1 // output.h -- manage the output file for gold -*- C++ -*-
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
32 #include "reloc-types.h"
37 class General_options
;
41 class Output_merge_base
;
43 class Relocatable_relocs
;
45 template<int size
, bool big_endian
>
47 template<int size
, bool big_endian
>
49 template<int size
, bool big_endian
>
50 class Sized_relobj_file
;
52 // An abtract class for data which has to go into the output file.
57 explicit Output_data()
58 : address_(0), data_size_(0), offset_(-1),
59 is_address_valid_(false), is_data_size_valid_(false),
60 is_offset_valid_(false), is_data_size_fixed_(false),
61 has_dynamic_reloc_(false)
67 // Return the address. For allocated sections, this is only valid
68 // after Layout::finalize is finished.
72 gold_assert(this->is_address_valid_
);
73 return this->address_
;
76 // Return the size of the data. For allocated sections, this must
77 // be valid after Layout::finalize calls set_address, but need not
78 // be valid before then.
82 gold_assert(this->is_data_size_valid_
);
83 return this->data_size_
;
86 // Get the current data size.
88 current_data_size() const
89 { return this->current_data_size_for_child(); }
91 // Return true if data size is fixed.
93 is_data_size_fixed() const
94 { return this->is_data_size_fixed_
; }
96 // Return the file offset. This is only valid after
97 // Layout::finalize is finished. For some non-allocated sections,
98 // it may not be valid until near the end of the link.
102 gold_assert(this->is_offset_valid_
);
103 return this->offset_
;
106 // Reset the address and file offset. This essentially disables the
107 // sanity testing about duplicate and unknown settings.
109 reset_address_and_file_offset()
111 this->is_address_valid_
= false;
112 this->is_offset_valid_
= false;
113 if (!this->is_data_size_fixed_
)
114 this->is_data_size_valid_
= false;
115 this->do_reset_address_and_file_offset();
118 // Return true if address and file offset already have reset values. In
119 // other words, calling reset_address_and_file_offset will not change them.
121 address_and_file_offset_have_reset_values() const
122 { return this->do_address_and_file_offset_have_reset_values(); }
124 // Return the required alignment.
127 { return this->do_addralign(); }
129 // Return whether this has a load address.
131 has_load_address() const
132 { return this->do_has_load_address(); }
134 // Return the load address.
137 { return this->do_load_address(); }
139 // Return whether this is an Output_section.
142 { return this->do_is_section(); }
144 // Return whether this is an Output_section of the specified type.
146 is_section_type(elfcpp::Elf_Word stt
) const
147 { return this->do_is_section_type(stt
); }
149 // Return whether this is an Output_section with the specified flag
152 is_section_flag_set(elfcpp::Elf_Xword shf
) const
153 { return this->do_is_section_flag_set(shf
); }
155 // Return the output section that this goes in, if there is one.
158 { return this->do_output_section(); }
160 const Output_section
*
161 output_section() const
162 { return this->do_output_section(); }
164 // Return the output section index, if there is an output section.
167 { return this->do_out_shndx(); }
169 // Set the output section index, if this is an output section.
171 set_out_shndx(unsigned int shndx
)
172 { this->do_set_out_shndx(shndx
); }
174 // Set the address and file offset of this data, and finalize the
175 // size of the data. This is called during Layout::finalize for
176 // allocated sections.
178 set_address_and_file_offset(uint64_t addr
, off_t off
)
180 this->set_address(addr
);
181 this->set_file_offset(off
);
182 this->finalize_data_size();
187 set_address(uint64_t addr
)
189 gold_assert(!this->is_address_valid_
);
190 this->address_
= addr
;
191 this->is_address_valid_
= true;
194 // Set the file offset.
196 set_file_offset(off_t off
)
198 gold_assert(!this->is_offset_valid_
);
200 this->is_offset_valid_
= true;
203 // Update the data size without finalizing it.
205 pre_finalize_data_size()
207 if (!this->is_data_size_valid_
)
209 // Tell the child class to update the data size.
210 this->update_data_size();
214 // Finalize the data size.
218 if (!this->is_data_size_valid_
)
220 // Tell the child class to set the data size.
221 this->set_final_data_size();
222 gold_assert(this->is_data_size_valid_
);
226 // Set the TLS offset. Called only for SHT_TLS sections.
228 set_tls_offset(uint64_t tls_base
)
229 { this->do_set_tls_offset(tls_base
); }
231 // Return the TLS offset, relative to the base of the TLS segment.
232 // Valid only for SHT_TLS sections.
235 { return this->do_tls_offset(); }
237 // Write the data to the output file. This is called after
238 // Layout::finalize is complete.
240 write(Output_file
* file
)
241 { this->do_write(file
); }
243 // This is called by Layout::finalize to note that the sizes of
244 // allocated sections must now be fixed.
247 { Output_data::allocated_sizes_are_fixed
= true; }
249 // Used to check that layout has been done.
252 { return Output_data::allocated_sizes_are_fixed
; }
254 // Note that a dynamic reloc has been applied to this data.
257 { this->has_dynamic_reloc_
= true; }
259 // Return whether a dynamic reloc has been applied.
261 has_dynamic_reloc() const
262 { return this->has_dynamic_reloc_
; }
264 // Whether the address is valid.
266 is_address_valid() const
267 { return this->is_address_valid_
; }
269 // Whether the file offset is valid.
271 is_offset_valid() const
272 { return this->is_offset_valid_
; }
274 // Whether the data size is valid.
276 is_data_size_valid() const
277 { return this->is_data_size_valid_
; }
279 // Print information to the map file.
281 print_to_mapfile(Mapfile
* mapfile
) const
282 { return this->do_print_to_mapfile(mapfile
); }
285 // Functions that child classes may or in some cases must implement.
287 // Write the data to the output file.
289 do_write(Output_file
*) = 0;
291 // Return the required alignment.
293 do_addralign() const = 0;
295 // Return whether this has a load address.
297 do_has_load_address() const
300 // Return the load address.
302 do_load_address() const
303 { gold_unreachable(); }
305 // Return whether this is an Output_section.
307 do_is_section() const
310 // Return whether this is an Output_section of the specified type.
311 // This only needs to be implement by Output_section.
313 do_is_section_type(elfcpp::Elf_Word
) const
316 // Return whether this is an Output_section with the specific flag
317 // set. This only needs to be implemented by Output_section.
319 do_is_section_flag_set(elfcpp::Elf_Xword
) const
322 // Return the output section, if there is one.
323 virtual Output_section
*
327 virtual const Output_section
*
328 do_output_section() const
331 // Return the output section index, if there is an output section.
334 { gold_unreachable(); }
336 // Set the output section index, if this is an output section.
338 do_set_out_shndx(unsigned int)
339 { gold_unreachable(); }
341 // This is a hook for derived classes to set the preliminary data size.
342 // This is called by pre_finalize_data_size, normally called during
343 // Layout::finalize, before the section address is set, and is used
344 // during an incremental update, when we need to know the size of a
345 // section before allocating space in the output file. For classes
346 // where the current data size is up to date, this default version of
347 // the method can be inherited.
352 // This is a hook for derived classes to set the data size. This is
353 // called by finalize_data_size, normally called during
354 // Layout::finalize, when the section address is set.
356 set_final_data_size()
357 { gold_unreachable(); }
359 // A hook for resetting the address and file offset.
361 do_reset_address_and_file_offset()
364 // Return true if address and file offset already have reset values. In
365 // other words, calling reset_address_and_file_offset will not change them.
366 // A child class overriding do_reset_address_and_file_offset may need to
367 // also override this.
369 do_address_and_file_offset_have_reset_values() const
370 { return !this->is_address_valid_
&& !this->is_offset_valid_
; }
372 // Set the TLS offset. Called only for SHT_TLS sections.
374 do_set_tls_offset(uint64_t)
375 { gold_unreachable(); }
377 // Return the TLS offset, relative to the base of the TLS segment.
378 // Valid only for SHT_TLS sections.
380 do_tls_offset() const
381 { gold_unreachable(); }
383 // Print to the map file. This only needs to be implemented by
384 // classes which may appear in a PT_LOAD segment.
386 do_print_to_mapfile(Mapfile
*) const
387 { gold_unreachable(); }
389 // Functions that child classes may call.
391 // Reset the address. The Output_section class needs this when an
392 // SHF_ALLOC input section is added to an output section which was
393 // formerly not SHF_ALLOC.
395 mark_address_invalid()
396 { this->is_address_valid_
= false; }
398 // Set the size of the data.
400 set_data_size(off_t data_size
)
402 gold_assert(!this->is_data_size_valid_
403 && !this->is_data_size_fixed_
);
404 this->data_size_
= data_size
;
405 this->is_data_size_valid_
= true;
408 // Fix the data size. Once it is fixed, it cannot be changed
409 // and the data size remains always valid.
413 gold_assert(this->is_data_size_valid_
);
414 this->is_data_size_fixed_
= true;
417 // Get the current data size--this is for the convenience of
418 // sections which build up their size over time.
420 current_data_size_for_child() const
421 { return this->data_size_
; }
423 // Set the current data size--this is for the convenience of
424 // sections which build up their size over time.
426 set_current_data_size_for_child(off_t data_size
)
428 gold_assert(!this->is_data_size_valid_
);
429 this->data_size_
= data_size
;
432 // Return default alignment for the target size.
436 // Return default alignment for a specified size--32 or 64.
438 default_alignment_for_size(int size
);
441 Output_data(const Output_data
&);
442 Output_data
& operator=(const Output_data
&);
444 // This is used for verification, to make sure that we don't try to
445 // change any sizes of allocated sections after we set the section
447 static bool allocated_sizes_are_fixed
;
449 // Memory address in output file.
451 // Size of data in output file.
453 // File offset of contents in output file.
455 // Whether address_ is valid.
456 bool is_address_valid_
: 1;
457 // Whether data_size_ is valid.
458 bool is_data_size_valid_
: 1;
459 // Whether offset_ is valid.
460 bool is_offset_valid_
: 1;
461 // Whether data size is fixed.
462 bool is_data_size_fixed_
: 1;
463 // Whether any dynamic relocs have been applied to this section.
464 bool has_dynamic_reloc_
: 1;
467 // Output the section headers.
469 class Output_section_headers
: public Output_data
472 Output_section_headers(const Layout
*,
473 const Layout::Segment_list
*,
474 const Layout::Section_list
*,
475 const Layout::Section_list
*,
477 const Output_section
*);
480 // Write the data to the file.
482 do_write(Output_file
*);
484 // Return the required alignment.
487 { return Output_data::default_alignment(); }
489 // Write to a map file.
491 do_print_to_mapfile(Mapfile
* mapfile
) const
492 { mapfile
->print_output_data(this, _("** section headers")); }
494 // Update the data size.
497 { this->set_data_size(this->do_size()); }
499 // Set final data size.
501 set_final_data_size()
502 { this->set_data_size(this->do_size()); }
505 // Write the data to the file with the right size and endianness.
506 template<int size
, bool big_endian
>
508 do_sized_write(Output_file
*);
510 // Compute data size.
514 const Layout
* layout_
;
515 const Layout::Segment_list
* segment_list_
;
516 const Layout::Section_list
* section_list_
;
517 const Layout::Section_list
* unattached_section_list_
;
518 const Stringpool
* secnamepool_
;
519 const Output_section
* shstrtab_section_
;
522 // Output the segment headers.
524 class Output_segment_headers
: public Output_data
527 Output_segment_headers(const Layout::Segment_list
& segment_list
);
530 // Write the data to the file.
532 do_write(Output_file
*);
534 // Return the required alignment.
537 { return Output_data::default_alignment(); }
539 // Write to a map file.
541 do_print_to_mapfile(Mapfile
* mapfile
) const
542 { mapfile
->print_output_data(this, _("** segment headers")); }
544 // Set final data size.
546 set_final_data_size()
547 { this->set_data_size(this->do_size()); }
550 // Write the data to the file with the right size and endianness.
551 template<int size
, bool big_endian
>
553 do_sized_write(Output_file
*);
555 // Compute the current size.
559 const Layout::Segment_list
& segment_list_
;
562 // Output the ELF file header.
564 class Output_file_header
: public Output_data
567 Output_file_header(const Target
*,
569 const Output_segment_headers
*);
571 // Add information about the section headers. We lay out the ELF
572 // file header before we create the section headers.
573 void set_section_info(const Output_section_headers
*,
574 const Output_section
* shstrtab
);
577 // Write the data to the file.
579 do_write(Output_file
*);
581 // Return the required alignment.
584 { return Output_data::default_alignment(); }
586 // Write to a map file.
588 do_print_to_mapfile(Mapfile
* mapfile
) const
589 { mapfile
->print_output_data(this, _("** file header")); }
591 // Set final data size.
593 set_final_data_size(void)
594 { this->set_data_size(this->do_size()); }
597 // Write the data to the file with the right size and endianness.
598 template<int size
, bool big_endian
>
600 do_sized_write(Output_file
*);
602 // Return the value to use for the entry address.
604 typename
elfcpp::Elf_types
<size
>::Elf_Addr
607 // Compute the current data size.
611 const Target
* target_
;
612 const Symbol_table
* symtab_
;
613 const Output_segment_headers
* segment_header_
;
614 const Output_section_headers
* section_header_
;
615 const Output_section
* shstrtab_
;
618 // Output sections are mainly comprised of input sections. However,
619 // there are cases where we have data to write out which is not in an
620 // input section. Output_section_data is used in such cases. This is
621 // an abstract base class.
623 class Output_section_data
: public Output_data
626 Output_section_data(off_t data_size
, uint64_t addralign
,
627 bool is_data_size_fixed
)
628 : Output_data(), output_section_(NULL
), addralign_(addralign
)
630 this->set_data_size(data_size
);
631 if (is_data_size_fixed
)
632 this->fix_data_size();
635 Output_section_data(uint64_t addralign
)
636 : Output_data(), output_section_(NULL
), addralign_(addralign
)
639 // Return the output section.
642 { return this->output_section_
; }
644 const Output_section
*
645 output_section() const
646 { return this->output_section_
; }
648 // Record the output section.
650 set_output_section(Output_section
* os
);
652 // Add an input section, for SHF_MERGE sections. This returns true
653 // if the section was handled.
655 add_input_section(Relobj
* object
, unsigned int shndx
)
656 { return this->do_add_input_section(object
, shndx
); }
658 // Given an input OBJECT, an input section index SHNDX within that
659 // object, and an OFFSET relative to the start of that input
660 // section, return whether or not the corresponding offset within
661 // the output section is known. If this function returns true, it
662 // sets *POUTPUT to the output offset. The value -1 indicates that
663 // this input offset is being discarded.
665 output_offset(const Relobj
* object
, unsigned int shndx
,
666 section_offset_type offset
,
667 section_offset_type
* poutput
) const
668 { return this->do_output_offset(object
, shndx
, offset
, poutput
); }
670 // Return whether this is the merge section for the input section
671 // SHNDX in OBJECT. This should return true when output_offset
672 // would return true for some values of OFFSET.
674 is_merge_section_for(const Relobj
* object
, unsigned int shndx
) const
675 { return this->do_is_merge_section_for(object
, shndx
); }
677 // Write the contents to a buffer. This is used for sections which
678 // require postprocessing, such as compression.
680 write_to_buffer(unsigned char* buffer
)
681 { this->do_write_to_buffer(buffer
); }
683 // Print merge stats to stderr. This should only be called for
684 // SHF_MERGE sections.
686 print_merge_stats(const char* section_name
)
687 { this->do_print_merge_stats(section_name
); }
690 // The child class must implement do_write.
692 // The child class may implement specific adjustments to the output
695 do_adjust_output_section(Output_section
*)
698 // May be implemented by child class. Return true if the section
701 do_add_input_section(Relobj
*, unsigned int)
702 { gold_unreachable(); }
704 // The child class may implement output_offset.
706 do_output_offset(const Relobj
*, unsigned int, section_offset_type
,
707 section_offset_type
*) const
710 // The child class may implement is_merge_section_for.
712 do_is_merge_section_for(const Relobj
*, unsigned int) const
715 // The child class may implement write_to_buffer. Most child
716 // classes can not appear in a compressed section, and they do not
719 do_write_to_buffer(unsigned char*)
720 { gold_unreachable(); }
722 // Print merge statistics.
724 do_print_merge_stats(const char*)
725 { gold_unreachable(); }
727 // Return the required alignment.
730 { return this->addralign_
; }
732 // Return the output section.
735 { return this->output_section_
; }
737 const Output_section
*
738 do_output_section() const
739 { return this->output_section_
; }
741 // Return the section index of the output section.
743 do_out_shndx() const;
745 // Set the alignment.
747 set_addralign(uint64_t addralign
);
750 // The output section for this section.
751 Output_section
* output_section_
;
752 // The required alignment.
756 // Some Output_section_data classes build up their data step by step,
757 // rather than all at once. This class provides an interface for
760 class Output_section_data_build
: public Output_section_data
763 Output_section_data_build(uint64_t addralign
)
764 : Output_section_data(addralign
)
767 Output_section_data_build(off_t data_size
, uint64_t addralign
)
768 : Output_section_data(data_size
, addralign
, false)
771 // Set the current data size.
773 set_current_data_size(off_t data_size
)
774 { this->set_current_data_size_for_child(data_size
); }
777 // Set the final data size.
779 set_final_data_size()
780 { this->set_data_size(this->current_data_size_for_child()); }
783 // A simple case of Output_data in which we have constant data to
786 class Output_data_const
: public Output_section_data
789 Output_data_const(const std::string
& data
, uint64_t addralign
)
790 : Output_section_data(data
.size(), addralign
, true), data_(data
)
793 Output_data_const(const char* p
, off_t len
, uint64_t addralign
)
794 : Output_section_data(len
, addralign
, true), data_(p
, len
)
797 Output_data_const(const unsigned char* p
, off_t len
, uint64_t addralign
)
798 : Output_section_data(len
, addralign
, true),
799 data_(reinterpret_cast<const char*>(p
), len
)
803 // Write the data to the output file.
805 do_write(Output_file
*);
807 // Write the data to a buffer.
809 do_write_to_buffer(unsigned char* buffer
)
810 { memcpy(buffer
, this->data_
.data(), this->data_
.size()); }
812 // Write to a map file.
814 do_print_to_mapfile(Mapfile
* mapfile
) const
815 { mapfile
->print_output_data(this, _("** fill")); }
821 // Another version of Output_data with constant data, in which the
822 // buffer is allocated by the caller.
824 class Output_data_const_buffer
: public Output_section_data
827 Output_data_const_buffer(const unsigned char* p
, off_t len
,
828 uint64_t addralign
, const char* map_name
)
829 : Output_section_data(len
, addralign
, true),
830 p_(p
), map_name_(map_name
)
834 // Write the data the output file.
836 do_write(Output_file
*);
838 // Write the data to a buffer.
840 do_write_to_buffer(unsigned char* buffer
)
841 { memcpy(buffer
, this->p_
, this->data_size()); }
843 // Write to a map file.
845 do_print_to_mapfile(Mapfile
* mapfile
) const
846 { mapfile
->print_output_data(this, _(this->map_name_
)); }
849 // The data to output.
850 const unsigned char* p_
;
851 // Name to use in a map file. Maps are a rarely used feature, but
852 // the space usage is minor as aren't very many of these objects.
853 const char* map_name_
;
856 // A place holder for a fixed amount of data written out via some
859 class Output_data_fixed_space
: public Output_section_data
862 Output_data_fixed_space(off_t data_size
, uint64_t addralign
,
863 const char* map_name
)
864 : Output_section_data(data_size
, addralign
, true),
869 // Write out the data--the actual data must be written out
872 do_write(Output_file
*)
875 // Write to a map file.
877 do_print_to_mapfile(Mapfile
* mapfile
) const
878 { mapfile
->print_output_data(this, _(this->map_name_
)); }
881 // Name to use in a map file. Maps are a rarely used feature, but
882 // the space usage is minor as aren't very many of these objects.
883 const char* map_name_
;
886 // A place holder for variable sized data written out via some other
889 class Output_data_space
: public Output_section_data_build
892 explicit Output_data_space(uint64_t addralign
, const char* map_name
)
893 : Output_section_data_build(addralign
),
897 explicit Output_data_space(off_t data_size
, uint64_t addralign
,
898 const char* map_name
)
899 : Output_section_data_build(data_size
, addralign
),
903 // Set the alignment.
905 set_space_alignment(uint64_t align
)
906 { this->set_addralign(align
); }
909 // Write out the data--the actual data must be written out
912 do_write(Output_file
*)
915 // Write to a map file.
917 do_print_to_mapfile(Mapfile
* mapfile
) const
918 { mapfile
->print_output_data(this, _(this->map_name_
)); }
921 // Name to use in a map file. Maps are a rarely used feature, but
922 // the space usage is minor as aren't very many of these objects.
923 const char* map_name_
;
926 // Fill fixed space with zeroes. This is just like
927 // Output_data_fixed_space, except that the map name is known.
929 class Output_data_zero_fill
: public Output_section_data
932 Output_data_zero_fill(off_t data_size
, uint64_t addralign
)
933 : Output_section_data(data_size
, addralign
, true)
937 // There is no data to write out.
939 do_write(Output_file
*)
942 // Write to a map file.
944 do_print_to_mapfile(Mapfile
* mapfile
) const
945 { mapfile
->print_output_data(this, "** zero fill"); }
948 // A string table which goes into an output section.
950 class Output_data_strtab
: public Output_section_data
953 Output_data_strtab(Stringpool
* strtab
)
954 : Output_section_data(1), strtab_(strtab
)
958 // This is called to update the section size prior to assigning
959 // the address and file offset.
962 { this->set_final_data_size(); }
964 // This is called to set the address and file offset. Here we make
965 // sure that the Stringpool is finalized.
967 set_final_data_size();
969 // Write out the data.
971 do_write(Output_file
*);
973 // Write the data to a buffer.
975 do_write_to_buffer(unsigned char* buffer
)
976 { this->strtab_
->write_to_buffer(buffer
, this->data_size()); }
978 // Write to a map file.
980 do_print_to_mapfile(Mapfile
* mapfile
) const
981 { mapfile
->print_output_data(this, _("** string table")); }
987 // This POD class is used to represent a single reloc in the output
988 // file. This could be a private class within Output_data_reloc, but
989 // the templatization is complex enough that I broke it out into a
990 // separate class. The class is templatized on either elfcpp::SHT_REL
991 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
992 // relocation or an ordinary relocation.
994 // A relocation can be against a global symbol, a local symbol, a
995 // local section symbol, an output section, or the undefined symbol at
996 // index 0. We represent the latter by using a NULL global symbol.
998 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1001 template<bool dynamic
, int size
, bool big_endian
>
1002 class Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>
1005 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Address
;
1006 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Addend
;
1008 static const Address invalid_address
= static_cast<Address
>(0) - 1;
1010 // An uninitialized entry. We need this because we want to put
1011 // instances of this class into an STL container.
1013 : local_sym_index_(INVALID_CODE
)
1016 // We have a bunch of different constructors. They come in pairs
1017 // depending on how the address of the relocation is specified. It
1018 // can either be an offset in an Output_data or an offset in an
1021 // A reloc against a global symbol.
1023 Output_reloc(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1024 Address address
, bool is_relative
, bool is_symbolless
);
1026 Output_reloc(Symbol
* gsym
, unsigned int type
,
1027 Sized_relobj
<size
, big_endian
>* relobj
,
1028 unsigned int shndx
, Address address
, bool is_relative
,
1029 bool is_symbolless
);
1031 // A reloc against a local symbol or local section symbol.
1033 Output_reloc(Sized_relobj
<size
, big_endian
>* relobj
,
1034 unsigned int local_sym_index
, unsigned int type
,
1035 Output_data
* od
, Address address
, bool is_relative
,
1036 bool is_symbolless
, bool is_section_symbol
,
1037 bool use_plt_offset
);
1039 Output_reloc(Sized_relobj
<size
, big_endian
>* relobj
,
1040 unsigned int local_sym_index
, unsigned int type
,
1041 unsigned int shndx
, Address address
, bool is_relative
,
1042 bool is_symbolless
, bool is_section_symbol
,
1043 bool use_plt_offset
);
1045 // A reloc against the STT_SECTION symbol of an output section.
1047 Output_reloc(Output_section
* os
, unsigned int type
, Output_data
* od
,
1050 Output_reloc(Output_section
* os
, unsigned int type
,
1051 Sized_relobj
<size
, big_endian
>* relobj
,
1052 unsigned int shndx
, Address address
);
1054 // An absolute relocation with no symbol.
1056 Output_reloc(unsigned int type
, Output_data
* od
, Address address
);
1058 Output_reloc(unsigned int type
, Sized_relobj
<size
, big_endian
>* relobj
,
1059 unsigned int shndx
, Address address
);
1061 // A target specific relocation. The target will be called to get
1062 // the symbol index, passing ARG. The type and offset will be set
1063 // as for other relocation types.
1065 Output_reloc(unsigned int type
, void* arg
, Output_data
* od
,
1068 Output_reloc(unsigned int type
, void* arg
,
1069 Sized_relobj
<size
, big_endian
>* relobj
,
1070 unsigned int shndx
, Address address
);
1072 // Return the reloc type.
1075 { return this->type_
; }
1077 // Return whether this is a RELATIVE relocation.
1080 { return this->is_relative_
; }
1082 // Return whether this is a relocation which should not use
1083 // a symbol, but which obtains its addend from a symbol.
1085 is_symbolless() const
1086 { return this->is_symbolless_
; }
1088 // Return whether this is against a local section symbol.
1090 is_local_section_symbol() const
1092 return (this->local_sym_index_
!= GSYM_CODE
1093 && this->local_sym_index_
!= SECTION_CODE
1094 && this->local_sym_index_
!= INVALID_CODE
1095 && this->local_sym_index_
!= TARGET_CODE
1096 && this->is_section_symbol_
);
1099 // Return whether this is a target specific relocation.
1101 is_target_specific() const
1102 { return this->local_sym_index_
== TARGET_CODE
; }
1104 // Return the argument to pass to the target for a target specific
1109 gold_assert(this->local_sym_index_
== TARGET_CODE
);
1110 return this->u1_
.arg
;
1113 // For a local section symbol, return the offset of the input
1114 // section within the output section. ADDEND is the addend being
1115 // applied to the input section.
1117 local_section_offset(Addend addend
) const;
1119 // Get the value of the symbol referred to by a Rel relocation when
1120 // we are adding the given ADDEND.
1122 symbol_value(Addend addend
) const;
1124 // If this relocation is against an input section, return the
1125 // relocatable object containing the input section.
1126 Sized_relobj
<size
, big_endian
>*
1129 if (this->shndx_
== INVALID_CODE
)
1131 return this->u2_
.relobj
;
1134 // Write the reloc entry to an output view.
1136 write(unsigned char* pov
) const;
1138 // Write the offset and info fields to Write_rel.
1139 template<typename Write_rel
>
1140 void write_rel(Write_rel
*) const;
1142 // This is used when sorting dynamic relocs. Return -1 to sort this
1143 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1145 compare(const Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>& r2
)
1148 // Return whether this reloc should be sorted before the argument
1149 // when sorting dynamic relocs.
1151 sort_before(const Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>&
1153 { return this->compare(r2
) < 0; }
1156 // Record that we need a dynamic symbol index.
1158 set_needs_dynsym_index();
1160 // Return the symbol index.
1162 get_symbol_index() const;
1164 // Return the output address.
1166 get_address() const;
1168 // Codes for local_sym_index_.
1177 // Invalid uninitialized entry.
1183 // For a local symbol or local section symbol
1184 // (this->local_sym_index_ >= 0), the object. We will never
1185 // generate a relocation against a local symbol in a dynamic
1186 // object; that doesn't make sense. And our callers will always
1187 // be templatized, so we use Sized_relobj here.
1188 Sized_relobj
<size
, big_endian
>* relobj
;
1189 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1190 // symbol. If this is NULL, it indicates a relocation against the
1191 // undefined 0 symbol.
1193 // For a relocation against an output section
1194 // (this->local_sym_index_ == SECTION_CODE), the output section.
1196 // For a target specific relocation, an argument to pass to the
1202 // If this->shndx_ is not INVALID CODE, the object which holds the
1203 // input section being used to specify the reloc address.
1204 Sized_relobj
<size
, big_endian
>* relobj
;
1205 // If this->shndx_ is INVALID_CODE, the output data being used to
1206 // specify the reloc address. This may be NULL if the reloc
1207 // address is absolute.
1210 // The address offset within the input section or the Output_data.
1212 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1213 // relocation against an output section, or TARGET_CODE for a target
1214 // specific relocation, or INVALID_CODE for an uninitialized value.
1215 // Otherwise, for a local symbol (this->is_section_symbol_ is
1216 // false), the local symbol index. For a local section symbol
1217 // (this->is_section_symbol_ is true), the section index in the
1219 unsigned int local_sym_index_
;
1220 // The reloc type--a processor specific code.
1221 unsigned int type_
: 28;
1222 // True if the relocation is a RELATIVE relocation.
1223 bool is_relative_
: 1;
1224 // True if the relocation is one which should not use
1225 // a symbol, but which obtains its addend from a symbol.
1226 bool is_symbolless_
: 1;
1227 // True if the relocation is against a section symbol.
1228 bool is_section_symbol_
: 1;
1229 // True if the addend should be the PLT offset. This is used only
1230 // for RELATIVE relocations to local symbols.
1231 // (Used only for RELA, but stored here for space.)
1232 bool use_plt_offset_
: 1;
1233 // If the reloc address is an input section in an object, the
1234 // section index. This is INVALID_CODE if the reloc address is
1235 // specified in some other way.
1236 unsigned int shndx_
;
1239 // The SHT_RELA version of Output_reloc<>. This is just derived from
1240 // the SHT_REL version of Output_reloc, but it adds an addend.
1242 template<bool dynamic
, int size
, bool big_endian
>
1243 class Output_reloc
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>
1246 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Address
;
1247 typedef typename
elfcpp::Elf_types
<size
>::Elf_Addr Addend
;
1249 // An uninitialized entry.
1254 // A reloc against a global symbol.
1256 Output_reloc(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1257 Address address
, Addend addend
, bool is_relative
,
1259 : rel_(gsym
, type
, od
, address
, is_relative
, is_symbolless
),
1263 Output_reloc(Symbol
* gsym
, unsigned int type
,
1264 Sized_relobj
<size
, big_endian
>* relobj
,
1265 unsigned int shndx
, Address address
, Addend addend
,
1266 bool is_relative
, bool is_symbolless
)
1267 : rel_(gsym
, type
, relobj
, shndx
, address
, is_relative
,
1268 is_symbolless
), addend_(addend
)
1271 // A reloc against a local symbol.
1273 Output_reloc(Sized_relobj
<size
, big_endian
>* relobj
,
1274 unsigned int local_sym_index
, unsigned int type
,
1275 Output_data
* od
, Address address
,
1276 Addend addend
, bool is_relative
,
1277 bool is_symbolless
, bool is_section_symbol
,
1278 bool use_plt_offset
)
1279 : rel_(relobj
, local_sym_index
, type
, od
, address
, is_relative
,
1280 is_symbolless
, is_section_symbol
, use_plt_offset
),
1284 Output_reloc(Sized_relobj
<size
, big_endian
>* relobj
,
1285 unsigned int local_sym_index
, unsigned int type
,
1286 unsigned int shndx
, Address address
,
1287 Addend addend
, bool is_relative
,
1288 bool is_symbolless
, bool is_section_symbol
,
1289 bool use_plt_offset
)
1290 : rel_(relobj
, local_sym_index
, type
, shndx
, address
, is_relative
,
1291 is_symbolless
, is_section_symbol
, use_plt_offset
),
1295 // A reloc against the STT_SECTION symbol of an output section.
1297 Output_reloc(Output_section
* os
, unsigned int type
, Output_data
* od
,
1298 Address address
, Addend addend
)
1299 : rel_(os
, type
, od
, address
), addend_(addend
)
1302 Output_reloc(Output_section
* os
, unsigned int type
,
1303 Sized_relobj
<size
, big_endian
>* relobj
,
1304 unsigned int shndx
, Address address
, Addend addend
)
1305 : rel_(os
, type
, relobj
, shndx
, address
), addend_(addend
)
1308 // An absolute relocation with no symbol.
1310 Output_reloc(unsigned int type
, Output_data
* od
, Address address
,
1312 : rel_(type
, od
, address
), addend_(addend
)
1315 Output_reloc(unsigned int type
, Sized_relobj
<size
, big_endian
>* relobj
,
1316 unsigned int shndx
, Address address
, Addend addend
)
1317 : rel_(type
, relobj
, shndx
, address
), addend_(addend
)
1320 // A target specific relocation. The target will be called to get
1321 // the symbol index and the addend, passing ARG. The type and
1322 // offset will be set as for other relocation types.
1324 Output_reloc(unsigned int type
, void* arg
, Output_data
* od
,
1325 Address address
, Addend addend
)
1326 : rel_(type
, arg
, od
, address
), addend_(addend
)
1329 Output_reloc(unsigned int type
, void* arg
,
1330 Sized_relobj
<size
, big_endian
>* relobj
,
1331 unsigned int shndx
, Address address
, Addend addend
)
1332 : rel_(type
, arg
, relobj
, shndx
, address
), addend_(addend
)
1335 // Return whether this is a RELATIVE relocation.
1338 { return this->rel_
.is_relative(); }
1340 // Return whether this is a relocation which should not use
1341 // a symbol, but which obtains its addend from a symbol.
1343 is_symbolless() const
1344 { return this->rel_
.is_symbolless(); }
1346 // If this relocation is against an input section, return the
1347 // relocatable object containing the input section.
1348 Sized_relobj
<size
, big_endian
>*
1350 { return this->rel_
.get_relobj(); }
1352 // Write the reloc entry to an output view.
1354 write(unsigned char* pov
) const;
1356 // Return whether this reloc should be sorted before the argument
1357 // when sorting dynamic relocs.
1359 sort_before(const Output_reloc
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>&
1362 int i
= this->rel_
.compare(r2
.rel_
);
1368 return this->addend_
< r2
.addend_
;
1373 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
> rel_
;
1378 // Output_data_reloc_generic is a non-template base class for
1379 // Output_data_reloc_base. This gives the generic code a way to hold
1380 // a pointer to a reloc section.
1382 class Output_data_reloc_generic
: public Output_section_data_build
1385 Output_data_reloc_generic(int size
, bool sort_relocs
)
1386 : Output_section_data_build(Output_data::default_alignment_for_size(size
)),
1387 relative_reloc_count_(0), sort_relocs_(sort_relocs
)
1390 // Return the number of relative relocs in this section.
1392 relative_reloc_count() const
1393 { return this->relative_reloc_count_
; }
1395 // Whether we should sort the relocs.
1398 { return this->sort_relocs_
; }
1400 // Add a reloc of type TYPE against the global symbol GSYM. The
1401 // relocation applies to the data at offset ADDRESS within OD.
1403 add_global_generic(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1404 uint64_t address
, uint64_t addend
) = 0;
1406 // Add a reloc of type TYPE against the global symbol GSYM. The
1407 // relocation applies to data at offset ADDRESS within section SHNDX
1408 // of object file RELOBJ. OD is the associated output section.
1410 add_global_generic(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1411 Relobj
* relobj
, unsigned int shndx
, uint64_t address
,
1412 uint64_t addend
) = 0;
1414 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1415 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1418 add_local_generic(Relobj
* relobj
, unsigned int local_sym_index
,
1419 unsigned int type
, Output_data
* od
, uint64_t address
,
1420 uint64_t addend
) = 0;
1422 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1423 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1424 // within section SHNDX of RELOBJ. OD is the associated output
1427 add_local_generic(Relobj
* relobj
, unsigned int local_sym_index
,
1428 unsigned int type
, Output_data
* od
, unsigned int shndx
,
1429 uint64_t address
, uint64_t addend
) = 0;
1431 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1432 // output section OS. The relocation applies to the data at offset
1433 // ADDRESS within OD.
1435 add_output_section_generic(Output_section
*os
, unsigned int type
,
1436 Output_data
* od
, uint64_t address
,
1437 uint64_t addend
) = 0;
1439 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1440 // output section OS. The relocation applies to the data at offset
1441 // ADDRESS within section SHNDX of RELOBJ. OD is the associated
1444 add_output_section_generic(Output_section
* os
, unsigned int type
,
1445 Output_data
* od
, Relobj
* relobj
,
1446 unsigned int shndx
, uint64_t address
,
1447 uint64_t addend
) = 0;
1450 // Note that we've added another relative reloc.
1452 bump_relative_reloc_count()
1453 { ++this->relative_reloc_count_
; }
1456 // The number of relative relocs added to this section. This is to
1457 // support DT_RELCOUNT.
1458 size_t relative_reloc_count_
;
1459 // Whether to sort the relocations when writing them out, to make
1460 // the dynamic linker more efficient.
1464 // Output_data_reloc is used to manage a section containing relocs.
1465 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1466 // indicates whether this is a dynamic relocation or a normal
1467 // relocation. Output_data_reloc_base is a base class.
1468 // Output_data_reloc is the real class, which we specialize based on
1471 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1472 class Output_data_reloc_base
: public Output_data_reloc_generic
1475 typedef Output_reloc
<sh_type
, dynamic
, size
, big_endian
> Output_reloc_type
;
1476 typedef typename
Output_reloc_type::Address Address
;
1477 static const int reloc_size
=
1478 Reloc_types
<sh_type
, size
, big_endian
>::reloc_size
;
1480 // Construct the section.
1481 Output_data_reloc_base(bool sort_relocs
)
1482 : Output_data_reloc_generic(size
, sort_relocs
)
1486 // Write out the data.
1488 do_write(Output_file
*);
1490 // Set the entry size and the link.
1492 do_adjust_output_section(Output_section
* os
);
1494 // Write to a map file.
1496 do_print_to_mapfile(Mapfile
* mapfile
) const
1498 mapfile
->print_output_data(this,
1500 ? _("** dynamic relocs")
1504 // Add a relocation entry.
1506 add(Output_data
* od
, const Output_reloc_type
& reloc
)
1508 this->relocs_
.push_back(reloc
);
1509 this->set_current_data_size(this->relocs_
.size() * reloc_size
);
1511 od
->add_dynamic_reloc();
1512 if (reloc
.is_relative())
1513 this->bump_relative_reloc_count();
1514 Sized_relobj
<size
, big_endian
>* relobj
= reloc
.get_relobj();
1516 relobj
->add_dyn_reloc(this->relocs_
.size() - 1);
1520 typedef std::vector
<Output_reloc_type
> Relocs
;
1522 // The class used to sort the relocations.
1523 struct Sort_relocs_comparison
1526 operator()(const Output_reloc_type
& r1
, const Output_reloc_type
& r2
) const
1527 { return r1
.sort_before(r2
); }
1530 // The relocations in this section.
1534 // The class which callers actually create.
1536 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
1537 class Output_data_reloc
;
1539 // The SHT_REL version of Output_data_reloc.
1541 template<bool dynamic
, int size
, bool big_endian
>
1542 class Output_data_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>
1543 : public Output_data_reloc_base
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>
1546 typedef Output_data_reloc_base
<elfcpp::SHT_REL
, dynamic
, size
,
1550 typedef typename
Base::Output_reloc_type Output_reloc_type
;
1551 typedef typename
Output_reloc_type::Address Address
;
1553 Output_data_reloc(bool sr
)
1554 : Output_data_reloc_base
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>(sr
)
1557 // Add a reloc against a global symbol.
1560 add_global(Symbol
* gsym
, unsigned int type
, Output_data
* od
, Address address
)
1561 { this->add(od
, Output_reloc_type(gsym
, type
, od
, address
, false, false)); }
1564 add_global(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1565 Sized_relobj
<size
, big_endian
>* relobj
,
1566 unsigned int shndx
, Address address
)
1567 { this->add(od
, Output_reloc_type(gsym
, type
, relobj
, shndx
, address
,
1571 add_global_generic(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1572 uint64_t address
, uint64_t addend
)
1574 gold_assert(addend
== 0);
1575 this->add(od
, Output_reloc_type(gsym
, type
, od
,
1576 convert_types
<Address
, uint64_t>(address
),
1581 add_global_generic(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1582 Relobj
* relobj
, unsigned int shndx
, uint64_t address
,
1585 gold_assert(addend
== 0);
1586 Sized_relobj
<size
, big_endian
>* sized_relobj
=
1587 static_cast<Sized_relobj
<size
, big_endian
>*>(relobj
);
1588 this->add(od
, Output_reloc_type(gsym
, type
, sized_relobj
, shndx
,
1589 convert_types
<Address
, uint64_t>(address
),
1593 // Add a RELATIVE reloc against a global symbol. The final relocation
1594 // will not reference the symbol.
1597 add_global_relative(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1599 { this->add(od
, Output_reloc_type(gsym
, type
, od
, address
, true, true)); }
1602 add_global_relative(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1603 Sized_relobj
<size
, big_endian
>* relobj
,
1604 unsigned int shndx
, Address address
)
1606 this->add(od
, Output_reloc_type(gsym
, type
, relobj
, shndx
, address
,
1610 // Add a global relocation which does not use a symbol for the relocation,
1611 // but which gets its addend from a symbol.
1614 add_symbolless_global_addend(Symbol
* gsym
, unsigned int type
,
1615 Output_data
* od
, Address address
)
1616 { this->add(od
, Output_reloc_type(gsym
, type
, od
, address
, false, true)); }
1619 add_symbolless_global_addend(Symbol
* gsym
, unsigned int type
,
1621 Sized_relobj
<size
, big_endian
>* relobj
,
1622 unsigned int shndx
, Address address
)
1624 this->add(od
, Output_reloc_type(gsym
, type
, relobj
, shndx
, address
,
1628 // Add a reloc against a local symbol.
1631 add_local(Sized_relobj
<size
, big_endian
>* relobj
,
1632 unsigned int local_sym_index
, unsigned int type
,
1633 Output_data
* od
, Address address
)
1635 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, od
,
1636 address
, false, false, false, false));
1640 add_local(Sized_relobj
<size
, big_endian
>* relobj
,
1641 unsigned int local_sym_index
, unsigned int type
,
1642 Output_data
* od
, unsigned int shndx
, Address address
)
1644 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, shndx
,
1645 address
, false, false, false, false));
1649 add_local_generic(Relobj
* relobj
, unsigned int local_sym_index
,
1650 unsigned int type
, Output_data
* od
, uint64_t address
,
1653 gold_assert(addend
== 0);
1654 Sized_relobj
<size
, big_endian
>* sized_relobj
=
1655 static_cast<Sized_relobj
<size
, big_endian
> *>(relobj
);
1656 this->add(od
, Output_reloc_type(sized_relobj
, local_sym_index
, type
, od
,
1657 convert_types
<Address
, uint64_t>(address
),
1658 false, false, false, false));
1662 add_local_generic(Relobj
* relobj
, unsigned int local_sym_index
,
1663 unsigned int type
, Output_data
* od
, unsigned int shndx
,
1664 uint64_t address
, uint64_t addend
)
1666 gold_assert(addend
== 0);
1667 Sized_relobj
<size
, big_endian
>* sized_relobj
=
1668 static_cast<Sized_relobj
<size
, big_endian
>*>(relobj
);
1669 this->add(od
, Output_reloc_type(sized_relobj
, local_sym_index
, type
, shndx
,
1670 convert_types
<Address
, uint64_t>(address
),
1671 false, false, false, false));
1674 // Add a RELATIVE reloc against a local symbol.
1677 add_local_relative(Sized_relobj
<size
, big_endian
>* relobj
,
1678 unsigned int local_sym_index
, unsigned int type
,
1679 Output_data
* od
, Address address
)
1681 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, od
,
1682 address
, true, true, false, false));
1686 add_local_relative(Sized_relobj
<size
, big_endian
>* relobj
,
1687 unsigned int local_sym_index
, unsigned int type
,
1688 Output_data
* od
, unsigned int shndx
, Address address
)
1690 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, shndx
,
1691 address
, true, true, false, false));
1694 // Add a local relocation which does not use a symbol for the relocation,
1695 // but which gets its addend from a symbol.
1698 add_symbolless_local_addend(Sized_relobj
<size
, big_endian
>* relobj
,
1699 unsigned int local_sym_index
, unsigned int type
,
1700 Output_data
* od
, Address address
)
1702 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, od
,
1703 address
, false, true, false, false));
1707 add_symbolless_local_addend(Sized_relobj
<size
, big_endian
>* relobj
,
1708 unsigned int local_sym_index
, unsigned int type
,
1709 Output_data
* od
, unsigned int shndx
,
1712 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, shndx
,
1713 address
, false, true, false, false));
1716 // Add a reloc against a local section symbol. This will be
1717 // converted into a reloc against the STT_SECTION symbol of the
1721 add_local_section(Sized_relobj
<size
, big_endian
>* relobj
,
1722 unsigned int input_shndx
, unsigned int type
,
1723 Output_data
* od
, Address address
)
1725 this->add(od
, Output_reloc_type(relobj
, input_shndx
, type
, od
,
1726 address
, false, false, true, false));
1730 add_local_section(Sized_relobj
<size
, big_endian
>* relobj
,
1731 unsigned int input_shndx
, unsigned int type
,
1732 Output_data
* od
, unsigned int shndx
, Address address
)
1734 this->add(od
, Output_reloc_type(relobj
, input_shndx
, type
, shndx
,
1735 address
, false, false, true, false));
1738 // A reloc against the STT_SECTION symbol of an output section.
1739 // OS is the Output_section that the relocation refers to; OD is
1740 // the Output_data object being relocated.
1743 add_output_section(Output_section
* os
, unsigned int type
,
1744 Output_data
* od
, Address address
)
1745 { this->add(od
, Output_reloc_type(os
, type
, od
, address
)); }
1748 add_output_section(Output_section
* os
, unsigned int type
, Output_data
* od
,
1749 Sized_relobj
<size
, big_endian
>* relobj
,
1750 unsigned int shndx
, Address address
)
1751 { this->add(od
, Output_reloc_type(os
, type
, relobj
, shndx
, address
)); }
1754 add_output_section_generic(Output_section
* os
, unsigned int type
,
1755 Output_data
* od
, uint64_t address
,
1758 gold_assert(addend
== 0);
1759 this->add(od
, Output_reloc_type(os
, type
, od
,
1760 convert_types
<Address
, uint64_t>(address
)));
1764 add_output_section_generic(Output_section
* os
, unsigned int type
,
1765 Output_data
* od
, Relobj
* relobj
,
1766 unsigned int shndx
, uint64_t address
,
1769 gold_assert(addend
== 0);
1770 Sized_relobj
<size
, big_endian
>* sized_relobj
=
1771 static_cast<Sized_relobj
<size
, big_endian
>*>(relobj
);
1772 this->add(od
, Output_reloc_type(os
, type
, sized_relobj
, shndx
,
1773 convert_types
<Address
, uint64_t>(address
)));
1776 // Add an absolute relocation.
1779 add_absolute(unsigned int type
, Output_data
* od
, Address address
)
1780 { this->add(od
, Output_reloc_type(type
, od
, address
)); }
1783 add_absolute(unsigned int type
, Output_data
* od
,
1784 Sized_relobj
<size
, big_endian
>* relobj
,
1785 unsigned int shndx
, Address address
)
1786 { this->add(od
, Output_reloc_type(type
, relobj
, shndx
, address
)); }
1788 // Add a target specific relocation. A target which calls this must
1789 // define the reloc_symbol_index and reloc_addend virtual functions.
1792 add_target_specific(unsigned int type
, void* arg
, Output_data
* od
,
1794 { this->add(od
, Output_reloc_type(type
, arg
, od
, address
)); }
1797 add_target_specific(unsigned int type
, void* arg
, Output_data
* od
,
1798 Sized_relobj
<size
, big_endian
>* relobj
,
1799 unsigned int shndx
, Address address
)
1800 { this->add(od
, Output_reloc_type(type
, arg
, relobj
, shndx
, address
)); }
1803 // The SHT_RELA version of Output_data_reloc.
1805 template<bool dynamic
, int size
, bool big_endian
>
1806 class Output_data_reloc
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>
1807 : public Output_data_reloc_base
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>
1810 typedef Output_data_reloc_base
<elfcpp::SHT_RELA
, dynamic
, size
,
1814 typedef typename
Base::Output_reloc_type Output_reloc_type
;
1815 typedef typename
Output_reloc_type::Address Address
;
1816 typedef typename
Output_reloc_type::Addend Addend
;
1818 Output_data_reloc(bool sr
)
1819 : Output_data_reloc_base
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>(sr
)
1822 // Add a reloc against a global symbol.
1825 add_global(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1826 Address address
, Addend addend
)
1827 { this->add(od
, Output_reloc_type(gsym
, type
, od
, address
, addend
,
1831 add_global(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1832 Sized_relobj
<size
, big_endian
>* relobj
,
1833 unsigned int shndx
, Address address
,
1835 { this->add(od
, Output_reloc_type(gsym
, type
, relobj
, shndx
, address
,
1836 addend
, false, false)); }
1839 add_global_generic(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1840 uint64_t address
, uint64_t addend
)
1842 this->add(od
, Output_reloc_type(gsym
, type
, od
,
1843 convert_types
<Address
, uint64_t>(address
),
1844 convert_types
<Addend
, uint64_t>(addend
),
1849 add_global_generic(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1850 Relobj
* relobj
, unsigned int shndx
, uint64_t address
,
1853 Sized_relobj
<size
, big_endian
>* sized_relobj
=
1854 static_cast<Sized_relobj
<size
, big_endian
>*>(relobj
);
1855 this->add(od
, Output_reloc_type(gsym
, type
, sized_relobj
, shndx
,
1856 convert_types
<Address
, uint64_t>(address
),
1857 convert_types
<Addend
, uint64_t>(addend
),
1861 // Add a RELATIVE reloc against a global symbol. The final output
1862 // relocation will not reference the symbol, but we must keep the symbol
1863 // information long enough to set the addend of the relocation correctly
1864 // when it is written.
1867 add_global_relative(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1868 Address address
, Addend addend
)
1869 { this->add(od
, Output_reloc_type(gsym
, type
, od
, address
, addend
, true,
1873 add_global_relative(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1874 Sized_relobj
<size
, big_endian
>* relobj
,
1875 unsigned int shndx
, Address address
, Addend addend
)
1876 { this->add(od
, Output_reloc_type(gsym
, type
, relobj
, shndx
, address
,
1877 addend
, true, true)); }
1879 // Add a global relocation which does not use a symbol for the relocation,
1880 // but which gets its addend from a symbol.
1883 add_symbolless_global_addend(Symbol
* gsym
, unsigned int type
, Output_data
* od
,
1884 Address address
, Addend addend
)
1885 { this->add(od
, Output_reloc_type(gsym
, type
, od
, address
, addend
,
1889 add_symbolless_global_addend(Symbol
* gsym
, unsigned int type
,
1891 Sized_relobj
<size
, big_endian
>* relobj
,
1892 unsigned int shndx
, Address address
, Addend addend
)
1893 { this->add(od
, Output_reloc_type(gsym
, type
, relobj
, shndx
, address
,
1894 addend
, false, true)); }
1896 // Add a reloc against a local symbol.
1899 add_local(Sized_relobj
<size
, big_endian
>* relobj
,
1900 unsigned int local_sym_index
, unsigned int type
,
1901 Output_data
* od
, Address address
, Addend addend
)
1903 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, od
, address
,
1904 addend
, false, false, false, false));
1908 add_local(Sized_relobj
<size
, big_endian
>* relobj
,
1909 unsigned int local_sym_index
, unsigned int type
,
1910 Output_data
* od
, unsigned int shndx
, Address address
,
1913 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, shndx
,
1914 address
, addend
, false, false, false,
1919 add_local_generic(Relobj
* relobj
, unsigned int local_sym_index
,
1920 unsigned int type
, Output_data
* od
, uint64_t address
,
1923 Sized_relobj
<size
, big_endian
>* sized_relobj
=
1924 static_cast<Sized_relobj
<size
, big_endian
> *>(relobj
);
1925 this->add(od
, Output_reloc_type(sized_relobj
, local_sym_index
, type
, od
,
1926 convert_types
<Address
, uint64_t>(address
),
1927 convert_types
<Addend
, uint64_t>(addend
),
1928 false, false, false, false));
1932 add_local_generic(Relobj
* relobj
, unsigned int local_sym_index
,
1933 unsigned int type
, Output_data
* od
, unsigned int shndx
,
1934 uint64_t address
, uint64_t addend
)
1936 Sized_relobj
<size
, big_endian
>* sized_relobj
=
1937 static_cast<Sized_relobj
<size
, big_endian
>*>(relobj
);
1938 this->add(od
, Output_reloc_type(sized_relobj
, local_sym_index
, type
, shndx
,
1939 convert_types
<Address
, uint64_t>(address
),
1940 convert_types
<Addend
, uint64_t>(addend
),
1941 false, false, false, false));
1944 // Add a RELATIVE reloc against a local symbol.
1947 add_local_relative(Sized_relobj
<size
, big_endian
>* relobj
,
1948 unsigned int local_sym_index
, unsigned int type
,
1949 Output_data
* od
, Address address
, Addend addend
,
1950 bool use_plt_offset
)
1952 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, od
, address
,
1953 addend
, true, true, false,
1958 add_local_relative(Sized_relobj
<size
, big_endian
>* relobj
,
1959 unsigned int local_sym_index
, unsigned int type
,
1960 Output_data
* od
, unsigned int shndx
, Address address
,
1961 Addend addend
, bool use_plt_offset
)
1963 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, shndx
,
1964 address
, addend
, true, true, false,
1968 // Add a local relocation which does not use a symbol for the relocation,
1969 // but which gets it's addend from a symbol.
1972 add_symbolless_local_addend(Sized_relobj
<size
, big_endian
>* relobj
,
1973 unsigned int local_sym_index
, unsigned int type
,
1974 Output_data
* od
, Address address
, Addend addend
)
1976 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, od
, address
,
1977 addend
, false, true, false, false));
1981 add_symbolless_local_addend(Sized_relobj
<size
, big_endian
>* relobj
,
1982 unsigned int local_sym_index
, unsigned int type
,
1983 Output_data
* od
, unsigned int shndx
,
1984 Address address
, Addend addend
)
1986 this->add(od
, Output_reloc_type(relobj
, local_sym_index
, type
, shndx
,
1987 address
, addend
, false, true, false,
1991 // Add a reloc against a local section symbol. This will be
1992 // converted into a reloc against the STT_SECTION symbol of the
1996 add_local_section(Sized_relobj
<size
, big_endian
>* relobj
,
1997 unsigned int input_shndx
, unsigned int type
,
1998 Output_data
* od
, Address address
, Addend addend
)
2000 this->add(od
, Output_reloc_type(relobj
, input_shndx
, type
, od
, address
,
2001 addend
, false, false, true, false));
2005 add_local_section(Sized_relobj
<size
, big_endian
>* relobj
,
2006 unsigned int input_shndx
, unsigned int type
,
2007 Output_data
* od
, unsigned int shndx
, Address address
,
2010 this->add(od
, Output_reloc_type(relobj
, input_shndx
, type
, shndx
,
2011 address
, addend
, false, false, true,
2015 // A reloc against the STT_SECTION symbol of an output section.
2018 add_output_section(Output_section
* os
, unsigned int type
, Output_data
* od
,
2019 Address address
, Addend addend
)
2020 { this->add(od
, Output_reloc_type(os
, type
, od
, address
, addend
)); }
2023 add_output_section(Output_section
* os
, unsigned int type
, Output_data
* od
,
2024 Sized_relobj
<size
, big_endian
>* relobj
,
2025 unsigned int shndx
, Address address
, Addend addend
)
2026 { this->add(od
, Output_reloc_type(os
, type
, relobj
, shndx
, address
,
2030 add_output_section_generic(Output_section
* os
, unsigned int type
,
2031 Output_data
* od
, uint64_t address
,
2034 this->add(od
, Output_reloc_type(os
, type
, od
,
2035 convert_types
<Address
, uint64_t>(address
),
2036 convert_types
<Addend
, uint64_t>(addend
)));
2040 add_output_section_generic(Output_section
* os
, unsigned int type
,
2041 Output_data
* od
, Relobj
* relobj
,
2042 unsigned int shndx
, uint64_t address
,
2045 Sized_relobj
<size
, big_endian
>* sized_relobj
=
2046 static_cast<Sized_relobj
<size
, big_endian
>*>(relobj
);
2047 this->add(od
, Output_reloc_type(os
, type
, sized_relobj
, shndx
,
2048 convert_types
<Address
, uint64_t>(address
),
2049 convert_types
<Addend
, uint64_t>(addend
)));
2052 // Add an absolute relocation.
2055 add_absolute(unsigned int type
, Output_data
* od
, Address address
,
2057 { this->add(od
, Output_reloc_type(type
, od
, address
, addend
)); }
2060 add_absolute(unsigned int type
, Output_data
* od
,
2061 Sized_relobj
<size
, big_endian
>* relobj
,
2062 unsigned int shndx
, Address address
, Addend addend
)
2063 { this->add(od
, Output_reloc_type(type
, relobj
, shndx
, address
, addend
)); }
2065 // Add a target specific relocation. A target which calls this must
2066 // define the reloc_symbol_index and reloc_addend virtual functions.
2069 add_target_specific(unsigned int type
, void* arg
, Output_data
* od
,
2070 Address address
, Addend addend
)
2071 { this->add(od
, Output_reloc_type(type
, arg
, od
, address
, addend
)); }
2074 add_target_specific(unsigned int type
, void* arg
, Output_data
* od
,
2075 Sized_relobj
<size
, big_endian
>* relobj
,
2076 unsigned int shndx
, Address address
, Addend addend
)
2078 this->add(od
, Output_reloc_type(type
, arg
, relobj
, shndx
, address
,
2083 // Output_relocatable_relocs represents a relocation section in a
2084 // relocatable link. The actual data is written out in the target
2085 // hook relocate_for_relocatable. This just saves space for it.
2087 template<int sh_type
, int size
, bool big_endian
>
2088 class Output_relocatable_relocs
: public Output_section_data
2091 Output_relocatable_relocs(Relocatable_relocs
* rr
)
2092 : Output_section_data(Output_data::default_alignment_for_size(size
)),
2097 set_final_data_size();
2099 // Write out the data. There is nothing to do here.
2101 do_write(Output_file
*)
2104 // Write to a map file.
2106 do_print_to_mapfile(Mapfile
* mapfile
) const
2107 { mapfile
->print_output_data(this, _("** relocs")); }
2110 // The relocs associated with this input section.
2111 Relocatable_relocs
* rr_
;
2114 // Handle a GROUP section.
2116 template<int size
, bool big_endian
>
2117 class Output_data_group
: public Output_section_data
2120 // The constructor clears *INPUT_SHNDXES.
2121 Output_data_group(Sized_relobj_file
<size
, big_endian
>* relobj
,
2122 section_size_type entry_count
,
2123 elfcpp::Elf_Word flags
,
2124 std::vector
<unsigned int>* input_shndxes
);
2127 do_write(Output_file
*);
2129 // Write to a map file.
2131 do_print_to_mapfile(Mapfile
* mapfile
) const
2132 { mapfile
->print_output_data(this, _("** group")); }
2134 // Set final data size.
2136 set_final_data_size()
2137 { this->set_data_size((this->input_shndxes_
.size() + 1) * 4); }
2140 // The input object.
2141 Sized_relobj_file
<size
, big_endian
>* relobj_
;
2142 // The group flag word.
2143 elfcpp::Elf_Word flags_
;
2144 // The section indexes of the input sections in this group.
2145 std::vector
<unsigned int> input_shndxes_
;
2148 // Output_data_got is used to manage a GOT. Each entry in the GOT is
2149 // for one symbol--either a global symbol or a local symbol in an
2150 // object. The target specific code adds entries to the GOT as
2151 // needed. The GOT_SIZE template parameter is the size in bits of a
2152 // GOT entry, typically 32 or 64.
2154 class Output_data_got_base
: public Output_section_data_build
2157 Output_data_got_base(uint64_t align
)
2158 : Output_section_data_build(align
)
2161 Output_data_got_base(off_t data_size
, uint64_t align
)
2162 : Output_section_data_build(data_size
, align
)
2165 // Reserve the slot at index I in the GOT.
2167 reserve_slot(unsigned int i
)
2168 { this->do_reserve_slot(i
); }
2171 // Reserve the slot at index I in the GOT.
2173 do_reserve_slot(unsigned int i
) = 0;
2176 template<int got_size
, bool big_endian
>
2177 class Output_data_got
: public Output_data_got_base
2180 typedef typename
elfcpp::Elf_types
<got_size
>::Elf_Addr Valtype
;
2183 : Output_data_got_base(Output_data::default_alignment_for_size(got_size
)),
2184 entries_(), free_list_()
2187 Output_data_got(off_t data_size
)
2188 : Output_data_got_base(data_size
,
2189 Output_data::default_alignment_for_size(got_size
)),
2190 entries_(), free_list_()
2192 // For an incremental update, we have an existing GOT section.
2193 // Initialize the list of entries and the free list.
2194 this->entries_
.resize(data_size
/ (got_size
/ 8));
2195 this->free_list_
.init(data_size
, false);
2198 // Add an entry for a global symbol to the GOT. Return true if this
2199 // is a new GOT entry, false if the symbol was already in the GOT.
2201 add_global(Symbol
* gsym
, unsigned int got_type
);
2203 // Like add_global, but use the PLT offset of the global symbol if
2206 add_global_plt(Symbol
* gsym
, unsigned int got_type
);
2208 // Add an entry for a global symbol to the GOT, and add a dynamic
2209 // relocation of type R_TYPE for the GOT entry.
2211 add_global_with_rel(Symbol
* gsym
, unsigned int got_type
,
2212 Output_data_reloc_generic
* rel_dyn
, unsigned int r_type
);
2214 // Add a pair of entries for a global symbol to the GOT, and add
2215 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2217 add_global_pair_with_rel(Symbol
* gsym
, unsigned int got_type
,
2218 Output_data_reloc_generic
* rel_dyn
,
2219 unsigned int r_type_1
, unsigned int r_type_2
);
2221 // Add an entry for a local symbol to the GOT. This returns true if
2222 // this is a new GOT entry, false if the symbol already has a GOT
2225 add_local(Relobj
* object
, unsigned int sym_index
, unsigned int got_type
);
2227 // Like add_local, but use the PLT offset of the local symbol if it
2230 add_local_plt(Relobj
* object
, unsigned int sym_index
, unsigned int got_type
);
2232 // Add an entry for a local symbol to the GOT, and add a dynamic
2233 // relocation of type R_TYPE for the GOT entry.
2235 add_local_with_rel(Relobj
* object
, unsigned int sym_index
,
2236 unsigned int got_type
, Output_data_reloc_generic
* rel_dyn
,
2237 unsigned int r_type
);
2239 // Add a pair of entries for a local symbol to the GOT, and add
2240 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2242 add_local_pair_with_rel(Relobj
* object
, unsigned int sym_index
,
2243 unsigned int shndx
, unsigned int got_type
,
2244 Output_data_reloc_generic
* rel_dyn
,
2245 unsigned int r_type_1
, unsigned int r_type_2
);
2247 // Add a constant to the GOT. This returns the offset of the new
2248 // entry from the start of the GOT.
2250 add_constant(Valtype constant
)
2252 unsigned int got_offset
= this->add_got_entry(Got_entry(constant
));
2256 // Reserve a slot in the GOT for a local symbol.
2258 reserve_local(unsigned int i
, Relobj
* object
, unsigned int sym_index
,
2259 unsigned int got_type
);
2261 // Reserve a slot in the GOT for a global symbol.
2263 reserve_global(unsigned int i
, Symbol
* gsym
, unsigned int got_type
);
2266 // Write out the GOT table.
2268 do_write(Output_file
*);
2270 // Write to a map file.
2272 do_print_to_mapfile(Mapfile
* mapfile
) const
2273 { mapfile
->print_output_data(this, _("** GOT")); }
2275 // Reserve the slot at index I in the GOT.
2277 do_reserve_slot(unsigned int i
)
2278 { this->free_list_
.remove(i
* got_size
/ 8, (i
+ 1) * got_size
/ 8); }
2281 // This POD class holds a single GOT entry.
2285 // Create a zero entry.
2287 : local_sym_index_(RESERVED_CODE
), use_plt_offset_(false)
2288 { this->u_
.constant
= 0; }
2290 // Create a global symbol entry.
2291 Got_entry(Symbol
* gsym
, bool use_plt_offset
)
2292 : local_sym_index_(GSYM_CODE
), use_plt_offset_(use_plt_offset
)
2293 { this->u_
.gsym
= gsym
; }
2295 // Create a local symbol entry.
2296 Got_entry(Relobj
* object
, unsigned int local_sym_index
,
2297 bool use_plt_offset
)
2298 : local_sym_index_(local_sym_index
), use_plt_offset_(use_plt_offset
)
2300 gold_assert(local_sym_index
!= GSYM_CODE
2301 && local_sym_index
!= CONSTANT_CODE
2302 && local_sym_index
!= RESERVED_CODE
2303 && local_sym_index
== this->local_sym_index_
);
2304 this->u_
.object
= object
;
2307 // Create a constant entry. The constant is a host value--it will
2308 // be swapped, if necessary, when it is written out.
2309 explicit Got_entry(Valtype constant
)
2310 : local_sym_index_(CONSTANT_CODE
), use_plt_offset_(false)
2311 { this->u_
.constant
= constant
; }
2313 // Write the GOT entry to an output view.
2315 write(unsigned char* pov
) const;
2320 GSYM_CODE
= 0x7fffffff,
2321 CONSTANT_CODE
= 0x7ffffffe,
2322 RESERVED_CODE
= 0x7ffffffd
2327 // For a local symbol, the object.
2329 // For a global symbol, the symbol.
2331 // For a constant, the constant.
2334 // For a local symbol, the local symbol index. This is GSYM_CODE
2335 // for a global symbol, or CONSTANT_CODE for a constant.
2336 unsigned int local_sym_index_
: 31;
2337 // Whether to use the PLT offset of the symbol if it has one.
2338 bool use_plt_offset_
: 1;
2341 typedef std::vector
<Got_entry
> Got_entries
;
2343 // Create a new GOT entry and return its offset.
2345 add_got_entry(Got_entry got_entry
);
2347 // Create a pair of new GOT entries and return the offset of the first.
2349 add_got_entry_pair(Got_entry got_entry_1
, Got_entry got_entry_2
);
2351 // Return the offset into the GOT of GOT entry I.
2353 got_offset(unsigned int i
) const
2354 { return i
* (got_size
/ 8); }
2356 // Return the offset into the GOT of the last entry added.
2358 last_got_offset() const
2359 { return this->got_offset(this->entries_
.size() - 1); }
2361 // Set the size of the section.
2364 { this->set_current_data_size(this->got_offset(this->entries_
.size())); }
2366 // The list of GOT entries.
2367 Got_entries entries_
;
2369 // List of available regions within the section, for incremental
2371 Free_list free_list_
;
2374 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2377 class Output_data_dynamic
: public Output_section_data
2380 Output_data_dynamic(Stringpool
* pool
)
2381 : Output_section_data(Output_data::default_alignment()),
2382 entries_(), pool_(pool
)
2385 // Add a new dynamic entry with a fixed numeric value.
2387 add_constant(elfcpp::DT tag
, unsigned int val
)
2388 { this->add_entry(Dynamic_entry(tag
, val
)); }
2390 // Add a new dynamic entry with the address of output data.
2392 add_section_address(elfcpp::DT tag
, const Output_data
* od
)
2393 { this->add_entry(Dynamic_entry(tag
, od
, false)); }
2395 // Add a new dynamic entry with the address of output data
2396 // plus a constant offset.
2398 add_section_plus_offset(elfcpp::DT tag
, const Output_data
* od
,
2399 unsigned int offset
)
2400 { this->add_entry(Dynamic_entry(tag
, od
, offset
)); }
2402 // Add a new dynamic entry with the size of output data.
2404 add_section_size(elfcpp::DT tag
, const Output_data
* od
)
2405 { this->add_entry(Dynamic_entry(tag
, od
, true)); }
2407 // Add a new dynamic entry with the total size of two output datas.
2409 add_section_size(elfcpp::DT tag
, const Output_data
* od
,
2410 const Output_data
* od2
)
2411 { this->add_entry(Dynamic_entry(tag
, od
, od2
)); }
2413 // Add a new dynamic entry with the address of a symbol.
2415 add_symbol(elfcpp::DT tag
, const Symbol
* sym
)
2416 { this->add_entry(Dynamic_entry(tag
, sym
)); }
2418 // Add a new dynamic entry with a string.
2420 add_string(elfcpp::DT tag
, const char* str
)
2421 { this->add_entry(Dynamic_entry(tag
, this->pool_
->add(str
, true, NULL
))); }
2424 add_string(elfcpp::DT tag
, const std::string
& str
)
2425 { this->add_string(tag
, str
.c_str()); }
2428 // Adjust the output section to set the entry size.
2430 do_adjust_output_section(Output_section
*);
2432 // Set the final data size.
2434 set_final_data_size();
2436 // Write out the dynamic entries.
2438 do_write(Output_file
*);
2440 // Write to a map file.
2442 do_print_to_mapfile(Mapfile
* mapfile
) const
2443 { mapfile
->print_output_data(this, _("** dynamic")); }
2446 // This POD class holds a single dynamic entry.
2450 // Create an entry with a fixed numeric value.
2451 Dynamic_entry(elfcpp::DT tag
, unsigned int val
)
2452 : tag_(tag
), offset_(DYNAMIC_NUMBER
)
2453 { this->u_
.val
= val
; }
2455 // Create an entry with the size or address of a section.
2456 Dynamic_entry(elfcpp::DT tag
, const Output_data
* od
, bool section_size
)
2458 offset_(section_size
2459 ? DYNAMIC_SECTION_SIZE
2460 : DYNAMIC_SECTION_ADDRESS
)
2466 // Create an entry with the size of two sections.
2467 Dynamic_entry(elfcpp::DT tag
, const Output_data
* od
, const Output_data
* od2
)
2469 offset_(DYNAMIC_SECTION_SIZE
)
2475 // Create an entry with the address of a section plus a constant offset.
2476 Dynamic_entry(elfcpp::DT tag
, const Output_data
* od
, unsigned int offset
)
2479 { this->u_
.od
= od
; }
2481 // Create an entry with the address of a symbol.
2482 Dynamic_entry(elfcpp::DT tag
, const Symbol
* sym
)
2483 : tag_(tag
), offset_(DYNAMIC_SYMBOL
)
2484 { this->u_
.sym
= sym
; }
2486 // Create an entry with a string.
2487 Dynamic_entry(elfcpp::DT tag
, const char* str
)
2488 : tag_(tag
), offset_(DYNAMIC_STRING
)
2489 { this->u_
.str
= str
; }
2491 // Return the tag of this entry.
2494 { return this->tag_
; }
2496 // Write the dynamic entry to an output view.
2497 template<int size
, bool big_endian
>
2499 write(unsigned char* pov
, const Stringpool
*) const;
2502 // Classification is encoded in the OFFSET field.
2506 DYNAMIC_SECTION_ADDRESS
= 0,
2508 DYNAMIC_NUMBER
= -1U,
2510 DYNAMIC_SECTION_SIZE
= -2U,
2512 DYNAMIC_SYMBOL
= -3U,
2514 DYNAMIC_STRING
= -4U
2515 // Any other value indicates a section address plus OFFSET.
2520 // For DYNAMIC_NUMBER.
2522 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2523 const Output_data
* od
;
2524 // For DYNAMIC_SYMBOL.
2526 // For DYNAMIC_STRING.
2529 // For DYNAMIC_SYMBOL with two sections.
2530 const Output_data
* od2
;
2533 // The type of entry (Classification) or offset within a section.
2534 unsigned int offset_
;
2537 // Add an entry to the list.
2539 add_entry(const Dynamic_entry
& entry
)
2540 { this->entries_
.push_back(entry
); }
2542 // Sized version of write function.
2543 template<int size
, bool big_endian
>
2545 sized_write(Output_file
* of
);
2547 // The type of the list of entries.
2548 typedef std::vector
<Dynamic_entry
> Dynamic_entries
;
2551 Dynamic_entries entries_
;
2552 // The pool used for strings.
2556 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2557 // which may be required if the object file has more than
2558 // SHN_LORESERVE sections.
2560 class Output_symtab_xindex
: public Output_section_data
2563 Output_symtab_xindex(size_t symcount
)
2564 : Output_section_data(symcount
* 4, 4, true),
2568 // Add an entry: symbol number SYMNDX has section SHNDX.
2570 add(unsigned int symndx
, unsigned int shndx
)
2571 { this->entries_
.push_back(std::make_pair(symndx
, shndx
)); }
2575 do_write(Output_file
*);
2577 // Write to a map file.
2579 do_print_to_mapfile(Mapfile
* mapfile
) const
2580 { mapfile
->print_output_data(this, _("** symtab xindex")); }
2583 template<bool big_endian
>
2585 endian_do_write(unsigned char*);
2587 // It is likely that most symbols will not require entries. Rather
2588 // than keep a vector for all symbols, we keep pairs of symbol index
2589 // and section index.
2590 typedef std::vector
<std::pair
<unsigned int, unsigned int> > Xindex_entries
;
2592 // The entries we need.
2593 Xindex_entries entries_
;
2596 // A relaxed input section.
2597 class Output_relaxed_input_section
: public Output_section_data_build
2600 // We would like to call relobj->section_addralign(shndx) to get the
2601 // alignment but we do not want the constructor to fail. So callers
2602 // are repsonsible for ensuring that.
2603 Output_relaxed_input_section(Relobj
* relobj
, unsigned int shndx
,
2605 : Output_section_data_build(addralign
), relobj_(relobj
), shndx_(shndx
)
2608 // Return the Relobj of this relaxed input section.
2611 { return this->relobj_
; }
2613 // Return the section index of this relaxed input section.
2616 { return this->shndx_
; }
2620 unsigned int shndx_
;
2623 // This class describes properties of merge data sections. It is used
2624 // as a key type for maps.
2625 class Merge_section_properties
2628 Merge_section_properties(bool is_string
, uint64_t entsize
,
2630 : is_string_(is_string
), entsize_(entsize
), addralign_(addralign
)
2633 // Whether this equals to another Merge_section_properties MSP.
2635 eq(const Merge_section_properties
& msp
) const
2637 return ((this->is_string_
== msp
.is_string_
)
2638 && (this->entsize_
== msp
.entsize_
)
2639 && (this->addralign_
== msp
.addralign_
));
2642 // Compute a hash value for this using 64-bit FNV-1a hash.
2646 uint64_t h
= 14695981039346656037ULL; // FNV offset basis.
2647 uint64_t prime
= 1099511628211ULL;
2648 h
= (h
^ static_cast<uint64_t>(this->is_string_
)) * prime
;
2649 h
= (h
^ static_cast<uint64_t>(this->entsize_
)) * prime
;
2650 h
= (h
^ static_cast<uint64_t>(this->addralign_
)) * prime
;
2654 // Functors for associative containers.
2658 operator()(const Merge_section_properties
& msp1
,
2659 const Merge_section_properties
& msp2
) const
2660 { return msp1
.eq(msp2
); }
2666 operator()(const Merge_section_properties
& msp
) const
2667 { return msp
.hash_value(); }
2671 // Whether this merge data section is for strings.
2673 // Entsize of this merge data section.
2675 // Address alignment.
2676 uint64_t addralign_
;
2679 // This class is used to speed up look up of special input sections in an
2682 class Output_section_lookup_maps
2685 Output_section_lookup_maps()
2686 : is_valid_(true), merge_sections_by_properties_(),
2687 merge_sections_by_id_(), relaxed_input_sections_by_id_()
2690 // Whether the maps are valid.
2693 { return this->is_valid_
; }
2695 // Invalidate the maps.
2698 { this->is_valid_
= false; }
2704 this->merge_sections_by_properties_
.clear();
2705 this->merge_sections_by_id_
.clear();
2706 this->relaxed_input_sections_by_id_
.clear();
2707 // A cleared map is valid.
2708 this->is_valid_
= true;
2711 // Find a merge section by merge section properties. Return NULL if none
2714 find_merge_section(const Merge_section_properties
& msp
) const
2716 gold_assert(this->is_valid_
);
2717 Merge_sections_by_properties::const_iterator p
=
2718 this->merge_sections_by_properties_
.find(msp
);
2719 return p
!= this->merge_sections_by_properties_
.end() ? p
->second
: NULL
;
2722 // Find a merge section by section ID of a merge input section. Return NULL
2723 // if none is found.
2725 find_merge_section(const Object
* object
, unsigned int shndx
) const
2727 gold_assert(this->is_valid_
);
2728 Merge_sections_by_id::const_iterator p
=
2729 this->merge_sections_by_id_
.find(Const_section_id(object
, shndx
));
2730 return p
!= this->merge_sections_by_id_
.end() ? p
->second
: NULL
;
2733 // Add a merge section pointed by POMB with properties MSP.
2735 add_merge_section(const Merge_section_properties
& msp
,
2736 Output_merge_base
* pomb
)
2738 std::pair
<Merge_section_properties
, Output_merge_base
*> value(msp
, pomb
);
2739 std::pair
<Merge_sections_by_properties::iterator
, bool> result
=
2740 this->merge_sections_by_properties_
.insert(value
);
2741 gold_assert(result
.second
);
2744 // Add a mapping from a merged input section in OBJECT with index SHNDX
2745 // to a merge output section pointed by POMB.
2747 add_merge_input_section(const Object
* object
, unsigned int shndx
,
2748 Output_merge_base
* pomb
)
2750 Const_section_id
csid(object
, shndx
);
2751 std::pair
<Const_section_id
, Output_merge_base
*> value(csid
, pomb
);
2752 std::pair
<Merge_sections_by_id::iterator
, bool> result
=
2753 this->merge_sections_by_id_
.insert(value
);
2754 gold_assert(result
.second
);
2757 // Find a relaxed input section of OBJECT with index SHNDX.
2758 Output_relaxed_input_section
*
2759 find_relaxed_input_section(const Object
* object
, unsigned int shndx
) const
2761 gold_assert(this->is_valid_
);
2762 Relaxed_input_sections_by_id::const_iterator p
=
2763 this->relaxed_input_sections_by_id_
.find(Const_section_id(object
, shndx
));
2764 return p
!= this->relaxed_input_sections_by_id_
.end() ? p
->second
: NULL
;
2767 // Add a relaxed input section pointed by POMB and whose original input
2768 // section is in OBJECT with index SHNDX.
2770 add_relaxed_input_section(const Relobj
* relobj
, unsigned int shndx
,
2771 Output_relaxed_input_section
* poris
)
2773 Const_section_id
csid(relobj
, shndx
);
2774 std::pair
<Const_section_id
, Output_relaxed_input_section
*>
2776 std::pair
<Relaxed_input_sections_by_id::iterator
, bool> result
=
2777 this->relaxed_input_sections_by_id_
.insert(value
);
2778 gold_assert(result
.second
);
2782 typedef Unordered_map
<Const_section_id
, Output_merge_base
*,
2783 Const_section_id_hash
>
2784 Merge_sections_by_id
;
2786 typedef Unordered_map
<Merge_section_properties
, Output_merge_base
*,
2787 Merge_section_properties::hash
,
2788 Merge_section_properties::equal_to
>
2789 Merge_sections_by_properties
;
2791 typedef Unordered_map
<Const_section_id
, Output_relaxed_input_section
*,
2792 Const_section_id_hash
>
2793 Relaxed_input_sections_by_id
;
2795 // Whether this is valid
2797 // Merge sections by merge section properties.
2798 Merge_sections_by_properties merge_sections_by_properties_
;
2799 // Merge sections by section IDs.
2800 Merge_sections_by_id merge_sections_by_id_
;
2801 // Relaxed sections by section IDs.
2802 Relaxed_input_sections_by_id relaxed_input_sections_by_id_
;
2805 // This abstract base class defines the interface for the
2806 // types of methods used to fill free space left in an output
2807 // section during an incremental link. These methods are used
2808 // to insert dummy compilation units into debug info so that
2809 // debug info consumers can scan the debug info serially.
2815 : is_big_endian_(parameters
->target().is_big_endian())
2818 // Return the smallest size chunk of free space that can be
2819 // filled with a dummy compilation unit.
2821 minimum_hole_size() const
2822 { return this->do_minimum_hole_size(); }
2824 // Write a fill pattern of length LEN at offset OFF in the file.
2826 write(Output_file
* of
, off_t off
, size_t len
) const
2827 { this->do_write(of
, off
, len
); }
2831 do_minimum_hole_size() const = 0;
2834 do_write(Output_file
* of
, off_t off
, size_t len
) const = 0;
2837 is_big_endian() const
2838 { return this->is_big_endian_
; }
2841 bool is_big_endian_
;
2844 // Fill method that introduces a dummy compilation unit in
2845 // a .debug_info or .debug_types section.
2847 class Output_fill_debug_info
: public Output_fill
2850 Output_fill_debug_info(bool is_debug_types
)
2851 : is_debug_types_(is_debug_types
)
2856 do_minimum_hole_size() const;
2859 do_write(Output_file
* of
, off_t off
, size_t len
) const;
2862 // Version of the header.
2863 static const int version
= 4;
2864 // True if this is a .debug_types section.
2865 bool is_debug_types_
;
2868 // Fill method that introduces a dummy compilation unit in
2869 // a .debug_line section.
2871 class Output_fill_debug_line
: public Output_fill
2874 Output_fill_debug_line()
2879 do_minimum_hole_size() const;
2882 do_write(Output_file
* of
, off_t off
, size_t len
) const;
2885 // Version of the header. We write a DWARF-3 header because it's smaller
2886 // and many tools have not yet been updated to understand the DWARF-4 header.
2887 static const int version
= 3;
2888 // Length of the portion of the header that follows the header_length
2889 // field. This includes the following fields:
2890 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2891 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2892 // The standard_opcode_lengths array is 12 bytes long, and the
2893 // include_directories and filenames fields each contain only a single
2895 static const size_t header_length
= 19;
2898 // An output section. We don't expect to have too many output
2899 // sections, so we don't bother to do a template on the size.
2901 class Output_section
: public Output_data
2904 // Create an output section, giving the name, type, and flags.
2905 Output_section(const char* name
, elfcpp::Elf_Word
, elfcpp::Elf_Xword
);
2906 virtual ~Output_section();
2908 // Add a new input section SHNDX, named NAME, with header SHDR, from
2909 // object OBJECT. RELOC_SHNDX is the index of a relocation section
2910 // which applies to this section, or 0 if none, or -1 if more than
2911 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
2912 // in a linker script; in that case we need to keep track of input
2913 // sections associated with an output section. Return the offset
2914 // within the output section.
2915 template<int size
, bool big_endian
>
2917 add_input_section(Layout
* layout
, Sized_relobj_file
<size
, big_endian
>* object
,
2918 unsigned int shndx
, const char* name
,
2919 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
2920 unsigned int reloc_shndx
, bool have_sections_script
);
2922 // Add generated data POSD to this output section.
2924 add_output_section_data(Output_section_data
* posd
);
2926 // Add a relaxed input section PORIS called NAME to this output section
2929 add_relaxed_input_section(Layout
* layout
,
2930 Output_relaxed_input_section
* poris
,
2931 const std::string
& name
);
2933 // Return the section name.
2936 { return this->name_
; }
2938 // Return the section type.
2941 { return this->type_
; }
2943 // Return the section flags.
2946 { return this->flags_
; }
2948 typedef std::map
<Section_id
, unsigned int> Section_layout_order
;
2951 update_section_layout(const Section_layout_order
* order_map
);
2953 // Update the output section flags based on input section flags.
2955 update_flags_for_input_section(elfcpp::Elf_Xword flags
);
2957 // Return the entsize field.
2960 { return this->entsize_
; }
2962 // Set the entsize field.
2964 set_entsize(uint64_t v
);
2966 // Set the load address.
2968 set_load_address(uint64_t load_address
)
2970 this->load_address_
= load_address
;
2971 this->has_load_address_
= true;
2974 // Set the link field to the output section index of a section.
2976 set_link_section(const Output_data
* od
)
2978 gold_assert(this->link_
== 0
2979 && !this->should_link_to_symtab_
2980 && !this->should_link_to_dynsym_
);
2981 this->link_section_
= od
;
2984 // Set the link field to a constant.
2986 set_link(unsigned int v
)
2988 gold_assert(this->link_section_
== NULL
2989 && !this->should_link_to_symtab_
2990 && !this->should_link_to_dynsym_
);
2994 // Record that this section should link to the normal symbol table.
2996 set_should_link_to_symtab()
2998 gold_assert(this->link_section_
== NULL
3000 && !this->should_link_to_dynsym_
);
3001 this->should_link_to_symtab_
= true;
3004 // Record that this section should link to the dynamic symbol table.
3006 set_should_link_to_dynsym()
3008 gold_assert(this->link_section_
== NULL
3010 && !this->should_link_to_symtab_
);
3011 this->should_link_to_dynsym_
= true;
3014 // Return the info field.
3018 gold_assert(this->info_section_
== NULL
3019 && this->info_symndx_
== NULL
);
3023 // Set the info field to the output section index of a section.
3025 set_info_section(const Output_section
* os
)
3027 gold_assert((this->info_section_
== NULL
3028 || (this->info_section_
== os
3029 && this->info_uses_section_index_
))
3030 && this->info_symndx_
== NULL
3031 && this->info_
== 0);
3032 this->info_section_
= os
;
3033 this->info_uses_section_index_
= true;
3036 // Set the info field to the symbol table index of a symbol.
3038 set_info_symndx(const Symbol
* sym
)
3040 gold_assert(this->info_section_
== NULL
3041 && (this->info_symndx_
== NULL
3042 || this->info_symndx_
== sym
)
3043 && this->info_
== 0);
3044 this->info_symndx_
= sym
;
3047 // Set the info field to the symbol table index of a section symbol.
3049 set_info_section_symndx(const Output_section
* os
)
3051 gold_assert((this->info_section_
== NULL
3052 || (this->info_section_
== os
3053 && !this->info_uses_section_index_
))
3054 && this->info_symndx_
== NULL
3055 && this->info_
== 0);
3056 this->info_section_
= os
;
3057 this->info_uses_section_index_
= false;
3060 // Set the info field to a constant.
3062 set_info(unsigned int v
)
3064 gold_assert(this->info_section_
== NULL
3065 && this->info_symndx_
== NULL
3066 && (this->info_
== 0
3067 || this->info_
== v
));
3071 // Set the addralign field.
3073 set_addralign(uint64_t v
)
3074 { this->addralign_
= v
; }
3076 // Whether the output section index has been set.
3078 has_out_shndx() const
3079 { return this->out_shndx_
!= -1U; }
3081 // Indicate that we need a symtab index.
3083 set_needs_symtab_index()
3084 { this->needs_symtab_index_
= true; }
3086 // Return whether we need a symtab index.
3088 needs_symtab_index() const
3089 { return this->needs_symtab_index_
; }
3091 // Get the symtab index.
3093 symtab_index() const
3095 gold_assert(this->symtab_index_
!= 0);
3096 return this->symtab_index_
;
3099 // Set the symtab index.
3101 set_symtab_index(unsigned int index
)
3103 gold_assert(index
!= 0);
3104 this->symtab_index_
= index
;
3107 // Indicate that we need a dynsym index.
3109 set_needs_dynsym_index()
3110 { this->needs_dynsym_index_
= true; }
3112 // Return whether we need a dynsym index.
3114 needs_dynsym_index() const
3115 { return this->needs_dynsym_index_
; }
3117 // Get the dynsym index.
3119 dynsym_index() const
3121 gold_assert(this->dynsym_index_
!= 0);
3122 return this->dynsym_index_
;
3125 // Set the dynsym index.
3127 set_dynsym_index(unsigned int index
)
3129 gold_assert(index
!= 0);
3130 this->dynsym_index_
= index
;
3133 // Return whether the input sections sections attachd to this output
3134 // section may require sorting. This is used to handle constructor
3135 // priorities compatibly with GNU ld.
3137 may_sort_attached_input_sections() const
3138 { return this->may_sort_attached_input_sections_
; }
3140 // Record that the input sections attached to this output section
3141 // may require sorting.
3143 set_may_sort_attached_input_sections()
3144 { this->may_sort_attached_input_sections_
= true; }
3146 // Returns true if input sections must be sorted according to the
3147 // order in which their name appear in the --section-ordering-file.
3149 input_section_order_specified()
3150 { return this->input_section_order_specified_
; }
3152 // Record that input sections must be sorted as some of their names
3153 // match the patterns specified through --section-ordering-file.
3155 set_input_section_order_specified()
3156 { this->input_section_order_specified_
= true; }
3158 // Return whether the input sections attached to this output section
3159 // require sorting. This is used to handle constructor priorities
3160 // compatibly with GNU ld.
3162 must_sort_attached_input_sections() const
3163 { return this->must_sort_attached_input_sections_
; }
3165 // Record that the input sections attached to this output section
3168 set_must_sort_attached_input_sections()
3169 { this->must_sort_attached_input_sections_
= true; }
3171 // Get the order in which this section appears in the PT_LOAD output
3173 Output_section_order
3175 { return this->order_
; }
3177 // Set the order for this section.
3179 set_order(Output_section_order order
)
3180 { this->order_
= order
; }
3182 // Return whether this section holds relro data--data which has
3183 // dynamic relocations but which may be marked read-only after the
3184 // dynamic relocations have been completed.
3187 { return this->is_relro_
; }
3189 // Record that this section holds relro data.
3192 { this->is_relro_
= true; }
3194 // Record that this section does not hold relro data.
3197 { this->is_relro_
= false; }
3199 // True if this is a small section: a section which holds small
3202 is_small_section() const
3203 { return this->is_small_section_
; }
3205 // Record that this is a small section.
3207 set_is_small_section()
3208 { this->is_small_section_
= true; }
3210 // True if this is a large section: a section which holds large
3213 is_large_section() const
3214 { return this->is_large_section_
; }
3216 // Record that this is a large section.
3218 set_is_large_section()
3219 { this->is_large_section_
= true; }
3221 // True if this is a large data (not BSS) section.
3223 is_large_data_section()
3224 { return this->is_large_section_
&& this->type_
!= elfcpp::SHT_NOBITS
; }
3226 // Return whether this section should be written after all the input
3227 // sections are complete.
3229 after_input_sections() const
3230 { return this->after_input_sections_
; }
3232 // Record that this section should be written after all the input
3233 // sections are complete.
3235 set_after_input_sections()
3236 { this->after_input_sections_
= true; }
3238 // Return whether this section requires postprocessing after all
3239 // relocations have been applied.
3241 requires_postprocessing() const
3242 { return this->requires_postprocessing_
; }
3244 // If a section requires postprocessing, return the buffer to use.
3246 postprocessing_buffer() const
3248 gold_assert(this->postprocessing_buffer_
!= NULL
);
3249 return this->postprocessing_buffer_
;
3252 // If a section requires postprocessing, create the buffer to use.
3254 create_postprocessing_buffer();
3256 // If a section requires postprocessing, this is the size of the
3257 // buffer to which relocations should be applied.
3259 postprocessing_buffer_size() const
3260 { return this->current_data_size_for_child(); }
3262 // Modify the section name. This is only permitted for an
3263 // unallocated section, and only before the size has been finalized.
3264 // Otherwise the name will not get into Layout::namepool_.
3266 set_name(const char* newname
)
3268 gold_assert((this->flags_
& elfcpp::SHF_ALLOC
) == 0);
3269 gold_assert(!this->is_data_size_valid());
3270 this->name_
= newname
;
3273 // Return whether the offset OFFSET in the input section SHNDX in
3274 // object OBJECT is being included in the link.
3276 is_input_address_mapped(const Relobj
* object
, unsigned int shndx
,
3277 off_t offset
) const;
3279 // Return the offset within the output section of OFFSET relative to
3280 // the start of input section SHNDX in object OBJECT.
3282 output_offset(const Relobj
* object
, unsigned int shndx
,
3283 section_offset_type offset
) const;
3285 // Return the output virtual address of OFFSET relative to the start
3286 // of input section SHNDX in object OBJECT.
3288 output_address(const Relobj
* object
, unsigned int shndx
,
3289 off_t offset
) const;
3291 // Look for the merged section for input section SHNDX in object
3292 // OBJECT. If found, return true, and set *ADDR to the address of
3293 // the start of the merged section. This is not necessary the
3294 // output offset corresponding to input offset 0 in the section,
3295 // since the section may be mapped arbitrarily.
3297 find_starting_output_address(const Relobj
* object
, unsigned int shndx
,
3298 uint64_t* addr
) const;
3300 // Record that this output section was found in the SECTIONS clause
3301 // of a linker script.
3303 set_found_in_sections_clause()
3304 { this->found_in_sections_clause_
= true; }
3306 // Return whether this output section was found in the SECTIONS
3307 // clause of a linker script.
3309 found_in_sections_clause() const
3310 { return this->found_in_sections_clause_
; }
3312 // Write the section header into *OPHDR.
3313 template<int size
, bool big_endian
>
3315 write_header(const Layout
*, const Stringpool
*,
3316 elfcpp::Shdr_write
<size
, big_endian
>*) const;
3318 // The next few calls are for linker script support.
3320 // In some cases we need to keep a list of the input sections
3321 // associated with this output section. We only need the list if we
3322 // might have to change the offsets of the input section within the
3323 // output section after we add the input section. The ordinary
3324 // input sections will be written out when we process the object
3325 // file, and as such we don't need to track them here. We do need
3326 // to track Output_section_data objects here. We store instances of
3327 // this structure in a std::vector, so it must be a POD. There can
3328 // be many instances of this structure, so we use a union to save
3334 : shndx_(0), p2align_(0)
3336 this->u1_
.data_size
= 0;
3337 this->u2_
.object
= NULL
;
3340 // For an ordinary input section.
3341 Input_section(Relobj
* object
, unsigned int shndx
, off_t data_size
,
3344 p2align_(ffsll(static_cast<long long>(addralign
))),
3345 section_order_index_(0)
3347 gold_assert(shndx
!= OUTPUT_SECTION_CODE
3348 && shndx
!= MERGE_DATA_SECTION_CODE
3349 && shndx
!= MERGE_STRING_SECTION_CODE
3350 && shndx
!= RELAXED_INPUT_SECTION_CODE
);
3351 this->u1_
.data_size
= data_size
;
3352 this->u2_
.object
= object
;
3355 // For a non-merge output section.
3356 Input_section(Output_section_data
* posd
)
3357 : shndx_(OUTPUT_SECTION_CODE
), p2align_(0),
3358 section_order_index_(0)
3360 this->u1_
.data_size
= 0;
3361 this->u2_
.posd
= posd
;
3364 // For a merge section.
3365 Input_section(Output_section_data
* posd
, bool is_string
, uint64_t entsize
)
3367 ? MERGE_STRING_SECTION_CODE
3368 : MERGE_DATA_SECTION_CODE
),
3370 section_order_index_(0)
3372 this->u1_
.entsize
= entsize
;
3373 this->u2_
.posd
= posd
;
3376 // For a relaxed input section.
3377 Input_section(Output_relaxed_input_section
* psection
)
3378 : shndx_(RELAXED_INPUT_SECTION_CODE
), p2align_(0),
3379 section_order_index_(0)
3381 this->u1_
.data_size
= 0;
3382 this->u2_
.poris
= psection
;
3386 section_order_index() const
3388 return this->section_order_index_
;
3392 set_section_order_index(unsigned int number
)
3394 this->section_order_index_
= number
;
3397 // The required alignment.
3401 if (this->p2align_
!= 0)
3402 return static_cast<uint64_t>(1) << (this->p2align_
- 1);
3403 else if (!this->is_input_section())
3404 return this->u2_
.posd
->addralign();
3409 // Set the required alignment, which must be either 0 or a power of 2.
3410 // For input sections that are sub-classes of Output_section_data, a
3411 // alignment of zero means asking the underlying object for alignment.
3413 set_addralign(uint64_t addralign
)
3419 gold_assert((addralign
& (addralign
- 1)) == 0);
3420 this->p2align_
= ffsll(static_cast<long long>(addralign
));
3424 // Return the current required size, without finalization.
3426 current_data_size() const;
3428 // Return the required size.
3432 // Whether this is an input section.
3434 is_input_section() const
3436 return (this->shndx_
!= OUTPUT_SECTION_CODE
3437 && this->shndx_
!= MERGE_DATA_SECTION_CODE
3438 && this->shndx_
!= MERGE_STRING_SECTION_CODE
3439 && this->shndx_
!= RELAXED_INPUT_SECTION_CODE
);
3442 // Return whether this is a merge section which matches the
3445 is_merge_section(bool is_string
, uint64_t entsize
,
3446 uint64_t addralign
) const
3448 return (this->shndx_
== (is_string
3449 ? MERGE_STRING_SECTION_CODE
3450 : MERGE_DATA_SECTION_CODE
)
3451 && this->u1_
.entsize
== entsize
3452 && this->addralign() == addralign
);
3455 // Return whether this is a merge section for some input section.
3457 is_merge_section() const
3459 return (this->shndx_
== MERGE_DATA_SECTION_CODE
3460 || this->shndx_
== MERGE_STRING_SECTION_CODE
);
3463 // Return whether this is a relaxed input section.
3465 is_relaxed_input_section() const
3466 { return this->shndx_
== RELAXED_INPUT_SECTION_CODE
; }
3468 // Return whether this is a generic Output_section_data.
3470 is_output_section_data() const
3472 return this->shndx_
== OUTPUT_SECTION_CODE
;
3475 // Return the object for an input section.
3479 // Return the input section index for an input section.
3483 // For non-input-sections, return the associated Output_section_data
3485 Output_section_data
*
3486 output_section_data() const
3488 gold_assert(!this->is_input_section());
3489 return this->u2_
.posd
;
3492 // For a merge section, return the Output_merge_base pointer.
3494 output_merge_base() const
3496 gold_assert(this->is_merge_section());
3497 return this->u2_
.pomb
;
3500 // Return the Output_relaxed_input_section object.
3501 Output_relaxed_input_section
*
3502 relaxed_input_section() const
3504 gold_assert(this->is_relaxed_input_section());
3505 return this->u2_
.poris
;
3508 // Set the output section.
3510 set_output_section(Output_section
* os
)
3512 gold_assert(!this->is_input_section());
3513 Output_section_data
* posd
=
3514 this->is_relaxed_input_section() ? this->u2_
.poris
: this->u2_
.posd
;
3515 posd
->set_output_section(os
);
3518 // Set the address and file offset. This is called during
3519 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
3520 // the enclosing section.
3522 set_address_and_file_offset(uint64_t address
, off_t file_offset
,
3523 off_t section_file_offset
);
3525 // Reset the address and file offset.
3527 reset_address_and_file_offset();
3529 // Finalize the data size.
3531 finalize_data_size();
3533 // Add an input section, for SHF_MERGE sections.
3535 add_input_section(Relobj
* object
, unsigned int shndx
)
3537 gold_assert(this->shndx_
== MERGE_DATA_SECTION_CODE
3538 || this->shndx_
== MERGE_STRING_SECTION_CODE
);
3539 return this->u2_
.posd
->add_input_section(object
, shndx
);
3542 // Given an input OBJECT, an input section index SHNDX within that
3543 // object, and an OFFSET relative to the start of that input
3544 // section, return whether or not the output offset is known. If
3545 // this function returns true, it sets *POUTPUT to the offset in
3546 // the output section, relative to the start of the input section
3547 // in the output section. *POUTPUT may be different from OFFSET
3548 // for a merged section.
3550 output_offset(const Relobj
* object
, unsigned int shndx
,
3551 section_offset_type offset
,
3552 section_offset_type
* poutput
) const;
3554 // Return whether this is the merge section for the input section
3557 is_merge_section_for(const Relobj
* object
, unsigned int shndx
) const;
3559 // Write out the data. This does nothing for an input section.
3561 write(Output_file
*);
3563 // Write the data to a buffer. This does nothing for an input
3566 write_to_buffer(unsigned char*);
3568 // Print to a map file.
3570 print_to_mapfile(Mapfile
*) const;
3572 // Print statistics about merge sections to stderr.
3574 print_merge_stats(const char* section_name
)
3576 if (this->shndx_
== MERGE_DATA_SECTION_CODE
3577 || this->shndx_
== MERGE_STRING_SECTION_CODE
)
3578 this->u2_
.posd
->print_merge_stats(section_name
);
3582 // Code values which appear in shndx_. If the value is not one of
3583 // these codes, it is the input section index in the object file.
3586 // An Output_section_data.
3587 OUTPUT_SECTION_CODE
= -1U,
3588 // An Output_section_data for an SHF_MERGE section with
3589 // SHF_STRINGS not set.
3590 MERGE_DATA_SECTION_CODE
= -2U,
3591 // An Output_section_data for an SHF_MERGE section with
3593 MERGE_STRING_SECTION_CODE
= -3U,
3594 // An Output_section_data for a relaxed input section.
3595 RELAXED_INPUT_SECTION_CODE
= -4U
3598 // For an ordinary input section, this is the section index in the
3599 // input file. For an Output_section_data, this is
3600 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3601 // MERGE_STRING_SECTION_CODE.
3602 unsigned int shndx_
;
3603 // The required alignment, stored as a power of 2.
3604 unsigned int p2align_
;
3607 // For an ordinary input section, the section size.
3609 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3610 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3616 // For an ordinary input section, the object which holds the
3619 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3620 // MERGE_STRING_SECTION_CODE, the data.
3621 Output_section_data
* posd
;
3622 Output_merge_base
* pomb
;
3623 // For RELAXED_INPUT_SECTION_CODE, the data.
3624 Output_relaxed_input_section
* poris
;
3626 // The line number of the pattern it matches in the --section-ordering-file
3627 // file. It is 0 if does not match any pattern.
3628 unsigned int section_order_index_
;
3631 // Store the list of input sections for this Output_section into the
3632 // list passed in. This removes the input sections, leaving only
3633 // any Output_section_data elements. This returns the size of those
3634 // Output_section_data elements. ADDRESS is the address of this
3635 // output section. FILL is the fill value to use, in case there are
3636 // any spaces between the remaining Output_section_data elements.
3638 get_input_sections(uint64_t address
, const std::string
& fill
,
3639 std::list
<Input_section
>*);
3641 // Add a script input section. A script input section can either be
3642 // a plain input section or a sub-class of Output_section_data.
3644 add_script_input_section(const Input_section
& input_section
);
3646 // Set the current size of the output section.
3648 set_current_data_size(off_t size
)
3649 { this->set_current_data_size_for_child(size
); }
3651 // End of linker script support.
3653 // Save states before doing section layout.
3654 // This is used for relaxation.
3658 // Restore states prior to section layout.
3666 // Convert existing input sections to relaxed input sections.
3668 convert_input_sections_to_relaxed_sections(
3669 const std::vector
<Output_relaxed_input_section
*>& sections
);
3671 // Find a relaxed input section to an input section in OBJECT
3672 // with index SHNDX. Return NULL if none is found.
3673 const Output_relaxed_input_section
*
3674 find_relaxed_input_section(const Relobj
* object
, unsigned int shndx
) const;
3676 // Whether section offsets need adjustment due to relaxation.
3678 section_offsets_need_adjustment() const
3679 { return this->section_offsets_need_adjustment_
; }
3681 // Set section_offsets_need_adjustment to be true.
3683 set_section_offsets_need_adjustment()
3684 { this->section_offsets_need_adjustment_
= true; }
3686 // Adjust section offsets of input sections in this. This is
3687 // requires if relaxation caused some input sections to change sizes.
3689 adjust_section_offsets();
3691 // Whether this is a NOLOAD section.
3694 { return this->is_noload_
; }
3699 { this->is_noload_
= true; }
3701 // Print merge statistics to stderr.
3703 print_merge_stats();
3705 // Set a fixed layout for the section. Used for incremental update links.
3707 set_fixed_layout(uint64_t sh_addr
, off_t sh_offset
, off_t sh_size
,
3708 uint64_t sh_addralign
);
3710 // Return TRUE if the section has a fixed layout.
3712 has_fixed_layout() const
3713 { return this->has_fixed_layout_
; }
3715 // Set flag to allow patch space for this section. Used for full
3716 // incremental links.
3718 set_is_patch_space_allowed()
3719 { this->is_patch_space_allowed_
= true; }
3721 // Set a fill method to use for free space left in the output section
3722 // during incremental links.
3724 set_free_space_fill(Output_fill
* free_space_fill
)
3726 this->free_space_fill_
= free_space_fill
;
3727 this->free_list_
.set_min_hole_size(free_space_fill
->minimum_hole_size());
3730 // Reserve space within the fixed layout for the section. Used for
3731 // incremental update links.
3733 reserve(uint64_t sh_offset
, uint64_t sh_size
);
3735 // Allocate space from the free list for the section. Used for
3736 // incremental update links.
3738 allocate(off_t len
, uint64_t addralign
);
3741 // Return the output section--i.e., the object itself.
3746 const Output_section
*
3747 do_output_section() const
3750 // Return the section index in the output file.
3752 do_out_shndx() const
3754 gold_assert(this->out_shndx_
!= -1U);
3755 return this->out_shndx_
;
3758 // Set the output section index.
3760 do_set_out_shndx(unsigned int shndx
)
3762 gold_assert(this->out_shndx_
== -1U || this->out_shndx_
== shndx
);
3763 this->out_shndx_
= shndx
;
3766 // Update the data size of the Output_section. For a typical
3767 // Output_section, there is nothing to do, but if there are any
3768 // Output_section_data objects we need to do a trial layout
3773 // Set the final data size of the Output_section. For a typical
3774 // Output_section, there is nothing to do, but if there are any
3775 // Output_section_data objects we need to set their final addresses
3778 set_final_data_size();
3780 // Reset the address and file offset.
3782 do_reset_address_and_file_offset();
3784 // Return true if address and file offset already have reset values. In
3785 // other words, calling reset_address_and_file_offset will not change them.
3787 do_address_and_file_offset_have_reset_values() const;
3789 // Write the data to the file. For a typical Output_section, this
3790 // does nothing: the data is written out by calling Object::Relocate
3791 // on each input object. But if there are any Output_section_data
3792 // objects we do need to write them out here.
3794 do_write(Output_file
*);
3796 // Return the address alignment--function required by parent class.
3798 do_addralign() const
3799 { return this->addralign_
; }
3801 // Return whether there is a load address.
3803 do_has_load_address() const
3804 { return this->has_load_address_
; }
3806 // Return the load address.
3808 do_load_address() const
3810 gold_assert(this->has_load_address_
);
3811 return this->load_address_
;
3814 // Return whether this is an Output_section.
3816 do_is_section() const
3819 // Return whether this is a section of the specified type.
3821 do_is_section_type(elfcpp::Elf_Word type
) const
3822 { return this->type_
== type
; }
3824 // Return whether the specified section flag is set.
3826 do_is_section_flag_set(elfcpp::Elf_Xword flag
) const
3827 { return (this->flags_
& flag
) != 0; }
3829 // Set the TLS offset. Called only for SHT_TLS sections.
3831 do_set_tls_offset(uint64_t tls_base
);
3833 // Return the TLS offset, relative to the base of the TLS segment.
3834 // Valid only for SHT_TLS sections.
3836 do_tls_offset() const
3837 { return this->tls_offset_
; }
3839 // This may be implemented by a child class.
3841 do_finalize_name(Layout
*)
3844 // Print to the map file.
3846 do_print_to_mapfile(Mapfile
*) const;
3848 // Record that this section requires postprocessing after all
3849 // relocations have been applied. This is called by a child class.
3851 set_requires_postprocessing()
3853 this->requires_postprocessing_
= true;
3854 this->after_input_sections_
= true;
3857 // Write all the data of an Output_section into the postprocessing
3860 write_to_postprocessing_buffer();
3862 typedef std::vector
<Input_section
> Input_section_list
;
3864 // Allow a child class to access the input sections.
3865 const Input_section_list
&
3866 input_sections() const
3867 { return this->input_sections_
; }
3869 // Whether this always keeps an input section list
3871 always_keeps_input_sections() const
3872 { return this->always_keeps_input_sections_
; }
3874 // Always keep an input section list.
3876 set_always_keeps_input_sections()
3878 gold_assert(this->current_data_size_for_child() == 0);
3879 this->always_keeps_input_sections_
= true;
3883 // We only save enough information to undo the effects of section layout.
3884 class Checkpoint_output_section
3887 Checkpoint_output_section(uint64_t addralign
, elfcpp::Elf_Xword flags
,
3888 const Input_section_list
& input_sections
,
3889 off_t first_input_offset
,
3890 bool attached_input_sections_are_sorted
)
3891 : addralign_(addralign
), flags_(flags
),
3892 input_sections_(input_sections
),
3893 input_sections_size_(input_sections_
.size()),
3894 input_sections_copy_(), first_input_offset_(first_input_offset
),
3895 attached_input_sections_are_sorted_(attached_input_sections_are_sorted
)
3899 ~Checkpoint_output_section()
3902 // Return the address alignment.
3905 { return this->addralign_
; }
3907 // Return the section flags.
3910 { return this->flags_
; }
3912 // Return a reference to the input section list copy.
3915 { return &this->input_sections_copy_
; }
3917 // Return the size of input_sections at the time when checkpoint is
3920 input_sections_size() const
3921 { return this->input_sections_size_
; }
3923 // Whether input sections are copied.
3925 input_sections_saved() const
3926 { return this->input_sections_copy_
.size() == this->input_sections_size_
; }
3929 first_input_offset() const
3930 { return this->first_input_offset_
; }
3933 attached_input_sections_are_sorted() const
3934 { return this->attached_input_sections_are_sorted_
; }
3936 // Save input sections.
3938 save_input_sections()
3940 this->input_sections_copy_
.reserve(this->input_sections_size_
);
3941 this->input_sections_copy_
.clear();
3942 Input_section_list::const_iterator p
= this->input_sections_
.begin();
3943 gold_assert(this->input_sections_size_
>= this->input_sections_
.size());
3944 for(size_t i
= 0; i
< this->input_sections_size_
; i
++, ++p
)
3945 this->input_sections_copy_
.push_back(*p
);
3949 // The section alignment.
3950 uint64_t addralign_
;
3951 // The section flags.
3952 elfcpp::Elf_Xword flags_
;
3953 // Reference to the input sections to be checkpointed.
3954 const Input_section_list
& input_sections_
;
3955 // Size of the checkpointed portion of input_sections_;
3956 size_t input_sections_size_
;
3957 // Copy of input sections.
3958 Input_section_list input_sections_copy_
;
3959 // The offset of the first entry in input_sections_.
3960 off_t first_input_offset_
;
3961 // True if the input sections attached to this output section have
3962 // already been sorted.
3963 bool attached_input_sections_are_sorted_
;
3966 // This class is used to sort the input sections.
3967 class Input_section_sort_entry
;
3969 // This is the sort comparison function for ctors and dtors.
3970 struct Input_section_sort_compare
3973 operator()(const Input_section_sort_entry
&,
3974 const Input_section_sort_entry
&) const;
3977 // This is the sort comparison function for .init_array and .fini_array.
3978 struct Input_section_sort_init_fini_compare
3981 operator()(const Input_section_sort_entry
&,
3982 const Input_section_sort_entry
&) const;
3985 // This is the sort comparison function when a section order is specified
3986 // from an input file.
3987 struct Input_section_sort_section_order_index_compare
3990 operator()(const Input_section_sort_entry
&,
3991 const Input_section_sort_entry
&) const;
3994 // Fill data. This is used to fill in data between input sections.
3995 // It is also used for data statements (BYTE, WORD, etc.) in linker
3996 // scripts. When we have to keep track of the input sections, we
3997 // can use an Output_data_const, but we don't want to have to keep
3998 // track of input sections just to implement fills.
4002 Fill(off_t section_offset
, off_t length
)
4003 : section_offset_(section_offset
),
4004 length_(convert_to_section_size_type(length
))
4007 // Return section offset.
4009 section_offset() const
4010 { return this->section_offset_
; }
4012 // Return fill length.
4015 { return this->length_
; }
4018 // The offset within the output section.
4019 off_t section_offset_
;
4020 // The length of the space to fill.
4021 section_size_type length_
;
4024 typedef std::vector
<Fill
> Fill_list
;
4026 // Map used during relaxation of existing sections. This map
4027 // a section id an input section list index. We assume that
4028 // Input_section_list is a vector.
4029 typedef Unordered_map
<Section_id
, size_t, Section_id_hash
> Relaxation_map
;
4031 // Add a new output section by Input_section.
4033 add_output_section_data(Input_section
*);
4035 // Add an SHF_MERGE input section. Returns true if the section was
4036 // handled. If KEEPS_INPUT_SECTIONS is true, the output merge section
4037 // stores information about the merged input sections.
4039 add_merge_input_section(Relobj
* object
, unsigned int shndx
, uint64_t flags
,
4040 uint64_t entsize
, uint64_t addralign
,
4041 bool keeps_input_sections
);
4043 // Add an output SHF_MERGE section POSD to this output section.
4044 // IS_STRING indicates whether it is a SHF_STRINGS section, and
4045 // ENTSIZE is the entity size. This returns the entry added to
4048 add_output_merge_section(Output_section_data
* posd
, bool is_string
,
4051 // Sort the attached input sections.
4053 sort_attached_input_sections();
4055 // Find the merge section into which an input section with index SHNDX in
4056 // OBJECT has been added. Return NULL if none found.
4057 Output_section_data
*
4058 find_merge_section(const Relobj
* object
, unsigned int shndx
) const;
4060 // Build a relaxation map.
4062 build_relaxation_map(
4063 const Input_section_list
& input_sections
,
4065 Relaxation_map
* map
) const;
4067 // Convert input sections in an input section list into relaxed sections.
4069 convert_input_sections_in_list_to_relaxed_sections(
4070 const std::vector
<Output_relaxed_input_section
*>& relaxed_sections
,
4071 const Relaxation_map
& map
,
4072 Input_section_list
* input_sections
);
4074 // Build the lookup maps for merge and relaxed input sections.
4076 build_lookup_maps() const;
4078 // Most of these fields are only valid after layout.
4080 // The name of the section. This will point into a Stringpool.
4082 // The section address is in the parent class.
4083 // The section alignment.
4084 uint64_t addralign_
;
4085 // The section entry size.
4087 // The load address. This is only used when using a linker script
4088 // with a SECTIONS clause. The has_load_address_ field indicates
4089 // whether this field is valid.
4090 uint64_t load_address_
;
4091 // The file offset is in the parent class.
4092 // Set the section link field to the index of this section.
4093 const Output_data
* link_section_
;
4094 // If link_section_ is NULL, this is the link field.
4096 // Set the section info field to the index of this section.
4097 const Output_section
* info_section_
;
4098 // If info_section_ is NULL, set the info field to the symbol table
4099 // index of this symbol.
4100 const Symbol
* info_symndx_
;
4101 // If info_section_ and info_symndx_ are NULL, this is the section
4104 // The section type.
4105 const elfcpp::Elf_Word type_
;
4106 // The section flags.
4107 elfcpp::Elf_Xword flags_
;
4108 // The order of this section in the output segment.
4109 Output_section_order order_
;
4110 // The section index.
4111 unsigned int out_shndx_
;
4112 // If there is a STT_SECTION for this output section in the normal
4113 // symbol table, this is the symbol index. This starts out as zero.
4114 // It is initialized in Layout::finalize() to be the index, or -1U
4115 // if there isn't one.
4116 unsigned int symtab_index_
;
4117 // If there is a STT_SECTION for this output section in the dynamic
4118 // symbol table, this is the symbol index. This starts out as zero.
4119 // It is initialized in Layout::finalize() to be the index, or -1U
4120 // if there isn't one.
4121 unsigned int dynsym_index_
;
4122 // The input sections. This will be empty in cases where we don't
4123 // need to keep track of them.
4124 Input_section_list input_sections_
;
4125 // The offset of the first entry in input_sections_.
4126 off_t first_input_offset_
;
4127 // The fill data. This is separate from input_sections_ because we
4128 // often will need fill sections without needing to keep track of
4131 // If the section requires postprocessing, this buffer holds the
4132 // section contents during relocation.
4133 unsigned char* postprocessing_buffer_
;
4134 // Whether this output section needs a STT_SECTION symbol in the
4135 // normal symbol table. This will be true if there is a relocation
4137 bool needs_symtab_index_
: 1;
4138 // Whether this output section needs a STT_SECTION symbol in the
4139 // dynamic symbol table. This will be true if there is a dynamic
4140 // relocation which needs it.
4141 bool needs_dynsym_index_
: 1;
4142 // Whether the link field of this output section should point to the
4143 // normal symbol table.
4144 bool should_link_to_symtab_
: 1;
4145 // Whether the link field of this output section should point to the
4146 // dynamic symbol table.
4147 bool should_link_to_dynsym_
: 1;
4148 // Whether this section should be written after all the input
4149 // sections are complete.
4150 bool after_input_sections_
: 1;
4151 // Whether this section requires post processing after all
4152 // relocations have been applied.
4153 bool requires_postprocessing_
: 1;
4154 // Whether an input section was mapped to this output section
4155 // because of a SECTIONS clause in a linker script.
4156 bool found_in_sections_clause_
: 1;
4157 // Whether this section has an explicitly specified load address.
4158 bool has_load_address_
: 1;
4159 // True if the info_section_ field means the section index of the
4160 // section, false if it means the symbol index of the corresponding
4162 bool info_uses_section_index_
: 1;
4163 // True if input sections attached to this output section have to be
4164 // sorted according to a specified order.
4165 bool input_section_order_specified_
: 1;
4166 // True if the input sections attached to this output section may
4168 bool may_sort_attached_input_sections_
: 1;
4169 // True if the input sections attached to this output section must
4171 bool must_sort_attached_input_sections_
: 1;
4172 // True if the input sections attached to this output section have
4173 // already been sorted.
4174 bool attached_input_sections_are_sorted_
: 1;
4175 // True if this section holds relro data.
4177 // True if this is a small section.
4178 bool is_small_section_
: 1;
4179 // True if this is a large section.
4180 bool is_large_section_
: 1;
4181 // Whether code-fills are generated at write.
4182 bool generate_code_fills_at_write_
: 1;
4183 // Whether the entry size field should be zero.
4184 bool is_entsize_zero_
: 1;
4185 // Whether section offsets need adjustment due to relaxation.
4186 bool section_offsets_need_adjustment_
: 1;
4187 // Whether this is a NOLOAD section.
4188 bool is_noload_
: 1;
4189 // Whether this always keeps input section.
4190 bool always_keeps_input_sections_
: 1;
4191 // Whether this section has a fixed layout, for incremental update links.
4192 bool has_fixed_layout_
: 1;
4193 // True if we can add patch space to this section.
4194 bool is_patch_space_allowed_
: 1;
4195 // For SHT_TLS sections, the offset of this section relative to the base
4196 // of the TLS segment.
4197 uint64_t tls_offset_
;
4198 // Saved checkpoint.
4199 Checkpoint_output_section
* checkpoint_
;
4200 // Fast lookup maps for merged and relaxed input sections.
4201 Output_section_lookup_maps
* lookup_maps_
;
4202 // List of available regions within the section, for incremental
4204 Free_list free_list_
;
4205 // Method for filling chunks of free space.
4206 Output_fill
* free_space_fill_
;
4207 // Amount added as patch space for incremental linking.
4211 // An output segment. PT_LOAD segments are built from collections of
4212 // output sections. Other segments typically point within PT_LOAD
4213 // segments, and are built directly as needed.
4215 // NOTE: We want to use the copy constructor for this class. During
4216 // relaxation, we may try built the segments multiple times. We do
4217 // that by copying the original segment list before lay-out, doing
4218 // a trial lay-out and roll-back to the saved copied if we need to
4219 // to the lay-out again.
4221 class Output_segment
4224 // Create an output segment, specifying the type and flags.
4225 Output_segment(elfcpp::Elf_Word
, elfcpp::Elf_Word
);
4227 // Return the virtual address.
4230 { return this->vaddr_
; }
4232 // Return the physical address.
4235 { return this->paddr_
; }
4237 // Return the segment type.
4240 { return this->type_
; }
4242 // Return the segment flags.
4245 { return this->flags_
; }
4247 // Return the memory size.
4250 { return this->memsz_
; }
4252 // Return the file size.
4255 { return this->filesz_
; }
4257 // Return the file offset.
4260 { return this->offset_
; }
4262 // Whether this is a segment created to hold large data sections.
4264 is_large_data_segment() const
4265 { return this->is_large_data_segment_
; }
4267 // Record that this is a segment created to hold large data
4270 set_is_large_data_segment()
4271 { this->is_large_data_segment_
= true; }
4273 // Return the maximum alignment of the Output_data.
4275 maximum_alignment();
4277 // Add the Output_section OS to this PT_LOAD segment. SEG_FLAGS is
4278 // the segment flags to use.
4280 add_output_section_to_load(Layout
* layout
, Output_section
* os
,
4281 elfcpp::Elf_Word seg_flags
);
4283 // Add the Output_section OS to this non-PT_LOAD segment. SEG_FLAGS
4284 // is the segment flags to use.
4286 add_output_section_to_nonload(Output_section
* os
,
4287 elfcpp::Elf_Word seg_flags
);
4289 // Remove an Output_section from this segment. It is an error if it
4292 remove_output_section(Output_section
* os
);
4294 // Add an Output_data (which need not be an Output_section) to the
4295 // start of this segment.
4297 add_initial_output_data(Output_data
*);
4299 // Return true if this segment has any sections which hold actual
4300 // data, rather than being a BSS section.
4302 has_any_data_sections() const;
4304 // Whether this segment has a dynamic relocs.
4306 has_dynamic_reloc() const;
4308 // Return the address of the first section.
4310 first_section_load_address() const;
4312 // Return whether the addresses have been set already.
4314 are_addresses_set() const
4315 { return this->are_addresses_set_
; }
4317 // Set the addresses.
4319 set_addresses(uint64_t vaddr
, uint64_t paddr
)
4321 this->vaddr_
= vaddr
;
4322 this->paddr_
= paddr
;
4323 this->are_addresses_set_
= true;
4326 // Update the flags for the flags of an output section added to this
4329 update_flags_for_output_section(elfcpp::Elf_Xword flags
)
4331 // The ELF ABI specifies that a PT_TLS segment should always have
4332 // PF_R as the flags.
4333 if (this->type() != elfcpp::PT_TLS
)
4334 this->flags_
|= flags
;
4337 // Set the segment flags. This is only used if we have a PHDRS
4338 // clause which explicitly specifies the flags.
4340 set_flags(elfcpp::Elf_Word flags
)
4341 { this->flags_
= flags
; }
4343 // Set the address of the segment to ADDR and the offset to *POFF
4344 // and set the addresses and offsets of all contained output
4345 // sections accordingly. Set the section indexes of all contained
4346 // output sections starting with *PSHNDX. If RESET is true, first
4347 // reset the addresses of the contained sections. Return the
4348 // address of the immediately following segment. Update *POFF and
4349 // *PSHNDX. This should only be called for a PT_LOAD segment.
4351 set_section_addresses(Layout
*, bool reset
, uint64_t addr
,
4352 unsigned int* increase_relro
, bool* has_relro
,
4353 off_t
* poff
, unsigned int* pshndx
);
4355 // Set the minimum alignment of this segment. This may be adjusted
4356 // upward based on the section alignments.
4358 set_minimum_p_align(uint64_t align
)
4360 if (align
> this->min_p_align_
)
4361 this->min_p_align_
= align
;
4364 // Set the offset of this segment based on the section. This should
4365 // only be called for a non-PT_LOAD segment.
4367 set_offset(unsigned int increase
);
4369 // Set the TLS offsets of the sections contained in the PT_TLS segment.
4373 // Return the number of output sections.
4375 output_section_count() const;
4377 // Return the section attached to the list segment with the lowest
4378 // load address. This is used when handling a PHDRS clause in a
4381 section_with_lowest_load_address() const;
4383 // Write the segment header into *OPHDR.
4384 template<int size
, bool big_endian
>
4386 write_header(elfcpp::Phdr_write
<size
, big_endian
>*);
4388 // Write the section headers of associated sections into V.
4389 template<int size
, bool big_endian
>
4391 write_section_headers(const Layout
*, const Stringpool
*, unsigned char* v
,
4392 unsigned int* pshndx
) const;
4394 // Print the output sections in the map file.
4396 print_sections_to_mapfile(Mapfile
*) const;
4399 typedef std::vector
<Output_data
*> Output_data_list
;
4401 // Find the maximum alignment in an Output_data_list.
4403 maximum_alignment_list(const Output_data_list
*);
4405 // Return whether the first data section is a relro section.
4407 is_first_section_relro() const;
4409 // Set the section addresses in an Output_data_list.
4411 set_section_list_addresses(Layout
*, bool reset
, Output_data_list
*,
4412 uint64_t addr
, off_t
* poff
, unsigned int* pshndx
,
4415 // Return the number of Output_sections in an Output_data_list.
4417 output_section_count_list(const Output_data_list
*) const;
4419 // Return whether an Output_data_list has a dynamic reloc.
4421 has_dynamic_reloc_list(const Output_data_list
*) const;
4423 // Find the section with the lowest load address in an
4424 // Output_data_list.
4426 lowest_load_address_in_list(const Output_data_list
* pdl
,
4427 Output_section
** found
,
4428 uint64_t* found_lma
) const;
4430 // Find the first and last entries by address.
4432 find_first_and_last_list(const Output_data_list
* pdl
,
4433 const Output_data
** pfirst
,
4434 const Output_data
** plast
) const;
4436 // Write the section headers in the list into V.
4437 template<int size
, bool big_endian
>
4439 write_section_headers_list(const Layout
*, const Stringpool
*,
4440 const Output_data_list
*, unsigned char* v
,
4441 unsigned int* pshdx
) const;
4443 // Print a section list to the mapfile.
4445 print_section_list_to_mapfile(Mapfile
*, const Output_data_list
*) const;
4447 // NOTE: We want to use the copy constructor. Currently, shallow copy
4448 // works for us so we do not need to write our own copy constructor.
4450 // The list of output data attached to this segment.
4451 Output_data_list output_lists_
[ORDER_MAX
];
4452 // The segment virtual address.
4454 // The segment physical address.
4456 // The size of the segment in memory.
4458 // The maximum section alignment. The is_max_align_known_ field
4459 // indicates whether this has been finalized.
4460 uint64_t max_align_
;
4461 // The required minimum value for the p_align field. This is used
4462 // for PT_LOAD segments. Note that this does not mean that
4463 // addresses should be aligned to this value; it means the p_paddr
4464 // and p_vaddr fields must be congruent modulo this value. For
4465 // non-PT_LOAD segments, the dynamic linker works more efficiently
4466 // if the p_align field has the more conventional value, although it
4467 // can align as needed.
4468 uint64_t min_p_align_
;
4469 // The offset of the segment data within the file.
4471 // The size of the segment data in the file.
4473 // The segment type;
4474 elfcpp::Elf_Word type_
;
4475 // The segment flags.
4476 elfcpp::Elf_Word flags_
;
4477 // Whether we have finalized max_align_.
4478 bool is_max_align_known_
: 1;
4479 // Whether vaddr and paddr were set by a linker script.
4480 bool are_addresses_set_
: 1;
4481 // Whether this segment holds large data sections.
4482 bool is_large_data_segment_
: 1;
4485 // This class represents the output file.
4490 Output_file(const char* name
);
4492 // Indicate that this is a temporary file which should not be
4496 { this->is_temporary_
= true; }
4498 // Try to open an existing file. Returns false if the file doesn't
4499 // exist, has a size of 0 or can't be mmaped. This method is
4500 // thread-unsafe. If BASE_NAME is not NULL, use the contents of
4501 // that file as the base for incremental linking.
4503 open_base_file(const char* base_name
, bool writable
);
4505 // Open the output file. FILE_SIZE is the final size of the file.
4506 // If the file already exists, it is deleted/truncated. This method
4507 // is thread-unsafe.
4509 open(off_t file_size
);
4511 // Resize the output file. This method is thread-unsafe.
4513 resize(off_t file_size
);
4515 // Close the output file (flushing all buffered data) and make sure
4516 // there are no errors. This method is thread-unsafe.
4520 // Return the size of this file.
4523 { return this->file_size_
; }
4525 // Return the name of this file.
4528 { return this->name_
; }
4530 // We currently always use mmap which makes the view handling quite
4531 // simple. In the future we may support other approaches.
4533 // Write data to the output file.
4535 write(off_t offset
, const void* data
, size_t len
)
4536 { memcpy(this->base_
+ offset
, data
, len
); }
4538 // Get a buffer to use to write to the file, given the offset into
4539 // the file and the size.
4541 get_output_view(off_t start
, size_t size
)
4543 gold_assert(start
>= 0
4544 && start
+ static_cast<off_t
>(size
) <= this->file_size_
);
4545 return this->base_
+ start
;
4548 // VIEW must have been returned by get_output_view. Write the
4549 // buffer to the file, passing in the offset and the size.
4551 write_output_view(off_t
, size_t, unsigned char*)
4554 // Get a read/write buffer. This is used when we want to write part
4555 // of the file, read it in, and write it again.
4557 get_input_output_view(off_t start
, size_t size
)
4558 { return this->get_output_view(start
, size
); }
4560 // Write a read/write buffer back to the file.
4562 write_input_output_view(off_t
, size_t, unsigned char*)
4565 // Get a read buffer. This is used when we just want to read part
4566 // of the file back it in.
4567 const unsigned char*
4568 get_input_view(off_t start
, size_t size
)
4569 { return this->get_output_view(start
, size
); }
4571 // Release a read bfufer.
4573 free_input_view(off_t
, size_t, const unsigned char*)
4577 // Map the file into memory or, if that fails, allocate anonymous
4582 // Allocate anonymous memory for the file.
4586 // Map the file into memory.
4588 map_no_anonymous(bool);
4590 // Unmap the file from memory (and flush to disk buffers).
4600 // Base of file mapped into memory.
4601 unsigned char* base_
;
4602 // True iff base_ points to a memory buffer rather than an output file.
4603 bool map_is_anonymous_
;
4604 // True if base_ was allocated using new rather than mmap.
4605 bool map_is_allocated_
;
4606 // True if this is a temporary file which should not be output.
4610 } // End namespace gold.
4612 #endif // !defined(GOLD_OUTPUT_H)