1 // symtab.cc -- the gold symbol table
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
32 #include "dwarf_reader.h"
36 #include "workqueue.h"
44 // Initialize fields in Symbol. This initializes everything except u_
48 Symbol::init_fields(const char* name
, const char* version
,
49 elfcpp::STT type
, elfcpp::STB binding
,
50 elfcpp::STV visibility
, unsigned char nonvis
)
53 this->version_
= version
;
54 this->symtab_index_
= 0;
55 this->dynsym_index_
= 0;
56 this->got_offset_
= 0;
57 this->plt_offset_
= 0;
59 this->binding_
= binding
;
60 this->visibility_
= visibility
;
61 this->nonvis_
= nonvis
;
62 this->is_target_special_
= false;
63 this->is_def_
= false;
64 this->is_forwarder_
= false;
65 this->has_alias_
= false;
66 this->needs_dynsym_entry_
= false;
67 this->in_reg_
= false;
68 this->in_dyn_
= false;
69 this->has_got_offset_
= false;
70 this->has_plt_offset_
= false;
71 this->has_warning_
= false;
72 this->is_copied_from_dynobj_
= false;
73 this->is_forced_local_
= false;
76 // Return the demangled version of the symbol's name, but only
77 // if the --demangle flag was set.
80 demangle(const char* name
)
82 if (!parameters
->demangle())
85 // cplus_demangle allocates memory for the result it returns,
86 // and returns NULL if the name is already demangled.
87 char* demangled_name
= cplus_demangle(name
, DMGL_ANSI
| DMGL_PARAMS
);
88 if (demangled_name
== NULL
)
91 std::string
retval(demangled_name
);
97 Symbol::demangled_name() const
99 return demangle(this->name());
102 // Initialize the fields in the base class Symbol for SYM in OBJECT.
104 template<int size
, bool big_endian
>
106 Symbol::init_base(const char* name
, const char* version
, Object
* object
,
107 const elfcpp::Sym
<size
, big_endian
>& sym
)
109 this->init_fields(name
, version
, sym
.get_st_type(), sym
.get_st_bind(),
110 sym
.get_st_visibility(), sym
.get_st_nonvis());
111 this->u_
.from_object
.object
= object
;
112 // FIXME: Handle SHN_XINDEX.
113 this->u_
.from_object
.shndx
= sym
.get_st_shndx();
114 this->source_
= FROM_OBJECT
;
115 this->in_reg_
= !object
->is_dynamic();
116 this->in_dyn_
= object
->is_dynamic();
119 // Initialize the fields in the base class Symbol for a symbol defined
120 // in an Output_data.
123 Symbol::init_base(const char* name
, Output_data
* od
, elfcpp::STT type
,
124 elfcpp::STB binding
, elfcpp::STV visibility
,
125 unsigned char nonvis
, bool offset_is_from_end
)
127 this->init_fields(name
, NULL
, type
, binding
, visibility
, nonvis
);
128 this->u_
.in_output_data
.output_data
= od
;
129 this->u_
.in_output_data
.offset_is_from_end
= offset_is_from_end
;
130 this->source_
= IN_OUTPUT_DATA
;
131 this->in_reg_
= true;
134 // Initialize the fields in the base class Symbol for a symbol defined
135 // in an Output_segment.
138 Symbol::init_base(const char* name
, Output_segment
* os
, elfcpp::STT type
,
139 elfcpp::STB binding
, elfcpp::STV visibility
,
140 unsigned char nonvis
, Segment_offset_base offset_base
)
142 this->init_fields(name
, NULL
, type
, binding
, visibility
, nonvis
);
143 this->u_
.in_output_segment
.output_segment
= os
;
144 this->u_
.in_output_segment
.offset_base
= offset_base
;
145 this->source_
= IN_OUTPUT_SEGMENT
;
146 this->in_reg_
= true;
149 // Initialize the fields in the base class Symbol for a symbol defined
153 Symbol::init_base(const char* name
, elfcpp::STT type
,
154 elfcpp::STB binding
, elfcpp::STV visibility
,
155 unsigned char nonvis
)
157 this->init_fields(name
, NULL
, type
, binding
, visibility
, nonvis
);
158 this->source_
= CONSTANT
;
159 this->in_reg_
= true;
162 // Allocate a common symbol in the base.
165 Symbol::allocate_base_common(Output_data
* od
)
167 gold_assert(this->is_common());
168 this->source_
= IN_OUTPUT_DATA
;
169 this->u_
.in_output_data
.output_data
= od
;
170 this->u_
.in_output_data
.offset_is_from_end
= false;
173 // Initialize the fields in Sized_symbol for SYM in OBJECT.
176 template<bool big_endian
>
178 Sized_symbol
<size
>::init(const char* name
, const char* version
, Object
* object
,
179 const elfcpp::Sym
<size
, big_endian
>& sym
)
181 this->init_base(name
, version
, object
, sym
);
182 this->value_
= sym
.get_st_value();
183 this->symsize_
= sym
.get_st_size();
186 // Initialize the fields in Sized_symbol for a symbol defined in an
191 Sized_symbol
<size
>::init(const char* name
, Output_data
* od
,
192 Value_type value
, Size_type symsize
,
193 elfcpp::STT type
, elfcpp::STB binding
,
194 elfcpp::STV visibility
, unsigned char nonvis
,
195 bool offset_is_from_end
)
197 this->init_base(name
, od
, type
, binding
, visibility
, nonvis
,
199 this->value_
= value
;
200 this->symsize_
= symsize
;
203 // Initialize the fields in Sized_symbol for a symbol defined in an
208 Sized_symbol
<size
>::init(const char* name
, Output_segment
* os
,
209 Value_type value
, Size_type symsize
,
210 elfcpp::STT type
, elfcpp::STB binding
,
211 elfcpp::STV visibility
, unsigned char nonvis
,
212 Segment_offset_base offset_base
)
214 this->init_base(name
, os
, type
, binding
, visibility
, nonvis
, offset_base
);
215 this->value_
= value
;
216 this->symsize_
= symsize
;
219 // Initialize the fields in Sized_symbol for a symbol defined as a
224 Sized_symbol
<size
>::init(const char* name
, Value_type value
, Size_type symsize
,
225 elfcpp::STT type
, elfcpp::STB binding
,
226 elfcpp::STV visibility
, unsigned char nonvis
)
228 this->init_base(name
, type
, binding
, visibility
, nonvis
);
229 this->value_
= value
;
230 this->symsize_
= symsize
;
233 // Allocate a common symbol.
237 Sized_symbol
<size
>::allocate_common(Output_data
* od
, Value_type value
)
239 this->allocate_base_common(od
);
240 this->value_
= value
;
243 // Return true if this symbol should be added to the dynamic symbol
247 Symbol::should_add_dynsym_entry() const
249 // If the symbol is used by a dynamic relocation, we need to add it.
250 if (this->needs_dynsym_entry())
253 // If the symbol was forced local in a version script, do not add it.
254 if (this->is_forced_local())
257 // If exporting all symbols or building a shared library,
258 // and the symbol is defined in a regular object and is
259 // externally visible, we need to add it.
260 if ((parameters
->export_dynamic() || parameters
->output_is_shared())
261 && !this->is_from_dynobj()
262 && this->is_externally_visible())
268 // Return true if the final value of this symbol is known at link
272 Symbol::final_value_is_known() const
274 // If we are not generating an executable, then no final values are
275 // known, since they will change at runtime.
276 if (!parameters
->output_is_executable())
279 // If the symbol is not from an object file, then it is defined, and
281 if (this->source_
!= FROM_OBJECT
)
284 // If the symbol is from a dynamic object, then the final value is
286 if (this->object()->is_dynamic())
289 // If the symbol is not undefined (it is defined or common), then
290 // the final value is known.
291 if (!this->is_undefined())
294 // If the symbol is undefined, then whether the final value is known
295 // depends on whether we are doing a static link. If we are doing a
296 // dynamic link, then the final value could be filled in at runtime.
297 // This could reasonably be the case for a weak undefined symbol.
298 return parameters
->doing_static_link();
301 // Return whether the symbol has an absolute value.
304 Symbol::value_is_absolute() const
306 switch (this->source_
)
309 return this->u_
.from_object
.shndx
== elfcpp::SHN_ABS
;
311 case IN_OUTPUT_SEGMENT
:
320 // Class Symbol_table.
322 Symbol_table::Symbol_table(unsigned int count
,
323 const Version_script_info
& version_script
)
324 : saw_undefined_(0), offset_(0), table_(count
), namepool_(),
325 forwarders_(), commons_(), forced_locals_(), warnings_(),
326 version_script_(version_script
)
328 namepool_
.reserve(count
);
331 Symbol_table::~Symbol_table()
335 // The hash function. The key values are Stringpool keys.
338 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key
& key
) const
340 return key
.first
^ key
.second
;
343 // The symbol table key equality function. This is called with
347 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key
& k1
,
348 const Symbol_table_key
& k2
) const
350 return k1
.first
== k2
.first
&& k1
.second
== k2
.second
;
353 // Make TO a symbol which forwards to FROM.
356 Symbol_table::make_forwarder(Symbol
* from
, Symbol
* to
)
358 gold_assert(from
!= to
);
359 gold_assert(!from
->is_forwarder() && !to
->is_forwarder());
360 this->forwarders_
[from
] = to
;
361 from
->set_forwarder();
364 // Resolve the forwards from FROM, returning the real symbol.
367 Symbol_table::resolve_forwards(const Symbol
* from
) const
369 gold_assert(from
->is_forwarder());
370 Unordered_map
<const Symbol
*, Symbol
*>::const_iterator p
=
371 this->forwarders_
.find(from
);
372 gold_assert(p
!= this->forwarders_
.end());
376 // Look up a symbol by name.
379 Symbol_table::lookup(const char* name
, const char* version
) const
381 Stringpool::Key name_key
;
382 name
= this->namepool_
.find(name
, &name_key
);
386 Stringpool::Key version_key
= 0;
389 version
= this->namepool_
.find(version
, &version_key
);
394 Symbol_table_key
key(name_key
, version_key
);
395 Symbol_table::Symbol_table_type::const_iterator p
= this->table_
.find(key
);
396 if (p
== this->table_
.end())
401 // Resolve a Symbol with another Symbol. This is only used in the
402 // unusual case where there are references to both an unversioned
403 // symbol and a symbol with a version, and we then discover that that
404 // version is the default version. Because this is unusual, we do
405 // this the slow way, by converting back to an ELF symbol.
407 template<int size
, bool big_endian
>
409 Symbol_table::resolve(Sized_symbol
<size
>* to
, const Sized_symbol
<size
>* from
,
410 const char* version ACCEPT_SIZE_ENDIAN
)
412 unsigned char buf
[elfcpp::Elf_sizes
<size
>::sym_size
];
413 elfcpp::Sym_write
<size
, big_endian
> esym(buf
);
414 // We don't bother to set the st_name field.
415 esym
.put_st_value(from
->value());
416 esym
.put_st_size(from
->symsize());
417 esym
.put_st_info(from
->binding(), from
->type());
418 esym
.put_st_other(from
->visibility(), from
->nonvis());
419 esym
.put_st_shndx(from
->shndx());
420 this->resolve(to
, esym
.sym(), esym
.sym(), from
->object(), version
);
427 // Record that a symbol is forced to be local by a version script.
430 Symbol_table::force_local(Symbol
* sym
)
432 if (!sym
->is_defined() && !sym
->is_common())
434 if (sym
->is_forced_local())
436 // We already got this one.
439 sym
->set_is_forced_local();
440 this->forced_locals_
.push_back(sym
);
443 // Add one symbol from OBJECT to the symbol table. NAME is symbol
444 // name and VERSION is the version; both are canonicalized. DEF is
445 // whether this is the default version.
447 // If DEF is true, then this is the definition of a default version of
448 // a symbol. That means that any lookup of NAME/NULL and any lookup
449 // of NAME/VERSION should always return the same symbol. This is
450 // obvious for references, but in particular we want to do this for
451 // definitions: overriding NAME/NULL should also override
452 // NAME/VERSION. If we don't do that, it would be very hard to
453 // override functions in a shared library which uses versioning.
455 // We implement this by simply making both entries in the hash table
456 // point to the same Symbol structure. That is easy enough if this is
457 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
458 // that we have seen both already, in which case they will both have
459 // independent entries in the symbol table. We can't simply change
460 // the symbol table entry, because we have pointers to the entries
461 // attached to the object files. So we mark the entry attached to the
462 // object file as a forwarder, and record it in the forwarders_ map.
463 // Note that entries in the hash table will never be marked as
466 // SYM and ORIG_SYM are almost always the same. ORIG_SYM is the
467 // symbol exactly as it existed in the input file. SYM is usually
468 // that as well, but can be modified, for instance if we determine
469 // it's in a to-be-discarded section.
471 template<int size
, bool big_endian
>
473 Symbol_table::add_from_object(Object
* object
,
475 Stringpool::Key name_key
,
477 Stringpool::Key version_key
,
479 const elfcpp::Sym
<size
, big_endian
>& sym
,
480 const elfcpp::Sym
<size
, big_endian
>& orig_sym
)
482 Symbol
* const snull
= NULL
;
483 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
484 this->table_
.insert(std::make_pair(std::make_pair(name_key
, version_key
),
487 std::pair
<typename
Symbol_table_type::iterator
, bool> insdef
=
488 std::make_pair(this->table_
.end(), false);
491 const Stringpool::Key vnull_key
= 0;
492 insdef
= this->table_
.insert(std::make_pair(std::make_pair(name_key
,
497 // ins.first: an iterator, which is a pointer to a pair.
498 // ins.first->first: the key (a pair of name and version).
499 // ins.first->second: the value (Symbol*).
500 // ins.second: true if new entry was inserted, false if not.
502 Sized_symbol
<size
>* ret
;
507 // We already have an entry for NAME/VERSION.
508 ret
= this->get_sized_symbol
SELECT_SIZE_NAME(size
) (ins
.first
->second
510 gold_assert(ret
!= NULL
);
512 was_undefined
= ret
->is_undefined();
513 was_common
= ret
->is_common();
515 this->resolve(ret
, sym
, orig_sym
, object
, version
);
521 // This is the first time we have seen NAME/NULL. Make
522 // NAME/NULL point to NAME/VERSION.
523 insdef
.first
->second
= ret
;
525 else if (insdef
.first
->second
!= ret
526 && insdef
.first
->second
->is_undefined())
528 // This is the unfortunate case where we already have
529 // entries for both NAME/VERSION and NAME/NULL. Note
530 // that we don't want to combine them if the existing
531 // symbol is going to override the new one. FIXME: We
532 // currently just test is_undefined, but this may not do
533 // the right thing if the existing symbol is from a
534 // shared library and the new one is from a regular
537 const Sized_symbol
<size
>* sym2
;
538 sym2
= this->get_sized_symbol
SELECT_SIZE_NAME(size
) (
541 Symbol_table::resolve
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
) (
542 ret
, sym2
, version
SELECT_SIZE_ENDIAN(size
, big_endian
));
543 this->make_forwarder(insdef
.first
->second
, ret
);
544 insdef
.first
->second
= ret
;
550 // This is the first time we have seen NAME/VERSION.
551 gold_assert(ins
.first
->second
== NULL
);
553 was_undefined
= false;
556 if (def
&& !insdef
.second
)
558 // We already have an entry for NAME/NULL. If we override
559 // it, then change it to NAME/VERSION.
560 ret
= this->get_sized_symbol
SELECT_SIZE_NAME(size
) (
563 this->resolve(ret
, sym
, orig_sym
, object
, version
);
564 ins
.first
->second
= ret
;
568 Sized_target
<size
, big_endian
>* target
=
569 object
->sized_target
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
) (
570 SELECT_SIZE_ENDIAN_ONLY(size
, big_endian
));
571 if (!target
->has_make_symbol())
572 ret
= new Sized_symbol
<size
>();
575 ret
= target
->make_symbol();
578 // This means that we don't want a symbol table
581 this->table_
.erase(ins
.first
);
584 this->table_
.erase(insdef
.first
);
585 // Inserting insdef invalidated ins.
586 this->table_
.erase(std::make_pair(name_key
,
593 ret
->init(name
, version
, object
, sym
);
595 ins
.first
->second
= ret
;
598 // This is the first time we have seen NAME/NULL. Point
599 // it at the new entry for NAME/VERSION.
600 gold_assert(insdef
.second
);
601 insdef
.first
->second
= ret
;
606 // Record every time we see a new undefined symbol, to speed up
608 if (!was_undefined
&& ret
->is_undefined())
609 ++this->saw_undefined_
;
611 // Keep track of common symbols, to speed up common symbol
613 if (!was_common
&& ret
->is_common())
614 this->commons_
.push_back(ret
);
616 ret
->set_is_default(def
);
620 // Add all the symbols in a relocatable object to the hash table.
622 template<int size
, bool big_endian
>
624 Symbol_table::add_from_relobj(
625 Sized_relobj
<size
, big_endian
>* relobj
,
626 const unsigned char* syms
,
628 const char* sym_names
,
629 size_t sym_name_size
,
630 typename Sized_relobj
<size
, big_endian
>::Symbols
* sympointers
)
632 gold_assert(size
== relobj
->target()->get_size());
633 gold_assert(size
== parameters
->get_size());
635 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
637 const bool just_symbols
= relobj
->just_symbols();
639 const unsigned char* p
= syms
;
640 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
642 elfcpp::Sym
<size
, big_endian
> sym(p
);
643 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
645 unsigned int st_name
= psym
->get_st_name();
646 if (st_name
>= sym_name_size
)
648 relobj
->error(_("bad global symbol name offset %u at %zu"),
653 const char* name
= sym_names
+ st_name
;
655 // A symbol defined in a section which we are not including must
656 // be treated as an undefined symbol.
657 unsigned char symbuf
[sym_size
];
658 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
659 unsigned int st_shndx
= psym
->get_st_shndx();
660 if (st_shndx
!= elfcpp::SHN_UNDEF
661 && st_shndx
< elfcpp::SHN_LORESERVE
662 && !relobj
->is_section_included(st_shndx
))
664 memcpy(symbuf
, p
, sym_size
);
665 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
666 sw
.put_st_shndx(elfcpp::SHN_UNDEF
);
670 // In an object file, an '@' in the name separates the symbol
671 // name from the version name. If there are two '@' characters,
672 // this is the default version.
673 const char* ver
= strchr(name
, '@');
675 // DEF: is the version default? LOCAL: is the symbol forced local?
681 // The symbol name is of the form foo@VERSION or foo@@VERSION
682 namelen
= ver
- name
;
690 else if (!version_script_
.empty())
692 // The symbol name did not have a version, but
693 // the version script may assign a version anyway.
694 namelen
= strlen(name
);
696 // Check the global: entries from the version script.
697 const std::string
& version
=
698 version_script_
.get_symbol_version(name
);
699 if (!version
.empty())
700 ver
= version
.c_str();
701 // Check the local: entries from the version script
702 if (version_script_
.symbol_is_local(name
))
709 memcpy(symbuf
, p
, sym_size
);
710 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
711 sw
.put_st_shndx(elfcpp::SHN_ABS
);
712 if (st_shndx
!= elfcpp::SHN_UNDEF
713 && st_shndx
< elfcpp::SHN_LORESERVE
)
715 // Symbol values in object files are section relative.
716 // This is normally what we want, but since here we are
717 // converting the symbol to absolute we need to add the
718 // section address. The section address in an object
719 // file is normally zero, but people can use a linker
720 // script to change it.
721 sw
.put_st_value(sym2
.get_st_value()
722 + relobj
->section_address(st_shndx
));
727 Sized_symbol
<size
>* res
;
730 Stringpool::Key name_key
;
731 name
= this->namepool_
.add(name
, true, &name_key
);
732 res
= this->add_from_object(relobj
, name
, name_key
, NULL
, 0,
735 this->force_local(res
);
739 Stringpool::Key name_key
;
740 name
= this->namepool_
.add_with_length(name
, namelen
, true,
742 Stringpool::Key ver_key
;
743 ver
= this->namepool_
.add(ver
, true, &ver_key
);
745 res
= this->add_from_object(relobj
, name
, name_key
, ver
, ver_key
,
749 (*sympointers
)[i
] = res
;
753 // Add all the symbols in a dynamic object to the hash table.
755 template<int size
, bool big_endian
>
757 Symbol_table::add_from_dynobj(
758 Sized_dynobj
<size
, big_endian
>* dynobj
,
759 const unsigned char* syms
,
761 const char* sym_names
,
762 size_t sym_name_size
,
763 const unsigned char* versym
,
765 const std::vector
<const char*>* version_map
)
767 gold_assert(size
== dynobj
->target()->get_size());
768 gold_assert(size
== parameters
->get_size());
770 if (dynobj
->just_symbols())
772 gold_error(_("--just-symbols does not make sense with a shared object"));
776 if (versym
!= NULL
&& versym_size
/ 2 < count
)
778 dynobj
->error(_("too few symbol versions"));
782 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
784 // We keep a list of all STT_OBJECT symbols, so that we can resolve
785 // weak aliases. This is necessary because if the dynamic object
786 // provides the same variable under two names, one of which is a
787 // weak definition, and the regular object refers to the weak
788 // definition, we have to put both the weak definition and the
789 // strong definition into the dynamic symbol table. Given a weak
790 // definition, the only way that we can find the corresponding
791 // strong definition, if any, is to search the symbol table.
792 std::vector
<Sized_symbol
<size
>*> object_symbols
;
794 const unsigned char* p
= syms
;
795 const unsigned char* vs
= versym
;
796 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
, vs
+= 2)
798 elfcpp::Sym
<size
, big_endian
> sym(p
);
800 // Ignore symbols with local binding or that have
801 // internal or hidden visibility.
802 if (sym
.get_st_bind() == elfcpp::STB_LOCAL
803 || sym
.get_st_visibility() == elfcpp::STV_INTERNAL
804 || sym
.get_st_visibility() == elfcpp::STV_HIDDEN
)
807 unsigned int st_name
= sym
.get_st_name();
808 if (st_name
>= sym_name_size
)
810 dynobj
->error(_("bad symbol name offset %u at %zu"),
815 const char* name
= sym_names
+ st_name
;
817 Sized_symbol
<size
>* res
;
821 Stringpool::Key name_key
;
822 name
= this->namepool_
.add(name
, true, &name_key
);
823 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
828 // Read the version information.
830 unsigned int v
= elfcpp::Swap
<16, big_endian
>::readval(vs
);
832 bool hidden
= (v
& elfcpp::VERSYM_HIDDEN
) != 0;
833 v
&= elfcpp::VERSYM_VERSION
;
835 // The Sun documentation says that V can be VER_NDX_LOCAL,
836 // or VER_NDX_GLOBAL, or a version index. The meaning of
837 // VER_NDX_LOCAL is defined as "Symbol has local scope."
838 // The old GNU linker will happily generate VER_NDX_LOCAL
839 // for an undefined symbol. I don't know what the Sun
840 // linker will generate.
842 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
843 && sym
.get_st_shndx() != elfcpp::SHN_UNDEF
)
845 // This symbol should not be visible outside the object.
849 // At this point we are definitely going to add this symbol.
850 Stringpool::Key name_key
;
851 name
= this->namepool_
.add(name
, true, &name_key
);
853 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
854 || v
== static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL
))
856 // This symbol does not have a version.
857 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
862 if (v
>= version_map
->size())
864 dynobj
->error(_("versym for symbol %zu out of range: %u"),
869 const char* version
= (*version_map
)[v
];
872 dynobj
->error(_("versym for symbol %zu has no name: %u"),
877 Stringpool::Key version_key
;
878 version
= this->namepool_
.add(version
, true, &version_key
);
880 // If this is an absolute symbol, and the version name
881 // and symbol name are the same, then this is the
882 // version definition symbol. These symbols exist to
883 // support using -u to pull in particular versions. We
884 // do not want to record a version for them.
885 if (sym
.get_st_shndx() == elfcpp::SHN_ABS
886 && name_key
== version_key
)
887 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
891 const bool def
= (!hidden
892 && (sym
.get_st_shndx()
893 != elfcpp::SHN_UNDEF
));
894 res
= this->add_from_object(dynobj
, name
, name_key
, version
,
895 version_key
, def
, sym
, sym
);
900 if (sym
.get_st_shndx() != elfcpp::SHN_UNDEF
901 && sym
.get_st_type() == elfcpp::STT_OBJECT
)
902 object_symbols
.push_back(res
);
905 this->record_weak_aliases(&object_symbols
);
908 // This is used to sort weak aliases. We sort them first by section
909 // index, then by offset, then by weak ahead of strong.
912 class Weak_alias_sorter
915 bool operator()(const Sized_symbol
<size
>*, const Sized_symbol
<size
>*) const;
920 Weak_alias_sorter
<size
>::operator()(const Sized_symbol
<size
>* s1
,
921 const Sized_symbol
<size
>* s2
) const
923 if (s1
->shndx() != s2
->shndx())
924 return s1
->shndx() < s2
->shndx();
925 if (s1
->value() != s2
->value())
926 return s1
->value() < s2
->value();
927 if (s1
->binding() != s2
->binding())
929 if (s1
->binding() == elfcpp::STB_WEAK
)
931 if (s2
->binding() == elfcpp::STB_WEAK
)
934 return std::string(s1
->name()) < std::string(s2
->name());
937 // SYMBOLS is a list of object symbols from a dynamic object. Look
938 // for any weak aliases, and record them so that if we add the weak
939 // alias to the dynamic symbol table, we also add the corresponding
944 Symbol_table::record_weak_aliases(std::vector
<Sized_symbol
<size
>*>* symbols
)
946 // Sort the vector by section index, then by offset, then by weak
948 std::sort(symbols
->begin(), symbols
->end(), Weak_alias_sorter
<size
>());
950 // Walk through the vector. For each weak definition, record
952 for (typename
std::vector
<Sized_symbol
<size
>*>::const_iterator p
=
957 if ((*p
)->binding() != elfcpp::STB_WEAK
)
960 // Build a circular list of weak aliases. Each symbol points to
961 // the next one in the circular list.
963 Sized_symbol
<size
>* from_sym
= *p
;
964 typename
std::vector
<Sized_symbol
<size
>*>::const_iterator q
;
965 for (q
= p
+ 1; q
!= symbols
->end(); ++q
)
967 if ((*q
)->shndx() != from_sym
->shndx()
968 || (*q
)->value() != from_sym
->value())
971 this->weak_aliases_
[from_sym
] = *q
;
972 from_sym
->set_has_alias();
978 this->weak_aliases_
[from_sym
] = *p
;
979 from_sym
->set_has_alias();
986 // Create and return a specially defined symbol. If ONLY_IF_REF is
987 // true, then only create the symbol if there is a reference to it.
988 // If this does not return NULL, it sets *POLDSYM to the existing
989 // symbol if there is one. This canonicalizes *PNAME and *PVERSION.
991 template<int size
, bool big_endian
>
993 Symbol_table::define_special_symbol(const char** pname
, const char** pversion
,
995 Sized_symbol
<size
>** poldsym
999 Sized_symbol
<size
>* sym
;
1000 bool add_to_table
= false;
1001 typename
Symbol_table_type::iterator add_loc
= this->table_
.end();
1003 // If the caller didn't give us a version, see if we get one from
1004 // the version script.
1005 if (*pversion
== NULL
)
1007 const std::string
& v(this->version_script_
.get_symbol_version(*pname
));
1009 *pversion
= v
.c_str();
1014 oldsym
= this->lookup(*pname
, *pversion
);
1015 if (oldsym
== NULL
|| !oldsym
->is_undefined())
1018 *pname
= oldsym
->name();
1019 *pversion
= oldsym
->version();
1023 // Canonicalize NAME and VERSION.
1024 Stringpool::Key name_key
;
1025 *pname
= this->namepool_
.add(*pname
, true, &name_key
);
1027 Stringpool::Key version_key
= 0;
1028 if (*pversion
!= NULL
)
1029 *pversion
= this->namepool_
.add(*pversion
, true, &version_key
);
1031 Symbol
* const snull
= NULL
;
1032 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
1033 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1039 // We already have a symbol table entry for NAME/VERSION.
1040 oldsym
= ins
.first
->second
;
1041 gold_assert(oldsym
!= NULL
);
1045 // We haven't seen this symbol before.
1046 gold_assert(ins
.first
->second
== NULL
);
1047 add_to_table
= true;
1048 add_loc
= ins
.first
;
1053 const Target
* target
= parameters
->target();
1054 if (!target
->has_make_symbol())
1055 sym
= new Sized_symbol
<size
>();
1058 gold_assert(target
->get_size() == size
);
1059 gold_assert(target
->is_big_endian() ? big_endian
: !big_endian
);
1060 typedef Sized_target
<size
, big_endian
> My_target
;
1061 const My_target
* sized_target
=
1062 static_cast<const My_target
*>(target
);
1063 sym
= sized_target
->make_symbol();
1069 add_loc
->second
= sym
;
1071 gold_assert(oldsym
!= NULL
);
1073 *poldsym
= this->get_sized_symbol
SELECT_SIZE_NAME(size
) (oldsym
1079 // Define a symbol based on an Output_data.
1082 Symbol_table::define_in_output_data(const char* name
,
1083 const char* version
,
1088 elfcpp::STB binding
,
1089 elfcpp::STV visibility
,
1090 unsigned char nonvis
,
1091 bool offset_is_from_end
,
1094 if (parameters
->get_size() == 32)
1096 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1097 return this->do_define_in_output_data
<32>(name
, version
, od
,
1098 value
, symsize
, type
, binding
,
1106 else if (parameters
->get_size() == 64)
1108 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1109 return this->do_define_in_output_data
<64>(name
, version
, od
,
1110 value
, symsize
, type
, binding
,
1122 // Define a symbol in an Output_data, sized version.
1126 Symbol_table::do_define_in_output_data(
1128 const char* version
,
1130 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1131 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1133 elfcpp::STB binding
,
1134 elfcpp::STV visibility
,
1135 unsigned char nonvis
,
1136 bool offset_is_from_end
,
1139 Sized_symbol
<size
>* sym
;
1140 Sized_symbol
<size
>* oldsym
;
1142 if (parameters
->is_big_endian())
1144 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1145 sym
= this->define_special_symbol
SELECT_SIZE_ENDIAN_NAME(size
, true) (
1146 &name
, &version
, only_if_ref
, &oldsym
1147 SELECT_SIZE_ENDIAN(size
, true));
1154 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1155 sym
= this->define_special_symbol
SELECT_SIZE_ENDIAN_NAME(size
, false) (
1156 &name
, &version
, only_if_ref
, &oldsym
1157 SELECT_SIZE_ENDIAN(size
, false));
1166 gold_assert(version
== NULL
|| oldsym
!= NULL
);
1167 sym
->init(name
, od
, value
, symsize
, type
, binding
, visibility
, nonvis
,
1168 offset_is_from_end
);
1172 if (binding
== elfcpp::STB_LOCAL
1173 || this->version_script_
.symbol_is_local(name
))
1174 this->force_local(sym
);
1178 if (Symbol_table::should_override_with_special(oldsym
))
1179 this->override_with_special(oldsym
, sym
);
1184 // Define a symbol based on an Output_segment.
1187 Symbol_table::define_in_output_segment(const char* name
,
1188 const char* version
, Output_segment
* os
,
1192 elfcpp::STB binding
,
1193 elfcpp::STV visibility
,
1194 unsigned char nonvis
,
1195 Symbol::Segment_offset_base offset_base
,
1198 if (parameters
->get_size() == 32)
1200 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1201 return this->do_define_in_output_segment
<32>(name
, version
, os
,
1202 value
, symsize
, type
,
1203 binding
, visibility
, nonvis
,
1204 offset_base
, only_if_ref
);
1209 else if (parameters
->get_size() == 64)
1211 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1212 return this->do_define_in_output_segment
<64>(name
, version
, os
,
1213 value
, symsize
, type
,
1214 binding
, visibility
, nonvis
,
1215 offset_base
, only_if_ref
);
1224 // Define a symbol in an Output_segment, sized version.
1228 Symbol_table::do_define_in_output_segment(
1230 const char* version
,
1232 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1233 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1235 elfcpp::STB binding
,
1236 elfcpp::STV visibility
,
1237 unsigned char nonvis
,
1238 Symbol::Segment_offset_base offset_base
,
1241 Sized_symbol
<size
>* sym
;
1242 Sized_symbol
<size
>* oldsym
;
1244 if (parameters
->is_big_endian())
1246 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1247 sym
= this->define_special_symbol
SELECT_SIZE_ENDIAN_NAME(size
, true) (
1248 &name
, &version
, only_if_ref
, &oldsym
1249 SELECT_SIZE_ENDIAN(size
, true));
1256 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1257 sym
= this->define_special_symbol
SELECT_SIZE_ENDIAN_NAME(size
, false) (
1258 &name
, &version
, only_if_ref
, &oldsym
1259 SELECT_SIZE_ENDIAN(size
, false));
1268 gold_assert(version
== NULL
|| oldsym
!= NULL
);
1269 sym
->init(name
, os
, value
, symsize
, type
, binding
, visibility
, nonvis
,
1274 if (binding
== elfcpp::STB_LOCAL
1275 || this->version_script_
.symbol_is_local(name
))
1276 this->force_local(sym
);
1280 if (Symbol_table::should_override_with_special(oldsym
))
1281 this->override_with_special(oldsym
, sym
);
1286 // Define a special symbol with a constant value. It is a multiple
1287 // definition error if this symbol is already defined.
1290 Symbol_table::define_as_constant(const char* name
,
1291 const char* version
,
1295 elfcpp::STB binding
,
1296 elfcpp::STV visibility
,
1297 unsigned char nonvis
,
1300 if (parameters
->get_size() == 32)
1302 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1303 return this->do_define_as_constant
<32>(name
, version
, value
,
1304 symsize
, type
, binding
,
1305 visibility
, nonvis
, only_if_ref
);
1310 else if (parameters
->get_size() == 64)
1312 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1313 return this->do_define_as_constant
<64>(name
, version
, value
,
1314 symsize
, type
, binding
,
1315 visibility
, nonvis
, only_if_ref
);
1324 // Define a symbol as a constant, sized version.
1328 Symbol_table::do_define_as_constant(
1330 const char* version
,
1331 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1332 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1334 elfcpp::STB binding
,
1335 elfcpp::STV visibility
,
1336 unsigned char nonvis
,
1339 Sized_symbol
<size
>* sym
;
1340 Sized_symbol
<size
>* oldsym
;
1342 if (parameters
->is_big_endian())
1344 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1345 sym
= this->define_special_symbol
SELECT_SIZE_ENDIAN_NAME(size
, true) (
1346 &name
, &version
, only_if_ref
, &oldsym
1347 SELECT_SIZE_ENDIAN(size
, true));
1354 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1355 sym
= this->define_special_symbol
SELECT_SIZE_ENDIAN_NAME(size
, false) (
1356 &name
, &version
, only_if_ref
, &oldsym
1357 SELECT_SIZE_ENDIAN(size
, false));
1366 gold_assert(version
== NULL
|| version
== name
|| oldsym
!= NULL
);
1367 sym
->init(name
, value
, symsize
, type
, binding
, visibility
, nonvis
);
1371 if (binding
== elfcpp::STB_LOCAL
1372 || this->version_script_
.symbol_is_local(name
))
1373 this->force_local(sym
);
1377 if (Symbol_table::should_override_with_special(oldsym
))
1378 this->override_with_special(oldsym
, sym
);
1383 // Define a set of symbols in output sections.
1386 Symbol_table::define_symbols(const Layout
* layout
, int count
,
1387 const Define_symbol_in_section
* p
,
1390 for (int i
= 0; i
< count
; ++i
, ++p
)
1392 Output_section
* os
= layout
->find_output_section(p
->output_section
);
1394 this->define_in_output_data(p
->name
, NULL
, os
, p
->value
,
1395 p
->size
, p
->type
, p
->binding
,
1396 p
->visibility
, p
->nonvis
,
1397 p
->offset_is_from_end
,
1398 only_if_ref
|| p
->only_if_ref
);
1400 this->define_as_constant(p
->name
, NULL
, 0, p
->size
, p
->type
,
1401 p
->binding
, p
->visibility
, p
->nonvis
,
1402 only_if_ref
|| p
->only_if_ref
);
1406 // Define a set of symbols in output segments.
1409 Symbol_table::define_symbols(const Layout
* layout
, int count
,
1410 const Define_symbol_in_segment
* p
,
1413 for (int i
= 0; i
< count
; ++i
, ++p
)
1415 Output_segment
* os
= layout
->find_output_segment(p
->segment_type
,
1416 p
->segment_flags_set
,
1417 p
->segment_flags_clear
);
1419 this->define_in_output_segment(p
->name
, NULL
, os
, p
->value
,
1420 p
->size
, p
->type
, p
->binding
,
1421 p
->visibility
, p
->nonvis
,
1423 only_if_ref
|| p
->only_if_ref
);
1425 this->define_as_constant(p
->name
, NULL
, 0, p
->size
, p
->type
,
1426 p
->binding
, p
->visibility
, p
->nonvis
,
1427 only_if_ref
|| p
->only_if_ref
);
1431 // Define CSYM using a COPY reloc. POSD is the Output_data where the
1432 // symbol should be defined--typically a .dyn.bss section. VALUE is
1433 // the offset within POSD.
1437 Symbol_table::define_with_copy_reloc(
1438 Sized_symbol
<size
>* csym
,
1440 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
)
1442 gold_assert(csym
->is_from_dynobj());
1443 gold_assert(!csym
->is_copied_from_dynobj());
1444 Object
* object
= csym
->object();
1445 gold_assert(object
->is_dynamic());
1446 Dynobj
* dynobj
= static_cast<Dynobj
*>(object
);
1448 // Our copied variable has to override any variable in a shared
1450 elfcpp::STB binding
= csym
->binding();
1451 if (binding
== elfcpp::STB_WEAK
)
1452 binding
= elfcpp::STB_GLOBAL
;
1454 this->define_in_output_data(csym
->name(), csym
->version(),
1455 posd
, value
, csym
->symsize(),
1456 csym
->type(), binding
,
1457 csym
->visibility(), csym
->nonvis(),
1460 csym
->set_is_copied_from_dynobj();
1461 csym
->set_needs_dynsym_entry();
1463 this->copied_symbol_dynobjs_
[csym
] = dynobj
;
1465 // We have now defined all aliases, but we have not entered them all
1466 // in the copied_symbol_dynobjs_ map.
1467 if (csym
->has_alias())
1472 sym
= this->weak_aliases_
[sym
];
1475 gold_assert(sym
->output_data() == posd
);
1477 sym
->set_is_copied_from_dynobj();
1478 this->copied_symbol_dynobjs_
[sym
] = dynobj
;
1483 // SYM is defined using a COPY reloc. Return the dynamic object where
1484 // the original definition was found.
1487 Symbol_table::get_copy_source(const Symbol
* sym
) const
1489 gold_assert(sym
->is_copied_from_dynobj());
1490 Copied_symbol_dynobjs::const_iterator p
=
1491 this->copied_symbol_dynobjs_
.find(sym
);
1492 gold_assert(p
!= this->copied_symbol_dynobjs_
.end());
1496 // Set the dynamic symbol indexes. INDEX is the index of the first
1497 // global dynamic symbol. Pointers to the symbols are stored into the
1498 // vector SYMS. The names are added to DYNPOOL. This returns an
1499 // updated dynamic symbol index.
1502 Symbol_table::set_dynsym_indexes(unsigned int index
,
1503 std::vector
<Symbol
*>* syms
,
1504 Stringpool
* dynpool
,
1507 for (Symbol_table_type::iterator p
= this->table_
.begin();
1508 p
!= this->table_
.end();
1511 Symbol
* sym
= p
->second
;
1513 // Note that SYM may already have a dynamic symbol index, since
1514 // some symbols appear more than once in the symbol table, with
1515 // and without a version.
1517 if (!sym
->should_add_dynsym_entry())
1518 sym
->set_dynsym_index(-1U);
1519 else if (!sym
->has_dynsym_index())
1521 sym
->set_dynsym_index(index
);
1523 syms
->push_back(sym
);
1524 dynpool
->add(sym
->name(), false, NULL
);
1526 // Record any version information.
1527 if (sym
->version() != NULL
)
1528 versions
->record_version(this, dynpool
, sym
);
1532 // Finish up the versions. In some cases this may add new dynamic
1534 index
= versions
->finalize(this, index
, syms
);
1539 // Set the final values for all the symbols. The index of the first
1540 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
1541 // file offset OFF. Add their names to POOL. Return the new file
1542 // offset. Update *PLOCAL_SYMCOUNT if necessary.
1545 Symbol_table::finalize(off_t off
, off_t dynoff
, size_t dyn_global_index
,
1546 size_t dyncount
, Stringpool
* pool
,
1547 unsigned int *plocal_symcount
)
1551 gold_assert(*plocal_symcount
!= 0);
1552 this->first_global_index_
= *plocal_symcount
;
1554 this->dynamic_offset_
= dynoff
;
1555 this->first_dynamic_global_index_
= dyn_global_index
;
1556 this->dynamic_count_
= dyncount
;
1558 if (parameters
->get_size() == 32)
1560 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1561 ret
= this->sized_finalize
<32>(off
, pool
, plocal_symcount
);
1566 else if (parameters
->get_size() == 64)
1568 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1569 ret
= this->sized_finalize
<64>(off
, pool
, plocal_symcount
);
1577 // Now that we have the final symbol table, we can reliably note
1578 // which symbols should get warnings.
1579 this->warnings_
.note_warnings(this);
1584 // SYM is going into the symbol table at *PINDEX. Add the name to
1585 // POOL, update *PINDEX and *POFF.
1589 Symbol_table::add_to_final_symtab(Symbol
* sym
, Stringpool
* pool
,
1590 unsigned int* pindex
, off_t
* poff
)
1592 sym
->set_symtab_index(*pindex
);
1593 pool
->add(sym
->name(), false, NULL
);
1595 *poff
+= elfcpp::Elf_sizes
<size
>::sym_size
;
1598 // Set the final value for all the symbols. This is called after
1599 // Layout::finalize, so all the output sections have their final
1604 Symbol_table::sized_finalize(off_t off
, Stringpool
* pool
,
1605 unsigned int* plocal_symcount
)
1607 off
= align_address(off
, size
>> 3);
1608 this->offset_
= off
;
1610 unsigned int index
= *plocal_symcount
;
1611 const unsigned int orig_index
= index
;
1613 // First do all the symbols which have been forced to be local, as
1614 // they must appear before all global symbols.
1615 for (Forced_locals::iterator p
= this->forced_locals_
.begin();
1616 p
!= this->forced_locals_
.end();
1620 gold_assert(sym
->is_forced_local());
1621 if (this->sized_finalize_symbol
<size
>(sym
))
1623 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
1628 // Now do all the remaining symbols.
1629 for (Symbol_table_type::iterator p
= this->table_
.begin();
1630 p
!= this->table_
.end();
1633 Symbol
* sym
= p
->second
;
1634 if (this->sized_finalize_symbol
<size
>(sym
))
1635 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
1638 this->output_count_
= index
- orig_index
;
1643 // Finalize the symbol SYM. This returns true if the symbol should be
1644 // added to the symbol table, false otherwise.
1648 Symbol_table::sized_finalize_symbol(Symbol
* unsized_sym
)
1650 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(unsized_sym
);
1652 // The default version of a symbol may appear twice in the symbol
1653 // table. We only need to finalize it once.
1654 if (sym
->has_symtab_index())
1659 gold_assert(!sym
->has_symtab_index());
1660 sym
->set_symtab_index(-1U);
1661 gold_assert(sym
->dynsym_index() == -1U);
1665 typename Sized_symbol
<size
>::Value_type value
;
1667 switch (sym
->source())
1669 case Symbol::FROM_OBJECT
:
1671 unsigned int shndx
= sym
->shndx();
1673 // FIXME: We need some target specific support here.
1674 if (shndx
>= elfcpp::SHN_LORESERVE
1675 && shndx
!= elfcpp::SHN_ABS
)
1677 gold_error(_("%s: unsupported symbol section 0x%x"),
1678 sym
->demangled_name().c_str(), shndx
);
1679 shndx
= elfcpp::SHN_UNDEF
;
1682 Object
* symobj
= sym
->object();
1683 if (symobj
->is_dynamic())
1686 shndx
= elfcpp::SHN_UNDEF
;
1688 else if (shndx
== elfcpp::SHN_UNDEF
)
1690 else if (shndx
== elfcpp::SHN_ABS
)
1691 value
= sym
->value();
1694 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
1695 section_offset_type secoff
;
1696 Output_section
* os
= relobj
->output_section(shndx
, &secoff
);
1700 sym
->set_symtab_index(-1U);
1701 gold_assert(sym
->dynsym_index() == -1U);
1705 if (sym
->type() == elfcpp::STT_TLS
)
1706 value
= sym
->value() + os
->tls_offset() + secoff
;
1708 value
= sym
->value() + os
->address() + secoff
;
1713 case Symbol::IN_OUTPUT_DATA
:
1715 Output_data
* od
= sym
->output_data();
1716 value
= sym
->value() + od
->address();
1717 if (sym
->offset_is_from_end())
1718 value
+= od
->data_size();
1722 case Symbol::IN_OUTPUT_SEGMENT
:
1724 Output_segment
* os
= sym
->output_segment();
1725 value
= sym
->value() + os
->vaddr();
1726 switch (sym
->offset_base())
1728 case Symbol::SEGMENT_START
:
1730 case Symbol::SEGMENT_END
:
1731 value
+= os
->memsz();
1733 case Symbol::SEGMENT_BSS
:
1734 value
+= os
->filesz();
1742 case Symbol::CONSTANT
:
1743 value
= sym
->value();
1750 sym
->set_value(value
);
1752 if (parameters
->strip_all())
1754 sym
->set_symtab_index(-1U);
1761 // Write out the global symbols.
1764 Symbol_table::write_globals(const Input_objects
* input_objects
,
1765 const Stringpool
* sympool
,
1766 const Stringpool
* dynpool
, Output_file
* of
) const
1768 if (parameters
->get_size() == 32)
1770 if (parameters
->is_big_endian())
1772 #ifdef HAVE_TARGET_32_BIG
1773 this->sized_write_globals
<32, true>(input_objects
, sympool
,
1781 #ifdef HAVE_TARGET_32_LITTLE
1782 this->sized_write_globals
<32, false>(input_objects
, sympool
,
1789 else if (parameters
->get_size() == 64)
1791 if (parameters
->is_big_endian())
1793 #ifdef HAVE_TARGET_64_BIG
1794 this->sized_write_globals
<64, true>(input_objects
, sympool
,
1802 #ifdef HAVE_TARGET_64_LITTLE
1803 this->sized_write_globals
<64, false>(input_objects
, sympool
,
1814 // Write out the global symbols.
1816 template<int size
, bool big_endian
>
1818 Symbol_table::sized_write_globals(const Input_objects
* input_objects
,
1819 const Stringpool
* sympool
,
1820 const Stringpool
* dynpool
,
1821 Output_file
* of
) const
1823 const Target
* const target
= parameters
->target();
1825 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1827 const unsigned int output_count
= this->output_count_
;
1828 const section_size_type oview_size
= output_count
* sym_size
;
1829 const unsigned int first_global_index
= this->first_global_index_
;
1830 unsigned char* psyms
;
1831 if (this->offset_
== 0 || output_count
== 0)
1834 psyms
= of
->get_output_view(this->offset_
, oview_size
);
1836 const unsigned int dynamic_count
= this->dynamic_count_
;
1837 const section_size_type dynamic_size
= dynamic_count
* sym_size
;
1838 const unsigned int first_dynamic_global_index
=
1839 this->first_dynamic_global_index_
;
1840 unsigned char* dynamic_view
;
1841 if (this->dynamic_offset_
== 0 || dynamic_count
== 0)
1842 dynamic_view
= NULL
;
1844 dynamic_view
= of
->get_output_view(this->dynamic_offset_
, dynamic_size
);
1846 for (Symbol_table_type::const_iterator p
= this->table_
.begin();
1847 p
!= this->table_
.end();
1850 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(p
->second
);
1852 // Possibly warn about unresolved symbols in shared libraries.
1853 this->warn_about_undefined_dynobj_symbol(input_objects
, sym
);
1855 unsigned int sym_index
= sym
->symtab_index();
1856 unsigned int dynsym_index
;
1857 if (dynamic_view
== NULL
)
1860 dynsym_index
= sym
->dynsym_index();
1862 if (sym_index
== -1U && dynsym_index
== -1U)
1864 // This symbol is not included in the output file.
1869 typename
elfcpp::Elf_types
<size
>::Elf_Addr sym_value
= sym
->value();
1870 typename
elfcpp::Elf_types
<size
>::Elf_Addr dynsym_value
= sym_value
;
1871 switch (sym
->source())
1873 case Symbol::FROM_OBJECT
:
1875 unsigned int in_shndx
= sym
->shndx();
1877 // FIXME: We need some target specific support here.
1878 if (in_shndx
>= elfcpp::SHN_LORESERVE
1879 && in_shndx
!= elfcpp::SHN_ABS
)
1881 gold_error(_("%s: unsupported symbol section 0x%x"),
1882 sym
->demangled_name().c_str(), in_shndx
);
1887 Object
* symobj
= sym
->object();
1888 if (symobj
->is_dynamic())
1890 if (sym
->needs_dynsym_value())
1891 dynsym_value
= target
->dynsym_value(sym
);
1892 shndx
= elfcpp::SHN_UNDEF
;
1894 else if (in_shndx
== elfcpp::SHN_UNDEF
1895 || in_shndx
== elfcpp::SHN_ABS
)
1899 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
1900 section_offset_type secoff
;
1901 Output_section
* os
= relobj
->output_section(in_shndx
,
1903 gold_assert(os
!= NULL
);
1904 shndx
= os
->out_shndx();
1906 // In object files symbol values are section
1908 if (parameters
->output_is_object())
1909 sym_value
-= os
->address();
1915 case Symbol::IN_OUTPUT_DATA
:
1916 shndx
= sym
->output_data()->out_shndx();
1919 case Symbol::IN_OUTPUT_SEGMENT
:
1920 shndx
= elfcpp::SHN_ABS
;
1923 case Symbol::CONSTANT
:
1924 shndx
= elfcpp::SHN_ABS
;
1931 if (sym_index
!= -1U)
1933 sym_index
-= first_global_index
;
1934 gold_assert(sym_index
< output_count
);
1935 unsigned char* ps
= psyms
+ (sym_index
* sym_size
);
1936 this->sized_write_symbol
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
) (
1937 sym
, sym_value
, shndx
, sympool
, ps
1938 SELECT_SIZE_ENDIAN(size
, big_endian
));
1941 if (dynsym_index
!= -1U)
1943 dynsym_index
-= first_dynamic_global_index
;
1944 gold_assert(dynsym_index
< dynamic_count
);
1945 unsigned char* pd
= dynamic_view
+ (dynsym_index
* sym_size
);
1946 this->sized_write_symbol
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
) (
1947 sym
, dynsym_value
, shndx
, dynpool
, pd
1948 SELECT_SIZE_ENDIAN(size
, big_endian
));
1952 of
->write_output_view(this->offset_
, oview_size
, psyms
);
1953 if (dynamic_view
!= NULL
)
1954 of
->write_output_view(this->dynamic_offset_
, dynamic_size
, dynamic_view
);
1957 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
1958 // strtab holding the name.
1960 template<int size
, bool big_endian
>
1962 Symbol_table::sized_write_symbol(
1963 Sized_symbol
<size
>* sym
,
1964 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1966 const Stringpool
* pool
,
1968 ACCEPT_SIZE_ENDIAN
) const
1970 elfcpp::Sym_write
<size
, big_endian
> osym(p
);
1971 osym
.put_st_name(pool
->get_offset(sym
->name()));
1972 osym
.put_st_value(value
);
1973 osym
.put_st_size(sym
->symsize());
1974 // A version script may have overridden the default binding.
1975 if (sym
->is_forced_local())
1976 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
, sym
->type()));
1978 osym
.put_st_info(elfcpp::elf_st_info(sym
->binding(), sym
->type()));
1979 osym
.put_st_other(elfcpp::elf_st_other(sym
->visibility(), sym
->nonvis()));
1980 osym
.put_st_shndx(shndx
);
1983 // Check for unresolved symbols in shared libraries. This is
1984 // controlled by the --allow-shlib-undefined option.
1986 // We only warn about libraries for which we have seen all the
1987 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
1988 // which were not seen in this link. If we didn't see a DT_NEEDED
1989 // entry, we aren't going to be able to reliably report whether the
1990 // symbol is undefined.
1992 // We also don't warn about libraries found in the system library
1993 // directory (the directory were we find libc.so); we assume that
1994 // those libraries are OK. This heuristic avoids problems in
1995 // GNU/Linux, in which -ldl can have undefined references satisfied by
1999 Symbol_table::warn_about_undefined_dynobj_symbol(
2000 const Input_objects
* input_objects
,
2003 if (sym
->source() == Symbol::FROM_OBJECT
2004 && sym
->object()->is_dynamic()
2005 && sym
->shndx() == elfcpp::SHN_UNDEF
2006 && sym
->binding() != elfcpp::STB_WEAK
2007 && !parameters
->allow_shlib_undefined()
2008 && !parameters
->target()->is_defined_by_abi(sym
)
2009 && !input_objects
->found_in_system_library_directory(sym
->object()))
2011 // A very ugly cast.
2012 Dynobj
* dynobj
= static_cast<Dynobj
*>(sym
->object());
2013 if (!dynobj
->has_unknown_needed_entries())
2014 gold_error(_("%s: undefined reference to '%s'"),
2015 sym
->object()->name().c_str(),
2016 sym
->demangled_name().c_str());
2020 // Write out a section symbol. Return the update offset.
2023 Symbol_table::write_section_symbol(const Output_section
*os
,
2027 if (parameters
->get_size() == 32)
2029 if (parameters
->is_big_endian())
2031 #ifdef HAVE_TARGET_32_BIG
2032 this->sized_write_section_symbol
<32, true>(os
, of
, offset
);
2039 #ifdef HAVE_TARGET_32_LITTLE
2040 this->sized_write_section_symbol
<32, false>(os
, of
, offset
);
2046 else if (parameters
->get_size() == 64)
2048 if (parameters
->is_big_endian())
2050 #ifdef HAVE_TARGET_64_BIG
2051 this->sized_write_section_symbol
<64, true>(os
, of
, offset
);
2058 #ifdef HAVE_TARGET_64_LITTLE
2059 this->sized_write_section_symbol
<64, false>(os
, of
, offset
);
2069 // Write out a section symbol, specialized for size and endianness.
2071 template<int size
, bool big_endian
>
2073 Symbol_table::sized_write_section_symbol(const Output_section
* os
,
2077 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2079 unsigned char* pov
= of
->get_output_view(offset
, sym_size
);
2081 elfcpp::Sym_write
<size
, big_endian
> osym(pov
);
2082 osym
.put_st_name(0);
2083 osym
.put_st_value(os
->address());
2084 osym
.put_st_size(0);
2085 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
,
2086 elfcpp::STT_SECTION
));
2087 osym
.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT
, 0));
2088 osym
.put_st_shndx(os
->out_shndx());
2090 of
->write_output_view(offset
, sym_size
, pov
);
2093 // Print statistical information to stderr. This is used for --stats.
2096 Symbol_table::print_stats() const
2098 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2099 fprintf(stderr
, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2100 program_name
, this->table_
.size(), this->table_
.bucket_count());
2102 fprintf(stderr
, _("%s: symbol table entries: %zu\n"),
2103 program_name
, this->table_
.size());
2105 this->namepool_
.print_stats("symbol table stringpool");
2108 // We check for ODR violations by looking for symbols with the same
2109 // name for which the debugging information reports that they were
2110 // defined in different source locations. When comparing the source
2111 // location, we consider instances with the same base filename and
2112 // line number to be the same. This is because different object
2113 // files/shared libraries can include the same header file using
2114 // different paths, and we don't want to report an ODR violation in
2117 // This struct is used to compare line information, as returned by
2118 // Dwarf_line_info::one_addr2line. It implements a < comparison
2119 // operator used with std::set.
2121 struct Odr_violation_compare
2124 operator()(const std::string
& s1
, const std::string
& s2
) const
2126 std::string::size_type pos1
= s1
.rfind('/');
2127 std::string::size_type pos2
= s2
.rfind('/');
2128 if (pos1
== std::string::npos
2129 || pos2
== std::string::npos
)
2131 return s1
.compare(pos1
, std::string::npos
,
2132 s2
, pos2
, std::string::npos
) < 0;
2136 // Check candidate_odr_violations_ to find symbols with the same name
2137 // but apparently different definitions (different source-file/line-no).
2140 Symbol_table::detect_odr_violations(const Task
* task
,
2141 const char* output_file_name
) const
2143 for (Odr_map::const_iterator it
= candidate_odr_violations_
.begin();
2144 it
!= candidate_odr_violations_
.end();
2147 const char* symbol_name
= it
->first
;
2148 // We use a sorted set so the output is deterministic.
2149 std::set
<std::string
, Odr_violation_compare
> line_nums
;
2151 for (Unordered_set
<Symbol_location
, Symbol_location_hash
>::const_iterator
2152 locs
= it
->second
.begin();
2153 locs
!= it
->second
.end();
2156 // We need to lock the object in order to read it. This
2157 // means that we have to run in a singleton Task. If we
2158 // want to run this in a general Task for better
2159 // performance, we will need one Task for object, plus
2160 // appropriate locking to ensure that we don't conflict with
2161 // other uses of the object.
2162 Task_lock_obj
<Object
> tl(task
, locs
->object
);
2163 std::string lineno
= Dwarf_line_info::one_addr2line(
2164 locs
->object
, locs
->shndx
, locs
->offset
);
2165 if (!lineno
.empty())
2166 line_nums
.insert(lineno
);
2169 if (line_nums
.size() > 1)
2171 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2172 "places (possible ODR violation):"),
2173 output_file_name
, demangle(symbol_name
).c_str());
2174 for (std::set
<std::string
>::const_iterator it2
= line_nums
.begin();
2175 it2
!= line_nums
.end();
2177 fprintf(stderr
, " %s\n", it2
->c_str());
2182 // Warnings functions.
2184 // Add a new warning.
2187 Warnings::add_warning(Symbol_table
* symtab
, const char* name
, Object
* obj
,
2188 const std::string
& warning
)
2190 name
= symtab
->canonicalize_name(name
);
2191 this->warnings_
[name
].set(obj
, warning
);
2194 // Look through the warnings and mark the symbols for which we should
2195 // warn. This is called during Layout::finalize when we know the
2196 // sources for all the symbols.
2199 Warnings::note_warnings(Symbol_table
* symtab
)
2201 for (Warning_table::iterator p
= this->warnings_
.begin();
2202 p
!= this->warnings_
.end();
2205 Symbol
* sym
= symtab
->lookup(p
->first
, NULL
);
2207 && sym
->source() == Symbol::FROM_OBJECT
2208 && sym
->object() == p
->second
.object
)
2209 sym
->set_has_warning();
2213 // Issue a warning. This is called when we see a relocation against a
2214 // symbol for which has a warning.
2216 template<int size
, bool big_endian
>
2218 Warnings::issue_warning(const Symbol
* sym
,
2219 const Relocate_info
<size
, big_endian
>* relinfo
,
2220 size_t relnum
, off_t reloffset
) const
2222 gold_assert(sym
->has_warning());
2223 Warning_table::const_iterator p
= this->warnings_
.find(sym
->name());
2224 gold_assert(p
!= this->warnings_
.end());
2225 gold_warning_at_location(relinfo
, relnum
, reloffset
,
2226 "%s", p
->second
.text
.c_str());
2229 // Instantiate the templates we need. We could use the configure
2230 // script to restrict this to only the ones needed for implemented
2233 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2236 Sized_symbol
<32>::allocate_common(Output_data
*, Value_type
);
2239 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2242 Sized_symbol
<64>::allocate_common(Output_data
*, Value_type
);
2245 #ifdef HAVE_TARGET_32_LITTLE
2248 Symbol_table::add_from_relobj
<32, false>(
2249 Sized_relobj
<32, false>* relobj
,
2250 const unsigned char* syms
,
2252 const char* sym_names
,
2253 size_t sym_name_size
,
2254 Sized_relobj
<32, true>::Symbols
* sympointers
);
2257 #ifdef HAVE_TARGET_32_BIG
2260 Symbol_table::add_from_relobj
<32, true>(
2261 Sized_relobj
<32, true>* relobj
,
2262 const unsigned char* syms
,
2264 const char* sym_names
,
2265 size_t sym_name_size
,
2266 Sized_relobj
<32, false>::Symbols
* sympointers
);
2269 #ifdef HAVE_TARGET_64_LITTLE
2272 Symbol_table::add_from_relobj
<64, false>(
2273 Sized_relobj
<64, false>* relobj
,
2274 const unsigned char* syms
,
2276 const char* sym_names
,
2277 size_t sym_name_size
,
2278 Sized_relobj
<64, true>::Symbols
* sympointers
);
2281 #ifdef HAVE_TARGET_64_BIG
2284 Symbol_table::add_from_relobj
<64, true>(
2285 Sized_relobj
<64, true>* relobj
,
2286 const unsigned char* syms
,
2288 const char* sym_names
,
2289 size_t sym_name_size
,
2290 Sized_relobj
<64, false>::Symbols
* sympointers
);
2293 #ifdef HAVE_TARGET_32_LITTLE
2296 Symbol_table::add_from_dynobj
<32, false>(
2297 Sized_dynobj
<32, false>* dynobj
,
2298 const unsigned char* syms
,
2300 const char* sym_names
,
2301 size_t sym_name_size
,
2302 const unsigned char* versym
,
2304 const std::vector
<const char*>* version_map
);
2307 #ifdef HAVE_TARGET_32_BIG
2310 Symbol_table::add_from_dynobj
<32, true>(
2311 Sized_dynobj
<32, true>* dynobj
,
2312 const unsigned char* syms
,
2314 const char* sym_names
,
2315 size_t sym_name_size
,
2316 const unsigned char* versym
,
2318 const std::vector
<const char*>* version_map
);
2321 #ifdef HAVE_TARGET_64_LITTLE
2324 Symbol_table::add_from_dynobj
<64, false>(
2325 Sized_dynobj
<64, false>* dynobj
,
2326 const unsigned char* syms
,
2328 const char* sym_names
,
2329 size_t sym_name_size
,
2330 const unsigned char* versym
,
2332 const std::vector
<const char*>* version_map
);
2335 #ifdef HAVE_TARGET_64_BIG
2338 Symbol_table::add_from_dynobj
<64, true>(
2339 Sized_dynobj
<64, true>* dynobj
,
2340 const unsigned char* syms
,
2342 const char* sym_names
,
2343 size_t sym_name_size
,
2344 const unsigned char* versym
,
2346 const std::vector
<const char*>* version_map
);
2349 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2352 Symbol_table::define_with_copy_reloc
<32>(
2353 Sized_symbol
<32>* sym
,
2355 elfcpp::Elf_types
<32>::Elf_Addr value
);
2358 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2361 Symbol_table::define_with_copy_reloc
<64>(
2362 Sized_symbol
<64>* sym
,
2364 elfcpp::Elf_types
<64>::Elf_Addr value
);
2367 #ifdef HAVE_TARGET_32_LITTLE
2370 Warnings::issue_warning
<32, false>(const Symbol
* sym
,
2371 const Relocate_info
<32, false>* relinfo
,
2372 size_t relnum
, off_t reloffset
) const;
2375 #ifdef HAVE_TARGET_32_BIG
2378 Warnings::issue_warning
<32, true>(const Symbol
* sym
,
2379 const Relocate_info
<32, true>* relinfo
,
2380 size_t relnum
, off_t reloffset
) const;
2383 #ifdef HAVE_TARGET_64_LITTLE
2386 Warnings::issue_warning
<64, false>(const Symbol
* sym
,
2387 const Relocate_info
<64, false>* relinfo
,
2388 size_t relnum
, off_t reloffset
) const;
2391 #ifdef HAVE_TARGET_64_BIG
2394 Warnings::issue_warning
<64, true>(const Symbol
* sym
,
2395 const Relocate_info
<64, true>* relinfo
,
2396 size_t relnum
, off_t reloffset
) const;
2399 } // End namespace gold.