1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
28 /* This file handles functionality common to the different MIPS ABI's. */
33 #include "libiberty.h"
35 #include "elfxx-mips.h"
38 /* Get the ECOFF swapping routines. */
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
46 /* This structure is used to hold .got entries while estimating got
50 /* The input bfd in which the symbol is defined. */
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
57 /* If abfd == NULL, an address that must be stored in the got. */
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
65 struct mips_elf_link_hash_entry
*h
;
68 /* The TLS types included in this GOT entry (specifically, GD and
69 IE). The GD and IE flags can be added as we encounter new
70 relocations. LDM can also be set; it will always be alone, not
71 combined with any GD or IE flags. An LDM GOT entry will be
72 a local symbol entry with r_symndx == 0. */
73 unsigned char tls_type
;
75 /* The offset from the beginning of the .got section to the entry
76 corresponding to this symbol+addend. If it's a global symbol
77 whose offset is yet to be decided, it's going to be -1. */
81 /* This structure is used to hold .got information when linking. */
85 /* The global symbol in the GOT with the lowest index in the dynamic
87 struct elf_link_hash_entry
*global_gotsym
;
88 /* The number of global .got entries. */
89 unsigned int global_gotno
;
90 /* The number of .got slots used for TLS. */
91 unsigned int tls_gotno
;
92 /* The first unused TLS .got entry. Used only during
93 mips_elf_initialize_tls_index. */
94 unsigned int tls_assigned_gotno
;
95 /* The number of local .got entries. */
96 unsigned int local_gotno
;
97 /* The number of local .got entries we have used. */
98 unsigned int assigned_gotno
;
99 /* A hash table holding members of the got. */
100 struct htab
*got_entries
;
101 /* A hash table mapping input bfds to other mips_got_info. NULL
102 unless multi-got was necessary. */
103 struct htab
*bfd2got
;
104 /* In multi-got links, a pointer to the next got (err, rather, most
105 of the time, it points to the previous got). */
106 struct mips_got_info
*next
;
107 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
108 for none, or MINUS_TWO for not yet assigned. This is needed
109 because a single-GOT link may have multiple hash table entries
110 for the LDM. It does not get initialized in multi-GOT mode. */
111 bfd_vma tls_ldm_offset
;
114 /* Map an input bfd to a got in a multi-got link. */
116 struct mips_elf_bfd2got_hash
{
118 struct mips_got_info
*g
;
121 /* Structure passed when traversing the bfd2got hash table, used to
122 create and merge bfd's gots. */
124 struct mips_elf_got_per_bfd_arg
126 /* A hashtable that maps bfds to gots. */
128 /* The output bfd. */
130 /* The link information. */
131 struct bfd_link_info
*info
;
132 /* A pointer to the primary got, i.e., the one that's going to get
133 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
135 struct mips_got_info
*primary
;
136 /* A non-primary got we're trying to merge with other input bfd's
138 struct mips_got_info
*current
;
139 /* The maximum number of got entries that can be addressed with a
141 unsigned int max_count
;
142 /* The number of local and global entries in the primary got. */
143 unsigned int primary_count
;
144 /* The number of local and global entries in the current got. */
145 unsigned int current_count
;
146 /* The total number of global entries which will live in the
147 primary got and be automatically relocated. This includes
148 those not referenced by the primary GOT but included in
150 unsigned int global_count
;
153 /* Another structure used to pass arguments for got entries traversal. */
155 struct mips_elf_set_global_got_offset_arg
157 struct mips_got_info
*g
;
159 unsigned int needed_relocs
;
160 struct bfd_link_info
*info
;
163 /* A structure used to count TLS relocations or GOT entries, for GOT
164 entry or ELF symbol table traversal. */
166 struct mips_elf_count_tls_arg
168 struct bfd_link_info
*info
;
172 struct _mips_elf_section_data
174 struct bfd_elf_section_data elf
;
177 struct mips_got_info
*got_info
;
182 #define mips_elf_section_data(sec) \
183 ((struct _mips_elf_section_data *) elf_section_data (sec))
185 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
186 the dynamic symbols. */
188 struct mips_elf_hash_sort_data
190 /* The symbol in the global GOT with the lowest dynamic symbol table
192 struct elf_link_hash_entry
*low
;
193 /* The least dynamic symbol table index corresponding to a non-TLS
194 symbol with a GOT entry. */
195 long min_got_dynindx
;
196 /* The greatest dynamic symbol table index corresponding to a symbol
197 with a GOT entry that is not referenced (e.g., a dynamic symbol
198 with dynamic relocations pointing to it from non-primary GOTs). */
199 long max_unref_got_dynindx
;
200 /* The greatest dynamic symbol table index not corresponding to a
201 symbol without a GOT entry. */
202 long max_non_got_dynindx
;
205 /* The MIPS ELF linker needs additional information for each symbol in
206 the global hash table. */
208 struct mips_elf_link_hash_entry
210 struct elf_link_hash_entry root
;
212 /* External symbol information. */
215 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
217 unsigned int possibly_dynamic_relocs
;
219 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
220 a readonly section. */
221 bfd_boolean readonly_reloc
;
223 /* We must not create a stub for a symbol that has relocations
224 related to taking the function's address, i.e. any but
225 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
227 bfd_boolean no_fn_stub
;
229 /* If there is a stub that 32 bit functions should use to call this
230 16 bit function, this points to the section containing the stub. */
233 /* Whether we need the fn_stub; this is set if this symbol appears
234 in any relocs other than a 16 bit call. */
235 bfd_boolean need_fn_stub
;
237 /* If there is a stub that 16 bit functions should use to call this
238 32 bit function, this points to the section containing the stub. */
241 /* This is like the call_stub field, but it is used if the function
242 being called returns a floating point value. */
243 asection
*call_fp_stub
;
245 /* Are we forced local? This will only be set if we have converted
246 the initial global GOT entry to a local GOT entry. */
247 bfd_boolean forced_local
;
251 #define GOT_TLS_LDM 2
253 #define GOT_TLS_OFFSET_DONE 0x40
254 #define GOT_TLS_DONE 0x80
255 unsigned char tls_type
;
256 /* This is only used in single-GOT mode; in multi-GOT mode there
257 is one mips_got_entry per GOT entry, so the offset is stored
258 there. In single-GOT mode there may be many mips_got_entry
259 structures all referring to the same GOT slot. It might be
260 possible to use root.got.offset instead, but that field is
261 overloaded already. */
262 bfd_vma tls_got_offset
;
265 /* MIPS ELF linker hash table. */
267 struct mips_elf_link_hash_table
269 struct elf_link_hash_table root
;
271 /* We no longer use this. */
272 /* String section indices for the dynamic section symbols. */
273 bfd_size_type dynsym_sec_strindex
[SIZEOF_MIPS_DYNSYM_SECNAMES
];
275 /* The number of .rtproc entries. */
276 bfd_size_type procedure_count
;
277 /* The size of the .compact_rel section (if SGI_COMPAT). */
278 bfd_size_type compact_rel_size
;
279 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
280 entry is set to the address of __rld_obj_head as in IRIX5. */
281 bfd_boolean use_rld_obj_head
;
282 /* This is the value of the __rld_map or __rld_obj_head symbol. */
284 /* This is set if we see any mips16 stub sections. */
285 bfd_boolean mips16_stubs_seen
;
288 #define TLS_RELOC_P(r_type) \
289 (r_type == R_MIPS_TLS_DTPMOD32 \
290 || r_type == R_MIPS_TLS_DTPMOD64 \
291 || r_type == R_MIPS_TLS_DTPREL32 \
292 || r_type == R_MIPS_TLS_DTPREL64 \
293 || r_type == R_MIPS_TLS_GD \
294 || r_type == R_MIPS_TLS_LDM \
295 || r_type == R_MIPS_TLS_DTPREL_HI16 \
296 || r_type == R_MIPS_TLS_DTPREL_LO16 \
297 || r_type == R_MIPS_TLS_GOTTPREL \
298 || r_type == R_MIPS_TLS_TPREL32 \
299 || r_type == R_MIPS_TLS_TPREL64 \
300 || r_type == R_MIPS_TLS_TPREL_HI16 \
301 || r_type == R_MIPS_TLS_TPREL_LO16)
303 /* Structure used to pass information to mips_elf_output_extsym. */
308 struct bfd_link_info
*info
;
309 struct ecoff_debug_info
*debug
;
310 const struct ecoff_debug_swap
*swap
;
314 /* The names of the runtime procedure table symbols used on IRIX5. */
316 static const char * const mips_elf_dynsym_rtproc_names
[] =
319 "_procedure_string_table",
320 "_procedure_table_size",
324 /* These structures are used to generate the .compact_rel section on
329 unsigned long id1
; /* Always one? */
330 unsigned long num
; /* Number of compact relocation entries. */
331 unsigned long id2
; /* Always two? */
332 unsigned long offset
; /* The file offset of the first relocation. */
333 unsigned long reserved0
; /* Zero? */
334 unsigned long reserved1
; /* Zero? */
343 bfd_byte reserved0
[4];
344 bfd_byte reserved1
[4];
345 } Elf32_External_compact_rel
;
349 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
350 unsigned int rtype
: 4; /* Relocation types. See below. */
351 unsigned int dist2to
: 8;
352 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
353 unsigned long konst
; /* KONST field. See below. */
354 unsigned long vaddr
; /* VADDR to be relocated. */
359 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
360 unsigned int rtype
: 4; /* Relocation types. See below. */
361 unsigned int dist2to
: 8;
362 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
363 unsigned long konst
; /* KONST field. See below. */
371 } Elf32_External_crinfo
;
377 } Elf32_External_crinfo2
;
379 /* These are the constants used to swap the bitfields in a crinfo. */
381 #define CRINFO_CTYPE (0x1)
382 #define CRINFO_CTYPE_SH (31)
383 #define CRINFO_RTYPE (0xf)
384 #define CRINFO_RTYPE_SH (27)
385 #define CRINFO_DIST2TO (0xff)
386 #define CRINFO_DIST2TO_SH (19)
387 #define CRINFO_RELVADDR (0x7ffff)
388 #define CRINFO_RELVADDR_SH (0)
390 /* A compact relocation info has long (3 words) or short (2 words)
391 formats. A short format doesn't have VADDR field and relvaddr
392 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
393 #define CRF_MIPS_LONG 1
394 #define CRF_MIPS_SHORT 0
396 /* There are 4 types of compact relocation at least. The value KONST
397 has different meaning for each type:
400 CT_MIPS_REL32 Address in data
401 CT_MIPS_WORD Address in word (XXX)
402 CT_MIPS_GPHI_LO GP - vaddr
403 CT_MIPS_JMPAD Address to jump
406 #define CRT_MIPS_REL32 0xa
407 #define CRT_MIPS_WORD 0xb
408 #define CRT_MIPS_GPHI_LO 0xc
409 #define CRT_MIPS_JMPAD 0xd
411 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
412 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
413 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
414 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
416 /* The structure of the runtime procedure descriptor created by the
417 loader for use by the static exception system. */
419 typedef struct runtime_pdr
{
420 bfd_vma adr
; /* Memory address of start of procedure. */
421 long regmask
; /* Save register mask. */
422 long regoffset
; /* Save register offset. */
423 long fregmask
; /* Save floating point register mask. */
424 long fregoffset
; /* Save floating point register offset. */
425 long frameoffset
; /* Frame size. */
426 short framereg
; /* Frame pointer register. */
427 short pcreg
; /* Offset or reg of return pc. */
428 long irpss
; /* Index into the runtime string table. */
430 struct exception_info
*exception_info
;/* Pointer to exception array. */
432 #define cbRPDR sizeof (RPDR)
433 #define rpdNil ((pRPDR) 0)
435 static struct mips_got_entry
*mips_elf_create_local_got_entry
436 (bfd
*, bfd
*, struct mips_got_info
*, asection
*, bfd_vma
, unsigned long,
437 struct mips_elf_link_hash_entry
*, int);
438 static bfd_boolean mips_elf_sort_hash_table_f
439 (struct mips_elf_link_hash_entry
*, void *);
440 static bfd_vma mips_elf_high
442 static bfd_boolean mips_elf_stub_section_p
444 static bfd_boolean mips_elf_create_dynamic_relocation
445 (bfd
*, struct bfd_link_info
*, const Elf_Internal_Rela
*,
446 struct mips_elf_link_hash_entry
*, asection
*, bfd_vma
,
447 bfd_vma
*, asection
*);
448 static hashval_t mips_elf_got_entry_hash
450 static bfd_vma mips_elf_adjust_gp
451 (bfd
*, struct mips_got_info
*, bfd
*);
452 static struct mips_got_info
*mips_elf_got_for_ibfd
453 (struct mips_got_info
*, bfd
*);
455 /* This will be used when we sort the dynamic relocation records. */
456 static bfd
*reldyn_sorting_bfd
;
458 /* Nonzero if ABFD is using the N32 ABI. */
459 #define ABI_N32_P(abfd) \
460 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
462 /* Nonzero if ABFD is using the N64 ABI. */
463 #define ABI_64_P(abfd) \
464 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
466 /* Nonzero if ABFD is using NewABI conventions. */
467 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
469 /* The IRIX compatibility level we are striving for. */
470 #define IRIX_COMPAT(abfd) \
471 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
473 /* Whether we are trying to be compatible with IRIX at all. */
474 #define SGI_COMPAT(abfd) \
475 (IRIX_COMPAT (abfd) != ict_none)
477 /* The name of the options section. */
478 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
479 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
481 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
482 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
483 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
484 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
486 /* The name of the stub section. */
487 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
489 /* The size of an external REL relocation. */
490 #define MIPS_ELF_REL_SIZE(abfd) \
491 (get_elf_backend_data (abfd)->s->sizeof_rel)
493 /* The size of an external dynamic table entry. */
494 #define MIPS_ELF_DYN_SIZE(abfd) \
495 (get_elf_backend_data (abfd)->s->sizeof_dyn)
497 /* The size of a GOT entry. */
498 #define MIPS_ELF_GOT_SIZE(abfd) \
499 (get_elf_backend_data (abfd)->s->arch_size / 8)
501 /* The size of a symbol-table entry. */
502 #define MIPS_ELF_SYM_SIZE(abfd) \
503 (get_elf_backend_data (abfd)->s->sizeof_sym)
505 /* The default alignment for sections, as a power of two. */
506 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
507 (get_elf_backend_data (abfd)->s->log_file_align)
509 /* Get word-sized data. */
510 #define MIPS_ELF_GET_WORD(abfd, ptr) \
511 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
513 /* Put out word-sized data. */
514 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
516 ? bfd_put_64 (abfd, val, ptr) \
517 : bfd_put_32 (abfd, val, ptr))
519 /* Add a dynamic symbol table-entry. */
520 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
521 _bfd_elf_add_dynamic_entry (info, tag, val)
523 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
524 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
526 /* Determine whether the internal relocation of index REL_IDX is REL
527 (zero) or RELA (non-zero). The assumption is that, if there are
528 two relocation sections for this section, one of them is REL and
529 the other is RELA. If the index of the relocation we're testing is
530 in range for the first relocation section, check that the external
531 relocation size is that for RELA. It is also assumed that, if
532 rel_idx is not in range for the first section, and this first
533 section contains REL relocs, then the relocation is in the second
534 section, that is RELA. */
535 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
536 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
537 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
538 > (bfd_vma)(rel_idx)) \
539 == (elf_section_data (sec)->rel_hdr.sh_entsize \
540 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
541 : sizeof (Elf32_External_Rela))))
543 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
544 from smaller values. Start with zero, widen, *then* decrement. */
545 #define MINUS_ONE (((bfd_vma)0) - 1)
546 #define MINUS_TWO (((bfd_vma)0) - 2)
548 /* The number of local .got entries we reserve. */
549 #define MIPS_RESERVED_GOTNO (2)
551 /* The offset of $gp from the beginning of the .got section. */
552 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
554 /* The maximum size of the GOT for it to be addressable using 16-bit
556 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
558 /* Instructions which appear in a stub. */
559 #define STUB_LW(abfd) \
561 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
562 : 0x8f998010)) /* lw t9,0x8010(gp) */
563 #define STUB_MOVE(abfd) \
565 ? 0x03e0782d /* daddu t7,ra */ \
566 : 0x03e07821)) /* addu t7,ra */
567 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
568 #define STUB_LI16(abfd) \
570 ? 0x64180000 /* daddiu t8,zero,0 */ \
571 : 0x24180000)) /* addiu t8,zero,0 */
572 #define MIPS_FUNCTION_STUB_SIZE (16)
574 /* The name of the dynamic interpreter. This is put in the .interp
577 #define ELF_DYNAMIC_INTERPRETER(abfd) \
578 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
579 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
580 : "/usr/lib/libc.so.1")
583 #define MNAME(bfd,pre,pos) \
584 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
585 #define ELF_R_SYM(bfd, i) \
586 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
587 #define ELF_R_TYPE(bfd, i) \
588 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
589 #define ELF_R_INFO(bfd, s, t) \
590 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
592 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
593 #define ELF_R_SYM(bfd, i) \
595 #define ELF_R_TYPE(bfd, i) \
597 #define ELF_R_INFO(bfd, s, t) \
598 (ELF32_R_INFO (s, t))
601 /* The mips16 compiler uses a couple of special sections to handle
602 floating point arguments.
604 Section names that look like .mips16.fn.FNNAME contain stubs that
605 copy floating point arguments from the fp regs to the gp regs and
606 then jump to FNNAME. If any 32 bit function calls FNNAME, the
607 call should be redirected to the stub instead. If no 32 bit
608 function calls FNNAME, the stub should be discarded. We need to
609 consider any reference to the function, not just a call, because
610 if the address of the function is taken we will need the stub,
611 since the address might be passed to a 32 bit function.
613 Section names that look like .mips16.call.FNNAME contain stubs
614 that copy floating point arguments from the gp regs to the fp
615 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
616 then any 16 bit function that calls FNNAME should be redirected
617 to the stub instead. If FNNAME is not a 32 bit function, the
618 stub should be discarded.
620 .mips16.call.fp.FNNAME sections are similar, but contain stubs
621 which call FNNAME and then copy the return value from the fp regs
622 to the gp regs. These stubs store the return value in $18 while
623 calling FNNAME; any function which might call one of these stubs
624 must arrange to save $18 around the call. (This case is not
625 needed for 32 bit functions that call 16 bit functions, because
626 16 bit functions always return floating point values in both
629 Note that in all cases FNNAME might be defined statically.
630 Therefore, FNNAME is not used literally. Instead, the relocation
631 information will indicate which symbol the section is for.
633 We record any stubs that we find in the symbol table. */
635 #define FN_STUB ".mips16.fn."
636 #define CALL_STUB ".mips16.call."
637 #define CALL_FP_STUB ".mips16.call.fp."
639 /* Look up an entry in a MIPS ELF linker hash table. */
641 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
642 ((struct mips_elf_link_hash_entry *) \
643 elf_link_hash_lookup (&(table)->root, (string), (create), \
646 /* Traverse a MIPS ELF linker hash table. */
648 #define mips_elf_link_hash_traverse(table, func, info) \
649 (elf_link_hash_traverse \
651 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
654 /* Get the MIPS ELF linker hash table from a link_info structure. */
656 #define mips_elf_hash_table(p) \
657 ((struct mips_elf_link_hash_table *) ((p)->hash))
659 /* Find the base offsets for thread-local storage in this object,
660 for GD/LD and IE/LE respectively. */
662 #define TP_OFFSET 0x7000
663 #define DTP_OFFSET 0x8000
666 dtprel_base (struct bfd_link_info
*info
)
668 /* If tls_sec is NULL, we should have signalled an error already. */
669 if (elf_hash_table (info
)->tls_sec
== NULL
)
671 return elf_hash_table (info
)->tls_sec
->vma
+ DTP_OFFSET
;
675 tprel_base (struct bfd_link_info
*info
)
677 /* If tls_sec is NULL, we should have signalled an error already. */
678 if (elf_hash_table (info
)->tls_sec
== NULL
)
680 return elf_hash_table (info
)->tls_sec
->vma
+ TP_OFFSET
;
683 /* Create an entry in a MIPS ELF linker hash table. */
685 static struct bfd_hash_entry
*
686 mips_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
687 struct bfd_hash_table
*table
, const char *string
)
689 struct mips_elf_link_hash_entry
*ret
=
690 (struct mips_elf_link_hash_entry
*) entry
;
692 /* Allocate the structure if it has not already been allocated by a
695 ret
= bfd_hash_allocate (table
, sizeof (struct mips_elf_link_hash_entry
));
697 return (struct bfd_hash_entry
*) ret
;
699 /* Call the allocation method of the superclass. */
700 ret
= ((struct mips_elf_link_hash_entry
*)
701 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
705 /* Set local fields. */
706 memset (&ret
->esym
, 0, sizeof (EXTR
));
707 /* We use -2 as a marker to indicate that the information has
708 not been set. -1 means there is no associated ifd. */
710 ret
->possibly_dynamic_relocs
= 0;
711 ret
->readonly_reloc
= FALSE
;
712 ret
->no_fn_stub
= FALSE
;
714 ret
->need_fn_stub
= FALSE
;
715 ret
->call_stub
= NULL
;
716 ret
->call_fp_stub
= NULL
;
717 ret
->forced_local
= FALSE
;
718 ret
->tls_type
= GOT_NORMAL
;
721 return (struct bfd_hash_entry
*) ret
;
725 _bfd_mips_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
727 struct _mips_elf_section_data
*sdata
;
728 bfd_size_type amt
= sizeof (*sdata
);
730 sdata
= bfd_zalloc (abfd
, amt
);
733 sec
->used_by_bfd
= sdata
;
735 return _bfd_elf_new_section_hook (abfd
, sec
);
738 /* Read ECOFF debugging information from a .mdebug section into a
739 ecoff_debug_info structure. */
742 _bfd_mips_elf_read_ecoff_info (bfd
*abfd
, asection
*section
,
743 struct ecoff_debug_info
*debug
)
746 const struct ecoff_debug_swap
*swap
;
749 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
750 memset (debug
, 0, sizeof (*debug
));
752 ext_hdr
= bfd_malloc (swap
->external_hdr_size
);
753 if (ext_hdr
== NULL
&& swap
->external_hdr_size
!= 0)
756 if (! bfd_get_section_contents (abfd
, section
, ext_hdr
, 0,
757 swap
->external_hdr_size
))
760 symhdr
= &debug
->symbolic_header
;
761 (*swap
->swap_hdr_in
) (abfd
, ext_hdr
, symhdr
);
763 /* The symbolic header contains absolute file offsets and sizes to
765 #define READ(ptr, offset, count, size, type) \
766 if (symhdr->count == 0) \
770 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
771 debug->ptr = bfd_malloc (amt); \
772 if (debug->ptr == NULL) \
774 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
775 || bfd_bread (debug->ptr, amt, abfd) != amt) \
779 READ (line
, cbLineOffset
, cbLine
, sizeof (unsigned char), unsigned char *);
780 READ (external_dnr
, cbDnOffset
, idnMax
, swap
->external_dnr_size
, void *);
781 READ (external_pdr
, cbPdOffset
, ipdMax
, swap
->external_pdr_size
, void *);
782 READ (external_sym
, cbSymOffset
, isymMax
, swap
->external_sym_size
, void *);
783 READ (external_opt
, cbOptOffset
, ioptMax
, swap
->external_opt_size
, void *);
784 READ (external_aux
, cbAuxOffset
, iauxMax
, sizeof (union aux_ext
),
786 READ (ss
, cbSsOffset
, issMax
, sizeof (char), char *);
787 READ (ssext
, cbSsExtOffset
, issExtMax
, sizeof (char), char *);
788 READ (external_fdr
, cbFdOffset
, ifdMax
, swap
->external_fdr_size
, void *);
789 READ (external_rfd
, cbRfdOffset
, crfd
, swap
->external_rfd_size
, void *);
790 READ (external_ext
, cbExtOffset
, iextMax
, swap
->external_ext_size
, void *);
800 if (debug
->line
!= NULL
)
802 if (debug
->external_dnr
!= NULL
)
803 free (debug
->external_dnr
);
804 if (debug
->external_pdr
!= NULL
)
805 free (debug
->external_pdr
);
806 if (debug
->external_sym
!= NULL
)
807 free (debug
->external_sym
);
808 if (debug
->external_opt
!= NULL
)
809 free (debug
->external_opt
);
810 if (debug
->external_aux
!= NULL
)
811 free (debug
->external_aux
);
812 if (debug
->ss
!= NULL
)
814 if (debug
->ssext
!= NULL
)
816 if (debug
->external_fdr
!= NULL
)
817 free (debug
->external_fdr
);
818 if (debug
->external_rfd
!= NULL
)
819 free (debug
->external_rfd
);
820 if (debug
->external_ext
!= NULL
)
821 free (debug
->external_ext
);
825 /* Swap RPDR (runtime procedure table entry) for output. */
828 ecoff_swap_rpdr_out (bfd
*abfd
, const RPDR
*in
, struct rpdr_ext
*ex
)
830 H_PUT_S32 (abfd
, in
->adr
, ex
->p_adr
);
831 H_PUT_32 (abfd
, in
->regmask
, ex
->p_regmask
);
832 H_PUT_32 (abfd
, in
->regoffset
, ex
->p_regoffset
);
833 H_PUT_32 (abfd
, in
->fregmask
, ex
->p_fregmask
);
834 H_PUT_32 (abfd
, in
->fregoffset
, ex
->p_fregoffset
);
835 H_PUT_32 (abfd
, in
->frameoffset
, ex
->p_frameoffset
);
837 H_PUT_16 (abfd
, in
->framereg
, ex
->p_framereg
);
838 H_PUT_16 (abfd
, in
->pcreg
, ex
->p_pcreg
);
840 H_PUT_32 (abfd
, in
->irpss
, ex
->p_irpss
);
843 /* Create a runtime procedure table from the .mdebug section. */
846 mips_elf_create_procedure_table (void *handle
, bfd
*abfd
,
847 struct bfd_link_info
*info
, asection
*s
,
848 struct ecoff_debug_info
*debug
)
850 const struct ecoff_debug_swap
*swap
;
851 HDRR
*hdr
= &debug
->symbolic_header
;
853 struct rpdr_ext
*erp
;
855 struct pdr_ext
*epdr
;
856 struct sym_ext
*esym
;
861 unsigned long sindex
;
865 const char *no_name_func
= _("static procedure (no name)");
873 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
875 sindex
= strlen (no_name_func
) + 1;
879 size
= swap
->external_pdr_size
;
881 epdr
= bfd_malloc (size
* count
);
885 if (! _bfd_ecoff_get_accumulated_pdr (handle
, (bfd_byte
*) epdr
))
888 size
= sizeof (RPDR
);
889 rp
= rpdr
= bfd_malloc (size
* count
);
893 size
= sizeof (char *);
894 sv
= bfd_malloc (size
* count
);
898 count
= hdr
->isymMax
;
899 size
= swap
->external_sym_size
;
900 esym
= bfd_malloc (size
* count
);
904 if (! _bfd_ecoff_get_accumulated_sym (handle
, (bfd_byte
*) esym
))
908 ss
= bfd_malloc (count
);
911 if (! _bfd_ecoff_get_accumulated_ss (handle
, (bfd_byte
*) ss
))
915 for (i
= 0; i
< (unsigned long) count
; i
++, rp
++)
917 (*swap
->swap_pdr_in
) (abfd
, epdr
+ i
, &pdr
);
918 (*swap
->swap_sym_in
) (abfd
, &esym
[pdr
.isym
], &sym
);
920 rp
->regmask
= pdr
.regmask
;
921 rp
->regoffset
= pdr
.regoffset
;
922 rp
->fregmask
= pdr
.fregmask
;
923 rp
->fregoffset
= pdr
.fregoffset
;
924 rp
->frameoffset
= pdr
.frameoffset
;
925 rp
->framereg
= pdr
.framereg
;
926 rp
->pcreg
= pdr
.pcreg
;
928 sv
[i
] = ss
+ sym
.iss
;
929 sindex
+= strlen (sv
[i
]) + 1;
933 size
= sizeof (struct rpdr_ext
) * (count
+ 2) + sindex
;
934 size
= BFD_ALIGN (size
, 16);
935 rtproc
= bfd_alloc (abfd
, size
);
938 mips_elf_hash_table (info
)->procedure_count
= 0;
942 mips_elf_hash_table (info
)->procedure_count
= count
+ 2;
945 memset (erp
, 0, sizeof (struct rpdr_ext
));
947 str
= (char *) rtproc
+ sizeof (struct rpdr_ext
) * (count
+ 2);
948 strcpy (str
, no_name_func
);
949 str
+= strlen (no_name_func
) + 1;
950 for (i
= 0; i
< count
; i
++)
952 ecoff_swap_rpdr_out (abfd
, rpdr
+ i
, erp
+ i
);
954 str
+= strlen (sv
[i
]) + 1;
956 H_PUT_S32 (abfd
, -1, (erp
+ count
)->p_adr
);
958 /* Set the size and contents of .rtproc section. */
960 s
->contents
= rtproc
;
962 /* Skip this section later on (I don't think this currently
963 matters, but someday it might). */
964 s
->map_head
.link_order
= NULL
;
993 /* Check the mips16 stubs for a particular symbol, and see if we can
997 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry
*h
,
998 void *data ATTRIBUTE_UNUSED
)
1000 if (h
->root
.root
.type
== bfd_link_hash_warning
)
1001 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
1003 if (h
->fn_stub
!= NULL
1004 && ! h
->need_fn_stub
)
1006 /* We don't need the fn_stub; the only references to this symbol
1007 are 16 bit calls. Clobber the size to 0 to prevent it from
1008 being included in the link. */
1009 h
->fn_stub
->size
= 0;
1010 h
->fn_stub
->flags
&= ~SEC_RELOC
;
1011 h
->fn_stub
->reloc_count
= 0;
1012 h
->fn_stub
->flags
|= SEC_EXCLUDE
;
1015 if (h
->call_stub
!= NULL
1016 && h
->root
.other
== STO_MIPS16
)
1018 /* We don't need the call_stub; this is a 16 bit function, so
1019 calls from other 16 bit functions are OK. Clobber the size
1020 to 0 to prevent it from being included in the link. */
1021 h
->call_stub
->size
= 0;
1022 h
->call_stub
->flags
&= ~SEC_RELOC
;
1023 h
->call_stub
->reloc_count
= 0;
1024 h
->call_stub
->flags
|= SEC_EXCLUDE
;
1027 if (h
->call_fp_stub
!= NULL
1028 && h
->root
.other
== STO_MIPS16
)
1030 /* We don't need the call_stub; this is a 16 bit function, so
1031 calls from other 16 bit functions are OK. Clobber the size
1032 to 0 to prevent it from being included in the link. */
1033 h
->call_fp_stub
->size
= 0;
1034 h
->call_fp_stub
->flags
&= ~SEC_RELOC
;
1035 h
->call_fp_stub
->reloc_count
= 0;
1036 h
->call_fp_stub
->flags
|= SEC_EXCLUDE
;
1042 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1043 Most mips16 instructions are 16 bits, but these instructions
1046 The format of these instructions is:
1048 +--------------+--------------------------------+
1049 | JALX | X| Imm 20:16 | Imm 25:21 |
1050 +--------------+--------------------------------+
1052 +-----------------------------------------------+
1054 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1055 Note that the immediate value in the first word is swapped.
1057 When producing a relocatable object file, R_MIPS16_26 is
1058 handled mostly like R_MIPS_26. In particular, the addend is
1059 stored as a straight 26-bit value in a 32-bit instruction.
1060 (gas makes life simpler for itself by never adjusting a
1061 R_MIPS16_26 reloc to be against a section, so the addend is
1062 always zero). However, the 32 bit instruction is stored as 2
1063 16-bit values, rather than a single 32-bit value. In a
1064 big-endian file, the result is the same; in a little-endian
1065 file, the two 16-bit halves of the 32 bit value are swapped.
1066 This is so that a disassembler can recognize the jal
1069 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1070 instruction stored as two 16-bit values. The addend A is the
1071 contents of the targ26 field. The calculation is the same as
1072 R_MIPS_26. When storing the calculated value, reorder the
1073 immediate value as shown above, and don't forget to store the
1074 value as two 16-bit values.
1076 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1080 +--------+----------------------+
1084 +--------+----------------------+
1087 +----------+------+-------------+
1091 +----------+--------------------+
1092 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1093 ((sub1 << 16) | sub2)).
1095 When producing a relocatable object file, the calculation is
1096 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1097 When producing a fully linked file, the calculation is
1098 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1099 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1101 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1102 mode. A typical instruction will have a format like this:
1104 +--------------+--------------------------------+
1105 | EXTEND | Imm 10:5 | Imm 15:11 |
1106 +--------------+--------------------------------+
1107 | Major | rx | ry | Imm 4:0 |
1108 +--------------+--------------------------------+
1110 EXTEND is the five bit value 11110. Major is the instruction
1113 This is handled exactly like R_MIPS_GPREL16, except that the
1114 addend is retrieved and stored as shown in this diagram; that
1115 is, the Imm fields above replace the V-rel16 field.
1117 All we need to do here is shuffle the bits appropriately. As
1118 above, the two 16-bit halves must be swapped on a
1119 little-endian system.
1121 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1122 access data when neither GP-relative nor PC-relative addressing
1123 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1124 except that the addend is retrieved and stored as shown above
1128 _bfd_mips16_elf_reloc_unshuffle (bfd
*abfd
, int r_type
,
1129 bfd_boolean jal_shuffle
, bfd_byte
*data
)
1131 bfd_vma extend
, insn
, val
;
1133 if (r_type
!= R_MIPS16_26
&& r_type
!= R_MIPS16_GPREL
1134 && r_type
!= R_MIPS16_HI16
&& r_type
!= R_MIPS16_LO16
)
1137 /* Pick up the mips16 extend instruction and the real instruction. */
1138 extend
= bfd_get_16 (abfd
, data
);
1139 insn
= bfd_get_16 (abfd
, data
+ 2);
1140 if (r_type
== R_MIPS16_26
)
1143 val
= ((extend
& 0xfc00) << 16) | ((extend
& 0x3e0) << 11)
1144 | ((extend
& 0x1f) << 21) | insn
;
1146 val
= extend
<< 16 | insn
;
1149 val
= ((extend
& 0xf800) << 16) | ((insn
& 0xffe0) << 11)
1150 | ((extend
& 0x1f) << 11) | (extend
& 0x7e0) | (insn
& 0x1f);
1151 bfd_put_32 (abfd
, val
, data
);
1155 _bfd_mips16_elf_reloc_shuffle (bfd
*abfd
, int r_type
,
1156 bfd_boolean jal_shuffle
, bfd_byte
*data
)
1158 bfd_vma extend
, insn
, val
;
1160 if (r_type
!= R_MIPS16_26
&& r_type
!= R_MIPS16_GPREL
1161 && r_type
!= R_MIPS16_HI16
&& r_type
!= R_MIPS16_LO16
)
1164 val
= bfd_get_32 (abfd
, data
);
1165 if (r_type
== R_MIPS16_26
)
1169 insn
= val
& 0xffff;
1170 extend
= ((val
>> 16) & 0xfc00) | ((val
>> 11) & 0x3e0)
1171 | ((val
>> 21) & 0x1f);
1175 insn
= val
& 0xffff;
1181 insn
= ((val
>> 11) & 0xffe0) | (val
& 0x1f);
1182 extend
= ((val
>> 16) & 0xf800) | ((val
>> 11) & 0x1f) | (val
& 0x7e0);
1184 bfd_put_16 (abfd
, insn
, data
+ 2);
1185 bfd_put_16 (abfd
, extend
, data
);
1188 bfd_reloc_status_type
1189 _bfd_mips_elf_gprel16_with_gp (bfd
*abfd
, asymbol
*symbol
,
1190 arelent
*reloc_entry
, asection
*input_section
,
1191 bfd_boolean relocatable
, void *data
, bfd_vma gp
)
1195 bfd_reloc_status_type status
;
1197 if (bfd_is_com_section (symbol
->section
))
1200 relocation
= symbol
->value
;
1202 relocation
+= symbol
->section
->output_section
->vma
;
1203 relocation
+= symbol
->section
->output_offset
;
1205 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1206 return bfd_reloc_outofrange
;
1208 /* Set val to the offset into the section or symbol. */
1209 val
= reloc_entry
->addend
;
1211 _bfd_mips_elf_sign_extend (val
, 16);
1213 /* Adjust val for the final section location and GP value. If we
1214 are producing relocatable output, we don't want to do this for
1215 an external symbol. */
1217 || (symbol
->flags
& BSF_SECTION_SYM
) != 0)
1218 val
+= relocation
- gp
;
1220 if (reloc_entry
->howto
->partial_inplace
)
1222 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
1224 + reloc_entry
->address
);
1225 if (status
!= bfd_reloc_ok
)
1229 reloc_entry
->addend
= val
;
1232 reloc_entry
->address
+= input_section
->output_offset
;
1234 return bfd_reloc_ok
;
1237 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1238 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1239 that contains the relocation field and DATA points to the start of
1244 struct mips_hi16
*next
;
1246 asection
*input_section
;
1250 /* FIXME: This should not be a static variable. */
1252 static struct mips_hi16
*mips_hi16_list
;
1254 /* A howto special_function for REL *HI16 relocations. We can only
1255 calculate the correct value once we've seen the partnering
1256 *LO16 relocation, so just save the information for later.
1258 The ABI requires that the *LO16 immediately follow the *HI16.
1259 However, as a GNU extension, we permit an arbitrary number of
1260 *HI16s to be associated with a single *LO16. This significantly
1261 simplies the relocation handling in gcc. */
1263 bfd_reloc_status_type
1264 _bfd_mips_elf_hi16_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
1265 asymbol
*symbol ATTRIBUTE_UNUSED
, void *data
,
1266 asection
*input_section
, bfd
*output_bfd
,
1267 char **error_message ATTRIBUTE_UNUSED
)
1269 struct mips_hi16
*n
;
1271 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1272 return bfd_reloc_outofrange
;
1274 n
= bfd_malloc (sizeof *n
);
1276 return bfd_reloc_outofrange
;
1278 n
->next
= mips_hi16_list
;
1280 n
->input_section
= input_section
;
1281 n
->rel
= *reloc_entry
;
1284 if (output_bfd
!= NULL
)
1285 reloc_entry
->address
+= input_section
->output_offset
;
1287 return bfd_reloc_ok
;
1290 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1291 like any other 16-bit relocation when applied to global symbols, but is
1292 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1294 bfd_reloc_status_type
1295 _bfd_mips_elf_got16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
1296 void *data
, asection
*input_section
,
1297 bfd
*output_bfd
, char **error_message
)
1299 if ((symbol
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
1300 || bfd_is_und_section (bfd_get_section (symbol
))
1301 || bfd_is_com_section (bfd_get_section (symbol
)))
1302 /* The relocation is against a global symbol. */
1303 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1304 input_section
, output_bfd
,
1307 return _bfd_mips_elf_hi16_reloc (abfd
, reloc_entry
, symbol
, data
,
1308 input_section
, output_bfd
, error_message
);
1311 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1312 is a straightforward 16 bit inplace relocation, but we must deal with
1313 any partnering high-part relocations as well. */
1315 bfd_reloc_status_type
1316 _bfd_mips_elf_lo16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
1317 void *data
, asection
*input_section
,
1318 bfd
*output_bfd
, char **error_message
)
1321 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
1323 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1324 return bfd_reloc_outofrange
;
1326 _bfd_mips16_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
1328 vallo
= bfd_get_32 (abfd
, location
);
1329 _bfd_mips16_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
1332 while (mips_hi16_list
!= NULL
)
1334 bfd_reloc_status_type ret
;
1335 struct mips_hi16
*hi
;
1337 hi
= mips_hi16_list
;
1339 /* R_MIPS_GOT16 relocations are something of a special case. We
1340 want to install the addend in the same way as for a R_MIPS_HI16
1341 relocation (with a rightshift of 16). However, since GOT16
1342 relocations can also be used with global symbols, their howto
1343 has a rightshift of 0. */
1344 if (hi
->rel
.howto
->type
== R_MIPS_GOT16
)
1345 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS_HI16
, FALSE
);
1347 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1348 carry or borrow will induce a change of +1 or -1 in the high part. */
1349 hi
->rel
.addend
+= (vallo
+ 0x8000) & 0xffff;
1351 ret
= _bfd_mips_elf_generic_reloc (abfd
, &hi
->rel
, symbol
, hi
->data
,
1352 hi
->input_section
, output_bfd
,
1354 if (ret
!= bfd_reloc_ok
)
1357 mips_hi16_list
= hi
->next
;
1361 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1362 input_section
, output_bfd
,
1366 /* A generic howto special_function. This calculates and installs the
1367 relocation itself, thus avoiding the oft-discussed problems in
1368 bfd_perform_relocation and bfd_install_relocation. */
1370 bfd_reloc_status_type
1371 _bfd_mips_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
1372 asymbol
*symbol
, void *data ATTRIBUTE_UNUSED
,
1373 asection
*input_section
, bfd
*output_bfd
,
1374 char **error_message ATTRIBUTE_UNUSED
)
1377 bfd_reloc_status_type status
;
1378 bfd_boolean relocatable
;
1380 relocatable
= (output_bfd
!= NULL
);
1382 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1383 return bfd_reloc_outofrange
;
1385 /* Build up the field adjustment in VAL. */
1387 if (!relocatable
|| (symbol
->flags
& BSF_SECTION_SYM
) != 0)
1389 /* Either we're calculating the final field value or we have a
1390 relocation against a section symbol. Add in the section's
1391 offset or address. */
1392 val
+= symbol
->section
->output_section
->vma
;
1393 val
+= symbol
->section
->output_offset
;
1398 /* We're calculating the final field value. Add in the symbol's value
1399 and, if pc-relative, subtract the address of the field itself. */
1400 val
+= symbol
->value
;
1401 if (reloc_entry
->howto
->pc_relative
)
1403 val
-= input_section
->output_section
->vma
;
1404 val
-= input_section
->output_offset
;
1405 val
-= reloc_entry
->address
;
1409 /* VAL is now the final adjustment. If we're keeping this relocation
1410 in the output file, and if the relocation uses a separate addend,
1411 we just need to add VAL to that addend. Otherwise we need to add
1412 VAL to the relocation field itself. */
1413 if (relocatable
&& !reloc_entry
->howto
->partial_inplace
)
1414 reloc_entry
->addend
+= val
;
1417 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
1419 /* Add in the separate addend, if any. */
1420 val
+= reloc_entry
->addend
;
1422 /* Add VAL to the relocation field. */
1423 _bfd_mips16_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
1425 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
1427 _bfd_mips16_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
1430 if (status
!= bfd_reloc_ok
)
1435 reloc_entry
->address
+= input_section
->output_offset
;
1437 return bfd_reloc_ok
;
1440 /* Swap an entry in a .gptab section. Note that these routines rely
1441 on the equivalence of the two elements of the union. */
1444 bfd_mips_elf32_swap_gptab_in (bfd
*abfd
, const Elf32_External_gptab
*ex
,
1447 in
->gt_entry
.gt_g_value
= H_GET_32 (abfd
, ex
->gt_entry
.gt_g_value
);
1448 in
->gt_entry
.gt_bytes
= H_GET_32 (abfd
, ex
->gt_entry
.gt_bytes
);
1452 bfd_mips_elf32_swap_gptab_out (bfd
*abfd
, const Elf32_gptab
*in
,
1453 Elf32_External_gptab
*ex
)
1455 H_PUT_32 (abfd
, in
->gt_entry
.gt_g_value
, ex
->gt_entry
.gt_g_value
);
1456 H_PUT_32 (abfd
, in
->gt_entry
.gt_bytes
, ex
->gt_entry
.gt_bytes
);
1460 bfd_elf32_swap_compact_rel_out (bfd
*abfd
, const Elf32_compact_rel
*in
,
1461 Elf32_External_compact_rel
*ex
)
1463 H_PUT_32 (abfd
, in
->id1
, ex
->id1
);
1464 H_PUT_32 (abfd
, in
->num
, ex
->num
);
1465 H_PUT_32 (abfd
, in
->id2
, ex
->id2
);
1466 H_PUT_32 (abfd
, in
->offset
, ex
->offset
);
1467 H_PUT_32 (abfd
, in
->reserved0
, ex
->reserved0
);
1468 H_PUT_32 (abfd
, in
->reserved1
, ex
->reserved1
);
1472 bfd_elf32_swap_crinfo_out (bfd
*abfd
, const Elf32_crinfo
*in
,
1473 Elf32_External_crinfo
*ex
)
1477 l
= (((in
->ctype
& CRINFO_CTYPE
) << CRINFO_CTYPE_SH
)
1478 | ((in
->rtype
& CRINFO_RTYPE
) << CRINFO_RTYPE_SH
)
1479 | ((in
->dist2to
& CRINFO_DIST2TO
) << CRINFO_DIST2TO_SH
)
1480 | ((in
->relvaddr
& CRINFO_RELVADDR
) << CRINFO_RELVADDR_SH
));
1481 H_PUT_32 (abfd
, l
, ex
->info
);
1482 H_PUT_32 (abfd
, in
->konst
, ex
->konst
);
1483 H_PUT_32 (abfd
, in
->vaddr
, ex
->vaddr
);
1486 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1487 routines swap this structure in and out. They are used outside of
1488 BFD, so they are globally visible. */
1491 bfd_mips_elf32_swap_reginfo_in (bfd
*abfd
, const Elf32_External_RegInfo
*ex
,
1494 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
1495 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
1496 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
1497 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
1498 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
1499 in
->ri_gp_value
= H_GET_32 (abfd
, ex
->ri_gp_value
);
1503 bfd_mips_elf32_swap_reginfo_out (bfd
*abfd
, const Elf32_RegInfo
*in
,
1504 Elf32_External_RegInfo
*ex
)
1506 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
1507 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
1508 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
1509 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
1510 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
1511 H_PUT_32 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
1514 /* In the 64 bit ABI, the .MIPS.options section holds register
1515 information in an Elf64_Reginfo structure. These routines swap
1516 them in and out. They are globally visible because they are used
1517 outside of BFD. These routines are here so that gas can call them
1518 without worrying about whether the 64 bit ABI has been included. */
1521 bfd_mips_elf64_swap_reginfo_in (bfd
*abfd
, const Elf64_External_RegInfo
*ex
,
1522 Elf64_Internal_RegInfo
*in
)
1524 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
1525 in
->ri_pad
= H_GET_32 (abfd
, ex
->ri_pad
);
1526 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
1527 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
1528 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
1529 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
1530 in
->ri_gp_value
= H_GET_64 (abfd
, ex
->ri_gp_value
);
1534 bfd_mips_elf64_swap_reginfo_out (bfd
*abfd
, const Elf64_Internal_RegInfo
*in
,
1535 Elf64_External_RegInfo
*ex
)
1537 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
1538 H_PUT_32 (abfd
, in
->ri_pad
, ex
->ri_pad
);
1539 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
1540 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
1541 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
1542 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
1543 H_PUT_64 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
1546 /* Swap in an options header. */
1549 bfd_mips_elf_swap_options_in (bfd
*abfd
, const Elf_External_Options
*ex
,
1550 Elf_Internal_Options
*in
)
1552 in
->kind
= H_GET_8 (abfd
, ex
->kind
);
1553 in
->size
= H_GET_8 (abfd
, ex
->size
);
1554 in
->section
= H_GET_16 (abfd
, ex
->section
);
1555 in
->info
= H_GET_32 (abfd
, ex
->info
);
1558 /* Swap out an options header. */
1561 bfd_mips_elf_swap_options_out (bfd
*abfd
, const Elf_Internal_Options
*in
,
1562 Elf_External_Options
*ex
)
1564 H_PUT_8 (abfd
, in
->kind
, ex
->kind
);
1565 H_PUT_8 (abfd
, in
->size
, ex
->size
);
1566 H_PUT_16 (abfd
, in
->section
, ex
->section
);
1567 H_PUT_32 (abfd
, in
->info
, ex
->info
);
1570 /* This function is called via qsort() to sort the dynamic relocation
1571 entries by increasing r_symndx value. */
1574 sort_dynamic_relocs (const void *arg1
, const void *arg2
)
1576 Elf_Internal_Rela int_reloc1
;
1577 Elf_Internal_Rela int_reloc2
;
1579 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg1
, &int_reloc1
);
1580 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg2
, &int_reloc2
);
1582 return ELF32_R_SYM (int_reloc1
.r_info
) - ELF32_R_SYM (int_reloc2
.r_info
);
1585 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1588 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED
,
1589 const void *arg2 ATTRIBUTE_UNUSED
)
1592 Elf_Internal_Rela int_reloc1
[3];
1593 Elf_Internal_Rela int_reloc2
[3];
1595 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
1596 (reldyn_sorting_bfd
, arg1
, int_reloc1
);
1597 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
1598 (reldyn_sorting_bfd
, arg2
, int_reloc2
);
1600 return (ELF64_R_SYM (int_reloc1
[0].r_info
)
1601 - ELF64_R_SYM (int_reloc2
[0].r_info
));
1608 /* This routine is used to write out ECOFF debugging external symbol
1609 information. It is called via mips_elf_link_hash_traverse. The
1610 ECOFF external symbol information must match the ELF external
1611 symbol information. Unfortunately, at this point we don't know
1612 whether a symbol is required by reloc information, so the two
1613 tables may wind up being different. We must sort out the external
1614 symbol information before we can set the final size of the .mdebug
1615 section, and we must set the size of the .mdebug section before we
1616 can relocate any sections, and we can't know which symbols are
1617 required by relocation until we relocate the sections.
1618 Fortunately, it is relatively unlikely that any symbol will be
1619 stripped but required by a reloc. In particular, it can not happen
1620 when generating a final executable. */
1623 mips_elf_output_extsym (struct mips_elf_link_hash_entry
*h
, void *data
)
1625 struct extsym_info
*einfo
= data
;
1627 asection
*sec
, *output_section
;
1629 if (h
->root
.root
.type
== bfd_link_hash_warning
)
1630 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
1632 if (h
->root
.indx
== -2)
1634 else if ((h
->root
.def_dynamic
1635 || h
->root
.ref_dynamic
1636 || h
->root
.type
== bfd_link_hash_new
)
1637 && !h
->root
.def_regular
1638 && !h
->root
.ref_regular
)
1640 else if (einfo
->info
->strip
== strip_all
1641 || (einfo
->info
->strip
== strip_some
1642 && bfd_hash_lookup (einfo
->info
->keep_hash
,
1643 h
->root
.root
.root
.string
,
1644 FALSE
, FALSE
) == NULL
))
1652 if (h
->esym
.ifd
== -2)
1655 h
->esym
.cobol_main
= 0;
1656 h
->esym
.weakext
= 0;
1657 h
->esym
.reserved
= 0;
1658 h
->esym
.ifd
= ifdNil
;
1659 h
->esym
.asym
.value
= 0;
1660 h
->esym
.asym
.st
= stGlobal
;
1662 if (h
->root
.root
.type
== bfd_link_hash_undefined
1663 || h
->root
.root
.type
== bfd_link_hash_undefweak
)
1667 /* Use undefined class. Also, set class and type for some
1669 name
= h
->root
.root
.root
.string
;
1670 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
1671 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
1673 h
->esym
.asym
.sc
= scData
;
1674 h
->esym
.asym
.st
= stLabel
;
1675 h
->esym
.asym
.value
= 0;
1677 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
1679 h
->esym
.asym
.sc
= scAbs
;
1680 h
->esym
.asym
.st
= stLabel
;
1681 h
->esym
.asym
.value
=
1682 mips_elf_hash_table (einfo
->info
)->procedure_count
;
1684 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (einfo
->abfd
))
1686 h
->esym
.asym
.sc
= scAbs
;
1687 h
->esym
.asym
.st
= stLabel
;
1688 h
->esym
.asym
.value
= elf_gp (einfo
->abfd
);
1691 h
->esym
.asym
.sc
= scUndefined
;
1693 else if (h
->root
.root
.type
!= bfd_link_hash_defined
1694 && h
->root
.root
.type
!= bfd_link_hash_defweak
)
1695 h
->esym
.asym
.sc
= scAbs
;
1700 sec
= h
->root
.root
.u
.def
.section
;
1701 output_section
= sec
->output_section
;
1703 /* When making a shared library and symbol h is the one from
1704 the another shared library, OUTPUT_SECTION may be null. */
1705 if (output_section
== NULL
)
1706 h
->esym
.asym
.sc
= scUndefined
;
1709 name
= bfd_section_name (output_section
->owner
, output_section
);
1711 if (strcmp (name
, ".text") == 0)
1712 h
->esym
.asym
.sc
= scText
;
1713 else if (strcmp (name
, ".data") == 0)
1714 h
->esym
.asym
.sc
= scData
;
1715 else if (strcmp (name
, ".sdata") == 0)
1716 h
->esym
.asym
.sc
= scSData
;
1717 else if (strcmp (name
, ".rodata") == 0
1718 || strcmp (name
, ".rdata") == 0)
1719 h
->esym
.asym
.sc
= scRData
;
1720 else if (strcmp (name
, ".bss") == 0)
1721 h
->esym
.asym
.sc
= scBss
;
1722 else if (strcmp (name
, ".sbss") == 0)
1723 h
->esym
.asym
.sc
= scSBss
;
1724 else if (strcmp (name
, ".init") == 0)
1725 h
->esym
.asym
.sc
= scInit
;
1726 else if (strcmp (name
, ".fini") == 0)
1727 h
->esym
.asym
.sc
= scFini
;
1729 h
->esym
.asym
.sc
= scAbs
;
1733 h
->esym
.asym
.reserved
= 0;
1734 h
->esym
.asym
.index
= indexNil
;
1737 if (h
->root
.root
.type
== bfd_link_hash_common
)
1738 h
->esym
.asym
.value
= h
->root
.root
.u
.c
.size
;
1739 else if (h
->root
.root
.type
== bfd_link_hash_defined
1740 || h
->root
.root
.type
== bfd_link_hash_defweak
)
1742 if (h
->esym
.asym
.sc
== scCommon
)
1743 h
->esym
.asym
.sc
= scBss
;
1744 else if (h
->esym
.asym
.sc
== scSCommon
)
1745 h
->esym
.asym
.sc
= scSBss
;
1747 sec
= h
->root
.root
.u
.def
.section
;
1748 output_section
= sec
->output_section
;
1749 if (output_section
!= NULL
)
1750 h
->esym
.asym
.value
= (h
->root
.root
.u
.def
.value
1751 + sec
->output_offset
1752 + output_section
->vma
);
1754 h
->esym
.asym
.value
= 0;
1756 else if (h
->root
.needs_plt
)
1758 struct mips_elf_link_hash_entry
*hd
= h
;
1759 bfd_boolean no_fn_stub
= h
->no_fn_stub
;
1761 while (hd
->root
.root
.type
== bfd_link_hash_indirect
)
1763 hd
= (struct mips_elf_link_hash_entry
*)h
->root
.root
.u
.i
.link
;
1764 no_fn_stub
= no_fn_stub
|| hd
->no_fn_stub
;
1769 /* Set type and value for a symbol with a function stub. */
1770 h
->esym
.asym
.st
= stProc
;
1771 sec
= hd
->root
.root
.u
.def
.section
;
1773 h
->esym
.asym
.value
= 0;
1776 output_section
= sec
->output_section
;
1777 if (output_section
!= NULL
)
1778 h
->esym
.asym
.value
= (hd
->root
.plt
.offset
1779 + sec
->output_offset
1780 + output_section
->vma
);
1782 h
->esym
.asym
.value
= 0;
1787 if (! bfd_ecoff_debug_one_external (einfo
->abfd
, einfo
->debug
, einfo
->swap
,
1788 h
->root
.root
.root
.string
,
1791 einfo
->failed
= TRUE
;
1798 /* A comparison routine used to sort .gptab entries. */
1801 gptab_compare (const void *p1
, const void *p2
)
1803 const Elf32_gptab
*a1
= p1
;
1804 const Elf32_gptab
*a2
= p2
;
1806 return a1
->gt_entry
.gt_g_value
- a2
->gt_entry
.gt_g_value
;
1809 /* Functions to manage the got entry hash table. */
1811 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1814 static INLINE hashval_t
1815 mips_elf_hash_bfd_vma (bfd_vma addr
)
1818 return addr
+ (addr
>> 32);
1824 /* got_entries only match if they're identical, except for gotidx, so
1825 use all fields to compute the hash, and compare the appropriate
1829 mips_elf_got_entry_hash (const void *entry_
)
1831 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
1833 return entry
->symndx
1834 + ((entry
->tls_type
& GOT_TLS_LDM
) << 17)
1835 + (! entry
->abfd
? mips_elf_hash_bfd_vma (entry
->d
.address
)
1837 + (entry
->symndx
>= 0 ? mips_elf_hash_bfd_vma (entry
->d
.addend
)
1838 : entry
->d
.h
->root
.root
.root
.hash
));
1842 mips_elf_got_entry_eq (const void *entry1
, const void *entry2
)
1844 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
1845 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
1847 /* An LDM entry can only match another LDM entry. */
1848 if ((e1
->tls_type
^ e2
->tls_type
) & GOT_TLS_LDM
)
1851 return e1
->abfd
== e2
->abfd
&& e1
->symndx
== e2
->symndx
1852 && (! e1
->abfd
? e1
->d
.address
== e2
->d
.address
1853 : e1
->symndx
>= 0 ? e1
->d
.addend
== e2
->d
.addend
1854 : e1
->d
.h
== e2
->d
.h
);
1857 /* multi_got_entries are still a match in the case of global objects,
1858 even if the input bfd in which they're referenced differs, so the
1859 hash computation and compare functions are adjusted
1863 mips_elf_multi_got_entry_hash (const void *entry_
)
1865 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
1867 return entry
->symndx
1869 ? mips_elf_hash_bfd_vma (entry
->d
.address
)
1870 : entry
->symndx
>= 0
1871 ? ((entry
->tls_type
& GOT_TLS_LDM
)
1872 ? (GOT_TLS_LDM
<< 17)
1874 + mips_elf_hash_bfd_vma (entry
->d
.addend
)))
1875 : entry
->d
.h
->root
.root
.root
.hash
);
1879 mips_elf_multi_got_entry_eq (const void *entry1
, const void *entry2
)
1881 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
1882 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
1884 /* Any two LDM entries match. */
1885 if (e1
->tls_type
& e2
->tls_type
& GOT_TLS_LDM
)
1888 /* Nothing else matches an LDM entry. */
1889 if ((e1
->tls_type
^ e2
->tls_type
) & GOT_TLS_LDM
)
1892 return e1
->symndx
== e2
->symndx
1893 && (e1
->symndx
>= 0 ? e1
->abfd
== e2
->abfd
&& e1
->d
.addend
== e2
->d
.addend
1894 : e1
->abfd
== NULL
|| e2
->abfd
== NULL
1895 ? e1
->abfd
== e2
->abfd
&& e1
->d
.address
== e2
->d
.address
1896 : e1
->d
.h
== e2
->d
.h
);
1899 /* Returns the dynamic relocation section for DYNOBJ. */
1902 mips_elf_rel_dyn_section (bfd
*dynobj
, bfd_boolean create_p
)
1904 static const char dname
[] = ".rel.dyn";
1907 sreloc
= bfd_get_section_by_name (dynobj
, dname
);
1908 if (sreloc
== NULL
&& create_p
)
1910 sreloc
= bfd_make_section_with_flags (dynobj
, dname
,
1915 | SEC_LINKER_CREATED
1918 || ! bfd_set_section_alignment (dynobj
, sreloc
,
1919 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
1925 /* Returns the GOT section for ABFD. */
1928 mips_elf_got_section (bfd
*abfd
, bfd_boolean maybe_excluded
)
1930 asection
*sgot
= bfd_get_section_by_name (abfd
, ".got");
1932 || (! maybe_excluded
&& (sgot
->flags
& SEC_EXCLUDE
) != 0))
1937 /* Returns the GOT information associated with the link indicated by
1938 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1941 static struct mips_got_info
*
1942 mips_elf_got_info (bfd
*abfd
, asection
**sgotp
)
1945 struct mips_got_info
*g
;
1947 sgot
= mips_elf_got_section (abfd
, TRUE
);
1948 BFD_ASSERT (sgot
!= NULL
);
1949 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
1950 g
= mips_elf_section_data (sgot
)->u
.got_info
;
1951 BFD_ASSERT (g
!= NULL
);
1954 *sgotp
= (sgot
->flags
& SEC_EXCLUDE
) == 0 ? sgot
: NULL
;
1959 /* Count the number of relocations needed for a TLS GOT entry, with
1960 access types from TLS_TYPE, and symbol H (or a local symbol if H
1964 mips_tls_got_relocs (struct bfd_link_info
*info
, unsigned char tls_type
,
1965 struct elf_link_hash_entry
*h
)
1969 bfd_boolean need_relocs
= FALSE
;
1970 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
1972 if (h
&& WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
1973 && (!info
->shared
|| !SYMBOL_REFERENCES_LOCAL (info
, h
)))
1976 if ((info
->shared
|| indx
!= 0)
1978 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
1979 || h
->root
.type
!= bfd_link_hash_undefweak
))
1985 if (tls_type
& GOT_TLS_GD
)
1992 if (tls_type
& GOT_TLS_IE
)
1995 if ((tls_type
& GOT_TLS_LDM
) && info
->shared
)
2001 /* Count the number of TLS relocations required for the GOT entry in
2002 ARG1, if it describes a local symbol. */
2005 mips_elf_count_local_tls_relocs (void **arg1
, void *arg2
)
2007 struct mips_got_entry
*entry
= * (struct mips_got_entry
**) arg1
;
2008 struct mips_elf_count_tls_arg
*arg
= arg2
;
2010 if (entry
->abfd
!= NULL
&& entry
->symndx
!= -1)
2011 arg
->needed
+= mips_tls_got_relocs (arg
->info
, entry
->tls_type
, NULL
);
2016 /* Count the number of TLS GOT entries required for the global (or
2017 forced-local) symbol in ARG1. */
2020 mips_elf_count_global_tls_entries (void *arg1
, void *arg2
)
2022 struct mips_elf_link_hash_entry
*hm
2023 = (struct mips_elf_link_hash_entry
*) arg1
;
2024 struct mips_elf_count_tls_arg
*arg
= arg2
;
2026 if (hm
->tls_type
& GOT_TLS_GD
)
2028 if (hm
->tls_type
& GOT_TLS_IE
)
2034 /* Count the number of TLS relocations required for the global (or
2035 forced-local) symbol in ARG1. */
2038 mips_elf_count_global_tls_relocs (void *arg1
, void *arg2
)
2040 struct mips_elf_link_hash_entry
*hm
2041 = (struct mips_elf_link_hash_entry
*) arg1
;
2042 struct mips_elf_count_tls_arg
*arg
= arg2
;
2044 arg
->needed
+= mips_tls_got_relocs (arg
->info
, hm
->tls_type
, &hm
->root
);
2049 /* Output a simple dynamic relocation into SRELOC. */
2052 mips_elf_output_dynamic_relocation (bfd
*output_bfd
,
2058 Elf_Internal_Rela rel
[3];
2060 memset (rel
, 0, sizeof (rel
));
2062 rel
[0].r_info
= ELF_R_INFO (output_bfd
, indx
, r_type
);
2063 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
2065 if (ABI_64_P (output_bfd
))
2067 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
2068 (output_bfd
, &rel
[0],
2070 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
2073 bfd_elf32_swap_reloc_out
2074 (output_bfd
, &rel
[0],
2076 + sreloc
->reloc_count
* sizeof (Elf32_External_Rel
)));
2077 ++sreloc
->reloc_count
;
2080 /* Initialize a set of TLS GOT entries for one symbol. */
2083 mips_elf_initialize_tls_slots (bfd
*abfd
, bfd_vma got_offset
,
2084 unsigned char *tls_type_p
,
2085 struct bfd_link_info
*info
,
2086 struct mips_elf_link_hash_entry
*h
,
2090 asection
*sreloc
, *sgot
;
2091 bfd_vma offset
, offset2
;
2093 bfd_boolean need_relocs
= FALSE
;
2095 dynobj
= elf_hash_table (info
)->dynobj
;
2096 sgot
= mips_elf_got_section (dynobj
, FALSE
);
2101 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
2103 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, &h
->root
)
2104 && (!info
->shared
|| !SYMBOL_REFERENCES_LOCAL (info
, &h
->root
)))
2105 indx
= h
->root
.dynindx
;
2108 if (*tls_type_p
& GOT_TLS_DONE
)
2111 if ((info
->shared
|| indx
!= 0)
2113 || ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
2114 || h
->root
.type
!= bfd_link_hash_undefweak
))
2117 /* MINUS_ONE means the symbol is not defined in this object. It may not
2118 be defined at all; assume that the value doesn't matter in that
2119 case. Otherwise complain if we would use the value. */
2120 BFD_ASSERT (value
!= MINUS_ONE
|| (indx
!= 0 && need_relocs
)
2121 || h
->root
.root
.type
== bfd_link_hash_undefweak
);
2123 /* Emit necessary relocations. */
2124 sreloc
= mips_elf_rel_dyn_section (dynobj
, FALSE
);
2126 /* General Dynamic. */
2127 if (*tls_type_p
& GOT_TLS_GD
)
2129 offset
= got_offset
;
2130 offset2
= offset
+ MIPS_ELF_GOT_SIZE (abfd
);
2134 mips_elf_output_dynamic_relocation
2135 (abfd
, sreloc
, indx
,
2136 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
2137 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset
);
2140 mips_elf_output_dynamic_relocation
2141 (abfd
, sreloc
, indx
,
2142 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPREL64
: R_MIPS_TLS_DTPREL32
,
2143 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset2
);
2145 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
2146 sgot
->contents
+ offset2
);
2150 MIPS_ELF_PUT_WORD (abfd
, 1,
2151 sgot
->contents
+ offset
);
2152 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
2153 sgot
->contents
+ offset2
);
2156 got_offset
+= 2 * MIPS_ELF_GOT_SIZE (abfd
);
2159 /* Initial Exec model. */
2160 if (*tls_type_p
& GOT_TLS_IE
)
2162 offset
= got_offset
;
2167 MIPS_ELF_PUT_WORD (abfd
, value
- elf_hash_table (info
)->tls_sec
->vma
,
2168 sgot
->contents
+ offset
);
2170 MIPS_ELF_PUT_WORD (abfd
, 0,
2171 sgot
->contents
+ offset
);
2173 mips_elf_output_dynamic_relocation
2174 (abfd
, sreloc
, indx
,
2175 ABI_64_P (abfd
) ? R_MIPS_TLS_TPREL64
: R_MIPS_TLS_TPREL32
,
2176 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset
);
2179 MIPS_ELF_PUT_WORD (abfd
, value
- tprel_base (info
),
2180 sgot
->contents
+ offset
);
2183 if (*tls_type_p
& GOT_TLS_LDM
)
2185 /* The initial offset is zero, and the LD offsets will include the
2186 bias by DTP_OFFSET. */
2187 MIPS_ELF_PUT_WORD (abfd
, 0,
2188 sgot
->contents
+ got_offset
2189 + MIPS_ELF_GOT_SIZE (abfd
));
2192 MIPS_ELF_PUT_WORD (abfd
, 1,
2193 sgot
->contents
+ got_offset
);
2195 mips_elf_output_dynamic_relocation
2196 (abfd
, sreloc
, indx
,
2197 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
2198 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset
);
2201 *tls_type_p
|= GOT_TLS_DONE
;
2204 /* Return the GOT index to use for a relocation of type R_TYPE against
2205 a symbol accessed using TLS_TYPE models. The GOT entries for this
2206 symbol in this GOT start at GOT_INDEX. This function initializes the
2207 GOT entries and corresponding relocations. */
2210 mips_tls_got_index (bfd
*abfd
, bfd_vma got_index
, unsigned char *tls_type
,
2211 int r_type
, struct bfd_link_info
*info
,
2212 struct mips_elf_link_hash_entry
*h
, bfd_vma symbol
)
2214 BFD_ASSERT (r_type
== R_MIPS_TLS_GOTTPREL
|| r_type
== R_MIPS_TLS_GD
2215 || r_type
== R_MIPS_TLS_LDM
);
2217 mips_elf_initialize_tls_slots (abfd
, got_index
, tls_type
, info
, h
, symbol
);
2219 if (r_type
== R_MIPS_TLS_GOTTPREL
)
2221 BFD_ASSERT (*tls_type
& GOT_TLS_IE
);
2222 if (*tls_type
& GOT_TLS_GD
)
2223 return got_index
+ 2 * MIPS_ELF_GOT_SIZE (abfd
);
2228 if (r_type
== R_MIPS_TLS_GD
)
2230 BFD_ASSERT (*tls_type
& GOT_TLS_GD
);
2234 if (r_type
== R_MIPS_TLS_LDM
)
2236 BFD_ASSERT (*tls_type
& GOT_TLS_LDM
);
2243 /* Returns the GOT offset at which the indicated address can be found.
2244 If there is not yet a GOT entry for this value, create one. If
2245 R_SYMNDX refers to a TLS symbol, create a TLS GOT entry instead.
2246 Returns -1 if no satisfactory GOT offset can be found. */
2249 mips_elf_local_got_index (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
2250 bfd_vma value
, unsigned long r_symndx
,
2251 struct mips_elf_link_hash_entry
*h
, int r_type
)
2254 struct mips_got_info
*g
;
2255 struct mips_got_entry
*entry
;
2257 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
2259 entry
= mips_elf_create_local_got_entry (abfd
, ibfd
, g
, sgot
, value
,
2260 r_symndx
, h
, r_type
);
2264 if (TLS_RELOC_P (r_type
))
2265 return mips_tls_got_index (abfd
, entry
->gotidx
, &entry
->tls_type
, r_type
,
2268 return entry
->gotidx
;
2271 /* Returns the GOT index for the global symbol indicated by H. */
2274 mips_elf_global_got_index (bfd
*abfd
, bfd
*ibfd
, struct elf_link_hash_entry
*h
,
2275 int r_type
, struct bfd_link_info
*info
)
2279 struct mips_got_info
*g
, *gg
;
2280 long global_got_dynindx
= 0;
2282 gg
= g
= mips_elf_got_info (abfd
, &sgot
);
2283 if (g
->bfd2got
&& ibfd
)
2285 struct mips_got_entry e
, *p
;
2287 BFD_ASSERT (h
->dynindx
>= 0);
2289 g
= mips_elf_got_for_ibfd (g
, ibfd
);
2290 if (g
->next
!= gg
|| TLS_RELOC_P (r_type
))
2294 e
.d
.h
= (struct mips_elf_link_hash_entry
*)h
;
2297 p
= htab_find (g
->got_entries
, &e
);
2299 BFD_ASSERT (p
->gotidx
> 0);
2301 if (TLS_RELOC_P (r_type
))
2303 bfd_vma value
= MINUS_ONE
;
2304 if ((h
->root
.type
== bfd_link_hash_defined
2305 || h
->root
.type
== bfd_link_hash_defweak
)
2306 && h
->root
.u
.def
.section
->output_section
)
2307 value
= (h
->root
.u
.def
.value
2308 + h
->root
.u
.def
.section
->output_offset
2309 + h
->root
.u
.def
.section
->output_section
->vma
);
2311 return mips_tls_got_index (abfd
, p
->gotidx
, &p
->tls_type
, r_type
,
2312 info
, e
.d
.h
, value
);
2319 if (gg
->global_gotsym
!= NULL
)
2320 global_got_dynindx
= gg
->global_gotsym
->dynindx
;
2322 if (TLS_RELOC_P (r_type
))
2324 struct mips_elf_link_hash_entry
*hm
2325 = (struct mips_elf_link_hash_entry
*) h
;
2326 bfd_vma value
= MINUS_ONE
;
2328 if ((h
->root
.type
== bfd_link_hash_defined
2329 || h
->root
.type
== bfd_link_hash_defweak
)
2330 && h
->root
.u
.def
.section
->output_section
)
2331 value
= (h
->root
.u
.def
.value
2332 + h
->root
.u
.def
.section
->output_offset
2333 + h
->root
.u
.def
.section
->output_section
->vma
);
2335 index
= mips_tls_got_index (abfd
, hm
->tls_got_offset
, &hm
->tls_type
,
2336 r_type
, info
, hm
, value
);
2340 /* Once we determine the global GOT entry with the lowest dynamic
2341 symbol table index, we must put all dynamic symbols with greater
2342 indices into the GOT. That makes it easy to calculate the GOT
2344 BFD_ASSERT (h
->dynindx
>= global_got_dynindx
);
2345 index
= ((h
->dynindx
- global_got_dynindx
+ g
->local_gotno
)
2346 * MIPS_ELF_GOT_SIZE (abfd
));
2348 BFD_ASSERT (index
< sgot
->size
);
2353 /* Find a GOT entry that is within 32KB of the VALUE. These entries
2354 are supposed to be placed at small offsets in the GOT, i.e.,
2355 within 32KB of GP. Return the index into the GOT for this page,
2356 and store the offset from this entry to the desired address in
2357 OFFSETP, if it is non-NULL. */
2360 mips_elf_got_page (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
2361 bfd_vma value
, bfd_vma
*offsetp
)
2364 struct mips_got_info
*g
;
2366 struct mips_got_entry
*entry
;
2368 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
2370 entry
= mips_elf_create_local_got_entry (abfd
, ibfd
, g
, sgot
,
2372 & (~(bfd_vma
)0xffff), 0,
2373 NULL
, R_MIPS_GOT_PAGE
);
2378 index
= entry
->gotidx
;
2381 *offsetp
= value
- entry
->d
.address
;
2386 /* Find a GOT entry whose higher-order 16 bits are the same as those
2387 for value. Return the index into the GOT for this entry. */
2390 mips_elf_got16_entry (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
2391 bfd_vma value
, bfd_boolean external
)
2394 struct mips_got_info
*g
;
2395 struct mips_got_entry
*entry
;
2399 /* Although the ABI says that it is "the high-order 16 bits" that we
2400 want, it is really the %high value. The complete value is
2401 calculated with a `addiu' of a LO16 relocation, just as with a
2403 value
= mips_elf_high (value
) << 16;
2406 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
2408 entry
= mips_elf_create_local_got_entry (abfd
, ibfd
, g
, sgot
, value
, 0, NULL
,
2411 return entry
->gotidx
;
2416 /* Returns the offset for the entry at the INDEXth position
2420 mips_elf_got_offset_from_index (bfd
*dynobj
, bfd
*output_bfd
,
2421 bfd
*input_bfd
, bfd_vma index
)
2425 struct mips_got_info
*g
;
2427 g
= mips_elf_got_info (dynobj
, &sgot
);
2428 gp
= _bfd_get_gp_value (output_bfd
)
2429 + mips_elf_adjust_gp (output_bfd
, g
, input_bfd
);
2431 return sgot
->output_section
->vma
+ sgot
->output_offset
+ index
- gp
;
2434 /* Create a local GOT entry for VALUE. Return the index of the entry,
2435 or -1 if it could not be created. If R_SYMNDX refers to a TLS symbol,
2436 create a TLS entry instead. */
2438 static struct mips_got_entry
*
2439 mips_elf_create_local_got_entry (bfd
*abfd
, bfd
*ibfd
,
2440 struct mips_got_info
*gg
,
2441 asection
*sgot
, bfd_vma value
,
2442 unsigned long r_symndx
,
2443 struct mips_elf_link_hash_entry
*h
,
2446 struct mips_got_entry entry
, **loc
;
2447 struct mips_got_info
*g
;
2451 entry
.d
.address
= value
;
2454 g
= mips_elf_got_for_ibfd (gg
, ibfd
);
2457 g
= mips_elf_got_for_ibfd (gg
, abfd
);
2458 BFD_ASSERT (g
!= NULL
);
2461 /* We might have a symbol, H, if it has been forced local. Use the
2462 global entry then. It doesn't matter whether an entry is local
2463 or global for TLS, since the dynamic linker does not
2464 automatically relocate TLS GOT entries. */
2465 BFD_ASSERT (h
== NULL
|| h
->root
.forced_local
);
2466 if (TLS_RELOC_P (r_type
))
2468 struct mips_got_entry
*p
;
2471 if (r_type
== R_MIPS_TLS_LDM
)
2473 entry
.tls_type
= GOT_TLS_LDM
;
2479 entry
.symndx
= r_symndx
;
2485 p
= (struct mips_got_entry
*)
2486 htab_find (g
->got_entries
, &entry
);
2492 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
2497 entry
.gotidx
= MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
++;
2500 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
2505 memcpy (*loc
, &entry
, sizeof entry
);
2507 if (g
->assigned_gotno
>= g
->local_gotno
)
2509 (*loc
)->gotidx
= -1;
2510 /* We didn't allocate enough space in the GOT. */
2511 (*_bfd_error_handler
)
2512 (_("not enough GOT space for local GOT entries"));
2513 bfd_set_error (bfd_error_bad_value
);
2517 MIPS_ELF_PUT_WORD (abfd
, value
,
2518 (sgot
->contents
+ entry
.gotidx
));
2523 /* Sort the dynamic symbol table so that symbols that need GOT entries
2524 appear towards the end. This reduces the amount of GOT space
2525 required. MAX_LOCAL is used to set the number of local symbols
2526 known to be in the dynamic symbol table. During
2527 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2528 section symbols are added and the count is higher. */
2531 mips_elf_sort_hash_table (struct bfd_link_info
*info
, unsigned long max_local
)
2533 struct mips_elf_hash_sort_data hsd
;
2534 struct mips_got_info
*g
;
2537 dynobj
= elf_hash_table (info
)->dynobj
;
2539 g
= mips_elf_got_info (dynobj
, NULL
);
2542 hsd
.max_unref_got_dynindx
=
2543 hsd
.min_got_dynindx
= elf_hash_table (info
)->dynsymcount
2544 /* In the multi-got case, assigned_gotno of the master got_info
2545 indicate the number of entries that aren't referenced in the
2546 primary GOT, but that must have entries because there are
2547 dynamic relocations that reference it. Since they aren't
2548 referenced, we move them to the end of the GOT, so that they
2549 don't prevent other entries that are referenced from getting
2550 too large offsets. */
2551 - (g
->next
? g
->assigned_gotno
: 0);
2552 hsd
.max_non_got_dynindx
= max_local
;
2553 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table
*)
2554 elf_hash_table (info
)),
2555 mips_elf_sort_hash_table_f
,
2558 /* There should have been enough room in the symbol table to
2559 accommodate both the GOT and non-GOT symbols. */
2560 BFD_ASSERT (hsd
.max_non_got_dynindx
<= hsd
.min_got_dynindx
);
2561 BFD_ASSERT ((unsigned long)hsd
.max_unref_got_dynindx
2562 <= elf_hash_table (info
)->dynsymcount
);
2564 /* Now we know which dynamic symbol has the lowest dynamic symbol
2565 table index in the GOT. */
2566 g
->global_gotsym
= hsd
.low
;
2571 /* If H needs a GOT entry, assign it the highest available dynamic
2572 index. Otherwise, assign it the lowest available dynamic
2576 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry
*h
, void *data
)
2578 struct mips_elf_hash_sort_data
*hsd
= data
;
2580 if (h
->root
.root
.type
== bfd_link_hash_warning
)
2581 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
2583 /* Symbols without dynamic symbol table entries aren't interesting
2585 if (h
->root
.dynindx
== -1)
2588 /* Global symbols that need GOT entries that are not explicitly
2589 referenced are marked with got offset 2. Those that are
2590 referenced get a 1, and those that don't need GOT entries get
2592 if (h
->root
.got
.offset
== 2)
2594 BFD_ASSERT (h
->tls_type
== GOT_NORMAL
);
2596 if (hsd
->max_unref_got_dynindx
== hsd
->min_got_dynindx
)
2597 hsd
->low
= (struct elf_link_hash_entry
*) h
;
2598 h
->root
.dynindx
= hsd
->max_unref_got_dynindx
++;
2600 else if (h
->root
.got
.offset
!= 1)
2601 h
->root
.dynindx
= hsd
->max_non_got_dynindx
++;
2604 BFD_ASSERT (h
->tls_type
== GOT_NORMAL
);
2606 h
->root
.dynindx
= --hsd
->min_got_dynindx
;
2607 hsd
->low
= (struct elf_link_hash_entry
*) h
;
2613 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2614 symbol table index lower than any we've seen to date, record it for
2618 mips_elf_record_global_got_symbol (struct elf_link_hash_entry
*h
,
2619 bfd
*abfd
, struct bfd_link_info
*info
,
2620 struct mips_got_info
*g
,
2621 unsigned char tls_flag
)
2623 struct mips_got_entry entry
, **loc
;
2625 /* A global symbol in the GOT must also be in the dynamic symbol
2627 if (h
->dynindx
== -1)
2629 switch (ELF_ST_VISIBILITY (h
->other
))
2633 _bfd_mips_elf_hide_symbol (info
, h
, TRUE
);
2636 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
2640 /* Make sure we have a GOT to put this entry into. */
2641 BFD_ASSERT (g
!= NULL
);
2645 entry
.d
.h
= (struct mips_elf_link_hash_entry
*) h
;
2648 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
2651 /* If we've already marked this entry as needing GOT space, we don't
2652 need to do it again. */
2655 (*loc
)->tls_type
|= tls_flag
;
2659 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
2665 entry
.tls_type
= tls_flag
;
2667 memcpy (*loc
, &entry
, sizeof entry
);
2669 if (h
->got
.offset
!= MINUS_ONE
)
2672 /* By setting this to a value other than -1, we are indicating that
2673 there needs to be a GOT entry for H. Avoid using zero, as the
2674 generic ELF copy_indirect_symbol tests for <= 0. */
2681 /* Reserve space in G for a GOT entry containing the value of symbol
2682 SYMNDX in input bfd ABDF, plus ADDEND. */
2685 mips_elf_record_local_got_symbol (bfd
*abfd
, long symndx
, bfd_vma addend
,
2686 struct mips_got_info
*g
,
2687 unsigned char tls_flag
)
2689 struct mips_got_entry entry
, **loc
;
2692 entry
.symndx
= symndx
;
2693 entry
.d
.addend
= addend
;
2694 entry
.tls_type
= tls_flag
;
2695 loc
= (struct mips_got_entry
**)
2696 htab_find_slot (g
->got_entries
, &entry
, INSERT
);
2700 if (tls_flag
== GOT_TLS_GD
&& !((*loc
)->tls_type
& GOT_TLS_GD
))
2703 (*loc
)->tls_type
|= tls_flag
;
2705 else if (tls_flag
== GOT_TLS_IE
&& !((*loc
)->tls_type
& GOT_TLS_IE
))
2708 (*loc
)->tls_type
|= tls_flag
;
2716 entry
.tls_type
= tls_flag
;
2717 if (tls_flag
== GOT_TLS_IE
)
2719 else if (tls_flag
== GOT_TLS_GD
)
2721 else if (g
->tls_ldm_offset
== MINUS_ONE
)
2723 g
->tls_ldm_offset
= MINUS_TWO
;
2729 entry
.gotidx
= g
->local_gotno
++;
2733 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
2738 memcpy (*loc
, &entry
, sizeof entry
);
2743 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2746 mips_elf_bfd2got_entry_hash (const void *entry_
)
2748 const struct mips_elf_bfd2got_hash
*entry
2749 = (struct mips_elf_bfd2got_hash
*)entry_
;
2751 return entry
->bfd
->id
;
2754 /* Check whether two hash entries have the same bfd. */
2757 mips_elf_bfd2got_entry_eq (const void *entry1
, const void *entry2
)
2759 const struct mips_elf_bfd2got_hash
*e1
2760 = (const struct mips_elf_bfd2got_hash
*)entry1
;
2761 const struct mips_elf_bfd2got_hash
*e2
2762 = (const struct mips_elf_bfd2got_hash
*)entry2
;
2764 return e1
->bfd
== e2
->bfd
;
2767 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2768 be the master GOT data. */
2770 static struct mips_got_info
*
2771 mips_elf_got_for_ibfd (struct mips_got_info
*g
, bfd
*ibfd
)
2773 struct mips_elf_bfd2got_hash e
, *p
;
2779 p
= htab_find (g
->bfd2got
, &e
);
2780 return p
? p
->g
: NULL
;
2783 /* Create one separate got for each bfd that has entries in the global
2784 got, such that we can tell how many local and global entries each
2788 mips_elf_make_got_per_bfd (void **entryp
, void *p
)
2790 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
2791 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
2792 htab_t bfd2got
= arg
->bfd2got
;
2793 struct mips_got_info
*g
;
2794 struct mips_elf_bfd2got_hash bfdgot_entry
, *bfdgot
;
2797 /* Find the got_info for this GOT entry's input bfd. Create one if
2799 bfdgot_entry
.bfd
= entry
->abfd
;
2800 bfdgotp
= htab_find_slot (bfd2got
, &bfdgot_entry
, INSERT
);
2801 bfdgot
= (struct mips_elf_bfd2got_hash
*)*bfdgotp
;
2807 bfdgot
= (struct mips_elf_bfd2got_hash
*)bfd_alloc
2808 (arg
->obfd
, sizeof (struct mips_elf_bfd2got_hash
));
2818 bfdgot
->bfd
= entry
->abfd
;
2819 bfdgot
->g
= g
= (struct mips_got_info
*)
2820 bfd_alloc (arg
->obfd
, sizeof (struct mips_got_info
));
2827 g
->global_gotsym
= NULL
;
2828 g
->global_gotno
= 0;
2830 g
->assigned_gotno
= -1;
2832 g
->tls_assigned_gotno
= 0;
2833 g
->tls_ldm_offset
= MINUS_ONE
;
2834 g
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
2835 mips_elf_multi_got_entry_eq
, NULL
);
2836 if (g
->got_entries
== NULL
)
2846 /* Insert the GOT entry in the bfd's got entry hash table. */
2847 entryp
= htab_find_slot (g
->got_entries
, entry
, INSERT
);
2848 if (*entryp
!= NULL
)
2853 if (entry
->tls_type
)
2855 if (entry
->tls_type
& (GOT_TLS_GD
| GOT_TLS_LDM
))
2857 if (entry
->tls_type
& GOT_TLS_IE
)
2860 else if (entry
->symndx
>= 0 || entry
->d
.h
->forced_local
)
2868 /* Attempt to merge gots of different input bfds. Try to use as much
2869 as possible of the primary got, since it doesn't require explicit
2870 dynamic relocations, but don't use bfds that would reference global
2871 symbols out of the addressable range. Failing the primary got,
2872 attempt to merge with the current got, or finish the current got
2873 and then make make the new got current. */
2876 mips_elf_merge_gots (void **bfd2got_
, void *p
)
2878 struct mips_elf_bfd2got_hash
*bfd2got
2879 = (struct mips_elf_bfd2got_hash
*)*bfd2got_
;
2880 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
2881 unsigned int lcount
= bfd2got
->g
->local_gotno
;
2882 unsigned int gcount
= bfd2got
->g
->global_gotno
;
2883 unsigned int tcount
= bfd2got
->g
->tls_gotno
;
2884 unsigned int maxcnt
= arg
->max_count
;
2885 bfd_boolean too_many_for_tls
= FALSE
;
2887 /* We place TLS GOT entries after both locals and globals. The globals
2888 for the primary GOT may overflow the normal GOT size limit, so be
2889 sure not to merge a GOT which requires TLS with the primary GOT in that
2890 case. This doesn't affect non-primary GOTs. */
2893 unsigned int primary_total
= lcount
+ tcount
+ arg
->global_count
;
2894 if (primary_total
* MIPS_ELF_GOT_SIZE (bfd2got
->bfd
)
2895 >= MIPS_ELF_GOT_MAX_SIZE (bfd2got
->bfd
))
2896 too_many_for_tls
= TRUE
;
2899 /* If we don't have a primary GOT and this is not too big, use it as
2900 a starting point for the primary GOT. */
2901 if (! arg
->primary
&& lcount
+ gcount
+ tcount
<= maxcnt
2902 && ! too_many_for_tls
)
2904 arg
->primary
= bfd2got
->g
;
2905 arg
->primary_count
= lcount
+ gcount
;
2907 /* If it looks like we can merge this bfd's entries with those of
2908 the primary, merge them. The heuristics is conservative, but we
2909 don't have to squeeze it too hard. */
2910 else if (arg
->primary
&& ! too_many_for_tls
2911 && (arg
->primary_count
+ lcount
+ gcount
+ tcount
) <= maxcnt
)
2913 struct mips_got_info
*g
= bfd2got
->g
;
2914 int old_lcount
= arg
->primary
->local_gotno
;
2915 int old_gcount
= arg
->primary
->global_gotno
;
2916 int old_tcount
= arg
->primary
->tls_gotno
;
2918 bfd2got
->g
= arg
->primary
;
2920 htab_traverse (g
->got_entries
,
2921 mips_elf_make_got_per_bfd
,
2923 if (arg
->obfd
== NULL
)
2926 htab_delete (g
->got_entries
);
2927 /* We don't have to worry about releasing memory of the actual
2928 got entries, since they're all in the master got_entries hash
2931 BFD_ASSERT (old_lcount
+ lcount
>= arg
->primary
->local_gotno
);
2932 BFD_ASSERT (old_gcount
+ gcount
>= arg
->primary
->global_gotno
);
2933 BFD_ASSERT (old_tcount
+ tcount
>= arg
->primary
->tls_gotno
);
2935 arg
->primary_count
= arg
->primary
->local_gotno
2936 + arg
->primary
->global_gotno
+ arg
->primary
->tls_gotno
;
2938 /* If we can merge with the last-created got, do it. */
2939 else if (arg
->current
2940 && arg
->current_count
+ lcount
+ gcount
+ tcount
<= maxcnt
)
2942 struct mips_got_info
*g
= bfd2got
->g
;
2943 int old_lcount
= arg
->current
->local_gotno
;
2944 int old_gcount
= arg
->current
->global_gotno
;
2945 int old_tcount
= arg
->current
->tls_gotno
;
2947 bfd2got
->g
= arg
->current
;
2949 htab_traverse (g
->got_entries
,
2950 mips_elf_make_got_per_bfd
,
2952 if (arg
->obfd
== NULL
)
2955 htab_delete (g
->got_entries
);
2957 BFD_ASSERT (old_lcount
+ lcount
>= arg
->current
->local_gotno
);
2958 BFD_ASSERT (old_gcount
+ gcount
>= arg
->current
->global_gotno
);
2959 BFD_ASSERT (old_tcount
+ tcount
>= arg
->current
->tls_gotno
);
2961 arg
->current_count
= arg
->current
->local_gotno
2962 + arg
->current
->global_gotno
+ arg
->current
->tls_gotno
;
2964 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2965 fits; if it turns out that it doesn't, we'll get relocation
2966 overflows anyway. */
2969 bfd2got
->g
->next
= arg
->current
;
2970 arg
->current
= bfd2got
->g
;
2972 arg
->current_count
= lcount
+ gcount
+ 2 * tcount
;
2978 /* Set the TLS GOT index for the GOT entry in ENTRYP. */
2981 mips_elf_initialize_tls_index (void **entryp
, void *p
)
2983 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
2984 struct mips_got_info
*g
= p
;
2986 /* We're only interested in TLS symbols. */
2987 if (entry
->tls_type
== 0)
2990 if (entry
->symndx
== -1)
2992 /* There may be multiple mips_got_entry structs for a global variable
2993 if there is just one GOT. Just do this once. */
2994 if (g
->next
== NULL
)
2996 if (entry
->d
.h
->tls_type
& GOT_TLS_OFFSET_DONE
)
2998 entry
->gotidx
= entry
->d
.h
->tls_got_offset
;
3001 entry
->d
.h
->tls_type
|= GOT_TLS_OFFSET_DONE
;
3004 else if (entry
->tls_type
& GOT_TLS_LDM
)
3006 /* Similarly, there may be multiple structs for the LDM entry. */
3007 if (g
->tls_ldm_offset
!= MINUS_TWO
&& g
->tls_ldm_offset
!= MINUS_ONE
)
3009 entry
->gotidx
= g
->tls_ldm_offset
;
3014 /* Initialize the GOT offset. */
3015 entry
->gotidx
= MIPS_ELF_GOT_SIZE (entry
->abfd
) * (long) g
->tls_assigned_gotno
;
3016 if (g
->next
== NULL
&& entry
->symndx
== -1)
3017 entry
->d
.h
->tls_got_offset
= entry
->gotidx
;
3019 if (entry
->tls_type
& (GOT_TLS_GD
| GOT_TLS_LDM
))
3020 g
->tls_assigned_gotno
+= 2;
3021 if (entry
->tls_type
& GOT_TLS_IE
)
3022 g
->tls_assigned_gotno
+= 1;
3024 if (entry
->tls_type
& GOT_TLS_LDM
)
3025 g
->tls_ldm_offset
= entry
->gotidx
;
3030 /* If passed a NULL mips_got_info in the argument, set the marker used
3031 to tell whether a global symbol needs a got entry (in the primary
3032 got) to the given VALUE.
3034 If passed a pointer G to a mips_got_info in the argument (it must
3035 not be the primary GOT), compute the offset from the beginning of
3036 the (primary) GOT section to the entry in G corresponding to the
3037 global symbol. G's assigned_gotno must contain the index of the
3038 first available global GOT entry in G. VALUE must contain the size
3039 of a GOT entry in bytes. For each global GOT entry that requires a
3040 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3041 marked as not eligible for lazy resolution through a function
3044 mips_elf_set_global_got_offset (void **entryp
, void *p
)
3046 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
3047 struct mips_elf_set_global_got_offset_arg
*arg
3048 = (struct mips_elf_set_global_got_offset_arg
*)p
;
3049 struct mips_got_info
*g
= arg
->g
;
3051 if (g
&& entry
->tls_type
!= GOT_NORMAL
)
3052 arg
->needed_relocs
+=
3053 mips_tls_got_relocs (arg
->info
, entry
->tls_type
,
3054 entry
->symndx
== -1 ? &entry
->d
.h
->root
: NULL
);
3056 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1
3057 && entry
->d
.h
->root
.dynindx
!= -1
3058 && entry
->d
.h
->tls_type
== GOT_NORMAL
)
3062 BFD_ASSERT (g
->global_gotsym
== NULL
);
3064 entry
->gotidx
= arg
->value
* (long) g
->assigned_gotno
++;
3065 if (arg
->info
->shared
3066 || (elf_hash_table (arg
->info
)->dynamic_sections_created
3067 && entry
->d
.h
->root
.def_dynamic
3068 && !entry
->d
.h
->root
.def_regular
))
3069 ++arg
->needed_relocs
;
3072 entry
->d
.h
->root
.got
.offset
= arg
->value
;
3078 /* Mark any global symbols referenced in the GOT we are iterating over
3079 as inelligible for lazy resolution stubs. */
3081 mips_elf_set_no_stub (void **entryp
, void *p ATTRIBUTE_UNUSED
)
3083 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
3085 if (entry
->abfd
!= NULL
3086 && entry
->symndx
== -1
3087 && entry
->d
.h
->root
.dynindx
!= -1)
3088 entry
->d
.h
->no_fn_stub
= TRUE
;
3093 /* Follow indirect and warning hash entries so that each got entry
3094 points to the final symbol definition. P must point to a pointer
3095 to the hash table we're traversing. Since this traversal may
3096 modify the hash table, we set this pointer to NULL to indicate
3097 we've made a potentially-destructive change to the hash table, so
3098 the traversal must be restarted. */
3100 mips_elf_resolve_final_got_entry (void **entryp
, void *p
)
3102 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
3103 htab_t got_entries
= *(htab_t
*)p
;
3105 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1)
3107 struct mips_elf_link_hash_entry
*h
= entry
->d
.h
;
3109 while (h
->root
.root
.type
== bfd_link_hash_indirect
3110 || h
->root
.root
.type
== bfd_link_hash_warning
)
3111 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3113 if (entry
->d
.h
== h
)
3118 /* If we can't find this entry with the new bfd hash, re-insert
3119 it, and get the traversal restarted. */
3120 if (! htab_find (got_entries
, entry
))
3122 htab_clear_slot (got_entries
, entryp
);
3123 entryp
= htab_find_slot (got_entries
, entry
, INSERT
);
3126 /* Abort the traversal, since the whole table may have
3127 moved, and leave it up to the parent to restart the
3129 *(htab_t
*)p
= NULL
;
3132 /* We might want to decrement the global_gotno count, but it's
3133 either too early or too late for that at this point. */
3139 /* Turn indirect got entries in a got_entries table into their final
3142 mips_elf_resolve_final_got_entries (struct mips_got_info
*g
)
3148 got_entries
= g
->got_entries
;
3150 htab_traverse (got_entries
,
3151 mips_elf_resolve_final_got_entry
,
3154 while (got_entries
== NULL
);
3157 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3160 mips_elf_adjust_gp (bfd
*abfd
, struct mips_got_info
*g
, bfd
*ibfd
)
3162 if (g
->bfd2got
== NULL
)
3165 g
= mips_elf_got_for_ibfd (g
, ibfd
);
3169 BFD_ASSERT (g
->next
);
3173 return (g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
)
3174 * MIPS_ELF_GOT_SIZE (abfd
);
3177 /* Turn a single GOT that is too big for 16-bit addressing into
3178 a sequence of GOTs, each one 16-bit addressable. */
3181 mips_elf_multi_got (bfd
*abfd
, struct bfd_link_info
*info
,
3182 struct mips_got_info
*g
, asection
*got
,
3183 bfd_size_type pages
)
3185 struct mips_elf_got_per_bfd_arg got_per_bfd_arg
;
3186 struct mips_elf_set_global_got_offset_arg set_got_offset_arg
;
3187 struct mips_got_info
*gg
;
3188 unsigned int assign
;
3190 g
->bfd2got
= htab_try_create (1, mips_elf_bfd2got_entry_hash
,
3191 mips_elf_bfd2got_entry_eq
, NULL
);
3192 if (g
->bfd2got
== NULL
)
3195 got_per_bfd_arg
.bfd2got
= g
->bfd2got
;
3196 got_per_bfd_arg
.obfd
= abfd
;
3197 got_per_bfd_arg
.info
= info
;
3199 /* Count how many GOT entries each input bfd requires, creating a
3200 map from bfd to got info while at that. */
3201 htab_traverse (g
->got_entries
, mips_elf_make_got_per_bfd
, &got_per_bfd_arg
);
3202 if (got_per_bfd_arg
.obfd
== NULL
)
3205 got_per_bfd_arg
.current
= NULL
;
3206 got_per_bfd_arg
.primary
= NULL
;
3207 /* Taking out PAGES entries is a worst-case estimate. We could
3208 compute the maximum number of pages that each separate input bfd
3209 uses, but it's probably not worth it. */
3210 got_per_bfd_arg
.max_count
= ((MIPS_ELF_GOT_MAX_SIZE (abfd
)
3211 / MIPS_ELF_GOT_SIZE (abfd
))
3212 - MIPS_RESERVED_GOTNO
- pages
);
3213 /* The number of globals that will be included in the primary GOT.
3214 See the calls to mips_elf_set_global_got_offset below for more
3216 got_per_bfd_arg
.global_count
= g
->global_gotno
;
3218 /* Try to merge the GOTs of input bfds together, as long as they
3219 don't seem to exceed the maximum GOT size, choosing one of them
3220 to be the primary GOT. */
3221 htab_traverse (g
->bfd2got
, mips_elf_merge_gots
, &got_per_bfd_arg
);
3222 if (got_per_bfd_arg
.obfd
== NULL
)
3225 /* If we do not find any suitable primary GOT, create an empty one. */
3226 if (got_per_bfd_arg
.primary
== NULL
)
3228 g
->next
= (struct mips_got_info
*)
3229 bfd_alloc (abfd
, sizeof (struct mips_got_info
));
3230 if (g
->next
== NULL
)
3233 g
->next
->global_gotsym
= NULL
;
3234 g
->next
->global_gotno
= 0;
3235 g
->next
->local_gotno
= 0;
3236 g
->next
->tls_gotno
= 0;
3237 g
->next
->assigned_gotno
= 0;
3238 g
->next
->tls_assigned_gotno
= 0;
3239 g
->next
->tls_ldm_offset
= MINUS_ONE
;
3240 g
->next
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
3241 mips_elf_multi_got_entry_eq
,
3243 if (g
->next
->got_entries
== NULL
)
3245 g
->next
->bfd2got
= NULL
;
3248 g
->next
= got_per_bfd_arg
.primary
;
3249 g
->next
->next
= got_per_bfd_arg
.current
;
3251 /* GG is now the master GOT, and G is the primary GOT. */
3255 /* Map the output bfd to the primary got. That's what we're going
3256 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3257 didn't mark in check_relocs, and we want a quick way to find it.
3258 We can't just use gg->next because we're going to reverse the
3261 struct mips_elf_bfd2got_hash
*bfdgot
;
3264 bfdgot
= (struct mips_elf_bfd2got_hash
*)bfd_alloc
3265 (abfd
, sizeof (struct mips_elf_bfd2got_hash
));
3272 bfdgotp
= htab_find_slot (gg
->bfd2got
, bfdgot
, INSERT
);
3274 BFD_ASSERT (*bfdgotp
== NULL
);
3278 /* The IRIX dynamic linker requires every symbol that is referenced
3279 in a dynamic relocation to be present in the primary GOT, so
3280 arrange for them to appear after those that are actually
3283 GNU/Linux could very well do without it, but it would slow down
3284 the dynamic linker, since it would have to resolve every dynamic
3285 symbol referenced in other GOTs more than once, without help from
3286 the cache. Also, knowing that every external symbol has a GOT
3287 helps speed up the resolution of local symbols too, so GNU/Linux
3288 follows IRIX's practice.
3290 The number 2 is used by mips_elf_sort_hash_table_f to count
3291 global GOT symbols that are unreferenced in the primary GOT, with
3292 an initial dynamic index computed from gg->assigned_gotno, where
3293 the number of unreferenced global entries in the primary GOT is
3297 gg
->assigned_gotno
= gg
->global_gotno
- g
->global_gotno
;
3298 g
->global_gotno
= gg
->global_gotno
;
3299 set_got_offset_arg
.value
= 2;
3303 /* This could be used for dynamic linkers that don't optimize
3304 symbol resolution while applying relocations so as to use
3305 primary GOT entries or assuming the symbol is locally-defined.
3306 With this code, we assign lower dynamic indices to global
3307 symbols that are not referenced in the primary GOT, so that
3308 their entries can be omitted. */
3309 gg
->assigned_gotno
= 0;
3310 set_got_offset_arg
.value
= -1;
3313 /* Reorder dynamic symbols as described above (which behavior
3314 depends on the setting of VALUE). */
3315 set_got_offset_arg
.g
= NULL
;
3316 htab_traverse (gg
->got_entries
, mips_elf_set_global_got_offset
,
3317 &set_got_offset_arg
);
3318 set_got_offset_arg
.value
= 1;
3319 htab_traverse (g
->got_entries
, mips_elf_set_global_got_offset
,
3320 &set_got_offset_arg
);
3321 if (! mips_elf_sort_hash_table (info
, 1))
3324 /* Now go through the GOTs assigning them offset ranges.
3325 [assigned_gotno, local_gotno[ will be set to the range of local
3326 entries in each GOT. We can then compute the end of a GOT by
3327 adding local_gotno to global_gotno. We reverse the list and make
3328 it circular since then we'll be able to quickly compute the
3329 beginning of a GOT, by computing the end of its predecessor. To
3330 avoid special cases for the primary GOT, while still preserving
3331 assertions that are valid for both single- and multi-got links,
3332 we arrange for the main got struct to have the right number of
3333 global entries, but set its local_gotno such that the initial
3334 offset of the primary GOT is zero. Remember that the primary GOT
3335 will become the last item in the circular linked list, so it
3336 points back to the master GOT. */
3337 gg
->local_gotno
= -g
->global_gotno
;
3338 gg
->global_gotno
= g
->global_gotno
;
3345 struct mips_got_info
*gn
;
3347 assign
+= MIPS_RESERVED_GOTNO
;
3348 g
->assigned_gotno
= assign
;
3349 g
->local_gotno
+= assign
+ pages
;
3350 assign
= g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
;
3352 /* Set up any TLS entries. We always place the TLS entries after
3353 all non-TLS entries. */
3354 g
->tls_assigned_gotno
= g
->local_gotno
+ g
->global_gotno
;
3355 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, g
);
3357 /* Take g out of the direct list, and push it onto the reversed
3358 list that gg points to. */
3364 /* Mark global symbols in every non-primary GOT as ineligible for
3367 htab_traverse (g
->got_entries
, mips_elf_set_no_stub
, NULL
);
3371 got
->size
= (gg
->next
->local_gotno
3372 + gg
->next
->global_gotno
3373 + gg
->next
->tls_gotno
) * MIPS_ELF_GOT_SIZE (abfd
);
3379 /* Returns the first relocation of type r_type found, beginning with
3380 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3382 static const Elf_Internal_Rela
*
3383 mips_elf_next_relocation (bfd
*abfd ATTRIBUTE_UNUSED
, unsigned int r_type
,
3384 const Elf_Internal_Rela
*relocation
,
3385 const Elf_Internal_Rela
*relend
)
3387 while (relocation
< relend
)
3389 if (ELF_R_TYPE (abfd
, relocation
->r_info
) == r_type
)
3395 /* We didn't find it. */
3396 bfd_set_error (bfd_error_bad_value
);
3400 /* Return whether a relocation is against a local symbol. */
3403 mips_elf_local_relocation_p (bfd
*input_bfd
,
3404 const Elf_Internal_Rela
*relocation
,
3405 asection
**local_sections
,
3406 bfd_boolean check_forced
)
3408 unsigned long r_symndx
;
3409 Elf_Internal_Shdr
*symtab_hdr
;
3410 struct mips_elf_link_hash_entry
*h
;
3413 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
3414 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3415 extsymoff
= (elf_bad_symtab (input_bfd
)) ? 0 : symtab_hdr
->sh_info
;
3417 if (r_symndx
< extsymoff
)
3419 if (elf_bad_symtab (input_bfd
) && local_sections
[r_symndx
] != NULL
)
3424 /* Look up the hash table to check whether the symbol
3425 was forced local. */
3426 h
= (struct mips_elf_link_hash_entry
*)
3427 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
3428 /* Find the real hash-table entry for this symbol. */
3429 while (h
->root
.root
.type
== bfd_link_hash_indirect
3430 || h
->root
.root
.type
== bfd_link_hash_warning
)
3431 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3432 if (h
->root
.forced_local
)
3439 /* Sign-extend VALUE, which has the indicated number of BITS. */
3442 _bfd_mips_elf_sign_extend (bfd_vma value
, int bits
)
3444 if (value
& ((bfd_vma
) 1 << (bits
- 1)))
3445 /* VALUE is negative. */
3446 value
|= ((bfd_vma
) - 1) << bits
;
3451 /* Return non-zero if the indicated VALUE has overflowed the maximum
3452 range expressible by a signed number with the indicated number of
3456 mips_elf_overflow_p (bfd_vma value
, int bits
)
3458 bfd_signed_vma svalue
= (bfd_signed_vma
) value
;
3460 if (svalue
> (1 << (bits
- 1)) - 1)
3461 /* The value is too big. */
3463 else if (svalue
< -(1 << (bits
- 1)))
3464 /* The value is too small. */
3471 /* Calculate the %high function. */
3474 mips_elf_high (bfd_vma value
)
3476 return ((value
+ (bfd_vma
) 0x8000) >> 16) & 0xffff;
3479 /* Calculate the %higher function. */
3482 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED
)
3485 return ((value
+ (bfd_vma
) 0x80008000) >> 32) & 0xffff;
3492 /* Calculate the %highest function. */
3495 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED
)
3498 return ((value
+ (((bfd_vma
) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3505 /* Create the .compact_rel section. */
3508 mips_elf_create_compact_rel_section
3509 (bfd
*abfd
, struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
3512 register asection
*s
;
3514 if (bfd_get_section_by_name (abfd
, ".compact_rel") == NULL
)
3516 flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
3519 s
= bfd_make_section_with_flags (abfd
, ".compact_rel", flags
);
3521 || ! bfd_set_section_alignment (abfd
, s
,
3522 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
3525 s
->size
= sizeof (Elf32_External_compact_rel
);
3531 /* Create the .got section to hold the global offset table. */
3534 mips_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
,
3535 bfd_boolean maybe_exclude
)
3538 register asection
*s
;
3539 struct elf_link_hash_entry
*h
;
3540 struct bfd_link_hash_entry
*bh
;
3541 struct mips_got_info
*g
;
3544 /* This function may be called more than once. */
3545 s
= mips_elf_got_section (abfd
, TRUE
);
3548 if (! maybe_exclude
)
3549 s
->flags
&= ~SEC_EXCLUDE
;
3553 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
3554 | SEC_LINKER_CREATED
);
3557 flags
|= SEC_EXCLUDE
;
3559 /* We have to use an alignment of 2**4 here because this is hardcoded
3560 in the function stub generation and in the linker script. */
3561 s
= bfd_make_section_with_flags (abfd
, ".got", flags
);
3563 || ! bfd_set_section_alignment (abfd
, s
, 4))
3566 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3567 linker script because we don't want to define the symbol if we
3568 are not creating a global offset table. */
3570 if (! (_bfd_generic_link_add_one_symbol
3571 (info
, abfd
, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL
, s
,
3572 0, NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
3575 h
= (struct elf_link_hash_entry
*) bh
;
3578 h
->type
= STT_OBJECT
;
3581 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
3584 amt
= sizeof (struct mips_got_info
);
3585 g
= bfd_alloc (abfd
, amt
);
3588 g
->global_gotsym
= NULL
;
3589 g
->global_gotno
= 0;
3591 g
->local_gotno
= MIPS_RESERVED_GOTNO
;
3592 g
->assigned_gotno
= MIPS_RESERVED_GOTNO
;
3595 g
->tls_ldm_offset
= MINUS_ONE
;
3596 g
->got_entries
= htab_try_create (1, mips_elf_got_entry_hash
,
3597 mips_elf_got_entry_eq
, NULL
);
3598 if (g
->got_entries
== NULL
)
3600 mips_elf_section_data (s
)->u
.got_info
= g
;
3601 mips_elf_section_data (s
)->elf
.this_hdr
.sh_flags
3602 |= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
3607 /* Calculate the value produced by the RELOCATION (which comes from
3608 the INPUT_BFD). The ADDEND is the addend to use for this
3609 RELOCATION; RELOCATION->R_ADDEND is ignored.
3611 The result of the relocation calculation is stored in VALUEP.
3612 REQUIRE_JALXP indicates whether or not the opcode used with this
3613 relocation must be JALX.
3615 This function returns bfd_reloc_continue if the caller need take no
3616 further action regarding this relocation, bfd_reloc_notsupported if
3617 something goes dramatically wrong, bfd_reloc_overflow if an
3618 overflow occurs, and bfd_reloc_ok to indicate success. */
3620 static bfd_reloc_status_type
3621 mips_elf_calculate_relocation (bfd
*abfd
, bfd
*input_bfd
,
3622 asection
*input_section
,
3623 struct bfd_link_info
*info
,
3624 const Elf_Internal_Rela
*relocation
,
3625 bfd_vma addend
, reloc_howto_type
*howto
,
3626 Elf_Internal_Sym
*local_syms
,
3627 asection
**local_sections
, bfd_vma
*valuep
,
3628 const char **namep
, bfd_boolean
*require_jalxp
,
3629 bfd_boolean save_addend
)
3631 /* The eventual value we will return. */
3633 /* The address of the symbol against which the relocation is
3636 /* The final GP value to be used for the relocatable, executable, or
3637 shared object file being produced. */
3638 bfd_vma gp
= MINUS_ONE
;
3639 /* The place (section offset or address) of the storage unit being
3642 /* The value of GP used to create the relocatable object. */
3643 bfd_vma gp0
= MINUS_ONE
;
3644 /* The offset into the global offset table at which the address of
3645 the relocation entry symbol, adjusted by the addend, resides
3646 during execution. */
3647 bfd_vma g
= MINUS_ONE
;
3648 /* The section in which the symbol referenced by the relocation is
3650 asection
*sec
= NULL
;
3651 struct mips_elf_link_hash_entry
*h
= NULL
;
3652 /* TRUE if the symbol referred to by this relocation is a local
3654 bfd_boolean local_p
, was_local_p
;
3655 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3656 bfd_boolean gp_disp_p
= FALSE
;
3657 /* TRUE if the symbol referred to by this relocation is
3658 "__gnu_local_gp". */
3659 bfd_boolean gnu_local_gp_p
= FALSE
;
3660 Elf_Internal_Shdr
*symtab_hdr
;
3662 unsigned long r_symndx
;
3664 /* TRUE if overflow occurred during the calculation of the
3665 relocation value. */
3666 bfd_boolean overflowed_p
;
3667 /* TRUE if this relocation refers to a MIPS16 function. */
3668 bfd_boolean target_is_16_bit_code_p
= FALSE
;
3670 /* Parse the relocation. */
3671 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
3672 r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
3673 p
= (input_section
->output_section
->vma
3674 + input_section
->output_offset
3675 + relocation
->r_offset
);
3677 /* Assume that there will be no overflow. */
3678 overflowed_p
= FALSE
;
3680 /* Figure out whether or not the symbol is local, and get the offset
3681 used in the array of hash table entries. */
3682 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3683 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
3684 local_sections
, FALSE
);
3685 was_local_p
= local_p
;
3686 if (! elf_bad_symtab (input_bfd
))
3687 extsymoff
= symtab_hdr
->sh_info
;
3690 /* The symbol table does not follow the rule that local symbols
3691 must come before globals. */
3695 /* Figure out the value of the symbol. */
3698 Elf_Internal_Sym
*sym
;
3700 sym
= local_syms
+ r_symndx
;
3701 sec
= local_sections
[r_symndx
];
3703 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
3704 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
3705 || (sec
->flags
& SEC_MERGE
))
3706 symbol
+= sym
->st_value
;
3707 if ((sec
->flags
& SEC_MERGE
)
3708 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
3710 addend
= _bfd_elf_rel_local_sym (abfd
, sym
, &sec
, addend
);
3712 addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
3715 /* MIPS16 text labels should be treated as odd. */
3716 if (sym
->st_other
== STO_MIPS16
)
3719 /* Record the name of this symbol, for our caller. */
3720 *namep
= bfd_elf_string_from_elf_section (input_bfd
,
3721 symtab_hdr
->sh_link
,
3724 *namep
= bfd_section_name (input_bfd
, sec
);
3726 target_is_16_bit_code_p
= (sym
->st_other
== STO_MIPS16
);
3730 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3732 /* For global symbols we look up the symbol in the hash-table. */
3733 h
= ((struct mips_elf_link_hash_entry
*)
3734 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
]);
3735 /* Find the real hash-table entry for this symbol. */
3736 while (h
->root
.root
.type
== bfd_link_hash_indirect
3737 || h
->root
.root
.type
== bfd_link_hash_warning
)
3738 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3740 /* Record the name of this symbol, for our caller. */
3741 *namep
= h
->root
.root
.root
.string
;
3743 /* See if this is the special _gp_disp symbol. Note that such a
3744 symbol must always be a global symbol. */
3745 if (strcmp (*namep
, "_gp_disp") == 0
3746 && ! NEWABI_P (input_bfd
))
3748 /* Relocations against _gp_disp are permitted only with
3749 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3750 if (r_type
!= R_MIPS_HI16
&& r_type
!= R_MIPS_LO16
3751 && r_type
!= R_MIPS16_HI16
&& r_type
!= R_MIPS16_LO16
)
3752 return bfd_reloc_notsupported
;
3756 /* See if this is the special _gp symbol. Note that such a
3757 symbol must always be a global symbol. */
3758 else if (strcmp (*namep
, "__gnu_local_gp") == 0)
3759 gnu_local_gp_p
= TRUE
;
3762 /* If this symbol is defined, calculate its address. Note that
3763 _gp_disp is a magic symbol, always implicitly defined by the
3764 linker, so it's inappropriate to check to see whether or not
3766 else if ((h
->root
.root
.type
== bfd_link_hash_defined
3767 || h
->root
.root
.type
== bfd_link_hash_defweak
)
3768 && h
->root
.root
.u
.def
.section
)
3770 sec
= h
->root
.root
.u
.def
.section
;
3771 if (sec
->output_section
)
3772 symbol
= (h
->root
.root
.u
.def
.value
3773 + sec
->output_section
->vma
3774 + sec
->output_offset
);
3776 symbol
= h
->root
.root
.u
.def
.value
;
3778 else if (h
->root
.root
.type
== bfd_link_hash_undefweak
)
3779 /* We allow relocations against undefined weak symbols, giving
3780 it the value zero, so that you can undefined weak functions
3781 and check to see if they exist by looking at their
3784 else if (info
->unresolved_syms_in_objects
== RM_IGNORE
3785 && ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
3787 else if (strcmp (*namep
, SGI_COMPAT (input_bfd
)
3788 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
3790 /* If this is a dynamic link, we should have created a
3791 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3792 in in _bfd_mips_elf_create_dynamic_sections.
3793 Otherwise, we should define the symbol with a value of 0.
3794 FIXME: It should probably get into the symbol table
3796 BFD_ASSERT (! info
->shared
);
3797 BFD_ASSERT (bfd_get_section_by_name (abfd
, ".dynamic") == NULL
);
3800 else if (ELF_MIPS_IS_OPTIONAL (h
->root
.other
))
3802 /* This is an optional symbol - an Irix specific extension to the
3803 ELF spec. Ignore it for now.
3804 XXX - FIXME - there is more to the spec for OPTIONAL symbols
3805 than simply ignoring them, but we do not handle this for now.
3806 For information see the "64-bit ELF Object File Specification"
3807 which is available from here:
3808 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
3813 if (! ((*info
->callbacks
->undefined_symbol
)
3814 (info
, h
->root
.root
.root
.string
, input_bfd
,
3815 input_section
, relocation
->r_offset
,
3816 (info
->unresolved_syms_in_objects
== RM_GENERATE_ERROR
)
3817 || ELF_ST_VISIBILITY (h
->root
.other
))))
3818 return bfd_reloc_undefined
;
3822 target_is_16_bit_code_p
= (h
->root
.other
== STO_MIPS16
);
3825 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3826 need to redirect the call to the stub, unless we're already *in*
3828 if (r_type
!= R_MIPS16_26
&& !info
->relocatable
3829 && ((h
!= NULL
&& h
->fn_stub
!= NULL
)
3830 || (local_p
&& elf_tdata (input_bfd
)->local_stubs
!= NULL
3831 && elf_tdata (input_bfd
)->local_stubs
[r_symndx
] != NULL
))
3832 && !mips_elf_stub_section_p (input_bfd
, input_section
))
3834 /* This is a 32- or 64-bit call to a 16-bit function. We should
3835 have already noticed that we were going to need the
3838 sec
= elf_tdata (input_bfd
)->local_stubs
[r_symndx
];
3841 BFD_ASSERT (h
->need_fn_stub
);
3845 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
3847 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3848 need to redirect the call to the stub. */
3849 else if (r_type
== R_MIPS16_26
&& !info
->relocatable
3851 && (h
->call_stub
!= NULL
|| h
->call_fp_stub
!= NULL
)
3852 && !target_is_16_bit_code_p
)
3854 /* If both call_stub and call_fp_stub are defined, we can figure
3855 out which one to use by seeing which one appears in the input
3857 if (h
->call_stub
!= NULL
&& h
->call_fp_stub
!= NULL
)
3862 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
3864 if (strncmp (bfd_get_section_name (input_bfd
, o
),
3865 CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
3867 sec
= h
->call_fp_stub
;
3874 else if (h
->call_stub
!= NULL
)
3877 sec
= h
->call_fp_stub
;
3879 BFD_ASSERT (sec
->size
> 0);
3880 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
3883 /* Calls from 16-bit code to 32-bit code and vice versa require the
3884 special jalx instruction. */
3885 *require_jalxp
= (!info
->relocatable
3886 && (((r_type
== R_MIPS16_26
) && !target_is_16_bit_code_p
)
3887 || ((r_type
== R_MIPS_26
) && target_is_16_bit_code_p
)));
3889 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
3890 local_sections
, TRUE
);
3892 /* If we haven't already determined the GOT offset, or the GP value,
3893 and we're going to need it, get it now. */
3896 case R_MIPS_GOT_PAGE
:
3897 case R_MIPS_GOT_OFST
:
3898 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3900 local_p
= local_p
|| _bfd_elf_symbol_refs_local_p (&h
->root
, info
, 1);
3901 if (local_p
|| r_type
== R_MIPS_GOT_OFST
)
3907 case R_MIPS_GOT_DISP
:
3908 case R_MIPS_GOT_HI16
:
3909 case R_MIPS_CALL_HI16
:
3910 case R_MIPS_GOT_LO16
:
3911 case R_MIPS_CALL_LO16
:
3913 case R_MIPS_TLS_GOTTPREL
:
3914 case R_MIPS_TLS_LDM
:
3915 /* Find the index into the GOT where this value is located. */
3916 if (r_type
== R_MIPS_TLS_LDM
)
3918 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
, 0, 0, NULL
,
3921 return bfd_reloc_outofrange
;
3925 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3926 GOT_PAGE relocation that decays to GOT_DISP because the
3927 symbol turns out to be global. The addend is then added
3929 BFD_ASSERT (addend
== 0 || r_type
== R_MIPS_GOT_PAGE
);
3930 g
= mips_elf_global_got_index (elf_hash_table (info
)->dynobj
,
3932 (struct elf_link_hash_entry
*) h
,
3934 if (h
->tls_type
== GOT_NORMAL
3935 && (! elf_hash_table(info
)->dynamic_sections_created
3937 && (info
->symbolic
|| h
->root
.forced_local
)
3938 && h
->root
.def_regular
)))
3940 /* This is a static link or a -Bsymbolic link. The
3941 symbol is defined locally, or was forced to be local.
3942 We must initialize this entry in the GOT. */
3943 bfd
*tmpbfd
= elf_hash_table (info
)->dynobj
;
3944 asection
*sgot
= mips_elf_got_section (tmpbfd
, FALSE
);
3945 MIPS_ELF_PUT_WORD (tmpbfd
, symbol
, sgot
->contents
+ g
);
3948 else if (r_type
== R_MIPS_GOT16
|| r_type
== R_MIPS_CALL16
)
3949 /* There's no need to create a local GOT entry here; the
3950 calculation for a local GOT16 entry does not involve G. */
3954 g
= mips_elf_local_got_index (abfd
, input_bfd
,
3955 info
, symbol
+ addend
, r_symndx
, h
,
3958 return bfd_reloc_outofrange
;
3961 /* Convert GOT indices to actual offsets. */
3962 g
= mips_elf_got_offset_from_index (elf_hash_table (info
)->dynobj
,
3963 abfd
, input_bfd
, g
);
3968 case R_MIPS_GPREL16
:
3969 case R_MIPS_GPREL32
:
3970 case R_MIPS_LITERAL
:
3973 case R_MIPS16_GPREL
:
3974 gp0
= _bfd_get_gp_value (input_bfd
);
3975 gp
= _bfd_get_gp_value (abfd
);
3976 if (elf_hash_table (info
)->dynobj
)
3977 gp
+= mips_elf_adjust_gp (abfd
,
3979 (elf_hash_table (info
)->dynobj
, NULL
),
3990 /* Figure out what kind of relocation is being performed. */
3994 return bfd_reloc_continue
;
3997 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 16);
3998 overflowed_p
= mips_elf_overflow_p (value
, 16);
4005 || (elf_hash_table (info
)->dynamic_sections_created
4007 && h
->root
.def_dynamic
4008 && !h
->root
.def_regular
))
4010 && (input_section
->flags
& SEC_ALLOC
) != 0)
4012 /* If we're creating a shared library, or this relocation is
4013 against a symbol in a shared library, then we can't know
4014 where the symbol will end up. So, we create a relocation
4015 record in the output, and leave the job up to the dynamic
4018 if (!mips_elf_create_dynamic_relocation (abfd
,
4026 return bfd_reloc_undefined
;
4030 if (r_type
!= R_MIPS_REL32
)
4031 value
= symbol
+ addend
;
4035 value
&= howto
->dst_mask
;
4039 value
= symbol
+ addend
- p
;
4040 value
&= howto
->dst_mask
;
4044 /* The calculation for R_MIPS16_26 is just the same as for an
4045 R_MIPS_26. It's only the storage of the relocated field into
4046 the output file that's different. That's handled in
4047 mips_elf_perform_relocation. So, we just fall through to the
4048 R_MIPS_26 case here. */
4051 value
= ((addend
| ((p
+ 4) & 0xf0000000)) + symbol
) >> 2;
4054 value
= (_bfd_mips_elf_sign_extend (addend
, 28) + symbol
) >> 2;
4055 if (h
->root
.root
.type
!= bfd_link_hash_undefweak
)
4056 overflowed_p
= (value
>> 26) != ((p
+ 4) >> 28);
4058 value
&= howto
->dst_mask
;
4061 case R_MIPS_TLS_DTPREL_HI16
:
4062 value
= (mips_elf_high (addend
+ symbol
- dtprel_base (info
))
4066 case R_MIPS_TLS_DTPREL_LO16
:
4067 value
= (symbol
+ addend
- dtprel_base (info
)) & howto
->dst_mask
;
4070 case R_MIPS_TLS_TPREL_HI16
:
4071 value
= (mips_elf_high (addend
+ symbol
- tprel_base (info
))
4075 case R_MIPS_TLS_TPREL_LO16
:
4076 value
= (symbol
+ addend
- tprel_base (info
)) & howto
->dst_mask
;
4083 value
= mips_elf_high (addend
+ symbol
);
4084 value
&= howto
->dst_mask
;
4088 /* For MIPS16 ABI code we generate this sequence
4089 0: li $v0,%hi(_gp_disp)
4090 4: addiupc $v1,%lo(_gp_disp)
4094 So the offsets of hi and lo relocs are the same, but the
4095 $pc is four higher than $t9 would be, so reduce
4096 both reloc addends by 4. */
4097 if (r_type
== R_MIPS16_HI16
)
4098 value
= mips_elf_high (addend
+ gp
- p
- 4);
4100 value
= mips_elf_high (addend
+ gp
- p
);
4101 overflowed_p
= mips_elf_overflow_p (value
, 16);
4108 value
= (symbol
+ addend
) & howto
->dst_mask
;
4111 /* See the comment for R_MIPS16_HI16 above for the reason
4112 for this conditional. */
4113 if (r_type
== R_MIPS16_LO16
)
4114 value
= addend
+ gp
- p
;
4116 value
= addend
+ gp
- p
+ 4;
4117 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4118 for overflow. But, on, say, IRIX5, relocations against
4119 _gp_disp are normally generated from the .cpload
4120 pseudo-op. It generates code that normally looks like
4123 lui $gp,%hi(_gp_disp)
4124 addiu $gp,$gp,%lo(_gp_disp)
4127 Here $t9 holds the address of the function being called,
4128 as required by the MIPS ELF ABI. The R_MIPS_LO16
4129 relocation can easily overflow in this situation, but the
4130 R_MIPS_HI16 relocation will handle the overflow.
4131 Therefore, we consider this a bug in the MIPS ABI, and do
4132 not check for overflow here. */
4136 case R_MIPS_LITERAL
:
4137 /* Because we don't merge literal sections, we can handle this
4138 just like R_MIPS_GPREL16. In the long run, we should merge
4139 shared literals, and then we will need to additional work
4144 case R_MIPS16_GPREL
:
4145 /* The R_MIPS16_GPREL performs the same calculation as
4146 R_MIPS_GPREL16, but stores the relocated bits in a different
4147 order. We don't need to do anything special here; the
4148 differences are handled in mips_elf_perform_relocation. */
4149 case R_MIPS_GPREL16
:
4150 /* Only sign-extend the addend if it was extracted from the
4151 instruction. If the addend was separate, leave it alone,
4152 otherwise we may lose significant bits. */
4153 if (howto
->partial_inplace
)
4154 addend
= _bfd_mips_elf_sign_extend (addend
, 16);
4155 value
= symbol
+ addend
- gp
;
4156 /* If the symbol was local, any earlier relocatable links will
4157 have adjusted its addend with the gp offset, so compensate
4158 for that now. Don't do it for symbols forced local in this
4159 link, though, since they won't have had the gp offset applied
4163 overflowed_p
= mips_elf_overflow_p (value
, 16);
4172 /* The special case is when the symbol is forced to be local. We
4173 need the full address in the GOT since no R_MIPS_LO16 relocation
4175 forced
= ! mips_elf_local_relocation_p (input_bfd
, relocation
,
4176 local_sections
, FALSE
);
4177 value
= mips_elf_got16_entry (abfd
, input_bfd
, info
,
4178 symbol
+ addend
, forced
);
4179 if (value
== MINUS_ONE
)
4180 return bfd_reloc_outofrange
;
4182 = mips_elf_got_offset_from_index (elf_hash_table (info
)->dynobj
,
4183 abfd
, input_bfd
, value
);
4184 overflowed_p
= mips_elf_overflow_p (value
, 16);
4191 case R_MIPS_TLS_GOTTPREL
:
4192 case R_MIPS_TLS_LDM
:
4193 case R_MIPS_GOT_DISP
:
4196 overflowed_p
= mips_elf_overflow_p (value
, 16);
4199 case R_MIPS_GPREL32
:
4200 value
= (addend
+ symbol
+ gp0
- gp
);
4202 value
&= howto
->dst_mask
;
4206 case R_MIPS_GNU_REL16_S2
:
4207 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 18) - p
;
4208 overflowed_p
= mips_elf_overflow_p (value
, 18);
4209 value
= (value
>> 2) & howto
->dst_mask
;
4212 case R_MIPS_GOT_HI16
:
4213 case R_MIPS_CALL_HI16
:
4214 /* We're allowed to handle these two relocations identically.
4215 The dynamic linker is allowed to handle the CALL relocations
4216 differently by creating a lazy evaluation stub. */
4218 value
= mips_elf_high (value
);
4219 value
&= howto
->dst_mask
;
4222 case R_MIPS_GOT_LO16
:
4223 case R_MIPS_CALL_LO16
:
4224 value
= g
& howto
->dst_mask
;
4227 case R_MIPS_GOT_PAGE
:
4228 /* GOT_PAGE relocations that reference non-local symbols decay
4229 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4233 value
= mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, NULL
);
4234 if (value
== MINUS_ONE
)
4235 return bfd_reloc_outofrange
;
4236 value
= mips_elf_got_offset_from_index (elf_hash_table (info
)->dynobj
,
4237 abfd
, input_bfd
, value
);
4238 overflowed_p
= mips_elf_overflow_p (value
, 16);
4241 case R_MIPS_GOT_OFST
:
4243 mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, &value
);
4246 overflowed_p
= mips_elf_overflow_p (value
, 16);
4250 value
= symbol
- addend
;
4251 value
&= howto
->dst_mask
;
4255 value
= mips_elf_higher (addend
+ symbol
);
4256 value
&= howto
->dst_mask
;
4259 case R_MIPS_HIGHEST
:
4260 value
= mips_elf_highest (addend
+ symbol
);
4261 value
&= howto
->dst_mask
;
4264 case R_MIPS_SCN_DISP
:
4265 value
= symbol
+ addend
- sec
->output_offset
;
4266 value
&= howto
->dst_mask
;
4270 /* This relocation is only a hint. In some cases, we optimize
4271 it into a bal instruction. But we don't try to optimize
4272 branches to the PLT; that will wind up wasting time. */
4273 if (h
!= NULL
&& h
->root
.plt
.offset
!= (bfd_vma
) -1)
4274 return bfd_reloc_continue
;
4275 value
= symbol
+ addend
;
4279 case R_MIPS_GNU_VTINHERIT
:
4280 case R_MIPS_GNU_VTENTRY
:
4281 /* We don't do anything with these at present. */
4282 return bfd_reloc_continue
;
4285 /* An unrecognized relocation type. */
4286 return bfd_reloc_notsupported
;
4289 /* Store the VALUE for our caller. */
4291 return overflowed_p
? bfd_reloc_overflow
: bfd_reloc_ok
;
4294 /* Obtain the field relocated by RELOCATION. */
4297 mips_elf_obtain_contents (reloc_howto_type
*howto
,
4298 const Elf_Internal_Rela
*relocation
,
4299 bfd
*input_bfd
, bfd_byte
*contents
)
4302 bfd_byte
*location
= contents
+ relocation
->r_offset
;
4304 /* Obtain the bytes. */
4305 x
= bfd_get ((8 * bfd_get_reloc_size (howto
)), input_bfd
, location
);
4310 /* It has been determined that the result of the RELOCATION is the
4311 VALUE. Use HOWTO to place VALUE into the output file at the
4312 appropriate position. The SECTION is the section to which the
4313 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4314 for the relocation must be either JAL or JALX, and it is
4315 unconditionally converted to JALX.
4317 Returns FALSE if anything goes wrong. */
4320 mips_elf_perform_relocation (struct bfd_link_info
*info
,
4321 reloc_howto_type
*howto
,
4322 const Elf_Internal_Rela
*relocation
,
4323 bfd_vma value
, bfd
*input_bfd
,
4324 asection
*input_section
, bfd_byte
*contents
,
4325 bfd_boolean require_jalx
)
4329 int r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
4331 /* Figure out where the relocation is occurring. */
4332 location
= contents
+ relocation
->r_offset
;
4334 _bfd_mips16_elf_reloc_unshuffle (input_bfd
, r_type
, FALSE
, location
);
4336 /* Obtain the current value. */
4337 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
4339 /* Clear the field we are setting. */
4340 x
&= ~howto
->dst_mask
;
4342 /* Set the field. */
4343 x
|= (value
& howto
->dst_mask
);
4345 /* If required, turn JAL into JALX. */
4349 bfd_vma opcode
= x
>> 26;
4350 bfd_vma jalx_opcode
;
4352 /* Check to see if the opcode is already JAL or JALX. */
4353 if (r_type
== R_MIPS16_26
)
4355 ok
= ((opcode
== 0x6) || (opcode
== 0x7));
4360 ok
= ((opcode
== 0x3) || (opcode
== 0x1d));
4364 /* If the opcode is not JAL or JALX, there's a problem. */
4367 (*_bfd_error_handler
)
4368 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4371 (unsigned long) relocation
->r_offset
);
4372 bfd_set_error (bfd_error_bad_value
);
4376 /* Make this the JALX opcode. */
4377 x
= (x
& ~(0x3f << 26)) | (jalx_opcode
<< 26);
4380 /* On the RM9000, bal is faster than jal, because bal uses branch
4381 prediction hardware. If we are linking for the RM9000, and we
4382 see jal, and bal fits, use it instead. Note that this
4383 transformation should be safe for all architectures. */
4384 if (bfd_get_mach (input_bfd
) == bfd_mach_mips9000
4385 && !info
->relocatable
4387 && ((r_type
== R_MIPS_26
&& (x
>> 26) == 0x3) /* jal addr */
4388 || (r_type
== R_MIPS_JALR
&& x
== 0x0320f809))) /* jalr t9 */
4394 addr
= (input_section
->output_section
->vma
4395 + input_section
->output_offset
4396 + relocation
->r_offset
4398 if (r_type
== R_MIPS_26
)
4399 dest
= (value
<< 2) | ((addr
>> 28) << 28);
4403 if (off
<= 0x1ffff && off
>= -0x20000)
4404 x
= 0x04110000 | (((bfd_vma
) off
>> 2) & 0xffff); /* bal addr */
4407 /* Put the value into the output. */
4408 bfd_put (8 * bfd_get_reloc_size (howto
), input_bfd
, x
, location
);
4410 _bfd_mips16_elf_reloc_shuffle(input_bfd
, r_type
, !info
->relocatable
,
4416 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4419 mips_elf_stub_section_p (bfd
*abfd ATTRIBUTE_UNUSED
, asection
*section
)
4421 const char *name
= bfd_get_section_name (abfd
, section
);
4423 return (strncmp (name
, FN_STUB
, sizeof FN_STUB
- 1) == 0
4424 || strncmp (name
, CALL_STUB
, sizeof CALL_STUB
- 1) == 0
4425 || strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0);
4428 /* Add room for N relocations to the .rel.dyn section in ABFD. */
4431 mips_elf_allocate_dynamic_relocations (bfd
*abfd
, unsigned int n
)
4435 s
= mips_elf_rel_dyn_section (abfd
, FALSE
);
4436 BFD_ASSERT (s
!= NULL
);
4440 /* Make room for a null element. */
4441 s
->size
+= MIPS_ELF_REL_SIZE (abfd
);
4444 s
->size
+= n
* MIPS_ELF_REL_SIZE (abfd
);
4447 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4448 is the original relocation, which is now being transformed into a
4449 dynamic relocation. The ADDENDP is adjusted if necessary; the
4450 caller should store the result in place of the original addend. */
4453 mips_elf_create_dynamic_relocation (bfd
*output_bfd
,
4454 struct bfd_link_info
*info
,
4455 const Elf_Internal_Rela
*rel
,
4456 struct mips_elf_link_hash_entry
*h
,
4457 asection
*sec
, bfd_vma symbol
,
4458 bfd_vma
*addendp
, asection
*input_section
)
4460 Elf_Internal_Rela outrel
[3];
4465 bfd_boolean defined_p
;
4467 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
4468 dynobj
= elf_hash_table (info
)->dynobj
;
4469 sreloc
= mips_elf_rel_dyn_section (dynobj
, FALSE
);
4470 BFD_ASSERT (sreloc
!= NULL
);
4471 BFD_ASSERT (sreloc
->contents
!= NULL
);
4472 BFD_ASSERT (sreloc
->reloc_count
* MIPS_ELF_REL_SIZE (output_bfd
)
4475 outrel
[0].r_offset
=
4476 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[0].r_offset
);
4477 outrel
[1].r_offset
=
4478 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[1].r_offset
);
4479 outrel
[2].r_offset
=
4480 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[2].r_offset
);
4482 if (outrel
[0].r_offset
== MINUS_ONE
)
4483 /* The relocation field has been deleted. */
4486 if (outrel
[0].r_offset
== MINUS_TWO
)
4488 /* The relocation field has been converted into a relative value of
4489 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4490 the field to be fully relocated, so add in the symbol's value. */
4495 /* We must now calculate the dynamic symbol table index to use
4496 in the relocation. */
4498 && (!h
->root
.def_regular
4499 || (info
->shared
&& !info
->symbolic
&& !h
->root
.forced_local
)))
4501 indx
= h
->root
.dynindx
;
4502 if (SGI_COMPAT (output_bfd
))
4503 defined_p
= h
->root
.def_regular
;
4505 /* ??? glibc's ld.so just adds the final GOT entry to the
4506 relocation field. It therefore treats relocs against
4507 defined symbols in the same way as relocs against
4508 undefined symbols. */
4513 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
4515 else if (sec
== NULL
|| sec
->owner
== NULL
)
4517 bfd_set_error (bfd_error_bad_value
);
4522 indx
= elf_section_data (sec
->output_section
)->dynindx
;
4527 /* Instead of generating a relocation using the section
4528 symbol, we may as well make it a fully relative
4529 relocation. We want to avoid generating relocations to
4530 local symbols because we used to generate them
4531 incorrectly, without adding the original symbol value,
4532 which is mandated by the ABI for section symbols. In
4533 order to give dynamic loaders and applications time to
4534 phase out the incorrect use, we refrain from emitting
4535 section-relative relocations. It's not like they're
4536 useful, after all. This should be a bit more efficient
4538 /* ??? Although this behavior is compatible with glibc's ld.so,
4539 the ABI says that relocations against STN_UNDEF should have
4540 a symbol value of 0. Irix rld honors this, so relocations
4541 against STN_UNDEF have no effect. */
4542 if (!SGI_COMPAT (output_bfd
))
4547 /* If the relocation was previously an absolute relocation and
4548 this symbol will not be referred to by the relocation, we must
4549 adjust it by the value we give it in the dynamic symbol table.
4550 Otherwise leave the job up to the dynamic linker. */
4551 if (defined_p
&& r_type
!= R_MIPS_REL32
)
4554 /* The relocation is always an REL32 relocation because we don't
4555 know where the shared library will wind up at load-time. */
4556 outrel
[0].r_info
= ELF_R_INFO (output_bfd
, (unsigned long) indx
,
4558 /* For strict adherence to the ABI specification, we should
4559 generate a R_MIPS_64 relocation record by itself before the
4560 _REL32/_64 record as well, such that the addend is read in as
4561 a 64-bit value (REL32 is a 32-bit relocation, after all).
4562 However, since none of the existing ELF64 MIPS dynamic
4563 loaders seems to care, we don't waste space with these
4564 artificial relocations. If this turns out to not be true,
4565 mips_elf_allocate_dynamic_relocation() should be tweaked so
4566 as to make room for a pair of dynamic relocations per
4567 invocation if ABI_64_P, and here we should generate an
4568 additional relocation record with R_MIPS_64 by itself for a
4569 NULL symbol before this relocation record. */
4570 outrel
[1].r_info
= ELF_R_INFO (output_bfd
, 0,
4571 ABI_64_P (output_bfd
)
4574 outrel
[2].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_NONE
);
4576 /* Adjust the output offset of the relocation to reference the
4577 correct location in the output file. */
4578 outrel
[0].r_offset
+= (input_section
->output_section
->vma
4579 + input_section
->output_offset
);
4580 outrel
[1].r_offset
+= (input_section
->output_section
->vma
4581 + input_section
->output_offset
);
4582 outrel
[2].r_offset
+= (input_section
->output_section
->vma
4583 + input_section
->output_offset
);
4585 /* Put the relocation back out. We have to use the special
4586 relocation outputter in the 64-bit case since the 64-bit
4587 relocation format is non-standard. */
4588 if (ABI_64_P (output_bfd
))
4590 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
4591 (output_bfd
, &outrel
[0],
4593 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
4596 bfd_elf32_swap_reloc_out
4597 (output_bfd
, &outrel
[0],
4598 (sreloc
->contents
+ sreloc
->reloc_count
* sizeof (Elf32_External_Rel
)));
4600 /* We've now added another relocation. */
4601 ++sreloc
->reloc_count
;
4603 /* Make sure the output section is writable. The dynamic linker
4604 will be writing to it. */
4605 elf_section_data (input_section
->output_section
)->this_hdr
.sh_flags
4608 /* On IRIX5, make an entry of compact relocation info. */
4609 if (IRIX_COMPAT (output_bfd
) == ict_irix5
)
4611 asection
*scpt
= bfd_get_section_by_name (dynobj
, ".compact_rel");
4616 Elf32_crinfo cptrel
;
4618 mips_elf_set_cr_format (cptrel
, CRF_MIPS_LONG
);
4619 cptrel
.vaddr
= (rel
->r_offset
4620 + input_section
->output_section
->vma
4621 + input_section
->output_offset
);
4622 if (r_type
== R_MIPS_REL32
)
4623 mips_elf_set_cr_type (cptrel
, CRT_MIPS_REL32
);
4625 mips_elf_set_cr_type (cptrel
, CRT_MIPS_WORD
);
4626 mips_elf_set_cr_dist2to (cptrel
, 0);
4627 cptrel
.konst
= *addendp
;
4629 cr
= (scpt
->contents
4630 + sizeof (Elf32_External_compact_rel
));
4631 mips_elf_set_cr_relvaddr (cptrel
, 0);
4632 bfd_elf32_swap_crinfo_out (output_bfd
, &cptrel
,
4633 ((Elf32_External_crinfo
*) cr
4634 + scpt
->reloc_count
));
4635 ++scpt
->reloc_count
;
4642 /* Return the MACH for a MIPS e_flags value. */
4645 _bfd_elf_mips_mach (flagword flags
)
4647 switch (flags
& EF_MIPS_MACH
)
4649 case E_MIPS_MACH_3900
:
4650 return bfd_mach_mips3900
;
4652 case E_MIPS_MACH_4010
:
4653 return bfd_mach_mips4010
;
4655 case E_MIPS_MACH_4100
:
4656 return bfd_mach_mips4100
;
4658 case E_MIPS_MACH_4111
:
4659 return bfd_mach_mips4111
;
4661 case E_MIPS_MACH_4120
:
4662 return bfd_mach_mips4120
;
4664 case E_MIPS_MACH_4650
:
4665 return bfd_mach_mips4650
;
4667 case E_MIPS_MACH_5400
:
4668 return bfd_mach_mips5400
;
4670 case E_MIPS_MACH_5500
:
4671 return bfd_mach_mips5500
;
4673 case E_MIPS_MACH_9000
:
4674 return bfd_mach_mips9000
;
4676 case E_MIPS_MACH_SB1
:
4677 return bfd_mach_mips_sb1
;
4680 switch (flags
& EF_MIPS_ARCH
)
4684 return bfd_mach_mips3000
;
4688 return bfd_mach_mips6000
;
4692 return bfd_mach_mips4000
;
4696 return bfd_mach_mips8000
;
4700 return bfd_mach_mips5
;
4703 case E_MIPS_ARCH_32
:
4704 return bfd_mach_mipsisa32
;
4707 case E_MIPS_ARCH_64
:
4708 return bfd_mach_mipsisa64
;
4711 case E_MIPS_ARCH_32R2
:
4712 return bfd_mach_mipsisa32r2
;
4715 case E_MIPS_ARCH_64R2
:
4716 return bfd_mach_mipsisa64r2
;
4724 /* Return printable name for ABI. */
4726 static INLINE
char *
4727 elf_mips_abi_name (bfd
*abfd
)
4731 flags
= elf_elfheader (abfd
)->e_flags
;
4732 switch (flags
& EF_MIPS_ABI
)
4735 if (ABI_N32_P (abfd
))
4737 else if (ABI_64_P (abfd
))
4741 case E_MIPS_ABI_O32
:
4743 case E_MIPS_ABI_O64
:
4745 case E_MIPS_ABI_EABI32
:
4747 case E_MIPS_ABI_EABI64
:
4750 return "unknown abi";
4754 /* MIPS ELF uses two common sections. One is the usual one, and the
4755 other is for small objects. All the small objects are kept
4756 together, and then referenced via the gp pointer, which yields
4757 faster assembler code. This is what we use for the small common
4758 section. This approach is copied from ecoff.c. */
4759 static asection mips_elf_scom_section
;
4760 static asymbol mips_elf_scom_symbol
;
4761 static asymbol
*mips_elf_scom_symbol_ptr
;
4763 /* MIPS ELF also uses an acommon section, which represents an
4764 allocated common symbol which may be overridden by a
4765 definition in a shared library. */
4766 static asection mips_elf_acom_section
;
4767 static asymbol mips_elf_acom_symbol
;
4768 static asymbol
*mips_elf_acom_symbol_ptr
;
4770 /* Handle the special MIPS section numbers that a symbol may use.
4771 This is used for both the 32-bit and the 64-bit ABI. */
4774 _bfd_mips_elf_symbol_processing (bfd
*abfd
, asymbol
*asym
)
4776 elf_symbol_type
*elfsym
;
4778 elfsym
= (elf_symbol_type
*) asym
;
4779 switch (elfsym
->internal_elf_sym
.st_shndx
)
4781 case SHN_MIPS_ACOMMON
:
4782 /* This section is used in a dynamically linked executable file.
4783 It is an allocated common section. The dynamic linker can
4784 either resolve these symbols to something in a shared
4785 library, or it can just leave them here. For our purposes,
4786 we can consider these symbols to be in a new section. */
4787 if (mips_elf_acom_section
.name
== NULL
)
4789 /* Initialize the acommon section. */
4790 mips_elf_acom_section
.name
= ".acommon";
4791 mips_elf_acom_section
.flags
= SEC_ALLOC
;
4792 mips_elf_acom_section
.output_section
= &mips_elf_acom_section
;
4793 mips_elf_acom_section
.symbol
= &mips_elf_acom_symbol
;
4794 mips_elf_acom_section
.symbol_ptr_ptr
= &mips_elf_acom_symbol_ptr
;
4795 mips_elf_acom_symbol
.name
= ".acommon";
4796 mips_elf_acom_symbol
.flags
= BSF_SECTION_SYM
;
4797 mips_elf_acom_symbol
.section
= &mips_elf_acom_section
;
4798 mips_elf_acom_symbol_ptr
= &mips_elf_acom_symbol
;
4800 asym
->section
= &mips_elf_acom_section
;
4804 /* Common symbols less than the GP size are automatically
4805 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4806 if (asym
->value
> elf_gp_size (abfd
)
4807 || IRIX_COMPAT (abfd
) == ict_irix6
)
4810 case SHN_MIPS_SCOMMON
:
4811 if (mips_elf_scom_section
.name
== NULL
)
4813 /* Initialize the small common section. */
4814 mips_elf_scom_section
.name
= ".scommon";
4815 mips_elf_scom_section
.flags
= SEC_IS_COMMON
;
4816 mips_elf_scom_section
.output_section
= &mips_elf_scom_section
;
4817 mips_elf_scom_section
.symbol
= &mips_elf_scom_symbol
;
4818 mips_elf_scom_section
.symbol_ptr_ptr
= &mips_elf_scom_symbol_ptr
;
4819 mips_elf_scom_symbol
.name
= ".scommon";
4820 mips_elf_scom_symbol
.flags
= BSF_SECTION_SYM
;
4821 mips_elf_scom_symbol
.section
= &mips_elf_scom_section
;
4822 mips_elf_scom_symbol_ptr
= &mips_elf_scom_symbol
;
4824 asym
->section
= &mips_elf_scom_section
;
4825 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
4828 case SHN_MIPS_SUNDEFINED
:
4829 asym
->section
= bfd_und_section_ptr
;
4834 asection
*section
= bfd_get_section_by_name (abfd
, ".text");
4836 BFD_ASSERT (SGI_COMPAT (abfd
));
4837 if (section
!= NULL
)
4839 asym
->section
= section
;
4840 /* MIPS_TEXT is a bit special, the address is not an offset
4841 to the base of the .text section. So substract the section
4842 base address to make it an offset. */
4843 asym
->value
-= section
->vma
;
4850 asection
*section
= bfd_get_section_by_name (abfd
, ".data");
4852 BFD_ASSERT (SGI_COMPAT (abfd
));
4853 if (section
!= NULL
)
4855 asym
->section
= section
;
4856 /* MIPS_DATA is a bit special, the address is not an offset
4857 to the base of the .data section. So substract the section
4858 base address to make it an offset. */
4859 asym
->value
-= section
->vma
;
4866 /* Implement elf_backend_eh_frame_address_size. This differs from
4867 the default in the way it handles EABI64.
4869 EABI64 was originally specified as an LP64 ABI, and that is what
4870 -mabi=eabi normally gives on a 64-bit target. However, gcc has
4871 historically accepted the combination of -mabi=eabi and -mlong32,
4872 and this ILP32 variation has become semi-official over time.
4873 Both forms use elf32 and have pointer-sized FDE addresses.
4875 If an EABI object was generated by GCC 4.0 or above, it will have
4876 an empty .gcc_compiled_longXX section, where XX is the size of longs
4877 in bits. Unfortunately, ILP32 objects generated by earlier compilers
4878 have no special marking to distinguish them from LP64 objects.
4880 We don't want users of the official LP64 ABI to be punished for the
4881 existence of the ILP32 variant, but at the same time, we don't want
4882 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
4883 We therefore take the following approach:
4885 - If ABFD contains a .gcc_compiled_longXX section, use it to
4886 determine the pointer size.
4888 - Otherwise check the type of the first relocation. Assume that
4889 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
4893 The second check is enough to detect LP64 objects generated by pre-4.0
4894 compilers because, in the kind of output generated by those compilers,
4895 the first relocation will be associated with either a CIE personality
4896 routine or an FDE start address. Furthermore, the compilers never
4897 used a special (non-pointer) encoding for this ABI.
4899 Checking the relocation type should also be safe because there is no
4900 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
4904 _bfd_mips_elf_eh_frame_address_size (bfd
*abfd
, asection
*sec
)
4906 if (elf_elfheader (abfd
)->e_ident
[EI_CLASS
] == ELFCLASS64
)
4908 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
4910 bfd_boolean long32_p
, long64_p
;
4912 long32_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long32") != 0;
4913 long64_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long64") != 0;
4914 if (long32_p
&& long64_p
)
4921 if (sec
->reloc_count
> 0
4922 && elf_section_data (sec
)->relocs
!= NULL
4923 && (ELF32_R_TYPE (elf_section_data (sec
)->relocs
[0].r_info
)
4932 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4933 relocations against two unnamed section symbols to resolve to the
4934 same address. For example, if we have code like:
4936 lw $4,%got_disp(.data)($gp)
4937 lw $25,%got_disp(.text)($gp)
4940 then the linker will resolve both relocations to .data and the program
4941 will jump there rather than to .text.
4943 We can work around this problem by giving names to local section symbols.
4944 This is also what the MIPSpro tools do. */
4947 _bfd_mips_elf_name_local_section_symbols (bfd
*abfd
)
4949 return SGI_COMPAT (abfd
);
4952 /* Work over a section just before writing it out. This routine is
4953 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4954 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4958 _bfd_mips_elf_section_processing (bfd
*abfd
, Elf_Internal_Shdr
*hdr
)
4960 if (hdr
->sh_type
== SHT_MIPS_REGINFO
4961 && hdr
->sh_size
> 0)
4965 BFD_ASSERT (hdr
->sh_size
== sizeof (Elf32_External_RegInfo
));
4966 BFD_ASSERT (hdr
->contents
== NULL
);
4969 hdr
->sh_offset
+ sizeof (Elf32_External_RegInfo
) - 4,
4972 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
4973 if (bfd_bwrite (buf
, 4, abfd
) != 4)
4977 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
4978 && hdr
->bfd_section
!= NULL
4979 && mips_elf_section_data (hdr
->bfd_section
) != NULL
4980 && mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
!= NULL
)
4982 bfd_byte
*contents
, *l
, *lend
;
4984 /* We stored the section contents in the tdata field in the
4985 set_section_contents routine. We save the section contents
4986 so that we don't have to read them again.
4987 At this point we know that elf_gp is set, so we can look
4988 through the section contents to see if there is an
4989 ODK_REGINFO structure. */
4991 contents
= mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
;
4993 lend
= contents
+ hdr
->sh_size
;
4994 while (l
+ sizeof (Elf_External_Options
) <= lend
)
4996 Elf_Internal_Options intopt
;
4998 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
5000 if (intopt
.size
< sizeof (Elf_External_Options
))
5002 (*_bfd_error_handler
)
5003 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5004 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
5007 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
5014 + sizeof (Elf_External_Options
)
5015 + (sizeof (Elf64_External_RegInfo
) - 8)),
5018 H_PUT_64 (abfd
, elf_gp (abfd
), buf
);
5019 if (bfd_bwrite (buf
, 8, abfd
) != 8)
5022 else if (intopt
.kind
== ODK_REGINFO
)
5029 + sizeof (Elf_External_Options
)
5030 + (sizeof (Elf32_External_RegInfo
) - 4)),
5033 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
5034 if (bfd_bwrite (buf
, 4, abfd
) != 4)
5041 if (hdr
->bfd_section
!= NULL
)
5043 const char *name
= bfd_get_section_name (abfd
, hdr
->bfd_section
);
5045 if (strcmp (name
, ".sdata") == 0
5046 || strcmp (name
, ".lit8") == 0
5047 || strcmp (name
, ".lit4") == 0)
5049 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
5050 hdr
->sh_type
= SHT_PROGBITS
;
5052 else if (strcmp (name
, ".sbss") == 0)
5054 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
5055 hdr
->sh_type
= SHT_NOBITS
;
5057 else if (strcmp (name
, ".srdata") == 0)
5059 hdr
->sh_flags
|= SHF_ALLOC
| SHF_MIPS_GPREL
;
5060 hdr
->sh_type
= SHT_PROGBITS
;
5062 else if (strcmp (name
, ".compact_rel") == 0)
5065 hdr
->sh_type
= SHT_PROGBITS
;
5067 else if (strcmp (name
, ".rtproc") == 0)
5069 if (hdr
->sh_addralign
!= 0 && hdr
->sh_entsize
== 0)
5071 unsigned int adjust
;
5073 adjust
= hdr
->sh_size
% hdr
->sh_addralign
;
5075 hdr
->sh_size
+= hdr
->sh_addralign
- adjust
;
5083 /* Handle a MIPS specific section when reading an object file. This
5084 is called when elfcode.h finds a section with an unknown type.
5085 This routine supports both the 32-bit and 64-bit ELF ABI.
5087 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5091 _bfd_mips_elf_section_from_shdr (bfd
*abfd
,
5092 Elf_Internal_Shdr
*hdr
,
5098 /* There ought to be a place to keep ELF backend specific flags, but
5099 at the moment there isn't one. We just keep track of the
5100 sections by their name, instead. Fortunately, the ABI gives
5101 suggested names for all the MIPS specific sections, so we will
5102 probably get away with this. */
5103 switch (hdr
->sh_type
)
5105 case SHT_MIPS_LIBLIST
:
5106 if (strcmp (name
, ".liblist") != 0)
5110 if (strcmp (name
, ".msym") != 0)
5113 case SHT_MIPS_CONFLICT
:
5114 if (strcmp (name
, ".conflict") != 0)
5117 case SHT_MIPS_GPTAB
:
5118 if (strncmp (name
, ".gptab.", sizeof ".gptab." - 1) != 0)
5121 case SHT_MIPS_UCODE
:
5122 if (strcmp (name
, ".ucode") != 0)
5125 case SHT_MIPS_DEBUG
:
5126 if (strcmp (name
, ".mdebug") != 0)
5128 flags
= SEC_DEBUGGING
;
5130 case SHT_MIPS_REGINFO
:
5131 if (strcmp (name
, ".reginfo") != 0
5132 || hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
5134 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
5136 case SHT_MIPS_IFACE
:
5137 if (strcmp (name
, ".MIPS.interfaces") != 0)
5140 case SHT_MIPS_CONTENT
:
5141 if (strncmp (name
, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
5144 case SHT_MIPS_OPTIONS
:
5145 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
5148 case SHT_MIPS_DWARF
:
5149 if (strncmp (name
, ".debug_", sizeof ".debug_" - 1) != 0)
5152 case SHT_MIPS_SYMBOL_LIB
:
5153 if (strcmp (name
, ".MIPS.symlib") != 0)
5156 case SHT_MIPS_EVENTS
:
5157 if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
5158 && strncmp (name
, ".MIPS.post_rel",
5159 sizeof ".MIPS.post_rel" - 1) != 0)
5166 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
5171 if (! bfd_set_section_flags (abfd
, hdr
->bfd_section
,
5172 (bfd_get_section_flags (abfd
,
5178 /* FIXME: We should record sh_info for a .gptab section. */
5180 /* For a .reginfo section, set the gp value in the tdata information
5181 from the contents of this section. We need the gp value while
5182 processing relocs, so we just get it now. The .reginfo section
5183 is not used in the 64-bit MIPS ELF ABI. */
5184 if (hdr
->sh_type
== SHT_MIPS_REGINFO
)
5186 Elf32_External_RegInfo ext
;
5189 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
,
5190 &ext
, 0, sizeof ext
))
5192 bfd_mips_elf32_swap_reginfo_in (abfd
, &ext
, &s
);
5193 elf_gp (abfd
) = s
.ri_gp_value
;
5196 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5197 set the gp value based on what we find. We may see both
5198 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5199 they should agree. */
5200 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
)
5202 bfd_byte
*contents
, *l
, *lend
;
5204 contents
= bfd_malloc (hdr
->sh_size
);
5205 if (contents
== NULL
)
5207 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, contents
,
5214 lend
= contents
+ hdr
->sh_size
;
5215 while (l
+ sizeof (Elf_External_Options
) <= lend
)
5217 Elf_Internal_Options intopt
;
5219 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
5221 if (intopt
.size
< sizeof (Elf_External_Options
))
5223 (*_bfd_error_handler
)
5224 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5225 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
5228 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
5230 Elf64_Internal_RegInfo intreg
;
5232 bfd_mips_elf64_swap_reginfo_in
5234 ((Elf64_External_RegInfo
*)
5235 (l
+ sizeof (Elf_External_Options
))),
5237 elf_gp (abfd
) = intreg
.ri_gp_value
;
5239 else if (intopt
.kind
== ODK_REGINFO
)
5241 Elf32_RegInfo intreg
;
5243 bfd_mips_elf32_swap_reginfo_in
5245 ((Elf32_External_RegInfo
*)
5246 (l
+ sizeof (Elf_External_Options
))),
5248 elf_gp (abfd
) = intreg
.ri_gp_value
;
5258 /* Set the correct type for a MIPS ELF section. We do this by the
5259 section name, which is a hack, but ought to work. This routine is
5260 used by both the 32-bit and the 64-bit ABI. */
5263 _bfd_mips_elf_fake_sections (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*sec
)
5265 register const char *name
;
5266 unsigned int sh_type
;
5268 name
= bfd_get_section_name (abfd
, sec
);
5269 sh_type
= hdr
->sh_type
;
5271 if (strcmp (name
, ".liblist") == 0)
5273 hdr
->sh_type
= SHT_MIPS_LIBLIST
;
5274 hdr
->sh_info
= sec
->size
/ sizeof (Elf32_Lib
);
5275 /* The sh_link field is set in final_write_processing. */
5277 else if (strcmp (name
, ".conflict") == 0)
5278 hdr
->sh_type
= SHT_MIPS_CONFLICT
;
5279 else if (strncmp (name
, ".gptab.", sizeof ".gptab." - 1) == 0)
5281 hdr
->sh_type
= SHT_MIPS_GPTAB
;
5282 hdr
->sh_entsize
= sizeof (Elf32_External_gptab
);
5283 /* The sh_info field is set in final_write_processing. */
5285 else if (strcmp (name
, ".ucode") == 0)
5286 hdr
->sh_type
= SHT_MIPS_UCODE
;
5287 else if (strcmp (name
, ".mdebug") == 0)
5289 hdr
->sh_type
= SHT_MIPS_DEBUG
;
5290 /* In a shared object on IRIX 5.3, the .mdebug section has an
5291 entsize of 0. FIXME: Does this matter? */
5292 if (SGI_COMPAT (abfd
) && (abfd
->flags
& DYNAMIC
) != 0)
5293 hdr
->sh_entsize
= 0;
5295 hdr
->sh_entsize
= 1;
5297 else if (strcmp (name
, ".reginfo") == 0)
5299 hdr
->sh_type
= SHT_MIPS_REGINFO
;
5300 /* In a shared object on IRIX 5.3, the .reginfo section has an
5301 entsize of 0x18. FIXME: Does this matter? */
5302 if (SGI_COMPAT (abfd
))
5304 if ((abfd
->flags
& DYNAMIC
) != 0)
5305 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
5307 hdr
->sh_entsize
= 1;
5310 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
5312 else if (SGI_COMPAT (abfd
)
5313 && (strcmp (name
, ".hash") == 0
5314 || strcmp (name
, ".dynamic") == 0
5315 || strcmp (name
, ".dynstr") == 0))
5317 if (SGI_COMPAT (abfd
))
5318 hdr
->sh_entsize
= 0;
5320 /* This isn't how the IRIX6 linker behaves. */
5321 hdr
->sh_info
= SIZEOF_MIPS_DYNSYM_SECNAMES
;
5324 else if (strcmp (name
, ".got") == 0
5325 || strcmp (name
, ".srdata") == 0
5326 || strcmp (name
, ".sdata") == 0
5327 || strcmp (name
, ".sbss") == 0
5328 || strcmp (name
, ".lit4") == 0
5329 || strcmp (name
, ".lit8") == 0)
5330 hdr
->sh_flags
|= SHF_MIPS_GPREL
;
5331 else if (strcmp (name
, ".MIPS.interfaces") == 0)
5333 hdr
->sh_type
= SHT_MIPS_IFACE
;
5334 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
5336 else if (strncmp (name
, ".MIPS.content", strlen (".MIPS.content")) == 0)
5338 hdr
->sh_type
= SHT_MIPS_CONTENT
;
5339 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
5340 /* The sh_info field is set in final_write_processing. */
5342 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
5344 hdr
->sh_type
= SHT_MIPS_OPTIONS
;
5345 hdr
->sh_entsize
= 1;
5346 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
5348 else if (strncmp (name
, ".debug_", sizeof ".debug_" - 1) == 0)
5349 hdr
->sh_type
= SHT_MIPS_DWARF
;
5350 else if (strcmp (name
, ".MIPS.symlib") == 0)
5352 hdr
->sh_type
= SHT_MIPS_SYMBOL_LIB
;
5353 /* The sh_link and sh_info fields are set in
5354 final_write_processing. */
5356 else if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
5357 || strncmp (name
, ".MIPS.post_rel",
5358 sizeof ".MIPS.post_rel" - 1) == 0)
5360 hdr
->sh_type
= SHT_MIPS_EVENTS
;
5361 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
5362 /* The sh_link field is set in final_write_processing. */
5364 else if (strcmp (name
, ".msym") == 0)
5366 hdr
->sh_type
= SHT_MIPS_MSYM
;
5367 hdr
->sh_flags
|= SHF_ALLOC
;
5368 hdr
->sh_entsize
= 8;
5371 /* In the unlikely event a special section is empty it has to lose its
5372 special meaning. This may happen e.g. when using `strip' with the
5373 "--only-keep-debug" option. */
5374 if (sec
->size
> 0 && !(sec
->flags
& SEC_HAS_CONTENTS
))
5375 hdr
->sh_type
= sh_type
;
5377 /* The generic elf_fake_sections will set up REL_HDR using the default
5378 kind of relocations. We used to set up a second header for the
5379 non-default kind of relocations here, but only NewABI would use
5380 these, and the IRIX ld doesn't like resulting empty RELA sections.
5381 Thus we create those header only on demand now. */
5386 /* Given a BFD section, try to locate the corresponding ELF section
5387 index. This is used by both the 32-bit and the 64-bit ABI.
5388 Actually, it's not clear to me that the 64-bit ABI supports these,
5389 but for non-PIC objects we will certainly want support for at least
5390 the .scommon section. */
5393 _bfd_mips_elf_section_from_bfd_section (bfd
*abfd ATTRIBUTE_UNUSED
,
5394 asection
*sec
, int *retval
)
5396 if (strcmp (bfd_get_section_name (abfd
, sec
), ".scommon") == 0)
5398 *retval
= SHN_MIPS_SCOMMON
;
5401 if (strcmp (bfd_get_section_name (abfd
, sec
), ".acommon") == 0)
5403 *retval
= SHN_MIPS_ACOMMON
;
5409 /* Hook called by the linker routine which adds symbols from an object
5410 file. We must handle the special MIPS section numbers here. */
5413 _bfd_mips_elf_add_symbol_hook (bfd
*abfd
, struct bfd_link_info
*info
,
5414 Elf_Internal_Sym
*sym
, const char **namep
,
5415 flagword
*flagsp ATTRIBUTE_UNUSED
,
5416 asection
**secp
, bfd_vma
*valp
)
5418 if (SGI_COMPAT (abfd
)
5419 && (abfd
->flags
& DYNAMIC
) != 0
5420 && strcmp (*namep
, "_rld_new_interface") == 0)
5422 /* Skip IRIX5 rld entry name. */
5427 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5428 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5429 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5430 a magic symbol resolved by the linker, we ignore this bogus definition
5431 of _gp_disp. New ABI objects do not suffer from this problem so this
5432 is not done for them. */
5434 && (sym
->st_shndx
== SHN_ABS
)
5435 && (strcmp (*namep
, "_gp_disp") == 0))
5441 switch (sym
->st_shndx
)
5444 /* Common symbols less than the GP size are automatically
5445 treated as SHN_MIPS_SCOMMON symbols. */
5446 if (sym
->st_size
> elf_gp_size (abfd
)
5447 || IRIX_COMPAT (abfd
) == ict_irix6
)
5450 case SHN_MIPS_SCOMMON
:
5451 *secp
= bfd_make_section_old_way (abfd
, ".scommon");
5452 (*secp
)->flags
|= SEC_IS_COMMON
;
5453 *valp
= sym
->st_size
;
5457 /* This section is used in a shared object. */
5458 if (elf_tdata (abfd
)->elf_text_section
== NULL
)
5460 asymbol
*elf_text_symbol
;
5461 asection
*elf_text_section
;
5462 bfd_size_type amt
= sizeof (asection
);
5464 elf_text_section
= bfd_zalloc (abfd
, amt
);
5465 if (elf_text_section
== NULL
)
5468 amt
= sizeof (asymbol
);
5469 elf_text_symbol
= bfd_zalloc (abfd
, amt
);
5470 if (elf_text_symbol
== NULL
)
5473 /* Initialize the section. */
5475 elf_tdata (abfd
)->elf_text_section
= elf_text_section
;
5476 elf_tdata (abfd
)->elf_text_symbol
= elf_text_symbol
;
5478 elf_text_section
->symbol
= elf_text_symbol
;
5479 elf_text_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_text_symbol
;
5481 elf_text_section
->name
= ".text";
5482 elf_text_section
->flags
= SEC_NO_FLAGS
;
5483 elf_text_section
->output_section
= NULL
;
5484 elf_text_section
->owner
= abfd
;
5485 elf_text_symbol
->name
= ".text";
5486 elf_text_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
5487 elf_text_symbol
->section
= elf_text_section
;
5489 /* This code used to do *secp = bfd_und_section_ptr if
5490 info->shared. I don't know why, and that doesn't make sense,
5491 so I took it out. */
5492 *secp
= elf_tdata (abfd
)->elf_text_section
;
5495 case SHN_MIPS_ACOMMON
:
5496 /* Fall through. XXX Can we treat this as allocated data? */
5498 /* This section is used in a shared object. */
5499 if (elf_tdata (abfd
)->elf_data_section
== NULL
)
5501 asymbol
*elf_data_symbol
;
5502 asection
*elf_data_section
;
5503 bfd_size_type amt
= sizeof (asection
);
5505 elf_data_section
= bfd_zalloc (abfd
, amt
);
5506 if (elf_data_section
== NULL
)
5509 amt
= sizeof (asymbol
);
5510 elf_data_symbol
= bfd_zalloc (abfd
, amt
);
5511 if (elf_data_symbol
== NULL
)
5514 /* Initialize the section. */
5516 elf_tdata (abfd
)->elf_data_section
= elf_data_section
;
5517 elf_tdata (abfd
)->elf_data_symbol
= elf_data_symbol
;
5519 elf_data_section
->symbol
= elf_data_symbol
;
5520 elf_data_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_data_symbol
;
5522 elf_data_section
->name
= ".data";
5523 elf_data_section
->flags
= SEC_NO_FLAGS
;
5524 elf_data_section
->output_section
= NULL
;
5525 elf_data_section
->owner
= abfd
;
5526 elf_data_symbol
->name
= ".data";
5527 elf_data_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
5528 elf_data_symbol
->section
= elf_data_section
;
5530 /* This code used to do *secp = bfd_und_section_ptr if
5531 info->shared. I don't know why, and that doesn't make sense,
5532 so I took it out. */
5533 *secp
= elf_tdata (abfd
)->elf_data_section
;
5536 case SHN_MIPS_SUNDEFINED
:
5537 *secp
= bfd_und_section_ptr
;
5541 if (SGI_COMPAT (abfd
)
5543 && info
->hash
->creator
== abfd
->xvec
5544 && strcmp (*namep
, "__rld_obj_head") == 0)
5546 struct elf_link_hash_entry
*h
;
5547 struct bfd_link_hash_entry
*bh
;
5549 /* Mark __rld_obj_head as dynamic. */
5551 if (! (_bfd_generic_link_add_one_symbol
5552 (info
, abfd
, *namep
, BSF_GLOBAL
, *secp
, *valp
, NULL
, FALSE
,
5553 get_elf_backend_data (abfd
)->collect
, &bh
)))
5556 h
= (struct elf_link_hash_entry
*) bh
;
5559 h
->type
= STT_OBJECT
;
5561 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5564 mips_elf_hash_table (info
)->use_rld_obj_head
= TRUE
;
5567 /* If this is a mips16 text symbol, add 1 to the value to make it
5568 odd. This will cause something like .word SYM to come up with
5569 the right value when it is loaded into the PC. */
5570 if (sym
->st_other
== STO_MIPS16
)
5576 /* This hook function is called before the linker writes out a global
5577 symbol. We mark symbols as small common if appropriate. This is
5578 also where we undo the increment of the value for a mips16 symbol. */
5581 _bfd_mips_elf_link_output_symbol_hook
5582 (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
5583 const char *name ATTRIBUTE_UNUSED
, Elf_Internal_Sym
*sym
,
5584 asection
*input_sec
, struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
)
5586 /* If we see a common symbol, which implies a relocatable link, then
5587 if a symbol was small common in an input file, mark it as small
5588 common in the output file. */
5589 if (sym
->st_shndx
== SHN_COMMON
5590 && strcmp (input_sec
->name
, ".scommon") == 0)
5591 sym
->st_shndx
= SHN_MIPS_SCOMMON
;
5593 if (sym
->st_other
== STO_MIPS16
)
5594 sym
->st_value
&= ~1;
5599 /* Functions for the dynamic linker. */
5601 /* Create dynamic sections when linking against a dynamic object. */
5604 _bfd_mips_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
5606 struct elf_link_hash_entry
*h
;
5607 struct bfd_link_hash_entry
*bh
;
5609 register asection
*s
;
5610 const char * const *namep
;
5612 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
5613 | SEC_LINKER_CREATED
| SEC_READONLY
);
5615 /* Mips ABI requests the .dynamic section to be read only. */
5616 s
= bfd_get_section_by_name (abfd
, ".dynamic");
5619 if (! bfd_set_section_flags (abfd
, s
, flags
))
5623 /* We need to create .got section. */
5624 if (! mips_elf_create_got_section (abfd
, info
, FALSE
))
5627 if (! mips_elf_rel_dyn_section (elf_hash_table (info
)->dynobj
, TRUE
))
5630 /* Create .stub section. */
5631 if (bfd_get_section_by_name (abfd
,
5632 MIPS_ELF_STUB_SECTION_NAME (abfd
)) == NULL
)
5634 s
= bfd_make_section_with_flags (abfd
,
5635 MIPS_ELF_STUB_SECTION_NAME (abfd
),
5638 || ! bfd_set_section_alignment (abfd
, s
,
5639 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
5643 if ((IRIX_COMPAT (abfd
) == ict_irix5
|| IRIX_COMPAT (abfd
) == ict_none
)
5645 && bfd_get_section_by_name (abfd
, ".rld_map") == NULL
)
5647 s
= bfd_make_section_with_flags (abfd
, ".rld_map",
5648 flags
&~ (flagword
) SEC_READONLY
);
5650 || ! bfd_set_section_alignment (abfd
, s
,
5651 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
5655 /* On IRIX5, we adjust add some additional symbols and change the
5656 alignments of several sections. There is no ABI documentation
5657 indicating that this is necessary on IRIX6, nor any evidence that
5658 the linker takes such action. */
5659 if (IRIX_COMPAT (abfd
) == ict_irix5
)
5661 for (namep
= mips_elf_dynsym_rtproc_names
; *namep
!= NULL
; namep
++)
5664 if (! (_bfd_generic_link_add_one_symbol
5665 (info
, abfd
, *namep
, BSF_GLOBAL
, bfd_und_section_ptr
, 0,
5666 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
5669 h
= (struct elf_link_hash_entry
*) bh
;
5672 h
->type
= STT_SECTION
;
5674 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5678 /* We need to create a .compact_rel section. */
5679 if (SGI_COMPAT (abfd
))
5681 if (!mips_elf_create_compact_rel_section (abfd
, info
))
5685 /* Change alignments of some sections. */
5686 s
= bfd_get_section_by_name (abfd
, ".hash");
5688 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
5689 s
= bfd_get_section_by_name (abfd
, ".dynsym");
5691 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
5692 s
= bfd_get_section_by_name (abfd
, ".dynstr");
5694 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
5695 s
= bfd_get_section_by_name (abfd
, ".reginfo");
5697 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
5698 s
= bfd_get_section_by_name (abfd
, ".dynamic");
5700 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
5707 name
= SGI_COMPAT (abfd
) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
5709 if (!(_bfd_generic_link_add_one_symbol
5710 (info
, abfd
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
, 0,
5711 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
5714 h
= (struct elf_link_hash_entry
*) bh
;
5717 h
->type
= STT_SECTION
;
5719 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5722 if (! mips_elf_hash_table (info
)->use_rld_obj_head
)
5724 /* __rld_map is a four byte word located in the .data section
5725 and is filled in by the rtld to contain a pointer to
5726 the _r_debug structure. Its symbol value will be set in
5727 _bfd_mips_elf_finish_dynamic_symbol. */
5728 s
= bfd_get_section_by_name (abfd
, ".rld_map");
5729 BFD_ASSERT (s
!= NULL
);
5731 name
= SGI_COMPAT (abfd
) ? "__rld_map" : "__RLD_MAP";
5733 if (!(_bfd_generic_link_add_one_symbol
5734 (info
, abfd
, name
, BSF_GLOBAL
, s
, 0, NULL
, FALSE
,
5735 get_elf_backend_data (abfd
)->collect
, &bh
)))
5738 h
= (struct elf_link_hash_entry
*) bh
;
5741 h
->type
= STT_OBJECT
;
5743 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5751 /* Look through the relocs for a section during the first phase, and
5752 allocate space in the global offset table. */
5755 _bfd_mips_elf_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
5756 asection
*sec
, const Elf_Internal_Rela
*relocs
)
5760 Elf_Internal_Shdr
*symtab_hdr
;
5761 struct elf_link_hash_entry
**sym_hashes
;
5762 struct mips_got_info
*g
;
5764 const Elf_Internal_Rela
*rel
;
5765 const Elf_Internal_Rela
*rel_end
;
5768 const struct elf_backend_data
*bed
;
5770 if (info
->relocatable
)
5773 dynobj
= elf_hash_table (info
)->dynobj
;
5774 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5775 sym_hashes
= elf_sym_hashes (abfd
);
5776 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
5778 /* Check for the mips16 stub sections. */
5780 name
= bfd_get_section_name (abfd
, sec
);
5781 if (strncmp (name
, FN_STUB
, sizeof FN_STUB
- 1) == 0)
5783 unsigned long r_symndx
;
5785 /* Look at the relocation information to figure out which symbol
5788 r_symndx
= ELF_R_SYM (abfd
, relocs
->r_info
);
5790 if (r_symndx
< extsymoff
5791 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
5795 /* This stub is for a local symbol. This stub will only be
5796 needed if there is some relocation in this BFD, other
5797 than a 16 bit function call, which refers to this symbol. */
5798 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5800 Elf_Internal_Rela
*sec_relocs
;
5801 const Elf_Internal_Rela
*r
, *rend
;
5803 /* We can ignore stub sections when looking for relocs. */
5804 if ((o
->flags
& SEC_RELOC
) == 0
5805 || o
->reloc_count
== 0
5806 || strncmp (bfd_get_section_name (abfd
, o
), FN_STUB
,
5807 sizeof FN_STUB
- 1) == 0
5808 || strncmp (bfd_get_section_name (abfd
, o
), CALL_STUB
,
5809 sizeof CALL_STUB
- 1) == 0
5810 || strncmp (bfd_get_section_name (abfd
, o
), CALL_FP_STUB
,
5811 sizeof CALL_FP_STUB
- 1) == 0)
5815 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
5817 if (sec_relocs
== NULL
)
5820 rend
= sec_relocs
+ o
->reloc_count
;
5821 for (r
= sec_relocs
; r
< rend
; r
++)
5822 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
5823 && ELF_R_TYPE (abfd
, r
->r_info
) != R_MIPS16_26
)
5826 if (elf_section_data (o
)->relocs
!= sec_relocs
)
5835 /* There is no non-call reloc for this stub, so we do
5836 not need it. Since this function is called before
5837 the linker maps input sections to output sections, we
5838 can easily discard it by setting the SEC_EXCLUDE
5840 sec
->flags
|= SEC_EXCLUDE
;
5844 /* Record this stub in an array of local symbol stubs for
5846 if (elf_tdata (abfd
)->local_stubs
== NULL
)
5848 unsigned long symcount
;
5852 if (elf_bad_symtab (abfd
))
5853 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
5855 symcount
= symtab_hdr
->sh_info
;
5856 amt
= symcount
* sizeof (asection
*);
5857 n
= bfd_zalloc (abfd
, amt
);
5860 elf_tdata (abfd
)->local_stubs
= n
;
5863 elf_tdata (abfd
)->local_stubs
[r_symndx
] = sec
;
5865 /* We don't need to set mips16_stubs_seen in this case.
5866 That flag is used to see whether we need to look through
5867 the global symbol table for stubs. We don't need to set
5868 it here, because we just have a local stub. */
5872 struct mips_elf_link_hash_entry
*h
;
5874 h
= ((struct mips_elf_link_hash_entry
*)
5875 sym_hashes
[r_symndx
- extsymoff
]);
5877 while (h
->root
.root
.type
== bfd_link_hash_indirect
5878 || h
->root
.root
.type
== bfd_link_hash_warning
)
5879 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
5881 /* H is the symbol this stub is for. */
5884 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
5887 else if (strncmp (name
, CALL_STUB
, sizeof CALL_STUB
- 1) == 0
5888 || strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
5890 unsigned long r_symndx
;
5891 struct mips_elf_link_hash_entry
*h
;
5894 /* Look at the relocation information to figure out which symbol
5897 r_symndx
= ELF_R_SYM (abfd
, relocs
->r_info
);
5899 if (r_symndx
< extsymoff
5900 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
5902 /* This stub was actually built for a static symbol defined
5903 in the same file. We assume that all static symbols in
5904 mips16 code are themselves mips16, so we can simply
5905 discard this stub. Since this function is called before
5906 the linker maps input sections to output sections, we can
5907 easily discard it by setting the SEC_EXCLUDE flag. */
5908 sec
->flags
|= SEC_EXCLUDE
;
5912 h
= ((struct mips_elf_link_hash_entry
*)
5913 sym_hashes
[r_symndx
- extsymoff
]);
5915 /* H is the symbol this stub is for. */
5917 if (strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
5918 loc
= &h
->call_fp_stub
;
5920 loc
= &h
->call_stub
;
5922 /* If we already have an appropriate stub for this function, we
5923 don't need another one, so we can discard this one. Since
5924 this function is called before the linker maps input sections
5925 to output sections, we can easily discard it by setting the
5926 SEC_EXCLUDE flag. We can also discard this section if we
5927 happen to already know that this is a mips16 function; it is
5928 not necessary to check this here, as it is checked later, but
5929 it is slightly faster to check now. */
5930 if (*loc
!= NULL
|| h
->root
.other
== STO_MIPS16
)
5932 sec
->flags
|= SEC_EXCLUDE
;
5937 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
5947 sgot
= mips_elf_got_section (dynobj
, FALSE
);
5952 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
5953 g
= mips_elf_section_data (sgot
)->u
.got_info
;
5954 BFD_ASSERT (g
!= NULL
);
5959 bed
= get_elf_backend_data (abfd
);
5960 rel_end
= relocs
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
5961 for (rel
= relocs
; rel
< rel_end
; ++rel
)
5963 unsigned long r_symndx
;
5964 unsigned int r_type
;
5965 struct elf_link_hash_entry
*h
;
5967 r_symndx
= ELF_R_SYM (abfd
, rel
->r_info
);
5968 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
5970 if (r_symndx
< extsymoff
)
5972 else if (r_symndx
>= extsymoff
+ NUM_SHDR_ENTRIES (symtab_hdr
))
5974 (*_bfd_error_handler
)
5975 (_("%B: Malformed reloc detected for section %s"),
5977 bfd_set_error (bfd_error_bad_value
);
5982 h
= sym_hashes
[r_symndx
- extsymoff
];
5984 /* This may be an indirect symbol created because of a version. */
5987 while (h
->root
.type
== bfd_link_hash_indirect
)
5988 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5992 /* Some relocs require a global offset table. */
5993 if (dynobj
== NULL
|| sgot
== NULL
)
5999 case R_MIPS_CALL_HI16
:
6000 case R_MIPS_CALL_LO16
:
6001 case R_MIPS_GOT_HI16
:
6002 case R_MIPS_GOT_LO16
:
6003 case R_MIPS_GOT_PAGE
:
6004 case R_MIPS_GOT_OFST
:
6005 case R_MIPS_GOT_DISP
:
6006 case R_MIPS_TLS_GOTTPREL
:
6008 case R_MIPS_TLS_LDM
:
6010 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
6011 if (! mips_elf_create_got_section (dynobj
, info
, FALSE
))
6013 g
= mips_elf_got_info (dynobj
, &sgot
);
6020 && (info
->shared
|| h
!= NULL
)
6021 && (sec
->flags
& SEC_ALLOC
) != 0)
6022 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
6030 if (!h
&& (r_type
== R_MIPS_CALL_LO16
6031 || r_type
== R_MIPS_GOT_LO16
6032 || r_type
== R_MIPS_GOT_DISP
))
6034 /* We may need a local GOT entry for this relocation. We
6035 don't count R_MIPS_GOT_PAGE because we can estimate the
6036 maximum number of pages needed by looking at the size of
6037 the segment. Similar comments apply to R_MIPS_GOT16 and
6038 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
6039 R_MIPS_CALL_HI16 because these are always followed by an
6040 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6041 if (! mips_elf_record_local_got_symbol (abfd
, r_symndx
,
6042 rel
->r_addend
, g
, 0))
6051 (*_bfd_error_handler
)
6052 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6053 abfd
, (unsigned long) rel
->r_offset
);
6054 bfd_set_error (bfd_error_bad_value
);
6059 case R_MIPS_CALL_HI16
:
6060 case R_MIPS_CALL_LO16
:
6063 /* This symbol requires a global offset table entry. */
6064 if (! mips_elf_record_global_got_symbol (h
, abfd
, info
, g
, 0))
6067 /* We need a stub, not a plt entry for the undefined
6068 function. But we record it as if it needs plt. See
6069 _bfd_elf_adjust_dynamic_symbol. */
6075 case R_MIPS_GOT_PAGE
:
6076 /* If this is a global, overridable symbol, GOT_PAGE will
6077 decay to GOT_DISP, so we'll need a GOT entry for it. */
6082 struct mips_elf_link_hash_entry
*hmips
=
6083 (struct mips_elf_link_hash_entry
*) h
;
6085 while (hmips
->root
.root
.type
== bfd_link_hash_indirect
6086 || hmips
->root
.root
.type
== bfd_link_hash_warning
)
6087 hmips
= (struct mips_elf_link_hash_entry
*)
6088 hmips
->root
.root
.u
.i
.link
;
6090 if (hmips
->root
.def_regular
6091 && ! (info
->shared
&& ! info
->symbolic
6092 && ! hmips
->root
.forced_local
))
6098 case R_MIPS_GOT_HI16
:
6099 case R_MIPS_GOT_LO16
:
6100 case R_MIPS_GOT_DISP
:
6101 if (h
&& ! mips_elf_record_global_got_symbol (h
, abfd
, info
, g
, 0))
6105 case R_MIPS_TLS_GOTTPREL
:
6107 info
->flags
|= DF_STATIC_TLS
;
6110 case R_MIPS_TLS_LDM
:
6111 if (r_type
== R_MIPS_TLS_LDM
)
6119 /* This symbol requires a global offset table entry, or two
6120 for TLS GD relocations. */
6122 unsigned char flag
= (r_type
== R_MIPS_TLS_GD
6124 : r_type
== R_MIPS_TLS_LDM
6129 struct mips_elf_link_hash_entry
*hmips
=
6130 (struct mips_elf_link_hash_entry
*) h
;
6131 hmips
->tls_type
|= flag
;
6133 if (h
&& ! mips_elf_record_global_got_symbol (h
, abfd
, info
, g
, flag
))
6138 BFD_ASSERT (flag
== GOT_TLS_LDM
|| r_symndx
!= 0);
6140 if (! mips_elf_record_local_got_symbol (abfd
, r_symndx
,
6141 rel
->r_addend
, g
, flag
))
6150 if ((info
->shared
|| h
!= NULL
)
6151 && (sec
->flags
& SEC_ALLOC
) != 0)
6155 sreloc
= mips_elf_rel_dyn_section (dynobj
, TRUE
);
6159 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
6162 /* When creating a shared object, we must copy these
6163 reloc types into the output file as R_MIPS_REL32
6164 relocs. We make room for this reloc in the
6165 .rel.dyn reloc section. */
6166 mips_elf_allocate_dynamic_relocations (dynobj
, 1);
6167 if ((sec
->flags
& MIPS_READONLY_SECTION
)
6168 == MIPS_READONLY_SECTION
)
6169 /* We tell the dynamic linker that there are
6170 relocations against the text segment. */
6171 info
->flags
|= DF_TEXTREL
;
6175 struct mips_elf_link_hash_entry
*hmips
;
6177 /* We only need to copy this reloc if the symbol is
6178 defined in a dynamic object. */
6179 hmips
= (struct mips_elf_link_hash_entry
*) h
;
6180 ++hmips
->possibly_dynamic_relocs
;
6181 if ((sec
->flags
& MIPS_READONLY_SECTION
)
6182 == MIPS_READONLY_SECTION
)
6183 /* We need it to tell the dynamic linker if there
6184 are relocations against the text segment. */
6185 hmips
->readonly_reloc
= TRUE
;
6188 /* Even though we don't directly need a GOT entry for
6189 this symbol, a symbol must have a dynamic symbol
6190 table index greater that DT_MIPS_GOTSYM if there are
6191 dynamic relocations against it. */
6195 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
6196 if (! mips_elf_create_got_section (dynobj
, info
, TRUE
))
6198 g
= mips_elf_got_info (dynobj
, &sgot
);
6199 if (! mips_elf_record_global_got_symbol (h
, abfd
, info
, g
, 0))
6204 if (SGI_COMPAT (abfd
))
6205 mips_elf_hash_table (info
)->compact_rel_size
+=
6206 sizeof (Elf32_External_crinfo
);
6210 case R_MIPS_GPREL16
:
6211 case R_MIPS_LITERAL
:
6212 case R_MIPS_GPREL32
:
6213 if (SGI_COMPAT (abfd
))
6214 mips_elf_hash_table (info
)->compact_rel_size
+=
6215 sizeof (Elf32_External_crinfo
);
6218 /* This relocation describes the C++ object vtable hierarchy.
6219 Reconstruct it for later use during GC. */
6220 case R_MIPS_GNU_VTINHERIT
:
6221 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
6225 /* This relocation describes which C++ vtable entries are actually
6226 used. Record for later use during GC. */
6227 case R_MIPS_GNU_VTENTRY
:
6228 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
6236 /* We must not create a stub for a symbol that has relocations
6237 related to taking the function's address. */
6243 struct mips_elf_link_hash_entry
*mh
;
6245 mh
= (struct mips_elf_link_hash_entry
*) h
;
6246 mh
->no_fn_stub
= TRUE
;
6250 case R_MIPS_CALL_HI16
:
6251 case R_MIPS_CALL_LO16
:
6256 /* If this reloc is not a 16 bit call, and it has a global
6257 symbol, then we will need the fn_stub if there is one.
6258 References from a stub section do not count. */
6260 && r_type
!= R_MIPS16_26
6261 && strncmp (bfd_get_section_name (abfd
, sec
), FN_STUB
,
6262 sizeof FN_STUB
- 1) != 0
6263 && strncmp (bfd_get_section_name (abfd
, sec
), CALL_STUB
,
6264 sizeof CALL_STUB
- 1) != 0
6265 && strncmp (bfd_get_section_name (abfd
, sec
), CALL_FP_STUB
,
6266 sizeof CALL_FP_STUB
- 1) != 0)
6268 struct mips_elf_link_hash_entry
*mh
;
6270 mh
= (struct mips_elf_link_hash_entry
*) h
;
6271 mh
->need_fn_stub
= TRUE
;
6279 _bfd_mips_relax_section (bfd
*abfd
, asection
*sec
,
6280 struct bfd_link_info
*link_info
,
6283 Elf_Internal_Rela
*internal_relocs
;
6284 Elf_Internal_Rela
*irel
, *irelend
;
6285 Elf_Internal_Shdr
*symtab_hdr
;
6286 bfd_byte
*contents
= NULL
;
6288 bfd_boolean changed_contents
= FALSE
;
6289 bfd_vma sec_start
= sec
->output_section
->vma
+ sec
->output_offset
;
6290 Elf_Internal_Sym
*isymbuf
= NULL
;
6292 /* We are not currently changing any sizes, so only one pass. */
6295 if (link_info
->relocatable
)
6298 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
6299 link_info
->keep_memory
);
6300 if (internal_relocs
== NULL
)
6303 irelend
= internal_relocs
+ sec
->reloc_count
6304 * get_elf_backend_data (abfd
)->s
->int_rels_per_ext_rel
;
6305 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6306 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
6308 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
6311 bfd_signed_vma sym_offset
;
6312 unsigned int r_type
;
6313 unsigned long r_symndx
;
6315 unsigned long instruction
;
6317 /* Turn jalr into bgezal, and jr into beq, if they're marked
6318 with a JALR relocation, that indicate where they jump to.
6319 This saves some pipeline bubbles. */
6320 r_type
= ELF_R_TYPE (abfd
, irel
->r_info
);
6321 if (r_type
!= R_MIPS_JALR
)
6324 r_symndx
= ELF_R_SYM (abfd
, irel
->r_info
);
6325 /* Compute the address of the jump target. */
6326 if (r_symndx
>= extsymoff
)
6328 struct mips_elf_link_hash_entry
*h
6329 = ((struct mips_elf_link_hash_entry
*)
6330 elf_sym_hashes (abfd
) [r_symndx
- extsymoff
]);
6332 while (h
->root
.root
.type
== bfd_link_hash_indirect
6333 || h
->root
.root
.type
== bfd_link_hash_warning
)
6334 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
6336 /* If a symbol is undefined, or if it may be overridden,
6338 if (! ((h
->root
.root
.type
== bfd_link_hash_defined
6339 || h
->root
.root
.type
== bfd_link_hash_defweak
)
6340 && h
->root
.root
.u
.def
.section
)
6341 || (link_info
->shared
&& ! link_info
->symbolic
6342 && !h
->root
.forced_local
))
6345 sym_sec
= h
->root
.root
.u
.def
.section
;
6346 if (sym_sec
->output_section
)
6347 symval
= (h
->root
.root
.u
.def
.value
6348 + sym_sec
->output_section
->vma
6349 + sym_sec
->output_offset
);
6351 symval
= h
->root
.root
.u
.def
.value
;
6355 Elf_Internal_Sym
*isym
;
6357 /* Read this BFD's symbols if we haven't done so already. */
6358 if (isymbuf
== NULL
&& symtab_hdr
->sh_info
!= 0)
6360 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
6361 if (isymbuf
== NULL
)
6362 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
6363 symtab_hdr
->sh_info
, 0,
6365 if (isymbuf
== NULL
)
6369 isym
= isymbuf
+ r_symndx
;
6370 if (isym
->st_shndx
== SHN_UNDEF
)
6372 else if (isym
->st_shndx
== SHN_ABS
)
6373 sym_sec
= bfd_abs_section_ptr
;
6374 else if (isym
->st_shndx
== SHN_COMMON
)
6375 sym_sec
= bfd_com_section_ptr
;
6378 = bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
6379 symval
= isym
->st_value
6380 + sym_sec
->output_section
->vma
6381 + sym_sec
->output_offset
;
6384 /* Compute branch offset, from delay slot of the jump to the
6386 sym_offset
= (symval
+ irel
->r_addend
)
6387 - (sec_start
+ irel
->r_offset
+ 4);
6389 /* Branch offset must be properly aligned. */
6390 if ((sym_offset
& 3) != 0)
6395 /* Check that it's in range. */
6396 if (sym_offset
< -0x8000 || sym_offset
>= 0x8000)
6399 /* Get the section contents if we haven't done so already. */
6400 if (contents
== NULL
)
6402 /* Get cached copy if it exists. */
6403 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
6404 contents
= elf_section_data (sec
)->this_hdr
.contents
;
6407 if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
6412 instruction
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
);
6414 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6415 if ((instruction
& 0xfc1fffff) == 0x0000f809)
6416 instruction
= 0x04110000;
6417 /* If it was jr <reg>, turn it into b <target>. */
6418 else if ((instruction
& 0xfc1fffff) == 0x00000008)
6419 instruction
= 0x10000000;
6423 instruction
|= (sym_offset
& 0xffff);
6424 bfd_put_32 (abfd
, instruction
, contents
+ irel
->r_offset
);
6425 changed_contents
= TRUE
;
6428 if (contents
!= NULL
6429 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6431 if (!changed_contents
&& !link_info
->keep_memory
)
6435 /* Cache the section contents for elf_link_input_bfd. */
6436 elf_section_data (sec
)->this_hdr
.contents
= contents
;
6442 if (contents
!= NULL
6443 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6448 /* Adjust a symbol defined by a dynamic object and referenced by a
6449 regular object. The current definition is in some section of the
6450 dynamic object, but we're not including those sections. We have to
6451 change the definition to something the rest of the link can
6455 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info
*info
,
6456 struct elf_link_hash_entry
*h
)
6459 struct mips_elf_link_hash_entry
*hmips
;
6462 dynobj
= elf_hash_table (info
)->dynobj
;
6464 /* Make sure we know what is going on here. */
6465 BFD_ASSERT (dynobj
!= NULL
6467 || h
->u
.weakdef
!= NULL
6470 && !h
->def_regular
)));
6472 /* If this symbol is defined in a dynamic object, we need to copy
6473 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6475 hmips
= (struct mips_elf_link_hash_entry
*) h
;
6476 if (! info
->relocatable
6477 && hmips
->possibly_dynamic_relocs
!= 0
6478 && (h
->root
.type
== bfd_link_hash_defweak
6479 || !h
->def_regular
))
6481 mips_elf_allocate_dynamic_relocations (dynobj
,
6482 hmips
->possibly_dynamic_relocs
);
6483 if (hmips
->readonly_reloc
)
6484 /* We tell the dynamic linker that there are relocations
6485 against the text segment. */
6486 info
->flags
|= DF_TEXTREL
;
6489 /* For a function, create a stub, if allowed. */
6490 if (! hmips
->no_fn_stub
6493 if (! elf_hash_table (info
)->dynamic_sections_created
)
6496 /* If this symbol is not defined in a regular file, then set
6497 the symbol to the stub location. This is required to make
6498 function pointers compare as equal between the normal
6499 executable and the shared library. */
6500 if (!h
->def_regular
)
6502 /* We need .stub section. */
6503 s
= bfd_get_section_by_name (dynobj
,
6504 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
6505 BFD_ASSERT (s
!= NULL
);
6507 h
->root
.u
.def
.section
= s
;
6508 h
->root
.u
.def
.value
= s
->size
;
6510 /* XXX Write this stub address somewhere. */
6511 h
->plt
.offset
= s
->size
;
6513 /* Make room for this stub code. */
6514 s
->size
+= MIPS_FUNCTION_STUB_SIZE
;
6516 /* The last half word of the stub will be filled with the index
6517 of this symbol in .dynsym section. */
6521 else if ((h
->type
== STT_FUNC
)
6524 /* This will set the entry for this symbol in the GOT to 0, and
6525 the dynamic linker will take care of this. */
6526 h
->root
.u
.def
.value
= 0;
6530 /* If this is a weak symbol, and there is a real definition, the
6531 processor independent code will have arranged for us to see the
6532 real definition first, and we can just use the same value. */
6533 if (h
->u
.weakdef
!= NULL
)
6535 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
6536 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
6537 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
6538 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
6542 /* This is a reference to a symbol defined by a dynamic object which
6543 is not a function. */
6548 /* This function is called after all the input files have been read,
6549 and the input sections have been assigned to output sections. We
6550 check for any mips16 stub sections that we can discard. */
6553 _bfd_mips_elf_always_size_sections (bfd
*output_bfd
,
6554 struct bfd_link_info
*info
)
6560 struct mips_got_info
*g
;
6562 bfd_size_type loadable_size
= 0;
6563 bfd_size_type local_gotno
;
6565 struct mips_elf_count_tls_arg count_tls_arg
;
6567 /* The .reginfo section has a fixed size. */
6568 ri
= bfd_get_section_by_name (output_bfd
, ".reginfo");
6570 bfd_set_section_size (output_bfd
, ri
, sizeof (Elf32_External_RegInfo
));
6572 if (! (info
->relocatable
6573 || ! mips_elf_hash_table (info
)->mips16_stubs_seen
))
6574 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
6575 mips_elf_check_mips16_stubs
, NULL
);
6577 dynobj
= elf_hash_table (info
)->dynobj
;
6579 /* Relocatable links don't have it. */
6582 g
= mips_elf_got_info (dynobj
, &s
);
6586 /* Calculate the total loadable size of the output. That
6587 will give us the maximum number of GOT_PAGE entries
6589 for (sub
= info
->input_bfds
; sub
; sub
= sub
->link_next
)
6591 asection
*subsection
;
6593 for (subsection
= sub
->sections
;
6595 subsection
= subsection
->next
)
6597 if ((subsection
->flags
& SEC_ALLOC
) == 0)
6599 loadable_size
+= ((subsection
->size
+ 0xf)
6600 &~ (bfd_size_type
) 0xf);
6604 /* There has to be a global GOT entry for every symbol with
6605 a dynamic symbol table index of DT_MIPS_GOTSYM or
6606 higher. Therefore, it make sense to put those symbols
6607 that need GOT entries at the end of the symbol table. We
6609 if (! mips_elf_sort_hash_table (info
, 1))
6612 if (g
->global_gotsym
!= NULL
)
6613 i
= elf_hash_table (info
)->dynsymcount
- g
->global_gotsym
->dynindx
;
6615 /* If there are no global symbols, or none requiring
6616 relocations, then GLOBAL_GOTSYM will be NULL. */
6619 /* In the worst case, we'll get one stub per dynamic symbol, plus
6620 one to account for the dummy entry at the end required by IRIX
6622 loadable_size
+= MIPS_FUNCTION_STUB_SIZE
* (i
+ 1);
6624 /* Assume there are two loadable segments consisting of
6625 contiguous sections. Is 5 enough? */
6626 local_gotno
= (loadable_size
>> 16) + 5;
6628 g
->local_gotno
+= local_gotno
;
6629 s
->size
+= g
->local_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
6631 g
->global_gotno
= i
;
6632 s
->size
+= i
* MIPS_ELF_GOT_SIZE (output_bfd
);
6634 /* We need to calculate tls_gotno for global symbols at this point
6635 instead of building it up earlier, to avoid doublecounting
6636 entries for one global symbol from multiple input files. */
6637 count_tls_arg
.info
= info
;
6638 count_tls_arg
.needed
= 0;
6639 elf_link_hash_traverse (elf_hash_table (info
),
6640 mips_elf_count_global_tls_entries
,
6642 g
->tls_gotno
+= count_tls_arg
.needed
;
6643 s
->size
+= g
->tls_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
6645 mips_elf_resolve_final_got_entries (g
);
6647 if (s
->size
> MIPS_ELF_GOT_MAX_SIZE (output_bfd
))
6649 if (! mips_elf_multi_got (output_bfd
, info
, g
, s
, local_gotno
))
6654 /* Set up TLS entries for the first GOT. */
6655 g
->tls_assigned_gotno
= g
->global_gotno
+ g
->local_gotno
;
6656 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, g
);
6662 /* Set the sizes of the dynamic sections. */
6665 _bfd_mips_elf_size_dynamic_sections (bfd
*output_bfd
,
6666 struct bfd_link_info
*info
)
6670 bfd_boolean reltext
;
6672 dynobj
= elf_hash_table (info
)->dynobj
;
6673 BFD_ASSERT (dynobj
!= NULL
);
6675 if (elf_hash_table (info
)->dynamic_sections_created
)
6677 /* Set the contents of the .interp section to the interpreter. */
6678 if (info
->executable
)
6680 s
= bfd_get_section_by_name (dynobj
, ".interp");
6681 BFD_ASSERT (s
!= NULL
);
6683 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd
)) + 1;
6685 = (bfd_byte
*) ELF_DYNAMIC_INTERPRETER (output_bfd
);
6689 /* The check_relocs and adjust_dynamic_symbol entry points have
6690 determined the sizes of the various dynamic sections. Allocate
6693 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
6697 /* It's OK to base decisions on the section name, because none
6698 of the dynobj section names depend upon the input files. */
6699 name
= bfd_get_section_name (dynobj
, s
);
6701 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
6704 if (strncmp (name
, ".rel", 4) == 0)
6708 const char *outname
;
6711 /* If this relocation section applies to a read only
6712 section, then we probably need a DT_TEXTREL entry.
6713 If the relocation section is .rel.dyn, we always
6714 assert a DT_TEXTREL entry rather than testing whether
6715 there exists a relocation to a read only section or
6717 outname
= bfd_get_section_name (output_bfd
,
6719 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
6721 && (target
->flags
& SEC_READONLY
) != 0
6722 && (target
->flags
& SEC_ALLOC
) != 0)
6723 || strcmp (outname
, ".rel.dyn") == 0)
6726 /* We use the reloc_count field as a counter if we need
6727 to copy relocs into the output file. */
6728 if (strcmp (name
, ".rel.dyn") != 0)
6731 /* If combreloc is enabled, elf_link_sort_relocs() will
6732 sort relocations, but in a different way than we do,
6733 and before we're done creating relocations. Also, it
6734 will move them around between input sections'
6735 relocation's contents, so our sorting would be
6736 broken, so don't let it run. */
6737 info
->combreloc
= 0;
6740 else if (strncmp (name
, ".got", 4) == 0)
6742 /* _bfd_mips_elf_always_size_sections() has already done
6743 most of the work, but some symbols may have been mapped
6744 to versions that we must now resolve in the got_entries
6746 struct mips_got_info
*gg
= mips_elf_got_info (dynobj
, NULL
);
6747 struct mips_got_info
*g
= gg
;
6748 struct mips_elf_set_global_got_offset_arg set_got_offset_arg
;
6749 unsigned int needed_relocs
= 0;
6753 set_got_offset_arg
.value
= MIPS_ELF_GOT_SIZE (output_bfd
);
6754 set_got_offset_arg
.info
= info
;
6756 /* NOTE 2005-02-03: How can this call, or the next, ever
6757 find any indirect entries to resolve? They were all
6758 resolved in mips_elf_multi_got. */
6759 mips_elf_resolve_final_got_entries (gg
);
6760 for (g
= gg
->next
; g
&& g
->next
!= gg
; g
= g
->next
)
6762 unsigned int save_assign
;
6764 mips_elf_resolve_final_got_entries (g
);
6766 /* Assign offsets to global GOT entries. */
6767 save_assign
= g
->assigned_gotno
;
6768 g
->assigned_gotno
= g
->local_gotno
;
6769 set_got_offset_arg
.g
= g
;
6770 set_got_offset_arg
.needed_relocs
= 0;
6771 htab_traverse (g
->got_entries
,
6772 mips_elf_set_global_got_offset
,
6773 &set_got_offset_arg
);
6774 needed_relocs
+= set_got_offset_arg
.needed_relocs
;
6775 BFD_ASSERT (g
->assigned_gotno
- g
->local_gotno
6776 <= g
->global_gotno
);
6778 g
->assigned_gotno
= save_assign
;
6781 needed_relocs
+= g
->local_gotno
- g
->assigned_gotno
;
6782 BFD_ASSERT (g
->assigned_gotno
== g
->next
->local_gotno
6783 + g
->next
->global_gotno
6784 + g
->next
->tls_gotno
6785 + MIPS_RESERVED_GOTNO
);
6791 struct mips_elf_count_tls_arg arg
;
6795 htab_traverse (gg
->got_entries
, mips_elf_count_local_tls_relocs
,
6797 elf_link_hash_traverse (elf_hash_table (info
),
6798 mips_elf_count_global_tls_relocs
,
6801 needed_relocs
+= arg
.needed
;
6805 mips_elf_allocate_dynamic_relocations (dynobj
, needed_relocs
);
6807 else if (strcmp (name
, MIPS_ELF_STUB_SECTION_NAME (output_bfd
)) == 0)
6809 /* IRIX rld assumes that the function stub isn't at the end
6810 of .text section. So put a dummy. XXX */
6811 s
->size
+= MIPS_FUNCTION_STUB_SIZE
;
6813 else if (! info
->shared
6814 && ! mips_elf_hash_table (info
)->use_rld_obj_head
6815 && strncmp (name
, ".rld_map", 8) == 0)
6817 /* We add a room for __rld_map. It will be filled in by the
6818 rtld to contain a pointer to the _r_debug structure. */
6821 else if (SGI_COMPAT (output_bfd
)
6822 && strncmp (name
, ".compact_rel", 12) == 0)
6823 s
->size
+= mips_elf_hash_table (info
)->compact_rel_size
;
6824 else if (strncmp (name
, ".init", 5) != 0)
6826 /* It's not one of our sections, so don't allocate space. */
6832 s
->flags
|= SEC_EXCLUDE
;
6836 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
6839 /* Allocate memory for the section contents. */
6840 s
->contents
= bfd_zalloc (dynobj
, s
->size
);
6841 if (s
->contents
== NULL
)
6843 bfd_set_error (bfd_error_no_memory
);
6848 if (elf_hash_table (info
)->dynamic_sections_created
)
6850 /* Add some entries to the .dynamic section. We fill in the
6851 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6852 must add the entries now so that we get the correct size for
6853 the .dynamic section. The DT_DEBUG entry is filled in by the
6854 dynamic linker and used by the debugger. */
6857 /* SGI object has the equivalence of DT_DEBUG in the
6858 DT_MIPS_RLD_MAP entry. */
6859 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP
, 0))
6861 if (!SGI_COMPAT (output_bfd
))
6863 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
6869 /* Shared libraries on traditional mips have DT_DEBUG. */
6870 if (!SGI_COMPAT (output_bfd
))
6872 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
6877 if (reltext
&& SGI_COMPAT (output_bfd
))
6878 info
->flags
|= DF_TEXTREL
;
6880 if ((info
->flags
& DF_TEXTREL
) != 0)
6882 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_TEXTREL
, 0))
6886 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTGOT
, 0))
6889 if (mips_elf_rel_dyn_section (dynobj
, FALSE
))
6891 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_REL
, 0))
6894 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELSZ
, 0))
6897 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELENT
, 0))
6901 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_VERSION
, 0))
6904 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_FLAGS
, 0))
6907 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_BASE_ADDRESS
, 0))
6910 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LOCAL_GOTNO
, 0))
6913 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_SYMTABNO
, 0))
6916 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_UNREFEXTNO
, 0))
6919 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_GOTSYM
, 0))
6922 if (IRIX_COMPAT (dynobj
) == ict_irix5
6923 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_HIPAGENO
, 0))
6926 if (IRIX_COMPAT (dynobj
) == ict_irix6
6927 && (bfd_get_section_by_name
6928 (dynobj
, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj
)))
6929 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_OPTIONS
, 0))
6936 /* Relocate a MIPS ELF section. */
6939 _bfd_mips_elf_relocate_section (bfd
*output_bfd
, struct bfd_link_info
*info
,
6940 bfd
*input_bfd
, asection
*input_section
,
6941 bfd_byte
*contents
, Elf_Internal_Rela
*relocs
,
6942 Elf_Internal_Sym
*local_syms
,
6943 asection
**local_sections
)
6945 Elf_Internal_Rela
*rel
;
6946 const Elf_Internal_Rela
*relend
;
6948 bfd_boolean use_saved_addend_p
= FALSE
;
6949 const struct elf_backend_data
*bed
;
6951 bed
= get_elf_backend_data (output_bfd
);
6952 relend
= relocs
+ input_section
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
6953 for (rel
= relocs
; rel
< relend
; ++rel
)
6957 reloc_howto_type
*howto
;
6958 bfd_boolean require_jalx
;
6959 /* TRUE if the relocation is a RELA relocation, rather than a
6961 bfd_boolean rela_relocation_p
= TRUE
;
6962 unsigned int r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
6965 /* Find the relocation howto for this relocation. */
6966 if (r_type
== R_MIPS_64
&& ! NEWABI_P (input_bfd
))
6968 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6969 64-bit code, but make sure all their addresses are in the
6970 lowermost or uppermost 32-bit section of the 64-bit address
6971 space. Thus, when they use an R_MIPS_64 they mean what is
6972 usually meant by R_MIPS_32, with the exception that the
6973 stored value is sign-extended to 64 bits. */
6974 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, R_MIPS_32
, FALSE
);
6976 /* On big-endian systems, we need to lie about the position
6978 if (bfd_big_endian (input_bfd
))
6982 /* NewABI defaults to RELA relocations. */
6983 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, r_type
,
6984 NEWABI_P (input_bfd
)
6985 && (MIPS_RELOC_RELA_P
6986 (input_bfd
, input_section
,
6989 if (!use_saved_addend_p
)
6991 Elf_Internal_Shdr
*rel_hdr
;
6993 /* If these relocations were originally of the REL variety,
6994 we must pull the addend out of the field that will be
6995 relocated. Otherwise, we simply use the contents of the
6996 RELA relocation. To determine which flavor or relocation
6997 this is, we depend on the fact that the INPUT_SECTION's
6998 REL_HDR is read before its REL_HDR2. */
6999 rel_hdr
= &elf_section_data (input_section
)->rel_hdr
;
7000 if ((size_t) (rel
- relocs
)
7001 >= (NUM_SHDR_ENTRIES (rel_hdr
) * bed
->s
->int_rels_per_ext_rel
))
7002 rel_hdr
= elf_section_data (input_section
)->rel_hdr2
;
7003 if (rel_hdr
->sh_entsize
== MIPS_ELF_REL_SIZE (input_bfd
))
7005 bfd_byte
*location
= contents
+ rel
->r_offset
;
7007 /* Note that this is a REL relocation. */
7008 rela_relocation_p
= FALSE
;
7010 /* Get the addend, which is stored in the input file. */
7011 _bfd_mips16_elf_reloc_unshuffle (input_bfd
, r_type
, FALSE
,
7013 addend
= mips_elf_obtain_contents (howto
, rel
, input_bfd
,
7015 _bfd_mips16_elf_reloc_shuffle(input_bfd
, r_type
, FALSE
,
7018 addend
&= howto
->src_mask
;
7020 /* For some kinds of relocations, the ADDEND is a
7021 combination of the addend stored in two different
7023 if (r_type
== R_MIPS_HI16
|| r_type
== R_MIPS16_HI16
7024 || (r_type
== R_MIPS_GOT16
7025 && mips_elf_local_relocation_p (input_bfd
, rel
,
7026 local_sections
, FALSE
)))
7029 const Elf_Internal_Rela
*lo16_relocation
;
7030 reloc_howto_type
*lo16_howto
;
7031 bfd_byte
*lo16_location
;
7034 if (r_type
== R_MIPS16_HI16
)
7035 lo16_type
= R_MIPS16_LO16
;
7037 lo16_type
= R_MIPS_LO16
;
7039 /* The combined value is the sum of the HI16 addend,
7040 left-shifted by sixteen bits, and the LO16
7041 addend, sign extended. (Usually, the code does
7042 a `lui' of the HI16 value, and then an `addiu' of
7045 Scan ahead to find a matching LO16 relocation.
7047 According to the MIPS ELF ABI, the R_MIPS_LO16
7048 relocation must be immediately following.
7049 However, for the IRIX6 ABI, the next relocation
7050 may be a composed relocation consisting of
7051 several relocations for the same address. In
7052 that case, the R_MIPS_LO16 relocation may occur
7053 as one of these. We permit a similar extension
7054 in general, as that is useful for GCC. */
7055 lo16_relocation
= mips_elf_next_relocation (input_bfd
,
7058 if (lo16_relocation
== NULL
)
7061 lo16_location
= contents
+ lo16_relocation
->r_offset
;
7063 /* Obtain the addend kept there. */
7064 lo16_howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
,
7066 _bfd_mips16_elf_reloc_unshuffle (input_bfd
, lo16_type
, FALSE
,
7068 l
= mips_elf_obtain_contents (lo16_howto
, lo16_relocation
,
7069 input_bfd
, contents
);
7070 _bfd_mips16_elf_reloc_shuffle (input_bfd
, lo16_type
, FALSE
,
7072 l
&= lo16_howto
->src_mask
;
7073 l
<<= lo16_howto
->rightshift
;
7074 l
= _bfd_mips_elf_sign_extend (l
, 16);
7078 /* Compute the combined addend. */
7082 addend
<<= howto
->rightshift
;
7085 addend
= rel
->r_addend
;
7088 if (info
->relocatable
)
7090 Elf_Internal_Sym
*sym
;
7091 unsigned long r_symndx
;
7093 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
)
7094 && bfd_big_endian (input_bfd
))
7097 /* Since we're just relocating, all we need to do is copy
7098 the relocations back out to the object file, unless
7099 they're against a section symbol, in which case we need
7100 to adjust by the section offset, or unless they're GP
7101 relative in which case we need to adjust by the amount
7102 that we're adjusting GP in this relocatable object. */
7104 if (! mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
,
7106 /* There's nothing to do for non-local relocations. */
7109 if (r_type
== R_MIPS16_GPREL
7110 || r_type
== R_MIPS_GPREL16
7111 || r_type
== R_MIPS_GPREL32
7112 || r_type
== R_MIPS_LITERAL
)
7113 addend
-= (_bfd_get_gp_value (output_bfd
)
7114 - _bfd_get_gp_value (input_bfd
));
7116 r_symndx
= ELF_R_SYM (output_bfd
, rel
->r_info
);
7117 sym
= local_syms
+ r_symndx
;
7118 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
7119 /* Adjust the addend appropriately. */
7120 addend
+= local_sections
[r_symndx
]->output_offset
;
7122 if (rela_relocation_p
)
7123 /* If this is a RELA relocation, just update the addend. */
7124 rel
->r_addend
= addend
;
7127 if (r_type
== R_MIPS_HI16
7128 || r_type
== R_MIPS_GOT16
)
7129 addend
= mips_elf_high (addend
);
7130 else if (r_type
== R_MIPS_HIGHER
)
7131 addend
= mips_elf_higher (addend
);
7132 else if (r_type
== R_MIPS_HIGHEST
)
7133 addend
= mips_elf_highest (addend
);
7135 addend
>>= howto
->rightshift
;
7137 /* We use the source mask, rather than the destination
7138 mask because the place to which we are writing will be
7139 source of the addend in the final link. */
7140 addend
&= howto
->src_mask
;
7142 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
7143 /* See the comment above about using R_MIPS_64 in the 32-bit
7144 ABI. Here, we need to update the addend. It would be
7145 possible to get away with just using the R_MIPS_32 reloc
7146 but for endianness. */
7152 if (addend
& ((bfd_vma
) 1 << 31))
7154 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
7161 /* If we don't know that we have a 64-bit type,
7162 do two separate stores. */
7163 if (bfd_big_endian (input_bfd
))
7165 /* Store the sign-bits (which are most significant)
7167 low_bits
= sign_bits
;
7173 high_bits
= sign_bits
;
7175 bfd_put_32 (input_bfd
, low_bits
,
7176 contents
+ rel
->r_offset
);
7177 bfd_put_32 (input_bfd
, high_bits
,
7178 contents
+ rel
->r_offset
+ 4);
7182 if (! mips_elf_perform_relocation (info
, howto
, rel
, addend
,
7183 input_bfd
, input_section
,
7188 /* Go on to the next relocation. */
7192 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7193 relocations for the same offset. In that case we are
7194 supposed to treat the output of each relocation as the addend
7196 if (rel
+ 1 < relend
7197 && rel
->r_offset
== rel
[1].r_offset
7198 && ELF_R_TYPE (input_bfd
, rel
[1].r_info
) != R_MIPS_NONE
)
7199 use_saved_addend_p
= TRUE
;
7201 use_saved_addend_p
= FALSE
;
7203 /* Figure out what value we are supposed to relocate. */
7204 switch (mips_elf_calculate_relocation (output_bfd
, input_bfd
,
7205 input_section
, info
, rel
,
7206 addend
, howto
, local_syms
,
7207 local_sections
, &value
,
7208 &name
, &require_jalx
,
7209 use_saved_addend_p
))
7211 case bfd_reloc_continue
:
7212 /* There's nothing to do. */
7215 case bfd_reloc_undefined
:
7216 /* mips_elf_calculate_relocation already called the
7217 undefined_symbol callback. There's no real point in
7218 trying to perform the relocation at this point, so we
7219 just skip ahead to the next relocation. */
7222 case bfd_reloc_notsupported
:
7223 msg
= _("internal error: unsupported relocation error");
7224 info
->callbacks
->warning
7225 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
7228 case bfd_reloc_overflow
:
7229 if (use_saved_addend_p
)
7230 /* Ignore overflow until we reach the last relocation for
7231 a given location. */
7235 BFD_ASSERT (name
!= NULL
);
7236 if (! ((*info
->callbacks
->reloc_overflow
)
7237 (info
, NULL
, name
, howto
->name
, (bfd_vma
) 0,
7238 input_bfd
, input_section
, rel
->r_offset
)))
7251 /* If we've got another relocation for the address, keep going
7252 until we reach the last one. */
7253 if (use_saved_addend_p
)
7259 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
7260 /* See the comment above about using R_MIPS_64 in the 32-bit
7261 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7262 that calculated the right value. Now, however, we
7263 sign-extend the 32-bit result to 64-bits, and store it as a
7264 64-bit value. We are especially generous here in that we
7265 go to extreme lengths to support this usage on systems with
7266 only a 32-bit VMA. */
7272 if (value
& ((bfd_vma
) 1 << 31))
7274 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
7281 /* If we don't know that we have a 64-bit type,
7282 do two separate stores. */
7283 if (bfd_big_endian (input_bfd
))
7285 /* Undo what we did above. */
7287 /* Store the sign-bits (which are most significant)
7289 low_bits
= sign_bits
;
7295 high_bits
= sign_bits
;
7297 bfd_put_32 (input_bfd
, low_bits
,
7298 contents
+ rel
->r_offset
);
7299 bfd_put_32 (input_bfd
, high_bits
,
7300 contents
+ rel
->r_offset
+ 4);
7304 /* Actually perform the relocation. */
7305 if (! mips_elf_perform_relocation (info
, howto
, rel
, value
,
7306 input_bfd
, input_section
,
7307 contents
, require_jalx
))
7314 /* If NAME is one of the special IRIX6 symbols defined by the linker,
7315 adjust it appropriately now. */
7318 mips_elf_irix6_finish_dynamic_symbol (bfd
*abfd ATTRIBUTE_UNUSED
,
7319 const char *name
, Elf_Internal_Sym
*sym
)
7321 /* The linker script takes care of providing names and values for
7322 these, but we must place them into the right sections. */
7323 static const char* const text_section_symbols
[] = {
7326 "__dso_displacement",
7328 "__program_header_table",
7332 static const char* const data_section_symbols
[] = {
7340 const char* const *p
;
7343 for (i
= 0; i
< 2; ++i
)
7344 for (p
= (i
== 0) ? text_section_symbols
: data_section_symbols
;
7347 if (strcmp (*p
, name
) == 0)
7349 /* All of these symbols are given type STT_SECTION by the
7351 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
7352 sym
->st_other
= STO_PROTECTED
;
7354 /* The IRIX linker puts these symbols in special sections. */
7356 sym
->st_shndx
= SHN_MIPS_TEXT
;
7358 sym
->st_shndx
= SHN_MIPS_DATA
;
7364 /* Finish up dynamic symbol handling. We set the contents of various
7365 dynamic sections here. */
7368 _bfd_mips_elf_finish_dynamic_symbol (bfd
*output_bfd
,
7369 struct bfd_link_info
*info
,
7370 struct elf_link_hash_entry
*h
,
7371 Elf_Internal_Sym
*sym
)
7375 struct mips_got_info
*g
, *gg
;
7378 dynobj
= elf_hash_table (info
)->dynobj
;
7380 if (h
->plt
.offset
!= MINUS_ONE
)
7383 bfd_byte stub
[MIPS_FUNCTION_STUB_SIZE
];
7385 /* This symbol has a stub. Set it up. */
7387 BFD_ASSERT (h
->dynindx
!= -1);
7389 s
= bfd_get_section_by_name (dynobj
,
7390 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
7391 BFD_ASSERT (s
!= NULL
);
7393 /* FIXME: Can h->dynindx be more than 64K? */
7394 if (h
->dynindx
& 0xffff0000)
7397 /* Fill the stub. */
7398 bfd_put_32 (output_bfd
, STUB_LW (output_bfd
), stub
);
7399 bfd_put_32 (output_bfd
, STUB_MOVE (output_bfd
), stub
+ 4);
7400 bfd_put_32 (output_bfd
, STUB_JALR
, stub
+ 8);
7401 bfd_put_32 (output_bfd
, STUB_LI16 (output_bfd
) + h
->dynindx
, stub
+ 12);
7403 BFD_ASSERT (h
->plt
.offset
<= s
->size
);
7404 memcpy (s
->contents
+ h
->plt
.offset
, stub
, MIPS_FUNCTION_STUB_SIZE
);
7406 /* Mark the symbol as undefined. plt.offset != -1 occurs
7407 only for the referenced symbol. */
7408 sym
->st_shndx
= SHN_UNDEF
;
7410 /* The run-time linker uses the st_value field of the symbol
7411 to reset the global offset table entry for this external
7412 to its stub address when unlinking a shared object. */
7413 sym
->st_value
= (s
->output_section
->vma
+ s
->output_offset
7417 BFD_ASSERT (h
->dynindx
!= -1
7418 || h
->forced_local
);
7420 sgot
= mips_elf_got_section (dynobj
, FALSE
);
7421 BFD_ASSERT (sgot
!= NULL
);
7422 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
7423 g
= mips_elf_section_data (sgot
)->u
.got_info
;
7424 BFD_ASSERT (g
!= NULL
);
7426 /* Run through the global symbol table, creating GOT entries for all
7427 the symbols that need them. */
7428 if (g
->global_gotsym
!= NULL
7429 && h
->dynindx
>= g
->global_gotsym
->dynindx
)
7434 value
= sym
->st_value
;
7435 offset
= mips_elf_global_got_index (dynobj
, output_bfd
, h
, R_MIPS_GOT16
, info
);
7436 MIPS_ELF_PUT_WORD (output_bfd
, value
, sgot
->contents
+ offset
);
7439 if (g
->next
&& h
->dynindx
!= -1 && h
->type
!= STT_TLS
)
7441 struct mips_got_entry e
, *p
;
7447 e
.abfd
= output_bfd
;
7449 e
.d
.h
= (struct mips_elf_link_hash_entry
*)h
;
7452 for (g
= g
->next
; g
->next
!= gg
; g
= g
->next
)
7455 && (p
= (struct mips_got_entry
*) htab_find (g
->got_entries
,
7460 || (elf_hash_table (info
)->dynamic_sections_created
7462 && p
->d
.h
->root
.def_dynamic
7463 && !p
->d
.h
->root
.def_regular
))
7465 /* Create an R_MIPS_REL32 relocation for this entry. Due to
7466 the various compatibility problems, it's easier to mock
7467 up an R_MIPS_32 or R_MIPS_64 relocation and leave
7468 mips_elf_create_dynamic_relocation to calculate the
7469 appropriate addend. */
7470 Elf_Internal_Rela rel
[3];
7472 memset (rel
, 0, sizeof (rel
));
7473 if (ABI_64_P (output_bfd
))
7474 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_64
);
7476 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_32
);
7477 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
7480 if (! (mips_elf_create_dynamic_relocation
7481 (output_bfd
, info
, rel
,
7482 e
.d
.h
, NULL
, sym
->st_value
, &entry
, sgot
)))
7486 entry
= sym
->st_value
;
7487 MIPS_ELF_PUT_WORD (output_bfd
, entry
, sgot
->contents
+ offset
);
7492 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
7493 name
= h
->root
.root
.string
;
7494 if (strcmp (name
, "_DYNAMIC") == 0
7495 || strcmp (name
, "_GLOBAL_OFFSET_TABLE_") == 0)
7496 sym
->st_shndx
= SHN_ABS
;
7497 else if (strcmp (name
, "_DYNAMIC_LINK") == 0
7498 || strcmp (name
, "_DYNAMIC_LINKING") == 0)
7500 sym
->st_shndx
= SHN_ABS
;
7501 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
7504 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (output_bfd
))
7506 sym
->st_shndx
= SHN_ABS
;
7507 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
7508 sym
->st_value
= elf_gp (output_bfd
);
7510 else if (SGI_COMPAT (output_bfd
))
7512 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
7513 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
7515 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
7516 sym
->st_other
= STO_PROTECTED
;
7518 sym
->st_shndx
= SHN_MIPS_DATA
;
7520 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
7522 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
7523 sym
->st_other
= STO_PROTECTED
;
7524 sym
->st_value
= mips_elf_hash_table (info
)->procedure_count
;
7525 sym
->st_shndx
= SHN_ABS
;
7527 else if (sym
->st_shndx
!= SHN_UNDEF
&& sym
->st_shndx
!= SHN_ABS
)
7529 if (h
->type
== STT_FUNC
)
7530 sym
->st_shndx
= SHN_MIPS_TEXT
;
7531 else if (h
->type
== STT_OBJECT
)
7532 sym
->st_shndx
= SHN_MIPS_DATA
;
7536 /* Handle the IRIX6-specific symbols. */
7537 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
7538 mips_elf_irix6_finish_dynamic_symbol (output_bfd
, name
, sym
);
7542 if (! mips_elf_hash_table (info
)->use_rld_obj_head
7543 && (strcmp (name
, "__rld_map") == 0
7544 || strcmp (name
, "__RLD_MAP") == 0))
7546 asection
*s
= bfd_get_section_by_name (dynobj
, ".rld_map");
7547 BFD_ASSERT (s
!= NULL
);
7548 sym
->st_value
= s
->output_section
->vma
+ s
->output_offset
;
7549 bfd_put_32 (output_bfd
, 0, s
->contents
);
7550 if (mips_elf_hash_table (info
)->rld_value
== 0)
7551 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
7553 else if (mips_elf_hash_table (info
)->use_rld_obj_head
7554 && strcmp (name
, "__rld_obj_head") == 0)
7556 /* IRIX6 does not use a .rld_map section. */
7557 if (IRIX_COMPAT (output_bfd
) == ict_irix5
7558 || IRIX_COMPAT (output_bfd
) == ict_none
)
7559 BFD_ASSERT (bfd_get_section_by_name (dynobj
, ".rld_map")
7561 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
7565 /* If this is a mips16 symbol, force the value to be even. */
7566 if (sym
->st_other
== STO_MIPS16
)
7567 sym
->st_value
&= ~1;
7572 /* Finish up the dynamic sections. */
7575 _bfd_mips_elf_finish_dynamic_sections (bfd
*output_bfd
,
7576 struct bfd_link_info
*info
)
7581 struct mips_got_info
*gg
, *g
;
7583 dynobj
= elf_hash_table (info
)->dynobj
;
7585 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
7587 sgot
= mips_elf_got_section (dynobj
, FALSE
);
7592 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
7593 gg
= mips_elf_section_data (sgot
)->u
.got_info
;
7594 BFD_ASSERT (gg
!= NULL
);
7595 g
= mips_elf_got_for_ibfd (gg
, output_bfd
);
7596 BFD_ASSERT (g
!= NULL
);
7599 if (elf_hash_table (info
)->dynamic_sections_created
)
7603 BFD_ASSERT (sdyn
!= NULL
);
7604 BFD_ASSERT (g
!= NULL
);
7606 for (b
= sdyn
->contents
;
7607 b
< sdyn
->contents
+ sdyn
->size
;
7608 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
7610 Elf_Internal_Dyn dyn
;
7614 bfd_boolean swap_out_p
;
7616 /* Read in the current dynamic entry. */
7617 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
7619 /* Assume that we're going to modify it and write it out. */
7625 s
= mips_elf_rel_dyn_section (dynobj
, FALSE
);
7626 BFD_ASSERT (s
!= NULL
);
7627 dyn
.d_un
.d_val
= MIPS_ELF_REL_SIZE (dynobj
);
7631 /* Rewrite DT_STRSZ. */
7633 _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
7638 s
= bfd_get_section_by_name (output_bfd
, name
);
7639 BFD_ASSERT (s
!= NULL
);
7640 dyn
.d_un
.d_ptr
= s
->vma
;
7643 case DT_MIPS_RLD_VERSION
:
7644 dyn
.d_un
.d_val
= 1; /* XXX */
7648 dyn
.d_un
.d_val
= RHF_NOTPOT
; /* XXX */
7651 case DT_MIPS_TIME_STAMP
:
7659 case DT_MIPS_ICHECKSUM
:
7664 case DT_MIPS_IVERSION
:
7669 case DT_MIPS_BASE_ADDRESS
:
7670 s
= output_bfd
->sections
;
7671 BFD_ASSERT (s
!= NULL
);
7672 dyn
.d_un
.d_ptr
= s
->vma
& ~(bfd_vma
) 0xffff;
7675 case DT_MIPS_LOCAL_GOTNO
:
7676 dyn
.d_un
.d_val
= g
->local_gotno
;
7679 case DT_MIPS_UNREFEXTNO
:
7680 /* The index into the dynamic symbol table which is the
7681 entry of the first external symbol that is not
7682 referenced within the same object. */
7683 dyn
.d_un
.d_val
= bfd_count_sections (output_bfd
) + 1;
7686 case DT_MIPS_GOTSYM
:
7687 if (gg
->global_gotsym
)
7689 dyn
.d_un
.d_val
= gg
->global_gotsym
->dynindx
;
7692 /* In case if we don't have global got symbols we default
7693 to setting DT_MIPS_GOTSYM to the same value as
7694 DT_MIPS_SYMTABNO, so we just fall through. */
7696 case DT_MIPS_SYMTABNO
:
7698 elemsize
= MIPS_ELF_SYM_SIZE (output_bfd
);
7699 s
= bfd_get_section_by_name (output_bfd
, name
);
7700 BFD_ASSERT (s
!= NULL
);
7702 dyn
.d_un
.d_val
= s
->size
/ elemsize
;
7705 case DT_MIPS_HIPAGENO
:
7706 dyn
.d_un
.d_val
= g
->local_gotno
- MIPS_RESERVED_GOTNO
;
7709 case DT_MIPS_RLD_MAP
:
7710 dyn
.d_un
.d_ptr
= mips_elf_hash_table (info
)->rld_value
;
7713 case DT_MIPS_OPTIONS
:
7714 s
= (bfd_get_section_by_name
7715 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd
)));
7716 dyn
.d_un
.d_ptr
= s
->vma
;
7725 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
7730 /* The first entry of the global offset table will be filled at
7731 runtime. The second entry will be used by some runtime loaders.
7732 This isn't the case of IRIX rld. */
7733 if (sgot
!= NULL
&& sgot
->size
> 0)
7735 MIPS_ELF_PUT_WORD (output_bfd
, 0, sgot
->contents
);
7736 MIPS_ELF_PUT_WORD (output_bfd
, 0x80000000,
7737 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
7741 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
7742 = MIPS_ELF_GOT_SIZE (output_bfd
);
7744 /* Generate dynamic relocations for the non-primary gots. */
7745 if (gg
!= NULL
&& gg
->next
)
7747 Elf_Internal_Rela rel
[3];
7750 memset (rel
, 0, sizeof (rel
));
7751 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_REL32
);
7753 for (g
= gg
->next
; g
->next
!= gg
; g
= g
->next
)
7755 bfd_vma index
= g
->next
->local_gotno
+ g
->next
->global_gotno
7756 + g
->next
->tls_gotno
;
7758 MIPS_ELF_PUT_WORD (output_bfd
, 0, sgot
->contents
7759 + index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
7760 MIPS_ELF_PUT_WORD (output_bfd
, 0x80000000, sgot
->contents
7761 + index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
7766 while (index
< g
->assigned_gotno
)
7768 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
7769 = index
++ * MIPS_ELF_GOT_SIZE (output_bfd
);
7770 if (!(mips_elf_create_dynamic_relocation
7771 (output_bfd
, info
, rel
, NULL
,
7772 bfd_abs_section_ptr
,
7775 BFD_ASSERT (addend
== 0);
7780 /* The generation of dynamic relocations for the non-primary gots
7781 adds more dynamic relocations. We cannot count them until
7784 if (elf_hash_table (info
)->dynamic_sections_created
)
7787 bfd_boolean swap_out_p
;
7789 BFD_ASSERT (sdyn
!= NULL
);
7791 for (b
= sdyn
->contents
;
7792 b
< sdyn
->contents
+ sdyn
->size
;
7793 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
7795 Elf_Internal_Dyn dyn
;
7798 /* Read in the current dynamic entry. */
7799 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
7801 /* Assume that we're going to modify it and write it out. */
7807 /* Reduce DT_RELSZ to account for any relocations we
7808 decided not to make. This is for the n64 irix rld,
7809 which doesn't seem to apply any relocations if there
7810 are trailing null entries. */
7811 s
= mips_elf_rel_dyn_section (dynobj
, FALSE
);
7812 dyn
.d_un
.d_val
= (s
->reloc_count
7813 * (ABI_64_P (output_bfd
)
7814 ? sizeof (Elf64_Mips_External_Rel
)
7815 : sizeof (Elf32_External_Rel
)));
7824 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
7831 Elf32_compact_rel cpt
;
7833 if (SGI_COMPAT (output_bfd
))
7835 /* Write .compact_rel section out. */
7836 s
= bfd_get_section_by_name (dynobj
, ".compact_rel");
7840 cpt
.num
= s
->reloc_count
;
7842 cpt
.offset
= (s
->output_section
->filepos
7843 + sizeof (Elf32_External_compact_rel
));
7846 bfd_elf32_swap_compact_rel_out (output_bfd
, &cpt
,
7847 ((Elf32_External_compact_rel
*)
7850 /* Clean up a dummy stub function entry in .text. */
7851 s
= bfd_get_section_by_name (dynobj
,
7852 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
7855 file_ptr dummy_offset
;
7857 BFD_ASSERT (s
->size
>= MIPS_FUNCTION_STUB_SIZE
);
7858 dummy_offset
= s
->size
- MIPS_FUNCTION_STUB_SIZE
;
7859 memset (s
->contents
+ dummy_offset
, 0,
7860 MIPS_FUNCTION_STUB_SIZE
);
7865 /* We need to sort the entries of the dynamic relocation section. */
7867 s
= mips_elf_rel_dyn_section (dynobj
, FALSE
);
7870 && s
->size
> (bfd_vma
)2 * MIPS_ELF_REL_SIZE (output_bfd
))
7872 reldyn_sorting_bfd
= output_bfd
;
7874 if (ABI_64_P (output_bfd
))
7875 qsort ((Elf64_External_Rel
*) s
->contents
+ 1, s
->reloc_count
- 1,
7876 sizeof (Elf64_Mips_External_Rel
), sort_dynamic_relocs_64
);
7878 qsort ((Elf32_External_Rel
*) s
->contents
+ 1, s
->reloc_count
- 1,
7879 sizeof (Elf32_External_Rel
), sort_dynamic_relocs
);
7887 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7890 mips_set_isa_flags (bfd
*abfd
)
7894 switch (bfd_get_mach (abfd
))
7897 case bfd_mach_mips3000
:
7898 val
= E_MIPS_ARCH_1
;
7901 case bfd_mach_mips3900
:
7902 val
= E_MIPS_ARCH_1
| E_MIPS_MACH_3900
;
7905 case bfd_mach_mips6000
:
7906 val
= E_MIPS_ARCH_2
;
7909 case bfd_mach_mips4000
:
7910 case bfd_mach_mips4300
:
7911 case bfd_mach_mips4400
:
7912 case bfd_mach_mips4600
:
7913 val
= E_MIPS_ARCH_3
;
7916 case bfd_mach_mips4010
:
7917 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4010
;
7920 case bfd_mach_mips4100
:
7921 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4100
;
7924 case bfd_mach_mips4111
:
7925 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4111
;
7928 case bfd_mach_mips4120
:
7929 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4120
;
7932 case bfd_mach_mips4650
:
7933 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4650
;
7936 case bfd_mach_mips5400
:
7937 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5400
;
7940 case bfd_mach_mips5500
:
7941 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5500
;
7944 case bfd_mach_mips9000
:
7945 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_9000
;
7948 case bfd_mach_mips5000
:
7949 case bfd_mach_mips7000
:
7950 case bfd_mach_mips8000
:
7951 case bfd_mach_mips10000
:
7952 case bfd_mach_mips12000
:
7953 val
= E_MIPS_ARCH_4
;
7956 case bfd_mach_mips5
:
7957 val
= E_MIPS_ARCH_5
;
7960 case bfd_mach_mips_sb1
:
7961 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_SB1
;
7964 case bfd_mach_mipsisa32
:
7965 val
= E_MIPS_ARCH_32
;
7968 case bfd_mach_mipsisa64
:
7969 val
= E_MIPS_ARCH_64
;
7972 case bfd_mach_mipsisa32r2
:
7973 val
= E_MIPS_ARCH_32R2
;
7976 case bfd_mach_mipsisa64r2
:
7977 val
= E_MIPS_ARCH_64R2
;
7980 elf_elfheader (abfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
7981 elf_elfheader (abfd
)->e_flags
|= val
;
7986 /* The final processing done just before writing out a MIPS ELF object
7987 file. This gets the MIPS architecture right based on the machine
7988 number. This is used by both the 32-bit and the 64-bit ABI. */
7991 _bfd_mips_elf_final_write_processing (bfd
*abfd
,
7992 bfd_boolean linker ATTRIBUTE_UNUSED
)
7995 Elf_Internal_Shdr
**hdrpp
;
7999 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
8000 is nonzero. This is for compatibility with old objects, which used
8001 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
8002 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_MACH
) == 0)
8003 mips_set_isa_flags (abfd
);
8005 /* Set the sh_info field for .gptab sections and other appropriate
8006 info for each special section. */
8007 for (i
= 1, hdrpp
= elf_elfsections (abfd
) + 1;
8008 i
< elf_numsections (abfd
);
8011 switch ((*hdrpp
)->sh_type
)
8014 case SHT_MIPS_LIBLIST
:
8015 sec
= bfd_get_section_by_name (abfd
, ".dynstr");
8017 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
8020 case SHT_MIPS_GPTAB
:
8021 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
8022 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
8023 BFD_ASSERT (name
!= NULL
8024 && strncmp (name
, ".gptab.", sizeof ".gptab." - 1) == 0);
8025 sec
= bfd_get_section_by_name (abfd
, name
+ sizeof ".gptab" - 1);
8026 BFD_ASSERT (sec
!= NULL
);
8027 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
8030 case SHT_MIPS_CONTENT
:
8031 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
8032 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
8033 BFD_ASSERT (name
!= NULL
8034 && strncmp (name
, ".MIPS.content",
8035 sizeof ".MIPS.content" - 1) == 0);
8036 sec
= bfd_get_section_by_name (abfd
,
8037 name
+ sizeof ".MIPS.content" - 1);
8038 BFD_ASSERT (sec
!= NULL
);
8039 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
8042 case SHT_MIPS_SYMBOL_LIB
:
8043 sec
= bfd_get_section_by_name (abfd
, ".dynsym");
8045 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
8046 sec
= bfd_get_section_by_name (abfd
, ".liblist");
8048 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
8051 case SHT_MIPS_EVENTS
:
8052 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
8053 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
8054 BFD_ASSERT (name
!= NULL
);
8055 if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
8056 sec
= bfd_get_section_by_name (abfd
,
8057 name
+ sizeof ".MIPS.events" - 1);
8060 BFD_ASSERT (strncmp (name
, ".MIPS.post_rel",
8061 sizeof ".MIPS.post_rel" - 1) == 0);
8062 sec
= bfd_get_section_by_name (abfd
,
8064 + sizeof ".MIPS.post_rel" - 1));
8066 BFD_ASSERT (sec
!= NULL
);
8067 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
8074 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
8078 _bfd_mips_elf_additional_program_headers (bfd
*abfd
)
8083 /* See if we need a PT_MIPS_REGINFO segment. */
8084 s
= bfd_get_section_by_name (abfd
, ".reginfo");
8085 if (s
&& (s
->flags
& SEC_LOAD
))
8088 /* See if we need a PT_MIPS_OPTIONS segment. */
8089 if (IRIX_COMPAT (abfd
) == ict_irix6
8090 && bfd_get_section_by_name (abfd
,
8091 MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)))
8094 /* See if we need a PT_MIPS_RTPROC segment. */
8095 if (IRIX_COMPAT (abfd
) == ict_irix5
8096 && bfd_get_section_by_name (abfd
, ".dynamic")
8097 && bfd_get_section_by_name (abfd
, ".mdebug"))
8103 /* Modify the segment map for an IRIX5 executable. */
8106 _bfd_mips_elf_modify_segment_map (bfd
*abfd
,
8107 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
8110 struct elf_segment_map
*m
, **pm
;
8113 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
8115 s
= bfd_get_section_by_name (abfd
, ".reginfo");
8116 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
8118 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
8119 if (m
->p_type
== PT_MIPS_REGINFO
)
8124 m
= bfd_zalloc (abfd
, amt
);
8128 m
->p_type
= PT_MIPS_REGINFO
;
8132 /* We want to put it after the PHDR and INTERP segments. */
8133 pm
= &elf_tdata (abfd
)->segment_map
;
8135 && ((*pm
)->p_type
== PT_PHDR
8136 || (*pm
)->p_type
== PT_INTERP
))
8144 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
8145 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
8146 PT_MIPS_OPTIONS segment immediately following the program header
8149 /* On non-IRIX6 new abi, we'll have already created a segment
8150 for this section, so don't create another. I'm not sure this
8151 is not also the case for IRIX 6, but I can't test it right
8153 && IRIX_COMPAT (abfd
) == ict_irix6
)
8155 for (s
= abfd
->sections
; s
; s
= s
->next
)
8156 if (elf_section_data (s
)->this_hdr
.sh_type
== SHT_MIPS_OPTIONS
)
8161 struct elf_segment_map
*options_segment
;
8163 pm
= &elf_tdata (abfd
)->segment_map
;
8165 && ((*pm
)->p_type
== PT_PHDR
8166 || (*pm
)->p_type
== PT_INTERP
))
8169 amt
= sizeof (struct elf_segment_map
);
8170 options_segment
= bfd_zalloc (abfd
, amt
);
8171 options_segment
->next
= *pm
;
8172 options_segment
->p_type
= PT_MIPS_OPTIONS
;
8173 options_segment
->p_flags
= PF_R
;
8174 options_segment
->p_flags_valid
= TRUE
;
8175 options_segment
->count
= 1;
8176 options_segment
->sections
[0] = s
;
8177 *pm
= options_segment
;
8182 if (IRIX_COMPAT (abfd
) == ict_irix5
)
8184 /* If there are .dynamic and .mdebug sections, we make a room
8185 for the RTPROC header. FIXME: Rewrite without section names. */
8186 if (bfd_get_section_by_name (abfd
, ".interp") == NULL
8187 && bfd_get_section_by_name (abfd
, ".dynamic") != NULL
8188 && bfd_get_section_by_name (abfd
, ".mdebug") != NULL
)
8190 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
8191 if (m
->p_type
== PT_MIPS_RTPROC
)
8196 m
= bfd_zalloc (abfd
, amt
);
8200 m
->p_type
= PT_MIPS_RTPROC
;
8202 s
= bfd_get_section_by_name (abfd
, ".rtproc");
8207 m
->p_flags_valid
= 1;
8215 /* We want to put it after the DYNAMIC segment. */
8216 pm
= &elf_tdata (abfd
)->segment_map
;
8217 while (*pm
!= NULL
&& (*pm
)->p_type
!= PT_DYNAMIC
)
8227 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
8228 .dynstr, .dynsym, and .hash sections, and everything in
8230 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
;
8232 if ((*pm
)->p_type
== PT_DYNAMIC
)
8235 if (m
!= NULL
&& IRIX_COMPAT (abfd
) == ict_none
)
8237 /* For a normal mips executable the permissions for the PT_DYNAMIC
8238 segment are read, write and execute. We do that here since
8239 the code in elf.c sets only the read permission. This matters
8240 sometimes for the dynamic linker. */
8241 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
8243 m
->p_flags
= PF_R
| PF_W
| PF_X
;
8244 m
->p_flags_valid
= 1;
8248 && m
->count
== 1 && strcmp (m
->sections
[0]->name
, ".dynamic") == 0)
8250 static const char *sec_names
[] =
8252 ".dynamic", ".dynstr", ".dynsym", ".hash"
8256 struct elf_segment_map
*n
;
8260 for (i
= 0; i
< sizeof sec_names
/ sizeof sec_names
[0]; i
++)
8262 s
= bfd_get_section_by_name (abfd
, sec_names
[i
]);
8263 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
8270 if (high
< s
->vma
+ sz
)
8276 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
8277 if ((s
->flags
& SEC_LOAD
) != 0
8279 && s
->vma
+ s
->size
<= high
)
8282 amt
= sizeof *n
+ (bfd_size_type
) (c
- 1) * sizeof (asection
*);
8283 n
= bfd_zalloc (abfd
, amt
);
8290 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
8292 if ((s
->flags
& SEC_LOAD
) != 0
8294 && s
->vma
+ s
->size
<= high
)
8308 /* Return the section that should be marked against GC for a given
8312 _bfd_mips_elf_gc_mark_hook (asection
*sec
,
8313 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
8314 Elf_Internal_Rela
*rel
,
8315 struct elf_link_hash_entry
*h
,
8316 Elf_Internal_Sym
*sym
)
8318 /* ??? Do mips16 stub sections need to be handled special? */
8322 switch (ELF_R_TYPE (sec
->owner
, rel
->r_info
))
8324 case R_MIPS_GNU_VTINHERIT
:
8325 case R_MIPS_GNU_VTENTRY
:
8329 switch (h
->root
.type
)
8331 case bfd_link_hash_defined
:
8332 case bfd_link_hash_defweak
:
8333 return h
->root
.u
.def
.section
;
8335 case bfd_link_hash_common
:
8336 return h
->root
.u
.c
.p
->section
;
8344 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
8349 /* Update the got entry reference counts for the section being removed. */
8352 _bfd_mips_elf_gc_sweep_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
8353 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
8354 asection
*sec ATTRIBUTE_UNUSED
,
8355 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
)
8358 Elf_Internal_Shdr
*symtab_hdr
;
8359 struct elf_link_hash_entry
**sym_hashes
;
8360 bfd_signed_vma
*local_got_refcounts
;
8361 const Elf_Internal_Rela
*rel
, *relend
;
8362 unsigned long r_symndx
;
8363 struct elf_link_hash_entry
*h
;
8365 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
8366 sym_hashes
= elf_sym_hashes (abfd
);
8367 local_got_refcounts
= elf_local_got_refcounts (abfd
);
8369 relend
= relocs
+ sec
->reloc_count
;
8370 for (rel
= relocs
; rel
< relend
; rel
++)
8371 switch (ELF_R_TYPE (abfd
, rel
->r_info
))
8375 case R_MIPS_CALL_HI16
:
8376 case R_MIPS_CALL_LO16
:
8377 case R_MIPS_GOT_HI16
:
8378 case R_MIPS_GOT_LO16
:
8379 case R_MIPS_GOT_DISP
:
8380 case R_MIPS_GOT_PAGE
:
8381 case R_MIPS_GOT_OFST
:
8382 /* ??? It would seem that the existing MIPS code does no sort
8383 of reference counting or whatnot on its GOT and PLT entries,
8384 so it is not possible to garbage collect them at this time. */
8395 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
8396 hiding the old indirect symbol. Process additional relocation
8397 information. Also called for weakdefs, in which case we just let
8398 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
8401 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info
*info
,
8402 struct elf_link_hash_entry
*dir
,
8403 struct elf_link_hash_entry
*ind
)
8405 struct mips_elf_link_hash_entry
*dirmips
, *indmips
;
8407 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
8409 if (ind
->root
.type
!= bfd_link_hash_indirect
)
8412 dirmips
= (struct mips_elf_link_hash_entry
*) dir
;
8413 indmips
= (struct mips_elf_link_hash_entry
*) ind
;
8414 dirmips
->possibly_dynamic_relocs
+= indmips
->possibly_dynamic_relocs
;
8415 if (indmips
->readonly_reloc
)
8416 dirmips
->readonly_reloc
= TRUE
;
8417 if (indmips
->no_fn_stub
)
8418 dirmips
->no_fn_stub
= TRUE
;
8420 if (dirmips
->tls_type
== 0)
8421 dirmips
->tls_type
= indmips
->tls_type
;
8425 _bfd_mips_elf_hide_symbol (struct bfd_link_info
*info
,
8426 struct elf_link_hash_entry
*entry
,
8427 bfd_boolean force_local
)
8431 struct mips_got_info
*g
;
8432 struct mips_elf_link_hash_entry
*h
;
8434 h
= (struct mips_elf_link_hash_entry
*) entry
;
8435 if (h
->forced_local
)
8437 h
->forced_local
= force_local
;
8439 dynobj
= elf_hash_table (info
)->dynobj
;
8440 if (dynobj
!= NULL
&& force_local
&& h
->root
.type
!= STT_TLS
8441 && (got
= mips_elf_got_section (dynobj
, FALSE
)) != NULL
8442 && (g
= mips_elf_section_data (got
)->u
.got_info
) != NULL
)
8446 struct mips_got_entry e
;
8447 struct mips_got_info
*gg
= g
;
8449 /* Since we're turning what used to be a global symbol into a
8450 local one, bump up the number of local entries of each GOT
8451 that had an entry for it. This will automatically decrease
8452 the number of global entries, since global_gotno is actually
8453 the upper limit of global entries. */
8459 for (g
= g
->next
; g
!= gg
; g
= g
->next
)
8460 if (htab_find (g
->got_entries
, &e
))
8462 BFD_ASSERT (g
->global_gotno
> 0);
8467 /* If this was a global symbol forced into the primary GOT, we
8468 no longer need an entry for it. We can't release the entry
8469 at this point, but we must at least stop counting it as one
8470 of the symbols that required a forced got entry. */
8471 if (h
->root
.got
.offset
== 2)
8473 BFD_ASSERT (gg
->assigned_gotno
> 0);
8474 gg
->assigned_gotno
--;
8477 else if (g
->global_gotno
== 0 && g
->global_gotsym
== NULL
)
8478 /* If we haven't got through GOT allocation yet, just bump up the
8479 number of local entries, as this symbol won't be counted as
8482 else if (h
->root
.got
.offset
== 1)
8484 /* If we're past non-multi-GOT allocation and this symbol had
8485 been marked for a global got entry, give it a local entry
8487 BFD_ASSERT (g
->global_gotno
> 0);
8493 _bfd_elf_link_hash_hide_symbol (info
, &h
->root
, force_local
);
8499 _bfd_mips_elf_discard_info (bfd
*abfd
, struct elf_reloc_cookie
*cookie
,
8500 struct bfd_link_info
*info
)
8503 bfd_boolean ret
= FALSE
;
8504 unsigned char *tdata
;
8507 o
= bfd_get_section_by_name (abfd
, ".pdr");
8512 if (o
->size
% PDR_SIZE
!= 0)
8514 if (o
->output_section
!= NULL
8515 && bfd_is_abs_section (o
->output_section
))
8518 tdata
= bfd_zmalloc (o
->size
/ PDR_SIZE
);
8522 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
8530 cookie
->rel
= cookie
->rels
;
8531 cookie
->relend
= cookie
->rels
+ o
->reloc_count
;
8533 for (i
= 0, skip
= 0; i
< o
->size
/ PDR_SIZE
; i
++)
8535 if (bfd_elf_reloc_symbol_deleted_p (i
* PDR_SIZE
, cookie
))
8544 mips_elf_section_data (o
)->u
.tdata
= tdata
;
8545 o
->size
-= skip
* PDR_SIZE
;
8551 if (! info
->keep_memory
)
8552 free (cookie
->rels
);
8558 _bfd_mips_elf_ignore_discarded_relocs (asection
*sec
)
8560 if (strcmp (sec
->name
, ".pdr") == 0)
8566 _bfd_mips_elf_write_section (bfd
*output_bfd
, asection
*sec
,
8569 bfd_byte
*to
, *from
, *end
;
8572 if (strcmp (sec
->name
, ".pdr") != 0)
8575 if (mips_elf_section_data (sec
)->u
.tdata
== NULL
)
8579 end
= contents
+ sec
->size
;
8580 for (from
= contents
, i
= 0;
8582 from
+= PDR_SIZE
, i
++)
8584 if ((mips_elf_section_data (sec
)->u
.tdata
)[i
] == 1)
8587 memcpy (to
, from
, PDR_SIZE
);
8590 bfd_set_section_contents (output_bfd
, sec
->output_section
, contents
,
8591 sec
->output_offset
, sec
->size
);
8595 /* MIPS ELF uses a special find_nearest_line routine in order the
8596 handle the ECOFF debugging information. */
8598 struct mips_elf_find_line
8600 struct ecoff_debug_info d
;
8601 struct ecoff_find_line i
;
8605 _bfd_mips_elf_find_nearest_line (bfd
*abfd
, asection
*section
,
8606 asymbol
**symbols
, bfd_vma offset
,
8607 const char **filename_ptr
,
8608 const char **functionname_ptr
,
8609 unsigned int *line_ptr
)
8613 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
8614 filename_ptr
, functionname_ptr
,
8618 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
8619 filename_ptr
, functionname_ptr
,
8620 line_ptr
, ABI_64_P (abfd
) ? 8 : 0,
8621 &elf_tdata (abfd
)->dwarf2_find_line_info
))
8624 msec
= bfd_get_section_by_name (abfd
, ".mdebug");
8628 struct mips_elf_find_line
*fi
;
8629 const struct ecoff_debug_swap
* const swap
=
8630 get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
8632 /* If we are called during a link, mips_elf_final_link may have
8633 cleared the SEC_HAS_CONTENTS field. We force it back on here
8634 if appropriate (which it normally will be). */
8635 origflags
= msec
->flags
;
8636 if (elf_section_data (msec
)->this_hdr
.sh_type
!= SHT_NOBITS
)
8637 msec
->flags
|= SEC_HAS_CONTENTS
;
8639 fi
= elf_tdata (abfd
)->find_line_info
;
8642 bfd_size_type external_fdr_size
;
8645 struct fdr
*fdr_ptr
;
8646 bfd_size_type amt
= sizeof (struct mips_elf_find_line
);
8648 fi
= bfd_zalloc (abfd
, amt
);
8651 msec
->flags
= origflags
;
8655 if (! _bfd_mips_elf_read_ecoff_info (abfd
, msec
, &fi
->d
))
8657 msec
->flags
= origflags
;
8661 /* Swap in the FDR information. */
8662 amt
= fi
->d
.symbolic_header
.ifdMax
* sizeof (struct fdr
);
8663 fi
->d
.fdr
= bfd_alloc (abfd
, amt
);
8664 if (fi
->d
.fdr
== NULL
)
8666 msec
->flags
= origflags
;
8669 external_fdr_size
= swap
->external_fdr_size
;
8670 fdr_ptr
= fi
->d
.fdr
;
8671 fraw_src
= (char *) fi
->d
.external_fdr
;
8672 fraw_end
= (fraw_src
8673 + fi
->d
.symbolic_header
.ifdMax
* external_fdr_size
);
8674 for (; fraw_src
< fraw_end
; fraw_src
+= external_fdr_size
, fdr_ptr
++)
8675 (*swap
->swap_fdr_in
) (abfd
, fraw_src
, fdr_ptr
);
8677 elf_tdata (abfd
)->find_line_info
= fi
;
8679 /* Note that we don't bother to ever free this information.
8680 find_nearest_line is either called all the time, as in
8681 objdump -l, so the information should be saved, or it is
8682 rarely called, as in ld error messages, so the memory
8683 wasted is unimportant. Still, it would probably be a
8684 good idea for free_cached_info to throw it away. */
8687 if (_bfd_ecoff_locate_line (abfd
, section
, offset
, &fi
->d
, swap
,
8688 &fi
->i
, filename_ptr
, functionname_ptr
,
8691 msec
->flags
= origflags
;
8695 msec
->flags
= origflags
;
8698 /* Fall back on the generic ELF find_nearest_line routine. */
8700 return _bfd_elf_find_nearest_line (abfd
, section
, symbols
, offset
,
8701 filename_ptr
, functionname_ptr
,
8706 _bfd_mips_elf_find_inliner_info (bfd
*abfd
,
8707 const char **filename_ptr
,
8708 const char **functionname_ptr
,
8709 unsigned int *line_ptr
)
8712 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
8713 functionname_ptr
, line_ptr
,
8714 & elf_tdata (abfd
)->dwarf2_find_line_info
);
8719 /* When are writing out the .options or .MIPS.options section,
8720 remember the bytes we are writing out, so that we can install the
8721 GP value in the section_processing routine. */
8724 _bfd_mips_elf_set_section_contents (bfd
*abfd
, sec_ptr section
,
8725 const void *location
,
8726 file_ptr offset
, bfd_size_type count
)
8728 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section
->name
))
8732 if (elf_section_data (section
) == NULL
)
8734 bfd_size_type amt
= sizeof (struct bfd_elf_section_data
);
8735 section
->used_by_bfd
= bfd_zalloc (abfd
, amt
);
8736 if (elf_section_data (section
) == NULL
)
8739 c
= mips_elf_section_data (section
)->u
.tdata
;
8742 c
= bfd_zalloc (abfd
, section
->size
);
8745 mips_elf_section_data (section
)->u
.tdata
= c
;
8748 memcpy (c
+ offset
, location
, count
);
8751 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
,
8755 /* This is almost identical to bfd_generic_get_... except that some
8756 MIPS relocations need to be handled specially. Sigh. */
8759 _bfd_elf_mips_get_relocated_section_contents
8761 struct bfd_link_info
*link_info
,
8762 struct bfd_link_order
*link_order
,
8764 bfd_boolean relocatable
,
8767 /* Get enough memory to hold the stuff */
8768 bfd
*input_bfd
= link_order
->u
.indirect
.section
->owner
;
8769 asection
*input_section
= link_order
->u
.indirect
.section
;
8772 long reloc_size
= bfd_get_reloc_upper_bound (input_bfd
, input_section
);
8773 arelent
**reloc_vector
= NULL
;
8779 reloc_vector
= bfd_malloc (reloc_size
);
8780 if (reloc_vector
== NULL
&& reloc_size
!= 0)
8783 /* read in the section */
8784 sz
= input_section
->rawsize
? input_section
->rawsize
: input_section
->size
;
8785 if (!bfd_get_section_contents (input_bfd
, input_section
, data
, 0, sz
))
8788 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
8792 if (reloc_count
< 0)
8795 if (reloc_count
> 0)
8800 bfd_vma gp
= 0x12345678; /* initialize just to shut gcc up */
8803 struct bfd_hash_entry
*h
;
8804 struct bfd_link_hash_entry
*lh
;
8805 /* Skip all this stuff if we aren't mixing formats. */
8806 if (abfd
&& input_bfd
8807 && abfd
->xvec
== input_bfd
->xvec
)
8811 h
= bfd_hash_lookup (&link_info
->hash
->table
, "_gp", FALSE
, FALSE
);
8812 lh
= (struct bfd_link_hash_entry
*) h
;
8819 case bfd_link_hash_undefined
:
8820 case bfd_link_hash_undefweak
:
8821 case bfd_link_hash_common
:
8824 case bfd_link_hash_defined
:
8825 case bfd_link_hash_defweak
:
8827 gp
= lh
->u
.def
.value
;
8829 case bfd_link_hash_indirect
:
8830 case bfd_link_hash_warning
:
8832 /* @@FIXME ignoring warning for now */
8834 case bfd_link_hash_new
:
8843 for (parent
= reloc_vector
; *parent
!= NULL
; parent
++)
8845 char *error_message
= NULL
;
8846 bfd_reloc_status_type r
;
8848 /* Specific to MIPS: Deal with relocation types that require
8849 knowing the gp of the output bfd. */
8850 asymbol
*sym
= *(*parent
)->sym_ptr_ptr
;
8852 /* If we've managed to find the gp and have a special
8853 function for the relocation then go ahead, else default
8854 to the generic handling. */
8856 && (*parent
)->howto
->special_function
8857 == _bfd_mips_elf32_gprel16_reloc
)
8858 r
= _bfd_mips_elf_gprel16_with_gp (input_bfd
, sym
, *parent
,
8859 input_section
, relocatable
,
8862 r
= bfd_perform_relocation (input_bfd
, *parent
, data
,
8864 relocatable
? abfd
: NULL
,
8869 asection
*os
= input_section
->output_section
;
8871 /* A partial link, so keep the relocs */
8872 os
->orelocation
[os
->reloc_count
] = *parent
;
8876 if (r
!= bfd_reloc_ok
)
8880 case bfd_reloc_undefined
:
8881 if (!((*link_info
->callbacks
->undefined_symbol
)
8882 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
8883 input_bfd
, input_section
, (*parent
)->address
, TRUE
)))
8886 case bfd_reloc_dangerous
:
8887 BFD_ASSERT (error_message
!= NULL
);
8888 if (!((*link_info
->callbacks
->reloc_dangerous
)
8889 (link_info
, error_message
, input_bfd
, input_section
,
8890 (*parent
)->address
)))
8893 case bfd_reloc_overflow
:
8894 if (!((*link_info
->callbacks
->reloc_overflow
)
8896 bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
8897 (*parent
)->howto
->name
, (*parent
)->addend
,
8898 input_bfd
, input_section
, (*parent
)->address
)))
8901 case bfd_reloc_outofrange
:
8910 if (reloc_vector
!= NULL
)
8911 free (reloc_vector
);
8915 if (reloc_vector
!= NULL
)
8916 free (reloc_vector
);
8920 /* Create a MIPS ELF linker hash table. */
8922 struct bfd_link_hash_table
*
8923 _bfd_mips_elf_link_hash_table_create (bfd
*abfd
)
8925 struct mips_elf_link_hash_table
*ret
;
8926 bfd_size_type amt
= sizeof (struct mips_elf_link_hash_table
);
8928 ret
= bfd_malloc (amt
);
8932 if (! _bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
8933 mips_elf_link_hash_newfunc
))
8940 /* We no longer use this. */
8941 for (i
= 0; i
< SIZEOF_MIPS_DYNSYM_SECNAMES
; i
++)
8942 ret
->dynsym_sec_strindex
[i
] = (bfd_size_type
) -1;
8944 ret
->procedure_count
= 0;
8945 ret
->compact_rel_size
= 0;
8946 ret
->use_rld_obj_head
= FALSE
;
8948 ret
->mips16_stubs_seen
= FALSE
;
8950 return &ret
->root
.root
;
8953 /* We need to use a special link routine to handle the .reginfo and
8954 the .mdebug sections. We need to merge all instances of these
8955 sections together, not write them all out sequentially. */
8958 _bfd_mips_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
8961 struct bfd_link_order
*p
;
8962 asection
*reginfo_sec
, *mdebug_sec
, *gptab_data_sec
, *gptab_bss_sec
;
8963 asection
*rtproc_sec
;
8964 Elf32_RegInfo reginfo
;
8965 struct ecoff_debug_info debug
;
8966 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8967 const struct ecoff_debug_swap
*swap
= bed
->elf_backend_ecoff_debug_swap
;
8968 HDRR
*symhdr
= &debug
.symbolic_header
;
8969 void *mdebug_handle
= NULL
;
8975 static const char * const secname
[] =
8977 ".text", ".init", ".fini", ".data",
8978 ".rodata", ".sdata", ".sbss", ".bss"
8980 static const int sc
[] =
8982 scText
, scInit
, scFini
, scData
,
8983 scRData
, scSData
, scSBss
, scBss
8986 /* We'd carefully arranged the dynamic symbol indices, and then the
8987 generic size_dynamic_sections renumbered them out from under us.
8988 Rather than trying somehow to prevent the renumbering, just do
8990 if (elf_hash_table (info
)->dynamic_sections_created
)
8994 struct mips_got_info
*g
;
8995 bfd_size_type dynsecsymcount
;
8997 /* When we resort, we must tell mips_elf_sort_hash_table what
8998 the lowest index it may use is. That's the number of section
8999 symbols we're going to add. The generic ELF linker only
9000 adds these symbols when building a shared object. Note that
9001 we count the sections after (possibly) removing the .options
9009 for (p
= abfd
->sections
; p
; p
= p
->next
)
9010 if ((p
->flags
& SEC_EXCLUDE
) == 0
9011 && (p
->flags
& SEC_ALLOC
) != 0
9012 && !(*bed
->elf_backend_omit_section_dynsym
) (abfd
, info
, p
))
9016 if (! mips_elf_sort_hash_table (info
, dynsecsymcount
+ 1))
9019 /* Make sure we didn't grow the global .got region. */
9020 dynobj
= elf_hash_table (info
)->dynobj
;
9021 got
= mips_elf_got_section (dynobj
, FALSE
);
9022 g
= mips_elf_section_data (got
)->u
.got_info
;
9024 if (g
->global_gotsym
!= NULL
)
9025 BFD_ASSERT ((elf_hash_table (info
)->dynsymcount
9026 - g
->global_gotsym
->dynindx
)
9027 <= g
->global_gotno
);
9030 /* Get a value for the GP register. */
9031 if (elf_gp (abfd
) == 0)
9033 struct bfd_link_hash_entry
*h
;
9035 h
= bfd_link_hash_lookup (info
->hash
, "_gp", FALSE
, FALSE
, TRUE
);
9036 if (h
!= NULL
&& h
->type
== bfd_link_hash_defined
)
9037 elf_gp (abfd
) = (h
->u
.def
.value
9038 + h
->u
.def
.section
->output_section
->vma
9039 + h
->u
.def
.section
->output_offset
);
9040 else if (info
->relocatable
)
9042 bfd_vma lo
= MINUS_ONE
;
9044 /* Find the GP-relative section with the lowest offset. */
9045 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
9047 && (elf_section_data (o
)->this_hdr
.sh_flags
& SHF_MIPS_GPREL
))
9050 /* And calculate GP relative to that. */
9051 elf_gp (abfd
) = lo
+ ELF_MIPS_GP_OFFSET (abfd
);
9055 /* If the relocate_section function needs to do a reloc
9056 involving the GP value, it should make a reloc_dangerous
9057 callback to warn that GP is not defined. */
9061 /* Go through the sections and collect the .reginfo and .mdebug
9065 gptab_data_sec
= NULL
;
9066 gptab_bss_sec
= NULL
;
9067 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
9069 if (strcmp (o
->name
, ".reginfo") == 0)
9071 memset (®info
, 0, sizeof reginfo
);
9073 /* We have found the .reginfo section in the output file.
9074 Look through all the link_orders comprising it and merge
9075 the information together. */
9076 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
9078 asection
*input_section
;
9080 Elf32_External_RegInfo ext
;
9083 if (p
->type
!= bfd_indirect_link_order
)
9085 if (p
->type
== bfd_data_link_order
)
9090 input_section
= p
->u
.indirect
.section
;
9091 input_bfd
= input_section
->owner
;
9093 if (! bfd_get_section_contents (input_bfd
, input_section
,
9094 &ext
, 0, sizeof ext
))
9097 bfd_mips_elf32_swap_reginfo_in (input_bfd
, &ext
, &sub
);
9099 reginfo
.ri_gprmask
|= sub
.ri_gprmask
;
9100 reginfo
.ri_cprmask
[0] |= sub
.ri_cprmask
[0];
9101 reginfo
.ri_cprmask
[1] |= sub
.ri_cprmask
[1];
9102 reginfo
.ri_cprmask
[2] |= sub
.ri_cprmask
[2];
9103 reginfo
.ri_cprmask
[3] |= sub
.ri_cprmask
[3];
9105 /* ri_gp_value is set by the function
9106 mips_elf32_section_processing when the section is
9107 finally written out. */
9109 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9110 elf_link_input_bfd ignores this section. */
9111 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
9114 /* Size has been set in _bfd_mips_elf_always_size_sections. */
9115 BFD_ASSERT(o
->size
== sizeof (Elf32_External_RegInfo
));
9117 /* Skip this section later on (I don't think this currently
9118 matters, but someday it might). */
9119 o
->map_head
.link_order
= NULL
;
9124 if (strcmp (o
->name
, ".mdebug") == 0)
9126 struct extsym_info einfo
;
9129 /* We have found the .mdebug section in the output file.
9130 Look through all the link_orders comprising it and merge
9131 the information together. */
9132 symhdr
->magic
= swap
->sym_magic
;
9133 /* FIXME: What should the version stamp be? */
9135 symhdr
->ilineMax
= 0;
9139 symhdr
->isymMax
= 0;
9140 symhdr
->ioptMax
= 0;
9141 symhdr
->iauxMax
= 0;
9143 symhdr
->issExtMax
= 0;
9146 symhdr
->iextMax
= 0;
9148 /* We accumulate the debugging information itself in the
9149 debug_info structure. */
9151 debug
.external_dnr
= NULL
;
9152 debug
.external_pdr
= NULL
;
9153 debug
.external_sym
= NULL
;
9154 debug
.external_opt
= NULL
;
9155 debug
.external_aux
= NULL
;
9157 debug
.ssext
= debug
.ssext_end
= NULL
;
9158 debug
.external_fdr
= NULL
;
9159 debug
.external_rfd
= NULL
;
9160 debug
.external_ext
= debug
.external_ext_end
= NULL
;
9162 mdebug_handle
= bfd_ecoff_debug_init (abfd
, &debug
, swap
, info
);
9163 if (mdebug_handle
== NULL
)
9167 esym
.cobol_main
= 0;
9171 esym
.asym
.iss
= issNil
;
9172 esym
.asym
.st
= stLocal
;
9173 esym
.asym
.reserved
= 0;
9174 esym
.asym
.index
= indexNil
;
9176 for (i
= 0; i
< sizeof (secname
) / sizeof (secname
[0]); i
++)
9178 esym
.asym
.sc
= sc
[i
];
9179 s
= bfd_get_section_by_name (abfd
, secname
[i
]);
9182 esym
.asym
.value
= s
->vma
;
9183 last
= s
->vma
+ s
->size
;
9186 esym
.asym
.value
= last
;
9187 if (!bfd_ecoff_debug_one_external (abfd
, &debug
, swap
,
9192 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
9194 asection
*input_section
;
9196 const struct ecoff_debug_swap
*input_swap
;
9197 struct ecoff_debug_info input_debug
;
9201 if (p
->type
!= bfd_indirect_link_order
)
9203 if (p
->type
== bfd_data_link_order
)
9208 input_section
= p
->u
.indirect
.section
;
9209 input_bfd
= input_section
->owner
;
9211 if (bfd_get_flavour (input_bfd
) != bfd_target_elf_flavour
9212 || (get_elf_backend_data (input_bfd
)
9213 ->elf_backend_ecoff_debug_swap
) == NULL
)
9215 /* I don't know what a non MIPS ELF bfd would be
9216 doing with a .mdebug section, but I don't really
9217 want to deal with it. */
9221 input_swap
= (get_elf_backend_data (input_bfd
)
9222 ->elf_backend_ecoff_debug_swap
);
9224 BFD_ASSERT (p
->size
== input_section
->size
);
9226 /* The ECOFF linking code expects that we have already
9227 read in the debugging information and set up an
9228 ecoff_debug_info structure, so we do that now. */
9229 if (! _bfd_mips_elf_read_ecoff_info (input_bfd
, input_section
,
9233 if (! (bfd_ecoff_debug_accumulate
9234 (mdebug_handle
, abfd
, &debug
, swap
, input_bfd
,
9235 &input_debug
, input_swap
, info
)))
9238 /* Loop through the external symbols. For each one with
9239 interesting information, try to find the symbol in
9240 the linker global hash table and save the information
9241 for the output external symbols. */
9242 eraw_src
= input_debug
.external_ext
;
9243 eraw_end
= (eraw_src
9244 + (input_debug
.symbolic_header
.iextMax
9245 * input_swap
->external_ext_size
));
9247 eraw_src
< eraw_end
;
9248 eraw_src
+= input_swap
->external_ext_size
)
9252 struct mips_elf_link_hash_entry
*h
;
9254 (*input_swap
->swap_ext_in
) (input_bfd
, eraw_src
, &ext
);
9255 if (ext
.asym
.sc
== scNil
9256 || ext
.asym
.sc
== scUndefined
9257 || ext
.asym
.sc
== scSUndefined
)
9260 name
= input_debug
.ssext
+ ext
.asym
.iss
;
9261 h
= mips_elf_link_hash_lookup (mips_elf_hash_table (info
),
9262 name
, FALSE
, FALSE
, TRUE
);
9263 if (h
== NULL
|| h
->esym
.ifd
!= -2)
9269 < input_debug
.symbolic_header
.ifdMax
);
9270 ext
.ifd
= input_debug
.ifdmap
[ext
.ifd
];
9276 /* Free up the information we just read. */
9277 free (input_debug
.line
);
9278 free (input_debug
.external_dnr
);
9279 free (input_debug
.external_pdr
);
9280 free (input_debug
.external_sym
);
9281 free (input_debug
.external_opt
);
9282 free (input_debug
.external_aux
);
9283 free (input_debug
.ss
);
9284 free (input_debug
.ssext
);
9285 free (input_debug
.external_fdr
);
9286 free (input_debug
.external_rfd
);
9287 free (input_debug
.external_ext
);
9289 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9290 elf_link_input_bfd ignores this section. */
9291 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
9294 if (SGI_COMPAT (abfd
) && info
->shared
)
9296 /* Create .rtproc section. */
9297 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
9298 if (rtproc_sec
== NULL
)
9300 flagword flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
9301 | SEC_LINKER_CREATED
| SEC_READONLY
);
9303 rtproc_sec
= bfd_make_section_with_flags (abfd
,
9306 if (rtproc_sec
== NULL
9307 || ! bfd_set_section_alignment (abfd
, rtproc_sec
, 4))
9311 if (! mips_elf_create_procedure_table (mdebug_handle
, abfd
,
9317 /* Build the external symbol information. */
9320 einfo
.debug
= &debug
;
9322 einfo
.failed
= FALSE
;
9323 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
9324 mips_elf_output_extsym
, &einfo
);
9328 /* Set the size of the .mdebug section. */
9329 o
->size
= bfd_ecoff_debug_size (abfd
, &debug
, swap
);
9331 /* Skip this section later on (I don't think this currently
9332 matters, but someday it might). */
9333 o
->map_head
.link_order
= NULL
;
9338 if (strncmp (o
->name
, ".gptab.", sizeof ".gptab." - 1) == 0)
9340 const char *subname
;
9343 Elf32_External_gptab
*ext_tab
;
9346 /* The .gptab.sdata and .gptab.sbss sections hold
9347 information describing how the small data area would
9348 change depending upon the -G switch. These sections
9349 not used in executables files. */
9350 if (! info
->relocatable
)
9352 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
9354 asection
*input_section
;
9356 if (p
->type
!= bfd_indirect_link_order
)
9358 if (p
->type
== bfd_data_link_order
)
9363 input_section
= p
->u
.indirect
.section
;
9365 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9366 elf_link_input_bfd ignores this section. */
9367 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
9370 /* Skip this section later on (I don't think this
9371 currently matters, but someday it might). */
9372 o
->map_head
.link_order
= NULL
;
9374 /* Really remove the section. */
9375 bfd_section_list_remove (abfd
, o
);
9376 --abfd
->section_count
;
9381 /* There is one gptab for initialized data, and one for
9382 uninitialized data. */
9383 if (strcmp (o
->name
, ".gptab.sdata") == 0)
9385 else if (strcmp (o
->name
, ".gptab.sbss") == 0)
9389 (*_bfd_error_handler
)
9390 (_("%s: illegal section name `%s'"),
9391 bfd_get_filename (abfd
), o
->name
);
9392 bfd_set_error (bfd_error_nonrepresentable_section
);
9396 /* The linker script always combines .gptab.data and
9397 .gptab.sdata into .gptab.sdata, and likewise for
9398 .gptab.bss and .gptab.sbss. It is possible that there is
9399 no .sdata or .sbss section in the output file, in which
9400 case we must change the name of the output section. */
9401 subname
= o
->name
+ sizeof ".gptab" - 1;
9402 if (bfd_get_section_by_name (abfd
, subname
) == NULL
)
9404 if (o
== gptab_data_sec
)
9405 o
->name
= ".gptab.data";
9407 o
->name
= ".gptab.bss";
9408 subname
= o
->name
+ sizeof ".gptab" - 1;
9409 BFD_ASSERT (bfd_get_section_by_name (abfd
, subname
) != NULL
);
9412 /* Set up the first entry. */
9414 amt
= c
* sizeof (Elf32_gptab
);
9415 tab
= bfd_malloc (amt
);
9418 tab
[0].gt_header
.gt_current_g_value
= elf_gp_size (abfd
);
9419 tab
[0].gt_header
.gt_unused
= 0;
9421 /* Combine the input sections. */
9422 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
9424 asection
*input_section
;
9428 bfd_size_type gpentry
;
9430 if (p
->type
!= bfd_indirect_link_order
)
9432 if (p
->type
== bfd_data_link_order
)
9437 input_section
= p
->u
.indirect
.section
;
9438 input_bfd
= input_section
->owner
;
9440 /* Combine the gptab entries for this input section one
9441 by one. We know that the input gptab entries are
9442 sorted by ascending -G value. */
9443 size
= input_section
->size
;
9445 for (gpentry
= sizeof (Elf32_External_gptab
);
9447 gpentry
+= sizeof (Elf32_External_gptab
))
9449 Elf32_External_gptab ext_gptab
;
9450 Elf32_gptab int_gptab
;
9456 if (! (bfd_get_section_contents
9457 (input_bfd
, input_section
, &ext_gptab
, gpentry
,
9458 sizeof (Elf32_External_gptab
))))
9464 bfd_mips_elf32_swap_gptab_in (input_bfd
, &ext_gptab
,
9466 val
= int_gptab
.gt_entry
.gt_g_value
;
9467 add
= int_gptab
.gt_entry
.gt_bytes
- last
;
9470 for (look
= 1; look
< c
; look
++)
9472 if (tab
[look
].gt_entry
.gt_g_value
>= val
)
9473 tab
[look
].gt_entry
.gt_bytes
+= add
;
9475 if (tab
[look
].gt_entry
.gt_g_value
== val
)
9481 Elf32_gptab
*new_tab
;
9484 /* We need a new table entry. */
9485 amt
= (bfd_size_type
) (c
+ 1) * sizeof (Elf32_gptab
);
9486 new_tab
= bfd_realloc (tab
, amt
);
9487 if (new_tab
== NULL
)
9493 tab
[c
].gt_entry
.gt_g_value
= val
;
9494 tab
[c
].gt_entry
.gt_bytes
= add
;
9496 /* Merge in the size for the next smallest -G
9497 value, since that will be implied by this new
9500 for (look
= 1; look
< c
; look
++)
9502 if (tab
[look
].gt_entry
.gt_g_value
< val
9504 || (tab
[look
].gt_entry
.gt_g_value
9505 > tab
[max
].gt_entry
.gt_g_value
)))
9509 tab
[c
].gt_entry
.gt_bytes
+=
9510 tab
[max
].gt_entry
.gt_bytes
;
9515 last
= int_gptab
.gt_entry
.gt_bytes
;
9518 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9519 elf_link_input_bfd ignores this section. */
9520 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
9523 /* The table must be sorted by -G value. */
9525 qsort (tab
+ 1, c
- 1, sizeof (tab
[0]), gptab_compare
);
9527 /* Swap out the table. */
9528 amt
= (bfd_size_type
) c
* sizeof (Elf32_External_gptab
);
9529 ext_tab
= bfd_alloc (abfd
, amt
);
9530 if (ext_tab
== NULL
)
9536 for (j
= 0; j
< c
; j
++)
9537 bfd_mips_elf32_swap_gptab_out (abfd
, tab
+ j
, ext_tab
+ j
);
9540 o
->size
= c
* sizeof (Elf32_External_gptab
);
9541 o
->contents
= (bfd_byte
*) ext_tab
;
9543 /* Skip this section later on (I don't think this currently
9544 matters, but someday it might). */
9545 o
->map_head
.link_order
= NULL
;
9549 /* Invoke the regular ELF backend linker to do all the work. */
9550 if (!bfd_elf_final_link (abfd
, info
))
9553 /* Now write out the computed sections. */
9555 if (reginfo_sec
!= NULL
)
9557 Elf32_External_RegInfo ext
;
9559 bfd_mips_elf32_swap_reginfo_out (abfd
, ®info
, &ext
);
9560 if (! bfd_set_section_contents (abfd
, reginfo_sec
, &ext
, 0, sizeof ext
))
9564 if (mdebug_sec
!= NULL
)
9566 BFD_ASSERT (abfd
->output_has_begun
);
9567 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle
, abfd
, &debug
,
9569 mdebug_sec
->filepos
))
9572 bfd_ecoff_debug_free (mdebug_handle
, abfd
, &debug
, swap
, info
);
9575 if (gptab_data_sec
!= NULL
)
9577 if (! bfd_set_section_contents (abfd
, gptab_data_sec
,
9578 gptab_data_sec
->contents
,
9579 0, gptab_data_sec
->size
))
9583 if (gptab_bss_sec
!= NULL
)
9585 if (! bfd_set_section_contents (abfd
, gptab_bss_sec
,
9586 gptab_bss_sec
->contents
,
9587 0, gptab_bss_sec
->size
))
9591 if (SGI_COMPAT (abfd
))
9593 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
9594 if (rtproc_sec
!= NULL
)
9596 if (! bfd_set_section_contents (abfd
, rtproc_sec
,
9597 rtproc_sec
->contents
,
9598 0, rtproc_sec
->size
))
9606 /* Structure for saying that BFD machine EXTENSION extends BASE. */
9608 struct mips_mach_extension
{
9609 unsigned long extension
, base
;
9613 /* An array describing how BFD machines relate to one another. The entries
9614 are ordered topologically with MIPS I extensions listed last. */
9616 static const struct mips_mach_extension mips_mach_extensions
[] = {
9617 /* MIPS64 extensions. */
9618 { bfd_mach_mipsisa64r2
, bfd_mach_mipsisa64
},
9619 { bfd_mach_mips_sb1
, bfd_mach_mipsisa64
},
9621 /* MIPS V extensions. */
9622 { bfd_mach_mipsisa64
, bfd_mach_mips5
},
9624 /* R10000 extensions. */
9625 { bfd_mach_mips12000
, bfd_mach_mips10000
},
9627 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
9628 vr5400 ISA, but doesn't include the multimedia stuff. It seems
9629 better to allow vr5400 and vr5500 code to be merged anyway, since
9630 many libraries will just use the core ISA. Perhaps we could add
9631 some sort of ASE flag if this ever proves a problem. */
9632 { bfd_mach_mips5500
, bfd_mach_mips5400
},
9633 { bfd_mach_mips5400
, bfd_mach_mips5000
},
9635 /* MIPS IV extensions. */
9636 { bfd_mach_mips5
, bfd_mach_mips8000
},
9637 { bfd_mach_mips10000
, bfd_mach_mips8000
},
9638 { bfd_mach_mips5000
, bfd_mach_mips8000
},
9639 { bfd_mach_mips7000
, bfd_mach_mips8000
},
9640 { bfd_mach_mips9000
, bfd_mach_mips8000
},
9642 /* VR4100 extensions. */
9643 { bfd_mach_mips4120
, bfd_mach_mips4100
},
9644 { bfd_mach_mips4111
, bfd_mach_mips4100
},
9646 /* MIPS III extensions. */
9647 { bfd_mach_mips8000
, bfd_mach_mips4000
},
9648 { bfd_mach_mips4650
, bfd_mach_mips4000
},
9649 { bfd_mach_mips4600
, bfd_mach_mips4000
},
9650 { bfd_mach_mips4400
, bfd_mach_mips4000
},
9651 { bfd_mach_mips4300
, bfd_mach_mips4000
},
9652 { bfd_mach_mips4100
, bfd_mach_mips4000
},
9653 { bfd_mach_mips4010
, bfd_mach_mips4000
},
9655 /* MIPS32 extensions. */
9656 { bfd_mach_mipsisa32r2
, bfd_mach_mipsisa32
},
9658 /* MIPS II extensions. */
9659 { bfd_mach_mips4000
, bfd_mach_mips6000
},
9660 { bfd_mach_mipsisa32
, bfd_mach_mips6000
},
9662 /* MIPS I extensions. */
9663 { bfd_mach_mips6000
, bfd_mach_mips3000
},
9664 { bfd_mach_mips3900
, bfd_mach_mips3000
}
9668 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
9671 mips_mach_extends_p (unsigned long base
, unsigned long extension
)
9675 if (extension
== base
)
9678 if (base
== bfd_mach_mipsisa32
9679 && mips_mach_extends_p (bfd_mach_mipsisa64
, extension
))
9682 if (base
== bfd_mach_mipsisa32r2
9683 && mips_mach_extends_p (bfd_mach_mipsisa64r2
, extension
))
9686 for (i
= 0; i
< ARRAY_SIZE (mips_mach_extensions
); i
++)
9687 if (extension
== mips_mach_extensions
[i
].extension
)
9689 extension
= mips_mach_extensions
[i
].base
;
9690 if (extension
== base
)
9698 /* Return true if the given ELF header flags describe a 32-bit binary. */
9701 mips_32bit_flags_p (flagword flags
)
9703 return ((flags
& EF_MIPS_32BITMODE
) != 0
9704 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
9705 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
9706 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
9707 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
9708 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
9709 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
);
9713 /* Merge backend specific data from an object file to the output
9714 object file when linking. */
9717 _bfd_mips_elf_merge_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
9722 bfd_boolean null_input_bfd
= TRUE
;
9725 /* Check if we have the same endianess */
9726 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
9728 (*_bfd_error_handler
)
9729 (_("%B: endianness incompatible with that of the selected emulation"),
9734 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
9735 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
9738 if (strcmp (bfd_get_target (ibfd
), bfd_get_target (obfd
)) != 0)
9740 (*_bfd_error_handler
)
9741 (_("%B: ABI is incompatible with that of the selected emulation"),
9746 new_flags
= elf_elfheader (ibfd
)->e_flags
;
9747 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_NOREORDER
;
9748 old_flags
= elf_elfheader (obfd
)->e_flags
;
9750 if (! elf_flags_init (obfd
))
9752 elf_flags_init (obfd
) = TRUE
;
9753 elf_elfheader (obfd
)->e_flags
= new_flags
;
9754 elf_elfheader (obfd
)->e_ident
[EI_CLASS
]
9755 = elf_elfheader (ibfd
)->e_ident
[EI_CLASS
];
9757 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
9758 && bfd_get_arch_info (obfd
)->the_default
)
9760 if (! bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
9761 bfd_get_mach (ibfd
)))
9768 /* Check flag compatibility. */
9770 new_flags
&= ~EF_MIPS_NOREORDER
;
9771 old_flags
&= ~EF_MIPS_NOREORDER
;
9773 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
9774 doesn't seem to matter. */
9775 new_flags
&= ~EF_MIPS_XGOT
;
9776 old_flags
&= ~EF_MIPS_XGOT
;
9778 /* MIPSpro generates ucode info in n64 objects. Again, we should
9779 just be able to ignore this. */
9780 new_flags
&= ~EF_MIPS_UCODE
;
9781 old_flags
&= ~EF_MIPS_UCODE
;
9783 if (new_flags
== old_flags
)
9786 /* Check to see if the input BFD actually contains any sections.
9787 If not, its flags may not have been initialised either, but it cannot
9788 actually cause any incompatibility. */
9789 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
9791 /* Ignore synthetic sections and empty .text, .data and .bss sections
9792 which are automatically generated by gas. */
9793 if (strcmp (sec
->name
, ".reginfo")
9794 && strcmp (sec
->name
, ".mdebug")
9796 || (strcmp (sec
->name
, ".text")
9797 && strcmp (sec
->name
, ".data")
9798 && strcmp (sec
->name
, ".bss"))))
9800 null_input_bfd
= FALSE
;
9809 if (((new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0)
9810 != ((old_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0))
9812 (*_bfd_error_handler
)
9813 (_("%B: warning: linking PIC files with non-PIC files"),
9818 if (new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
))
9819 elf_elfheader (obfd
)->e_flags
|= EF_MIPS_CPIC
;
9820 if (! (new_flags
& EF_MIPS_PIC
))
9821 elf_elfheader (obfd
)->e_flags
&= ~EF_MIPS_PIC
;
9823 new_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
9824 old_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
9826 /* Compare the ISAs. */
9827 if (mips_32bit_flags_p (old_flags
) != mips_32bit_flags_p (new_flags
))
9829 (*_bfd_error_handler
)
9830 (_("%B: linking 32-bit code with 64-bit code"),
9834 else if (!mips_mach_extends_p (bfd_get_mach (ibfd
), bfd_get_mach (obfd
)))
9836 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9837 if (mips_mach_extends_p (bfd_get_mach (obfd
), bfd_get_mach (ibfd
)))
9839 /* Copy the architecture info from IBFD to OBFD. Also copy
9840 the 32-bit flag (if set) so that we continue to recognise
9841 OBFD as a 32-bit binary. */
9842 bfd_set_arch_info (obfd
, bfd_get_arch_info (ibfd
));
9843 elf_elfheader (obfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
9844 elf_elfheader (obfd
)->e_flags
9845 |= new_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
9847 /* Copy across the ABI flags if OBFD doesn't use them
9848 and if that was what caused us to treat IBFD as 32-bit. */
9849 if ((old_flags
& EF_MIPS_ABI
) == 0
9850 && mips_32bit_flags_p (new_flags
)
9851 && !mips_32bit_flags_p (new_flags
& ~EF_MIPS_ABI
))
9852 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ABI
;
9856 /* The ISAs aren't compatible. */
9857 (*_bfd_error_handler
)
9858 (_("%B: linking %s module with previous %s modules"),
9860 bfd_printable_name (ibfd
),
9861 bfd_printable_name (obfd
));
9866 new_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
9867 old_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
9869 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9870 does set EI_CLASS differently from any 32-bit ABI. */
9871 if ((new_flags
& EF_MIPS_ABI
) != (old_flags
& EF_MIPS_ABI
)
9872 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
9873 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
9875 /* Only error if both are set (to different values). */
9876 if (((new_flags
& EF_MIPS_ABI
) && (old_flags
& EF_MIPS_ABI
))
9877 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
9878 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
9880 (*_bfd_error_handler
)
9881 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
9883 elf_mips_abi_name (ibfd
),
9884 elf_mips_abi_name (obfd
));
9887 new_flags
&= ~EF_MIPS_ABI
;
9888 old_flags
&= ~EF_MIPS_ABI
;
9891 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9892 if ((new_flags
& EF_MIPS_ARCH_ASE
) != (old_flags
& EF_MIPS_ARCH_ASE
))
9894 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ARCH_ASE
;
9896 new_flags
&= ~ EF_MIPS_ARCH_ASE
;
9897 old_flags
&= ~ EF_MIPS_ARCH_ASE
;
9900 /* Warn about any other mismatches */
9901 if (new_flags
!= old_flags
)
9903 (*_bfd_error_handler
)
9904 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9905 ibfd
, (unsigned long) new_flags
,
9906 (unsigned long) old_flags
);
9912 bfd_set_error (bfd_error_bad_value
);
9919 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9922 _bfd_mips_elf_set_private_flags (bfd
*abfd
, flagword flags
)
9924 BFD_ASSERT (!elf_flags_init (abfd
)
9925 || elf_elfheader (abfd
)->e_flags
== flags
);
9927 elf_elfheader (abfd
)->e_flags
= flags
;
9928 elf_flags_init (abfd
) = TRUE
;
9933 _bfd_mips_elf_print_private_bfd_data (bfd
*abfd
, void *ptr
)
9937 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
9939 /* Print normal ELF private data. */
9940 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
9942 /* xgettext:c-format */
9943 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
9945 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
)
9946 fprintf (file
, _(" [abi=O32]"));
9947 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O64
)
9948 fprintf (file
, _(" [abi=O64]"));
9949 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
)
9950 fprintf (file
, _(" [abi=EABI32]"));
9951 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
9952 fprintf (file
, _(" [abi=EABI64]"));
9953 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
))
9954 fprintf (file
, _(" [abi unknown]"));
9955 else if (ABI_N32_P (abfd
))
9956 fprintf (file
, _(" [abi=N32]"));
9957 else if (ABI_64_P (abfd
))
9958 fprintf (file
, _(" [abi=64]"));
9960 fprintf (file
, _(" [no abi set]"));
9962 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
)
9963 fprintf (file
, _(" [mips1]"));
9964 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
)
9965 fprintf (file
, _(" [mips2]"));
9966 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_3
)
9967 fprintf (file
, _(" [mips3]"));
9968 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_4
)
9969 fprintf (file
, _(" [mips4]"));
9970 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_5
)
9971 fprintf (file
, _(" [mips5]"));
9972 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
)
9973 fprintf (file
, _(" [mips32]"));
9974 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64
)
9975 fprintf (file
, _(" [mips64]"));
9976 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
)
9977 fprintf (file
, _(" [mips32r2]"));
9978 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64R2
)
9979 fprintf (file
, _(" [mips64r2]"));
9981 fprintf (file
, _(" [unknown ISA]"));
9983 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MDMX
)
9984 fprintf (file
, _(" [mdmx]"));
9986 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_M16
)
9987 fprintf (file
, _(" [mips16]"));
9989 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_32BITMODE
)
9990 fprintf (file
, _(" [32bitmode]"));
9992 fprintf (file
, _(" [not 32bitmode]"));
9999 const struct bfd_elf_special_section _bfd_mips_elf_special_sections
[] =
10001 { ".lit4", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
10002 { ".lit8", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
10003 { ".mdebug", 7, 0, SHT_MIPS_DEBUG
, 0 },
10004 { ".sbss", 5, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
10005 { ".sdata", 6, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
10006 { ".ucode", 6, 0, SHT_MIPS_UCODE
, 0 },
10007 { NULL
, 0, 0, 0, 0 }
10010 /* Ensure that the STO_OPTIONAL flag is copied into h->other,
10011 even if this is not a defintion of the symbol. */
10013 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry
*h
,
10014 const Elf_Internal_Sym
*isym
,
10015 bfd_boolean definition
,
10016 bfd_boolean dynamic ATTRIBUTE_UNUSED
)
10019 && ELF_MIPS_IS_OPTIONAL (isym
->st_other
))
10020 h
->other
|= STO_OPTIONAL
;
10023 /* Decide whether an undefined symbol is special and can be ignored.
10024 This is the case for OPTIONAL symbols on IRIX. */
10026 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry
*h
)
10028 return ELF_MIPS_IS_OPTIONAL (h
->other
) ? TRUE
: FALSE
;