882 used by a plabel relocation. Either this object is the
1883 application or we are doing a shared symbolic link. */
1885 /* As a special sop to the hppa ABI, we keep a .plt entry
1886 for functions in sections containing PIC code. */
1888 && h
->plt
.refcount
> 0
1889 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
1890 && (h
->root
.u
.def
.section
->flags
& SEC_HAS_GOT_REF
) != 0)
1891 ((struct elf32_hppa_link_hash_entry
*) h
)->pic_call
= 1;
1894 h
->plt
.offset
= (bfd_vma
) -1;
1895 h
->elf_link_hash_flags
&= ~ELF_LINK_HASH_NEEDS_PLT
;
1902 h
->plt
.offset
= (bfd_vma
) -1;
1904 /* If this is a weak symbol, and there is a real definition, the
1905 processor independent code will have arranged for us to see the
1906 real definition first, and we can just use the same value. */
1907 if (h
->weakdef
!= NULL
)
1909 if (h
->weakdef
->root
.type
!= bfd_link_hash_defined
1910 && h
->weakdef
->root
.type
!= bfd_link_hash_defweak
)
1912 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
1913 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
1917 /* This is a reference to a symbol defined by a dynamic object which
1918 is not a function. */
1920 /* If we are creating a shared library, we must presume that the
1921 only references to the symbol are via the global offset table.
1922 For such cases we need not do anything here; the relocations will
1923 be handled correctly by relocate_section. */
1927 /* If there are no references to this symbol that do not use the
1928 GOT, we don't need to generate a copy reloc. */
1929 if ((h
->elf_link_hash_flags
& ELF_LINK_NON_GOT_REF
) == 0)
1932 eh
= (struct elf32_hppa_link_hash_entry
*) h
;
1933 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
1935 s
= p
->sec
->output_section
;
1936 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
1940 /* If we didn't find any dynamic relocs in read-only sections, then
1941 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1944 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_GOT_REF
;
1948 /* We must allocate the symbol in our .dynbss section, which will
1949 become part of the .bss section of the executable. There will be
1950 an entry for this symbol in the .dynsym section. The dynamic
1951 object will contain position independent code, so all references
1952 from the dynamic object to this symbol will go through the global
1953 offset table. The dynamic linker will use the .dynsym entry to
1954 determine the address it must put in the global offset table, so
1955 both the dynamic object and the regular object will refer to the
1956 same memory location for the variable. */
1958 htab
= hppa_link_hash_table (info
);
1960 /* We must generate a COPY reloc to tell the dynamic linker to
1961 copy the initial value out of the dynamic object and into the
1962 runtime process image. */
1963 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1965 htab
->srelbss
->_raw_size
+= sizeof (Elf32_External_Rela
);
1966 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_COPY
;
1969 /* We need to figure out the alignment required for this symbol. I
1970 have no idea how other ELF linkers handle this. */
1972 power_of_two
= bfd_log2 (h
->size
);
1973 if (power_of_two
> 3)
1976 /* Apply the required alignment. */
1978 s
->_raw_size
= BFD_ALIGN (s
->_raw_size
,
1979 (bfd_size_type
) (1 << power_of_two
));
1980 if (power_of_two
> bfd_get_section_alignment (htab
->elf
.dynobj
, s
))
1982 if (! bfd_set_section_alignment (htab
->elf
.dynobj
, s
, power_of_two
))
1986 /* Define the symbol as being at this point in the section. */
1987 h
->root
.u
.def
.section
= s
;
1988 h
->root
.u
.def
.value
= s
->_raw_size
;
1990 /* Increment the section size to make room for the symbol. */
1991 s
->_raw_size
+= h
->size
;
1996 /* Called via elf_link_hash_traverse to create .plt entries for an
1997 application that uses statically linked PIC functions. Similar to
1998 the first part of elf32_hppa_adjust_dynamic_symbol. */
2001 mark_PIC_calls (h
, inf
)
2002 struct elf_link_hash_entry
*h
;
2003 PTR inf ATTRIBUTE_UNUSED
;
2005 if (h
->root
.type
== bfd_link_hash_warning
)
2006 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2008 if (! (h
->plt
.refcount
> 0
2009 && (h
->root
.type
== bfd_link_hash_defined
2010 || h
->root
.type
== bfd_link_hash_defweak
)
2011 && (h
->root
.u
.def
.section
->flags
& SEC_HAS_GOT_REF
) != 0))
2013 h
->plt
.offset
= (bfd_vma
) -1;
2014 h
->elf_link_hash_flags
&= ~ELF_LINK_HASH_NEEDS_PLT
;
2018 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
2019 ((struct elf32_hppa_link_hash_entry
*) h
)->pic_call
= 1;
2024 /* Allocate space in the .plt for entries that won't have relocations.
2025 ie. pic_call and plabel entries. */
2028 allocate_plt_static (h
, inf
)
2029 struct elf_link_hash_entry
*h
;
2032 struct bfd_link_info
*info
;
2033 struct elf32_hppa_link_hash_table
*htab
;
2036 if (h
->root
.type
== bfd_link_hash_indirect
)
2039 if (h
->root
.type
== bfd_link_hash_warning
)
2040 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2042 info
= (struct bfd_link_info
*) inf
;
2043 htab
= hppa_link_hash_table (info
);
2044 if (((struct elf32_hppa_link_hash_entry
*) h
)->pic_call
)
2046 /* Make an entry in the .plt section for non-pic code that is
2047 calling pic code. */
2048 ((struct elf32_hppa_link_hash_entry
*) h
)->plabel
= 0;
2050 h
->plt
.offset
= s
->_raw_size
;
2051 s
->_raw_size
+= PLT_ENTRY_SIZE
;
2053 else if (htab
->elf
.dynamic_sections_created
2054 && h
->plt
.refcount
> 0)
2056 /* Make sure this symbol is output as a dynamic symbol.
2057 Undefined weak syms won't yet be marked as dynamic. */
2058 if (h
->dynindx
== -1
2059 && (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0
2060 && h
->type
!= STT_PARISC_MILLI
)
2062 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
2066 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info
, h
))
2068 /* Allocate these later. From this point on, h->plabel
2069 means that the plt entry is only used by a plabel.
2070 We'll be using a normal plt entry for this symbol, so
2071 clear the plabel indicator. */
2072 ((struct elf32_hppa_link_hash_entry
*) h
)->plabel
= 0;
2074 else if (((struct elf32_hppa_link_hash_entry
*) h
)->plabel
)
2076 /* Make an entry in the .plt section for plabel references
2077 that won't have a .plt entry for other reasons. */
2079 h
->plt
.offset
= s
->_raw_size
;
2080 s
->_raw_size
+= PLT_ENTRY_SIZE
;
2084 /* No .plt entry needed. */
2085 h
->plt
.offset
= (bfd_vma
) -1;
2086 h
->elf_link_hash_flags
&= ~ELF_LINK_HASH_NEEDS_PLT
;
2091 h
->plt
.offset
= (bfd_vma
) -1;
2092 h
->elf_link_hash_flags
&= ~ELF_LINK_HASH_NEEDS_PLT
;
2098 /* Allocate space in .plt, .got and associated reloc sections for
2102 allocate_dynrelocs (h
, inf
)
2103 struct elf_link_hash_entry
*h
;
2106 struct bfd_link_info
*info
;
2107 struct elf32_hppa_link_hash_table
*htab
;
2109 struct elf32_hppa_link_hash_entry
*eh
;
2110 struct elf32_hppa_dyn_reloc_entry
*p
;
2112 if (h
->root
.type
== bfd_link_hash_indirect
)
2115 if (h
->root
.type
== bfd_link_hash_warning
)
2116 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2118 info
= (struct bfd_link_info
*) inf
;
2119 htab
= hppa_link_hash_table (info
);
2120 if (htab
->elf
.dynamic_sections_created
2121 && h
->plt
.offset
!= (bfd_vma
) -1
2122 && !((struct elf32_hppa_link_hash_entry
*) h
)->pic_call
2123 && !((struct elf32_hppa_link_hash_entry
*) h
)->plabel
)
2125 /* Make an entry in the .plt section. */
2127 h
->plt
.offset
= s
->_raw_size
;
2128 s
->_raw_size
+= PLT_ENTRY_SIZE
;
2130 /* We also need to make an entry in the .rela.plt section. */
2131 htab
->srelplt
->_raw_size
+= sizeof (Elf32_External_Rela
);
2132 htab
->need_plt_stub
= 1;
2135 if (h
->got
.refcount
> 0)
2137 /* Make sure this symbol is output as a dynamic symbol.
2138 Undefined weak syms won't yet be marked as dynamic. */
2139 if (h
->dynindx
== -1
2140 && (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0
2141 && h
->type
!= STT_PARISC_MILLI
)
2143 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
2148 h
->got
.offset
= s
->_raw_size
;
2149 s
->_raw_size
+= GOT_ENTRY_SIZE
;
2150 if (htab
->elf
.dynamic_sections_created
2152 || (h
->dynindx
!= -1
2153 && h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0))
2155 htab
->srelgot
->_raw_size
+= sizeof (Elf32_External_Rela
);
2159 h
->got
.offset
= (bfd_vma
) -1;
2161 eh
= (struct elf32_hppa_link_hash_entry
*) h
;
2162 if (eh
->dyn_relocs
== NULL
)
2165 /* If this is a -Bsymbolic shared link, then we need to discard all
2166 space allocated for dynamic pc-relative relocs against symbols
2167 defined in a regular object. For the normal shared case, discard
2168 space for relocs that have become local due to symbol visibility
2172 #if RELATIVE_DYNRELOCS
2173 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
2174 && ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0
2177 struct elf32_hppa_dyn_reloc_entry
**pp
;
2179 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
2181 p
->count
-= p
->relative_count
;
2182 p
->relative_count
= 0;
2193 /* For the non-shared case, discard space for relocs against
2194 symbols which turn out to need copy relocs or are not
2196 if ((h
->elf_link_hash_flags
& ELF_LINK_NON_GOT_REF
) == 0
2197 && (((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
2198 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2199 || (htab
->elf
.dynamic_sections_created
2200 && (h
->root
.type
== bfd_link_hash_undefweak
2201 || h
->root
.type
== bfd_link_hash_undefined
))))
2203 /* Make sure this symbol is output as a dynamic symbol.
2204 Undefined weak syms won't yet be marked as dynamic. */
2205 if (h
->dynindx
== -1
2206 && (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0
2207 && h
->type
!= STT_PARISC_MILLI
)
2209 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
2213 /* If that succeeded, we know we'll be keeping all the
2215 if (h
->dynindx
!= -1)
2219 eh
->dyn_relocs
= NULL
;
2225 /* Finally, allocate space. */
2226 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
2228 asection
*sreloc
= elf_section_data (p
->sec
)->sreloc
;
2229 sreloc
->_raw_size
+= p
->count
* sizeof (Elf32_External_Rela
);
2235 /* This function is called via elf_link_hash_traverse to force
2236 millicode symbols local so they do not end up as globals in the
2237 dynamic symbol table. We ought to be able to do this in
2238 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2239 for all dynamic symbols. Arguably, this is a bug in
2240 elf_adjust_dynamic_symbol. */
2243 clobber_millicode_symbols (h
, info
)
2244 struct elf_link_hash_entry
*h
;
2245 struct bfd_link_info
*info
;
2247 if (h
->root
.type
== bfd_link_hash_warning
)
2248 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2250 if (h
->type
== STT_PARISC_MILLI
2251 && (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0)
2253 elf32_hppa_hide_symbol (info
, h
, true);
2258 /* Find any dynamic relocs that apply to read-only sections. */
2261 readonly_dynrelocs (h
, inf
)
2262 struct elf_link_hash_entry
*h
;
2265 struct elf32_hppa_link_hash_entry
*eh
;
2266 struct elf32_hppa_dyn_reloc_entry
*p
;
2268 if (h
->root
.type
== bfd_link_hash_warning
)
2269 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2271 eh
= (struct elf32_hppa_link_hash_entry
*) h
;
2272 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
2274 asection
*s
= p
->sec
->output_section
;
2276 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
2278 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
2280 info
->flags
|= DF_TEXTREL
;
2282 /* Not an error, just cut short the traversal. */
2289 /* Set the sizes of the dynamic sections. */
2292 elf32_hppa_size_dynamic_sections (output_bfd
, info
)
2293 bfd
*output_bfd ATTRIBUTE_UNUSED
;
2294 struct bfd_link_info
*info
;
2296 struct elf32_hppa_link_hash_table
*htab
;
2302 htab
= hppa_link_hash_table (info
);
2303 dynobj
= htab
->elf
.dynobj
;
2307 if (htab
->elf
.dynamic_sections_created
)
2309 /* Set the contents of the .interp section to the interpreter. */
2312 s
= bfd_get_section_by_name (dynobj
, ".interp");
2315 s
->_raw_size
= sizeof ELF_DYNAMIC_INTERPRETER
;
2316 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
2319 /* Force millicode symbols local. */
2320 elf_link_hash_traverse (&htab
->elf
,
2321 clobber_millicode_symbols
,
2326 /* Run through the function symbols, looking for any that are
2327 PIC, and mark them as needing .plt entries so that %r19 will
2330 elf_link_hash_traverse (&htab
->elf
, mark_PIC_calls
, (PTR
) info
);
2333 /* Set up .got and .plt offsets for local syms, and space for local
2335 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
2337 bfd_signed_vma
*local_got
;
2338 bfd_signed_vma
*end_local_got
;
2339 bfd_signed_vma
*local_plt
;
2340 bfd_signed_vma
*end_local_plt
;
2341 bfd_size_type locsymcount
;
2342 Elf_Internal_Shdr
*symtab_hdr
;
2345 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
2348 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
2350 struct elf32_hppa_dyn_reloc_entry
*p
;
2352 for (p
= ((struct elf32_hppa_dyn_reloc_entry
*)
2353 elf_section_data (s
)->local_dynrel
);
2357 if (!bfd_is_abs_section (p
->sec
)
2358 && bfd_is_abs_section (p
->sec
->output_section
))
2360 /* Input section has been discarded, either because
2361 it is a copy of a linkonce section or due to
2362 linker script /DISCARD/, so we'll be discarding
2365 else if (p
->count
!= 0)
2367 srel
= elf_section_data (p
->sec
)->sreloc
;
2368 srel
->_raw_size
+= p
->count
* sizeof (Elf32_External_Rela
);
2369 if ((p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
2370 info
->flags
|= DF_TEXTREL
;
2375 local_got
= elf_local_got_refcounts (ibfd
);
2379 symtab_hdr
= &elf_tdata (ibfd
)->symtab_hdr
;
2380 locsymcount
= symtab_hdr
->sh_info
;
2381 end_local_got
= local_got
+ locsymcount
;
2383 srel
= htab
->srelgot
;
2384 for (; local_got
< end_local_got
; ++local_got
)
2388 *local_got
= s
->_raw_size
;
2389 s
->_raw_size
+= GOT_ENTRY_SIZE
;
2391 srel
->_raw_size
+= sizeof (Elf32_External_Rela
);
2394 *local_got
= (bfd_vma
) -1;
2397 local_plt
= end_local_got
;
2398 end_local_plt
= local_plt
+ locsymcount
;
2399 if (! htab
->elf
.dynamic_sections_created
)
2401 /* Won't be used, but be safe. */
2402 for (; local_plt
< end_local_plt
; ++local_plt
)
2403 *local_plt
= (bfd_vma
) -1;
2408 srel
= htab
->srelplt
;
2409 for (; local_plt
< end_local_plt
; ++local_plt
)
2413 *local_plt
= s
->_raw_size
;
2414 s
->_raw_size
+= PLT_ENTRY_SIZE
;
2416 srel
->_raw_size
+= sizeof (Elf32_External_Rela
);
2419 *local_plt
= (bfd_vma
) -1;
2424 /* Do all the .plt entries without relocs first. The dynamic linker
2425 uses the last .plt reloc to find the end of the .plt (and hence
2426 the start of the .got) for lazy linking. */
2427 elf_link_hash_traverse (&htab
->elf
, allocate_plt_static
, (PTR
) info
);
2429 /* Allocate global sym .plt and .got entries, and space for global
2430 sym dynamic relocs. */
2431 elf_link_hash_traverse (&htab
->elf
, allocate_dynrelocs
, (PTR
) info
);
2433 /* The check_relocs and adjust_dynamic_symbol entry points have
2434 determined the sizes of the various dynamic sections. Allocate
2437 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
2439 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
2442 if (s
== htab
->splt
)
2444 if (htab
->need_plt_stub
)
2446 /* Make space for the plt stub at the end of the .plt
2447 section. We want this stub right at the end, up
2448 against the .got section. */
2449 int gotalign
= bfd_section_alignment (dynobj
, htab
->sgot
);
2450 int pltalign
= bfd_section_alignment (dynobj
, s
);
2453 if (gotalign
> pltalign
)
2454 bfd_set_section_alignment (dynobj
, s
, gotalign
);
2455 mask
= ((bfd_size_type
) 1 << gotalign
) - 1;
2456 s
->_raw_size
= (s
->_raw_size
+ sizeof (plt_stub
) + mask
) & ~mask
;
2459 else if (s
== htab
->sgot
)
2461 else if (strncmp (bfd_get_section_name (dynobj
, s
), ".rela", 5) == 0)
2463 if (s
->_raw_size
!= 0)
2465 /* Remember whether there are any reloc sections other
2467 if (s
!= htab
->srelplt
)
2470 /* We use the reloc_count field as a counter if we need
2471 to copy relocs into the output file. */
2477 /* It's not one of our sections, so don't allocate space. */
2481 if (s
->_raw_size
== 0)
2483 /* If we don't need this section, strip it from the
2484 output file. This is mostly to handle .rela.bss and
2485 .rela.plt. We must create both sections in
2486 create_dynamic_sections, because they must be created
2487 before the linker maps input sections to output
2488 sections. The linker does that before
2489 adjust_dynamic_symbol is called, and it is that
2490 function which decides whether anything needs to go
2491 into these sections. */
2492 _bfd_strip_section_from_output (info
, s
);
2496 /* Allocate memory for the section contents. Zero it, because
2497 we may not fill in all the reloc sections. */
2498 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->_raw_size
);
2499 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
2503 if (htab
->elf
.dynamic_sections_created
)
2505 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2506 actually has nothing to do with the PLT, it is how we
2507 communicate the LTP value of a load module to the dynamic
2509 #define add_dynamic_entry(TAG, VAL) \
2510 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2512 if (!add_dynamic_entry (DT_PLTGOT
, 0))
2515 /* Add some entries to the .dynamic section. We fill in the
2516 values later, in elf32_hppa_finish_dynamic_sections, but we
2517 must add the entries now so that we get the correct size for
2518 the .dynamic section. The DT_DEBUG entry is filled in by the
2519 dynamic linker and used by the debugger. */
2522 if (!add_dynamic_entry (DT_DEBUG
, 0))
2526 if (htab
->srelplt
->_raw_size
!= 0)
2528 if (!add_dynamic_entry (DT_PLTRELSZ
, 0)
2529 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
2530 || !add_dynamic_entry (DT_JMPREL
, 0))
2536 if (!add_dynamic_entry (DT_RELA
, 0)
2537 || !add_dynamic_entry (DT_RELASZ
, 0)
2538 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf32_External_Rela
)))
2541 /* If any dynamic relocs apply to a read-only section,
2542 then we need a DT_TEXTREL entry. */
2543 if ((info
->flags
& DF_TEXTREL
) == 0)
2544 elf_link_hash_traverse (&htab
->elf
, readonly_dynrelocs
,
2547 if ((info
->flags
& DF_TEXTREL
) != 0)
2549 if (!add_dynamic_entry (DT_TEXTREL
, 0))
2554 #undef add_dynamic_entry
2559 /* External entry points for sizing and building linker stubs. */
2561 /* Set up various things so that we can make a list of input sections
2562 for each output section included in the link. Returns -1 on error,
2563 0 when no stubs will be needed, and 1 on success. */
2566 elf32_hppa_setup_section_lists (output_bfd
, info
)
2568 struct bfd_link_info
*info
;
2571 unsigned int bfd_count
;
2572 int top_id
, top_index
;
2574 asection
**input_list
, **list
;
2576 struct elf32_hppa_link_hash_table
*htab
= hppa_link_hash_table (info
);
2578 if (htab
->elf
.root
.creator
->flavour
!= bfd_target_elf_flavour
)
2581 /* Count the number of input BFDs and find the top input section id. */
2582 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
2584 input_bfd
= input_bfd
->link_next
)
2587 for (section
= input_bfd
->sections
;
2589 section
= section
->next
)
2591 if (top_id
< section
->id
)
2592 top_id
= section
->id
;
2595 htab
->bfd_count
= bfd_count
;
2597 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
2598 htab
->stub_group
= (struct map_stub
*) bfd_zmalloc (amt
);
2599 if (htab
->stub_group
== NULL
)
2602 /* We can't use output_bfd->section_count here to find the top output
2603 section index as some sections may have been removed, and
2604 _bfd_strip_section_from_output doesn't renumber the indices. */
2605 for (section
= output_bfd
->sections
, top_index
= 0;
2607 section
= section
->next
)
2609 if (top_index
< section
->index
)
2610 top_index
= section
->index
;
2613 htab
->top_index
= top_index
;
2614 amt
= sizeof (asection
*) * (top_index
+ 1);
2615 input_list
= (asection
**) bfd_malloc (amt
);
2616 htab
->input_list
= input_list
;
2617 if (input_list
== NULL
)
2620 /* For sections we aren't interested in, mark their entries with a
2621 value we can check later. */
2622 list
= input_list
+ top_index
;
2624 *list
= bfd_abs_section_ptr
;
2625 while (list
-- != input_list
);
2627 for (section
= output_bfd
->sections
;
2629 section
= section
->next
)
2631 if ((section
->flags
& SEC_CODE
) != 0)
2632 input_list
[section
->index
] = NULL
;
2638 /* The linker repeatedly calls this function for each input section,
2639 in the order that input sections are linked into output sections.
2640 Build lists of input sections to determine groupings between which
2641 we may insert linker stubs. */
2644 elf32_hppa_next_input_section (info
, isec
)
2645 struct bfd_link_info
*info
;
2648 struct elf32_hppa_link_hash_table
*htab
= hppa_link_hash_table (info
);
2650 if (isec
->output_section
->index
<= htab
->top_index
)
2652 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
2653 if (*list
!= bfd_abs_section_ptr
)
2655 /* Steal the link_sec pointer for our list. */
2656 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2657 /* This happens to make the list in reverse order,
2658 which is what we want. */
2659 PREV_SEC (isec
) = *list
;
2665 /* See whether we can group stub sections together. Grouping stub
2666 sections may result in fewer stubs. More importantly, we need to
2667 put all .init* and .fini* stubs at the beginning of the .init or
2668 .fini output sections respectively, because glibc splits the
2669 _init and _fini functions into multiple parts. Putting a stub in
2670 the middle of a function is not a good idea. */
2673 group_sections (htab
, stub_group_size
, stubs_always_before_branch
)
2674 struct elf32_hppa_link_hash_table
*htab
;
2675 bfd_size_type stub_group_size
;
2676 boolean stubs_always_before_branch
;
2678 asection
**list
= htab
->input_list
+ htab
->top_index
;
2681 asection
*tail
= *list
;
2682 if (tail
== bfd_abs_section_ptr
)
2684 while (tail
!= NULL
)
2688 bfd_size_type total
;
2691 if (tail
->_cooked_size
)
2692 total
= tail
->_cooked_size
;
2694 total
= tail
->_raw_size
;
2695 while ((prev
= PREV_SEC (curr
)) != NULL
2696 && ((total
+= curr
->output_offset
- prev
->output_offset
)
2700 /* OK, the size from the start of CURR to the end is less
2701 than 240000 bytes and thus can be handled by one stub
2702 section. (or the tail section is itself larger than
2703 240000 bytes, in which case we may be toast.)
2704 We should really be keeping track of the total size of
2705 stubs added here, as stubs contribute to the final output
2706 section size. That's a little tricky, and this way will
2707 only break if stubs added total more than 22144 bytes, or
2708 2768 long branch stubs. It seems unlikely for more than
2709 2768 different functions to be called, especially from
2710 code only 240000 bytes long. This limit used to be
2711 250000, but c++ code tends to generate lots of little
2712 functions, and sometimes violated the assumption. */
2715 prev
= PREV_SEC (tail
);
2716 /* Set up this stub group. */
2717 htab
->stub_group
[tail
->id
].link_sec
= curr
;
2719 while (tail
!= curr
&& (tail
= prev
) != NULL
);
2721 /* But wait, there's more! Input sections up to 240000
2722 bytes before the stub section can be handled by it too. */
2723 if (!stubs_always_before_branch
)
2727 && ((total
+= tail
->output_offset
- prev
->output_offset
)
2731 prev
= PREV_SEC (tail
);
2732 htab
->stub_group
[tail
->id
].link_sec
= curr
;
2738 while (list
-- != htab
->input_list
);
2739 free (htab
->input_list
);
2743 /* Read in all local syms for all input bfds, and create hash entries
2744 for export stubs if we are building a multi-subspace shared lib.
2745 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2748 get_local_syms (output_bfd
, input_bfd
, info
)
2751 struct bfd_link_info
*info
;
2753 unsigned int bfd_indx
;
2754 Elf_Internal_Sym
*local_syms
, **all_local_syms
;
2755 int stub_changed
= 0;
2756 struct elf32_hppa_link_hash_table
*htab
= hppa_link_hash_table (info
);
2758 /* We want to read in symbol extension records only once. To do this
2759 we need to read in the local symbols in parallel and save them for
2760 later use; so hold pointers to the local symbols in an array. */
2761 bfd_size_type amt
= sizeof (Elf_Internal_Sym
*) * htab
->bfd_count
;
2762 all_local_syms
= (Elf_Internal_Sym
**) bfd_zmalloc (amt
);
2763 htab
->all_local_syms
= all_local_syms
;
2764 if (all_local_syms
== NULL
)
2767 /* Walk over all the input BFDs, swapping in local symbols.
2768 If we are creating a shared library, create hash entries for the
2772 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
2774 Elf_Internal_Shdr
*symtab_hdr
;
2776 /* We'll need the symbol table in a second. */
2777 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2778 if (symtab_hdr
->sh_info
== 0)
2781 /* We need an array of the local symbols attached to the input bfd. */
2782 local_syms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
2783 if (local_syms
== NULL
)
2785 local_syms
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
2786 symtab_hdr
->sh_info
, 0,
2788 /* Cache them for elf_link_input_bfd. */
2789 symtab_hdr
->contents
= (unsigned char *) local_syms
;
2791 if (local_syms
== NULL
)
2794 all_local_syms
[bfd_indx
] = local_syms
;
2796 if (info
->shared
&& htab
->multi_subspace
)
2798 struct elf_link_hash_entry
**sym_hashes
;
2799 struct elf_link_hash_entry
**end_hashes
;
2800 unsigned int symcount
;
2802 symcount
= (symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
)
2803 - symtab_hdr
->sh_info
);
2804 sym_hashes
= elf_sym_hashes (input_bfd
);
2805 end_hashes
= sym_hashes
+ symcount
;
2807 /* Look through the global syms for functions; We need to
2808 build export stubs for all globally visible functions. */
2809 for (; sym_hashes
< end_hashes
; sym_hashes
++)
2811 struct elf32_hppa_link_hash_entry
*hash
;
2813 hash
= (struct elf32_hppa_link_hash_entry
*) *sym_hashes
;
2815 while (hash
->elf
.root
.type
== bfd_link_hash_indirect
2816 || hash
->elf
.root
.type
== bfd_link_hash_warning
)
2817 hash
= ((struct elf32_hppa_link_hash_entry
*)
2818 hash
->elf
.root
.u
.i
.link
);
2820 /* At this point in the link, undefined syms have been
2821 resolved, so we need to check that the symbol was
2822 defined in this BFD. */
2823 if ((hash
->elf
.root
.type
== bfd_link_hash_defined
2824 || hash
->elf
.root
.type
== bfd_link_hash_defweak
)
2825 && hash
->elf
.type
== STT_FUNC
2826 && hash
->elf
.root
.u
.def
.section
->output_section
!= NULL
2827 && (hash
->elf
.root
.u
.def
.section
->output_section
->owner
2829 && hash
->elf
.root
.u
.def
.section
->owner
== input_bfd
2830 && (hash
->elf
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)
2831 && !(hash
->elf
.elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
)
2832 && ELF_ST_VISIBILITY (hash
->elf
.other
) == STV_DEFAULT
)
2835 const char *stub_name
;
2836 struct elf32_hppa_stub_hash_entry
*stub_entry
;
2838 sec
= hash
->elf
.root
.u
.def
.section
;
2839 stub_name
= hash
->elf
.root
.root
.string
;
2840 stub_entry
= hppa_stub_hash_lookup (&htab
->stub_hash_table
,
2843 if (stub_entry
== NULL
)
2845 stub_entry
= hppa_add_stub (stub_name
, sec
, htab
);
2849 stub_entry
->target_value
= hash
->elf
.root
.u
.def
.value
;
2850 stub_entry
->target_section
= hash
->elf
.root
.u
.def
.section
;
2851 stub_entry
->stub_type
= hppa_stub_export
;
2852 stub_entry
->h
= hash
;
2857 (*_bfd_error_handler
) (_("%s: duplicate export stub %s"),
2858 bfd_archive_filename (input_bfd
),
2866 return stub_changed
;
2869 /* Determine and set the size of the stub section for a final link.
2871 The basic idea here is to examine all the relocations looking for
2872 PC-relative calls to a target that is unreachable with a "bl"
2876 elf32_hppa_size_stubs (output_bfd
, stub_bfd
, info
, multi_subspace
, group_size
,
2877 add_stub_section
, layout_sections_again
)
2880 struct bfd_link_info
*info
;
2881 boolean multi_subspace
;
2882 bfd_signed_vma group_size
;
2883 asection
* (*add_stub_section
) PARAMS ((const char *, asection
*));
2884 void (*layout_sections_again
) PARAMS ((void));
2886 bfd_size_type stub_group_size
;
2887 boolean stubs_always_before_branch
;
2888 boolean stub_changed
;
2889 struct elf32_hppa_link_hash_table
*htab
= hppa_link_hash_table (info
);
2891 /* Stash our params away. */
2892 htab
->stub_bfd
= stub_bfd
;
2893 htab
->multi_subspace
= multi_subspace
;
2894 htab
->add_stub_section
= add_stub_section
;
2895 htab
->layout_sections_again
= layout_sections_again
;
2896 stubs_always_before_branch
= group_size
< 0;
2898 stub_group_size
= -group_size
;
2900 stub_group_size
= group_size
;
2901 if (stub_group_size
== 1)
2903 /* Default values. */
2904 stub_group_size
= 7680000;
2905 if (htab
->has_17bit_branch
|| htab
->multi_subspace
)
2906 stub_group_size
= 240000;
2907 if (htab
->has_12bit_branch
)
2908 stub_group_size
= 7500;
2911 group_sections (htab
, stub_group_size
, stubs_always_before_branch
);
2913 switch (get_local_syms (output_bfd
, info
->input_bfds
, info
))
2916 if (htab
->all_local_syms
)
2917 goto error_ret_free_local
;
2921 stub_changed
= false;
2925 stub_changed
= true;
2932 unsigned int bfd_indx
;
2935 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
2937 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
2939 Elf_Internal_Shdr
*symtab_hdr
;
2941 Elf_Internal_Sym
*local_syms
;
2943 /* We'll need the symbol table in a second. */
2944 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2945 if (symtab_hdr
->sh_info
== 0)
2948 local_syms
= htab
->all_local_syms
[bfd_indx
];
2950 /* Walk over each section attached to the input bfd. */
2951 for (section
= input_bfd
->sections
;
2953 section
= section
->next
)
2955 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
2957 /* If there aren't any relocs, then there's nothing more
2959 if ((section
->flags
& SEC_RELOC
) == 0
2960 || section
->reloc_count
== 0)
2963 /* If this section is a link-once section that will be
2964 discarded, then don't create any stubs. */
2965 if (section
->output_section
== NULL
2966 || section
->output_section
->owner
!= output_bfd
)
2969 /* Get the relocs. */
2971 = _bfd_elf32_link_read_relocs (input_bfd
, section
, NULL
,
2972 (Elf_Internal_Rela
*) NULL
,
2974 if (internal_relocs
== NULL
)
2975 goto error_ret_free_local
;
2977 /* Now examine each relocation. */
2978 irela
= internal_relocs
;
2979 irelaend
= irela
+ section
->reloc_count
;
2980 for (; irela
< irelaend
; irela
++)
2982 unsigned int r_type
, r_indx
;
2983 enum elf32_hppa_stub_type stub_type
;
2984 struct elf32_hppa_stub_hash_entry
*stub_entry
;
2987 bfd_vma destination
;
2988 struct elf32_hppa_link_hash_entry
*hash
;
2990 const asection
*id_sec
;
2992 r_type
= ELF32_R_TYPE (irela
->r_info
);
2993 r_indx
= ELF32_R_SYM (irela
->r_info
);
2995 if (r_type
>= (unsigned int) R_PARISC_UNIMPLEMENTED
)
2997 bfd_set_error (bfd_error_bad_value
);
2998 error_ret_free_internal
:
2999 if (elf_section_data (section
)->relocs
== NULL
)
3000 free (internal_relocs
);
3001 goto error_ret_free_local
;
3004 /* Only look for stubs on call instructions. */
3005 if (r_type
!= (unsigned int) R_PARISC_PCREL12F
3006 && r_type
!= (unsigned int) R_PARISC_PCREL17F
3007 && r_type
!= (unsigned int) R_PARISC_PCREL22F
)
3010 /* Now determine the call target, its name, value,
3016 if (r_indx
< symtab_hdr
->sh_info
)
3018 /* It's a local symbol. */
3019 Elf_Internal_Sym
*sym
;
3020 Elf_Internal_Shdr
*hdr
;
3022 sym
= local_syms
+ r_indx
;
3023 hdr
= elf_elfsections (input_bfd
)[sym
->st_shndx
];
3024 sym_sec
= hdr
->bfd_section
;
3025 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
3026 sym_value
= sym
->st_value
;
3027 destination
= (sym_value
+ irela
->r_addend
3028 + sym_sec
->output_offset
3029 + sym_sec
->output_section
->vma
);
3033 /* It's an external symbol. */
3036 e_indx
= r_indx
- symtab_hdr
->sh_info
;
3037 hash
= ((struct elf32_hppa_link_hash_entry
*)
3038 elf_sym_hashes (input_bfd
)[e_indx
]);
3040 while (hash
->elf
.root
.type
== bfd_link_hash_indirect
3041 || hash
->elf
.root
.type
== bfd_link_hash_warning
)
3042 hash
= ((struct elf32_hppa_link_hash_entry
*)
3043 hash
->elf
.root
.u
.i
.link
);
3045 if (hash
->elf
.root
.type
== bfd_link_hash_defined
3046 || hash
->elf
.root
.type
== bfd_link_hash_defweak
)
3048 sym_sec
= hash
->elf
.root
.u
.def
.section
;
3049 sym_value
= hash
->elf
.root
.u
.def
.value
;
3050 if (sym_sec
->output_section
!= NULL
)
3051 destination
= (sym_value
+ irela
->r_addend
3052 + sym_sec
->output_offset
3053 + sym_sec
->output_section
->vma
);
3055 else if (hash
->elf
.root
.type
== bfd_link_hash_undefweak
)
3060 else if (hash
->elf
.root
.type
== bfd_link_hash_undefined
)
3063 && !info
->no_undefined
3064 && (ELF_ST_VISIBILITY (hash
->elf
.other
)
3066 && hash
->elf
.type
!= STT_PARISC_MILLI
))
3071 bfd_set_error (bfd_error_bad_value
);
3072 goto error_ret_free_internal
;
3076 /* Determine what (if any) linker stub is needed. */
3077 stub_type
= hppa_type_of_stub (section
, irela
, hash
,
3079 if (stub_type
== hppa_stub_none
)
3082 /* Support for grouping stub sections. */
3083 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
3085 /* Get the name of this stub. */
3086 stub_name
= hppa_stub_name (id_sec
, sym_sec
, hash
, irela
);
3088 goto error_ret_free_internal
;
3090 stub_entry
= hppa_stub_hash_lookup (&htab
->stub_hash_table
,
3093 if (stub_entry
!= NULL
)
3095 /* The proper stub has already been created. */
3100 stub_entry
= hppa_add_stub (stub_name
, section
, htab
);
3101 if (stub_entry
== NULL
)
3104 goto error_ret_free_internal
;
3107 stub_entry
->target_value
= sym_value
;
3108 stub_entry
->target_section
= sym_sec
;
3109 stub_entry
->stub_type
= stub_type
;
3112 if (stub_type
== hppa_stub_import
)
3113 stub_entry
->stub_type
= hppa_stub_import_shared
;
3114 else if (stub_type
== hppa_stub_long_branch
)
3115 stub_entry
->stub_type
= hppa_stub_long_branch_shared
;
3117 stub_entry
->h
= hash
;
3118 stub_changed
= true;
3121 /* We're done with the internal relocs, free them. */
3122 if (elf_section_data (section
)->relocs
== NULL
)
3123 free (internal_relocs
);
3130 /* OK, we've added some stubs. Find out the new size of the
3132 for (stub_sec
= htab
->stub_bfd
->sections
;
3134 stub_sec
= stub_sec
->next
)
3136 stub_sec
->_raw_size
= 0;
3137 stub_sec
->_cooked_size
= 0;
3140 bfd_hash_traverse (&htab
->stub_hash_table
, hppa_size_one_stub
, htab
);
3142 /* Ask the linker to do its stuff. */
3143 (*htab
->layout_sections_again
) ();
3144 stub_changed
= false;
3147 free (htab
->all_local_syms
);
3150 error_ret_free_local
:
3151 free (htab
->all_local_syms
);
3155 /* For a final link, this function is called after we have sized the
3156 stubs to provide a value for __gp. */
3159 elf32_hppa_set_gp (abfd
, info
)
3161 struct bfd_link_info
*info
;
3163 struct bfd_link_hash_entry
*h
;
3164 asection
*sec
= NULL
;
3166 struct elf32_hppa_link_hash_table
*htab
;
3168 htab
= hppa_link_hash_table (info
);
3169 h
= bfd_link_hash_lookup (&htab
->elf
.root
, "$global$", false, false, false);
3172 && (h
->type
== bfd_link_hash_defined
3173 || h
->type
== bfd_link_hash_defweak
))
3175 gp_val
= h
->u
.def
.value
;
3176 sec
= h
->u
.def
.section
;
3183 if (htab
->elf
.root
.creator
->flavour
== bfd_target_elf_flavour
)
3190 /* If we're not elf, look up the output sections in the
3191 hope we may actually find them. */
3192 splt
= bfd_get_section_by_name (abfd
, ".plt");
3193 sgot
= bfd_get_section_by_name (abfd
, ".got");
3196 /* Choose to point our LTP at, in this order, one of .plt, .got,
3197 or .data, if these sections exist. In the case of choosing
3198 .plt try to make the LTP ideal for addressing anywhere in the
3199 .plt or .got with a 14 bit signed offset. Typically, the end
3200 of the .plt is the start of the .got, so choose .plt + 0x2000
3201 if either the .plt or .got is larger than 0x2000. If both
3202 the .plt and .got are smaller than 0x2000, choose the end of
3203 the .plt section. */
3207 gp_val
= sec
->_raw_size
;
3208 if (gp_val
> 0x2000 || (sgot
&& sgot
->_raw_size
> 0x2000))
3218 /* We know we don't have a .plt. If .got is large,
3220 if (sec
->_raw_size
> 0x2000)
3225 /* No .plt or .got. Who cares what the LTP is? */
3226 sec
= bfd_get_section_by_name (abfd
, ".data");
3232 h
->type
= bfd_link_hash_defined
;
3233 h
->u
.def
.value
= gp_val
;
3235 h
->u
.def
.section
= sec
;
3237 h
->u
.def
.section
= bfd_abs_section_ptr
;
3241 if (sec
!= NULL
&& sec
->output_section
!= NULL
)
3242 gp_val
+= sec
->output_section
->vma
+ sec
->output_offset
;
3244 elf_gp (abfd
) = gp_val
;
3248 /* Build all the stubs associated with the current output file. The
3249 stubs are kept in a hash table attached to the main linker hash
3250 table. We also set up the .plt entries for statically linked PIC
3251 functions here. This function is called via hppaelf_finish in the
3255 elf32_hppa_build_stubs (info
)
3256 struct bfd_link_info
*info
;
3259 struct bfd_hash_table
*table
;
3260 struct elf32_hppa_link_hash_table
*htab
;
3262 htab
= hppa_link_hash_table (info
);
3264 for (stub_sec
= htab
->stub_bfd
->sections
;
3266 stub_sec
= stub_sec
->next
)
3270 /* Allocate memory to hold the linker stubs. */
3271 size
= stub_sec
->_raw_size
;
3272 stub_sec
->contents
= (unsigned char *) bfd_zalloc (htab
->stub_bfd
, size
);
3273 if (stub_sec
->contents
== NULL
&& size
!= 0)
3275 stub_sec
->_raw_size
= 0;
3278 /* Build the stubs as directed by the stub hash table. */
3279 table
= &htab
->stub_hash_table
;
3280 bfd_hash_traverse (table
, hppa_build_one_stub
, info
);
3285 /* Perform a final link. */
3288 elf32_hppa_final_link (abfd
, info
)
3290 struct bfd_link_info
*info
;
3292 /* Invoke the regular ELF linker to do all the work. */
3293 if (!bfd_elf32_bfd_final_link (abfd
, info
))
3296 /* If we're producing a final executable, sort the contents of the
3298 return elf_hppa_sort_unwind (abfd
);
3301 /* Record the lowest address for the data and text segments. */
3304 hppa_record_segment_addr (abfd
, section
, data
)
3305 bfd
*abfd ATTRIBUTE_UNUSED
;
3309 struct elf32_hppa_link_hash_table
*htab
;
3311 htab
= (struct elf32_hppa_link_hash_table
*) data
;
3313 if ((section
->flags
& (SEC_ALLOC
| SEC_LOAD
)) == (SEC_ALLOC
| SEC_LOAD
))
3315 bfd_vma value
= section
->vma
- section
->filepos
;
3317 if ((section
->flags
& SEC_READONLY
) != 0)
3319 if (value
< htab
->text_segment_base
)
3320 htab
->text_segment_base
= value
;
3324 if (value
< htab
->data_segment_base
)
3325 htab
->data_segment_base
= value
;
3330 /* Perform a relocation as part of a final link. */
3332 static bfd_reloc_status_type
3333 final_link_relocate (input_section
, contents
, rel
, value
, htab
, sym_sec
, h
)
3334 asection
*input_section
;
3336 const Elf_Internal_Rela
*rel
;
3338 struct elf32_hppa_link_hash_table
*htab
;
3340 struct elf32_hppa_link_hash_entry
*h
;
3343 unsigned int r_type
= ELF32_R_TYPE (rel
->r_info
);
3344 reloc_howto_type
*howto
= elf_hppa_howto_table
+ r_type
;
3345 int r_format
= howto
->bitsize
;
3346 enum hppa_reloc_field_selector_type_alt r_field
;
3347 bfd
*input_bfd
= input_section
->owner
;
3348 bfd_vma offset
= rel
->r_offset
;
3349 bfd_vma max_branch_offset
= 0;
3350 bfd_byte
*hit_data
= contents
+ offset
;
3351 bfd_signed_vma addend
= rel
->r_addend
;
3353 struct elf32_hppa_stub_hash_entry
*stub_entry
= NULL
;
3356 if (r_type
== R_PARISC_NONE
)
3357 return bfd_reloc_ok
;
3359 insn
= bfd_get_32 (input_bfd
, hit_data
);
3361 /* Find out where we are and where we're going. */
3362 location
= (offset
+
3363 input_section
->output_offset
+
3364 input_section
->output_section
->vma
);
3368 case R_PARISC_PCREL12F
:
3369 case R_PARISC_PCREL17F
:
3370 case R_PARISC_PCREL22F
:
3371 /* If this call should go via the plt, find the import stub in
3374 || sym_sec
->output_section
== NULL
3376 && h
->elf
.plt
.offset
!= (bfd_vma
) -1
3377 && (h
->elf
.dynindx
!= -1 || h
->pic_call
)
3380 stub_entry
= hppa_get_stub_entry (input_section
, sym_sec
,
3382 if (stub_entry
!= NULL
)
3384 value
= (stub_entry
->stub_offset
3385 + stub_entry
->stub_sec
->output_offset
3386 + stub_entry
->stub_sec
->output_section
->vma
);
3389 else if (sym_sec
== NULL
&& h
!= NULL
3390 && h
->elf
.root
.type
== bfd_link_hash_undefweak
)
3392 /* It's OK if undefined weak. Calls to undefined weak
3393 symbols behave as if the "called" function
3394 immediately returns. We can thus call to a weak
3395 function without first checking whether the function
3401 return bfd_reloc_undefined
;
3405 case R_PARISC_PCREL21L
:
3406 case R_PARISC_PCREL17C
:
3407 case R_PARISC_PCREL17R
:
3408 case R_PARISC_PCREL14R
:
3409 case R_PARISC_PCREL14F
:
3410 /* Make it a pc relative offset. */
3415 case R_PARISC_DPREL21L
:
3416 case R_PARISC_DPREL14R
:
3417 case R_PARISC_DPREL14F
:
3418 /* For all the DP relative relocations, we need to examine the symbol's
3419 section. If it's a code section, then "data pointer relative" makes
3420 no sense. In that case we don't adjust the "value", and for 21 bit
3421 addil instructions, we change the source addend register from %dp to
3422 %r0. This situation commonly arises when a variable's "constness"
3423 is declared differently from the way the variable is defined. For
3424 instance: "extern int foo" with foo defined as "const int foo". */
3425 if (sym_sec
== NULL
)
3427 if ((sym_sec
->flags
& SEC_CODE
) != 0)
3429 if ((insn
& ((0x3f << 26) | (0x1f << 21)))
3430 == (((int) OP_ADDIL
<< 26) | (27 << 21)))
3432 insn
&= ~ (0x1f << 21);
3433 #if 0 /* debug them. */
3434 (*_bfd_error_handler
)
3435 (_("%s(%s+0x%lx): fixing %s"),
3436 bfd_archive_filename (input_bfd
),
3437 input_section
->name
,
3438 (long) rel
->r_offset
,
3442 /* Now try to make things easy for the dynamic linker. */
3448 case R_PARISC_DLTIND21L
:
3449 case R_PARISC_DLTIND14R
:
3450 case R_PARISC_DLTIND14F
:
3451 value
-= elf_gp (input_section
->output_section
->owner
);
3454 case R_PARISC_SEGREL32
:
3455 if ((sym_sec
->flags
& SEC_CODE
) != 0)
3456 value
-= htab
->text_segment_base
;
3458 value
-= htab
->data_segment_base
;
3467 case R_PARISC_DIR32
:
3468 case R_PARISC_DIR14F
:
3469 case R_PARISC_DIR17F
:
3470 case R_PARISC_PCREL17C
:
3471 case R_PARISC_PCREL14F
:
3472 case R_PARISC_DPREL14F
:
3473 case R_PARISC_PLABEL32
:
3474 case R_PARISC_DLTIND14F
:
3475 case R_PARISC_SEGBASE
:
3476 case R_PARISC_SEGREL32
:
3480 case R_PARISC_DLTIND21L
:
3481 case R_PARISC_PCREL21L
:
3482 case R_PARISC_PLABEL21L
:
3486 case R_PARISC_DIR21L
:
3487 case R_PARISC_DPREL21L
:
3491 case R_PARISC_PCREL17R
:
3492 case R_PARISC_PCREL14R
:
3493 case R_PARISC_PLABEL14R
:
3494 case R_PARISC_DLTIND14R
:
3498 case R_PARISC_DIR17R
:
3499 case R_PARISC_DIR14R
:
3500 case R_PARISC_DPREL14R
:
3504 case R_PARISC_PCREL12F
:
3505 case R_PARISC_PCREL17F
:
3506 case R_PARISC_PCREL22F
:
3509 if (r_type
== (unsigned int) R_PARISC_PCREL17F
)
3511 max_branch_offset
= (1 << (17-1)) << 2;
3513 else if (r_type
== (unsigned int) R_PARISC_PCREL12F
)
3515 max_branch_offset
= (1 << (12-1)) << 2;
3519 max_branch_offset
= (1 << (22-1)) << 2;
3522 /* sym_sec is NULL on undefined weak syms or when shared on
3523 undefined syms. We've already checked for a stub for the
3524 shared undefined case. */
3525 if (sym_sec
== NULL
)
3528 /* If the branch is out of reach, then redirect the
3529 call to the local stub for this function. */
3530 if (value
+ addend
+ max_branch_offset
>= 2*max_branch_offset
)
3532 stub_entry
= hppa_get_stub_entry (input_section
, sym_sec
,
3534 if (stub_entry
== NULL
)
3535 return bfd_reloc_undefined
;
3537 /* Munge up the value and addend so that we call the stub
3538 rather than the procedure directly. */
3539 value
= (stub_entry
->stub_offset
3540 + stub_entry
->stub_sec
->output_offset
3541 + stub_entry
->stub_sec
->output_section
->vma
3547 /* Something we don't know how to handle. */
3549 return bfd_reloc_notsupported
;
3552 /* Make sure we can reach the stub. */
3553 if (max_branch_offset
!= 0
3554 && value
+ addend
+ max_branch_offset
>= 2*max_branch_offset
)
3556 (*_bfd_error_handler
)
3557 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3558 bfd_archive_filename (input_bfd
),
3559 input_section
->name
,
3560 (long) rel
->r_offset
,
3561 stub_entry
->root
.string
);
3562 bfd_set_error (bfd_error_bad_value
);
3563 return bfd_reloc_notsupported
;
3566 val
= hppa_field_adjust (value
, addend
, r_field
);
3570 case R_PARISC_PCREL12F
:
3571 case R_PARISC_PCREL17C
:
3572 case R_PARISC_PCREL17F
:
3573 case R_PARISC_PCREL17R
:
3574 case R_PARISC_PCREL22F
:
3575 case R_PARISC_DIR17F
:
3576 case R_PARISC_DIR17R
:
3577 /* This is a branch. Divide the offset by four.
3578 Note that we need to decide whether it's a branch or
3579 otherwise by inspecting the reloc. Inspecting insn won't
3580 work as insn might be from a .word directive. */
3588 insn
= hppa_rebuild_insn (insn
, val
, r_format
);
3590 /* Update the instruction word. */
3591 bfd_put_32 (input_bfd
, (bfd_vma
) insn
, hit_data
);
3592 return bfd_reloc_ok
;
3595 /* Relocate an HPPA ELF section. */
3598 elf32_hppa_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
3599 contents
, relocs
, local_syms
, local_sections
)
3601 struct bfd_link_info
*info
;
3603 asection
*input_section
;
3605 Elf_Internal_Rela
*relocs
;
3606 Elf_Internal_Sym
*local_syms
;
3607 asection
**local_sections
;
3609 bfd_vma
*local_got_offsets
;
3610 struct elf32_hppa_link_hash_table
*htab
;
3611 Elf_Internal_Shdr
*symtab_hdr
;
3612 Elf_Internal_Rela
*rel
;
3613 Elf_Internal_Rela
*relend
;
3615 if (info
->relocateable
)
3618 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3620 htab
= hppa_link_hash_table (info
);
3621 local_got_offsets
= elf_local_got_offsets (input_bfd
);
3624 relend
= relocs
+ input_section
->reloc_count
;
3625 for (; rel
< relend
; rel
++)
3627 unsigned int r_type
;
3628 reloc_howto_type
*howto
;
3629 unsigned int r_symndx
;
3630 struct elf32_hppa_link_hash_entry
*h
;
3631 Elf_Internal_Sym
*sym
;
3634 bfd_reloc_status_type r
;
3635 const char *sym_name
;
3637 boolean warned_undef
;
3639 r_type
= ELF32_R_TYPE (rel
->r_info
);
3640 if (r_type
>= (unsigned int) R_PARISC_UNIMPLEMENTED
)
3642 bfd_set_error (bfd_error_bad_value
);
3645 if (r_type
== (unsigned int) R_PARISC_GNU_VTENTRY
3646 || r_type
== (unsigned int) R_PARISC_GNU_VTINHERIT
)
3649 /* This is a final link. */
3650 r_symndx
= ELF32_R_SYM (rel
->r_info
);
3654 warned_undef
= false;
3655 if (r_symndx
< symtab_hdr
->sh_info
)
3657 /* This is a local symbol, h defaults to NULL. */
3658 sym
= local_syms
+ r_symndx
;
3659 sym_sec
= local_sections
[r_symndx
];
3660 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, sym_sec
, rel
);
3666 /* It's a global; Find its entry in the link hash. */
3667 indx
= r_symndx
- symtab_hdr
->sh_info
;
3668 h
= ((struct elf32_hppa_link_hash_entry
*)
3669 elf_sym_hashes (input_bfd
)[indx
]);
3670 while (h
->elf
.root
.type
== bfd_link_hash_indirect
3671 || h
->elf
.root
.type
== bfd_link_hash_warning
)
3672 h
= (struct elf32_hppa_link_hash_entry
*) h
->elf
.root
.u
.i
.link
;
3675 if (h
->elf
.root
.type
== bfd_link_hash_defined
3676 || h
->elf
.root
.type
== bfd_link_hash_defweak
)
3678 sym_sec
= h
->elf
.root
.u
.def
.section
;
3679 /* If sym_sec->output_section is NULL, then it's a
3680 symbol defined in a shared library. */
3681 if (sym_sec
->output_section
!= NULL
)
3682 relocation
= (h
->elf
.root
.u
.def
.value
3683 + sym_sec
->output_offset
3684 + sym_sec
->output_section
->vma
);
3686 else if (h
->elf
.root
.type
== bfd_link_hash_undefweak
)
3688 else if (info
->shared
&& !info
->no_undefined
3689 && ELF_ST_VISIBILITY (h
->elf
.other
) == STV_DEFAULT
3690 && h
->elf
.type
!= STT_PARISC_MILLI
)
3692 if (info
->symbolic
&& !info
->allow_shlib_undefined
)
3694 if (!((*info
->callbacks
->undefined_symbol
)
3695 (info
, h
->elf
.root
.root
.string
, input_bfd
,
3696 input_section
, rel
->r_offset
, false)))
3698 warned_undef
= true;
3703 if (!((*info
->callbacks
->undefined_symbol
)
3704 (info
, h
->elf
.root
.root
.string
, input_bfd
,
3705 input_section
, rel
->r_offset
, true)))
3707 warned_undef
= true;
3711 /* Do any required modifications to the relocation value, and
3712 determine what types of dynamic info we need to output, if
3717 case R_PARISC_DLTIND14F
:
3718 case R_PARISC_DLTIND14R
:
3719 case R_PARISC_DLTIND21L
:
3724 /* Relocation is to the entry for this symbol in the
3725 global offset table. */
3730 off
= h
->elf
.got
.offset
;
3731 dyn
= htab
->elf
.dynamic_sections_created
;
3732 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
, &h
->elf
))
3734 /* If we aren't going to call finish_dynamic_symbol,
3735 then we need to handle initialisation of the .got
3736 entry and create needed relocs here. Since the
3737 offset must always be a multiple of 4, we use the
3738 least significant bit to record whether we have
3739 initialised it already. */
3744 h
->elf
.got
.offset
|= 1;
3751 /* Local symbol case. */
3752 if (local_got_offsets
== NULL
)
3755 off
= local_got_offsets
[r_symndx
];
3757 /* The offset must always be a multiple of 4. We use
3758 the least significant bit to record whether we have
3759 already generated the necessary reloc. */
3764 local_got_offsets
[r_symndx
] |= 1;
3773 /* Output a dynamic relocation for this GOT entry.
3774 In this case it is relative to the base of the
3775 object because the symbol index is zero. */
3776 Elf_Internal_Rela outrel
;
3777 asection
*srelgot
= htab
->srelgot
;
3778 Elf32_External_Rela
*loc
;
3780 outrel
.r_offset
= (off
3781 + htab
->sgot
->output_offset
3782 + htab
->sgot
->output_section
->vma
);
3783 outrel
.r_info
= ELF32_R_INFO (0, R_PARISC_DIR32
);
3784 outrel
.r_addend
= relocation
;
3785 loc
= (Elf32_External_Rela
*) srelgot
->contents
;
3786 loc
+= srelgot
->reloc_count
++;
3787 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
3790 bfd_put_32 (output_bfd
, relocation
,
3791 htab
->sgot
->contents
+ off
);
3794 if (off
>= (bfd_vma
) -2)
3797 /* Add the base of the GOT to the relocation value. */
3799 + htab
->sgot
->output_offset
3800 + htab
->sgot
->output_section
->vma
);
3804 case R_PARISC_SEGREL32
:
3805 /* If this is the first SEGREL relocation, then initialize
3806 the segment base values. */
3807 if (htab
->text_segment_base
== (bfd_vma
) -1)
3808 bfd_map_over_sections (output_bfd
, hppa_record_segment_addr
, htab
);
3811 case R_PARISC_PLABEL14R
:
3812 case R_PARISC_PLABEL21L
:
3813 case R_PARISC_PLABEL32
:
3814 if (htab
->elf
.dynamic_sections_created
)
3819 /* If we have a global symbol with a PLT slot, then
3820 redirect this relocation to it. */
3823 off
= h
->elf
.plt
.offset
;
3824 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info
, &h
->elf
))
3826 /* In a non-shared link, adjust_dynamic_symbols
3827 isn't called for symbols forced local. We
3828 need to write out the plt entry here. */
3833 h
->elf
.plt
.offset
|= 1;
3840 bfd_vma
*local_plt_offsets
;
3842 if (local_got_offsets
== NULL
)
3845 local_plt_offsets
= local_got_offsets
+ symtab_hdr
->sh_info
;
3846 off
= local_plt_offsets
[r_symndx
];
3848 /* As for the local .got entry case, we use the last
3849 bit to record whether we've already initialised
3850 this local .plt entry. */
3855 local_plt_offsets
[r_symndx
] |= 1;
3864 /* Output a dynamic IPLT relocation for this
3866 Elf_Internal_Rela outrel
;
3867 asection
*srelplt
= htab
->srelplt
;
3868 Elf32_External_Rela
*loc
;
3870 outrel
.r_offset
= (off
3871 + htab
->splt
->output_offset
3872 + htab
->splt
->output_section
->vma
);
3873 outrel
.r_info
= ELF32_R_INFO (0, R_PARISC_IPLT
);
3874 outrel
.r_addend
= relocation
;
3875 loc
= (Elf32_External_Rela
*) srelplt
->contents
;
3876 loc
+= srelplt
->reloc_count
++;
3877 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
3881 bfd_put_32 (output_bfd
,
3883 htab
->splt
->contents
+ off
);
3884 bfd_put_32 (output_bfd
,
3885 elf_gp (htab
->splt
->output_section
->owner
),
3886 htab
->splt
->contents
+ off
+ 4);
3890 if (off
>= (bfd_vma
) -2)
3893 /* PLABELs contain function pointers. Relocation is to
3894 the entry for the function in the .plt. The magic +2
3895 offset signals to $$dyncall that the function pointer
3896 is in the .plt and thus has a gp pointer too.
3897 Exception: Undefined PLABELs should have a value of
3900 || (h
->elf
.root
.type
!= bfd_link_hash_undefweak
3901 && h
->elf
.root
.type
!= bfd_link_hash_undefined
))
3904 + htab
->splt
->output_offset
3905 + htab
->splt
->output_section
->vma
3910 /* Fall through and possibly emit a dynamic relocation. */
3912 case R_PARISC_DIR17F
:
3913 case R_PARISC_DIR17R
:
3914 case R_PARISC_DIR14F
:
3915 case R_PARISC_DIR14R
:
3916 case R_PARISC_DIR21L
:
3917 case R_PARISC_DPREL14F
:
3918 case R_PARISC_DPREL14R
:
3919 case R_PARISC_DPREL21L
:
3920 case R_PARISC_DIR32
:
3921 /* r_symndx will be zero only for relocs against symbols
3922 from removed linkonce sections, or sections discarded by
3925 || (input_section
->flags
& SEC_ALLOC
) == 0)
3928 /* The reloc types handled here and this conditional
3929 expression must match the code in ..check_relocs and
3930 allocate_dynrelocs. ie. We need exactly the same condition
3931 as in ..check_relocs, with some extra conditions (dynindx
3932 test in this case) to cater for relocs removed by
3933 allocate_dynrelocs. If you squint, the non-shared test
3934 here does indeed match the one in ..check_relocs, the
3935 difference being that here we test DEF_DYNAMIC as well as
3936 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3937 which is why we can't use just that test here.
3938 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3939 there all files have not been loaded. */
3941 && (IS_ABSOLUTE_RELOC (r_type
)
3943 && h
->elf
.dynindx
!= -1
3945 || (h
->elf
.elf_link_hash_flags
3946 & ELF_LINK_HASH_DEF_REGULAR
) == 0))))
3949 && h
->elf
.dynindx
!= -1
3950 && (h
->elf
.elf_link_hash_flags
& ELF_LINK_NON_GOT_REF
) == 0
3951 && (((h
->elf
.elf_link_hash_flags
3952 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0
3953 && (h
->elf
.elf_link_hash_flags
3954 & ELF_LINK_HASH_DEF_REGULAR
) == 0)
3955 || h
->elf
.root
.type
== bfd_link_hash_undefweak
3956 || h
->elf
.root
.type
== bfd_link_hash_undefined
)))
3958 Elf_Internal_Rela outrel
;
3961 Elf32_External_Rela
*loc
;
3963 /* When generating a shared object, these relocations
3964 are copied into the output file to be resolved at run
3967 outrel
.r_addend
= rel
->r_addend
;
3969 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
3971 skip
= (outrel
.r_offset
== (bfd_vma
) -1
3972 || outrel
.r_offset
== (bfd_vma
) -2);
3973 outrel
.r_offset
+= (input_section
->output_offset
3974 + input_section
->output_section
->vma
);
3978 memset (&outrel
, 0, sizeof (outrel
));
3981 && h
->elf
.dynindx
!= -1
3983 || !IS_ABSOLUTE_RELOC (r_type
)
3986 || (h
->elf
.elf_link_hash_flags
3987 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
3989 outrel
.r_info
= ELF32_R_INFO (h
->elf
.dynindx
, r_type
);
3991 else /* It's a local symbol, or one marked to become local. */
3995 /* Add the absolute offset of the symbol. */
3996 outrel
.r_addend
+= relocation
;
3998 /* Global plabels need to be processed by the
3999 dynamic linker so that functions have at most one
4000 fptr. For this reason, we need to differentiate
4001 between global and local plabels, which we do by
4002 providing the function symbol for a global plabel
4003 reloc, and no symbol for local plabels. */
4006 && sym_sec
->output_section
!= NULL
4007 && ! bfd_is_abs_section (sym_sec
))
4009 indx
= elf_section_data (sym_sec
->output_section
)->dynindx
;
4010 /* We are turning this relocation into one
4011 against a section symbol, so subtract out the
4012 output section's address but not the offset
4013 of the input section in the output section. */
4014 outrel
.r_addend
-= sym_sec
->output_section
->vma
;
4017 outrel
.r_info
= ELF32_R_INFO (indx
, r_type
);
4020 /* EH info can cause unaligned DIR32 relocs.
4021 Tweak the reloc type for the dynamic linker. */
4022 if (r_type
== R_PARISC_DIR32
&& (outrel
.r_offset
& 3) != 0)
4023 outrel
.r_info
= ELF32_R_INFO (ELF32_R_SYM (outrel
.r_info
),
4026 sreloc
= elf_section_data (input_section
)->sreloc
;
4030 loc
= (Elf32_External_Rela
*) sreloc
->contents
;
4031 loc
+= sreloc
->reloc_count
++;
4032 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
4040 r
= final_link_relocate (input_section
, contents
, rel
, relocation
,
4043 if (r
== bfd_reloc_ok
)
4047 sym_name
= h
->elf
.root
.root
.string
;
4050 sym_name
= bfd_elf_string_from_elf_section (input_bfd
,
4051 symtab_hdr
->sh_link
,
4053 if (sym_name
== NULL
)
4055 if (*sym_name
== '\0')
4056 sym_name
= bfd_section_name (input_bfd
, sym_sec
);
4059 howto
= elf_hppa_howto_table
+ r_type
;
4061 if (r
== bfd_reloc_undefined
|| r
== bfd_reloc_notsupported
)
4063 if (r
== bfd_reloc_notsupported
|| !warned_undef
)
4065 (*_bfd_error_handler
)
4066 (_("%s(%s+0x%lx): cannot handle %s for %s"),
4067 bfd_archive_filename (input_bfd
),
4068 input_section
->name
,
4069 (long) rel
->r_offset
,
4072 bfd_set_error (bfd_error_bad_value
);
4078 if (!((*info
->callbacks
->reloc_overflow
)
4079 (info
, sym_name
, howto
->name
, (bfd_vma
) 0,
4080 input_bfd
, input_section
, rel
->r_offset
)))
4088 /* Finish up dynamic symbol handling. We set the contents of various
4089 dynamic sections here. */
4092 elf32_hppa_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
4094 struct bfd_link_info
*info
;
4095 struct elf_link_hash_entry
*h
;
4096 Elf_Internal_Sym
*sym
;
4098 struct elf32_hppa_link_hash_table
*htab
;
4100 htab
= hppa_link_hash_table (info
);
4102 if (h
->plt
.offset
!= (bfd_vma
) -1)
4106 if (h
->plt
.offset
& 1)
4109 /* This symbol has an entry in the procedure linkage table. Set
4112 The format of a plt entry is
4117 if (h
->root
.type
== bfd_link_hash_defined
4118 || h
->root
.type
== bfd_link_hash_defweak
)
4120 value
= h
->root
.u
.def
.value
;
4121 if (h
->root
.u
.def
.section
->output_section
!= NULL
)
4122 value
+= (h
->root
.u
.def
.section
->output_offset
4123 + h
->root
.u
.def
.section
->output_section
->vma
);
4126 if (! ((struct elf32_hppa_link_hash_entry
*) h
)->pic_call
)
4128 Elf_Internal_Rela rel
;
4129 Elf32_External_Rela
*loc
;
4131 /* Create a dynamic IPLT relocation for this entry. */
4132 rel
.r_offset
= (h
->plt
.offset
4133 + htab
->splt
->output_offset
4134 + htab
->splt
->output_section
->vma
);
4135 if (h
->dynindx
!= -1)
4137 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_PARISC_IPLT
);
4142 /* This symbol has been marked to become local, and is
4143 used by a plabel so must be kept in the .plt. */
4144 rel
.r_info
= ELF32_R_INFO (0, R_PARISC_IPLT
);
4145 rel
.r_addend
= value
;
4148 loc
= (Elf32_External_Rela
*) htab
->srelplt
->contents
;
4149 loc
+= htab
->srelplt
->reloc_count
++;
4150 bfd_elf32_swap_reloca_out (htab
->splt
->output_section
->owner
,
4155 bfd_put_32 (htab
->splt
->owner
,
4157 htab
->splt
->contents
+ h
->plt
.offset
);
4158 bfd_put_32 (htab
->splt
->owner
,
4159 elf_gp (htab
->splt
->output_section
->owner
),
4160 htab
->splt
->contents
+ h
->plt
.offset
+ 4);
4163 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
4165 /* Mark the symbol as undefined, rather than as defined in
4166 the .plt section. Leave the value alone. */
4167 sym
->st_shndx
= SHN_UNDEF
;
4171 if (h
->got
.offset
!= (bfd_vma
) -1)
4173 Elf_Internal_Rela rel
;
4174 Elf32_External_Rela
*loc
;
4176 /* This symbol has an entry in the global offset table. Set it
4179 rel
.r_offset
= ((h
->got
.offset
&~ (bfd_vma
) 1)
4180 + htab
->sgot
->output_offset
4181 + htab
->sgot
->output_section
->vma
);
4183 /* If this is a -Bsymbolic link and the symbol is defined
4184 locally or was forced to be local because of a version file,
4185 we just want to emit a RELATIVE reloc. The entry in the
4186 global offset table will already have been initialized in the
4187 relocate_section function. */
4189 && (info
->symbolic
|| h
->dynindx
== -1)
4190 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
))
4192 rel
.r_info
= ELF32_R_INFO (0, R_PARISC_DIR32
);
4193 rel
.r_addend
= (h
->root
.u
.def
.value
4194 + h
->root
.u
.def
.section
->output_offset
4195 + h
->root
.u
.def
.section
->output_section
->vma
);
4199 if ((h
->got
.offset
& 1) != 0)
4201 bfd_put_32 (output_bfd
, (bfd_vma
) 0,
4202 htab
->sgot
->contents
+ h
->got
.offset
);
4203 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_PARISC_DIR32
);
4207 loc
= (Elf32_External_Rela
*) htab
->srelgot
->contents
;
4208 loc
+= htab
->srelgot
->reloc_count
++;
4209 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
4212 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_COPY
) != 0)
4215 Elf_Internal_Rela rel
;
4216 Elf32_External_Rela
*loc
;
4218 /* This symbol needs a copy reloc. Set it up. */
4220 if (! (h
->dynindx
!= -1
4221 && (h
->root
.type
== bfd_link_hash_defined
4222 || h
->root
.type
== bfd_link_hash_defweak
)))
4227 rel
.r_offset
= (h
->root
.u
.def
.value
4228 + h
->root
.u
.def
.section
->output_offset
4229 + h
->root
.u
.def
.section
->output_section
->vma
);
4231 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_PARISC_COPY
);
4232 loc
= (Elf32_External_Rela
*) s
->contents
+ s
->reloc_count
++;
4233 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
4236 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4237 if (h
->root
.root
.string
[0] == '_'
4238 && (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
4239 || strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0))
4241 sym
->st_shndx
= SHN_ABS
;
4247 /* Used to decide how to sort relocs in an optimal manner for the
4248 dynamic linker, before writing them out. */
4250 static enum elf_reloc_type_class
4251 elf32_hppa_reloc_type_class (rela
)
4252 const Elf_Internal_Rela
*rela
;
4254 if (ELF32_R_SYM (rela
->r_info
) == 0)
4255 return reloc_class_relative
;
4257 switch ((int) ELF32_R_TYPE (rela
->r_info
))
4260 return reloc_class_plt
;
4262 return reloc_class_copy
;
4264 return reloc_class_normal
;
4268 /* Finish up the dynamic sections. */
4271 elf32_hppa_finish_dynamic_sections (output_bfd
, info
)
4273 struct bfd_link_info
*info
;
4276 struct elf32_hppa_link_hash_table
*htab
;
4279 htab
= hppa_link_hash_table (info
);
4280 dynobj
= htab
->elf
.dynobj
;
4282 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
4284 if (htab
->elf
.dynamic_sections_created
)
4286 Elf32_External_Dyn
*dyncon
, *dynconend
;
4291 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
4292 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->_raw_size
);
4293 for (; dyncon
< dynconend
; dyncon
++)
4295 Elf_Internal_Dyn dyn
;
4298 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
4306 /* Use PLTGOT to set the GOT register. */
4307 dyn
.d_un
.d_ptr
= elf_gp (output_bfd
);
4312 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
4317 if (s
->_cooked_size
!= 0)
4318 dyn
.d_un
.d_val
= s
->_cooked_size
;
4320 dyn
.d_un
.d_val
= s
->_raw_size
;
4324 /* Don't count procedure linkage table relocs in the
4325 overall reloc count. */
4326 if (htab
->srelplt
!= NULL
)
4328 s
= htab
->srelplt
->output_section
;
4329 if (s
->_cooked_size
!= 0)
4330 dyn
.d_un
.d_val
-= s
->_cooked_size
;
4332 dyn
.d_un
.d_val
-= s
->_raw_size
;
4337 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
4341 if (htab
->sgot
!= NULL
&& htab
->sgot
->_raw_size
!= 0)
4343 /* Fill in the first entry in the global offset table.
4344 We use it to point to our dynamic section, if we have one. */
4345 bfd_put_32 (output_bfd
,
4347 ? sdyn
->output_section
->vma
+ sdyn
->output_offset
4349 htab
->sgot
->contents
);
4351 /* The second entry is reserved for use by the dynamic linker. */
4352 memset (htab
->sgot
->contents
+ GOT_ENTRY_SIZE
, 0, GOT_ENTRY_SIZE
);
4354 /* Set .got entry size. */
4355 elf_section_data (htab
->sgot
->output_section
)
4356 ->this_hdr
.sh_entsize
= GOT_ENTRY_SIZE
;
4359 if (htab
->splt
!= NULL
&& htab
->splt
->_raw_size
!= 0)
4361 /* Set plt entry size. */
4362 elf_section_data (htab
->splt
->output_section
)
4363 ->this_hdr
.sh_entsize
= PLT_ENTRY_SIZE
;
4365 if (htab
->need_plt_stub
)
4367 /* Set up the .plt stub. */
4368 memcpy (htab
->splt
->contents
4369 + htab
->splt
->_raw_size
- sizeof (plt_stub
),
4370 plt_stub
, sizeof (plt_stub
));
4372 if ((htab
->splt
->output_offset
4373 + htab
->splt
->output_section
->vma
4374 + htab
->splt
->_raw_size
)
4375 != (htab
->sgot
->output_offset
4376 + htab
->sgot
->output_section
->vma
))
4378 (*_bfd_error_handler
)
4379 (_(".got section not immediately after .plt section"));
4388 /* Tweak the OSABI field of the elf header. */
4391 elf32_hppa_post_process_headers (abfd
, link_info
)
4393 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
;
4395 Elf_Internal_Ehdr
* i_ehdrp
;
4397 i_ehdrp
= elf_elfheader (abfd
);
4399 if (strcmp (bfd_get_target (abfd
), "elf32-hppa-linux") == 0)
4401 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_LINUX
;
4405 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_HPUX
;
4409 /* Called when writing out an object file to decide the type of a
4412 elf32_hppa_elf_get_symbol_type (elf_sym
, type
)
4413 Elf_Internal_Sym
*elf_sym
;
4416 if (ELF_ST_TYPE (elf_sym
->st_info
) == STT_PARISC_MILLI
)
4417 return STT_PARISC_MILLI
;
4422 /* Misc BFD support code. */
4423 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4424 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4425 #define elf_info_to_howto elf_hppa_info_to_howto
4426 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4428 /* Stuff for the BFD linker. */
4429 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4430 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4431 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4432 #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
4433 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4434 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4435 #define elf_backend_check_relocs elf32_hppa_check_relocs
4436 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4437 #define elf_backend_fake_sections elf_hppa_fake_sections
4438 #define elf_backend_relocate_section elf32_hppa_relocate_section
4439 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4440 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4441 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4442 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4443 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4444 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4445 #define elf_backend_object_p elf32_hppa_object_p
4446 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4447 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4448 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4449 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4451 #define elf_backend_can_gc_sections 1
4452 #define elf_backend_can_refcount 1
4453 #define elf_backend_plt_alignment 2
4454 #define elf_backend_want_got_plt 0
4455 #define elf_backend_plt_readonly 0
4456 #define elf_backend_want_plt_sym 0
4457 #define elf_backend_got_header_size 8
4458 #define elf_backend_rela_normal 1
4460 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4461 #define TARGET_BIG_NAME "elf32-hppa"
4462 #define ELF_ARCH bfd_arch_hppa
4463 #define ELF_MACHINE_CODE EM_PARISC
4464 #define ELF_MAXPAGESIZE 0x1000
4466 #include "elf32-target.h"
4468 #undef TARGET_BIG_SYM
4469 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4470 #undef TARGET_BIG_NAME
4471 #define TARGET_BIG_NAME "elf32-hppa-linux"
4473 #define INCLUDED_TARGET_FILE 1
4474 #include "elf32-target.h"