daily update
[binutils.git] / bfd / elf32-xtensa.c
blob4dce0eaf56affd82b88567d6a759fb1f20de541c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright 2003, 2004, 2005 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
21 #include "bfd.h"
22 #include "sysdep.h"
24 #include <stdarg.h>
25 #include <strings.h>
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "xtensa-isa.h"
32 #include "xtensa-config.h"
34 #define XTENSA_NO_NOP_REMOVAL 0
36 /* Local helper functions. */
38 static bfd_boolean add_extra_plt_sections (bfd *, int);
39 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
40 static bfd_reloc_status_type bfd_elf_xtensa_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_boolean do_fix_for_relocatable_link
43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
44 static void do_fix_for_final_link
45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
47 /* Local functions to handle Xtensa configurability. */
49 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52 static xtensa_opcode get_const16_opcode (void);
53 static xtensa_opcode get_l32r_opcode (void);
54 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55 static int get_relocation_opnd (xtensa_opcode, int);
56 static int get_relocation_slot (int);
57 static xtensa_opcode get_relocation_opcode
58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
59 static bfd_boolean is_l32r_relocation
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61 static bfd_boolean is_alt_relocation (int);
62 static bfd_boolean is_operand_relocation (int);
63 static bfd_size_type insn_decode_len
64 (bfd_byte *, bfd_size_type, bfd_size_type);
65 static xtensa_opcode insn_decode_opcode
66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
67 static bfd_boolean check_branch_target_aligned
68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
69 static bfd_boolean check_loop_aligned
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
72 static bfd_size_type get_asm_simplify_size
73 (bfd_byte *, bfd_size_type, bfd_size_type);
75 /* Functions for link-time code simplifications. */
77 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
78 (bfd_byte *, bfd_vma, bfd_vma, char **);
79 static bfd_reloc_status_type contract_asm_expansion
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
84 /* Access to internal relocations, section contents and symbols. */
86 static Elf_Internal_Rela *retrieve_internal_relocs
87 (bfd *, asection *, bfd_boolean);
88 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91 static void pin_contents (asection *, bfd_byte *);
92 static void release_contents (asection *, bfd_byte *);
93 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
95 /* Miscellaneous utility functions. */
97 static asection *elf_xtensa_get_plt_section (bfd *, int);
98 static asection *elf_xtensa_get_gotplt_section (bfd *, int);
99 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
100 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
101 (bfd *, unsigned long);
102 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105 static bfd_boolean xtensa_is_property_section (asection *);
106 static bfd_boolean xtensa_is_littable_section (asection *);
107 static int internal_reloc_compare (const void *, const void *);
108 static int internal_reloc_matches (const void *, const void *);
109 extern char *xtensa_get_property_section_name (asection *, const char *);
110 static flagword xtensa_get_property_predef_flags (asection *);
112 /* Other functions called directly by the linker. */
114 typedef void (*deps_callback_t)
115 (asection *, bfd_vma, asection *, bfd_vma, void *);
116 extern bfd_boolean xtensa_callback_required_dependence
117 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
120 /* Globally visible flag for choosing size optimization of NOP removal
121 instead of branch-target-aware minimization for NOP removal.
122 When nonzero, narrow all instructions and remove all NOPs possible
123 around longcall expansions. */
125 int elf32xtensa_size_opt;
128 /* The "new_section_hook" is used to set up a per-section
129 "xtensa_relax_info" data structure with additional information used
130 during relaxation. */
132 typedef struct xtensa_relax_info_struct xtensa_relax_info;
135 /* Total count of PLT relocations seen during check_relocs.
136 The actual PLT code must be split into multiple sections and all
137 the sections have to be created before size_dynamic_sections,
138 where we figure out the exact number of PLT entries that will be
139 needed. It is OK if this count is an overestimate, e.g., some
140 relocations may be removed by GC. */
142 static int plt_reloc_count = 0;
145 /* The GNU tools do not easily allow extending interfaces to pass around
146 the pointer to the Xtensa ISA information, so instead we add a global
147 variable here (in BFD) that can be used by any of the tools that need
148 this information. */
150 xtensa_isa xtensa_default_isa;
153 /* When this is true, relocations may have been modified to refer to
154 symbols from other input files. The per-section list of "fix"
155 records needs to be checked when resolving relocations. */
157 static bfd_boolean relaxing_section = FALSE;
159 /* When this is true, during final links, literals that cannot be
160 coalesced and their relocations may be moved to other sections. */
162 int elf32xtensa_no_literal_movement = 1;
165 static reloc_howto_type elf_howto_table[] =
167 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
168 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
169 FALSE, 0x00000000, 0x00000000, FALSE),
170 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
171 bfd_elf_xtensa_reloc, "R_XTENSA_32",
172 TRUE, 0xffffffff, 0xffffffff, FALSE),
173 /* Replace a 32-bit value with a value from the runtime linker (only
174 used by linker-generated stub functions). The r_addend value is
175 special: 1 means to substitute a pointer to the runtime linker's
176 dynamic resolver function; 2 means to substitute the link map for
177 the shared object. */
178 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
179 NULL, "R_XTENSA_RTLD",
180 FALSE, 0x00000000, 0x00000000, FALSE),
181 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
182 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
183 FALSE, 0xffffffff, 0xffffffff, FALSE),
184 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
185 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
186 FALSE, 0xffffffff, 0xffffffff, FALSE),
187 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
188 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
189 FALSE, 0xffffffff, 0xffffffff, FALSE),
190 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
191 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
192 FALSE, 0xffffffff, 0xffffffff, FALSE),
193 EMPTY_HOWTO (7),
194 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
195 bfd_elf_xtensa_reloc, "R_XTENSA_OP0",
196 FALSE, 0x00000000, 0x00000000, TRUE),
197 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
198 bfd_elf_xtensa_reloc, "R_XTENSA_OP1",
199 FALSE, 0x00000000, 0x00000000, TRUE),
200 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
201 bfd_elf_xtensa_reloc, "R_XTENSA_OP2",
202 FALSE, 0x00000000, 0x00000000, TRUE),
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
205 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND",
206 FALSE, 0x00000000, 0x00000000, FALSE),
207 /* Relax assembly auto-expansion. */
208 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
209 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY",
210 FALSE, 0x00000000, 0x00000000, TRUE),
211 EMPTY_HOWTO (13),
212 EMPTY_HOWTO (14),
213 /* GNU extension to record C++ vtable hierarchy. */
214 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
215 NULL, "R_XTENSA_GNU_VTINHERIT",
216 FALSE, 0x00000000, 0x00000000, FALSE),
217 /* GNU extension to record C++ vtable member usage. */
218 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
219 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
220 FALSE, 0x00000000, 0x00000000, FALSE),
222 /* Relocations for supporting difference of symbols. */
223 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
224 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8",
225 FALSE, 0xffffffff, 0xffffffff, FALSE),
226 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
227 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16",
228 FALSE, 0xffffffff, 0xffffffff, FALSE),
229 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
230 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32",
231 FALSE, 0xffffffff, 0xffffffff, FALSE),
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP",
236 FALSE, 0x00000000, 0x00000000, TRUE),
237 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP",
239 FALSE, 0x00000000, 0x00000000, TRUE),
240 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP",
242 FALSE, 0x00000000, 0x00000000, TRUE),
243 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP",
245 FALSE, 0x00000000, 0x00000000, TRUE),
246 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP",
248 FALSE, 0x00000000, 0x00000000, TRUE),
249 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP",
251 FALSE, 0x00000000, 0x00000000, TRUE),
252 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP",
254 FALSE, 0x00000000, 0x00000000, TRUE),
255 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP",
257 FALSE, 0x00000000, 0x00000000, TRUE),
258 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP",
260 FALSE, 0x00000000, 0x00000000, TRUE),
261 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP",
263 FALSE, 0x00000000, 0x00000000, TRUE),
264 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
265 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP",
266 FALSE, 0x00000000, 0x00000000, TRUE),
267 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP",
269 FALSE, 0x00000000, 0x00000000, TRUE),
270 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP",
272 FALSE, 0x00000000, 0x00000000, TRUE),
273 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP",
275 FALSE, 0x00000000, 0x00000000, TRUE),
276 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP",
278 FALSE, 0x00000000, 0x00000000, TRUE),
280 /* "Alternate" relocations. The meaning of these is opcode-specific. */
281 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT",
283 FALSE, 0x00000000, 0x00000000, TRUE),
284 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT",
286 FALSE, 0x00000000, 0x00000000, TRUE),
287 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT",
289 FALSE, 0x00000000, 0x00000000, TRUE),
290 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT",
292 FALSE, 0x00000000, 0x00000000, TRUE),
293 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT",
295 FALSE, 0x00000000, 0x00000000, TRUE),
296 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
297 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT",
298 FALSE, 0x00000000, 0x00000000, TRUE),
299 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
300 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT",
301 FALSE, 0x00000000, 0x00000000, TRUE),
302 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
303 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT",
304 FALSE, 0x00000000, 0x00000000, TRUE),
305 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
306 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT",
307 FALSE, 0x00000000, 0x00000000, TRUE),
308 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
309 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT",
310 FALSE, 0x00000000, 0x00000000, TRUE),
311 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
312 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT",
313 FALSE, 0x00000000, 0x00000000, TRUE),
314 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
315 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT",
316 FALSE, 0x00000000, 0x00000000, TRUE),
317 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
318 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT",
319 FALSE, 0x00000000, 0x00000000, TRUE),
320 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
321 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT",
322 FALSE, 0x00000000, 0x00000000, TRUE),
323 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
324 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT",
325 FALSE, 0x00000000, 0x00000000, TRUE)
328 #if DEBUG_GEN_RELOC
329 #define TRACE(str) \
330 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
331 #else
332 #define TRACE(str)
333 #endif
335 static reloc_howto_type *
336 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
337 bfd_reloc_code_real_type code)
339 switch (code)
341 case BFD_RELOC_NONE:
342 TRACE ("BFD_RELOC_NONE");
343 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
345 case BFD_RELOC_32:
346 TRACE ("BFD_RELOC_32");
347 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
349 case BFD_RELOC_XTENSA_DIFF8:
350 TRACE ("BFD_RELOC_XTENSA_DIFF8");
351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
353 case BFD_RELOC_XTENSA_DIFF16:
354 TRACE ("BFD_RELOC_XTENSA_DIFF16");
355 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
357 case BFD_RELOC_XTENSA_DIFF32:
358 TRACE ("BFD_RELOC_XTENSA_DIFF32");
359 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
361 case BFD_RELOC_XTENSA_RTLD:
362 TRACE ("BFD_RELOC_XTENSA_RTLD");
363 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
365 case BFD_RELOC_XTENSA_GLOB_DAT:
366 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
367 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
369 case BFD_RELOC_XTENSA_JMP_SLOT:
370 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
371 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
373 case BFD_RELOC_XTENSA_RELATIVE:
374 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
375 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
377 case BFD_RELOC_XTENSA_PLT:
378 TRACE ("BFD_RELOC_XTENSA_PLT");
379 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
381 case BFD_RELOC_XTENSA_OP0:
382 TRACE ("BFD_RELOC_XTENSA_OP0");
383 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
385 case BFD_RELOC_XTENSA_OP1:
386 TRACE ("BFD_RELOC_XTENSA_OP1");
387 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
389 case BFD_RELOC_XTENSA_OP2:
390 TRACE ("BFD_RELOC_XTENSA_OP2");
391 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
393 case BFD_RELOC_XTENSA_ASM_EXPAND:
394 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
395 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
397 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
398 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
399 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
401 case BFD_RELOC_VTABLE_INHERIT:
402 TRACE ("BFD_RELOC_VTABLE_INHERIT");
403 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
405 case BFD_RELOC_VTABLE_ENTRY:
406 TRACE ("BFD_RELOC_VTABLE_ENTRY");
407 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
409 default:
410 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
411 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
413 unsigned n = (R_XTENSA_SLOT0_OP +
414 (code - BFD_RELOC_XTENSA_SLOT0_OP));
415 return &elf_howto_table[n];
418 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
419 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
421 unsigned n = (R_XTENSA_SLOT0_ALT +
422 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
423 return &elf_howto_table[n];
426 break;
429 TRACE ("Unknown");
430 return NULL;
434 /* Given an ELF "rela" relocation, find the corresponding howto and record
435 it in the BFD internal arelent representation of the relocation. */
437 static void
438 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
439 arelent *cache_ptr,
440 Elf_Internal_Rela *dst)
442 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
444 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
445 cache_ptr->howto = &elf_howto_table[r_type];
449 /* Functions for the Xtensa ELF linker. */
451 /* The name of the dynamic interpreter. This is put in the .interp
452 section. */
454 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
456 /* The size in bytes of an entry in the procedure linkage table.
457 (This does _not_ include the space for the literals associated with
458 the PLT entry.) */
460 #define PLT_ENTRY_SIZE 16
462 /* For _really_ large PLTs, we may need to alternate between literals
463 and code to keep the literals within the 256K range of the L32R
464 instructions in the code. It's unlikely that anyone would ever need
465 such a big PLT, but an arbitrary limit on the PLT size would be bad.
466 Thus, we split the PLT into chunks. Since there's very little
467 overhead (2 extra literals) for each chunk, the chunk size is kept
468 small so that the code for handling multiple chunks get used and
469 tested regularly. With 254 entries, there are 1K of literals for
470 each chunk, and that seems like a nice round number. */
472 #define PLT_ENTRIES_PER_CHUNK 254
474 /* PLT entries are actually used as stub functions for lazy symbol
475 resolution. Once the symbol is resolved, the stub function is never
476 invoked. Note: the 32-byte frame size used here cannot be changed
477 without a corresponding change in the runtime linker. */
479 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
481 0x6c, 0x10, 0x04, /* entry sp, 32 */
482 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
483 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
484 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
485 0x0a, 0x80, 0x00, /* jx a8 */
486 0 /* unused */
489 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
491 0x36, 0x41, 0x00, /* entry sp, 32 */
492 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
493 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
494 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
495 0xa0, 0x08, 0x00, /* jx a8 */
496 0 /* unused */
500 static inline bfd_boolean
501 xtensa_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
502 struct bfd_link_info *info)
504 /* Check if we should do dynamic things to this symbol. The
505 "ignore_protected" argument need not be set, because Xtensa code
506 does not require special handling of STV_PROTECTED to make function
507 pointer comparisons work properly. The PLT addresses are never
508 used for function pointers. */
510 return _bfd_elf_dynamic_symbol_p (h, info, 0);
514 static int
515 property_table_compare (const void *ap, const void *bp)
517 const property_table_entry *a = (const property_table_entry *) ap;
518 const property_table_entry *b = (const property_table_entry *) bp;
520 if (a->address == b->address)
522 if (a->size != b->size)
523 return (a->size - b->size);
525 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
526 return ((b->flags & XTENSA_PROP_ALIGN)
527 - (a->flags & XTENSA_PROP_ALIGN));
529 if ((a->flags & XTENSA_PROP_ALIGN)
530 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
531 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
532 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
533 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
535 if ((a->flags & XTENSA_PROP_UNREACHABLE)
536 != (b->flags & XTENSA_PROP_UNREACHABLE))
537 return ((b->flags & XTENSA_PROP_UNREACHABLE)
538 - (a->flags & XTENSA_PROP_UNREACHABLE));
540 return (a->flags - b->flags);
543 return (a->address - b->address);
547 static int
548 property_table_matches (const void *ap, const void *bp)
550 const property_table_entry *a = (const property_table_entry *) ap;
551 const property_table_entry *b = (const property_table_entry *) bp;
553 /* Check if one entry overlaps with the other. */
554 if ((b->address >= a->address && b->address < (a->address + a->size))
555 || (a->address >= b->address && a->address < (b->address + b->size)))
556 return 0;
558 return (a->address - b->address);
562 /* Get the literal table or property table entries for the given
563 section. Sets TABLE_P and returns the number of entries. On
564 error, returns a negative value. */
566 static int
567 xtensa_read_table_entries (bfd *abfd,
568 asection *section,
569 property_table_entry **table_p,
570 const char *sec_name,
571 bfd_boolean output_addr)
573 asection *table_section;
574 char *table_section_name;
575 bfd_size_type table_size = 0;
576 bfd_byte *table_data;
577 property_table_entry *blocks;
578 int blk, block_count;
579 bfd_size_type num_records;
580 Elf_Internal_Rela *internal_relocs;
581 bfd_vma section_addr;
582 flagword predef_flags;
583 bfd_size_type table_entry_size;
585 if (!section
586 || !(section->flags & SEC_ALLOC)
587 || (section->flags & SEC_DEBUGGING))
589 *table_p = NULL;
590 return 0;
593 table_section_name = xtensa_get_property_section_name (section, sec_name);
594 table_section = bfd_get_section_by_name (abfd, table_section_name);
595 free (table_section_name);
596 if (table_section)
597 table_size = table_section->size;
599 if (table_size == 0)
601 *table_p = NULL;
602 return 0;
605 predef_flags = xtensa_get_property_predef_flags (table_section);
606 table_entry_size = 12;
607 if (predef_flags)
608 table_entry_size -= 4;
610 num_records = table_size / table_entry_size;
611 table_data = retrieve_contents (abfd, table_section, TRUE);
612 blocks = (property_table_entry *)
613 bfd_malloc (num_records * sizeof (property_table_entry));
614 block_count = 0;
616 if (output_addr)
617 section_addr = section->output_section->vma + section->output_offset;
618 else
619 section_addr = section->vma;
621 /* If the file has not yet been relocated, process the relocations
622 and sort out the table entries that apply to the specified section. */
623 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
624 if (internal_relocs && !table_section->reloc_done)
626 unsigned i;
628 for (i = 0; i < table_section->reloc_count; i++)
630 Elf_Internal_Rela *rel = &internal_relocs[i];
631 unsigned long r_symndx;
633 if (ELF32_R_TYPE (rel->r_info) == R_XTENSA_NONE)
634 continue;
636 BFD_ASSERT (ELF32_R_TYPE (rel->r_info) == R_XTENSA_32);
637 r_symndx = ELF32_R_SYM (rel->r_info);
639 if (get_elf_r_symndx_section (abfd, r_symndx) == section)
641 bfd_vma sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
642 BFD_ASSERT (sym_off == 0);
643 blocks[block_count].address =
644 (section_addr + sym_off + rel->r_addend
645 + bfd_get_32 (abfd, table_data + rel->r_offset));
646 blocks[block_count].size =
647 bfd_get_32 (abfd, table_data + rel->r_offset + 4);
648 if (predef_flags)
649 blocks[block_count].flags = predef_flags;
650 else
651 blocks[block_count].flags =
652 bfd_get_32 (abfd, table_data + rel->r_offset + 8);
653 block_count++;
657 else
659 /* The file has already been relocated and the addresses are
660 already in the table. */
661 bfd_vma off;
662 bfd_size_type section_limit = bfd_get_section_limit (abfd, section);
664 for (off = 0; off < table_size; off += table_entry_size)
666 bfd_vma address = bfd_get_32 (abfd, table_data + off);
668 if (address >= section_addr
669 && address < section_addr + section_limit)
671 blocks[block_count].address = address;
672 blocks[block_count].size =
673 bfd_get_32 (abfd, table_data + off + 4);
674 if (predef_flags)
675 blocks[block_count].flags = predef_flags;
676 else
677 blocks[block_count].flags =
678 bfd_get_32 (abfd, table_data + off + 8);
679 block_count++;
684 release_contents (table_section, table_data);
685 release_internal_relocs (table_section, internal_relocs);
687 if (block_count > 0)
689 /* Now sort them into address order for easy reference. */
690 qsort (blocks, block_count, sizeof (property_table_entry),
691 property_table_compare);
693 /* Check that the table contents are valid. Problems may occur,
694 for example, if an unrelocated object file is stripped. */
695 for (blk = 1; blk < block_count; blk++)
697 /* The only circumstance where two entries may legitimately
698 have the same address is when one of them is a zero-size
699 placeholder to mark a place where fill can be inserted.
700 The zero-size entry should come first. */
701 if (blocks[blk - 1].address == blocks[blk].address &&
702 blocks[blk - 1].size != 0)
704 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
705 abfd, section);
706 bfd_set_error (bfd_error_bad_value);
707 free (blocks);
708 return -1;
713 *table_p = blocks;
714 return block_count;
718 static property_table_entry *
719 elf_xtensa_find_property_entry (property_table_entry *property_table,
720 int property_table_size,
721 bfd_vma addr)
723 property_table_entry entry;
724 property_table_entry *rv;
726 if (property_table_size == 0)
727 return NULL;
729 entry.address = addr;
730 entry.size = 1;
731 entry.flags = 0;
733 rv = bsearch (&entry, property_table, property_table_size,
734 sizeof (property_table_entry), property_table_matches);
735 return rv;
739 static bfd_boolean
740 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
741 int lit_table_size,
742 bfd_vma addr)
744 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
745 return TRUE;
747 return FALSE;
751 /* Look through the relocs for a section during the first phase, and
752 calculate needed space in the dynamic reloc sections. */
754 static bfd_boolean
755 elf_xtensa_check_relocs (bfd *abfd,
756 struct bfd_link_info *info,
757 asection *sec,
758 const Elf_Internal_Rela *relocs)
760 Elf_Internal_Shdr *symtab_hdr;
761 struct elf_link_hash_entry **sym_hashes;
762 const Elf_Internal_Rela *rel;
763 const Elf_Internal_Rela *rel_end;
765 if (info->relocatable)
766 return TRUE;
768 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
769 sym_hashes = elf_sym_hashes (abfd);
771 rel_end = relocs + sec->reloc_count;
772 for (rel = relocs; rel < rel_end; rel++)
774 unsigned int r_type;
775 unsigned long r_symndx;
776 struct elf_link_hash_entry *h;
778 r_symndx = ELF32_R_SYM (rel->r_info);
779 r_type = ELF32_R_TYPE (rel->r_info);
781 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
783 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
784 abfd, r_symndx);
785 return FALSE;
788 if (r_symndx < symtab_hdr->sh_info)
789 h = NULL;
790 else
792 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
793 while (h->root.type == bfd_link_hash_indirect
794 || h->root.type == bfd_link_hash_warning)
795 h = (struct elf_link_hash_entry *) h->root.u.i.link;
798 switch (r_type)
800 case R_XTENSA_32:
801 if (h == NULL)
802 goto local_literal;
804 if ((sec->flags & SEC_ALLOC) != 0)
806 if (h->got.refcount <= 0)
807 h->got.refcount = 1;
808 else
809 h->got.refcount += 1;
811 break;
813 case R_XTENSA_PLT:
814 /* If this relocation is against a local symbol, then it's
815 exactly the same as a normal local GOT entry. */
816 if (h == NULL)
817 goto local_literal;
819 if ((sec->flags & SEC_ALLOC) != 0)
821 if (h->plt.refcount <= 0)
823 h->needs_plt = 1;
824 h->plt.refcount = 1;
826 else
827 h->plt.refcount += 1;
829 /* Keep track of the total PLT relocation count even if we
830 don't yet know whether the dynamic sections will be
831 created. */
832 plt_reloc_count += 1;
834 if (elf_hash_table (info)->dynamic_sections_created)
836 if (!add_extra_plt_sections (elf_hash_table (info)->dynobj,
837 plt_reloc_count))
838 return FALSE;
841 break;
843 local_literal:
844 if ((sec->flags & SEC_ALLOC) != 0)
846 bfd_signed_vma *local_got_refcounts;
848 /* This is a global offset table entry for a local symbol. */
849 local_got_refcounts = elf_local_got_refcounts (abfd);
850 if (local_got_refcounts == NULL)
852 bfd_size_type size;
854 size = symtab_hdr->sh_info;
855 size *= sizeof (bfd_signed_vma);
856 local_got_refcounts =
857 (bfd_signed_vma *) bfd_zalloc (abfd, size);
858 if (local_got_refcounts == NULL)
859 return FALSE;
860 elf_local_got_refcounts (abfd) = local_got_refcounts;
862 local_got_refcounts[r_symndx] += 1;
864 break;
866 case R_XTENSA_OP0:
867 case R_XTENSA_OP1:
868 case R_XTENSA_OP2:
869 case R_XTENSA_SLOT0_OP:
870 case R_XTENSA_SLOT1_OP:
871 case R_XTENSA_SLOT2_OP:
872 case R_XTENSA_SLOT3_OP:
873 case R_XTENSA_SLOT4_OP:
874 case R_XTENSA_SLOT5_OP:
875 case R_XTENSA_SLOT6_OP:
876 case R_XTENSA_SLOT7_OP:
877 case R_XTENSA_SLOT8_OP:
878 case R_XTENSA_SLOT9_OP:
879 case R_XTENSA_SLOT10_OP:
880 case R_XTENSA_SLOT11_OP:
881 case R_XTENSA_SLOT12_OP:
882 case R_XTENSA_SLOT13_OP:
883 case R_XTENSA_SLOT14_OP:
884 case R_XTENSA_SLOT0_ALT:
885 case R_XTENSA_SLOT1_ALT:
886 case R_XTENSA_SLOT2_ALT:
887 case R_XTENSA_SLOT3_ALT:
888 case R_XTENSA_SLOT4_ALT:
889 case R_XTENSA_SLOT5_ALT:
890 case R_XTENSA_SLOT6_ALT:
891 case R_XTENSA_SLOT7_ALT:
892 case R_XTENSA_SLOT8_ALT:
893 case R_XTENSA_SLOT9_ALT:
894 case R_XTENSA_SLOT10_ALT:
895 case R_XTENSA_SLOT11_ALT:
896 case R_XTENSA_SLOT12_ALT:
897 case R_XTENSA_SLOT13_ALT:
898 case R_XTENSA_SLOT14_ALT:
899 case R_XTENSA_ASM_EXPAND:
900 case R_XTENSA_ASM_SIMPLIFY:
901 case R_XTENSA_DIFF8:
902 case R_XTENSA_DIFF16:
903 case R_XTENSA_DIFF32:
904 /* Nothing to do for these. */
905 break;
907 case R_XTENSA_GNU_VTINHERIT:
908 /* This relocation describes the C++ object vtable hierarchy.
909 Reconstruct it for later use during GC. */
910 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
911 return FALSE;
912 break;
914 case R_XTENSA_GNU_VTENTRY:
915 /* This relocation describes which C++ vtable entries are actually
916 used. Record for later use during GC. */
917 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
918 return FALSE;
919 break;
921 default:
922 break;
926 return TRUE;
930 static void
931 elf_xtensa_make_sym_local (struct bfd_link_info *info,
932 struct elf_link_hash_entry *h)
934 if (info->shared)
936 if (h->plt.refcount > 0)
938 /* Will use RELATIVE relocs instead of JMP_SLOT relocs. */
939 if (h->got.refcount < 0)
940 h->got.refcount = 0;
941 h->got.refcount += h->plt.refcount;
942 h->plt.refcount = 0;
945 else
947 /* Don't need any dynamic relocations at all. */
948 h->plt.refcount = 0;
949 h->got.refcount = 0;
954 static void
955 elf_xtensa_hide_symbol (struct bfd_link_info *info,
956 struct elf_link_hash_entry *h,
957 bfd_boolean force_local)
959 /* For a shared link, move the plt refcount to the got refcount to leave
960 space for RELATIVE relocs. */
961 elf_xtensa_make_sym_local (info, h);
963 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
967 /* Return the section that should be marked against GC for a given
968 relocation. */
970 static asection *
971 elf_xtensa_gc_mark_hook (asection *sec,
972 struct bfd_link_info *info ATTRIBUTE_UNUSED,
973 Elf_Internal_Rela *rel,
974 struct elf_link_hash_entry *h,
975 Elf_Internal_Sym *sym)
977 if (h)
979 switch (ELF32_R_TYPE (rel->r_info))
981 case R_XTENSA_GNU_VTINHERIT:
982 case R_XTENSA_GNU_VTENTRY:
983 break;
985 default:
986 switch (h->root.type)
988 case bfd_link_hash_defined:
989 case bfd_link_hash_defweak:
990 return h->root.u.def.section;
992 case bfd_link_hash_common:
993 return h->root.u.c.p->section;
995 default:
996 break;
1000 else
1001 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1003 return NULL;
1007 /* Update the GOT & PLT entry reference counts
1008 for the section being removed. */
1010 static bfd_boolean
1011 elf_xtensa_gc_sweep_hook (bfd *abfd,
1012 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1013 asection *sec,
1014 const Elf_Internal_Rela *relocs)
1016 Elf_Internal_Shdr *symtab_hdr;
1017 struct elf_link_hash_entry **sym_hashes;
1018 bfd_signed_vma *local_got_refcounts;
1019 const Elf_Internal_Rela *rel, *relend;
1021 if ((sec->flags & SEC_ALLOC) == 0)
1022 return TRUE;
1024 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1025 sym_hashes = elf_sym_hashes (abfd);
1026 local_got_refcounts = elf_local_got_refcounts (abfd);
1028 relend = relocs + sec->reloc_count;
1029 for (rel = relocs; rel < relend; rel++)
1031 unsigned long r_symndx;
1032 unsigned int r_type;
1033 struct elf_link_hash_entry *h = NULL;
1035 r_symndx = ELF32_R_SYM (rel->r_info);
1036 if (r_symndx >= symtab_hdr->sh_info)
1038 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1039 while (h->root.type == bfd_link_hash_indirect
1040 || h->root.type == bfd_link_hash_warning)
1041 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1044 r_type = ELF32_R_TYPE (rel->r_info);
1045 switch (r_type)
1047 case R_XTENSA_32:
1048 if (h == NULL)
1049 goto local_literal;
1050 if (h->got.refcount > 0)
1051 h->got.refcount--;
1052 break;
1054 case R_XTENSA_PLT:
1055 if (h == NULL)
1056 goto local_literal;
1057 if (h->plt.refcount > 0)
1058 h->plt.refcount--;
1059 break;
1061 local_literal:
1062 if (local_got_refcounts[r_symndx] > 0)
1063 local_got_refcounts[r_symndx] -= 1;
1064 break;
1066 default:
1067 break;
1071 return TRUE;
1075 /* Create all the dynamic sections. */
1077 static bfd_boolean
1078 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1080 flagword flags, noalloc_flags;
1081 asection *s;
1083 /* First do all the standard stuff. */
1084 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1085 return FALSE;
1087 /* Create any extra PLT sections in case check_relocs has already
1088 been called on all the non-dynamic input files. */
1089 if (!add_extra_plt_sections (dynobj, plt_reloc_count))
1090 return FALSE;
1092 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1093 | SEC_LINKER_CREATED | SEC_READONLY);
1094 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1096 /* Mark the ".got.plt" section READONLY. */
1097 s = bfd_get_section_by_name (dynobj, ".got.plt");
1098 if (s == NULL
1099 || ! bfd_set_section_flags (dynobj, s, flags))
1100 return FALSE;
1102 /* Create ".rela.got". */
1103 s = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
1104 if (s == NULL
1105 || ! bfd_set_section_alignment (dynobj, s, 2))
1106 return FALSE;
1108 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1109 s = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1110 if (s == NULL
1111 || ! bfd_set_section_alignment (dynobj, s, 2))
1112 return FALSE;
1114 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1115 s = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1116 noalloc_flags);
1117 if (s == NULL
1118 || ! bfd_set_section_alignment (dynobj, s, 2))
1119 return FALSE;
1121 return TRUE;
1125 static bfd_boolean
1126 add_extra_plt_sections (bfd *dynobj, int count)
1128 int chunk;
1130 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1131 ".got.plt" sections. */
1132 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1134 char *sname;
1135 flagword flags;
1136 asection *s;
1138 /* Stop when we find a section has already been created. */
1139 if (elf_xtensa_get_plt_section (dynobj, chunk))
1140 break;
1142 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1143 | SEC_LINKER_CREATED | SEC_READONLY);
1145 sname = (char *) bfd_malloc (10);
1146 sprintf (sname, ".plt.%u", chunk);
1147 s = bfd_make_section_with_flags (dynobj, sname,
1148 flags | SEC_CODE);
1149 if (s == NULL
1150 || ! bfd_set_section_alignment (dynobj, s, 2))
1151 return FALSE;
1153 sname = (char *) bfd_malloc (14);
1154 sprintf (sname, ".got.plt.%u", chunk);
1155 s = bfd_make_section_with_flags (dynobj, sname, flags);
1156 if (s == NULL
1157 || ! bfd_set_section_alignment (dynobj, s, 2))
1158 return FALSE;
1161 return TRUE;
1165 /* Adjust a symbol defined by a dynamic object and referenced by a
1166 regular object. The current definition is in some section of the
1167 dynamic object, but we're not including those sections. We have to
1168 change the definition to something the rest of the link can
1169 understand. */
1171 static bfd_boolean
1172 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1173 struct elf_link_hash_entry *h)
1175 /* If this is a weak symbol, and there is a real definition, the
1176 processor independent code will have arranged for us to see the
1177 real definition first, and we can just use the same value. */
1178 if (h->u.weakdef)
1180 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1181 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1182 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1183 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1184 return TRUE;
1187 /* This is a reference to a symbol defined by a dynamic object. The
1188 reference must go through the GOT, so there's no need for COPY relocs,
1189 .dynbss, etc. */
1191 return TRUE;
1195 static bfd_boolean
1196 elf_xtensa_fix_refcounts (struct elf_link_hash_entry *h, void *arg)
1198 struct bfd_link_info *info = (struct bfd_link_info *) arg;
1200 if (h->root.type == bfd_link_hash_warning)
1201 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1203 if (! xtensa_elf_dynamic_symbol_p (h, info))
1204 elf_xtensa_make_sym_local (info, h);
1206 return TRUE;
1210 static bfd_boolean
1211 elf_xtensa_allocate_plt_size (struct elf_link_hash_entry *h, void *arg)
1213 asection *srelplt = (asection *) arg;
1215 if (h->root.type == bfd_link_hash_warning)
1216 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1218 if (h->plt.refcount > 0)
1219 srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1221 return TRUE;
1225 static bfd_boolean
1226 elf_xtensa_allocate_got_size (struct elf_link_hash_entry *h, void *arg)
1228 asection *srelgot = (asection *) arg;
1230 if (h->root.type == bfd_link_hash_warning)
1231 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1233 if (h->got.refcount > 0)
1234 srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1236 return TRUE;
1240 static void
1241 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info,
1242 asection *srelgot)
1244 bfd *i;
1246 for (i = info->input_bfds; i; i = i->link_next)
1248 bfd_signed_vma *local_got_refcounts;
1249 bfd_size_type j, cnt;
1250 Elf_Internal_Shdr *symtab_hdr;
1252 local_got_refcounts = elf_local_got_refcounts (i);
1253 if (!local_got_refcounts)
1254 continue;
1256 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1257 cnt = symtab_hdr->sh_info;
1259 for (j = 0; j < cnt; ++j)
1261 if (local_got_refcounts[j] > 0)
1262 srelgot->size += (local_got_refcounts[j]
1263 * sizeof (Elf32_External_Rela));
1269 /* Set the sizes of the dynamic sections. */
1271 static bfd_boolean
1272 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1273 struct bfd_link_info *info)
1275 bfd *dynobj, *abfd;
1276 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1277 bfd_boolean relplt, relgot;
1278 int plt_entries, plt_chunks, chunk;
1280 plt_entries = 0;
1281 plt_chunks = 0;
1282 srelgot = 0;
1284 dynobj = elf_hash_table (info)->dynobj;
1285 if (dynobj == NULL)
1286 abort ();
1288 if (elf_hash_table (info)->dynamic_sections_created)
1290 /* Set the contents of the .interp section to the interpreter. */
1291 if (info->executable)
1293 s = bfd_get_section_by_name (dynobj, ".interp");
1294 if (s == NULL)
1295 abort ();
1296 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1297 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1300 /* Allocate room for one word in ".got". */
1301 s = bfd_get_section_by_name (dynobj, ".got");
1302 if (s == NULL)
1303 abort ();
1304 s->size = 4;
1306 /* Adjust refcounts for symbols that we now know are not "dynamic". */
1307 elf_link_hash_traverse (elf_hash_table (info),
1308 elf_xtensa_fix_refcounts,
1309 (void *) info);
1311 /* Allocate space in ".rela.got" for literals that reference
1312 global symbols. */
1313 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1314 if (srelgot == NULL)
1315 abort ();
1316 elf_link_hash_traverse (elf_hash_table (info),
1317 elf_xtensa_allocate_got_size,
1318 (void *) srelgot);
1320 /* If we are generating a shared object, we also need space in
1321 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1322 reference local symbols. */
1323 if (info->shared)
1324 elf_xtensa_allocate_local_got_size (info, srelgot);
1326 /* Allocate space in ".rela.plt" for literals that have PLT entries. */
1327 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1328 if (srelplt == NULL)
1329 abort ();
1330 elf_link_hash_traverse (elf_hash_table (info),
1331 elf_xtensa_allocate_plt_size,
1332 (void *) srelplt);
1334 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1335 each PLT entry, we need the PLT code plus a 4-byte literal.
1336 For each chunk of ".plt", we also need two more 4-byte
1337 literals, two corresponding entries in ".rela.got", and an
1338 8-byte entry in ".xt.lit.plt". */
1339 spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
1340 if (spltlittbl == NULL)
1341 abort ();
1343 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1344 plt_chunks =
1345 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1347 /* Iterate over all the PLT chunks, including any extra sections
1348 created earlier because the initial count of PLT relocations
1349 was an overestimate. */
1350 for (chunk = 0;
1351 (splt = elf_xtensa_get_plt_section (dynobj, chunk)) != NULL;
1352 chunk++)
1354 int chunk_entries;
1356 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
1357 if (sgotplt == NULL)
1358 abort ();
1360 if (chunk < plt_chunks - 1)
1361 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1362 else if (chunk == plt_chunks - 1)
1363 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1364 else
1365 chunk_entries = 0;
1367 if (chunk_entries != 0)
1369 sgotplt->size = 4 * (chunk_entries + 2);
1370 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1371 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1372 spltlittbl->size += 8;
1374 else
1376 sgotplt->size = 0;
1377 splt->size = 0;
1381 /* Allocate space in ".got.loc" to match the total size of all the
1382 literal tables. */
1383 sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
1384 if (sgotloc == NULL)
1385 abort ();
1386 sgotloc->size = spltlittbl->size;
1387 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1389 if (abfd->flags & DYNAMIC)
1390 continue;
1391 for (s = abfd->sections; s != NULL; s = s->next)
1393 if (! elf_discarded_section (s)
1394 && xtensa_is_littable_section (s)
1395 && s != spltlittbl)
1396 sgotloc->size += s->size;
1401 /* Allocate memory for dynamic sections. */
1402 relplt = FALSE;
1403 relgot = FALSE;
1404 for (s = dynobj->sections; s != NULL; s = s->next)
1406 const char *name;
1408 if ((s->flags & SEC_LINKER_CREATED) == 0)
1409 continue;
1411 /* It's OK to base decisions on the section name, because none
1412 of the dynobj section names depend upon the input files. */
1413 name = bfd_get_section_name (dynobj, s);
1415 if (strncmp (name, ".rela", 5) == 0)
1417 if (s->size != 0)
1419 if (strcmp (name, ".rela.plt") == 0)
1420 relplt = TRUE;
1421 else if (strcmp (name, ".rela.got") == 0)
1422 relgot = TRUE;
1424 /* We use the reloc_count field as a counter if we need
1425 to copy relocs into the output file. */
1426 s->reloc_count = 0;
1429 else if (strncmp (name, ".plt.", 5) != 0
1430 && strncmp (name, ".got.plt.", 9) != 0
1431 && strcmp (name, ".got") != 0
1432 && strcmp (name, ".plt") != 0
1433 && strcmp (name, ".got.plt") != 0
1434 && strcmp (name, ".xt.lit.plt") != 0
1435 && strcmp (name, ".got.loc") != 0)
1437 /* It's not one of our sections, so don't allocate space. */
1438 continue;
1441 if (s->size == 0)
1443 /* If we don't need this section, strip it from the output
1444 file. We must create the ".plt*" and ".got.plt*"
1445 sections in create_dynamic_sections and/or check_relocs
1446 based on a conservative estimate of the PLT relocation
1447 count, because the sections must be created before the
1448 linker maps input sections to output sections. The
1449 linker does that before size_dynamic_sections, where we
1450 compute the exact size of the PLT, so there may be more
1451 of these sections than are actually needed. */
1452 s->flags |= SEC_EXCLUDE;
1454 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1456 /* Allocate memory for the section contents. */
1457 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1458 if (s->contents == NULL)
1459 return FALSE;
1463 if (elf_hash_table (info)->dynamic_sections_created)
1465 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1466 known until finish_dynamic_sections, but we need to get the relocs
1467 in place before they are sorted. */
1468 if (srelgot == NULL)
1469 abort ();
1470 for (chunk = 0; chunk < plt_chunks; chunk++)
1472 Elf_Internal_Rela irela;
1473 bfd_byte *loc;
1475 irela.r_offset = 0;
1476 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1477 irela.r_addend = 0;
1479 loc = (srelgot->contents
1480 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1481 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1482 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1483 loc + sizeof (Elf32_External_Rela));
1484 srelgot->reloc_count += 2;
1487 /* Add some entries to the .dynamic section. We fill in the
1488 values later, in elf_xtensa_finish_dynamic_sections, but we
1489 must add the entries now so that we get the correct size for
1490 the .dynamic section. The DT_DEBUG entry is filled in by the
1491 dynamic linker and used by the debugger. */
1492 #define add_dynamic_entry(TAG, VAL) \
1493 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1495 if (! info->shared)
1497 if (!add_dynamic_entry (DT_DEBUG, 0))
1498 return FALSE;
1501 if (relplt)
1503 if (!add_dynamic_entry (DT_PLTGOT, 0)
1504 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1505 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1506 || !add_dynamic_entry (DT_JMPREL, 0))
1507 return FALSE;
1510 if (relgot)
1512 if (!add_dynamic_entry (DT_RELA, 0)
1513 || !add_dynamic_entry (DT_RELASZ, 0)
1514 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1515 return FALSE;
1518 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1519 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1520 return FALSE;
1522 #undef add_dynamic_entry
1524 return TRUE;
1528 /* Remove any PT_LOAD segments with no allocated sections. Prior to
1529 binutils 2.13, this function used to remove the non-SEC_ALLOC
1530 sections from PT_LOAD segments, but that task has now been moved
1531 into elf.c. We still need this function to remove any empty
1532 segments that result, but there's nothing Xtensa-specific about
1533 this and it probably ought to be moved into elf.c as well. */
1535 static bfd_boolean
1536 elf_xtensa_modify_segment_map (bfd *abfd,
1537 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1539 struct elf_segment_map **m_p;
1541 m_p = &elf_tdata (abfd)->segment_map;
1542 while (*m_p)
1544 if ((*m_p)->p_type == PT_LOAD && (*m_p)->count == 0)
1545 *m_p = (*m_p)->next;
1546 else
1547 m_p = &(*m_p)->next;
1549 return TRUE;
1553 /* Perform the specified relocation. The instruction at (contents + address)
1554 is modified to set one operand to represent the value in "relocation". The
1555 operand position is determined by the relocation type recorded in the
1556 howto. */
1558 #define CALL_SEGMENT_BITS (30)
1559 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1561 static bfd_reloc_status_type
1562 elf_xtensa_do_reloc (reloc_howto_type *howto,
1563 bfd *abfd,
1564 asection *input_section,
1565 bfd_vma relocation,
1566 bfd_byte *contents,
1567 bfd_vma address,
1568 bfd_boolean is_weak_undef,
1569 char **error_message)
1571 xtensa_format fmt;
1572 xtensa_opcode opcode;
1573 xtensa_isa isa = xtensa_default_isa;
1574 static xtensa_insnbuf ibuff = NULL;
1575 static xtensa_insnbuf sbuff = NULL;
1576 bfd_vma self_address = 0;
1577 bfd_size_type input_size;
1578 int opnd, slot;
1579 uint32 newval;
1581 if (!ibuff)
1583 ibuff = xtensa_insnbuf_alloc (isa);
1584 sbuff = xtensa_insnbuf_alloc (isa);
1587 input_size = bfd_get_section_limit (abfd, input_section);
1589 switch (howto->type)
1591 case R_XTENSA_NONE:
1592 case R_XTENSA_DIFF8:
1593 case R_XTENSA_DIFF16:
1594 case R_XTENSA_DIFF32:
1595 return bfd_reloc_ok;
1597 case R_XTENSA_ASM_EXPAND:
1598 if (!is_weak_undef)
1600 /* Check for windowed CALL across a 1GB boundary. */
1601 xtensa_opcode opcode =
1602 get_expanded_call_opcode (contents + address,
1603 input_size - address, 0);
1604 if (is_windowed_call_opcode (opcode))
1606 self_address = (input_section->output_section->vma
1607 + input_section->output_offset
1608 + address);
1609 if ((self_address >> CALL_SEGMENT_BITS)
1610 != (relocation >> CALL_SEGMENT_BITS))
1612 *error_message = "windowed longcall crosses 1GB boundary; "
1613 "return may fail";
1614 return bfd_reloc_dangerous;
1618 return bfd_reloc_ok;
1620 case R_XTENSA_ASM_SIMPLIFY:
1622 /* Convert the L32R/CALLX to CALL. */
1623 bfd_reloc_status_type retval =
1624 elf_xtensa_do_asm_simplify (contents, address, input_size,
1625 error_message);
1626 if (retval != bfd_reloc_ok)
1627 return bfd_reloc_dangerous;
1629 /* The CALL needs to be relocated. Continue below for that part. */
1630 address += 3;
1631 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1633 break;
1635 case R_XTENSA_32:
1636 case R_XTENSA_PLT:
1638 bfd_vma x;
1639 x = bfd_get_32 (abfd, contents + address);
1640 x = x + relocation;
1641 bfd_put_32 (abfd, x, contents + address);
1643 return bfd_reloc_ok;
1646 /* Only instruction slot-specific relocations handled below.... */
1647 slot = get_relocation_slot (howto->type);
1648 if (slot == XTENSA_UNDEFINED)
1650 *error_message = "unexpected relocation";
1651 return bfd_reloc_dangerous;
1654 /* Read the instruction into a buffer and decode the opcode. */
1655 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1656 input_size - address);
1657 fmt = xtensa_format_decode (isa, ibuff);
1658 if (fmt == XTENSA_UNDEFINED)
1660 *error_message = "cannot decode instruction format";
1661 return bfd_reloc_dangerous;
1664 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
1666 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1667 if (opcode == XTENSA_UNDEFINED)
1669 *error_message = "cannot decode instruction opcode";
1670 return bfd_reloc_dangerous;
1673 /* Check for opcode-specific "alternate" relocations. */
1674 if (is_alt_relocation (howto->type))
1676 if (opcode == get_l32r_opcode ())
1678 /* Handle the special-case of non-PC-relative L32R instructions. */
1679 bfd *output_bfd = input_section->output_section->owner;
1680 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1681 if (!lit4_sec)
1683 *error_message = "relocation references missing .lit4 section";
1684 return bfd_reloc_dangerous;
1686 self_address = ((lit4_sec->vma & ~0xfff)
1687 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1688 newval = relocation;
1689 opnd = 1;
1691 else if (opcode == get_const16_opcode ())
1693 /* ALT used for high 16 bits. */
1694 newval = relocation >> 16;
1695 opnd = 1;
1697 else
1699 /* No other "alternate" relocations currently defined. */
1700 *error_message = "unexpected relocation";
1701 return bfd_reloc_dangerous;
1704 else /* Not an "alternate" relocation.... */
1706 if (opcode == get_const16_opcode ())
1708 newval = relocation & 0xffff;
1709 opnd = 1;
1711 else
1713 /* ...normal PC-relative relocation.... */
1715 /* Determine which operand is being relocated. */
1716 opnd = get_relocation_opnd (opcode, howto->type);
1717 if (opnd == XTENSA_UNDEFINED)
1719 *error_message = "unexpected relocation";
1720 return bfd_reloc_dangerous;
1723 if (!howto->pc_relative)
1725 *error_message = "expected PC-relative relocation";
1726 return bfd_reloc_dangerous;
1729 /* Calculate the PC address for this instruction. */
1730 self_address = (input_section->output_section->vma
1731 + input_section->output_offset
1732 + address);
1734 newval = relocation;
1738 /* Apply the relocation. */
1739 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1740 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1741 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1742 sbuff, newval))
1744 const char *opname = xtensa_opcode_name (isa, opcode);
1745 const char *msg;
1747 msg = "cannot encode";
1748 if (is_direct_call_opcode (opcode))
1750 if ((relocation & 0x3) != 0)
1751 msg = "misaligned call target";
1752 else
1753 msg = "call target out of range";
1755 else if (opcode == get_l32r_opcode ())
1757 if ((relocation & 0x3) != 0)
1758 msg = "misaligned literal target";
1759 else if (is_alt_relocation (howto->type))
1760 msg = "literal target out of range (too many literals)";
1761 else if (self_address > relocation)
1762 msg = "literal target out of range (try using text-section-literals)";
1763 else
1764 msg = "literal placed after use";
1767 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
1768 return bfd_reloc_dangerous;
1771 /* Check for calls across 1GB boundaries. */
1772 if (is_direct_call_opcode (opcode)
1773 && is_windowed_call_opcode (opcode))
1775 if ((self_address >> CALL_SEGMENT_BITS)
1776 != (relocation >> CALL_SEGMENT_BITS))
1778 *error_message =
1779 "windowed call crosses 1GB boundary; return may fail";
1780 return bfd_reloc_dangerous;
1784 /* Write the modified instruction back out of the buffer. */
1785 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1786 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1787 input_size - address);
1788 return bfd_reloc_ok;
1792 static char *
1793 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
1795 /* To reduce the size of the memory leak,
1796 we only use a single message buffer. */
1797 static bfd_size_type alloc_size = 0;
1798 static char *message = NULL;
1799 bfd_size_type orig_len, len = 0;
1800 bfd_boolean is_append;
1802 VA_OPEN (ap, arglen);
1803 VA_FIXEDARG (ap, const char *, origmsg);
1805 is_append = (origmsg == message);
1807 orig_len = strlen (origmsg);
1808 len = orig_len + strlen (fmt) + arglen + 20;
1809 if (len > alloc_size)
1811 message = (char *) bfd_realloc (message, len);
1812 alloc_size = len;
1814 if (!is_append)
1815 memcpy (message, origmsg, orig_len);
1816 vsprintf (message + orig_len, fmt, ap);
1817 VA_CLOSE (ap);
1818 return message;
1822 /* This function is registered as the "special_function" in the
1823 Xtensa howto for handling simplify operations.
1824 bfd_perform_relocation / bfd_install_relocation use it to
1825 perform (install) the specified relocation. Since this replaces the code
1826 in bfd_perform_relocation, it is basically an Xtensa-specific,
1827 stripped-down version of bfd_perform_relocation. */
1829 static bfd_reloc_status_type
1830 bfd_elf_xtensa_reloc (bfd *abfd,
1831 arelent *reloc_entry,
1832 asymbol *symbol,
1833 void *data,
1834 asection *input_section,
1835 bfd *output_bfd,
1836 char **error_message)
1838 bfd_vma relocation;
1839 bfd_reloc_status_type flag;
1840 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1841 bfd_vma output_base = 0;
1842 reloc_howto_type *howto = reloc_entry->howto;
1843 asection *reloc_target_output_section;
1844 bfd_boolean is_weak_undef;
1846 if (!xtensa_default_isa)
1847 xtensa_default_isa = xtensa_isa_init (0, 0);
1849 /* ELF relocs are against symbols. If we are producing relocatable
1850 output, and the reloc is against an external symbol, the resulting
1851 reloc will also be against the same symbol. In such a case, we
1852 don't want to change anything about the way the reloc is handled,
1853 since it will all be done at final link time. This test is similar
1854 to what bfd_elf_generic_reloc does except that it lets relocs with
1855 howto->partial_inplace go through even if the addend is non-zero.
1856 (The real problem is that partial_inplace is set for XTENSA_32
1857 relocs to begin with, but that's a long story and there's little we
1858 can do about it now....) */
1860 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
1862 reloc_entry->address += input_section->output_offset;
1863 return bfd_reloc_ok;
1866 /* Is the address of the relocation really within the section? */
1867 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1868 return bfd_reloc_outofrange;
1870 /* Work out which section the relocation is targeted at and the
1871 initial relocation command value. */
1873 /* Get symbol value. (Common symbols are special.) */
1874 if (bfd_is_com_section (symbol->section))
1875 relocation = 0;
1876 else
1877 relocation = symbol->value;
1879 reloc_target_output_section = symbol->section->output_section;
1881 /* Convert input-section-relative symbol value to absolute. */
1882 if ((output_bfd && !howto->partial_inplace)
1883 || reloc_target_output_section == NULL)
1884 output_base = 0;
1885 else
1886 output_base = reloc_target_output_section->vma;
1888 relocation += output_base + symbol->section->output_offset;
1890 /* Add in supplied addend. */
1891 relocation += reloc_entry->addend;
1893 /* Here the variable relocation holds the final address of the
1894 symbol we are relocating against, plus any addend. */
1895 if (output_bfd)
1897 if (!howto->partial_inplace)
1899 /* This is a partial relocation, and we want to apply the relocation
1900 to the reloc entry rather than the raw data. Everything except
1901 relocations against section symbols has already been handled
1902 above. */
1904 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1905 reloc_entry->addend = relocation;
1906 reloc_entry->address += input_section->output_offset;
1907 return bfd_reloc_ok;
1909 else
1911 reloc_entry->address += input_section->output_offset;
1912 reloc_entry->addend = 0;
1916 is_weak_undef = (bfd_is_und_section (symbol->section)
1917 && (symbol->flags & BSF_WEAK) != 0);
1918 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1919 (bfd_byte *) data, (bfd_vma) octets,
1920 is_weak_undef, error_message);
1922 if (flag == bfd_reloc_dangerous)
1924 /* Add the symbol name to the error message. */
1925 if (! *error_message)
1926 *error_message = "";
1927 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1928 strlen (symbol->name) + 17,
1929 symbol->name,
1930 (unsigned long) reloc_entry->addend);
1933 return flag;
1937 /* Set up an entry in the procedure linkage table. */
1939 static bfd_vma
1940 elf_xtensa_create_plt_entry (bfd *dynobj,
1941 bfd *output_bfd,
1942 unsigned reloc_index)
1944 asection *splt, *sgotplt;
1945 bfd_vma plt_base, got_base;
1946 bfd_vma code_offset, lit_offset;
1947 int chunk;
1949 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
1950 splt = elf_xtensa_get_plt_section (dynobj, chunk);
1951 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
1952 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1954 plt_base = splt->output_section->vma + splt->output_offset;
1955 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1957 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1958 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1960 /* Fill in the literal entry. This is the offset of the dynamic
1961 relocation entry. */
1962 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1963 sgotplt->contents + lit_offset);
1965 /* Fill in the entry in the procedure linkage table. */
1966 memcpy (splt->contents + code_offset,
1967 (bfd_big_endian (output_bfd)
1968 ? elf_xtensa_be_plt_entry
1969 : elf_xtensa_le_plt_entry),
1970 PLT_ENTRY_SIZE);
1971 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1972 plt_base + code_offset + 3),
1973 splt->contents + code_offset + 4);
1974 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1975 plt_base + code_offset + 6),
1976 splt->contents + code_offset + 7);
1977 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1978 plt_base + code_offset + 9),
1979 splt->contents + code_offset + 10);
1981 return plt_base + code_offset;
1985 /* Relocate an Xtensa ELF section. This is invoked by the linker for
1986 both relocatable and final links. */
1988 static bfd_boolean
1989 elf_xtensa_relocate_section (bfd *output_bfd,
1990 struct bfd_link_info *info,
1991 bfd *input_bfd,
1992 asection *input_section,
1993 bfd_byte *contents,
1994 Elf_Internal_Rela *relocs,
1995 Elf_Internal_Sym *local_syms,
1996 asection **local_sections)
1998 Elf_Internal_Shdr *symtab_hdr;
1999 Elf_Internal_Rela *rel;
2000 Elf_Internal_Rela *relend;
2001 struct elf_link_hash_entry **sym_hashes;
2002 asection *srelgot, *srelplt;
2003 bfd *dynobj;
2004 property_table_entry *lit_table = 0;
2005 int ltblsize = 0;
2006 char *error_message = NULL;
2007 bfd_size_type input_size;
2009 if (!xtensa_default_isa)
2010 xtensa_default_isa = xtensa_isa_init (0, 0);
2012 dynobj = elf_hash_table (info)->dynobj;
2013 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2014 sym_hashes = elf_sym_hashes (input_bfd);
2016 srelgot = NULL;
2017 srelplt = NULL;
2018 if (dynobj)
2020 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
2021 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
2024 if (elf_hash_table (info)->dynamic_sections_created)
2026 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2027 &lit_table, XTENSA_LIT_SEC_NAME,
2028 TRUE);
2029 if (ltblsize < 0)
2030 return FALSE;
2033 input_size = bfd_get_section_limit (input_bfd, input_section);
2035 rel = relocs;
2036 relend = relocs + input_section->reloc_count;
2037 for (; rel < relend; rel++)
2039 int r_type;
2040 reloc_howto_type *howto;
2041 unsigned long r_symndx;
2042 struct elf_link_hash_entry *h;
2043 Elf_Internal_Sym *sym;
2044 asection *sec;
2045 bfd_vma relocation;
2046 bfd_reloc_status_type r;
2047 bfd_boolean is_weak_undef;
2048 bfd_boolean unresolved_reloc;
2049 bfd_boolean warned;
2051 r_type = ELF32_R_TYPE (rel->r_info);
2052 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2053 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2054 continue;
2056 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2058 bfd_set_error (bfd_error_bad_value);
2059 return FALSE;
2061 howto = &elf_howto_table[r_type];
2063 r_symndx = ELF32_R_SYM (rel->r_info);
2065 if (info->relocatable)
2067 /* This is a relocatable link.
2068 1) If the reloc is against a section symbol, adjust
2069 according to the output section.
2070 2) If there is a new target for this relocation,
2071 the new target will be in the same output section.
2072 We adjust the relocation by the output section
2073 difference. */
2075 if (relaxing_section)
2077 /* Check if this references a section in another input file. */
2078 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2079 contents))
2080 return FALSE;
2081 r_type = ELF32_R_TYPE (rel->r_info);
2084 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2086 char *error_message = NULL;
2087 /* Convert ASM_SIMPLIFY into the simpler relocation
2088 so that they never escape a relaxing link. */
2089 r = contract_asm_expansion (contents, input_size, rel,
2090 &error_message);
2091 if (r != bfd_reloc_ok)
2093 if (!((*info->callbacks->reloc_dangerous)
2094 (info, error_message, input_bfd, input_section,
2095 rel->r_offset)))
2096 return FALSE;
2098 r_type = ELF32_R_TYPE (rel->r_info);
2101 /* This is a relocatable link, so we don't have to change
2102 anything unless the reloc is against a section symbol,
2103 in which case we have to adjust according to where the
2104 section symbol winds up in the output section. */
2105 if (r_symndx < symtab_hdr->sh_info)
2107 sym = local_syms + r_symndx;
2108 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2110 sec = local_sections[r_symndx];
2111 rel->r_addend += sec->output_offset + sym->st_value;
2115 /* If there is an addend with a partial_inplace howto,
2116 then move the addend to the contents. This is a hack
2117 to work around problems with DWARF in relocatable links
2118 with some previous version of BFD. Now we can't easily get
2119 rid of the hack without breaking backward compatibility.... */
2120 if (rel->r_addend)
2122 howto = &elf_howto_table[r_type];
2123 if (howto->partial_inplace)
2125 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2126 rel->r_addend, contents,
2127 rel->r_offset, FALSE,
2128 &error_message);
2129 if (r != bfd_reloc_ok)
2131 if (!((*info->callbacks->reloc_dangerous)
2132 (info, error_message, input_bfd, input_section,
2133 rel->r_offset)))
2134 return FALSE;
2136 rel->r_addend = 0;
2140 /* Done with work for relocatable link; continue with next reloc. */
2141 continue;
2144 /* This is a final link. */
2146 h = NULL;
2147 sym = NULL;
2148 sec = NULL;
2149 is_weak_undef = FALSE;
2150 unresolved_reloc = FALSE;
2151 warned = FALSE;
2153 if (howto->partial_inplace)
2155 /* Because R_XTENSA_32 was made partial_inplace to fix some
2156 problems with DWARF info in partial links, there may be
2157 an addend stored in the contents. Take it out of there
2158 and move it back into the addend field of the reloc. */
2159 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2160 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2163 if (r_symndx < symtab_hdr->sh_info)
2165 sym = local_syms + r_symndx;
2166 sec = local_sections[r_symndx];
2167 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2169 else
2171 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2172 r_symndx, symtab_hdr, sym_hashes,
2173 h, sec, relocation,
2174 unresolved_reloc, warned);
2176 if (relocation == 0
2177 && !unresolved_reloc
2178 && h->root.type == bfd_link_hash_undefweak)
2179 is_weak_undef = TRUE;
2182 if (relaxing_section)
2184 /* Check if this references a section in another input file. */
2185 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2186 &relocation);
2188 /* Update some already cached values. */
2189 r_type = ELF32_R_TYPE (rel->r_info);
2190 howto = &elf_howto_table[r_type];
2193 /* Sanity check the address. */
2194 if (rel->r_offset >= input_size
2195 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2197 (*_bfd_error_handler)
2198 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2199 input_bfd, input_section, rel->r_offset, input_size);
2200 bfd_set_error (bfd_error_bad_value);
2201 return FALSE;
2204 /* Generate dynamic relocations. */
2205 if (elf_hash_table (info)->dynamic_sections_created)
2207 bfd_boolean dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
2209 if (dynamic_symbol && is_operand_relocation (r_type))
2211 /* This is an error. The symbol's real value won't be known
2212 until runtime and it's likely to be out of range anyway. */
2213 const char *name = h->root.root.string;
2214 error_message = vsprint_msg ("invalid relocation for dynamic "
2215 "symbol", ": %s",
2216 strlen (name) + 2, name);
2217 if (!((*info->callbacks->reloc_dangerous)
2218 (info, error_message, input_bfd, input_section,
2219 rel->r_offset)))
2220 return FALSE;
2222 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2223 && (input_section->flags & SEC_ALLOC) != 0
2224 && (dynamic_symbol || info->shared))
2226 Elf_Internal_Rela outrel;
2227 bfd_byte *loc;
2228 asection *srel;
2230 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2231 srel = srelplt;
2232 else
2233 srel = srelgot;
2235 BFD_ASSERT (srel != NULL);
2237 outrel.r_offset =
2238 _bfd_elf_section_offset (output_bfd, info,
2239 input_section, rel->r_offset);
2241 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2242 memset (&outrel, 0, sizeof outrel);
2243 else
2245 outrel.r_offset += (input_section->output_section->vma
2246 + input_section->output_offset);
2248 /* Complain if the relocation is in a read-only section
2249 and not in a literal pool. */
2250 if ((input_section->flags & SEC_READONLY) != 0
2251 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2252 outrel.r_offset))
2254 error_message =
2255 _("dynamic relocation in read-only section");
2256 if (!((*info->callbacks->reloc_dangerous)
2257 (info, error_message, input_bfd, input_section,
2258 rel->r_offset)))
2259 return FALSE;
2262 if (dynamic_symbol)
2264 outrel.r_addend = rel->r_addend;
2265 rel->r_addend = 0;
2267 if (r_type == R_XTENSA_32)
2269 outrel.r_info =
2270 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2271 relocation = 0;
2273 else /* r_type == R_XTENSA_PLT */
2275 outrel.r_info =
2276 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2278 /* Create the PLT entry and set the initial
2279 contents of the literal entry to the address of
2280 the PLT entry. */
2281 relocation =
2282 elf_xtensa_create_plt_entry (dynobj, output_bfd,
2283 srel->reloc_count);
2285 unresolved_reloc = FALSE;
2287 else
2289 /* Generate a RELATIVE relocation. */
2290 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2291 outrel.r_addend = 0;
2295 loc = (srel->contents
2296 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2297 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2298 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2299 <= srel->size);
2303 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2304 because such sections are not SEC_ALLOC and thus ld.so will
2305 not process them. */
2306 if (unresolved_reloc
2307 && !((input_section->flags & SEC_DEBUGGING) != 0
2308 && h->def_dynamic))
2309 (*_bfd_error_handler)
2310 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2311 input_bfd,
2312 input_section,
2313 (long) rel->r_offset,
2314 howto->name,
2315 h->root.root.string);
2317 /* There's no point in calling bfd_perform_relocation here.
2318 Just go directly to our "special function". */
2319 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2320 relocation + rel->r_addend,
2321 contents, rel->r_offset, is_weak_undef,
2322 &error_message);
2324 if (r != bfd_reloc_ok && !warned)
2326 const char *name;
2328 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
2329 BFD_ASSERT (error_message != NULL);
2331 if (h)
2332 name = h->root.root.string;
2333 else
2335 name = bfd_elf_string_from_elf_section
2336 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2337 if (name && *name == '\0')
2338 name = bfd_section_name (input_bfd, sec);
2340 if (name)
2342 if (rel->r_addend == 0)
2343 error_message = vsprint_msg (error_message, ": %s",
2344 strlen (name) + 2, name);
2345 else
2346 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2347 strlen (name) + 22,
2348 name, (int)rel->r_addend);
2351 if (!((*info->callbacks->reloc_dangerous)
2352 (info, error_message, input_bfd, input_section,
2353 rel->r_offset)))
2354 return FALSE;
2358 if (lit_table)
2359 free (lit_table);
2361 input_section->reloc_done = TRUE;
2363 return TRUE;
2367 /* Finish up dynamic symbol handling. There's not much to do here since
2368 the PLT and GOT entries are all set up by relocate_section. */
2370 static bfd_boolean
2371 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2372 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2373 struct elf_link_hash_entry *h,
2374 Elf_Internal_Sym *sym)
2376 if (h->needs_plt
2377 && !h->def_regular)
2379 /* Mark the symbol as undefined, rather than as defined in
2380 the .plt section. Leave the value alone. */
2381 sym->st_shndx = SHN_UNDEF;
2384 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2385 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2386 || h == elf_hash_table (info)->hgot)
2387 sym->st_shndx = SHN_ABS;
2389 return TRUE;
2393 /* Combine adjacent literal table entries in the output. Adjacent
2394 entries within each input section may have been removed during
2395 relaxation, but we repeat the process here, even though it's too late
2396 to shrink the output section, because it's important to minimize the
2397 number of literal table entries to reduce the start-up work for the
2398 runtime linker. Returns the number of remaining table entries or -1
2399 on error. */
2401 static int
2402 elf_xtensa_combine_prop_entries (bfd *output_bfd,
2403 asection *sxtlit,
2404 asection *sgotloc)
2406 bfd_byte *contents;
2407 property_table_entry *table;
2408 bfd_size_type section_size, sgotloc_size;
2409 bfd_vma offset;
2410 int n, m, num;
2412 section_size = sxtlit->size;
2413 BFD_ASSERT (section_size % 8 == 0);
2414 num = section_size / 8;
2416 sgotloc_size = sgotloc->size;
2417 if (sgotloc_size != section_size)
2419 (*_bfd_error_handler)
2420 (_("internal inconsistency in size of .got.loc section"));
2421 return -1;
2424 table = bfd_malloc (num * sizeof (property_table_entry));
2425 if (table == 0)
2426 return -1;
2428 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2429 propagates to the output section, where it doesn't really apply and
2430 where it breaks the following call to bfd_malloc_and_get_section. */
2431 sxtlit->flags &= ~SEC_IN_MEMORY;
2433 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2435 if (contents != 0)
2436 free (contents);
2437 free (table);
2438 return -1;
2441 /* There should never be any relocations left at this point, so this
2442 is quite a bit easier than what is done during relaxation. */
2444 /* Copy the raw contents into a property table array and sort it. */
2445 offset = 0;
2446 for (n = 0; n < num; n++)
2448 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2449 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2450 offset += 8;
2452 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2454 for (n = 0; n < num; n++)
2456 bfd_boolean remove = FALSE;
2458 if (table[n].size == 0)
2459 remove = TRUE;
2460 else if (n > 0 &&
2461 (table[n-1].address + table[n-1].size == table[n].address))
2463 table[n-1].size += table[n].size;
2464 remove = TRUE;
2467 if (remove)
2469 for (m = n; m < num - 1; m++)
2471 table[m].address = table[m+1].address;
2472 table[m].size = table[m+1].size;
2475 n--;
2476 num--;
2480 /* Copy the data back to the raw contents. */
2481 offset = 0;
2482 for (n = 0; n < num; n++)
2484 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2485 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2486 offset += 8;
2489 /* Clear the removed bytes. */
2490 if ((bfd_size_type) (num * 8) < section_size)
2491 memset (&contents[num * 8], 0, section_size - num * 8);
2493 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2494 section_size))
2495 return -1;
2497 /* Copy the contents to ".got.loc". */
2498 memcpy (sgotloc->contents, contents, section_size);
2500 free (contents);
2501 free (table);
2502 return num;
2506 /* Finish up the dynamic sections. */
2508 static bfd_boolean
2509 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2510 struct bfd_link_info *info)
2512 bfd *dynobj;
2513 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
2514 Elf32_External_Dyn *dyncon, *dynconend;
2515 int num_xtlit_entries;
2517 if (! elf_hash_table (info)->dynamic_sections_created)
2518 return TRUE;
2520 dynobj = elf_hash_table (info)->dynobj;
2521 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2522 BFD_ASSERT (sdyn != NULL);
2524 /* Set the first entry in the global offset table to the address of
2525 the dynamic section. */
2526 sgot = bfd_get_section_by_name (dynobj, ".got");
2527 if (sgot)
2529 BFD_ASSERT (sgot->size == 4);
2530 if (sdyn == NULL)
2531 bfd_put_32 (output_bfd, 0, sgot->contents);
2532 else
2533 bfd_put_32 (output_bfd,
2534 sdyn->output_section->vma + sdyn->output_offset,
2535 sgot->contents);
2538 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
2539 if (srelplt && srelplt->size != 0)
2541 asection *sgotplt, *srelgot, *spltlittbl;
2542 int chunk, plt_chunks, plt_entries;
2543 Elf_Internal_Rela irela;
2544 bfd_byte *loc;
2545 unsigned rtld_reloc;
2547 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
2548 BFD_ASSERT (srelgot != NULL);
2550 spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
2551 BFD_ASSERT (spltlittbl != NULL);
2553 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2554 of them follow immediately after.... */
2555 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2557 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2558 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2559 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2560 break;
2562 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2564 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
2565 plt_chunks =
2566 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2568 for (chunk = 0; chunk < plt_chunks; chunk++)
2570 int chunk_entries = 0;
2572 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
2573 BFD_ASSERT (sgotplt != NULL);
2575 /* Emit special RTLD relocations for the first two entries in
2576 each chunk of the .got.plt section. */
2578 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2579 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2580 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2581 irela.r_offset = (sgotplt->output_section->vma
2582 + sgotplt->output_offset);
2583 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2584 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2585 rtld_reloc += 1;
2586 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2588 /* Next literal immediately follows the first. */
2589 loc += sizeof (Elf32_External_Rela);
2590 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2591 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2592 irela.r_offset = (sgotplt->output_section->vma
2593 + sgotplt->output_offset + 4);
2594 /* Tell rtld to set value to object's link map. */
2595 irela.r_addend = 2;
2596 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2597 rtld_reloc += 1;
2598 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2600 /* Fill in the literal table. */
2601 if (chunk < plt_chunks - 1)
2602 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2603 else
2604 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2606 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
2607 bfd_put_32 (output_bfd,
2608 sgotplt->output_section->vma + sgotplt->output_offset,
2609 spltlittbl->contents + (chunk * 8) + 0);
2610 bfd_put_32 (output_bfd,
2611 8 + (chunk_entries * 4),
2612 spltlittbl->contents + (chunk * 8) + 4);
2615 /* All the dynamic relocations have been emitted at this point.
2616 Make sure the relocation sections are the correct size. */
2617 if (srelgot->size != (sizeof (Elf32_External_Rela)
2618 * srelgot->reloc_count)
2619 || srelplt->size != (sizeof (Elf32_External_Rela)
2620 * srelplt->reloc_count))
2621 abort ();
2623 /* The .xt.lit.plt section has just been modified. This must
2624 happen before the code below which combines adjacent literal
2625 table entries, and the .xt.lit.plt contents have to be forced to
2626 the output here. */
2627 if (! bfd_set_section_contents (output_bfd,
2628 spltlittbl->output_section,
2629 spltlittbl->contents,
2630 spltlittbl->output_offset,
2631 spltlittbl->size))
2632 return FALSE;
2633 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2634 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2637 /* Combine adjacent literal table entries. */
2638 BFD_ASSERT (! info->relocatable);
2639 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
2640 sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
2641 BFD_ASSERT (sxtlit && sgotloc);
2642 num_xtlit_entries =
2643 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
2644 if (num_xtlit_entries < 0)
2645 return FALSE;
2647 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2648 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
2649 for (; dyncon < dynconend; dyncon++)
2651 Elf_Internal_Dyn dyn;
2652 const char *name;
2653 asection *s;
2655 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2657 switch (dyn.d_tag)
2659 default:
2660 break;
2662 case DT_XTENSA_GOT_LOC_SZ:
2663 dyn.d_un.d_val = num_xtlit_entries;
2664 break;
2666 case DT_XTENSA_GOT_LOC_OFF:
2667 name = ".got.loc";
2668 goto get_vma;
2669 case DT_PLTGOT:
2670 name = ".got";
2671 goto get_vma;
2672 case DT_JMPREL:
2673 name = ".rela.plt";
2674 get_vma:
2675 s = bfd_get_section_by_name (output_bfd, name);
2676 BFD_ASSERT (s);
2677 dyn.d_un.d_ptr = s->vma;
2678 break;
2680 case DT_PLTRELSZ:
2681 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2682 BFD_ASSERT (s);
2683 dyn.d_un.d_val = s->size;
2684 break;
2686 case DT_RELASZ:
2687 /* Adjust RELASZ to not include JMPREL. This matches what
2688 glibc expects and what is done for several other ELF
2689 targets (e.g., i386, alpha), but the "correct" behavior
2690 seems to be unresolved. Since the linker script arranges
2691 for .rela.plt to follow all other relocation sections, we
2692 don't have to worry about changing the DT_RELA entry. */
2693 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2694 if (s)
2695 dyn.d_un.d_val -= s->size;
2696 break;
2699 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2702 return TRUE;
2706 /* Functions for dealing with the e_flags field. */
2708 /* Merge backend specific data from an object file to the output
2709 object file when linking. */
2711 static bfd_boolean
2712 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2714 unsigned out_mach, in_mach;
2715 flagword out_flag, in_flag;
2717 /* Check if we have the same endianess. */
2718 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2719 return FALSE;
2721 /* Don't even pretend to support mixed-format linking. */
2722 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2723 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2724 return FALSE;
2726 out_flag = elf_elfheader (obfd)->e_flags;
2727 in_flag = elf_elfheader (ibfd)->e_flags;
2729 out_mach = out_flag & EF_XTENSA_MACH;
2730 in_mach = in_flag & EF_XTENSA_MACH;
2731 if (out_mach != in_mach)
2733 (*_bfd_error_handler)
2734 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
2735 ibfd, out_mach, in_mach);
2736 bfd_set_error (bfd_error_wrong_format);
2737 return FALSE;
2740 if (! elf_flags_init (obfd))
2742 elf_flags_init (obfd) = TRUE;
2743 elf_elfheader (obfd)->e_flags = in_flag;
2745 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2746 && bfd_get_arch_info (obfd)->the_default)
2747 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2748 bfd_get_mach (ibfd));
2750 return TRUE;
2753 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2754 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
2756 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2757 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
2759 return TRUE;
2763 static bfd_boolean
2764 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
2766 BFD_ASSERT (!elf_flags_init (abfd)
2767 || elf_elfheader (abfd)->e_flags == flags);
2769 elf_elfheader (abfd)->e_flags |= flags;
2770 elf_flags_init (abfd) = TRUE;
2772 return TRUE;
2776 static bfd_boolean
2777 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
2779 FILE *f = (FILE *) farg;
2780 flagword e_flags = elf_elfheader (abfd)->e_flags;
2782 fprintf (f, "\nXtensa header:\n");
2783 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
2784 fprintf (f, "\nMachine = Base\n");
2785 else
2786 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2788 fprintf (f, "Insn tables = %s\n",
2789 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2791 fprintf (f, "Literal tables = %s\n",
2792 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2794 return _bfd_elf_print_private_bfd_data (abfd, farg);
2798 /* Set the right machine number for an Xtensa ELF file. */
2800 static bfd_boolean
2801 elf_xtensa_object_p (bfd *abfd)
2803 int mach;
2804 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2806 switch (arch)
2808 case E_XTENSA_MACH:
2809 mach = bfd_mach_xtensa;
2810 break;
2811 default:
2812 return FALSE;
2815 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2816 return TRUE;
2820 /* The final processing done just before writing out an Xtensa ELF object
2821 file. This gets the Xtensa architecture right based on the machine
2822 number. */
2824 static void
2825 elf_xtensa_final_write_processing (bfd *abfd,
2826 bfd_boolean linker ATTRIBUTE_UNUSED)
2828 int mach;
2829 unsigned long val;
2831 switch (mach = bfd_get_mach (abfd))
2833 case bfd_mach_xtensa:
2834 val = E_XTENSA_MACH;
2835 break;
2836 default:
2837 return;
2840 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2841 elf_elfheader (abfd)->e_flags |= val;
2845 static enum elf_reloc_type_class
2846 elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
2848 switch ((int) ELF32_R_TYPE (rela->r_info))
2850 case R_XTENSA_RELATIVE:
2851 return reloc_class_relative;
2852 case R_XTENSA_JMP_SLOT:
2853 return reloc_class_plt;
2854 default:
2855 return reloc_class_normal;
2860 static bfd_boolean
2861 elf_xtensa_discard_info_for_section (bfd *abfd,
2862 struct elf_reloc_cookie *cookie,
2863 struct bfd_link_info *info,
2864 asection *sec)
2866 bfd_byte *contents;
2867 bfd_vma section_size;
2868 bfd_vma offset, actual_offset;
2869 size_t removed_bytes = 0;
2871 section_size = sec->size;
2872 if (section_size == 0 || section_size % 8 != 0)
2873 return FALSE;
2875 if (sec->output_section
2876 && bfd_is_abs_section (sec->output_section))
2877 return FALSE;
2879 contents = retrieve_contents (abfd, sec, info->keep_memory);
2880 if (!contents)
2881 return FALSE;
2883 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2884 if (!cookie->rels)
2886 release_contents (sec, contents);
2887 return FALSE;
2890 cookie->rel = cookie->rels;
2891 cookie->relend = cookie->rels + sec->reloc_count;
2893 for (offset = 0; offset < section_size; offset += 8)
2895 actual_offset = offset - removed_bytes;
2897 /* The ...symbol_deleted_p function will skip over relocs but it
2898 won't adjust their offsets, so do that here. */
2899 while (cookie->rel < cookie->relend
2900 && cookie->rel->r_offset < offset)
2902 cookie->rel->r_offset -= removed_bytes;
2903 cookie->rel++;
2906 while (cookie->rel < cookie->relend
2907 && cookie->rel->r_offset == offset)
2909 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
2911 /* Remove the table entry. (If the reloc type is NONE, then
2912 the entry has already been merged with another and deleted
2913 during relaxation.) */
2914 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2916 /* Shift the contents up. */
2917 if (offset + 8 < section_size)
2918 memmove (&contents[actual_offset],
2919 &contents[actual_offset+8],
2920 section_size - offset - 8);
2921 removed_bytes += 8;
2924 /* Remove this relocation. */
2925 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2928 /* Adjust the relocation offset for previous removals. This
2929 should not be done before calling ...symbol_deleted_p
2930 because it might mess up the offset comparisons there.
2931 Make sure the offset doesn't underflow in the case where
2932 the first entry is removed. */
2933 if (cookie->rel->r_offset >= removed_bytes)
2934 cookie->rel->r_offset -= removed_bytes;
2935 else
2936 cookie->rel->r_offset = 0;
2938 cookie->rel++;
2942 if (removed_bytes != 0)
2944 /* Adjust any remaining relocs (shouldn't be any). */
2945 for (; cookie->rel < cookie->relend; cookie->rel++)
2947 if (cookie->rel->r_offset >= removed_bytes)
2948 cookie->rel->r_offset -= removed_bytes;
2949 else
2950 cookie->rel->r_offset = 0;
2953 /* Clear the removed bytes. */
2954 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
2956 pin_contents (sec, contents);
2957 pin_internal_relocs (sec, cookie->rels);
2959 /* Shrink size. */
2960 sec->size = section_size - removed_bytes;
2962 if (xtensa_is_littable_section (sec))
2964 bfd *dynobj = elf_hash_table (info)->dynobj;
2965 if (dynobj)
2967 asection *sgotloc =
2968 bfd_get_section_by_name (dynobj, ".got.loc");
2969 if (sgotloc)
2970 sgotloc->size -= removed_bytes;
2974 else
2976 release_contents (sec, contents);
2977 release_internal_relocs (sec, cookie->rels);
2980 return (removed_bytes != 0);
2984 static bfd_boolean
2985 elf_xtensa_discard_info (bfd *abfd,
2986 struct elf_reloc_cookie *cookie,
2987 struct bfd_link_info *info)
2989 asection *sec;
2990 bfd_boolean changed = FALSE;
2992 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2994 if (xtensa_is_property_section (sec))
2996 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2997 changed = TRUE;
3001 return changed;
3005 static bfd_boolean
3006 elf_xtensa_ignore_discarded_relocs (asection *sec)
3008 return xtensa_is_property_section (sec);
3012 /* Support for core dump NOTE sections. */
3014 static bfd_boolean
3015 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3017 int offset;
3018 unsigned int size;
3020 /* The size for Xtensa is variable, so don't try to recognize the format
3021 based on the size. Just assume this is GNU/Linux. */
3023 /* pr_cursig */
3024 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3026 /* pr_pid */
3027 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3029 /* pr_reg */
3030 offset = 72;
3031 size = note->descsz - offset - 4;
3033 /* Make a ".reg/999" section. */
3034 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3035 size, note->descpos + offset);
3039 static bfd_boolean
3040 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3042 switch (note->descsz)
3044 default:
3045 return FALSE;
3047 case 128: /* GNU/Linux elf_prpsinfo */
3048 elf_tdata (abfd)->core_program
3049 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3050 elf_tdata (abfd)->core_command
3051 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3054 /* Note that for some reason, a spurious space is tacked
3055 onto the end of the args in some (at least one anyway)
3056 implementations, so strip it off if it exists. */
3059 char *command = elf_tdata (abfd)->core_command;
3060 int n = strlen (command);
3062 if (0 < n && command[n - 1] == ' ')
3063 command[n - 1] = '\0';
3066 return TRUE;
3070 /* Generic Xtensa configurability stuff. */
3072 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3073 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3074 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3075 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3076 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3077 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3078 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3079 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3081 static void
3082 init_call_opcodes (void)
3084 if (callx0_op == XTENSA_UNDEFINED)
3086 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3087 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3088 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3089 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3090 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3091 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3092 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3093 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3098 static bfd_boolean
3099 is_indirect_call_opcode (xtensa_opcode opcode)
3101 init_call_opcodes ();
3102 return (opcode == callx0_op
3103 || opcode == callx4_op
3104 || opcode == callx8_op
3105 || opcode == callx12_op);
3109 static bfd_boolean
3110 is_direct_call_opcode (xtensa_opcode opcode)
3112 init_call_opcodes ();
3113 return (opcode == call0_op
3114 || opcode == call4_op
3115 || opcode == call8_op
3116 || opcode == call12_op);
3120 static bfd_boolean
3121 is_windowed_call_opcode (xtensa_opcode opcode)
3123 init_call_opcodes ();
3124 return (opcode == call4_op
3125 || opcode == call8_op
3126 || opcode == call12_op
3127 || opcode == callx4_op
3128 || opcode == callx8_op
3129 || opcode == callx12_op);
3133 static xtensa_opcode
3134 get_const16_opcode (void)
3136 static bfd_boolean done_lookup = FALSE;
3137 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3138 if (!done_lookup)
3140 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3141 done_lookup = TRUE;
3143 return const16_opcode;
3147 static xtensa_opcode
3148 get_l32r_opcode (void)
3150 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3151 static bfd_boolean done_lookup = FALSE;
3153 if (!done_lookup)
3155 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3156 done_lookup = TRUE;
3158 return l32r_opcode;
3162 static bfd_vma
3163 l32r_offset (bfd_vma addr, bfd_vma pc)
3165 bfd_vma offset;
3167 offset = addr - ((pc+3) & -4);
3168 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3169 offset = (signed int) offset >> 2;
3170 BFD_ASSERT ((signed int) offset >> 16 == -1);
3171 return offset;
3175 static int
3176 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3178 xtensa_isa isa = xtensa_default_isa;
3179 int last_immed, last_opnd, opi;
3181 if (opcode == XTENSA_UNDEFINED)
3182 return XTENSA_UNDEFINED;
3184 /* Find the last visible PC-relative immediate operand for the opcode.
3185 If there are no PC-relative immediates, then choose the last visible
3186 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3187 last_immed = XTENSA_UNDEFINED;
3188 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3189 for (opi = last_opnd - 1; opi >= 0; opi--)
3191 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3192 continue;
3193 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3195 last_immed = opi;
3196 break;
3198 if (last_immed == XTENSA_UNDEFINED
3199 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3200 last_immed = opi;
3202 if (last_immed < 0)
3203 return XTENSA_UNDEFINED;
3205 /* If the operand number was specified in an old-style relocation,
3206 check for consistency with the operand computed above. */
3207 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3209 int reloc_opnd = r_type - R_XTENSA_OP0;
3210 if (reloc_opnd != last_immed)
3211 return XTENSA_UNDEFINED;
3214 return last_immed;
3219 get_relocation_slot (int r_type)
3221 switch (r_type)
3223 case R_XTENSA_OP0:
3224 case R_XTENSA_OP1:
3225 case R_XTENSA_OP2:
3226 return 0;
3228 default:
3229 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3230 return r_type - R_XTENSA_SLOT0_OP;
3231 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3232 return r_type - R_XTENSA_SLOT0_ALT;
3233 break;
3236 return XTENSA_UNDEFINED;
3240 /* Get the opcode for a relocation. */
3242 static xtensa_opcode
3243 get_relocation_opcode (bfd *abfd,
3244 asection *sec,
3245 bfd_byte *contents,
3246 Elf_Internal_Rela *irel)
3248 static xtensa_insnbuf ibuff = NULL;
3249 static xtensa_insnbuf sbuff = NULL;
3250 xtensa_isa isa = xtensa_default_isa;
3251 xtensa_format fmt;
3252 int slot;
3254 if (contents == NULL)
3255 return XTENSA_UNDEFINED;
3257 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
3258 return XTENSA_UNDEFINED;
3260 if (ibuff == NULL)
3262 ibuff = xtensa_insnbuf_alloc (isa);
3263 sbuff = xtensa_insnbuf_alloc (isa);
3266 /* Decode the instruction. */
3267 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3268 sec->size - irel->r_offset);
3269 fmt = xtensa_format_decode (isa, ibuff);
3270 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3271 if (slot == XTENSA_UNDEFINED)
3272 return XTENSA_UNDEFINED;
3273 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3274 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
3278 bfd_boolean
3279 is_l32r_relocation (bfd *abfd,
3280 asection *sec,
3281 bfd_byte *contents,
3282 Elf_Internal_Rela *irel)
3284 xtensa_opcode opcode;
3285 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
3286 return FALSE;
3287 opcode = get_relocation_opcode (abfd, sec, contents, irel);
3288 return (opcode == get_l32r_opcode ());
3292 static bfd_size_type
3293 get_asm_simplify_size (bfd_byte *contents,
3294 bfd_size_type content_len,
3295 bfd_size_type offset)
3297 bfd_size_type insnlen, size = 0;
3299 /* Decode the size of the next two instructions. */
3300 insnlen = insn_decode_len (contents, content_len, offset);
3301 if (insnlen == 0)
3302 return 0;
3304 size += insnlen;
3306 insnlen = insn_decode_len (contents, content_len, offset + size);
3307 if (insnlen == 0)
3308 return 0;
3310 size += insnlen;
3311 return size;
3315 bfd_boolean
3316 is_alt_relocation (int r_type)
3318 return (r_type >= R_XTENSA_SLOT0_ALT
3319 && r_type <= R_XTENSA_SLOT14_ALT);
3323 bfd_boolean
3324 is_operand_relocation (int r_type)
3326 switch (r_type)
3328 case R_XTENSA_OP0:
3329 case R_XTENSA_OP1:
3330 case R_XTENSA_OP2:
3331 return TRUE;
3333 default:
3334 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3335 return TRUE;
3336 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3337 return TRUE;
3338 break;
3341 return FALSE;
3345 #define MIN_INSN_LENGTH 2
3347 /* Return 0 if it fails to decode. */
3349 bfd_size_type
3350 insn_decode_len (bfd_byte *contents,
3351 bfd_size_type content_len,
3352 bfd_size_type offset)
3354 int insn_len;
3355 xtensa_isa isa = xtensa_default_isa;
3356 xtensa_format fmt;
3357 static xtensa_insnbuf ibuff = NULL;
3359 if (offset + MIN_INSN_LENGTH > content_len)
3360 return 0;
3362 if (ibuff == NULL)
3363 ibuff = xtensa_insnbuf_alloc (isa);
3364 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3365 content_len - offset);
3366 fmt = xtensa_format_decode (isa, ibuff);
3367 if (fmt == XTENSA_UNDEFINED)
3368 return 0;
3369 insn_len = xtensa_format_length (isa, fmt);
3370 if (insn_len == XTENSA_UNDEFINED)
3371 return 0;
3372 return insn_len;
3376 /* Decode the opcode for a single slot instruction.
3377 Return 0 if it fails to decode or the instruction is multi-slot. */
3379 xtensa_opcode
3380 insn_decode_opcode (bfd_byte *contents,
3381 bfd_size_type content_len,
3382 bfd_size_type offset,
3383 int slot)
3385 xtensa_isa isa = xtensa_default_isa;
3386 xtensa_format fmt;
3387 static xtensa_insnbuf insnbuf = NULL;
3388 static xtensa_insnbuf slotbuf = NULL;
3390 if (offset + MIN_INSN_LENGTH > content_len)
3391 return XTENSA_UNDEFINED;
3393 if (insnbuf == NULL)
3395 insnbuf = xtensa_insnbuf_alloc (isa);
3396 slotbuf = xtensa_insnbuf_alloc (isa);
3399 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3400 content_len - offset);
3401 fmt = xtensa_format_decode (isa, insnbuf);
3402 if (fmt == XTENSA_UNDEFINED)
3403 return XTENSA_UNDEFINED;
3405 if (slot >= xtensa_format_num_slots (isa, fmt))
3406 return XTENSA_UNDEFINED;
3408 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3409 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3413 /* The offset is the offset in the contents.
3414 The address is the address of that offset. */
3416 static bfd_boolean
3417 check_branch_target_aligned (bfd_byte *contents,
3418 bfd_size_type content_length,
3419 bfd_vma offset,
3420 bfd_vma address)
3422 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3423 if (insn_len == 0)
3424 return FALSE;
3425 return check_branch_target_aligned_address (address, insn_len);
3429 static bfd_boolean
3430 check_loop_aligned (bfd_byte *contents,
3431 bfd_size_type content_length,
3432 bfd_vma offset,
3433 bfd_vma address)
3435 bfd_size_type loop_len, insn_len;
3436 xtensa_opcode opcode =
3437 insn_decode_opcode (contents, content_length, offset, 0);
3438 BFD_ASSERT (opcode != XTENSA_UNDEFINED);
3439 if (opcode != XTENSA_UNDEFINED)
3440 return FALSE;
3441 BFD_ASSERT (xtensa_opcode_is_loop (xtensa_default_isa, opcode));
3442 if (!xtensa_opcode_is_loop (xtensa_default_isa, opcode))
3443 return FALSE;
3445 loop_len = insn_decode_len (contents, content_length, offset);
3446 BFD_ASSERT (loop_len != 0);
3447 if (loop_len == 0)
3448 return FALSE;
3450 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
3451 BFD_ASSERT (insn_len != 0);
3452 if (insn_len == 0)
3453 return FALSE;
3455 return check_branch_target_aligned_address (address + loop_len, insn_len);
3459 static bfd_boolean
3460 check_branch_target_aligned_address (bfd_vma addr, int len)
3462 if (len == 8)
3463 return (addr % 8 == 0);
3464 return ((addr >> 2) == ((addr + len - 1) >> 2));
3468 /* Instruction widening and narrowing. */
3470 /* When FLIX is available we need to access certain instructions only
3471 when they are 16-bit or 24-bit instructions. This table caches
3472 information about such instructions by walking through all the
3473 opcodes and finding the smallest single-slot format into which each
3474 can be encoded. */
3476 static xtensa_format *op_single_fmt_table = NULL;
3479 static void
3480 init_op_single_format_table (void)
3482 xtensa_isa isa = xtensa_default_isa;
3483 xtensa_insnbuf ibuf;
3484 xtensa_opcode opcode;
3485 xtensa_format fmt;
3486 int num_opcodes;
3488 if (op_single_fmt_table)
3489 return;
3491 ibuf = xtensa_insnbuf_alloc (isa);
3492 num_opcodes = xtensa_isa_num_opcodes (isa);
3494 op_single_fmt_table = (xtensa_format *)
3495 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3496 for (opcode = 0; opcode < num_opcodes; opcode++)
3498 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3499 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3501 if (xtensa_format_num_slots (isa, fmt) == 1
3502 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3504 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3505 int fmt_length = xtensa_format_length (isa, fmt);
3506 if (old_fmt == XTENSA_UNDEFINED
3507 || fmt_length < xtensa_format_length (isa, old_fmt))
3508 op_single_fmt_table[opcode] = fmt;
3512 xtensa_insnbuf_free (isa, ibuf);
3516 static xtensa_format
3517 get_single_format (xtensa_opcode opcode)
3519 init_op_single_format_table ();
3520 return op_single_fmt_table[opcode];
3524 /* For the set of narrowable instructions we do NOT include the
3525 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3526 involved during linker relaxation that may require these to
3527 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3528 requires special case code to ensure it only works when op1 == op2. */
3530 struct string_pair
3532 const char *wide;
3533 const char *narrow;
3536 struct string_pair narrowable[] =
3538 { "add", "add.n" },
3539 { "addi", "addi.n" },
3540 { "addmi", "addi.n" },
3541 { "l32i", "l32i.n" },
3542 { "movi", "movi.n" },
3543 { "ret", "ret.n" },
3544 { "retw", "retw.n" },
3545 { "s32i", "s32i.n" },
3546 { "or", "mov.n" } /* special case only when op1 == op2 */
3549 struct string_pair widenable[] =
3551 { "add", "add.n" },
3552 { "addi", "addi.n" },
3553 { "addmi", "addi.n" },
3554 { "beqz", "beqz.n" },
3555 { "bnez", "bnez.n" },
3556 { "l32i", "l32i.n" },
3557 { "movi", "movi.n" },
3558 { "ret", "ret.n" },
3559 { "retw", "retw.n" },
3560 { "s32i", "s32i.n" },
3561 { "or", "mov.n" } /* special case only when op1 == op2 */
3565 /* Attempt to narrow an instruction. Return true if the narrowing is
3566 valid. If the do_it parameter is non-zero, then perform the action
3567 in-place directly into the contents. Otherwise, do not modify the
3568 contents. The set of valid narrowing are specified by a string table
3569 but require some special case operand checks in some cases. */
3571 static bfd_boolean
3572 narrow_instruction (bfd_byte *contents,
3573 bfd_size_type content_length,
3574 bfd_size_type offset,
3575 bfd_boolean do_it)
3577 xtensa_opcode opcode;
3578 bfd_size_type insn_len, opi;
3579 xtensa_isa isa = xtensa_default_isa;
3580 xtensa_format fmt, o_fmt;
3582 static xtensa_insnbuf insnbuf = NULL;
3583 static xtensa_insnbuf slotbuf = NULL;
3584 static xtensa_insnbuf o_insnbuf = NULL;
3585 static xtensa_insnbuf o_slotbuf = NULL;
3587 if (insnbuf == NULL)
3589 insnbuf = xtensa_insnbuf_alloc (isa);
3590 slotbuf = xtensa_insnbuf_alloc (isa);
3591 o_insnbuf = xtensa_insnbuf_alloc (isa);
3592 o_slotbuf = xtensa_insnbuf_alloc (isa);
3595 BFD_ASSERT (offset < content_length);
3597 if (content_length < 2)
3598 return FALSE;
3600 /* We will hand-code a few of these for a little while.
3601 These have all been specified in the assembler aleady. */
3602 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3603 content_length - offset);
3604 fmt = xtensa_format_decode (isa, insnbuf);
3605 if (xtensa_format_num_slots (isa, fmt) != 1)
3606 return FALSE;
3608 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3609 return FALSE;
3611 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3612 if (opcode == XTENSA_UNDEFINED)
3613 return FALSE;
3614 insn_len = xtensa_format_length (isa, fmt);
3615 if (insn_len > content_length)
3616 return FALSE;
3618 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); ++opi)
3620 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
3622 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3624 uint32 value, newval;
3625 int i, operand_count, o_operand_count;
3626 xtensa_opcode o_opcode;
3628 /* Address does not matter in this case. We might need to
3629 fix it to handle branches/jumps. */
3630 bfd_vma self_address = 0;
3632 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3633 if (o_opcode == XTENSA_UNDEFINED)
3634 return FALSE;
3635 o_fmt = get_single_format (o_opcode);
3636 if (o_fmt == XTENSA_UNDEFINED)
3637 return FALSE;
3639 if (xtensa_format_length (isa, fmt) != 3
3640 || xtensa_format_length (isa, o_fmt) != 2)
3641 return FALSE;
3643 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3644 operand_count = xtensa_opcode_num_operands (isa, opcode);
3645 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3647 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3648 return FALSE;
3650 if (!is_or)
3652 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3653 return FALSE;
3655 else
3657 uint32 rawval0, rawval1, rawval2;
3659 if (o_operand_count + 1 != operand_count)
3660 return FALSE;
3661 if (xtensa_operand_get_field (isa, opcode, 0,
3662 fmt, 0, slotbuf, &rawval0) != 0)
3663 return FALSE;
3664 if (xtensa_operand_get_field (isa, opcode, 1,
3665 fmt, 0, slotbuf, &rawval1) != 0)
3666 return FALSE;
3667 if (xtensa_operand_get_field (isa, opcode, 2,
3668 fmt, 0, slotbuf, &rawval2) != 0)
3669 return FALSE;
3671 if (rawval1 != rawval2)
3672 return FALSE;
3673 if (rawval0 == rawval1) /* it is a nop */
3674 return FALSE;
3677 for (i = 0; i < o_operand_count; ++i)
3679 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3680 slotbuf, &value)
3681 || xtensa_operand_decode (isa, opcode, i, &value))
3682 return FALSE;
3684 /* PC-relative branches need adjustment, but
3685 the PC-rel operand will always have a relocation. */
3686 newval = value;
3687 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3688 self_address)
3689 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3690 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3691 o_slotbuf, newval))
3692 return FALSE;
3695 if (xtensa_format_set_slot (isa, o_fmt, 0,
3696 o_insnbuf, o_slotbuf) != 0)
3697 return FALSE;
3699 if (do_it)
3700 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3701 content_length - offset);
3702 return TRUE;
3705 return FALSE;
3709 /* Attempt to widen an instruction. Return true if the widening is
3710 valid. If the do_it parameter is non-zero, then the action should
3711 be performed inplace into the contents. Otherwise, do not modify
3712 the contents. The set of valid widenings are specified by a string
3713 table but require some special case operand checks in some
3714 cases. */
3716 static bfd_boolean
3717 widen_instruction (bfd_byte *contents,
3718 bfd_size_type content_length,
3719 bfd_size_type offset,
3720 bfd_boolean do_it)
3722 xtensa_opcode opcode;
3723 bfd_size_type insn_len, opi;
3724 xtensa_isa isa = xtensa_default_isa;
3725 xtensa_format fmt, o_fmt;
3727 static xtensa_insnbuf insnbuf = NULL;
3728 static xtensa_insnbuf slotbuf = NULL;
3729 static xtensa_insnbuf o_insnbuf = NULL;
3730 static xtensa_insnbuf o_slotbuf = NULL;
3732 if (insnbuf == NULL)
3734 insnbuf = xtensa_insnbuf_alloc (isa);
3735 slotbuf = xtensa_insnbuf_alloc (isa);
3736 o_insnbuf = xtensa_insnbuf_alloc (isa);
3737 o_slotbuf = xtensa_insnbuf_alloc (isa);
3740 BFD_ASSERT (offset < content_length);
3742 if (content_length < 2)
3743 return FALSE;
3745 /* We will hand code a few of these for a little while.
3746 These have all been specified in the assembler aleady. */
3747 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3748 content_length - offset);
3749 fmt = xtensa_format_decode (isa, insnbuf);
3750 if (xtensa_format_num_slots (isa, fmt) != 1)
3751 return FALSE;
3753 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3754 return FALSE;
3756 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3757 if (opcode == XTENSA_UNDEFINED)
3758 return FALSE;
3759 insn_len = xtensa_format_length (isa, fmt);
3760 if (insn_len > content_length)
3761 return FALSE;
3763 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); ++opi)
3765 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3766 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3767 || strcmp ("bnez", widenable[opi].wide) == 0);
3769 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3771 uint32 value, newval;
3772 int i, operand_count, o_operand_count, check_operand_count;
3773 xtensa_opcode o_opcode;
3775 /* Address does not matter in this case. We might need to fix it
3776 to handle branches/jumps. */
3777 bfd_vma self_address = 0;
3779 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3780 if (o_opcode == XTENSA_UNDEFINED)
3781 return FALSE;
3782 o_fmt = get_single_format (o_opcode);
3783 if (o_fmt == XTENSA_UNDEFINED)
3784 return FALSE;
3786 if (xtensa_format_length (isa, fmt) != 2
3787 || xtensa_format_length (isa, o_fmt) != 3)
3788 return FALSE;
3790 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3791 operand_count = xtensa_opcode_num_operands (isa, opcode);
3792 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3793 check_operand_count = o_operand_count;
3795 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3796 return FALSE;
3798 if (!is_or)
3800 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3801 return FALSE;
3803 else
3805 uint32 rawval0, rawval1;
3807 if (o_operand_count != operand_count + 1)
3808 return FALSE;
3809 if (xtensa_operand_get_field (isa, opcode, 0,
3810 fmt, 0, slotbuf, &rawval0) != 0)
3811 return FALSE;
3812 if (xtensa_operand_get_field (isa, opcode, 1,
3813 fmt, 0, slotbuf, &rawval1) != 0)
3814 return FALSE;
3815 if (rawval0 == rawval1) /* it is a nop */
3816 return FALSE;
3818 if (is_branch)
3819 check_operand_count--;
3821 for (i = 0; i < check_operand_count; ++i)
3823 int new_i = i;
3824 if (is_or && i == o_operand_count - 1)
3825 new_i = i - 1;
3826 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3827 slotbuf, &value)
3828 || xtensa_operand_decode (isa, opcode, new_i, &value))
3829 return FALSE;
3831 /* PC-relative branches need adjustment, but
3832 the PC-rel operand will always have a relocation. */
3833 newval = value;
3834 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3835 self_address)
3836 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3837 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3838 o_slotbuf, newval))
3839 return FALSE;
3842 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3843 return FALSE;
3845 if (do_it)
3846 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3847 content_length - offset);
3848 return TRUE;
3851 return FALSE;
3855 /* Code for transforming CALLs at link-time. */
3857 static bfd_reloc_status_type
3858 elf_xtensa_do_asm_simplify (bfd_byte *contents,
3859 bfd_vma address,
3860 bfd_vma content_length,
3861 char **error_message)
3863 static xtensa_insnbuf insnbuf = NULL;
3864 static xtensa_insnbuf slotbuf = NULL;
3865 xtensa_format core_format = XTENSA_UNDEFINED;
3866 xtensa_opcode opcode;
3867 xtensa_opcode direct_call_opcode;
3868 xtensa_isa isa = xtensa_default_isa;
3869 bfd_byte *chbuf = contents + address;
3870 int opn;
3872 if (insnbuf == NULL)
3874 insnbuf = xtensa_insnbuf_alloc (isa);
3875 slotbuf = xtensa_insnbuf_alloc (isa);
3878 if (content_length < address)
3880 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3881 return bfd_reloc_other;
3884 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3885 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3886 if (direct_call_opcode == XTENSA_UNDEFINED)
3888 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3889 return bfd_reloc_other;
3892 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3893 core_format = xtensa_format_lookup (isa, "x24");
3894 opcode = xtensa_opcode_lookup (isa, "or");
3895 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3896 for (opn = 0; opn < 3; opn++)
3898 uint32 regno = 1;
3899 xtensa_operand_encode (isa, opcode, opn, &regno);
3900 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3901 slotbuf, regno);
3903 xtensa_format_encode (isa, core_format, insnbuf);
3904 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3905 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
3907 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3908 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3909 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
3911 xtensa_format_encode (isa, core_format, insnbuf);
3912 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3913 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3914 content_length - address - 3);
3916 return bfd_reloc_ok;
3920 static bfd_reloc_status_type
3921 contract_asm_expansion (bfd_byte *contents,
3922 bfd_vma content_length,
3923 Elf_Internal_Rela *irel,
3924 char **error_message)
3926 bfd_reloc_status_type retval =
3927 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3928 error_message);
3930 if (retval != bfd_reloc_ok)
3931 return bfd_reloc_dangerous;
3933 /* Update the irel->r_offset field so that the right immediate and
3934 the right instruction are modified during the relocation. */
3935 irel->r_offset += 3;
3936 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3937 return bfd_reloc_ok;
3941 static xtensa_opcode
3942 swap_callx_for_call_opcode (xtensa_opcode opcode)
3944 init_call_opcodes ();
3946 if (opcode == callx0_op) return call0_op;
3947 if (opcode == callx4_op) return call4_op;
3948 if (opcode == callx8_op) return call8_op;
3949 if (opcode == callx12_op) return call12_op;
3951 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3952 return XTENSA_UNDEFINED;
3956 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3957 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3958 If not, return XTENSA_UNDEFINED. */
3960 #define L32R_TARGET_REG_OPERAND 0
3961 #define CONST16_TARGET_REG_OPERAND 0
3962 #define CALLN_SOURCE_OPERAND 0
3964 static xtensa_opcode
3965 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
3967 static xtensa_insnbuf insnbuf = NULL;
3968 static xtensa_insnbuf slotbuf = NULL;
3969 xtensa_format fmt;
3970 xtensa_opcode opcode;
3971 xtensa_isa isa = xtensa_default_isa;
3972 uint32 regno, const16_regno, call_regno;
3973 int offset = 0;
3975 if (insnbuf == NULL)
3977 insnbuf = xtensa_insnbuf_alloc (isa);
3978 slotbuf = xtensa_insnbuf_alloc (isa);
3981 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
3982 fmt = xtensa_format_decode (isa, insnbuf);
3983 if (fmt == XTENSA_UNDEFINED
3984 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
3985 return XTENSA_UNDEFINED;
3987 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3988 if (opcode == XTENSA_UNDEFINED)
3989 return XTENSA_UNDEFINED;
3991 if (opcode == get_l32r_opcode ())
3993 if (p_uses_l32r)
3994 *p_uses_l32r = TRUE;
3995 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
3996 fmt, 0, slotbuf, &regno)
3997 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
3998 &regno))
3999 return XTENSA_UNDEFINED;
4001 else if (opcode == get_const16_opcode ())
4003 if (p_uses_l32r)
4004 *p_uses_l32r = FALSE;
4005 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4006 fmt, 0, slotbuf, &regno)
4007 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4008 &regno))
4009 return XTENSA_UNDEFINED;
4011 /* Check that the next instruction is also CONST16. */
4012 offset += xtensa_format_length (isa, fmt);
4013 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4014 fmt = xtensa_format_decode (isa, insnbuf);
4015 if (fmt == XTENSA_UNDEFINED
4016 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4017 return XTENSA_UNDEFINED;
4018 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4019 if (opcode != get_const16_opcode ())
4020 return XTENSA_UNDEFINED;
4022 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4023 fmt, 0, slotbuf, &const16_regno)
4024 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4025 &const16_regno)
4026 || const16_regno != regno)
4027 return XTENSA_UNDEFINED;
4029 else
4030 return XTENSA_UNDEFINED;
4032 /* Next instruction should be an CALLXn with operand 0 == regno. */
4033 offset += xtensa_format_length (isa, fmt);
4034 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4035 fmt = xtensa_format_decode (isa, insnbuf);
4036 if (fmt == XTENSA_UNDEFINED
4037 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4038 return XTENSA_UNDEFINED;
4039 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4040 if (opcode == XTENSA_UNDEFINED
4041 || !is_indirect_call_opcode (opcode))
4042 return XTENSA_UNDEFINED;
4044 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4045 fmt, 0, slotbuf, &call_regno)
4046 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4047 &call_regno))
4048 return XTENSA_UNDEFINED;
4050 if (call_regno != regno)
4051 return XTENSA_UNDEFINED;
4053 return opcode;
4057 /* Data structures used during relaxation. */
4059 /* r_reloc: relocation values. */
4061 /* Through the relaxation process, we need to keep track of the values
4062 that will result from evaluating relocations. The standard ELF
4063 relocation structure is not sufficient for this purpose because we're
4064 operating on multiple input files at once, so we need to know which
4065 input file a relocation refers to. The r_reloc structure thus
4066 records both the input file (bfd) and ELF relocation.
4068 For efficiency, an r_reloc also contains a "target_offset" field to
4069 cache the target-section-relative offset value that is represented by
4070 the relocation.
4072 The r_reloc also contains a virtual offset that allows multiple
4073 inserted literals to be placed at the same "address" with
4074 different offsets. */
4076 typedef struct r_reloc_struct r_reloc;
4078 struct r_reloc_struct
4080 bfd *abfd;
4081 Elf_Internal_Rela rela;
4082 bfd_vma target_offset;
4083 bfd_vma virtual_offset;
4087 /* The r_reloc structure is included by value in literal_value, but not
4088 every literal_value has an associated relocation -- some are simple
4089 constants. In such cases, we set all the fields in the r_reloc
4090 struct to zero. The r_reloc_is_const function should be used to
4091 detect this case. */
4093 static bfd_boolean
4094 r_reloc_is_const (const r_reloc *r_rel)
4096 return (r_rel->abfd == NULL);
4100 static bfd_vma
4101 r_reloc_get_target_offset (const r_reloc *r_rel)
4103 bfd_vma target_offset;
4104 unsigned long r_symndx;
4106 BFD_ASSERT (!r_reloc_is_const (r_rel));
4107 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4108 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4109 return (target_offset + r_rel->rela.r_addend);
4113 static struct elf_link_hash_entry *
4114 r_reloc_get_hash_entry (const r_reloc *r_rel)
4116 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4117 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4121 static asection *
4122 r_reloc_get_section (const r_reloc *r_rel)
4124 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4125 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4129 static bfd_boolean
4130 r_reloc_is_defined (const r_reloc *r_rel)
4132 asection *sec;
4133 if (r_rel == NULL)
4134 return FALSE;
4136 sec = r_reloc_get_section (r_rel);
4137 if (sec == bfd_abs_section_ptr
4138 || sec == bfd_com_section_ptr
4139 || sec == bfd_und_section_ptr)
4140 return FALSE;
4141 return TRUE;
4145 static void
4146 r_reloc_init (r_reloc *r_rel,
4147 bfd *abfd,
4148 Elf_Internal_Rela *irel,
4149 bfd_byte *contents,
4150 bfd_size_type content_length)
4152 int r_type;
4153 reloc_howto_type *howto;
4155 if (irel)
4157 r_rel->rela = *irel;
4158 r_rel->abfd = abfd;
4159 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4160 r_rel->virtual_offset = 0;
4161 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4162 howto = &elf_howto_table[r_type];
4163 if (howto->partial_inplace)
4165 bfd_vma inplace_val;
4166 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4168 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4169 r_rel->target_offset += inplace_val;
4172 else
4173 memset (r_rel, 0, sizeof (r_reloc));
4177 #if DEBUG
4179 static void
4180 print_r_reloc (FILE *fp, const r_reloc *r_rel)
4182 if (r_reloc_is_defined (r_rel))
4184 asection *sec = r_reloc_get_section (r_rel);
4185 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4187 else if (r_reloc_get_hash_entry (r_rel))
4188 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4189 else
4190 fprintf (fp, " ?? + ");
4192 fprintf_vma (fp, r_rel->target_offset);
4193 if (r_rel->virtual_offset)
4195 fprintf (fp, " + ");
4196 fprintf_vma (fp, r_rel->virtual_offset);
4199 fprintf (fp, ")");
4202 #endif /* DEBUG */
4205 /* source_reloc: relocations that reference literals. */
4207 /* To determine whether literals can be coalesced, we need to first
4208 record all the relocations that reference the literals. The
4209 source_reloc structure below is used for this purpose. The
4210 source_reloc entries are kept in a per-literal-section array, sorted
4211 by offset within the literal section (i.e., target offset).
4213 The source_sec and r_rel.rela.r_offset fields identify the source of
4214 the relocation. The r_rel field records the relocation value, i.e.,
4215 the offset of the literal being referenced. The opnd field is needed
4216 to determine the range of the immediate field to which the relocation
4217 applies, so we can determine whether another literal with the same
4218 value is within range. The is_null field is true when the relocation
4219 is being removed (e.g., when an L32R is being removed due to a CALLX
4220 that is converted to a direct CALL). */
4222 typedef struct source_reloc_struct source_reloc;
4224 struct source_reloc_struct
4226 asection *source_sec;
4227 r_reloc r_rel;
4228 xtensa_opcode opcode;
4229 int opnd;
4230 bfd_boolean is_null;
4231 bfd_boolean is_abs_literal;
4235 static void
4236 init_source_reloc (source_reloc *reloc,
4237 asection *source_sec,
4238 const r_reloc *r_rel,
4239 xtensa_opcode opcode,
4240 int opnd,
4241 bfd_boolean is_abs_literal)
4243 reloc->source_sec = source_sec;
4244 reloc->r_rel = *r_rel;
4245 reloc->opcode = opcode;
4246 reloc->opnd = opnd;
4247 reloc->is_null = FALSE;
4248 reloc->is_abs_literal = is_abs_literal;
4252 /* Find the source_reloc for a particular source offset and relocation
4253 type. Note that the array is sorted by _target_ offset, so this is
4254 just a linear search. */
4256 static source_reloc *
4257 find_source_reloc (source_reloc *src_relocs,
4258 int src_count,
4259 asection *sec,
4260 Elf_Internal_Rela *irel)
4262 int i;
4264 for (i = 0; i < src_count; i++)
4266 if (src_relocs[i].source_sec == sec
4267 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4268 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4269 == ELF32_R_TYPE (irel->r_info)))
4270 return &src_relocs[i];
4273 return NULL;
4277 static int
4278 source_reloc_compare (const void *ap, const void *bp)
4280 const source_reloc *a = (const source_reloc *) ap;
4281 const source_reloc *b = (const source_reloc *) bp;
4283 if (a->r_rel.target_offset != b->r_rel.target_offset)
4284 return (a->r_rel.target_offset - b->r_rel.target_offset);
4286 /* We don't need to sort on these criteria for correctness,
4287 but enforcing a more strict ordering prevents unstable qsort
4288 from behaving differently with different implementations.
4289 Without the code below we get correct but different results
4290 on Solaris 2.7 and 2.8. We would like to always produce the
4291 same results no matter the host. */
4293 if ((!a->is_null) - (!b->is_null))
4294 return ((!a->is_null) - (!b->is_null));
4295 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
4299 /* Literal values and value hash tables. */
4301 /* Literals with the same value can be coalesced. The literal_value
4302 structure records the value of a literal: the "r_rel" field holds the
4303 information from the relocation on the literal (if there is one) and
4304 the "value" field holds the contents of the literal word itself.
4306 The value_map structure records a literal value along with the
4307 location of a literal holding that value. The value_map hash table
4308 is indexed by the literal value, so that we can quickly check if a
4309 particular literal value has been seen before and is thus a candidate
4310 for coalescing. */
4312 typedef struct literal_value_struct literal_value;
4313 typedef struct value_map_struct value_map;
4314 typedef struct value_map_hash_table_struct value_map_hash_table;
4316 struct literal_value_struct
4318 r_reloc r_rel;
4319 unsigned long value;
4320 bfd_boolean is_abs_literal;
4323 struct value_map_struct
4325 literal_value val; /* The literal value. */
4326 r_reloc loc; /* Location of the literal. */
4327 value_map *next;
4330 struct value_map_hash_table_struct
4332 unsigned bucket_count;
4333 value_map **buckets;
4334 unsigned count;
4335 bfd_boolean has_last_loc;
4336 r_reloc last_loc;
4340 static void
4341 init_literal_value (literal_value *lit,
4342 const r_reloc *r_rel,
4343 unsigned long value,
4344 bfd_boolean is_abs_literal)
4346 lit->r_rel = *r_rel;
4347 lit->value = value;
4348 lit->is_abs_literal = is_abs_literal;
4352 static bfd_boolean
4353 literal_value_equal (const literal_value *src1,
4354 const literal_value *src2,
4355 bfd_boolean final_static_link)
4357 struct elf_link_hash_entry *h1, *h2;
4359 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4360 return FALSE;
4362 if (r_reloc_is_const (&src1->r_rel))
4363 return (src1->value == src2->value);
4365 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4366 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4367 return FALSE;
4369 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4370 return FALSE;
4372 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4373 return FALSE;
4375 if (src1->value != src2->value)
4376 return FALSE;
4378 /* Now check for the same section (if defined) or the same elf_hash
4379 (if undefined or weak). */
4380 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4381 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4382 if (r_reloc_is_defined (&src1->r_rel)
4383 && (final_static_link
4384 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4385 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4387 if (r_reloc_get_section (&src1->r_rel)
4388 != r_reloc_get_section (&src2->r_rel))
4389 return FALSE;
4391 else
4393 /* Require that the hash entries (i.e., symbols) be identical. */
4394 if (h1 != h2 || h1 == 0)
4395 return FALSE;
4398 if (src1->is_abs_literal != src2->is_abs_literal)
4399 return FALSE;
4401 return TRUE;
4405 /* Must be power of 2. */
4406 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
4408 static value_map_hash_table *
4409 value_map_hash_table_init (void)
4411 value_map_hash_table *values;
4413 values = (value_map_hash_table *)
4414 bfd_zmalloc (sizeof (value_map_hash_table));
4415 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4416 values->count = 0;
4417 values->buckets = (value_map **)
4418 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4419 if (values->buckets == NULL)
4421 free (values);
4422 return NULL;
4424 values->has_last_loc = FALSE;
4426 return values;
4430 static void
4431 value_map_hash_table_delete (value_map_hash_table *table)
4433 free (table->buckets);
4434 free (table);
4438 static unsigned
4439 hash_bfd_vma (bfd_vma val)
4441 return (val >> 2) + (val >> 10);
4445 static unsigned
4446 literal_value_hash (const literal_value *src)
4448 unsigned hash_val;
4450 hash_val = hash_bfd_vma (src->value);
4451 if (!r_reloc_is_const (&src->r_rel))
4453 void *sec_or_hash;
4455 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4456 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4457 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4459 /* Now check for the same section and the same elf_hash. */
4460 if (r_reloc_is_defined (&src->r_rel))
4461 sec_or_hash = r_reloc_get_section (&src->r_rel);
4462 else
4463 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
4464 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
4466 return hash_val;
4470 /* Check if the specified literal_value has been seen before. */
4472 static value_map *
4473 value_map_get_cached_value (value_map_hash_table *map,
4474 const literal_value *val,
4475 bfd_boolean final_static_link)
4477 value_map *map_e;
4478 value_map *bucket;
4479 unsigned idx;
4481 idx = literal_value_hash (val);
4482 idx = idx & (map->bucket_count - 1);
4483 bucket = map->buckets[idx];
4484 for (map_e = bucket; map_e; map_e = map_e->next)
4486 if (literal_value_equal (&map_e->val, val, final_static_link))
4487 return map_e;
4489 return NULL;
4493 /* Record a new literal value. It is illegal to call this if VALUE
4494 already has an entry here. */
4496 static value_map *
4497 add_value_map (value_map_hash_table *map,
4498 const literal_value *val,
4499 const r_reloc *loc,
4500 bfd_boolean final_static_link)
4502 value_map **bucket_p;
4503 unsigned idx;
4505 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4506 if (val_e == NULL)
4508 bfd_set_error (bfd_error_no_memory);
4509 return NULL;
4512 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4513 val_e->val = *val;
4514 val_e->loc = *loc;
4516 idx = literal_value_hash (val);
4517 idx = idx & (map->bucket_count - 1);
4518 bucket_p = &map->buckets[idx];
4520 val_e->next = *bucket_p;
4521 *bucket_p = val_e;
4522 map->count++;
4523 /* FIXME: Consider resizing the hash table if we get too many entries. */
4525 return val_e;
4529 /* Lists of text actions (ta_) for narrowing, widening, longcall
4530 conversion, space fill, code & literal removal, etc. */
4532 /* The following text actions are generated:
4534 "ta_remove_insn" remove an instruction or instructions
4535 "ta_remove_longcall" convert longcall to call
4536 "ta_convert_longcall" convert longcall to nop/call
4537 "ta_narrow_insn" narrow a wide instruction
4538 "ta_widen" widen a narrow instruction
4539 "ta_fill" add fill or remove fill
4540 removed < 0 is a fill; branches to the fill address will be
4541 changed to address + fill size (e.g., address - removed)
4542 removed >= 0 branches to the fill address will stay unchanged
4543 "ta_remove_literal" remove a literal; this action is
4544 indicated when a literal is removed
4545 or replaced.
4546 "ta_add_literal" insert a new literal; this action is
4547 indicated when a literal has been moved.
4548 It may use a virtual_offset because
4549 multiple literals can be placed at the
4550 same location.
4552 For each of these text actions, we also record the number of bytes
4553 removed by performing the text action. In the case of a "ta_widen"
4554 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4556 typedef struct text_action_struct text_action;
4557 typedef struct text_action_list_struct text_action_list;
4558 typedef enum text_action_enum_t text_action_t;
4560 enum text_action_enum_t
4562 ta_none,
4563 ta_remove_insn, /* removed = -size */
4564 ta_remove_longcall, /* removed = -size */
4565 ta_convert_longcall, /* removed = 0 */
4566 ta_narrow_insn, /* removed = -1 */
4567 ta_widen_insn, /* removed = +1 */
4568 ta_fill, /* removed = +size */
4569 ta_remove_literal,
4570 ta_add_literal
4574 /* Structure for a text action record. */
4575 struct text_action_struct
4577 text_action_t action;
4578 asection *sec; /* Optional */
4579 bfd_vma offset;
4580 bfd_vma virtual_offset; /* Zero except for adding literals. */
4581 int removed_bytes;
4582 literal_value value; /* Only valid when adding literals. */
4584 text_action *next;
4588 /* List of all of the actions taken on a text section. */
4589 struct text_action_list_struct
4591 text_action *head;
4595 static text_action *
4596 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
4598 text_action **m_p;
4600 /* It is not necessary to fill at the end of a section. */
4601 if (sec->size == offset)
4602 return NULL;
4604 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
4606 text_action *t = *m_p;
4607 /* When the action is another fill at the same address,
4608 just increase the size. */
4609 if (t->offset == offset && t->action == ta_fill)
4610 return t;
4612 return NULL;
4616 static int
4617 compute_removed_action_diff (const text_action *ta,
4618 asection *sec,
4619 bfd_vma offset,
4620 int removed,
4621 int removable_space)
4623 int new_removed;
4624 int current_removed = 0;
4626 if (ta)
4627 current_removed = ta->removed_bytes;
4629 BFD_ASSERT (ta == NULL || ta->offset == offset);
4630 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4632 /* It is not necessary to fill at the end of a section. Clean this up. */
4633 if (sec->size == offset)
4634 new_removed = removable_space - 0;
4635 else
4637 int space;
4638 int added = -removed - current_removed;
4639 /* Ignore multiples of the section alignment. */
4640 added = ((1 << sec->alignment_power) - 1) & added;
4641 new_removed = (-added);
4643 /* Modify for removable. */
4644 space = removable_space - new_removed;
4645 new_removed = (removable_space
4646 - (((1 << sec->alignment_power) - 1) & space));
4648 return (new_removed - current_removed);
4652 static void
4653 adjust_fill_action (text_action *ta, int fill_diff)
4655 ta->removed_bytes += fill_diff;
4659 /* Add a modification action to the text. For the case of adding or
4660 removing space, modify any current fill and assume that
4661 "unreachable_space" bytes can be freely contracted. Note that a
4662 negative removed value is a fill. */
4664 static void
4665 text_action_add (text_action_list *l,
4666 text_action_t action,
4667 asection *sec,
4668 bfd_vma offset,
4669 int removed)
4671 text_action **m_p;
4672 text_action *ta;
4674 /* It is not necessary to fill at the end of a section. */
4675 if (action == ta_fill && sec->size == offset)
4676 return;
4678 /* It is not necessary to fill 0 bytes. */
4679 if (action == ta_fill && removed == 0)
4680 return;
4682 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
4684 text_action *t = *m_p;
4685 /* When the action is another fill at the same address,
4686 just increase the size. */
4687 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4689 t->removed_bytes += removed;
4690 return;
4694 /* Create a new record and fill it up. */
4695 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4696 ta->action = action;
4697 ta->sec = sec;
4698 ta->offset = offset;
4699 ta->removed_bytes = removed;
4700 ta->next = (*m_p);
4701 *m_p = ta;
4705 static void
4706 text_action_add_literal (text_action_list *l,
4707 text_action_t action,
4708 const r_reloc *loc,
4709 const literal_value *value,
4710 int removed)
4712 text_action **m_p;
4713 text_action *ta;
4714 asection *sec = r_reloc_get_section (loc);
4715 bfd_vma offset = loc->target_offset;
4716 bfd_vma virtual_offset = loc->virtual_offset;
4718 BFD_ASSERT (action == ta_add_literal);
4720 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4722 if ((*m_p)->offset > offset
4723 && ((*m_p)->offset != offset
4724 || (*m_p)->virtual_offset > virtual_offset))
4725 break;
4728 /* Create a new record and fill it up. */
4729 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4730 ta->action = action;
4731 ta->sec = sec;
4732 ta->offset = offset;
4733 ta->virtual_offset = virtual_offset;
4734 ta->value = *value;
4735 ta->removed_bytes = removed;
4736 ta->next = (*m_p);
4737 *m_p = ta;
4741 static bfd_vma
4742 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
4744 text_action *r;
4745 int removed = 0;
4747 for (r = action_list->head; r && r->offset <= offset; r = r->next)
4749 if (r->offset < offset
4750 || (r->action == ta_fill && r->removed_bytes < 0))
4751 removed += r->removed_bytes;
4754 return (offset - removed);
4758 static unsigned
4759 action_list_count (text_action_list *action_list)
4761 text_action *r = action_list->head;
4762 unsigned count = 0;
4763 for (r = action_list->head; r != NULL; r = r->next)
4765 count++;
4767 return count;
4771 static bfd_vma
4772 offset_with_removed_text_before_fill (text_action_list *action_list,
4773 bfd_vma offset)
4775 text_action *r;
4776 int removed = 0;
4778 for (r = action_list->head; r && r->offset < offset; r = r->next)
4779 removed += r->removed_bytes;
4781 return (offset - removed);
4785 /* The find_insn_action routine will only find non-fill actions. */
4787 static text_action *
4788 find_insn_action (text_action_list *action_list, bfd_vma offset)
4790 text_action *t;
4791 for (t = action_list->head; t; t = t->next)
4793 if (t->offset == offset)
4795 switch (t->action)
4797 case ta_none:
4798 case ta_fill:
4799 break;
4800 case ta_remove_insn:
4801 case ta_remove_longcall:
4802 case ta_convert_longcall:
4803 case ta_narrow_insn:
4804 case ta_widen_insn:
4805 return t;
4806 case ta_remove_literal:
4807 case ta_add_literal:
4808 BFD_ASSERT (0);
4809 break;
4813 return NULL;
4817 #if DEBUG
4819 static void
4820 print_action_list (FILE *fp, text_action_list *action_list)
4822 text_action *r;
4824 fprintf (fp, "Text Action\n");
4825 for (r = action_list->head; r != NULL; r = r->next)
4827 const char *t = "unknown";
4828 switch (r->action)
4830 case ta_remove_insn:
4831 t = "remove_insn"; break;
4832 case ta_remove_longcall:
4833 t = "remove_longcall"; break;
4834 case ta_convert_longcall:
4835 t = "remove_longcall"; break;
4836 case ta_narrow_insn:
4837 t = "narrow_insn"; break;
4838 case ta_widen_insn:
4839 t = "widen_insn"; break;
4840 case ta_fill:
4841 t = "fill"; break;
4842 case ta_none:
4843 t = "none"; break;
4844 case ta_remove_literal:
4845 t = "remove_literal"; break;
4846 case ta_add_literal:
4847 t = "add_literal"; break;
4850 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4851 r->sec->owner->filename,
4852 r->sec->name, r->offset, t, r->removed_bytes);
4856 #endif /* DEBUG */
4859 /* Lists of literals being coalesced or removed. */
4861 /* In the usual case, the literal identified by "from" is being
4862 coalesced with another literal identified by "to". If the literal is
4863 unused and is being removed altogether, "to.abfd" will be NULL.
4864 The removed_literal entries are kept on a per-section list, sorted
4865 by the "from" offset field. */
4867 typedef struct removed_literal_struct removed_literal;
4868 typedef struct removed_literal_list_struct removed_literal_list;
4870 struct removed_literal_struct
4872 r_reloc from;
4873 r_reloc to;
4874 removed_literal *next;
4877 struct removed_literal_list_struct
4879 removed_literal *head;
4880 removed_literal *tail;
4884 /* Record that the literal at "from" is being removed. If "to" is not
4885 NULL, the "from" literal is being coalesced with the "to" literal. */
4887 static void
4888 add_removed_literal (removed_literal_list *removed_list,
4889 const r_reloc *from,
4890 const r_reloc *to)
4892 removed_literal *r, *new_r, *next_r;
4894 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4896 new_r->from = *from;
4897 if (to)
4898 new_r->to = *to;
4899 else
4900 new_r->to.abfd = NULL;
4901 new_r->next = NULL;
4903 r = removed_list->head;
4904 if (r == NULL)
4906 removed_list->head = new_r;
4907 removed_list->tail = new_r;
4909 /* Special check for common case of append. */
4910 else if (removed_list->tail->from.target_offset < from->target_offset)
4912 removed_list->tail->next = new_r;
4913 removed_list->tail = new_r;
4915 else
4917 while (r->from.target_offset < from->target_offset && r->next)
4919 r = r->next;
4921 next_r = r->next;
4922 r->next = new_r;
4923 new_r->next = next_r;
4924 if (next_r == NULL)
4925 removed_list->tail = new_r;
4930 /* Check if the list of removed literals contains an entry for the
4931 given address. Return the entry if found. */
4933 static removed_literal *
4934 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
4936 removed_literal *r = removed_list->head;
4937 while (r && r->from.target_offset < addr)
4938 r = r->next;
4939 if (r && r->from.target_offset == addr)
4940 return r;
4941 return NULL;
4945 #if DEBUG
4947 static void
4948 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
4950 removed_literal *r;
4951 r = removed_list->head;
4952 if (r)
4953 fprintf (fp, "Removed Literals\n");
4954 for (; r != NULL; r = r->next)
4956 print_r_reloc (fp, &r->from);
4957 fprintf (fp, " => ");
4958 if (r->to.abfd == NULL)
4959 fprintf (fp, "REMOVED");
4960 else
4961 print_r_reloc (fp, &r->to);
4962 fprintf (fp, "\n");
4966 #endif /* DEBUG */
4969 /* Per-section data for relaxation. */
4971 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
4973 struct xtensa_relax_info_struct
4975 bfd_boolean is_relaxable_literal_section;
4976 bfd_boolean is_relaxable_asm_section;
4977 int visited; /* Number of times visited. */
4979 source_reloc *src_relocs; /* Array[src_count]. */
4980 int src_count;
4981 int src_next; /* Next src_relocs entry to assign. */
4983 removed_literal_list removed_list;
4984 text_action_list action_list;
4986 reloc_bfd_fix *fix_list;
4987 reloc_bfd_fix *fix_array;
4988 unsigned fix_array_count;
4990 /* Support for expanding the reloc array that is stored
4991 in the section structure. If the relocations have been
4992 reallocated, the newly allocated relocations will be referenced
4993 here along with the actual size allocated. The relocation
4994 count will always be found in the section structure. */
4995 Elf_Internal_Rela *allocated_relocs;
4996 unsigned relocs_count;
4997 unsigned allocated_relocs_count;
5000 struct elf_xtensa_section_data
5002 struct bfd_elf_section_data elf;
5003 xtensa_relax_info relax_info;
5007 static bfd_boolean
5008 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5010 struct elf_xtensa_section_data *sdata;
5011 bfd_size_type amt = sizeof (*sdata);
5013 sdata = (struct elf_xtensa_section_data *) bfd_zalloc (abfd, amt);
5014 if (sdata == NULL)
5015 return FALSE;
5016 sec->used_by_bfd = (void *) sdata;
5018 return _bfd_elf_new_section_hook (abfd, sec);
5022 static xtensa_relax_info *
5023 get_xtensa_relax_info (asection *sec)
5025 struct elf_xtensa_section_data *section_data;
5027 /* No info available if no section or if it is an output section. */
5028 if (!sec || sec == sec->output_section)
5029 return NULL;
5031 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5032 return &section_data->relax_info;
5036 static void
5037 init_xtensa_relax_info (asection *sec)
5039 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5041 relax_info->is_relaxable_literal_section = FALSE;
5042 relax_info->is_relaxable_asm_section = FALSE;
5043 relax_info->visited = 0;
5045 relax_info->src_relocs = NULL;
5046 relax_info->src_count = 0;
5047 relax_info->src_next = 0;
5049 relax_info->removed_list.head = NULL;
5050 relax_info->removed_list.tail = NULL;
5052 relax_info->action_list.head = NULL;
5054 relax_info->fix_list = NULL;
5055 relax_info->fix_array = NULL;
5056 relax_info->fix_array_count = 0;
5058 relax_info->allocated_relocs = NULL;
5059 relax_info->relocs_count = 0;
5060 relax_info->allocated_relocs_count = 0;
5064 /* Coalescing literals may require a relocation to refer to a section in
5065 a different input file, but the standard relocation information
5066 cannot express that. Instead, the reloc_bfd_fix structures are used
5067 to "fix" the relocations that refer to sections in other input files.
5068 These structures are kept on per-section lists. The "src_type" field
5069 records the relocation type in case there are multiple relocations on
5070 the same location. FIXME: This is ugly; an alternative might be to
5071 add new symbols with the "owner" field to some other input file. */
5073 struct reloc_bfd_fix_struct
5075 asection *src_sec;
5076 bfd_vma src_offset;
5077 unsigned src_type; /* Relocation type. */
5079 bfd *target_abfd;
5080 asection *target_sec;
5081 bfd_vma target_offset;
5082 bfd_boolean translated;
5084 reloc_bfd_fix *next;
5088 static reloc_bfd_fix *
5089 reloc_bfd_fix_init (asection *src_sec,
5090 bfd_vma src_offset,
5091 unsigned src_type,
5092 bfd *target_abfd,
5093 asection *target_sec,
5094 bfd_vma target_offset,
5095 bfd_boolean translated)
5097 reloc_bfd_fix *fix;
5099 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5100 fix->src_sec = src_sec;
5101 fix->src_offset = src_offset;
5102 fix->src_type = src_type;
5103 fix->target_abfd = target_abfd;
5104 fix->target_sec = target_sec;
5105 fix->target_offset = target_offset;
5106 fix->translated = translated;
5108 return fix;
5112 static void
5113 add_fix (asection *src_sec, reloc_bfd_fix *fix)
5115 xtensa_relax_info *relax_info;
5117 relax_info = get_xtensa_relax_info (src_sec);
5118 fix->next = relax_info->fix_list;
5119 relax_info->fix_list = fix;
5123 static int
5124 fix_compare (const void *ap, const void *bp)
5126 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5127 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5129 if (a->src_offset != b->src_offset)
5130 return (a->src_offset - b->src_offset);
5131 return (a->src_type - b->src_type);
5135 static void
5136 cache_fix_array (asection *sec)
5138 unsigned i, count = 0;
5139 reloc_bfd_fix *r;
5140 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5142 if (relax_info == NULL)
5143 return;
5144 if (relax_info->fix_list == NULL)
5145 return;
5147 for (r = relax_info->fix_list; r != NULL; r = r->next)
5148 count++;
5150 relax_info->fix_array =
5151 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5152 relax_info->fix_array_count = count;
5154 r = relax_info->fix_list;
5155 for (i = 0; i < count; i++, r = r->next)
5157 relax_info->fix_array[count - 1 - i] = *r;
5158 relax_info->fix_array[count - 1 - i].next = NULL;
5161 qsort (relax_info->fix_array, relax_info->fix_array_count,
5162 sizeof (reloc_bfd_fix), fix_compare);
5166 static reloc_bfd_fix *
5167 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
5169 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5170 reloc_bfd_fix *rv;
5171 reloc_bfd_fix key;
5173 if (relax_info == NULL)
5174 return NULL;
5175 if (relax_info->fix_list == NULL)
5176 return NULL;
5178 if (relax_info->fix_array == NULL)
5179 cache_fix_array (sec);
5181 key.src_offset = offset;
5182 key.src_type = type;
5183 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5184 sizeof (reloc_bfd_fix), fix_compare);
5185 return rv;
5189 /* Section caching. */
5191 typedef struct section_cache_struct section_cache_t;
5193 struct section_cache_struct
5195 asection *sec;
5197 bfd_byte *contents; /* Cache of the section contents. */
5198 bfd_size_type content_length;
5200 property_table_entry *ptbl; /* Cache of the section property table. */
5201 unsigned pte_count;
5203 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5204 unsigned reloc_count;
5208 static void
5209 init_section_cache (section_cache_t *sec_cache)
5211 memset (sec_cache, 0, sizeof (*sec_cache));
5215 static void
5216 clear_section_cache (section_cache_t *sec_cache)
5218 if (sec_cache->sec)
5220 release_contents (sec_cache->sec, sec_cache->contents);
5221 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5222 if (sec_cache->ptbl)
5223 free (sec_cache->ptbl);
5224 memset (sec_cache, 0, sizeof (sec_cache));
5229 static bfd_boolean
5230 section_cache_section (section_cache_t *sec_cache,
5231 asection *sec,
5232 struct bfd_link_info *link_info)
5234 bfd *abfd;
5235 property_table_entry *prop_table = NULL;
5236 int ptblsize = 0;
5237 bfd_byte *contents = NULL;
5238 Elf_Internal_Rela *internal_relocs = NULL;
5239 bfd_size_type sec_size;
5241 if (sec == NULL)
5242 return FALSE;
5243 if (sec == sec_cache->sec)
5244 return TRUE;
5246 abfd = sec->owner;
5247 sec_size = bfd_get_section_limit (abfd, sec);
5249 /* Get the contents. */
5250 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5251 if (contents == NULL && sec_size != 0)
5252 goto err;
5254 /* Get the relocations. */
5255 internal_relocs = retrieve_internal_relocs (abfd, sec,
5256 link_info->keep_memory);
5258 /* Get the entry table. */
5259 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5260 XTENSA_PROP_SEC_NAME, FALSE);
5261 if (ptblsize < 0)
5262 goto err;
5264 /* Fill in the new section cache. */
5265 clear_section_cache (sec_cache);
5266 memset (sec_cache, 0, sizeof (sec_cache));
5268 sec_cache->sec = sec;
5269 sec_cache->contents = contents;
5270 sec_cache->content_length = sec_size;
5271 sec_cache->relocs = internal_relocs;
5272 sec_cache->reloc_count = sec->reloc_count;
5273 sec_cache->pte_count = ptblsize;
5274 sec_cache->ptbl = prop_table;
5276 return TRUE;
5278 err:
5279 release_contents (sec, contents);
5280 release_internal_relocs (sec, internal_relocs);
5281 if (prop_table)
5282 free (prop_table);
5283 return FALSE;
5287 /* Extended basic blocks. */
5289 /* An ebb_struct represents an Extended Basic Block. Within this
5290 range, we guarantee that all instructions are decodable, the
5291 property table entries are contiguous, and no property table
5292 specifies a segment that cannot have instructions moved. This
5293 structure contains caches of the contents, property table and
5294 relocations for the specified section for easy use. The range is
5295 specified by ranges of indices for the byte offset, property table
5296 offsets and relocation offsets. These must be consistent. */
5298 typedef struct ebb_struct ebb_t;
5300 struct ebb_struct
5302 asection *sec;
5304 bfd_byte *contents; /* Cache of the section contents. */
5305 bfd_size_type content_length;
5307 property_table_entry *ptbl; /* Cache of the section property table. */
5308 unsigned pte_count;
5310 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5311 unsigned reloc_count;
5313 bfd_vma start_offset; /* Offset in section. */
5314 unsigned start_ptbl_idx; /* Offset in the property table. */
5315 unsigned start_reloc_idx; /* Offset in the relocations. */
5317 bfd_vma end_offset;
5318 unsigned end_ptbl_idx;
5319 unsigned end_reloc_idx;
5321 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5323 /* The unreachable property table at the end of this set of blocks;
5324 NULL if the end is not an unreachable block. */
5325 property_table_entry *ends_unreachable;
5329 enum ebb_target_enum
5331 EBB_NO_ALIGN = 0,
5332 EBB_DESIRE_TGT_ALIGN,
5333 EBB_REQUIRE_TGT_ALIGN,
5334 EBB_REQUIRE_LOOP_ALIGN,
5335 EBB_REQUIRE_ALIGN
5339 /* proposed_action_struct is similar to the text_action_struct except
5340 that is represents a potential transformation, not one that will
5341 occur. We build a list of these for an extended basic block
5342 and use them to compute the actual actions desired. We must be
5343 careful that the entire set of actual actions we perform do not
5344 break any relocations that would fit if the actions were not
5345 performed. */
5347 typedef struct proposed_action_struct proposed_action;
5349 struct proposed_action_struct
5351 enum ebb_target_enum align_type; /* for the target alignment */
5352 bfd_vma alignment_pow;
5353 text_action_t action;
5354 bfd_vma offset;
5355 int removed_bytes;
5356 bfd_boolean do_action; /* If false, then we will not perform the action. */
5360 /* The ebb_constraint_struct keeps a set of proposed actions for an
5361 extended basic block. */
5363 typedef struct ebb_constraint_struct ebb_constraint;
5365 struct ebb_constraint_struct
5367 ebb_t ebb;
5368 bfd_boolean start_movable;
5370 /* Bytes of extra space at the beginning if movable. */
5371 int start_extra_space;
5373 enum ebb_target_enum start_align;
5375 bfd_boolean end_movable;
5377 /* Bytes of extra space at the end if movable. */
5378 int end_extra_space;
5380 unsigned action_count;
5381 unsigned action_allocated;
5383 /* Array of proposed actions. */
5384 proposed_action *actions;
5386 /* Action alignments -- one for each proposed action. */
5387 enum ebb_target_enum *action_aligns;
5391 static void
5392 init_ebb_constraint (ebb_constraint *c)
5394 memset (c, 0, sizeof (ebb_constraint));
5398 static void
5399 free_ebb_constraint (ebb_constraint *c)
5401 if (c->actions)
5402 free (c->actions);
5406 static void
5407 init_ebb (ebb_t *ebb,
5408 asection *sec,
5409 bfd_byte *contents,
5410 bfd_size_type content_length,
5411 property_table_entry *prop_table,
5412 unsigned ptblsize,
5413 Elf_Internal_Rela *internal_relocs,
5414 unsigned reloc_count)
5416 memset (ebb, 0, sizeof (ebb_t));
5417 ebb->sec = sec;
5418 ebb->contents = contents;
5419 ebb->content_length = content_length;
5420 ebb->ptbl = prop_table;
5421 ebb->pte_count = ptblsize;
5422 ebb->relocs = internal_relocs;
5423 ebb->reloc_count = reloc_count;
5424 ebb->start_offset = 0;
5425 ebb->end_offset = ebb->content_length - 1;
5426 ebb->start_ptbl_idx = 0;
5427 ebb->end_ptbl_idx = ptblsize;
5428 ebb->start_reloc_idx = 0;
5429 ebb->end_reloc_idx = reloc_count;
5433 /* Extend the ebb to all decodable contiguous sections. The algorithm
5434 for building a basic block around an instruction is to push it
5435 forward until we hit the end of a section, an unreachable block or
5436 a block that cannot be transformed. Then we push it backwards
5437 searching for similar conditions. */
5439 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5440 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5441 static bfd_size_type insn_block_decodable_len
5442 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5444 static bfd_boolean
5445 extend_ebb_bounds (ebb_t *ebb)
5447 if (!extend_ebb_bounds_forward (ebb))
5448 return FALSE;
5449 if (!extend_ebb_bounds_backward (ebb))
5450 return FALSE;
5451 return TRUE;
5455 static bfd_boolean
5456 extend_ebb_bounds_forward (ebb_t *ebb)
5458 property_table_entry *the_entry, *new_entry;
5460 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5462 /* Stop when (1) we cannot decode an instruction, (2) we are at
5463 the end of the property tables, (3) we hit a non-contiguous property
5464 table entry, (4) we hit a NO_TRANSFORM region. */
5466 while (1)
5468 bfd_vma entry_end;
5469 bfd_size_type insn_block_len;
5471 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5472 insn_block_len =
5473 insn_block_decodable_len (ebb->contents, ebb->content_length,
5474 ebb->end_offset,
5475 entry_end - ebb->end_offset);
5476 if (insn_block_len != (entry_end - ebb->end_offset))
5478 (*_bfd_error_handler)
5479 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5480 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5481 return FALSE;
5483 ebb->end_offset += insn_block_len;
5485 if (ebb->end_offset == ebb->sec->size)
5486 ebb->ends_section = TRUE;
5488 /* Update the reloc counter. */
5489 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5490 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5491 < ebb->end_offset))
5493 ebb->end_reloc_idx++;
5496 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5497 return TRUE;
5499 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5500 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
5501 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5502 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5503 break;
5505 if (the_entry->address + the_entry->size != new_entry->address)
5506 break;
5508 the_entry = new_entry;
5509 ebb->end_ptbl_idx++;
5512 /* Quick check for an unreachable or end of file just at the end. */
5513 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5515 if (ebb->end_offset == ebb->content_length)
5516 ebb->ends_section = TRUE;
5518 else
5520 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5521 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5522 && the_entry->address + the_entry->size == new_entry->address)
5523 ebb->ends_unreachable = new_entry;
5526 /* Any other ending requires exact alignment. */
5527 return TRUE;
5531 static bfd_boolean
5532 extend_ebb_bounds_backward (ebb_t *ebb)
5534 property_table_entry *the_entry, *new_entry;
5536 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5538 /* Stop when (1) we cannot decode the instructions in the current entry.
5539 (2) we are at the beginning of the property tables, (3) we hit a
5540 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5542 while (1)
5544 bfd_vma block_begin;
5545 bfd_size_type insn_block_len;
5547 block_begin = the_entry->address - ebb->sec->vma;
5548 insn_block_len =
5549 insn_block_decodable_len (ebb->contents, ebb->content_length,
5550 block_begin,
5551 ebb->start_offset - block_begin);
5552 if (insn_block_len != ebb->start_offset - block_begin)
5554 (*_bfd_error_handler)
5555 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5556 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5557 return FALSE;
5559 ebb->start_offset -= insn_block_len;
5561 /* Update the reloc counter. */
5562 while (ebb->start_reloc_idx > 0
5563 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5564 >= ebb->start_offset))
5566 ebb->start_reloc_idx--;
5569 if (ebb->start_ptbl_idx == 0)
5570 return TRUE;
5572 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5573 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
5574 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5575 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5576 return TRUE;
5577 if (new_entry->address + new_entry->size != the_entry->address)
5578 return TRUE;
5580 the_entry = new_entry;
5581 ebb->start_ptbl_idx--;
5583 return TRUE;
5587 static bfd_size_type
5588 insn_block_decodable_len (bfd_byte *contents,
5589 bfd_size_type content_len,
5590 bfd_vma block_offset,
5591 bfd_size_type block_len)
5593 bfd_vma offset = block_offset;
5595 while (offset < block_offset + block_len)
5597 bfd_size_type insn_len = 0;
5599 insn_len = insn_decode_len (contents, content_len, offset);
5600 if (insn_len == 0)
5601 return (offset - block_offset);
5602 offset += insn_len;
5604 return (offset - block_offset);
5608 static void
5609 ebb_propose_action (ebb_constraint *c,
5610 enum ebb_target_enum align_type,
5611 bfd_vma alignment_pow,
5612 text_action_t action,
5613 bfd_vma offset,
5614 int removed_bytes,
5615 bfd_boolean do_action)
5617 proposed_action *act;
5619 if (c->action_allocated <= c->action_count)
5621 unsigned new_allocated, i;
5622 proposed_action *new_actions;
5624 new_allocated = (c->action_count + 2) * 2;
5625 new_actions = (proposed_action *)
5626 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5628 for (i = 0; i < c->action_count; i++)
5629 new_actions[i] = c->actions[i];
5630 if (c->actions)
5631 free (c->actions);
5632 c->actions = new_actions;
5633 c->action_allocated = new_allocated;
5636 act = &c->actions[c->action_count];
5637 act->align_type = align_type;
5638 act->alignment_pow = alignment_pow;
5639 act->action = action;
5640 act->offset = offset;
5641 act->removed_bytes = removed_bytes;
5642 act->do_action = do_action;
5644 c->action_count++;
5648 /* Access to internal relocations, section contents and symbols. */
5650 /* During relaxation, we need to modify relocations, section contents,
5651 and symbol definitions, and we need to keep the original values from
5652 being reloaded from the input files, i.e., we need to "pin" the
5653 modified values in memory. We also want to continue to observe the
5654 setting of the "keep-memory" flag. The following functions wrap the
5655 standard BFD functions to take care of this for us. */
5657 static Elf_Internal_Rela *
5658 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
5660 Elf_Internal_Rela *internal_relocs;
5662 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5663 return NULL;
5665 internal_relocs = elf_section_data (sec)->relocs;
5666 if (internal_relocs == NULL)
5667 internal_relocs = (_bfd_elf_link_read_relocs
5668 (abfd, sec, NULL, NULL, keep_memory));
5669 return internal_relocs;
5673 static void
5674 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
5676 elf_section_data (sec)->relocs = internal_relocs;
5680 static void
5681 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
5683 if (internal_relocs
5684 && elf_section_data (sec)->relocs != internal_relocs)
5685 free (internal_relocs);
5689 static bfd_byte *
5690 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
5692 bfd_byte *contents;
5693 bfd_size_type sec_size;
5695 sec_size = bfd_get_section_limit (abfd, sec);
5696 contents = elf_section_data (sec)->this_hdr.contents;
5698 if (contents == NULL && sec_size != 0)
5700 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5702 if (contents)
5703 free (contents);
5704 return NULL;
5706 if (keep_memory)
5707 elf_section_data (sec)->this_hdr.contents = contents;
5709 return contents;
5713 static void
5714 pin_contents (asection *sec, bfd_byte *contents)
5716 elf_section_data (sec)->this_hdr.contents = contents;
5720 static void
5721 release_contents (asection *sec, bfd_byte *contents)
5723 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5724 free (contents);
5728 static Elf_Internal_Sym *
5729 retrieve_local_syms (bfd *input_bfd)
5731 Elf_Internal_Shdr *symtab_hdr;
5732 Elf_Internal_Sym *isymbuf;
5733 size_t locsymcount;
5735 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5736 locsymcount = symtab_hdr->sh_info;
5738 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5739 if (isymbuf == NULL && locsymcount != 0)
5740 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5741 NULL, NULL, NULL);
5743 /* Save the symbols for this input file so they won't be read again. */
5744 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5745 symtab_hdr->contents = (unsigned char *) isymbuf;
5747 return isymbuf;
5751 /* Code for link-time relaxation. */
5753 /* Initialization for relaxation: */
5754 static bfd_boolean analyze_relocations (struct bfd_link_info *);
5755 static bfd_boolean find_relaxable_sections
5756 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
5757 static bfd_boolean collect_source_relocs
5758 (bfd *, asection *, struct bfd_link_info *);
5759 static bfd_boolean is_resolvable_asm_expansion
5760 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5761 bfd_boolean *);
5762 static Elf_Internal_Rela *find_associated_l32r_irel
5763 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
5764 static bfd_boolean compute_text_actions
5765 (bfd *, asection *, struct bfd_link_info *);
5766 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5767 static bfd_boolean compute_ebb_actions (ebb_constraint *);
5768 static bfd_boolean check_section_ebb_pcrels_fit
5769 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *);
5770 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
5771 static void text_action_add_proposed
5772 (text_action_list *, const ebb_constraint *, asection *);
5773 static int compute_fill_extra_space (property_table_entry *);
5775 /* First pass: */
5776 static bfd_boolean compute_removed_literals
5777 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
5778 static Elf_Internal_Rela *get_irel_at_offset
5779 (asection *, Elf_Internal_Rela *, bfd_vma);
5780 static bfd_boolean is_removable_literal
5781 (const source_reloc *, int, const source_reloc *, int);
5782 static bfd_boolean remove_dead_literal
5783 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5784 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5785 static bfd_boolean identify_literal_placement
5786 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5787 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5788 source_reloc *, property_table_entry *, int, section_cache_t *,
5789 bfd_boolean);
5790 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
5791 static bfd_boolean coalesce_shared_literal
5792 (asection *, source_reloc *, property_table_entry *, int, value_map *);
5793 static bfd_boolean move_shared_literal
5794 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5795 int, const r_reloc *, const literal_value *, section_cache_t *);
5797 /* Second pass: */
5798 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5799 static bfd_boolean translate_section_fixes (asection *);
5800 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
5801 static void translate_reloc (const r_reloc *, r_reloc *);
5802 static void shrink_dynamic_reloc_sections
5803 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
5804 static bfd_boolean move_literal
5805 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5806 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
5807 static bfd_boolean relax_property_section
5808 (bfd *, asection *, struct bfd_link_info *);
5810 /* Third pass: */
5811 static bfd_boolean relax_section_symbols (bfd *, asection *);
5814 static bfd_boolean
5815 elf_xtensa_relax_section (bfd *abfd,
5816 asection *sec,
5817 struct bfd_link_info *link_info,
5818 bfd_boolean *again)
5820 static value_map_hash_table *values = NULL;
5821 static bfd_boolean relocations_analyzed = FALSE;
5822 xtensa_relax_info *relax_info;
5824 if (!relocations_analyzed)
5826 /* Do some overall initialization for relaxation. */
5827 values = value_map_hash_table_init ();
5828 if (values == NULL)
5829 return FALSE;
5830 relaxing_section = TRUE;
5831 if (!analyze_relocations (link_info))
5832 return FALSE;
5833 relocations_analyzed = TRUE;
5835 *again = FALSE;
5837 /* Don't mess with linker-created sections. */
5838 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5839 return TRUE;
5841 relax_info = get_xtensa_relax_info (sec);
5842 BFD_ASSERT (relax_info != NULL);
5844 switch (relax_info->visited)
5846 case 0:
5847 /* Note: It would be nice to fold this pass into
5848 analyze_relocations, but it is important for this step that the
5849 sections be examined in link order. */
5850 if (!compute_removed_literals (abfd, sec, link_info, values))
5851 return FALSE;
5852 *again = TRUE;
5853 break;
5855 case 1:
5856 if (values)
5857 value_map_hash_table_delete (values);
5858 values = NULL;
5859 if (!relax_section (abfd, sec, link_info))
5860 return FALSE;
5861 *again = TRUE;
5862 break;
5864 case 2:
5865 if (!relax_section_symbols (abfd, sec))
5866 return FALSE;
5867 break;
5870 relax_info->visited++;
5871 return TRUE;
5875 /* Initialization for relaxation. */
5877 /* This function is called once at the start of relaxation. It scans
5878 all the input sections and marks the ones that are relaxable (i.e.,
5879 literal sections with L32R relocations against them), and then
5880 collects source_reloc information for all the relocations against
5881 those relaxable sections. During this process, it also detects
5882 longcalls, i.e., calls relaxed by the assembler into indirect
5883 calls, that can be optimized back into direct calls. Within each
5884 extended basic block (ebb) containing an optimized longcall, it
5885 computes a set of "text actions" that can be performed to remove
5886 the L32R associated with the longcall while optionally preserving
5887 branch target alignments. */
5889 static bfd_boolean
5890 analyze_relocations (struct bfd_link_info *link_info)
5892 bfd *abfd;
5893 asection *sec;
5894 bfd_boolean is_relaxable = FALSE;
5896 /* Initialize the per-section relaxation info. */
5897 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5898 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5900 init_xtensa_relax_info (sec);
5903 /* Mark relaxable sections (and count relocations against each one). */
5904 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5905 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5907 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5908 return FALSE;
5911 /* Bail out if there are no relaxable sections. */
5912 if (!is_relaxable)
5913 return TRUE;
5915 /* Allocate space for source_relocs. */
5916 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5917 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5919 xtensa_relax_info *relax_info;
5921 relax_info = get_xtensa_relax_info (sec);
5922 if (relax_info->is_relaxable_literal_section
5923 || relax_info->is_relaxable_asm_section)
5925 relax_info->src_relocs = (source_reloc *)
5926 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5930 /* Collect info on relocations against each relaxable section. */
5931 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5932 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5934 if (!collect_source_relocs (abfd, sec, link_info))
5935 return FALSE;
5938 /* Compute the text actions. */
5939 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5940 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5942 if (!compute_text_actions (abfd, sec, link_info))
5943 return FALSE;
5946 return TRUE;
5950 /* Find all the sections that might be relaxed. The motivation for
5951 this pass is that collect_source_relocs() needs to record _all_ the
5952 relocations that target each relaxable section. That is expensive
5953 and unnecessary unless the target section is actually going to be
5954 relaxed. This pass identifies all such sections by checking if
5955 they have L32Rs pointing to them. In the process, the total number
5956 of relocations targeting each section is also counted so that we
5957 know how much space to allocate for source_relocs against each
5958 relaxable literal section. */
5960 static bfd_boolean
5961 find_relaxable_sections (bfd *abfd,
5962 asection *sec,
5963 struct bfd_link_info *link_info,
5964 bfd_boolean *is_relaxable_p)
5966 Elf_Internal_Rela *internal_relocs;
5967 bfd_byte *contents;
5968 bfd_boolean ok = TRUE;
5969 unsigned i;
5970 xtensa_relax_info *source_relax_info;
5972 internal_relocs = retrieve_internal_relocs (abfd, sec,
5973 link_info->keep_memory);
5974 if (internal_relocs == NULL)
5975 return ok;
5977 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5978 if (contents == NULL && sec->size != 0)
5980 ok = FALSE;
5981 goto error_return;
5984 source_relax_info = get_xtensa_relax_info (sec);
5985 for (i = 0; i < sec->reloc_count; i++)
5987 Elf_Internal_Rela *irel = &internal_relocs[i];
5988 r_reloc r_rel;
5989 asection *target_sec;
5990 xtensa_relax_info *target_relax_info;
5992 /* If this section has not already been marked as "relaxable", and
5993 if it contains any ASM_EXPAND relocations (marking expanded
5994 longcalls) that can be optimized into direct calls, then mark
5995 the section as "relaxable". */
5996 if (source_relax_info
5997 && !source_relax_info->is_relaxable_asm_section
5998 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6000 bfd_boolean is_reachable = FALSE;
6001 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6002 link_info, &is_reachable)
6003 && is_reachable)
6005 source_relax_info->is_relaxable_asm_section = TRUE;
6006 *is_relaxable_p = TRUE;
6010 r_reloc_init (&r_rel, abfd, irel, contents,
6011 bfd_get_section_limit (abfd, sec));
6013 target_sec = r_reloc_get_section (&r_rel);
6014 target_relax_info = get_xtensa_relax_info (target_sec);
6015 if (!target_relax_info)
6016 continue;
6018 /* Count PC-relative operand relocations against the target section.
6019 Note: The conditions tested here must match the conditions under
6020 which init_source_reloc is called in collect_source_relocs(). */
6021 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))
6022 && (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6023 || is_l32r_relocation (abfd, sec, contents, irel)))
6024 target_relax_info->src_count++;
6026 if (is_l32r_relocation (abfd, sec, contents, irel)
6027 && r_reloc_is_defined (&r_rel))
6029 /* Mark the target section as relaxable. */
6030 target_relax_info->is_relaxable_literal_section = TRUE;
6031 *is_relaxable_p = TRUE;
6035 error_return:
6036 release_contents (sec, contents);
6037 release_internal_relocs (sec, internal_relocs);
6038 return ok;
6042 /* Record _all_ the relocations that point to relaxable sections, and
6043 get rid of ASM_EXPAND relocs by either converting them to
6044 ASM_SIMPLIFY or by removing them. */
6046 static bfd_boolean
6047 collect_source_relocs (bfd *abfd,
6048 asection *sec,
6049 struct bfd_link_info *link_info)
6051 Elf_Internal_Rela *internal_relocs;
6052 bfd_byte *contents;
6053 bfd_boolean ok = TRUE;
6054 unsigned i;
6055 bfd_size_type sec_size;
6057 internal_relocs = retrieve_internal_relocs (abfd, sec,
6058 link_info->keep_memory);
6059 if (internal_relocs == NULL)
6060 return ok;
6062 sec_size = bfd_get_section_limit (abfd, sec);
6063 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6064 if (contents == NULL && sec_size != 0)
6066 ok = FALSE;
6067 goto error_return;
6070 /* Record relocations against relaxable literal sections. */
6071 for (i = 0; i < sec->reloc_count; i++)
6073 Elf_Internal_Rela *irel = &internal_relocs[i];
6074 r_reloc r_rel;
6075 asection *target_sec;
6076 xtensa_relax_info *target_relax_info;
6078 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6080 target_sec = r_reloc_get_section (&r_rel);
6081 target_relax_info = get_xtensa_relax_info (target_sec);
6083 if (target_relax_info
6084 && (target_relax_info->is_relaxable_literal_section
6085 || target_relax_info->is_relaxable_asm_section))
6087 xtensa_opcode opcode = XTENSA_UNDEFINED;
6088 int opnd = -1;
6089 bfd_boolean is_abs_literal = FALSE;
6091 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6093 /* None of the current alternate relocs are PC-relative,
6094 and only PC-relative relocs matter here. However, we
6095 still need to record the opcode for literal
6096 coalescing. */
6097 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6098 if (opcode == get_l32r_opcode ())
6100 is_abs_literal = TRUE;
6101 opnd = 1;
6103 else
6104 opcode = XTENSA_UNDEFINED;
6106 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6108 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6109 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6112 if (opcode != XTENSA_UNDEFINED)
6114 int src_next = target_relax_info->src_next++;
6115 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6117 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6118 is_abs_literal);
6123 /* Now get rid of ASM_EXPAND relocations. At this point, the
6124 src_relocs array for the target literal section may still be
6125 incomplete, but it must at least contain the entries for the L32R
6126 relocations associated with ASM_EXPANDs because they were just
6127 added in the preceding loop over the relocations. */
6129 for (i = 0; i < sec->reloc_count; i++)
6131 Elf_Internal_Rela *irel = &internal_relocs[i];
6132 bfd_boolean is_reachable;
6134 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6135 &is_reachable))
6136 continue;
6138 if (is_reachable)
6140 Elf_Internal_Rela *l32r_irel;
6141 r_reloc r_rel;
6142 asection *target_sec;
6143 xtensa_relax_info *target_relax_info;
6145 /* Mark the source_reloc for the L32R so that it will be
6146 removed in compute_removed_literals(), along with the
6147 associated literal. */
6148 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6149 irel, internal_relocs);
6150 if (l32r_irel == NULL)
6151 continue;
6153 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6155 target_sec = r_reloc_get_section (&r_rel);
6156 target_relax_info = get_xtensa_relax_info (target_sec);
6158 if (target_relax_info
6159 && (target_relax_info->is_relaxable_literal_section
6160 || target_relax_info->is_relaxable_asm_section))
6162 source_reloc *s_reloc;
6164 /* Search the source_relocs for the entry corresponding to
6165 the l32r_irel. Note: The src_relocs array is not yet
6166 sorted, but it wouldn't matter anyway because we're
6167 searching by source offset instead of target offset. */
6168 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6169 target_relax_info->src_next,
6170 sec, l32r_irel);
6171 BFD_ASSERT (s_reloc);
6172 s_reloc->is_null = TRUE;
6175 /* Convert this reloc to ASM_SIMPLIFY. */
6176 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6177 R_XTENSA_ASM_SIMPLIFY);
6178 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6180 pin_internal_relocs (sec, internal_relocs);
6182 else
6184 /* It is resolvable but doesn't reach. We resolve now
6185 by eliminating the relocation -- the call will remain
6186 expanded into L32R/CALLX. */
6187 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6188 pin_internal_relocs (sec, internal_relocs);
6192 error_return:
6193 release_contents (sec, contents);
6194 release_internal_relocs (sec, internal_relocs);
6195 return ok;
6199 /* Return TRUE if the asm expansion can be resolved. Generally it can
6200 be resolved on a final link or when a partial link locates it in the
6201 same section as the target. Set "is_reachable" flag if the target of
6202 the call is within the range of a direct call, given the current VMA
6203 for this section and the target section. */
6205 bfd_boolean
6206 is_resolvable_asm_expansion (bfd *abfd,
6207 asection *sec,
6208 bfd_byte *contents,
6209 Elf_Internal_Rela *irel,
6210 struct bfd_link_info *link_info,
6211 bfd_boolean *is_reachable_p)
6213 asection *target_sec;
6214 bfd_vma target_offset;
6215 r_reloc r_rel;
6216 xtensa_opcode opcode, direct_call_opcode;
6217 bfd_vma self_address;
6218 bfd_vma dest_address;
6219 bfd_boolean uses_l32r;
6220 bfd_size_type sec_size;
6222 *is_reachable_p = FALSE;
6224 if (contents == NULL)
6225 return FALSE;
6227 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6228 return FALSE;
6230 sec_size = bfd_get_section_limit (abfd, sec);
6231 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6232 sec_size - irel->r_offset, &uses_l32r);
6233 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6234 if (!uses_l32r)
6235 return FALSE;
6237 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6238 if (direct_call_opcode == XTENSA_UNDEFINED)
6239 return FALSE;
6241 /* Check and see that the target resolves. */
6242 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6243 if (!r_reloc_is_defined (&r_rel))
6244 return FALSE;
6246 target_sec = r_reloc_get_section (&r_rel);
6247 target_offset = r_rel.target_offset;
6249 /* If the target is in a shared library, then it doesn't reach. This
6250 isn't supposed to come up because the compiler should never generate
6251 non-PIC calls on systems that use shared libraries, but the linker
6252 shouldn't crash regardless. */
6253 if (!target_sec->output_section)
6254 return FALSE;
6256 /* For relocatable sections, we can only simplify when the output
6257 section of the target is the same as the output section of the
6258 source. */
6259 if (link_info->relocatable
6260 && (target_sec->output_section != sec->output_section
6261 || is_reloc_sym_weak (abfd, irel)))
6262 return FALSE;
6264 self_address = (sec->output_section->vma
6265 + sec->output_offset + irel->r_offset + 3);
6266 dest_address = (target_sec->output_section->vma
6267 + target_sec->output_offset + target_offset);
6269 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6270 self_address, dest_address);
6272 if ((self_address >> CALL_SEGMENT_BITS) !=
6273 (dest_address >> CALL_SEGMENT_BITS))
6274 return FALSE;
6276 return TRUE;
6280 static Elf_Internal_Rela *
6281 find_associated_l32r_irel (bfd *abfd,
6282 asection *sec,
6283 bfd_byte *contents,
6284 Elf_Internal_Rela *other_irel,
6285 Elf_Internal_Rela *internal_relocs)
6287 unsigned i;
6289 for (i = 0; i < sec->reloc_count; i++)
6291 Elf_Internal_Rela *irel = &internal_relocs[i];
6293 if (irel == other_irel)
6294 continue;
6295 if (irel->r_offset != other_irel->r_offset)
6296 continue;
6297 if (is_l32r_relocation (abfd, sec, contents, irel))
6298 return irel;
6301 return NULL;
6305 /* The compute_text_actions function will build a list of potential
6306 transformation actions for code in the extended basic block of each
6307 longcall that is optimized to a direct call. From this list we
6308 generate a set of actions to actually perform that optimizes for
6309 space and, if not using size_opt, maintains branch target
6310 alignments.
6312 These actions to be performed are placed on a per-section list.
6313 The actual changes are performed by relax_section() in the second
6314 pass. */
6316 bfd_boolean
6317 compute_text_actions (bfd *abfd,
6318 asection *sec,
6319 struct bfd_link_info *link_info)
6321 xtensa_relax_info *relax_info;
6322 bfd_byte *contents;
6323 Elf_Internal_Rela *internal_relocs;
6324 bfd_boolean ok = TRUE;
6325 unsigned i;
6326 property_table_entry *prop_table = 0;
6327 int ptblsize = 0;
6328 bfd_size_type sec_size;
6329 static bfd_boolean no_insn_move = FALSE;
6331 if (no_insn_move)
6332 return ok;
6334 /* Do nothing if the section contains no optimized longcalls. */
6335 relax_info = get_xtensa_relax_info (sec);
6336 BFD_ASSERT (relax_info);
6337 if (!relax_info->is_relaxable_asm_section)
6338 return ok;
6340 internal_relocs = retrieve_internal_relocs (abfd, sec,
6341 link_info->keep_memory);
6343 if (internal_relocs)
6344 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6345 internal_reloc_compare);
6347 sec_size = bfd_get_section_limit (abfd, sec);
6348 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6349 if (contents == NULL && sec_size != 0)
6351 ok = FALSE;
6352 goto error_return;
6355 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6356 XTENSA_PROP_SEC_NAME, FALSE);
6357 if (ptblsize < 0)
6359 ok = FALSE;
6360 goto error_return;
6363 for (i = 0; i < sec->reloc_count; i++)
6365 Elf_Internal_Rela *irel = &internal_relocs[i];
6366 bfd_vma r_offset;
6367 property_table_entry *the_entry;
6368 int ptbl_idx;
6369 ebb_t *ebb;
6370 ebb_constraint ebb_table;
6371 bfd_size_type simplify_size;
6373 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6374 continue;
6375 r_offset = irel->r_offset;
6377 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6378 if (simplify_size == 0)
6380 (*_bfd_error_handler)
6381 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6382 sec->owner, sec, r_offset);
6383 continue;
6386 /* If the instruction table is not around, then don't do this
6387 relaxation. */
6388 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6389 sec->vma + irel->r_offset);
6390 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6392 text_action_add (&relax_info->action_list,
6393 ta_convert_longcall, sec, r_offset,
6395 continue;
6398 /* If the next longcall happens to be at the same address as an
6399 unreachable section of size 0, then skip forward. */
6400 ptbl_idx = the_entry - prop_table;
6401 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6402 && the_entry->size == 0
6403 && ptbl_idx + 1 < ptblsize
6404 && (prop_table[ptbl_idx + 1].address
6405 == prop_table[ptbl_idx].address))
6407 ptbl_idx++;
6408 the_entry++;
6411 if (the_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM)
6412 /* NO_REORDER is OK */
6413 continue;
6415 init_ebb_constraint (&ebb_table);
6416 ebb = &ebb_table.ebb;
6417 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6418 internal_relocs, sec->reloc_count);
6419 ebb->start_offset = r_offset + simplify_size;
6420 ebb->end_offset = r_offset + simplify_size;
6421 ebb->start_ptbl_idx = ptbl_idx;
6422 ebb->end_ptbl_idx = ptbl_idx;
6423 ebb->start_reloc_idx = i;
6424 ebb->end_reloc_idx = i;
6426 if (!extend_ebb_bounds (ebb)
6427 || !compute_ebb_proposed_actions (&ebb_table)
6428 || !compute_ebb_actions (&ebb_table)
6429 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
6430 internal_relocs, &ebb_table)
6431 || !check_section_ebb_reduces (&ebb_table))
6433 /* If anything goes wrong or we get unlucky and something does
6434 not fit, with our plan because of expansion between
6435 critical branches, just convert to a NOP. */
6437 text_action_add (&relax_info->action_list,
6438 ta_convert_longcall, sec, r_offset, 0);
6439 i = ebb_table.ebb.end_reloc_idx;
6440 free_ebb_constraint (&ebb_table);
6441 continue;
6444 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6446 /* Update the index so we do not go looking at the relocations
6447 we have already processed. */
6448 i = ebb_table.ebb.end_reloc_idx;
6449 free_ebb_constraint (&ebb_table);
6452 #if DEBUG
6453 if (relax_info->action_list.head)
6454 print_action_list (stderr, &relax_info->action_list);
6455 #endif
6457 error_return:
6458 release_contents (sec, contents);
6459 release_internal_relocs (sec, internal_relocs);
6460 if (prop_table)
6461 free (prop_table);
6463 return ok;
6467 /* Find all of the possible actions for an extended basic block. */
6469 bfd_boolean
6470 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
6472 const ebb_t *ebb = &ebb_table->ebb;
6473 unsigned rel_idx = ebb->start_reloc_idx;
6474 property_table_entry *entry, *start_entry, *end_entry;
6476 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6477 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6479 for (entry = start_entry; entry <= end_entry; entry++)
6481 bfd_vma offset, start_offset, end_offset;
6482 bfd_size_type insn_len;
6484 start_offset = entry->address - ebb->sec->vma;
6485 end_offset = entry->address + entry->size - ebb->sec->vma;
6487 if (entry == start_entry)
6488 start_offset = ebb->start_offset;
6489 if (entry == end_entry)
6490 end_offset = ebb->end_offset;
6491 offset = start_offset;
6493 if (offset == entry->address - ebb->sec->vma
6494 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6496 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6497 BFD_ASSERT (offset != end_offset);
6498 if (offset == end_offset)
6499 return FALSE;
6501 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6502 offset);
6504 /* Propose no actions for a section with an undecodable offset. */
6505 if (insn_len == 0)
6507 (*_bfd_error_handler)
6508 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6509 ebb->sec->owner, ebb->sec, offset);
6510 return FALSE;
6512 if (check_branch_target_aligned_address (offset, insn_len))
6513 align_type = EBB_REQUIRE_TGT_ALIGN;
6515 ebb_propose_action (ebb_table, align_type, 0,
6516 ta_none, offset, 0, TRUE);
6519 while (offset != end_offset)
6521 Elf_Internal_Rela *irel;
6522 xtensa_opcode opcode;
6524 while (rel_idx < ebb->end_reloc_idx
6525 && (ebb->relocs[rel_idx].r_offset < offset
6526 || (ebb->relocs[rel_idx].r_offset == offset
6527 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6528 != R_XTENSA_ASM_SIMPLIFY))))
6529 rel_idx++;
6531 /* Check for longcall. */
6532 irel = &ebb->relocs[rel_idx];
6533 if (irel->r_offset == offset
6534 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6536 bfd_size_type simplify_size;
6538 simplify_size = get_asm_simplify_size (ebb->contents,
6539 ebb->content_length,
6540 irel->r_offset);
6541 if (simplify_size == 0)
6543 (*_bfd_error_handler)
6544 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6545 ebb->sec->owner, ebb->sec, offset);
6546 return FALSE;
6549 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6550 ta_convert_longcall, offset, 0, TRUE);
6552 offset += simplify_size;
6553 continue;
6556 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6557 offset);
6558 /* If the instruction is undecodable, then report an error. */
6559 if (insn_len == 0)
6561 (*_bfd_error_handler)
6562 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6563 ebb->sec->owner, ebb->sec, offset);
6564 return FALSE;
6567 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
6568 && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6569 && narrow_instruction (ebb->contents, ebb->content_length,
6570 offset, FALSE))
6572 /* Add an instruction narrow action. */
6573 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6574 ta_narrow_insn, offset, 0, FALSE);
6575 offset += insn_len;
6576 continue;
6578 if ((entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6579 && widen_instruction (ebb->contents, ebb->content_length,
6580 offset, FALSE))
6582 /* Add an instruction widen action. */
6583 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6584 ta_widen_insn, offset, 0, FALSE);
6585 offset += insn_len;
6586 continue;
6588 opcode = insn_decode_opcode (ebb->contents, ebb->content_length,
6589 offset, 0);
6590 if (xtensa_opcode_is_loop (xtensa_default_isa, opcode))
6592 /* Check for branch targets. */
6593 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6594 ta_none, offset, 0, TRUE);
6595 offset += insn_len;
6596 continue;
6599 offset += insn_len;
6603 if (ebb->ends_unreachable)
6605 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6606 ta_fill, ebb->end_offset, 0, TRUE);
6609 return TRUE;
6613 /* After all of the information has collected about the
6614 transformations possible in an EBB, compute the appropriate actions
6615 here in compute_ebb_actions. We still must check later to make
6616 sure that the actions do not break any relocations. The algorithm
6617 used here is pretty greedy. Basically, it removes as many no-ops
6618 as possible so that the end of the EBB has the same alignment
6619 characteristics as the original. First, it uses narrowing, then
6620 fill space at the end of the EBB, and finally widenings. If that
6621 does not work, it tries again with one fewer no-op removed. The
6622 optimization will only be performed if all of the branch targets
6623 that were aligned before transformation are also aligned after the
6624 transformation.
6626 When the size_opt flag is set, ignore the branch target alignments,
6627 narrow all wide instructions, and remove all no-ops unless the end
6628 of the EBB prevents it. */
6630 bfd_boolean
6631 compute_ebb_actions (ebb_constraint *ebb_table)
6633 unsigned i = 0;
6634 unsigned j;
6635 int removed_bytes = 0;
6636 ebb_t *ebb = &ebb_table->ebb;
6637 unsigned seg_idx_start = 0;
6638 unsigned seg_idx_end = 0;
6640 /* We perform this like the assembler relaxation algorithm: Start by
6641 assuming all instructions are narrow and all no-ops removed; then
6642 walk through.... */
6644 /* For each segment of this that has a solid constraint, check to
6645 see if there are any combinations that will keep the constraint.
6646 If so, use it. */
6647 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
6649 bfd_boolean requires_text_end_align = FALSE;
6650 unsigned longcall_count = 0;
6651 unsigned longcall_convert_count = 0;
6652 unsigned narrowable_count = 0;
6653 unsigned narrowable_convert_count = 0;
6654 unsigned widenable_count = 0;
6655 unsigned widenable_convert_count = 0;
6657 proposed_action *action = NULL;
6658 int align = (1 << ebb_table->ebb.sec->alignment_power);
6660 seg_idx_start = seg_idx_end;
6662 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6664 action = &ebb_table->actions[i];
6665 if (action->action == ta_convert_longcall)
6666 longcall_count++;
6667 if (action->action == ta_narrow_insn)
6668 narrowable_count++;
6669 if (action->action == ta_widen_insn)
6670 widenable_count++;
6671 if (action->action == ta_fill)
6672 break;
6673 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6674 break;
6675 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6676 && !elf32xtensa_size_opt)
6677 break;
6679 seg_idx_end = i;
6681 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6682 requires_text_end_align = TRUE;
6684 if (elf32xtensa_size_opt && !requires_text_end_align
6685 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6686 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6688 longcall_convert_count = longcall_count;
6689 narrowable_convert_count = narrowable_count;
6690 widenable_convert_count = 0;
6692 else
6694 /* There is a constraint. Convert the max number of longcalls. */
6695 narrowable_convert_count = 0;
6696 longcall_convert_count = 0;
6697 widenable_convert_count = 0;
6699 for (j = 0; j < longcall_count; j++)
6701 int removed = (longcall_count - j) * 3 & (align - 1);
6702 unsigned desire_narrow = (align - removed) & (align - 1);
6703 unsigned desire_widen = removed;
6704 if (desire_narrow <= narrowable_count)
6706 narrowable_convert_count = desire_narrow;
6707 narrowable_convert_count +=
6708 (align * ((narrowable_count - narrowable_convert_count)
6709 / align));
6710 longcall_convert_count = (longcall_count - j);
6711 widenable_convert_count = 0;
6712 break;
6714 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6716 narrowable_convert_count = 0;
6717 longcall_convert_count = longcall_count - j;
6718 widenable_convert_count = desire_widen;
6719 break;
6724 /* Now the number of conversions are saved. Do them. */
6725 for (i = seg_idx_start; i < seg_idx_end; i++)
6727 action = &ebb_table->actions[i];
6728 switch (action->action)
6730 case ta_convert_longcall:
6731 if (longcall_convert_count != 0)
6733 action->action = ta_remove_longcall;
6734 action->do_action = TRUE;
6735 action->removed_bytes += 3;
6736 longcall_convert_count--;
6738 break;
6739 case ta_narrow_insn:
6740 if (narrowable_convert_count != 0)
6742 action->do_action = TRUE;
6743 action->removed_bytes += 1;
6744 narrowable_convert_count--;
6746 break;
6747 case ta_widen_insn:
6748 if (widenable_convert_count != 0)
6750 action->do_action = TRUE;
6751 action->removed_bytes -= 1;
6752 widenable_convert_count--;
6754 break;
6755 default:
6756 break;
6761 /* Now we move on to some local opts. Try to remove each of the
6762 remaining longcalls. */
6764 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6766 removed_bytes = 0;
6767 for (i = 0; i < ebb_table->action_count; i++)
6769 int old_removed_bytes = removed_bytes;
6770 proposed_action *action = &ebb_table->actions[i];
6772 if (action->do_action && action->action == ta_convert_longcall)
6774 bfd_boolean bad_alignment = FALSE;
6775 removed_bytes += 3;
6776 for (j = i + 1; j < ebb_table->action_count; j++)
6778 proposed_action *new_action = &ebb_table->actions[j];
6779 bfd_vma offset = new_action->offset;
6780 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6782 if (!check_branch_target_aligned
6783 (ebb_table->ebb.contents,
6784 ebb_table->ebb.content_length,
6785 offset, offset - removed_bytes))
6787 bad_alignment = TRUE;
6788 break;
6791 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6793 if (!check_loop_aligned (ebb_table->ebb.contents,
6794 ebb_table->ebb.content_length,
6795 offset,
6796 offset - removed_bytes))
6798 bad_alignment = TRUE;
6799 break;
6802 if (new_action->action == ta_narrow_insn
6803 && !new_action->do_action
6804 && ebb_table->ebb.sec->alignment_power == 2)
6806 /* Narrow an instruction and we are done. */
6807 new_action->do_action = TRUE;
6808 new_action->removed_bytes += 1;
6809 bad_alignment = FALSE;
6810 break;
6812 if (new_action->action == ta_widen_insn
6813 && new_action->do_action
6814 && ebb_table->ebb.sec->alignment_power == 2)
6816 /* Narrow an instruction and we are done. */
6817 new_action->do_action = FALSE;
6818 new_action->removed_bytes += 1;
6819 bad_alignment = FALSE;
6820 break;
6823 if (!bad_alignment)
6825 action->removed_bytes += 3;
6826 action->action = ta_remove_longcall;
6827 action->do_action = TRUE;
6830 removed_bytes = old_removed_bytes;
6831 if (action->do_action)
6832 removed_bytes += action->removed_bytes;
6836 removed_bytes = 0;
6837 for (i = 0; i < ebb_table->action_count; ++i)
6839 proposed_action *action = &ebb_table->actions[i];
6840 if (action->do_action)
6841 removed_bytes += action->removed_bytes;
6844 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6845 && ebb->ends_unreachable)
6847 proposed_action *action;
6848 int br;
6849 int extra_space;
6851 BFD_ASSERT (ebb_table->action_count != 0);
6852 action = &ebb_table->actions[ebb_table->action_count - 1];
6853 BFD_ASSERT (action->action == ta_fill);
6854 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6856 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6857 br = action->removed_bytes + removed_bytes + extra_space;
6858 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6860 action->removed_bytes = extra_space - br;
6862 return TRUE;
6866 /* The xlate_map is a sorted array of address mappings designed to
6867 answer the offset_with_removed_text() query with a binary search instead
6868 of a linear search through the section's action_list. */
6870 typedef struct xlate_map_entry xlate_map_entry_t;
6871 typedef struct xlate_map xlate_map_t;
6873 struct xlate_map_entry
6875 unsigned orig_address;
6876 unsigned new_address;
6877 unsigned size;
6880 struct xlate_map
6882 unsigned entry_count;
6883 xlate_map_entry_t *entry;
6887 static int
6888 xlate_compare (const void *a_v, const void *b_v)
6890 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
6891 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
6892 if (a->orig_address < b->orig_address)
6893 return -1;
6894 if (a->orig_address > (b->orig_address + b->size - 1))
6895 return 1;
6896 return 0;
6900 static bfd_vma
6901 xlate_offset_with_removed_text (const xlate_map_t *map,
6902 text_action_list *action_list,
6903 bfd_vma offset)
6905 xlate_map_entry_t tmp;
6906 void *r;
6907 xlate_map_entry_t *e;
6909 if (map == NULL)
6910 return offset_with_removed_text (action_list, offset);
6912 if (map->entry_count == 0)
6913 return offset;
6915 tmp.orig_address = offset;
6916 tmp.new_address = offset;
6917 tmp.size = 1;
6919 r = bsearch (&offset, map->entry, map->entry_count,
6920 sizeof (xlate_map_entry_t), &xlate_compare);
6921 e = (xlate_map_entry_t *) r;
6923 BFD_ASSERT (e != NULL);
6924 if (e == NULL)
6925 return offset;
6926 return e->new_address - e->orig_address + offset;
6930 /* Build a binary searchable offset translation map from a section's
6931 action list. */
6933 static xlate_map_t *
6934 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
6936 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
6937 text_action_list *action_list = &relax_info->action_list;
6938 unsigned num_actions = 0;
6939 text_action *r;
6940 int removed;
6941 xlate_map_entry_t *current_entry;
6943 if (map == NULL)
6944 return NULL;
6946 num_actions = action_list_count (action_list);
6947 map->entry = (xlate_map_entry_t *)
6948 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
6949 if (map->entry == NULL)
6951 free (map);
6952 return NULL;
6954 map->entry_count = 0;
6956 removed = 0;
6957 current_entry = &map->entry[0];
6959 current_entry->orig_address = 0;
6960 current_entry->new_address = 0;
6961 current_entry->size = 0;
6963 for (r = action_list->head; r != NULL; r = r->next)
6965 unsigned orig_size = 0;
6966 switch (r->action)
6968 case ta_none:
6969 case ta_remove_insn:
6970 case ta_convert_longcall:
6971 case ta_remove_literal:
6972 case ta_add_literal:
6973 break;
6974 case ta_remove_longcall:
6975 orig_size = 6;
6976 break;
6977 case ta_narrow_insn:
6978 orig_size = 3;
6979 break;
6980 case ta_widen_insn:
6981 orig_size = 2;
6982 break;
6983 case ta_fill:
6984 break;
6986 current_entry->size =
6987 r->offset + orig_size - current_entry->orig_address;
6988 if (current_entry->size != 0)
6990 current_entry++;
6991 map->entry_count++;
6993 current_entry->orig_address = r->offset + orig_size;
6994 removed += r->removed_bytes;
6995 current_entry->new_address = r->offset + orig_size - removed;
6996 current_entry->size = 0;
6999 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7000 - current_entry->orig_address);
7001 if (current_entry->size != 0)
7002 map->entry_count++;
7004 return map;
7008 /* Free an offset translation map. */
7010 static void
7011 free_xlate_map (xlate_map_t *map)
7013 if (map && map->entry)
7014 free (map->entry);
7015 if (map)
7016 free (map);
7020 /* Use check_section_ebb_pcrels_fit to make sure that all of the
7021 relocations in a section will fit if a proposed set of actions
7022 are performed. */
7024 static bfd_boolean
7025 check_section_ebb_pcrels_fit (bfd *abfd,
7026 asection *sec,
7027 bfd_byte *contents,
7028 Elf_Internal_Rela *internal_relocs,
7029 const ebb_constraint *constraint)
7031 unsigned i, j;
7032 Elf_Internal_Rela *irel;
7033 xlate_map_t *xmap = NULL;
7034 bfd_boolean ok = TRUE;
7035 xtensa_relax_info *relax_info;
7037 relax_info = get_xtensa_relax_info (sec);
7039 if (relax_info && sec->reloc_count > 100)
7041 xmap = build_xlate_map (sec, relax_info);
7042 /* NULL indicates out of memory, but the slow version
7043 can still be used. */
7046 for (i = 0; i < sec->reloc_count; i++)
7048 r_reloc r_rel;
7049 bfd_vma orig_self_offset, orig_target_offset;
7050 bfd_vma self_offset, target_offset;
7051 int r_type;
7052 reloc_howto_type *howto;
7053 int self_removed_bytes, target_removed_bytes;
7055 irel = &internal_relocs[i];
7056 r_type = ELF32_R_TYPE (irel->r_info);
7058 howto = &elf_howto_table[r_type];
7059 /* We maintain the required invariant: PC-relative relocations
7060 that fit before linking must fit after linking. Thus we only
7061 need to deal with relocations to the same section that are
7062 PC-relative. */
7063 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY
7064 || !howto->pc_relative)
7065 continue;
7067 r_reloc_init (&r_rel, abfd, irel, contents,
7068 bfd_get_section_limit (abfd, sec));
7070 if (r_reloc_get_section (&r_rel) != sec)
7071 continue;
7073 orig_self_offset = irel->r_offset;
7074 orig_target_offset = r_rel.target_offset;
7076 self_offset = orig_self_offset;
7077 target_offset = orig_target_offset;
7079 if (relax_info)
7081 self_offset =
7082 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7083 orig_self_offset);
7084 target_offset =
7085 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7086 orig_target_offset);
7089 self_removed_bytes = 0;
7090 target_removed_bytes = 0;
7092 for (j = 0; j < constraint->action_count; ++j)
7094 proposed_action *action = &constraint->actions[j];
7095 bfd_vma offset = action->offset;
7096 int removed_bytes = action->removed_bytes;
7097 if (offset < orig_self_offset
7098 || (offset == orig_self_offset && action->action == ta_fill
7099 && action->removed_bytes < 0))
7100 self_removed_bytes += removed_bytes;
7101 if (offset < orig_target_offset
7102 || (offset == orig_target_offset && action->action == ta_fill
7103 && action->removed_bytes < 0))
7104 target_removed_bytes += removed_bytes;
7106 self_offset -= self_removed_bytes;
7107 target_offset -= target_removed_bytes;
7109 /* Try to encode it. Get the operand and check. */
7110 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7112 /* None of the current alternate relocs are PC-relative,
7113 and only PC-relative relocs matter here. */
7115 else
7117 xtensa_opcode opcode;
7118 int opnum;
7120 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7121 if (opcode == XTENSA_UNDEFINED)
7123 ok = FALSE;
7124 break;
7127 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7128 if (opnum == XTENSA_UNDEFINED)
7130 ok = FALSE;
7131 break;
7134 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
7136 ok = FALSE;
7137 break;
7142 if (xmap)
7143 free_xlate_map (xmap);
7145 return ok;
7149 static bfd_boolean
7150 check_section_ebb_reduces (const ebb_constraint *constraint)
7152 int removed = 0;
7153 unsigned i;
7155 for (i = 0; i < constraint->action_count; i++)
7157 const proposed_action *action = &constraint->actions[i];
7158 if (action->do_action)
7159 removed += action->removed_bytes;
7161 if (removed < 0)
7162 return FALSE;
7164 return TRUE;
7168 void
7169 text_action_add_proposed (text_action_list *l,
7170 const ebb_constraint *ebb_table,
7171 asection *sec)
7173 unsigned i;
7175 for (i = 0; i < ebb_table->action_count; i++)
7177 proposed_action *action = &ebb_table->actions[i];
7179 if (!action->do_action)
7180 continue;
7181 switch (action->action)
7183 case ta_remove_insn:
7184 case ta_remove_longcall:
7185 case ta_convert_longcall:
7186 case ta_narrow_insn:
7187 case ta_widen_insn:
7188 case ta_fill:
7189 case ta_remove_literal:
7190 text_action_add (l, action->action, sec, action->offset,
7191 action->removed_bytes);
7192 break;
7193 case ta_none:
7194 break;
7195 default:
7196 BFD_ASSERT (0);
7197 break;
7204 compute_fill_extra_space (property_table_entry *entry)
7206 int fill_extra_space;
7208 if (!entry)
7209 return 0;
7211 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7212 return 0;
7214 fill_extra_space = entry->size;
7215 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7217 /* Fill bytes for alignment:
7218 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7219 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7220 int nsm = (1 << pow) - 1;
7221 bfd_vma addr = entry->address + entry->size;
7222 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7223 fill_extra_space += align_fill;
7225 return fill_extra_space;
7229 /* First relaxation pass. */
7231 /* If the section contains relaxable literals, check each literal to
7232 see if it has the same value as another literal that has already
7233 been seen, either in the current section or a previous one. If so,
7234 add an entry to the per-section list of removed literals. The
7235 actual changes are deferred until the next pass. */
7237 static bfd_boolean
7238 compute_removed_literals (bfd *abfd,
7239 asection *sec,
7240 struct bfd_link_info *link_info,
7241 value_map_hash_table *values)
7243 xtensa_relax_info *relax_info;
7244 bfd_byte *contents;
7245 Elf_Internal_Rela *internal_relocs;
7246 source_reloc *src_relocs, *rel;
7247 bfd_boolean ok = TRUE;
7248 property_table_entry *prop_table = NULL;
7249 int ptblsize;
7250 int i, prev_i;
7251 bfd_boolean last_loc_is_prev = FALSE;
7252 bfd_vma last_target_offset = 0;
7253 section_cache_t target_sec_cache;
7254 bfd_size_type sec_size;
7256 init_section_cache (&target_sec_cache);
7258 /* Do nothing if it is not a relaxable literal section. */
7259 relax_info = get_xtensa_relax_info (sec);
7260 BFD_ASSERT (relax_info);
7261 if (!relax_info->is_relaxable_literal_section)
7262 return ok;
7264 internal_relocs = retrieve_internal_relocs (abfd, sec,
7265 link_info->keep_memory);
7267 sec_size = bfd_get_section_limit (abfd, sec);
7268 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7269 if (contents == NULL && sec_size != 0)
7271 ok = FALSE;
7272 goto error_return;
7275 /* Sort the source_relocs by target offset. */
7276 src_relocs = relax_info->src_relocs;
7277 qsort (src_relocs, relax_info->src_count,
7278 sizeof (source_reloc), source_reloc_compare);
7279 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7280 internal_reloc_compare);
7282 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7283 XTENSA_PROP_SEC_NAME, FALSE);
7284 if (ptblsize < 0)
7286 ok = FALSE;
7287 goto error_return;
7290 prev_i = -1;
7291 for (i = 0; i < relax_info->src_count; i++)
7293 Elf_Internal_Rela *irel = NULL;
7295 rel = &src_relocs[i];
7296 if (get_l32r_opcode () != rel->opcode)
7297 continue;
7298 irel = get_irel_at_offset (sec, internal_relocs,
7299 rel->r_rel.target_offset);
7301 /* If the relocation on this is not a simple R_XTENSA_32 or
7302 R_XTENSA_PLT then do not consider it. This may happen when
7303 the difference of two symbols is used in a literal. */
7304 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7305 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7306 continue;
7308 /* If the target_offset for this relocation is the same as the
7309 previous relocation, then we've already considered whether the
7310 literal can be coalesced. Skip to the next one.... */
7311 if (i != 0 && prev_i != -1
7312 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
7313 continue;
7314 prev_i = i;
7316 if (last_loc_is_prev &&
7317 last_target_offset + 4 != rel->r_rel.target_offset)
7318 last_loc_is_prev = FALSE;
7320 /* Check if the relocation was from an L32R that is being removed
7321 because a CALLX was converted to a direct CALL, and check if
7322 there are no other relocations to the literal. */
7323 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count))
7325 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7326 irel, rel, prop_table, ptblsize))
7328 ok = FALSE;
7329 goto error_return;
7331 last_target_offset = rel->r_rel.target_offset;
7332 continue;
7335 if (!identify_literal_placement (abfd, sec, contents, link_info,
7336 values,
7337 &last_loc_is_prev, irel,
7338 relax_info->src_count - i, rel,
7339 prop_table, ptblsize,
7340 &target_sec_cache, rel->is_abs_literal))
7342 ok = FALSE;
7343 goto error_return;
7345 last_target_offset = rel->r_rel.target_offset;
7348 #if DEBUG
7349 print_removed_literals (stderr, &relax_info->removed_list);
7350 print_action_list (stderr, &relax_info->action_list);
7351 #endif /* DEBUG */
7353 error_return:
7354 if (prop_table) free (prop_table);
7355 clear_section_cache (&target_sec_cache);
7357 release_contents (sec, contents);
7358 release_internal_relocs (sec, internal_relocs);
7359 return ok;
7363 static Elf_Internal_Rela *
7364 get_irel_at_offset (asection *sec,
7365 Elf_Internal_Rela *internal_relocs,
7366 bfd_vma offset)
7368 unsigned i;
7369 Elf_Internal_Rela *irel;
7370 unsigned r_type;
7371 Elf_Internal_Rela key;
7373 if (!internal_relocs)
7374 return NULL;
7376 key.r_offset = offset;
7377 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7378 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7379 if (!irel)
7380 return NULL;
7382 /* bsearch does not guarantee which will be returned if there are
7383 multiple matches. We need the first that is not an alignment. */
7384 i = irel - internal_relocs;
7385 while (i > 0)
7387 if (internal_relocs[i-1].r_offset != offset)
7388 break;
7389 i--;
7391 for ( ; i < sec->reloc_count; i++)
7393 irel = &internal_relocs[i];
7394 r_type = ELF32_R_TYPE (irel->r_info);
7395 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7396 return irel;
7399 return NULL;
7403 bfd_boolean
7404 is_removable_literal (const source_reloc *rel,
7405 int i,
7406 const source_reloc *src_relocs,
7407 int src_count)
7409 const source_reloc *curr_rel;
7410 if (!rel->is_null)
7411 return FALSE;
7413 for (++i; i < src_count; ++i)
7415 curr_rel = &src_relocs[i];
7416 /* If all others have the same target offset.... */
7417 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7418 return TRUE;
7420 if (!curr_rel->is_null
7421 && !xtensa_is_property_section (curr_rel->source_sec)
7422 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7423 return FALSE;
7425 return TRUE;
7429 bfd_boolean
7430 remove_dead_literal (bfd *abfd,
7431 asection *sec,
7432 struct bfd_link_info *link_info,
7433 Elf_Internal_Rela *internal_relocs,
7434 Elf_Internal_Rela *irel,
7435 source_reloc *rel,
7436 property_table_entry *prop_table,
7437 int ptblsize)
7439 property_table_entry *entry;
7440 xtensa_relax_info *relax_info;
7442 relax_info = get_xtensa_relax_info (sec);
7443 if (!relax_info)
7444 return FALSE;
7446 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7447 sec->vma + rel->r_rel.target_offset);
7449 /* Mark the unused literal so that it will be removed. */
7450 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7452 text_action_add (&relax_info->action_list,
7453 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7455 /* If the section is 4-byte aligned, do not add fill. */
7456 if (sec->alignment_power > 2)
7458 int fill_extra_space;
7459 bfd_vma entry_sec_offset;
7460 text_action *fa;
7461 property_table_entry *the_add_entry;
7462 int removed_diff;
7464 if (entry)
7465 entry_sec_offset = entry->address - sec->vma + entry->size;
7466 else
7467 entry_sec_offset = rel->r_rel.target_offset + 4;
7469 /* If the literal range is at the end of the section,
7470 do not add fill. */
7471 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7472 entry_sec_offset);
7473 fill_extra_space = compute_fill_extra_space (the_add_entry);
7475 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7476 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7477 -4, fill_extra_space);
7478 if (fa)
7479 adjust_fill_action (fa, removed_diff);
7480 else
7481 text_action_add (&relax_info->action_list,
7482 ta_fill, sec, entry_sec_offset, removed_diff);
7485 /* Zero out the relocation on this literal location. */
7486 if (irel)
7488 if (elf_hash_table (link_info)->dynamic_sections_created)
7489 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7491 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7492 pin_internal_relocs (sec, internal_relocs);
7495 /* Do not modify "last_loc_is_prev". */
7496 return TRUE;
7500 bfd_boolean
7501 identify_literal_placement (bfd *abfd,
7502 asection *sec,
7503 bfd_byte *contents,
7504 struct bfd_link_info *link_info,
7505 value_map_hash_table *values,
7506 bfd_boolean *last_loc_is_prev_p,
7507 Elf_Internal_Rela *irel,
7508 int remaining_src_rels,
7509 source_reloc *rel,
7510 property_table_entry *prop_table,
7511 int ptblsize,
7512 section_cache_t *target_sec_cache,
7513 bfd_boolean is_abs_literal)
7515 literal_value val;
7516 value_map *val_map;
7517 xtensa_relax_info *relax_info;
7518 bfd_boolean literal_placed = FALSE;
7519 r_reloc r_rel;
7520 unsigned long value;
7521 bfd_boolean final_static_link;
7522 bfd_size_type sec_size;
7524 relax_info = get_xtensa_relax_info (sec);
7525 if (!relax_info)
7526 return FALSE;
7528 sec_size = bfd_get_section_limit (abfd, sec);
7530 final_static_link =
7531 (!link_info->relocatable
7532 && !elf_hash_table (link_info)->dynamic_sections_created);
7534 /* The placement algorithm first checks to see if the literal is
7535 already in the value map. If so and the value map is reachable
7536 from all uses, then the literal is moved to that location. If
7537 not, then we identify the last location where a fresh literal was
7538 placed. If the literal can be safely moved there, then we do so.
7539 If not, then we assume that the literal is not to move and leave
7540 the literal where it is, marking it as the last literal
7541 location. */
7543 /* Find the literal value. */
7544 value = 0;
7545 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7546 if (!irel)
7548 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7549 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7551 init_literal_value (&val, &r_rel, value, is_abs_literal);
7553 /* Check if we've seen another literal with the same value that
7554 is in the same output section. */
7555 val_map = value_map_get_cached_value (values, &val, final_static_link);
7557 if (val_map
7558 && (r_reloc_get_section (&val_map->loc)->output_section
7559 == sec->output_section)
7560 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7561 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7563 /* No change to last_loc_is_prev. */
7564 literal_placed = TRUE;
7567 /* For relocatable links, do not try to move literals. To do it
7568 correctly might increase the number of relocations in an input
7569 section making the default relocatable linking fail. */
7570 if (!link_info->relocatable && !literal_placed
7571 && values->has_last_loc && !(*last_loc_is_prev_p))
7573 asection *target_sec = r_reloc_get_section (&values->last_loc);
7574 if (target_sec && target_sec->output_section == sec->output_section)
7576 /* Increment the virtual offset. */
7577 r_reloc try_loc = values->last_loc;
7578 try_loc.virtual_offset += 4;
7580 /* There is a last loc that was in the same output section. */
7581 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7582 && move_shared_literal (sec, link_info, rel,
7583 prop_table, ptblsize,
7584 &try_loc, &val, target_sec_cache))
7586 values->last_loc.virtual_offset += 4;
7587 literal_placed = TRUE;
7588 if (!val_map)
7589 val_map = add_value_map (values, &val, &try_loc,
7590 final_static_link);
7591 else
7592 val_map->loc = try_loc;
7597 if (!literal_placed)
7599 /* Nothing worked, leave the literal alone but update the last loc. */
7600 values->has_last_loc = TRUE;
7601 values->last_loc = rel->r_rel;
7602 if (!val_map)
7603 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
7604 else
7605 val_map->loc = rel->r_rel;
7606 *last_loc_is_prev_p = TRUE;
7609 return TRUE;
7613 /* Check if the original relocations (presumably on L32R instructions)
7614 identified by reloc[0..N] can be changed to reference the literal
7615 identified by r_rel. If r_rel is out of range for any of the
7616 original relocations, then we don't want to coalesce the original
7617 literal with the one at r_rel. We only check reloc[0..N], where the
7618 offsets are all the same as for reloc[0] (i.e., they're all
7619 referencing the same literal) and where N is also bounded by the
7620 number of remaining entries in the "reloc" array. The "reloc" array
7621 is sorted by target offset so we know all the entries for the same
7622 literal will be contiguous. */
7624 static bfd_boolean
7625 relocations_reach (source_reloc *reloc,
7626 int remaining_relocs,
7627 const r_reloc *r_rel)
7629 bfd_vma from_offset, source_address, dest_address;
7630 asection *sec;
7631 int i;
7633 if (!r_reloc_is_defined (r_rel))
7634 return FALSE;
7636 sec = r_reloc_get_section (r_rel);
7637 from_offset = reloc[0].r_rel.target_offset;
7639 for (i = 0; i < remaining_relocs; i++)
7641 if (reloc[i].r_rel.target_offset != from_offset)
7642 break;
7644 /* Ignore relocations that have been removed. */
7645 if (reloc[i].is_null)
7646 continue;
7648 /* The original and new output section for these must be the same
7649 in order to coalesce. */
7650 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7651 != sec->output_section)
7652 return FALSE;
7654 /* Absolute literals in the same output section can always be
7655 combined. */
7656 if (reloc[i].is_abs_literal)
7657 continue;
7659 /* A literal with no PC-relative relocations can be moved anywhere. */
7660 if (reloc[i].opnd != -1)
7662 /* Otherwise, check to see that it fits. */
7663 source_address = (reloc[i].source_sec->output_section->vma
7664 + reloc[i].source_sec->output_offset
7665 + reloc[i].r_rel.rela.r_offset);
7666 dest_address = (sec->output_section->vma
7667 + sec->output_offset
7668 + r_rel->target_offset);
7670 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7671 source_address, dest_address))
7672 return FALSE;
7676 return TRUE;
7680 /* Move a literal to another literal location because it is
7681 the same as the other literal value. */
7683 static bfd_boolean
7684 coalesce_shared_literal (asection *sec,
7685 source_reloc *rel,
7686 property_table_entry *prop_table,
7687 int ptblsize,
7688 value_map *val_map)
7690 property_table_entry *entry;
7691 text_action *fa;
7692 property_table_entry *the_add_entry;
7693 int removed_diff;
7694 xtensa_relax_info *relax_info;
7696 relax_info = get_xtensa_relax_info (sec);
7697 if (!relax_info)
7698 return FALSE;
7700 entry = elf_xtensa_find_property_entry
7701 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7702 if (entry && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM))
7703 return TRUE;
7705 /* Mark that the literal will be coalesced. */
7706 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7708 text_action_add (&relax_info->action_list,
7709 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7711 /* If the section is 4-byte aligned, do not add fill. */
7712 if (sec->alignment_power > 2)
7714 int fill_extra_space;
7715 bfd_vma entry_sec_offset;
7717 if (entry)
7718 entry_sec_offset = entry->address - sec->vma + entry->size;
7719 else
7720 entry_sec_offset = rel->r_rel.target_offset + 4;
7722 /* If the literal range is at the end of the section,
7723 do not add fill. */
7724 fill_extra_space = 0;
7725 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7726 entry_sec_offset);
7727 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7728 fill_extra_space = the_add_entry->size;
7730 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7731 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7732 -4, fill_extra_space);
7733 if (fa)
7734 adjust_fill_action (fa, removed_diff);
7735 else
7736 text_action_add (&relax_info->action_list,
7737 ta_fill, sec, entry_sec_offset, removed_diff);
7740 return TRUE;
7744 /* Move a literal to another location. This may actually increase the
7745 total amount of space used because of alignments so we need to do
7746 this carefully. Also, it may make a branch go out of range. */
7748 static bfd_boolean
7749 move_shared_literal (asection *sec,
7750 struct bfd_link_info *link_info,
7751 source_reloc *rel,
7752 property_table_entry *prop_table,
7753 int ptblsize,
7754 const r_reloc *target_loc,
7755 const literal_value *lit_value,
7756 section_cache_t *target_sec_cache)
7758 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7759 text_action *fa, *target_fa;
7760 int removed_diff;
7761 xtensa_relax_info *relax_info, *target_relax_info;
7762 asection *target_sec;
7763 ebb_t *ebb;
7764 ebb_constraint ebb_table;
7765 bfd_boolean relocs_fit;
7767 /* If this routine always returns FALSE, the literals that cannot be
7768 coalesced will not be moved. */
7769 if (elf32xtensa_no_literal_movement)
7770 return FALSE;
7772 relax_info = get_xtensa_relax_info (sec);
7773 if (!relax_info)
7774 return FALSE;
7776 target_sec = r_reloc_get_section (target_loc);
7777 target_relax_info = get_xtensa_relax_info (target_sec);
7779 /* Literals to undefined sections may not be moved because they
7780 must report an error. */
7781 if (bfd_is_und_section (target_sec))
7782 return FALSE;
7784 src_entry = elf_xtensa_find_property_entry
7785 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7787 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7788 return FALSE;
7790 target_entry = elf_xtensa_find_property_entry
7791 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7792 target_sec->vma + target_loc->target_offset);
7794 if (!target_entry)
7795 return FALSE;
7797 /* Make sure that we have not broken any branches. */
7798 relocs_fit = FALSE;
7800 init_ebb_constraint (&ebb_table);
7801 ebb = &ebb_table.ebb;
7802 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7803 target_sec_cache->content_length,
7804 target_sec_cache->ptbl, target_sec_cache->pte_count,
7805 target_sec_cache->relocs, target_sec_cache->reloc_count);
7807 /* Propose to add 4 bytes + worst-case alignment size increase to
7808 destination. */
7809 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7810 ta_fill, target_loc->target_offset,
7811 -4 - (1 << target_sec->alignment_power), TRUE);
7813 /* Check all of the PC-relative relocations to make sure they still fit. */
7814 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7815 target_sec_cache->contents,
7816 target_sec_cache->relocs,
7817 &ebb_table);
7819 if (!relocs_fit)
7820 return FALSE;
7822 text_action_add_literal (&target_relax_info->action_list,
7823 ta_add_literal, target_loc, lit_value, -4);
7825 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7827 /* May need to add or remove some fill to maintain alignment. */
7828 int fill_extra_space;
7829 bfd_vma entry_sec_offset;
7831 entry_sec_offset =
7832 target_entry->address - target_sec->vma + target_entry->size;
7834 /* If the literal range is at the end of the section,
7835 do not add fill. */
7836 fill_extra_space = 0;
7837 the_add_entry =
7838 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7839 target_sec_cache->pte_count,
7840 entry_sec_offset);
7841 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7842 fill_extra_space = the_add_entry->size;
7844 target_fa = find_fill_action (&target_relax_info->action_list,
7845 target_sec, entry_sec_offset);
7846 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7847 entry_sec_offset, 4,
7848 fill_extra_space);
7849 if (target_fa)
7850 adjust_fill_action (target_fa, removed_diff);
7851 else
7852 text_action_add (&target_relax_info->action_list,
7853 ta_fill, target_sec, entry_sec_offset, removed_diff);
7856 /* Mark that the literal will be moved to the new location. */
7857 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7859 /* Remove the literal. */
7860 text_action_add (&relax_info->action_list,
7861 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7863 /* If the section is 4-byte aligned, do not add fill. */
7864 if (sec->alignment_power > 2 && target_entry != src_entry)
7866 int fill_extra_space;
7867 bfd_vma entry_sec_offset;
7869 if (src_entry)
7870 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7871 else
7872 entry_sec_offset = rel->r_rel.target_offset+4;
7874 /* If the literal range is at the end of the section,
7875 do not add fill. */
7876 fill_extra_space = 0;
7877 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7878 entry_sec_offset);
7879 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7880 fill_extra_space = the_add_entry->size;
7882 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7883 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7884 -4, fill_extra_space);
7885 if (fa)
7886 adjust_fill_action (fa, removed_diff);
7887 else
7888 text_action_add (&relax_info->action_list,
7889 ta_fill, sec, entry_sec_offset, removed_diff);
7892 return TRUE;
7896 /* Second relaxation pass. */
7898 /* Modify all of the relocations to point to the right spot, and if this
7899 is a relaxable section, delete the unwanted literals and fix the
7900 section size. */
7902 bfd_boolean
7903 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
7905 Elf_Internal_Rela *internal_relocs;
7906 xtensa_relax_info *relax_info;
7907 bfd_byte *contents;
7908 bfd_boolean ok = TRUE;
7909 unsigned i;
7910 bfd_boolean rv = FALSE;
7911 bfd_boolean virtual_action;
7912 bfd_size_type sec_size;
7914 sec_size = bfd_get_section_limit (abfd, sec);
7915 relax_info = get_xtensa_relax_info (sec);
7916 BFD_ASSERT (relax_info);
7918 /* First translate any of the fixes that have been added already. */
7919 translate_section_fixes (sec);
7921 /* Handle property sections (e.g., literal tables) specially. */
7922 if (xtensa_is_property_section (sec))
7924 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
7925 return relax_property_section (abfd, sec, link_info);
7928 internal_relocs = retrieve_internal_relocs (abfd, sec,
7929 link_info->keep_memory);
7930 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7931 if (contents == NULL && sec_size != 0)
7933 ok = FALSE;
7934 goto error_return;
7937 if (internal_relocs)
7939 for (i = 0; i < sec->reloc_count; i++)
7941 Elf_Internal_Rela *irel;
7942 xtensa_relax_info *target_relax_info;
7943 bfd_vma source_offset, old_source_offset;
7944 r_reloc r_rel;
7945 unsigned r_type;
7946 asection *target_sec;
7948 /* Locally change the source address.
7949 Translate the target to the new target address.
7950 If it points to this section and has been removed,
7951 NULLify it.
7952 Write it back. */
7954 irel = &internal_relocs[i];
7955 source_offset = irel->r_offset;
7956 old_source_offset = source_offset;
7958 r_type = ELF32_R_TYPE (irel->r_info);
7959 r_reloc_init (&r_rel, abfd, irel, contents,
7960 bfd_get_section_limit (abfd, sec));
7962 /* If this section could have changed then we may need to
7963 change the relocation's offset. */
7965 if (relax_info->is_relaxable_literal_section
7966 || relax_info->is_relaxable_asm_section)
7968 if (r_type != R_XTENSA_NONE
7969 && find_removed_literal (&relax_info->removed_list,
7970 irel->r_offset))
7972 /* Remove this relocation. */
7973 if (elf_hash_table (link_info)->dynamic_sections_created)
7974 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7975 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7976 irel->r_offset = offset_with_removed_text
7977 (&relax_info->action_list, irel->r_offset);
7978 pin_internal_relocs (sec, internal_relocs);
7979 continue;
7982 if (r_type == R_XTENSA_ASM_SIMPLIFY)
7984 text_action *action =
7985 find_insn_action (&relax_info->action_list,
7986 irel->r_offset);
7987 if (action && (action->action == ta_convert_longcall
7988 || action->action == ta_remove_longcall))
7990 bfd_reloc_status_type retval;
7991 char *error_message = NULL;
7993 retval = contract_asm_expansion (contents, sec_size,
7994 irel, &error_message);
7995 if (retval != bfd_reloc_ok)
7997 (*link_info->callbacks->reloc_dangerous)
7998 (link_info, error_message, abfd, sec,
7999 irel->r_offset);
8000 goto error_return;
8002 /* Update the action so that the code that moves
8003 the contents will do the right thing. */
8004 if (action->action == ta_remove_longcall)
8005 action->action = ta_remove_insn;
8006 else
8007 action->action = ta_none;
8008 /* Refresh the info in the r_rel. */
8009 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8010 r_type = ELF32_R_TYPE (irel->r_info);
8014 source_offset = offset_with_removed_text
8015 (&relax_info->action_list, irel->r_offset);
8016 irel->r_offset = source_offset;
8019 /* If the target section could have changed then
8020 we may need to change the relocation's target offset. */
8022 target_sec = r_reloc_get_section (&r_rel);
8023 target_relax_info = get_xtensa_relax_info (target_sec);
8025 if (target_relax_info
8026 && (target_relax_info->is_relaxable_literal_section
8027 || target_relax_info->is_relaxable_asm_section))
8029 r_reloc new_reloc;
8030 reloc_bfd_fix *fix;
8031 bfd_vma addend_displacement;
8033 translate_reloc (&r_rel, &new_reloc);
8035 if (r_type == R_XTENSA_DIFF8
8036 || r_type == R_XTENSA_DIFF16
8037 || r_type == R_XTENSA_DIFF32)
8039 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8041 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8043 (*link_info->callbacks->reloc_dangerous)
8044 (link_info, _("invalid relocation address"),
8045 abfd, sec, old_source_offset);
8046 goto error_return;
8049 switch (r_type)
8051 case R_XTENSA_DIFF8:
8052 diff_value =
8053 bfd_get_8 (abfd, &contents[old_source_offset]);
8054 break;
8055 case R_XTENSA_DIFF16:
8056 diff_value =
8057 bfd_get_16 (abfd, &contents[old_source_offset]);
8058 break;
8059 case R_XTENSA_DIFF32:
8060 diff_value =
8061 bfd_get_32 (abfd, &contents[old_source_offset]);
8062 break;
8065 new_end_offset = offset_with_removed_text
8066 (&target_relax_info->action_list,
8067 r_rel.target_offset + diff_value);
8068 diff_value = new_end_offset - new_reloc.target_offset;
8070 switch (r_type)
8072 case R_XTENSA_DIFF8:
8073 diff_mask = 0xff;
8074 bfd_put_8 (abfd, diff_value,
8075 &contents[old_source_offset]);
8076 break;
8077 case R_XTENSA_DIFF16:
8078 diff_mask = 0xffff;
8079 bfd_put_16 (abfd, diff_value,
8080 &contents[old_source_offset]);
8081 break;
8082 case R_XTENSA_DIFF32:
8083 diff_mask = 0xffffffff;
8084 bfd_put_32 (abfd, diff_value,
8085 &contents[old_source_offset]);
8086 break;
8089 /* Check for overflow. */
8090 if ((diff_value & ~diff_mask) != 0)
8092 (*link_info->callbacks->reloc_dangerous)
8093 (link_info, _("overflow after relaxation"),
8094 abfd, sec, old_source_offset);
8095 goto error_return;
8098 pin_contents (sec, contents);
8101 /* FIXME: If the relocation still references a section in
8102 the same input file, the relocation should be modified
8103 directly instead of adding a "fix" record. */
8105 addend_displacement =
8106 new_reloc.target_offset + new_reloc.virtual_offset;
8108 fix = reloc_bfd_fix_init (sec, source_offset, r_type, 0,
8109 r_reloc_get_section (&new_reloc),
8110 addend_displacement, TRUE);
8111 add_fix (sec, fix);
8114 pin_internal_relocs (sec, internal_relocs);
8118 if ((relax_info->is_relaxable_literal_section
8119 || relax_info->is_relaxable_asm_section)
8120 && relax_info->action_list.head)
8122 /* Walk through the planned actions and build up a table
8123 of move, copy and fill records. Use the move, copy and
8124 fill records to perform the actions once. */
8126 bfd_size_type size = sec->size;
8127 int removed = 0;
8128 bfd_size_type final_size, copy_size, orig_insn_size;
8129 bfd_byte *scratch = NULL;
8130 bfd_byte *dup_contents = NULL;
8131 bfd_size_type orig_size = size;
8132 bfd_vma orig_dot = 0;
8133 bfd_vma orig_dot_copied = 0; /* Byte copied already from
8134 orig dot in physical memory. */
8135 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
8136 bfd_vma dup_dot = 0;
8138 text_action *action = relax_info->action_list.head;
8140 final_size = sec->size;
8141 for (action = relax_info->action_list.head; action;
8142 action = action->next)
8144 final_size -= action->removed_bytes;
8147 scratch = (bfd_byte *) bfd_zmalloc (final_size);
8148 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
8150 /* The dot is the current fill location. */
8151 #if DEBUG
8152 print_action_list (stderr, &relax_info->action_list);
8153 #endif
8155 for (action = relax_info->action_list.head; action;
8156 action = action->next)
8158 virtual_action = FALSE;
8159 if (action->offset > orig_dot)
8161 orig_dot += orig_dot_copied;
8162 orig_dot_copied = 0;
8163 orig_dot_vo = 0;
8164 /* Out of the virtual world. */
8167 if (action->offset > orig_dot)
8169 copy_size = action->offset - orig_dot;
8170 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8171 orig_dot += copy_size;
8172 dup_dot += copy_size;
8173 BFD_ASSERT (action->offset == orig_dot);
8175 else if (action->offset < orig_dot)
8177 if (action->action == ta_fill
8178 && action->offset - action->removed_bytes == orig_dot)
8180 /* This is OK because the fill only effects the dup_dot. */
8182 else if (action->action == ta_add_literal)
8184 /* TBD. Might need to handle this. */
8187 if (action->offset == orig_dot)
8189 if (action->virtual_offset > orig_dot_vo)
8191 if (orig_dot_vo == 0)
8193 /* Need to copy virtual_offset bytes. Probably four. */
8194 copy_size = action->virtual_offset - orig_dot_vo;
8195 memmove (&dup_contents[dup_dot],
8196 &contents[orig_dot], copy_size);
8197 orig_dot_copied = copy_size;
8198 dup_dot += copy_size;
8200 virtual_action = TRUE;
8202 else
8203 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8205 switch (action->action)
8207 case ta_remove_literal:
8208 case ta_remove_insn:
8209 BFD_ASSERT (action->removed_bytes >= 0);
8210 orig_dot += action->removed_bytes;
8211 break;
8213 case ta_narrow_insn:
8214 orig_insn_size = 3;
8215 copy_size = 2;
8216 memmove (scratch, &contents[orig_dot], orig_insn_size);
8217 BFD_ASSERT (action->removed_bytes == 1);
8218 rv = narrow_instruction (scratch, final_size, 0, TRUE);
8219 BFD_ASSERT (rv);
8220 memmove (&dup_contents[dup_dot], scratch, copy_size);
8221 orig_dot += orig_insn_size;
8222 dup_dot += copy_size;
8223 break;
8225 case ta_fill:
8226 if (action->removed_bytes >= 0)
8227 orig_dot += action->removed_bytes;
8228 else
8230 /* Already zeroed in dup_contents. Just bump the
8231 counters. */
8232 dup_dot += (-action->removed_bytes);
8234 break;
8236 case ta_none:
8237 BFD_ASSERT (action->removed_bytes == 0);
8238 break;
8240 case ta_convert_longcall:
8241 case ta_remove_longcall:
8242 /* These will be removed or converted before we get here. */
8243 BFD_ASSERT (0);
8244 break;
8246 case ta_widen_insn:
8247 orig_insn_size = 2;
8248 copy_size = 3;
8249 memmove (scratch, &contents[orig_dot], orig_insn_size);
8250 BFD_ASSERT (action->removed_bytes == -1);
8251 rv = widen_instruction (scratch, final_size, 0, TRUE);
8252 BFD_ASSERT (rv);
8253 memmove (&dup_contents[dup_dot], scratch, copy_size);
8254 orig_dot += orig_insn_size;
8255 dup_dot += copy_size;
8256 break;
8258 case ta_add_literal:
8259 orig_insn_size = 0;
8260 copy_size = 4;
8261 BFD_ASSERT (action->removed_bytes == -4);
8262 /* TBD -- place the literal value here and insert
8263 into the table. */
8264 memset (&dup_contents[dup_dot], 0, 4);
8265 pin_internal_relocs (sec, internal_relocs);
8266 pin_contents (sec, contents);
8268 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8269 relax_info, &internal_relocs, &action->value))
8270 goto error_return;
8272 if (virtual_action)
8273 orig_dot_vo += copy_size;
8275 orig_dot += orig_insn_size;
8276 dup_dot += copy_size;
8277 break;
8279 default:
8280 /* Not implemented yet. */
8281 BFD_ASSERT (0);
8282 break;
8285 size -= action->removed_bytes;
8286 removed += action->removed_bytes;
8287 BFD_ASSERT (dup_dot <= final_size);
8288 BFD_ASSERT (orig_dot <= orig_size);
8291 orig_dot += orig_dot_copied;
8292 orig_dot_copied = 0;
8294 if (orig_dot != orig_size)
8296 copy_size = orig_size - orig_dot;
8297 BFD_ASSERT (orig_size > orig_dot);
8298 BFD_ASSERT (dup_dot + copy_size == final_size);
8299 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8300 orig_dot += copy_size;
8301 dup_dot += copy_size;
8303 BFD_ASSERT (orig_size == orig_dot);
8304 BFD_ASSERT (final_size == dup_dot);
8306 /* Move the dup_contents back. */
8307 if (final_size > orig_size)
8309 /* Contents need to be reallocated. Swap the dup_contents into
8310 contents. */
8311 sec->contents = dup_contents;
8312 free (contents);
8313 contents = dup_contents;
8314 pin_contents (sec, contents);
8316 else
8318 BFD_ASSERT (final_size <= orig_size);
8319 memset (contents, 0, orig_size);
8320 memcpy (contents, dup_contents, final_size);
8321 free (dup_contents);
8323 free (scratch);
8324 pin_contents (sec, contents);
8326 sec->size = final_size;
8329 error_return:
8330 release_internal_relocs (sec, internal_relocs);
8331 release_contents (sec, contents);
8332 return ok;
8336 static bfd_boolean
8337 translate_section_fixes (asection *sec)
8339 xtensa_relax_info *relax_info;
8340 reloc_bfd_fix *r;
8342 relax_info = get_xtensa_relax_info (sec);
8343 if (!relax_info)
8344 return TRUE;
8346 for (r = relax_info->fix_list; r != NULL; r = r->next)
8347 if (!translate_reloc_bfd_fix (r))
8348 return FALSE;
8350 return TRUE;
8354 /* Translate a fix given the mapping in the relax info for the target
8355 section. If it has already been translated, no work is required. */
8357 static bfd_boolean
8358 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
8360 reloc_bfd_fix new_fix;
8361 asection *sec;
8362 xtensa_relax_info *relax_info;
8363 removed_literal *removed;
8364 bfd_vma new_offset, target_offset;
8366 if (fix->translated)
8367 return TRUE;
8369 sec = fix->target_sec;
8370 target_offset = fix->target_offset;
8372 relax_info = get_xtensa_relax_info (sec);
8373 if (!relax_info)
8375 fix->translated = TRUE;
8376 return TRUE;
8379 new_fix = *fix;
8381 /* The fix does not need to be translated if the section cannot change. */
8382 if (!relax_info->is_relaxable_literal_section
8383 && !relax_info->is_relaxable_asm_section)
8385 fix->translated = TRUE;
8386 return TRUE;
8389 /* If the literal has been moved and this relocation was on an
8390 opcode, then the relocation should move to the new literal
8391 location. Otherwise, the relocation should move within the
8392 section. */
8394 removed = FALSE;
8395 if (is_operand_relocation (fix->src_type))
8397 /* Check if the original relocation is against a literal being
8398 removed. */
8399 removed = find_removed_literal (&relax_info->removed_list,
8400 target_offset);
8403 if (removed)
8405 asection *new_sec;
8407 /* The fact that there is still a relocation to this literal indicates
8408 that the literal is being coalesced, not simply removed. */
8409 BFD_ASSERT (removed->to.abfd != NULL);
8411 /* This was moved to some other address (possibly another section). */
8412 new_sec = r_reloc_get_section (&removed->to);
8413 if (new_sec != sec)
8415 sec = new_sec;
8416 relax_info = get_xtensa_relax_info (sec);
8417 if (!relax_info ||
8418 (!relax_info->is_relaxable_literal_section
8419 && !relax_info->is_relaxable_asm_section))
8421 target_offset = removed->to.target_offset;
8422 new_fix.target_sec = new_sec;
8423 new_fix.target_offset = target_offset;
8424 new_fix.translated = TRUE;
8425 *fix = new_fix;
8426 return TRUE;
8429 target_offset = removed->to.target_offset;
8430 new_fix.target_sec = new_sec;
8433 /* The target address may have been moved within its section. */
8434 new_offset = offset_with_removed_text (&relax_info->action_list,
8435 target_offset);
8437 new_fix.target_offset = new_offset;
8438 new_fix.target_offset = new_offset;
8439 new_fix.translated = TRUE;
8440 *fix = new_fix;
8441 return TRUE;
8445 /* Fix up a relocation to take account of removed literals. */
8447 static void
8448 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel)
8450 asection *sec;
8451 xtensa_relax_info *relax_info;
8452 removed_literal *removed;
8453 bfd_vma new_offset, target_offset, removed_bytes;
8455 *new_rel = *orig_rel;
8457 if (!r_reloc_is_defined (orig_rel))
8458 return;
8459 sec = r_reloc_get_section (orig_rel);
8461 relax_info = get_xtensa_relax_info (sec);
8462 BFD_ASSERT (relax_info);
8464 if (!relax_info->is_relaxable_literal_section
8465 && !relax_info->is_relaxable_asm_section)
8466 return;
8468 target_offset = orig_rel->target_offset;
8470 removed = FALSE;
8471 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8473 /* Check if the original relocation is against a literal being
8474 removed. */
8475 removed = find_removed_literal (&relax_info->removed_list,
8476 target_offset);
8478 if (removed && removed->to.abfd)
8480 asection *new_sec;
8482 /* The fact that there is still a relocation to this literal indicates
8483 that the literal is being coalesced, not simply removed. */
8484 BFD_ASSERT (removed->to.abfd != NULL);
8486 /* This was moved to some other address
8487 (possibly in another section). */
8488 *new_rel = removed->to;
8489 new_sec = r_reloc_get_section (new_rel);
8490 if (new_sec != sec)
8492 sec = new_sec;
8493 relax_info = get_xtensa_relax_info (sec);
8494 if (!relax_info
8495 || (!relax_info->is_relaxable_literal_section
8496 && !relax_info->is_relaxable_asm_section))
8497 return;
8499 target_offset = new_rel->target_offset;
8502 /* ...and the target address may have been moved within its section. */
8503 new_offset = offset_with_removed_text (&relax_info->action_list,
8504 target_offset);
8506 /* Modify the offset and addend. */
8507 removed_bytes = target_offset - new_offset;
8508 new_rel->target_offset = new_offset;
8509 new_rel->rela.r_addend -= removed_bytes;
8513 /* For dynamic links, there may be a dynamic relocation for each
8514 literal. The number of dynamic relocations must be computed in
8515 size_dynamic_sections, which occurs before relaxation. When a
8516 literal is removed, this function checks if there is a corresponding
8517 dynamic relocation and shrinks the size of the appropriate dynamic
8518 relocation section accordingly. At this point, the contents of the
8519 dynamic relocation sections have not yet been filled in, so there's
8520 nothing else that needs to be done. */
8522 static void
8523 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8524 bfd *abfd,
8525 asection *input_section,
8526 Elf_Internal_Rela *rel)
8528 Elf_Internal_Shdr *symtab_hdr;
8529 struct elf_link_hash_entry **sym_hashes;
8530 unsigned long r_symndx;
8531 int r_type;
8532 struct elf_link_hash_entry *h;
8533 bfd_boolean dynamic_symbol;
8535 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8536 sym_hashes = elf_sym_hashes (abfd);
8538 r_type = ELF32_R_TYPE (rel->r_info);
8539 r_symndx = ELF32_R_SYM (rel->r_info);
8541 if (r_symndx < symtab_hdr->sh_info)
8542 h = NULL;
8543 else
8544 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8546 dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
8548 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8549 && (input_section->flags & SEC_ALLOC) != 0
8550 && (dynamic_symbol || info->shared))
8552 bfd *dynobj;
8553 const char *srel_name;
8554 asection *srel;
8555 bfd_boolean is_plt = FALSE;
8557 dynobj = elf_hash_table (info)->dynobj;
8558 BFD_ASSERT (dynobj != NULL);
8560 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8562 srel_name = ".rela.plt";
8563 is_plt = TRUE;
8565 else
8566 srel_name = ".rela.got";
8568 /* Reduce size of the .rela.* section by one reloc. */
8569 srel = bfd_get_section_by_name (dynobj, srel_name);
8570 BFD_ASSERT (srel != NULL);
8571 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8572 srel->size -= sizeof (Elf32_External_Rela);
8574 if (is_plt)
8576 asection *splt, *sgotplt, *srelgot;
8577 int reloc_index, chunk;
8579 /* Find the PLT reloc index of the entry being removed. This
8580 is computed from the size of ".rela.plt". It is needed to
8581 figure out which PLT chunk to resize. Usually "last index
8582 = size - 1" since the index starts at zero, but in this
8583 context, the size has just been decremented so there's no
8584 need to subtract one. */
8585 reloc_index = srel->size / sizeof (Elf32_External_Rela);
8587 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
8588 splt = elf_xtensa_get_plt_section (dynobj, chunk);
8589 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
8590 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8592 /* Check if an entire PLT chunk has just been eliminated. */
8593 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8595 /* The two magic GOT entries for that chunk can go away. */
8596 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
8597 BFD_ASSERT (srelgot != NULL);
8598 srelgot->reloc_count -= 2;
8599 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8600 sgotplt->size -= 8;
8602 /* There should be only one entry left (and it will be
8603 removed below). */
8604 BFD_ASSERT (sgotplt->size == 4);
8605 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
8608 BFD_ASSERT (sgotplt->size >= 4);
8609 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
8611 sgotplt->size -= 4;
8612 splt->size -= PLT_ENTRY_SIZE;
8618 /* Take an r_rel and move it to another section. This usually
8619 requires extending the interal_relocation array and pinning it. If
8620 the original r_rel is from the same BFD, we can complete this here.
8621 Otherwise, we add a fix record to let the final link fix the
8622 appropriate address. Contents and internal relocations for the
8623 section must be pinned after calling this routine. */
8625 static bfd_boolean
8626 move_literal (bfd *abfd,
8627 struct bfd_link_info *link_info,
8628 asection *sec,
8629 bfd_vma offset,
8630 bfd_byte *contents,
8631 xtensa_relax_info *relax_info,
8632 Elf_Internal_Rela **internal_relocs_p,
8633 const literal_value *lit)
8635 Elf_Internal_Rela *new_relocs = NULL;
8636 size_t new_relocs_count = 0;
8637 Elf_Internal_Rela this_rela;
8638 const r_reloc *r_rel;
8640 r_rel = &lit->r_rel;
8641 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8643 if (r_reloc_is_const (r_rel))
8644 bfd_put_32 (abfd, lit->value, contents + offset);
8645 else
8647 int r_type;
8648 unsigned i;
8649 asection *target_sec;
8650 reloc_bfd_fix *fix;
8651 unsigned insert_at;
8653 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8654 target_sec = r_reloc_get_section (r_rel);
8656 /* This is the difficult case. We have to create a fix up. */
8657 this_rela.r_offset = offset;
8658 this_rela.r_info = ELF32_R_INFO (0, r_type);
8659 this_rela.r_addend =
8660 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8661 bfd_put_32 (abfd, lit->value, contents + offset);
8663 /* Currently, we cannot move relocations during a relocatable link. */
8664 BFD_ASSERT (!link_info->relocatable);
8665 fix = reloc_bfd_fix_init (sec, offset, r_type, r_rel->abfd,
8666 r_reloc_get_section (r_rel),
8667 r_rel->target_offset + r_rel->virtual_offset,
8668 FALSE);
8669 /* We also need to mark that relocations are needed here. */
8670 sec->flags |= SEC_RELOC;
8672 translate_reloc_bfd_fix (fix);
8673 /* This fix has not yet been translated. */
8674 add_fix (sec, fix);
8676 /* Add the relocation. If we have already allocated our own
8677 space for the relocations and we have room for more, then use
8678 it. Otherwise, allocate new space and move the literals. */
8679 insert_at = sec->reloc_count;
8680 for (i = 0; i < sec->reloc_count; ++i)
8682 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8684 insert_at = i;
8685 break;
8689 if (*internal_relocs_p != relax_info->allocated_relocs
8690 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8692 BFD_ASSERT (relax_info->allocated_relocs == NULL
8693 || sec->reloc_count == relax_info->relocs_count);
8695 if (relax_info->allocated_relocs_count == 0)
8696 new_relocs_count = (sec->reloc_count + 2) * 2;
8697 else
8698 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8700 new_relocs = (Elf_Internal_Rela *)
8701 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8702 if (!new_relocs)
8703 return FALSE;
8705 /* We could handle this more quickly by finding the split point. */
8706 if (insert_at != 0)
8707 memcpy (new_relocs, *internal_relocs_p,
8708 insert_at * sizeof (Elf_Internal_Rela));
8710 new_relocs[insert_at] = this_rela;
8712 if (insert_at != sec->reloc_count)
8713 memcpy (new_relocs + insert_at + 1,
8714 (*internal_relocs_p) + insert_at,
8715 (sec->reloc_count - insert_at)
8716 * sizeof (Elf_Internal_Rela));
8718 if (*internal_relocs_p != relax_info->allocated_relocs)
8720 /* The first time we re-allocate, we can only free the
8721 old relocs if they were allocated with bfd_malloc.
8722 This is not true when keep_memory is in effect. */
8723 if (!link_info->keep_memory)
8724 free (*internal_relocs_p);
8726 else
8727 free (*internal_relocs_p);
8728 relax_info->allocated_relocs = new_relocs;
8729 relax_info->allocated_relocs_count = new_relocs_count;
8730 elf_section_data (sec)->relocs = new_relocs;
8731 sec->reloc_count++;
8732 relax_info->relocs_count = sec->reloc_count;
8733 *internal_relocs_p = new_relocs;
8735 else
8737 if (insert_at != sec->reloc_count)
8739 unsigned idx;
8740 for (idx = sec->reloc_count; idx > insert_at; idx--)
8741 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8743 (*internal_relocs_p)[insert_at] = this_rela;
8744 sec->reloc_count++;
8745 if (relax_info->allocated_relocs)
8746 relax_info->relocs_count = sec->reloc_count;
8749 return TRUE;
8753 /* This is similar to relax_section except that when a target is moved,
8754 we shift addresses up. We also need to modify the size. This
8755 algorithm does NOT allow for relocations into the middle of the
8756 property sections. */
8758 static bfd_boolean
8759 relax_property_section (bfd *abfd,
8760 asection *sec,
8761 struct bfd_link_info *link_info)
8763 Elf_Internal_Rela *internal_relocs;
8764 bfd_byte *contents;
8765 unsigned i, nexti;
8766 bfd_boolean ok = TRUE;
8767 bfd_boolean is_full_prop_section;
8768 size_t last_zfill_target_offset = 0;
8769 asection *last_zfill_target_sec = NULL;
8770 bfd_size_type sec_size;
8772 sec_size = bfd_get_section_limit (abfd, sec);
8773 internal_relocs = retrieve_internal_relocs (abfd, sec,
8774 link_info->keep_memory);
8775 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8776 if (contents == NULL && sec_size != 0)
8778 ok = FALSE;
8779 goto error_return;
8782 is_full_prop_section =
8783 ((strcmp (sec->name, XTENSA_PROP_SEC_NAME) == 0)
8784 || (strncmp (sec->name, ".gnu.linkonce.prop.",
8785 sizeof ".gnu.linkonce.prop." - 1) == 0));
8787 if (internal_relocs)
8789 for (i = 0; i < sec->reloc_count; i++)
8791 Elf_Internal_Rela *irel;
8792 xtensa_relax_info *target_relax_info;
8793 unsigned r_type;
8794 asection *target_sec;
8795 literal_value val;
8796 bfd_byte *size_p, *flags_p;
8798 /* Locally change the source address.
8799 Translate the target to the new target address.
8800 If it points to this section and has been removed, MOVE IT.
8801 Also, don't forget to modify the associated SIZE at
8802 (offset + 4). */
8804 irel = &internal_relocs[i];
8805 r_type = ELF32_R_TYPE (irel->r_info);
8806 if (r_type == R_XTENSA_NONE)
8807 continue;
8809 /* Find the literal value. */
8810 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8811 size_p = &contents[irel->r_offset + 4];
8812 flags_p = NULL;
8813 if (is_full_prop_section)
8815 flags_p = &contents[irel->r_offset + 8];
8816 BFD_ASSERT (irel->r_offset + 12 <= sec_size);
8818 else
8819 BFD_ASSERT (irel->r_offset + 8 <= sec_size);
8821 target_sec = r_reloc_get_section (&val.r_rel);
8822 target_relax_info = get_xtensa_relax_info (target_sec);
8824 if (target_relax_info
8825 && (target_relax_info->is_relaxable_literal_section
8826 || target_relax_info->is_relaxable_asm_section ))
8828 /* Translate the relocation's destination. */
8829 bfd_vma new_offset, new_end_offset;
8830 long old_size, new_size;
8832 new_offset = offset_with_removed_text
8833 (&target_relax_info->action_list, val.r_rel.target_offset);
8835 /* Assert that we are not out of bounds. */
8836 old_size = bfd_get_32 (abfd, size_p);
8838 if (old_size == 0)
8840 /* Only the first zero-sized unreachable entry is
8841 allowed to expand. In this case the new offset
8842 should be the offset before the fill and the new
8843 size is the expansion size. For other zero-sized
8844 entries the resulting size should be zero with an
8845 offset before or after the fill address depending
8846 on whether the expanding unreachable entry
8847 preceeds it. */
8848 if (last_zfill_target_sec
8849 && last_zfill_target_sec == target_sec
8850 && last_zfill_target_offset == val.r_rel.target_offset)
8851 new_end_offset = new_offset;
8852 else
8854 new_end_offset = new_offset;
8855 new_offset = offset_with_removed_text_before_fill
8856 (&target_relax_info->action_list,
8857 val.r_rel.target_offset);
8859 /* If it is not unreachable and we have not yet
8860 seen an unreachable at this address, place it
8861 before the fill address. */
8862 if (!flags_p
8863 || (bfd_get_32 (abfd, flags_p)
8864 & XTENSA_PROP_UNREACHABLE) == 0)
8865 new_end_offset = new_offset;
8866 else
8868 last_zfill_target_sec = target_sec;
8869 last_zfill_target_offset = val.r_rel.target_offset;
8873 else
8875 new_end_offset = offset_with_removed_text_before_fill
8876 (&target_relax_info->action_list,
8877 val.r_rel.target_offset + old_size);
8880 new_size = new_end_offset - new_offset;
8882 if (new_size != old_size)
8884 bfd_put_32 (abfd, new_size, size_p);
8885 pin_contents (sec, contents);
8888 if (new_offset != val.r_rel.target_offset)
8890 bfd_vma diff = new_offset - val.r_rel.target_offset;
8891 irel->r_addend += diff;
8892 pin_internal_relocs (sec, internal_relocs);
8898 /* Combine adjacent property table entries. This is also done in
8899 finish_dynamic_sections() but at that point it's too late to
8900 reclaim the space in the output section, so we do this twice. */
8902 if (internal_relocs && (!link_info->relocatable
8903 || strcmp (sec->name, XTENSA_LIT_SEC_NAME) == 0))
8905 Elf_Internal_Rela *last_irel = NULL;
8906 int removed_bytes = 0;
8907 bfd_vma offset, last_irel_offset;
8908 bfd_vma section_size;
8909 bfd_size_type entry_size;
8910 flagword predef_flags;
8912 if (is_full_prop_section)
8913 entry_size = 12;
8914 else
8915 entry_size = 8;
8917 predef_flags = xtensa_get_property_predef_flags (sec);
8919 /* Walk over memory and irels at the same time.
8920 This REQUIRES that the internal_relocs be sorted by offset. */
8921 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8922 internal_reloc_compare);
8923 nexti = 0; /* Index into internal_relocs. */
8925 pin_internal_relocs (sec, internal_relocs);
8926 pin_contents (sec, contents);
8928 last_irel_offset = (bfd_vma) -1;
8929 section_size = sec->size;
8930 BFD_ASSERT (section_size % entry_size == 0);
8932 for (offset = 0; offset < section_size; offset += entry_size)
8934 Elf_Internal_Rela *irel, *next_irel;
8935 bfd_vma bytes_to_remove, size, actual_offset;
8936 bfd_boolean remove_this_irel;
8937 flagword flags;
8939 irel = NULL;
8940 next_irel = NULL;
8942 /* Find the next two relocations (if there are that many left),
8943 skipping over any R_XTENSA_NONE relocs. On entry, "nexti" is
8944 the starting reloc index. After these two loops, "i"
8945 is the index of the first non-NONE reloc past that starting
8946 index, and "nexti" is the index for the next non-NONE reloc
8947 after "i". */
8949 for (i = nexti; i < sec->reloc_count; i++)
8951 if (ELF32_R_TYPE (internal_relocs[i].r_info) != R_XTENSA_NONE)
8953 irel = &internal_relocs[i];
8954 break;
8956 internal_relocs[i].r_offset -= removed_bytes;
8959 for (nexti = i + 1; nexti < sec->reloc_count; nexti++)
8961 if (ELF32_R_TYPE (internal_relocs[nexti].r_info)
8962 != R_XTENSA_NONE)
8964 next_irel = &internal_relocs[nexti];
8965 break;
8967 internal_relocs[nexti].r_offset -= removed_bytes;
8970 remove_this_irel = FALSE;
8971 bytes_to_remove = 0;
8972 actual_offset = offset - removed_bytes;
8973 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
8975 if (is_full_prop_section)
8976 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
8977 else
8978 flags = predef_flags;
8980 /* Check that the irels are sorted by offset,
8981 with only one per address. */
8982 BFD_ASSERT (!irel || (int) irel->r_offset > (int) last_irel_offset);
8983 BFD_ASSERT (!next_irel || next_irel->r_offset > irel->r_offset);
8985 /* Make sure there aren't relocs on the size or flag fields. */
8986 if ((irel && irel->r_offset == offset + 4)
8987 || (is_full_prop_section
8988 && irel && irel->r_offset == offset + 8))
8990 irel->r_offset -= removed_bytes;
8991 last_irel_offset = irel->r_offset;
8993 else if (next_irel && (next_irel->r_offset == offset + 4
8994 || (is_full_prop_section
8995 && next_irel->r_offset == offset + 8)))
8997 nexti += 1;
8998 irel->r_offset -= removed_bytes;
8999 next_irel->r_offset -= removed_bytes;
9000 last_irel_offset = next_irel->r_offset;
9002 else if (size == 0 && (flags & XTENSA_PROP_ALIGN) == 0
9003 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
9005 /* Always remove entries with zero size and no alignment. */
9006 bytes_to_remove = entry_size;
9007 if (irel && irel->r_offset == offset)
9009 remove_this_irel = TRUE;
9011 irel->r_offset -= removed_bytes;
9012 last_irel_offset = irel->r_offset;
9015 else if (irel && irel->r_offset == offset)
9017 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32)
9019 if (last_irel)
9021 flagword old_flags;
9022 bfd_vma old_size =
9023 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
9024 bfd_vma old_address =
9025 (last_irel->r_addend
9026 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
9027 bfd_vma new_address =
9028 (irel->r_addend
9029 + bfd_get_32 (abfd, &contents[actual_offset]));
9030 if (is_full_prop_section)
9031 old_flags = bfd_get_32
9032 (abfd, &contents[last_irel->r_offset + 8]);
9033 else
9034 old_flags = predef_flags;
9036 if ((ELF32_R_SYM (irel->r_info)
9037 == ELF32_R_SYM (last_irel->r_info))
9038 && old_address + old_size == new_address
9039 && old_flags == flags
9040 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9041 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
9043 /* Fix the old size. */
9044 bfd_put_32 (abfd, old_size + size,
9045 &contents[last_irel->r_offset + 4]);
9046 bytes_to_remove = entry_size;
9047 remove_this_irel = TRUE;
9049 else
9050 last_irel = irel;
9052 else
9053 last_irel = irel;
9056 irel->r_offset -= removed_bytes;
9057 last_irel_offset = irel->r_offset;
9060 if (remove_this_irel)
9062 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9063 irel->r_offset -= bytes_to_remove;
9066 if (bytes_to_remove != 0)
9068 removed_bytes += bytes_to_remove;
9069 if (offset + bytes_to_remove < section_size)
9070 memmove (&contents[actual_offset],
9071 &contents[actual_offset + bytes_to_remove],
9072 section_size - offset - bytes_to_remove);
9076 if (removed_bytes)
9078 /* Clear the removed bytes. */
9079 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
9081 sec->size = section_size - removed_bytes;
9083 if (xtensa_is_littable_section (sec))
9085 bfd *dynobj = elf_hash_table (link_info)->dynobj;
9086 if (dynobj)
9088 asection *sgotloc =
9089 bfd_get_section_by_name (dynobj, ".got.loc");
9090 if (sgotloc)
9091 sgotloc->size -= removed_bytes;
9097 error_return:
9098 release_internal_relocs (sec, internal_relocs);
9099 release_contents (sec, contents);
9100 return ok;
9104 /* Third relaxation pass. */
9106 /* Change symbol values to account for removed literals. */
9108 bfd_boolean
9109 relax_section_symbols (bfd *abfd, asection *sec)
9111 xtensa_relax_info *relax_info;
9112 unsigned int sec_shndx;
9113 Elf_Internal_Shdr *symtab_hdr;
9114 Elf_Internal_Sym *isymbuf;
9115 unsigned i, num_syms, num_locals;
9117 relax_info = get_xtensa_relax_info (sec);
9118 BFD_ASSERT (relax_info);
9120 if (!relax_info->is_relaxable_literal_section
9121 && !relax_info->is_relaxable_asm_section)
9122 return TRUE;
9124 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
9126 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9127 isymbuf = retrieve_local_syms (abfd);
9129 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
9130 num_locals = symtab_hdr->sh_info;
9132 /* Adjust the local symbols defined in this section. */
9133 for (i = 0; i < num_locals; i++)
9135 Elf_Internal_Sym *isym = &isymbuf[i];
9137 if (isym->st_shndx == sec_shndx)
9139 bfd_vma new_address = offset_with_removed_text
9140 (&relax_info->action_list, isym->st_value);
9141 bfd_vma new_size = isym->st_size;
9143 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
9145 bfd_vma new_end = offset_with_removed_text
9146 (&relax_info->action_list, isym->st_value + isym->st_size);
9147 new_size = new_end - new_address;
9150 isym->st_value = new_address;
9151 isym->st_size = new_size;
9155 /* Now adjust the global symbols defined in this section. */
9156 for (i = 0; i < (num_syms - num_locals); i++)
9158 struct elf_link_hash_entry *sym_hash;
9160 sym_hash = elf_sym_hashes (abfd)[i];
9162 if (sym_hash->root.type == bfd_link_hash_warning)
9163 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
9165 if ((sym_hash->root.type == bfd_link_hash_defined
9166 || sym_hash->root.type == bfd_link_hash_defweak)
9167 && sym_hash->root.u.def.section == sec)
9169 bfd_vma new_address = offset_with_removed_text
9170 (&relax_info->action_list, sym_hash->root.u.def.value);
9171 bfd_vma new_size = sym_hash->size;
9173 if (sym_hash->type == STT_FUNC)
9175 bfd_vma new_end = offset_with_removed_text
9176 (&relax_info->action_list,
9177 sym_hash->root.u.def.value + sym_hash->size);
9178 new_size = new_end - new_address;
9181 sym_hash->root.u.def.value = new_address;
9182 sym_hash->size = new_size;
9186 return TRUE;
9190 /* "Fix" handling functions, called while performing relocations. */
9192 static bfd_boolean
9193 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9194 bfd *input_bfd,
9195 asection *input_section,
9196 bfd_byte *contents)
9198 r_reloc r_rel;
9199 asection *sec, *old_sec;
9200 bfd_vma old_offset;
9201 int r_type = ELF32_R_TYPE (rel->r_info);
9202 reloc_bfd_fix *fix;
9204 if (r_type == R_XTENSA_NONE)
9205 return TRUE;
9207 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9208 if (!fix)
9209 return TRUE;
9211 r_reloc_init (&r_rel, input_bfd, rel, contents,
9212 bfd_get_section_limit (input_bfd, input_section));
9213 old_sec = r_reloc_get_section (&r_rel);
9214 old_offset = r_rel.target_offset;
9216 if (!old_sec || !r_reloc_is_defined (&r_rel))
9218 if (r_type != R_XTENSA_ASM_EXPAND)
9220 (*_bfd_error_handler)
9221 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9222 input_bfd, input_section, rel->r_offset,
9223 elf_howto_table[r_type].name);
9224 return FALSE;
9226 /* Leave it be. Resolution will happen in a later stage. */
9228 else
9230 sec = fix->target_sec;
9231 rel->r_addend += ((sec->output_offset + fix->target_offset)
9232 - (old_sec->output_offset + old_offset));
9234 return TRUE;
9238 static void
9239 do_fix_for_final_link (Elf_Internal_Rela *rel,
9240 bfd *input_bfd,
9241 asection *input_section,
9242 bfd_byte *contents,
9243 bfd_vma *relocationp)
9245 asection *sec;
9246 int r_type = ELF32_R_TYPE (rel->r_info);
9247 reloc_bfd_fix *fix;
9248 bfd_vma fixup_diff;
9250 if (r_type == R_XTENSA_NONE)
9251 return;
9253 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9254 if (!fix)
9255 return;
9257 sec = fix->target_sec;
9259 fixup_diff = rel->r_addend;
9260 if (elf_howto_table[fix->src_type].partial_inplace)
9262 bfd_vma inplace_val;
9263 BFD_ASSERT (fix->src_offset
9264 < bfd_get_section_limit (input_bfd, input_section));
9265 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9266 fixup_diff += inplace_val;
9269 *relocationp = (sec->output_section->vma
9270 + sec->output_offset
9271 + fix->target_offset - fixup_diff);
9275 /* Miscellaneous utility functions.... */
9277 static asection *
9278 elf_xtensa_get_plt_section (bfd *dynobj, int chunk)
9280 char plt_name[10];
9282 if (chunk == 0)
9283 return bfd_get_section_by_name (dynobj, ".plt");
9285 sprintf (plt_name, ".plt.%u", chunk);
9286 return bfd_get_section_by_name (dynobj, plt_name);
9290 static asection *
9291 elf_xtensa_get_gotplt_section (bfd *dynobj, int chunk)
9293 char got_name[14];
9295 if (chunk == 0)
9296 return bfd_get_section_by_name (dynobj, ".got.plt");
9298 sprintf (got_name, ".got.plt.%u", chunk);
9299 return bfd_get_section_by_name (dynobj, got_name);
9303 /* Get the input section for a given symbol index.
9304 If the symbol is:
9305 . a section symbol, return the section;
9306 . a common symbol, return the common section;
9307 . an undefined symbol, return the undefined section;
9308 . an indirect symbol, follow the links;
9309 . an absolute value, return the absolute section. */
9311 static asection *
9312 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
9314 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9315 asection *target_sec = NULL;
9316 if (r_symndx < symtab_hdr->sh_info)
9318 Elf_Internal_Sym *isymbuf;
9319 unsigned int section_index;
9321 isymbuf = retrieve_local_syms (abfd);
9322 section_index = isymbuf[r_symndx].st_shndx;
9324 if (section_index == SHN_UNDEF)
9325 target_sec = bfd_und_section_ptr;
9326 else if (section_index > 0 && section_index < SHN_LORESERVE)
9327 target_sec = bfd_section_from_elf_index (abfd, section_index);
9328 else if (section_index == SHN_ABS)
9329 target_sec = bfd_abs_section_ptr;
9330 else if (section_index == SHN_COMMON)
9331 target_sec = bfd_com_section_ptr;
9332 else
9333 /* Who knows? */
9334 target_sec = NULL;
9336 else
9338 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9339 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9341 while (h->root.type == bfd_link_hash_indirect
9342 || h->root.type == bfd_link_hash_warning)
9343 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9345 switch (h->root.type)
9347 case bfd_link_hash_defined:
9348 case bfd_link_hash_defweak:
9349 target_sec = h->root.u.def.section;
9350 break;
9351 case bfd_link_hash_common:
9352 target_sec = bfd_com_section_ptr;
9353 break;
9354 case bfd_link_hash_undefined:
9355 case bfd_link_hash_undefweak:
9356 target_sec = bfd_und_section_ptr;
9357 break;
9358 default: /* New indirect warning. */
9359 target_sec = bfd_und_section_ptr;
9360 break;
9363 return target_sec;
9367 static struct elf_link_hash_entry *
9368 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
9370 unsigned long indx;
9371 struct elf_link_hash_entry *h;
9372 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9374 if (r_symndx < symtab_hdr->sh_info)
9375 return NULL;
9377 indx = r_symndx - symtab_hdr->sh_info;
9378 h = elf_sym_hashes (abfd)[indx];
9379 while (h->root.type == bfd_link_hash_indirect
9380 || h->root.type == bfd_link_hash_warning)
9381 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9382 return h;
9386 /* Get the section-relative offset for a symbol number. */
9388 static bfd_vma
9389 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
9391 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9392 bfd_vma offset = 0;
9394 if (r_symndx < symtab_hdr->sh_info)
9396 Elf_Internal_Sym *isymbuf;
9397 isymbuf = retrieve_local_syms (abfd);
9398 offset = isymbuf[r_symndx].st_value;
9400 else
9402 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9403 struct elf_link_hash_entry *h =
9404 elf_sym_hashes (abfd)[indx];
9406 while (h->root.type == bfd_link_hash_indirect
9407 || h->root.type == bfd_link_hash_warning)
9408 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9409 if (h->root.type == bfd_link_hash_defined
9410 || h->root.type == bfd_link_hash_defweak)
9411 offset = h->root.u.def.value;
9413 return offset;
9417 static bfd_boolean
9418 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
9420 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9421 struct elf_link_hash_entry *h;
9423 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9424 if (h && h->root.type == bfd_link_hash_defweak)
9425 return TRUE;
9426 return FALSE;
9430 static bfd_boolean
9431 pcrel_reloc_fits (xtensa_opcode opc,
9432 int opnd,
9433 bfd_vma self_address,
9434 bfd_vma dest_address)
9436 xtensa_isa isa = xtensa_default_isa;
9437 uint32 valp = dest_address;
9438 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9439 || xtensa_operand_encode (isa, opc, opnd, &valp))
9440 return FALSE;
9441 return TRUE;
9445 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
9446 static int insn_sec_len = sizeof (XTENSA_INSN_SEC_NAME) - 1;
9447 static int lit_sec_len = sizeof (XTENSA_LIT_SEC_NAME) - 1;
9448 static int prop_sec_len = sizeof (XTENSA_PROP_SEC_NAME) - 1;
9451 static bfd_boolean
9452 xtensa_is_property_section (asection *sec)
9454 if (strncmp (XTENSA_INSN_SEC_NAME, sec->name, insn_sec_len) == 0
9455 || strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0
9456 || strncmp (XTENSA_PROP_SEC_NAME, sec->name, prop_sec_len) == 0)
9457 return TRUE;
9459 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
9460 && (strncmp (&sec->name[linkonce_len], "x.", 2) == 0
9461 || strncmp (&sec->name[linkonce_len], "p.", 2) == 0
9462 || strncmp (&sec->name[linkonce_len], "prop.", 5) == 0))
9463 return TRUE;
9465 return FALSE;
9469 static bfd_boolean
9470 xtensa_is_littable_section (asection *sec)
9472 if (strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0)
9473 return TRUE;
9475 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
9476 && sec->name[linkonce_len] == 'p'
9477 && sec->name[linkonce_len + 1] == '.')
9478 return TRUE;
9480 return FALSE;
9484 static int
9485 internal_reloc_compare (const void *ap, const void *bp)
9487 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9488 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9490 if (a->r_offset != b->r_offset)
9491 return (a->r_offset - b->r_offset);
9493 /* We don't need to sort on these criteria for correctness,
9494 but enforcing a more strict ordering prevents unstable qsort
9495 from behaving differently with different implementations.
9496 Without the code below we get correct but different results
9497 on Solaris 2.7 and 2.8. We would like to always produce the
9498 same results no matter the host. */
9500 if (a->r_info != b->r_info)
9501 return (a->r_info - b->r_info);
9503 return (a->r_addend - b->r_addend);
9507 static int
9508 internal_reloc_matches (const void *ap, const void *bp)
9510 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9511 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9513 /* Check if one entry overlaps with the other; this shouldn't happen
9514 except when searching for a match. */
9515 return (a->r_offset - b->r_offset);
9519 char *
9520 xtensa_get_property_section_name (asection *sec, const char *base_name)
9522 if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
9524 char *prop_sec_name;
9525 const char *suffix;
9526 char *linkonce_kind = 0;
9528 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
9529 linkonce_kind = "x.";
9530 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
9531 linkonce_kind = "p.";
9532 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9533 linkonce_kind = "prop.";
9534 else
9535 abort ();
9537 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9538 + strlen (linkonce_kind) + 1);
9539 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
9540 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
9542 suffix = sec->name + linkonce_len;
9543 /* For backward compatibility, replace "t." instead of inserting
9544 the new linkonce_kind (but not for "prop" sections). */
9545 if (strncmp (suffix, "t.", 2) == 0 && linkonce_kind[1] == '.')
9546 suffix += 2;
9547 strcat (prop_sec_name + linkonce_len, suffix);
9549 return prop_sec_name;
9552 return strdup (base_name);
9556 flagword
9557 xtensa_get_property_predef_flags (asection *sec)
9559 if (strcmp (sec->name, XTENSA_INSN_SEC_NAME) == 0
9560 || strncmp (sec->name, ".gnu.linkonce.x.",
9561 sizeof ".gnu.linkonce.x." - 1) == 0)
9562 return (XTENSA_PROP_INSN
9563 | XTENSA_PROP_INSN_NO_TRANSFORM
9564 | XTENSA_PROP_INSN_NO_REORDER);
9566 if (xtensa_is_littable_section (sec))
9567 return (XTENSA_PROP_LITERAL
9568 | XTENSA_PROP_INSN_NO_TRANSFORM
9569 | XTENSA_PROP_INSN_NO_REORDER);
9571 return 0;
9575 /* Other functions called directly by the linker. */
9577 bfd_boolean
9578 xtensa_callback_required_dependence (bfd *abfd,
9579 asection *sec,
9580 struct bfd_link_info *link_info,
9581 deps_callback_t callback,
9582 void *closure)
9584 Elf_Internal_Rela *internal_relocs;
9585 bfd_byte *contents;
9586 unsigned i;
9587 bfd_boolean ok = TRUE;
9588 bfd_size_type sec_size;
9590 sec_size = bfd_get_section_limit (abfd, sec);
9592 /* ".plt*" sections have no explicit relocations but they contain L32R
9593 instructions that reference the corresponding ".got.plt*" sections. */
9594 if ((sec->flags & SEC_LINKER_CREATED) != 0
9595 && strncmp (sec->name, ".plt", 4) == 0)
9597 asection *sgotplt;
9599 /* Find the corresponding ".got.plt*" section. */
9600 if (sec->name[4] == '\0')
9601 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9602 else
9604 char got_name[14];
9605 int chunk = 0;
9607 BFD_ASSERT (sec->name[4] == '.');
9608 chunk = strtol (&sec->name[5], NULL, 10);
9610 sprintf (got_name, ".got.plt.%u", chunk);
9611 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9613 BFD_ASSERT (sgotplt);
9615 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9616 section referencing a literal at the very beginning of
9617 ".got.plt". This is very close to the real dependence, anyway. */
9618 (*callback) (sec, sec_size, sgotplt, 0, closure);
9621 internal_relocs = retrieve_internal_relocs (abfd, sec,
9622 link_info->keep_memory);
9623 if (internal_relocs == NULL
9624 || sec->reloc_count == 0)
9625 return ok;
9627 /* Cache the contents for the duration of this scan. */
9628 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9629 if (contents == NULL && sec_size != 0)
9631 ok = FALSE;
9632 goto error_return;
9635 if (!xtensa_default_isa)
9636 xtensa_default_isa = xtensa_isa_init (0, 0);
9638 for (i = 0; i < sec->reloc_count; i++)
9640 Elf_Internal_Rela *irel = &internal_relocs[i];
9641 if (is_l32r_relocation (abfd, sec, contents, irel))
9643 r_reloc l32r_rel;
9644 asection *target_sec;
9645 bfd_vma target_offset;
9647 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
9648 target_sec = NULL;
9649 target_offset = 0;
9650 /* L32Rs must be local to the input file. */
9651 if (r_reloc_is_defined (&l32r_rel))
9653 target_sec = r_reloc_get_section (&l32r_rel);
9654 target_offset = l32r_rel.target_offset;
9656 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9657 closure);
9661 error_return:
9662 release_internal_relocs (sec, internal_relocs);
9663 release_contents (sec, contents);
9664 return ok;
9667 /* The default literal sections should always be marked as "code" (i.e.,
9668 SHF_EXECINSTR). This is particularly important for the Linux kernel
9669 module loader so that the literals are not placed after the text. */
9670 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
9672 { ".fini.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9673 { ".init.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9674 { ".literal", 8, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9675 { NULL, 0, 0, 0, 0 }
9678 #ifndef ELF_ARCH
9679 #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9680 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
9681 #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9682 #define TARGET_BIG_NAME "elf32-xtensa-be"
9683 #define ELF_ARCH bfd_arch_xtensa
9685 #define ELF_MACHINE_CODE EM_XTENSA
9686 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
9688 #if XCHAL_HAVE_MMU
9689 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9690 #else /* !XCHAL_HAVE_MMU */
9691 #define ELF_MAXPAGESIZE 1
9692 #endif /* !XCHAL_HAVE_MMU */
9693 #endif /* ELF_ARCH */
9695 #define elf_backend_can_gc_sections 1
9696 #define elf_backend_can_refcount 1
9697 #define elf_backend_plt_readonly 1
9698 #define elf_backend_got_header_size 4
9699 #define elf_backend_want_dynbss 0
9700 #define elf_backend_want_got_plt 1
9702 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
9704 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9705 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9706 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9707 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9708 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9709 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
9711 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9712 #define elf_backend_check_relocs elf_xtensa_check_relocs
9713 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9714 #define elf_backend_discard_info elf_xtensa_discard_info
9715 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9716 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
9717 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9718 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9719 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9720 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9721 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9722 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
9723 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
9724 #define elf_backend_modify_segment_map elf_xtensa_modify_segment_map
9725 #define elf_backend_object_p elf_xtensa_object_p
9726 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9727 #define elf_backend_relocate_section elf_xtensa_relocate_section
9728 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
9729 #define elf_backend_special_sections elf_xtensa_special_sections
9731 #include "elf32-target.h"