1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
28 BFD support for ELF formats is being worked on.
29 Currently, the best supported back ends are for sparc and i386
30 (running svr4 or Solaris 2).
32 Documentation of the internals of the support code still needs
33 to be written. The code is changing quickly enough that we
34 haven't bothered yet. */
36 /* For sparc64-cross-sparc32. */
44 #include "libiberty.h"
45 #include "safe-ctype.h"
47 static int elf_sort_sections (const void *, const void *);
48 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
49 static bfd_boolean
prep_headers (bfd
*);
50 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
51 static bfd_boolean
elf_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
52 static bfd_boolean
elf_parse_notes (bfd
*abfd
, char *buf
, size_t size
,
55 /* Swap version information in and out. The version information is
56 currently size independent. If that ever changes, this code will
57 need to move into elfcode.h. */
59 /* Swap in a Verdef structure. */
62 _bfd_elf_swap_verdef_in (bfd
*abfd
,
63 const Elf_External_Verdef
*src
,
64 Elf_Internal_Verdef
*dst
)
66 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
67 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
68 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
69 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
70 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
71 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
72 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
75 /* Swap out a Verdef structure. */
78 _bfd_elf_swap_verdef_out (bfd
*abfd
,
79 const Elf_Internal_Verdef
*src
,
80 Elf_External_Verdef
*dst
)
82 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
83 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
84 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
85 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
86 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
87 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
88 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
91 /* Swap in a Verdaux structure. */
94 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
95 const Elf_External_Verdaux
*src
,
96 Elf_Internal_Verdaux
*dst
)
98 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
99 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
102 /* Swap out a Verdaux structure. */
105 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
106 const Elf_Internal_Verdaux
*src
,
107 Elf_External_Verdaux
*dst
)
109 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
110 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
113 /* Swap in a Verneed structure. */
116 _bfd_elf_swap_verneed_in (bfd
*abfd
,
117 const Elf_External_Verneed
*src
,
118 Elf_Internal_Verneed
*dst
)
120 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
121 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
122 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
123 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
124 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
127 /* Swap out a Verneed structure. */
130 _bfd_elf_swap_verneed_out (bfd
*abfd
,
131 const Elf_Internal_Verneed
*src
,
132 Elf_External_Verneed
*dst
)
134 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
135 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
136 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
137 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
138 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
141 /* Swap in a Vernaux structure. */
144 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
145 const Elf_External_Vernaux
*src
,
146 Elf_Internal_Vernaux
*dst
)
148 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
149 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
150 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
151 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
152 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
155 /* Swap out a Vernaux structure. */
158 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
159 const Elf_Internal_Vernaux
*src
,
160 Elf_External_Vernaux
*dst
)
162 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
163 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
164 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
165 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
166 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
169 /* Swap in a Versym structure. */
172 _bfd_elf_swap_versym_in (bfd
*abfd
,
173 const Elf_External_Versym
*src
,
174 Elf_Internal_Versym
*dst
)
176 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
179 /* Swap out a Versym structure. */
182 _bfd_elf_swap_versym_out (bfd
*abfd
,
183 const Elf_Internal_Versym
*src
,
184 Elf_External_Versym
*dst
)
186 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
189 /* Standard ELF hash function. Do not change this function; you will
190 cause invalid hash tables to be generated. */
193 bfd_elf_hash (const char *namearg
)
195 const unsigned char *name
= (const unsigned char *) namearg
;
200 while ((ch
= *name
++) != '\0')
203 if ((g
= (h
& 0xf0000000)) != 0)
206 /* The ELF ABI says `h &= ~g', but this is equivalent in
207 this case and on some machines one insn instead of two. */
211 return h
& 0xffffffff;
214 /* DT_GNU_HASH hash function. Do not change this function; you will
215 cause invalid hash tables to be generated. */
218 bfd_elf_gnu_hash (const char *namearg
)
220 const unsigned char *name
= (const unsigned char *) namearg
;
221 unsigned long h
= 5381;
224 while ((ch
= *name
++) != '\0')
225 h
= (h
<< 5) + h
+ ch
;
226 return h
& 0xffffffff;
229 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
230 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
232 bfd_elf_allocate_object (bfd
*abfd
,
234 enum elf_object_id object_id
)
236 BFD_ASSERT (object_size
>= sizeof (struct elf_obj_tdata
));
237 abfd
->tdata
.any
= bfd_zalloc (abfd
, object_size
);
238 if (abfd
->tdata
.any
== NULL
)
241 elf_object_id (abfd
) = object_id
;
242 elf_program_header_size (abfd
) = (bfd_size_type
) -1;
248 bfd_elf_make_generic_object (bfd
*abfd
)
250 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_obj_tdata
),
255 bfd_elf_mkcorefile (bfd
*abfd
)
257 /* I think this can be done just like an object file. */
258 return bfd_elf_make_generic_object (abfd
);
262 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
264 Elf_Internal_Shdr
**i_shdrp
;
265 bfd_byte
*shstrtab
= NULL
;
267 bfd_size_type shstrtabsize
;
269 i_shdrp
= elf_elfsections (abfd
);
271 || shindex
>= elf_numsections (abfd
)
272 || i_shdrp
[shindex
] == 0)
275 shstrtab
= i_shdrp
[shindex
]->contents
;
276 if (shstrtab
== NULL
)
278 /* No cached one, attempt to read, and cache what we read. */
279 offset
= i_shdrp
[shindex
]->sh_offset
;
280 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
282 /* Allocate and clear an extra byte at the end, to prevent crashes
283 in case the string table is not terminated. */
284 if (shstrtabsize
+ 1 <= 1
285 || (shstrtab
= bfd_alloc (abfd
, shstrtabsize
+ 1)) == NULL
286 || bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
288 else if (bfd_bread (shstrtab
, shstrtabsize
, abfd
) != shstrtabsize
)
290 if (bfd_get_error () != bfd_error_system_call
)
291 bfd_set_error (bfd_error_file_truncated
);
293 /* Once we've failed to read it, make sure we don't keep
294 trying. Otherwise, we'll keep allocating space for
295 the string table over and over. */
296 i_shdrp
[shindex
]->sh_size
= 0;
299 shstrtab
[shstrtabsize
] = '\0';
300 i_shdrp
[shindex
]->contents
= shstrtab
;
302 return (char *) shstrtab
;
306 bfd_elf_string_from_elf_section (bfd
*abfd
,
307 unsigned int shindex
,
308 unsigned int strindex
)
310 Elf_Internal_Shdr
*hdr
;
315 if (elf_elfsections (abfd
) == NULL
|| shindex
>= elf_numsections (abfd
))
318 hdr
= elf_elfsections (abfd
)[shindex
];
320 if (hdr
->contents
== NULL
321 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
324 if (strindex
>= hdr
->sh_size
)
326 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
327 (*_bfd_error_handler
)
328 (_("%B: invalid string offset %u >= %lu for section `%s'"),
329 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
330 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
332 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
336 return ((char *) hdr
->contents
) + strindex
;
339 /* Read and convert symbols to internal format.
340 SYMCOUNT specifies the number of symbols to read, starting from
341 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
342 are non-NULL, they are used to store the internal symbols, external
343 symbols, and symbol section index extensions, respectively.
344 Returns a pointer to the internal symbol buffer (malloced if necessary)
345 or NULL if there were no symbols or some kind of problem. */
348 bfd_elf_get_elf_syms (bfd
*ibfd
,
349 Elf_Internal_Shdr
*symtab_hdr
,
352 Elf_Internal_Sym
*intsym_buf
,
354 Elf_External_Sym_Shndx
*extshndx_buf
)
356 Elf_Internal_Shdr
*shndx_hdr
;
358 const bfd_byte
*esym
;
359 Elf_External_Sym_Shndx
*alloc_extshndx
;
360 Elf_External_Sym_Shndx
*shndx
;
361 Elf_Internal_Sym
*alloc_intsym
;
362 Elf_Internal_Sym
*isym
;
363 Elf_Internal_Sym
*isymend
;
364 const struct elf_backend_data
*bed
;
369 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
375 /* Normal syms might have section extension entries. */
377 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
378 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
380 /* Read the symbols. */
382 alloc_extshndx
= NULL
;
384 bed
= get_elf_backend_data (ibfd
);
385 extsym_size
= bed
->s
->sizeof_sym
;
386 amt
= symcount
* extsym_size
;
387 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
388 if (extsym_buf
== NULL
)
390 alloc_ext
= bfd_malloc2 (symcount
, extsym_size
);
391 extsym_buf
= alloc_ext
;
393 if (extsym_buf
== NULL
394 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
395 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
401 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
405 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
406 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
407 if (extshndx_buf
== NULL
)
409 alloc_extshndx
= bfd_malloc2 (symcount
,
410 sizeof (Elf_External_Sym_Shndx
));
411 extshndx_buf
= alloc_extshndx
;
413 if (extshndx_buf
== NULL
414 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
415 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
422 if (intsym_buf
== NULL
)
424 alloc_intsym
= bfd_malloc2 (symcount
, sizeof (Elf_Internal_Sym
));
425 intsym_buf
= alloc_intsym
;
426 if (intsym_buf
== NULL
)
430 /* Convert the symbols to internal form. */
431 isymend
= intsym_buf
+ symcount
;
432 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
434 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
435 if (!(*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
))
437 symoffset
+= (esym
- (bfd_byte
*) extsym_buf
) / extsym_size
;
438 (*_bfd_error_handler
) (_("%B symbol number %lu references "
439 "nonexistent SHT_SYMTAB_SHNDX section"),
440 ibfd
, (unsigned long) symoffset
);
441 if (alloc_intsym
!= NULL
)
448 if (alloc_ext
!= NULL
)
450 if (alloc_extshndx
!= NULL
)
451 free (alloc_extshndx
);
456 /* Look up a symbol name. */
458 bfd_elf_sym_name (bfd
*abfd
,
459 Elf_Internal_Shdr
*symtab_hdr
,
460 Elf_Internal_Sym
*isym
,
464 unsigned int iname
= isym
->st_name
;
465 unsigned int shindex
= symtab_hdr
->sh_link
;
467 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
468 /* Check for a bogus st_shndx to avoid crashing. */
469 && isym
->st_shndx
< elf_numsections (abfd
))
471 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
472 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
475 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
478 else if (sym_sec
&& *name
== '\0')
479 name
= bfd_section_name (abfd
, sym_sec
);
484 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
485 sections. The first element is the flags, the rest are section
488 typedef union elf_internal_group
{
489 Elf_Internal_Shdr
*shdr
;
491 } Elf_Internal_Group
;
493 /* Return the name of the group signature symbol. Why isn't the
494 signature just a string? */
497 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
499 Elf_Internal_Shdr
*hdr
;
500 unsigned char esym
[sizeof (Elf64_External_Sym
)];
501 Elf_External_Sym_Shndx eshndx
;
502 Elf_Internal_Sym isym
;
504 /* First we need to ensure the symbol table is available. Make sure
505 that it is a symbol table section. */
506 if (ghdr
->sh_link
>= elf_numsections (abfd
))
508 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
509 if (hdr
->sh_type
!= SHT_SYMTAB
510 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
513 /* Go read the symbol. */
514 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
515 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
516 &isym
, esym
, &eshndx
) == NULL
)
519 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
522 /* Set next_in_group list pointer, and group name for NEWSECT. */
525 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
527 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
529 /* If num_group is zero, read in all SHT_GROUP sections. The count
530 is set to -1 if there are no SHT_GROUP sections. */
533 unsigned int i
, shnum
;
535 /* First count the number of groups. If we have a SHT_GROUP
536 section with just a flag word (ie. sh_size is 4), ignore it. */
537 shnum
= elf_numsections (abfd
);
540 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
541 ( (shdr)->sh_type == SHT_GROUP \
542 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
543 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
544 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
546 for (i
= 0; i
< shnum
; i
++)
548 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
550 if (IS_VALID_GROUP_SECTION_HEADER (shdr
))
556 num_group
= (unsigned) -1;
557 elf_tdata (abfd
)->num_group
= num_group
;
561 /* We keep a list of elf section headers for group sections,
562 so we can find them quickly. */
565 elf_tdata (abfd
)->num_group
= num_group
;
566 elf_tdata (abfd
)->group_sect_ptr
567 = bfd_alloc2 (abfd
, num_group
, sizeof (Elf_Internal_Shdr
*));
568 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
572 for (i
= 0; i
< shnum
; i
++)
574 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
576 if (IS_VALID_GROUP_SECTION_HEADER (shdr
))
579 Elf_Internal_Group
*dest
;
581 /* Add to list of sections. */
582 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
585 /* Read the raw contents. */
586 BFD_ASSERT (sizeof (*dest
) >= 4);
587 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
588 shdr
->contents
= bfd_alloc2 (abfd
, shdr
->sh_size
,
590 /* PR binutils/4110: Handle corrupt group headers. */
591 if (shdr
->contents
== NULL
)
594 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd
, shdr
->sh_size
);
595 bfd_set_error (bfd_error_bad_value
);
599 memset (shdr
->contents
, 0, amt
);
601 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
602 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
606 /* Translate raw contents, a flag word followed by an
607 array of elf section indices all in target byte order,
608 to the flag word followed by an array of elf section
610 src
= shdr
->contents
+ shdr
->sh_size
;
611 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
618 idx
= H_GET_32 (abfd
, src
);
619 if (src
== shdr
->contents
)
622 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
623 shdr
->bfd_section
->flags
624 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
629 ((*_bfd_error_handler
)
630 (_("%B: invalid SHT_GROUP entry"), abfd
));
633 dest
->shdr
= elf_elfsections (abfd
)[idx
];
640 if (num_group
!= (unsigned) -1)
644 for (i
= 0; i
< num_group
; i
++)
646 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
647 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
648 unsigned int n_elt
= shdr
->sh_size
/ 4;
650 /* Look through this group's sections to see if current
651 section is a member. */
653 if ((++idx
)->shdr
== hdr
)
657 /* We are a member of this group. Go looking through
658 other members to see if any others are linked via
660 idx
= (Elf_Internal_Group
*) shdr
->contents
;
661 n_elt
= shdr
->sh_size
/ 4;
663 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
664 && elf_next_in_group (s
) != NULL
)
668 /* Snarf the group name from other member, and
669 insert current section in circular list. */
670 elf_group_name (newsect
) = elf_group_name (s
);
671 elf_next_in_group (newsect
) = elf_next_in_group (s
);
672 elf_next_in_group (s
) = newsect
;
678 gname
= group_signature (abfd
, shdr
);
681 elf_group_name (newsect
) = gname
;
683 /* Start a circular list with one element. */
684 elf_next_in_group (newsect
) = newsect
;
687 /* If the group section has been created, point to the
689 if (shdr
->bfd_section
!= NULL
)
690 elf_next_in_group (shdr
->bfd_section
) = newsect
;
698 if (elf_group_name (newsect
) == NULL
)
700 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
707 _bfd_elf_setup_sections (bfd
*abfd
)
710 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
711 bfd_boolean result
= TRUE
;
714 /* Process SHF_LINK_ORDER. */
715 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
717 Elf_Internal_Shdr
*this_hdr
= &elf_section_data (s
)->this_hdr
;
718 if ((this_hdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
720 unsigned int elfsec
= this_hdr
->sh_link
;
721 /* FIXME: The old Intel compiler and old strip/objcopy may
722 not set the sh_link or sh_info fields. Hence we could
723 get the situation where elfsec is 0. */
726 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
727 if (bed
->link_order_error_handler
)
728 bed
->link_order_error_handler
729 (_("%B: warning: sh_link not set for section `%A'"),
734 asection
*link
= NULL
;
736 if (elfsec
< elf_numsections (abfd
))
738 this_hdr
= elf_elfsections (abfd
)[elfsec
];
739 link
= this_hdr
->bfd_section
;
743 Some strip/objcopy may leave an incorrect value in
744 sh_link. We don't want to proceed. */
747 (*_bfd_error_handler
)
748 (_("%B: sh_link [%d] in section `%A' is incorrect"),
749 s
->owner
, s
, elfsec
);
753 elf_linked_to_section (s
) = link
;
758 /* Process section groups. */
759 if (num_group
== (unsigned) -1)
762 for (i
= 0; i
< num_group
; i
++)
764 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
765 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
766 unsigned int n_elt
= shdr
->sh_size
/ 4;
769 if ((++idx
)->shdr
->bfd_section
)
770 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
771 else if (idx
->shdr
->sh_type
== SHT_RELA
772 || idx
->shdr
->sh_type
== SHT_REL
)
773 /* We won't include relocation sections in section groups in
774 output object files. We adjust the group section size here
775 so that relocatable link will work correctly when
776 relocation sections are in section group in input object
778 shdr
->bfd_section
->size
-= 4;
781 /* There are some unknown sections in the group. */
782 (*_bfd_error_handler
)
783 (_("%B: unknown [%d] section `%s' in group [%s]"),
785 (unsigned int) idx
->shdr
->sh_type
,
786 bfd_elf_string_from_elf_section (abfd
,
787 (elf_elfheader (abfd
)
790 shdr
->bfd_section
->name
);
798 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
800 return elf_next_in_group (sec
) != NULL
;
803 /* Make a BFD section from an ELF section. We store a pointer to the
804 BFD section in the bfd_section field of the header. */
807 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
808 Elf_Internal_Shdr
*hdr
,
814 const struct elf_backend_data
*bed
;
816 if (hdr
->bfd_section
!= NULL
)
818 BFD_ASSERT (strcmp (name
,
819 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
823 newsect
= bfd_make_section_anyway (abfd
, name
);
827 hdr
->bfd_section
= newsect
;
828 elf_section_data (newsect
)->this_hdr
= *hdr
;
829 elf_section_data (newsect
)->this_idx
= shindex
;
831 /* Always use the real type/flags. */
832 elf_section_type (newsect
) = hdr
->sh_type
;
833 elf_section_flags (newsect
) = hdr
->sh_flags
;
835 newsect
->filepos
= hdr
->sh_offset
;
837 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
838 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
839 || ! bfd_set_section_alignment (abfd
, newsect
,
840 bfd_log2 (hdr
->sh_addralign
)))
843 flags
= SEC_NO_FLAGS
;
844 if (hdr
->sh_type
!= SHT_NOBITS
)
845 flags
|= SEC_HAS_CONTENTS
;
846 if (hdr
->sh_type
== SHT_GROUP
)
847 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
848 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
851 if (hdr
->sh_type
!= SHT_NOBITS
)
854 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
855 flags
|= SEC_READONLY
;
856 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
858 else if ((flags
& SEC_LOAD
) != 0)
860 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
863 newsect
->entsize
= hdr
->sh_entsize
;
864 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
865 flags
|= SEC_STRINGS
;
867 if (hdr
->sh_flags
& SHF_GROUP
)
868 if (!setup_group (abfd
, hdr
, newsect
))
870 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
871 flags
|= SEC_THREAD_LOCAL
;
873 if ((flags
& SEC_ALLOC
) == 0)
875 /* The debugging sections appear to be recognized only by name,
876 not any sort of flag. Their SEC_ALLOC bits are cleared. */
881 } debug_sections
[] =
883 { STRING_COMMA_LEN ("debug") }, /* 'd' */
884 { NULL
, 0 }, /* 'e' */
885 { NULL
, 0 }, /* 'f' */
886 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
887 { NULL
, 0 }, /* 'h' */
888 { NULL
, 0 }, /* 'i' */
889 { NULL
, 0 }, /* 'j' */
890 { NULL
, 0 }, /* 'k' */
891 { STRING_COMMA_LEN ("line") }, /* 'l' */
892 { NULL
, 0 }, /* 'm' */
893 { NULL
, 0 }, /* 'n' */
894 { NULL
, 0 }, /* 'o' */
895 { NULL
, 0 }, /* 'p' */
896 { NULL
, 0 }, /* 'q' */
897 { NULL
, 0 }, /* 'r' */
898 { STRING_COMMA_LEN ("stab") }, /* 's' */
899 { NULL
, 0 }, /* 't' */
900 { NULL
, 0 }, /* 'u' */
901 { NULL
, 0 }, /* 'v' */
902 { NULL
, 0 }, /* 'w' */
903 { NULL
, 0 }, /* 'x' */
904 { NULL
, 0 }, /* 'y' */
905 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
910 int i
= name
[1] - 'd';
912 && i
< (int) ARRAY_SIZE (debug_sections
)
913 && debug_sections
[i
].name
!= NULL
914 && strncmp (&name
[1], debug_sections
[i
].name
,
915 debug_sections
[i
].len
) == 0)
916 flags
|= SEC_DEBUGGING
;
920 /* As a GNU extension, if the name begins with .gnu.linkonce, we
921 only link a single copy of the section. This is used to support
922 g++. g++ will emit each template expansion in its own section.
923 The symbols will be defined as weak, so that multiple definitions
924 are permitted. The GNU linker extension is to actually discard
925 all but one of the sections. */
926 if (CONST_STRNEQ (name
, ".gnu.linkonce")
927 && elf_next_in_group (newsect
) == NULL
)
928 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
930 bed
= get_elf_backend_data (abfd
);
931 if (bed
->elf_backend_section_flags
)
932 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
935 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
938 /* We do not parse the PT_NOTE segments as we are interested even in the
939 separate debug info files which may have the segments offsets corrupted.
940 PT_NOTEs from the core files are currently not parsed using BFD. */
941 if (hdr
->sh_type
== SHT_NOTE
)
945 if (!bfd_malloc_and_get_section (abfd
, newsect
, &contents
))
948 elf_parse_notes (abfd
, (char *) contents
, hdr
->sh_size
, -1);
952 if ((flags
& SEC_ALLOC
) != 0)
954 Elf_Internal_Phdr
*phdr
;
955 unsigned int i
, nload
;
957 /* Some ELF linkers produce binaries with all the program header
958 p_paddr fields zero. If we have such a binary with more than
959 one PT_LOAD header, then leave the section lma equal to vma
960 so that we don't create sections with overlapping lma. */
961 phdr
= elf_tdata (abfd
)->phdr
;
962 for (nload
= 0, i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
963 if (phdr
->p_paddr
!= 0)
965 else if (phdr
->p_type
== PT_LOAD
&& phdr
->p_memsz
!= 0)
967 if (i
>= elf_elfheader (abfd
)->e_phnum
&& nload
> 1)
970 phdr
= elf_tdata (abfd
)->phdr
;
971 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
973 /* This section is part of this segment if its file
974 offset plus size lies within the segment's memory
975 span and, if the section is loaded, the extent of the
976 loaded data lies within the extent of the segment.
978 Note - we used to check the p_paddr field as well, and
979 refuse to set the LMA if it was 0. This is wrong
980 though, as a perfectly valid initialised segment can
981 have a p_paddr of zero. Some architectures, eg ARM,
982 place special significance on the address 0 and
983 executables need to be able to have a segment which
984 covers this address. */
985 if (phdr
->p_type
== PT_LOAD
986 && (bfd_vma
) hdr
->sh_offset
>= phdr
->p_offset
987 && (hdr
->sh_offset
+ hdr
->sh_size
988 <= phdr
->p_offset
+ phdr
->p_memsz
)
989 && ((flags
& SEC_LOAD
) == 0
990 || (hdr
->sh_offset
+ hdr
->sh_size
991 <= phdr
->p_offset
+ phdr
->p_filesz
)))
993 if ((flags
& SEC_LOAD
) == 0)
994 newsect
->lma
= (phdr
->p_paddr
995 + hdr
->sh_addr
- phdr
->p_vaddr
);
997 /* We used to use the same adjustment for SEC_LOAD
998 sections, but that doesn't work if the segment
999 is packed with code from multiple VMAs.
1000 Instead we calculate the section LMA based on
1001 the segment LMA. It is assumed that the
1002 segment will contain sections with contiguous
1003 LMAs, even if the VMAs are not. */
1004 newsect
->lma
= (phdr
->p_paddr
1005 + hdr
->sh_offset
- phdr
->p_offset
);
1007 /* With contiguous segments, we can't tell from file
1008 offsets whether a section with zero size should
1009 be placed at the end of one segment or the
1010 beginning of the next. Decide based on vaddr. */
1011 if (hdr
->sh_addr
>= phdr
->p_vaddr
1012 && (hdr
->sh_addr
+ hdr
->sh_size
1013 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
1024 bfd_elf_find_section
1027 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
1030 Helper functions for GDB to locate the string tables.
1031 Since BFD hides string tables from callers, GDB needs to use an
1032 internal hook to find them. Sun's .stabstr, in particular,
1033 isn't even pointed to by the .stab section, so ordinary
1034 mechanisms wouldn't work to find it, even if we had some.
1037 struct elf_internal_shdr
*
1038 bfd_elf_find_section (bfd
*abfd
, char *name
)
1040 Elf_Internal_Shdr
**i_shdrp
;
1045 i_shdrp
= elf_elfsections (abfd
);
1046 if (i_shdrp
!= NULL
)
1048 shstrtab
= bfd_elf_get_str_section (abfd
,
1049 elf_elfheader (abfd
)->e_shstrndx
);
1050 if (shstrtab
!= NULL
)
1052 max
= elf_numsections (abfd
);
1053 for (i
= 1; i
< max
; i
++)
1054 if (!strcmp (&shstrtab
[i_shdrp
[i
]->sh_name
], name
))
1061 const char *const bfd_elf_section_type_names
[] = {
1062 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1063 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1064 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1067 /* ELF relocs are against symbols. If we are producing relocatable
1068 output, and the reloc is against an external symbol, and nothing
1069 has given us any additional addend, the resulting reloc will also
1070 be against the same symbol. In such a case, we don't want to
1071 change anything about the way the reloc is handled, since it will
1072 all be done at final link time. Rather than put special case code
1073 into bfd_perform_relocation, all the reloc types use this howto
1074 function. It just short circuits the reloc if producing
1075 relocatable output against an external symbol. */
1077 bfd_reloc_status_type
1078 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
1079 arelent
*reloc_entry
,
1081 void *data ATTRIBUTE_UNUSED
,
1082 asection
*input_section
,
1084 char **error_message ATTRIBUTE_UNUSED
)
1086 if (output_bfd
!= NULL
1087 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1088 && (! reloc_entry
->howto
->partial_inplace
1089 || reloc_entry
->addend
== 0))
1091 reloc_entry
->address
+= input_section
->output_offset
;
1092 return bfd_reloc_ok
;
1095 return bfd_reloc_continue
;
1098 /* Copy the program header and other data from one object module to
1102 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1104 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1105 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1108 BFD_ASSERT (!elf_flags_init (obfd
)
1109 || (elf_elfheader (obfd
)->e_flags
1110 == elf_elfheader (ibfd
)->e_flags
));
1112 elf_gp (obfd
) = elf_gp (ibfd
);
1113 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1114 elf_flags_init (obfd
) = TRUE
;
1116 /* Copy object attributes. */
1117 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
1123 get_segment_type (unsigned int p_type
)
1128 case PT_NULL
: pt
= "NULL"; break;
1129 case PT_LOAD
: pt
= "LOAD"; break;
1130 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1131 case PT_INTERP
: pt
= "INTERP"; break;
1132 case PT_NOTE
: pt
= "NOTE"; break;
1133 case PT_SHLIB
: pt
= "SHLIB"; break;
1134 case PT_PHDR
: pt
= "PHDR"; break;
1135 case PT_TLS
: pt
= "TLS"; break;
1136 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1137 case PT_GNU_STACK
: pt
= "STACK"; break;
1138 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1139 default: pt
= NULL
; break;
1144 /* Print out the program headers. */
1147 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1150 Elf_Internal_Phdr
*p
;
1152 bfd_byte
*dynbuf
= NULL
;
1154 p
= elf_tdata (abfd
)->phdr
;
1159 fprintf (f
, _("\nProgram Header:\n"));
1160 c
= elf_elfheader (abfd
)->e_phnum
;
1161 for (i
= 0; i
< c
; i
++, p
++)
1163 const char *pt
= get_segment_type (p
->p_type
);
1168 sprintf (buf
, "0x%lx", p
->p_type
);
1171 fprintf (f
, "%8s off 0x", pt
);
1172 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1173 fprintf (f
, " vaddr 0x");
1174 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1175 fprintf (f
, " paddr 0x");
1176 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1177 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1178 fprintf (f
, " filesz 0x");
1179 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1180 fprintf (f
, " memsz 0x");
1181 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1182 fprintf (f
, " flags %c%c%c",
1183 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1184 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1185 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1186 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1187 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1192 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1195 unsigned int elfsec
;
1196 unsigned long shlink
;
1197 bfd_byte
*extdyn
, *extdynend
;
1199 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1201 fprintf (f
, _("\nDynamic Section:\n"));
1203 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1206 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1207 if (elfsec
== SHN_BAD
)
1209 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1211 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1212 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1215 extdynend
= extdyn
+ s
->size
;
1216 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1218 Elf_Internal_Dyn dyn
;
1219 const char *name
= "";
1221 bfd_boolean stringp
;
1222 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1224 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1226 if (dyn
.d_tag
== DT_NULL
)
1233 if (bed
->elf_backend_get_target_dtag
)
1234 name
= (*bed
->elf_backend_get_target_dtag
) (dyn
.d_tag
);
1236 if (!strcmp (name
, ""))
1238 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1243 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1244 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1245 case DT_PLTGOT
: name
= "PLTGOT"; break;
1246 case DT_HASH
: name
= "HASH"; break;
1247 case DT_STRTAB
: name
= "STRTAB"; break;
1248 case DT_SYMTAB
: name
= "SYMTAB"; break;
1249 case DT_RELA
: name
= "RELA"; break;
1250 case DT_RELASZ
: name
= "RELASZ"; break;
1251 case DT_RELAENT
: name
= "RELAENT"; break;
1252 case DT_STRSZ
: name
= "STRSZ"; break;
1253 case DT_SYMENT
: name
= "SYMENT"; break;
1254 case DT_INIT
: name
= "INIT"; break;
1255 case DT_FINI
: name
= "FINI"; break;
1256 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1257 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1258 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1259 case DT_REL
: name
= "REL"; break;
1260 case DT_RELSZ
: name
= "RELSZ"; break;
1261 case DT_RELENT
: name
= "RELENT"; break;
1262 case DT_PLTREL
: name
= "PLTREL"; break;
1263 case DT_DEBUG
: name
= "DEBUG"; break;
1264 case DT_TEXTREL
: name
= "TEXTREL"; break;
1265 case DT_JMPREL
: name
= "JMPREL"; break;
1266 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1267 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1268 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1269 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1270 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1271 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1272 case DT_FLAGS
: name
= "FLAGS"; break;
1273 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1274 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1275 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1276 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1277 case DT_MOVEENT
: name
= "MOVEENT"; break;
1278 case DT_MOVESZ
: name
= "MOVESZ"; break;
1279 case DT_FEATURE
: name
= "FEATURE"; break;
1280 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1281 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1282 case DT_SYMINENT
: name
= "SYMINENT"; break;
1283 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1284 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1285 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1286 case DT_PLTPAD
: name
= "PLTPAD"; break;
1287 case DT_MOVETAB
: name
= "MOVETAB"; break;
1288 case DT_SYMINFO
: name
= "SYMINFO"; break;
1289 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1290 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1291 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1292 case DT_VERSYM
: name
= "VERSYM"; break;
1293 case DT_VERDEF
: name
= "VERDEF"; break;
1294 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1295 case DT_VERNEED
: name
= "VERNEED"; break;
1296 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1297 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1298 case DT_USED
: name
= "USED"; break;
1299 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1300 case DT_GNU_HASH
: name
= "GNU_HASH"; break;
1303 fprintf (f
, " %-20s ", name
);
1307 bfd_fprintf_vma (abfd
, f
, dyn
.d_un
.d_val
);
1312 unsigned int tagv
= dyn
.d_un
.d_val
;
1314 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1317 fprintf (f
, "%s", string
);
1326 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1327 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1329 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1333 if (elf_dynverdef (abfd
) != 0)
1335 Elf_Internal_Verdef
*t
;
1337 fprintf (f
, _("\nVersion definitions:\n"));
1338 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1340 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1341 t
->vd_flags
, t
->vd_hash
,
1342 t
->vd_nodename
? t
->vd_nodename
: "<corrupt>");
1343 if (t
->vd_auxptr
!= NULL
&& t
->vd_auxptr
->vda_nextptr
!= NULL
)
1345 Elf_Internal_Verdaux
*a
;
1348 for (a
= t
->vd_auxptr
->vda_nextptr
;
1352 a
->vda_nodename
? a
->vda_nodename
: "<corrupt>");
1358 if (elf_dynverref (abfd
) != 0)
1360 Elf_Internal_Verneed
*t
;
1362 fprintf (f
, _("\nVersion References:\n"));
1363 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1365 Elf_Internal_Vernaux
*a
;
1367 fprintf (f
, _(" required from %s:\n"),
1368 t
->vn_filename
? t
->vn_filename
: "<corrupt>");
1369 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1370 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1371 a
->vna_flags
, a
->vna_other
,
1372 a
->vna_nodename
? a
->vna_nodename
: "<corrupt>");
1384 /* Display ELF-specific fields of a symbol. */
1387 bfd_elf_print_symbol (bfd
*abfd
,
1390 bfd_print_symbol_type how
)
1395 case bfd_print_symbol_name
:
1396 fprintf (file
, "%s", symbol
->name
);
1398 case bfd_print_symbol_more
:
1399 fprintf (file
, "elf ");
1400 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1401 fprintf (file
, " %lx", (unsigned long) symbol
->flags
);
1403 case bfd_print_symbol_all
:
1405 const char *section_name
;
1406 const char *name
= NULL
;
1407 const struct elf_backend_data
*bed
;
1408 unsigned char st_other
;
1411 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1413 bed
= get_elf_backend_data (abfd
);
1414 if (bed
->elf_backend_print_symbol_all
)
1415 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1419 name
= symbol
->name
;
1420 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1423 fprintf (file
, " %s\t", section_name
);
1424 /* Print the "other" value for a symbol. For common symbols,
1425 we've already printed the size; now print the alignment.
1426 For other symbols, we have no specified alignment, and
1427 we've printed the address; now print the size. */
1428 if (symbol
->section
&& bfd_is_com_section (symbol
->section
))
1429 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1431 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1432 bfd_fprintf_vma (abfd
, file
, val
);
1434 /* If we have version information, print it. */
1435 if (elf_tdata (abfd
)->dynversym_section
!= 0
1436 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1437 || elf_tdata (abfd
)->dynverref_section
!= 0))
1439 unsigned int vernum
;
1440 const char *version_string
;
1442 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1445 version_string
= "";
1446 else if (vernum
== 1)
1447 version_string
= "Base";
1448 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1450 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1453 Elf_Internal_Verneed
*t
;
1455 version_string
= "";
1456 for (t
= elf_tdata (abfd
)->verref
;
1460 Elf_Internal_Vernaux
*a
;
1462 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1464 if (a
->vna_other
== vernum
)
1466 version_string
= a
->vna_nodename
;
1473 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1474 fprintf (file
, " %-11s", version_string
);
1479 fprintf (file
, " (%s)", version_string
);
1480 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1485 /* If the st_other field is not zero, print it. */
1486 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1491 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1492 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1493 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1495 /* Some other non-defined flags are also present, so print
1497 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1500 fprintf (file
, " %s", name
);
1506 /* Allocate an ELF string table--force the first byte to be zero. */
1508 struct bfd_strtab_hash
*
1509 _bfd_elf_stringtab_init (void)
1511 struct bfd_strtab_hash
*ret
;
1513 ret
= _bfd_stringtab_init ();
1518 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1519 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1520 if (loc
== (bfd_size_type
) -1)
1522 _bfd_stringtab_free (ret
);
1529 /* ELF .o/exec file reading */
1531 /* Create a new bfd section from an ELF section header. */
1534 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1536 Elf_Internal_Shdr
*hdr
;
1537 Elf_Internal_Ehdr
*ehdr
;
1538 const struct elf_backend_data
*bed
;
1541 if (shindex
>= elf_numsections (abfd
))
1544 hdr
= elf_elfsections (abfd
)[shindex
];
1545 ehdr
= elf_elfheader (abfd
);
1546 name
= bfd_elf_string_from_elf_section (abfd
, ehdr
->e_shstrndx
,
1551 bed
= get_elf_backend_data (abfd
);
1552 switch (hdr
->sh_type
)
1555 /* Inactive section. Throw it away. */
1558 case SHT_PROGBITS
: /* Normal section with contents. */
1559 case SHT_NOBITS
: /* .bss section. */
1560 case SHT_HASH
: /* .hash section. */
1561 case SHT_NOTE
: /* .note section. */
1562 case SHT_INIT_ARRAY
: /* .init_array section. */
1563 case SHT_FINI_ARRAY
: /* .fini_array section. */
1564 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1565 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1566 case SHT_GNU_HASH
: /* .gnu.hash section. */
1567 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1569 case SHT_DYNAMIC
: /* Dynamic linking information. */
1570 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1572 if (hdr
->sh_link
> elf_numsections (abfd
)
1573 || elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1575 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1577 Elf_Internal_Shdr
*dynsymhdr
;
1579 /* The shared libraries distributed with hpux11 have a bogus
1580 sh_link field for the ".dynamic" section. Find the
1581 string table for the ".dynsym" section instead. */
1582 if (elf_dynsymtab (abfd
) != 0)
1584 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1585 hdr
->sh_link
= dynsymhdr
->sh_link
;
1589 unsigned int i
, num_sec
;
1591 num_sec
= elf_numsections (abfd
);
1592 for (i
= 1; i
< num_sec
; i
++)
1594 dynsymhdr
= elf_elfsections (abfd
)[i
];
1595 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1597 hdr
->sh_link
= dynsymhdr
->sh_link
;
1605 case SHT_SYMTAB
: /* A symbol table */
1606 if (elf_onesymtab (abfd
) == shindex
)
1609 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1611 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1612 elf_onesymtab (abfd
) = shindex
;
1613 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1614 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1615 abfd
->flags
|= HAS_SYMS
;
1617 /* Sometimes a shared object will map in the symbol table. If
1618 SHF_ALLOC is set, and this is a shared object, then we also
1619 treat this section as a BFD section. We can not base the
1620 decision purely on SHF_ALLOC, because that flag is sometimes
1621 set in a relocatable object file, which would confuse the
1623 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1624 && (abfd
->flags
& DYNAMIC
) != 0
1625 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1629 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1630 can't read symbols without that section loaded as well. It
1631 is most likely specified by the next section header. */
1632 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1634 unsigned int i
, num_sec
;
1636 num_sec
= elf_numsections (abfd
);
1637 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1639 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1640 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1641 && hdr2
->sh_link
== shindex
)
1645 for (i
= 1; i
< shindex
; i
++)
1647 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1648 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1649 && hdr2
->sh_link
== shindex
)
1653 return bfd_section_from_shdr (abfd
, i
);
1657 case SHT_DYNSYM
: /* A dynamic symbol table */
1658 if (elf_dynsymtab (abfd
) == shindex
)
1661 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1663 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1664 elf_dynsymtab (abfd
) = shindex
;
1665 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1666 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1667 abfd
->flags
|= HAS_SYMS
;
1669 /* Besides being a symbol table, we also treat this as a regular
1670 section, so that objcopy can handle it. */
1671 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1673 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1674 if (elf_symtab_shndx (abfd
) == shindex
)
1677 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1678 elf_symtab_shndx (abfd
) = shindex
;
1679 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1680 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1683 case SHT_STRTAB
: /* A string table */
1684 if (hdr
->bfd_section
!= NULL
)
1686 if (ehdr
->e_shstrndx
== shindex
)
1688 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1689 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1692 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1695 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1696 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1699 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1702 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1703 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1704 elf_elfsections (abfd
)[shindex
] = hdr
;
1705 /* We also treat this as a regular section, so that objcopy
1707 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1711 /* If the string table isn't one of the above, then treat it as a
1712 regular section. We need to scan all the headers to be sure,
1713 just in case this strtab section appeared before the above. */
1714 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
1716 unsigned int i
, num_sec
;
1718 num_sec
= elf_numsections (abfd
);
1719 for (i
= 1; i
< num_sec
; i
++)
1721 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1722 if (hdr2
->sh_link
== shindex
)
1724 /* Prevent endless recursion on broken objects. */
1727 if (! bfd_section_from_shdr (abfd
, i
))
1729 if (elf_onesymtab (abfd
) == i
)
1731 if (elf_dynsymtab (abfd
) == i
)
1732 goto dynsymtab_strtab
;
1736 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1740 /* *These* do a lot of work -- but build no sections! */
1742 asection
*target_sect
;
1743 Elf_Internal_Shdr
*hdr2
;
1744 unsigned int num_sec
= elf_numsections (abfd
);
1747 != (bfd_size_type
) (hdr
->sh_type
== SHT_REL
1748 ? bed
->s
->sizeof_rel
: bed
->s
->sizeof_rela
))
1751 /* Check for a bogus link to avoid crashing. */
1752 if (hdr
->sh_link
>= num_sec
)
1754 ((*_bfd_error_handler
)
1755 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1756 abfd
, hdr
->sh_link
, name
, shindex
));
1757 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1761 /* For some incomprehensible reason Oracle distributes
1762 libraries for Solaris in which some of the objects have
1763 bogus sh_link fields. It would be nice if we could just
1764 reject them, but, unfortunately, some people need to use
1765 them. We scan through the section headers; if we find only
1766 one suitable symbol table, we clobber the sh_link to point
1767 to it. I hope this doesn't break anything. */
1768 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
1769 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
1775 for (scan
= 1; scan
< num_sec
; scan
++)
1777 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
1778 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
1789 hdr
->sh_link
= found
;
1792 /* Get the symbol table. */
1793 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
1794 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
1795 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
1798 /* If this reloc section does not use the main symbol table we
1799 don't treat it as a reloc section. BFD can't adequately
1800 represent such a section, so at least for now, we don't
1801 try. We just present it as a normal section. We also
1802 can't use it as a reloc section if it points to the null
1803 section, an invalid section, or another reloc section. */
1804 if (hdr
->sh_link
!= elf_onesymtab (abfd
)
1805 || hdr
->sh_info
== SHN_UNDEF
1806 || hdr
->sh_info
>= num_sec
1807 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_REL
1808 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_RELA
)
1809 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1812 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
1814 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
1815 if (target_sect
== NULL
)
1818 if ((target_sect
->flags
& SEC_RELOC
) == 0
1819 || target_sect
->reloc_count
== 0)
1820 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
1824 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
1825 amt
= sizeof (*hdr2
);
1826 hdr2
= bfd_alloc (abfd
, amt
);
1829 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
1832 elf_elfsections (abfd
)[shindex
] = hdr2
;
1833 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
1834 target_sect
->flags
|= SEC_RELOC
;
1835 target_sect
->relocation
= NULL
;
1836 target_sect
->rel_filepos
= hdr
->sh_offset
;
1837 /* In the section to which the relocations apply, mark whether
1838 its relocations are of the REL or RELA variety. */
1839 if (hdr
->sh_size
!= 0)
1840 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
1841 abfd
->flags
|= HAS_RELOC
;
1845 case SHT_GNU_verdef
:
1846 elf_dynverdef (abfd
) = shindex
;
1847 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
1848 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1850 case SHT_GNU_versym
:
1851 if (hdr
->sh_entsize
!= sizeof (Elf_External_Versym
))
1853 elf_dynversym (abfd
) = shindex
;
1854 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
1855 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1857 case SHT_GNU_verneed
:
1858 elf_dynverref (abfd
) = shindex
;
1859 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
1860 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1866 if (! IS_VALID_GROUP_SECTION_HEADER (hdr
))
1868 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1870 if (hdr
->contents
!= NULL
)
1872 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
1873 unsigned int n_elt
= hdr
->sh_size
/ GRP_ENTRY_SIZE
;
1876 if (idx
->flags
& GRP_COMDAT
)
1877 hdr
->bfd_section
->flags
1878 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
1880 /* We try to keep the same section order as it comes in. */
1882 while (--n_elt
!= 0)
1886 if (idx
->shdr
!= NULL
1887 && (s
= idx
->shdr
->bfd_section
) != NULL
1888 && elf_next_in_group (s
) != NULL
)
1890 elf_next_in_group (hdr
->bfd_section
) = s
;
1898 /* Possibly an attributes section. */
1899 if (hdr
->sh_type
== SHT_GNU_ATTRIBUTES
1900 || hdr
->sh_type
== bed
->obj_attrs_section_type
)
1902 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1904 _bfd_elf_parse_attributes (abfd
, hdr
);
1908 /* Check for any processor-specific section types. */
1909 if (bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
, shindex
))
1912 if (hdr
->sh_type
>= SHT_LOUSER
&& hdr
->sh_type
<= SHT_HIUSER
)
1914 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
1915 /* FIXME: How to properly handle allocated section reserved
1916 for applications? */
1917 (*_bfd_error_handler
)
1918 (_("%B: don't know how to handle allocated, application "
1919 "specific section `%s' [0x%8x]"),
1920 abfd
, name
, hdr
->sh_type
);
1922 /* Allow sections reserved for applications. */
1923 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1926 else if (hdr
->sh_type
>= SHT_LOPROC
1927 && hdr
->sh_type
<= SHT_HIPROC
)
1928 /* FIXME: We should handle this section. */
1929 (*_bfd_error_handler
)
1930 (_("%B: don't know how to handle processor specific section "
1932 abfd
, name
, hdr
->sh_type
);
1933 else if (hdr
->sh_type
>= SHT_LOOS
&& hdr
->sh_type
<= SHT_HIOS
)
1935 /* Unrecognised OS-specific sections. */
1936 if ((hdr
->sh_flags
& SHF_OS_NONCONFORMING
) != 0)
1937 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1938 required to correctly process the section and the file should
1939 be rejected with an error message. */
1940 (*_bfd_error_handler
)
1941 (_("%B: don't know how to handle OS specific section "
1943 abfd
, name
, hdr
->sh_type
);
1945 /* Otherwise it should be processed. */
1946 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1949 /* FIXME: We should handle this section. */
1950 (*_bfd_error_handler
)
1951 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1952 abfd
, name
, hdr
->sh_type
);
1960 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1961 Return SEC for sections that have no elf section, and NULL on error. */
1964 bfd_section_from_r_symndx (bfd
*abfd
,
1965 struct sym_sec_cache
*cache
,
1967 unsigned long r_symndx
)
1969 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
1972 if (cache
->abfd
!= abfd
|| cache
->indx
[ent
] != r_symndx
)
1974 Elf_Internal_Shdr
*symtab_hdr
;
1975 unsigned char esym
[sizeof (Elf64_External_Sym
)];
1976 Elf_External_Sym_Shndx eshndx
;
1977 Elf_Internal_Sym isym
;
1979 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1980 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
1981 &isym
, esym
, &eshndx
) == NULL
)
1984 if (cache
->abfd
!= abfd
)
1986 memset (cache
->indx
, -1, sizeof (cache
->indx
));
1989 cache
->indx
[ent
] = r_symndx
;
1990 cache
->shndx
[ent
] = isym
.st_shndx
;
1993 s
= bfd_section_from_elf_index (abfd
, cache
->shndx
[ent
]);
2000 /* Given an ELF section number, retrieve the corresponding BFD
2004 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
2006 if (index
>= elf_numsections (abfd
))
2008 return elf_elfsections (abfd
)[index
]->bfd_section
;
2011 static const struct bfd_elf_special_section special_sections_b
[] =
2013 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2014 { NULL
, 0, 0, 0, 0 }
2017 static const struct bfd_elf_special_section special_sections_c
[] =
2019 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS
, 0 },
2020 { NULL
, 0, 0, 0, 0 }
2023 static const struct bfd_elf_special_section special_sections_d
[] =
2025 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2026 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2027 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS
, 0 },
2028 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS
, 0 },
2029 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS
, 0 },
2030 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS
, 0 },
2031 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS
, 0 },
2032 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, SHF_ALLOC
},
2033 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, SHF_ALLOC
},
2034 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, SHF_ALLOC
},
2035 { NULL
, 0, 0, 0, 0 }
2038 static const struct bfd_elf_special_section special_sections_f
[] =
2040 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2041 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2042 { NULL
, 0, 0, 0, 0 }
2045 static const struct bfd_elf_special_section special_sections_g
[] =
2047 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2048 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2049 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym
, 0 },
2050 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef
, 0 },
2051 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed
, 0 },
2052 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2053 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA
, SHF_ALLOC
},
2054 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH
, SHF_ALLOC
},
2055 { NULL
, 0, 0, 0, 0 }
2058 static const struct bfd_elf_special_section special_sections_h
[] =
2060 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, SHF_ALLOC
},
2061 { NULL
, 0, 0, 0, 0 }
2064 static const struct bfd_elf_special_section special_sections_i
[] =
2066 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2067 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2068 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS
, 0 },
2069 { NULL
, 0, 0, 0, 0 }
2072 static const struct bfd_elf_special_section special_sections_l
[] =
2074 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS
, 0 },
2075 { NULL
, 0, 0, 0, 0 }
2078 static const struct bfd_elf_special_section special_sections_n
[] =
2080 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS
, 0 },
2081 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE
, 0 },
2082 { NULL
, 0, 0, 0, 0 }
2085 static const struct bfd_elf_special_section special_sections_p
[] =
2087 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2088 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2089 { NULL
, 0, 0, 0, 0 }
2092 static const struct bfd_elf_special_section special_sections_r
[] =
2094 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS
, SHF_ALLOC
},
2095 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS
, SHF_ALLOC
},
2096 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA
, 0 },
2097 { STRING_COMMA_LEN (".rel"), -1, SHT_REL
, 0 },
2098 { NULL
, 0, 0, 0, 0 }
2101 static const struct bfd_elf_special_section special_sections_s
[] =
2103 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB
, 0 },
2104 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB
, 0 },
2105 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB
, 0 },
2106 /* See struct bfd_elf_special_section declaration for the semantics of
2107 this special case where .prefix_length != strlen (.prefix). */
2108 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2109 { NULL
, 0, 0, 0, 0 }
2112 static const struct bfd_elf_special_section special_sections_t
[] =
2114 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2115 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2116 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2117 { NULL
, 0, 0, 0, 0 }
2120 static const struct bfd_elf_special_section special_sections_z
[] =
2122 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS
, 0 },
2123 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS
, 0 },
2124 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS
, 0 },
2125 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS
, 0 },
2126 { NULL
, 0, 0, 0, 0 }
2129 static const struct bfd_elf_special_section
*special_sections
[] =
2131 special_sections_b
, /* 'b' */
2132 special_sections_c
, /* 'c' */
2133 special_sections_d
, /* 'd' */
2135 special_sections_f
, /* 'f' */
2136 special_sections_g
, /* 'g' */
2137 special_sections_h
, /* 'h' */
2138 special_sections_i
, /* 'i' */
2141 special_sections_l
, /* 'l' */
2143 special_sections_n
, /* 'n' */
2145 special_sections_p
, /* 'p' */
2147 special_sections_r
, /* 'r' */
2148 special_sections_s
, /* 's' */
2149 special_sections_t
, /* 't' */
2155 special_sections_z
/* 'z' */
2158 const struct bfd_elf_special_section
*
2159 _bfd_elf_get_special_section (const char *name
,
2160 const struct bfd_elf_special_section
*spec
,
2166 len
= strlen (name
);
2168 for (i
= 0; spec
[i
].prefix
!= NULL
; i
++)
2171 int prefix_len
= spec
[i
].prefix_length
;
2173 if (len
< prefix_len
)
2175 if (memcmp (name
, spec
[i
].prefix
, prefix_len
) != 0)
2178 suffix_len
= spec
[i
].suffix_length
;
2179 if (suffix_len
<= 0)
2181 if (name
[prefix_len
] != 0)
2183 if (suffix_len
== 0)
2185 if (name
[prefix_len
] != '.'
2186 && (suffix_len
== -2
2187 || (rela
&& spec
[i
].type
== SHT_REL
)))
2193 if (len
< prefix_len
+ suffix_len
)
2195 if (memcmp (name
+ len
- suffix_len
,
2196 spec
[i
].prefix
+ prefix_len
,
2206 const struct bfd_elf_special_section
*
2207 _bfd_elf_get_sec_type_attr (bfd
*abfd
, asection
*sec
)
2210 const struct bfd_elf_special_section
*spec
;
2211 const struct elf_backend_data
*bed
;
2213 /* See if this is one of the special sections. */
2214 if (sec
->name
== NULL
)
2217 bed
= get_elf_backend_data (abfd
);
2218 spec
= bed
->special_sections
;
2221 spec
= _bfd_elf_get_special_section (sec
->name
,
2222 bed
->special_sections
,
2228 if (sec
->name
[0] != '.')
2231 i
= sec
->name
[1] - 'b';
2232 if (i
< 0 || i
> 'z' - 'b')
2235 spec
= special_sections
[i
];
2240 return _bfd_elf_get_special_section (sec
->name
, spec
, sec
->use_rela_p
);
2244 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2246 struct bfd_elf_section_data
*sdata
;
2247 const struct elf_backend_data
*bed
;
2248 const struct bfd_elf_special_section
*ssect
;
2250 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2253 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2256 sec
->used_by_bfd
= sdata
;
2259 /* Indicate whether or not this section should use RELA relocations. */
2260 bed
= get_elf_backend_data (abfd
);
2261 sec
->use_rela_p
= bed
->default_use_rela_p
;
2263 /* When we read a file, we don't need to set ELF section type and
2264 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2265 anyway. We will set ELF section type and flags for all linker
2266 created sections. If user specifies BFD section flags, we will
2267 set ELF section type and flags based on BFD section flags in
2268 elf_fake_sections. */
2269 if ((!sec
->flags
&& abfd
->direction
!= read_direction
)
2270 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2272 ssect
= (*bed
->get_sec_type_attr
) (abfd
, sec
);
2275 elf_section_type (sec
) = ssect
->type
;
2276 elf_section_flags (sec
) = ssect
->attr
;
2280 return _bfd_generic_new_section_hook (abfd
, sec
);
2283 /* Create a new bfd section from an ELF program header.
2285 Since program segments have no names, we generate a synthetic name
2286 of the form segment<NUM>, where NUM is generally the index in the
2287 program header table. For segments that are split (see below) we
2288 generate the names segment<NUM>a and segment<NUM>b.
2290 Note that some program segments may have a file size that is different than
2291 (less than) the memory size. All this means is that at execution the
2292 system must allocate the amount of memory specified by the memory size,
2293 but only initialize it with the first "file size" bytes read from the
2294 file. This would occur for example, with program segments consisting
2295 of combined data+bss.
2297 To handle the above situation, this routine generates TWO bfd sections
2298 for the single program segment. The first has the length specified by
2299 the file size of the segment, and the second has the length specified
2300 by the difference between the two sizes. In effect, the segment is split
2301 into its initialized and uninitialized parts.
2306 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2307 Elf_Internal_Phdr
*hdr
,
2309 const char *typename
)
2317 split
= ((hdr
->p_memsz
> 0)
2318 && (hdr
->p_filesz
> 0)
2319 && (hdr
->p_memsz
> hdr
->p_filesz
));
2321 if (hdr
->p_filesz
> 0)
2323 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2324 len
= strlen (namebuf
) + 1;
2325 name
= bfd_alloc (abfd
, len
);
2328 memcpy (name
, namebuf
, len
);
2329 newsect
= bfd_make_section (abfd
, name
);
2330 if (newsect
== NULL
)
2332 newsect
->vma
= hdr
->p_vaddr
;
2333 newsect
->lma
= hdr
->p_paddr
;
2334 newsect
->size
= hdr
->p_filesz
;
2335 newsect
->filepos
= hdr
->p_offset
;
2336 newsect
->flags
|= SEC_HAS_CONTENTS
;
2337 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2338 if (hdr
->p_type
== PT_LOAD
)
2340 newsect
->flags
|= SEC_ALLOC
;
2341 newsect
->flags
|= SEC_LOAD
;
2342 if (hdr
->p_flags
& PF_X
)
2344 /* FIXME: all we known is that it has execute PERMISSION,
2346 newsect
->flags
|= SEC_CODE
;
2349 if (!(hdr
->p_flags
& PF_W
))
2351 newsect
->flags
|= SEC_READONLY
;
2355 if (hdr
->p_memsz
> hdr
->p_filesz
)
2359 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "b" : "");
2360 len
= strlen (namebuf
) + 1;
2361 name
= bfd_alloc (abfd
, len
);
2364 memcpy (name
, namebuf
, len
);
2365 newsect
= bfd_make_section (abfd
, name
);
2366 if (newsect
== NULL
)
2368 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2369 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2370 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2371 newsect
->filepos
= hdr
->p_offset
+ hdr
->p_filesz
;
2372 align
= newsect
->vma
& -newsect
->vma
;
2373 if (align
== 0 || align
> hdr
->p_align
)
2374 align
= hdr
->p_align
;
2375 newsect
->alignment_power
= bfd_log2 (align
);
2376 if (hdr
->p_type
== PT_LOAD
)
2378 /* Hack for gdb. Segments that have not been modified do
2379 not have their contents written to a core file, on the
2380 assumption that a debugger can find the contents in the
2381 executable. We flag this case by setting the fake
2382 section size to zero. Note that "real" bss sections will
2383 always have their contents dumped to the core file. */
2384 if (bfd_get_format (abfd
) == bfd_core
)
2386 newsect
->flags
|= SEC_ALLOC
;
2387 if (hdr
->p_flags
& PF_X
)
2388 newsect
->flags
|= SEC_CODE
;
2390 if (!(hdr
->p_flags
& PF_W
))
2391 newsect
->flags
|= SEC_READONLY
;
2398 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2400 const struct elf_backend_data
*bed
;
2402 switch (hdr
->p_type
)
2405 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2408 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2411 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2414 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2417 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2419 if (! elf_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2424 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2427 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2429 case PT_GNU_EH_FRAME
:
2430 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2434 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2437 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "relro");
2440 /* Check for any processor-specific program segment types. */
2441 bed
= get_elf_backend_data (abfd
);
2442 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, index
, "proc");
2446 /* Initialize REL_HDR, the section-header for new section, containing
2447 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2448 relocations; otherwise, we use REL relocations. */
2451 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2452 Elf_Internal_Shdr
*rel_hdr
,
2454 bfd_boolean use_rela_p
)
2457 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2458 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2460 name
= bfd_alloc (abfd
, amt
);
2463 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2465 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2467 if (rel_hdr
->sh_name
== (unsigned int) -1)
2469 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2470 rel_hdr
->sh_entsize
= (use_rela_p
2471 ? bed
->s
->sizeof_rela
2472 : bed
->s
->sizeof_rel
);
2473 rel_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
2474 rel_hdr
->sh_flags
= 0;
2475 rel_hdr
->sh_addr
= 0;
2476 rel_hdr
->sh_size
= 0;
2477 rel_hdr
->sh_offset
= 0;
2482 /* Set up an ELF internal section header for a section. */
2485 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2487 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2488 bfd_boolean
*failedptr
= failedptrarg
;
2489 Elf_Internal_Shdr
*this_hdr
;
2490 unsigned int sh_type
;
2494 /* We already failed; just get out of the bfd_map_over_sections
2499 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2501 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2502 asect
->name
, FALSE
);
2503 if (this_hdr
->sh_name
== (unsigned int) -1)
2509 /* Don't clear sh_flags. Assembler may set additional bits. */
2511 if ((asect
->flags
& SEC_ALLOC
) != 0
2512 || asect
->user_set_vma
)
2513 this_hdr
->sh_addr
= asect
->vma
;
2515 this_hdr
->sh_addr
= 0;
2517 this_hdr
->sh_offset
= 0;
2518 this_hdr
->sh_size
= asect
->size
;
2519 this_hdr
->sh_link
= 0;
2520 this_hdr
->sh_addralign
= (bfd_vma
) 1 << asect
->alignment_power
;
2521 /* The sh_entsize and sh_info fields may have been set already by
2522 copy_private_section_data. */
2524 this_hdr
->bfd_section
= asect
;
2525 this_hdr
->contents
= NULL
;
2527 /* If the section type is unspecified, we set it based on
2529 if ((asect
->flags
& SEC_GROUP
) != 0)
2530 sh_type
= SHT_GROUP
;
2531 else if ((asect
->flags
& SEC_ALLOC
) != 0
2532 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2533 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2534 sh_type
= SHT_NOBITS
;
2536 sh_type
= SHT_PROGBITS
;
2538 if (this_hdr
->sh_type
== SHT_NULL
)
2539 this_hdr
->sh_type
= sh_type
;
2540 else if (this_hdr
->sh_type
== SHT_NOBITS
2541 && sh_type
== SHT_PROGBITS
2542 && (asect
->flags
& SEC_ALLOC
) != 0)
2544 /* Warn if we are changing a NOBITS section to PROGBITS, but
2545 allow the link to proceed. This can happen when users link
2546 non-bss input sections to bss output sections, or emit data
2547 to a bss output section via a linker script. */
2548 (*_bfd_error_handler
)
2549 (_("warning: section `%A' type changed to PROGBITS"), asect
);
2550 this_hdr
->sh_type
= sh_type
;
2553 switch (this_hdr
->sh_type
)
2559 case SHT_INIT_ARRAY
:
2560 case SHT_FINI_ARRAY
:
2561 case SHT_PREINIT_ARRAY
:
2568 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2572 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2576 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2580 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2581 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2585 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2586 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2589 case SHT_GNU_versym
:
2590 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2593 case SHT_GNU_verdef
:
2594 this_hdr
->sh_entsize
= 0;
2595 /* objcopy or strip will copy over sh_info, but may not set
2596 cverdefs. The linker will set cverdefs, but sh_info will be
2598 if (this_hdr
->sh_info
== 0)
2599 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2601 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2602 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2605 case SHT_GNU_verneed
:
2606 this_hdr
->sh_entsize
= 0;
2607 /* objcopy or strip will copy over sh_info, but may not set
2608 cverrefs. The linker will set cverrefs, but sh_info will be
2610 if (this_hdr
->sh_info
== 0)
2611 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2613 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2614 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2618 this_hdr
->sh_entsize
= GRP_ENTRY_SIZE
;
2622 this_hdr
->sh_entsize
= bed
->s
->arch_size
== 64 ? 0 : 4;
2626 if ((asect
->flags
& SEC_ALLOC
) != 0)
2627 this_hdr
->sh_flags
|= SHF_ALLOC
;
2628 if ((asect
->flags
& SEC_READONLY
) == 0)
2629 this_hdr
->sh_flags
|= SHF_WRITE
;
2630 if ((asect
->flags
& SEC_CODE
) != 0)
2631 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2632 if ((asect
->flags
& SEC_MERGE
) != 0)
2634 this_hdr
->sh_flags
|= SHF_MERGE
;
2635 this_hdr
->sh_entsize
= asect
->entsize
;
2636 if ((asect
->flags
& SEC_STRINGS
) != 0)
2637 this_hdr
->sh_flags
|= SHF_STRINGS
;
2639 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2640 this_hdr
->sh_flags
|= SHF_GROUP
;
2641 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2643 this_hdr
->sh_flags
|= SHF_TLS
;
2644 if (asect
->size
== 0
2645 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2647 struct bfd_link_order
*o
= asect
->map_tail
.link_order
;
2649 this_hdr
->sh_size
= 0;
2652 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2653 if (this_hdr
->sh_size
!= 0)
2654 this_hdr
->sh_type
= SHT_NOBITS
;
2659 /* Check for processor-specific section types. */
2660 sh_type
= this_hdr
->sh_type
;
2661 if (bed
->elf_backend_fake_sections
2662 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2665 if (sh_type
== SHT_NOBITS
&& asect
->size
!= 0)
2667 /* Don't change the header type from NOBITS if we are being
2668 called for objcopy --only-keep-debug. */
2669 this_hdr
->sh_type
= sh_type
;
2672 /* If the section has relocs, set up a section header for the
2673 SHT_REL[A] section. If two relocation sections are required for
2674 this section, it is up to the processor-specific back-end to
2675 create the other. */
2676 if ((asect
->flags
& SEC_RELOC
) != 0
2677 && !_bfd_elf_init_reloc_shdr (abfd
,
2678 &elf_section_data (asect
)->rel_hdr
,
2684 /* Fill in the contents of a SHT_GROUP section. Called from
2685 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2686 when ELF targets use the generic linker, ld. Called for ld -r
2687 from bfd_elf_final_link. */
2690 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2692 bfd_boolean
*failedptr
= failedptrarg
;
2693 asection
*elt
, *first
;
2697 /* Ignore linker created group section. See elfNN_ia64_object_p in
2699 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2703 if (elf_section_data (sec
)->this_hdr
.sh_info
== 0)
2705 unsigned long symindx
= 0;
2707 /* elf_group_id will have been set up by objcopy and the
2709 if (elf_group_id (sec
) != NULL
)
2710 symindx
= elf_group_id (sec
)->udata
.i
;
2714 /* If called from the assembler, swap_out_syms will have set up
2715 elf_section_syms. */
2716 BFD_ASSERT (elf_section_syms (abfd
) != NULL
);
2717 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2719 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2721 else if (elf_section_data (sec
)->this_hdr
.sh_info
== (unsigned int) -2)
2723 /* The ELF backend linker sets sh_info to -2 when the group
2724 signature symbol is global, and thus the index can't be
2725 set until all local symbols are output. */
2726 asection
*igroup
= elf_sec_group (elf_next_in_group (sec
));
2727 struct bfd_elf_section_data
*sec_data
= elf_section_data (igroup
);
2728 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
2729 unsigned long extsymoff
= 0;
2730 struct elf_link_hash_entry
*h
;
2732 if (!elf_bad_symtab (igroup
->owner
))
2734 Elf_Internal_Shdr
*symtab_hdr
;
2736 symtab_hdr
= &elf_tdata (igroup
->owner
)->symtab_hdr
;
2737 extsymoff
= symtab_hdr
->sh_info
;
2739 h
= elf_sym_hashes (igroup
->owner
)[symndx
- extsymoff
];
2740 while (h
->root
.type
== bfd_link_hash_indirect
2741 || h
->root
.type
== bfd_link_hash_warning
)
2742 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2744 elf_section_data (sec
)->this_hdr
.sh_info
= h
->indx
;
2747 /* The contents won't be allocated for "ld -r" or objcopy. */
2749 if (sec
->contents
== NULL
)
2752 sec
->contents
= bfd_alloc (abfd
, sec
->size
);
2754 /* Arrange for the section to be written out. */
2755 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2756 if (sec
->contents
== NULL
)
2763 loc
= sec
->contents
+ sec
->size
;
2765 /* Get the pointer to the first section in the group that gas
2766 squirreled away here. objcopy arranges for this to be set to the
2767 start of the input section group. */
2768 first
= elt
= elf_next_in_group (sec
);
2770 /* First element is a flag word. Rest of section is elf section
2771 indices for all the sections of the group. Write them backwards
2772 just to keep the group in the same order as given in .section
2773 directives, not that it matters. */
2782 s
= s
->output_section
;
2785 idx
= elf_section_data (s
)->this_idx
;
2786 H_PUT_32 (abfd
, idx
, loc
);
2787 elt
= elf_next_in_group (elt
);
2792 if ((loc
-= 4) != sec
->contents
)
2795 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2798 /* Assign all ELF section numbers. The dummy first section is handled here
2799 too. The link/info pointers for the standard section types are filled
2800 in here too, while we're at it. */
2803 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2805 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2807 unsigned int section_number
, secn
;
2808 Elf_Internal_Shdr
**i_shdrp
;
2809 struct bfd_elf_section_data
*d
;
2813 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2815 /* SHT_GROUP sections are in relocatable files only. */
2816 if (link_info
== NULL
|| link_info
->relocatable
)
2818 /* Put SHT_GROUP sections first. */
2819 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2821 d
= elf_section_data (sec
);
2823 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
2825 if (sec
->flags
& SEC_LINKER_CREATED
)
2827 /* Remove the linker created SHT_GROUP sections. */
2828 bfd_section_list_remove (abfd
, sec
);
2829 abfd
->section_count
--;
2832 d
->this_idx
= section_number
++;
2837 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2839 d
= elf_section_data (sec
);
2841 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
2842 d
->this_idx
= section_number
++;
2843 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
2844 if ((sec
->flags
& SEC_RELOC
) == 0)
2848 d
->rel_idx
= section_number
++;
2849 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
2854 d
->rel_idx2
= section_number
++;
2855 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
2861 t
->shstrtab_section
= section_number
++;
2862 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
2863 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
2865 if (bfd_get_symcount (abfd
) > 0)
2867 t
->symtab_section
= section_number
++;
2868 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
2869 if (section_number
> ((SHN_LORESERVE
- 2) & 0xFFFF))
2871 t
->symtab_shndx_section
= section_number
++;
2872 t
->symtab_shndx_hdr
.sh_name
2873 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2874 ".symtab_shndx", FALSE
);
2875 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
2878 t
->strtab_section
= section_number
++;
2879 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
2882 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
2883 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
2885 elf_numsections (abfd
) = section_number
;
2886 elf_elfheader (abfd
)->e_shnum
= section_number
;
2888 /* Set up the list of section header pointers, in agreement with the
2890 i_shdrp
= bfd_zalloc2 (abfd
, section_number
, sizeof (Elf_Internal_Shdr
*));
2891 if (i_shdrp
== NULL
)
2894 i_shdrp
[0] = bfd_zalloc (abfd
, sizeof (Elf_Internal_Shdr
));
2895 if (i_shdrp
[0] == NULL
)
2897 bfd_release (abfd
, i_shdrp
);
2901 elf_elfsections (abfd
) = i_shdrp
;
2903 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
2904 if (bfd_get_symcount (abfd
) > 0)
2906 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
2907 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
2909 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
2910 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
2912 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
2913 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
2916 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2918 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
2922 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
2923 if (d
->rel_idx
!= 0)
2924 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
2925 if (d
->rel_idx2
!= 0)
2926 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
2928 /* Fill in the sh_link and sh_info fields while we're at it. */
2930 /* sh_link of a reloc section is the section index of the symbol
2931 table. sh_info is the section index of the section to which
2932 the relocation entries apply. */
2933 if (d
->rel_idx
!= 0)
2935 d
->rel_hdr
.sh_link
= t
->symtab_section
;
2936 d
->rel_hdr
.sh_info
= d
->this_idx
;
2938 if (d
->rel_idx2
!= 0)
2940 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
2941 d
->rel_hdr2
->sh_info
= d
->this_idx
;
2944 /* We need to set up sh_link for SHF_LINK_ORDER. */
2945 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
2947 s
= elf_linked_to_section (sec
);
2950 /* elf_linked_to_section points to the input section. */
2951 if (link_info
!= NULL
)
2953 /* Check discarded linkonce section. */
2954 if (elf_discarded_section (s
))
2957 (*_bfd_error_handler
)
2958 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2959 abfd
, d
->this_hdr
.bfd_section
,
2961 /* Point to the kept section if it has the same
2962 size as the discarded one. */
2963 kept
= _bfd_elf_check_kept_section (s
, link_info
);
2966 bfd_set_error (bfd_error_bad_value
);
2972 s
= s
->output_section
;
2973 BFD_ASSERT (s
!= NULL
);
2977 /* Handle objcopy. */
2978 if (s
->output_section
== NULL
)
2980 (*_bfd_error_handler
)
2981 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2982 abfd
, d
->this_hdr
.bfd_section
, s
, s
->owner
);
2983 bfd_set_error (bfd_error_bad_value
);
2986 s
= s
->output_section
;
2988 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2993 The Intel C compiler generates SHT_IA_64_UNWIND with
2994 SHF_LINK_ORDER. But it doesn't set the sh_link or
2995 sh_info fields. Hence we could get the situation
2997 const struct elf_backend_data
*bed
2998 = get_elf_backend_data (abfd
);
2999 if (bed
->link_order_error_handler
)
3000 bed
->link_order_error_handler
3001 (_("%B: warning: sh_link not set for section `%A'"),
3006 switch (d
->this_hdr
.sh_type
)
3010 /* A reloc section which we are treating as a normal BFD
3011 section. sh_link is the section index of the symbol
3012 table. sh_info is the section index of the section to
3013 which the relocation entries apply. We assume that an
3014 allocated reloc section uses the dynamic symbol table.
3015 FIXME: How can we be sure? */
3016 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3018 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3020 /* We look up the section the relocs apply to by name. */
3022 if (d
->this_hdr
.sh_type
== SHT_REL
)
3026 s
= bfd_get_section_by_name (abfd
, name
);
3028 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3032 /* We assume that a section named .stab*str is a stabs
3033 string section. We look for a section with the same name
3034 but without the trailing ``str'', and set its sh_link
3035 field to point to this section. */
3036 if (CONST_STRNEQ (sec
->name
, ".stab")
3037 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3042 len
= strlen (sec
->name
);
3043 alc
= bfd_malloc (len
- 2);
3046 memcpy (alc
, sec
->name
, len
- 3);
3047 alc
[len
- 3] = '\0';
3048 s
= bfd_get_section_by_name (abfd
, alc
);
3052 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3054 /* This is a .stab section. */
3055 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3056 elf_section_data (s
)->this_hdr
.sh_entsize
3057 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3064 case SHT_GNU_verneed
:
3065 case SHT_GNU_verdef
:
3066 /* sh_link is the section header index of the string table
3067 used for the dynamic entries, or the symbol table, or the
3069 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3071 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3074 case SHT_GNU_LIBLIST
:
3075 /* sh_link is the section header index of the prelink library
3076 list used for the dynamic entries, or the symbol table, or
3077 the version strings. */
3078 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3079 ? ".dynstr" : ".gnu.libstr");
3081 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3086 case SHT_GNU_versym
:
3087 /* sh_link is the section header index of the symbol table
3088 this hash table or version table is for. */
3089 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3091 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3095 d
->this_hdr
.sh_link
= t
->symtab_section
;
3099 for (secn
= 1; secn
< section_number
; ++secn
)
3100 if (i_shdrp
[secn
] == NULL
)
3101 i_shdrp
[secn
] = i_shdrp
[0];
3103 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3104 i_shdrp
[secn
]->sh_name
);
3108 /* Map symbol from it's internal number to the external number, moving
3109 all local symbols to be at the head of the list. */
3112 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3114 /* If the backend has a special mapping, use it. */
3115 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3116 if (bed
->elf_backend_sym_is_global
)
3117 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3119 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
3120 || bfd_is_und_section (bfd_get_section (sym
))
3121 || bfd_is_com_section (bfd_get_section (sym
)));
3124 /* Don't output section symbols for sections that are not going to be
3128 ignore_section_sym (bfd
*abfd
, asymbol
*sym
)
3130 return ((sym
->flags
& BSF_SECTION_SYM
) != 0
3131 && !(sym
->section
->owner
== abfd
3132 || (sym
->section
->output_section
->owner
== abfd
3133 && sym
->section
->output_offset
== 0)));
3137 elf_map_symbols (bfd
*abfd
)
3139 unsigned int symcount
= bfd_get_symcount (abfd
);
3140 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3141 asymbol
**sect_syms
;
3142 unsigned int num_locals
= 0;
3143 unsigned int num_globals
= 0;
3144 unsigned int num_locals2
= 0;
3145 unsigned int num_globals2
= 0;
3152 fprintf (stderr
, "elf_map_symbols\n");
3156 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3158 if (max_index
< asect
->index
)
3159 max_index
= asect
->index
;
3163 sect_syms
= bfd_zalloc2 (abfd
, max_index
, sizeof (asymbol
*));
3164 if (sect_syms
== NULL
)
3166 elf_section_syms (abfd
) = sect_syms
;
3167 elf_num_section_syms (abfd
) = max_index
;
3169 /* Init sect_syms entries for any section symbols we have already
3170 decided to output. */
3171 for (idx
= 0; idx
< symcount
; idx
++)
3173 asymbol
*sym
= syms
[idx
];
3175 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3177 && !ignore_section_sym (abfd
, sym
))
3179 asection
*sec
= sym
->section
;
3181 if (sec
->owner
!= abfd
)
3182 sec
= sec
->output_section
;
3184 sect_syms
[sec
->index
] = syms
[idx
];
3188 /* Classify all of the symbols. */
3189 for (idx
= 0; idx
< symcount
; idx
++)
3191 if (ignore_section_sym (abfd
, syms
[idx
]))
3193 if (!sym_is_global (abfd
, syms
[idx
]))
3199 /* We will be adding a section symbol for each normal BFD section. Most
3200 sections will already have a section symbol in outsymbols, but
3201 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3202 at least in that case. */
3203 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3205 if (sect_syms
[asect
->index
] == NULL
)
3207 if (!sym_is_global (abfd
, asect
->symbol
))
3214 /* Now sort the symbols so the local symbols are first. */
3215 new_syms
= bfd_alloc2 (abfd
, num_locals
+ num_globals
, sizeof (asymbol
*));
3217 if (new_syms
== NULL
)
3220 for (idx
= 0; idx
< symcount
; idx
++)
3222 asymbol
*sym
= syms
[idx
];
3225 if (ignore_section_sym (abfd
, sym
))
3227 if (!sym_is_global (abfd
, sym
))
3230 i
= num_locals
+ num_globals2
++;
3232 sym
->udata
.i
= i
+ 1;
3234 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3236 if (sect_syms
[asect
->index
] == NULL
)
3238 asymbol
*sym
= asect
->symbol
;
3241 sect_syms
[asect
->index
] = sym
;
3242 if (!sym_is_global (abfd
, sym
))
3245 i
= num_locals
+ num_globals2
++;
3247 sym
->udata
.i
= i
+ 1;
3251 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3253 elf_num_locals (abfd
) = num_locals
;
3254 elf_num_globals (abfd
) = num_globals
;
3258 /* Align to the maximum file alignment that could be required for any
3259 ELF data structure. */
3261 static inline file_ptr
3262 align_file_position (file_ptr off
, int align
)
3264 return (off
+ align
- 1) & ~(align
- 1);
3267 /* Assign a file position to a section, optionally aligning to the
3268 required section alignment. */
3271 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3275 if (align
&& i_shdrp
->sh_addralign
> 1)
3276 offset
= BFD_ALIGN (offset
, i_shdrp
->sh_addralign
);
3277 i_shdrp
->sh_offset
= offset
;
3278 if (i_shdrp
->bfd_section
!= NULL
)
3279 i_shdrp
->bfd_section
->filepos
= offset
;
3280 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3281 offset
+= i_shdrp
->sh_size
;
3285 /* Compute the file positions we are going to put the sections at, and
3286 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3287 is not NULL, this is being called by the ELF backend linker. */
3290 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3291 struct bfd_link_info
*link_info
)
3293 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3295 struct bfd_strtab_hash
*strtab
= NULL
;
3296 Elf_Internal_Shdr
*shstrtab_hdr
;
3298 if (abfd
->output_has_begun
)
3301 /* Do any elf backend specific processing first. */
3302 if (bed
->elf_backend_begin_write_processing
)
3303 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3305 if (! prep_headers (abfd
))
3308 /* Post process the headers if necessary. */
3309 if (bed
->elf_backend_post_process_headers
)
3310 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3313 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3317 if (!assign_section_numbers (abfd
, link_info
))
3320 /* The backend linker builds symbol table information itself. */
3321 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3323 /* Non-zero if doing a relocatable link. */
3324 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3326 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3330 if (link_info
== NULL
)
3332 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3337 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3338 /* sh_name was set in prep_headers. */
3339 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3340 shstrtab_hdr
->sh_flags
= 0;
3341 shstrtab_hdr
->sh_addr
= 0;
3342 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3343 shstrtab_hdr
->sh_entsize
= 0;
3344 shstrtab_hdr
->sh_link
= 0;
3345 shstrtab_hdr
->sh_info
= 0;
3346 /* sh_offset is set in assign_file_positions_except_relocs. */
3347 shstrtab_hdr
->sh_addralign
= 1;
3349 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3352 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3355 Elf_Internal_Shdr
*hdr
;
3357 off
= elf_tdata (abfd
)->next_file_pos
;
3359 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3360 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3362 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3363 if (hdr
->sh_size
!= 0)
3364 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3366 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3367 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3369 elf_tdata (abfd
)->next_file_pos
= off
;
3371 /* Now that we know where the .strtab section goes, write it
3373 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3374 || ! _bfd_stringtab_emit (abfd
, strtab
))
3376 _bfd_stringtab_free (strtab
);
3379 abfd
->output_has_begun
= TRUE
;
3384 /* Make an initial estimate of the size of the program header. If we
3385 get the number wrong here, we'll redo section placement. */
3387 static bfd_size_type
3388 get_program_header_size (bfd
*abfd
, struct bfd_link_info
*info
)
3392 const struct elf_backend_data
*bed
;
3394 /* Assume we will need exactly two PT_LOAD segments: one for text
3395 and one for data. */
3398 s
= bfd_get_section_by_name (abfd
, ".interp");
3399 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3401 /* If we have a loadable interpreter section, we need a
3402 PT_INTERP segment. In this case, assume we also need a
3403 PT_PHDR segment, although that may not be true for all
3408 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
3410 /* We need a PT_DYNAMIC segment. */
3414 if (info
!= NULL
&& info
->relro
)
3416 /* We need a PT_GNU_RELRO segment. */
3420 if (elf_tdata (abfd
)->eh_frame_hdr
)
3422 /* We need a PT_GNU_EH_FRAME segment. */
3426 if (elf_tdata (abfd
)->stack_flags
)
3428 /* We need a PT_GNU_STACK segment. */
3432 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3434 if ((s
->flags
& SEC_LOAD
) != 0
3435 && CONST_STRNEQ (s
->name
, ".note"))
3437 /* We need a PT_NOTE segment. */
3439 /* Try to create just one PT_NOTE segment
3440 for all adjacent loadable .note* sections.
3441 gABI requires that within a PT_NOTE segment
3442 (and also inside of each SHT_NOTE section)
3443 each note is padded to a multiple of 4 size,
3444 so we check whether the sections are correctly
3446 if (s
->alignment_power
== 2)
3447 while (s
->next
!= NULL
3448 && s
->next
->alignment_power
== 2
3449 && (s
->next
->flags
& SEC_LOAD
) != 0
3450 && CONST_STRNEQ (s
->next
->name
, ".note"))
3455 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3457 if (s
->flags
& SEC_THREAD_LOCAL
)
3459 /* We need a PT_TLS segment. */
3465 /* Let the backend count up any program headers it might need. */
3466 bed
= get_elf_backend_data (abfd
);
3467 if (bed
->elf_backend_additional_program_headers
)
3471 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
, info
);
3477 return segs
* bed
->s
->sizeof_phdr
;
3480 /* Find the segment that contains the output_section of section. */
3483 _bfd_elf_find_segment_containing_section (bfd
* abfd
, asection
* section
)
3485 struct elf_segment_map
*m
;
3486 Elf_Internal_Phdr
*p
;
3488 for (m
= elf_tdata (abfd
)->segment_map
,
3489 p
= elf_tdata (abfd
)->phdr
;
3495 for (i
= m
->count
- 1; i
>= 0; i
--)
3496 if (m
->sections
[i
] == section
)
3503 /* Create a mapping from a set of sections to a program segment. */
3505 static struct elf_segment_map
*
3506 make_mapping (bfd
*abfd
,
3507 asection
**sections
,
3512 struct elf_segment_map
*m
;
3517 amt
= sizeof (struct elf_segment_map
);
3518 amt
+= (to
- from
- 1) * sizeof (asection
*);
3519 m
= bfd_zalloc (abfd
, amt
);
3523 m
->p_type
= PT_LOAD
;
3524 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3525 m
->sections
[i
- from
] = *hdrpp
;
3526 m
->count
= to
- from
;
3528 if (from
== 0 && phdr
)
3530 /* Include the headers in the first PT_LOAD segment. */
3531 m
->includes_filehdr
= 1;
3532 m
->includes_phdrs
= 1;
3538 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3541 struct elf_segment_map
*
3542 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3544 struct elf_segment_map
*m
;
3546 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
3550 m
->p_type
= PT_DYNAMIC
;
3552 m
->sections
[0] = dynsec
;
3557 /* Possibly add or remove segments from the segment map. */
3560 elf_modify_segment_map (bfd
*abfd
,
3561 struct bfd_link_info
*info
,
3562 bfd_boolean remove_empty_load
)
3564 struct elf_segment_map
**m
;
3565 const struct elf_backend_data
*bed
;
3567 /* The placement algorithm assumes that non allocated sections are
3568 not in PT_LOAD segments. We ensure this here by removing such
3569 sections from the segment map. We also remove excluded
3570 sections. Finally, any PT_LOAD segment without sections is
3572 m
= &elf_tdata (abfd
)->segment_map
;
3575 unsigned int i
, new_count
;
3577 for (new_count
= 0, i
= 0; i
< (*m
)->count
; i
++)
3579 if (((*m
)->sections
[i
]->flags
& SEC_EXCLUDE
) == 0
3580 && (((*m
)->sections
[i
]->flags
& SEC_ALLOC
) != 0
3581 || (*m
)->p_type
!= PT_LOAD
))
3583 (*m
)->sections
[new_count
] = (*m
)->sections
[i
];
3587 (*m
)->count
= new_count
;
3589 if (remove_empty_load
&& (*m
)->p_type
== PT_LOAD
&& (*m
)->count
== 0)
3595 bed
= get_elf_backend_data (abfd
);
3596 if (bed
->elf_backend_modify_segment_map
!= NULL
)
3598 if (!(*bed
->elf_backend_modify_segment_map
) (abfd
, info
))
3605 /* Set up a mapping from BFD sections to program segments. */
3608 _bfd_elf_map_sections_to_segments (bfd
*abfd
, struct bfd_link_info
*info
)
3611 struct elf_segment_map
*m
;
3612 asection
**sections
= NULL
;
3613 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3614 bfd_boolean no_user_phdrs
;
3616 no_user_phdrs
= elf_tdata (abfd
)->segment_map
== NULL
;
3617 if (no_user_phdrs
&& bfd_count_sections (abfd
) != 0)
3621 struct elf_segment_map
*mfirst
;
3622 struct elf_segment_map
**pm
;
3625 unsigned int phdr_index
;
3626 bfd_vma maxpagesize
;
3628 bfd_boolean phdr_in_segment
= TRUE
;
3629 bfd_boolean writable
;
3631 asection
*first_tls
= NULL
;
3632 asection
*dynsec
, *eh_frame_hdr
;
3635 /* Select the allocated sections, and sort them. */
3637 sections
= bfd_malloc2 (bfd_count_sections (abfd
), sizeof (asection
*));
3638 if (sections
== NULL
)
3642 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3644 if ((s
->flags
& SEC_ALLOC
) != 0)
3650 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3653 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3655 /* Build the mapping. */
3660 /* If we have a .interp section, then create a PT_PHDR segment for
3661 the program headers and a PT_INTERP segment for the .interp
3663 s
= bfd_get_section_by_name (abfd
, ".interp");
3664 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3666 amt
= sizeof (struct elf_segment_map
);
3667 m
= bfd_zalloc (abfd
, amt
);
3671 m
->p_type
= PT_PHDR
;
3672 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3673 m
->p_flags
= PF_R
| PF_X
;
3674 m
->p_flags_valid
= 1;
3675 m
->includes_phdrs
= 1;
3680 amt
= sizeof (struct elf_segment_map
);
3681 m
= bfd_zalloc (abfd
, amt
);
3685 m
->p_type
= PT_INTERP
;
3693 /* Look through the sections. We put sections in the same program
3694 segment when the start of the second section can be placed within
3695 a few bytes of the end of the first section. */
3699 maxpagesize
= bed
->maxpagesize
;
3701 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3703 && (dynsec
->flags
& SEC_LOAD
) == 0)
3706 /* Deal with -Ttext or something similar such that the first section
3707 is not adjacent to the program headers. This is an
3708 approximation, since at this point we don't know exactly how many
3709 program headers we will need. */
3712 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
3714 if (phdr_size
== (bfd_size_type
) -1)
3715 phdr_size
= get_program_header_size (abfd
, info
);
3716 if ((abfd
->flags
& D_PAGED
) == 0
3717 || sections
[0]->lma
< phdr_size
3718 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3719 phdr_in_segment
= FALSE
;
3722 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3725 bfd_boolean new_segment
;
3729 /* See if this section and the last one will fit in the same
3732 if (last_hdr
== NULL
)
3734 /* If we don't have a segment yet, then we don't need a new
3735 one (we build the last one after this loop). */
3736 new_segment
= FALSE
;
3738 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3740 /* If this section has a different relation between the
3741 virtual address and the load address, then we need a new
3745 /* In the next test we have to be careful when last_hdr->lma is close
3746 to the end of the address space. If the aligned address wraps
3747 around to the start of the address space, then there are no more
3748 pages left in memory and it is OK to assume that the current
3749 section can be included in the current segment. */
3750 else if ((BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
) + maxpagesize
3752 && (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
) + maxpagesize
3755 /* If putting this section in this segment would force us to
3756 skip a page in the segment, then we need a new segment. */
3759 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3760 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3762 /* We don't want to put a loadable section after a
3763 nonloadable section in the same segment.
3764 Consider .tbss sections as loadable for this purpose. */
3767 else if ((abfd
->flags
& D_PAGED
) == 0)
3769 /* If the file is not demand paged, which means that we
3770 don't require the sections to be correctly aligned in the
3771 file, then there is no other reason for a new segment. */
3772 new_segment
= FALSE
;
3775 && (hdr
->flags
& SEC_READONLY
) == 0
3776 && (((last_hdr
->lma
+ last_size
- 1)
3777 & ~(maxpagesize
- 1))
3778 != (hdr
->lma
& ~(maxpagesize
- 1))))
3780 /* We don't want to put a writable section in a read only
3781 segment, unless they are on the same page in memory
3782 anyhow. We already know that the last section does not
3783 bring us past the current section on the page, so the
3784 only case in which the new section is not on the same
3785 page as the previous section is when the previous section
3786 ends precisely on a page boundary. */
3791 /* Otherwise, we can use the same segment. */
3792 new_segment
= FALSE
;
3795 /* Allow interested parties a chance to override our decision. */
3796 if (last_hdr
!= NULL
3798 && info
->callbacks
->override_segment_assignment
!= NULL
)
3800 = info
->callbacks
->override_segment_assignment (info
, abfd
, hdr
,
3806 if ((hdr
->flags
& SEC_READONLY
) == 0)
3809 /* .tbss sections effectively have zero size. */
3810 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
))
3811 != SEC_THREAD_LOCAL
)
3812 last_size
= hdr
->size
;
3818 /* We need a new program segment. We must create a new program
3819 header holding all the sections from phdr_index until hdr. */
3821 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3828 if ((hdr
->flags
& SEC_READONLY
) == 0)
3834 /* .tbss sections effectively have zero size. */
3835 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3836 last_size
= hdr
->size
;
3840 phdr_in_segment
= FALSE
;
3843 /* Create a final PT_LOAD program segment. */
3844 if (last_hdr
!= NULL
)
3846 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3854 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3857 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
3864 /* For each batch of consecutive loadable .note sections,
3865 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3866 because if we link together nonloadable .note sections and
3867 loadable .note sections, we will generate two .note sections
3868 in the output file. FIXME: Using names for section types is
3870 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3872 if ((s
->flags
& SEC_LOAD
) != 0
3873 && CONST_STRNEQ (s
->name
, ".note"))
3877 amt
= sizeof (struct elf_segment_map
);
3878 if (s
->alignment_power
== 2)
3879 for (s2
= s
; s2
->next
!= NULL
; s2
= s2
->next
)
3881 if (s2
->next
->alignment_power
== 2
3882 && (s2
->next
->flags
& SEC_LOAD
) != 0
3883 && CONST_STRNEQ (s2
->next
->name
, ".note")
3884 && align_power (s2
->vma
+ s2
->size
, 2)
3890 amt
+= (count
- 1) * sizeof (asection
*);
3891 m
= bfd_zalloc (abfd
, amt
);
3895 m
->p_type
= PT_NOTE
;
3899 m
->sections
[m
->count
- count
--] = s
;
3900 BFD_ASSERT ((s
->flags
& SEC_THREAD_LOCAL
) == 0);
3903 m
->sections
[m
->count
- 1] = s
;
3904 BFD_ASSERT ((s
->flags
& SEC_THREAD_LOCAL
) == 0);
3908 if (s
->flags
& SEC_THREAD_LOCAL
)
3916 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3921 amt
= sizeof (struct elf_segment_map
);
3922 amt
+= (tls_count
- 1) * sizeof (asection
*);
3923 m
= bfd_zalloc (abfd
, amt
);
3928 m
->count
= tls_count
;
3929 /* Mandated PF_R. */
3931 m
->p_flags_valid
= 1;
3932 for (i
= 0; i
< tls_count
; ++i
)
3934 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
3935 m
->sections
[i
] = first_tls
;
3936 first_tls
= first_tls
->next
;
3943 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3945 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
3946 if (eh_frame_hdr
!= NULL
3947 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
3949 amt
= sizeof (struct elf_segment_map
);
3950 m
= bfd_zalloc (abfd
, amt
);
3954 m
->p_type
= PT_GNU_EH_FRAME
;
3956 m
->sections
[0] = eh_frame_hdr
->output_section
;
3962 if (elf_tdata (abfd
)->stack_flags
)
3964 amt
= sizeof (struct elf_segment_map
);
3965 m
= bfd_zalloc (abfd
, amt
);
3969 m
->p_type
= PT_GNU_STACK
;
3970 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
3971 m
->p_flags_valid
= 1;
3977 if (info
!= NULL
&& info
->relro
)
3979 for (m
= mfirst
; m
!= NULL
; m
= m
->next
)
3981 if (m
->p_type
== PT_LOAD
)
3983 asection
*last
= m
->sections
[m
->count
- 1];
3984 bfd_vma vaddr
= m
->sections
[0]->vma
;
3985 bfd_vma filesz
= last
->vma
- vaddr
+ last
->size
;
3987 if (vaddr
< info
->relro_end
3988 && vaddr
>= info
->relro_start
3989 && (vaddr
+ filesz
) >= info
->relro_end
)
3994 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
3997 amt
= sizeof (struct elf_segment_map
);
3998 m
= bfd_zalloc (abfd
, amt
);
4002 m
->p_type
= PT_GNU_RELRO
;
4004 m
->p_flags_valid
= 1;
4012 elf_tdata (abfd
)->segment_map
= mfirst
;
4015 if (!elf_modify_segment_map (abfd
, info
, no_user_phdrs
))
4018 for (count
= 0, m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4020 elf_tdata (abfd
)->program_header_size
= count
* bed
->s
->sizeof_phdr
;
4025 if (sections
!= NULL
)
4030 /* Sort sections by address. */
4033 elf_sort_sections (const void *arg1
, const void *arg2
)
4035 const asection
*sec1
= *(const asection
**) arg1
;
4036 const asection
*sec2
= *(const asection
**) arg2
;
4037 bfd_size_type size1
, size2
;
4039 /* Sort by LMA first, since this is the address used to
4040 place the section into a segment. */
4041 if (sec1
->lma
< sec2
->lma
)
4043 else if (sec1
->lma
> sec2
->lma
)
4046 /* Then sort by VMA. Normally the LMA and the VMA will be
4047 the same, and this will do nothing. */
4048 if (sec1
->vma
< sec2
->vma
)
4050 else if (sec1
->vma
> sec2
->vma
)
4053 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4055 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4061 /* If the indicies are the same, do not return 0
4062 here, but continue to try the next comparison. */
4063 if (sec1
->target_index
- sec2
->target_index
!= 0)
4064 return sec1
->target_index
- sec2
->target_index
;
4069 else if (TOEND (sec2
))
4074 /* Sort by size, to put zero sized sections
4075 before others at the same address. */
4077 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
4078 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
4085 return sec1
->target_index
- sec2
->target_index
;
4088 /* Ian Lance Taylor writes:
4090 We shouldn't be using % with a negative signed number. That's just
4091 not good. We have to make sure either that the number is not
4092 negative, or that the number has an unsigned type. When the types
4093 are all the same size they wind up as unsigned. When file_ptr is a
4094 larger signed type, the arithmetic winds up as signed long long,
4097 What we're trying to say here is something like ``increase OFF by
4098 the least amount that will cause it to be equal to the VMA modulo
4100 /* In other words, something like:
4102 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4103 off_offset = off % bed->maxpagesize;
4104 if (vma_offset < off_offset)
4105 adjustment = vma_offset + bed->maxpagesize - off_offset;
4107 adjustment = vma_offset - off_offset;
4109 which can can be collapsed into the expression below. */
4112 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4114 return ((vma
- off
) % maxpagesize
);
4118 print_segment_map (const struct elf_segment_map
*m
)
4121 const char *pt
= get_segment_type (m
->p_type
);
4126 if (m
->p_type
>= PT_LOPROC
&& m
->p_type
<= PT_HIPROC
)
4127 sprintf (buf
, "LOPROC+%7.7x",
4128 (unsigned int) (m
->p_type
- PT_LOPROC
));
4129 else if (m
->p_type
>= PT_LOOS
&& m
->p_type
<= PT_HIOS
)
4130 sprintf (buf
, "LOOS+%7.7x",
4131 (unsigned int) (m
->p_type
- PT_LOOS
));
4133 snprintf (buf
, sizeof (buf
), "%8.8x",
4134 (unsigned int) m
->p_type
);
4137 fprintf (stderr
, "%s:", pt
);
4138 for (j
= 0; j
< m
->count
; j
++)
4139 fprintf (stderr
, " %s", m
->sections
[j
]->name
);
4143 /* Assign file positions to the sections based on the mapping from
4144 sections to segments. This function also sets up some fields in
4148 assign_file_positions_for_load_sections (bfd
*abfd
,
4149 struct bfd_link_info
*link_info
)
4151 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4152 struct elf_segment_map
*m
;
4153 Elf_Internal_Phdr
*phdrs
;
4154 Elf_Internal_Phdr
*p
;
4156 bfd_size_type maxpagesize
;
4160 if (link_info
== NULL
4161 && !_bfd_elf_map_sections_to_segments (abfd
, link_info
))
4165 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4168 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4169 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4170 elf_elfheader (abfd
)->e_phnum
= alloc
;
4172 if (elf_tdata (abfd
)->program_header_size
== (bfd_size_type
) -1)
4173 elf_tdata (abfd
)->program_header_size
= alloc
* bed
->s
->sizeof_phdr
;
4175 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
4176 >= alloc
* bed
->s
->sizeof_phdr
);
4180 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4184 phdrs
= bfd_alloc2 (abfd
, alloc
, sizeof (Elf_Internal_Phdr
));
4185 elf_tdata (abfd
)->phdr
= phdrs
;
4190 if ((abfd
->flags
& D_PAGED
) != 0)
4191 maxpagesize
= bed
->maxpagesize
;
4193 off
= bed
->s
->sizeof_ehdr
;
4194 off
+= alloc
* bed
->s
->sizeof_phdr
;
4196 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
, j
= 0;
4198 m
= m
->next
, p
++, j
++)
4202 bfd_boolean no_contents
;
4204 /* If elf_segment_map is not from map_sections_to_segments, the
4205 sections may not be correctly ordered. NOTE: sorting should
4206 not be done to the PT_NOTE section of a corefile, which may
4207 contain several pseudo-sections artificially created by bfd.
4208 Sorting these pseudo-sections breaks things badly. */
4210 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4211 && m
->p_type
== PT_NOTE
))
4212 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4215 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4216 number of sections with contents contributing to both p_filesz
4217 and p_memsz, followed by a number of sections with no contents
4218 that just contribute to p_memsz. In this loop, OFF tracks next
4219 available file offset for PT_LOAD and PT_NOTE segments. */
4220 p
->p_type
= m
->p_type
;
4221 p
->p_flags
= m
->p_flags
;
4226 p
->p_vaddr
= m
->sections
[0]->vma
- m
->p_vaddr_offset
;
4228 if (m
->p_paddr_valid
)
4229 p
->p_paddr
= m
->p_paddr
;
4230 else if (m
->count
== 0)
4233 p
->p_paddr
= m
->sections
[0]->lma
- m
->p_vaddr_offset
;
4235 if (p
->p_type
== PT_LOAD
4236 && (abfd
->flags
& D_PAGED
) != 0)
4238 /* p_align in demand paged PT_LOAD segments effectively stores
4239 the maximum page size. When copying an executable with
4240 objcopy, we set m->p_align from the input file. Use this
4241 value for maxpagesize rather than bed->maxpagesize, which
4242 may be different. Note that we use maxpagesize for PT_TLS
4243 segment alignment later in this function, so we are relying
4244 on at least one PT_LOAD segment appearing before a PT_TLS
4246 if (m
->p_align_valid
)
4247 maxpagesize
= m
->p_align
;
4249 p
->p_align
= maxpagesize
;
4251 else if (m
->p_align_valid
)
4252 p
->p_align
= m
->p_align
;
4253 else if (m
->count
== 0)
4254 p
->p_align
= 1 << bed
->s
->log_file_align
;
4258 no_contents
= FALSE
;
4260 if (p
->p_type
== PT_LOAD
4263 bfd_size_type align
;
4264 unsigned int align_power
= 0;
4266 if (m
->p_align_valid
)
4270 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4272 unsigned int secalign
;
4274 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4275 if (secalign
> align_power
)
4276 align_power
= secalign
;
4278 align
= (bfd_size_type
) 1 << align_power
;
4279 if (align
< maxpagesize
)
4280 align
= maxpagesize
;
4283 for (i
= 0; i
< m
->count
; i
++)
4284 if ((m
->sections
[i
]->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
4285 /* If we aren't making room for this section, then
4286 it must be SHT_NOBITS regardless of what we've
4287 set via struct bfd_elf_special_section. */
4288 elf_section_type (m
->sections
[i
]) = SHT_NOBITS
;
4290 /* Find out whether this segment contains any loadable
4293 for (i
= 0; i
< m
->count
; i
++)
4294 if (elf_section_type (m
->sections
[i
]) != SHT_NOBITS
)
4296 no_contents
= FALSE
;
4300 off_adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
4304 /* We shouldn't need to align the segment on disk since
4305 the segment doesn't need file space, but the gABI
4306 arguably requires the alignment and glibc ld.so
4307 checks it. So to comply with the alignment
4308 requirement but not waste file space, we adjust
4309 p_offset for just this segment. (OFF_ADJUST is
4310 subtracted from OFF later.) This may put p_offset
4311 past the end of file, but that shouldn't matter. */
4316 /* Make sure the .dynamic section is the first section in the
4317 PT_DYNAMIC segment. */
4318 else if (p
->p_type
== PT_DYNAMIC
4320 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4323 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4325 bfd_set_error (bfd_error_bad_value
);
4328 /* Set the note section type to SHT_NOTE. */
4329 else if (p
->p_type
== PT_NOTE
)
4330 for (i
= 0; i
< m
->count
; i
++)
4331 elf_section_type (m
->sections
[i
]) = SHT_NOTE
;
4337 if (m
->includes_filehdr
)
4339 if (!m
->p_flags_valid
)
4341 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4342 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4345 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4347 if (p
->p_vaddr
< (bfd_vma
) off
)
4349 (*_bfd_error_handler
)
4350 (_("%B: Not enough room for program headers, try linking with -N"),
4352 bfd_set_error (bfd_error_bad_value
);
4357 if (!m
->p_paddr_valid
)
4362 if (m
->includes_phdrs
)
4364 if (!m
->p_flags_valid
)
4367 if (!m
->includes_filehdr
)
4369 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4373 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4374 p
->p_vaddr
-= off
- p
->p_offset
;
4375 if (!m
->p_paddr_valid
)
4376 p
->p_paddr
-= off
- p
->p_offset
;
4380 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4381 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4384 if (p
->p_type
== PT_LOAD
4385 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4387 if (!m
->includes_filehdr
&& !m
->includes_phdrs
)
4393 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4395 p
->p_filesz
+= adjust
;
4396 p
->p_memsz
+= adjust
;
4400 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4401 maps. Set filepos for sections in PT_LOAD segments, and in
4402 core files, for sections in PT_NOTE segments.
4403 assign_file_positions_for_non_load_sections will set filepos
4404 for other sections and update p_filesz for other segments. */
4405 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4408 bfd_size_type align
;
4409 Elf_Internal_Shdr
*this_hdr
;
4412 this_hdr
= &elf_section_data (sec
)->this_hdr
;
4413 align
= (bfd_size_type
) 1 << bfd_get_section_alignment (abfd
, sec
);
4415 if ((p
->p_type
== PT_LOAD
4416 || p
->p_type
== PT_TLS
)
4417 && (this_hdr
->sh_type
!= SHT_NOBITS
4418 || ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0
4419 && ((this_hdr
->sh_flags
& SHF_TLS
) == 0
4420 || p
->p_type
== PT_TLS
))))
4422 bfd_signed_vma adjust
= sec
->vma
- (p
->p_vaddr
+ p
->p_memsz
);
4426 (*_bfd_error_handler
)
4427 (_("%B: section %A vma 0x%lx overlaps previous sections"),
4428 abfd
, sec
, (unsigned long) sec
->vma
);
4431 p
->p_memsz
+= adjust
;
4433 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4436 p
->p_filesz
+= adjust
;
4440 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4442 /* The section at i == 0 is the one that actually contains
4446 this_hdr
->sh_offset
= sec
->filepos
= off
;
4447 off
+= this_hdr
->sh_size
;
4448 p
->p_filesz
= this_hdr
->sh_size
;
4454 /* The rest are fake sections that shouldn't be written. */
4463 if (p
->p_type
== PT_LOAD
)
4465 this_hdr
->sh_offset
= sec
->filepos
= off
;
4466 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4467 off
+= this_hdr
->sh_size
;
4470 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4472 p
->p_filesz
+= this_hdr
->sh_size
;
4473 /* A load section without SHF_ALLOC is something like
4474 a note section in a PT_NOTE segment. These take
4475 file space but are not loaded into memory. */
4476 if ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0)
4477 p
->p_memsz
+= this_hdr
->sh_size
;
4479 else if ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0)
4481 if (p
->p_type
== PT_TLS
)
4482 p
->p_memsz
+= this_hdr
->sh_size
;
4484 /* .tbss is special. It doesn't contribute to p_memsz of
4486 else if ((this_hdr
->sh_flags
& SHF_TLS
) == 0)
4487 p
->p_memsz
+= this_hdr
->sh_size
;
4490 if (align
> p
->p_align
4491 && !m
->p_align_valid
4492 && (p
->p_type
!= PT_LOAD
4493 || (abfd
->flags
& D_PAGED
) == 0))
4497 if (!m
->p_flags_valid
)
4500 if ((this_hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
4502 if ((this_hdr
->sh_flags
& SHF_WRITE
) != 0)
4508 /* Check that all sections are in a PT_LOAD segment.
4509 Don't check funky gdb generated core files. */
4510 if (p
->p_type
== PT_LOAD
&& bfd_get_format (abfd
) != bfd_core
)
4511 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4513 Elf_Internal_Shdr
*this_hdr
;
4517 this_hdr
= &(elf_section_data(sec
)->this_hdr
);
4518 if (this_hdr
->sh_size
!= 0
4519 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, p
))
4521 (*_bfd_error_handler
)
4522 (_("%B: section `%A' can't be allocated in segment %d"),
4524 print_segment_map (m
);
4525 bfd_set_error (bfd_error_bad_value
);
4531 elf_tdata (abfd
)->next_file_pos
= off
;
4535 /* Assign file positions for the other sections. */
4538 assign_file_positions_for_non_load_sections (bfd
*abfd
,
4539 struct bfd_link_info
*link_info
)
4541 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4542 Elf_Internal_Shdr
**i_shdrpp
;
4543 Elf_Internal_Shdr
**hdrpp
;
4544 Elf_Internal_Phdr
*phdrs
;
4545 Elf_Internal_Phdr
*p
;
4546 struct elf_segment_map
*m
;
4547 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4548 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4550 unsigned int num_sec
;
4554 i_shdrpp
= elf_elfsections (abfd
);
4555 num_sec
= elf_numsections (abfd
);
4556 off
= elf_tdata (abfd
)->next_file_pos
;
4557 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4559 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4560 Elf_Internal_Shdr
*hdr
;
4563 if (hdr
->bfd_section
!= NULL
4564 && (hdr
->bfd_section
->filepos
!= 0
4565 || (hdr
->sh_type
== SHT_NOBITS
4566 && hdr
->contents
== NULL
)))
4567 BFD_ASSERT (hdr
->sh_offset
== hdr
->bfd_section
->filepos
);
4568 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4570 if (hdr
->sh_size
!= 0)
4571 ((*_bfd_error_handler
)
4572 (_("%B: warning: allocated section `%s' not in segment"),
4574 (hdr
->bfd_section
== NULL
4576 : hdr
->bfd_section
->name
)));
4577 /* We don't need to page align empty sections. */
4578 if ((abfd
->flags
& D_PAGED
) != 0 && hdr
->sh_size
!= 0)
4579 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4582 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4584 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4587 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4588 && hdr
->bfd_section
== NULL
)
4589 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4590 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4591 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4592 hdr
->sh_offset
= -1;
4594 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4597 /* Now that we have set the section file positions, we can set up
4598 the file positions for the non PT_LOAD segments. */
4602 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4604 phdrs
= elf_tdata (abfd
)->phdr
;
4605 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4610 if (p
->p_type
!= PT_LOAD
)
4613 if (m
->includes_filehdr
)
4615 filehdr_vaddr
= p
->p_vaddr
;
4616 filehdr_paddr
= p
->p_paddr
;
4618 if (m
->includes_phdrs
)
4620 phdrs_vaddr
= p
->p_vaddr
;
4621 phdrs_paddr
= p
->p_paddr
;
4622 if (m
->includes_filehdr
)
4624 phdrs_vaddr
+= bed
->s
->sizeof_ehdr
;
4625 phdrs_paddr
+= bed
->s
->sizeof_ehdr
;
4630 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4636 if (p
->p_type
!= PT_LOAD
4637 && (p
->p_type
!= PT_NOTE
4638 || bfd_get_format (abfd
) != bfd_core
))
4640 Elf_Internal_Shdr
*hdr
;
4643 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4645 sect
= m
->sections
[m
->count
- 1];
4646 hdr
= &elf_section_data (sect
)->this_hdr
;
4647 p
->p_filesz
= sect
->filepos
- m
->sections
[0]->filepos
;
4648 if (hdr
->sh_type
!= SHT_NOBITS
)
4649 p
->p_filesz
+= hdr
->sh_size
;
4651 if (p
->p_type
== PT_GNU_RELRO
)
4653 /* When we get here, we are copying executable
4654 or shared library. But we need to use the same
4656 Elf_Internal_Phdr
*lp
;
4658 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4660 if (lp
->p_type
== PT_LOAD
4661 && lp
->p_paddr
== p
->p_paddr
)
4665 if (lp
< phdrs
+ count
)
4667 /* We should use p_size if it is valid since it
4668 may contain the first few bytes of the next
4669 SEC_ALLOC section. */
4670 if (m
->p_size_valid
)
4671 p
->p_filesz
= m
->p_size
;
4674 p
->p_vaddr
= lp
->p_vaddr
;
4675 p
->p_offset
= lp
->p_offset
;
4676 p
->p_memsz
= p
->p_filesz
;
4683 p
->p_offset
= m
->sections
[0]->filepos
;
4688 if (m
->includes_filehdr
)
4690 p
->p_vaddr
= filehdr_vaddr
;
4691 if (! m
->p_paddr_valid
)
4692 p
->p_paddr
= filehdr_paddr
;
4694 else if (m
->includes_phdrs
)
4696 p
->p_vaddr
= phdrs_vaddr
;
4697 if (! m
->p_paddr_valid
)
4698 p
->p_paddr
= phdrs_paddr
;
4700 else if (p
->p_type
== PT_GNU_RELRO
)
4702 Elf_Internal_Phdr
*lp
;
4704 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4706 if (lp
->p_type
== PT_LOAD
4707 && lp
->p_vaddr
<= link_info
->relro_end
4708 && lp
->p_vaddr
>= link_info
->relro_start
4709 && (lp
->p_vaddr
+ lp
->p_filesz
4710 >= link_info
->relro_end
))
4714 if (lp
< phdrs
+ count
4715 && link_info
->relro_end
> lp
->p_vaddr
)
4717 p
->p_vaddr
= lp
->p_vaddr
;
4718 p
->p_paddr
= lp
->p_paddr
;
4719 p
->p_offset
= lp
->p_offset
;
4720 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4721 p
->p_memsz
= p
->p_filesz
;
4723 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4727 memset (p
, 0, sizeof *p
);
4728 p
->p_type
= PT_NULL
;
4734 elf_tdata (abfd
)->next_file_pos
= off
;
4739 /* Work out the file positions of all the sections. This is called by
4740 _bfd_elf_compute_section_file_positions. All the section sizes and
4741 VMAs must be known before this is called.
4743 Reloc sections come in two flavours: Those processed specially as
4744 "side-channel" data attached to a section to which they apply, and
4745 those that bfd doesn't process as relocations. The latter sort are
4746 stored in a normal bfd section by bfd_section_from_shdr. We don't
4747 consider the former sort here, unless they form part of the loadable
4748 image. Reloc sections not assigned here will be handled later by
4749 assign_file_positions_for_relocs.
4751 We also don't set the positions of the .symtab and .strtab here. */
4754 assign_file_positions_except_relocs (bfd
*abfd
,
4755 struct bfd_link_info
*link_info
)
4757 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4758 Elf_Internal_Ehdr
*i_ehdrp
= elf_elfheader (abfd
);
4760 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4762 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4763 && bfd_get_format (abfd
) != bfd_core
)
4765 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4766 unsigned int num_sec
= elf_numsections (abfd
);
4767 Elf_Internal_Shdr
**hdrpp
;
4770 /* Start after the ELF header. */
4771 off
= i_ehdrp
->e_ehsize
;
4773 /* We are not creating an executable, which means that we are
4774 not creating a program header, and that the actual order of
4775 the sections in the file is unimportant. */
4776 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4778 Elf_Internal_Shdr
*hdr
;
4781 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4782 && hdr
->bfd_section
== NULL
)
4783 || i
== tdata
->symtab_section
4784 || i
== tdata
->symtab_shndx_section
4785 || i
== tdata
->strtab_section
)
4787 hdr
->sh_offset
= -1;
4790 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4797 /* Assign file positions for the loaded sections based on the
4798 assignment of sections to segments. */
4799 if (!assign_file_positions_for_load_sections (abfd
, link_info
))
4802 /* And for non-load sections. */
4803 if (!assign_file_positions_for_non_load_sections (abfd
, link_info
))
4806 if (bed
->elf_backend_modify_program_headers
!= NULL
)
4808 if (!(*bed
->elf_backend_modify_program_headers
) (abfd
, link_info
))
4812 /* Write out the program headers. */
4813 alloc
= tdata
->program_header_size
/ bed
->s
->sizeof_phdr
;
4814 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4815 || bed
->s
->write_out_phdrs (abfd
, tdata
->phdr
, alloc
) != 0)
4818 off
= tdata
->next_file_pos
;
4821 /* Place the section headers. */
4822 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4823 i_ehdrp
->e_shoff
= off
;
4824 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4826 tdata
->next_file_pos
= off
;
4832 prep_headers (bfd
*abfd
)
4834 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4835 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4836 struct elf_strtab_hash
*shstrtab
;
4837 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4839 i_ehdrp
= elf_elfheader (abfd
);
4841 shstrtab
= _bfd_elf_strtab_init ();
4842 if (shstrtab
== NULL
)
4845 elf_shstrtab (abfd
) = shstrtab
;
4847 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4848 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4849 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4850 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4852 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4853 i_ehdrp
->e_ident
[EI_DATA
] =
4854 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4855 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4857 if ((abfd
->flags
& DYNAMIC
) != 0)
4858 i_ehdrp
->e_type
= ET_DYN
;
4859 else if ((abfd
->flags
& EXEC_P
) != 0)
4860 i_ehdrp
->e_type
= ET_EXEC
;
4861 else if (bfd_get_format (abfd
) == bfd_core
)
4862 i_ehdrp
->e_type
= ET_CORE
;
4864 i_ehdrp
->e_type
= ET_REL
;
4866 switch (bfd_get_arch (abfd
))
4868 case bfd_arch_unknown
:
4869 i_ehdrp
->e_machine
= EM_NONE
;
4872 /* There used to be a long list of cases here, each one setting
4873 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4874 in the corresponding bfd definition. To avoid duplication,
4875 the switch was removed. Machines that need special handling
4876 can generally do it in elf_backend_final_write_processing(),
4877 unless they need the information earlier than the final write.
4878 Such need can generally be supplied by replacing the tests for
4879 e_machine with the conditions used to determine it. */
4881 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4884 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4885 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4887 /* No program header, for now. */
4888 i_ehdrp
->e_phoff
= 0;
4889 i_ehdrp
->e_phentsize
= 0;
4890 i_ehdrp
->e_phnum
= 0;
4892 /* Each bfd section is section header entry. */
4893 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4894 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4896 /* If we're building an executable, we'll need a program header table. */
4897 if (abfd
->flags
& EXEC_P
)
4898 /* It all happens later. */
4902 i_ehdrp
->e_phentsize
= 0;
4904 i_ehdrp
->e_phoff
= 0;
4907 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4908 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4909 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4910 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4911 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4912 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4913 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4914 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4915 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4921 /* Assign file positions for all the reloc sections which are not part
4922 of the loadable file image. */
4925 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4928 unsigned int i
, num_sec
;
4929 Elf_Internal_Shdr
**shdrpp
;
4931 off
= elf_tdata (abfd
)->next_file_pos
;
4933 num_sec
= elf_numsections (abfd
);
4934 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
4936 Elf_Internal_Shdr
*shdrp
;
4939 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
4940 && shdrp
->sh_offset
== -1)
4941 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
4944 elf_tdata (abfd
)->next_file_pos
= off
;
4948 _bfd_elf_write_object_contents (bfd
*abfd
)
4950 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4951 Elf_Internal_Ehdr
*i_ehdrp
;
4952 Elf_Internal_Shdr
**i_shdrp
;
4954 unsigned int count
, num_sec
;
4956 if (! abfd
->output_has_begun
4957 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
4960 i_shdrp
= elf_elfsections (abfd
);
4961 i_ehdrp
= elf_elfheader (abfd
);
4964 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
4968 _bfd_elf_assign_file_positions_for_relocs (abfd
);
4970 /* After writing the headers, we need to write the sections too... */
4971 num_sec
= elf_numsections (abfd
);
4972 for (count
= 1; count
< num_sec
; count
++)
4974 if (bed
->elf_backend_section_processing
)
4975 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
4976 if (i_shdrp
[count
]->contents
)
4978 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
4980 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
4981 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
4986 /* Write out the section header names. */
4987 if (elf_shstrtab (abfd
) != NULL
4988 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
4989 || !_bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
4992 if (bed
->elf_backend_final_write_processing
)
4993 (*bed
->elf_backend_final_write_processing
) (abfd
,
4994 elf_tdata (abfd
)->linker
);
4996 if (!bed
->s
->write_shdrs_and_ehdr (abfd
))
4999 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5000 if (elf_tdata (abfd
)->after_write_object_contents
)
5001 return (*elf_tdata (abfd
)->after_write_object_contents
) (abfd
);
5007 _bfd_elf_write_corefile_contents (bfd
*abfd
)
5009 /* Hopefully this can be done just like an object file. */
5010 return _bfd_elf_write_object_contents (abfd
);
5013 /* Given a section, search the header to find them. */
5016 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
5018 const struct elf_backend_data
*bed
;
5021 if (elf_section_data (asect
) != NULL
5022 && elf_section_data (asect
)->this_idx
!= 0)
5023 return elf_section_data (asect
)->this_idx
;
5025 if (bfd_is_abs_section (asect
))
5027 else if (bfd_is_com_section (asect
))
5029 else if (bfd_is_und_section (asect
))
5034 bed
= get_elf_backend_data (abfd
);
5035 if (bed
->elf_backend_section_from_bfd_section
)
5039 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
5043 if (index
== SHN_BAD
)
5044 bfd_set_error (bfd_error_nonrepresentable_section
);
5049 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5053 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
5055 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5057 flagword flags
= asym_ptr
->flags
;
5059 /* When gas creates relocations against local labels, it creates its
5060 own symbol for the section, but does put the symbol into the
5061 symbol chain, so udata is 0. When the linker is generating
5062 relocatable output, this section symbol may be for one of the
5063 input sections rather than the output section. */
5064 if (asym_ptr
->udata
.i
== 0
5065 && (flags
& BSF_SECTION_SYM
)
5066 && asym_ptr
->section
)
5071 sec
= asym_ptr
->section
;
5072 if (sec
->owner
!= abfd
&& sec
->output_section
!= NULL
)
5073 sec
= sec
->output_section
;
5074 if (sec
->owner
== abfd
5075 && (indx
= sec
->index
) < elf_num_section_syms (abfd
)
5076 && elf_section_syms (abfd
)[indx
] != NULL
)
5077 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5080 idx
= asym_ptr
->udata
.i
;
5084 /* This case can occur when using --strip-symbol on a symbol
5085 which is used in a relocation entry. */
5086 (*_bfd_error_handler
)
5087 (_("%B: symbol `%s' required but not present"),
5088 abfd
, bfd_asymbol_name (asym_ptr
));
5089 bfd_set_error (bfd_error_no_symbols
);
5096 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5097 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
5098 elf_symbol_flags (flags
));
5106 /* Rewrite program header information. */
5109 rewrite_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5111 Elf_Internal_Ehdr
*iehdr
;
5112 struct elf_segment_map
*map
;
5113 struct elf_segment_map
*map_first
;
5114 struct elf_segment_map
**pointer_to_map
;
5115 Elf_Internal_Phdr
*segment
;
5118 unsigned int num_segments
;
5119 bfd_boolean phdr_included
= FALSE
;
5120 bfd_boolean p_paddr_valid
;
5121 bfd_vma maxpagesize
;
5122 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5123 unsigned int phdr_adjust_num
= 0;
5124 const struct elf_backend_data
*bed
;
5126 bed
= get_elf_backend_data (ibfd
);
5127 iehdr
= elf_elfheader (ibfd
);
5130 pointer_to_map
= &map_first
;
5132 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5133 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5135 /* Returns the end address of the segment + 1. */
5136 #define SEGMENT_END(segment, start) \
5137 (start + (segment->p_memsz > segment->p_filesz \
5138 ? segment->p_memsz : segment->p_filesz))
5140 #define SECTION_SIZE(section, segment) \
5141 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5142 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5143 ? section->size : 0)
5145 /* Returns TRUE if the given section is contained within
5146 the given segment. VMA addresses are compared. */
5147 #define IS_CONTAINED_BY_VMA(section, segment) \
5148 (section->vma >= segment->p_vaddr \
5149 && (section->vma + SECTION_SIZE (section, segment) \
5150 <= (SEGMENT_END (segment, segment->p_vaddr))))
5152 /* Returns TRUE if the given section is contained within
5153 the given segment. LMA addresses are compared. */
5154 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5155 (section->lma >= base \
5156 && (section->lma + SECTION_SIZE (section, segment) \
5157 <= SEGMENT_END (segment, base)))
5159 /* Handle PT_NOTE segment. */
5160 #define IS_NOTE(p, s) \
5161 (p->p_type == PT_NOTE \
5162 && elf_section_type (s) == SHT_NOTE \
5163 && (bfd_vma) s->filepos >= p->p_offset \
5164 && ((bfd_vma) s->filepos + s->size \
5165 <= p->p_offset + p->p_filesz))
5167 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5169 #define IS_COREFILE_NOTE(p, s) \
5171 && bfd_get_format (ibfd) == bfd_core \
5175 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5176 linker, which generates a PT_INTERP section with p_vaddr and
5177 p_memsz set to 0. */
5178 #define IS_SOLARIS_PT_INTERP(p, s) \
5180 && p->p_paddr == 0 \
5181 && p->p_memsz == 0 \
5182 && p->p_filesz > 0 \
5183 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5185 && (bfd_vma) s->filepos >= p->p_offset \
5186 && ((bfd_vma) s->filepos + s->size \
5187 <= p->p_offset + p->p_filesz))
5189 /* Decide if the given section should be included in the given segment.
5190 A section will be included if:
5191 1. It is within the address space of the segment -- we use the LMA
5192 if that is set for the segment and the VMA otherwise,
5193 2. It is an allocated section or a NOTE section in a PT_NOTE
5195 3. There is an output section associated with it,
5196 4. The section has not already been allocated to a previous segment.
5197 5. PT_GNU_STACK segments do not include any sections.
5198 6. PT_TLS segment includes only SHF_TLS sections.
5199 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5200 8. PT_DYNAMIC should not contain empty sections at the beginning
5201 (with the possible exception of .dynamic). */
5202 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5203 ((((segment->p_paddr \
5204 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5205 : IS_CONTAINED_BY_VMA (section, segment)) \
5206 && (section->flags & SEC_ALLOC) != 0) \
5207 || IS_NOTE (segment, section)) \
5208 && segment->p_type != PT_GNU_STACK \
5209 && (segment->p_type != PT_TLS \
5210 || (section->flags & SEC_THREAD_LOCAL)) \
5211 && (segment->p_type == PT_LOAD \
5212 || segment->p_type == PT_TLS \
5213 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5214 && (segment->p_type != PT_DYNAMIC \
5215 || SECTION_SIZE (section, segment) > 0 \
5216 || (segment->p_paddr \
5217 ? segment->p_paddr != section->lma \
5218 : segment->p_vaddr != section->vma) \
5219 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5221 && !section->segment_mark)
5223 /* If the output section of a section in the input segment is NULL,
5224 it is removed from the corresponding output segment. */
5225 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5226 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5227 && section->output_section != NULL)
5229 /* Returns TRUE iff seg1 starts after the end of seg2. */
5230 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5231 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5233 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5234 their VMA address ranges and their LMA address ranges overlap.
5235 It is possible to have overlapping VMA ranges without overlapping LMA
5236 ranges. RedBoot images for example can have both .data and .bss mapped
5237 to the same VMA range, but with the .data section mapped to a different
5239 #define SEGMENT_OVERLAPS(seg1, seg2) \
5240 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5241 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5242 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5243 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5245 /* Initialise the segment mark field. */
5246 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5247 section
->segment_mark
= FALSE
;
5249 /* The Solaris linker creates program headers in which all the
5250 p_paddr fields are zero. When we try to objcopy or strip such a
5251 file, we get confused. Check for this case, and if we find it
5252 don't set the p_paddr_valid fields. */
5253 p_paddr_valid
= FALSE
;
5254 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5257 if (segment
->p_paddr
!= 0)
5259 p_paddr_valid
= TRUE
;
5263 /* Scan through the segments specified in the program header
5264 of the input BFD. For this first scan we look for overlaps
5265 in the loadable segments. These can be created by weird
5266 parameters to objcopy. Also, fix some solaris weirdness. */
5267 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5272 Elf_Internal_Phdr
*segment2
;
5274 if (segment
->p_type
== PT_INTERP
)
5275 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5276 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5278 /* Mininal change so that the normal section to segment
5279 assignment code will work. */
5280 segment
->p_vaddr
= section
->vma
;
5284 if (segment
->p_type
!= PT_LOAD
)
5286 /* Remove PT_GNU_RELRO segment. */
5287 if (segment
->p_type
== PT_GNU_RELRO
)
5288 segment
->p_type
= PT_NULL
;
5292 /* Determine if this segment overlaps any previous segments. */
5293 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5295 bfd_signed_vma extra_length
;
5297 if (segment2
->p_type
!= PT_LOAD
5298 || !SEGMENT_OVERLAPS (segment
, segment2
))
5301 /* Merge the two segments together. */
5302 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5304 /* Extend SEGMENT2 to include SEGMENT and then delete
5306 extra_length
= (SEGMENT_END (segment
, segment
->p_vaddr
)
5307 - SEGMENT_END (segment2
, segment2
->p_vaddr
));
5309 if (extra_length
> 0)
5311 segment2
->p_memsz
+= extra_length
;
5312 segment2
->p_filesz
+= extra_length
;
5315 segment
->p_type
= PT_NULL
;
5317 /* Since we have deleted P we must restart the outer loop. */
5319 segment
= elf_tdata (ibfd
)->phdr
;
5324 /* Extend SEGMENT to include SEGMENT2 and then delete
5326 extra_length
= (SEGMENT_END (segment2
, segment2
->p_vaddr
)
5327 - SEGMENT_END (segment
, segment
->p_vaddr
));
5329 if (extra_length
> 0)
5331 segment
->p_memsz
+= extra_length
;
5332 segment
->p_filesz
+= extra_length
;
5335 segment2
->p_type
= PT_NULL
;
5340 /* The second scan attempts to assign sections to segments. */
5341 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5345 unsigned int section_count
;
5346 asection
**sections
;
5347 asection
*output_section
;
5349 bfd_vma matching_lma
;
5350 bfd_vma suggested_lma
;
5353 asection
*first_section
;
5354 bfd_boolean first_matching_lma
;
5355 bfd_boolean first_suggested_lma
;
5357 if (segment
->p_type
== PT_NULL
)
5360 first_section
= NULL
;
5361 /* Compute how many sections might be placed into this segment. */
5362 for (section
= ibfd
->sections
, section_count
= 0;
5364 section
= section
->next
)
5366 /* Find the first section in the input segment, which may be
5367 removed from the corresponding output segment. */
5368 if (IS_SECTION_IN_INPUT_SEGMENT (section
, segment
, bed
))
5370 if (first_section
== NULL
)
5371 first_section
= section
;
5372 if (section
->output_section
!= NULL
)
5377 /* Allocate a segment map big enough to contain
5378 all of the sections we have selected. */
5379 amt
= sizeof (struct elf_segment_map
);
5380 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5381 map
= bfd_zalloc (obfd
, amt
);
5385 /* Initialise the fields of the segment map. Default to
5386 using the physical address of the segment in the input BFD. */
5388 map
->p_type
= segment
->p_type
;
5389 map
->p_flags
= segment
->p_flags
;
5390 map
->p_flags_valid
= 1;
5392 /* If the first section in the input segment is removed, there is
5393 no need to preserve segment physical address in the corresponding
5395 if (!first_section
|| first_section
->output_section
!= NULL
)
5397 map
->p_paddr
= segment
->p_paddr
;
5398 map
->p_paddr_valid
= p_paddr_valid
;
5401 /* Determine if this segment contains the ELF file header
5402 and if it contains the program headers themselves. */
5403 map
->includes_filehdr
= (segment
->p_offset
== 0
5404 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5405 map
->includes_phdrs
= 0;
5407 if (!phdr_included
|| segment
->p_type
!= PT_LOAD
)
5409 map
->includes_phdrs
=
5410 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5411 && (segment
->p_offset
+ segment
->p_filesz
5412 >= ((bfd_vma
) iehdr
->e_phoff
5413 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5415 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5416 phdr_included
= TRUE
;
5419 if (section_count
== 0)
5421 /* Special segments, such as the PT_PHDR segment, may contain
5422 no sections, but ordinary, loadable segments should contain
5423 something. They are allowed by the ELF spec however, so only
5424 a warning is produced. */
5425 if (segment
->p_type
== PT_LOAD
)
5426 (*_bfd_error_handler
) (_("%B: warning: Empty loadable segment"
5427 " detected, is this intentional ?\n"),
5431 *pointer_to_map
= map
;
5432 pointer_to_map
= &map
->next
;
5437 /* Now scan the sections in the input BFD again and attempt
5438 to add their corresponding output sections to the segment map.
5439 The problem here is how to handle an output section which has
5440 been moved (ie had its LMA changed). There are four possibilities:
5442 1. None of the sections have been moved.
5443 In this case we can continue to use the segment LMA from the
5446 2. All of the sections have been moved by the same amount.
5447 In this case we can change the segment's LMA to match the LMA
5448 of the first section.
5450 3. Some of the sections have been moved, others have not.
5451 In this case those sections which have not been moved can be
5452 placed in the current segment which will have to have its size,
5453 and possibly its LMA changed, and a new segment or segments will
5454 have to be created to contain the other sections.
5456 4. The sections have been moved, but not by the same amount.
5457 In this case we can change the segment's LMA to match the LMA
5458 of the first section and we will have to create a new segment
5459 or segments to contain the other sections.
5461 In order to save time, we allocate an array to hold the section
5462 pointers that we are interested in. As these sections get assigned
5463 to a segment, they are removed from this array. */
5465 sections
= bfd_malloc2 (section_count
, sizeof (asection
*));
5466 if (sections
== NULL
)
5469 /* Step One: Scan for segment vs section LMA conflicts.
5470 Also add the sections to the section array allocated above.
5471 Also add the sections to the current segment. In the common
5472 case, where the sections have not been moved, this means that
5473 we have completely filled the segment, and there is nothing
5478 first_matching_lma
= TRUE
;
5479 first_suggested_lma
= TRUE
;
5481 for (section
= ibfd
->sections
;
5483 section
= section
->next
)
5484 if (section
== first_section
)
5487 for (j
= 0; section
!= NULL
; section
= section
->next
)
5489 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5491 output_section
= section
->output_section
;
5493 sections
[j
++] = section
;
5495 /* The Solaris native linker always sets p_paddr to 0.
5496 We try to catch that case here, and set it to the
5497 correct value. Note - some backends require that
5498 p_paddr be left as zero. */
5500 && segment
->p_vaddr
!= 0
5501 && !bed
->want_p_paddr_set_to_zero
5503 && output_section
->lma
!= 0
5504 && output_section
->vma
== (segment
->p_vaddr
5505 + (map
->includes_filehdr
5508 + (map
->includes_phdrs
5510 * iehdr
->e_phentsize
)
5512 map
->p_paddr
= segment
->p_vaddr
;
5514 /* Match up the physical address of the segment with the
5515 LMA address of the output section. */
5516 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5517 || IS_COREFILE_NOTE (segment
, section
)
5518 || (bed
->want_p_paddr_set_to_zero
5519 && IS_CONTAINED_BY_VMA (output_section
, segment
)))
5521 if (first_matching_lma
|| output_section
->lma
< matching_lma
)
5523 matching_lma
= output_section
->lma
;
5524 first_matching_lma
= FALSE
;
5527 /* We assume that if the section fits within the segment
5528 then it does not overlap any other section within that
5530 map
->sections
[isec
++] = output_section
;
5532 else if (first_suggested_lma
)
5534 suggested_lma
= output_section
->lma
;
5535 first_suggested_lma
= FALSE
;
5538 if (j
== section_count
)
5543 BFD_ASSERT (j
== section_count
);
5545 /* Step Two: Adjust the physical address of the current segment,
5547 if (isec
== section_count
)
5549 /* All of the sections fitted within the segment as currently
5550 specified. This is the default case. Add the segment to
5551 the list of built segments and carry on to process the next
5552 program header in the input BFD. */
5553 map
->count
= section_count
;
5554 *pointer_to_map
= map
;
5555 pointer_to_map
= &map
->next
;
5558 && !bed
->want_p_paddr_set_to_zero
5559 && matching_lma
!= map
->p_paddr
5560 && !map
->includes_filehdr
5561 && !map
->includes_phdrs
)
5562 /* There is some padding before the first section in the
5563 segment. So, we must account for that in the output
5565 map
->p_vaddr_offset
= matching_lma
- map
->p_paddr
;
5572 if (!first_matching_lma
)
5574 /* At least one section fits inside the current segment.
5575 Keep it, but modify its physical address to match the
5576 LMA of the first section that fitted. */
5577 map
->p_paddr
= matching_lma
;
5581 /* None of the sections fitted inside the current segment.
5582 Change the current segment's physical address to match
5583 the LMA of the first section. */
5584 map
->p_paddr
= suggested_lma
;
5587 /* Offset the segment physical address from the lma
5588 to allow for space taken up by elf headers. */
5589 if (map
->includes_filehdr
)
5591 if (map
->p_paddr
>= iehdr
->e_ehsize
)
5592 map
->p_paddr
-= iehdr
->e_ehsize
;
5595 map
->includes_filehdr
= FALSE
;
5596 map
->includes_phdrs
= FALSE
;
5600 if (map
->includes_phdrs
)
5602 if (map
->p_paddr
>= iehdr
->e_phnum
* iehdr
->e_phentsize
)
5604 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5606 /* iehdr->e_phnum is just an estimate of the number
5607 of program headers that we will need. Make a note
5608 here of the number we used and the segment we chose
5609 to hold these headers, so that we can adjust the
5610 offset when we know the correct value. */
5611 phdr_adjust_num
= iehdr
->e_phnum
;
5612 phdr_adjust_seg
= map
;
5615 map
->includes_phdrs
= FALSE
;
5619 /* Step Three: Loop over the sections again, this time assigning
5620 those that fit to the current segment and removing them from the
5621 sections array; but making sure not to leave large gaps. Once all
5622 possible sections have been assigned to the current segment it is
5623 added to the list of built segments and if sections still remain
5624 to be assigned, a new segment is constructed before repeating
5631 first_suggested_lma
= TRUE
;
5633 /* Fill the current segment with sections that fit. */
5634 for (j
= 0; j
< section_count
; j
++)
5636 section
= sections
[j
];
5638 if (section
== NULL
)
5641 output_section
= section
->output_section
;
5643 BFD_ASSERT (output_section
!= NULL
);
5645 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5646 || IS_COREFILE_NOTE (segment
, section
))
5648 if (map
->count
== 0)
5650 /* If the first section in a segment does not start at
5651 the beginning of the segment, then something is
5653 if (output_section
->lma
5655 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5656 + (map
->includes_phdrs
5657 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5665 prev_sec
= map
->sections
[map
->count
- 1];
5667 /* If the gap between the end of the previous section
5668 and the start of this section is more than
5669 maxpagesize then we need to start a new segment. */
5670 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5672 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5673 || (prev_sec
->lma
+ prev_sec
->size
5674 > output_section
->lma
))
5676 if (first_suggested_lma
)
5678 suggested_lma
= output_section
->lma
;
5679 first_suggested_lma
= FALSE
;
5686 map
->sections
[map
->count
++] = output_section
;
5689 section
->segment_mark
= TRUE
;
5691 else if (first_suggested_lma
)
5693 suggested_lma
= output_section
->lma
;
5694 first_suggested_lma
= FALSE
;
5698 BFD_ASSERT (map
->count
> 0);
5700 /* Add the current segment to the list of built segments. */
5701 *pointer_to_map
= map
;
5702 pointer_to_map
= &map
->next
;
5704 if (isec
< section_count
)
5706 /* We still have not allocated all of the sections to
5707 segments. Create a new segment here, initialise it
5708 and carry on looping. */
5709 amt
= sizeof (struct elf_segment_map
);
5710 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5711 map
= bfd_alloc (obfd
, amt
);
5718 /* Initialise the fields of the segment map. Set the physical
5719 physical address to the LMA of the first section that has
5720 not yet been assigned. */
5722 map
->p_type
= segment
->p_type
;
5723 map
->p_flags
= segment
->p_flags
;
5724 map
->p_flags_valid
= 1;
5725 map
->p_paddr
= suggested_lma
;
5726 map
->p_paddr_valid
= p_paddr_valid
;
5727 map
->includes_filehdr
= 0;
5728 map
->includes_phdrs
= 0;
5731 while (isec
< section_count
);
5736 elf_tdata (obfd
)->segment_map
= map_first
;
5738 /* If we had to estimate the number of program headers that were
5739 going to be needed, then check our estimate now and adjust
5740 the offset if necessary. */
5741 if (phdr_adjust_seg
!= NULL
)
5745 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5748 if (count
> phdr_adjust_num
)
5749 phdr_adjust_seg
->p_paddr
5750 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5755 #undef IS_CONTAINED_BY_VMA
5756 #undef IS_CONTAINED_BY_LMA
5758 #undef IS_COREFILE_NOTE
5759 #undef IS_SOLARIS_PT_INTERP
5760 #undef IS_SECTION_IN_INPUT_SEGMENT
5761 #undef INCLUDE_SECTION_IN_SEGMENT
5762 #undef SEGMENT_AFTER_SEGMENT
5763 #undef SEGMENT_OVERLAPS
5767 /* Copy ELF program header information. */
5770 copy_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5772 Elf_Internal_Ehdr
*iehdr
;
5773 struct elf_segment_map
*map
;
5774 struct elf_segment_map
*map_first
;
5775 struct elf_segment_map
**pointer_to_map
;
5776 Elf_Internal_Phdr
*segment
;
5778 unsigned int num_segments
;
5779 bfd_boolean phdr_included
= FALSE
;
5780 bfd_boolean p_paddr_valid
;
5782 iehdr
= elf_elfheader (ibfd
);
5785 pointer_to_map
= &map_first
;
5787 /* If all the segment p_paddr fields are zero, don't set
5788 map->p_paddr_valid. */
5789 p_paddr_valid
= FALSE
;
5790 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5791 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5794 if (segment
->p_paddr
!= 0)
5796 p_paddr_valid
= TRUE
;
5800 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5805 unsigned int section_count
;
5807 Elf_Internal_Shdr
*this_hdr
;
5808 asection
*first_section
= NULL
;
5809 asection
*lowest_section
= NULL
;
5811 /* Compute how many sections are in this segment. */
5812 for (section
= ibfd
->sections
, section_count
= 0;
5814 section
= section
->next
)
5816 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5817 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5820 first_section
= lowest_section
= section
;
5821 if (section
->lma
< lowest_section
->lma
)
5822 lowest_section
= section
;
5827 /* Allocate a segment map big enough to contain
5828 all of the sections we have selected. */
5829 amt
= sizeof (struct elf_segment_map
);
5830 if (section_count
!= 0)
5831 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5832 map
= bfd_zalloc (obfd
, amt
);
5836 /* Initialize the fields of the output segment map with the
5839 map
->p_type
= segment
->p_type
;
5840 map
->p_flags
= segment
->p_flags
;
5841 map
->p_flags_valid
= 1;
5842 map
->p_paddr
= segment
->p_paddr
;
5843 map
->p_paddr_valid
= p_paddr_valid
;
5844 map
->p_align
= segment
->p_align
;
5845 map
->p_align_valid
= 1;
5846 map
->p_vaddr_offset
= 0;
5848 if (map
->p_type
== PT_GNU_RELRO
5849 && segment
->p_filesz
== segment
->p_memsz
)
5851 /* The PT_GNU_RELRO segment may contain the first a few
5852 bytes in the .got.plt section even if the whole .got.plt
5853 section isn't in the PT_GNU_RELRO segment. We won't
5854 change the size of the PT_GNU_RELRO segment. */
5855 map
->p_size
= segment
->p_filesz
;
5856 map
->p_size_valid
= 1;
5859 /* Determine if this segment contains the ELF file header
5860 and if it contains the program headers themselves. */
5861 map
->includes_filehdr
= (segment
->p_offset
== 0
5862 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5864 map
->includes_phdrs
= 0;
5865 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5867 map
->includes_phdrs
=
5868 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5869 && (segment
->p_offset
+ segment
->p_filesz
5870 >= ((bfd_vma
) iehdr
->e_phoff
5871 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5873 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5874 phdr_included
= TRUE
;
5877 if (!map
->includes_phdrs
5878 && !map
->includes_filehdr
5879 && map
->p_paddr_valid
)
5880 /* There is some other padding before the first section. */
5881 map
->p_vaddr_offset
= ((lowest_section
? lowest_section
->lma
: 0)
5882 - segment
->p_paddr
);
5884 if (section_count
!= 0)
5886 unsigned int isec
= 0;
5888 for (section
= first_section
;
5890 section
= section
->next
)
5892 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5893 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5895 map
->sections
[isec
++] = section
->output_section
;
5896 if (isec
== section_count
)
5902 map
->count
= section_count
;
5903 *pointer_to_map
= map
;
5904 pointer_to_map
= &map
->next
;
5907 elf_tdata (obfd
)->segment_map
= map_first
;
5911 /* Copy private BFD data. This copies or rewrites ELF program header
5915 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
5917 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5918 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5921 if (elf_tdata (ibfd
)->phdr
== NULL
)
5924 if (ibfd
->xvec
== obfd
->xvec
)
5926 /* Check to see if any sections in the input BFD
5927 covered by ELF program header have changed. */
5928 Elf_Internal_Phdr
*segment
;
5929 asection
*section
, *osec
;
5930 unsigned int i
, num_segments
;
5931 Elf_Internal_Shdr
*this_hdr
;
5932 const struct elf_backend_data
*bed
;
5934 bed
= get_elf_backend_data (ibfd
);
5936 /* Regenerate the segment map if p_paddr is set to 0. */
5937 if (bed
->want_p_paddr_set_to_zero
)
5940 /* Initialize the segment mark field. */
5941 for (section
= obfd
->sections
; section
!= NULL
;
5942 section
= section
->next
)
5943 section
->segment_mark
= FALSE
;
5945 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5946 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5950 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5951 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5952 which severly confuses things, so always regenerate the segment
5953 map in this case. */
5954 if (segment
->p_paddr
== 0
5955 && segment
->p_memsz
== 0
5956 && (segment
->p_type
== PT_INTERP
|| segment
->p_type
== PT_DYNAMIC
))
5959 for (section
= ibfd
->sections
;
5960 section
!= NULL
; section
= section
->next
)
5962 /* We mark the output section so that we know it comes
5963 from the input BFD. */
5964 osec
= section
->output_section
;
5966 osec
->segment_mark
= TRUE
;
5968 /* Check if this section is covered by the segment. */
5969 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5970 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5972 /* FIXME: Check if its output section is changed or
5973 removed. What else do we need to check? */
5975 || section
->flags
!= osec
->flags
5976 || section
->lma
!= osec
->lma
5977 || section
->vma
!= osec
->vma
5978 || section
->size
!= osec
->size
5979 || section
->rawsize
!= osec
->rawsize
5980 || section
->alignment_power
!= osec
->alignment_power
)
5986 /* Check to see if any output section do not come from the
5988 for (section
= obfd
->sections
; section
!= NULL
;
5989 section
= section
->next
)
5991 if (section
->segment_mark
== FALSE
)
5994 section
->segment_mark
= FALSE
;
5997 return copy_elf_program_header (ibfd
, obfd
);
6001 return rewrite_elf_program_header (ibfd
, obfd
);
6004 /* Initialize private output section information from input section. */
6007 _bfd_elf_init_private_section_data (bfd
*ibfd
,
6011 struct bfd_link_info
*link_info
)
6014 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6015 bfd_boolean need_group
= link_info
== NULL
|| link_info
->relocatable
;
6017 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6018 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6021 /* Don't copy the output ELF section type from input if the
6022 output BFD section flags have been set to something different.
6023 elf_fake_sections will set ELF section type based on BFD
6025 if (elf_section_type (osec
) == SHT_NULL
6026 && (osec
->flags
== isec
->flags
|| !osec
->flags
))
6027 elf_section_type (osec
) = elf_section_type (isec
);
6029 /* FIXME: Is this correct for all OS/PROC specific flags? */
6030 elf_section_flags (osec
) |= (elf_section_flags (isec
)
6031 & (SHF_MASKOS
| SHF_MASKPROC
));
6033 /* Set things up for objcopy and relocatable link. The output
6034 SHT_GROUP section will have its elf_next_in_group pointing back
6035 to the input group members. Ignore linker created group section.
6036 See elfNN_ia64_object_p in elfxx-ia64.c. */
6039 if (elf_sec_group (isec
) == NULL
6040 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
6042 if (elf_section_flags (isec
) & SHF_GROUP
)
6043 elf_section_flags (osec
) |= SHF_GROUP
;
6044 elf_next_in_group (osec
) = elf_next_in_group (isec
);
6045 elf_section_data (osec
)->group
= elf_section_data (isec
)->group
;
6049 ihdr
= &elf_section_data (isec
)->this_hdr
;
6051 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6052 don't use the output section of the linked-to section since it
6053 may be NULL at this point. */
6054 if ((ihdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
6056 ohdr
= &elf_section_data (osec
)->this_hdr
;
6057 ohdr
->sh_flags
|= SHF_LINK_ORDER
;
6058 elf_linked_to_section (osec
) = elf_linked_to_section (isec
);
6061 osec
->use_rela_p
= isec
->use_rela_p
;
6066 /* Copy private section information. This copies over the entsize
6067 field, and sometimes the info field. */
6070 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
6075 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6077 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6078 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6081 ihdr
= &elf_section_data (isec
)->this_hdr
;
6082 ohdr
= &elf_section_data (osec
)->this_hdr
;
6084 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
6086 if (ihdr
->sh_type
== SHT_SYMTAB
6087 || ihdr
->sh_type
== SHT_DYNSYM
6088 || ihdr
->sh_type
== SHT_GNU_verneed
6089 || ihdr
->sh_type
== SHT_GNU_verdef
)
6090 ohdr
->sh_info
= ihdr
->sh_info
;
6092 return _bfd_elf_init_private_section_data (ibfd
, isec
, obfd
, osec
,
6096 /* Copy private header information. */
6099 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
6103 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6104 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6107 /* Copy over private BFD data if it has not already been copied.
6108 This must be done here, rather than in the copy_private_bfd_data
6109 entry point, because the latter is called after the section
6110 contents have been set, which means that the program headers have
6111 already been worked out. */
6112 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
6114 if (! copy_private_bfd_data (ibfd
, obfd
))
6118 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6119 but this might be wrong if we deleted the group section. */
6120 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
6121 if (elf_section_type (isec
) == SHT_GROUP
6122 && isec
->output_section
== NULL
)
6124 asection
*first
= elf_next_in_group (isec
);
6125 asection
*s
= first
;
6128 if (s
->output_section
!= NULL
)
6130 elf_section_flags (s
->output_section
) &= ~SHF_GROUP
;
6131 elf_group_name (s
->output_section
) = NULL
;
6133 s
= elf_next_in_group (s
);
6142 /* Copy private symbol information. If this symbol is in a section
6143 which we did not map into a BFD section, try to map the section
6144 index correctly. We use special macro definitions for the mapped
6145 section indices; these definitions are interpreted by the
6146 swap_out_syms function. */
6148 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6149 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6150 #define MAP_STRTAB (SHN_HIOS + 3)
6151 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6152 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6155 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
6160 elf_symbol_type
*isym
, *osym
;
6162 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6163 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6166 isym
= elf_symbol_from (ibfd
, isymarg
);
6167 osym
= elf_symbol_from (obfd
, osymarg
);
6170 && isym
->internal_elf_sym
.st_shndx
!= 0
6172 && bfd_is_abs_section (isym
->symbol
.section
))
6176 shndx
= isym
->internal_elf_sym
.st_shndx
;
6177 if (shndx
== elf_onesymtab (ibfd
))
6178 shndx
= MAP_ONESYMTAB
;
6179 else if (shndx
== elf_dynsymtab (ibfd
))
6180 shndx
= MAP_DYNSYMTAB
;
6181 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
6183 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
6184 shndx
= MAP_SHSTRTAB
;
6185 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
6186 shndx
= MAP_SYM_SHNDX
;
6187 osym
->internal_elf_sym
.st_shndx
= shndx
;
6193 /* Swap out the symbols. */
6196 swap_out_syms (bfd
*abfd
,
6197 struct bfd_strtab_hash
**sttp
,
6200 const struct elf_backend_data
*bed
;
6203 struct bfd_strtab_hash
*stt
;
6204 Elf_Internal_Shdr
*symtab_hdr
;
6205 Elf_Internal_Shdr
*symtab_shndx_hdr
;
6206 Elf_Internal_Shdr
*symstrtab_hdr
;
6207 bfd_byte
*outbound_syms
;
6208 bfd_byte
*outbound_shndx
;
6211 bfd_boolean name_local_sections
;
6213 if (!elf_map_symbols (abfd
))
6216 /* Dump out the symtabs. */
6217 stt
= _bfd_elf_stringtab_init ();
6221 bed
= get_elf_backend_data (abfd
);
6222 symcount
= bfd_get_symcount (abfd
);
6223 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6224 symtab_hdr
->sh_type
= SHT_SYMTAB
;
6225 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
6226 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
6227 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
6228 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
6230 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
6231 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6233 outbound_syms
= bfd_alloc2 (abfd
, 1 + symcount
, bed
->s
->sizeof_sym
);
6234 if (outbound_syms
== NULL
)
6236 _bfd_stringtab_free (stt
);
6239 symtab_hdr
->contents
= outbound_syms
;
6241 outbound_shndx
= NULL
;
6242 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
6243 if (symtab_shndx_hdr
->sh_name
!= 0)
6245 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
6246 outbound_shndx
= bfd_zalloc2 (abfd
, 1 + symcount
,
6247 sizeof (Elf_External_Sym_Shndx
));
6248 if (outbound_shndx
== NULL
)
6250 _bfd_stringtab_free (stt
);
6254 symtab_shndx_hdr
->contents
= outbound_shndx
;
6255 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
6256 symtab_shndx_hdr
->sh_size
= amt
;
6257 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
6258 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
6261 /* Now generate the data (for "contents"). */
6263 /* Fill in zeroth symbol and swap it out. */
6264 Elf_Internal_Sym sym
;
6270 sym
.st_shndx
= SHN_UNDEF
;
6271 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6272 outbound_syms
+= bed
->s
->sizeof_sym
;
6273 if (outbound_shndx
!= NULL
)
6274 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6278 = (bed
->elf_backend_name_local_section_symbols
6279 && bed
->elf_backend_name_local_section_symbols (abfd
));
6281 syms
= bfd_get_outsymbols (abfd
);
6282 for (idx
= 0; idx
< symcount
; idx
++)
6284 Elf_Internal_Sym sym
;
6285 bfd_vma value
= syms
[idx
]->value
;
6286 elf_symbol_type
*type_ptr
;
6287 flagword flags
= syms
[idx
]->flags
;
6290 if (!name_local_sections
6291 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
6293 /* Local section symbols have no name. */
6298 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
6301 if (sym
.st_name
== (unsigned long) -1)
6303 _bfd_stringtab_free (stt
);
6308 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
6310 if ((flags
& BSF_SECTION_SYM
) == 0
6311 && bfd_is_com_section (syms
[idx
]->section
))
6313 /* ELF common symbols put the alignment into the `value' field,
6314 and the size into the `size' field. This is backwards from
6315 how BFD handles it, so reverse it here. */
6316 sym
.st_size
= value
;
6317 if (type_ptr
== NULL
6318 || type_ptr
->internal_elf_sym
.st_value
== 0)
6319 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
6321 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
6322 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
6323 (abfd
, syms
[idx
]->section
);
6327 asection
*sec
= syms
[idx
]->section
;
6330 if (sec
->output_section
)
6332 value
+= sec
->output_offset
;
6333 sec
= sec
->output_section
;
6336 /* Don't add in the section vma for relocatable output. */
6337 if (! relocatable_p
)
6339 sym
.st_value
= value
;
6340 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
6342 if (bfd_is_abs_section (sec
)
6344 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
6346 /* This symbol is in a real ELF section which we did
6347 not create as a BFD section. Undo the mapping done
6348 by copy_private_symbol_data. */
6349 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
6353 shndx
= elf_onesymtab (abfd
);
6356 shndx
= elf_dynsymtab (abfd
);
6359 shndx
= elf_tdata (abfd
)->strtab_section
;
6362 shndx
= elf_tdata (abfd
)->shstrtab_section
;
6365 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
6373 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
6375 if (shndx
== SHN_BAD
)
6379 /* Writing this would be a hell of a lot easier if
6380 we had some decent documentation on bfd, and
6381 knew what to expect of the library, and what to
6382 demand of applications. For example, it
6383 appears that `objcopy' might not set the
6384 section of a symbol to be a section that is
6385 actually in the output file. */
6386 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
6389 _bfd_error_handler (_("\
6390 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6391 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
6393 bfd_set_error (bfd_error_invalid_operation
);
6394 _bfd_stringtab_free (stt
);
6398 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
6399 BFD_ASSERT (shndx
!= SHN_BAD
);
6403 sym
.st_shndx
= shndx
;
6406 if ((flags
& BSF_THREAD_LOCAL
) != 0)
6408 else if ((flags
& BSF_FUNCTION
) != 0)
6410 else if ((flags
& BSF_OBJECT
) != 0)
6412 else if ((flags
& BSF_RELC
) != 0)
6414 else if ((flags
& BSF_SRELC
) != 0)
6419 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
6422 /* Processor-specific types. */
6423 if (type_ptr
!= NULL
6424 && bed
->elf_backend_get_symbol_type
)
6425 type
= ((*bed
->elf_backend_get_symbol_type
)
6426 (&type_ptr
->internal_elf_sym
, type
));
6428 if (flags
& BSF_SECTION_SYM
)
6430 if (flags
& BSF_GLOBAL
)
6431 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6433 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
6435 else if (bfd_is_com_section (syms
[idx
]->section
))
6437 #ifdef USE_STT_COMMON
6438 if (type
== STT_OBJECT
)
6439 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_COMMON
);
6442 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
6445 else if (bfd_is_und_section (syms
[idx
]->section
))
6446 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
6450 else if (flags
& BSF_FILE
)
6451 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6454 int bind
= STB_LOCAL
;
6456 if (flags
& BSF_LOCAL
)
6458 else if (flags
& BSF_WEAK
)
6460 else if (flags
& BSF_GLOBAL
)
6463 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6466 if (type_ptr
!= NULL
)
6467 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6471 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6472 outbound_syms
+= bed
->s
->sizeof_sym
;
6473 if (outbound_shndx
!= NULL
)
6474 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6478 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6479 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6481 symstrtab_hdr
->sh_flags
= 0;
6482 symstrtab_hdr
->sh_addr
= 0;
6483 symstrtab_hdr
->sh_entsize
= 0;
6484 symstrtab_hdr
->sh_link
= 0;
6485 symstrtab_hdr
->sh_info
= 0;
6486 symstrtab_hdr
->sh_addralign
= 1;
6491 /* Return the number of bytes required to hold the symtab vector.
6493 Note that we base it on the count plus 1, since we will null terminate
6494 the vector allocated based on this size. However, the ELF symbol table
6495 always has a dummy entry as symbol #0, so it ends up even. */
6498 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6502 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6504 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6505 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6507 symtab_size
-= sizeof (asymbol
*);
6513 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6517 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6519 if (elf_dynsymtab (abfd
) == 0)
6521 bfd_set_error (bfd_error_invalid_operation
);
6525 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6526 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6528 symtab_size
-= sizeof (asymbol
*);
6534 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6537 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6540 /* Canonicalize the relocs. */
6543 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6550 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6552 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6555 tblptr
= section
->relocation
;
6556 for (i
= 0; i
< section
->reloc_count
; i
++)
6557 *relptr
++ = tblptr
++;
6561 return section
->reloc_count
;
6565 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6567 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6568 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6571 bfd_get_symcount (abfd
) = symcount
;
6576 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6577 asymbol
**allocation
)
6579 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6580 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6583 bfd_get_dynamic_symcount (abfd
) = symcount
;
6587 /* Return the size required for the dynamic reloc entries. Any loadable
6588 section that was actually installed in the BFD, and has type SHT_REL
6589 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6590 dynamic reloc section. */
6593 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6598 if (elf_dynsymtab (abfd
) == 0)
6600 bfd_set_error (bfd_error_invalid_operation
);
6604 ret
= sizeof (arelent
*);
6605 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6606 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6607 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6608 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6609 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6610 * sizeof (arelent
*));
6615 /* Canonicalize the dynamic relocation entries. Note that we return the
6616 dynamic relocations as a single block, although they are actually
6617 associated with particular sections; the interface, which was
6618 designed for SunOS style shared libraries, expects that there is only
6619 one set of dynamic relocs. Any loadable section that was actually
6620 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6621 dynamic symbol table, is considered to be a dynamic reloc section. */
6624 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6628 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6632 if (elf_dynsymtab (abfd
) == 0)
6634 bfd_set_error (bfd_error_invalid_operation
);
6638 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6640 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6642 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6643 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6644 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6649 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6651 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6653 for (i
= 0; i
< count
; i
++)
6664 /* Read in the version information. */
6667 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6669 bfd_byte
*contents
= NULL
;
6670 unsigned int freeidx
= 0;
6672 if (elf_dynverref (abfd
) != 0)
6674 Elf_Internal_Shdr
*hdr
;
6675 Elf_External_Verneed
*everneed
;
6676 Elf_Internal_Verneed
*iverneed
;
6678 bfd_byte
*contents_end
;
6680 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6682 elf_tdata (abfd
)->verref
= bfd_zalloc2 (abfd
, hdr
->sh_info
,
6683 sizeof (Elf_Internal_Verneed
));
6684 if (elf_tdata (abfd
)->verref
== NULL
)
6687 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6689 contents
= bfd_malloc (hdr
->sh_size
);
6690 if (contents
== NULL
)
6692 error_return_verref
:
6693 elf_tdata (abfd
)->verref
= NULL
;
6694 elf_tdata (abfd
)->cverrefs
= 0;
6697 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6698 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6699 goto error_return_verref
;
6701 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verneed
))
6702 goto error_return_verref
;
6704 BFD_ASSERT (sizeof (Elf_External_Verneed
)
6705 == sizeof (Elf_External_Vernaux
));
6706 contents_end
= contents
+ hdr
->sh_size
- sizeof (Elf_External_Verneed
);
6707 everneed
= (Elf_External_Verneed
*) contents
;
6708 iverneed
= elf_tdata (abfd
)->verref
;
6709 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6711 Elf_External_Vernaux
*evernaux
;
6712 Elf_Internal_Vernaux
*ivernaux
;
6715 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6717 iverneed
->vn_bfd
= abfd
;
6719 iverneed
->vn_filename
=
6720 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6722 if (iverneed
->vn_filename
== NULL
)
6723 goto error_return_verref
;
6725 if (iverneed
->vn_cnt
== 0)
6726 iverneed
->vn_auxptr
= NULL
;
6729 iverneed
->vn_auxptr
= bfd_alloc2 (abfd
, iverneed
->vn_cnt
,
6730 sizeof (Elf_Internal_Vernaux
));
6731 if (iverneed
->vn_auxptr
== NULL
)
6732 goto error_return_verref
;
6735 if (iverneed
->vn_aux
6736 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6737 goto error_return_verref
;
6739 evernaux
= ((Elf_External_Vernaux
*)
6740 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6741 ivernaux
= iverneed
->vn_auxptr
;
6742 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6744 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6746 ivernaux
->vna_nodename
=
6747 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6748 ivernaux
->vna_name
);
6749 if (ivernaux
->vna_nodename
== NULL
)
6750 goto error_return_verref
;
6752 if (j
+ 1 < iverneed
->vn_cnt
)
6753 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6755 ivernaux
->vna_nextptr
= NULL
;
6757 if (ivernaux
->vna_next
6758 > (size_t) (contents_end
- (bfd_byte
*) evernaux
))
6759 goto error_return_verref
;
6761 evernaux
= ((Elf_External_Vernaux
*)
6762 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6764 if (ivernaux
->vna_other
> freeidx
)
6765 freeidx
= ivernaux
->vna_other
;
6768 if (i
+ 1 < hdr
->sh_info
)
6769 iverneed
->vn_nextref
= iverneed
+ 1;
6771 iverneed
->vn_nextref
= NULL
;
6773 if (iverneed
->vn_next
6774 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6775 goto error_return_verref
;
6777 everneed
= ((Elf_External_Verneed
*)
6778 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6785 if (elf_dynverdef (abfd
) != 0)
6787 Elf_Internal_Shdr
*hdr
;
6788 Elf_External_Verdef
*everdef
;
6789 Elf_Internal_Verdef
*iverdef
;
6790 Elf_Internal_Verdef
*iverdefarr
;
6791 Elf_Internal_Verdef iverdefmem
;
6793 unsigned int maxidx
;
6794 bfd_byte
*contents_end_def
, *contents_end_aux
;
6796 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6798 contents
= bfd_malloc (hdr
->sh_size
);
6799 if (contents
== NULL
)
6801 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6802 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6805 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verdef
))
6808 BFD_ASSERT (sizeof (Elf_External_Verdef
)
6809 >= sizeof (Elf_External_Verdaux
));
6810 contents_end_def
= contents
+ hdr
->sh_size
6811 - sizeof (Elf_External_Verdef
);
6812 contents_end_aux
= contents
+ hdr
->sh_size
6813 - sizeof (Elf_External_Verdaux
);
6815 /* We know the number of entries in the section but not the maximum
6816 index. Therefore we have to run through all entries and find
6818 everdef
= (Elf_External_Verdef
*) contents
;
6820 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6822 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6824 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6825 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6827 if (iverdefmem
.vd_next
6828 > (size_t) (contents_end_def
- (bfd_byte
*) everdef
))
6831 everdef
= ((Elf_External_Verdef
*)
6832 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6835 if (default_imported_symver
)
6837 if (freeidx
> maxidx
)
6842 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, maxidx
,
6843 sizeof (Elf_Internal_Verdef
));
6844 if (elf_tdata (abfd
)->verdef
== NULL
)
6847 elf_tdata (abfd
)->cverdefs
= maxidx
;
6849 everdef
= (Elf_External_Verdef
*) contents
;
6850 iverdefarr
= elf_tdata (abfd
)->verdef
;
6851 for (i
= 0; i
< hdr
->sh_info
; i
++)
6853 Elf_External_Verdaux
*everdaux
;
6854 Elf_Internal_Verdaux
*iverdaux
;
6857 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6859 if ((iverdefmem
.vd_ndx
& VERSYM_VERSION
) == 0)
6861 error_return_verdef
:
6862 elf_tdata (abfd
)->verdef
= NULL
;
6863 elf_tdata (abfd
)->cverdefs
= 0;
6867 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6868 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6870 iverdef
->vd_bfd
= abfd
;
6872 if (iverdef
->vd_cnt
== 0)
6873 iverdef
->vd_auxptr
= NULL
;
6876 iverdef
->vd_auxptr
= bfd_alloc2 (abfd
, iverdef
->vd_cnt
,
6877 sizeof (Elf_Internal_Verdaux
));
6878 if (iverdef
->vd_auxptr
== NULL
)
6879 goto error_return_verdef
;
6883 > (size_t) (contents_end_aux
- (bfd_byte
*) everdef
))
6884 goto error_return_verdef
;
6886 everdaux
= ((Elf_External_Verdaux
*)
6887 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6888 iverdaux
= iverdef
->vd_auxptr
;
6889 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6891 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6893 iverdaux
->vda_nodename
=
6894 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6895 iverdaux
->vda_name
);
6896 if (iverdaux
->vda_nodename
== NULL
)
6897 goto error_return_verdef
;
6899 if (j
+ 1 < iverdef
->vd_cnt
)
6900 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6902 iverdaux
->vda_nextptr
= NULL
;
6904 if (iverdaux
->vda_next
6905 > (size_t) (contents_end_aux
- (bfd_byte
*) everdaux
))
6906 goto error_return_verdef
;
6908 everdaux
= ((Elf_External_Verdaux
*)
6909 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6912 if (iverdef
->vd_cnt
)
6913 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6915 if ((size_t) (iverdef
- iverdefarr
) + 1 < maxidx
)
6916 iverdef
->vd_nextdef
= iverdef
+ 1;
6918 iverdef
->vd_nextdef
= NULL
;
6920 everdef
= ((Elf_External_Verdef
*)
6921 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6927 else if (default_imported_symver
)
6934 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, freeidx
,
6935 sizeof (Elf_Internal_Verdef
));
6936 if (elf_tdata (abfd
)->verdef
== NULL
)
6939 elf_tdata (abfd
)->cverdefs
= freeidx
;
6942 /* Create a default version based on the soname. */
6943 if (default_imported_symver
)
6945 Elf_Internal_Verdef
*iverdef
;
6946 Elf_Internal_Verdaux
*iverdaux
;
6948 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
6950 iverdef
->vd_version
= VER_DEF_CURRENT
;
6951 iverdef
->vd_flags
= 0;
6952 iverdef
->vd_ndx
= freeidx
;
6953 iverdef
->vd_cnt
= 1;
6955 iverdef
->vd_bfd
= abfd
;
6957 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
6958 if (iverdef
->vd_nodename
== NULL
)
6959 goto error_return_verdef
;
6960 iverdef
->vd_nextdef
= NULL
;
6961 iverdef
->vd_auxptr
= bfd_alloc (abfd
, sizeof (Elf_Internal_Verdaux
));
6962 if (iverdef
->vd_auxptr
== NULL
)
6963 goto error_return_verdef
;
6965 iverdaux
= iverdef
->vd_auxptr
;
6966 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
6967 iverdaux
->vda_nextptr
= NULL
;
6973 if (contents
!= NULL
)
6979 _bfd_elf_make_empty_symbol (bfd
*abfd
)
6981 elf_symbol_type
*newsym
;
6982 bfd_size_type amt
= sizeof (elf_symbol_type
);
6984 newsym
= bfd_zalloc (abfd
, amt
);
6989 newsym
->symbol
.the_bfd
= abfd
;
6990 return &newsym
->symbol
;
6995 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
6999 bfd_symbol_info (symbol
, ret
);
7002 /* Return whether a symbol name implies a local symbol. Most targets
7003 use this function for the is_local_label_name entry point, but some
7007 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
7010 /* Normal local symbols start with ``.L''. */
7011 if (name
[0] == '.' && name
[1] == 'L')
7014 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7015 DWARF debugging symbols starting with ``..''. */
7016 if (name
[0] == '.' && name
[1] == '.')
7019 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7020 emitting DWARF debugging output. I suspect this is actually a
7021 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7022 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7023 underscore to be emitted on some ELF targets). For ease of use,
7024 we treat such symbols as local. */
7025 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
7032 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
7033 asymbol
*symbol ATTRIBUTE_UNUSED
)
7040 _bfd_elf_set_arch_mach (bfd
*abfd
,
7041 enum bfd_architecture arch
,
7042 unsigned long machine
)
7044 /* If this isn't the right architecture for this backend, and this
7045 isn't the generic backend, fail. */
7046 if (arch
!= get_elf_backend_data (abfd
)->arch
7047 && arch
!= bfd_arch_unknown
7048 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
7051 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
7054 /* Find the function to a particular section and offset,
7055 for error reporting. */
7058 elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
7062 const char **filename_ptr
,
7063 const char **functionname_ptr
)
7065 const char *filename
;
7066 asymbol
*func
, *file
;
7069 /* ??? Given multiple file symbols, it is impossible to reliably
7070 choose the right file name for global symbols. File symbols are
7071 local symbols, and thus all file symbols must sort before any
7072 global symbols. The ELF spec may be interpreted to say that a
7073 file symbol must sort before other local symbols, but currently
7074 ld -r doesn't do this. So, for ld -r output, it is possible to
7075 make a better choice of file name for local symbols by ignoring
7076 file symbols appearing after a given local symbol. */
7077 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
7083 state
= nothing_seen
;
7085 for (p
= symbols
; *p
!= NULL
; p
++)
7089 q
= (elf_symbol_type
*) *p
;
7091 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
7097 if (state
== symbol_seen
)
7098 state
= file_after_symbol_seen
;
7102 if (bfd_get_section (&q
->symbol
) == section
7103 && q
->symbol
.value
>= low_func
7104 && q
->symbol
.value
<= offset
)
7106 func
= (asymbol
*) q
;
7107 low_func
= q
->symbol
.value
;
7110 && (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) == STB_LOCAL
7111 || state
!= file_after_symbol_seen
))
7112 filename
= bfd_asymbol_name (file
);
7116 if (state
== nothing_seen
)
7117 state
= symbol_seen
;
7124 *filename_ptr
= filename
;
7125 if (functionname_ptr
)
7126 *functionname_ptr
= bfd_asymbol_name (func
);
7131 /* Find the nearest line to a particular section and offset,
7132 for error reporting. */
7135 _bfd_elf_find_nearest_line (bfd
*abfd
,
7139 const char **filename_ptr
,
7140 const char **functionname_ptr
,
7141 unsigned int *line_ptr
)
7145 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
7146 filename_ptr
, functionname_ptr
,
7149 if (!*functionname_ptr
)
7150 elf_find_function (abfd
, section
, symbols
, offset
,
7151 *filename_ptr
? NULL
: filename_ptr
,
7157 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
7158 filename_ptr
, functionname_ptr
,
7160 &elf_tdata (abfd
)->dwarf2_find_line_info
))
7162 if (!*functionname_ptr
)
7163 elf_find_function (abfd
, section
, symbols
, offset
,
7164 *filename_ptr
? NULL
: filename_ptr
,
7170 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
7171 &found
, filename_ptr
,
7172 functionname_ptr
, line_ptr
,
7173 &elf_tdata (abfd
)->line_info
))
7175 if (found
&& (*functionname_ptr
|| *line_ptr
))
7178 if (symbols
== NULL
)
7181 if (! elf_find_function (abfd
, section
, symbols
, offset
,
7182 filename_ptr
, functionname_ptr
))
7189 /* Find the line for a symbol. */
7192 _bfd_elf_find_line (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
7193 const char **filename_ptr
, unsigned int *line_ptr
)
7195 return _bfd_dwarf2_find_line (abfd
, symbols
, symbol
,
7196 filename_ptr
, line_ptr
, 0,
7197 &elf_tdata (abfd
)->dwarf2_find_line_info
);
7200 /* After a call to bfd_find_nearest_line, successive calls to
7201 bfd_find_inliner_info can be used to get source information about
7202 each level of function inlining that terminated at the address
7203 passed to bfd_find_nearest_line. Currently this is only supported
7204 for DWARF2 with appropriate DWARF3 extensions. */
7207 _bfd_elf_find_inliner_info (bfd
*abfd
,
7208 const char **filename_ptr
,
7209 const char **functionname_ptr
,
7210 unsigned int *line_ptr
)
7213 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
7214 functionname_ptr
, line_ptr
,
7215 & elf_tdata (abfd
)->dwarf2_find_line_info
);
7220 _bfd_elf_sizeof_headers (bfd
*abfd
, struct bfd_link_info
*info
)
7222 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7223 int ret
= bed
->s
->sizeof_ehdr
;
7225 if (!info
->relocatable
)
7227 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
7229 if (phdr_size
== (bfd_size_type
) -1)
7231 struct elf_segment_map
*m
;
7234 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
7235 phdr_size
+= bed
->s
->sizeof_phdr
;
7238 phdr_size
= get_program_header_size (abfd
, info
);
7241 elf_tdata (abfd
)->program_header_size
= phdr_size
;
7249 _bfd_elf_set_section_contents (bfd
*abfd
,
7251 const void *location
,
7253 bfd_size_type count
)
7255 Elf_Internal_Shdr
*hdr
;
7258 if (! abfd
->output_has_begun
7259 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
7262 hdr
= &elf_section_data (section
)->this_hdr
;
7263 pos
= hdr
->sh_offset
+ offset
;
7264 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
7265 || bfd_bwrite (location
, count
, abfd
) != count
)
7272 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
7273 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
7274 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
7279 /* Try to convert a non-ELF reloc into an ELF one. */
7282 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
7284 /* Check whether we really have an ELF howto. */
7286 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
7288 bfd_reloc_code_real_type code
;
7289 reloc_howto_type
*howto
;
7291 /* Alien reloc: Try to determine its type to replace it with an
7292 equivalent ELF reloc. */
7294 if (areloc
->howto
->pc_relative
)
7296 switch (areloc
->howto
->bitsize
)
7299 code
= BFD_RELOC_8_PCREL
;
7302 code
= BFD_RELOC_12_PCREL
;
7305 code
= BFD_RELOC_16_PCREL
;
7308 code
= BFD_RELOC_24_PCREL
;
7311 code
= BFD_RELOC_32_PCREL
;
7314 code
= BFD_RELOC_64_PCREL
;
7320 howto
= bfd_reloc_type_lookup (abfd
, code
);
7322 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
7324 if (howto
->pcrel_offset
)
7325 areloc
->addend
+= areloc
->address
;
7327 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
7332 switch (areloc
->howto
->bitsize
)
7338 code
= BFD_RELOC_14
;
7341 code
= BFD_RELOC_16
;
7344 code
= BFD_RELOC_26
;
7347 code
= BFD_RELOC_32
;
7350 code
= BFD_RELOC_64
;
7356 howto
= bfd_reloc_type_lookup (abfd
, code
);
7360 areloc
->howto
= howto
;
7368 (*_bfd_error_handler
)
7369 (_("%B: unsupported relocation type %s"),
7370 abfd
, areloc
->howto
->name
);
7371 bfd_set_error (bfd_error_bad_value
);
7376 _bfd_elf_close_and_cleanup (bfd
*abfd
)
7378 if (bfd_get_format (abfd
) == bfd_object
)
7380 if (elf_tdata (abfd
) != NULL
&& elf_shstrtab (abfd
) != NULL
)
7381 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
7382 _bfd_dwarf2_cleanup_debug_info (abfd
);
7385 return _bfd_generic_close_and_cleanup (abfd
);
7388 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7389 in the relocation's offset. Thus we cannot allow any sort of sanity
7390 range-checking to interfere. There is nothing else to do in processing
7393 bfd_reloc_status_type
7394 _bfd_elf_rel_vtable_reloc_fn
7395 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
7396 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
7397 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
7398 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
7400 return bfd_reloc_ok
;
7403 /* Elf core file support. Much of this only works on native
7404 toolchains, since we rely on knowing the
7405 machine-dependent procfs structure in order to pick
7406 out details about the corefile. */
7408 #ifdef HAVE_SYS_PROCFS_H
7409 # include <sys/procfs.h>
7412 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7415 elfcore_make_pid (bfd
*abfd
)
7417 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
7418 + (elf_tdata (abfd
)->core_pid
));
7421 /* If there isn't a section called NAME, make one, using
7422 data from SECT. Note, this function will generate a
7423 reference to NAME, so you shouldn't deallocate or
7427 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
7431 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
7434 sect2
= bfd_make_section_with_flags (abfd
, name
, sect
->flags
);
7438 sect2
->size
= sect
->size
;
7439 sect2
->filepos
= sect
->filepos
;
7440 sect2
->alignment_power
= sect
->alignment_power
;
7444 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7445 actually creates up to two pseudosections:
7446 - For the single-threaded case, a section named NAME, unless
7447 such a section already exists.
7448 - For the multi-threaded case, a section named "NAME/PID", where
7449 PID is elfcore_make_pid (abfd).
7450 Both pseudosections have identical contents. */
7452 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
7458 char *threaded_name
;
7462 /* Build the section name. */
7464 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
7465 len
= strlen (buf
) + 1;
7466 threaded_name
= bfd_alloc (abfd
, len
);
7467 if (threaded_name
== NULL
)
7469 memcpy (threaded_name
, buf
, len
);
7471 sect
= bfd_make_section_anyway_with_flags (abfd
, threaded_name
,
7476 sect
->filepos
= filepos
;
7477 sect
->alignment_power
= 2;
7479 return elfcore_maybe_make_sect (abfd
, name
, sect
);
7482 /* prstatus_t exists on:
7484 linux 2.[01] + glibc
7488 #if defined (HAVE_PRSTATUS_T)
7491 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7496 if (note
->descsz
== sizeof (prstatus_t
))
7500 size
= sizeof (prstat
.pr_reg
);
7501 offset
= offsetof (prstatus_t
, pr_reg
);
7502 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7504 /* Do not overwrite the core signal if it
7505 has already been set by another thread. */
7506 if (elf_tdata (abfd
)->core_signal
== 0)
7507 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7508 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7510 /* pr_who exists on:
7513 pr_who doesn't exist on:
7516 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7517 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7520 #if defined (HAVE_PRSTATUS32_T)
7521 else if (note
->descsz
== sizeof (prstatus32_t
))
7523 /* 64-bit host, 32-bit corefile */
7524 prstatus32_t prstat
;
7526 size
= sizeof (prstat
.pr_reg
);
7527 offset
= offsetof (prstatus32_t
, pr_reg
);
7528 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7530 /* Do not overwrite the core signal if it
7531 has already been set by another thread. */
7532 if (elf_tdata (abfd
)->core_signal
== 0)
7533 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7534 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7536 /* pr_who exists on:
7539 pr_who doesn't exist on:
7542 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7543 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7546 #endif /* HAVE_PRSTATUS32_T */
7549 /* Fail - we don't know how to handle any other
7550 note size (ie. data object type). */
7554 /* Make a ".reg/999" section and a ".reg" section. */
7555 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
7556 size
, note
->descpos
+ offset
);
7558 #endif /* defined (HAVE_PRSTATUS_T) */
7560 /* Create a pseudosection containing the exact contents of NOTE. */
7562 elfcore_make_note_pseudosection (bfd
*abfd
,
7564 Elf_Internal_Note
*note
)
7566 return _bfd_elfcore_make_pseudosection (abfd
, name
,
7567 note
->descsz
, note
->descpos
);
7570 /* There isn't a consistent prfpregset_t across platforms,
7571 but it doesn't matter, because we don't have to pick this
7572 data structure apart. */
7575 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7577 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7580 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7581 type of NT_PRXFPREG. Just include the whole note's contents
7585 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7587 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
7591 elfcore_grok_ppc_vmx (bfd
*abfd
, Elf_Internal_Note
*note
)
7593 return elfcore_make_note_pseudosection (abfd
, ".reg-ppc-vmx", note
);
7597 elfcore_grok_ppc_vsx (bfd
*abfd
, Elf_Internal_Note
*note
)
7599 return elfcore_make_note_pseudosection (abfd
, ".reg-ppc-vsx", note
);
7602 #if defined (HAVE_PRPSINFO_T)
7603 typedef prpsinfo_t elfcore_psinfo_t
;
7604 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7605 typedef prpsinfo32_t elfcore_psinfo32_t
;
7609 #if defined (HAVE_PSINFO_T)
7610 typedef psinfo_t elfcore_psinfo_t
;
7611 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7612 typedef psinfo32_t elfcore_psinfo32_t
;
7616 /* return a malloc'ed copy of a string at START which is at
7617 most MAX bytes long, possibly without a terminating '\0'.
7618 the copy will always have a terminating '\0'. */
7621 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
7624 char *end
= memchr (start
, '\0', max
);
7632 dups
= bfd_alloc (abfd
, len
+ 1);
7636 memcpy (dups
, start
, len
);
7642 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7644 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7646 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
7648 elfcore_psinfo_t psinfo
;
7650 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7652 elf_tdata (abfd
)->core_program
7653 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7654 sizeof (psinfo
.pr_fname
));
7656 elf_tdata (abfd
)->core_command
7657 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7658 sizeof (psinfo
.pr_psargs
));
7660 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7661 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
7663 /* 64-bit host, 32-bit corefile */
7664 elfcore_psinfo32_t psinfo
;
7666 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7668 elf_tdata (abfd
)->core_program
7669 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7670 sizeof (psinfo
.pr_fname
));
7672 elf_tdata (abfd
)->core_command
7673 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7674 sizeof (psinfo
.pr_psargs
));
7680 /* Fail - we don't know how to handle any other
7681 note size (ie. data object type). */
7685 /* Note that for some reason, a spurious space is tacked
7686 onto the end of the args in some (at least one anyway)
7687 implementations, so strip it off if it exists. */
7690 char *command
= elf_tdata (abfd
)->core_command
;
7691 int n
= strlen (command
);
7693 if (0 < n
&& command
[n
- 1] == ' ')
7694 command
[n
- 1] = '\0';
7699 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7701 #if defined (HAVE_PSTATUS_T)
7703 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7705 if (note
->descsz
== sizeof (pstatus_t
)
7706 #if defined (HAVE_PXSTATUS_T)
7707 || note
->descsz
== sizeof (pxstatus_t
)
7713 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7715 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7717 #if defined (HAVE_PSTATUS32_T)
7718 else if (note
->descsz
== sizeof (pstatus32_t
))
7720 /* 64-bit host, 32-bit corefile */
7723 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7725 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7728 /* Could grab some more details from the "representative"
7729 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7730 NT_LWPSTATUS note, presumably. */
7734 #endif /* defined (HAVE_PSTATUS_T) */
7736 #if defined (HAVE_LWPSTATUS_T)
7738 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7740 lwpstatus_t lwpstat
;
7746 if (note
->descsz
!= sizeof (lwpstat
)
7747 #if defined (HAVE_LWPXSTATUS_T)
7748 && note
->descsz
!= sizeof (lwpxstatus_t
)
7753 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
7755 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
7756 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
7758 /* Make a ".reg/999" section. */
7760 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
7761 len
= strlen (buf
) + 1;
7762 name
= bfd_alloc (abfd
, len
);
7765 memcpy (name
, buf
, len
);
7767 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7771 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7772 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
7773 sect
->filepos
= note
->descpos
7774 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
7777 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7778 sect
->size
= sizeof (lwpstat
.pr_reg
);
7779 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
7782 sect
->alignment_power
= 2;
7784 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7787 /* Make a ".reg2/999" section */
7789 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
7790 len
= strlen (buf
) + 1;
7791 name
= bfd_alloc (abfd
, len
);
7794 memcpy (name
, buf
, len
);
7796 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7800 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7801 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
7802 sect
->filepos
= note
->descpos
7803 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
7806 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7807 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
7808 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
7811 sect
->alignment_power
= 2;
7813 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
7815 #endif /* defined (HAVE_LWPSTATUS_T) */
7818 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7825 int is_active_thread
;
7828 if (note
->descsz
< 728)
7831 if (! CONST_STRNEQ (note
->namedata
, "win32"))
7834 type
= bfd_get_32 (abfd
, note
->descdata
);
7838 case 1 /* NOTE_INFO_PROCESS */:
7839 /* FIXME: need to add ->core_command. */
7840 /* process_info.pid */
7841 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 8);
7842 /* process_info.signal */
7843 elf_tdata (abfd
)->core_signal
= bfd_get_32 (abfd
, note
->descdata
+ 12);
7846 case 2 /* NOTE_INFO_THREAD */:
7847 /* Make a ".reg/999" section. */
7848 /* thread_info.tid */
7849 sprintf (buf
, ".reg/%ld", (long) bfd_get_32 (abfd
, note
->descdata
+ 8));
7851 len
= strlen (buf
) + 1;
7852 name
= bfd_alloc (abfd
, len
);
7856 memcpy (name
, buf
, len
);
7858 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7862 /* sizeof (thread_info.thread_context) */
7864 /* offsetof (thread_info.thread_context) */
7865 sect
->filepos
= note
->descpos
+ 12;
7866 sect
->alignment_power
= 2;
7868 /* thread_info.is_active_thread */
7869 is_active_thread
= bfd_get_32 (abfd
, note
->descdata
+ 8);
7871 if (is_active_thread
)
7872 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7876 case 3 /* NOTE_INFO_MODULE */:
7877 /* Make a ".module/xxxxxxxx" section. */
7878 /* module_info.base_address */
7879 base_addr
= bfd_get_32 (abfd
, note
->descdata
+ 4);
7880 sprintf (buf
, ".module/%08lx", (unsigned long) base_addr
);
7882 len
= strlen (buf
) + 1;
7883 name
= bfd_alloc (abfd
, len
);
7887 memcpy (name
, buf
, len
);
7889 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7894 sect
->size
= note
->descsz
;
7895 sect
->filepos
= note
->descpos
;
7896 sect
->alignment_power
= 2;
7907 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7909 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7917 if (bed
->elf_backend_grok_prstatus
)
7918 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7920 #if defined (HAVE_PRSTATUS_T)
7921 return elfcore_grok_prstatus (abfd
, note
);
7926 #if defined (HAVE_PSTATUS_T)
7928 return elfcore_grok_pstatus (abfd
, note
);
7931 #if defined (HAVE_LWPSTATUS_T)
7933 return elfcore_grok_lwpstatus (abfd
, note
);
7936 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7937 return elfcore_grok_prfpreg (abfd
, note
);
7939 case NT_WIN32PSTATUS
:
7940 return elfcore_grok_win32pstatus (abfd
, note
);
7942 case NT_PRXFPREG
: /* Linux SSE extension */
7943 if (note
->namesz
== 6
7944 && strcmp (note
->namedata
, "LINUX") == 0)
7945 return elfcore_grok_prxfpreg (abfd
, note
);
7950 if (note
->namesz
== 6
7951 && strcmp (note
->namedata
, "LINUX") == 0)
7952 return elfcore_grok_ppc_vmx (abfd
, note
);
7957 if (note
->namesz
== 6
7958 && strcmp (note
->namedata
, "LINUX") == 0)
7959 return elfcore_grok_ppc_vsx (abfd
, note
);
7965 if (bed
->elf_backend_grok_psinfo
)
7966 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
7968 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7969 return elfcore_grok_psinfo (abfd
, note
);
7976 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
7981 sect
->size
= note
->descsz
;
7982 sect
->filepos
= note
->descpos
;
7983 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
7991 elfobj_grok_gnu_build_id (bfd
*abfd
, Elf_Internal_Note
*note
)
7993 elf_tdata (abfd
)->build_id_size
= note
->descsz
;
7994 elf_tdata (abfd
)->build_id
= bfd_alloc (abfd
, note
->descsz
);
7995 if (elf_tdata (abfd
)->build_id
== NULL
)
7998 memcpy (elf_tdata (abfd
)->build_id
, note
->descdata
, note
->descsz
);
8004 elfobj_grok_gnu_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8011 case NT_GNU_BUILD_ID
:
8012 return elfobj_grok_gnu_build_id (abfd
, note
);
8017 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
8021 cp
= strchr (note
->namedata
, '@');
8024 *lwpidp
= atoi(cp
+ 1);
8031 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
8033 /* Signal number at offset 0x08. */
8034 elf_tdata (abfd
)->core_signal
8035 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
8037 /* Process ID at offset 0x50. */
8038 elf_tdata (abfd
)->core_pid
8039 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
8041 /* Command name at 0x7c (max 32 bytes, including nul). */
8042 elf_tdata (abfd
)->core_command
8043 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
8045 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
8050 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8054 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
8055 elf_tdata (abfd
)->core_lwpid
= lwp
;
8057 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
8059 /* NetBSD-specific core "procinfo". Note that we expect to
8060 find this note before any of the others, which is fine,
8061 since the kernel writes this note out first when it
8062 creates a core file. */
8064 return elfcore_grok_netbsd_procinfo (abfd
, note
);
8067 /* As of Jan 2002 there are no other machine-independent notes
8068 defined for NetBSD core files. If the note type is less
8069 than the start of the machine-dependent note types, we don't
8072 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
8076 switch (bfd_get_arch (abfd
))
8078 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8079 PT_GETFPREGS == mach+2. */
8081 case bfd_arch_alpha
:
8082 case bfd_arch_sparc
:
8085 case NT_NETBSDCORE_FIRSTMACH
+0:
8086 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8088 case NT_NETBSDCORE_FIRSTMACH
+2:
8089 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8095 /* On all other arch's, PT_GETREGS == mach+1 and
8096 PT_GETFPREGS == mach+3. */
8101 case NT_NETBSDCORE_FIRSTMACH
+1:
8102 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8104 case NT_NETBSDCORE_FIRSTMACH
+3:
8105 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8115 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, long *tid
)
8117 void *ddata
= note
->descdata
;
8124 /* nto_procfs_status 'pid' field is at offset 0. */
8125 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
8127 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8128 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
8130 /* nto_procfs_status 'flags' field is at offset 8. */
8131 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
8133 /* nto_procfs_status 'what' field is at offset 14. */
8134 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
8136 elf_tdata (abfd
)->core_signal
= sig
;
8137 elf_tdata (abfd
)->core_lwpid
= *tid
;
8140 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8141 do not come from signals so we make sure we set the current
8142 thread just in case. */
8143 if (flags
& 0x00000080)
8144 elf_tdata (abfd
)->core_lwpid
= *tid
;
8146 /* Make a ".qnx_core_status/%d" section. */
8147 sprintf (buf
, ".qnx_core_status/%ld", *tid
);
8149 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
8154 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8158 sect
->size
= note
->descsz
;
8159 sect
->filepos
= note
->descpos
;
8160 sect
->alignment_power
= 2;
8162 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
8166 elfcore_grok_nto_regs (bfd
*abfd
,
8167 Elf_Internal_Note
*note
,
8175 /* Make a "(base)/%d" section. */
8176 sprintf (buf
, "%s/%ld", base
, tid
);
8178 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
8183 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8187 sect
->size
= note
->descsz
;
8188 sect
->filepos
= note
->descpos
;
8189 sect
->alignment_power
= 2;
8191 /* This is the current thread. */
8192 if (elf_tdata (abfd
)->core_lwpid
== tid
)
8193 return elfcore_maybe_make_sect (abfd
, base
, sect
);
8198 #define BFD_QNT_CORE_INFO 7
8199 #define BFD_QNT_CORE_STATUS 8
8200 #define BFD_QNT_CORE_GREG 9
8201 #define BFD_QNT_CORE_FPREG 10
8204 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8206 /* Every GREG section has a STATUS section before it. Store the
8207 tid from the previous call to pass down to the next gregs
8209 static long tid
= 1;
8213 case BFD_QNT_CORE_INFO
:
8214 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
8215 case BFD_QNT_CORE_STATUS
:
8216 return elfcore_grok_nto_status (abfd
, note
, &tid
);
8217 case BFD_QNT_CORE_GREG
:
8218 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
8219 case BFD_QNT_CORE_FPREG
:
8220 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
8227 elfcore_grok_spu_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8233 /* Use note name as section name. */
8235 name
= bfd_alloc (abfd
, len
);
8238 memcpy (name
, note
->namedata
, len
);
8239 name
[len
- 1] = '\0';
8241 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8245 sect
->size
= note
->descsz
;
8246 sect
->filepos
= note
->descpos
;
8247 sect
->alignment_power
= 1;
8252 /* Function: elfcore_write_note
8255 buffer to hold note, and current size of buffer
8259 size of data for note
8261 Writes note to end of buffer. ELF64 notes are written exactly as
8262 for ELF32, despite the current (as of 2006) ELF gabi specifying
8263 that they ought to have 8-byte namesz and descsz field, and have
8264 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8267 Pointer to realloc'd buffer, *BUFSIZ updated. */
8270 elfcore_write_note (bfd
*abfd
,
8278 Elf_External_Note
*xnp
;
8285 namesz
= strlen (name
) + 1;
8287 newspace
= 12 + ((namesz
+ 3) & -4) + ((size
+ 3) & -4);
8289 buf
= realloc (buf
, *bufsiz
+ newspace
);
8292 dest
= buf
+ *bufsiz
;
8293 *bufsiz
+= newspace
;
8294 xnp
= (Elf_External_Note
*) dest
;
8295 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
8296 H_PUT_32 (abfd
, size
, xnp
->descsz
);
8297 H_PUT_32 (abfd
, type
, xnp
->type
);
8301 memcpy (dest
, name
, namesz
);
8309 memcpy (dest
, input
, size
);
8319 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8321 elfcore_write_prpsinfo (bfd
*abfd
,
8327 const char *note_name
= "CORE";
8328 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8330 if (bed
->elf_backend_write_core_note
!= NULL
)
8333 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8334 NT_PRPSINFO
, fname
, psargs
);
8339 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8340 if (bed
->s
->elfclass
== ELFCLASS32
)
8342 #if defined (HAVE_PSINFO32_T)
8344 int note_type
= NT_PSINFO
;
8347 int note_type
= NT_PRPSINFO
;
8350 memset (&data
, 0, sizeof (data
));
8351 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8352 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8353 return elfcore_write_note (abfd
, buf
, bufsiz
,
8354 note_name
, note_type
, &data
, sizeof (data
));
8359 #if defined (HAVE_PSINFO_T)
8361 int note_type
= NT_PSINFO
;
8364 int note_type
= NT_PRPSINFO
;
8367 memset (&data
, 0, sizeof (data
));
8368 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8369 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8370 return elfcore_write_note (abfd
, buf
, bufsiz
,
8371 note_name
, note_type
, &data
, sizeof (data
));
8374 #endif /* PSINFO_T or PRPSINFO_T */
8376 #if defined (HAVE_PRSTATUS_T)
8378 elfcore_write_prstatus (bfd
*abfd
,
8385 const char *note_name
= "CORE";
8386 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8388 if (bed
->elf_backend_write_core_note
!= NULL
)
8391 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8393 pid
, cursig
, gregs
);
8398 #if defined (HAVE_PRSTATUS32_T)
8399 if (bed
->s
->elfclass
== ELFCLASS32
)
8401 prstatus32_t prstat
;
8403 memset (&prstat
, 0, sizeof (prstat
));
8404 prstat
.pr_pid
= pid
;
8405 prstat
.pr_cursig
= cursig
;
8406 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8407 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8408 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8415 memset (&prstat
, 0, sizeof (prstat
));
8416 prstat
.pr_pid
= pid
;
8417 prstat
.pr_cursig
= cursig
;
8418 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8419 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8420 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8423 #endif /* HAVE_PRSTATUS_T */
8425 #if defined (HAVE_LWPSTATUS_T)
8427 elfcore_write_lwpstatus (bfd
*abfd
,
8434 lwpstatus_t lwpstat
;
8435 const char *note_name
= "CORE";
8437 memset (&lwpstat
, 0, sizeof (lwpstat
));
8438 lwpstat
.pr_lwpid
= pid
>> 16;
8439 lwpstat
.pr_cursig
= cursig
;
8440 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8441 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
8442 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8444 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
8445 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
8447 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
8448 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
8451 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8452 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
8454 #endif /* HAVE_LWPSTATUS_T */
8456 #if defined (HAVE_PSTATUS_T)
8458 elfcore_write_pstatus (bfd
*abfd
,
8462 int cursig ATTRIBUTE_UNUSED
,
8463 const void *gregs ATTRIBUTE_UNUSED
)
8465 const char *note_name
= "CORE";
8466 #if defined (HAVE_PSTATUS32_T)
8467 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8469 if (bed
->s
->elfclass
== ELFCLASS32
)
8473 memset (&pstat
, 0, sizeof (pstat
));
8474 pstat
.pr_pid
= pid
& 0xffff;
8475 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8476 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8484 memset (&pstat
, 0, sizeof (pstat
));
8485 pstat
.pr_pid
= pid
& 0xffff;
8486 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8487 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8491 #endif /* HAVE_PSTATUS_T */
8494 elfcore_write_prfpreg (bfd
*abfd
,
8500 const char *note_name
= "CORE";
8501 return elfcore_write_note (abfd
, buf
, bufsiz
,
8502 note_name
, NT_FPREGSET
, fpregs
, size
);
8506 elfcore_write_prxfpreg (bfd
*abfd
,
8509 const void *xfpregs
,
8512 char *note_name
= "LINUX";
8513 return elfcore_write_note (abfd
, buf
, bufsiz
,
8514 note_name
, NT_PRXFPREG
, xfpregs
, size
);
8518 elfcore_write_ppc_vmx (bfd
*abfd
,
8521 const void *ppc_vmx
,
8524 char *note_name
= "LINUX";
8525 return elfcore_write_note (abfd
, buf
, bufsiz
,
8526 note_name
, NT_PPC_VMX
, ppc_vmx
, size
);
8530 elfcore_write_ppc_vsx (bfd
*abfd
,
8533 const void *ppc_vsx
,
8536 char *note_name
= "LINUX";
8537 return elfcore_write_note (abfd
, buf
, bufsiz
,
8538 note_name
, NT_PPC_VSX
, ppc_vsx
, size
);
8542 elfcore_write_register_note (bfd
*abfd
,
8545 const char *section
,
8549 if (strcmp (section
, ".reg2") == 0)
8550 return elfcore_write_prfpreg (abfd
, buf
, bufsiz
, data
, size
);
8551 if (strcmp (section
, ".reg-xfp") == 0)
8552 return elfcore_write_prxfpreg (abfd
, buf
, bufsiz
, data
, size
);
8553 if (strcmp (section
, ".reg-ppc-vmx") == 0)
8554 return elfcore_write_ppc_vmx (abfd
, buf
, bufsiz
, data
, size
);
8555 if (strcmp (section
, ".reg-ppc-vsx") == 0)
8556 return elfcore_write_ppc_vsx (abfd
, buf
, bufsiz
, data
, size
);
8561 elf_parse_notes (bfd
*abfd
, char *buf
, size_t size
, file_ptr offset
)
8566 while (p
< buf
+ size
)
8568 /* FIXME: bad alignment assumption. */
8569 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
8570 Elf_Internal_Note in
;
8572 if (offsetof (Elf_External_Note
, name
) > buf
- p
+ size
)
8575 in
.type
= H_GET_32 (abfd
, xnp
->type
);
8577 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
8578 in
.namedata
= xnp
->name
;
8579 if (in
.namesz
> buf
- in
.namedata
+ size
)
8582 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
8583 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
8584 in
.descpos
= offset
+ (in
.descdata
- buf
);
8586 && (in
.descdata
>= buf
+ size
8587 || in
.descsz
> buf
- in
.descdata
+ size
))
8590 switch (bfd_get_format (abfd
))
8596 if (CONST_STRNEQ (in
.namedata
, "NetBSD-CORE"))
8598 if (! elfcore_grok_netbsd_note (abfd
, &in
))
8601 else if (CONST_STRNEQ (in
.namedata
, "QNX"))
8603 if (! elfcore_grok_nto_note (abfd
, &in
))
8606 else if (CONST_STRNEQ (in
.namedata
, "SPU/"))
8608 if (! elfcore_grok_spu_note (abfd
, &in
))
8613 if (! elfcore_grok_note (abfd
, &in
))
8619 if (in
.namesz
== sizeof "GNU" && strcmp (in
.namedata
, "GNU") == 0)
8621 if (! elfobj_grok_gnu_note (abfd
, &in
))
8627 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
8634 elf_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
8641 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
8644 buf
= bfd_malloc (size
);
8648 if (bfd_bread (buf
, size
, abfd
) != size
8649 || !elf_parse_notes (abfd
, buf
, size
, offset
))
8659 /* Providing external access to the ELF program header table. */
8661 /* Return an upper bound on the number of bytes required to store a
8662 copy of ABFD's program header table entries. Return -1 if an error
8663 occurs; bfd_get_error will return an appropriate code. */
8666 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
8668 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8670 bfd_set_error (bfd_error_wrong_format
);
8674 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
8677 /* Copy ABFD's program header table entries to *PHDRS. The entries
8678 will be stored as an array of Elf_Internal_Phdr structures, as
8679 defined in include/elf/internal.h. To find out how large the
8680 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8682 Return the number of program header table entries read, or -1 if an
8683 error occurs; bfd_get_error will return an appropriate code. */
8686 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
8690 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8692 bfd_set_error (bfd_error_wrong_format
);
8696 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
8697 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
8698 num_phdrs
* sizeof (Elf_Internal_Phdr
));
8703 enum elf_reloc_type_class
8704 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
8706 return reloc_class_normal
;
8709 /* For RELA architectures, return the relocation value for a
8710 relocation against a local symbol. */
8713 _bfd_elf_rela_local_sym (bfd
*abfd
,
8714 Elf_Internal_Sym
*sym
,
8716 Elf_Internal_Rela
*rel
)
8718 asection
*sec
= *psec
;
8721 relocation
= (sec
->output_section
->vma
8722 + sec
->output_offset
8724 if ((sec
->flags
& SEC_MERGE
)
8725 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
8726 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
8729 _bfd_merged_section_offset (abfd
, psec
,
8730 elf_section_data (sec
)->sec_info
,
8731 sym
->st_value
+ rel
->r_addend
);
8734 /* If we have changed the section, and our original section is
8735 marked with SEC_EXCLUDE, it means that the original
8736 SEC_MERGE section has been completely subsumed in some
8737 other SEC_MERGE section. In this case, we need to leave
8738 some info around for --emit-relocs. */
8739 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
8740 sec
->kept_section
= *psec
;
8743 rel
->r_addend
-= relocation
;
8744 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
8750 _bfd_elf_rel_local_sym (bfd
*abfd
,
8751 Elf_Internal_Sym
*sym
,
8755 asection
*sec
= *psec
;
8757 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
8758 return sym
->st_value
+ addend
;
8760 return _bfd_merged_section_offset (abfd
, psec
,
8761 elf_section_data (sec
)->sec_info
,
8762 sym
->st_value
+ addend
);
8766 _bfd_elf_section_offset (bfd
*abfd
,
8767 struct bfd_link_info
*info
,
8771 switch (sec
->sec_info_type
)
8773 case ELF_INFO_TYPE_STABS
:
8774 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
8776 case ELF_INFO_TYPE_EH_FRAME
:
8777 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
8783 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8784 reconstruct an ELF file by reading the segments out of remote memory
8785 based on the ELF file header at EHDR_VMA and the ELF program headers it
8786 points to. If not null, *LOADBASEP is filled in with the difference
8787 between the VMAs from which the segments were read, and the VMAs the
8788 file headers (and hence BFD's idea of each section's VMA) put them at.
8790 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8791 remote memory at target address VMA into the local buffer at MYADDR; it
8792 should return zero on success or an `errno' code on failure. TEMPL must
8793 be a BFD for an ELF target with the word size and byte order found in
8794 the remote memory. */
8797 bfd_elf_bfd_from_remote_memory
8801 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
8803 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
8804 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
8808 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
8809 long symcount ATTRIBUTE_UNUSED
,
8810 asymbol
**syms ATTRIBUTE_UNUSED
,
8815 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8818 const char *relplt_name
;
8819 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
8823 Elf_Internal_Shdr
*hdr
;
8829 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
8832 if (dynsymcount
<= 0)
8835 if (!bed
->plt_sym_val
)
8838 relplt_name
= bed
->relplt_name
;
8839 if (relplt_name
== NULL
)
8840 relplt_name
= bed
->rela_plts_and_copies_p
? ".rela.plt" : ".rel.plt";
8841 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
8845 hdr
= &elf_section_data (relplt
)->this_hdr
;
8846 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
8847 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
8850 plt
= bfd_get_section_by_name (abfd
, ".plt");
8854 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
8855 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
8858 count
= relplt
->size
/ hdr
->sh_entsize
;
8859 size
= count
* sizeof (asymbol
);
8860 p
= relplt
->relocation
;
8861 for (i
= 0; i
< count
; i
++, p
+= bed
->s
->int_rels_per_ext_rel
)
8862 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
8864 s
= *ret
= bfd_malloc (size
);
8868 names
= (char *) (s
+ count
);
8869 p
= relplt
->relocation
;
8871 for (i
= 0; i
< count
; i
++, p
+= bed
->s
->int_rels_per_ext_rel
)
8876 addr
= bed
->plt_sym_val (i
, plt
, p
);
8877 if (addr
== (bfd_vma
) -1)
8880 *s
= **p
->sym_ptr_ptr
;
8881 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8882 we are defining a symbol, ensure one of them is set. */
8883 if ((s
->flags
& BSF_LOCAL
) == 0)
8884 s
->flags
|= BSF_GLOBAL
;
8885 s
->flags
|= BSF_SYNTHETIC
;
8887 s
->value
= addr
- plt
->vma
;
8890 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
8891 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
8893 memcpy (names
, "@plt", sizeof ("@plt"));
8894 names
+= sizeof ("@plt");
8901 /* It is only used by x86-64 so far. */
8902 asection _bfd_elf_large_com_section
8903 = BFD_FAKE_SECTION (_bfd_elf_large_com_section
,
8904 SEC_IS_COMMON
, NULL
, "LARGE_COMMON", 0);
8907 _bfd_elf_set_osabi (bfd
* abfd
,
8908 struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
8910 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
8912 i_ehdrp
= elf_elfheader (abfd
);
8914 i_ehdrp
->e_ident
[EI_OSABI
] = get_elf_backend_data (abfd
)->elf_osabi
;
8918 /* Return TRUE for ELF symbol types that represent functions.
8919 This is the default version of this function, which is sufficient for
8920 most targets. It returns true if TYPE is STT_FUNC. */
8923 _bfd_elf_is_function_type (unsigned int type
)
8925 return (type
== STT_FUNC
);