1 // output.cc -- manage the output file for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
33 #ifdef HAVE_SYS_MMAN_H
37 #include "libiberty.h"
40 #include "parameters.h"
45 #include "descriptors.h"
49 // For systems without mmap support.
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
64 # define MAP_PRIVATE 0
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
74 # define ENOSYS EINVAL
78 gold_mmap(void *, size_t, int, int, int, off_t
)
85 gold_munmap(void *, size_t)
92 gold_mremap(void *, size_t, size_t, int)
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
114 #ifndef HAVE_POSIX_FALLOCATE
115 // A dummy, non general, version of posix_fallocate. Here we just set
116 // the file size and hope that there is enough disk space. FIXME: We
117 // could allocate disk space by walking block by block and writing a
118 // zero byte into each block.
120 posix_fallocate(int o
, off_t offset
, off_t len
)
122 if (ftruncate(o
, offset
+ len
) < 0)
126 #endif // !defined(HAVE_POSIX_FALLOCATE)
128 // Mingw does not have S_ISLNK.
130 # define S_ISLNK(mode) 0
136 // Output_data variables.
138 bool Output_data::allocated_sizes_are_fixed
;
140 // Output_data methods.
142 Output_data::~Output_data()
146 // Return the default alignment for the target size.
149 Output_data::default_alignment()
151 return Output_data::default_alignment_for_size(
152 parameters
->target().get_size());
155 // Return the default alignment for a size--32 or 64.
158 Output_data::default_alignment_for_size(int size
)
168 // Output_section_header methods. This currently assumes that the
169 // segment and section lists are complete at construction time.
171 Output_section_headers::Output_section_headers(
172 const Layout
* layout
,
173 const Layout::Segment_list
* segment_list
,
174 const Layout::Section_list
* section_list
,
175 const Layout::Section_list
* unattached_section_list
,
176 const Stringpool
* secnamepool
,
177 const Output_section
* shstrtab_section
)
179 segment_list_(segment_list
),
180 section_list_(section_list
),
181 unattached_section_list_(unattached_section_list
),
182 secnamepool_(secnamepool
),
183 shstrtab_section_(shstrtab_section
)
187 // Compute the current data size.
190 Output_section_headers::do_size() const
192 // Count all the sections. Start with 1 for the null section.
194 if (!parameters
->options().relocatable())
196 for (Layout::Segment_list::const_iterator p
=
197 this->segment_list_
->begin();
198 p
!= this->segment_list_
->end();
200 if ((*p
)->type() == elfcpp::PT_LOAD
)
201 count
+= (*p
)->output_section_count();
205 for (Layout::Section_list::const_iterator p
=
206 this->section_list_
->begin();
207 p
!= this->section_list_
->end();
209 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
212 count
+= this->unattached_section_list_
->size();
214 const int size
= parameters
->target().get_size();
217 shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
219 shdr_size
= elfcpp::Elf_sizes
<64>::shdr_size
;
223 return count
* shdr_size
;
226 // Write out the section headers.
229 Output_section_headers::do_write(Output_file
* of
)
231 switch (parameters
->size_and_endianness())
233 #ifdef HAVE_TARGET_32_LITTLE
234 case Parameters::TARGET_32_LITTLE
:
235 this->do_sized_write
<32, false>(of
);
238 #ifdef HAVE_TARGET_32_BIG
239 case Parameters::TARGET_32_BIG
:
240 this->do_sized_write
<32, true>(of
);
243 #ifdef HAVE_TARGET_64_LITTLE
244 case Parameters::TARGET_64_LITTLE
:
245 this->do_sized_write
<64, false>(of
);
248 #ifdef HAVE_TARGET_64_BIG
249 case Parameters::TARGET_64_BIG
:
250 this->do_sized_write
<64, true>(of
);
258 template<int size
, bool big_endian
>
260 Output_section_headers::do_sized_write(Output_file
* of
)
262 off_t all_shdrs_size
= this->data_size();
263 unsigned char* view
= of
->get_output_view(this->offset(), all_shdrs_size
);
265 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
266 unsigned char* v
= view
;
269 typename
elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
270 oshdr
.put_sh_name(0);
271 oshdr
.put_sh_type(elfcpp::SHT_NULL
);
272 oshdr
.put_sh_flags(0);
273 oshdr
.put_sh_addr(0);
274 oshdr
.put_sh_offset(0);
276 size_t section_count
= (this->data_size()
277 / elfcpp::Elf_sizes
<size
>::shdr_size
);
278 if (section_count
< elfcpp::SHN_LORESERVE
)
279 oshdr
.put_sh_size(0);
281 oshdr
.put_sh_size(section_count
);
283 unsigned int shstrndx
= this->shstrtab_section_
->out_shndx();
284 if (shstrndx
< elfcpp::SHN_LORESERVE
)
285 oshdr
.put_sh_link(0);
287 oshdr
.put_sh_link(shstrndx
);
289 size_t segment_count
= this->segment_list_
->size();
290 oshdr
.put_sh_info(segment_count
>= elfcpp::PN_XNUM
? segment_count
: 0);
292 oshdr
.put_sh_addralign(0);
293 oshdr
.put_sh_entsize(0);
298 unsigned int shndx
= 1;
299 if (!parameters
->options().relocatable())
301 for (Layout::Segment_list::const_iterator p
=
302 this->segment_list_
->begin();
303 p
!= this->segment_list_
->end();
305 v
= (*p
)->write_section_headers
<size
, big_endian
>(this->layout_
,
312 for (Layout::Section_list::const_iterator p
=
313 this->section_list_
->begin();
314 p
!= this->section_list_
->end();
317 // We do unallocated sections below, except that group
318 // sections have to come first.
319 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
320 && (*p
)->type() != elfcpp::SHT_GROUP
)
322 gold_assert(shndx
== (*p
)->out_shndx());
323 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
324 (*p
)->write_header(this->layout_
, this->secnamepool_
, &oshdr
);
330 for (Layout::Section_list::const_iterator p
=
331 this->unattached_section_list_
->begin();
332 p
!= this->unattached_section_list_
->end();
335 // For a relocatable link, we did unallocated group sections
336 // above, since they have to come first.
337 if ((*p
)->type() == elfcpp::SHT_GROUP
338 && parameters
->options().relocatable())
340 gold_assert(shndx
== (*p
)->out_shndx());
341 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
342 (*p
)->write_header(this->layout_
, this->secnamepool_
, &oshdr
);
347 of
->write_output_view(this->offset(), all_shdrs_size
, view
);
350 // Output_segment_header methods.
352 Output_segment_headers::Output_segment_headers(
353 const Layout::Segment_list
& segment_list
)
354 : segment_list_(segment_list
)
356 this->set_current_data_size_for_child(this->do_size());
360 Output_segment_headers::do_write(Output_file
* of
)
362 switch (parameters
->size_and_endianness())
364 #ifdef HAVE_TARGET_32_LITTLE
365 case Parameters::TARGET_32_LITTLE
:
366 this->do_sized_write
<32, false>(of
);
369 #ifdef HAVE_TARGET_32_BIG
370 case Parameters::TARGET_32_BIG
:
371 this->do_sized_write
<32, true>(of
);
374 #ifdef HAVE_TARGET_64_LITTLE
375 case Parameters::TARGET_64_LITTLE
:
376 this->do_sized_write
<64, false>(of
);
379 #ifdef HAVE_TARGET_64_BIG
380 case Parameters::TARGET_64_BIG
:
381 this->do_sized_write
<64, true>(of
);
389 template<int size
, bool big_endian
>
391 Output_segment_headers::do_sized_write(Output_file
* of
)
393 const int phdr_size
= elfcpp::Elf_sizes
<size
>::phdr_size
;
394 off_t all_phdrs_size
= this->segment_list_
.size() * phdr_size
;
395 gold_assert(all_phdrs_size
== this->data_size());
396 unsigned char* view
= of
->get_output_view(this->offset(),
398 unsigned char* v
= view
;
399 for (Layout::Segment_list::const_iterator p
= this->segment_list_
.begin();
400 p
!= this->segment_list_
.end();
403 elfcpp::Phdr_write
<size
, big_endian
> ophdr(v
);
404 (*p
)->write_header(&ophdr
);
408 gold_assert(v
- view
== all_phdrs_size
);
410 of
->write_output_view(this->offset(), all_phdrs_size
, view
);
414 Output_segment_headers::do_size() const
416 const int size
= parameters
->target().get_size();
419 phdr_size
= elfcpp::Elf_sizes
<32>::phdr_size
;
421 phdr_size
= elfcpp::Elf_sizes
<64>::phdr_size
;
425 return this->segment_list_
.size() * phdr_size
;
428 // Output_file_header methods.
430 Output_file_header::Output_file_header(const Target
* target
,
431 const Symbol_table
* symtab
,
432 const Output_segment_headers
* osh
)
435 segment_header_(osh
),
436 section_header_(NULL
),
439 this->set_data_size(this->do_size());
442 // Set the section table information for a file header.
445 Output_file_header::set_section_info(const Output_section_headers
* shdrs
,
446 const Output_section
* shstrtab
)
448 this->section_header_
= shdrs
;
449 this->shstrtab_
= shstrtab
;
452 // Write out the file header.
455 Output_file_header::do_write(Output_file
* of
)
457 gold_assert(this->offset() == 0);
459 switch (parameters
->size_and_endianness())
461 #ifdef HAVE_TARGET_32_LITTLE
462 case Parameters::TARGET_32_LITTLE
:
463 this->do_sized_write
<32, false>(of
);
466 #ifdef HAVE_TARGET_32_BIG
467 case Parameters::TARGET_32_BIG
:
468 this->do_sized_write
<32, true>(of
);
471 #ifdef HAVE_TARGET_64_LITTLE
472 case Parameters::TARGET_64_LITTLE
:
473 this->do_sized_write
<64, false>(of
);
476 #ifdef HAVE_TARGET_64_BIG
477 case Parameters::TARGET_64_BIG
:
478 this->do_sized_write
<64, true>(of
);
486 // Write out the file header with appropriate size and endianness.
488 template<int size
, bool big_endian
>
490 Output_file_header::do_sized_write(Output_file
* of
)
492 gold_assert(this->offset() == 0);
494 int ehdr_size
= elfcpp::Elf_sizes
<size
>::ehdr_size
;
495 unsigned char* view
= of
->get_output_view(0, ehdr_size
);
496 elfcpp::Ehdr_write
<size
, big_endian
> oehdr(view
);
498 unsigned char e_ident
[elfcpp::EI_NIDENT
];
499 memset(e_ident
, 0, elfcpp::EI_NIDENT
);
500 e_ident
[elfcpp::EI_MAG0
] = elfcpp::ELFMAG0
;
501 e_ident
[elfcpp::EI_MAG1
] = elfcpp::ELFMAG1
;
502 e_ident
[elfcpp::EI_MAG2
] = elfcpp::ELFMAG2
;
503 e_ident
[elfcpp::EI_MAG3
] = elfcpp::ELFMAG3
;
505 e_ident
[elfcpp::EI_CLASS
] = elfcpp::ELFCLASS32
;
507 e_ident
[elfcpp::EI_CLASS
] = elfcpp::ELFCLASS64
;
510 e_ident
[elfcpp::EI_DATA
] = (big_endian
511 ? elfcpp::ELFDATA2MSB
512 : elfcpp::ELFDATA2LSB
);
513 e_ident
[elfcpp::EI_VERSION
] = elfcpp::EV_CURRENT
;
514 oehdr
.put_e_ident(e_ident
);
517 if (parameters
->options().relocatable())
518 e_type
= elfcpp::ET_REL
;
519 else if (parameters
->options().output_is_position_independent())
520 e_type
= elfcpp::ET_DYN
;
522 e_type
= elfcpp::ET_EXEC
;
523 oehdr
.put_e_type(e_type
);
525 oehdr
.put_e_machine(this->target_
->machine_code());
526 oehdr
.put_e_version(elfcpp::EV_CURRENT
);
528 oehdr
.put_e_entry(this->entry
<size
>());
530 if (this->segment_header_
== NULL
)
531 oehdr
.put_e_phoff(0);
533 oehdr
.put_e_phoff(this->segment_header_
->offset());
535 oehdr
.put_e_shoff(this->section_header_
->offset());
536 oehdr
.put_e_flags(this->target_
->processor_specific_flags());
537 oehdr
.put_e_ehsize(elfcpp::Elf_sizes
<size
>::ehdr_size
);
539 if (this->segment_header_
== NULL
)
541 oehdr
.put_e_phentsize(0);
542 oehdr
.put_e_phnum(0);
546 oehdr
.put_e_phentsize(elfcpp::Elf_sizes
<size
>::phdr_size
);
547 size_t phnum
= (this->segment_header_
->data_size()
548 / elfcpp::Elf_sizes
<size
>::phdr_size
);
549 if (phnum
> elfcpp::PN_XNUM
)
550 phnum
= elfcpp::PN_XNUM
;
551 oehdr
.put_e_phnum(phnum
);
554 oehdr
.put_e_shentsize(elfcpp::Elf_sizes
<size
>::shdr_size
);
555 size_t section_count
= (this->section_header_
->data_size()
556 / elfcpp::Elf_sizes
<size
>::shdr_size
);
558 if (section_count
< elfcpp::SHN_LORESERVE
)
559 oehdr
.put_e_shnum(this->section_header_
->data_size()
560 / elfcpp::Elf_sizes
<size
>::shdr_size
);
562 oehdr
.put_e_shnum(0);
564 unsigned int shstrndx
= this->shstrtab_
->out_shndx();
565 if (shstrndx
< elfcpp::SHN_LORESERVE
)
566 oehdr
.put_e_shstrndx(this->shstrtab_
->out_shndx());
568 oehdr
.put_e_shstrndx(elfcpp::SHN_XINDEX
);
570 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
571 // the e_ident field.
572 parameters
->target().adjust_elf_header(view
, ehdr_size
);
574 of
->write_output_view(0, ehdr_size
, view
);
577 // Return the value to use for the entry address.
580 typename
elfcpp::Elf_types
<size
>::Elf_Addr
581 Output_file_header::entry()
583 const bool should_issue_warning
= (parameters
->options().entry() != NULL
584 && !parameters
->options().relocatable()
585 && !parameters
->options().shared());
586 const char* entry
= parameters
->entry();
587 Symbol
* sym
= this->symtab_
->lookup(entry
);
589 typename Sized_symbol
<size
>::Value_type v
;
592 Sized_symbol
<size
>* ssym
;
593 ssym
= this->symtab_
->get_sized_symbol
<size
>(sym
);
594 if (!ssym
->is_defined() && should_issue_warning
)
595 gold_warning("entry symbol '%s' exists but is not defined", entry
);
600 // We couldn't find the entry symbol. See if we can parse it as
601 // a number. This supports, e.g., -e 0x1000.
603 v
= strtoull(entry
, &endptr
, 0);
606 if (should_issue_warning
)
607 gold_warning("cannot find entry symbol '%s'", entry
);
615 // Compute the current data size.
618 Output_file_header::do_size() const
620 const int size
= parameters
->target().get_size();
622 return elfcpp::Elf_sizes
<32>::ehdr_size
;
624 return elfcpp::Elf_sizes
<64>::ehdr_size
;
629 // Output_data_const methods.
632 Output_data_const::do_write(Output_file
* of
)
634 of
->write(this->offset(), this->data_
.data(), this->data_
.size());
637 // Output_data_const_buffer methods.
640 Output_data_const_buffer::do_write(Output_file
* of
)
642 of
->write(this->offset(), this->p_
, this->data_size());
645 // Output_section_data methods.
647 // Record the output section, and set the entry size and such.
650 Output_section_data::set_output_section(Output_section
* os
)
652 gold_assert(this->output_section_
== NULL
);
653 this->output_section_
= os
;
654 this->do_adjust_output_section(os
);
657 // Return the section index of the output section.
660 Output_section_data::do_out_shndx() const
662 gold_assert(this->output_section_
!= NULL
);
663 return this->output_section_
->out_shndx();
666 // Set the alignment, which means we may need to update the alignment
667 // of the output section.
670 Output_section_data::set_addralign(uint64_t addralign
)
672 this->addralign_
= addralign
;
673 if (this->output_section_
!= NULL
674 && this->output_section_
->addralign() < addralign
)
675 this->output_section_
->set_addralign(addralign
);
678 // Output_data_strtab methods.
680 // Set the final data size.
683 Output_data_strtab::set_final_data_size()
685 this->strtab_
->set_string_offsets();
686 this->set_data_size(this->strtab_
->get_strtab_size());
689 // Write out a string table.
692 Output_data_strtab::do_write(Output_file
* of
)
694 this->strtab_
->write(of
, this->offset());
697 // Output_reloc methods.
699 // A reloc against a global symbol.
701 template<bool dynamic
, int size
, bool big_endian
>
702 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
709 : address_(address
), local_sym_index_(GSYM_CODE
), type_(type
),
710 is_relative_(is_relative
), is_symbolless_(is_symbolless
),
711 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE
)
713 // this->type_ is a bitfield; make sure TYPE fits.
714 gold_assert(this->type_
== type
);
715 this->u1_
.gsym
= gsym
;
718 this->set_needs_dynsym_index();
721 template<bool dynamic
, int size
, bool big_endian
>
722 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
725 Sized_relobj
<size
, big_endian
>* relobj
,
730 : address_(address
), local_sym_index_(GSYM_CODE
), type_(type
),
731 is_relative_(is_relative
), is_symbolless_(is_symbolless
),
732 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx
)
734 gold_assert(shndx
!= INVALID_CODE
);
735 // this->type_ is a bitfield; make sure TYPE fits.
736 gold_assert(this->type_
== type
);
737 this->u1_
.gsym
= gsym
;
738 this->u2_
.relobj
= relobj
;
740 this->set_needs_dynsym_index();
743 // A reloc against a local symbol.
745 template<bool dynamic
, int size
, bool big_endian
>
746 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
747 Sized_relobj
<size
, big_endian
>* relobj
,
748 unsigned int local_sym_index
,
754 bool is_section_symbol
,
756 : address_(address
), local_sym_index_(local_sym_index
), type_(type
),
757 is_relative_(is_relative
), is_symbolless_(is_symbolless
),
758 is_section_symbol_(is_section_symbol
), use_plt_offset_(use_plt_offset
),
761 gold_assert(local_sym_index
!= GSYM_CODE
762 && local_sym_index
!= INVALID_CODE
);
763 // this->type_ is a bitfield; make sure TYPE fits.
764 gold_assert(this->type_
== type
);
765 this->u1_
.relobj
= relobj
;
768 this->set_needs_dynsym_index();
771 template<bool dynamic
, int size
, bool big_endian
>
772 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
773 Sized_relobj
<size
, big_endian
>* relobj
,
774 unsigned int local_sym_index
,
780 bool is_section_symbol
,
782 : address_(address
), local_sym_index_(local_sym_index
), type_(type
),
783 is_relative_(is_relative
), is_symbolless_(is_symbolless
),
784 is_section_symbol_(is_section_symbol
), use_plt_offset_(use_plt_offset
),
787 gold_assert(local_sym_index
!= GSYM_CODE
788 && local_sym_index
!= INVALID_CODE
);
789 gold_assert(shndx
!= INVALID_CODE
);
790 // this->type_ is a bitfield; make sure TYPE fits.
791 gold_assert(this->type_
== type
);
792 this->u1_
.relobj
= relobj
;
793 this->u2_
.relobj
= relobj
;
795 this->set_needs_dynsym_index();
798 // A reloc against the STT_SECTION symbol of an output section.
800 template<bool dynamic
, int size
, bool big_endian
>
801 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
806 : address_(address
), local_sym_index_(SECTION_CODE
), type_(type
),
807 is_relative_(false), is_symbolless_(false),
808 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE
)
810 // this->type_ is a bitfield; make sure TYPE fits.
811 gold_assert(this->type_
== type
);
815 this->set_needs_dynsym_index();
817 os
->set_needs_symtab_index();
820 template<bool dynamic
, int size
, bool big_endian
>
821 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
824 Sized_relobj
<size
, big_endian
>* relobj
,
827 : address_(address
), local_sym_index_(SECTION_CODE
), type_(type
),
828 is_relative_(false), is_symbolless_(false),
829 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx
)
831 gold_assert(shndx
!= INVALID_CODE
);
832 // this->type_ is a bitfield; make sure TYPE fits.
833 gold_assert(this->type_
== type
);
835 this->u2_
.relobj
= relobj
;
837 this->set_needs_dynsym_index();
839 os
->set_needs_symtab_index();
842 // An absolute relocation.
844 template<bool dynamic
, int size
, bool big_endian
>
845 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
849 : address_(address
), local_sym_index_(0), type_(type
),
850 is_relative_(false), is_symbolless_(false),
851 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE
)
853 // this->type_ is a bitfield; make sure TYPE fits.
854 gold_assert(this->type_
== type
);
855 this->u1_
.relobj
= NULL
;
859 template<bool dynamic
, int size
, bool big_endian
>
860 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
862 Sized_relobj
<size
, big_endian
>* relobj
,
865 : address_(address
), local_sym_index_(0), type_(type
),
866 is_relative_(false), is_symbolless_(false),
867 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx
)
869 gold_assert(shndx
!= INVALID_CODE
);
870 // this->type_ is a bitfield; make sure TYPE fits.
871 gold_assert(this->type_
== type
);
872 this->u1_
.relobj
= NULL
;
873 this->u2_
.relobj
= relobj
;
876 // A target specific relocation.
878 template<bool dynamic
, int size
, bool big_endian
>
879 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
884 : address_(address
), local_sym_index_(TARGET_CODE
), type_(type
),
885 is_relative_(false), is_symbolless_(false),
886 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE
)
888 // this->type_ is a bitfield; make sure TYPE fits.
889 gold_assert(this->type_
== type
);
894 template<bool dynamic
, int size
, bool big_endian
>
895 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
898 Sized_relobj
<size
, big_endian
>* relobj
,
901 : address_(address
), local_sym_index_(TARGET_CODE
), type_(type
),
902 is_relative_(false), is_symbolless_(false),
903 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx
)
905 gold_assert(shndx
!= INVALID_CODE
);
906 // this->type_ is a bitfield; make sure TYPE fits.
907 gold_assert(this->type_
== type
);
909 this->u2_
.relobj
= relobj
;
912 // Record that we need a dynamic symbol index for this relocation.
914 template<bool dynamic
, int size
, bool big_endian
>
916 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
917 set_needs_dynsym_index()
919 if (this->is_symbolless_
)
921 switch (this->local_sym_index_
)
927 this->u1_
.gsym
->set_needs_dynsym_entry();
931 this->u1_
.os
->set_needs_dynsym_index();
935 // The target must take care of this if necessary.
943 const unsigned int lsi
= this->local_sym_index_
;
944 Sized_relobj_file
<size
, big_endian
>* relobj
=
945 this->u1_
.relobj
->sized_relobj();
946 gold_assert(relobj
!= NULL
);
947 if (!this->is_section_symbol_
)
948 relobj
->set_needs_output_dynsym_entry(lsi
);
950 relobj
->output_section(lsi
)->set_needs_dynsym_index();
956 // Get the symbol index of a relocation.
958 template<bool dynamic
, int size
, bool big_endian
>
960 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::get_symbol_index()
964 if (this->is_symbolless_
)
966 switch (this->local_sym_index_
)
972 if (this->u1_
.gsym
== NULL
)
975 index
= this->u1_
.gsym
->dynsym_index();
977 index
= this->u1_
.gsym
->symtab_index();
982 index
= this->u1_
.os
->dynsym_index();
984 index
= this->u1_
.os
->symtab_index();
988 index
= parameters
->target().reloc_symbol_index(this->u1_
.arg
,
993 // Relocations without symbols use a symbol index of 0.
999 const unsigned int lsi
= this->local_sym_index_
;
1000 Sized_relobj_file
<size
, big_endian
>* relobj
=
1001 this->u1_
.relobj
->sized_relobj();
1002 gold_assert(relobj
!= NULL
);
1003 if (!this->is_section_symbol_
)
1006 index
= relobj
->dynsym_index(lsi
);
1008 index
= relobj
->symtab_index(lsi
);
1012 Output_section
* os
= relobj
->output_section(lsi
);
1013 gold_assert(os
!= NULL
);
1015 index
= os
->dynsym_index();
1017 index
= os
->symtab_index();
1022 gold_assert(index
!= -1U);
1026 // For a local section symbol, get the address of the offset ADDEND
1027 // within the input section.
1029 template<bool dynamic
, int size
, bool big_endian
>
1030 typename
elfcpp::Elf_types
<size
>::Elf_Addr
1031 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
1032 local_section_offset(Addend addend
) const
1034 gold_assert(this->local_sym_index_
!= GSYM_CODE
1035 && this->local_sym_index_
!= SECTION_CODE
1036 && this->local_sym_index_
!= TARGET_CODE
1037 && this->local_sym_index_
!= INVALID_CODE
1038 && this->local_sym_index_
!= 0
1039 && this->is_section_symbol_
);
1040 const unsigned int lsi
= this->local_sym_index_
;
1041 Output_section
* os
= this->u1_
.relobj
->output_section(lsi
);
1042 gold_assert(os
!= NULL
);
1043 Address offset
= this->u1_
.relobj
->get_output_section_offset(lsi
);
1044 if (offset
!= invalid_address
)
1045 return offset
+ addend
;
1046 // This is a merge section.
1047 Sized_relobj_file
<size
, big_endian
>* relobj
=
1048 this->u1_
.relobj
->sized_relobj();
1049 gold_assert(relobj
!= NULL
);
1050 offset
= os
->output_address(relobj
, lsi
, addend
);
1051 gold_assert(offset
!= invalid_address
);
1055 // Get the output address of a relocation.
1057 template<bool dynamic
, int size
, bool big_endian
>
1058 typename
elfcpp::Elf_types
<size
>::Elf_Addr
1059 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::get_address() const
1061 Address address
= this->address_
;
1062 if (this->shndx_
!= INVALID_CODE
)
1064 Output_section
* os
= this->u2_
.relobj
->output_section(this->shndx_
);
1065 gold_assert(os
!= NULL
);
1066 Address off
= this->u2_
.relobj
->get_output_section_offset(this->shndx_
);
1067 if (off
!= invalid_address
)
1068 address
+= os
->address() + off
;
1071 Sized_relobj_file
<size
, big_endian
>* relobj
=
1072 this->u2_
.relobj
->sized_relobj();
1073 gold_assert(relobj
!= NULL
);
1074 address
= os
->output_address(relobj
, this->shndx_
, address
);
1075 gold_assert(address
!= invalid_address
);
1078 else if (this->u2_
.od
!= NULL
)
1079 address
+= this->u2_
.od
->address();
1083 // Write out the offset and info fields of a Rel or Rela relocation
1086 template<bool dynamic
, int size
, bool big_endian
>
1087 template<typename Write_rel
>
1089 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::write_rel(
1090 Write_rel
* wr
) const
1092 wr
->put_r_offset(this->get_address());
1093 unsigned int sym_index
= this->get_symbol_index();
1094 wr
->put_r_info(elfcpp::elf_r_info
<size
>(sym_index
, this->type_
));
1097 // Write out a Rel relocation.
1099 template<bool dynamic
, int size
, bool big_endian
>
1101 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::write(
1102 unsigned char* pov
) const
1104 elfcpp::Rel_write
<size
, big_endian
> orel(pov
);
1105 this->write_rel(&orel
);
1108 // Get the value of the symbol referred to by a Rel relocation.
1110 template<bool dynamic
, int size
, bool big_endian
>
1111 typename
elfcpp::Elf_types
<size
>::Elf_Addr
1112 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::symbol_value(
1113 Addend addend
) const
1115 if (this->local_sym_index_
== GSYM_CODE
)
1117 const Sized_symbol
<size
>* sym
;
1118 sym
= static_cast<const Sized_symbol
<size
>*>(this->u1_
.gsym
);
1119 return sym
->value() + addend
;
1121 gold_assert(this->local_sym_index_
!= SECTION_CODE
1122 && this->local_sym_index_
!= TARGET_CODE
1123 && this->local_sym_index_
!= INVALID_CODE
1124 && this->local_sym_index_
!= 0
1125 && !this->is_section_symbol_
);
1126 const unsigned int lsi
= this->local_sym_index_
;
1127 Sized_relobj_file
<size
, big_endian
>* relobj
=
1128 this->u1_
.relobj
->sized_relobj();
1129 gold_assert(relobj
!= NULL
);
1130 if (this->use_plt_offset_
)
1132 uint64_t plt_address
=
1133 parameters
->target().plt_address_for_local(relobj
, lsi
);
1134 return plt_address
+ relobj
->local_plt_offset(lsi
);
1136 const Symbol_value
<size
>* symval
= relobj
->local_symbol(lsi
);
1137 return symval
->value(relobj
, addend
);
1140 // Reloc comparison. This function sorts the dynamic relocs for the
1141 // benefit of the dynamic linker. First we sort all relative relocs
1142 // to the front. Among relative relocs, we sort by output address.
1143 // Among non-relative relocs, we sort by symbol index, then by output
1146 template<bool dynamic
, int size
, bool big_endian
>
1148 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
1149 compare(const Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>& r2
)
1152 if (this->is_relative_
)
1154 if (!r2
.is_relative_
)
1156 // Otherwise sort by reloc address below.
1158 else if (r2
.is_relative_
)
1162 unsigned int sym1
= this->get_symbol_index();
1163 unsigned int sym2
= r2
.get_symbol_index();
1166 else if (sym1
> sym2
)
1168 // Otherwise sort by reloc address.
1171 section_offset_type addr1
= this->get_address();
1172 section_offset_type addr2
= r2
.get_address();
1175 else if (addr1
> addr2
)
1178 // Final tie breaker, in order to generate the same output on any
1179 // host: reloc type.
1180 unsigned int type1
= this->type_
;
1181 unsigned int type2
= r2
.type_
;
1184 else if (type1
> type2
)
1187 // These relocs appear to be exactly the same.
1191 // Write out a Rela relocation.
1193 template<bool dynamic
, int size
, bool big_endian
>
1195 Output_reloc
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>::write(
1196 unsigned char* pov
) const
1198 elfcpp::Rela_write
<size
, big_endian
> orel(pov
);
1199 this->rel_
.write_rel(&orel
);
1200 Addend addend
= this->addend_
;
1201 if (this->rel_
.is_target_specific())
1202 addend
= parameters
->target().reloc_addend(this->rel_
.target_arg(),
1203 this->rel_
.type(), addend
);
1204 else if (this->rel_
.is_symbolless())
1205 addend
= this->rel_
.symbol_value(addend
);
1206 else if (this->rel_
.is_local_section_symbol())
1207 addend
= this->rel_
.local_section_offset(addend
);
1208 orel
.put_r_addend(addend
);
1211 // Output_data_reloc_base methods.
1213 // Adjust the output section.
1215 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1217 Output_data_reloc_base
<sh_type
, dynamic
, size
, big_endian
>
1218 ::do_adjust_output_section(Output_section
* os
)
1220 if (sh_type
== elfcpp::SHT_REL
)
1221 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
1222 else if (sh_type
== elfcpp::SHT_RELA
)
1223 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
1227 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1228 // static link. The backends will generate a dynamic reloc section
1229 // to hold this. In that case we don't want to link to the dynsym
1230 // section, because there isn't one.
1232 os
->set_should_link_to_symtab();
1233 else if (parameters
->doing_static_link())
1236 os
->set_should_link_to_dynsym();
1239 // Write out relocation data.
1241 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1243 Output_data_reloc_base
<sh_type
, dynamic
, size
, big_endian
>::do_write(
1246 const off_t off
= this->offset();
1247 const off_t oview_size
= this->data_size();
1248 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1250 if (this->sort_relocs())
1252 gold_assert(dynamic
);
1253 std::sort(this->relocs_
.begin(), this->relocs_
.end(),
1254 Sort_relocs_comparison());
1257 unsigned char* pov
= oview
;
1258 for (typename
Relocs::const_iterator p
= this->relocs_
.begin();
1259 p
!= this->relocs_
.end();
1266 gold_assert(pov
- oview
== oview_size
);
1268 of
->write_output_view(off
, oview_size
, oview
);
1270 // We no longer need the relocation entries.
1271 this->relocs_
.clear();
1274 // Class Output_relocatable_relocs.
1276 template<int sh_type
, int size
, bool big_endian
>
1278 Output_relocatable_relocs
<sh_type
, size
, big_endian
>::set_final_data_size()
1280 this->set_data_size(this->rr_
->output_reloc_count()
1281 * Reloc_types
<sh_type
, size
, big_endian
>::reloc_size
);
1284 // class Output_data_group.
1286 template<int size
, bool big_endian
>
1287 Output_data_group
<size
, big_endian
>::Output_data_group(
1288 Sized_relobj_file
<size
, big_endian
>* relobj
,
1289 section_size_type entry_count
,
1290 elfcpp::Elf_Word flags
,
1291 std::vector
<unsigned int>* input_shndxes
)
1292 : Output_section_data(entry_count
* 4, 4, false),
1296 this->input_shndxes_
.swap(*input_shndxes
);
1299 // Write out the section group, which means translating the section
1300 // indexes to apply to the output file.
1302 template<int size
, bool big_endian
>
1304 Output_data_group
<size
, big_endian
>::do_write(Output_file
* of
)
1306 const off_t off
= this->offset();
1307 const section_size_type oview_size
=
1308 convert_to_section_size_type(this->data_size());
1309 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1311 elfcpp::Elf_Word
* contents
= reinterpret_cast<elfcpp::Elf_Word
*>(oview
);
1312 elfcpp::Swap
<32, big_endian
>::writeval(contents
, this->flags_
);
1315 for (std::vector
<unsigned int>::const_iterator p
=
1316 this->input_shndxes_
.begin();
1317 p
!= this->input_shndxes_
.end();
1320 Output_section
* os
= this->relobj_
->output_section(*p
);
1322 unsigned int output_shndx
;
1324 output_shndx
= os
->out_shndx();
1327 this->relobj_
->error(_("section group retained but "
1328 "group element discarded"));
1332 elfcpp::Swap
<32, big_endian
>::writeval(contents
, output_shndx
);
1335 size_t wrote
= reinterpret_cast<unsigned char*>(contents
) - oview
;
1336 gold_assert(wrote
== oview_size
);
1338 of
->write_output_view(off
, oview_size
, oview
);
1340 // We no longer need this information.
1341 this->input_shndxes_
.clear();
1344 // Output_data_got::Got_entry methods.
1346 // Write out the entry.
1348 template<int size
, bool big_endian
>
1350 Output_data_got
<size
, big_endian
>::Got_entry::write(unsigned char* pov
) const
1354 switch (this->local_sym_index_
)
1358 // If the symbol is resolved locally, we need to write out the
1359 // link-time value, which will be relocated dynamically by a
1360 // RELATIVE relocation.
1361 Symbol
* gsym
= this->u_
.gsym
;
1362 if (this->use_plt_offset_
&& gsym
->has_plt_offset())
1363 val
= (parameters
->target().plt_address_for_global(gsym
)
1364 + gsym
->plt_offset());
1367 Sized_symbol
<size
>* sgsym
;
1368 // This cast is a bit ugly. We don't want to put a
1369 // virtual method in Symbol, because we want Symbol to be
1370 // as small as possible.
1371 sgsym
= static_cast<Sized_symbol
<size
>*>(gsym
);
1372 val
= sgsym
->value();
1378 val
= this->u_
.constant
;
1382 // If we're doing an incremental update, don't touch this GOT entry.
1383 if (parameters
->incremental_update())
1385 val
= this->u_
.constant
;
1390 const Relobj
* object
= this->u_
.object
;
1391 const unsigned int lsi
= this->local_sym_index_
;
1392 if (!this->use_plt_offset_
)
1394 uint64_t lval
= object
->local_symbol_value(lsi
, 0);
1395 val
= convert_types
<Valtype
, uint64_t>(lval
);
1399 uint64_t plt_address
=
1400 parameters
->target().plt_address_for_local(object
, lsi
);
1401 val
= plt_address
+ object
->local_plt_offset(lsi
);
1407 elfcpp::Swap
<size
, big_endian
>::writeval(pov
, val
);
1410 // Output_data_got methods.
1412 // Add an entry for a global symbol to the GOT. This returns true if
1413 // this is a new GOT entry, false if the symbol already had a GOT
1416 template<int size
, bool big_endian
>
1418 Output_data_got
<size
, big_endian
>::add_global(
1420 unsigned int got_type
)
1422 if (gsym
->has_got_offset(got_type
))
1425 unsigned int got_offset
= this->add_got_entry(Got_entry(gsym
, false));
1426 gsym
->set_got_offset(got_type
, got_offset
);
1430 // Like add_global, but use the PLT offset.
1432 template<int size
, bool big_endian
>
1434 Output_data_got
<size
, big_endian
>::add_global_plt(Symbol
* gsym
,
1435 unsigned int got_type
)
1437 if (gsym
->has_got_offset(got_type
))
1440 unsigned int got_offset
= this->add_got_entry(Got_entry(gsym
, true));
1441 gsym
->set_got_offset(got_type
, got_offset
);
1445 // Add an entry for a global symbol to the GOT, and add a dynamic
1446 // relocation of type R_TYPE for the GOT entry.
1448 template<int size
, bool big_endian
>
1450 Output_data_got
<size
, big_endian
>::add_global_with_rel(
1452 unsigned int got_type
,
1453 Output_data_reloc_generic
* rel_dyn
,
1454 unsigned int r_type
)
1456 if (gsym
->has_got_offset(got_type
))
1459 unsigned int got_offset
= this->add_got_entry(Got_entry());
1460 gsym
->set_got_offset(got_type
, got_offset
);
1461 rel_dyn
->add_global_generic(gsym
, r_type
, this, got_offset
, 0);
1464 // Add a pair of entries for a global symbol to the GOT, and add
1465 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1466 // If R_TYPE_2 == 0, add the second entry with no relocation.
1467 template<int size
, bool big_endian
>
1469 Output_data_got
<size
, big_endian
>::add_global_pair_with_rel(
1471 unsigned int got_type
,
1472 Output_data_reloc_generic
* rel_dyn
,
1473 unsigned int r_type_1
,
1474 unsigned int r_type_2
)
1476 if (gsym
->has_got_offset(got_type
))
1479 unsigned int got_offset
= this->add_got_entry_pair(Got_entry(), Got_entry());
1480 gsym
->set_got_offset(got_type
, got_offset
);
1481 rel_dyn
->add_global_generic(gsym
, r_type_1
, this, got_offset
, 0);
1484 rel_dyn
->add_global_generic(gsym
, r_type_2
, this,
1485 got_offset
+ size
/ 8, 0);
1488 // Add an entry for a local symbol to the GOT. This returns true if
1489 // this is a new GOT entry, false if the symbol already has a GOT
1492 template<int size
, bool big_endian
>
1494 Output_data_got
<size
, big_endian
>::add_local(
1496 unsigned int symndx
,
1497 unsigned int got_type
)
1499 if (object
->local_has_got_offset(symndx
, got_type
))
1502 unsigned int got_offset
= this->add_got_entry(Got_entry(object
, symndx
,
1504 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1508 // Like add_local, but use the PLT offset.
1510 template<int size
, bool big_endian
>
1512 Output_data_got
<size
, big_endian
>::add_local_plt(
1514 unsigned int symndx
,
1515 unsigned int got_type
)
1517 if (object
->local_has_got_offset(symndx
, got_type
))
1520 unsigned int got_offset
= this->add_got_entry(Got_entry(object
, symndx
,
1522 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1526 // Add an entry for a local symbol to the GOT, and add a dynamic
1527 // relocation of type R_TYPE for the GOT entry.
1529 template<int size
, bool big_endian
>
1531 Output_data_got
<size
, big_endian
>::add_local_with_rel(
1533 unsigned int symndx
,
1534 unsigned int got_type
,
1535 Output_data_reloc_generic
* rel_dyn
,
1536 unsigned int r_type
)
1538 if (object
->local_has_got_offset(symndx
, got_type
))
1541 unsigned int got_offset
= this->add_got_entry(Got_entry());
1542 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1543 rel_dyn
->add_local_generic(object
, symndx
, r_type
, this, got_offset
, 0);
1546 // Add a pair of entries for a local symbol to the GOT, and add
1547 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1548 // If R_TYPE_2 == 0, add the second entry with no relocation.
1549 template<int size
, bool big_endian
>
1551 Output_data_got
<size
, big_endian
>::add_local_pair_with_rel(
1553 unsigned int symndx
,
1555 unsigned int got_type
,
1556 Output_data_reloc_generic
* rel_dyn
,
1557 unsigned int r_type_1
,
1558 unsigned int r_type_2
)
1560 if (object
->local_has_got_offset(symndx
, got_type
))
1563 unsigned int got_offset
=
1564 this->add_got_entry_pair(Got_entry(),
1565 Got_entry(object
, symndx
, false));
1566 object
->set_local_got_offset(symndx
, got_type
, got_offset
);
1567 Output_section
* os
= object
->output_section(shndx
);
1568 rel_dyn
->add_output_section_generic(os
, r_type_1
, this, got_offset
, 0);
1571 rel_dyn
->add_output_section_generic(os
, r_type_2
, this,
1572 got_offset
+ size
/ 8, 0);
1575 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1577 template<int size
, bool big_endian
>
1579 Output_data_got
<size
, big_endian
>::reserve_local(
1582 unsigned int sym_index
,
1583 unsigned int got_type
)
1585 this->do_reserve_slot(i
);
1586 object
->set_local_got_offset(sym_index
, got_type
, this->got_offset(i
));
1589 // Reserve a slot in the GOT for a global symbol.
1591 template<int size
, bool big_endian
>
1593 Output_data_got
<size
, big_endian
>::reserve_global(
1596 unsigned int got_type
)
1598 this->do_reserve_slot(i
);
1599 gsym
->set_got_offset(got_type
, this->got_offset(i
));
1602 // Write out the GOT.
1604 template<int size
, bool big_endian
>
1606 Output_data_got
<size
, big_endian
>::do_write(Output_file
* of
)
1608 const int add
= size
/ 8;
1610 const off_t off
= this->offset();
1611 const off_t oview_size
= this->data_size();
1612 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1614 unsigned char* pov
= oview
;
1615 for (typename
Got_entries::const_iterator p
= this->entries_
.begin();
1616 p
!= this->entries_
.end();
1623 gold_assert(pov
- oview
== oview_size
);
1625 of
->write_output_view(off
, oview_size
, oview
);
1627 // We no longer need the GOT entries.
1628 this->entries_
.clear();
1631 // Create a new GOT entry and return its offset.
1633 template<int size
, bool big_endian
>
1635 Output_data_got
<size
, big_endian
>::add_got_entry(Got_entry got_entry
)
1637 if (!this->is_data_size_valid())
1639 this->entries_
.push_back(got_entry
);
1640 this->set_got_size();
1641 return this->last_got_offset();
1645 // For an incremental update, find an available slot.
1646 off_t got_offset
= this->free_list_
.allocate(size
/ 8, size
/ 8, 0);
1647 if (got_offset
== -1)
1648 gold_fallback(_("out of patch space (GOT);"
1649 " relink with --incremental-full"));
1650 unsigned int got_index
= got_offset
/ (size
/ 8);
1651 gold_assert(got_index
< this->entries_
.size());
1652 this->entries_
[got_index
] = got_entry
;
1653 return static_cast<unsigned int>(got_offset
);
1657 // Create a pair of new GOT entries and return the offset of the first.
1659 template<int size
, bool big_endian
>
1661 Output_data_got
<size
, big_endian
>::add_got_entry_pair(Got_entry got_entry_1
,
1662 Got_entry got_entry_2
)
1664 if (!this->is_data_size_valid())
1666 unsigned int got_offset
;
1667 this->entries_
.push_back(got_entry_1
);
1668 got_offset
= this->last_got_offset();
1669 this->entries_
.push_back(got_entry_2
);
1670 this->set_got_size();
1675 // For an incremental update, find an available pair of slots.
1676 off_t got_offset
= this->free_list_
.allocate(2 * size
/ 8, size
/ 8, 0);
1677 if (got_offset
== -1)
1678 gold_fallback(_("out of patch space (GOT);"
1679 " relink with --incremental-full"));
1680 unsigned int got_index
= got_offset
/ (size
/ 8);
1681 gold_assert(got_index
< this->entries_
.size());
1682 this->entries_
[got_index
] = got_entry_1
;
1683 this->entries_
[got_index
+ 1] = got_entry_2
;
1684 return static_cast<unsigned int>(got_offset
);
1688 // Output_data_dynamic::Dynamic_entry methods.
1690 // Write out the entry.
1692 template<int size
, bool big_endian
>
1694 Output_data_dynamic::Dynamic_entry::write(
1696 const Stringpool
* pool
) const
1698 typename
elfcpp::Elf_types
<size
>::Elf_WXword val
;
1699 switch (this->offset_
)
1701 case DYNAMIC_NUMBER
:
1705 case DYNAMIC_SECTION_SIZE
:
1706 val
= this->u_
.od
->data_size();
1707 if (this->od2
!= NULL
)
1708 val
+= this->od2
->data_size();
1711 case DYNAMIC_SYMBOL
:
1713 const Sized_symbol
<size
>* s
=
1714 static_cast<const Sized_symbol
<size
>*>(this->u_
.sym
);
1719 case DYNAMIC_STRING
:
1720 val
= pool
->get_offset(this->u_
.str
);
1724 val
= this->u_
.od
->address() + this->offset_
;
1728 elfcpp::Dyn_write
<size
, big_endian
> dw(pov
);
1729 dw
.put_d_tag(this->tag_
);
1733 // Output_data_dynamic methods.
1735 // Adjust the output section to set the entry size.
1738 Output_data_dynamic::do_adjust_output_section(Output_section
* os
)
1740 if (parameters
->target().get_size() == 32)
1741 os
->set_entsize(elfcpp::Elf_sizes
<32>::dyn_size
);
1742 else if (parameters
->target().get_size() == 64)
1743 os
->set_entsize(elfcpp::Elf_sizes
<64>::dyn_size
);
1748 // Set the final data size.
1751 Output_data_dynamic::set_final_data_size()
1753 // Add the terminating entry if it hasn't been added.
1754 // Because of relaxation, we can run this multiple times.
1755 if (this->entries_
.empty() || this->entries_
.back().tag() != elfcpp::DT_NULL
)
1757 int extra
= parameters
->options().spare_dynamic_tags();
1758 for (int i
= 0; i
< extra
; ++i
)
1759 this->add_constant(elfcpp::DT_NULL
, 0);
1760 this->add_constant(elfcpp::DT_NULL
, 0);
1764 if (parameters
->target().get_size() == 32)
1765 dyn_size
= elfcpp::Elf_sizes
<32>::dyn_size
;
1766 else if (parameters
->target().get_size() == 64)
1767 dyn_size
= elfcpp::Elf_sizes
<64>::dyn_size
;
1770 this->set_data_size(this->entries_
.size() * dyn_size
);
1773 // Write out the dynamic entries.
1776 Output_data_dynamic::do_write(Output_file
* of
)
1778 switch (parameters
->size_and_endianness())
1780 #ifdef HAVE_TARGET_32_LITTLE
1781 case Parameters::TARGET_32_LITTLE
:
1782 this->sized_write
<32, false>(of
);
1785 #ifdef HAVE_TARGET_32_BIG
1786 case Parameters::TARGET_32_BIG
:
1787 this->sized_write
<32, true>(of
);
1790 #ifdef HAVE_TARGET_64_LITTLE
1791 case Parameters::TARGET_64_LITTLE
:
1792 this->sized_write
<64, false>(of
);
1795 #ifdef HAVE_TARGET_64_BIG
1796 case Parameters::TARGET_64_BIG
:
1797 this->sized_write
<64, true>(of
);
1805 template<int size
, bool big_endian
>
1807 Output_data_dynamic::sized_write(Output_file
* of
)
1809 const int dyn_size
= elfcpp::Elf_sizes
<size
>::dyn_size
;
1811 const off_t offset
= this->offset();
1812 const off_t oview_size
= this->data_size();
1813 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
1815 unsigned char* pov
= oview
;
1816 for (typename
Dynamic_entries::const_iterator p
= this->entries_
.begin();
1817 p
!= this->entries_
.end();
1820 p
->write
<size
, big_endian
>(pov
, this->pool_
);
1824 gold_assert(pov
- oview
== oview_size
);
1826 of
->write_output_view(offset
, oview_size
, oview
);
1828 // We no longer need the dynamic entries.
1829 this->entries_
.clear();
1832 // Class Output_symtab_xindex.
1835 Output_symtab_xindex::do_write(Output_file
* of
)
1837 const off_t offset
= this->offset();
1838 const off_t oview_size
= this->data_size();
1839 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
1841 memset(oview
, 0, oview_size
);
1843 if (parameters
->target().is_big_endian())
1844 this->endian_do_write
<true>(oview
);
1846 this->endian_do_write
<false>(oview
);
1848 of
->write_output_view(offset
, oview_size
, oview
);
1850 // We no longer need the data.
1851 this->entries_
.clear();
1854 template<bool big_endian
>
1856 Output_symtab_xindex::endian_do_write(unsigned char* const oview
)
1858 for (Xindex_entries::const_iterator p
= this->entries_
.begin();
1859 p
!= this->entries_
.end();
1862 unsigned int symndx
= p
->first
;
1863 gold_assert(symndx
* 4 < this->data_size());
1864 elfcpp::Swap
<32, big_endian
>::writeval(oview
+ symndx
* 4, p
->second
);
1868 // Output_fill_debug_info methods.
1870 // Return the minimum size needed for a dummy compilation unit header.
1873 Output_fill_debug_info::do_minimum_hole_size() const
1875 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1877 const size_t len
= 4 + 2 + 4 + 1;
1878 // For type units, add type_signature, type_offset.
1879 if (this->is_debug_types_
)
1884 // Write a dummy compilation unit header to fill a hole in the
1885 // .debug_info or .debug_types section.
1888 Output_fill_debug_info::do_write(Output_file
* of
, off_t off
, size_t len
) const
1890 gold_debug(DEBUG_INCREMENTAL
, "fill_debug_info(%08lx, %08lx)",
1891 static_cast<long>(off
), static_cast<long>(len
));
1893 gold_assert(len
>= this->do_minimum_hole_size());
1895 unsigned char* const oview
= of
->get_output_view(off
, len
);
1896 unsigned char* pov
= oview
;
1898 // Write header fields: unit_length, version, debug_abbrev_offset,
1900 if (this->is_big_endian())
1902 elfcpp::Swap_unaligned
<32, true>::writeval(pov
, len
- 4);
1903 elfcpp::Swap_unaligned
<16, true>::writeval(pov
+ 4, this->version
);
1904 elfcpp::Swap_unaligned
<32, true>::writeval(pov
+ 6, 0);
1908 elfcpp::Swap_unaligned
<32, false>::writeval(pov
, len
- 4);
1909 elfcpp::Swap_unaligned
<16, false>::writeval(pov
+ 4, this->version
);
1910 elfcpp::Swap_unaligned
<32, false>::writeval(pov
+ 6, 0);
1915 // For type units, the additional header fields -- type_signature,
1916 // type_offset -- can be filled with zeroes.
1918 // Fill the remainder of the free space with zeroes. The first
1919 // zero should tell the consumer there are no DIEs to read in this
1920 // compilation unit.
1921 if (pov
< oview
+ len
)
1922 memset(pov
, 0, oview
+ len
- pov
);
1924 of
->write_output_view(off
, len
, oview
);
1927 // Output_fill_debug_line methods.
1929 // Return the minimum size needed for a dummy line number program header.
1932 Output_fill_debug_line::do_minimum_hole_size() const
1934 // Line number program header fields: unit_length, version, header_length,
1935 // minimum_instruction_length, default_is_stmt, line_base, line_range,
1936 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1937 const size_t len
= 4 + 2 + 4 + this->header_length
;
1941 // Write a dummy line number program header to fill a hole in the
1942 // .debug_line section.
1945 Output_fill_debug_line::do_write(Output_file
* of
, off_t off
, size_t len
) const
1947 gold_debug(DEBUG_INCREMENTAL
, "fill_debug_line(%08lx, %08lx)",
1948 static_cast<long>(off
), static_cast<long>(len
));
1950 gold_assert(len
>= this->do_minimum_hole_size());
1952 unsigned char* const oview
= of
->get_output_view(off
, len
);
1953 unsigned char* pov
= oview
;
1955 // Write header fields: unit_length, version, header_length,
1956 // minimum_instruction_length, default_is_stmt, line_base, line_range,
1957 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1958 // We set the header_length field to cover the entire hole, so the
1959 // line number program is empty.
1960 if (this->is_big_endian())
1962 elfcpp::Swap_unaligned
<32, true>::writeval(pov
, len
- 4);
1963 elfcpp::Swap_unaligned
<16, true>::writeval(pov
+ 4, this->version
);
1964 elfcpp::Swap_unaligned
<32, true>::writeval(pov
+ 6, len
- (4 + 2 + 4));
1968 elfcpp::Swap_unaligned
<32, false>::writeval(pov
, len
- 4);
1969 elfcpp::Swap_unaligned
<16, false>::writeval(pov
+ 4, this->version
);
1970 elfcpp::Swap_unaligned
<32, false>::writeval(pov
+ 6, len
- (4 + 2 + 4));
1973 *pov
++ = 1; // minimum_instruction_length
1974 *pov
++ = 0; // default_is_stmt
1975 *pov
++ = 0; // line_base
1976 *pov
++ = 5; // line_range
1977 *pov
++ = 13; // opcode_base
1978 *pov
++ = 0; // standard_opcode_lengths[1]
1979 *pov
++ = 1; // standard_opcode_lengths[2]
1980 *pov
++ = 1; // standard_opcode_lengths[3]
1981 *pov
++ = 1; // standard_opcode_lengths[4]
1982 *pov
++ = 1; // standard_opcode_lengths[5]
1983 *pov
++ = 0; // standard_opcode_lengths[6]
1984 *pov
++ = 0; // standard_opcode_lengths[7]
1985 *pov
++ = 0; // standard_opcode_lengths[8]
1986 *pov
++ = 1; // standard_opcode_lengths[9]
1987 *pov
++ = 0; // standard_opcode_lengths[10]
1988 *pov
++ = 0; // standard_opcode_lengths[11]
1989 *pov
++ = 1; // standard_opcode_lengths[12]
1990 *pov
++ = 0; // include_directories (empty)
1991 *pov
++ = 0; // filenames (empty)
1993 // Some consumers don't check the header_length field, and simply
1994 // start reading the line number program immediately following the
1995 // header. For those consumers, we fill the remainder of the free
1996 // space with DW_LNS_set_basic_block opcodes. These are effectively
1997 // no-ops: the resulting line table program will not create any rows.
1998 if (pov
< oview
+ len
)
1999 memset(pov
, elfcpp::DW_LNS_set_basic_block
, oview
+ len
- pov
);
2001 of
->write_output_view(off
, len
, oview
);
2004 // Output_section::Input_section methods.
2006 // Return the current data size. For an input section we store the size here.
2007 // For an Output_section_data, we have to ask it for the size.
2010 Output_section::Input_section::current_data_size() const
2012 if (this->is_input_section())
2013 return this->u1_
.data_size
;
2016 this->u2_
.posd
->pre_finalize_data_size();
2017 return this->u2_
.posd
->current_data_size();
2021 // Return the data size. For an input section we store the size here.
2022 // For an Output_section_data, we have to ask it for the size.
2025 Output_section::Input_section::data_size() const
2027 if (this->is_input_section())
2028 return this->u1_
.data_size
;
2030 return this->u2_
.posd
->data_size();
2033 // Return the object for an input section.
2036 Output_section::Input_section::relobj() const
2038 if (this->is_input_section())
2039 return this->u2_
.object
;
2040 else if (this->is_merge_section())
2042 gold_assert(this->u2_
.pomb
->first_relobj() != NULL
);
2043 return this->u2_
.pomb
->first_relobj();
2045 else if (this->is_relaxed_input_section())
2046 return this->u2_
.poris
->relobj();
2051 // Return the input section index for an input section.
2054 Output_section::Input_section::shndx() const
2056 if (this->is_input_section())
2057 return this->shndx_
;
2058 else if (this->is_merge_section())
2060 gold_assert(this->u2_
.pomb
->first_relobj() != NULL
);
2061 return this->u2_
.pomb
->first_shndx();
2063 else if (this->is_relaxed_input_section())
2064 return this->u2_
.poris
->shndx();
2069 // Set the address and file offset.
2072 Output_section::Input_section::set_address_and_file_offset(
2075 off_t section_file_offset
)
2077 if (this->is_input_section())
2078 this->u2_
.object
->set_section_offset(this->shndx_
,
2079 file_offset
- section_file_offset
);
2081 this->u2_
.posd
->set_address_and_file_offset(address
, file_offset
);
2084 // Reset the address and file offset.
2087 Output_section::Input_section::reset_address_and_file_offset()
2089 if (!this->is_input_section())
2090 this->u2_
.posd
->reset_address_and_file_offset();
2093 // Finalize the data size.
2096 Output_section::Input_section::finalize_data_size()
2098 if (!this->is_input_section())
2099 this->u2_
.posd
->finalize_data_size();
2102 // Try to turn an input offset into an output offset. We want to
2103 // return the output offset relative to the start of this
2104 // Input_section in the output section.
2107 Output_section::Input_section::output_offset(
2108 const Relobj
* object
,
2110 section_offset_type offset
,
2111 section_offset_type
* poutput
) const
2113 if (!this->is_input_section())
2114 return this->u2_
.posd
->output_offset(object
, shndx
, offset
, poutput
);
2117 if (this->shndx_
!= shndx
|| this->u2_
.object
!= object
)
2124 // Return whether this is the merge section for the input section
2128 Output_section::Input_section::is_merge_section_for(const Relobj
* object
,
2129 unsigned int shndx
) const
2131 if (this->is_input_section())
2133 return this->u2_
.posd
->is_merge_section_for(object
, shndx
);
2136 // Write out the data. We don't have to do anything for an input
2137 // section--they are handled via Object::relocate--but this is where
2138 // we write out the data for an Output_section_data.
2141 Output_section::Input_section::write(Output_file
* of
)
2143 if (!this->is_input_section())
2144 this->u2_
.posd
->write(of
);
2147 // Write the data to a buffer. As for write(), we don't have to do
2148 // anything for an input section.
2151 Output_section::Input_section::write_to_buffer(unsigned char* buffer
)
2153 if (!this->is_input_section())
2154 this->u2_
.posd
->write_to_buffer(buffer
);
2157 // Print to a map file.
2160 Output_section::Input_section::print_to_mapfile(Mapfile
* mapfile
) const
2162 switch (this->shndx_
)
2164 case OUTPUT_SECTION_CODE
:
2165 case MERGE_DATA_SECTION_CODE
:
2166 case MERGE_STRING_SECTION_CODE
:
2167 this->u2_
.posd
->print_to_mapfile(mapfile
);
2170 case RELAXED_INPUT_SECTION_CODE
:
2172 Output_relaxed_input_section
* relaxed_section
=
2173 this->relaxed_input_section();
2174 mapfile
->print_input_section(relaxed_section
->relobj(),
2175 relaxed_section
->shndx());
2179 mapfile
->print_input_section(this->u2_
.object
, this->shndx_
);
2184 // Output_section methods.
2186 // Construct an Output_section. NAME will point into a Stringpool.
2188 Output_section::Output_section(const char* name
, elfcpp::Elf_Word type
,
2189 elfcpp::Elf_Xword flags
)
2194 link_section_(NULL
),
2196 info_section_(NULL
),
2201 order_(ORDER_INVALID
),
2206 first_input_offset_(0),
2208 postprocessing_buffer_(NULL
),
2209 needs_symtab_index_(false),
2210 needs_dynsym_index_(false),
2211 should_link_to_symtab_(false),
2212 should_link_to_dynsym_(false),
2213 after_input_sections_(false),
2214 requires_postprocessing_(false),
2215 found_in_sections_clause_(false),
2216 has_load_address_(false),
2217 info_uses_section_index_(false),
2218 input_section_order_specified_(false),
2219 may_sort_attached_input_sections_(false),
2220 must_sort_attached_input_sections_(false),
2221 attached_input_sections_are_sorted_(false),
2223 is_small_section_(false),
2224 is_large_section_(false),
2225 generate_code_fills_at_write_(false),
2226 is_entsize_zero_(false),
2227 section_offsets_need_adjustment_(false),
2229 always_keeps_input_sections_(false),
2230 has_fixed_layout_(false),
2231 is_patch_space_allowed_(false),
2234 lookup_maps_(new Output_section_lookup_maps
),
2236 free_space_fill_(NULL
),
2239 // An unallocated section has no address. Forcing this means that
2240 // we don't need special treatment for symbols defined in debug
2242 if ((flags
& elfcpp::SHF_ALLOC
) == 0)
2243 this->set_address(0);
2246 Output_section::~Output_section()
2248 delete this->checkpoint_
;
2251 // Set the entry size.
2254 Output_section::set_entsize(uint64_t v
)
2256 if (this->is_entsize_zero_
)
2258 else if (this->entsize_
== 0)
2260 else if (this->entsize_
!= v
)
2263 this->is_entsize_zero_
= 1;
2267 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2268 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2269 // relocation section which applies to this section, or 0 if none, or
2270 // -1U if more than one. Return the offset of the input section
2271 // within the output section. Return -1 if the input section will
2272 // receive special handling. In the normal case we don't always keep
2273 // track of input sections for an Output_section. Instead, each
2274 // Object keeps track of the Output_section for each of its input
2275 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2276 // track of input sections here; this is used when SECTIONS appears in
2279 template<int size
, bool big_endian
>
2281 Output_section::add_input_section(Layout
* layout
,
2282 Sized_relobj_file
<size
, big_endian
>* object
,
2284 const char* secname
,
2285 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
2286 unsigned int reloc_shndx
,
2287 bool have_sections_script
)
2289 elfcpp::Elf_Xword addralign
= shdr
.get_sh_addralign();
2290 if ((addralign
& (addralign
- 1)) != 0)
2292 object
->error(_("invalid alignment %lu for section \"%s\""),
2293 static_cast<unsigned long>(addralign
), secname
);
2297 if (addralign
> this->addralign_
)
2298 this->addralign_
= addralign
;
2300 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_flags
= shdr
.get_sh_flags();
2301 uint64_t entsize
= shdr
.get_sh_entsize();
2303 // .debug_str is a mergeable string section, but is not always so
2304 // marked by compilers. Mark manually here so we can optimize.
2305 if (strcmp(secname
, ".debug_str") == 0)
2307 sh_flags
|= (elfcpp::SHF_MERGE
| elfcpp::SHF_STRINGS
);
2311 this->update_flags_for_input_section(sh_flags
);
2312 this->set_entsize(entsize
);
2314 // If this is a SHF_MERGE section, we pass all the input sections to
2315 // a Output_data_merge. We don't try to handle relocations for such
2316 // a section. We don't try to handle empty merge sections--they
2317 // mess up the mappings, and are useless anyhow.
2318 // FIXME: Need to handle merge sections during incremental update.
2319 if ((sh_flags
& elfcpp::SHF_MERGE
) != 0
2321 && shdr
.get_sh_size() > 0
2322 && !parameters
->incremental())
2324 // Keep information about merged input sections for rebuilding fast
2325 // lookup maps if we have sections-script or we do relaxation.
2326 bool keeps_input_sections
= (this->always_keeps_input_sections_
2327 || have_sections_script
2328 || parameters
->target().may_relax());
2330 if (this->add_merge_input_section(object
, shndx
, sh_flags
, entsize
,
2331 addralign
, keeps_input_sections
))
2333 // Tell the relocation routines that they need to call the
2334 // output_offset method to determine the final address.
2339 section_size_type input_section_size
= shdr
.get_sh_size();
2340 section_size_type uncompressed_size
;
2341 if (object
->section_is_compressed(shndx
, &uncompressed_size
))
2342 input_section_size
= uncompressed_size
;
2344 off_t offset_in_section
;
2345 off_t aligned_offset_in_section
;
2346 if (this->has_fixed_layout())
2348 // For incremental updates, find a chunk of unused space in the section.
2349 offset_in_section
= this->free_list_
.allocate(input_section_size
,
2351 if (offset_in_section
== -1)
2352 gold_fallback(_("out of patch space in section %s; "
2353 "relink with --incremental-full"),
2355 aligned_offset_in_section
= offset_in_section
;
2359 offset_in_section
= this->current_data_size_for_child();
2360 aligned_offset_in_section
= align_address(offset_in_section
,
2362 this->set_current_data_size_for_child(aligned_offset_in_section
2363 + input_section_size
);
2366 // Determine if we want to delay code-fill generation until the output
2367 // section is written. When the target is relaxing, we want to delay fill
2368 // generating to avoid adjusting them during relaxation. Also, if we are
2369 // sorting input sections we must delay fill generation.
2370 if (!this->generate_code_fills_at_write_
2371 && !have_sections_script
2372 && (sh_flags
& elfcpp::SHF_EXECINSTR
) != 0
2373 && parameters
->target().has_code_fill()
2374 && (parameters
->target().may_relax()
2375 || layout
->is_section_ordering_specified()))
2377 gold_assert(this->fills_
.empty());
2378 this->generate_code_fills_at_write_
= true;
2381 if (aligned_offset_in_section
> offset_in_section
2382 && !this->generate_code_fills_at_write_
2383 && !have_sections_script
2384 && (sh_flags
& elfcpp::SHF_EXECINSTR
) != 0
2385 && parameters
->target().has_code_fill())
2387 // We need to add some fill data. Using fill_list_ when
2388 // possible is an optimization, since we will often have fill
2389 // sections without input sections.
2390 off_t fill_len
= aligned_offset_in_section
- offset_in_section
;
2391 if (this->input_sections_
.empty())
2392 this->fills_
.push_back(Fill(offset_in_section
, fill_len
));
2395 std::string
fill_data(parameters
->target().code_fill(fill_len
));
2396 Output_data_const
* odc
= new Output_data_const(fill_data
, 1);
2397 this->input_sections_
.push_back(Input_section(odc
));
2401 // We need to keep track of this section if we are already keeping
2402 // track of sections, or if we are relaxing. Also, if this is a
2403 // section which requires sorting, or which may require sorting in
2404 // the future, we keep track of the sections. If the
2405 // --section-ordering-file option is used to specify the order of
2406 // sections, we need to keep track of sections.
2407 if (this->always_keeps_input_sections_
2408 || have_sections_script
2409 || !this->input_sections_
.empty()
2410 || this->may_sort_attached_input_sections()
2411 || this->must_sort_attached_input_sections()
2412 || parameters
->options().user_set_Map()
2413 || parameters
->target().may_relax()
2414 || layout
->is_section_ordering_specified())
2416 Input_section
isecn(object
, shndx
, input_section_size
, addralign
);
2417 /* If section ordering is requested by specifying a ordering file,
2418 using --section-ordering-file, match the section name with
2420 if (parameters
->options().section_ordering_file())
2422 unsigned int section_order_index
=
2423 layout
->find_section_order_index(std::string(secname
));
2424 if (section_order_index
!= 0)
2426 isecn
.set_section_order_index(section_order_index
);
2427 this->set_input_section_order_specified();
2430 if (this->has_fixed_layout())
2432 // For incremental updates, finalize the address and offset now.
2433 uint64_t addr
= this->address();
2434 isecn
.set_address_and_file_offset(addr
+ aligned_offset_in_section
,
2435 aligned_offset_in_section
,
2438 this->input_sections_
.push_back(isecn
);
2441 return aligned_offset_in_section
;
2444 // Add arbitrary data to an output section.
2447 Output_section::add_output_section_data(Output_section_data
* posd
)
2449 Input_section
inp(posd
);
2450 this->add_output_section_data(&inp
);
2452 if (posd
->is_data_size_valid())
2454 off_t offset_in_section
;
2455 if (this->has_fixed_layout())
2457 // For incremental updates, find a chunk of unused space.
2458 offset_in_section
= this->free_list_
.allocate(posd
->data_size(),
2459 posd
->addralign(), 0);
2460 if (offset_in_section
== -1)
2461 gold_fallback(_("out of patch space in section %s; "
2462 "relink with --incremental-full"),
2464 // Finalize the address and offset now.
2465 uint64_t addr
= this->address();
2466 off_t offset
= this->offset();
2467 posd
->set_address_and_file_offset(addr
+ offset_in_section
,
2468 offset
+ offset_in_section
);
2472 offset_in_section
= this->current_data_size_for_child();
2473 off_t aligned_offset_in_section
= align_address(offset_in_section
,
2475 this->set_current_data_size_for_child(aligned_offset_in_section
2476 + posd
->data_size());
2479 else if (this->has_fixed_layout())
2481 // For incremental updates, arrange for the data to have a fixed layout.
2482 // This will mean that additions to the data must be allocated from
2483 // free space within the containing output section.
2484 uint64_t addr
= this->address();
2485 posd
->set_address(addr
);
2486 posd
->set_file_offset(0);
2487 // FIXME: This should eventually be unreachable.
2488 // gold_unreachable();
2492 // Add a relaxed input section.
2495 Output_section::add_relaxed_input_section(Layout
* layout
,
2496 Output_relaxed_input_section
* poris
,
2497 const std::string
& name
)
2499 Input_section
inp(poris
);
2501 // If the --section-ordering-file option is used to specify the order of
2502 // sections, we need to keep track of sections.
2503 if (layout
->is_section_ordering_specified())
2505 unsigned int section_order_index
=
2506 layout
->find_section_order_index(name
);
2507 if (section_order_index
!= 0)
2509 inp
.set_section_order_index(section_order_index
);
2510 this->set_input_section_order_specified();
2514 this->add_output_section_data(&inp
);
2515 if (this->lookup_maps_
->is_valid())
2516 this->lookup_maps_
->add_relaxed_input_section(poris
->relobj(),
2517 poris
->shndx(), poris
);
2519 // For a relaxed section, we use the current data size. Linker scripts
2520 // get all the input sections, including relaxed one from an output
2521 // section and add them back to them same output section to compute the
2522 // output section size. If we do not account for sizes of relaxed input
2523 // sections, an output section would be incorrectly sized.
2524 off_t offset_in_section
= this->current_data_size_for_child();
2525 off_t aligned_offset_in_section
= align_address(offset_in_section
,
2526 poris
->addralign());
2527 this->set_current_data_size_for_child(aligned_offset_in_section
2528 + poris
->current_data_size());
2531 // Add arbitrary data to an output section by Input_section.
2534 Output_section::add_output_section_data(Input_section
* inp
)
2536 if (this->input_sections_
.empty())
2537 this->first_input_offset_
= this->current_data_size_for_child();
2539 this->input_sections_
.push_back(*inp
);
2541 uint64_t addralign
= inp
->addralign();
2542 if (addralign
> this->addralign_
)
2543 this->addralign_
= addralign
;
2545 inp
->set_output_section(this);
2548 // Add a merge section to an output section.
2551 Output_section::add_output_merge_section(Output_section_data
* posd
,
2552 bool is_string
, uint64_t entsize
)
2554 Input_section
inp(posd
, is_string
, entsize
);
2555 this->add_output_section_data(&inp
);
2558 // Add an input section to a SHF_MERGE section.
2561 Output_section::add_merge_input_section(Relobj
* object
, unsigned int shndx
,
2562 uint64_t flags
, uint64_t entsize
,
2564 bool keeps_input_sections
)
2566 bool is_string
= (flags
& elfcpp::SHF_STRINGS
) != 0;
2568 // We only merge strings if the alignment is not more than the
2569 // character size. This could be handled, but it's unusual.
2570 if (is_string
&& addralign
> entsize
)
2573 // We cannot restore merged input section states.
2574 gold_assert(this->checkpoint_
== NULL
);
2576 // Look up merge sections by required properties.
2577 // Currently, we only invalidate the lookup maps in script processing
2578 // and relaxation. We should not have done either when we reach here.
2579 // So we assume that the lookup maps are valid to simply code.
2580 gold_assert(this->lookup_maps_
->is_valid());
2581 Merge_section_properties
msp(is_string
, entsize
, addralign
);
2582 Output_merge_base
* pomb
= this->lookup_maps_
->find_merge_section(msp
);
2583 bool is_new
= false;
2586 gold_assert(pomb
->is_string() == is_string
2587 && pomb
->entsize() == entsize
2588 && pomb
->addralign() == addralign
);
2592 // Create a new Output_merge_data or Output_merge_string_data.
2594 pomb
= new Output_merge_data(entsize
, addralign
);
2600 pomb
= new Output_merge_string
<char>(addralign
);
2603 pomb
= new Output_merge_string
<uint16_t>(addralign
);
2606 pomb
= new Output_merge_string
<uint32_t>(addralign
);
2612 // If we need to do script processing or relaxation, we need to keep
2613 // the original input sections to rebuild the fast lookup maps.
2614 if (keeps_input_sections
)
2615 pomb
->set_keeps_input_sections();
2619 if (pomb
->add_input_section(object
, shndx
))
2621 // Add new merge section to this output section and link merge
2622 // section properties to new merge section in map.
2625 this->add_output_merge_section(pomb
, is_string
, entsize
);
2626 this->lookup_maps_
->add_merge_section(msp
, pomb
);
2629 // Add input section to new merge section and link input section to new
2630 // merge section in map.
2631 this->lookup_maps_
->add_merge_input_section(object
, shndx
, pomb
);
2636 // If add_input_section failed, delete new merge section to avoid
2637 // exporting empty merge sections in Output_section::get_input_section.
2644 // Build a relaxation map to speed up relaxation of existing input sections.
2645 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2648 Output_section::build_relaxation_map(
2649 const Input_section_list
& input_sections
,
2651 Relaxation_map
* relaxation_map
) const
2653 for (size_t i
= 0; i
< limit
; ++i
)
2655 const Input_section
& is(input_sections
[i
]);
2656 if (is
.is_input_section() || is
.is_relaxed_input_section())
2658 Section_id
sid(is
.relobj(), is
.shndx());
2659 (*relaxation_map
)[sid
] = i
;
2664 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2665 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2666 // indices of INPUT_SECTIONS.
2669 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2670 const std::vector
<Output_relaxed_input_section
*>& relaxed_sections
,
2671 const Relaxation_map
& map
,
2672 Input_section_list
* input_sections
)
2674 for (size_t i
= 0; i
< relaxed_sections
.size(); ++i
)
2676 Output_relaxed_input_section
* poris
= relaxed_sections
[i
];
2677 Section_id
sid(poris
->relobj(), poris
->shndx());
2678 Relaxation_map::const_iterator p
= map
.find(sid
);
2679 gold_assert(p
!= map
.end());
2680 gold_assert((*input_sections
)[p
->second
].is_input_section());
2682 // Remember section order index of original input section
2683 // if it is set. Copy it to the relaxed input section.
2685 (*input_sections
)[p
->second
].section_order_index();
2686 (*input_sections
)[p
->second
] = Input_section(poris
);
2687 (*input_sections
)[p
->second
].set_section_order_index(soi
);
2691 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2692 // is a vector of pointers to Output_relaxed_input_section or its derived
2693 // classes. The relaxed sections must correspond to existing input sections.
2696 Output_section::convert_input_sections_to_relaxed_sections(
2697 const std::vector
<Output_relaxed_input_section
*>& relaxed_sections
)
2699 gold_assert(parameters
->target().may_relax());
2701 // We want to make sure that restore_states does not undo the effect of
2702 // this. If there is no checkpoint active, just search the current
2703 // input section list and replace the sections there. If there is
2704 // a checkpoint, also replace the sections there.
2706 // By default, we look at the whole list.
2707 size_t limit
= this->input_sections_
.size();
2709 if (this->checkpoint_
!= NULL
)
2711 // Replace input sections with relaxed input section in the saved
2712 // copy of the input section list.
2713 if (this->checkpoint_
->input_sections_saved())
2716 this->build_relaxation_map(
2717 *(this->checkpoint_
->input_sections()),
2718 this->checkpoint_
->input_sections()->size(),
2720 this->convert_input_sections_in_list_to_relaxed_sections(
2723 this->checkpoint_
->input_sections());
2727 // We have not copied the input section list yet. Instead, just
2728 // look at the portion that would be saved.
2729 limit
= this->checkpoint_
->input_sections_size();
2733 // Convert input sections in input_section_list.
2735 this->build_relaxation_map(this->input_sections_
, limit
, &map
);
2736 this->convert_input_sections_in_list_to_relaxed_sections(
2739 &this->input_sections_
);
2741 // Update fast look-up map.
2742 if (this->lookup_maps_
->is_valid())
2743 for (size_t i
= 0; i
< relaxed_sections
.size(); ++i
)
2745 Output_relaxed_input_section
* poris
= relaxed_sections
[i
];
2746 this->lookup_maps_
->add_relaxed_input_section(poris
->relobj(),
2747 poris
->shndx(), poris
);
2751 // Update the output section flags based on input section flags.
2754 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags
)
2756 // If we created the section with SHF_ALLOC clear, we set the
2757 // address. If we are now setting the SHF_ALLOC flag, we need to
2759 if ((this->flags_
& elfcpp::SHF_ALLOC
) == 0
2760 && (flags
& elfcpp::SHF_ALLOC
) != 0)
2761 this->mark_address_invalid();
2763 this->flags_
|= (flags
2764 & (elfcpp::SHF_WRITE
2766 | elfcpp::SHF_EXECINSTR
));
2768 if ((flags
& elfcpp::SHF_MERGE
) == 0)
2769 this->flags_
&=~ elfcpp::SHF_MERGE
;
2772 if (this->current_data_size_for_child() == 0)
2773 this->flags_
|= elfcpp::SHF_MERGE
;
2776 if ((flags
& elfcpp::SHF_STRINGS
) == 0)
2777 this->flags_
&=~ elfcpp::SHF_STRINGS
;
2780 if (this->current_data_size_for_child() == 0)
2781 this->flags_
|= elfcpp::SHF_STRINGS
;
2785 // Find the merge section into which an input section with index SHNDX in
2786 // OBJECT has been added. Return NULL if none found.
2788 Output_section_data
*
2789 Output_section::find_merge_section(const Relobj
* object
,
2790 unsigned int shndx
) const
2792 if (!this->lookup_maps_
->is_valid())
2793 this->build_lookup_maps();
2794 return this->lookup_maps_
->find_merge_section(object
, shndx
);
2797 // Build the lookup maps for merge and relaxed sections. This is needs
2798 // to be declared as a const methods so that it is callable with a const
2799 // Output_section pointer. The method only updates states of the maps.
2802 Output_section::build_lookup_maps() const
2804 this->lookup_maps_
->clear();
2805 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2806 p
!= this->input_sections_
.end();
2809 if (p
->is_merge_section())
2811 Output_merge_base
* pomb
= p
->output_merge_base();
2812 Merge_section_properties
msp(pomb
->is_string(), pomb
->entsize(),
2814 this->lookup_maps_
->add_merge_section(msp
, pomb
);
2815 for (Output_merge_base::Input_sections::const_iterator is
=
2816 pomb
->input_sections_begin();
2817 is
!= pomb
->input_sections_end();
2820 const Const_section_id
& csid
= *is
;
2821 this->lookup_maps_
->add_merge_input_section(csid
.first
,
2826 else if (p
->is_relaxed_input_section())
2828 Output_relaxed_input_section
* poris
= p
->relaxed_input_section();
2829 this->lookup_maps_
->add_relaxed_input_section(poris
->relobj(),
2830 poris
->shndx(), poris
);
2835 // Find an relaxed input section corresponding to an input section
2836 // in OBJECT with index SHNDX.
2838 const Output_relaxed_input_section
*
2839 Output_section::find_relaxed_input_section(const Relobj
* object
,
2840 unsigned int shndx
) const
2842 if (!this->lookup_maps_
->is_valid())
2843 this->build_lookup_maps();
2844 return this->lookup_maps_
->find_relaxed_input_section(object
, shndx
);
2847 // Given an address OFFSET relative to the start of input section
2848 // SHNDX in OBJECT, return whether this address is being included in
2849 // the final link. This should only be called if SHNDX in OBJECT has
2850 // a special mapping.
2853 Output_section::is_input_address_mapped(const Relobj
* object
,
2857 // Look at the Output_section_data_maps first.
2858 const Output_section_data
* posd
= this->find_merge_section(object
, shndx
);
2860 posd
= this->find_relaxed_input_section(object
, shndx
);
2864 section_offset_type output_offset
;
2865 bool found
= posd
->output_offset(object
, shndx
, offset
, &output_offset
);
2867 return output_offset
!= -1;
2870 // Fall back to the slow look-up.
2871 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2872 p
!= this->input_sections_
.end();
2875 section_offset_type output_offset
;
2876 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
2877 return output_offset
!= -1;
2880 // By default we assume that the address is mapped. This should
2881 // only be called after we have passed all sections to Layout. At
2882 // that point we should know what we are discarding.
2886 // Given an address OFFSET relative to the start of input section
2887 // SHNDX in object OBJECT, return the output offset relative to the
2888 // start of the input section in the output section. This should only
2889 // be called if SHNDX in OBJECT has a special mapping.
2892 Output_section::output_offset(const Relobj
* object
, unsigned int shndx
,
2893 section_offset_type offset
) const
2895 // This can only be called meaningfully when we know the data size
2897 gold_assert(this->is_data_size_valid());
2899 // Look at the Output_section_data_maps first.
2900 const Output_section_data
* posd
= this->find_merge_section(object
, shndx
);
2902 posd
= this->find_relaxed_input_section(object
, shndx
);
2905 section_offset_type output_offset
;
2906 bool found
= posd
->output_offset(object
, shndx
, offset
, &output_offset
);
2908 return output_offset
;
2911 // Fall back to the slow look-up.
2912 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2913 p
!= this->input_sections_
.end();
2916 section_offset_type output_offset
;
2917 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
2918 return output_offset
;
2923 // Return the output virtual address of OFFSET relative to the start
2924 // of input section SHNDX in object OBJECT.
2927 Output_section::output_address(const Relobj
* object
, unsigned int shndx
,
2930 uint64_t addr
= this->address() + this->first_input_offset_
;
2932 // Look at the Output_section_data_maps first.
2933 const Output_section_data
* posd
= this->find_merge_section(object
, shndx
);
2935 posd
= this->find_relaxed_input_section(object
, shndx
);
2936 if (posd
!= NULL
&& posd
->is_address_valid())
2938 section_offset_type output_offset
;
2939 bool found
= posd
->output_offset(object
, shndx
, offset
, &output_offset
);
2941 return posd
->address() + output_offset
;
2944 // Fall back to the slow look-up.
2945 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2946 p
!= this->input_sections_
.end();
2949 addr
= align_address(addr
, p
->addralign());
2950 section_offset_type output_offset
;
2951 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
2953 if (output_offset
== -1)
2955 return addr
+ output_offset
;
2957 addr
+= p
->data_size();
2960 // If we get here, it means that we don't know the mapping for this
2961 // input section. This might happen in principle if
2962 // add_input_section were called before add_output_section_data.
2963 // But it should never actually happen.
2968 // Find the output address of the start of the merged section for
2969 // input section SHNDX in object OBJECT.
2972 Output_section::find_starting_output_address(const Relobj
* object
,
2974 uint64_t* paddr
) const
2976 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2977 // Looking up the merge section map does not always work as we sometimes
2978 // find a merge section without its address set.
2979 uint64_t addr
= this->address() + this->first_input_offset_
;
2980 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2981 p
!= this->input_sections_
.end();
2984 addr
= align_address(addr
, p
->addralign());
2986 // It would be nice if we could use the existing output_offset
2987 // method to get the output offset of input offset 0.
2988 // Unfortunately we don't know for sure that input offset 0 is
2990 if (p
->is_merge_section_for(object
, shndx
))
2996 addr
+= p
->data_size();
2999 // We couldn't find a merge output section for this input section.
3003 // Update the data size of an Output_section.
3006 Output_section::update_data_size()
3008 if (this->input_sections_
.empty())
3011 if (this->must_sort_attached_input_sections()
3012 || this->input_section_order_specified())
3013 this->sort_attached_input_sections();
3015 off_t off
= this->first_input_offset_
;
3016 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3017 p
!= this->input_sections_
.end();
3020 off
= align_address(off
, p
->addralign());
3021 off
+= p
->current_data_size();
3024 this->set_current_data_size_for_child(off
);
3027 // Set the data size of an Output_section. This is where we handle
3028 // setting the addresses of any Output_section_data objects.
3031 Output_section::set_final_data_size()
3035 if (this->input_sections_
.empty())
3036 data_size
= this->current_data_size_for_child();
3039 if (this->must_sort_attached_input_sections()
3040 || this->input_section_order_specified())
3041 this->sort_attached_input_sections();
3043 uint64_t address
= this->address();
3044 off_t startoff
= this->offset();
3045 off_t off
= startoff
+ this->first_input_offset_
;
3046 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3047 p
!= this->input_sections_
.end();
3050 off
= align_address(off
, p
->addralign());
3051 p
->set_address_and_file_offset(address
+ (off
- startoff
), off
,
3053 off
+= p
->data_size();
3055 data_size
= off
- startoff
;
3058 // For full incremental links, we want to allocate some patch space
3059 // in most sections for subsequent incremental updates.
3060 if (this->is_patch_space_allowed_
&& parameters
->incremental_full())
3062 double pct
= parameters
->options().incremental_patch();
3063 size_t extra
= static_cast<size_t>(data_size
* pct
);
3064 if (this->free_space_fill_
!= NULL
3065 && this->free_space_fill_
->minimum_hole_size() > extra
)
3066 extra
= this->free_space_fill_
->minimum_hole_size();
3067 off_t new_size
= align_address(data_size
+ extra
, this->addralign());
3068 this->patch_space_
= new_size
- data_size
;
3069 gold_debug(DEBUG_INCREMENTAL
,
3070 "set_final_data_size: %08lx + %08lx: section %s",
3071 static_cast<long>(data_size
),
3072 static_cast<long>(this->patch_space_
),
3074 data_size
= new_size
;
3077 this->set_data_size(data_size
);
3080 // Reset the address and file offset.
3083 Output_section::do_reset_address_and_file_offset()
3085 // An unallocated section has no address. Forcing this means that
3086 // we don't need special treatment for symbols defined in debug
3087 // sections. We do the same in the constructor. This does not
3088 // apply to NOLOAD sections though.
3089 if (((this->flags_
& elfcpp::SHF_ALLOC
) == 0) && !this->is_noload_
)
3090 this->set_address(0);
3092 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3093 p
!= this->input_sections_
.end();
3095 p
->reset_address_and_file_offset();
3097 // Remove any patch space that was added in set_final_data_size.
3098 if (this->patch_space_
> 0)
3100 this->set_current_data_size_for_child(this->current_data_size_for_child()
3101 - this->patch_space_
);
3102 this->patch_space_
= 0;
3106 // Return true if address and file offset have the values after reset.
3109 Output_section::do_address_and_file_offset_have_reset_values() const
3111 if (this->is_offset_valid())
3114 // An unallocated section has address 0 after its construction or a reset.
3115 if ((this->flags_
& elfcpp::SHF_ALLOC
) == 0)
3116 return this->is_address_valid() && this->address() == 0;
3118 return !this->is_address_valid();
3121 // Set the TLS offset. Called only for SHT_TLS sections.
3124 Output_section::do_set_tls_offset(uint64_t tls_base
)
3126 this->tls_offset_
= this->address() - tls_base
;
3129 // In a few cases we need to sort the input sections attached to an
3130 // output section. This is used to implement the type of constructor
3131 // priority ordering implemented by the GNU linker, in which the
3132 // priority becomes part of the section name and the sections are
3133 // sorted by name. We only do this for an output section if we see an
3134 // attached input section matching ".ctors.*", ".dtors.*",
3135 // ".init_array.*" or ".fini_array.*".
3137 class Output_section::Input_section_sort_entry
3140 Input_section_sort_entry()
3141 : input_section_(), index_(-1U), section_has_name_(false),
3145 Input_section_sort_entry(const Input_section
& input_section
,
3147 bool must_sort_attached_input_sections
)
3148 : input_section_(input_section
), index_(index
),
3149 section_has_name_(input_section
.is_input_section()
3150 || input_section
.is_relaxed_input_section())
3152 if (this->section_has_name_
3153 && must_sort_attached_input_sections
)
3155 // This is only called single-threaded from Layout::finalize,
3156 // so it is OK to lock. Unfortunately we have no way to pass
3158 const Task
* dummy_task
= reinterpret_cast<const Task
*>(-1);
3159 Object
* obj
= (input_section
.is_input_section()
3160 ? input_section
.relobj()
3161 : input_section
.relaxed_input_section()->relobj());
3162 Task_lock_obj
<Object
> tl(dummy_task
, obj
);
3164 // This is a slow operation, which should be cached in
3165 // Layout::layout if this becomes a speed problem.
3166 this->section_name_
= obj
->section_name(input_section
.shndx());
3170 // Return the Input_section.
3171 const Input_section
&
3172 input_section() const
3174 gold_assert(this->index_
!= -1U);
3175 return this->input_section_
;
3178 // The index of this entry in the original list. This is used to
3179 // make the sort stable.
3183 gold_assert(this->index_
!= -1U);
3184 return this->index_
;
3187 // Whether there is a section name.
3189 section_has_name() const
3190 { return this->section_has_name_
; }
3192 // The section name.
3194 section_name() const
3196 gold_assert(this->section_has_name_
);
3197 return this->section_name_
;
3200 // Return true if the section name has a priority. This is assumed
3201 // to be true if it has a dot after the initial dot.
3203 has_priority() const
3205 gold_assert(this->section_has_name_
);
3206 return this->section_name_
.find('.', 1) != std::string::npos
;
3209 // Return the priority. Believe it or not, gcc encodes the priority
3210 // differently for .ctors/.dtors and .init_array/.fini_array
3213 get_priority() const
3215 gold_assert(this->section_has_name_
);
3217 if (is_prefix_of(".ctors.", this->section_name_
.c_str())
3218 || is_prefix_of(".dtors.", this->section_name_
.c_str()))
3220 else if (is_prefix_of(".init_array.", this->section_name_
.c_str())
3221 || is_prefix_of(".fini_array.", this->section_name_
.c_str()))
3226 unsigned long prio
= strtoul((this->section_name_
.c_str()
3227 + (is_ctors
? 7 : 12)),
3232 return 65535 - prio
;
3237 // Return true if this an input file whose base name matches
3238 // FILE_NAME. The base name must have an extension of ".o", and
3239 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3240 // This is to match crtbegin.o as well as crtbeginS.o without
3241 // getting confused by other possibilities. Overall matching the
3242 // file name this way is a dreadful hack, but the GNU linker does it
3243 // in order to better support gcc, and we need to be compatible.
3245 match_file_name(const char* file_name
) const
3246 { return Layout::match_file_name(this->input_section_
.relobj(), file_name
); }
3248 // Returns 1 if THIS should appear before S in section order, -1 if S
3249 // appears before THIS and 0 if they are not comparable.
3251 compare_section_ordering(const Input_section_sort_entry
& s
) const
3253 unsigned int this_secn_index
= this->input_section_
.section_order_index();
3254 unsigned int s_secn_index
= s
.input_section().section_order_index();
3255 if (this_secn_index
> 0 && s_secn_index
> 0)
3257 if (this_secn_index
< s_secn_index
)
3259 else if (this_secn_index
> s_secn_index
)
3266 // The Input_section we are sorting.
3267 Input_section input_section_
;
3268 // The index of this Input_section in the original list.
3269 unsigned int index_
;
3270 // Whether this Input_section has a section name--it won't if this
3271 // is some random Output_section_data.
3272 bool section_has_name_
;
3273 // The section name if there is one.
3274 std::string section_name_
;
3277 // Return true if S1 should come before S2 in the output section.
3280 Output_section::Input_section_sort_compare::operator()(
3281 const Output_section::Input_section_sort_entry
& s1
,
3282 const Output_section::Input_section_sort_entry
& s2
) const
3284 // crtbegin.o must come first.
3285 bool s1_begin
= s1
.match_file_name("crtbegin");
3286 bool s2_begin
= s2
.match_file_name("crtbegin");
3287 if (s1_begin
|| s2_begin
)
3293 return s1
.index() < s2
.index();
3296 // crtend.o must come last.
3297 bool s1_end
= s1
.match_file_name("crtend");
3298 bool s2_end
= s2
.match_file_name("crtend");
3299 if (s1_end
|| s2_end
)
3305 return s1
.index() < s2
.index();
3308 // We sort all the sections with no names to the end.
3309 if (!s1
.section_has_name() || !s2
.section_has_name())
3311 if (s1
.section_has_name())
3313 if (s2
.section_has_name())
3315 return s1
.index() < s2
.index();
3318 // A section with a priority follows a section without a priority.
3319 bool s1_has_priority
= s1
.has_priority();
3320 bool s2_has_priority
= s2
.has_priority();
3321 if (s1_has_priority
&& !s2_has_priority
)
3323 if (!s1_has_priority
&& s2_has_priority
)
3326 // Check if a section order exists for these sections through a section
3327 // ordering file. If sequence_num is 0, an order does not exist.
3328 int sequence_num
= s1
.compare_section_ordering(s2
);
3329 if (sequence_num
!= 0)
3330 return sequence_num
== 1;
3332 // Otherwise we sort by name.
3333 int compare
= s1
.section_name().compare(s2
.section_name());
3337 // Otherwise we keep the input order.
3338 return s1
.index() < s2
.index();
3341 // Return true if S1 should come before S2 in an .init_array or .fini_array
3345 Output_section::Input_section_sort_init_fini_compare::operator()(
3346 const Output_section::Input_section_sort_entry
& s1
,
3347 const Output_section::Input_section_sort_entry
& s2
) const
3349 // We sort all the sections with no names to the end.
3350 if (!s1
.section_has_name() || !s2
.section_has_name())
3352 if (s1
.section_has_name())
3354 if (s2
.section_has_name())
3356 return s1
.index() < s2
.index();
3359 // A section without a priority follows a section with a priority.
3360 // This is the reverse of .ctors and .dtors sections.
3361 bool s1_has_priority
= s1
.has_priority();
3362 bool s2_has_priority
= s2
.has_priority();
3363 if (s1_has_priority
&& !s2_has_priority
)
3365 if (!s1_has_priority
&& s2_has_priority
)
3368 // .ctors and .dtors sections without priority come after
3369 // .init_array and .fini_array sections without priority.
3370 if (!s1_has_priority
3371 && (s1
.section_name() == ".ctors" || s1
.section_name() == ".dtors")
3372 && s1
.section_name() != s2
.section_name())
3374 if (!s2_has_priority
3375 && (s2
.section_name() == ".ctors" || s2
.section_name() == ".dtors")
3376 && s2
.section_name() != s1
.section_name())
3379 // Sort by priority if we can.
3380 if (s1_has_priority
)
3382 unsigned int s1_prio
= s1
.get_priority();
3383 unsigned int s2_prio
= s2
.get_priority();
3384 if (s1_prio
< s2_prio
)
3386 else if (s1_prio
> s2_prio
)
3390 // Check if a section order exists for these sections through a section
3391 // ordering file. If sequence_num is 0, an order does not exist.
3392 int sequence_num
= s1
.compare_section_ordering(s2
);
3393 if (sequence_num
!= 0)
3394 return sequence_num
== 1;
3396 // Otherwise we sort by name.
3397 int compare
= s1
.section_name().compare(s2
.section_name());
3401 // Otherwise we keep the input order.
3402 return s1
.index() < s2
.index();
3405 // Return true if S1 should come before S2. Sections that do not match
3406 // any pattern in the section ordering file are placed ahead of the sections
3407 // that match some pattern.
3410 Output_section::Input_section_sort_section_order_index_compare::operator()(
3411 const Output_section::Input_section_sort_entry
& s1
,
3412 const Output_section::Input_section_sort_entry
& s2
) const
3414 unsigned int s1_secn_index
= s1
.input_section().section_order_index();
3415 unsigned int s2_secn_index
= s2
.input_section().section_order_index();
3417 // Keep input order if section ordering cannot determine order.
3418 if (s1_secn_index
== s2_secn_index
)
3419 return s1
.index() < s2
.index();
3421 return s1_secn_index
< s2_secn_index
;
3424 // This updates the section order index of input sections according to the
3425 // the order specified in the mapping from Section id to order index.
3428 Output_section::update_section_layout(
3429 const Section_layout_order
* order_map
)
3431 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3432 p
!= this->input_sections_
.end();
3435 if (p
->is_input_section()
3436 || p
->is_relaxed_input_section())
3438 Object
* obj
= (p
->is_input_section()
3440 : p
->relaxed_input_section()->relobj());
3441 unsigned int shndx
= p
->shndx();
3442 Section_layout_order::const_iterator it
3443 = order_map
->find(Section_id(obj
, shndx
));
3444 if (it
== order_map
->end())
3446 unsigned int section_order_index
= it
->second
;
3447 if (section_order_index
!= 0)
3449 p
->set_section_order_index(section_order_index
);
3450 this->set_input_section_order_specified();
3456 // Sort the input sections attached to an output section.
3459 Output_section::sort_attached_input_sections()
3461 if (this->attached_input_sections_are_sorted_
)
3464 if (this->checkpoint_
!= NULL
3465 && !this->checkpoint_
->input_sections_saved())
3466 this->checkpoint_
->save_input_sections();
3468 // The only thing we know about an input section is the object and
3469 // the section index. We need the section name. Recomputing this
3470 // is slow but this is an unusual case. If this becomes a speed
3471 // problem we can cache the names as required in Layout::layout.
3473 // We start by building a larger vector holding a copy of each
3474 // Input_section, plus its current index in the list and its name.
3475 std::vector
<Input_section_sort_entry
> sort_list
;
3478 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3479 p
!= this->input_sections_
.end();
3481 sort_list
.push_back(Input_section_sort_entry(*p
, i
,
3482 this->must_sort_attached_input_sections()));
3484 // Sort the input sections.
3485 if (this->must_sort_attached_input_sections())
3487 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3488 || this->type() == elfcpp::SHT_INIT_ARRAY
3489 || this->type() == elfcpp::SHT_FINI_ARRAY
)
3490 std::sort(sort_list
.begin(), sort_list
.end(),
3491 Input_section_sort_init_fini_compare());
3493 std::sort(sort_list
.begin(), sort_list
.end(),
3494 Input_section_sort_compare());
3498 gold_assert(this->input_section_order_specified());
3499 std::sort(sort_list
.begin(), sort_list
.end(),
3500 Input_section_sort_section_order_index_compare());
3503 // Copy the sorted input sections back to our list.
3504 this->input_sections_
.clear();
3505 for (std::vector
<Input_section_sort_entry
>::iterator p
= sort_list
.begin();
3506 p
!= sort_list
.end();
3508 this->input_sections_
.push_back(p
->input_section());
3511 // Remember that we sorted the input sections, since we might get
3513 this->attached_input_sections_are_sorted_
= true;
3516 // Write the section header to *OSHDR.
3518 template<int size
, bool big_endian
>
3520 Output_section::write_header(const Layout
* layout
,
3521 const Stringpool
* secnamepool
,
3522 elfcpp::Shdr_write
<size
, big_endian
>* oshdr
) const
3524 oshdr
->put_sh_name(secnamepool
->get_offset(this->name_
));
3525 oshdr
->put_sh_type(this->type_
);
3527 elfcpp::Elf_Xword flags
= this->flags_
;
3528 if (this->info_section_
!= NULL
&& this->info_uses_section_index_
)
3529 flags
|= elfcpp::SHF_INFO_LINK
;
3530 oshdr
->put_sh_flags(flags
);
3532 oshdr
->put_sh_addr(this->address());
3533 oshdr
->put_sh_offset(this->offset());
3534 oshdr
->put_sh_size(this->data_size());
3535 if (this->link_section_
!= NULL
)
3536 oshdr
->put_sh_link(this->link_section_
->out_shndx());
3537 else if (this->should_link_to_symtab_
)
3538 oshdr
->put_sh_link(layout
->symtab_section_shndx());
3539 else if (this->should_link_to_dynsym_
)
3540 oshdr
->put_sh_link(layout
->dynsym_section()->out_shndx());
3542 oshdr
->put_sh_link(this->link_
);
3544 elfcpp::Elf_Word info
;
3545 if (this->info_section_
!= NULL
)
3547 if (this->info_uses_section_index_
)
3548 info
= this->info_section_
->out_shndx();
3550 info
= this->info_section_
->symtab_index();
3552 else if (this->info_symndx_
!= NULL
)
3553 info
= this->info_symndx_
->symtab_index();
3556 oshdr
->put_sh_info(info
);
3558 oshdr
->put_sh_addralign(this->addralign_
);
3559 oshdr
->put_sh_entsize(this->entsize_
);
3562 // Write out the data. For input sections the data is written out by
3563 // Object::relocate, but we have to handle Output_section_data objects
3567 Output_section::do_write(Output_file
* of
)
3569 gold_assert(!this->requires_postprocessing());
3571 // If the target performs relaxation, we delay filler generation until now.
3572 gold_assert(!this->generate_code_fills_at_write_
|| this->fills_
.empty());
3574 off_t output_section_file_offset
= this->offset();
3575 for (Fill_list::iterator p
= this->fills_
.begin();
3576 p
!= this->fills_
.end();
3579 std::string
fill_data(parameters
->target().code_fill(p
->length()));
3580 of
->write(output_section_file_offset
+ p
->section_offset(),
3581 fill_data
.data(), fill_data
.size());
3584 off_t off
= this->offset() + this->first_input_offset_
;
3585 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3586 p
!= this->input_sections_
.end();
3589 off_t aligned_off
= align_address(off
, p
->addralign());
3590 if (this->generate_code_fills_at_write_
&& (off
!= aligned_off
))
3592 size_t fill_len
= aligned_off
- off
;
3593 std::string
fill_data(parameters
->target().code_fill(fill_len
));
3594 of
->write(off
, fill_data
.data(), fill_data
.size());
3598 off
= aligned_off
+ p
->data_size();
3601 // For incremental links, fill in unused chunks in debug sections
3602 // with dummy compilation unit headers.
3603 if (this->free_space_fill_
!= NULL
)
3605 for (Free_list::Const_iterator p
= this->free_list_
.begin();
3606 p
!= this->free_list_
.end();
3609 off_t off
= p
->start_
;
3610 size_t len
= p
->end_
- off
;
3611 this->free_space_fill_
->write(of
, this->offset() + off
, len
);
3613 if (this->patch_space_
> 0)
3615 off_t off
= this->current_data_size_for_child() - this->patch_space_
;
3616 this->free_space_fill_
->write(of
, this->offset() + off
,
3617 this->patch_space_
);
3622 // If a section requires postprocessing, create the buffer to use.
3625 Output_section::create_postprocessing_buffer()
3627 gold_assert(this->requires_postprocessing());
3629 if (this->postprocessing_buffer_
!= NULL
)
3632 if (!this->input_sections_
.empty())
3634 off_t off
= this->first_input_offset_
;
3635 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3636 p
!= this->input_sections_
.end();
3639 off
= align_address(off
, p
->addralign());
3640 p
->finalize_data_size();
3641 off
+= p
->data_size();
3643 this->set_current_data_size_for_child(off
);
3646 off_t buffer_size
= this->current_data_size_for_child();
3647 this->postprocessing_buffer_
= new unsigned char[buffer_size
];
3650 // Write all the data of an Output_section into the postprocessing
3651 // buffer. This is used for sections which require postprocessing,
3652 // such as compression. Input sections are handled by
3653 // Object::Relocate.
3656 Output_section::write_to_postprocessing_buffer()
3658 gold_assert(this->requires_postprocessing());
3660 // If the target performs relaxation, we delay filler generation until now.
3661 gold_assert(!this->generate_code_fills_at_write_
|| this->fills_
.empty());
3663 unsigned char* buffer
= this->postprocessing_buffer();
3664 for (Fill_list::iterator p
= this->fills_
.begin();
3665 p
!= this->fills_
.end();
3668 std::string
fill_data(parameters
->target().code_fill(p
->length()));
3669 memcpy(buffer
+ p
->section_offset(), fill_data
.data(),
3673 off_t off
= this->first_input_offset_
;
3674 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3675 p
!= this->input_sections_
.end();
3678 off_t aligned_off
= align_address(off
, p
->addralign());
3679 if (this->generate_code_fills_at_write_
&& (off
!= aligned_off
))
3681 size_t fill_len
= aligned_off
- off
;
3682 std::string
fill_data(parameters
->target().code_fill(fill_len
));
3683 memcpy(buffer
+ off
, fill_data
.data(), fill_data
.size());
3686 p
->write_to_buffer(buffer
+ aligned_off
);
3687 off
= aligned_off
+ p
->data_size();
3691 // Get the input sections for linker script processing. We leave
3692 // behind the Output_section_data entries. Note that this may be
3693 // slightly incorrect for merge sections. We will leave them behind,
3694 // but it is possible that the script says that they should follow
3695 // some other input sections, as in:
3696 // .rodata { *(.rodata) *(.rodata.cst*) }
3697 // For that matter, we don't handle this correctly:
3698 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3699 // With luck this will never matter.
3702 Output_section::get_input_sections(
3704 const std::string
& fill
,
3705 std::list
<Input_section
>* input_sections
)
3707 if (this->checkpoint_
!= NULL
3708 && !this->checkpoint_
->input_sections_saved())
3709 this->checkpoint_
->save_input_sections();
3711 // Invalidate fast look-up maps.
3712 this->lookup_maps_
->invalidate();
3714 uint64_t orig_address
= address
;
3716 address
= align_address(address
, this->addralign());
3718 Input_section_list remaining
;
3719 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3720 p
!= this->input_sections_
.end();
3723 if (p
->is_input_section()
3724 || p
->is_relaxed_input_section()
3725 || p
->is_merge_section())
3726 input_sections
->push_back(*p
);
3729 uint64_t aligned_address
= align_address(address
, p
->addralign());
3730 if (aligned_address
!= address
&& !fill
.empty())
3732 section_size_type length
=
3733 convert_to_section_size_type(aligned_address
- address
);
3734 std::string this_fill
;
3735 this_fill
.reserve(length
);
3736 while (this_fill
.length() + fill
.length() <= length
)
3738 if (this_fill
.length() < length
)
3739 this_fill
.append(fill
, 0, length
- this_fill
.length());
3741 Output_section_data
* posd
= new Output_data_const(this_fill
, 0);
3742 remaining
.push_back(Input_section(posd
));
3744 address
= aligned_address
;
3746 remaining
.push_back(*p
);
3748 p
->finalize_data_size();
3749 address
+= p
->data_size();
3753 this->input_sections_
.swap(remaining
);
3754 this->first_input_offset_
= 0;
3756 uint64_t data_size
= address
- orig_address
;
3757 this->set_current_data_size_for_child(data_size
);
3761 // Add a script input section. SIS is an Output_section::Input_section,
3762 // which can be either a plain input section or a special input section like
3763 // a relaxed input section. For a special input section, its size must be
3767 Output_section::add_script_input_section(const Input_section
& sis
)
3769 uint64_t data_size
= sis
.data_size();
3770 uint64_t addralign
= sis
.addralign();
3771 if (addralign
> this->addralign_
)
3772 this->addralign_
= addralign
;
3774 off_t offset_in_section
= this->current_data_size_for_child();
3775 off_t aligned_offset_in_section
= align_address(offset_in_section
,
3778 this->set_current_data_size_for_child(aligned_offset_in_section
3781 this->input_sections_
.push_back(sis
);
3783 // Update fast lookup maps if necessary.
3784 if (this->lookup_maps_
->is_valid())
3786 if (sis
.is_merge_section())
3788 Output_merge_base
* pomb
= sis
.output_merge_base();
3789 Merge_section_properties
msp(pomb
->is_string(), pomb
->entsize(),
3791 this->lookup_maps_
->add_merge_section(msp
, pomb
);
3792 for (Output_merge_base::Input_sections::const_iterator p
=
3793 pomb
->input_sections_begin();
3794 p
!= pomb
->input_sections_end();
3796 this->lookup_maps_
->add_merge_input_section(p
->first
, p
->second
,
3799 else if (sis
.is_relaxed_input_section())
3801 Output_relaxed_input_section
* poris
= sis
.relaxed_input_section();
3802 this->lookup_maps_
->add_relaxed_input_section(poris
->relobj(),
3803 poris
->shndx(), poris
);
3808 // Save states for relaxation.
3811 Output_section::save_states()
3813 gold_assert(this->checkpoint_
== NULL
);
3814 Checkpoint_output_section
* checkpoint
=
3815 new Checkpoint_output_section(this->addralign_
, this->flags_
,
3816 this->input_sections_
,
3817 this->first_input_offset_
,
3818 this->attached_input_sections_are_sorted_
);
3819 this->checkpoint_
= checkpoint
;
3820 gold_assert(this->fills_
.empty());
3824 Output_section::discard_states()
3826 gold_assert(this->checkpoint_
!= NULL
);
3827 delete this->checkpoint_
;
3828 this->checkpoint_
= NULL
;
3829 gold_assert(this->fills_
.empty());
3831 // Simply invalidate the fast lookup maps since we do not keep
3833 this->lookup_maps_
->invalidate();
3837 Output_section::restore_states()
3839 gold_assert(this->checkpoint_
!= NULL
);
3840 Checkpoint_output_section
* checkpoint
= this->checkpoint_
;
3842 this->addralign_
= checkpoint
->addralign();
3843 this->flags_
= checkpoint
->flags();
3844 this->first_input_offset_
= checkpoint
->first_input_offset();
3846 if (!checkpoint
->input_sections_saved())
3848 // If we have not copied the input sections, just resize it.
3849 size_t old_size
= checkpoint
->input_sections_size();
3850 gold_assert(this->input_sections_
.size() >= old_size
);
3851 this->input_sections_
.resize(old_size
);
3855 // We need to copy the whole list. This is not efficient for
3856 // extremely large output with hundreads of thousands of input
3857 // objects. We may need to re-think how we should pass sections
3859 this->input_sections_
= *checkpoint
->input_sections();
3862 this->attached_input_sections_are_sorted_
=
3863 checkpoint
->attached_input_sections_are_sorted();
3865 // Simply invalidate the fast lookup maps since we do not keep
3867 this->lookup_maps_
->invalidate();
3870 // Update the section offsets of input sections in this. This is required if
3871 // relaxation causes some input sections to change sizes.
3874 Output_section::adjust_section_offsets()
3876 if (!this->section_offsets_need_adjustment_
)
3880 for (Input_section_list::iterator p
= this->input_sections_
.begin();
3881 p
!= this->input_sections_
.end();
3884 off
= align_address(off
, p
->addralign());
3885 if (p
->is_input_section())
3886 p
->relobj()->set_section_offset(p
->shndx(), off
);
3887 off
+= p
->data_size();
3890 this->section_offsets_need_adjustment_
= false;
3893 // Print to the map file.
3896 Output_section::do_print_to_mapfile(Mapfile
* mapfile
) const
3898 mapfile
->print_output_section(this);
3900 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
3901 p
!= this->input_sections_
.end();
3903 p
->print_to_mapfile(mapfile
);
3906 // Print stats for merge sections to stderr.
3909 Output_section::print_merge_stats()
3911 Input_section_list::iterator p
;
3912 for (p
= this->input_sections_
.begin();
3913 p
!= this->input_sections_
.end();
3915 p
->print_merge_stats(this->name_
);
3918 // Set a fixed layout for the section. Used for incremental update links.
3921 Output_section::set_fixed_layout(uint64_t sh_addr
, off_t sh_offset
,
3922 off_t sh_size
, uint64_t sh_addralign
)
3924 this->addralign_
= sh_addralign
;
3925 this->set_current_data_size(sh_size
);
3926 if ((this->flags_
& elfcpp::SHF_ALLOC
) != 0)
3927 this->set_address(sh_addr
);
3928 this->set_file_offset(sh_offset
);
3929 this->finalize_data_size();
3930 this->free_list_
.init(sh_size
, false);
3931 this->has_fixed_layout_
= true;
3934 // Reserve space within the fixed layout for the section. Used for
3935 // incremental update links.
3938 Output_section::reserve(uint64_t sh_offset
, uint64_t sh_size
)
3940 this->free_list_
.remove(sh_offset
, sh_offset
+ sh_size
);
3943 // Allocate space from the free list for the section. Used for
3944 // incremental update links.
3947 Output_section::allocate(off_t len
, uint64_t addralign
)
3949 return this->free_list_
.allocate(len
, addralign
, 0);
3952 // Output segment methods.
3954 Output_segment::Output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
3964 is_max_align_known_(false),
3965 are_addresses_set_(false),
3966 is_large_data_segment_(false)
3968 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3970 if (type
== elfcpp::PT_TLS
)
3971 this->flags_
= elfcpp::PF_R
;
3974 // Add an Output_section to a PT_LOAD Output_segment.
3977 Output_segment::add_output_section_to_load(Layout
* layout
,
3979 elfcpp::Elf_Word seg_flags
)
3981 gold_assert(this->type() == elfcpp::PT_LOAD
);
3982 gold_assert((os
->flags() & elfcpp::SHF_ALLOC
) != 0);
3983 gold_assert(!this->is_max_align_known_
);
3984 gold_assert(os
->is_large_data_section() == this->is_large_data_segment());
3986 this->update_flags_for_output_section(seg_flags
);
3988 // We don't want to change the ordering if we have a linker script
3989 // with a SECTIONS clause.
3990 Output_section_order order
= os
->order();
3991 if (layout
->script_options()->saw_sections_clause())
3992 order
= static_cast<Output_section_order
>(0);
3994 gold_assert(order
!= ORDER_INVALID
);
3996 this->output_lists_
[order
].push_back(os
);
3999 // Add an Output_section to a non-PT_LOAD Output_segment.
4002 Output_segment::add_output_section_to_nonload(Output_section
* os
,
4003 elfcpp::Elf_Word seg_flags
)
4005 gold_assert(this->type() != elfcpp::PT_LOAD
);
4006 gold_assert((os
->flags() & elfcpp::SHF_ALLOC
) != 0);
4007 gold_assert(!this->is_max_align_known_
);
4009 this->update_flags_for_output_section(seg_flags
);
4011 this->output_lists_
[0].push_back(os
);
4014 // Remove an Output_section from this segment. It is an error if it
4018 Output_segment::remove_output_section(Output_section
* os
)
4020 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4022 Output_data_list
* pdl
= &this->output_lists_
[i
];
4023 for (Output_data_list::iterator p
= pdl
->begin(); p
!= pdl
->end(); ++p
)
4035 // Add an Output_data (which need not be an Output_section) to the
4036 // start of a segment.
4039 Output_segment::add_initial_output_data(Output_data
* od
)
4041 gold_assert(!this->is_max_align_known_
);
4042 Output_data_list::iterator p
= this->output_lists_
[0].begin();
4043 this->output_lists_
[0].insert(p
, od
);
4046 // Return true if this segment has any sections which hold actual
4047 // data, rather than being a BSS section.
4050 Output_segment::has_any_data_sections() const
4052 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4054 const Output_data_list
* pdl
= &this->output_lists_
[i
];
4055 for (Output_data_list::const_iterator p
= pdl
->begin();
4059 if (!(*p
)->is_section())
4061 if ((*p
)->output_section()->type() != elfcpp::SHT_NOBITS
)
4068 // Return whether the first data section (not counting TLS sections)
4069 // is a relro section.
4072 Output_segment::is_first_section_relro() const
4074 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4076 if (i
== static_cast<int>(ORDER_TLS_DATA
)
4077 || i
== static_cast<int>(ORDER_TLS_BSS
))
4079 const Output_data_list
* pdl
= &this->output_lists_
[i
];
4082 Output_data
* p
= pdl
->front();
4083 return p
->is_section() && p
->output_section()->is_relro();
4089 // Return the maximum alignment of the Output_data in Output_segment.
4092 Output_segment::maximum_alignment()
4094 if (!this->is_max_align_known_
)
4096 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4098 const Output_data_list
* pdl
= &this->output_lists_
[i
];
4099 uint64_t addralign
= Output_segment::maximum_alignment_list(pdl
);
4100 if (addralign
> this->max_align_
)
4101 this->max_align_
= addralign
;
4103 this->is_max_align_known_
= true;
4106 return this->max_align_
;
4109 // Return the maximum alignment of a list of Output_data.
4112 Output_segment::maximum_alignment_list(const Output_data_list
* pdl
)
4115 for (Output_data_list::const_iterator p
= pdl
->begin();
4119 uint64_t addralign
= (*p
)->addralign();
4120 if (addralign
> ret
)
4126 // Return whether this segment has any dynamic relocs.
4129 Output_segment::has_dynamic_reloc() const
4131 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4132 if (this->has_dynamic_reloc_list(&this->output_lists_
[i
]))
4137 // Return whether this Output_data_list has any dynamic relocs.
4140 Output_segment::has_dynamic_reloc_list(const Output_data_list
* pdl
) const
4142 for (Output_data_list::const_iterator p
= pdl
->begin();
4145 if ((*p
)->has_dynamic_reloc())
4150 // Set the section addresses for an Output_segment. If RESET is true,
4151 // reset the addresses first. ADDR is the address and *POFF is the
4152 // file offset. Set the section indexes starting with *PSHNDX.
4153 // INCREASE_RELRO is the size of the portion of the first non-relro
4154 // section that should be included in the PT_GNU_RELRO segment.
4155 // If this segment has relro sections, and has been aligned for
4156 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4157 // the immediately following segment. Update *HAS_RELRO, *POFF,
4161 Output_segment::set_section_addresses(Layout
* layout
, bool reset
,
4163 unsigned int* increase_relro
,
4166 unsigned int* pshndx
)
4168 gold_assert(this->type_
== elfcpp::PT_LOAD
);
4170 uint64_t last_relro_pad
= 0;
4171 off_t orig_off
= *poff
;
4173 bool in_tls
= false;
4175 // If we have relro sections, we need to pad forward now so that the
4176 // relro sections plus INCREASE_RELRO end on a common page boundary.
4177 if (parameters
->options().relro()
4178 && this->is_first_section_relro()
4179 && (!this->are_addresses_set_
|| reset
))
4181 uint64_t relro_size
= 0;
4183 uint64_t max_align
= 0;
4184 for (int i
= 0; i
<= static_cast<int>(ORDER_RELRO_LAST
); ++i
)
4186 Output_data_list
* pdl
= &this->output_lists_
[i
];
4187 Output_data_list::iterator p
;
4188 for (p
= pdl
->begin(); p
!= pdl
->end(); ++p
)
4190 if (!(*p
)->is_section())
4192 uint64_t align
= (*p
)->addralign();
4193 if (align
> max_align
)
4195 if ((*p
)->is_section_flag_set(elfcpp::SHF_TLS
))
4199 // Align the first non-TLS section to the alignment
4200 // of the TLS segment.
4204 relro_size
= align_address(relro_size
, align
);
4205 // Ignore the size of the .tbss section.
4206 if ((*p
)->is_section_flag_set(elfcpp::SHF_TLS
)
4207 && (*p
)->is_section_type(elfcpp::SHT_NOBITS
))
4209 if ((*p
)->is_address_valid())
4210 relro_size
+= (*p
)->data_size();
4213 // FIXME: This could be faster.
4214 (*p
)->set_address_and_file_offset(addr
+ relro_size
,
4216 relro_size
+= (*p
)->data_size();
4217 (*p
)->reset_address_and_file_offset();
4220 if (p
!= pdl
->end())
4223 relro_size
+= *increase_relro
;
4224 // Pad the total relro size to a multiple of the maximum
4225 // section alignment seen.
4226 uint64_t aligned_size
= align_address(relro_size
, max_align
);
4227 // Note the amount of padding added after the last relro section.
4228 last_relro_pad
= aligned_size
- relro_size
;
4231 uint64_t page_align
= parameters
->target().common_pagesize();
4233 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4234 uint64_t desired_align
= page_align
- (aligned_size
% page_align
);
4235 if (desired_align
< *poff
% page_align
)
4236 *poff
+= page_align
- *poff
% page_align
;
4237 *poff
+= desired_align
- *poff
% page_align
;
4238 addr
+= *poff
- orig_off
;
4242 if (!reset
&& this->are_addresses_set_
)
4244 gold_assert(this->paddr_
== addr
);
4245 addr
= this->vaddr_
;
4249 this->vaddr_
= addr
;
4250 this->paddr_
= addr
;
4251 this->are_addresses_set_
= true;
4256 this->offset_
= orig_off
;
4260 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4262 if (i
== static_cast<int>(ORDER_RELRO_LAST
))
4264 *poff
+= last_relro_pad
;
4265 addr
+= last_relro_pad
;
4266 if (this->output_lists_
[i
].empty())
4268 // If there is nothing in the ORDER_RELRO_LAST list,
4269 // the padding will occur at the end of the relro
4270 // segment, and we need to add it to *INCREASE_RELRO.
4271 *increase_relro
+= last_relro_pad
;
4274 addr
= this->set_section_list_addresses(layout
, reset
,
4275 &this->output_lists_
[i
],
4276 addr
, poff
, pshndx
, &in_tls
);
4277 if (i
< static_cast<int>(ORDER_SMALL_BSS
))
4279 this->filesz_
= *poff
- orig_off
;
4286 // If the last section was a TLS section, align upward to the
4287 // alignment of the TLS segment, so that the overall size of the TLS
4288 // segment is aligned.
4291 uint64_t segment_align
= layout
->tls_segment()->maximum_alignment();
4292 *poff
= align_address(*poff
, segment_align
);
4295 this->memsz_
= *poff
- orig_off
;
4297 // Ignore the file offset adjustments made by the BSS Output_data
4304 // Set the addresses and file offsets in a list of Output_data
4308 Output_segment::set_section_list_addresses(Layout
* layout
, bool reset
,
4309 Output_data_list
* pdl
,
4310 uint64_t addr
, off_t
* poff
,
4311 unsigned int* pshndx
,
4314 off_t startoff
= *poff
;
4315 // For incremental updates, we may allocate non-fixed sections from
4316 // free space in the file. This keeps track of the high-water mark.
4317 off_t maxoff
= startoff
;
4319 off_t off
= startoff
;
4320 for (Output_data_list::iterator p
= pdl
->begin();
4325 (*p
)->reset_address_and_file_offset();
4327 // When doing an incremental update or when using a linker script,
4328 // the section will most likely already have an address.
4329 if (!(*p
)->is_address_valid())
4331 uint64_t align
= (*p
)->addralign();
4333 if ((*p
)->is_section_flag_set(elfcpp::SHF_TLS
))
4335 // Give the first TLS section the alignment of the
4336 // entire TLS segment. Otherwise the TLS segment as a
4337 // whole may be misaligned.
4340 Output_segment
* tls_segment
= layout
->tls_segment();
4341 gold_assert(tls_segment
!= NULL
);
4342 uint64_t segment_align
= tls_segment
->maximum_alignment();
4343 gold_assert(segment_align
>= align
);
4344 align
= segment_align
;
4351 // If this is the first section after the TLS segment,
4352 // align it to at least the alignment of the TLS
4353 // segment, so that the size of the overall TLS segment
4357 uint64_t segment_align
=
4358 layout
->tls_segment()->maximum_alignment();
4359 if (segment_align
> align
)
4360 align
= segment_align
;
4366 if (!parameters
->incremental_update())
4368 off
= align_address(off
, align
);
4369 (*p
)->set_address_and_file_offset(addr
+ (off
- startoff
), off
);
4373 // Incremental update: allocate file space from free list.
4374 (*p
)->pre_finalize_data_size();
4375 off_t current_size
= (*p
)->current_data_size();
4376 off
= layout
->allocate(current_size
, align
, startoff
);
4379 gold_assert((*p
)->output_section() != NULL
);
4380 gold_fallback(_("out of patch space for section %s; "
4381 "relink with --incremental-full"),
4382 (*p
)->output_section()->name());
4384 (*p
)->set_address_and_file_offset(addr
+ (off
- startoff
), off
);
4385 if ((*p
)->data_size() > current_size
)
4387 gold_assert((*p
)->output_section() != NULL
);
4388 gold_fallback(_("%s: section changed size; "
4389 "relink with --incremental-full"),
4390 (*p
)->output_section()->name());
4394 else if (parameters
->incremental_update())
4396 // For incremental updates, use the fixed offset for the
4397 // high-water mark computation.
4398 off
= (*p
)->offset();
4402 // The script may have inserted a skip forward, but it
4403 // better not have moved backward.
4404 if ((*p
)->address() >= addr
+ (off
- startoff
))
4405 off
+= (*p
)->address() - (addr
+ (off
- startoff
));
4408 if (!layout
->script_options()->saw_sections_clause())
4412 Output_section
* os
= (*p
)->output_section();
4414 // Cast to unsigned long long to avoid format warnings.
4415 unsigned long long previous_dot
=
4416 static_cast<unsigned long long>(addr
+ (off
- startoff
));
4417 unsigned long long dot
=
4418 static_cast<unsigned long long>((*p
)->address());
4421 gold_error(_("dot moves backward in linker script "
4422 "from 0x%llx to 0x%llx"), previous_dot
, dot
);
4424 gold_error(_("address of section '%s' moves backward "
4425 "from 0x%llx to 0x%llx"),
4426 os
->name(), previous_dot
, dot
);
4429 (*p
)->set_file_offset(off
);
4430 (*p
)->finalize_data_size();
4433 if (parameters
->incremental_update())
4434 gold_debug(DEBUG_INCREMENTAL
,
4435 "set_section_list_addresses: %08lx %08lx %s",
4436 static_cast<long>(off
),
4437 static_cast<long>((*p
)->data_size()),
4438 ((*p
)->output_section() != NULL
4439 ? (*p
)->output_section()->name() : "(special)"));
4441 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4442 // section. Such a section does not affect the size of a
4444 if (!(*p
)->is_section_flag_set(elfcpp::SHF_TLS
)
4445 || !(*p
)->is_section_type(elfcpp::SHT_NOBITS
))
4446 off
+= (*p
)->data_size();
4451 if ((*p
)->is_section())
4453 (*p
)->set_out_shndx(*pshndx
);
4459 return addr
+ (maxoff
- startoff
);
4462 // For a non-PT_LOAD segment, set the offset from the sections, if
4463 // any. Add INCREASE to the file size and the memory size.
4466 Output_segment::set_offset(unsigned int increase
)
4468 gold_assert(this->type_
!= elfcpp::PT_LOAD
);
4470 gold_assert(!this->are_addresses_set_
);
4472 // A non-load section only uses output_lists_[0].
4474 Output_data_list
* pdl
= &this->output_lists_
[0];
4478 gold_assert(increase
== 0);
4481 this->are_addresses_set_
= true;
4483 this->min_p_align_
= 0;
4489 // Find the first and last section by address.
4490 const Output_data
* first
= NULL
;
4491 const Output_data
* last_data
= NULL
;
4492 const Output_data
* last_bss
= NULL
;
4493 for (Output_data_list::const_iterator p
= pdl
->begin();
4498 || (*p
)->address() < first
->address()
4499 || ((*p
)->address() == first
->address()
4500 && (*p
)->data_size() < first
->data_size()))
4502 const Output_data
** plast
;
4503 if ((*p
)->is_section()
4504 && (*p
)->output_section()->type() == elfcpp::SHT_NOBITS
)
4509 || (*p
)->address() > (*plast
)->address()
4510 || ((*p
)->address() == (*plast
)->address()
4511 && (*p
)->data_size() > (*plast
)->data_size()))
4515 this->vaddr_
= first
->address();
4516 this->paddr_
= (first
->has_load_address()
4517 ? first
->load_address()
4519 this->are_addresses_set_
= true;
4520 this->offset_
= first
->offset();
4522 if (last_data
== NULL
)
4525 this->filesz_
= (last_data
->address()
4526 + last_data
->data_size()
4529 const Output_data
* last
= last_bss
!= NULL
? last_bss
: last_data
;
4530 this->memsz_
= (last
->address()
4534 this->filesz_
+= increase
;
4535 this->memsz_
+= increase
;
4537 // If this is a RELRO segment, verify that the segment ends at a
4539 if (this->type_
== elfcpp::PT_GNU_RELRO
)
4541 uint64_t page_align
= parameters
->target().common_pagesize();
4542 uint64_t segment_end
= this->vaddr_
+ this->memsz_
;
4543 if (parameters
->incremental_update())
4545 // The INCREASE_RELRO calculation is bypassed for an incremental
4546 // update, so we need to adjust the segment size manually here.
4547 segment_end
= align_address(segment_end
, page_align
);
4548 this->memsz_
= segment_end
- this->vaddr_
;
4551 gold_assert(segment_end
== align_address(segment_end
, page_align
));
4554 // If this is a TLS segment, align the memory size. The code in
4555 // set_section_list ensures that the section after the TLS segment
4556 // is aligned to give us room.
4557 if (this->type_
== elfcpp::PT_TLS
)
4559 uint64_t segment_align
= this->maximum_alignment();
4560 gold_assert(this->vaddr_
== align_address(this->vaddr_
, segment_align
));
4561 this->memsz_
= align_address(this->memsz_
, segment_align
);
4565 // Set the TLS offsets of the sections in the PT_TLS segment.
4568 Output_segment::set_tls_offsets()
4570 gold_assert(this->type_
== elfcpp::PT_TLS
);
4572 for (Output_data_list::iterator p
= this->output_lists_
[0].begin();
4573 p
!= this->output_lists_
[0].end();
4575 (*p
)->set_tls_offset(this->vaddr_
);
4578 // Return the load address of the first section.
4581 Output_segment::first_section_load_address() const
4583 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4585 const Output_data_list
* pdl
= &this->output_lists_
[i
];
4586 for (Output_data_list::const_iterator p
= pdl
->begin();
4590 if ((*p
)->is_section())
4591 return ((*p
)->has_load_address()
4592 ? (*p
)->load_address()
4599 // Return the number of Output_sections in an Output_segment.
4602 Output_segment::output_section_count() const
4604 unsigned int ret
= 0;
4605 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4606 ret
+= this->output_section_count_list(&this->output_lists_
[i
]);
4610 // Return the number of Output_sections in an Output_data_list.
4613 Output_segment::output_section_count_list(const Output_data_list
* pdl
) const
4615 unsigned int count
= 0;
4616 for (Output_data_list::const_iterator p
= pdl
->begin();
4620 if ((*p
)->is_section())
4626 // Return the section attached to the list segment with the lowest
4627 // load address. This is used when handling a PHDRS clause in a
4631 Output_segment::section_with_lowest_load_address() const
4633 Output_section
* found
= NULL
;
4634 uint64_t found_lma
= 0;
4635 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4636 this->lowest_load_address_in_list(&this->output_lists_
[i
], &found
,
4641 // Look through a list for a section with a lower load address.
4644 Output_segment::lowest_load_address_in_list(const Output_data_list
* pdl
,
4645 Output_section
** found
,
4646 uint64_t* found_lma
) const
4648 for (Output_data_list::const_iterator p
= pdl
->begin();
4652 if (!(*p
)->is_section())
4654 Output_section
* os
= static_cast<Output_section
*>(*p
);
4655 uint64_t lma
= (os
->has_load_address()
4656 ? os
->load_address()
4658 if (*found
== NULL
|| lma
< *found_lma
)
4666 // Write the segment data into *OPHDR.
4668 template<int size
, bool big_endian
>
4670 Output_segment::write_header(elfcpp::Phdr_write
<size
, big_endian
>* ophdr
)
4672 ophdr
->put_p_type(this->type_
);
4673 ophdr
->put_p_offset(this->offset_
);
4674 ophdr
->put_p_vaddr(this->vaddr_
);
4675 ophdr
->put_p_paddr(this->paddr_
);
4676 ophdr
->put_p_filesz(this->filesz_
);
4677 ophdr
->put_p_memsz(this->memsz_
);
4678 ophdr
->put_p_flags(this->flags_
);
4679 ophdr
->put_p_align(std::max(this->min_p_align_
, this->maximum_alignment()));
4682 // Write the section headers into V.
4684 template<int size
, bool big_endian
>
4686 Output_segment::write_section_headers(const Layout
* layout
,
4687 const Stringpool
* secnamepool
,
4689 unsigned int* pshndx
) const
4691 // Every section that is attached to a segment must be attached to a
4692 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4694 if (this->type_
!= elfcpp::PT_LOAD
)
4697 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4699 const Output_data_list
* pdl
= &this->output_lists_
[i
];
4700 v
= this->write_section_headers_list
<size
, big_endian
>(layout
,
4709 template<int size
, bool big_endian
>
4711 Output_segment::write_section_headers_list(const Layout
* layout
,
4712 const Stringpool
* secnamepool
,
4713 const Output_data_list
* pdl
,
4715 unsigned int* pshndx
) const
4717 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
4718 for (Output_data_list::const_iterator p
= pdl
->begin();
4722 if ((*p
)->is_section())
4724 const Output_section
* ps
= static_cast<const Output_section
*>(*p
);
4725 gold_assert(*pshndx
== ps
->out_shndx());
4726 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
4727 ps
->write_header(layout
, secnamepool
, &oshdr
);
4735 // Print the output sections to the map file.
4738 Output_segment::print_sections_to_mapfile(Mapfile
* mapfile
) const
4740 if (this->type() != elfcpp::PT_LOAD
)
4742 for (int i
= 0; i
< static_cast<int>(ORDER_MAX
); ++i
)
4743 this->print_section_list_to_mapfile(mapfile
, &this->output_lists_
[i
]);
4746 // Print an output section list to the map file.
4749 Output_segment::print_section_list_to_mapfile(Mapfile
* mapfile
,
4750 const Output_data_list
* pdl
) const
4752 for (Output_data_list::const_iterator p
= pdl
->begin();
4755 (*p
)->print_to_mapfile(mapfile
);
4758 // Output_file methods.
4760 Output_file::Output_file(const char* name
)
4765 map_is_anonymous_(false),
4766 map_is_allocated_(false),
4767 is_temporary_(false)
4771 // Try to open an existing file. Returns false if the file doesn't
4772 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4773 // NULL, open that file as the base for incremental linking, and
4774 // copy its contents to the new output file. This routine can
4775 // be called for incremental updates, in which case WRITABLE should
4776 // be true, or by the incremental-dump utility, in which case
4777 // WRITABLE should be false.
4780 Output_file::open_base_file(const char* base_name
, bool writable
)
4782 // The name "-" means "stdout".
4783 if (strcmp(this->name_
, "-") == 0)
4786 bool use_base_file
= base_name
!= NULL
;
4788 base_name
= this->name_
;
4789 else if (strcmp(base_name
, this->name_
) == 0)
4790 gold_fatal(_("%s: incremental base and output file name are the same"),
4793 // Don't bother opening files with a size of zero.
4795 if (::stat(base_name
, &s
) != 0)
4797 gold_info(_("%s: stat: %s"), base_name
, strerror(errno
));
4802 gold_info(_("%s: incremental base file is empty"), base_name
);
4806 // If we're using a base file, we want to open it read-only.
4810 int oflags
= writable
? O_RDWR
: O_RDONLY
;
4811 int o
= open_descriptor(-1, base_name
, oflags
, 0);
4814 gold_info(_("%s: open: %s"), base_name
, strerror(errno
));
4818 // If the base file and the output file are different, open a
4819 // new output file and read the contents from the base file into
4820 // the newly-mapped region.
4823 this->open(s
.st_size
);
4824 ssize_t bytes_to_read
= s
.st_size
;
4825 unsigned char* p
= this->base_
;
4826 while (bytes_to_read
> 0)
4828 ssize_t len
= ::read(o
, p
, bytes_to_read
);
4831 gold_info(_("%s: read failed: %s"), base_name
, strerror(errno
));
4836 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4838 static_cast<long long>(s
.st_size
- bytes_to_read
),
4839 static_cast<long long>(s
.st_size
));
4843 bytes_to_read
-= len
;
4850 this->file_size_
= s
.st_size
;
4852 if (!this->map_no_anonymous(writable
))
4854 release_descriptor(o
, true);
4856 this->file_size_
= 0;
4863 // Open the output file.
4866 Output_file::open(off_t file_size
)
4868 this->file_size_
= file_size
;
4870 // Unlink the file first; otherwise the open() may fail if the file
4871 // is busy (e.g. it's an executable that's currently being executed).
4873 // However, the linker may be part of a system where a zero-length
4874 // file is created for it to write to, with tight permissions (gcc
4875 // 2.95 did something like this). Unlinking the file would work
4876 // around those permission controls, so we only unlink if the file
4877 // has a non-zero size. We also unlink only regular files to avoid
4878 // trouble with directories/etc.
4880 // If we fail, continue; this command is merely a best-effort attempt
4881 // to improve the odds for open().
4883 // We let the name "-" mean "stdout"
4884 if (!this->is_temporary_
)
4886 if (strcmp(this->name_
, "-") == 0)
4887 this->o_
= STDOUT_FILENO
;
4891 if (::stat(this->name_
, &s
) == 0
4892 && (S_ISREG (s
.st_mode
) || S_ISLNK (s
.st_mode
)))
4895 ::unlink(this->name_
);
4896 else if (!parameters
->options().relocatable())
4898 // If we don't unlink the existing file, add execute
4899 // permission where read permissions already exist
4900 // and where the umask permits.
4901 int mask
= ::umask(0);
4903 s
.st_mode
|= (s
.st_mode
& 0444) >> 2;
4904 ::chmod(this->name_
, s
.st_mode
& ~mask
);
4908 int mode
= parameters
->options().relocatable() ? 0666 : 0777;
4909 int o
= open_descriptor(-1, this->name_
, O_RDWR
| O_CREAT
| O_TRUNC
,
4912 gold_fatal(_("%s: open: %s"), this->name_
, strerror(errno
));
4920 // Resize the output file.
4923 Output_file::resize(off_t file_size
)
4925 // If the mmap is mapping an anonymous memory buffer, this is easy:
4926 // just mremap to the new size. If it's mapping to a file, we want
4927 // to unmap to flush to the file, then remap after growing the file.
4928 if (this->map_is_anonymous_
)
4931 if (!this->map_is_allocated_
)
4933 base
= ::mremap(this->base_
, this->file_size_
, file_size
,
4935 if (base
== MAP_FAILED
)
4936 gold_fatal(_("%s: mremap: %s"), this->name_
, strerror(errno
));
4940 base
= realloc(this->base_
, file_size
);
4943 if (file_size
> this->file_size_
)
4944 memset(static_cast<char*>(base
) + this->file_size_
, 0,
4945 file_size
- this->file_size_
);
4947 this->base_
= static_cast<unsigned char*>(base
);
4948 this->file_size_
= file_size
;
4953 this->file_size_
= file_size
;
4954 if (!this->map_no_anonymous(true))
4955 gold_fatal(_("%s: mmap: %s"), this->name_
, strerror(errno
));
4959 // Map an anonymous block of memory which will later be written to the
4960 // file. Return whether the map succeeded.
4963 Output_file::map_anonymous()
4965 void* base
= ::mmap(NULL
, this->file_size_
, PROT_READ
| PROT_WRITE
,
4966 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
4967 if (base
== MAP_FAILED
)
4969 base
= malloc(this->file_size_
);
4972 memset(base
, 0, this->file_size_
);
4973 this->map_is_allocated_
= true;
4975 this->base_
= static_cast<unsigned char*>(base
);
4976 this->map_is_anonymous_
= true;
4980 // Map the file into memory. Return whether the mapping succeeded.
4981 // If WRITABLE is true, map with write access.
4984 Output_file::map_no_anonymous(bool writable
)
4986 const int o
= this->o_
;
4988 // If the output file is not a regular file, don't try to mmap it;
4989 // instead, we'll mmap a block of memory (an anonymous buffer), and
4990 // then later write the buffer to the file.
4992 struct stat statbuf
;
4993 if (o
== STDOUT_FILENO
|| o
== STDERR_FILENO
4994 || ::fstat(o
, &statbuf
) != 0
4995 || !S_ISREG(statbuf
.st_mode
)
4996 || this->is_temporary_
)
4999 // Ensure that we have disk space available for the file. If we
5000 // don't do this, it is possible that we will call munmap, close,
5001 // and exit with dirty buffers still in the cache with no assigned
5002 // disk blocks. If the disk is out of space at that point, the
5003 // output file will wind up incomplete, but we will have already
5004 // exited. The alternative to fallocate would be to use fdatasync,
5005 // but that would be a more significant performance hit.
5008 int err
= ::posix_fallocate(o
, 0, this->file_size_
);
5010 gold_fatal(_("%s: %s"), this->name_
, strerror(err
));
5013 // Map the file into memory.
5014 int prot
= PROT_READ
;
5017 base
= ::mmap(NULL
, this->file_size_
, prot
, MAP_SHARED
, o
, 0);
5019 // The mmap call might fail because of file system issues: the file
5020 // system might not support mmap at all, or it might not support
5021 // mmap with PROT_WRITE.
5022 if (base
== MAP_FAILED
)
5025 this->map_is_anonymous_
= false;
5026 this->base_
= static_cast<unsigned char*>(base
);
5030 // Map the file into memory.
5035 if (this->map_no_anonymous(true))
5038 // The mmap call might fail because of file system issues: the file
5039 // system might not support mmap at all, or it might not support
5040 // mmap with PROT_WRITE. I'm not sure which errno values we will
5041 // see in all cases, so if the mmap fails for any reason and we
5042 // don't care about file contents, try for an anonymous map.
5043 if (this->map_anonymous())
5046 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5047 this->name_
, static_cast<unsigned long>(this->file_size_
),
5051 // Unmap the file from memory.
5054 Output_file::unmap()
5056 if (this->map_is_anonymous_
)
5058 // We've already written out the data, so there is no reason to
5059 // waste time unmapping or freeing the memory.
5063 if (::munmap(this->base_
, this->file_size_
) < 0)
5064 gold_error(_("%s: munmap: %s"), this->name_
, strerror(errno
));
5069 // Close the output file.
5072 Output_file::close()
5074 // If the map isn't file-backed, we need to write it now.
5075 if (this->map_is_anonymous_
&& !this->is_temporary_
)
5077 size_t bytes_to_write
= this->file_size_
;
5079 while (bytes_to_write
> 0)
5081 ssize_t bytes_written
= ::write(this->o_
, this->base_
+ offset
,
5083 if (bytes_written
== 0)
5084 gold_error(_("%s: write: unexpected 0 return-value"), this->name_
);
5085 else if (bytes_written
< 0)
5086 gold_error(_("%s: write: %s"), this->name_
, strerror(errno
));
5089 bytes_to_write
-= bytes_written
;
5090 offset
+= bytes_written
;
5096 // We don't close stdout or stderr
5097 if (this->o_
!= STDOUT_FILENO
5098 && this->o_
!= STDERR_FILENO
5099 && !this->is_temporary_
)
5100 if (::close(this->o_
) < 0)
5101 gold_error(_("%s: close: %s"), this->name_
, strerror(errno
));
5105 // Instantiate the templates we need. We could use the configure
5106 // script to restrict this to only the ones for implemented targets.
5108 #ifdef HAVE_TARGET_32_LITTLE
5111 Output_section::add_input_section
<32, false>(
5113 Sized_relobj_file
<32, false>* object
,
5115 const char* secname
,
5116 const elfcpp::Shdr
<32, false>& shdr
,
5117 unsigned int reloc_shndx
,
5118 bool have_sections_script
);
5121 #ifdef HAVE_TARGET_32_BIG
5124 Output_section::add_input_section
<32, true>(
5126 Sized_relobj_file
<32, true>* object
,
5128 const char* secname
,
5129 const elfcpp::Shdr
<32, true>& shdr
,
5130 unsigned int reloc_shndx
,
5131 bool have_sections_script
);
5134 #ifdef HAVE_TARGET_64_LITTLE
5137 Output_section::add_input_section
<64, false>(
5139 Sized_relobj_file
<64, false>* object
,
5141 const char* secname
,
5142 const elfcpp::Shdr
<64, false>& shdr
,
5143 unsigned int reloc_shndx
,
5144 bool have_sections_script
);
5147 #ifdef HAVE_TARGET_64_BIG
5150 Output_section::add_input_section
<64, true>(
5152 Sized_relobj_file
<64, true>* object
,
5154 const char* secname
,
5155 const elfcpp::Shdr
<64, true>& shdr
,
5156 unsigned int reloc_shndx
,
5157 bool have_sections_script
);
5160 #ifdef HAVE_TARGET_32_LITTLE
5162 class Output_reloc
<elfcpp::SHT_REL
, false, 32, false>;
5165 #ifdef HAVE_TARGET_32_BIG
5167 class Output_reloc
<elfcpp::SHT_REL
, false, 32, true>;
5170 #ifdef HAVE_TARGET_64_LITTLE
5172 class Output_reloc
<elfcpp::SHT_REL
, false, 64, false>;
5175 #ifdef HAVE_TARGET_64_BIG
5177 class Output_reloc
<elfcpp::SHT_REL
, false, 64, true>;
5180 #ifdef HAVE_TARGET_32_LITTLE
5182 class Output_reloc
<elfcpp::SHT_REL
, true, 32, false>;
5185 #ifdef HAVE_TARGET_32_BIG
5187 class Output_reloc
<elfcpp::SHT_REL
, true, 32, true>;
5190 #ifdef HAVE_TARGET_64_LITTLE
5192 class Output_reloc
<elfcpp::SHT_REL
, true, 64, false>;
5195 #ifdef HAVE_TARGET_64_BIG
5197 class Output_reloc
<elfcpp::SHT_REL
, true, 64, true>;
5200 #ifdef HAVE_TARGET_32_LITTLE
5202 class Output_reloc
<elfcpp::SHT_RELA
, false, 32, false>;
5205 #ifdef HAVE_TARGET_32_BIG
5207 class Output_reloc
<elfcpp::SHT_RELA
, false, 32, true>;
5210 #ifdef HAVE_TARGET_64_LITTLE
5212 class Output_reloc
<elfcpp::SHT_RELA
, false, 64, false>;
5215 #ifdef HAVE_TARGET_64_BIG
5217 class Output_reloc
<elfcpp::SHT_RELA
, false, 64, true>;
5220 #ifdef HAVE_TARGET_32_LITTLE
5222 class Output_reloc
<elfcpp::SHT_RELA
, true, 32, false>;
5225 #ifdef HAVE_TARGET_32_BIG
5227 class Output_reloc
<elfcpp::SHT_RELA
, true, 32, true>;
5230 #ifdef HAVE_TARGET_64_LITTLE
5232 class Output_reloc
<elfcpp::SHT_RELA
, true, 64, false>;
5235 #ifdef HAVE_TARGET_64_BIG
5237 class Output_reloc
<elfcpp::SHT_RELA
, true, 64, true>;
5240 #ifdef HAVE_TARGET_32_LITTLE
5242 class Output_data_reloc
<elfcpp::SHT_REL
, false, 32, false>;
5245 #ifdef HAVE_TARGET_32_BIG
5247 class Output_data_reloc
<elfcpp::SHT_REL
, false, 32, true>;
5250 #ifdef HAVE_TARGET_64_LITTLE
5252 class Output_data_reloc
<elfcpp::SHT_REL
, false, 64, false>;
5255 #ifdef HAVE_TARGET_64_BIG
5257 class Output_data_reloc
<elfcpp::SHT_REL
, false, 64, true>;
5260 #ifdef HAVE_TARGET_32_LITTLE
5262 class Output_data_reloc
<elfcpp::SHT_REL
, true, 32, false>;
5265 #ifdef HAVE_TARGET_32_BIG
5267 class Output_data_reloc
<elfcpp::SHT_REL
, true, 32, true>;
5270 #ifdef HAVE_TARGET_64_LITTLE
5272 class Output_data_reloc
<elfcpp::SHT_REL
, true, 64, false>;
5275 #ifdef HAVE_TARGET_64_BIG
5277 class Output_data_reloc
<elfcpp::SHT_REL
, true, 64, true>;
5280 #ifdef HAVE_TARGET_32_LITTLE
5282 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 32, false>;
5285 #ifdef HAVE_TARGET_32_BIG
5287 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 32, true>;
5290 #ifdef HAVE_TARGET_64_LITTLE
5292 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 64, false>;
5295 #ifdef HAVE_TARGET_64_BIG
5297 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 64, true>;
5300 #ifdef HAVE_TARGET_32_LITTLE
5302 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 32, false>;
5305 #ifdef HAVE_TARGET_32_BIG
5307 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 32, true>;
5310 #ifdef HAVE_TARGET_64_LITTLE
5312 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 64, false>;
5315 #ifdef HAVE_TARGET_64_BIG
5317 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 64, true>;
5320 #ifdef HAVE_TARGET_32_LITTLE
5322 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 32, false>;
5325 #ifdef HAVE_TARGET_32_BIG
5327 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 32, true>;
5330 #ifdef HAVE_TARGET_64_LITTLE
5332 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 64, false>;
5335 #ifdef HAVE_TARGET_64_BIG
5337 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 64, true>;
5340 #ifdef HAVE_TARGET_32_LITTLE
5342 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 32, false>;
5345 #ifdef HAVE_TARGET_32_BIG
5347 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 32, true>;
5350 #ifdef HAVE_TARGET_64_LITTLE
5352 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 64, false>;
5355 #ifdef HAVE_TARGET_64_BIG
5357 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 64, true>;
5360 #ifdef HAVE_TARGET_32_LITTLE
5362 class Output_data_group
<32, false>;
5365 #ifdef HAVE_TARGET_32_BIG
5367 class Output_data_group
<32, true>;
5370 #ifdef HAVE_TARGET_64_LITTLE
5372 class Output_data_group
<64, false>;
5375 #ifdef HAVE_TARGET_64_BIG
5377 class Output_data_group
<64, true>;
5380 #ifdef HAVE_TARGET_32_LITTLE
5382 class Output_data_got
<32, false>;
5385 #ifdef HAVE_TARGET_32_BIG
5387 class Output_data_got
<32, true>;
5390 #ifdef HAVE_TARGET_64_LITTLE
5392 class Output_data_got
<64, false>;
5395 #ifdef HAVE_TARGET_64_BIG
5397 class Output_data_got
<64, true>;
5400 } // End namespace gold.