1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
30 /* This file handles functionality common to the different MIPS ABI's. */
35 #include "libiberty.h"
37 #include "elfxx-mips.h"
39 #include "elf-vxworks.h"
41 /* Get the ECOFF swapping routines. */
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
49 /* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
52 (1) absolute addresses
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
84 /* The input bfd in which the symbol is defined. */
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
91 /* If abfd == NULL, an address that must be stored in the got. */
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
99 struct mips_elf_link_hash_entry
*h
;
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type
;
109 /* The offset from the beginning of the .got section to the entry
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
115 /* This structure is used to hold .got information when linking. */
119 /* The global symbol in the GOT with the lowest index in the dynamic
121 struct elf_link_hash_entry
*global_gotsym
;
122 /* The number of global .got entries. */
123 unsigned int global_gotno
;
124 /* The number of .got slots used for TLS. */
125 unsigned int tls_gotno
;
126 /* The first unused TLS .got entry. Used only during
127 mips_elf_initialize_tls_index. */
128 unsigned int tls_assigned_gotno
;
129 /* The number of local .got entries. */
130 unsigned int local_gotno
;
131 /* The number of local .got entries we have used. */
132 unsigned int assigned_gotno
;
133 /* A hash table holding members of the got. */
134 struct htab
*got_entries
;
135 /* A hash table mapping input bfds to other mips_got_info. NULL
136 unless multi-got was necessary. */
137 struct htab
*bfd2got
;
138 /* In multi-got links, a pointer to the next got (err, rather, most
139 of the time, it points to the previous got). */
140 struct mips_got_info
*next
;
141 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
142 for none, or MINUS_TWO for not yet assigned. This is needed
143 because a single-GOT link may have multiple hash table entries
144 for the LDM. It does not get initialized in multi-GOT mode. */
145 bfd_vma tls_ldm_offset
;
148 /* Map an input bfd to a got in a multi-got link. */
150 struct mips_elf_bfd2got_hash
{
152 struct mips_got_info
*g
;
155 /* Structure passed when traversing the bfd2got hash table, used to
156 create and merge bfd's gots. */
158 struct mips_elf_got_per_bfd_arg
160 /* A hashtable that maps bfds to gots. */
162 /* The output bfd. */
164 /* The link information. */
165 struct bfd_link_info
*info
;
166 /* A pointer to the primary got, i.e., the one that's going to get
167 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
169 struct mips_got_info
*primary
;
170 /* A non-primary got we're trying to merge with other input bfd's
172 struct mips_got_info
*current
;
173 /* The maximum number of got entries that can be addressed with a
175 unsigned int max_count
;
176 /* The number of local and global entries in the primary got. */
177 unsigned int primary_count
;
178 /* The number of local and global entries in the current got. */
179 unsigned int current_count
;
180 /* The total number of global entries which will live in the
181 primary got and be automatically relocated. This includes
182 those not referenced by the primary GOT but included in
184 unsigned int global_count
;
187 /* Another structure used to pass arguments for got entries traversal. */
189 struct mips_elf_set_global_got_offset_arg
191 struct mips_got_info
*g
;
193 unsigned int needed_relocs
;
194 struct bfd_link_info
*info
;
197 /* A structure used to count TLS relocations or GOT entries, for GOT
198 entry or ELF symbol table traversal. */
200 struct mips_elf_count_tls_arg
202 struct bfd_link_info
*info
;
206 struct _mips_elf_section_data
208 struct bfd_elf_section_data elf
;
211 struct mips_got_info
*got_info
;
216 #define mips_elf_section_data(sec) \
217 ((struct _mips_elf_section_data *) elf_section_data (sec))
219 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
220 the dynamic symbols. */
222 struct mips_elf_hash_sort_data
224 /* The symbol in the global GOT with the lowest dynamic symbol table
226 struct elf_link_hash_entry
*low
;
227 /* The least dynamic symbol table index corresponding to a non-TLS
228 symbol with a GOT entry. */
229 long min_got_dynindx
;
230 /* The greatest dynamic symbol table index corresponding to a symbol
231 with a GOT entry that is not referenced (e.g., a dynamic symbol
232 with dynamic relocations pointing to it from non-primary GOTs). */
233 long max_unref_got_dynindx
;
234 /* The greatest dynamic symbol table index not corresponding to a
235 symbol without a GOT entry. */
236 long max_non_got_dynindx
;
239 /* The MIPS ELF linker needs additional information for each symbol in
240 the global hash table. */
242 struct mips_elf_link_hash_entry
244 struct elf_link_hash_entry root
;
246 /* External symbol information. */
249 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
251 unsigned int possibly_dynamic_relocs
;
253 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
254 a readonly section. */
255 bfd_boolean readonly_reloc
;
257 /* We must not create a stub for a symbol that has relocations
258 related to taking the function's address, i.e. any but
259 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
261 bfd_boolean no_fn_stub
;
263 /* If there is a stub that 32 bit functions should use to call this
264 16 bit function, this points to the section containing the stub. */
267 /* Whether we need the fn_stub; this is set if this symbol appears
268 in any relocs other than a 16 bit call. */
269 bfd_boolean need_fn_stub
;
271 /* If there is a stub that 16 bit functions should use to call this
272 32 bit function, this points to the section containing the stub. */
275 /* This is like the call_stub field, but it is used if the function
276 being called returns a floating point value. */
277 asection
*call_fp_stub
;
279 /* Are we forced local? This will only be set if we have converted
280 the initial global GOT entry to a local GOT entry. */
281 bfd_boolean forced_local
;
283 /* Are we referenced by some kind of relocation? */
284 bfd_boolean is_relocation_target
;
286 /* Are we referenced by branch relocations? */
287 bfd_boolean is_branch_target
;
291 #define GOT_TLS_LDM 2
293 #define GOT_TLS_OFFSET_DONE 0x40
294 #define GOT_TLS_DONE 0x80
295 unsigned char tls_type
;
296 /* This is only used in single-GOT mode; in multi-GOT mode there
297 is one mips_got_entry per GOT entry, so the offset is stored
298 there. In single-GOT mode there may be many mips_got_entry
299 structures all referring to the same GOT slot. It might be
300 possible to use root.got.offset instead, but that field is
301 overloaded already. */
302 bfd_vma tls_got_offset
;
305 /* MIPS ELF linker hash table. */
307 struct mips_elf_link_hash_table
309 struct elf_link_hash_table root
;
311 /* We no longer use this. */
312 /* String section indices for the dynamic section symbols. */
313 bfd_size_type dynsym_sec_strindex
[SIZEOF_MIPS_DYNSYM_SECNAMES
];
315 /* The number of .rtproc entries. */
316 bfd_size_type procedure_count
;
317 /* The size of the .compact_rel section (if SGI_COMPAT). */
318 bfd_size_type compact_rel_size
;
319 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
320 entry is set to the address of __rld_obj_head as in IRIX5. */
321 bfd_boolean use_rld_obj_head
;
322 /* This is the value of the __rld_map or __rld_obj_head symbol. */
324 /* This is set if we see any mips16 stub sections. */
325 bfd_boolean mips16_stubs_seen
;
326 /* True if we're generating code for VxWorks. */
327 bfd_boolean is_vxworks
;
328 /* True if we already reported the small-data section overflow. */
329 bfd_boolean small_data_overflow_reported
;
330 /* Shortcuts to some dynamic sections, or NULL if they are not
338 /* The size of the PLT header in bytes (VxWorks only). */
339 bfd_vma plt_header_size
;
340 /* The size of a PLT entry in bytes (VxWorks only). */
341 bfd_vma plt_entry_size
;
342 /* The size of a function stub entry in bytes. */
343 bfd_vma function_stub_size
;
346 #define TLS_RELOC_P(r_type) \
347 (r_type == R_MIPS_TLS_DTPMOD32 \
348 || r_type == R_MIPS_TLS_DTPMOD64 \
349 || r_type == R_MIPS_TLS_DTPREL32 \
350 || r_type == R_MIPS_TLS_DTPREL64 \
351 || r_type == R_MIPS_TLS_GD \
352 || r_type == R_MIPS_TLS_LDM \
353 || r_type == R_MIPS_TLS_DTPREL_HI16 \
354 || r_type == R_MIPS_TLS_DTPREL_LO16 \
355 || r_type == R_MIPS_TLS_GOTTPREL \
356 || r_type == R_MIPS_TLS_TPREL32 \
357 || r_type == R_MIPS_TLS_TPREL64 \
358 || r_type == R_MIPS_TLS_TPREL_HI16 \
359 || r_type == R_MIPS_TLS_TPREL_LO16)
361 /* Structure used to pass information to mips_elf_output_extsym. */
366 struct bfd_link_info
*info
;
367 struct ecoff_debug_info
*debug
;
368 const struct ecoff_debug_swap
*swap
;
372 /* The names of the runtime procedure table symbols used on IRIX5. */
374 static const char * const mips_elf_dynsym_rtproc_names
[] =
377 "_procedure_string_table",
378 "_procedure_table_size",
382 /* These structures are used to generate the .compact_rel section on
387 unsigned long id1
; /* Always one? */
388 unsigned long num
; /* Number of compact relocation entries. */
389 unsigned long id2
; /* Always two? */
390 unsigned long offset
; /* The file offset of the first relocation. */
391 unsigned long reserved0
; /* Zero? */
392 unsigned long reserved1
; /* Zero? */
401 bfd_byte reserved0
[4];
402 bfd_byte reserved1
[4];
403 } Elf32_External_compact_rel
;
407 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
408 unsigned int rtype
: 4; /* Relocation types. See below. */
409 unsigned int dist2to
: 8;
410 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
411 unsigned long konst
; /* KONST field. See below. */
412 unsigned long vaddr
; /* VADDR to be relocated. */
417 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
418 unsigned int rtype
: 4; /* Relocation types. See below. */
419 unsigned int dist2to
: 8;
420 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
421 unsigned long konst
; /* KONST field. See below. */
429 } Elf32_External_crinfo
;
435 } Elf32_External_crinfo2
;
437 /* These are the constants used to swap the bitfields in a crinfo. */
439 #define CRINFO_CTYPE (0x1)
440 #define CRINFO_CTYPE_SH (31)
441 #define CRINFO_RTYPE (0xf)
442 #define CRINFO_RTYPE_SH (27)
443 #define CRINFO_DIST2TO (0xff)
444 #define CRINFO_DIST2TO_SH (19)
445 #define CRINFO_RELVADDR (0x7ffff)
446 #define CRINFO_RELVADDR_SH (0)
448 /* A compact relocation info has long (3 words) or short (2 words)
449 formats. A short format doesn't have VADDR field and relvaddr
450 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
451 #define CRF_MIPS_LONG 1
452 #define CRF_MIPS_SHORT 0
454 /* There are 4 types of compact relocation at least. The value KONST
455 has different meaning for each type:
458 CT_MIPS_REL32 Address in data
459 CT_MIPS_WORD Address in word (XXX)
460 CT_MIPS_GPHI_LO GP - vaddr
461 CT_MIPS_JMPAD Address to jump
464 #define CRT_MIPS_REL32 0xa
465 #define CRT_MIPS_WORD 0xb
466 #define CRT_MIPS_GPHI_LO 0xc
467 #define CRT_MIPS_JMPAD 0xd
469 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
470 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
471 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
472 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
474 /* The structure of the runtime procedure descriptor created by the
475 loader for use by the static exception system. */
477 typedef struct runtime_pdr
{
478 bfd_vma adr
; /* Memory address of start of procedure. */
479 long regmask
; /* Save register mask. */
480 long regoffset
; /* Save register offset. */
481 long fregmask
; /* Save floating point register mask. */
482 long fregoffset
; /* Save floating point register offset. */
483 long frameoffset
; /* Frame size. */
484 short framereg
; /* Frame pointer register. */
485 short pcreg
; /* Offset or reg of return pc. */
486 long irpss
; /* Index into the runtime string table. */
488 struct exception_info
*exception_info
;/* Pointer to exception array. */
490 #define cbRPDR sizeof (RPDR)
491 #define rpdNil ((pRPDR) 0)
493 static struct mips_got_entry
*mips_elf_create_local_got_entry
494 (bfd
*, struct bfd_link_info
*, bfd
*, struct mips_got_info
*, asection
*,
495 bfd_vma
, unsigned long, struct mips_elf_link_hash_entry
*, int);
496 static bfd_boolean mips_elf_sort_hash_table_f
497 (struct mips_elf_link_hash_entry
*, void *);
498 static bfd_vma mips_elf_high
500 static bfd_boolean mips16_stub_section_p
502 static bfd_boolean mips_elf_create_dynamic_relocation
503 (bfd
*, struct bfd_link_info
*, const Elf_Internal_Rela
*,
504 struct mips_elf_link_hash_entry
*, asection
*, bfd_vma
,
505 bfd_vma
*, asection
*);
506 static hashval_t mips_elf_got_entry_hash
508 static bfd_vma mips_elf_adjust_gp
509 (bfd
*, struct mips_got_info
*, bfd
*);
510 static struct mips_got_info
*mips_elf_got_for_ibfd
511 (struct mips_got_info
*, bfd
*);
513 /* This will be used when we sort the dynamic relocation records. */
514 static bfd
*reldyn_sorting_bfd
;
516 /* Nonzero if ABFD is using the N32 ABI. */
517 #define ABI_N32_P(abfd) \
518 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
520 /* Nonzero if ABFD is using the N64 ABI. */
521 #define ABI_64_P(abfd) \
522 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
524 /* Nonzero if ABFD is using NewABI conventions. */
525 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
527 /* The IRIX compatibility level we are striving for. */
528 #define IRIX_COMPAT(abfd) \
529 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
531 /* Whether we are trying to be compatible with IRIX at all. */
532 #define SGI_COMPAT(abfd) \
533 (IRIX_COMPAT (abfd) != ict_none)
535 /* The name of the options section. */
536 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
537 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
539 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
540 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
541 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
542 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
544 /* Whether the section is readonly. */
545 #define MIPS_ELF_READONLY_SECTION(sec) \
546 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
547 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
549 /* The name of the stub section. */
550 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
552 /* The size of an external REL relocation. */
553 #define MIPS_ELF_REL_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rel)
556 /* The size of an external RELA relocation. */
557 #define MIPS_ELF_RELA_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_rela)
560 /* The size of an external dynamic table entry. */
561 #define MIPS_ELF_DYN_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->sizeof_dyn)
564 /* The size of a GOT entry. */
565 #define MIPS_ELF_GOT_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->arch_size / 8)
568 /* The size of a symbol-table entry. */
569 #define MIPS_ELF_SYM_SIZE(abfd) \
570 (get_elf_backend_data (abfd)->s->sizeof_sym)
572 /* The default alignment for sections, as a power of two. */
573 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
574 (get_elf_backend_data (abfd)->s->log_file_align)
576 /* Get word-sized data. */
577 #define MIPS_ELF_GET_WORD(abfd, ptr) \
578 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
580 /* Put out word-sized data. */
581 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
583 ? bfd_put_64 (abfd, val, ptr) \
584 : bfd_put_32 (abfd, val, ptr))
586 /* Add a dynamic symbol table-entry. */
587 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
588 _bfd_elf_add_dynamic_entry (info, tag, val)
590 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
591 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
593 /* Determine whether the internal relocation of index REL_IDX is REL
594 (zero) or RELA (non-zero). The assumption is that, if there are
595 two relocation sections for this section, one of them is REL and
596 the other is RELA. If the index of the relocation we're testing is
597 in range for the first relocation section, check that the external
598 relocation size is that for RELA. It is also assumed that, if
599 rel_idx is not in range for the first section, and this first
600 section contains REL relocs, then the relocation is in the second
601 section, that is RELA. */
602 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
603 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
604 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
605 > (bfd_vma)(rel_idx)) \
606 == (elf_section_data (sec)->rel_hdr.sh_entsize \
607 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
608 : sizeof (Elf32_External_Rela))))
610 /* The name of the dynamic relocation section. */
611 #define MIPS_ELF_REL_DYN_NAME(INFO) \
612 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
614 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
615 from smaller values. Start with zero, widen, *then* decrement. */
616 #define MINUS_ONE (((bfd_vma)0) - 1)
617 #define MINUS_TWO (((bfd_vma)0) - 2)
619 /* The number of local .got entries we reserve. */
620 #define MIPS_RESERVED_GOTNO(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
623 /* The offset of $gp from the beginning of the .got section. */
624 #define ELF_MIPS_GP_OFFSET(INFO) \
625 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
627 /* The maximum size of the GOT for it to be addressable using 16-bit
629 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
631 /* Instructions which appear in a stub. */
632 #define STUB_LW(abfd) \
634 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
635 : 0x8f998010)) /* lw t9,0x8010(gp) */
636 #define STUB_MOVE(abfd) \
638 ? 0x03e0782d /* daddu t7,ra */ \
639 : 0x03e07821)) /* addu t7,ra */
640 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
641 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
642 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
643 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
644 #define STUB_LI16S(abfd, VAL) \
646 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
647 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
649 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
650 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
652 /* The name of the dynamic interpreter. This is put in the .interp
655 #define ELF_DYNAMIC_INTERPRETER(abfd) \
656 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
657 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
658 : "/usr/lib/libc.so.1")
661 #define MNAME(bfd,pre,pos) \
662 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
663 #define ELF_R_SYM(bfd, i) \
664 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
665 #define ELF_R_TYPE(bfd, i) \
666 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
667 #define ELF_R_INFO(bfd, s, t) \
668 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
670 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
671 #define ELF_R_SYM(bfd, i) \
673 #define ELF_R_TYPE(bfd, i) \
675 #define ELF_R_INFO(bfd, s, t) \
676 (ELF32_R_INFO (s, t))
679 /* The mips16 compiler uses a couple of special sections to handle
680 floating point arguments.
682 Section names that look like .mips16.fn.FNNAME contain stubs that
683 copy floating point arguments from the fp regs to the gp regs and
684 then jump to FNNAME. If any 32 bit function calls FNNAME, the
685 call should be redirected to the stub instead. If no 32 bit
686 function calls FNNAME, the stub should be discarded. We need to
687 consider any reference to the function, not just a call, because
688 if the address of the function is taken we will need the stub,
689 since the address might be passed to a 32 bit function.
691 Section names that look like .mips16.call.FNNAME contain stubs
692 that copy floating point arguments from the gp regs to the fp
693 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
694 then any 16 bit function that calls FNNAME should be redirected
695 to the stub instead. If FNNAME is not a 32 bit function, the
696 stub should be discarded.
698 .mips16.call.fp.FNNAME sections are similar, but contain stubs
699 which call FNNAME and then copy the return value from the fp regs
700 to the gp regs. These stubs store the return value in $18 while
701 calling FNNAME; any function which might call one of these stubs
702 must arrange to save $18 around the call. (This case is not
703 needed for 32 bit functions that call 16 bit functions, because
704 16 bit functions always return floating point values in both
707 Note that in all cases FNNAME might be defined statically.
708 Therefore, FNNAME is not used literally. Instead, the relocation
709 information will indicate which symbol the section is for.
711 We record any stubs that we find in the symbol table. */
713 #define FN_STUB ".mips16.fn."
714 #define CALL_STUB ".mips16.call."
715 #define CALL_FP_STUB ".mips16.call.fp."
717 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
718 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
719 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
721 /* The format of the first PLT entry in a VxWorks executable. */
722 static const bfd_vma mips_vxworks_exec_plt0_entry
[] = {
723 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
724 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
725 0x8f390008, /* lw t9, 8(t9) */
726 0x00000000, /* nop */
727 0x03200008, /* jr t9 */
731 /* The format of subsequent PLT entries. */
732 static const bfd_vma mips_vxworks_exec_plt_entry
[] = {
733 0x10000000, /* b .PLT_resolver */
734 0x24180000, /* li t8, <pltindex> */
735 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
736 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
737 0x8f390000, /* lw t9, 0(t9) */
738 0x00000000, /* nop */
739 0x03200008, /* jr t9 */
743 /* The format of the first PLT entry in a VxWorks shared object. */
744 static const bfd_vma mips_vxworks_shared_plt0_entry
[] = {
745 0x8f990008, /* lw t9, 8(gp) */
746 0x00000000, /* nop */
747 0x03200008, /* jr t9 */
748 0x00000000, /* nop */
749 0x00000000, /* nop */
753 /* The format of subsequent PLT entries. */
754 static const bfd_vma mips_vxworks_shared_plt_entry
[] = {
755 0x10000000, /* b .PLT_resolver */
756 0x24180000 /* li t8, <pltindex> */
759 /* Look up an entry in a MIPS ELF linker hash table. */
761 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
762 ((struct mips_elf_link_hash_entry *) \
763 elf_link_hash_lookup (&(table)->root, (string), (create), \
766 /* Traverse a MIPS ELF linker hash table. */
768 #define mips_elf_link_hash_traverse(table, func, info) \
769 (elf_link_hash_traverse \
771 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
774 /* Get the MIPS ELF linker hash table from a link_info structure. */
776 #define mips_elf_hash_table(p) \
777 ((struct mips_elf_link_hash_table *) ((p)->hash))
779 /* Find the base offsets for thread-local storage in this object,
780 for GD/LD and IE/LE respectively. */
782 #define TP_OFFSET 0x7000
783 #define DTP_OFFSET 0x8000
786 dtprel_base (struct bfd_link_info
*info
)
788 /* If tls_sec is NULL, we should have signalled an error already. */
789 if (elf_hash_table (info
)->tls_sec
== NULL
)
791 return elf_hash_table (info
)->tls_sec
->vma
+ DTP_OFFSET
;
795 tprel_base (struct bfd_link_info
*info
)
797 /* If tls_sec is NULL, we should have signalled an error already. */
798 if (elf_hash_table (info
)->tls_sec
== NULL
)
800 return elf_hash_table (info
)->tls_sec
->vma
+ TP_OFFSET
;
803 /* Create an entry in a MIPS ELF linker hash table. */
805 static struct bfd_hash_entry
*
806 mips_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
807 struct bfd_hash_table
*table
, const char *string
)
809 struct mips_elf_link_hash_entry
*ret
=
810 (struct mips_elf_link_hash_entry
*) entry
;
812 /* Allocate the structure if it has not already been allocated by a
815 ret
= bfd_hash_allocate (table
, sizeof (struct mips_elf_link_hash_entry
));
817 return (struct bfd_hash_entry
*) ret
;
819 /* Call the allocation method of the superclass. */
820 ret
= ((struct mips_elf_link_hash_entry
*)
821 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
825 /* Set local fields. */
826 memset (&ret
->esym
, 0, sizeof (EXTR
));
827 /* We use -2 as a marker to indicate that the information has
828 not been set. -1 means there is no associated ifd. */
830 ret
->possibly_dynamic_relocs
= 0;
831 ret
->readonly_reloc
= FALSE
;
832 ret
->no_fn_stub
= FALSE
;
834 ret
->need_fn_stub
= FALSE
;
835 ret
->call_stub
= NULL
;
836 ret
->call_fp_stub
= NULL
;
837 ret
->forced_local
= FALSE
;
838 ret
->is_branch_target
= FALSE
;
839 ret
->is_relocation_target
= FALSE
;
840 ret
->tls_type
= GOT_NORMAL
;
843 return (struct bfd_hash_entry
*) ret
;
847 _bfd_mips_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
849 if (!sec
->used_by_bfd
)
851 struct _mips_elf_section_data
*sdata
;
852 bfd_size_type amt
= sizeof (*sdata
);
854 sdata
= bfd_zalloc (abfd
, amt
);
857 sec
->used_by_bfd
= sdata
;
860 return _bfd_elf_new_section_hook (abfd
, sec
);
863 /* Read ECOFF debugging information from a .mdebug section into a
864 ecoff_debug_info structure. */
867 _bfd_mips_elf_read_ecoff_info (bfd
*abfd
, asection
*section
,
868 struct ecoff_debug_info
*debug
)
871 const struct ecoff_debug_swap
*swap
;
874 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
875 memset (debug
, 0, sizeof (*debug
));
877 ext_hdr
= bfd_malloc (swap
->external_hdr_size
);
878 if (ext_hdr
== NULL
&& swap
->external_hdr_size
!= 0)
881 if (! bfd_get_section_contents (abfd
, section
, ext_hdr
, 0,
882 swap
->external_hdr_size
))
885 symhdr
= &debug
->symbolic_header
;
886 (*swap
->swap_hdr_in
) (abfd
, ext_hdr
, symhdr
);
888 /* The symbolic header contains absolute file offsets and sizes to
890 #define READ(ptr, offset, count, size, type) \
891 if (symhdr->count == 0) \
895 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
896 debug->ptr = bfd_malloc (amt); \
897 if (debug->ptr == NULL) \
899 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
900 || bfd_bread (debug->ptr, amt, abfd) != amt) \
904 READ (line
, cbLineOffset
, cbLine
, sizeof (unsigned char), unsigned char *);
905 READ (external_dnr
, cbDnOffset
, idnMax
, swap
->external_dnr_size
, void *);
906 READ (external_pdr
, cbPdOffset
, ipdMax
, swap
->external_pdr_size
, void *);
907 READ (external_sym
, cbSymOffset
, isymMax
, swap
->external_sym_size
, void *);
908 READ (external_opt
, cbOptOffset
, ioptMax
, swap
->external_opt_size
, void *);
909 READ (external_aux
, cbAuxOffset
, iauxMax
, sizeof (union aux_ext
),
911 READ (ss
, cbSsOffset
, issMax
, sizeof (char), char *);
912 READ (ssext
, cbSsExtOffset
, issExtMax
, sizeof (char), char *);
913 READ (external_fdr
, cbFdOffset
, ifdMax
, swap
->external_fdr_size
, void *);
914 READ (external_rfd
, cbRfdOffset
, crfd
, swap
->external_rfd_size
, void *);
915 READ (external_ext
, cbExtOffset
, iextMax
, swap
->external_ext_size
, void *);
925 if (debug
->line
!= NULL
)
927 if (debug
->external_dnr
!= NULL
)
928 free (debug
->external_dnr
);
929 if (debug
->external_pdr
!= NULL
)
930 free (debug
->external_pdr
);
931 if (debug
->external_sym
!= NULL
)
932 free (debug
->external_sym
);
933 if (debug
->external_opt
!= NULL
)
934 free (debug
->external_opt
);
935 if (debug
->external_aux
!= NULL
)
936 free (debug
->external_aux
);
937 if (debug
->ss
!= NULL
)
939 if (debug
->ssext
!= NULL
)
941 if (debug
->external_fdr
!= NULL
)
942 free (debug
->external_fdr
);
943 if (debug
->external_rfd
!= NULL
)
944 free (debug
->external_rfd
);
945 if (debug
->external_ext
!= NULL
)
946 free (debug
->external_ext
);
950 /* Swap RPDR (runtime procedure table entry) for output. */
953 ecoff_swap_rpdr_out (bfd
*abfd
, const RPDR
*in
, struct rpdr_ext
*ex
)
955 H_PUT_S32 (abfd
, in
->adr
, ex
->p_adr
);
956 H_PUT_32 (abfd
, in
->regmask
, ex
->p_regmask
);
957 H_PUT_32 (abfd
, in
->regoffset
, ex
->p_regoffset
);
958 H_PUT_32 (abfd
, in
->fregmask
, ex
->p_fregmask
);
959 H_PUT_32 (abfd
, in
->fregoffset
, ex
->p_fregoffset
);
960 H_PUT_32 (abfd
, in
->frameoffset
, ex
->p_frameoffset
);
962 H_PUT_16 (abfd
, in
->framereg
, ex
->p_framereg
);
963 H_PUT_16 (abfd
, in
->pcreg
, ex
->p_pcreg
);
965 H_PUT_32 (abfd
, in
->irpss
, ex
->p_irpss
);
968 /* Create a runtime procedure table from the .mdebug section. */
971 mips_elf_create_procedure_table (void *handle
, bfd
*abfd
,
972 struct bfd_link_info
*info
, asection
*s
,
973 struct ecoff_debug_info
*debug
)
975 const struct ecoff_debug_swap
*swap
;
976 HDRR
*hdr
= &debug
->symbolic_header
;
978 struct rpdr_ext
*erp
;
980 struct pdr_ext
*epdr
;
981 struct sym_ext
*esym
;
986 unsigned long sindex
;
990 const char *no_name_func
= _("static procedure (no name)");
998 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
1000 sindex
= strlen (no_name_func
) + 1;
1001 count
= hdr
->ipdMax
;
1004 size
= swap
->external_pdr_size
;
1006 epdr
= bfd_malloc (size
* count
);
1010 if (! _bfd_ecoff_get_accumulated_pdr (handle
, (bfd_byte
*) epdr
))
1013 size
= sizeof (RPDR
);
1014 rp
= rpdr
= bfd_malloc (size
* count
);
1018 size
= sizeof (char *);
1019 sv
= bfd_malloc (size
* count
);
1023 count
= hdr
->isymMax
;
1024 size
= swap
->external_sym_size
;
1025 esym
= bfd_malloc (size
* count
);
1029 if (! _bfd_ecoff_get_accumulated_sym (handle
, (bfd_byte
*) esym
))
1032 count
= hdr
->issMax
;
1033 ss
= bfd_malloc (count
);
1036 if (! _bfd_ecoff_get_accumulated_ss (handle
, (bfd_byte
*) ss
))
1039 count
= hdr
->ipdMax
;
1040 for (i
= 0; i
< (unsigned long) count
; i
++, rp
++)
1042 (*swap
->swap_pdr_in
) (abfd
, epdr
+ i
, &pdr
);
1043 (*swap
->swap_sym_in
) (abfd
, &esym
[pdr
.isym
], &sym
);
1044 rp
->adr
= sym
.value
;
1045 rp
->regmask
= pdr
.regmask
;
1046 rp
->regoffset
= pdr
.regoffset
;
1047 rp
->fregmask
= pdr
.fregmask
;
1048 rp
->fregoffset
= pdr
.fregoffset
;
1049 rp
->frameoffset
= pdr
.frameoffset
;
1050 rp
->framereg
= pdr
.framereg
;
1051 rp
->pcreg
= pdr
.pcreg
;
1053 sv
[i
] = ss
+ sym
.iss
;
1054 sindex
+= strlen (sv
[i
]) + 1;
1058 size
= sizeof (struct rpdr_ext
) * (count
+ 2) + sindex
;
1059 size
= BFD_ALIGN (size
, 16);
1060 rtproc
= bfd_alloc (abfd
, size
);
1063 mips_elf_hash_table (info
)->procedure_count
= 0;
1067 mips_elf_hash_table (info
)->procedure_count
= count
+ 2;
1070 memset (erp
, 0, sizeof (struct rpdr_ext
));
1072 str
= (char *) rtproc
+ sizeof (struct rpdr_ext
) * (count
+ 2);
1073 strcpy (str
, no_name_func
);
1074 str
+= strlen (no_name_func
) + 1;
1075 for (i
= 0; i
< count
; i
++)
1077 ecoff_swap_rpdr_out (abfd
, rpdr
+ i
, erp
+ i
);
1078 strcpy (str
, sv
[i
]);
1079 str
+= strlen (sv
[i
]) + 1;
1081 H_PUT_S32 (abfd
, -1, (erp
+ count
)->p_adr
);
1083 /* Set the size and contents of .rtproc section. */
1085 s
->contents
= rtproc
;
1087 /* Skip this section later on (I don't think this currently
1088 matters, but someday it might). */
1089 s
->map_head
.link_order
= NULL
;
1118 /* Check the mips16 stubs for a particular symbol, and see if we can
1122 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry
*h
,
1123 void *data ATTRIBUTE_UNUSED
)
1125 if (h
->root
.root
.type
== bfd_link_hash_warning
)
1126 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
1128 if (h
->fn_stub
!= NULL
1129 && ! h
->need_fn_stub
)
1131 /* We don't need the fn_stub; the only references to this symbol
1132 are 16 bit calls. Clobber the size to 0 to prevent it from
1133 being included in the link. */
1134 h
->fn_stub
->size
= 0;
1135 h
->fn_stub
->flags
&= ~SEC_RELOC
;
1136 h
->fn_stub
->reloc_count
= 0;
1137 h
->fn_stub
->flags
|= SEC_EXCLUDE
;
1140 if (h
->call_stub
!= NULL
1141 && h
->root
.other
== STO_MIPS16
)
1143 /* We don't need the call_stub; this is a 16 bit function, so
1144 calls from other 16 bit functions are OK. Clobber the size
1145 to 0 to prevent it from being included in the link. */
1146 h
->call_stub
->size
= 0;
1147 h
->call_stub
->flags
&= ~SEC_RELOC
;
1148 h
->call_stub
->reloc_count
= 0;
1149 h
->call_stub
->flags
|= SEC_EXCLUDE
;
1152 if (h
->call_fp_stub
!= NULL
1153 && h
->root
.other
== STO_MIPS16
)
1155 /* We don't need the call_stub; this is a 16 bit function, so
1156 calls from other 16 bit functions are OK. Clobber the size
1157 to 0 to prevent it from being included in the link. */
1158 h
->call_fp_stub
->size
= 0;
1159 h
->call_fp_stub
->flags
&= ~SEC_RELOC
;
1160 h
->call_fp_stub
->reloc_count
= 0;
1161 h
->call_fp_stub
->flags
|= SEC_EXCLUDE
;
1167 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1168 Most mips16 instructions are 16 bits, but these instructions
1171 The format of these instructions is:
1173 +--------------+--------------------------------+
1174 | JALX | X| Imm 20:16 | Imm 25:21 |
1175 +--------------+--------------------------------+
1177 +-----------------------------------------------+
1179 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1180 Note that the immediate value in the first word is swapped.
1182 When producing a relocatable object file, R_MIPS16_26 is
1183 handled mostly like R_MIPS_26. In particular, the addend is
1184 stored as a straight 26-bit value in a 32-bit instruction.
1185 (gas makes life simpler for itself by never adjusting a
1186 R_MIPS16_26 reloc to be against a section, so the addend is
1187 always zero). However, the 32 bit instruction is stored as 2
1188 16-bit values, rather than a single 32-bit value. In a
1189 big-endian file, the result is the same; in a little-endian
1190 file, the two 16-bit halves of the 32 bit value are swapped.
1191 This is so that a disassembler can recognize the jal
1194 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1195 instruction stored as two 16-bit values. The addend A is the
1196 contents of the targ26 field. The calculation is the same as
1197 R_MIPS_26. When storing the calculated value, reorder the
1198 immediate value as shown above, and don't forget to store the
1199 value as two 16-bit values.
1201 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1205 +--------+----------------------+
1209 +--------+----------------------+
1212 +----------+------+-------------+
1216 +----------+--------------------+
1217 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1218 ((sub1 << 16) | sub2)).
1220 When producing a relocatable object file, the calculation is
1221 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1222 When producing a fully linked file, the calculation is
1223 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1224 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1226 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1227 mode. A typical instruction will have a format like this:
1229 +--------------+--------------------------------+
1230 | EXTEND | Imm 10:5 | Imm 15:11 |
1231 +--------------+--------------------------------+
1232 | Major | rx | ry | Imm 4:0 |
1233 +--------------+--------------------------------+
1235 EXTEND is the five bit value 11110. Major is the instruction
1238 This is handled exactly like R_MIPS_GPREL16, except that the
1239 addend is retrieved and stored as shown in this diagram; that
1240 is, the Imm fields above replace the V-rel16 field.
1242 All we need to do here is shuffle the bits appropriately. As
1243 above, the two 16-bit halves must be swapped on a
1244 little-endian system.
1246 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1247 access data when neither GP-relative nor PC-relative addressing
1248 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1249 except that the addend is retrieved and stored as shown above
1253 _bfd_mips16_elf_reloc_unshuffle (bfd
*abfd
, int r_type
,
1254 bfd_boolean jal_shuffle
, bfd_byte
*data
)
1256 bfd_vma extend
, insn
, val
;
1258 if (r_type
!= R_MIPS16_26
&& r_type
!= R_MIPS16_GPREL
1259 && r_type
!= R_MIPS16_HI16
&& r_type
!= R_MIPS16_LO16
)
1262 /* Pick up the mips16 extend instruction and the real instruction. */
1263 extend
= bfd_get_16 (abfd
, data
);
1264 insn
= bfd_get_16 (abfd
, data
+ 2);
1265 if (r_type
== R_MIPS16_26
)
1268 val
= ((extend
& 0xfc00) << 16) | ((extend
& 0x3e0) << 11)
1269 | ((extend
& 0x1f) << 21) | insn
;
1271 val
= extend
<< 16 | insn
;
1274 val
= ((extend
& 0xf800) << 16) | ((insn
& 0xffe0) << 11)
1275 | ((extend
& 0x1f) << 11) | (extend
& 0x7e0) | (insn
& 0x1f);
1276 bfd_put_32 (abfd
, val
, data
);
1280 _bfd_mips16_elf_reloc_shuffle (bfd
*abfd
, int r_type
,
1281 bfd_boolean jal_shuffle
, bfd_byte
*data
)
1283 bfd_vma extend
, insn
, val
;
1285 if (r_type
!= R_MIPS16_26
&& r_type
!= R_MIPS16_GPREL
1286 && r_type
!= R_MIPS16_HI16
&& r_type
!= R_MIPS16_LO16
)
1289 val
= bfd_get_32 (abfd
, data
);
1290 if (r_type
== R_MIPS16_26
)
1294 insn
= val
& 0xffff;
1295 extend
= ((val
>> 16) & 0xfc00) | ((val
>> 11) & 0x3e0)
1296 | ((val
>> 21) & 0x1f);
1300 insn
= val
& 0xffff;
1306 insn
= ((val
>> 11) & 0xffe0) | (val
& 0x1f);
1307 extend
= ((val
>> 16) & 0xf800) | ((val
>> 11) & 0x1f) | (val
& 0x7e0);
1309 bfd_put_16 (abfd
, insn
, data
+ 2);
1310 bfd_put_16 (abfd
, extend
, data
);
1313 bfd_reloc_status_type
1314 _bfd_mips_elf_gprel16_with_gp (bfd
*abfd
, asymbol
*symbol
,
1315 arelent
*reloc_entry
, asection
*input_section
,
1316 bfd_boolean relocatable
, void *data
, bfd_vma gp
)
1320 bfd_reloc_status_type status
;
1322 if (bfd_is_com_section (symbol
->section
))
1325 relocation
= symbol
->value
;
1327 relocation
+= symbol
->section
->output_section
->vma
;
1328 relocation
+= symbol
->section
->output_offset
;
1330 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1331 return bfd_reloc_outofrange
;
1333 /* Set val to the offset into the section or symbol. */
1334 val
= reloc_entry
->addend
;
1336 _bfd_mips_elf_sign_extend (val
, 16);
1338 /* Adjust val for the final section location and GP value. If we
1339 are producing relocatable output, we don't want to do this for
1340 an external symbol. */
1342 || (symbol
->flags
& BSF_SECTION_SYM
) != 0)
1343 val
+= relocation
- gp
;
1345 if (reloc_entry
->howto
->partial_inplace
)
1347 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
1349 + reloc_entry
->address
);
1350 if (status
!= bfd_reloc_ok
)
1354 reloc_entry
->addend
= val
;
1357 reloc_entry
->address
+= input_section
->output_offset
;
1359 return bfd_reloc_ok
;
1362 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1363 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1364 that contains the relocation field and DATA points to the start of
1369 struct mips_hi16
*next
;
1371 asection
*input_section
;
1375 /* FIXME: This should not be a static variable. */
1377 static struct mips_hi16
*mips_hi16_list
;
1379 /* A howto special_function for REL *HI16 relocations. We can only
1380 calculate the correct value once we've seen the partnering
1381 *LO16 relocation, so just save the information for later.
1383 The ABI requires that the *LO16 immediately follow the *HI16.
1384 However, as a GNU extension, we permit an arbitrary number of
1385 *HI16s to be associated with a single *LO16. This significantly
1386 simplies the relocation handling in gcc. */
1388 bfd_reloc_status_type
1389 _bfd_mips_elf_hi16_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
1390 asymbol
*symbol ATTRIBUTE_UNUSED
, void *data
,
1391 asection
*input_section
, bfd
*output_bfd
,
1392 char **error_message ATTRIBUTE_UNUSED
)
1394 struct mips_hi16
*n
;
1396 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1397 return bfd_reloc_outofrange
;
1399 n
= bfd_malloc (sizeof *n
);
1401 return bfd_reloc_outofrange
;
1403 n
->next
= mips_hi16_list
;
1405 n
->input_section
= input_section
;
1406 n
->rel
= *reloc_entry
;
1409 if (output_bfd
!= NULL
)
1410 reloc_entry
->address
+= input_section
->output_offset
;
1412 return bfd_reloc_ok
;
1415 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1416 like any other 16-bit relocation when applied to global symbols, but is
1417 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1419 bfd_reloc_status_type
1420 _bfd_mips_elf_got16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
1421 void *data
, asection
*input_section
,
1422 bfd
*output_bfd
, char **error_message
)
1424 if ((symbol
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
1425 || bfd_is_und_section (bfd_get_section (symbol
))
1426 || bfd_is_com_section (bfd_get_section (symbol
)))
1427 /* The relocation is against a global symbol. */
1428 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1429 input_section
, output_bfd
,
1432 return _bfd_mips_elf_hi16_reloc (abfd
, reloc_entry
, symbol
, data
,
1433 input_section
, output_bfd
, error_message
);
1436 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1437 is a straightforward 16 bit inplace relocation, but we must deal with
1438 any partnering high-part relocations as well. */
1440 bfd_reloc_status_type
1441 _bfd_mips_elf_lo16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
1442 void *data
, asection
*input_section
,
1443 bfd
*output_bfd
, char **error_message
)
1446 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
1448 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1449 return bfd_reloc_outofrange
;
1451 _bfd_mips16_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
1453 vallo
= bfd_get_32 (abfd
, location
);
1454 _bfd_mips16_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
1457 while (mips_hi16_list
!= NULL
)
1459 bfd_reloc_status_type ret
;
1460 struct mips_hi16
*hi
;
1462 hi
= mips_hi16_list
;
1464 /* R_MIPS_GOT16 relocations are something of a special case. We
1465 want to install the addend in the same way as for a R_MIPS_HI16
1466 relocation (with a rightshift of 16). However, since GOT16
1467 relocations can also be used with global symbols, their howto
1468 has a rightshift of 0. */
1469 if (hi
->rel
.howto
->type
== R_MIPS_GOT16
)
1470 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS_HI16
, FALSE
);
1472 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1473 carry or borrow will induce a change of +1 or -1 in the high part. */
1474 hi
->rel
.addend
+= (vallo
+ 0x8000) & 0xffff;
1476 ret
= _bfd_mips_elf_generic_reloc (abfd
, &hi
->rel
, symbol
, hi
->data
,
1477 hi
->input_section
, output_bfd
,
1479 if (ret
!= bfd_reloc_ok
)
1482 mips_hi16_list
= hi
->next
;
1486 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1487 input_section
, output_bfd
,
1491 /* A generic howto special_function. This calculates and installs the
1492 relocation itself, thus avoiding the oft-discussed problems in
1493 bfd_perform_relocation and bfd_install_relocation. */
1495 bfd_reloc_status_type
1496 _bfd_mips_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
1497 asymbol
*symbol
, void *data ATTRIBUTE_UNUSED
,
1498 asection
*input_section
, bfd
*output_bfd
,
1499 char **error_message ATTRIBUTE_UNUSED
)
1502 bfd_reloc_status_type status
;
1503 bfd_boolean relocatable
;
1505 relocatable
= (output_bfd
!= NULL
);
1507 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1508 return bfd_reloc_outofrange
;
1510 /* Build up the field adjustment in VAL. */
1512 if (!relocatable
|| (symbol
->flags
& BSF_SECTION_SYM
) != 0)
1514 /* Either we're calculating the final field value or we have a
1515 relocation against a section symbol. Add in the section's
1516 offset or address. */
1517 val
+= symbol
->section
->output_section
->vma
;
1518 val
+= symbol
->section
->output_offset
;
1523 /* We're calculating the final field value. Add in the symbol's value
1524 and, if pc-relative, subtract the address of the field itself. */
1525 val
+= symbol
->value
;
1526 if (reloc_entry
->howto
->pc_relative
)
1528 val
-= input_section
->output_section
->vma
;
1529 val
-= input_section
->output_offset
;
1530 val
-= reloc_entry
->address
;
1534 /* VAL is now the final adjustment. If we're keeping this relocation
1535 in the output file, and if the relocation uses a separate addend,
1536 we just need to add VAL to that addend. Otherwise we need to add
1537 VAL to the relocation field itself. */
1538 if (relocatable
&& !reloc_entry
->howto
->partial_inplace
)
1539 reloc_entry
->addend
+= val
;
1542 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
1544 /* Add in the separate addend, if any. */
1545 val
+= reloc_entry
->addend
;
1547 /* Add VAL to the relocation field. */
1548 _bfd_mips16_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
1550 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
1552 _bfd_mips16_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
1555 if (status
!= bfd_reloc_ok
)
1560 reloc_entry
->address
+= input_section
->output_offset
;
1562 return bfd_reloc_ok
;
1565 /* Swap an entry in a .gptab section. Note that these routines rely
1566 on the equivalence of the two elements of the union. */
1569 bfd_mips_elf32_swap_gptab_in (bfd
*abfd
, const Elf32_External_gptab
*ex
,
1572 in
->gt_entry
.gt_g_value
= H_GET_32 (abfd
, ex
->gt_entry
.gt_g_value
);
1573 in
->gt_entry
.gt_bytes
= H_GET_32 (abfd
, ex
->gt_entry
.gt_bytes
);
1577 bfd_mips_elf32_swap_gptab_out (bfd
*abfd
, const Elf32_gptab
*in
,
1578 Elf32_External_gptab
*ex
)
1580 H_PUT_32 (abfd
, in
->gt_entry
.gt_g_value
, ex
->gt_entry
.gt_g_value
);
1581 H_PUT_32 (abfd
, in
->gt_entry
.gt_bytes
, ex
->gt_entry
.gt_bytes
);
1585 bfd_elf32_swap_compact_rel_out (bfd
*abfd
, const Elf32_compact_rel
*in
,
1586 Elf32_External_compact_rel
*ex
)
1588 H_PUT_32 (abfd
, in
->id1
, ex
->id1
);
1589 H_PUT_32 (abfd
, in
->num
, ex
->num
);
1590 H_PUT_32 (abfd
, in
->id2
, ex
->id2
);
1591 H_PUT_32 (abfd
, in
->offset
, ex
->offset
);
1592 H_PUT_32 (abfd
, in
->reserved0
, ex
->reserved0
);
1593 H_PUT_32 (abfd
, in
->reserved1
, ex
->reserved1
);
1597 bfd_elf32_swap_crinfo_out (bfd
*abfd
, const Elf32_crinfo
*in
,
1598 Elf32_External_crinfo
*ex
)
1602 l
= (((in
->ctype
& CRINFO_CTYPE
) << CRINFO_CTYPE_SH
)
1603 | ((in
->rtype
& CRINFO_RTYPE
) << CRINFO_RTYPE_SH
)
1604 | ((in
->dist2to
& CRINFO_DIST2TO
) << CRINFO_DIST2TO_SH
)
1605 | ((in
->relvaddr
& CRINFO_RELVADDR
) << CRINFO_RELVADDR_SH
));
1606 H_PUT_32 (abfd
, l
, ex
->info
);
1607 H_PUT_32 (abfd
, in
->konst
, ex
->konst
);
1608 H_PUT_32 (abfd
, in
->vaddr
, ex
->vaddr
);
1611 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1612 routines swap this structure in and out. They are used outside of
1613 BFD, so they are globally visible. */
1616 bfd_mips_elf32_swap_reginfo_in (bfd
*abfd
, const Elf32_External_RegInfo
*ex
,
1619 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
1620 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
1621 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
1622 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
1623 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
1624 in
->ri_gp_value
= H_GET_32 (abfd
, ex
->ri_gp_value
);
1628 bfd_mips_elf32_swap_reginfo_out (bfd
*abfd
, const Elf32_RegInfo
*in
,
1629 Elf32_External_RegInfo
*ex
)
1631 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
1632 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
1633 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
1634 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
1635 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
1636 H_PUT_32 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
1639 /* In the 64 bit ABI, the .MIPS.options section holds register
1640 information in an Elf64_Reginfo structure. These routines swap
1641 them in and out. They are globally visible because they are used
1642 outside of BFD. These routines are here so that gas can call them
1643 without worrying about whether the 64 bit ABI has been included. */
1646 bfd_mips_elf64_swap_reginfo_in (bfd
*abfd
, const Elf64_External_RegInfo
*ex
,
1647 Elf64_Internal_RegInfo
*in
)
1649 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
1650 in
->ri_pad
= H_GET_32 (abfd
, ex
->ri_pad
);
1651 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
1652 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
1653 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
1654 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
1655 in
->ri_gp_value
= H_GET_64 (abfd
, ex
->ri_gp_value
);
1659 bfd_mips_elf64_swap_reginfo_out (bfd
*abfd
, const Elf64_Internal_RegInfo
*in
,
1660 Elf64_External_RegInfo
*ex
)
1662 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
1663 H_PUT_32 (abfd
, in
->ri_pad
, ex
->ri_pad
);
1664 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
1665 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
1666 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
1667 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
1668 H_PUT_64 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
1671 /* Swap in an options header. */
1674 bfd_mips_elf_swap_options_in (bfd
*abfd
, const Elf_External_Options
*ex
,
1675 Elf_Internal_Options
*in
)
1677 in
->kind
= H_GET_8 (abfd
, ex
->kind
);
1678 in
->size
= H_GET_8 (abfd
, ex
->size
);
1679 in
->section
= H_GET_16 (abfd
, ex
->section
);
1680 in
->info
= H_GET_32 (abfd
, ex
->info
);
1683 /* Swap out an options header. */
1686 bfd_mips_elf_swap_options_out (bfd
*abfd
, const Elf_Internal_Options
*in
,
1687 Elf_External_Options
*ex
)
1689 H_PUT_8 (abfd
, in
->kind
, ex
->kind
);
1690 H_PUT_8 (abfd
, in
->size
, ex
->size
);
1691 H_PUT_16 (abfd
, in
->section
, ex
->section
);
1692 H_PUT_32 (abfd
, in
->info
, ex
->info
);
1695 /* This function is called via qsort() to sort the dynamic relocation
1696 entries by increasing r_symndx value. */
1699 sort_dynamic_relocs (const void *arg1
, const void *arg2
)
1701 Elf_Internal_Rela int_reloc1
;
1702 Elf_Internal_Rela int_reloc2
;
1705 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg1
, &int_reloc1
);
1706 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg2
, &int_reloc2
);
1708 diff
= ELF32_R_SYM (int_reloc1
.r_info
) - ELF32_R_SYM (int_reloc2
.r_info
);
1712 if (int_reloc1
.r_offset
< int_reloc2
.r_offset
)
1714 if (int_reloc1
.r_offset
> int_reloc2
.r_offset
)
1719 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1722 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED
,
1723 const void *arg2 ATTRIBUTE_UNUSED
)
1726 Elf_Internal_Rela int_reloc1
[3];
1727 Elf_Internal_Rela int_reloc2
[3];
1729 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
1730 (reldyn_sorting_bfd
, arg1
, int_reloc1
);
1731 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
1732 (reldyn_sorting_bfd
, arg2
, int_reloc2
);
1734 if (ELF64_R_SYM (int_reloc1
[0].r_info
) < ELF64_R_SYM (int_reloc2
[0].r_info
))
1736 if (ELF64_R_SYM (int_reloc1
[0].r_info
) > ELF64_R_SYM (int_reloc2
[0].r_info
))
1739 if (int_reloc1
[0].r_offset
< int_reloc2
[0].r_offset
)
1741 if (int_reloc1
[0].r_offset
> int_reloc2
[0].r_offset
)
1750 /* This routine is used to write out ECOFF debugging external symbol
1751 information. It is called via mips_elf_link_hash_traverse. The
1752 ECOFF external symbol information must match the ELF external
1753 symbol information. Unfortunately, at this point we don't know
1754 whether a symbol is required by reloc information, so the two
1755 tables may wind up being different. We must sort out the external
1756 symbol information before we can set the final size of the .mdebug
1757 section, and we must set the size of the .mdebug section before we
1758 can relocate any sections, and we can't know which symbols are
1759 required by relocation until we relocate the sections.
1760 Fortunately, it is relatively unlikely that any symbol will be
1761 stripped but required by a reloc. In particular, it can not happen
1762 when generating a final executable. */
1765 mips_elf_output_extsym (struct mips_elf_link_hash_entry
*h
, void *data
)
1767 struct extsym_info
*einfo
= data
;
1769 asection
*sec
, *output_section
;
1771 if (h
->root
.root
.type
== bfd_link_hash_warning
)
1772 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
1774 if (h
->root
.indx
== -2)
1776 else if ((h
->root
.def_dynamic
1777 || h
->root
.ref_dynamic
1778 || h
->root
.type
== bfd_link_hash_new
)
1779 && !h
->root
.def_regular
1780 && !h
->root
.ref_regular
)
1782 else if (einfo
->info
->strip
== strip_all
1783 || (einfo
->info
->strip
== strip_some
1784 && bfd_hash_lookup (einfo
->info
->keep_hash
,
1785 h
->root
.root
.root
.string
,
1786 FALSE
, FALSE
) == NULL
))
1794 if (h
->esym
.ifd
== -2)
1797 h
->esym
.cobol_main
= 0;
1798 h
->esym
.weakext
= 0;
1799 h
->esym
.reserved
= 0;
1800 h
->esym
.ifd
= ifdNil
;
1801 h
->esym
.asym
.value
= 0;
1802 h
->esym
.asym
.st
= stGlobal
;
1804 if (h
->root
.root
.type
== bfd_link_hash_undefined
1805 || h
->root
.root
.type
== bfd_link_hash_undefweak
)
1809 /* Use undefined class. Also, set class and type for some
1811 name
= h
->root
.root
.root
.string
;
1812 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
1813 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
1815 h
->esym
.asym
.sc
= scData
;
1816 h
->esym
.asym
.st
= stLabel
;
1817 h
->esym
.asym
.value
= 0;
1819 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
1821 h
->esym
.asym
.sc
= scAbs
;
1822 h
->esym
.asym
.st
= stLabel
;
1823 h
->esym
.asym
.value
=
1824 mips_elf_hash_table (einfo
->info
)->procedure_count
;
1826 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (einfo
->abfd
))
1828 h
->esym
.asym
.sc
= scAbs
;
1829 h
->esym
.asym
.st
= stLabel
;
1830 h
->esym
.asym
.value
= elf_gp (einfo
->abfd
);
1833 h
->esym
.asym
.sc
= scUndefined
;
1835 else if (h
->root
.root
.type
!= bfd_link_hash_defined
1836 && h
->root
.root
.type
!= bfd_link_hash_defweak
)
1837 h
->esym
.asym
.sc
= scAbs
;
1842 sec
= h
->root
.root
.u
.def
.section
;
1843 output_section
= sec
->output_section
;
1845 /* When making a shared library and symbol h is the one from
1846 the another shared library, OUTPUT_SECTION may be null. */
1847 if (output_section
== NULL
)
1848 h
->esym
.asym
.sc
= scUndefined
;
1851 name
= bfd_section_name (output_section
->owner
, output_section
);
1853 if (strcmp (name
, ".text") == 0)
1854 h
->esym
.asym
.sc
= scText
;
1855 else if (strcmp (name
, ".data") == 0)
1856 h
->esym
.asym
.sc
= scData
;
1857 else if (strcmp (name
, ".sdata") == 0)
1858 h
->esym
.asym
.sc
= scSData
;
1859 else if (strcmp (name
, ".rodata") == 0
1860 || strcmp (name
, ".rdata") == 0)
1861 h
->esym
.asym
.sc
= scRData
;
1862 else if (strcmp (name
, ".bss") == 0)
1863 h
->esym
.asym
.sc
= scBss
;
1864 else if (strcmp (name
, ".sbss") == 0)
1865 h
->esym
.asym
.sc
= scSBss
;
1866 else if (strcmp (name
, ".init") == 0)
1867 h
->esym
.asym
.sc
= scInit
;
1868 else if (strcmp (name
, ".fini") == 0)
1869 h
->esym
.asym
.sc
= scFini
;
1871 h
->esym
.asym
.sc
= scAbs
;
1875 h
->esym
.asym
.reserved
= 0;
1876 h
->esym
.asym
.index
= indexNil
;
1879 if (h
->root
.root
.type
== bfd_link_hash_common
)
1880 h
->esym
.asym
.value
= h
->root
.root
.u
.c
.size
;
1881 else if (h
->root
.root
.type
== bfd_link_hash_defined
1882 || h
->root
.root
.type
== bfd_link_hash_defweak
)
1884 if (h
->esym
.asym
.sc
== scCommon
)
1885 h
->esym
.asym
.sc
= scBss
;
1886 else if (h
->esym
.asym
.sc
== scSCommon
)
1887 h
->esym
.asym
.sc
= scSBss
;
1889 sec
= h
->root
.root
.u
.def
.section
;
1890 output_section
= sec
->output_section
;
1891 if (output_section
!= NULL
)
1892 h
->esym
.asym
.value
= (h
->root
.root
.u
.def
.value
1893 + sec
->output_offset
1894 + output_section
->vma
);
1896 h
->esym
.asym
.value
= 0;
1898 else if (h
->root
.needs_plt
)
1900 struct mips_elf_link_hash_entry
*hd
= h
;
1901 bfd_boolean no_fn_stub
= h
->no_fn_stub
;
1903 while (hd
->root
.root
.type
== bfd_link_hash_indirect
)
1905 hd
= (struct mips_elf_link_hash_entry
*)h
->root
.root
.u
.i
.link
;
1906 no_fn_stub
= no_fn_stub
|| hd
->no_fn_stub
;
1911 /* Set type and value for a symbol with a function stub. */
1912 h
->esym
.asym
.st
= stProc
;
1913 sec
= hd
->root
.root
.u
.def
.section
;
1915 h
->esym
.asym
.value
= 0;
1918 output_section
= sec
->output_section
;
1919 if (output_section
!= NULL
)
1920 h
->esym
.asym
.value
= (hd
->root
.plt
.offset
1921 + sec
->output_offset
1922 + output_section
->vma
);
1924 h
->esym
.asym
.value
= 0;
1929 if (! bfd_ecoff_debug_one_external (einfo
->abfd
, einfo
->debug
, einfo
->swap
,
1930 h
->root
.root
.root
.string
,
1933 einfo
->failed
= TRUE
;
1940 /* A comparison routine used to sort .gptab entries. */
1943 gptab_compare (const void *p1
, const void *p2
)
1945 const Elf32_gptab
*a1
= p1
;
1946 const Elf32_gptab
*a2
= p2
;
1948 return a1
->gt_entry
.gt_g_value
- a2
->gt_entry
.gt_g_value
;
1951 /* Functions to manage the got entry hash table. */
1953 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1956 static INLINE hashval_t
1957 mips_elf_hash_bfd_vma (bfd_vma addr
)
1960 return addr
+ (addr
>> 32);
1966 /* got_entries only match if they're identical, except for gotidx, so
1967 use all fields to compute the hash, and compare the appropriate
1971 mips_elf_got_entry_hash (const void *entry_
)
1973 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
1975 return entry
->symndx
1976 + ((entry
->tls_type
& GOT_TLS_LDM
) << 17)
1977 + (! entry
->abfd
? mips_elf_hash_bfd_vma (entry
->d
.address
)
1979 + (entry
->symndx
>= 0 ? mips_elf_hash_bfd_vma (entry
->d
.addend
)
1980 : entry
->d
.h
->root
.root
.root
.hash
));
1984 mips_elf_got_entry_eq (const void *entry1
, const void *entry2
)
1986 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
1987 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
1989 /* An LDM entry can only match another LDM entry. */
1990 if ((e1
->tls_type
^ e2
->tls_type
) & GOT_TLS_LDM
)
1993 return e1
->abfd
== e2
->abfd
&& e1
->symndx
== e2
->symndx
1994 && (! e1
->abfd
? e1
->d
.address
== e2
->d
.address
1995 : e1
->symndx
>= 0 ? e1
->d
.addend
== e2
->d
.addend
1996 : e1
->d
.h
== e2
->d
.h
);
1999 /* multi_got_entries are still a match in the case of global objects,
2000 even if the input bfd in which they're referenced differs, so the
2001 hash computation and compare functions are adjusted
2005 mips_elf_multi_got_entry_hash (const void *entry_
)
2007 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
2009 return entry
->symndx
2011 ? mips_elf_hash_bfd_vma (entry
->d
.address
)
2012 : entry
->symndx
>= 0
2013 ? ((entry
->tls_type
& GOT_TLS_LDM
)
2014 ? (GOT_TLS_LDM
<< 17)
2016 + mips_elf_hash_bfd_vma (entry
->d
.addend
)))
2017 : entry
->d
.h
->root
.root
.root
.hash
);
2021 mips_elf_multi_got_entry_eq (const void *entry1
, const void *entry2
)
2023 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
2024 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
2026 /* Any two LDM entries match. */
2027 if (e1
->tls_type
& e2
->tls_type
& GOT_TLS_LDM
)
2030 /* Nothing else matches an LDM entry. */
2031 if ((e1
->tls_type
^ e2
->tls_type
) & GOT_TLS_LDM
)
2034 return e1
->symndx
== e2
->symndx
2035 && (e1
->symndx
>= 0 ? e1
->abfd
== e2
->abfd
&& e1
->d
.addend
== e2
->d
.addend
2036 : e1
->abfd
== NULL
|| e2
->abfd
== NULL
2037 ? e1
->abfd
== e2
->abfd
&& e1
->d
.address
== e2
->d
.address
2038 : e1
->d
.h
== e2
->d
.h
);
2041 /* Return the dynamic relocation section. If it doesn't exist, try to
2042 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2043 if creation fails. */
2046 mips_elf_rel_dyn_section (struct bfd_link_info
*info
, bfd_boolean create_p
)
2052 dname
= MIPS_ELF_REL_DYN_NAME (info
);
2053 dynobj
= elf_hash_table (info
)->dynobj
;
2054 sreloc
= bfd_get_section_by_name (dynobj
, dname
);
2055 if (sreloc
== NULL
&& create_p
)
2057 sreloc
= bfd_make_section_with_flags (dynobj
, dname
,
2062 | SEC_LINKER_CREATED
2065 || ! bfd_set_section_alignment (dynobj
, sreloc
,
2066 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
2072 /* Returns the GOT section for ABFD. */
2075 mips_elf_got_section (bfd
*abfd
, bfd_boolean maybe_excluded
)
2077 asection
*sgot
= bfd_get_section_by_name (abfd
, ".got");
2079 || (! maybe_excluded
&& (sgot
->flags
& SEC_EXCLUDE
) != 0))
2084 /* Returns the GOT information associated with the link indicated by
2085 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2088 static struct mips_got_info
*
2089 mips_elf_got_info (bfd
*abfd
, asection
**sgotp
)
2092 struct mips_got_info
*g
;
2094 sgot
= mips_elf_got_section (abfd
, TRUE
);
2095 BFD_ASSERT (sgot
!= NULL
);
2096 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
2097 g
= mips_elf_section_data (sgot
)->u
.got_info
;
2098 BFD_ASSERT (g
!= NULL
);
2101 *sgotp
= (sgot
->flags
& SEC_EXCLUDE
) == 0 ? sgot
: NULL
;
2106 /* Count the number of relocations needed for a TLS GOT entry, with
2107 access types from TLS_TYPE, and symbol H (or a local symbol if H
2111 mips_tls_got_relocs (struct bfd_link_info
*info
, unsigned char tls_type
,
2112 struct elf_link_hash_entry
*h
)
2116 bfd_boolean need_relocs
= FALSE
;
2117 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
2119 if (h
&& WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
2120 && (!info
->shared
|| !SYMBOL_REFERENCES_LOCAL (info
, h
)))
2123 if ((info
->shared
|| indx
!= 0)
2125 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
2126 || h
->root
.type
!= bfd_link_hash_undefweak
))
2132 if (tls_type
& GOT_TLS_GD
)
2139 if (tls_type
& GOT_TLS_IE
)
2142 if ((tls_type
& GOT_TLS_LDM
) && info
->shared
)
2148 /* Count the number of TLS relocations required for the GOT entry in
2149 ARG1, if it describes a local symbol. */
2152 mips_elf_count_local_tls_relocs (void **arg1
, void *arg2
)
2154 struct mips_got_entry
*entry
= * (struct mips_got_entry
**) arg1
;
2155 struct mips_elf_count_tls_arg
*arg
= arg2
;
2157 if (entry
->abfd
!= NULL
&& entry
->symndx
!= -1)
2158 arg
->needed
+= mips_tls_got_relocs (arg
->info
, entry
->tls_type
, NULL
);
2163 /* Count the number of TLS GOT entries required for the global (or
2164 forced-local) symbol in ARG1. */
2167 mips_elf_count_global_tls_entries (void *arg1
, void *arg2
)
2169 struct mips_elf_link_hash_entry
*hm
2170 = (struct mips_elf_link_hash_entry
*) arg1
;
2171 struct mips_elf_count_tls_arg
*arg
= arg2
;
2173 if (hm
->tls_type
& GOT_TLS_GD
)
2175 if (hm
->tls_type
& GOT_TLS_IE
)
2181 /* Count the number of TLS relocations required for the global (or
2182 forced-local) symbol in ARG1. */
2185 mips_elf_count_global_tls_relocs (void *arg1
, void *arg2
)
2187 struct mips_elf_link_hash_entry
*hm
2188 = (struct mips_elf_link_hash_entry
*) arg1
;
2189 struct mips_elf_count_tls_arg
*arg
= arg2
;
2191 arg
->needed
+= mips_tls_got_relocs (arg
->info
, hm
->tls_type
, &hm
->root
);
2196 /* Output a simple dynamic relocation into SRELOC. */
2199 mips_elf_output_dynamic_relocation (bfd
*output_bfd
,
2205 Elf_Internal_Rela rel
[3];
2207 memset (rel
, 0, sizeof (rel
));
2209 rel
[0].r_info
= ELF_R_INFO (output_bfd
, indx
, r_type
);
2210 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
2212 if (ABI_64_P (output_bfd
))
2214 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
2215 (output_bfd
, &rel
[0],
2217 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
2220 bfd_elf32_swap_reloc_out
2221 (output_bfd
, &rel
[0],
2223 + sreloc
->reloc_count
* sizeof (Elf32_External_Rel
)));
2224 ++sreloc
->reloc_count
;
2227 /* Initialize a set of TLS GOT entries for one symbol. */
2230 mips_elf_initialize_tls_slots (bfd
*abfd
, bfd_vma got_offset
,
2231 unsigned char *tls_type_p
,
2232 struct bfd_link_info
*info
,
2233 struct mips_elf_link_hash_entry
*h
,
2237 asection
*sreloc
, *sgot
;
2238 bfd_vma offset
, offset2
;
2240 bfd_boolean need_relocs
= FALSE
;
2242 dynobj
= elf_hash_table (info
)->dynobj
;
2243 sgot
= mips_elf_got_section (dynobj
, FALSE
);
2248 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
2250 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, &h
->root
)
2251 && (!info
->shared
|| !SYMBOL_REFERENCES_LOCAL (info
, &h
->root
)))
2252 indx
= h
->root
.dynindx
;
2255 if (*tls_type_p
& GOT_TLS_DONE
)
2258 if ((info
->shared
|| indx
!= 0)
2260 || ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
2261 || h
->root
.type
!= bfd_link_hash_undefweak
))
2264 /* MINUS_ONE means the symbol is not defined in this object. It may not
2265 be defined at all; assume that the value doesn't matter in that
2266 case. Otherwise complain if we would use the value. */
2267 BFD_ASSERT (value
!= MINUS_ONE
|| (indx
!= 0 && need_relocs
)
2268 || h
->root
.root
.type
== bfd_link_hash_undefweak
);
2270 /* Emit necessary relocations. */
2271 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
2273 /* General Dynamic. */
2274 if (*tls_type_p
& GOT_TLS_GD
)
2276 offset
= got_offset
;
2277 offset2
= offset
+ MIPS_ELF_GOT_SIZE (abfd
);
2281 mips_elf_output_dynamic_relocation
2282 (abfd
, sreloc
, indx
,
2283 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
2284 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset
);
2287 mips_elf_output_dynamic_relocation
2288 (abfd
, sreloc
, indx
,
2289 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPREL64
: R_MIPS_TLS_DTPREL32
,
2290 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset2
);
2292 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
2293 sgot
->contents
+ offset2
);
2297 MIPS_ELF_PUT_WORD (abfd
, 1,
2298 sgot
->contents
+ offset
);
2299 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
2300 sgot
->contents
+ offset2
);
2303 got_offset
+= 2 * MIPS_ELF_GOT_SIZE (abfd
);
2306 /* Initial Exec model. */
2307 if (*tls_type_p
& GOT_TLS_IE
)
2309 offset
= got_offset
;
2314 MIPS_ELF_PUT_WORD (abfd
, value
- elf_hash_table (info
)->tls_sec
->vma
,
2315 sgot
->contents
+ offset
);
2317 MIPS_ELF_PUT_WORD (abfd
, 0,
2318 sgot
->contents
+ offset
);
2320 mips_elf_output_dynamic_relocation
2321 (abfd
, sreloc
, indx
,
2322 ABI_64_P (abfd
) ? R_MIPS_TLS_TPREL64
: R_MIPS_TLS_TPREL32
,
2323 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset
);
2326 MIPS_ELF_PUT_WORD (abfd
, value
- tprel_base (info
),
2327 sgot
->contents
+ offset
);
2330 if (*tls_type_p
& GOT_TLS_LDM
)
2332 /* The initial offset is zero, and the LD offsets will include the
2333 bias by DTP_OFFSET. */
2334 MIPS_ELF_PUT_WORD (abfd
, 0,
2335 sgot
->contents
+ got_offset
2336 + MIPS_ELF_GOT_SIZE (abfd
));
2339 MIPS_ELF_PUT_WORD (abfd
, 1,
2340 sgot
->contents
+ got_offset
);
2342 mips_elf_output_dynamic_relocation
2343 (abfd
, sreloc
, indx
,
2344 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
2345 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset
);
2348 *tls_type_p
|= GOT_TLS_DONE
;
2351 /* Return the GOT index to use for a relocation of type R_TYPE against
2352 a symbol accessed using TLS_TYPE models. The GOT entries for this
2353 symbol in this GOT start at GOT_INDEX. This function initializes the
2354 GOT entries and corresponding relocations. */
2357 mips_tls_got_index (bfd
*abfd
, bfd_vma got_index
, unsigned char *tls_type
,
2358 int r_type
, struct bfd_link_info
*info
,
2359 struct mips_elf_link_hash_entry
*h
, bfd_vma symbol
)
2361 BFD_ASSERT (r_type
== R_MIPS_TLS_GOTTPREL
|| r_type
== R_MIPS_TLS_GD
2362 || r_type
== R_MIPS_TLS_LDM
);
2364 mips_elf_initialize_tls_slots (abfd
, got_index
, tls_type
, info
, h
, symbol
);
2366 if (r_type
== R_MIPS_TLS_GOTTPREL
)
2368 BFD_ASSERT (*tls_type
& GOT_TLS_IE
);
2369 if (*tls_type
& GOT_TLS_GD
)
2370 return got_index
+ 2 * MIPS_ELF_GOT_SIZE (abfd
);
2375 if (r_type
== R_MIPS_TLS_GD
)
2377 BFD_ASSERT (*tls_type
& GOT_TLS_GD
);
2381 if (r_type
== R_MIPS_TLS_LDM
)
2383 BFD_ASSERT (*tls_type
& GOT_TLS_LDM
);
2390 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2391 for global symbol H. .got.plt comes before the GOT, so the offset
2392 will be negative. */
2395 mips_elf_gotplt_index (struct bfd_link_info
*info
,
2396 struct elf_link_hash_entry
*h
)
2398 bfd_vma plt_index
, got_address
, got_value
;
2399 struct mips_elf_link_hash_table
*htab
;
2401 htab
= mips_elf_hash_table (info
);
2402 BFD_ASSERT (h
->plt
.offset
!= (bfd_vma
) -1);
2404 /* Calculate the index of the symbol's PLT entry. */
2405 plt_index
= (h
->plt
.offset
- htab
->plt_header_size
) / htab
->plt_entry_size
;
2407 /* Calculate the address of the associated .got.plt entry. */
2408 got_address
= (htab
->sgotplt
->output_section
->vma
2409 + htab
->sgotplt
->output_offset
2412 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2413 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
2414 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
2415 + htab
->root
.hgot
->root
.u
.def
.value
);
2417 return got_address
- got_value
;
2420 /* Return the GOT offset for address VALUE. If there is not yet a GOT
2421 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2422 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2423 offset can be found. */
2426 mips_elf_local_got_index (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
2427 bfd_vma value
, unsigned long r_symndx
,
2428 struct mips_elf_link_hash_entry
*h
, int r_type
)
2431 struct mips_got_info
*g
;
2432 struct mips_got_entry
*entry
;
2434 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
2436 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, g
, sgot
,
2437 value
, r_symndx
, h
, r_type
);
2441 if (TLS_RELOC_P (r_type
))
2443 if (entry
->symndx
== -1 && g
->next
== NULL
)
2444 /* A type (3) entry in the single-GOT case. We use the symbol's
2445 hash table entry to track the index. */
2446 return mips_tls_got_index (abfd
, h
->tls_got_offset
, &h
->tls_type
,
2447 r_type
, info
, h
, value
);
2449 return mips_tls_got_index (abfd
, entry
->gotidx
, &entry
->tls_type
,
2450 r_type
, info
, h
, value
);
2453 return entry
->gotidx
;
2456 /* Returns the GOT index for the global symbol indicated by H. */
2459 mips_elf_global_got_index (bfd
*abfd
, bfd
*ibfd
, struct elf_link_hash_entry
*h
,
2460 int r_type
, struct bfd_link_info
*info
)
2464 struct mips_got_info
*g
, *gg
;
2465 long global_got_dynindx
= 0;
2467 gg
= g
= mips_elf_got_info (abfd
, &sgot
);
2468 if (g
->bfd2got
&& ibfd
)
2470 struct mips_got_entry e
, *p
;
2472 BFD_ASSERT (h
->dynindx
>= 0);
2474 g
= mips_elf_got_for_ibfd (g
, ibfd
);
2475 if (g
->next
!= gg
|| TLS_RELOC_P (r_type
))
2479 e
.d
.h
= (struct mips_elf_link_hash_entry
*)h
;
2482 p
= htab_find (g
->got_entries
, &e
);
2484 BFD_ASSERT (p
->gotidx
> 0);
2486 if (TLS_RELOC_P (r_type
))
2488 bfd_vma value
= MINUS_ONE
;
2489 if ((h
->root
.type
== bfd_link_hash_defined
2490 || h
->root
.type
== bfd_link_hash_defweak
)
2491 && h
->root
.u
.def
.section
->output_section
)
2492 value
= (h
->root
.u
.def
.value
2493 + h
->root
.u
.def
.section
->output_offset
2494 + h
->root
.u
.def
.section
->output_section
->vma
);
2496 return mips_tls_got_index (abfd
, p
->gotidx
, &p
->tls_type
, r_type
,
2497 info
, e
.d
.h
, value
);
2504 if (gg
->global_gotsym
!= NULL
)
2505 global_got_dynindx
= gg
->global_gotsym
->dynindx
;
2507 if (TLS_RELOC_P (r_type
))
2509 struct mips_elf_link_hash_entry
*hm
2510 = (struct mips_elf_link_hash_entry
*) h
;
2511 bfd_vma value
= MINUS_ONE
;
2513 if ((h
->root
.type
== bfd_link_hash_defined
2514 || h
->root
.type
== bfd_link_hash_defweak
)
2515 && h
->root
.u
.def
.section
->output_section
)
2516 value
= (h
->root
.u
.def
.value
2517 + h
->root
.u
.def
.section
->output_offset
2518 + h
->root
.u
.def
.section
->output_section
->vma
);
2520 index
= mips_tls_got_index (abfd
, hm
->tls_got_offset
, &hm
->tls_type
,
2521 r_type
, info
, hm
, value
);
2525 /* Once we determine the global GOT entry with the lowest dynamic
2526 symbol table index, we must put all dynamic symbols with greater
2527 indices into the GOT. That makes it easy to calculate the GOT
2529 BFD_ASSERT (h
->dynindx
>= global_got_dynindx
);
2530 index
= ((h
->dynindx
- global_got_dynindx
+ g
->local_gotno
)
2531 * MIPS_ELF_GOT_SIZE (abfd
));
2533 BFD_ASSERT (index
< sgot
->size
);
2538 /* Find a GOT page entry that points to within 32KB of VALUE. These
2539 entries are supposed to be placed at small offsets in the GOT, i.e.,
2540 within 32KB of GP. Return the index of the GOT entry, or -1 if no
2541 entry could be created. If OFFSETP is nonnull, use it to return the
2542 offset of the GOT entry from VALUE. */
2545 mips_elf_got_page (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
2546 bfd_vma value
, bfd_vma
*offsetp
)
2549 struct mips_got_info
*g
;
2550 bfd_vma page
, index
;
2551 struct mips_got_entry
*entry
;
2553 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
2555 page
= (value
+ 0x8000) & ~(bfd_vma
) 0xffff;
2556 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, g
, sgot
,
2557 page
, 0, NULL
, R_MIPS_GOT_PAGE
);
2562 index
= entry
->gotidx
;
2565 *offsetp
= value
- entry
->d
.address
;
2570 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE.
2571 EXTERNAL is true if the relocation was against a global symbol
2572 that has been forced local. */
2575 mips_elf_got16_entry (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
2576 bfd_vma value
, bfd_boolean external
)
2579 struct mips_got_info
*g
;
2580 struct mips_got_entry
*entry
;
2582 /* GOT16 relocations against local symbols are followed by a LO16
2583 relocation; those against global symbols are not. Thus if the
2584 symbol was originally local, the GOT16 relocation should load the
2585 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2587 value
= mips_elf_high (value
) << 16;
2589 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
2591 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, g
, sgot
,
2592 value
, 0, NULL
, R_MIPS_GOT16
);
2594 return entry
->gotidx
;
2599 /* Returns the offset for the entry at the INDEXth position
2603 mips_elf_got_offset_from_index (bfd
*dynobj
, bfd
*output_bfd
,
2604 bfd
*input_bfd
, bfd_vma index
)
2608 struct mips_got_info
*g
;
2610 g
= mips_elf_got_info (dynobj
, &sgot
);
2611 gp
= _bfd_get_gp_value (output_bfd
)
2612 + mips_elf_adjust_gp (output_bfd
, g
, input_bfd
);
2614 return sgot
->output_section
->vma
+ sgot
->output_offset
+ index
- gp
;
2617 /* Create and return a local GOT entry for VALUE, which was calculated
2618 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2619 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2622 static struct mips_got_entry
*
2623 mips_elf_create_local_got_entry (bfd
*abfd
, struct bfd_link_info
*info
,
2624 bfd
*ibfd
, struct mips_got_info
*gg
,
2625 asection
*sgot
, bfd_vma value
,
2626 unsigned long r_symndx
,
2627 struct mips_elf_link_hash_entry
*h
,
2630 struct mips_got_entry entry
, **loc
;
2631 struct mips_got_info
*g
;
2632 struct mips_elf_link_hash_table
*htab
;
2634 htab
= mips_elf_hash_table (info
);
2638 entry
.d
.address
= value
;
2641 g
= mips_elf_got_for_ibfd (gg
, ibfd
);
2644 g
= mips_elf_got_for_ibfd (gg
, abfd
);
2645 BFD_ASSERT (g
!= NULL
);
2648 /* We might have a symbol, H, if it has been forced local. Use the
2649 global entry then. It doesn't matter whether an entry is local
2650 or global for TLS, since the dynamic linker does not
2651 automatically relocate TLS GOT entries. */
2652 BFD_ASSERT (h
== NULL
|| h
->root
.forced_local
);
2653 if (TLS_RELOC_P (r_type
))
2655 struct mips_got_entry
*p
;
2658 if (r_type
== R_MIPS_TLS_LDM
)
2660 entry
.tls_type
= GOT_TLS_LDM
;
2666 entry
.symndx
= r_symndx
;
2672 p
= (struct mips_got_entry
*)
2673 htab_find (g
->got_entries
, &entry
);
2679 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
2684 entry
.gotidx
= MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
++;
2687 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
2692 memcpy (*loc
, &entry
, sizeof entry
);
2694 if (g
->assigned_gotno
>= g
->local_gotno
)
2696 (*loc
)->gotidx
= -1;
2697 /* We didn't allocate enough space in the GOT. */
2698 (*_bfd_error_handler
)
2699 (_("not enough GOT space for local GOT entries"));
2700 bfd_set_error (bfd_error_bad_value
);
2704 MIPS_ELF_PUT_WORD (abfd
, value
,
2705 (sgot
->contents
+ entry
.gotidx
));
2707 /* These GOT entries need a dynamic relocation on VxWorks. */
2708 if (htab
->is_vxworks
)
2710 Elf_Internal_Rela outrel
;
2713 bfd_vma got_address
;
2715 s
= mips_elf_rel_dyn_section (info
, FALSE
);
2716 got_address
= (sgot
->output_section
->vma
2717 + sgot
->output_offset
2720 loc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
2721 outrel
.r_offset
= got_address
;
2722 outrel
.r_info
= ELF32_R_INFO (STN_UNDEF
, R_MIPS_32
);
2723 outrel
.r_addend
= value
;
2724 bfd_elf32_swap_reloca_out (abfd
, &outrel
, loc
);
2730 /* Sort the dynamic symbol table so that symbols that need GOT entries
2731 appear towards the end. This reduces the amount of GOT space
2732 required. MAX_LOCAL is used to set the number of local symbols
2733 known to be in the dynamic symbol table. During
2734 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2735 section symbols are added and the count is higher. */
2738 mips_elf_sort_hash_table (struct bfd_link_info
*info
, unsigned long max_local
)
2740 struct mips_elf_hash_sort_data hsd
;
2741 struct mips_got_info
*g
;
2744 dynobj
= elf_hash_table (info
)->dynobj
;
2746 g
= mips_elf_got_info (dynobj
, NULL
);
2749 hsd
.max_unref_got_dynindx
=
2750 hsd
.min_got_dynindx
= elf_hash_table (info
)->dynsymcount
2751 /* In the multi-got case, assigned_gotno of the master got_info
2752 indicate the number of entries that aren't referenced in the
2753 primary GOT, but that must have entries because there are
2754 dynamic relocations that reference it. Since they aren't
2755 referenced, we move them to the end of the GOT, so that they
2756 don't prevent other entries that are referenced from getting
2757 too large offsets. */
2758 - (g
->next
? g
->assigned_gotno
: 0);
2759 hsd
.max_non_got_dynindx
= max_local
;
2760 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table
*)
2761 elf_hash_table (info
)),
2762 mips_elf_sort_hash_table_f
,
2765 /* There should have been enough room in the symbol table to
2766 accommodate both the GOT and non-GOT symbols. */
2767 BFD_ASSERT (hsd
.max_non_got_dynindx
<= hsd
.min_got_dynindx
);
2768 BFD_ASSERT ((unsigned long)hsd
.max_unref_got_dynindx
2769 <= elf_hash_table (info
)->dynsymcount
);
2771 /* Now we know which dynamic symbol has the lowest dynamic symbol
2772 table index in the GOT. */
2773 g
->global_gotsym
= hsd
.low
;
2778 /* If H needs a GOT entry, assign it the highest available dynamic
2779 index. Otherwise, assign it the lowest available dynamic
2783 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry
*h
, void *data
)
2785 struct mips_elf_hash_sort_data
*hsd
= data
;
2787 if (h
->root
.root
.type
== bfd_link_hash_warning
)
2788 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
2790 /* Symbols without dynamic symbol table entries aren't interesting
2792 if (h
->root
.dynindx
== -1)
2795 /* Global symbols that need GOT entries that are not explicitly
2796 referenced are marked with got offset 2. Those that are
2797 referenced get a 1, and those that don't need GOT entries get
2799 if (h
->root
.got
.offset
== 2)
2801 BFD_ASSERT (h
->tls_type
== GOT_NORMAL
);
2803 if (hsd
->max_unref_got_dynindx
== hsd
->min_got_dynindx
)
2804 hsd
->low
= (struct elf_link_hash_entry
*) h
;
2805 h
->root
.dynindx
= hsd
->max_unref_got_dynindx
++;
2807 else if (h
->root
.got
.offset
!= 1)
2808 h
->root
.dynindx
= hsd
->max_non_got_dynindx
++;
2811 BFD_ASSERT (h
->tls_type
== GOT_NORMAL
);
2813 h
->root
.dynindx
= --hsd
->min_got_dynindx
;
2814 hsd
->low
= (struct elf_link_hash_entry
*) h
;
2820 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2821 symbol table index lower than any we've seen to date, record it for
2825 mips_elf_record_global_got_symbol (struct elf_link_hash_entry
*h
,
2826 bfd
*abfd
, struct bfd_link_info
*info
,
2827 struct mips_got_info
*g
,
2828 unsigned char tls_flag
)
2830 struct mips_got_entry entry
, **loc
;
2832 /* A global symbol in the GOT must also be in the dynamic symbol
2834 if (h
->dynindx
== -1)
2836 switch (ELF_ST_VISIBILITY (h
->other
))
2840 _bfd_mips_elf_hide_symbol (info
, h
, TRUE
);
2843 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
2847 /* Make sure we have a GOT to put this entry into. */
2848 BFD_ASSERT (g
!= NULL
);
2852 entry
.d
.h
= (struct mips_elf_link_hash_entry
*) h
;
2855 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
2858 /* If we've already marked this entry as needing GOT space, we don't
2859 need to do it again. */
2862 (*loc
)->tls_type
|= tls_flag
;
2866 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
2872 entry
.tls_type
= tls_flag
;
2874 memcpy (*loc
, &entry
, sizeof entry
);
2876 if (h
->got
.offset
!= MINUS_ONE
)
2879 /* By setting this to a value other than -1, we are indicating that
2880 there needs to be a GOT entry for H. Avoid using zero, as the
2881 generic ELF copy_indirect_symbol tests for <= 0. */
2888 /* Reserve space in G for a GOT entry containing the value of symbol
2889 SYMNDX in input bfd ABDF, plus ADDEND. */
2892 mips_elf_record_local_got_symbol (bfd
*abfd
, long symndx
, bfd_vma addend
,
2893 struct mips_got_info
*g
,
2894 unsigned char tls_flag
)
2896 struct mips_got_entry entry
, **loc
;
2899 entry
.symndx
= symndx
;
2900 entry
.d
.addend
= addend
;
2901 entry
.tls_type
= tls_flag
;
2902 loc
= (struct mips_got_entry
**)
2903 htab_find_slot (g
->got_entries
, &entry
, INSERT
);
2907 if (tls_flag
== GOT_TLS_GD
&& !((*loc
)->tls_type
& GOT_TLS_GD
))
2910 (*loc
)->tls_type
|= tls_flag
;
2912 else if (tls_flag
== GOT_TLS_IE
&& !((*loc
)->tls_type
& GOT_TLS_IE
))
2915 (*loc
)->tls_type
|= tls_flag
;
2923 entry
.tls_type
= tls_flag
;
2924 if (tls_flag
== GOT_TLS_IE
)
2926 else if (tls_flag
== GOT_TLS_GD
)
2928 else if (g
->tls_ldm_offset
== MINUS_ONE
)
2930 g
->tls_ldm_offset
= MINUS_TWO
;
2936 entry
.gotidx
= g
->local_gotno
++;
2940 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
2945 memcpy (*loc
, &entry
, sizeof entry
);
2950 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2953 mips_elf_bfd2got_entry_hash (const void *entry_
)
2955 const struct mips_elf_bfd2got_hash
*entry
2956 = (struct mips_elf_bfd2got_hash
*)entry_
;
2958 return entry
->bfd
->id
;
2961 /* Check whether two hash entries have the same bfd. */
2964 mips_elf_bfd2got_entry_eq (const void *entry1
, const void *entry2
)
2966 const struct mips_elf_bfd2got_hash
*e1
2967 = (const struct mips_elf_bfd2got_hash
*)entry1
;
2968 const struct mips_elf_bfd2got_hash
*e2
2969 = (const struct mips_elf_bfd2got_hash
*)entry2
;
2971 return e1
->bfd
== e2
->bfd
;
2974 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2975 be the master GOT data. */
2977 static struct mips_got_info
*
2978 mips_elf_got_for_ibfd (struct mips_got_info
*g
, bfd
*ibfd
)
2980 struct mips_elf_bfd2got_hash e
, *p
;
2986 p
= htab_find (g
->bfd2got
, &e
);
2987 return p
? p
->g
: NULL
;
2990 /* Create one separate got for each bfd that has entries in the global
2991 got, such that we can tell how many local and global entries each
2995 mips_elf_make_got_per_bfd (void **entryp
, void *p
)
2997 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
2998 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
2999 htab_t bfd2got
= arg
->bfd2got
;
3000 struct mips_got_info
*g
;
3001 struct mips_elf_bfd2got_hash bfdgot_entry
, *bfdgot
;
3004 /* Find the got_info for this GOT entry's input bfd. Create one if
3006 bfdgot_entry
.bfd
= entry
->abfd
;
3007 bfdgotp
= htab_find_slot (bfd2got
, &bfdgot_entry
, INSERT
);
3008 bfdgot
= (struct mips_elf_bfd2got_hash
*)*bfdgotp
;
3014 bfdgot
= (struct mips_elf_bfd2got_hash
*)bfd_alloc
3015 (arg
->obfd
, sizeof (struct mips_elf_bfd2got_hash
));
3025 bfdgot
->bfd
= entry
->abfd
;
3026 bfdgot
->g
= g
= (struct mips_got_info
*)
3027 bfd_alloc (arg
->obfd
, sizeof (struct mips_got_info
));
3034 g
->global_gotsym
= NULL
;
3035 g
->global_gotno
= 0;
3037 g
->assigned_gotno
= -1;
3039 g
->tls_assigned_gotno
= 0;
3040 g
->tls_ldm_offset
= MINUS_ONE
;
3041 g
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
3042 mips_elf_multi_got_entry_eq
, NULL
);
3043 if (g
->got_entries
== NULL
)
3053 /* Insert the GOT entry in the bfd's got entry hash table. */
3054 entryp
= htab_find_slot (g
->got_entries
, entry
, INSERT
);
3055 if (*entryp
!= NULL
)
3060 if (entry
->tls_type
)
3062 if (entry
->tls_type
& (GOT_TLS_GD
| GOT_TLS_LDM
))
3064 if (entry
->tls_type
& GOT_TLS_IE
)
3067 else if (entry
->symndx
>= 0 || entry
->d
.h
->forced_local
)
3075 /* Attempt to merge gots of different input bfds. Try to use as much
3076 as possible of the primary got, since it doesn't require explicit
3077 dynamic relocations, but don't use bfds that would reference global
3078 symbols out of the addressable range. Failing the primary got,
3079 attempt to merge with the current got, or finish the current got
3080 and then make make the new got current. */
3083 mips_elf_merge_gots (void **bfd2got_
, void *p
)
3085 struct mips_elf_bfd2got_hash
*bfd2got
3086 = (struct mips_elf_bfd2got_hash
*)*bfd2got_
;
3087 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
3088 unsigned int lcount
= bfd2got
->g
->local_gotno
;
3089 unsigned int gcount
= bfd2got
->g
->global_gotno
;
3090 unsigned int tcount
= bfd2got
->g
->tls_gotno
;
3091 unsigned int maxcnt
= arg
->max_count
;
3092 bfd_boolean too_many_for_tls
= FALSE
;
3094 /* We place TLS GOT entries after both locals and globals. The globals
3095 for the primary GOT may overflow the normal GOT size limit, so be
3096 sure not to merge a GOT which requires TLS with the primary GOT in that
3097 case. This doesn't affect non-primary GOTs. */
3100 unsigned int primary_total
= lcount
+ tcount
+ arg
->global_count
;
3101 if (primary_total
> maxcnt
)
3102 too_many_for_tls
= TRUE
;
3105 /* If we don't have a primary GOT and this is not too big, use it as
3106 a starting point for the primary GOT. */
3107 if (! arg
->primary
&& lcount
+ gcount
+ tcount
<= maxcnt
3108 && ! too_many_for_tls
)
3110 arg
->primary
= bfd2got
->g
;
3111 arg
->primary_count
= lcount
+ gcount
;
3113 /* If it looks like we can merge this bfd's entries with those of
3114 the primary, merge them. The heuristics is conservative, but we
3115 don't have to squeeze it too hard. */
3116 else if (arg
->primary
&& ! too_many_for_tls
3117 && (arg
->primary_count
+ lcount
+ gcount
+ tcount
) <= maxcnt
)
3119 struct mips_got_info
*g
= bfd2got
->g
;
3120 int old_lcount
= arg
->primary
->local_gotno
;
3121 int old_gcount
= arg
->primary
->global_gotno
;
3122 int old_tcount
= arg
->primary
->tls_gotno
;
3124 bfd2got
->g
= arg
->primary
;
3126 htab_traverse (g
->got_entries
,
3127 mips_elf_make_got_per_bfd
,
3129 if (arg
->obfd
== NULL
)
3132 htab_delete (g
->got_entries
);
3133 /* We don't have to worry about releasing memory of the actual
3134 got entries, since they're all in the master got_entries hash
3137 BFD_ASSERT (old_lcount
+ lcount
>= arg
->primary
->local_gotno
);
3138 BFD_ASSERT (old_gcount
+ gcount
>= arg
->primary
->global_gotno
);
3139 BFD_ASSERT (old_tcount
+ tcount
>= arg
->primary
->tls_gotno
);
3141 arg
->primary_count
= arg
->primary
->local_gotno
3142 + arg
->primary
->global_gotno
+ arg
->primary
->tls_gotno
;
3144 /* If we can merge with the last-created got, do it. */
3145 else if (arg
->current
3146 && arg
->current_count
+ lcount
+ gcount
+ tcount
<= maxcnt
)
3148 struct mips_got_info
*g
= bfd2got
->g
;
3149 int old_lcount
= arg
->current
->local_gotno
;
3150 int old_gcount
= arg
->current
->global_gotno
;
3151 int old_tcount
= arg
->current
->tls_gotno
;
3153 bfd2got
->g
= arg
->current
;
3155 htab_traverse (g
->got_entries
,
3156 mips_elf_make_got_per_bfd
,
3158 if (arg
->obfd
== NULL
)
3161 htab_delete (g
->got_entries
);
3163 BFD_ASSERT (old_lcount
+ lcount
>= arg
->current
->local_gotno
);
3164 BFD_ASSERT (old_gcount
+ gcount
>= arg
->current
->global_gotno
);
3165 BFD_ASSERT (old_tcount
+ tcount
>= arg
->current
->tls_gotno
);
3167 arg
->current_count
= arg
->current
->local_gotno
3168 + arg
->current
->global_gotno
+ arg
->current
->tls_gotno
;
3170 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3171 fits; if it turns out that it doesn't, we'll get relocation
3172 overflows anyway. */
3175 bfd2got
->g
->next
= arg
->current
;
3176 arg
->current
= bfd2got
->g
;
3178 arg
->current_count
= lcount
+ gcount
+ 2 * tcount
;
3184 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3185 is null iff there is just a single GOT. */
3188 mips_elf_initialize_tls_index (void **entryp
, void *p
)
3190 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
3191 struct mips_got_info
*g
= p
;
3193 unsigned char tls_type
;
3195 /* We're only interested in TLS symbols. */
3196 if (entry
->tls_type
== 0)
3199 next_index
= MIPS_ELF_GOT_SIZE (entry
->abfd
) * (long) g
->tls_assigned_gotno
;
3201 if (entry
->symndx
== -1 && g
->next
== NULL
)
3203 /* A type (3) got entry in the single-GOT case. We use the symbol's
3204 hash table entry to track its index. */
3205 if (entry
->d
.h
->tls_type
& GOT_TLS_OFFSET_DONE
)
3207 entry
->d
.h
->tls_type
|= GOT_TLS_OFFSET_DONE
;
3208 entry
->d
.h
->tls_got_offset
= next_index
;
3209 tls_type
= entry
->d
.h
->tls_type
;
3213 if (entry
->tls_type
& GOT_TLS_LDM
)
3215 /* There are separate mips_got_entry objects for each input bfd
3216 that requires an LDM entry. Make sure that all LDM entries in
3217 a GOT resolve to the same index. */
3218 if (g
->tls_ldm_offset
!= MINUS_TWO
&& g
->tls_ldm_offset
!= MINUS_ONE
)
3220 entry
->gotidx
= g
->tls_ldm_offset
;
3223 g
->tls_ldm_offset
= next_index
;
3225 entry
->gotidx
= next_index
;
3226 tls_type
= entry
->tls_type
;
3229 /* Account for the entries we've just allocated. */
3230 if (tls_type
& (GOT_TLS_GD
| GOT_TLS_LDM
))
3231 g
->tls_assigned_gotno
+= 2;
3232 if (tls_type
& GOT_TLS_IE
)
3233 g
->tls_assigned_gotno
+= 1;
3238 /* If passed a NULL mips_got_info in the argument, set the marker used
3239 to tell whether a global symbol needs a got entry (in the primary
3240 got) to the given VALUE.
3242 If passed a pointer G to a mips_got_info in the argument (it must
3243 not be the primary GOT), compute the offset from the beginning of
3244 the (primary) GOT section to the entry in G corresponding to the
3245 global symbol. G's assigned_gotno must contain the index of the
3246 first available global GOT entry in G. VALUE must contain the size
3247 of a GOT entry in bytes. For each global GOT entry that requires a
3248 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3249 marked as not eligible for lazy resolution through a function
3252 mips_elf_set_global_got_offset (void **entryp
, void *p
)
3254 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
3255 struct mips_elf_set_global_got_offset_arg
*arg
3256 = (struct mips_elf_set_global_got_offset_arg
*)p
;
3257 struct mips_got_info
*g
= arg
->g
;
3259 if (g
&& entry
->tls_type
!= GOT_NORMAL
)
3260 arg
->needed_relocs
+=
3261 mips_tls_got_relocs (arg
->info
, entry
->tls_type
,
3262 entry
->symndx
== -1 ? &entry
->d
.h
->root
: NULL
);
3264 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1
3265 && entry
->d
.h
->root
.dynindx
!= -1
3266 && entry
->d
.h
->tls_type
== GOT_NORMAL
)
3270 BFD_ASSERT (g
->global_gotsym
== NULL
);
3272 entry
->gotidx
= arg
->value
* (long) g
->assigned_gotno
++;
3273 if (arg
->info
->shared
3274 || (elf_hash_table (arg
->info
)->dynamic_sections_created
3275 && entry
->d
.h
->root
.def_dynamic
3276 && !entry
->d
.h
->root
.def_regular
))
3277 ++arg
->needed_relocs
;
3280 entry
->d
.h
->root
.got
.offset
= arg
->value
;
3286 /* Mark any global symbols referenced in the GOT we are iterating over
3287 as inelligible for lazy resolution stubs. */
3289 mips_elf_set_no_stub (void **entryp
, void *p ATTRIBUTE_UNUSED
)
3291 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
3293 if (entry
->abfd
!= NULL
3294 && entry
->symndx
== -1
3295 && entry
->d
.h
->root
.dynindx
!= -1)
3296 entry
->d
.h
->no_fn_stub
= TRUE
;
3301 /* Follow indirect and warning hash entries so that each got entry
3302 points to the final symbol definition. P must point to a pointer
3303 to the hash table we're traversing. Since this traversal may
3304 modify the hash table, we set this pointer to NULL to indicate
3305 we've made a potentially-destructive change to the hash table, so
3306 the traversal must be restarted. */
3308 mips_elf_resolve_final_got_entry (void **entryp
, void *p
)
3310 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
3311 htab_t got_entries
= *(htab_t
*)p
;
3313 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1)
3315 struct mips_elf_link_hash_entry
*h
= entry
->d
.h
;
3317 while (h
->root
.root
.type
== bfd_link_hash_indirect
3318 || h
->root
.root
.type
== bfd_link_hash_warning
)
3319 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3321 if (entry
->d
.h
== h
)
3326 /* If we can't find this entry with the new bfd hash, re-insert
3327 it, and get the traversal restarted. */
3328 if (! htab_find (got_entries
, entry
))
3330 htab_clear_slot (got_entries
, entryp
);
3331 entryp
= htab_find_slot (got_entries
, entry
, INSERT
);
3334 /* Abort the traversal, since the whole table may have
3335 moved, and leave it up to the parent to restart the
3337 *(htab_t
*)p
= NULL
;
3340 /* We might want to decrement the global_gotno count, but it's
3341 either too early or too late for that at this point. */
3347 /* Turn indirect got entries in a got_entries table into their final
3350 mips_elf_resolve_final_got_entries (struct mips_got_info
*g
)
3356 got_entries
= g
->got_entries
;
3358 htab_traverse (got_entries
,
3359 mips_elf_resolve_final_got_entry
,
3362 while (got_entries
== NULL
);
3365 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3368 mips_elf_adjust_gp (bfd
*abfd
, struct mips_got_info
*g
, bfd
*ibfd
)
3370 if (g
->bfd2got
== NULL
)
3373 g
= mips_elf_got_for_ibfd (g
, ibfd
);
3377 BFD_ASSERT (g
->next
);
3381 return (g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
)
3382 * MIPS_ELF_GOT_SIZE (abfd
);
3385 /* Turn a single GOT that is too big for 16-bit addressing into
3386 a sequence of GOTs, each one 16-bit addressable. */
3389 mips_elf_multi_got (bfd
*abfd
, struct bfd_link_info
*info
,
3390 struct mips_got_info
*g
, asection
*got
,
3391 bfd_size_type pages
)
3393 struct mips_elf_got_per_bfd_arg got_per_bfd_arg
;
3394 struct mips_elf_set_global_got_offset_arg set_got_offset_arg
;
3395 struct mips_got_info
*gg
;
3396 unsigned int assign
;
3398 g
->bfd2got
= htab_try_create (1, mips_elf_bfd2got_entry_hash
,
3399 mips_elf_bfd2got_entry_eq
, NULL
);
3400 if (g
->bfd2got
== NULL
)
3403 got_per_bfd_arg
.bfd2got
= g
->bfd2got
;
3404 got_per_bfd_arg
.obfd
= abfd
;
3405 got_per_bfd_arg
.info
= info
;
3407 /* Count how many GOT entries each input bfd requires, creating a
3408 map from bfd to got info while at that. */
3409 htab_traverse (g
->got_entries
, mips_elf_make_got_per_bfd
, &got_per_bfd_arg
);
3410 if (got_per_bfd_arg
.obfd
== NULL
)
3413 got_per_bfd_arg
.current
= NULL
;
3414 got_per_bfd_arg
.primary
= NULL
;
3415 /* Taking out PAGES entries is a worst-case estimate. We could
3416 compute the maximum number of pages that each separate input bfd
3417 uses, but it's probably not worth it. */
3418 got_per_bfd_arg
.max_count
= ((MIPS_ELF_GOT_MAX_SIZE (info
)
3419 / MIPS_ELF_GOT_SIZE (abfd
))
3420 - MIPS_RESERVED_GOTNO (info
) - pages
);
3421 /* The number of globals that will be included in the primary GOT.
3422 See the calls to mips_elf_set_global_got_offset below for more
3424 got_per_bfd_arg
.global_count
= g
->global_gotno
;
3426 /* Try to merge the GOTs of input bfds together, as long as they
3427 don't seem to exceed the maximum GOT size, choosing one of them
3428 to be the primary GOT. */
3429 htab_traverse (g
->bfd2got
, mips_elf_merge_gots
, &got_per_bfd_arg
);
3430 if (got_per_bfd_arg
.obfd
== NULL
)
3433 /* If we do not find any suitable primary GOT, create an empty one. */
3434 if (got_per_bfd_arg
.primary
== NULL
)
3436 g
->next
= (struct mips_got_info
*)
3437 bfd_alloc (abfd
, sizeof (struct mips_got_info
));
3438 if (g
->next
== NULL
)
3441 g
->next
->global_gotsym
= NULL
;
3442 g
->next
->global_gotno
= 0;
3443 g
->next
->local_gotno
= 0;
3444 g
->next
->tls_gotno
= 0;
3445 g
->next
->assigned_gotno
= 0;
3446 g
->next
->tls_assigned_gotno
= 0;
3447 g
->next
->tls_ldm_offset
= MINUS_ONE
;
3448 g
->next
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
3449 mips_elf_multi_got_entry_eq
,
3451 if (g
->next
->got_entries
== NULL
)
3453 g
->next
->bfd2got
= NULL
;
3456 g
->next
= got_per_bfd_arg
.primary
;
3457 g
->next
->next
= got_per_bfd_arg
.current
;
3459 /* GG is now the master GOT, and G is the primary GOT. */
3463 /* Map the output bfd to the primary got. That's what we're going
3464 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3465 didn't mark in check_relocs, and we want a quick way to find it.
3466 We can't just use gg->next because we're going to reverse the
3469 struct mips_elf_bfd2got_hash
*bfdgot
;
3472 bfdgot
= (struct mips_elf_bfd2got_hash
*)bfd_alloc
3473 (abfd
, sizeof (struct mips_elf_bfd2got_hash
));
3480 bfdgotp
= htab_find_slot (gg
->bfd2got
, bfdgot
, INSERT
);
3482 BFD_ASSERT (*bfdgotp
== NULL
);
3486 /* The IRIX dynamic linker requires every symbol that is referenced
3487 in a dynamic relocation to be present in the primary GOT, so
3488 arrange for them to appear after those that are actually
3491 GNU/Linux could very well do without it, but it would slow down
3492 the dynamic linker, since it would have to resolve every dynamic
3493 symbol referenced in other GOTs more than once, without help from
3494 the cache. Also, knowing that every external symbol has a GOT
3495 helps speed up the resolution of local symbols too, so GNU/Linux
3496 follows IRIX's practice.
3498 The number 2 is used by mips_elf_sort_hash_table_f to count
3499 global GOT symbols that are unreferenced in the primary GOT, with
3500 an initial dynamic index computed from gg->assigned_gotno, where
3501 the number of unreferenced global entries in the primary GOT is
3505 gg
->assigned_gotno
= gg
->global_gotno
- g
->global_gotno
;
3506 g
->global_gotno
= gg
->global_gotno
;
3507 set_got_offset_arg
.value
= 2;
3511 /* This could be used for dynamic linkers that don't optimize
3512 symbol resolution while applying relocations so as to use
3513 primary GOT entries or assuming the symbol is locally-defined.
3514 With this code, we assign lower dynamic indices to global
3515 symbols that are not referenced in the primary GOT, so that
3516 their entries can be omitted. */
3517 gg
->assigned_gotno
= 0;
3518 set_got_offset_arg
.value
= -1;
3521 /* Reorder dynamic symbols as described above (which behavior
3522 depends on the setting of VALUE). */
3523 set_got_offset_arg
.g
= NULL
;
3524 htab_traverse (gg
->got_entries
, mips_elf_set_global_got_offset
,
3525 &set_got_offset_arg
);
3526 set_got_offset_arg
.value
= 1;
3527 htab_traverse (g
->got_entries
, mips_elf_set_global_got_offset
,
3528 &set_got_offset_arg
);
3529 if (! mips_elf_sort_hash_table (info
, 1))
3532 /* Now go through the GOTs assigning them offset ranges.
3533 [assigned_gotno, local_gotno[ will be set to the range of local
3534 entries in each GOT. We can then compute the end of a GOT by
3535 adding local_gotno to global_gotno. We reverse the list and make
3536 it circular since then we'll be able to quickly compute the
3537 beginning of a GOT, by computing the end of its predecessor. To
3538 avoid special cases for the primary GOT, while still preserving
3539 assertions that are valid for both single- and multi-got links,
3540 we arrange for the main got struct to have the right number of
3541 global entries, but set its local_gotno such that the initial
3542 offset of the primary GOT is zero. Remember that the primary GOT
3543 will become the last item in the circular linked list, so it
3544 points back to the master GOT. */
3545 gg
->local_gotno
= -g
->global_gotno
;
3546 gg
->global_gotno
= g
->global_gotno
;
3553 struct mips_got_info
*gn
;
3555 assign
+= MIPS_RESERVED_GOTNO (info
);
3556 g
->assigned_gotno
= assign
;
3557 g
->local_gotno
+= assign
+ pages
;
3558 assign
= g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
;
3560 /* Take g out of the direct list, and push it onto the reversed
3561 list that gg points to. g->next is guaranteed to be nonnull after
3562 this operation, as required by mips_elf_initialize_tls_index. */
3567 /* Set up any TLS entries. We always place the TLS entries after
3568 all non-TLS entries. */
3569 g
->tls_assigned_gotno
= g
->local_gotno
+ g
->global_gotno
;
3570 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, g
);
3572 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3575 /* Mark global symbols in every non-primary GOT as ineligible for
3578 htab_traverse (g
->got_entries
, mips_elf_set_no_stub
, NULL
);
3582 got
->size
= (gg
->next
->local_gotno
3583 + gg
->next
->global_gotno
3584 + gg
->next
->tls_gotno
) * MIPS_ELF_GOT_SIZE (abfd
);
3590 /* Returns the first relocation of type r_type found, beginning with
3591 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3593 static const Elf_Internal_Rela
*
3594 mips_elf_next_relocation (bfd
*abfd ATTRIBUTE_UNUSED
, unsigned int r_type
,
3595 const Elf_Internal_Rela
*relocation
,
3596 const Elf_Internal_Rela
*relend
)
3598 unsigned long r_symndx
= ELF_R_SYM (abfd
, relocation
->r_info
);
3600 while (relocation
< relend
)
3602 if (ELF_R_TYPE (abfd
, relocation
->r_info
) == r_type
3603 && ELF_R_SYM (abfd
, relocation
->r_info
) == r_symndx
)
3609 /* We didn't find it. */
3613 /* Return whether a relocation is against a local symbol. */
3616 mips_elf_local_relocation_p (bfd
*input_bfd
,
3617 const Elf_Internal_Rela
*relocation
,
3618 asection
**local_sections
,
3619 bfd_boolean check_forced
)
3621 unsigned long r_symndx
;
3622 Elf_Internal_Shdr
*symtab_hdr
;
3623 struct mips_elf_link_hash_entry
*h
;
3626 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
3627 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3628 extsymoff
= (elf_bad_symtab (input_bfd
)) ? 0 : symtab_hdr
->sh_info
;
3630 if (r_symndx
< extsymoff
)
3632 if (elf_bad_symtab (input_bfd
) && local_sections
[r_symndx
] != NULL
)
3637 /* Look up the hash table to check whether the symbol
3638 was forced local. */
3639 h
= (struct mips_elf_link_hash_entry
*)
3640 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
3641 /* Find the real hash-table entry for this symbol. */
3642 while (h
->root
.root
.type
== bfd_link_hash_indirect
3643 || h
->root
.root
.type
== bfd_link_hash_warning
)
3644 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3645 if (h
->root
.forced_local
)
3652 /* Sign-extend VALUE, which has the indicated number of BITS. */
3655 _bfd_mips_elf_sign_extend (bfd_vma value
, int bits
)
3657 if (value
& ((bfd_vma
) 1 << (bits
- 1)))
3658 /* VALUE is negative. */
3659 value
|= ((bfd_vma
) - 1) << bits
;
3664 /* Return non-zero if the indicated VALUE has overflowed the maximum
3665 range expressible by a signed number with the indicated number of
3669 mips_elf_overflow_p (bfd_vma value
, int bits
)
3671 bfd_signed_vma svalue
= (bfd_signed_vma
) value
;
3673 if (svalue
> (1 << (bits
- 1)) - 1)
3674 /* The value is too big. */
3676 else if (svalue
< -(1 << (bits
- 1)))
3677 /* The value is too small. */
3684 /* Calculate the %high function. */
3687 mips_elf_high (bfd_vma value
)
3689 return ((value
+ (bfd_vma
) 0x8000) >> 16) & 0xffff;
3692 /* Calculate the %higher function. */
3695 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED
)
3698 return ((value
+ (bfd_vma
) 0x80008000) >> 32) & 0xffff;
3705 /* Calculate the %highest function. */
3708 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED
)
3711 return ((value
+ (((bfd_vma
) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3718 /* Create the .compact_rel section. */
3721 mips_elf_create_compact_rel_section
3722 (bfd
*abfd
, struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
3725 register asection
*s
;
3727 if (bfd_get_section_by_name (abfd
, ".compact_rel") == NULL
)
3729 flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
3732 s
= bfd_make_section_with_flags (abfd
, ".compact_rel", flags
);
3734 || ! bfd_set_section_alignment (abfd
, s
,
3735 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
3738 s
->size
= sizeof (Elf32_External_compact_rel
);
3744 /* Create the .got section to hold the global offset table. */
3747 mips_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
,
3748 bfd_boolean maybe_exclude
)
3751 register asection
*s
;
3752 struct elf_link_hash_entry
*h
;
3753 struct bfd_link_hash_entry
*bh
;
3754 struct mips_got_info
*g
;
3756 struct mips_elf_link_hash_table
*htab
;
3758 htab
= mips_elf_hash_table (info
);
3760 /* This function may be called more than once. */
3761 s
= mips_elf_got_section (abfd
, TRUE
);
3764 if (! maybe_exclude
)
3765 s
->flags
&= ~SEC_EXCLUDE
;
3769 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
3770 | SEC_LINKER_CREATED
);
3773 flags
|= SEC_EXCLUDE
;
3775 /* We have to use an alignment of 2**4 here because this is hardcoded
3776 in the function stub generation and in the linker script. */
3777 s
= bfd_make_section_with_flags (abfd
, ".got", flags
);
3779 || ! bfd_set_section_alignment (abfd
, s
, 4))
3782 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3783 linker script because we don't want to define the symbol if we
3784 are not creating a global offset table. */
3786 if (! (_bfd_generic_link_add_one_symbol
3787 (info
, abfd
, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL
, s
,
3788 0, NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
3791 h
= (struct elf_link_hash_entry
*) bh
;
3794 h
->type
= STT_OBJECT
;
3795 elf_hash_table (info
)->hgot
= h
;
3798 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
3801 amt
= sizeof (struct mips_got_info
);
3802 g
= bfd_alloc (abfd
, amt
);
3805 g
->global_gotsym
= NULL
;
3806 g
->global_gotno
= 0;
3808 g
->local_gotno
= MIPS_RESERVED_GOTNO (info
);
3809 g
->assigned_gotno
= MIPS_RESERVED_GOTNO (info
);
3812 g
->tls_ldm_offset
= MINUS_ONE
;
3813 g
->got_entries
= htab_try_create (1, mips_elf_got_entry_hash
,
3814 mips_elf_got_entry_eq
, NULL
);
3815 if (g
->got_entries
== NULL
)
3817 mips_elf_section_data (s
)->u
.got_info
= g
;
3818 mips_elf_section_data (s
)->elf
.this_hdr
.sh_flags
3819 |= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
3821 /* VxWorks also needs a .got.plt section. */
3822 if (htab
->is_vxworks
)
3824 s
= bfd_make_section_with_flags (abfd
, ".got.plt",
3825 SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
3826 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
3827 if (s
== NULL
|| !bfd_set_section_alignment (abfd
, s
, 4))
3835 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3836 __GOTT_INDEX__ symbols. These symbols are only special for
3837 shared objects; they are not used in executables. */
3840 is_gott_symbol (struct bfd_link_info
*info
, struct elf_link_hash_entry
*h
)
3842 return (mips_elf_hash_table (info
)->is_vxworks
3844 && (strcmp (h
->root
.root
.string
, "__GOTT_BASE__") == 0
3845 || strcmp (h
->root
.root
.string
, "__GOTT_INDEX__") == 0));
3848 /* Calculate the value produced by the RELOCATION (which comes from
3849 the INPUT_BFD). The ADDEND is the addend to use for this
3850 RELOCATION; RELOCATION->R_ADDEND is ignored.
3852 The result of the relocation calculation is stored in VALUEP.
3853 REQUIRE_JALXP indicates whether or not the opcode used with this
3854 relocation must be JALX.
3856 This function returns bfd_reloc_continue if the caller need take no
3857 further action regarding this relocation, bfd_reloc_notsupported if
3858 something goes dramatically wrong, bfd_reloc_overflow if an
3859 overflow occurs, and bfd_reloc_ok to indicate success. */
3861 static bfd_reloc_status_type
3862 mips_elf_calculate_relocation (bfd
*abfd
, bfd
*input_bfd
,
3863 asection
*input_section
,
3864 struct bfd_link_info
*info
,
3865 const Elf_Internal_Rela
*relocation
,
3866 bfd_vma addend
, reloc_howto_type
*howto
,
3867 Elf_Internal_Sym
*local_syms
,
3868 asection
**local_sections
, bfd_vma
*valuep
,
3869 const char **namep
, bfd_boolean
*require_jalxp
,
3870 bfd_boolean save_addend
)
3872 /* The eventual value we will return. */
3874 /* The address of the symbol against which the relocation is
3877 /* The final GP value to be used for the relocatable, executable, or
3878 shared object file being produced. */
3879 bfd_vma gp
= MINUS_ONE
;
3880 /* The place (section offset or address) of the storage unit being
3883 /* The value of GP used to create the relocatable object. */
3884 bfd_vma gp0
= MINUS_ONE
;
3885 /* The offset into the global offset table at which the address of
3886 the relocation entry symbol, adjusted by the addend, resides
3887 during execution. */
3888 bfd_vma g
= MINUS_ONE
;
3889 /* The section in which the symbol referenced by the relocation is
3891 asection
*sec
= NULL
;
3892 struct mips_elf_link_hash_entry
*h
= NULL
;
3893 /* TRUE if the symbol referred to by this relocation is a local
3895 bfd_boolean local_p
, was_local_p
;
3896 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3897 bfd_boolean gp_disp_p
= FALSE
;
3898 /* TRUE if the symbol referred to by this relocation is
3899 "__gnu_local_gp". */
3900 bfd_boolean gnu_local_gp_p
= FALSE
;
3901 Elf_Internal_Shdr
*symtab_hdr
;
3903 unsigned long r_symndx
;
3905 /* TRUE if overflow occurred during the calculation of the
3906 relocation value. */
3907 bfd_boolean overflowed_p
;
3908 /* TRUE if this relocation refers to a MIPS16 function. */
3909 bfd_boolean target_is_16_bit_code_p
= FALSE
;
3910 struct mips_elf_link_hash_table
*htab
;
3913 dynobj
= elf_hash_table (info
)->dynobj
;
3914 htab
= mips_elf_hash_table (info
);
3916 /* Parse the relocation. */
3917 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
3918 r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
3919 p
= (input_section
->output_section
->vma
3920 + input_section
->output_offset
3921 + relocation
->r_offset
);
3923 /* Assume that there will be no overflow. */
3924 overflowed_p
= FALSE
;
3926 /* Figure out whether or not the symbol is local, and get the offset
3927 used in the array of hash table entries. */
3928 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3929 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
3930 local_sections
, FALSE
);
3931 was_local_p
= local_p
;
3932 if (! elf_bad_symtab (input_bfd
))
3933 extsymoff
= symtab_hdr
->sh_info
;
3936 /* The symbol table does not follow the rule that local symbols
3937 must come before globals. */
3941 /* Figure out the value of the symbol. */
3944 Elf_Internal_Sym
*sym
;
3946 sym
= local_syms
+ r_symndx
;
3947 sec
= local_sections
[r_symndx
];
3949 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
3950 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
3951 || (sec
->flags
& SEC_MERGE
))
3952 symbol
+= sym
->st_value
;
3953 if ((sec
->flags
& SEC_MERGE
)
3954 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
3956 addend
= _bfd_elf_rel_local_sym (abfd
, sym
, &sec
, addend
);
3958 addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
3961 /* MIPS16 text labels should be treated as odd. */
3962 if (sym
->st_other
== STO_MIPS16
)
3965 /* Record the name of this symbol, for our caller. */
3966 *namep
= bfd_elf_string_from_elf_section (input_bfd
,
3967 symtab_hdr
->sh_link
,
3970 *namep
= bfd_section_name (input_bfd
, sec
);
3972 target_is_16_bit_code_p
= (sym
->st_other
== STO_MIPS16
);
3976 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3978 /* For global symbols we look up the symbol in the hash-table. */
3979 h
= ((struct mips_elf_link_hash_entry
*)
3980 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
]);
3981 /* Find the real hash-table entry for this symbol. */
3982 while (h
->root
.root
.type
== bfd_link_hash_indirect
3983 || h
->root
.root
.type
== bfd_link_hash_warning
)
3984 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3986 /* Record the name of this symbol, for our caller. */
3987 *namep
= h
->root
.root
.root
.string
;
3989 /* See if this is the special _gp_disp symbol. Note that such a
3990 symbol must always be a global symbol. */
3991 if (strcmp (*namep
, "_gp_disp") == 0
3992 && ! NEWABI_P (input_bfd
))
3994 /* Relocations against _gp_disp are permitted only with
3995 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3996 if (r_type
!= R_MIPS_HI16
&& r_type
!= R_MIPS_LO16
3997 && r_type
!= R_MIPS16_HI16
&& r_type
!= R_MIPS16_LO16
)
3998 return bfd_reloc_notsupported
;
4002 /* See if this is the special _gp symbol. Note that such a
4003 symbol must always be a global symbol. */
4004 else if (strcmp (*namep
, "__gnu_local_gp") == 0)
4005 gnu_local_gp_p
= TRUE
;
4008 /* If this symbol is defined, calculate its address. Note that
4009 _gp_disp is a magic symbol, always implicitly defined by the
4010 linker, so it's inappropriate to check to see whether or not
4012 else if ((h
->root
.root
.type
== bfd_link_hash_defined
4013 || h
->root
.root
.type
== bfd_link_hash_defweak
)
4014 && h
->root
.root
.u
.def
.section
)
4016 sec
= h
->root
.root
.u
.def
.section
;
4017 if (sec
->output_section
)
4018 symbol
= (h
->root
.root
.u
.def
.value
4019 + sec
->output_section
->vma
4020 + sec
->output_offset
);
4022 symbol
= h
->root
.root
.u
.def
.value
;
4024 else if (h
->root
.root
.type
== bfd_link_hash_undefweak
)
4025 /* We allow relocations against undefined weak symbols, giving
4026 it the value zero, so that you can undefined weak functions
4027 and check to see if they exist by looking at their
4030 else if (info
->unresolved_syms_in_objects
== RM_IGNORE
4031 && ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
4033 else if (strcmp (*namep
, SGI_COMPAT (input_bfd
)
4034 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4036 /* If this is a dynamic link, we should have created a
4037 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4038 in in _bfd_mips_elf_create_dynamic_sections.
4039 Otherwise, we should define the symbol with a value of 0.
4040 FIXME: It should probably get into the symbol table
4042 BFD_ASSERT (! info
->shared
);
4043 BFD_ASSERT (bfd_get_section_by_name (abfd
, ".dynamic") == NULL
);
4046 else if (ELF_MIPS_IS_OPTIONAL (h
->root
.other
))
4048 /* This is an optional symbol - an Irix specific extension to the
4049 ELF spec. Ignore it for now.
4050 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4051 than simply ignoring them, but we do not handle this for now.
4052 For information see the "64-bit ELF Object File Specification"
4053 which is available from here:
4054 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4059 if (! ((*info
->callbacks
->undefined_symbol
)
4060 (info
, h
->root
.root
.root
.string
, input_bfd
,
4061 input_section
, relocation
->r_offset
,
4062 (info
->unresolved_syms_in_objects
== RM_GENERATE_ERROR
)
4063 || ELF_ST_VISIBILITY (h
->root
.other
))))
4064 return bfd_reloc_undefined
;
4068 target_is_16_bit_code_p
= (h
->root
.other
== STO_MIPS16
);
4071 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4072 need to redirect the call to the stub, unless we're already *in*
4074 if (r_type
!= R_MIPS16_26
&& !info
->relocatable
4075 && ((h
!= NULL
&& h
->fn_stub
!= NULL
)
4077 && elf_tdata (input_bfd
)->local_stubs
!= NULL
4078 && elf_tdata (input_bfd
)->local_stubs
[r_symndx
] != NULL
))
4079 && !mips16_stub_section_p (input_bfd
, input_section
))
4081 /* This is a 32- or 64-bit call to a 16-bit function. We should
4082 have already noticed that we were going to need the
4085 sec
= elf_tdata (input_bfd
)->local_stubs
[r_symndx
];
4088 BFD_ASSERT (h
->need_fn_stub
);
4092 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
4093 /* The target is 16-bit, but the stub isn't. */
4094 target_is_16_bit_code_p
= FALSE
;
4096 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4097 need to redirect the call to the stub. */
4098 else if (r_type
== R_MIPS16_26
&& !info
->relocatable
4099 && ((h
!= NULL
&& (h
->call_stub
!= NULL
|| h
->call_fp_stub
!= NULL
))
4101 && elf_tdata (input_bfd
)->local_call_stubs
!= NULL
4102 && elf_tdata (input_bfd
)->local_call_stubs
[r_symndx
] != NULL
))
4103 && !target_is_16_bit_code_p
)
4106 sec
= elf_tdata (input_bfd
)->local_call_stubs
[r_symndx
];
4109 /* If both call_stub and call_fp_stub are defined, we can figure
4110 out which one to use by checking which one appears in the input
4112 if (h
->call_stub
!= NULL
&& h
->call_fp_stub
!= NULL
)
4117 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
4119 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd
, o
)))
4121 sec
= h
->call_fp_stub
;
4128 else if (h
->call_stub
!= NULL
)
4131 sec
= h
->call_fp_stub
;
4134 BFD_ASSERT (sec
->size
> 0);
4135 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
4138 /* Calls from 16-bit code to 32-bit code and vice versa require the
4139 special jalx instruction. */
4140 *require_jalxp
= (!info
->relocatable
4141 && (((r_type
== R_MIPS16_26
) && !target_is_16_bit_code_p
)
4142 || ((r_type
== R_MIPS_26
) && target_is_16_bit_code_p
)));
4144 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
4145 local_sections
, TRUE
);
4147 /* If we haven't already determined the GOT offset, or the GP value,
4148 and we're going to need it, get it now. */
4151 case R_MIPS_GOT_PAGE
:
4152 case R_MIPS_GOT_OFST
:
4153 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4155 local_p
= local_p
|| _bfd_elf_symbol_refs_local_p (&h
->root
, info
, 1);
4156 if (local_p
|| r_type
== R_MIPS_GOT_OFST
)
4162 case R_MIPS_GOT_DISP
:
4163 case R_MIPS_GOT_HI16
:
4164 case R_MIPS_CALL_HI16
:
4165 case R_MIPS_GOT_LO16
:
4166 case R_MIPS_CALL_LO16
:
4168 case R_MIPS_TLS_GOTTPREL
:
4169 case R_MIPS_TLS_LDM
:
4170 /* Find the index into the GOT where this value is located. */
4171 if (r_type
== R_MIPS_TLS_LDM
)
4173 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
,
4174 0, 0, NULL
, r_type
);
4176 return bfd_reloc_outofrange
;
4180 /* On VxWorks, CALL relocations should refer to the .got.plt
4181 entry, which is initialized to point at the PLT stub. */
4182 if (htab
->is_vxworks
4183 && (r_type
== R_MIPS_CALL_HI16
4184 || r_type
== R_MIPS_CALL_LO16
4185 || r_type
== R_MIPS_CALL16
))
4187 BFD_ASSERT (addend
== 0);
4188 BFD_ASSERT (h
->root
.needs_plt
);
4189 g
= mips_elf_gotplt_index (info
, &h
->root
);
4193 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4194 GOT_PAGE relocation that decays to GOT_DISP because the
4195 symbol turns out to be global. The addend is then added
4197 BFD_ASSERT (addend
== 0 || r_type
== R_MIPS_GOT_PAGE
);
4198 g
= mips_elf_global_got_index (dynobj
, input_bfd
,
4199 &h
->root
, r_type
, info
);
4200 if (h
->tls_type
== GOT_NORMAL
4201 && (! elf_hash_table(info
)->dynamic_sections_created
4203 && (info
->symbolic
|| h
->root
.forced_local
)
4204 && h
->root
.def_regular
)))
4206 /* This is a static link or a -Bsymbolic link. The
4207 symbol is defined locally, or was forced to be local.
4208 We must initialize this entry in the GOT. */
4209 asection
*sgot
= mips_elf_got_section (dynobj
, FALSE
);
4210 MIPS_ELF_PUT_WORD (dynobj
, symbol
, sgot
->contents
+ g
);
4214 else if (!htab
->is_vxworks
4215 && (r_type
== R_MIPS_CALL16
|| (r_type
== R_MIPS_GOT16
)))
4216 /* The calculation below does not involve "g". */
4220 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
,
4221 symbol
+ addend
, r_symndx
, h
, r_type
);
4223 return bfd_reloc_outofrange
;
4226 /* Convert GOT indices to actual offsets. */
4227 g
= mips_elf_got_offset_from_index (dynobj
, abfd
, input_bfd
, g
);
4232 case R_MIPS_GPREL16
:
4233 case R_MIPS_GPREL32
:
4234 case R_MIPS_LITERAL
:
4237 case R_MIPS16_GPREL
:
4238 gp0
= _bfd_get_gp_value (input_bfd
);
4239 gp
= _bfd_get_gp_value (abfd
);
4241 gp
+= mips_elf_adjust_gp (abfd
, mips_elf_got_info (dynobj
, NULL
),
4252 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4253 symbols are resolved by the loader. Add them to .rela.dyn. */
4254 if (h
!= NULL
&& is_gott_symbol (info
, &h
->root
))
4256 Elf_Internal_Rela outrel
;
4260 s
= mips_elf_rel_dyn_section (info
, FALSE
);
4261 loc
= s
->contents
+ s
->reloc_count
++ * sizeof (Elf32_External_Rela
);
4263 outrel
.r_offset
= (input_section
->output_section
->vma
4264 + input_section
->output_offset
4265 + relocation
->r_offset
);
4266 outrel
.r_info
= ELF32_R_INFO (h
->root
.dynindx
, r_type
);
4267 outrel
.r_addend
= addend
;
4268 bfd_elf32_swap_reloca_out (abfd
, &outrel
, loc
);
4270 /* If we've written this relocation for a readonly section,
4271 we need to set DF_TEXTREL again, so that we do not delete the
4273 if (MIPS_ELF_READONLY_SECTION (input_section
))
4274 info
->flags
|= DF_TEXTREL
;
4277 return bfd_reloc_ok
;
4280 /* Figure out what kind of relocation is being performed. */
4284 return bfd_reloc_continue
;
4287 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 16);
4288 overflowed_p
= mips_elf_overflow_p (value
, 16);
4295 || (!htab
->is_vxworks
4296 && htab
->root
.dynamic_sections_created
4298 && h
->root
.def_dynamic
4299 && !h
->root
.def_regular
))
4301 && (input_section
->flags
& SEC_ALLOC
) != 0)
4303 /* If we're creating a shared library, or this relocation is
4304 against a symbol in a shared library, then we can't know
4305 where the symbol will end up. So, we create a relocation
4306 record in the output, and leave the job up to the dynamic
4309 In VxWorks executables, references to external symbols
4310 are handled using copy relocs or PLT stubs, so there's
4311 no need to add a dynamic relocation here. */
4313 if (!mips_elf_create_dynamic_relocation (abfd
,
4321 return bfd_reloc_undefined
;
4325 if (r_type
!= R_MIPS_REL32
)
4326 value
= symbol
+ addend
;
4330 value
&= howto
->dst_mask
;
4334 value
= symbol
+ addend
- p
;
4335 value
&= howto
->dst_mask
;
4339 /* The calculation for R_MIPS16_26 is just the same as for an
4340 R_MIPS_26. It's only the storage of the relocated field into
4341 the output file that's different. That's handled in
4342 mips_elf_perform_relocation. So, we just fall through to the
4343 R_MIPS_26 case here. */
4346 value
= ((addend
| ((p
+ 4) & 0xf0000000)) + symbol
) >> 2;
4349 value
= (_bfd_mips_elf_sign_extend (addend
, 28) + symbol
) >> 2;
4350 if (h
->root
.root
.type
!= bfd_link_hash_undefweak
)
4351 overflowed_p
= (value
>> 26) != ((p
+ 4) >> 28);
4353 value
&= howto
->dst_mask
;
4356 case R_MIPS_TLS_DTPREL_HI16
:
4357 value
= (mips_elf_high (addend
+ symbol
- dtprel_base (info
))
4361 case R_MIPS_TLS_DTPREL_LO16
:
4362 case R_MIPS_TLS_DTPREL32
:
4363 case R_MIPS_TLS_DTPREL64
:
4364 value
= (symbol
+ addend
- dtprel_base (info
)) & howto
->dst_mask
;
4367 case R_MIPS_TLS_TPREL_HI16
:
4368 value
= (mips_elf_high (addend
+ symbol
- tprel_base (info
))
4372 case R_MIPS_TLS_TPREL_LO16
:
4373 value
= (symbol
+ addend
- tprel_base (info
)) & howto
->dst_mask
;
4380 value
= mips_elf_high (addend
+ symbol
);
4381 value
&= howto
->dst_mask
;
4385 /* For MIPS16 ABI code we generate this sequence
4386 0: li $v0,%hi(_gp_disp)
4387 4: addiupc $v1,%lo(_gp_disp)
4391 So the offsets of hi and lo relocs are the same, but the
4392 $pc is four higher than $t9 would be, so reduce
4393 both reloc addends by 4. */
4394 if (r_type
== R_MIPS16_HI16
)
4395 value
= mips_elf_high (addend
+ gp
- p
- 4);
4397 value
= mips_elf_high (addend
+ gp
- p
);
4398 overflowed_p
= mips_elf_overflow_p (value
, 16);
4405 value
= (symbol
+ addend
) & howto
->dst_mask
;
4408 /* See the comment for R_MIPS16_HI16 above for the reason
4409 for this conditional. */
4410 if (r_type
== R_MIPS16_LO16
)
4411 value
= addend
+ gp
- p
;
4413 value
= addend
+ gp
- p
+ 4;
4414 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4415 for overflow. But, on, say, IRIX5, relocations against
4416 _gp_disp are normally generated from the .cpload
4417 pseudo-op. It generates code that normally looks like
4420 lui $gp,%hi(_gp_disp)
4421 addiu $gp,$gp,%lo(_gp_disp)
4424 Here $t9 holds the address of the function being called,
4425 as required by the MIPS ELF ABI. The R_MIPS_LO16
4426 relocation can easily overflow in this situation, but the
4427 R_MIPS_HI16 relocation will handle the overflow.
4428 Therefore, we consider this a bug in the MIPS ABI, and do
4429 not check for overflow here. */
4433 case R_MIPS_LITERAL
:
4434 /* Because we don't merge literal sections, we can handle this
4435 just like R_MIPS_GPREL16. In the long run, we should merge
4436 shared literals, and then we will need to additional work
4441 case R_MIPS16_GPREL
:
4442 /* The R_MIPS16_GPREL performs the same calculation as
4443 R_MIPS_GPREL16, but stores the relocated bits in a different
4444 order. We don't need to do anything special here; the
4445 differences are handled in mips_elf_perform_relocation. */
4446 case R_MIPS_GPREL16
:
4447 /* Only sign-extend the addend if it was extracted from the
4448 instruction. If the addend was separate, leave it alone,
4449 otherwise we may lose significant bits. */
4450 if (howto
->partial_inplace
)
4451 addend
= _bfd_mips_elf_sign_extend (addend
, 16);
4452 value
= symbol
+ addend
- gp
;
4453 /* If the symbol was local, any earlier relocatable links will
4454 have adjusted its addend with the gp offset, so compensate
4455 for that now. Don't do it for symbols forced local in this
4456 link, though, since they won't have had the gp offset applied
4460 overflowed_p
= mips_elf_overflow_p (value
, 16);
4465 /* VxWorks does not have separate local and global semantics for
4466 R_MIPS_GOT16; every relocation evaluates to "G". */
4467 if (!htab
->is_vxworks
&& local_p
)
4471 forced
= ! mips_elf_local_relocation_p (input_bfd
, relocation
,
4472 local_sections
, FALSE
);
4473 value
= mips_elf_got16_entry (abfd
, input_bfd
, info
,
4474 symbol
+ addend
, forced
);
4475 if (value
== MINUS_ONE
)
4476 return bfd_reloc_outofrange
;
4478 = mips_elf_got_offset_from_index (dynobj
, abfd
, input_bfd
, value
);
4479 overflowed_p
= mips_elf_overflow_p (value
, 16);
4486 case R_MIPS_TLS_GOTTPREL
:
4487 case R_MIPS_TLS_LDM
:
4488 case R_MIPS_GOT_DISP
:
4491 overflowed_p
= mips_elf_overflow_p (value
, 16);
4494 case R_MIPS_GPREL32
:
4495 value
= (addend
+ symbol
+ gp0
- gp
);
4497 value
&= howto
->dst_mask
;
4501 case R_MIPS_GNU_REL16_S2
:
4502 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 18) - p
;
4503 overflowed_p
= mips_elf_overflow_p (value
, 18);
4504 value
>>= howto
->rightshift
;
4505 value
&= howto
->dst_mask
;
4508 case R_MIPS_GOT_HI16
:
4509 case R_MIPS_CALL_HI16
:
4510 /* We're allowed to handle these two relocations identically.
4511 The dynamic linker is allowed to handle the CALL relocations
4512 differently by creating a lazy evaluation stub. */
4514 value
= mips_elf_high (value
);
4515 value
&= howto
->dst_mask
;
4518 case R_MIPS_GOT_LO16
:
4519 case R_MIPS_CALL_LO16
:
4520 value
= g
& howto
->dst_mask
;
4523 case R_MIPS_GOT_PAGE
:
4524 /* GOT_PAGE relocations that reference non-local symbols decay
4525 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4529 value
= mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, NULL
);
4530 if (value
== MINUS_ONE
)
4531 return bfd_reloc_outofrange
;
4532 value
= mips_elf_got_offset_from_index (dynobj
, abfd
, input_bfd
, value
);
4533 overflowed_p
= mips_elf_overflow_p (value
, 16);
4536 case R_MIPS_GOT_OFST
:
4538 mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, &value
);
4541 overflowed_p
= mips_elf_overflow_p (value
, 16);
4545 value
= symbol
- addend
;
4546 value
&= howto
->dst_mask
;
4550 value
= mips_elf_higher (addend
+ symbol
);
4551 value
&= howto
->dst_mask
;
4554 case R_MIPS_HIGHEST
:
4555 value
= mips_elf_highest (addend
+ symbol
);
4556 value
&= howto
->dst_mask
;
4559 case R_MIPS_SCN_DISP
:
4560 value
= symbol
+ addend
- sec
->output_offset
;
4561 value
&= howto
->dst_mask
;
4565 /* This relocation is only a hint. In some cases, we optimize
4566 it into a bal instruction. But we don't try to optimize
4567 branches to the PLT; that will wind up wasting time. */
4568 if (h
!= NULL
&& h
->root
.plt
.offset
!= (bfd_vma
) -1)
4569 return bfd_reloc_continue
;
4570 value
= symbol
+ addend
;
4574 case R_MIPS_GNU_VTINHERIT
:
4575 case R_MIPS_GNU_VTENTRY
:
4576 /* We don't do anything with these at present. */
4577 return bfd_reloc_continue
;
4580 /* An unrecognized relocation type. */
4581 return bfd_reloc_notsupported
;
4584 /* Store the VALUE for our caller. */
4586 return overflowed_p
? bfd_reloc_overflow
: bfd_reloc_ok
;
4589 /* Obtain the field relocated by RELOCATION. */
4592 mips_elf_obtain_contents (reloc_howto_type
*howto
,
4593 const Elf_Internal_Rela
*relocation
,
4594 bfd
*input_bfd
, bfd_byte
*contents
)
4597 bfd_byte
*location
= contents
+ relocation
->r_offset
;
4599 /* Obtain the bytes. */
4600 x
= bfd_get ((8 * bfd_get_reloc_size (howto
)), input_bfd
, location
);
4605 /* It has been determined that the result of the RELOCATION is the
4606 VALUE. Use HOWTO to place VALUE into the output file at the
4607 appropriate position. The SECTION is the section to which the
4608 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4609 for the relocation must be either JAL or JALX, and it is
4610 unconditionally converted to JALX.
4612 Returns FALSE if anything goes wrong. */
4615 mips_elf_perform_relocation (struct bfd_link_info
*info
,
4616 reloc_howto_type
*howto
,
4617 const Elf_Internal_Rela
*relocation
,
4618 bfd_vma value
, bfd
*input_bfd
,
4619 asection
*input_section
, bfd_byte
*contents
,
4620 bfd_boolean require_jalx
)
4624 int r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
4626 /* Figure out where the relocation is occurring. */
4627 location
= contents
+ relocation
->r_offset
;
4629 _bfd_mips16_elf_reloc_unshuffle (input_bfd
, r_type
, FALSE
, location
);
4631 /* Obtain the current value. */
4632 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
4634 /* Clear the field we are setting. */
4635 x
&= ~howto
->dst_mask
;
4637 /* Set the field. */
4638 x
|= (value
& howto
->dst_mask
);
4640 /* If required, turn JAL into JALX. */
4644 bfd_vma opcode
= x
>> 26;
4645 bfd_vma jalx_opcode
;
4647 /* Check to see if the opcode is already JAL or JALX. */
4648 if (r_type
== R_MIPS16_26
)
4650 ok
= ((opcode
== 0x6) || (opcode
== 0x7));
4655 ok
= ((opcode
== 0x3) || (opcode
== 0x1d));
4659 /* If the opcode is not JAL or JALX, there's a problem. */
4662 (*_bfd_error_handler
)
4663 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4666 (unsigned long) relocation
->r_offset
);
4667 bfd_set_error (bfd_error_bad_value
);
4671 /* Make this the JALX opcode. */
4672 x
= (x
& ~(0x3f << 26)) | (jalx_opcode
<< 26);
4675 /* On the RM9000, bal is faster than jal, because bal uses branch
4676 prediction hardware. If we are linking for the RM9000, and we
4677 see jal, and bal fits, use it instead. Note that this
4678 transformation should be safe for all architectures. */
4679 if (bfd_get_mach (input_bfd
) == bfd_mach_mips9000
4680 && !info
->relocatable
4682 && ((r_type
== R_MIPS_26
&& (x
>> 26) == 0x3) /* jal addr */
4683 || (r_type
== R_MIPS_JALR
&& x
== 0x0320f809))) /* jalr t9 */
4689 addr
= (input_section
->output_section
->vma
4690 + input_section
->output_offset
4691 + relocation
->r_offset
4693 if (r_type
== R_MIPS_26
)
4694 dest
= (value
<< 2) | ((addr
>> 28) << 28);
4698 if (off
<= 0x1ffff && off
>= -0x20000)
4699 x
= 0x04110000 | (((bfd_vma
) off
>> 2) & 0xffff); /* bal addr */
4702 /* Put the value into the output. */
4703 bfd_put (8 * bfd_get_reloc_size (howto
), input_bfd
, x
, location
);
4705 _bfd_mips16_elf_reloc_shuffle(input_bfd
, r_type
, !info
->relocatable
,
4711 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4714 mips16_stub_section_p (bfd
*abfd ATTRIBUTE_UNUSED
, asection
*section
)
4716 const char *name
= bfd_get_section_name (abfd
, section
);
4718 return FN_STUB_P (name
) || CALL_STUB_P (name
) || CALL_FP_STUB_P (name
);
4721 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4724 mips_elf_allocate_dynamic_relocations (bfd
*abfd
, struct bfd_link_info
*info
,
4728 struct mips_elf_link_hash_table
*htab
;
4730 htab
= mips_elf_hash_table (info
);
4731 s
= mips_elf_rel_dyn_section (info
, FALSE
);
4732 BFD_ASSERT (s
!= NULL
);
4734 if (htab
->is_vxworks
)
4735 s
->size
+= n
* MIPS_ELF_RELA_SIZE (abfd
);
4740 /* Make room for a null element. */
4741 s
->size
+= MIPS_ELF_REL_SIZE (abfd
);
4744 s
->size
+= n
* MIPS_ELF_REL_SIZE (abfd
);
4748 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4749 is the original relocation, which is now being transformed into a
4750 dynamic relocation. The ADDENDP is adjusted if necessary; the
4751 caller should store the result in place of the original addend. */
4754 mips_elf_create_dynamic_relocation (bfd
*output_bfd
,
4755 struct bfd_link_info
*info
,
4756 const Elf_Internal_Rela
*rel
,
4757 struct mips_elf_link_hash_entry
*h
,
4758 asection
*sec
, bfd_vma symbol
,
4759 bfd_vma
*addendp
, asection
*input_section
)
4761 Elf_Internal_Rela outrel
[3];
4766 bfd_boolean defined_p
;
4767 struct mips_elf_link_hash_table
*htab
;
4769 htab
= mips_elf_hash_table (info
);
4770 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
4771 dynobj
= elf_hash_table (info
)->dynobj
;
4772 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
4773 BFD_ASSERT (sreloc
!= NULL
);
4774 BFD_ASSERT (sreloc
->contents
!= NULL
);
4775 BFD_ASSERT (sreloc
->reloc_count
* MIPS_ELF_REL_SIZE (output_bfd
)
4778 outrel
[0].r_offset
=
4779 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[0].r_offset
);
4780 if (ABI_64_P (output_bfd
))
4782 outrel
[1].r_offset
=
4783 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[1].r_offset
);
4784 outrel
[2].r_offset
=
4785 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[2].r_offset
);
4788 if (outrel
[0].r_offset
== MINUS_ONE
)
4789 /* The relocation field has been deleted. */
4792 if (outrel
[0].r_offset
== MINUS_TWO
)
4794 /* The relocation field has been converted into a relative value of
4795 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4796 the field to be fully relocated, so add in the symbol's value. */
4801 /* We must now calculate the dynamic symbol table index to use
4802 in the relocation. */
4804 && (!h
->root
.def_regular
4805 || (info
->shared
&& !info
->symbolic
&& !h
->root
.forced_local
)))
4807 indx
= h
->root
.dynindx
;
4808 if (SGI_COMPAT (output_bfd
))
4809 defined_p
= h
->root
.def_regular
;
4811 /* ??? glibc's ld.so just adds the final GOT entry to the
4812 relocation field. It therefore treats relocs against
4813 defined symbols in the same way as relocs against
4814 undefined symbols. */
4819 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
4821 else if (sec
== NULL
|| sec
->owner
== NULL
)
4823 bfd_set_error (bfd_error_bad_value
);
4828 indx
= elf_section_data (sec
->output_section
)->dynindx
;
4831 asection
*osec
= htab
->root
.text_index_section
;
4832 indx
= elf_section_data (osec
)->dynindx
;
4838 /* Instead of generating a relocation using the section
4839 symbol, we may as well make it a fully relative
4840 relocation. We want to avoid generating relocations to
4841 local symbols because we used to generate them
4842 incorrectly, without adding the original symbol value,
4843 which is mandated by the ABI for section symbols. In
4844 order to give dynamic loaders and applications time to
4845 phase out the incorrect use, we refrain from emitting
4846 section-relative relocations. It's not like they're
4847 useful, after all. This should be a bit more efficient
4849 /* ??? Although this behavior is compatible with glibc's ld.so,
4850 the ABI says that relocations against STN_UNDEF should have
4851 a symbol value of 0. Irix rld honors this, so relocations
4852 against STN_UNDEF have no effect. */
4853 if (!SGI_COMPAT (output_bfd
))
4858 /* If the relocation was previously an absolute relocation and
4859 this symbol will not be referred to by the relocation, we must
4860 adjust it by the value we give it in the dynamic symbol table.
4861 Otherwise leave the job up to the dynamic linker. */
4862 if (defined_p
&& r_type
!= R_MIPS_REL32
)
4865 if (htab
->is_vxworks
)
4866 /* VxWorks uses non-relative relocations for this. */
4867 outrel
[0].r_info
= ELF32_R_INFO (indx
, R_MIPS_32
);
4869 /* The relocation is always an REL32 relocation because we don't
4870 know where the shared library will wind up at load-time. */
4871 outrel
[0].r_info
= ELF_R_INFO (output_bfd
, (unsigned long) indx
,
4874 /* For strict adherence to the ABI specification, we should
4875 generate a R_MIPS_64 relocation record by itself before the
4876 _REL32/_64 record as well, such that the addend is read in as
4877 a 64-bit value (REL32 is a 32-bit relocation, after all).
4878 However, since none of the existing ELF64 MIPS dynamic
4879 loaders seems to care, we don't waste space with these
4880 artificial relocations. If this turns out to not be true,
4881 mips_elf_allocate_dynamic_relocation() should be tweaked so
4882 as to make room for a pair of dynamic relocations per
4883 invocation if ABI_64_P, and here we should generate an
4884 additional relocation record with R_MIPS_64 by itself for a
4885 NULL symbol before this relocation record. */
4886 outrel
[1].r_info
= ELF_R_INFO (output_bfd
, 0,
4887 ABI_64_P (output_bfd
)
4890 outrel
[2].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_NONE
);
4892 /* Adjust the output offset of the relocation to reference the
4893 correct location in the output file. */
4894 outrel
[0].r_offset
+= (input_section
->output_section
->vma
4895 + input_section
->output_offset
);
4896 outrel
[1].r_offset
+= (input_section
->output_section
->vma
4897 + input_section
->output_offset
);
4898 outrel
[2].r_offset
+= (input_section
->output_section
->vma
4899 + input_section
->output_offset
);
4901 /* Put the relocation back out. We have to use the special
4902 relocation outputter in the 64-bit case since the 64-bit
4903 relocation format is non-standard. */
4904 if (ABI_64_P (output_bfd
))
4906 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
4907 (output_bfd
, &outrel
[0],
4909 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
4911 else if (htab
->is_vxworks
)
4913 /* VxWorks uses RELA rather than REL dynamic relocations. */
4914 outrel
[0].r_addend
= *addendp
;
4915 bfd_elf32_swap_reloca_out
4916 (output_bfd
, &outrel
[0],
4918 + sreloc
->reloc_count
* sizeof (Elf32_External_Rela
)));
4921 bfd_elf32_swap_reloc_out
4922 (output_bfd
, &outrel
[0],
4923 (sreloc
->contents
+ sreloc
->reloc_count
* sizeof (Elf32_External_Rel
)));
4925 /* We've now added another relocation. */
4926 ++sreloc
->reloc_count
;
4928 /* Make sure the output section is writable. The dynamic linker
4929 will be writing to it. */
4930 elf_section_data (input_section
->output_section
)->this_hdr
.sh_flags
4933 /* On IRIX5, make an entry of compact relocation info. */
4934 if (IRIX_COMPAT (output_bfd
) == ict_irix5
)
4936 asection
*scpt
= bfd_get_section_by_name (dynobj
, ".compact_rel");
4941 Elf32_crinfo cptrel
;
4943 mips_elf_set_cr_format (cptrel
, CRF_MIPS_LONG
);
4944 cptrel
.vaddr
= (rel
->r_offset
4945 + input_section
->output_section
->vma
4946 + input_section
->output_offset
);
4947 if (r_type
== R_MIPS_REL32
)
4948 mips_elf_set_cr_type (cptrel
, CRT_MIPS_REL32
);
4950 mips_elf_set_cr_type (cptrel
, CRT_MIPS_WORD
);
4951 mips_elf_set_cr_dist2to (cptrel
, 0);
4952 cptrel
.konst
= *addendp
;
4954 cr
= (scpt
->contents
4955 + sizeof (Elf32_External_compact_rel
));
4956 mips_elf_set_cr_relvaddr (cptrel
, 0);
4957 bfd_elf32_swap_crinfo_out (output_bfd
, &cptrel
,
4958 ((Elf32_External_crinfo
*) cr
4959 + scpt
->reloc_count
));
4960 ++scpt
->reloc_count
;
4964 /* If we've written this relocation for a readonly section,
4965 we need to set DF_TEXTREL again, so that we do not delete the
4967 if (MIPS_ELF_READONLY_SECTION (input_section
))
4968 info
->flags
|= DF_TEXTREL
;
4973 /* Return the MACH for a MIPS e_flags value. */
4976 _bfd_elf_mips_mach (flagword flags
)
4978 switch (flags
& EF_MIPS_MACH
)
4980 case E_MIPS_MACH_3900
:
4981 return bfd_mach_mips3900
;
4983 case E_MIPS_MACH_4010
:
4984 return bfd_mach_mips4010
;
4986 case E_MIPS_MACH_4100
:
4987 return bfd_mach_mips4100
;
4989 case E_MIPS_MACH_4111
:
4990 return bfd_mach_mips4111
;
4992 case E_MIPS_MACH_4120
:
4993 return bfd_mach_mips4120
;
4995 case E_MIPS_MACH_4650
:
4996 return bfd_mach_mips4650
;
4998 case E_MIPS_MACH_5400
:
4999 return bfd_mach_mips5400
;
5001 case E_MIPS_MACH_5500
:
5002 return bfd_mach_mips5500
;
5004 case E_MIPS_MACH_9000
:
5005 return bfd_mach_mips9000
;
5007 case E_MIPS_MACH_SB1
:
5008 return bfd_mach_mips_sb1
;
5011 switch (flags
& EF_MIPS_ARCH
)
5015 return bfd_mach_mips3000
;
5018 return bfd_mach_mips6000
;
5021 return bfd_mach_mips4000
;
5024 return bfd_mach_mips8000
;
5027 return bfd_mach_mips5
;
5029 case E_MIPS_ARCH_32
:
5030 return bfd_mach_mipsisa32
;
5032 case E_MIPS_ARCH_64
:
5033 return bfd_mach_mipsisa64
;
5035 case E_MIPS_ARCH_32R2
:
5036 return bfd_mach_mipsisa32r2
;
5038 case E_MIPS_ARCH_64R2
:
5039 return bfd_mach_mipsisa64r2
;
5046 /* Return printable name for ABI. */
5048 static INLINE
char *
5049 elf_mips_abi_name (bfd
*abfd
)
5053 flags
= elf_elfheader (abfd
)->e_flags
;
5054 switch (flags
& EF_MIPS_ABI
)
5057 if (ABI_N32_P (abfd
))
5059 else if (ABI_64_P (abfd
))
5063 case E_MIPS_ABI_O32
:
5065 case E_MIPS_ABI_O64
:
5067 case E_MIPS_ABI_EABI32
:
5069 case E_MIPS_ABI_EABI64
:
5072 return "unknown abi";
5076 /* MIPS ELF uses two common sections. One is the usual one, and the
5077 other is for small objects. All the small objects are kept
5078 together, and then referenced via the gp pointer, which yields
5079 faster assembler code. This is what we use for the small common
5080 section. This approach is copied from ecoff.c. */
5081 static asection mips_elf_scom_section
;
5082 static asymbol mips_elf_scom_symbol
;
5083 static asymbol
*mips_elf_scom_symbol_ptr
;
5085 /* MIPS ELF also uses an acommon section, which represents an
5086 allocated common symbol which may be overridden by a
5087 definition in a shared library. */
5088 static asection mips_elf_acom_section
;
5089 static asymbol mips_elf_acom_symbol
;
5090 static asymbol
*mips_elf_acom_symbol_ptr
;
5092 /* Handle the special MIPS section numbers that a symbol may use.
5093 This is used for both the 32-bit and the 64-bit ABI. */
5096 _bfd_mips_elf_symbol_processing (bfd
*abfd
, asymbol
*asym
)
5098 elf_symbol_type
*elfsym
;
5100 elfsym
= (elf_symbol_type
*) asym
;
5101 switch (elfsym
->internal_elf_sym
.st_shndx
)
5103 case SHN_MIPS_ACOMMON
:
5104 /* This section is used in a dynamically linked executable file.
5105 It is an allocated common section. The dynamic linker can
5106 either resolve these symbols to something in a shared
5107 library, or it can just leave them here. For our purposes,
5108 we can consider these symbols to be in a new section. */
5109 if (mips_elf_acom_section
.name
== NULL
)
5111 /* Initialize the acommon section. */
5112 mips_elf_acom_section
.name
= ".acommon";
5113 mips_elf_acom_section
.flags
= SEC_ALLOC
;
5114 mips_elf_acom_section
.output_section
= &mips_elf_acom_section
;
5115 mips_elf_acom_section
.symbol
= &mips_elf_acom_symbol
;
5116 mips_elf_acom_section
.symbol_ptr_ptr
= &mips_elf_acom_symbol_ptr
;
5117 mips_elf_acom_symbol
.name
= ".acommon";
5118 mips_elf_acom_symbol
.flags
= BSF_SECTION_SYM
;
5119 mips_elf_acom_symbol
.section
= &mips_elf_acom_section
;
5120 mips_elf_acom_symbol_ptr
= &mips_elf_acom_symbol
;
5122 asym
->section
= &mips_elf_acom_section
;
5126 /* Common symbols less than the GP size are automatically
5127 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5128 if (asym
->value
> elf_gp_size (abfd
)
5129 || ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_TLS
5130 || IRIX_COMPAT (abfd
) == ict_irix6
)
5133 case SHN_MIPS_SCOMMON
:
5134 if (mips_elf_scom_section
.name
== NULL
)
5136 /* Initialize the small common section. */
5137 mips_elf_scom_section
.name
= ".scommon";
5138 mips_elf_scom_section
.flags
= SEC_IS_COMMON
;
5139 mips_elf_scom_section
.output_section
= &mips_elf_scom_section
;
5140 mips_elf_scom_section
.symbol
= &mips_elf_scom_symbol
;
5141 mips_elf_scom_section
.symbol_ptr_ptr
= &mips_elf_scom_symbol_ptr
;
5142 mips_elf_scom_symbol
.name
= ".scommon";
5143 mips_elf_scom_symbol
.flags
= BSF_SECTION_SYM
;
5144 mips_elf_scom_symbol
.section
= &mips_elf_scom_section
;
5145 mips_elf_scom_symbol_ptr
= &mips_elf_scom_symbol
;
5147 asym
->section
= &mips_elf_scom_section
;
5148 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
5151 case SHN_MIPS_SUNDEFINED
:
5152 asym
->section
= bfd_und_section_ptr
;
5157 asection
*section
= bfd_get_section_by_name (abfd
, ".text");
5159 BFD_ASSERT (SGI_COMPAT (abfd
));
5160 if (section
!= NULL
)
5162 asym
->section
= section
;
5163 /* MIPS_TEXT is a bit special, the address is not an offset
5164 to the base of the .text section. So substract the section
5165 base address to make it an offset. */
5166 asym
->value
-= section
->vma
;
5173 asection
*section
= bfd_get_section_by_name (abfd
, ".data");
5175 BFD_ASSERT (SGI_COMPAT (abfd
));
5176 if (section
!= NULL
)
5178 asym
->section
= section
;
5179 /* MIPS_DATA is a bit special, the address is not an offset
5180 to the base of the .data section. So substract the section
5181 base address to make it an offset. */
5182 asym
->value
-= section
->vma
;
5189 /* Implement elf_backend_eh_frame_address_size. This differs from
5190 the default in the way it handles EABI64.
5192 EABI64 was originally specified as an LP64 ABI, and that is what
5193 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5194 historically accepted the combination of -mabi=eabi and -mlong32,
5195 and this ILP32 variation has become semi-official over time.
5196 Both forms use elf32 and have pointer-sized FDE addresses.
5198 If an EABI object was generated by GCC 4.0 or above, it will have
5199 an empty .gcc_compiled_longXX section, where XX is the size of longs
5200 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5201 have no special marking to distinguish them from LP64 objects.
5203 We don't want users of the official LP64 ABI to be punished for the
5204 existence of the ILP32 variant, but at the same time, we don't want
5205 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5206 We therefore take the following approach:
5208 - If ABFD contains a .gcc_compiled_longXX section, use it to
5209 determine the pointer size.
5211 - Otherwise check the type of the first relocation. Assume that
5212 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5216 The second check is enough to detect LP64 objects generated by pre-4.0
5217 compilers because, in the kind of output generated by those compilers,
5218 the first relocation will be associated with either a CIE personality
5219 routine or an FDE start address. Furthermore, the compilers never
5220 used a special (non-pointer) encoding for this ABI.
5222 Checking the relocation type should also be safe because there is no
5223 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5227 _bfd_mips_elf_eh_frame_address_size (bfd
*abfd
, asection
*sec
)
5229 if (elf_elfheader (abfd
)->e_ident
[EI_CLASS
] == ELFCLASS64
)
5231 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
5233 bfd_boolean long32_p
, long64_p
;
5235 long32_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long32") != 0;
5236 long64_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long64") != 0;
5237 if (long32_p
&& long64_p
)
5244 if (sec
->reloc_count
> 0
5245 && elf_section_data (sec
)->relocs
!= NULL
5246 && (ELF32_R_TYPE (elf_section_data (sec
)->relocs
[0].r_info
)
5255 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5256 relocations against two unnamed section symbols to resolve to the
5257 same address. For example, if we have code like:
5259 lw $4,%got_disp(.data)($gp)
5260 lw $25,%got_disp(.text)($gp)
5263 then the linker will resolve both relocations to .data and the program
5264 will jump there rather than to .text.
5266 We can work around this problem by giving names to local section symbols.
5267 This is also what the MIPSpro tools do. */
5270 _bfd_mips_elf_name_local_section_symbols (bfd
*abfd
)
5272 return SGI_COMPAT (abfd
);
5275 /* Work over a section just before writing it out. This routine is
5276 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5277 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5281 _bfd_mips_elf_section_processing (bfd
*abfd
, Elf_Internal_Shdr
*hdr
)
5283 if (hdr
->sh_type
== SHT_MIPS_REGINFO
5284 && hdr
->sh_size
> 0)
5288 BFD_ASSERT (hdr
->sh_size
== sizeof (Elf32_External_RegInfo
));
5289 BFD_ASSERT (hdr
->contents
== NULL
);
5292 hdr
->sh_offset
+ sizeof (Elf32_External_RegInfo
) - 4,
5295 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
5296 if (bfd_bwrite (buf
, 4, abfd
) != 4)
5300 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
5301 && hdr
->bfd_section
!= NULL
5302 && mips_elf_section_data (hdr
->bfd_section
) != NULL
5303 && mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
!= NULL
)
5305 bfd_byte
*contents
, *l
, *lend
;
5307 /* We stored the section contents in the tdata field in the
5308 set_section_contents routine. We save the section contents
5309 so that we don't have to read them again.
5310 At this point we know that elf_gp is set, so we can look
5311 through the section contents to see if there is an
5312 ODK_REGINFO structure. */
5314 contents
= mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
;
5316 lend
= contents
+ hdr
->sh_size
;
5317 while (l
+ sizeof (Elf_External_Options
) <= lend
)
5319 Elf_Internal_Options intopt
;
5321 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
5323 if (intopt
.size
< sizeof (Elf_External_Options
))
5325 (*_bfd_error_handler
)
5326 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5327 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
5330 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
5337 + sizeof (Elf_External_Options
)
5338 + (sizeof (Elf64_External_RegInfo
) - 8)),
5341 H_PUT_64 (abfd
, elf_gp (abfd
), buf
);
5342 if (bfd_bwrite (buf
, 8, abfd
) != 8)
5345 else if (intopt
.kind
== ODK_REGINFO
)
5352 + sizeof (Elf_External_Options
)
5353 + (sizeof (Elf32_External_RegInfo
) - 4)),
5356 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
5357 if (bfd_bwrite (buf
, 4, abfd
) != 4)
5364 if (hdr
->bfd_section
!= NULL
)
5366 const char *name
= bfd_get_section_name (abfd
, hdr
->bfd_section
);
5368 if (strcmp (name
, ".sdata") == 0
5369 || strcmp (name
, ".lit8") == 0
5370 || strcmp (name
, ".lit4") == 0)
5372 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
5373 hdr
->sh_type
= SHT_PROGBITS
;
5375 else if (strcmp (name
, ".sbss") == 0)
5377 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
5378 hdr
->sh_type
= SHT_NOBITS
;
5380 else if (strcmp (name
, ".srdata") == 0)
5382 hdr
->sh_flags
|= SHF_ALLOC
| SHF_MIPS_GPREL
;
5383 hdr
->sh_type
= SHT_PROGBITS
;
5385 else if (strcmp (name
, ".compact_rel") == 0)
5388 hdr
->sh_type
= SHT_PROGBITS
;
5390 else if (strcmp (name
, ".rtproc") == 0)
5392 if (hdr
->sh_addralign
!= 0 && hdr
->sh_entsize
== 0)
5394 unsigned int adjust
;
5396 adjust
= hdr
->sh_size
% hdr
->sh_addralign
;
5398 hdr
->sh_size
+= hdr
->sh_addralign
- adjust
;
5406 /* Handle a MIPS specific section when reading an object file. This
5407 is called when elfcode.h finds a section with an unknown type.
5408 This routine supports both the 32-bit and 64-bit ELF ABI.
5410 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5414 _bfd_mips_elf_section_from_shdr (bfd
*abfd
,
5415 Elf_Internal_Shdr
*hdr
,
5421 /* There ought to be a place to keep ELF backend specific flags, but
5422 at the moment there isn't one. We just keep track of the
5423 sections by their name, instead. Fortunately, the ABI gives
5424 suggested names for all the MIPS specific sections, so we will
5425 probably get away with this. */
5426 switch (hdr
->sh_type
)
5428 case SHT_MIPS_LIBLIST
:
5429 if (strcmp (name
, ".liblist") != 0)
5433 if (strcmp (name
, ".msym") != 0)
5436 case SHT_MIPS_CONFLICT
:
5437 if (strcmp (name
, ".conflict") != 0)
5440 case SHT_MIPS_GPTAB
:
5441 if (! CONST_STRNEQ (name
, ".gptab."))
5444 case SHT_MIPS_UCODE
:
5445 if (strcmp (name
, ".ucode") != 0)
5448 case SHT_MIPS_DEBUG
:
5449 if (strcmp (name
, ".mdebug") != 0)
5451 flags
= SEC_DEBUGGING
;
5453 case SHT_MIPS_REGINFO
:
5454 if (strcmp (name
, ".reginfo") != 0
5455 || hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
5457 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
5459 case SHT_MIPS_IFACE
:
5460 if (strcmp (name
, ".MIPS.interfaces") != 0)
5463 case SHT_MIPS_CONTENT
:
5464 if (! CONST_STRNEQ (name
, ".MIPS.content"))
5467 case SHT_MIPS_OPTIONS
:
5468 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
5471 case SHT_MIPS_DWARF
:
5472 if (! CONST_STRNEQ (name
, ".debug_"))
5475 case SHT_MIPS_SYMBOL_LIB
:
5476 if (strcmp (name
, ".MIPS.symlib") != 0)
5479 case SHT_MIPS_EVENTS
:
5480 if (! CONST_STRNEQ (name
, ".MIPS.events")
5481 && ! CONST_STRNEQ (name
, ".MIPS.post_rel"))
5488 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
5493 if (! bfd_set_section_flags (abfd
, hdr
->bfd_section
,
5494 (bfd_get_section_flags (abfd
,
5500 /* FIXME: We should record sh_info for a .gptab section. */
5502 /* For a .reginfo section, set the gp value in the tdata information
5503 from the contents of this section. We need the gp value while
5504 processing relocs, so we just get it now. The .reginfo section
5505 is not used in the 64-bit MIPS ELF ABI. */
5506 if (hdr
->sh_type
== SHT_MIPS_REGINFO
)
5508 Elf32_External_RegInfo ext
;
5511 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
,
5512 &ext
, 0, sizeof ext
))
5514 bfd_mips_elf32_swap_reginfo_in (abfd
, &ext
, &s
);
5515 elf_gp (abfd
) = s
.ri_gp_value
;
5518 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5519 set the gp value based on what we find. We may see both
5520 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5521 they should agree. */
5522 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
)
5524 bfd_byte
*contents
, *l
, *lend
;
5526 contents
= bfd_malloc (hdr
->sh_size
);
5527 if (contents
== NULL
)
5529 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, contents
,
5536 lend
= contents
+ hdr
->sh_size
;
5537 while (l
+ sizeof (Elf_External_Options
) <= lend
)
5539 Elf_Internal_Options intopt
;
5541 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
5543 if (intopt
.size
< sizeof (Elf_External_Options
))
5545 (*_bfd_error_handler
)
5546 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5547 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
5550 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
5552 Elf64_Internal_RegInfo intreg
;
5554 bfd_mips_elf64_swap_reginfo_in
5556 ((Elf64_External_RegInfo
*)
5557 (l
+ sizeof (Elf_External_Options
))),
5559 elf_gp (abfd
) = intreg
.ri_gp_value
;
5561 else if (intopt
.kind
== ODK_REGINFO
)
5563 Elf32_RegInfo intreg
;
5565 bfd_mips_elf32_swap_reginfo_in
5567 ((Elf32_External_RegInfo
*)
5568 (l
+ sizeof (Elf_External_Options
))),
5570 elf_gp (abfd
) = intreg
.ri_gp_value
;
5580 /* Set the correct type for a MIPS ELF section. We do this by the
5581 section name, which is a hack, but ought to work. This routine is
5582 used by both the 32-bit and the 64-bit ABI. */
5585 _bfd_mips_elf_fake_sections (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*sec
)
5587 const char *name
= bfd_get_section_name (abfd
, sec
);
5589 if (strcmp (name
, ".liblist") == 0)
5591 hdr
->sh_type
= SHT_MIPS_LIBLIST
;
5592 hdr
->sh_info
= sec
->size
/ sizeof (Elf32_Lib
);
5593 /* The sh_link field is set in final_write_processing. */
5595 else if (strcmp (name
, ".conflict") == 0)
5596 hdr
->sh_type
= SHT_MIPS_CONFLICT
;
5597 else if (CONST_STRNEQ (name
, ".gptab."))
5599 hdr
->sh_type
= SHT_MIPS_GPTAB
;
5600 hdr
->sh_entsize
= sizeof (Elf32_External_gptab
);
5601 /* The sh_info field is set in final_write_processing. */
5603 else if (strcmp (name
, ".ucode") == 0)
5604 hdr
->sh_type
= SHT_MIPS_UCODE
;
5605 else if (strcmp (name
, ".mdebug") == 0)
5607 hdr
->sh_type
= SHT_MIPS_DEBUG
;
5608 /* In a shared object on IRIX 5.3, the .mdebug section has an
5609 entsize of 0. FIXME: Does this matter? */
5610 if (SGI_COMPAT (abfd
) && (abfd
->flags
& DYNAMIC
) != 0)
5611 hdr
->sh_entsize
= 0;
5613 hdr
->sh_entsize
= 1;
5615 else if (strcmp (name
, ".reginfo") == 0)
5617 hdr
->sh_type
= SHT_MIPS_REGINFO
;
5618 /* In a shared object on IRIX 5.3, the .reginfo section has an
5619 entsize of 0x18. FIXME: Does this matter? */
5620 if (SGI_COMPAT (abfd
))
5622 if ((abfd
->flags
& DYNAMIC
) != 0)
5623 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
5625 hdr
->sh_entsize
= 1;
5628 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
5630 else if (SGI_COMPAT (abfd
)
5631 && (strcmp (name
, ".hash") == 0
5632 || strcmp (name
, ".dynamic") == 0
5633 || strcmp (name
, ".dynstr") == 0))
5635 if (SGI_COMPAT (abfd
))
5636 hdr
->sh_entsize
= 0;
5638 /* This isn't how the IRIX6 linker behaves. */
5639 hdr
->sh_info
= SIZEOF_MIPS_DYNSYM_SECNAMES
;
5642 else if (strcmp (name
, ".got") == 0
5643 || strcmp (name
, ".srdata") == 0
5644 || strcmp (name
, ".sdata") == 0
5645 || strcmp (name
, ".sbss") == 0
5646 || strcmp (name
, ".lit4") == 0
5647 || strcmp (name
, ".lit8") == 0)
5648 hdr
->sh_flags
|= SHF_MIPS_GPREL
;
5649 else if (strcmp (name
, ".MIPS.interfaces") == 0)
5651 hdr
->sh_type
= SHT_MIPS_IFACE
;
5652 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
5654 else if (CONST_STRNEQ (name
, ".MIPS.content"))
5656 hdr
->sh_type
= SHT_MIPS_CONTENT
;
5657 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
5658 /* The sh_info field is set in final_write_processing. */
5660 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
5662 hdr
->sh_type
= SHT_MIPS_OPTIONS
;
5663 hdr
->sh_entsize
= 1;
5664 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
5666 else if (CONST_STRNEQ (name
, ".debug_"))
5667 hdr
->sh_type
= SHT_MIPS_DWARF
;
5668 else if (strcmp (name
, ".MIPS.symlib") == 0)
5670 hdr
->sh_type
= SHT_MIPS_SYMBOL_LIB
;
5671 /* The sh_link and sh_info fields are set in
5672 final_write_processing. */
5674 else if (CONST_STRNEQ (name
, ".MIPS.events")
5675 || CONST_STRNEQ (name
, ".MIPS.post_rel"))
5677 hdr
->sh_type
= SHT_MIPS_EVENTS
;
5678 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
5679 /* The sh_link field is set in final_write_processing. */
5681 else if (strcmp (name
, ".msym") == 0)
5683 hdr
->sh_type
= SHT_MIPS_MSYM
;
5684 hdr
->sh_flags
|= SHF_ALLOC
;
5685 hdr
->sh_entsize
= 8;
5688 /* The generic elf_fake_sections will set up REL_HDR using the default
5689 kind of relocations. We used to set up a second header for the
5690 non-default kind of relocations here, but only NewABI would use
5691 these, and the IRIX ld doesn't like resulting empty RELA sections.
5692 Thus we create those header only on demand now. */
5697 /* Given a BFD section, try to locate the corresponding ELF section
5698 index. This is used by both the 32-bit and the 64-bit ABI.
5699 Actually, it's not clear to me that the 64-bit ABI supports these,
5700 but for non-PIC objects we will certainly want support for at least
5701 the .scommon section. */
5704 _bfd_mips_elf_section_from_bfd_section (bfd
*abfd ATTRIBUTE_UNUSED
,
5705 asection
*sec
, int *retval
)
5707 if (strcmp (bfd_get_section_name (abfd
, sec
), ".scommon") == 0)
5709 *retval
= SHN_MIPS_SCOMMON
;
5712 if (strcmp (bfd_get_section_name (abfd
, sec
), ".acommon") == 0)
5714 *retval
= SHN_MIPS_ACOMMON
;
5720 /* Hook called by the linker routine which adds symbols from an object
5721 file. We must handle the special MIPS section numbers here. */
5724 _bfd_mips_elf_add_symbol_hook (bfd
*abfd
, struct bfd_link_info
*info
,
5725 Elf_Internal_Sym
*sym
, const char **namep
,
5726 flagword
*flagsp ATTRIBUTE_UNUSED
,
5727 asection
**secp
, bfd_vma
*valp
)
5729 if (SGI_COMPAT (abfd
)
5730 && (abfd
->flags
& DYNAMIC
) != 0
5731 && strcmp (*namep
, "_rld_new_interface") == 0)
5733 /* Skip IRIX5 rld entry name. */
5738 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5739 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5740 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5741 a magic symbol resolved by the linker, we ignore this bogus definition
5742 of _gp_disp. New ABI objects do not suffer from this problem so this
5743 is not done for them. */
5745 && (sym
->st_shndx
== SHN_ABS
)
5746 && (strcmp (*namep
, "_gp_disp") == 0))
5752 switch (sym
->st_shndx
)
5755 /* Common symbols less than the GP size are automatically
5756 treated as SHN_MIPS_SCOMMON symbols. */
5757 if (sym
->st_size
> elf_gp_size (abfd
)
5758 || ELF_ST_TYPE (sym
->st_info
) == STT_TLS
5759 || IRIX_COMPAT (abfd
) == ict_irix6
)
5762 case SHN_MIPS_SCOMMON
:
5763 *secp
= bfd_make_section_old_way (abfd
, ".scommon");
5764 (*secp
)->flags
|= SEC_IS_COMMON
;
5765 *valp
= sym
->st_size
;
5769 /* This section is used in a shared object. */
5770 if (elf_tdata (abfd
)->elf_text_section
== NULL
)
5772 asymbol
*elf_text_symbol
;
5773 asection
*elf_text_section
;
5774 bfd_size_type amt
= sizeof (asection
);
5776 elf_text_section
= bfd_zalloc (abfd
, amt
);
5777 if (elf_text_section
== NULL
)
5780 amt
= sizeof (asymbol
);
5781 elf_text_symbol
= bfd_zalloc (abfd
, amt
);
5782 if (elf_text_symbol
== NULL
)
5785 /* Initialize the section. */
5787 elf_tdata (abfd
)->elf_text_section
= elf_text_section
;
5788 elf_tdata (abfd
)->elf_text_symbol
= elf_text_symbol
;
5790 elf_text_section
->symbol
= elf_text_symbol
;
5791 elf_text_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_text_symbol
;
5793 elf_text_section
->name
= ".text";
5794 elf_text_section
->flags
= SEC_NO_FLAGS
;
5795 elf_text_section
->output_section
= NULL
;
5796 elf_text_section
->owner
= abfd
;
5797 elf_text_symbol
->name
= ".text";
5798 elf_text_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
5799 elf_text_symbol
->section
= elf_text_section
;
5801 /* This code used to do *secp = bfd_und_section_ptr if
5802 info->shared. I don't know why, and that doesn't make sense,
5803 so I took it out. */
5804 *secp
= elf_tdata (abfd
)->elf_text_section
;
5807 case SHN_MIPS_ACOMMON
:
5808 /* Fall through. XXX Can we treat this as allocated data? */
5810 /* This section is used in a shared object. */
5811 if (elf_tdata (abfd
)->elf_data_section
== NULL
)
5813 asymbol
*elf_data_symbol
;
5814 asection
*elf_data_section
;
5815 bfd_size_type amt
= sizeof (asection
);
5817 elf_data_section
= bfd_zalloc (abfd
, amt
);
5818 if (elf_data_section
== NULL
)
5821 amt
= sizeof (asymbol
);
5822 elf_data_symbol
= bfd_zalloc (abfd
, amt
);
5823 if (elf_data_symbol
== NULL
)
5826 /* Initialize the section. */
5828 elf_tdata (abfd
)->elf_data_section
= elf_data_section
;
5829 elf_tdata (abfd
)->elf_data_symbol
= elf_data_symbol
;
5831 elf_data_section
->symbol
= elf_data_symbol
;
5832 elf_data_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_data_symbol
;
5834 elf_data_section
->name
= ".data";
5835 elf_data_section
->flags
= SEC_NO_FLAGS
;
5836 elf_data_section
->output_section
= NULL
;
5837 elf_data_section
->owner
= abfd
;
5838 elf_data_symbol
->name
= ".data";
5839 elf_data_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
5840 elf_data_symbol
->section
= elf_data_section
;
5842 /* This code used to do *secp = bfd_und_section_ptr if
5843 info->shared. I don't know why, and that doesn't make sense,
5844 so I took it out. */
5845 *secp
= elf_tdata (abfd
)->elf_data_section
;
5848 case SHN_MIPS_SUNDEFINED
:
5849 *secp
= bfd_und_section_ptr
;
5853 if (SGI_COMPAT (abfd
)
5855 && info
->hash
->creator
== abfd
->xvec
5856 && strcmp (*namep
, "__rld_obj_head") == 0)
5858 struct elf_link_hash_entry
*h
;
5859 struct bfd_link_hash_entry
*bh
;
5861 /* Mark __rld_obj_head as dynamic. */
5863 if (! (_bfd_generic_link_add_one_symbol
5864 (info
, abfd
, *namep
, BSF_GLOBAL
, *secp
, *valp
, NULL
, FALSE
,
5865 get_elf_backend_data (abfd
)->collect
, &bh
)))
5868 h
= (struct elf_link_hash_entry
*) bh
;
5871 h
->type
= STT_OBJECT
;
5873 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5876 mips_elf_hash_table (info
)->use_rld_obj_head
= TRUE
;
5879 /* If this is a mips16 text symbol, add 1 to the value to make it
5880 odd. This will cause something like .word SYM to come up with
5881 the right value when it is loaded into the PC. */
5882 if (sym
->st_other
== STO_MIPS16
)
5888 /* This hook function is called before the linker writes out a global
5889 symbol. We mark symbols as small common if appropriate. This is
5890 also where we undo the increment of the value for a mips16 symbol. */
5893 _bfd_mips_elf_link_output_symbol_hook
5894 (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
5895 const char *name ATTRIBUTE_UNUSED
, Elf_Internal_Sym
*sym
,
5896 asection
*input_sec
, struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
)
5898 /* If we see a common symbol, which implies a relocatable link, then
5899 if a symbol was small common in an input file, mark it as small
5900 common in the output file. */
5901 if (sym
->st_shndx
== SHN_COMMON
5902 && strcmp (input_sec
->name
, ".scommon") == 0)
5903 sym
->st_shndx
= SHN_MIPS_SCOMMON
;
5905 if (sym
->st_other
== STO_MIPS16
)
5906 sym
->st_value
&= ~1;
5911 /* Functions for the dynamic linker. */
5913 /* Create dynamic sections when linking against a dynamic object. */
5916 _bfd_mips_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
5918 struct elf_link_hash_entry
*h
;
5919 struct bfd_link_hash_entry
*bh
;
5921 register asection
*s
;
5922 const char * const *namep
;
5923 struct mips_elf_link_hash_table
*htab
;
5925 htab
= mips_elf_hash_table (info
);
5926 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
5927 | SEC_LINKER_CREATED
| SEC_READONLY
);
5929 /* The psABI requires a read-only .dynamic section, but the VxWorks
5931 if (!htab
->is_vxworks
)
5933 s
= bfd_get_section_by_name (abfd
, ".dynamic");
5936 if (! bfd_set_section_flags (abfd
, s
, flags
))
5941 /* We need to create .got section. */
5942 if (! mips_elf_create_got_section (abfd
, info
, FALSE
))
5945 if (! mips_elf_rel_dyn_section (info
, TRUE
))
5948 /* Create .stub section. */
5949 if (bfd_get_section_by_name (abfd
,
5950 MIPS_ELF_STUB_SECTION_NAME (abfd
)) == NULL
)
5952 s
= bfd_make_section_with_flags (abfd
,
5953 MIPS_ELF_STUB_SECTION_NAME (abfd
),
5956 || ! bfd_set_section_alignment (abfd
, s
,
5957 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
5961 if ((IRIX_COMPAT (abfd
) == ict_irix5
|| IRIX_COMPAT (abfd
) == ict_none
)
5963 && bfd_get_section_by_name (abfd
, ".rld_map") == NULL
)
5965 s
= bfd_make_section_with_flags (abfd
, ".rld_map",
5966 flags
&~ (flagword
) SEC_READONLY
);
5968 || ! bfd_set_section_alignment (abfd
, s
,
5969 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
5973 /* On IRIX5, we adjust add some additional symbols and change the
5974 alignments of several sections. There is no ABI documentation
5975 indicating that this is necessary on IRIX6, nor any evidence that
5976 the linker takes such action. */
5977 if (IRIX_COMPAT (abfd
) == ict_irix5
)
5979 for (namep
= mips_elf_dynsym_rtproc_names
; *namep
!= NULL
; namep
++)
5982 if (! (_bfd_generic_link_add_one_symbol
5983 (info
, abfd
, *namep
, BSF_GLOBAL
, bfd_und_section_ptr
, 0,
5984 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
5987 h
= (struct elf_link_hash_entry
*) bh
;
5990 h
->type
= STT_SECTION
;
5992 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5996 /* We need to create a .compact_rel section. */
5997 if (SGI_COMPAT (abfd
))
5999 if (!mips_elf_create_compact_rel_section (abfd
, info
))
6003 /* Change alignments of some sections. */
6004 s
= bfd_get_section_by_name (abfd
, ".hash");
6006 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6007 s
= bfd_get_section_by_name (abfd
, ".dynsym");
6009 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6010 s
= bfd_get_section_by_name (abfd
, ".dynstr");
6012 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6013 s
= bfd_get_section_by_name (abfd
, ".reginfo");
6015 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6016 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6018 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
6025 name
= SGI_COMPAT (abfd
) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6027 if (!(_bfd_generic_link_add_one_symbol
6028 (info
, abfd
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
, 0,
6029 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
6032 h
= (struct elf_link_hash_entry
*) bh
;
6035 h
->type
= STT_SECTION
;
6037 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6040 if (! mips_elf_hash_table (info
)->use_rld_obj_head
)
6042 /* __rld_map is a four byte word located in the .data section
6043 and is filled in by the rtld to contain a pointer to
6044 the _r_debug structure. Its symbol value will be set in
6045 _bfd_mips_elf_finish_dynamic_symbol. */
6046 s
= bfd_get_section_by_name (abfd
, ".rld_map");
6047 BFD_ASSERT (s
!= NULL
);
6049 name
= SGI_COMPAT (abfd
) ? "__rld_map" : "__RLD_MAP";
6051 if (!(_bfd_generic_link_add_one_symbol
6052 (info
, abfd
, name
, BSF_GLOBAL
, s
, 0, NULL
, FALSE
,
6053 get_elf_backend_data (abfd
)->collect
, &bh
)))
6056 h
= (struct elf_link_hash_entry
*) bh
;
6059 h
->type
= STT_OBJECT
;
6061 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6066 if (htab
->is_vxworks
)
6068 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6069 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6070 if (!_bfd_elf_create_dynamic_sections (abfd
, info
))
6073 /* Cache the sections created above. */
6074 htab
->sdynbss
= bfd_get_section_by_name (abfd
, ".dynbss");
6075 htab
->srelbss
= bfd_get_section_by_name (abfd
, ".rela.bss");
6076 htab
->srelplt
= bfd_get_section_by_name (abfd
, ".rela.plt");
6077 htab
->splt
= bfd_get_section_by_name (abfd
, ".plt");
6079 || (!htab
->srelbss
&& !info
->shared
)
6084 /* Do the usual VxWorks handling. */
6085 if (!elf_vxworks_create_dynamic_sections (abfd
, info
, &htab
->srelplt2
))
6088 /* Work out the PLT sizes. */
6091 htab
->plt_header_size
6092 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry
);
6093 htab
->plt_entry_size
6094 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry
);
6098 htab
->plt_header_size
6099 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry
);
6100 htab
->plt_entry_size
6101 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry
);
6108 /* Look through the relocs for a section during the first phase, and
6109 allocate space in the global offset table. */
6112 _bfd_mips_elf_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
6113 asection
*sec
, const Elf_Internal_Rela
*relocs
)
6117 Elf_Internal_Shdr
*symtab_hdr
;
6118 struct elf_link_hash_entry
**sym_hashes
;
6119 struct mips_got_info
*g
;
6121 const Elf_Internal_Rela
*rel
;
6122 const Elf_Internal_Rela
*rel_end
;
6125 const struct elf_backend_data
*bed
;
6126 struct mips_elf_link_hash_table
*htab
;
6128 if (info
->relocatable
)
6131 htab
= mips_elf_hash_table (info
);
6132 dynobj
= elf_hash_table (info
)->dynobj
;
6133 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6134 sym_hashes
= elf_sym_hashes (abfd
);
6135 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
6137 /* Check for the mips16 stub sections. */
6139 name
= bfd_get_section_name (abfd
, sec
);
6140 if (FN_STUB_P (name
))
6142 unsigned long r_symndx
;
6144 /* Look at the relocation information to figure out which symbol
6147 r_symndx
= ELF_R_SYM (abfd
, relocs
->r_info
);
6149 if (r_symndx
< extsymoff
6150 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
6154 /* This stub is for a local symbol. This stub will only be
6155 needed if there is some relocation in this BFD, other
6156 than a 16 bit function call, which refers to this symbol. */
6157 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
6159 Elf_Internal_Rela
*sec_relocs
;
6160 const Elf_Internal_Rela
*r
, *rend
;
6162 /* We can ignore stub sections when looking for relocs. */
6163 if ((o
->flags
& SEC_RELOC
) == 0
6164 || o
->reloc_count
== 0
6165 || mips16_stub_section_p (abfd
, o
))
6169 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
6171 if (sec_relocs
== NULL
)
6174 rend
= sec_relocs
+ o
->reloc_count
;
6175 for (r
= sec_relocs
; r
< rend
; r
++)
6176 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
6177 && ELF_R_TYPE (abfd
, r
->r_info
) != R_MIPS16_26
)
6180 if (elf_section_data (o
)->relocs
!= sec_relocs
)
6189 /* There is no non-call reloc for this stub, so we do
6190 not need it. Since this function is called before
6191 the linker maps input sections to output sections, we
6192 can easily discard it by setting the SEC_EXCLUDE
6194 sec
->flags
|= SEC_EXCLUDE
;
6198 /* Record this stub in an array of local symbol stubs for
6200 if (elf_tdata (abfd
)->local_stubs
== NULL
)
6202 unsigned long symcount
;
6206 if (elf_bad_symtab (abfd
))
6207 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
6209 symcount
= symtab_hdr
->sh_info
;
6210 amt
= symcount
* sizeof (asection
*);
6211 n
= bfd_zalloc (abfd
, amt
);
6214 elf_tdata (abfd
)->local_stubs
= n
;
6217 sec
->flags
|= SEC_KEEP
;
6218 elf_tdata (abfd
)->local_stubs
[r_symndx
] = sec
;
6220 /* We don't need to set mips16_stubs_seen in this case.
6221 That flag is used to see whether we need to look through
6222 the global symbol table for stubs. We don't need to set
6223 it here, because we just have a local stub. */
6227 struct mips_elf_link_hash_entry
*h
;
6229 h
= ((struct mips_elf_link_hash_entry
*)
6230 sym_hashes
[r_symndx
- extsymoff
]);
6232 while (h
->root
.root
.type
== bfd_link_hash_indirect
6233 || h
->root
.root
.type
== bfd_link_hash_warning
)
6234 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
6236 /* H is the symbol this stub is for. */
6238 /* If we already have an appropriate stub for this function, we
6239 don't need another one, so we can discard this one. Since
6240 this function is called before the linker maps input sections
6241 to output sections, we can easily discard it by setting the
6242 SEC_EXCLUDE flag. */
6243 if (h
->fn_stub
!= NULL
)
6245 sec
->flags
|= SEC_EXCLUDE
;
6249 sec
->flags
|= SEC_KEEP
;
6251 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
6254 else if (CALL_STUB_P (name
) || CALL_FP_STUB_P (name
))
6256 unsigned long r_symndx
;
6257 struct mips_elf_link_hash_entry
*h
;
6260 /* Look at the relocation information to figure out which symbol
6263 r_symndx
= ELF_R_SYM (abfd
, relocs
->r_info
);
6265 if (r_symndx
< extsymoff
6266 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
6270 /* This stub is for a local symbol. This stub will only be
6271 needed if there is some relocation (R_MIPS16_26) in this BFD
6272 that refers to this symbol. */
6273 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
6275 Elf_Internal_Rela
*sec_relocs
;
6276 const Elf_Internal_Rela
*r
, *rend
;
6278 /* We can ignore stub sections when looking for relocs. */
6279 if ((o
->flags
& SEC_RELOC
) == 0
6280 || o
->reloc_count
== 0
6281 || mips16_stub_section_p (abfd
, o
))
6285 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
6287 if (sec_relocs
== NULL
)
6290 rend
= sec_relocs
+ o
->reloc_count
;
6291 for (r
= sec_relocs
; r
< rend
; r
++)
6292 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
6293 && ELF_R_TYPE (abfd
, r
->r_info
) == R_MIPS16_26
)
6296 if (elf_section_data (o
)->relocs
!= sec_relocs
)
6305 /* There is no non-call reloc for this stub, so we do
6306 not need it. Since this function is called before
6307 the linker maps input sections to output sections, we
6308 can easily discard it by setting the SEC_EXCLUDE
6310 sec
->flags
|= SEC_EXCLUDE
;
6314 /* Record this stub in an array of local symbol call_stubs for
6316 if (elf_tdata (abfd
)->local_call_stubs
== NULL
)
6318 unsigned long symcount
;
6322 if (elf_bad_symtab (abfd
))
6323 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
6325 symcount
= symtab_hdr
->sh_info
;
6326 amt
= symcount
* sizeof (asection
*);
6327 n
= bfd_zalloc (abfd
, amt
);
6330 elf_tdata (abfd
)->local_call_stubs
= n
;
6333 sec
->flags
|= SEC_KEEP
;
6334 elf_tdata (abfd
)->local_call_stubs
[r_symndx
] = sec
;
6336 /* We don't need to set mips16_stubs_seen in this case.
6337 That flag is used to see whether we need to look through
6338 the global symbol table for stubs. We don't need to set
6339 it here, because we just have a local stub. */
6343 h
= ((struct mips_elf_link_hash_entry
*)
6344 sym_hashes
[r_symndx
- extsymoff
]);
6346 /* H is the symbol this stub is for. */
6348 if (CALL_FP_STUB_P (name
))
6349 loc
= &h
->call_fp_stub
;
6351 loc
= &h
->call_stub
;
6353 /* If we already have an appropriate stub for this function, we
6354 don't need another one, so we can discard this one. Since
6355 this function is called before the linker maps input sections
6356 to output sections, we can easily discard it by setting the
6357 SEC_EXCLUDE flag. */
6360 sec
->flags
|= SEC_EXCLUDE
;
6364 sec
->flags
|= SEC_KEEP
;
6366 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
6377 sgot
= mips_elf_got_section (dynobj
, FALSE
);
6382 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
6383 g
= mips_elf_section_data (sgot
)->u
.got_info
;
6384 BFD_ASSERT (g
!= NULL
);
6389 bed
= get_elf_backend_data (abfd
);
6390 rel_end
= relocs
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
6391 for (rel
= relocs
; rel
< rel_end
; ++rel
)
6393 unsigned long r_symndx
;
6394 unsigned int r_type
;
6395 struct elf_link_hash_entry
*h
;
6397 r_symndx
= ELF_R_SYM (abfd
, rel
->r_info
);
6398 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
6400 if (r_symndx
< extsymoff
)
6402 else if (r_symndx
>= extsymoff
+ NUM_SHDR_ENTRIES (symtab_hdr
))
6404 (*_bfd_error_handler
)
6405 (_("%B: Malformed reloc detected for section %s"),
6407 bfd_set_error (bfd_error_bad_value
);
6412 h
= sym_hashes
[r_symndx
- extsymoff
];
6414 /* This may be an indirect symbol created because of a version. */
6417 while (h
->root
.type
== bfd_link_hash_indirect
)
6418 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
6422 /* Some relocs require a global offset table. */
6423 if (dynobj
== NULL
|| sgot
== NULL
)
6429 case R_MIPS_CALL_HI16
:
6430 case R_MIPS_CALL_LO16
:
6431 case R_MIPS_GOT_HI16
:
6432 case R_MIPS_GOT_LO16
:
6433 case R_MIPS_GOT_PAGE
:
6434 case R_MIPS_GOT_OFST
:
6435 case R_MIPS_GOT_DISP
:
6436 case R_MIPS_TLS_GOTTPREL
:
6438 case R_MIPS_TLS_LDM
:
6440 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
6441 if (! mips_elf_create_got_section (dynobj
, info
, FALSE
))
6443 g
= mips_elf_got_info (dynobj
, &sgot
);
6444 if (htab
->is_vxworks
&& !info
->shared
)
6446 (*_bfd_error_handler
)
6447 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6448 abfd
, (unsigned long) rel
->r_offset
);
6449 bfd_set_error (bfd_error_bad_value
);
6457 /* In VxWorks executables, references to external symbols
6458 are handled using copy relocs or PLT stubs, so there's
6459 no need to add a dynamic relocation here. */
6461 && (info
->shared
|| (h
!= NULL
&& !htab
->is_vxworks
))
6462 && (sec
->flags
& SEC_ALLOC
) != 0)
6463 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
6473 ((struct mips_elf_link_hash_entry
*) h
)->is_relocation_target
= TRUE
;
6475 /* Relocations against the special VxWorks __GOTT_BASE__ and
6476 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6477 room for them in .rela.dyn. */
6478 if (is_gott_symbol (info
, h
))
6482 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
6486 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
6487 if (MIPS_ELF_READONLY_SECTION (sec
))
6488 /* We tell the dynamic linker that there are
6489 relocations against the text segment. */
6490 info
->flags
|= DF_TEXTREL
;
6493 else if (r_type
== R_MIPS_CALL_LO16
6494 || r_type
== R_MIPS_GOT_LO16
6495 || r_type
== R_MIPS_GOT_DISP
6496 || (r_type
== R_MIPS_GOT16
&& htab
->is_vxworks
))
6498 /* We may need a local GOT entry for this relocation. We
6499 don't count R_MIPS_GOT_PAGE because we can estimate the
6500 maximum number of pages needed by looking at the size of
6501 the segment. Similar comments apply to R_MIPS_GOT16 and
6502 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6503 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6504 R_MIPS_CALL_HI16 because these are always followed by an
6505 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6506 if (! mips_elf_record_local_got_symbol (abfd
, r_symndx
,
6507 rel
->r_addend
, g
, 0))
6516 (*_bfd_error_handler
)
6517 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6518 abfd
, (unsigned long) rel
->r_offset
);
6519 bfd_set_error (bfd_error_bad_value
);
6524 case R_MIPS_CALL_HI16
:
6525 case R_MIPS_CALL_LO16
:
6528 /* VxWorks call relocations point the function's .got.plt
6529 entry, which will be allocated by adjust_dynamic_symbol.
6530 Otherwise, this symbol requires a global GOT entry. */
6531 if (!htab
->is_vxworks
6532 && !mips_elf_record_global_got_symbol (h
, abfd
, info
, g
, 0))
6535 /* We need a stub, not a plt entry for the undefined
6536 function. But we record it as if it needs plt. See
6537 _bfd_elf_adjust_dynamic_symbol. */
6543 case R_MIPS_GOT_PAGE
:
6544 /* If this is a global, overridable symbol, GOT_PAGE will
6545 decay to GOT_DISP, so we'll need a GOT entry for it. */
6550 struct mips_elf_link_hash_entry
*hmips
=
6551 (struct mips_elf_link_hash_entry
*) h
;
6553 while (hmips
->root
.root
.type
== bfd_link_hash_indirect
6554 || hmips
->root
.root
.type
== bfd_link_hash_warning
)
6555 hmips
= (struct mips_elf_link_hash_entry
*)
6556 hmips
->root
.root
.u
.i
.link
;
6558 if (hmips
->root
.def_regular
6559 && ! (info
->shared
&& ! info
->symbolic
6560 && ! hmips
->root
.forced_local
))
6566 case R_MIPS_GOT_HI16
:
6567 case R_MIPS_GOT_LO16
:
6568 case R_MIPS_GOT_DISP
:
6569 if (h
&& ! mips_elf_record_global_got_symbol (h
, abfd
, info
, g
, 0))
6573 case R_MIPS_TLS_GOTTPREL
:
6575 info
->flags
|= DF_STATIC_TLS
;
6578 case R_MIPS_TLS_LDM
:
6579 if (r_type
== R_MIPS_TLS_LDM
)
6587 /* This symbol requires a global offset table entry, or two
6588 for TLS GD relocations. */
6590 unsigned char flag
= (r_type
== R_MIPS_TLS_GD
6592 : r_type
== R_MIPS_TLS_LDM
6597 struct mips_elf_link_hash_entry
*hmips
=
6598 (struct mips_elf_link_hash_entry
*) h
;
6599 hmips
->tls_type
|= flag
;
6601 if (h
&& ! mips_elf_record_global_got_symbol (h
, abfd
, info
, g
, flag
))
6606 BFD_ASSERT (flag
== GOT_TLS_LDM
|| r_symndx
!= 0);
6608 if (! mips_elf_record_local_got_symbol (abfd
, r_symndx
,
6609 rel
->r_addend
, g
, flag
))
6618 /* In VxWorks executables, references to external symbols
6619 are handled using copy relocs or PLT stubs, so there's
6620 no need to add a .rela.dyn entry for this relocation. */
6621 if ((info
->shared
|| (h
!= NULL
&& !htab
->is_vxworks
))
6622 && (sec
->flags
& SEC_ALLOC
) != 0)
6626 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
6632 /* When creating a shared object, we must copy these
6633 reloc types into the output file as R_MIPS_REL32
6634 relocs. Make room for this reloc in .rel(a).dyn. */
6635 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
6636 if (MIPS_ELF_READONLY_SECTION (sec
))
6637 /* We tell the dynamic linker that there are
6638 relocations against the text segment. */
6639 info
->flags
|= DF_TEXTREL
;
6643 struct mips_elf_link_hash_entry
*hmips
;
6645 /* We only need to copy this reloc if the symbol is
6646 defined in a dynamic object. */
6647 hmips
= (struct mips_elf_link_hash_entry
*) h
;
6648 ++hmips
->possibly_dynamic_relocs
;
6649 if (MIPS_ELF_READONLY_SECTION (sec
))
6650 /* We need it to tell the dynamic linker if there
6651 are relocations against the text segment. */
6652 hmips
->readonly_reloc
= TRUE
;
6655 /* Even though we don't directly need a GOT entry for
6656 this symbol, a symbol must have a dynamic symbol
6657 table index greater that DT_MIPS_GOTSYM if there are
6658 dynamic relocations against it. This does not apply
6659 to VxWorks, which does not have the usual coupling
6660 between global GOT entries and .dynsym entries. */
6661 if (h
!= NULL
&& !htab
->is_vxworks
)
6664 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
6665 if (! mips_elf_create_got_section (dynobj
, info
, TRUE
))
6667 g
= mips_elf_got_info (dynobj
, &sgot
);
6668 if (! mips_elf_record_global_got_symbol (h
, abfd
, info
, g
, 0))
6673 if (SGI_COMPAT (abfd
))
6674 mips_elf_hash_table (info
)->compact_rel_size
+=
6675 sizeof (Elf32_External_crinfo
);
6680 ((struct mips_elf_link_hash_entry
*) h
)->is_branch_target
= TRUE
;
6685 ((struct mips_elf_link_hash_entry
*) h
)->is_branch_target
= TRUE
;
6688 case R_MIPS_GPREL16
:
6689 case R_MIPS_LITERAL
:
6690 case R_MIPS_GPREL32
:
6691 if (SGI_COMPAT (abfd
))
6692 mips_elf_hash_table (info
)->compact_rel_size
+=
6693 sizeof (Elf32_External_crinfo
);
6696 /* This relocation describes the C++ object vtable hierarchy.
6697 Reconstruct it for later use during GC. */
6698 case R_MIPS_GNU_VTINHERIT
:
6699 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
6703 /* This relocation describes which C++ vtable entries are actually
6704 used. Record for later use during GC. */
6705 case R_MIPS_GNU_VTENTRY
:
6706 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
6714 /* We must not create a stub for a symbol that has relocations
6715 related to taking the function's address. This doesn't apply to
6716 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6717 a normal .got entry. */
6718 if (!htab
->is_vxworks
&& h
!= NULL
)
6722 ((struct mips_elf_link_hash_entry
*) h
)->no_fn_stub
= TRUE
;
6725 case R_MIPS_CALL_HI16
:
6726 case R_MIPS_CALL_LO16
:
6731 /* If this reloc is not a 16 bit call, and it has a global
6732 symbol, then we will need the fn_stub if there is one.
6733 References from a stub section do not count. */
6735 && r_type
!= R_MIPS16_26
6736 && !mips16_stub_section_p (abfd
, sec
))
6738 struct mips_elf_link_hash_entry
*mh
;
6740 mh
= (struct mips_elf_link_hash_entry
*) h
;
6741 mh
->need_fn_stub
= TRUE
;
6749 _bfd_mips_relax_section (bfd
*abfd
, asection
*sec
,
6750 struct bfd_link_info
*link_info
,
6753 Elf_Internal_Rela
*internal_relocs
;
6754 Elf_Internal_Rela
*irel
, *irelend
;
6755 Elf_Internal_Shdr
*symtab_hdr
;
6756 bfd_byte
*contents
= NULL
;
6758 bfd_boolean changed_contents
= FALSE
;
6759 bfd_vma sec_start
= sec
->output_section
->vma
+ sec
->output_offset
;
6760 Elf_Internal_Sym
*isymbuf
= NULL
;
6762 /* We are not currently changing any sizes, so only one pass. */
6765 if (link_info
->relocatable
)
6768 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
6769 link_info
->keep_memory
);
6770 if (internal_relocs
== NULL
)
6773 irelend
= internal_relocs
+ sec
->reloc_count
6774 * get_elf_backend_data (abfd
)->s
->int_rels_per_ext_rel
;
6775 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6776 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
6778 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
6781 bfd_signed_vma sym_offset
;
6782 unsigned int r_type
;
6783 unsigned long r_symndx
;
6785 unsigned long instruction
;
6787 /* Turn jalr into bgezal, and jr into beq, if they're marked
6788 with a JALR relocation, that indicate where they jump to.
6789 This saves some pipeline bubbles. */
6790 r_type
= ELF_R_TYPE (abfd
, irel
->r_info
);
6791 if (r_type
!= R_MIPS_JALR
)
6794 r_symndx
= ELF_R_SYM (abfd
, irel
->r_info
);
6795 /* Compute the address of the jump target. */
6796 if (r_symndx
>= extsymoff
)
6798 struct mips_elf_link_hash_entry
*h
6799 = ((struct mips_elf_link_hash_entry
*)
6800 elf_sym_hashes (abfd
) [r_symndx
- extsymoff
]);
6802 while (h
->root
.root
.type
== bfd_link_hash_indirect
6803 || h
->root
.root
.type
== bfd_link_hash_warning
)
6804 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
6806 /* If a symbol is undefined, or if it may be overridden,
6808 if (! ((h
->root
.root
.type
== bfd_link_hash_defined
6809 || h
->root
.root
.type
== bfd_link_hash_defweak
)
6810 && h
->root
.root
.u
.def
.section
)
6811 || (link_info
->shared
&& ! link_info
->symbolic
6812 && !h
->root
.forced_local
))
6815 sym_sec
= h
->root
.root
.u
.def
.section
;
6816 if (sym_sec
->output_section
)
6817 symval
= (h
->root
.root
.u
.def
.value
6818 + sym_sec
->output_section
->vma
6819 + sym_sec
->output_offset
);
6821 symval
= h
->root
.root
.u
.def
.value
;
6825 Elf_Internal_Sym
*isym
;
6827 /* Read this BFD's symbols if we haven't done so already. */
6828 if (isymbuf
== NULL
&& symtab_hdr
->sh_info
!= 0)
6830 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
6831 if (isymbuf
== NULL
)
6832 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
6833 symtab_hdr
->sh_info
, 0,
6835 if (isymbuf
== NULL
)
6839 isym
= isymbuf
+ r_symndx
;
6840 if (isym
->st_shndx
== SHN_UNDEF
)
6842 else if (isym
->st_shndx
== SHN_ABS
)
6843 sym_sec
= bfd_abs_section_ptr
;
6844 else if (isym
->st_shndx
== SHN_COMMON
)
6845 sym_sec
= bfd_com_section_ptr
;
6848 = bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
6849 symval
= isym
->st_value
6850 + sym_sec
->output_section
->vma
6851 + sym_sec
->output_offset
;
6854 /* Compute branch offset, from delay slot of the jump to the
6856 sym_offset
= (symval
+ irel
->r_addend
)
6857 - (sec_start
+ irel
->r_offset
+ 4);
6859 /* Branch offset must be properly aligned. */
6860 if ((sym_offset
& 3) != 0)
6865 /* Check that it's in range. */
6866 if (sym_offset
< -0x8000 || sym_offset
>= 0x8000)
6869 /* Get the section contents if we haven't done so already. */
6870 if (contents
== NULL
)
6872 /* Get cached copy if it exists. */
6873 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
6874 contents
= elf_section_data (sec
)->this_hdr
.contents
;
6877 if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
6882 instruction
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
);
6884 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6885 if ((instruction
& 0xfc1fffff) == 0x0000f809)
6886 instruction
= 0x04110000;
6887 /* If it was jr <reg>, turn it into b <target>. */
6888 else if ((instruction
& 0xfc1fffff) == 0x00000008)
6889 instruction
= 0x10000000;
6893 instruction
|= (sym_offset
& 0xffff);
6894 bfd_put_32 (abfd
, instruction
, contents
+ irel
->r_offset
);
6895 changed_contents
= TRUE
;
6898 if (contents
!= NULL
6899 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6901 if (!changed_contents
&& !link_info
->keep_memory
)
6905 /* Cache the section contents for elf_link_input_bfd. */
6906 elf_section_data (sec
)->this_hdr
.contents
= contents
;
6912 if (contents
!= NULL
6913 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6918 /* Adjust a symbol defined by a dynamic object and referenced by a
6919 regular object. The current definition is in some section of the
6920 dynamic object, but we're not including those sections. We have to
6921 change the definition to something the rest of the link can
6925 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info
*info
,
6926 struct elf_link_hash_entry
*h
)
6929 struct mips_elf_link_hash_entry
*hmips
;
6931 struct mips_elf_link_hash_table
*htab
;
6933 htab
= mips_elf_hash_table (info
);
6934 dynobj
= elf_hash_table (info
)->dynobj
;
6936 /* Make sure we know what is going on here. */
6937 BFD_ASSERT (dynobj
!= NULL
6939 || h
->u
.weakdef
!= NULL
6942 && !h
->def_regular
)));
6944 /* If this symbol is defined in a dynamic object, we need to copy
6945 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6947 hmips
= (struct mips_elf_link_hash_entry
*) h
;
6948 if (! info
->relocatable
6949 && hmips
->possibly_dynamic_relocs
!= 0
6950 && (h
->root
.type
== bfd_link_hash_defweak
6951 || !h
->def_regular
))
6953 mips_elf_allocate_dynamic_relocations
6954 (dynobj
, info
, hmips
->possibly_dynamic_relocs
);
6955 if (hmips
->readonly_reloc
)
6956 /* We tell the dynamic linker that there are relocations
6957 against the text segment. */
6958 info
->flags
|= DF_TEXTREL
;
6961 /* For a function, create a stub, if allowed. */
6962 if (! hmips
->no_fn_stub
6965 if (! elf_hash_table (info
)->dynamic_sections_created
)
6968 /* If this symbol is not defined in a regular file, then set
6969 the symbol to the stub location. This is required to make
6970 function pointers compare as equal between the normal
6971 executable and the shared library. */
6972 if (!h
->def_regular
)
6974 /* We need .stub section. */
6975 s
= bfd_get_section_by_name (dynobj
,
6976 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
6977 BFD_ASSERT (s
!= NULL
);
6979 h
->root
.u
.def
.section
= s
;
6980 h
->root
.u
.def
.value
= s
->size
;
6982 /* XXX Write this stub address somewhere. */
6983 h
->plt
.offset
= s
->size
;
6985 /* Make room for this stub code. */
6986 s
->size
+= htab
->function_stub_size
;
6988 /* The last half word of the stub will be filled with the index
6989 of this symbol in .dynsym section. */
6993 else if ((h
->type
== STT_FUNC
)
6996 /* This will set the entry for this symbol in the GOT to 0, and
6997 the dynamic linker will take care of this. */
6998 h
->root
.u
.def
.value
= 0;
7002 /* If this is a weak symbol, and there is a real definition, the
7003 processor independent code will have arranged for us to see the
7004 real definition first, and we can just use the same value. */
7005 if (h
->u
.weakdef
!= NULL
)
7007 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
7008 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
7009 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
7010 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
7014 /* This is a reference to a symbol defined by a dynamic object which
7015 is not a function. */
7020 /* Likewise, for VxWorks. */
7023 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info
*info
,
7024 struct elf_link_hash_entry
*h
)
7027 struct mips_elf_link_hash_entry
*hmips
;
7028 struct mips_elf_link_hash_table
*htab
;
7030 htab
= mips_elf_hash_table (info
);
7031 dynobj
= elf_hash_table (info
)->dynobj
;
7032 hmips
= (struct mips_elf_link_hash_entry
*) h
;
7034 /* Make sure we know what is going on here. */
7035 BFD_ASSERT (dynobj
!= NULL
7038 || h
->u
.weakdef
!= NULL
7041 && !h
->def_regular
)));
7043 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7044 either (a) we want to branch to the symbol or (b) we're linking an
7045 executable that needs a canonical function address. In the latter
7046 case, the canonical address will be the address of the executable's
7048 if ((hmips
->is_branch_target
7050 && h
->type
== STT_FUNC
7051 && hmips
->is_relocation_target
))
7055 && !h
->forced_local
)
7058 /* Locally-binding symbols do not need a PLT stub; we can refer to
7059 the functions directly. */
7060 else if (h
->needs_plt
7061 && (SYMBOL_CALLS_LOCAL (info
, h
)
7062 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
7063 && h
->root
.type
== bfd_link_hash_undefweak
)))
7071 /* If this is the first symbol to need a PLT entry, allocate room
7072 for the header, and for the header's .rela.plt.unloaded entries. */
7073 if (htab
->splt
->size
== 0)
7075 htab
->splt
->size
+= htab
->plt_header_size
;
7077 htab
->srelplt2
->size
+= 2 * sizeof (Elf32_External_Rela
);
7080 /* Assign the next .plt entry to this symbol. */
7081 h
->plt
.offset
= htab
->splt
->size
;
7082 htab
->splt
->size
+= htab
->plt_entry_size
;
7084 /* If the output file has no definition of the symbol, set the
7085 symbol's value to the address of the stub. For executables,
7086 point at the PLT load stub rather than the lazy resolution stub;
7087 this stub will become the canonical function address. */
7088 if (!h
->def_regular
)
7090 h
->root
.u
.def
.section
= htab
->splt
;
7091 h
->root
.u
.def
.value
= h
->plt
.offset
;
7093 h
->root
.u
.def
.value
+= 8;
7096 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7097 htab
->sgotplt
->size
+= 4;
7098 htab
->srelplt
->size
+= sizeof (Elf32_External_Rela
);
7100 /* Make room for the .rela.plt.unloaded relocations. */
7102 htab
->srelplt2
->size
+= 3 * sizeof (Elf32_External_Rela
);
7107 /* If a function symbol is defined by a dynamic object, and we do not
7108 need a PLT stub for it, the symbol's value should be zero. */
7109 if (h
->type
== STT_FUNC
7114 h
->root
.u
.def
.value
= 0;
7118 /* If this is a weak symbol, and there is a real definition, the
7119 processor independent code will have arranged for us to see the
7120 real definition first, and we can just use the same value. */
7121 if (h
->u
.weakdef
!= NULL
)
7123 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
7124 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
7125 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
7126 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
7130 /* This is a reference to a symbol defined by a dynamic object which
7131 is not a function. */
7135 /* We must allocate the symbol in our .dynbss section, which will
7136 become part of the .bss section of the executable. There will be
7137 an entry for this symbol in the .dynsym section. The dynamic
7138 object will contain position independent code, so all references
7139 from the dynamic object to this symbol will go through the global
7140 offset table. The dynamic linker will use the .dynsym entry to
7141 determine the address it must put in the global offset table, so
7142 both the dynamic object and the regular object will refer to the
7143 same memory location for the variable. */
7145 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
7147 htab
->srelbss
->size
+= sizeof (Elf32_External_Rela
);
7151 return _bfd_elf_adjust_dynamic_copy (h
, htab
->sdynbss
);
7154 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7155 The number might be exact or a worst-case estimate, depending on how
7156 much information is available to elf_backend_omit_section_dynsym at
7157 the current linking stage. */
7159 static bfd_size_type
7160 count_section_dynsyms (bfd
*output_bfd
, struct bfd_link_info
*info
)
7162 bfd_size_type count
;
7165 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
7168 const struct elf_backend_data
*bed
;
7170 bed
= get_elf_backend_data (output_bfd
);
7171 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
7172 if ((p
->flags
& SEC_EXCLUDE
) == 0
7173 && (p
->flags
& SEC_ALLOC
) != 0
7174 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
7180 /* This function is called after all the input files have been read,
7181 and the input sections have been assigned to output sections. We
7182 check for any mips16 stub sections that we can discard. */
7185 _bfd_mips_elf_always_size_sections (bfd
*output_bfd
,
7186 struct bfd_link_info
*info
)
7192 struct mips_got_info
*g
;
7194 bfd_size_type loadable_size
= 0;
7195 bfd_size_type local_gotno
;
7196 bfd_size_type dynsymcount
;
7198 struct mips_elf_count_tls_arg count_tls_arg
;
7199 struct mips_elf_link_hash_table
*htab
;
7201 htab
= mips_elf_hash_table (info
);
7203 /* The .reginfo section has a fixed size. */
7204 ri
= bfd_get_section_by_name (output_bfd
, ".reginfo");
7206 bfd_set_section_size (output_bfd
, ri
, sizeof (Elf32_External_RegInfo
));
7208 if (! (info
->relocatable
7209 || ! mips_elf_hash_table (info
)->mips16_stubs_seen
))
7210 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
7211 mips_elf_check_mips16_stubs
, NULL
);
7213 dynobj
= elf_hash_table (info
)->dynobj
;
7215 /* Relocatable links don't have it. */
7218 g
= mips_elf_got_info (dynobj
, &s
);
7222 /* Calculate the total loadable size of the output. That
7223 will give us the maximum number of GOT_PAGE entries
7225 for (sub
= info
->input_bfds
; sub
; sub
= sub
->link_next
)
7227 asection
*subsection
;
7229 for (subsection
= sub
->sections
;
7231 subsection
= subsection
->next
)
7233 if ((subsection
->flags
& SEC_ALLOC
) == 0)
7235 loadable_size
+= ((subsection
->size
+ 0xf)
7236 &~ (bfd_size_type
) 0xf);
7240 /* There has to be a global GOT entry for every symbol with
7241 a dynamic symbol table index of DT_MIPS_GOTSYM or
7242 higher. Therefore, it make sense to put those symbols
7243 that need GOT entries at the end of the symbol table. We
7245 if (! mips_elf_sort_hash_table (info
, 1))
7248 if (g
->global_gotsym
!= NULL
)
7249 i
= elf_hash_table (info
)->dynsymcount
- g
->global_gotsym
->dynindx
;
7251 /* If there are no global symbols, or none requiring
7252 relocations, then GLOBAL_GOTSYM will be NULL. */
7255 /* Get a worst-case estimate of the number of dynamic symbols needed.
7256 At this point, dynsymcount does not account for section symbols
7257 and count_section_dynsyms may overestimate the number that will
7259 dynsymcount
= (elf_hash_table (info
)->dynsymcount
7260 + count_section_dynsyms (output_bfd
, info
));
7262 /* Determine the size of one stub entry. */
7263 htab
->function_stub_size
= (dynsymcount
> 0x10000
7264 ? MIPS_FUNCTION_STUB_BIG_SIZE
7265 : MIPS_FUNCTION_STUB_NORMAL_SIZE
);
7267 /* In the worst case, we'll get one stub per dynamic symbol, plus
7268 one to account for the dummy entry at the end required by IRIX
7270 loadable_size
+= htab
->function_stub_size
* (i
+ 1);
7272 if (htab
->is_vxworks
)
7273 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7274 relocations against local symbols evaluate to "G", and the EABI does
7275 not include R_MIPS_GOT_PAGE. */
7278 /* Assume there are two loadable segments consisting of contiguous
7279 sections. Is 5 enough? */
7280 local_gotno
= (loadable_size
>> 16) + 5;
7282 g
->local_gotno
+= local_gotno
;
7283 s
->size
+= g
->local_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
7285 g
->global_gotno
= i
;
7286 s
->size
+= i
* MIPS_ELF_GOT_SIZE (output_bfd
);
7288 /* We need to calculate tls_gotno for global symbols at this point
7289 instead of building it up earlier, to avoid doublecounting
7290 entries for one global symbol from multiple input files. */
7291 count_tls_arg
.info
= info
;
7292 count_tls_arg
.needed
= 0;
7293 elf_link_hash_traverse (elf_hash_table (info
),
7294 mips_elf_count_global_tls_entries
,
7296 g
->tls_gotno
+= count_tls_arg
.needed
;
7297 s
->size
+= g
->tls_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
7299 mips_elf_resolve_final_got_entries (g
);
7301 /* VxWorks does not support multiple GOTs. It initializes $gp to
7302 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7304 if (!htab
->is_vxworks
&& s
->size
> MIPS_ELF_GOT_MAX_SIZE (info
))
7306 if (! mips_elf_multi_got (output_bfd
, info
, g
, s
, local_gotno
))
7311 /* Set up TLS entries for the first GOT. */
7312 g
->tls_assigned_gotno
= g
->global_gotno
+ g
->local_gotno
;
7313 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, g
);
7319 /* Set the sizes of the dynamic sections. */
7322 _bfd_mips_elf_size_dynamic_sections (bfd
*output_bfd
,
7323 struct bfd_link_info
*info
)
7326 asection
*s
, *sreldyn
;
7327 bfd_boolean reltext
;
7328 struct mips_elf_link_hash_table
*htab
;
7330 htab
= mips_elf_hash_table (info
);
7331 dynobj
= elf_hash_table (info
)->dynobj
;
7332 BFD_ASSERT (dynobj
!= NULL
);
7334 if (elf_hash_table (info
)->dynamic_sections_created
)
7336 /* Set the contents of the .interp section to the interpreter. */
7337 if (info
->executable
)
7339 s
= bfd_get_section_by_name (dynobj
, ".interp");
7340 BFD_ASSERT (s
!= NULL
);
7342 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd
)) + 1;
7344 = (bfd_byte
*) ELF_DYNAMIC_INTERPRETER (output_bfd
);
7348 /* The check_relocs and adjust_dynamic_symbol entry points have
7349 determined the sizes of the various dynamic sections. Allocate
7353 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
7357 /* It's OK to base decisions on the section name, because none
7358 of the dynobj section names depend upon the input files. */
7359 name
= bfd_get_section_name (dynobj
, s
);
7361 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
7364 if (CONST_STRNEQ (name
, ".rel"))
7368 const char *outname
;
7371 /* If this relocation section applies to a read only
7372 section, then we probably need a DT_TEXTREL entry.
7373 If the relocation section is .rel(a).dyn, we always
7374 assert a DT_TEXTREL entry rather than testing whether
7375 there exists a relocation to a read only section or
7377 outname
= bfd_get_section_name (output_bfd
,
7379 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
7381 && (target
->flags
& SEC_READONLY
) != 0
7382 && (target
->flags
& SEC_ALLOC
) != 0)
7383 || strcmp (outname
, MIPS_ELF_REL_DYN_NAME (info
)) == 0)
7386 /* We use the reloc_count field as a counter if we need
7387 to copy relocs into the output file. */
7388 if (strcmp (name
, MIPS_ELF_REL_DYN_NAME (info
)) != 0)
7391 /* If combreloc is enabled, elf_link_sort_relocs() will
7392 sort relocations, but in a different way than we do,
7393 and before we're done creating relocations. Also, it
7394 will move them around between input sections'
7395 relocation's contents, so our sorting would be
7396 broken, so don't let it run. */
7397 info
->combreloc
= 0;
7400 else if (htab
->is_vxworks
&& strcmp (name
, ".got") == 0)
7402 /* Executables do not need a GOT. */
7405 /* Allocate relocations for all but the reserved entries. */
7406 struct mips_got_info
*g
;
7409 g
= mips_elf_got_info (dynobj
, NULL
);
7410 count
= (g
->global_gotno
7412 - MIPS_RESERVED_GOTNO (info
));
7413 mips_elf_allocate_dynamic_relocations (dynobj
, info
, count
);
7416 else if (!htab
->is_vxworks
&& CONST_STRNEQ (name
, ".got"))
7418 /* _bfd_mips_elf_always_size_sections() has already done
7419 most of the work, but some symbols may have been mapped
7420 to versions that we must now resolve in the got_entries
7422 struct mips_got_info
*gg
= mips_elf_got_info (dynobj
, NULL
);
7423 struct mips_got_info
*g
= gg
;
7424 struct mips_elf_set_global_got_offset_arg set_got_offset_arg
;
7425 unsigned int needed_relocs
= 0;
7429 set_got_offset_arg
.value
= MIPS_ELF_GOT_SIZE (output_bfd
);
7430 set_got_offset_arg
.info
= info
;
7432 /* NOTE 2005-02-03: How can this call, or the next, ever
7433 find any indirect entries to resolve? They were all
7434 resolved in mips_elf_multi_got. */
7435 mips_elf_resolve_final_got_entries (gg
);
7436 for (g
= gg
->next
; g
&& g
->next
!= gg
; g
= g
->next
)
7438 unsigned int save_assign
;
7440 mips_elf_resolve_final_got_entries (g
);
7442 /* Assign offsets to global GOT entries. */
7443 save_assign
= g
->assigned_gotno
;
7444 g
->assigned_gotno
= g
->local_gotno
;
7445 set_got_offset_arg
.g
= g
;
7446 set_got_offset_arg
.needed_relocs
= 0;
7447 htab_traverse (g
->got_entries
,
7448 mips_elf_set_global_got_offset
,
7449 &set_got_offset_arg
);
7450 needed_relocs
+= set_got_offset_arg
.needed_relocs
;
7451 BFD_ASSERT (g
->assigned_gotno
- g
->local_gotno
7452 <= g
->global_gotno
);
7454 g
->assigned_gotno
= save_assign
;
7457 needed_relocs
+= g
->local_gotno
- g
->assigned_gotno
;
7458 BFD_ASSERT (g
->assigned_gotno
== g
->next
->local_gotno
7459 + g
->next
->global_gotno
7460 + g
->next
->tls_gotno
7461 + MIPS_RESERVED_GOTNO (info
));
7467 struct mips_elf_count_tls_arg arg
;
7471 htab_traverse (gg
->got_entries
, mips_elf_count_local_tls_relocs
,
7473 elf_link_hash_traverse (elf_hash_table (info
),
7474 mips_elf_count_global_tls_relocs
,
7477 needed_relocs
+= arg
.needed
;
7481 mips_elf_allocate_dynamic_relocations (dynobj
, info
,
7484 else if (strcmp (name
, MIPS_ELF_STUB_SECTION_NAME (output_bfd
)) == 0)
7486 /* IRIX rld assumes that the function stub isn't at the end
7487 of .text section. So put a dummy. XXX */
7488 s
->size
+= htab
->function_stub_size
;
7490 else if (! info
->shared
7491 && ! mips_elf_hash_table (info
)->use_rld_obj_head
7492 && CONST_STRNEQ (name
, ".rld_map"))
7494 /* We add a room for __rld_map. It will be filled in by the
7495 rtld to contain a pointer to the _r_debug structure. */
7498 else if (SGI_COMPAT (output_bfd
)
7499 && CONST_STRNEQ (name
, ".compact_rel"))
7500 s
->size
+= mips_elf_hash_table (info
)->compact_rel_size
;
7501 else if (! CONST_STRNEQ (name
, ".init")
7502 && s
!= htab
->sgotplt
7505 /* It's not one of our sections, so don't allocate space. */
7511 s
->flags
|= SEC_EXCLUDE
;
7515 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
7518 /* Allocate memory for this section last, since we may increase its
7520 if (strcmp (name
, MIPS_ELF_REL_DYN_NAME (info
)) == 0)
7526 /* Allocate memory for the section contents. */
7527 s
->contents
= bfd_zalloc (dynobj
, s
->size
);
7528 if (s
->contents
== NULL
)
7530 bfd_set_error (bfd_error_no_memory
);
7535 /* Allocate memory for the .rel(a).dyn section. */
7536 if (sreldyn
!= NULL
)
7538 sreldyn
->contents
= bfd_zalloc (dynobj
, sreldyn
->size
);
7539 if (sreldyn
->contents
== NULL
)
7541 bfd_set_error (bfd_error_no_memory
);
7546 if (elf_hash_table (info
)->dynamic_sections_created
)
7548 /* Add some entries to the .dynamic section. We fill in the
7549 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7550 must add the entries now so that we get the correct size for
7551 the .dynamic section. */
7553 /* SGI object has the equivalence of DT_DEBUG in the
7554 DT_MIPS_RLD_MAP entry. This must come first because glibc
7555 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
7556 looks at the first one it sees. */
7558 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP
, 0))
7561 /* The DT_DEBUG entry may be filled in by the dynamic linker and
7562 used by the debugger. */
7563 if (info
->executable
7564 && !SGI_COMPAT (output_bfd
)
7565 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
7568 if (reltext
&& (SGI_COMPAT (output_bfd
) || htab
->is_vxworks
))
7569 info
->flags
|= DF_TEXTREL
;
7571 if ((info
->flags
& DF_TEXTREL
) != 0)
7573 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_TEXTREL
, 0))
7576 /* Clear the DF_TEXTREL flag. It will be set again if we
7577 write out an actual text relocation; we may not, because
7578 at this point we do not know whether e.g. any .eh_frame
7579 absolute relocations have been converted to PC-relative. */
7580 info
->flags
&= ~DF_TEXTREL
;
7583 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTGOT
, 0))
7586 if (htab
->is_vxworks
)
7588 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7589 use any of the DT_MIPS_* tags. */
7590 if (mips_elf_rel_dyn_section (info
, FALSE
))
7592 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELA
, 0))
7595 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELASZ
, 0))
7598 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELAENT
, 0))
7601 if (htab
->splt
->size
> 0)
7603 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTREL
, 0))
7606 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_JMPREL
, 0))
7609 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTRELSZ
, 0))
7615 if (mips_elf_rel_dyn_section (info
, FALSE
))
7617 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_REL
, 0))
7620 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELSZ
, 0))
7623 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELENT
, 0))
7627 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_VERSION
, 0))
7630 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_FLAGS
, 0))
7633 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_BASE_ADDRESS
, 0))
7636 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LOCAL_GOTNO
, 0))
7639 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_SYMTABNO
, 0))
7642 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_UNREFEXTNO
, 0))
7645 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_GOTSYM
, 0))
7648 if (IRIX_COMPAT (dynobj
) == ict_irix5
7649 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_HIPAGENO
, 0))
7652 if (IRIX_COMPAT (dynobj
) == ict_irix6
7653 && (bfd_get_section_by_name
7654 (dynobj
, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj
)))
7655 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_OPTIONS
, 0))
7663 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7664 Adjust its R_ADDEND field so that it is correct for the output file.
7665 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7666 and sections respectively; both use symbol indexes. */
7669 mips_elf_adjust_addend (bfd
*output_bfd
, struct bfd_link_info
*info
,
7670 bfd
*input_bfd
, Elf_Internal_Sym
*local_syms
,
7671 asection
**local_sections
, Elf_Internal_Rela
*rel
)
7673 unsigned int r_type
, r_symndx
;
7674 Elf_Internal_Sym
*sym
;
7677 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
, FALSE
))
7679 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
7680 if (r_type
== R_MIPS16_GPREL
7681 || r_type
== R_MIPS_GPREL16
7682 || r_type
== R_MIPS_GPREL32
7683 || r_type
== R_MIPS_LITERAL
)
7685 rel
->r_addend
+= _bfd_get_gp_value (input_bfd
);
7686 rel
->r_addend
-= _bfd_get_gp_value (output_bfd
);
7689 r_symndx
= ELF_R_SYM (output_bfd
, rel
->r_info
);
7690 sym
= local_syms
+ r_symndx
;
7692 /* Adjust REL's addend to account for section merging. */
7693 if (!info
->relocatable
)
7695 sec
= local_sections
[r_symndx
];
7696 _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
7699 /* This would normally be done by the rela_normal code in elflink.c. */
7700 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
7701 rel
->r_addend
+= local_sections
[r_symndx
]->output_offset
;
7705 /* Relocate a MIPS ELF section. */
7708 _bfd_mips_elf_relocate_section (bfd
*output_bfd
, struct bfd_link_info
*info
,
7709 bfd
*input_bfd
, asection
*input_section
,
7710 bfd_byte
*contents
, Elf_Internal_Rela
*relocs
,
7711 Elf_Internal_Sym
*local_syms
,
7712 asection
**local_sections
)
7714 Elf_Internal_Rela
*rel
;
7715 const Elf_Internal_Rela
*relend
;
7717 bfd_boolean use_saved_addend_p
= FALSE
;
7718 const struct elf_backend_data
*bed
;
7720 bed
= get_elf_backend_data (output_bfd
);
7721 relend
= relocs
+ input_section
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7722 for (rel
= relocs
; rel
< relend
; ++rel
)
7726 reloc_howto_type
*howto
;
7727 bfd_boolean require_jalx
;
7728 /* TRUE if the relocation is a RELA relocation, rather than a
7730 bfd_boolean rela_relocation_p
= TRUE
;
7731 unsigned int r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
7733 unsigned long r_symndx
;
7735 Elf_Internal_Shdr
*symtab_hdr
;
7736 struct elf_link_hash_entry
*h
;
7738 /* Find the relocation howto for this relocation. */
7739 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, r_type
,
7740 NEWABI_P (input_bfd
)
7741 && (MIPS_RELOC_RELA_P
7742 (input_bfd
, input_section
,
7745 r_symndx
= ELF_R_SYM (input_bfd
, rel
->r_info
);
7746 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
7747 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
, FALSE
))
7749 sec
= local_sections
[r_symndx
];
7754 unsigned long extsymoff
;
7757 if (!elf_bad_symtab (input_bfd
))
7758 extsymoff
= symtab_hdr
->sh_info
;
7759 h
= elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
7760 while (h
->root
.type
== bfd_link_hash_indirect
7761 || h
->root
.type
== bfd_link_hash_warning
)
7762 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7765 if (h
->root
.type
== bfd_link_hash_defined
7766 || h
->root
.type
== bfd_link_hash_defweak
)
7767 sec
= h
->root
.u
.def
.section
;
7770 if (sec
!= NULL
&& elf_discarded_section (sec
))
7772 /* For relocs against symbols from removed linkonce sections,
7773 or sections discarded by a linker script, we just want the
7774 section contents zeroed. Avoid any special processing. */
7775 _bfd_clear_contents (howto
, input_bfd
, contents
+ rel
->r_offset
);
7781 if (r_type
== R_MIPS_64
&& ! NEWABI_P (input_bfd
))
7783 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7784 64-bit code, but make sure all their addresses are in the
7785 lowermost or uppermost 32-bit section of the 64-bit address
7786 space. Thus, when they use an R_MIPS_64 they mean what is
7787 usually meant by R_MIPS_32, with the exception that the
7788 stored value is sign-extended to 64 bits. */
7789 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, R_MIPS_32
, FALSE
);
7791 /* On big-endian systems, we need to lie about the position
7793 if (bfd_big_endian (input_bfd
))
7797 if (!use_saved_addend_p
)
7799 Elf_Internal_Shdr
*rel_hdr
;
7801 /* If these relocations were originally of the REL variety,
7802 we must pull the addend out of the field that will be
7803 relocated. Otherwise, we simply use the contents of the
7804 RELA relocation. To determine which flavor or relocation
7805 this is, we depend on the fact that the INPUT_SECTION's
7806 REL_HDR is read before its REL_HDR2. */
7807 rel_hdr
= &elf_section_data (input_section
)->rel_hdr
;
7808 if ((size_t) (rel
- relocs
)
7809 >= (NUM_SHDR_ENTRIES (rel_hdr
) * bed
->s
->int_rels_per_ext_rel
))
7810 rel_hdr
= elf_section_data (input_section
)->rel_hdr2
;
7811 if (rel_hdr
->sh_entsize
== MIPS_ELF_REL_SIZE (input_bfd
))
7813 bfd_byte
*location
= contents
+ rel
->r_offset
;
7815 /* Note that this is a REL relocation. */
7816 rela_relocation_p
= FALSE
;
7818 /* Get the addend, which is stored in the input file. */
7819 _bfd_mips16_elf_reloc_unshuffle (input_bfd
, r_type
, FALSE
,
7821 addend
= mips_elf_obtain_contents (howto
, rel
, input_bfd
,
7823 _bfd_mips16_elf_reloc_shuffle(input_bfd
, r_type
, FALSE
,
7826 addend
&= howto
->src_mask
;
7828 /* For some kinds of relocations, the ADDEND is a
7829 combination of the addend stored in two different
7831 if (r_type
== R_MIPS_HI16
|| r_type
== R_MIPS16_HI16
7832 || (r_type
== R_MIPS_GOT16
7833 && mips_elf_local_relocation_p (input_bfd
, rel
,
7834 local_sections
, FALSE
)))
7836 const Elf_Internal_Rela
*lo16_relocation
;
7837 reloc_howto_type
*lo16_howto
;
7840 if (r_type
== R_MIPS16_HI16
)
7841 lo16_type
= R_MIPS16_LO16
;
7843 lo16_type
= R_MIPS_LO16
;
7845 /* The combined value is the sum of the HI16 addend,
7846 left-shifted by sixteen bits, and the LO16
7847 addend, sign extended. (Usually, the code does
7848 a `lui' of the HI16 value, and then an `addiu' of
7851 Scan ahead to find a matching LO16 relocation.
7853 According to the MIPS ELF ABI, the R_MIPS_LO16
7854 relocation must be immediately following.
7855 However, for the IRIX6 ABI, the next relocation
7856 may be a composed relocation consisting of
7857 several relocations for the same address. In
7858 that case, the R_MIPS_LO16 relocation may occur
7859 as one of these. We permit a similar extension
7860 in general, as that is useful for GCC.
7862 In some cases GCC dead code elimination removes
7863 the LO16 but keeps the corresponding HI16. This
7864 is strictly speaking a violation of the ABI but
7865 not immediately harmful. */
7866 lo16_relocation
= mips_elf_next_relocation (input_bfd
,
7869 if (lo16_relocation
== NULL
)
7874 name
= h
->root
.root
.string
;
7876 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
7877 local_syms
+ r_symndx
,
7879 (*_bfd_error_handler
)
7880 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
7881 input_bfd
, input_section
, name
, howto
->name
,
7886 bfd_byte
*lo16_location
;
7889 lo16_location
= contents
+ lo16_relocation
->r_offset
;
7891 /* Obtain the addend kept there. */
7892 lo16_howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
,
7894 _bfd_mips16_elf_reloc_unshuffle (input_bfd
, lo16_type
,
7895 FALSE
, lo16_location
);
7896 l
= mips_elf_obtain_contents (lo16_howto
,
7898 input_bfd
, contents
);
7899 _bfd_mips16_elf_reloc_shuffle (input_bfd
, lo16_type
,
7900 FALSE
, lo16_location
);
7901 l
&= lo16_howto
->src_mask
;
7902 l
<<= lo16_howto
->rightshift
;
7903 l
= _bfd_mips_elf_sign_extend (l
, 16);
7907 /* Compute the combined addend. */
7912 addend
<<= howto
->rightshift
;
7915 addend
= rel
->r_addend
;
7916 mips_elf_adjust_addend (output_bfd
, info
, input_bfd
,
7917 local_syms
, local_sections
, rel
);
7920 if (info
->relocatable
)
7922 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
)
7923 && bfd_big_endian (input_bfd
))
7926 if (!rela_relocation_p
&& rel
->r_addend
)
7928 addend
+= rel
->r_addend
;
7929 if (r_type
== R_MIPS_HI16
7930 || r_type
== R_MIPS_GOT16
)
7931 addend
= mips_elf_high (addend
);
7932 else if (r_type
== R_MIPS_HIGHER
)
7933 addend
= mips_elf_higher (addend
);
7934 else if (r_type
== R_MIPS_HIGHEST
)
7935 addend
= mips_elf_highest (addend
);
7937 addend
>>= howto
->rightshift
;
7939 /* We use the source mask, rather than the destination
7940 mask because the place to which we are writing will be
7941 source of the addend in the final link. */
7942 addend
&= howto
->src_mask
;
7944 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
7945 /* See the comment above about using R_MIPS_64 in the 32-bit
7946 ABI. Here, we need to update the addend. It would be
7947 possible to get away with just using the R_MIPS_32 reloc
7948 but for endianness. */
7954 if (addend
& ((bfd_vma
) 1 << 31))
7956 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
7963 /* If we don't know that we have a 64-bit type,
7964 do two separate stores. */
7965 if (bfd_big_endian (input_bfd
))
7967 /* Store the sign-bits (which are most significant)
7969 low_bits
= sign_bits
;
7975 high_bits
= sign_bits
;
7977 bfd_put_32 (input_bfd
, low_bits
,
7978 contents
+ rel
->r_offset
);
7979 bfd_put_32 (input_bfd
, high_bits
,
7980 contents
+ rel
->r_offset
+ 4);
7984 if (! mips_elf_perform_relocation (info
, howto
, rel
, addend
,
7985 input_bfd
, input_section
,
7990 /* Go on to the next relocation. */
7994 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7995 relocations for the same offset. In that case we are
7996 supposed to treat the output of each relocation as the addend
7998 if (rel
+ 1 < relend
7999 && rel
->r_offset
== rel
[1].r_offset
8000 && ELF_R_TYPE (input_bfd
, rel
[1].r_info
) != R_MIPS_NONE
)
8001 use_saved_addend_p
= TRUE
;
8003 use_saved_addend_p
= FALSE
;
8005 /* Figure out what value we are supposed to relocate. */
8006 switch (mips_elf_calculate_relocation (output_bfd
, input_bfd
,
8007 input_section
, info
, rel
,
8008 addend
, howto
, local_syms
,
8009 local_sections
, &value
,
8010 &name
, &require_jalx
,
8011 use_saved_addend_p
))
8013 case bfd_reloc_continue
:
8014 /* There's nothing to do. */
8017 case bfd_reloc_undefined
:
8018 /* mips_elf_calculate_relocation already called the
8019 undefined_symbol callback. There's no real point in
8020 trying to perform the relocation at this point, so we
8021 just skip ahead to the next relocation. */
8024 case bfd_reloc_notsupported
:
8025 msg
= _("internal error: unsupported relocation error");
8026 info
->callbacks
->warning
8027 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
8030 case bfd_reloc_overflow
:
8031 if (use_saved_addend_p
)
8032 /* Ignore overflow until we reach the last relocation for
8033 a given location. */
8037 struct mips_elf_link_hash_table
*htab
;
8039 htab
= mips_elf_hash_table (info
);
8040 BFD_ASSERT (name
!= NULL
);
8041 if (!htab
->small_data_overflow_reported
8042 && (howto
->type
== R_MIPS_GPREL16
8043 || howto
->type
== R_MIPS_LITERAL
))
8046 _("small-data section exceeds 64KB;"
8047 " lower small-data size limit (see option -G)");
8049 htab
->small_data_overflow_reported
= TRUE
;
8050 (*info
->callbacks
->einfo
) ("%P: %s\n", msg
);
8052 if (! ((*info
->callbacks
->reloc_overflow
)
8053 (info
, NULL
, name
, howto
->name
, (bfd_vma
) 0,
8054 input_bfd
, input_section
, rel
->r_offset
)))
8067 /* If we've got another relocation for the address, keep going
8068 until we reach the last one. */
8069 if (use_saved_addend_p
)
8075 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
8076 /* See the comment above about using R_MIPS_64 in the 32-bit
8077 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8078 that calculated the right value. Now, however, we
8079 sign-extend the 32-bit result to 64-bits, and store it as a
8080 64-bit value. We are especially generous here in that we
8081 go to extreme lengths to support this usage on systems with
8082 only a 32-bit VMA. */
8088 if (value
& ((bfd_vma
) 1 << 31))
8090 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
8097 /* If we don't know that we have a 64-bit type,
8098 do two separate stores. */
8099 if (bfd_big_endian (input_bfd
))
8101 /* Undo what we did above. */
8103 /* Store the sign-bits (which are most significant)
8105 low_bits
= sign_bits
;
8111 high_bits
= sign_bits
;
8113 bfd_put_32 (input_bfd
, low_bits
,
8114 contents
+ rel
->r_offset
);
8115 bfd_put_32 (input_bfd
, high_bits
,
8116 contents
+ rel
->r_offset
+ 4);
8120 /* Actually perform the relocation. */
8121 if (! mips_elf_perform_relocation (info
, howto
, rel
, value
,
8122 input_bfd
, input_section
,
8123 contents
, require_jalx
))
8130 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8131 adjust it appropriately now. */
8134 mips_elf_irix6_finish_dynamic_symbol (bfd
*abfd ATTRIBUTE_UNUSED
,
8135 const char *name
, Elf_Internal_Sym
*sym
)
8137 /* The linker script takes care of providing names and values for
8138 these, but we must place them into the right sections. */
8139 static const char* const text_section_symbols
[] = {
8142 "__dso_displacement",
8144 "__program_header_table",
8148 static const char* const data_section_symbols
[] = {
8156 const char* const *p
;
8159 for (i
= 0; i
< 2; ++i
)
8160 for (p
= (i
== 0) ? text_section_symbols
: data_section_symbols
;
8163 if (strcmp (*p
, name
) == 0)
8165 /* All of these symbols are given type STT_SECTION by the
8167 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
8168 sym
->st_other
= STO_PROTECTED
;
8170 /* The IRIX linker puts these symbols in special sections. */
8172 sym
->st_shndx
= SHN_MIPS_TEXT
;
8174 sym
->st_shndx
= SHN_MIPS_DATA
;
8180 /* Finish up dynamic symbol handling. We set the contents of various
8181 dynamic sections here. */
8184 _bfd_mips_elf_finish_dynamic_symbol (bfd
*output_bfd
,
8185 struct bfd_link_info
*info
,
8186 struct elf_link_hash_entry
*h
,
8187 Elf_Internal_Sym
*sym
)
8191 struct mips_got_info
*g
, *gg
;
8194 struct mips_elf_link_hash_table
*htab
;
8196 htab
= mips_elf_hash_table (info
);
8197 dynobj
= elf_hash_table (info
)->dynobj
;
8199 if (h
->plt
.offset
!= MINUS_ONE
)
8202 bfd_byte stub
[MIPS_FUNCTION_STUB_BIG_SIZE
];
8204 /* This symbol has a stub. Set it up. */
8206 BFD_ASSERT (h
->dynindx
!= -1);
8208 s
= bfd_get_section_by_name (dynobj
,
8209 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
8210 BFD_ASSERT (s
!= NULL
);
8212 BFD_ASSERT ((htab
->function_stub_size
== MIPS_FUNCTION_STUB_BIG_SIZE
)
8213 || (h
->dynindx
<= 0xffff));
8215 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8216 sign extension at runtime in the stub, resulting in a negative
8218 if (h
->dynindx
& ~0x7fffffff)
8221 /* Fill the stub. */
8223 bfd_put_32 (output_bfd
, STUB_LW (output_bfd
), stub
+ idx
);
8225 bfd_put_32 (output_bfd
, STUB_MOVE (output_bfd
), stub
+ idx
);
8227 if (htab
->function_stub_size
== MIPS_FUNCTION_STUB_BIG_SIZE
)
8229 bfd_put_32 (output_bfd
, STUB_LUI ((h
->dynindx
>> 16) & 0x7fff),
8233 bfd_put_32 (output_bfd
, STUB_JALR
, stub
+ idx
);
8236 /* If a large stub is not required and sign extension is not a
8237 problem, then use legacy code in the stub. */
8238 if (htab
->function_stub_size
== MIPS_FUNCTION_STUB_BIG_SIZE
)
8239 bfd_put_32 (output_bfd
, STUB_ORI (h
->dynindx
& 0xffff), stub
+ idx
);
8240 else if (h
->dynindx
& ~0x7fff)
8241 bfd_put_32 (output_bfd
, STUB_LI16U (h
->dynindx
& 0xffff), stub
+ idx
);
8243 bfd_put_32 (output_bfd
, STUB_LI16S (output_bfd
, h
->dynindx
),
8246 BFD_ASSERT (h
->plt
.offset
<= s
->size
);
8247 memcpy (s
->contents
+ h
->plt
.offset
, stub
, htab
->function_stub_size
);
8249 /* Mark the symbol as undefined. plt.offset != -1 occurs
8250 only for the referenced symbol. */
8251 sym
->st_shndx
= SHN_UNDEF
;
8253 /* The run-time linker uses the st_value field of the symbol
8254 to reset the global offset table entry for this external
8255 to its stub address when unlinking a shared object. */
8256 sym
->st_value
= (s
->output_section
->vma
+ s
->output_offset
8260 BFD_ASSERT (h
->dynindx
!= -1
8261 || h
->forced_local
);
8263 sgot
= mips_elf_got_section (dynobj
, FALSE
);
8264 BFD_ASSERT (sgot
!= NULL
);
8265 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
8266 g
= mips_elf_section_data (sgot
)->u
.got_info
;
8267 BFD_ASSERT (g
!= NULL
);
8269 /* Run through the global symbol table, creating GOT entries for all
8270 the symbols that need them. */
8271 if (g
->global_gotsym
!= NULL
8272 && h
->dynindx
>= g
->global_gotsym
->dynindx
)
8277 value
= sym
->st_value
;
8278 offset
= mips_elf_global_got_index (dynobj
, output_bfd
, h
, R_MIPS_GOT16
, info
);
8279 MIPS_ELF_PUT_WORD (output_bfd
, value
, sgot
->contents
+ offset
);
8282 if (g
->next
&& h
->dynindx
!= -1 && h
->type
!= STT_TLS
)
8284 struct mips_got_entry e
, *p
;
8290 e
.abfd
= output_bfd
;
8292 e
.d
.h
= (struct mips_elf_link_hash_entry
*)h
;
8295 for (g
= g
->next
; g
->next
!= gg
; g
= g
->next
)
8298 && (p
= (struct mips_got_entry
*) htab_find (g
->got_entries
,
8303 || (elf_hash_table (info
)->dynamic_sections_created
8305 && p
->d
.h
->root
.def_dynamic
8306 && !p
->d
.h
->root
.def_regular
))
8308 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8309 the various compatibility problems, it's easier to mock
8310 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8311 mips_elf_create_dynamic_relocation to calculate the
8312 appropriate addend. */
8313 Elf_Internal_Rela rel
[3];
8315 memset (rel
, 0, sizeof (rel
));
8316 if (ABI_64_P (output_bfd
))
8317 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_64
);
8319 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_32
);
8320 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
8323 if (! (mips_elf_create_dynamic_relocation
8324 (output_bfd
, info
, rel
,
8325 e
.d
.h
, NULL
, sym
->st_value
, &entry
, sgot
)))
8329 entry
= sym
->st_value
;
8330 MIPS_ELF_PUT_WORD (output_bfd
, entry
, sgot
->contents
+ offset
);
8335 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8336 name
= h
->root
.root
.string
;
8337 if (strcmp (name
, "_DYNAMIC") == 0
8338 || h
== elf_hash_table (info
)->hgot
)
8339 sym
->st_shndx
= SHN_ABS
;
8340 else if (strcmp (name
, "_DYNAMIC_LINK") == 0
8341 || strcmp (name
, "_DYNAMIC_LINKING") == 0)
8343 sym
->st_shndx
= SHN_ABS
;
8344 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
8347 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (output_bfd
))
8349 sym
->st_shndx
= SHN_ABS
;
8350 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
8351 sym
->st_value
= elf_gp (output_bfd
);
8353 else if (SGI_COMPAT (output_bfd
))
8355 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
8356 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
8358 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
8359 sym
->st_other
= STO_PROTECTED
;
8361 sym
->st_shndx
= SHN_MIPS_DATA
;
8363 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
8365 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
8366 sym
->st_other
= STO_PROTECTED
;
8367 sym
->st_value
= mips_elf_hash_table (info
)->procedure_count
;
8368 sym
->st_shndx
= SHN_ABS
;
8370 else if (sym
->st_shndx
!= SHN_UNDEF
&& sym
->st_shndx
!= SHN_ABS
)
8372 if (h
->type
== STT_FUNC
)
8373 sym
->st_shndx
= SHN_MIPS_TEXT
;
8374 else if (h
->type
== STT_OBJECT
)
8375 sym
->st_shndx
= SHN_MIPS_DATA
;
8379 /* Handle the IRIX6-specific symbols. */
8380 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
8381 mips_elf_irix6_finish_dynamic_symbol (output_bfd
, name
, sym
);
8385 if (! mips_elf_hash_table (info
)->use_rld_obj_head
8386 && (strcmp (name
, "__rld_map") == 0
8387 || strcmp (name
, "__RLD_MAP") == 0))
8389 asection
*s
= bfd_get_section_by_name (dynobj
, ".rld_map");
8390 BFD_ASSERT (s
!= NULL
);
8391 sym
->st_value
= s
->output_section
->vma
+ s
->output_offset
;
8392 bfd_put_32 (output_bfd
, 0, s
->contents
);
8393 if (mips_elf_hash_table (info
)->rld_value
== 0)
8394 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
8396 else if (mips_elf_hash_table (info
)->use_rld_obj_head
8397 && strcmp (name
, "__rld_obj_head") == 0)
8399 /* IRIX6 does not use a .rld_map section. */
8400 if (IRIX_COMPAT (output_bfd
) == ict_irix5
8401 || IRIX_COMPAT (output_bfd
) == ict_none
)
8402 BFD_ASSERT (bfd_get_section_by_name (dynobj
, ".rld_map")
8404 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
8408 /* If this is a mips16 symbol, force the value to be even. */
8409 if (sym
->st_other
== STO_MIPS16
)
8410 sym
->st_value
&= ~1;
8415 /* Likewise, for VxWorks. */
8418 _bfd_mips_vxworks_finish_dynamic_symbol (bfd
*output_bfd
,
8419 struct bfd_link_info
*info
,
8420 struct elf_link_hash_entry
*h
,
8421 Elf_Internal_Sym
*sym
)
8425 struct mips_got_info
*g
;
8426 struct mips_elf_link_hash_table
*htab
;
8428 htab
= mips_elf_hash_table (info
);
8429 dynobj
= elf_hash_table (info
)->dynobj
;
8431 if (h
->plt
.offset
!= (bfd_vma
) -1)
8434 bfd_vma plt_address
, plt_index
, got_address
, got_offset
, branch_offset
;
8435 Elf_Internal_Rela rel
;
8436 static const bfd_vma
*plt_entry
;
8438 BFD_ASSERT (h
->dynindx
!= -1);
8439 BFD_ASSERT (htab
->splt
!= NULL
);
8440 BFD_ASSERT (h
->plt
.offset
<= htab
->splt
->size
);
8442 /* Calculate the address of the .plt entry. */
8443 plt_address
= (htab
->splt
->output_section
->vma
8444 + htab
->splt
->output_offset
8447 /* Calculate the index of the entry. */
8448 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
8449 / htab
->plt_entry_size
);
8451 /* Calculate the address of the .got.plt entry. */
8452 got_address
= (htab
->sgotplt
->output_section
->vma
8453 + htab
->sgotplt
->output_offset
8456 /* Calculate the offset of the .got.plt entry from
8457 _GLOBAL_OFFSET_TABLE_. */
8458 got_offset
= mips_elf_gotplt_index (info
, h
);
8460 /* Calculate the offset for the branch at the start of the PLT
8461 entry. The branch jumps to the beginning of .plt. */
8462 branch_offset
= -(h
->plt
.offset
/ 4 + 1) & 0xffff;
8464 /* Fill in the initial value of the .got.plt entry. */
8465 bfd_put_32 (output_bfd
, plt_address
,
8466 htab
->sgotplt
->contents
+ plt_index
* 4);
8468 /* Find out where the .plt entry should go. */
8469 loc
= htab
->splt
->contents
+ h
->plt
.offset
;
8473 plt_entry
= mips_vxworks_shared_plt_entry
;
8474 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
8475 bfd_put_32 (output_bfd
, plt_entry
[1] | plt_index
, loc
+ 4);
8479 bfd_vma got_address_high
, got_address_low
;
8481 plt_entry
= mips_vxworks_exec_plt_entry
;
8482 got_address_high
= ((got_address
+ 0x8000) >> 16) & 0xffff;
8483 got_address_low
= got_address
& 0xffff;
8485 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
8486 bfd_put_32 (output_bfd
, plt_entry
[1] | plt_index
, loc
+ 4);
8487 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_high
, loc
+ 8);
8488 bfd_put_32 (output_bfd
, plt_entry
[3] | got_address_low
, loc
+ 12);
8489 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
8490 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
8491 bfd_put_32 (output_bfd
, plt_entry
[6], loc
+ 24);
8492 bfd_put_32 (output_bfd
, plt_entry
[7], loc
+ 28);
8494 loc
= (htab
->srelplt2
->contents
8495 + (plt_index
* 3 + 2) * sizeof (Elf32_External_Rela
));
8497 /* Emit a relocation for the .got.plt entry. */
8498 rel
.r_offset
= got_address
;
8499 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
8500 rel
.r_addend
= h
->plt
.offset
;
8501 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
8503 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8504 loc
+= sizeof (Elf32_External_Rela
);
8505 rel
.r_offset
= plt_address
+ 8;
8506 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
8507 rel
.r_addend
= got_offset
;
8508 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
8510 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8511 loc
+= sizeof (Elf32_External_Rela
);
8513 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
8514 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
8517 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8518 loc
= htab
->srelplt
->contents
+ plt_index
* sizeof (Elf32_External_Rela
);
8519 rel
.r_offset
= got_address
;
8520 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_JUMP_SLOT
);
8522 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
8524 if (!h
->def_regular
)
8525 sym
->st_shndx
= SHN_UNDEF
;
8528 BFD_ASSERT (h
->dynindx
!= -1 || h
->forced_local
);
8530 sgot
= mips_elf_got_section (dynobj
, FALSE
);
8531 BFD_ASSERT (sgot
!= NULL
);
8532 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
8533 g
= mips_elf_section_data (sgot
)->u
.got_info
;
8534 BFD_ASSERT (g
!= NULL
);
8536 /* See if this symbol has an entry in the GOT. */
8537 if (g
->global_gotsym
!= NULL
8538 && h
->dynindx
>= g
->global_gotsym
->dynindx
)
8541 Elf_Internal_Rela outrel
;
8545 /* Install the symbol value in the GOT. */
8546 offset
= mips_elf_global_got_index (dynobj
, output_bfd
, h
,
8547 R_MIPS_GOT16
, info
);
8548 MIPS_ELF_PUT_WORD (output_bfd
, sym
->st_value
, sgot
->contents
+ offset
);
8550 /* Add a dynamic relocation for it. */
8551 s
= mips_elf_rel_dyn_section (info
, FALSE
);
8552 loc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
8553 outrel
.r_offset
= (sgot
->output_section
->vma
8554 + sgot
->output_offset
8556 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_32
);
8557 outrel
.r_addend
= 0;
8558 bfd_elf32_swap_reloca_out (dynobj
, &outrel
, loc
);
8561 /* Emit a copy reloc, if needed. */
8564 Elf_Internal_Rela rel
;
8566 BFD_ASSERT (h
->dynindx
!= -1);
8568 rel
.r_offset
= (h
->root
.u
.def
.section
->output_section
->vma
8569 + h
->root
.u
.def
.section
->output_offset
8570 + h
->root
.u
.def
.value
);
8571 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_COPY
);
8573 bfd_elf32_swap_reloca_out (output_bfd
, &rel
,
8574 htab
->srelbss
->contents
8575 + (htab
->srelbss
->reloc_count
8576 * sizeof (Elf32_External_Rela
)));
8577 ++htab
->srelbss
->reloc_count
;
8580 /* If this is a mips16 symbol, force the value to be even. */
8581 if (sym
->st_other
== STO_MIPS16
)
8582 sym
->st_value
&= ~1;
8587 /* Install the PLT header for a VxWorks executable and finalize the
8588 contents of .rela.plt.unloaded. */
8591 mips_vxworks_finish_exec_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
8593 Elf_Internal_Rela rela
;
8595 bfd_vma got_value
, got_value_high
, got_value_low
, plt_address
;
8596 static const bfd_vma
*plt_entry
;
8597 struct mips_elf_link_hash_table
*htab
;
8599 htab
= mips_elf_hash_table (info
);
8600 plt_entry
= mips_vxworks_exec_plt0_entry
;
8602 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8603 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
8604 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
8605 + htab
->root
.hgot
->root
.u
.def
.value
);
8607 got_value_high
= ((got_value
+ 0x8000) >> 16) & 0xffff;
8608 got_value_low
= got_value
& 0xffff;
8610 /* Calculate the address of the PLT header. */
8611 plt_address
= htab
->splt
->output_section
->vma
+ htab
->splt
->output_offset
;
8613 /* Install the PLT header. */
8614 loc
= htab
->splt
->contents
;
8615 bfd_put_32 (output_bfd
, plt_entry
[0] | got_value_high
, loc
);
8616 bfd_put_32 (output_bfd
, plt_entry
[1] | got_value_low
, loc
+ 4);
8617 bfd_put_32 (output_bfd
, plt_entry
[2], loc
+ 8);
8618 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
8619 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
8620 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
8622 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8623 loc
= htab
->srelplt2
->contents
;
8624 rela
.r_offset
= plt_address
;
8625 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
8627 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
8628 loc
+= sizeof (Elf32_External_Rela
);
8630 /* Output the relocation for the following addiu of
8631 %lo(_GLOBAL_OFFSET_TABLE_). */
8633 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
8634 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
8635 loc
+= sizeof (Elf32_External_Rela
);
8637 /* Fix up the remaining relocations. They may have the wrong
8638 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8639 in which symbols were output. */
8640 while (loc
< htab
->srelplt2
->contents
+ htab
->srelplt2
->size
)
8642 Elf_Internal_Rela rel
;
8644 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
8645 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
8646 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
8647 loc
+= sizeof (Elf32_External_Rela
);
8649 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
8650 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
8651 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
8652 loc
+= sizeof (Elf32_External_Rela
);
8654 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
8655 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
8656 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
8657 loc
+= sizeof (Elf32_External_Rela
);
8661 /* Install the PLT header for a VxWorks shared library. */
8664 mips_vxworks_finish_shared_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
8667 struct mips_elf_link_hash_table
*htab
;
8669 htab
= mips_elf_hash_table (info
);
8671 /* We just need to copy the entry byte-by-byte. */
8672 for (i
= 0; i
< ARRAY_SIZE (mips_vxworks_shared_plt0_entry
); i
++)
8673 bfd_put_32 (output_bfd
, mips_vxworks_shared_plt0_entry
[i
],
8674 htab
->splt
->contents
+ i
* 4);
8677 /* Finish up the dynamic sections. */
8680 _bfd_mips_elf_finish_dynamic_sections (bfd
*output_bfd
,
8681 struct bfd_link_info
*info
)
8686 struct mips_got_info
*gg
, *g
;
8687 struct mips_elf_link_hash_table
*htab
;
8689 htab
= mips_elf_hash_table (info
);
8690 dynobj
= elf_hash_table (info
)->dynobj
;
8692 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
8694 sgot
= mips_elf_got_section (dynobj
, FALSE
);
8699 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
8700 gg
= mips_elf_section_data (sgot
)->u
.got_info
;
8701 BFD_ASSERT (gg
!= NULL
);
8702 g
= mips_elf_got_for_ibfd (gg
, output_bfd
);
8703 BFD_ASSERT (g
!= NULL
);
8706 if (elf_hash_table (info
)->dynamic_sections_created
)
8709 int dyn_to_skip
= 0, dyn_skipped
= 0;
8711 BFD_ASSERT (sdyn
!= NULL
);
8712 BFD_ASSERT (g
!= NULL
);
8714 for (b
= sdyn
->contents
;
8715 b
< sdyn
->contents
+ sdyn
->size
;
8716 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
8718 Elf_Internal_Dyn dyn
;
8722 bfd_boolean swap_out_p
;
8724 /* Read in the current dynamic entry. */
8725 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
8727 /* Assume that we're going to modify it and write it out. */
8733 dyn
.d_un
.d_val
= MIPS_ELF_REL_SIZE (dynobj
);
8737 BFD_ASSERT (htab
->is_vxworks
);
8738 dyn
.d_un
.d_val
= MIPS_ELF_RELA_SIZE (dynobj
);
8742 /* Rewrite DT_STRSZ. */
8744 _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
8749 if (htab
->is_vxworks
)
8751 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8752 of the ".got" section in DYNOBJ. */
8753 s
= bfd_get_section_by_name (dynobj
, name
);
8754 BFD_ASSERT (s
!= NULL
);
8755 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
8759 s
= bfd_get_section_by_name (output_bfd
, name
);
8760 BFD_ASSERT (s
!= NULL
);
8761 dyn
.d_un
.d_ptr
= s
->vma
;
8765 case DT_MIPS_RLD_VERSION
:
8766 dyn
.d_un
.d_val
= 1; /* XXX */
8770 dyn
.d_un
.d_val
= RHF_NOTPOT
; /* XXX */
8773 case DT_MIPS_TIME_STAMP
:
8781 case DT_MIPS_ICHECKSUM
:
8786 case DT_MIPS_IVERSION
:
8791 case DT_MIPS_BASE_ADDRESS
:
8792 s
= output_bfd
->sections
;
8793 BFD_ASSERT (s
!= NULL
);
8794 dyn
.d_un
.d_ptr
= s
->vma
& ~(bfd_vma
) 0xffff;
8797 case DT_MIPS_LOCAL_GOTNO
:
8798 dyn
.d_un
.d_val
= g
->local_gotno
;
8801 case DT_MIPS_UNREFEXTNO
:
8802 /* The index into the dynamic symbol table which is the
8803 entry of the first external symbol that is not
8804 referenced within the same object. */
8805 dyn
.d_un
.d_val
= bfd_count_sections (output_bfd
) + 1;
8808 case DT_MIPS_GOTSYM
:
8809 if (gg
->global_gotsym
)
8811 dyn
.d_un
.d_val
= gg
->global_gotsym
->dynindx
;
8814 /* In case if we don't have global got symbols we default
8815 to setting DT_MIPS_GOTSYM to the same value as
8816 DT_MIPS_SYMTABNO, so we just fall through. */
8818 case DT_MIPS_SYMTABNO
:
8820 elemsize
= MIPS_ELF_SYM_SIZE (output_bfd
);
8821 s
= bfd_get_section_by_name (output_bfd
, name
);
8822 BFD_ASSERT (s
!= NULL
);
8824 dyn
.d_un
.d_val
= s
->size
/ elemsize
;
8827 case DT_MIPS_HIPAGENO
:
8828 dyn
.d_un
.d_val
= g
->local_gotno
- MIPS_RESERVED_GOTNO (info
);
8831 case DT_MIPS_RLD_MAP
:
8832 dyn
.d_un
.d_ptr
= mips_elf_hash_table (info
)->rld_value
;
8835 case DT_MIPS_OPTIONS
:
8836 s
= (bfd_get_section_by_name
8837 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd
)));
8838 dyn
.d_un
.d_ptr
= s
->vma
;
8842 BFD_ASSERT (htab
->is_vxworks
);
8843 /* The count does not include the JUMP_SLOT relocations. */
8845 dyn
.d_un
.d_val
-= htab
->srelplt
->size
;
8849 BFD_ASSERT (htab
->is_vxworks
);
8850 dyn
.d_un
.d_val
= DT_RELA
;
8854 BFD_ASSERT (htab
->is_vxworks
);
8855 dyn
.d_un
.d_val
= htab
->srelplt
->size
;
8859 BFD_ASSERT (htab
->is_vxworks
);
8860 dyn
.d_un
.d_val
= (htab
->srelplt
->output_section
->vma
8861 + htab
->srelplt
->output_offset
);
8865 /* If we didn't need any text relocations after all, delete
8867 if (!(info
->flags
& DF_TEXTREL
))
8869 dyn_to_skip
= MIPS_ELF_DYN_SIZE (dynobj
);
8875 /* If we didn't need any text relocations after all, clear
8876 DF_TEXTREL from DT_FLAGS. */
8877 if (!(info
->flags
& DF_TEXTREL
))
8878 dyn
.d_un
.d_val
&= ~DF_TEXTREL
;
8888 if (swap_out_p
|| dyn_skipped
)
8889 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
8890 (dynobj
, &dyn
, b
- dyn_skipped
);
8894 dyn_skipped
+= dyn_to_skip
;
8899 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8900 if (dyn_skipped
> 0)
8901 memset (b
- dyn_skipped
, 0, dyn_skipped
);
8904 if (sgot
!= NULL
&& sgot
->size
> 0)
8906 if (htab
->is_vxworks
)
8908 /* The first entry of the global offset table points to the
8909 ".dynamic" section. The second is initialized by the
8910 loader and contains the shared library identifier.
8911 The third is also initialized by the loader and points
8912 to the lazy resolution stub. */
8913 MIPS_ELF_PUT_WORD (output_bfd
,
8914 sdyn
->output_offset
+ sdyn
->output_section
->vma
,
8916 MIPS_ELF_PUT_WORD (output_bfd
, 0,
8917 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
8918 MIPS_ELF_PUT_WORD (output_bfd
, 0,
8920 + 2 * MIPS_ELF_GOT_SIZE (output_bfd
));
8924 /* The first entry of the global offset table will be filled at
8925 runtime. The second entry will be used by some runtime loaders.
8926 This isn't the case of IRIX rld. */
8927 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
8928 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0x80000000,
8929 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
8932 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
8933 = MIPS_ELF_GOT_SIZE (output_bfd
);
8936 /* Generate dynamic relocations for the non-primary gots. */
8937 if (gg
!= NULL
&& gg
->next
)
8939 Elf_Internal_Rela rel
[3];
8942 memset (rel
, 0, sizeof (rel
));
8943 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_REL32
);
8945 for (g
= gg
->next
; g
->next
!= gg
; g
= g
->next
)
8947 bfd_vma index
= g
->next
->local_gotno
+ g
->next
->global_gotno
8948 + g
->next
->tls_gotno
;
8950 MIPS_ELF_PUT_WORD (output_bfd
, 0, sgot
->contents
8951 + index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
8952 MIPS_ELF_PUT_WORD (output_bfd
, 0x80000000, sgot
->contents
8953 + index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
8958 while (index
< g
->assigned_gotno
)
8960 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
8961 = index
++ * MIPS_ELF_GOT_SIZE (output_bfd
);
8962 if (!(mips_elf_create_dynamic_relocation
8963 (output_bfd
, info
, rel
, NULL
,
8964 bfd_abs_section_ptr
,
8967 BFD_ASSERT (addend
== 0);
8972 /* The generation of dynamic relocations for the non-primary gots
8973 adds more dynamic relocations. We cannot count them until
8976 if (elf_hash_table (info
)->dynamic_sections_created
)
8979 bfd_boolean swap_out_p
;
8981 BFD_ASSERT (sdyn
!= NULL
);
8983 for (b
= sdyn
->contents
;
8984 b
< sdyn
->contents
+ sdyn
->size
;
8985 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
8987 Elf_Internal_Dyn dyn
;
8990 /* Read in the current dynamic entry. */
8991 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
8993 /* Assume that we're going to modify it and write it out. */
8999 /* Reduce DT_RELSZ to account for any relocations we
9000 decided not to make. This is for the n64 irix rld,
9001 which doesn't seem to apply any relocations if there
9002 are trailing null entries. */
9003 s
= mips_elf_rel_dyn_section (info
, FALSE
);
9004 dyn
.d_un
.d_val
= (s
->reloc_count
9005 * (ABI_64_P (output_bfd
)
9006 ? sizeof (Elf64_Mips_External_Rel
)
9007 : sizeof (Elf32_External_Rel
)));
9008 /* Adjust the section size too. Tools like the prelinker
9009 can reasonably expect the values to the same. */
9010 elf_section_data (s
->output_section
)->this_hdr
.sh_size
9020 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
9027 Elf32_compact_rel cpt
;
9029 if (SGI_COMPAT (output_bfd
))
9031 /* Write .compact_rel section out. */
9032 s
= bfd_get_section_by_name (dynobj
, ".compact_rel");
9036 cpt
.num
= s
->reloc_count
;
9038 cpt
.offset
= (s
->output_section
->filepos
9039 + sizeof (Elf32_External_compact_rel
));
9042 bfd_elf32_swap_compact_rel_out (output_bfd
, &cpt
,
9043 ((Elf32_External_compact_rel
*)
9046 /* Clean up a dummy stub function entry in .text. */
9047 s
= bfd_get_section_by_name (dynobj
,
9048 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
9051 file_ptr dummy_offset
;
9053 BFD_ASSERT (s
->size
>= htab
->function_stub_size
);
9054 dummy_offset
= s
->size
- htab
->function_stub_size
;
9055 memset (s
->contents
+ dummy_offset
, 0,
9056 htab
->function_stub_size
);
9061 /* The psABI says that the dynamic relocations must be sorted in
9062 increasing order of r_symndx. The VxWorks EABI doesn't require
9063 this, and because the code below handles REL rather than RELA
9064 relocations, using it for VxWorks would be outright harmful. */
9065 if (!htab
->is_vxworks
)
9067 s
= mips_elf_rel_dyn_section (info
, FALSE
);
9069 && s
->size
> (bfd_vma
)2 * MIPS_ELF_REL_SIZE (output_bfd
))
9071 reldyn_sorting_bfd
= output_bfd
;
9073 if (ABI_64_P (output_bfd
))
9074 qsort ((Elf64_External_Rel
*) s
->contents
+ 1,
9075 s
->reloc_count
- 1, sizeof (Elf64_Mips_External_Rel
),
9076 sort_dynamic_relocs_64
);
9078 qsort ((Elf32_External_Rel
*) s
->contents
+ 1,
9079 s
->reloc_count
- 1, sizeof (Elf32_External_Rel
),
9080 sort_dynamic_relocs
);
9085 if (htab
->is_vxworks
&& htab
->splt
->size
> 0)
9088 mips_vxworks_finish_shared_plt (output_bfd
, info
);
9090 mips_vxworks_finish_exec_plt (output_bfd
, info
);
9096 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9099 mips_set_isa_flags (bfd
*abfd
)
9103 switch (bfd_get_mach (abfd
))
9106 case bfd_mach_mips3000
:
9107 val
= E_MIPS_ARCH_1
;
9110 case bfd_mach_mips3900
:
9111 val
= E_MIPS_ARCH_1
| E_MIPS_MACH_3900
;
9114 case bfd_mach_mips6000
:
9115 val
= E_MIPS_ARCH_2
;
9118 case bfd_mach_mips4000
:
9119 case bfd_mach_mips4300
:
9120 case bfd_mach_mips4400
:
9121 case bfd_mach_mips4600
:
9122 val
= E_MIPS_ARCH_3
;
9125 case bfd_mach_mips4010
:
9126 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4010
;
9129 case bfd_mach_mips4100
:
9130 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4100
;
9133 case bfd_mach_mips4111
:
9134 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4111
;
9137 case bfd_mach_mips4120
:
9138 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4120
;
9141 case bfd_mach_mips4650
:
9142 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4650
;
9145 case bfd_mach_mips5400
:
9146 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5400
;
9149 case bfd_mach_mips5500
:
9150 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5500
;
9153 case bfd_mach_mips9000
:
9154 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_9000
;
9157 case bfd_mach_mips5000
:
9158 case bfd_mach_mips7000
:
9159 case bfd_mach_mips8000
:
9160 case bfd_mach_mips10000
:
9161 case bfd_mach_mips12000
:
9162 val
= E_MIPS_ARCH_4
;
9165 case bfd_mach_mips5
:
9166 val
= E_MIPS_ARCH_5
;
9169 case bfd_mach_mips_sb1
:
9170 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_SB1
;
9173 case bfd_mach_mipsisa32
:
9174 val
= E_MIPS_ARCH_32
;
9177 case bfd_mach_mipsisa64
:
9178 val
= E_MIPS_ARCH_64
;
9181 case bfd_mach_mipsisa32r2
:
9182 val
= E_MIPS_ARCH_32R2
;
9185 case bfd_mach_mipsisa64r2
:
9186 val
= E_MIPS_ARCH_64R2
;
9189 elf_elfheader (abfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
9190 elf_elfheader (abfd
)->e_flags
|= val
;
9195 /* The final processing done just before writing out a MIPS ELF object
9196 file. This gets the MIPS architecture right based on the machine
9197 number. This is used by both the 32-bit and the 64-bit ABI. */
9200 _bfd_mips_elf_final_write_processing (bfd
*abfd
,
9201 bfd_boolean linker ATTRIBUTE_UNUSED
)
9204 Elf_Internal_Shdr
**hdrpp
;
9208 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9209 is nonzero. This is for compatibility with old objects, which used
9210 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9211 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_MACH
) == 0)
9212 mips_set_isa_flags (abfd
);
9214 /* Set the sh_info field for .gptab sections and other appropriate
9215 info for each special section. */
9216 for (i
= 1, hdrpp
= elf_elfsections (abfd
) + 1;
9217 i
< elf_numsections (abfd
);
9220 switch ((*hdrpp
)->sh_type
)
9223 case SHT_MIPS_LIBLIST
:
9224 sec
= bfd_get_section_by_name (abfd
, ".dynstr");
9226 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
9229 case SHT_MIPS_GPTAB
:
9230 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
9231 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
9232 BFD_ASSERT (name
!= NULL
9233 && CONST_STRNEQ (name
, ".gptab."));
9234 sec
= bfd_get_section_by_name (abfd
, name
+ sizeof ".gptab" - 1);
9235 BFD_ASSERT (sec
!= NULL
);
9236 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
9239 case SHT_MIPS_CONTENT
:
9240 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
9241 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
9242 BFD_ASSERT (name
!= NULL
9243 && CONST_STRNEQ (name
, ".MIPS.content"));
9244 sec
= bfd_get_section_by_name (abfd
,
9245 name
+ sizeof ".MIPS.content" - 1);
9246 BFD_ASSERT (sec
!= NULL
);
9247 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
9250 case SHT_MIPS_SYMBOL_LIB
:
9251 sec
= bfd_get_section_by_name (abfd
, ".dynsym");
9253 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
9254 sec
= bfd_get_section_by_name (abfd
, ".liblist");
9256 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
9259 case SHT_MIPS_EVENTS
:
9260 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
9261 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
9262 BFD_ASSERT (name
!= NULL
);
9263 if (CONST_STRNEQ (name
, ".MIPS.events"))
9264 sec
= bfd_get_section_by_name (abfd
,
9265 name
+ sizeof ".MIPS.events" - 1);
9268 BFD_ASSERT (CONST_STRNEQ (name
, ".MIPS.post_rel"));
9269 sec
= bfd_get_section_by_name (abfd
,
9271 + sizeof ".MIPS.post_rel" - 1));
9273 BFD_ASSERT (sec
!= NULL
);
9274 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
9281 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9285 _bfd_mips_elf_additional_program_headers (bfd
*abfd
,
9286 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
9291 /* See if we need a PT_MIPS_REGINFO segment. */
9292 s
= bfd_get_section_by_name (abfd
, ".reginfo");
9293 if (s
&& (s
->flags
& SEC_LOAD
))
9296 /* See if we need a PT_MIPS_OPTIONS segment. */
9297 if (IRIX_COMPAT (abfd
) == ict_irix6
9298 && bfd_get_section_by_name (abfd
,
9299 MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)))
9302 /* See if we need a PT_MIPS_RTPROC segment. */
9303 if (IRIX_COMPAT (abfd
) == ict_irix5
9304 && bfd_get_section_by_name (abfd
, ".dynamic")
9305 && bfd_get_section_by_name (abfd
, ".mdebug"))
9308 /* Allocate a PT_NULL header in dynamic objects. See
9309 _bfd_mips_elf_modify_segment_map for details. */
9310 if (!SGI_COMPAT (abfd
)
9311 && bfd_get_section_by_name (abfd
, ".dynamic"))
9317 /* Modify the segment map for an IRIX5 executable. */
9320 _bfd_mips_elf_modify_segment_map (bfd
*abfd
,
9321 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
9324 struct elf_segment_map
*m
, **pm
;
9327 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9329 s
= bfd_get_section_by_name (abfd
, ".reginfo");
9330 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
9332 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
9333 if (m
->p_type
== PT_MIPS_REGINFO
)
9338 m
= bfd_zalloc (abfd
, amt
);
9342 m
->p_type
= PT_MIPS_REGINFO
;
9346 /* We want to put it after the PHDR and INTERP segments. */
9347 pm
= &elf_tdata (abfd
)->segment_map
;
9349 && ((*pm
)->p_type
== PT_PHDR
9350 || (*pm
)->p_type
== PT_INTERP
))
9358 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9359 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9360 PT_MIPS_OPTIONS segment immediately following the program header
9363 /* On non-IRIX6 new abi, we'll have already created a segment
9364 for this section, so don't create another. I'm not sure this
9365 is not also the case for IRIX 6, but I can't test it right
9367 && IRIX_COMPAT (abfd
) == ict_irix6
)
9369 for (s
= abfd
->sections
; s
; s
= s
->next
)
9370 if (elf_section_data (s
)->this_hdr
.sh_type
== SHT_MIPS_OPTIONS
)
9375 struct elf_segment_map
*options_segment
;
9377 pm
= &elf_tdata (abfd
)->segment_map
;
9379 && ((*pm
)->p_type
== PT_PHDR
9380 || (*pm
)->p_type
== PT_INTERP
))
9383 if (*pm
== NULL
|| (*pm
)->p_type
!= PT_MIPS_OPTIONS
)
9385 amt
= sizeof (struct elf_segment_map
);
9386 options_segment
= bfd_zalloc (abfd
, amt
);
9387 options_segment
->next
= *pm
;
9388 options_segment
->p_type
= PT_MIPS_OPTIONS
;
9389 options_segment
->p_flags
= PF_R
;
9390 options_segment
->p_flags_valid
= TRUE
;
9391 options_segment
->count
= 1;
9392 options_segment
->sections
[0] = s
;
9393 *pm
= options_segment
;
9399 if (IRIX_COMPAT (abfd
) == ict_irix5
)
9401 /* If there are .dynamic and .mdebug sections, we make a room
9402 for the RTPROC header. FIXME: Rewrite without section names. */
9403 if (bfd_get_section_by_name (abfd
, ".interp") == NULL
9404 && bfd_get_section_by_name (abfd
, ".dynamic") != NULL
9405 && bfd_get_section_by_name (abfd
, ".mdebug") != NULL
)
9407 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
9408 if (m
->p_type
== PT_MIPS_RTPROC
)
9413 m
= bfd_zalloc (abfd
, amt
);
9417 m
->p_type
= PT_MIPS_RTPROC
;
9419 s
= bfd_get_section_by_name (abfd
, ".rtproc");
9424 m
->p_flags_valid
= 1;
9432 /* We want to put it after the DYNAMIC segment. */
9433 pm
= &elf_tdata (abfd
)->segment_map
;
9434 while (*pm
!= NULL
&& (*pm
)->p_type
!= PT_DYNAMIC
)
9444 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9445 .dynstr, .dynsym, and .hash sections, and everything in
9447 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
;
9449 if ((*pm
)->p_type
== PT_DYNAMIC
)
9452 if (m
!= NULL
&& IRIX_COMPAT (abfd
) == ict_none
)
9454 /* For a normal mips executable the permissions for the PT_DYNAMIC
9455 segment are read, write and execute. We do that here since
9456 the code in elf.c sets only the read permission. This matters
9457 sometimes for the dynamic linker. */
9458 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
9460 m
->p_flags
= PF_R
| PF_W
| PF_X
;
9461 m
->p_flags_valid
= 1;
9464 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9465 glibc's dynamic linker has traditionally derived the number of
9466 tags from the p_filesz field, and sometimes allocates stack
9467 arrays of that size. An overly-big PT_DYNAMIC segment can
9468 be actively harmful in such cases. Making PT_DYNAMIC contain
9469 other sections can also make life hard for the prelinker,
9470 which might move one of the other sections to a different
9472 if (SGI_COMPAT (abfd
)
9475 && strcmp (m
->sections
[0]->name
, ".dynamic") == 0)
9477 static const char *sec_names
[] =
9479 ".dynamic", ".dynstr", ".dynsym", ".hash"
9483 struct elf_segment_map
*n
;
9487 for (i
= 0; i
< sizeof sec_names
/ sizeof sec_names
[0]; i
++)
9489 s
= bfd_get_section_by_name (abfd
, sec_names
[i
]);
9490 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
9497 if (high
< s
->vma
+ sz
)
9503 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
9504 if ((s
->flags
& SEC_LOAD
) != 0
9506 && s
->vma
+ s
->size
<= high
)
9509 amt
= sizeof *n
+ (bfd_size_type
) (c
- 1) * sizeof (asection
*);
9510 n
= bfd_zalloc (abfd
, amt
);
9517 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
9519 if ((s
->flags
& SEC_LOAD
) != 0
9521 && s
->vma
+ s
->size
<= high
)
9532 /* Allocate a spare program header in dynamic objects so that tools
9533 like the prelinker can add an extra PT_LOAD entry.
9535 If the prelinker needs to make room for a new PT_LOAD entry, its
9536 standard procedure is to move the first (read-only) sections into
9537 the new (writable) segment. However, the MIPS ABI requires
9538 .dynamic to be in a read-only segment, and the section will often
9539 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9541 Although the prelinker could in principle move .dynamic to a
9542 writable segment, it seems better to allocate a spare program
9543 header instead, and avoid the need to move any sections.
9544 There is a long tradition of allocating spare dynamic tags,
9545 so allocating a spare program header seems like a natural
9547 if (!SGI_COMPAT (abfd
)
9548 && bfd_get_section_by_name (abfd
, ".dynamic"))
9550 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
; pm
= &(*pm
)->next
)
9551 if ((*pm
)->p_type
== PT_NULL
)
9555 m
= bfd_zalloc (abfd
, sizeof (*m
));
9559 m
->p_type
= PT_NULL
;
9567 /* Return the section that should be marked against GC for a given
9571 _bfd_mips_elf_gc_mark_hook (asection
*sec
,
9572 struct bfd_link_info
*info
,
9573 Elf_Internal_Rela
*rel
,
9574 struct elf_link_hash_entry
*h
,
9575 Elf_Internal_Sym
*sym
)
9577 /* ??? Do mips16 stub sections need to be handled special? */
9580 switch (ELF_R_TYPE (sec
->owner
, rel
->r_info
))
9582 case R_MIPS_GNU_VTINHERIT
:
9583 case R_MIPS_GNU_VTENTRY
:
9587 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
9590 /* Update the got entry reference counts for the section being removed. */
9593 _bfd_mips_elf_gc_sweep_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
9594 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
9595 asection
*sec ATTRIBUTE_UNUSED
,
9596 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
)
9599 Elf_Internal_Shdr
*symtab_hdr
;
9600 struct elf_link_hash_entry
**sym_hashes
;
9601 bfd_signed_vma
*local_got_refcounts
;
9602 const Elf_Internal_Rela
*rel
, *relend
;
9603 unsigned long r_symndx
;
9604 struct elf_link_hash_entry
*h
;
9606 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
9607 sym_hashes
= elf_sym_hashes (abfd
);
9608 local_got_refcounts
= elf_local_got_refcounts (abfd
);
9610 relend
= relocs
+ sec
->reloc_count
;
9611 for (rel
= relocs
; rel
< relend
; rel
++)
9612 switch (ELF_R_TYPE (abfd
, rel
->r_info
))
9616 case R_MIPS_CALL_HI16
:
9617 case R_MIPS_CALL_LO16
:
9618 case R_MIPS_GOT_HI16
:
9619 case R_MIPS_GOT_LO16
:
9620 case R_MIPS_GOT_DISP
:
9621 case R_MIPS_GOT_PAGE
:
9622 case R_MIPS_GOT_OFST
:
9623 /* ??? It would seem that the existing MIPS code does no sort
9624 of reference counting or whatnot on its GOT and PLT entries,
9625 so it is not possible to garbage collect them at this time. */
9636 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9637 hiding the old indirect symbol. Process additional relocation
9638 information. Also called for weakdefs, in which case we just let
9639 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9642 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info
*info
,
9643 struct elf_link_hash_entry
*dir
,
9644 struct elf_link_hash_entry
*ind
)
9646 struct mips_elf_link_hash_entry
*dirmips
, *indmips
;
9648 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
9650 if (ind
->root
.type
!= bfd_link_hash_indirect
)
9653 dirmips
= (struct mips_elf_link_hash_entry
*) dir
;
9654 indmips
= (struct mips_elf_link_hash_entry
*) ind
;
9655 dirmips
->possibly_dynamic_relocs
+= indmips
->possibly_dynamic_relocs
;
9656 if (indmips
->readonly_reloc
)
9657 dirmips
->readonly_reloc
= TRUE
;
9658 if (indmips
->no_fn_stub
)
9659 dirmips
->no_fn_stub
= TRUE
;
9661 if (dirmips
->tls_type
== 0)
9662 dirmips
->tls_type
= indmips
->tls_type
;
9666 _bfd_mips_elf_hide_symbol (struct bfd_link_info
*info
,
9667 struct elf_link_hash_entry
*entry
,
9668 bfd_boolean force_local
)
9672 struct mips_got_info
*g
;
9673 struct mips_elf_link_hash_entry
*h
;
9675 h
= (struct mips_elf_link_hash_entry
*) entry
;
9676 if (h
->forced_local
)
9678 h
->forced_local
= force_local
;
9680 dynobj
= elf_hash_table (info
)->dynobj
;
9681 if (dynobj
!= NULL
&& force_local
&& h
->root
.type
!= STT_TLS
9682 && (got
= mips_elf_got_section (dynobj
, TRUE
)) != NULL
9683 && (g
= mips_elf_section_data (got
)->u
.got_info
) != NULL
)
9687 struct mips_got_entry e
;
9688 struct mips_got_info
*gg
= g
;
9690 /* Since we're turning what used to be a global symbol into a
9691 local one, bump up the number of local entries of each GOT
9692 that had an entry for it. This will automatically decrease
9693 the number of global entries, since global_gotno is actually
9694 the upper limit of global entries. */
9700 for (g
= g
->next
; g
!= gg
; g
= g
->next
)
9701 if (htab_find (g
->got_entries
, &e
))
9703 BFD_ASSERT (g
->global_gotno
> 0);
9708 /* If this was a global symbol forced into the primary GOT, we
9709 no longer need an entry for it. We can't release the entry
9710 at this point, but we must at least stop counting it as one
9711 of the symbols that required a forced got entry. */
9712 if (h
->root
.got
.offset
== 2)
9714 BFD_ASSERT (gg
->assigned_gotno
> 0);
9715 gg
->assigned_gotno
--;
9718 else if (g
->global_gotno
== 0 && g
->global_gotsym
== NULL
)
9719 /* If we haven't got through GOT allocation yet, just bump up the
9720 number of local entries, as this symbol won't be counted as
9723 else if (h
->root
.got
.offset
== 1)
9725 /* If we're past non-multi-GOT allocation and this symbol had
9726 been marked for a global got entry, give it a local entry
9728 BFD_ASSERT (g
->global_gotno
> 0);
9734 _bfd_elf_link_hash_hide_symbol (info
, &h
->root
, force_local
);
9740 _bfd_mips_elf_discard_info (bfd
*abfd
, struct elf_reloc_cookie
*cookie
,
9741 struct bfd_link_info
*info
)
9744 bfd_boolean ret
= FALSE
;
9745 unsigned char *tdata
;
9748 o
= bfd_get_section_by_name (abfd
, ".pdr");
9753 if (o
->size
% PDR_SIZE
!= 0)
9755 if (o
->output_section
!= NULL
9756 && bfd_is_abs_section (o
->output_section
))
9759 tdata
= bfd_zmalloc (o
->size
/ PDR_SIZE
);
9763 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
9771 cookie
->rel
= cookie
->rels
;
9772 cookie
->relend
= cookie
->rels
+ o
->reloc_count
;
9774 for (i
= 0, skip
= 0; i
< o
->size
/ PDR_SIZE
; i
++)
9776 if (bfd_elf_reloc_symbol_deleted_p (i
* PDR_SIZE
, cookie
))
9785 mips_elf_section_data (o
)->u
.tdata
= tdata
;
9786 o
->size
-= skip
* PDR_SIZE
;
9792 if (! info
->keep_memory
)
9793 free (cookie
->rels
);
9799 _bfd_mips_elf_ignore_discarded_relocs (asection
*sec
)
9801 if (strcmp (sec
->name
, ".pdr") == 0)
9807 _bfd_mips_elf_write_section (bfd
*output_bfd
,
9808 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
,
9809 asection
*sec
, bfd_byte
*contents
)
9811 bfd_byte
*to
, *from
, *end
;
9814 if (strcmp (sec
->name
, ".pdr") != 0)
9817 if (mips_elf_section_data (sec
)->u
.tdata
== NULL
)
9821 end
= contents
+ sec
->size
;
9822 for (from
= contents
, i
= 0;
9824 from
+= PDR_SIZE
, i
++)
9826 if ((mips_elf_section_data (sec
)->u
.tdata
)[i
] == 1)
9829 memcpy (to
, from
, PDR_SIZE
);
9832 bfd_set_section_contents (output_bfd
, sec
->output_section
, contents
,
9833 sec
->output_offset
, sec
->size
);
9837 /* MIPS ELF uses a special find_nearest_line routine in order the
9838 handle the ECOFF debugging information. */
9840 struct mips_elf_find_line
9842 struct ecoff_debug_info d
;
9843 struct ecoff_find_line i
;
9847 _bfd_mips_elf_find_nearest_line (bfd
*abfd
, asection
*section
,
9848 asymbol
**symbols
, bfd_vma offset
,
9849 const char **filename_ptr
,
9850 const char **functionname_ptr
,
9851 unsigned int *line_ptr
)
9855 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
9856 filename_ptr
, functionname_ptr
,
9860 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
9861 filename_ptr
, functionname_ptr
,
9862 line_ptr
, ABI_64_P (abfd
) ? 8 : 0,
9863 &elf_tdata (abfd
)->dwarf2_find_line_info
))
9866 msec
= bfd_get_section_by_name (abfd
, ".mdebug");
9870 struct mips_elf_find_line
*fi
;
9871 const struct ecoff_debug_swap
* const swap
=
9872 get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
9874 /* If we are called during a link, mips_elf_final_link may have
9875 cleared the SEC_HAS_CONTENTS field. We force it back on here
9876 if appropriate (which it normally will be). */
9877 origflags
= msec
->flags
;
9878 if (elf_section_data (msec
)->this_hdr
.sh_type
!= SHT_NOBITS
)
9879 msec
->flags
|= SEC_HAS_CONTENTS
;
9881 fi
= elf_tdata (abfd
)->find_line_info
;
9884 bfd_size_type external_fdr_size
;
9887 struct fdr
*fdr_ptr
;
9888 bfd_size_type amt
= sizeof (struct mips_elf_find_line
);
9890 fi
= bfd_zalloc (abfd
, amt
);
9893 msec
->flags
= origflags
;
9897 if (! _bfd_mips_elf_read_ecoff_info (abfd
, msec
, &fi
->d
))
9899 msec
->flags
= origflags
;
9903 /* Swap in the FDR information. */
9904 amt
= fi
->d
.symbolic_header
.ifdMax
* sizeof (struct fdr
);
9905 fi
->d
.fdr
= bfd_alloc (abfd
, amt
);
9906 if (fi
->d
.fdr
== NULL
)
9908 msec
->flags
= origflags
;
9911 external_fdr_size
= swap
->external_fdr_size
;
9912 fdr_ptr
= fi
->d
.fdr
;
9913 fraw_src
= (char *) fi
->d
.external_fdr
;
9914 fraw_end
= (fraw_src
9915 + fi
->d
.symbolic_header
.ifdMax
* external_fdr_size
);
9916 for (; fraw_src
< fraw_end
; fraw_src
+= external_fdr_size
, fdr_ptr
++)
9917 (*swap
->swap_fdr_in
) (abfd
, fraw_src
, fdr_ptr
);
9919 elf_tdata (abfd
)->find_line_info
= fi
;
9921 /* Note that we don't bother to ever free this information.
9922 find_nearest_line is either called all the time, as in
9923 objdump -l, so the information should be saved, or it is
9924 rarely called, as in ld error messages, so the memory
9925 wasted is unimportant. Still, it would probably be a
9926 good idea for free_cached_info to throw it away. */
9929 if (_bfd_ecoff_locate_line (abfd
, section
, offset
, &fi
->d
, swap
,
9930 &fi
->i
, filename_ptr
, functionname_ptr
,
9933 msec
->flags
= origflags
;
9937 msec
->flags
= origflags
;
9940 /* Fall back on the generic ELF find_nearest_line routine. */
9942 return _bfd_elf_find_nearest_line (abfd
, section
, symbols
, offset
,
9943 filename_ptr
, functionname_ptr
,
9948 _bfd_mips_elf_find_inliner_info (bfd
*abfd
,
9949 const char **filename_ptr
,
9950 const char **functionname_ptr
,
9951 unsigned int *line_ptr
)
9954 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
9955 functionname_ptr
, line_ptr
,
9956 & elf_tdata (abfd
)->dwarf2_find_line_info
);
9961 /* When are writing out the .options or .MIPS.options section,
9962 remember the bytes we are writing out, so that we can install the
9963 GP value in the section_processing routine. */
9966 _bfd_mips_elf_set_section_contents (bfd
*abfd
, sec_ptr section
,
9967 const void *location
,
9968 file_ptr offset
, bfd_size_type count
)
9970 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section
->name
))
9974 if (elf_section_data (section
) == NULL
)
9976 bfd_size_type amt
= sizeof (struct bfd_elf_section_data
);
9977 section
->used_by_bfd
= bfd_zalloc (abfd
, amt
);
9978 if (elf_section_data (section
) == NULL
)
9981 c
= mips_elf_section_data (section
)->u
.tdata
;
9984 c
= bfd_zalloc (abfd
, section
->size
);
9987 mips_elf_section_data (section
)->u
.tdata
= c
;
9990 memcpy (c
+ offset
, location
, count
);
9993 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
,
9997 /* This is almost identical to bfd_generic_get_... except that some
9998 MIPS relocations need to be handled specially. Sigh. */
10001 _bfd_elf_mips_get_relocated_section_contents
10003 struct bfd_link_info
*link_info
,
10004 struct bfd_link_order
*link_order
,
10006 bfd_boolean relocatable
,
10009 /* Get enough memory to hold the stuff */
10010 bfd
*input_bfd
= link_order
->u
.indirect
.section
->owner
;
10011 asection
*input_section
= link_order
->u
.indirect
.section
;
10014 long reloc_size
= bfd_get_reloc_upper_bound (input_bfd
, input_section
);
10015 arelent
**reloc_vector
= NULL
;
10018 if (reloc_size
< 0)
10021 reloc_vector
= bfd_malloc (reloc_size
);
10022 if (reloc_vector
== NULL
&& reloc_size
!= 0)
10025 /* read in the section */
10026 sz
= input_section
->rawsize
? input_section
->rawsize
: input_section
->size
;
10027 if (!bfd_get_section_contents (input_bfd
, input_section
, data
, 0, sz
))
10030 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
10034 if (reloc_count
< 0)
10037 if (reloc_count
> 0)
10042 bfd_vma gp
= 0x12345678; /* initialize just to shut gcc up */
10045 struct bfd_hash_entry
*h
;
10046 struct bfd_link_hash_entry
*lh
;
10047 /* Skip all this stuff if we aren't mixing formats. */
10048 if (abfd
&& input_bfd
10049 && abfd
->xvec
== input_bfd
->xvec
)
10053 h
= bfd_hash_lookup (&link_info
->hash
->table
, "_gp", FALSE
, FALSE
);
10054 lh
= (struct bfd_link_hash_entry
*) h
;
10061 case bfd_link_hash_undefined
:
10062 case bfd_link_hash_undefweak
:
10063 case bfd_link_hash_common
:
10066 case bfd_link_hash_defined
:
10067 case bfd_link_hash_defweak
:
10069 gp
= lh
->u
.def
.value
;
10071 case bfd_link_hash_indirect
:
10072 case bfd_link_hash_warning
:
10074 /* @@FIXME ignoring warning for now */
10076 case bfd_link_hash_new
:
10085 for (parent
= reloc_vector
; *parent
!= NULL
; parent
++)
10087 char *error_message
= NULL
;
10088 bfd_reloc_status_type r
;
10090 /* Specific to MIPS: Deal with relocation types that require
10091 knowing the gp of the output bfd. */
10092 asymbol
*sym
= *(*parent
)->sym_ptr_ptr
;
10094 /* If we've managed to find the gp and have a special
10095 function for the relocation then go ahead, else default
10096 to the generic handling. */
10098 && (*parent
)->howto
->special_function
10099 == _bfd_mips_elf32_gprel16_reloc
)
10100 r
= _bfd_mips_elf_gprel16_with_gp (input_bfd
, sym
, *parent
,
10101 input_section
, relocatable
,
10104 r
= bfd_perform_relocation (input_bfd
, *parent
, data
,
10106 relocatable
? abfd
: NULL
,
10111 asection
*os
= input_section
->output_section
;
10113 /* A partial link, so keep the relocs */
10114 os
->orelocation
[os
->reloc_count
] = *parent
;
10118 if (r
!= bfd_reloc_ok
)
10122 case bfd_reloc_undefined
:
10123 if (!((*link_info
->callbacks
->undefined_symbol
)
10124 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
10125 input_bfd
, input_section
, (*parent
)->address
, TRUE
)))
10128 case bfd_reloc_dangerous
:
10129 BFD_ASSERT (error_message
!= NULL
);
10130 if (!((*link_info
->callbacks
->reloc_dangerous
)
10131 (link_info
, error_message
, input_bfd
, input_section
,
10132 (*parent
)->address
)))
10135 case bfd_reloc_overflow
:
10136 if (!((*link_info
->callbacks
->reloc_overflow
)
10138 bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
10139 (*parent
)->howto
->name
, (*parent
)->addend
,
10140 input_bfd
, input_section
, (*parent
)->address
)))
10143 case bfd_reloc_outofrange
:
10152 if (reloc_vector
!= NULL
)
10153 free (reloc_vector
);
10157 if (reloc_vector
!= NULL
)
10158 free (reloc_vector
);
10162 /* Create a MIPS ELF linker hash table. */
10164 struct bfd_link_hash_table
*
10165 _bfd_mips_elf_link_hash_table_create (bfd
*abfd
)
10167 struct mips_elf_link_hash_table
*ret
;
10168 bfd_size_type amt
= sizeof (struct mips_elf_link_hash_table
);
10170 ret
= bfd_malloc (amt
);
10174 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
10175 mips_elf_link_hash_newfunc
,
10176 sizeof (struct mips_elf_link_hash_entry
)))
10183 /* We no longer use this. */
10184 for (i
= 0; i
< SIZEOF_MIPS_DYNSYM_SECNAMES
; i
++)
10185 ret
->dynsym_sec_strindex
[i
] = (bfd_size_type
) -1;
10187 ret
->procedure_count
= 0;
10188 ret
->compact_rel_size
= 0;
10189 ret
->use_rld_obj_head
= FALSE
;
10190 ret
->rld_value
= 0;
10191 ret
->mips16_stubs_seen
= FALSE
;
10192 ret
->is_vxworks
= FALSE
;
10193 ret
->small_data_overflow_reported
= FALSE
;
10194 ret
->srelbss
= NULL
;
10195 ret
->sdynbss
= NULL
;
10196 ret
->srelplt
= NULL
;
10197 ret
->srelplt2
= NULL
;
10198 ret
->sgotplt
= NULL
;
10200 ret
->plt_header_size
= 0;
10201 ret
->plt_entry_size
= 0;
10202 ret
->function_stub_size
= 0;
10204 return &ret
->root
.root
;
10207 /* Likewise, but indicate that the target is VxWorks. */
10209 struct bfd_link_hash_table
*
10210 _bfd_mips_vxworks_link_hash_table_create (bfd
*abfd
)
10212 struct bfd_link_hash_table
*ret
;
10214 ret
= _bfd_mips_elf_link_hash_table_create (abfd
);
10217 struct mips_elf_link_hash_table
*htab
;
10219 htab
= (struct mips_elf_link_hash_table
*) ret
;
10220 htab
->is_vxworks
= 1;
10225 /* We need to use a special link routine to handle the .reginfo and
10226 the .mdebug sections. We need to merge all instances of these
10227 sections together, not write them all out sequentially. */
10230 _bfd_mips_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
10233 struct bfd_link_order
*p
;
10234 asection
*reginfo_sec
, *mdebug_sec
, *gptab_data_sec
, *gptab_bss_sec
;
10235 asection
*rtproc_sec
;
10236 Elf32_RegInfo reginfo
;
10237 struct ecoff_debug_info debug
;
10238 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
10239 const struct ecoff_debug_swap
*swap
= bed
->elf_backend_ecoff_debug_swap
;
10240 HDRR
*symhdr
= &debug
.symbolic_header
;
10241 void *mdebug_handle
= NULL
;
10246 struct mips_elf_link_hash_table
*htab
;
10248 static const char * const secname
[] =
10250 ".text", ".init", ".fini", ".data",
10251 ".rodata", ".sdata", ".sbss", ".bss"
10253 static const int sc
[] =
10255 scText
, scInit
, scFini
, scData
,
10256 scRData
, scSData
, scSBss
, scBss
10259 /* We'd carefully arranged the dynamic symbol indices, and then the
10260 generic size_dynamic_sections renumbered them out from under us.
10261 Rather than trying somehow to prevent the renumbering, just do
10263 htab
= mips_elf_hash_table (info
);
10264 if (elf_hash_table (info
)->dynamic_sections_created
)
10268 struct mips_got_info
*g
;
10269 bfd_size_type dynsecsymcount
;
10271 /* When we resort, we must tell mips_elf_sort_hash_table what
10272 the lowest index it may use is. That's the number of section
10273 symbols we're going to add. The generic ELF linker only
10274 adds these symbols when building a shared object. Note that
10275 we count the sections after (possibly) removing the .options
10278 dynsecsymcount
= count_section_dynsyms (abfd
, info
);
10279 if (! mips_elf_sort_hash_table (info
, dynsecsymcount
+ 1))
10282 /* Make sure we didn't grow the global .got region. */
10283 dynobj
= elf_hash_table (info
)->dynobj
;
10284 got
= mips_elf_got_section (dynobj
, FALSE
);
10285 g
= mips_elf_section_data (got
)->u
.got_info
;
10287 if (g
->global_gotsym
!= NULL
)
10288 BFD_ASSERT ((elf_hash_table (info
)->dynsymcount
10289 - g
->global_gotsym
->dynindx
)
10290 <= g
->global_gotno
);
10293 /* Get a value for the GP register. */
10294 if (elf_gp (abfd
) == 0)
10296 struct bfd_link_hash_entry
*h
;
10298 h
= bfd_link_hash_lookup (info
->hash
, "_gp", FALSE
, FALSE
, TRUE
);
10299 if (h
!= NULL
&& h
->type
== bfd_link_hash_defined
)
10300 elf_gp (abfd
) = (h
->u
.def
.value
10301 + h
->u
.def
.section
->output_section
->vma
10302 + h
->u
.def
.section
->output_offset
);
10303 else if (htab
->is_vxworks
10304 && (h
= bfd_link_hash_lookup (info
->hash
,
10305 "_GLOBAL_OFFSET_TABLE_",
10306 FALSE
, FALSE
, TRUE
))
10307 && h
->type
== bfd_link_hash_defined
)
10308 elf_gp (abfd
) = (h
->u
.def
.section
->output_section
->vma
10309 + h
->u
.def
.section
->output_offset
10311 else if (info
->relocatable
)
10313 bfd_vma lo
= MINUS_ONE
;
10315 /* Find the GP-relative section with the lowest offset. */
10316 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10318 && (elf_section_data (o
)->this_hdr
.sh_flags
& SHF_MIPS_GPREL
))
10321 /* And calculate GP relative to that. */
10322 elf_gp (abfd
) = lo
+ ELF_MIPS_GP_OFFSET (info
);
10326 /* If the relocate_section function needs to do a reloc
10327 involving the GP value, it should make a reloc_dangerous
10328 callback to warn that GP is not defined. */
10332 /* Go through the sections and collect the .reginfo and .mdebug
10334 reginfo_sec
= NULL
;
10336 gptab_data_sec
= NULL
;
10337 gptab_bss_sec
= NULL
;
10338 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10340 if (strcmp (o
->name
, ".reginfo") == 0)
10342 memset (®info
, 0, sizeof reginfo
);
10344 /* We have found the .reginfo section in the output file.
10345 Look through all the link_orders comprising it and merge
10346 the information together. */
10347 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10349 asection
*input_section
;
10351 Elf32_External_RegInfo ext
;
10354 if (p
->type
!= bfd_indirect_link_order
)
10356 if (p
->type
== bfd_data_link_order
)
10361 input_section
= p
->u
.indirect
.section
;
10362 input_bfd
= input_section
->owner
;
10364 if (! bfd_get_section_contents (input_bfd
, input_section
,
10365 &ext
, 0, sizeof ext
))
10368 bfd_mips_elf32_swap_reginfo_in (input_bfd
, &ext
, &sub
);
10370 reginfo
.ri_gprmask
|= sub
.ri_gprmask
;
10371 reginfo
.ri_cprmask
[0] |= sub
.ri_cprmask
[0];
10372 reginfo
.ri_cprmask
[1] |= sub
.ri_cprmask
[1];
10373 reginfo
.ri_cprmask
[2] |= sub
.ri_cprmask
[2];
10374 reginfo
.ri_cprmask
[3] |= sub
.ri_cprmask
[3];
10376 /* ri_gp_value is set by the function
10377 mips_elf32_section_processing when the section is
10378 finally written out. */
10380 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10381 elf_link_input_bfd ignores this section. */
10382 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
10385 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10386 BFD_ASSERT(o
->size
== sizeof (Elf32_External_RegInfo
));
10388 /* Skip this section later on (I don't think this currently
10389 matters, but someday it might). */
10390 o
->map_head
.link_order
= NULL
;
10395 if (strcmp (o
->name
, ".mdebug") == 0)
10397 struct extsym_info einfo
;
10400 /* We have found the .mdebug section in the output file.
10401 Look through all the link_orders comprising it and merge
10402 the information together. */
10403 symhdr
->magic
= swap
->sym_magic
;
10404 /* FIXME: What should the version stamp be? */
10405 symhdr
->vstamp
= 0;
10406 symhdr
->ilineMax
= 0;
10407 symhdr
->cbLine
= 0;
10408 symhdr
->idnMax
= 0;
10409 symhdr
->ipdMax
= 0;
10410 symhdr
->isymMax
= 0;
10411 symhdr
->ioptMax
= 0;
10412 symhdr
->iauxMax
= 0;
10413 symhdr
->issMax
= 0;
10414 symhdr
->issExtMax
= 0;
10415 symhdr
->ifdMax
= 0;
10417 symhdr
->iextMax
= 0;
10419 /* We accumulate the debugging information itself in the
10420 debug_info structure. */
10422 debug
.external_dnr
= NULL
;
10423 debug
.external_pdr
= NULL
;
10424 debug
.external_sym
= NULL
;
10425 debug
.external_opt
= NULL
;
10426 debug
.external_aux
= NULL
;
10428 debug
.ssext
= debug
.ssext_end
= NULL
;
10429 debug
.external_fdr
= NULL
;
10430 debug
.external_rfd
= NULL
;
10431 debug
.external_ext
= debug
.external_ext_end
= NULL
;
10433 mdebug_handle
= bfd_ecoff_debug_init (abfd
, &debug
, swap
, info
);
10434 if (mdebug_handle
== NULL
)
10438 esym
.cobol_main
= 0;
10442 esym
.asym
.iss
= issNil
;
10443 esym
.asym
.st
= stLocal
;
10444 esym
.asym
.reserved
= 0;
10445 esym
.asym
.index
= indexNil
;
10447 for (i
= 0; i
< sizeof (secname
) / sizeof (secname
[0]); i
++)
10449 esym
.asym
.sc
= sc
[i
];
10450 s
= bfd_get_section_by_name (abfd
, secname
[i
]);
10453 esym
.asym
.value
= s
->vma
;
10454 last
= s
->vma
+ s
->size
;
10457 esym
.asym
.value
= last
;
10458 if (!bfd_ecoff_debug_one_external (abfd
, &debug
, swap
,
10459 secname
[i
], &esym
))
10463 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10465 asection
*input_section
;
10467 const struct ecoff_debug_swap
*input_swap
;
10468 struct ecoff_debug_info input_debug
;
10472 if (p
->type
!= bfd_indirect_link_order
)
10474 if (p
->type
== bfd_data_link_order
)
10479 input_section
= p
->u
.indirect
.section
;
10480 input_bfd
= input_section
->owner
;
10482 if (bfd_get_flavour (input_bfd
) != bfd_target_elf_flavour
10483 || (get_elf_backend_data (input_bfd
)
10484 ->elf_backend_ecoff_debug_swap
) == NULL
)
10486 /* I don't know what a non MIPS ELF bfd would be
10487 doing with a .mdebug section, but I don't really
10488 want to deal with it. */
10492 input_swap
= (get_elf_backend_data (input_bfd
)
10493 ->elf_backend_ecoff_debug_swap
);
10495 BFD_ASSERT (p
->size
== input_section
->size
);
10497 /* The ECOFF linking code expects that we have already
10498 read in the debugging information and set up an
10499 ecoff_debug_info structure, so we do that now. */
10500 if (! _bfd_mips_elf_read_ecoff_info (input_bfd
, input_section
,
10504 if (! (bfd_ecoff_debug_accumulate
10505 (mdebug_handle
, abfd
, &debug
, swap
, input_bfd
,
10506 &input_debug
, input_swap
, info
)))
10509 /* Loop through the external symbols. For each one with
10510 interesting information, try to find the symbol in
10511 the linker global hash table and save the information
10512 for the output external symbols. */
10513 eraw_src
= input_debug
.external_ext
;
10514 eraw_end
= (eraw_src
10515 + (input_debug
.symbolic_header
.iextMax
10516 * input_swap
->external_ext_size
));
10518 eraw_src
< eraw_end
;
10519 eraw_src
+= input_swap
->external_ext_size
)
10523 struct mips_elf_link_hash_entry
*h
;
10525 (*input_swap
->swap_ext_in
) (input_bfd
, eraw_src
, &ext
);
10526 if (ext
.asym
.sc
== scNil
10527 || ext
.asym
.sc
== scUndefined
10528 || ext
.asym
.sc
== scSUndefined
)
10531 name
= input_debug
.ssext
+ ext
.asym
.iss
;
10532 h
= mips_elf_link_hash_lookup (mips_elf_hash_table (info
),
10533 name
, FALSE
, FALSE
, TRUE
);
10534 if (h
== NULL
|| h
->esym
.ifd
!= -2)
10539 BFD_ASSERT (ext
.ifd
10540 < input_debug
.symbolic_header
.ifdMax
);
10541 ext
.ifd
= input_debug
.ifdmap
[ext
.ifd
];
10547 /* Free up the information we just read. */
10548 free (input_debug
.line
);
10549 free (input_debug
.external_dnr
);
10550 free (input_debug
.external_pdr
);
10551 free (input_debug
.external_sym
);
10552 free (input_debug
.external_opt
);
10553 free (input_debug
.external_aux
);
10554 free (input_debug
.ss
);
10555 free (input_debug
.ssext
);
10556 free (input_debug
.external_fdr
);
10557 free (input_debug
.external_rfd
);
10558 free (input_debug
.external_ext
);
10560 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10561 elf_link_input_bfd ignores this section. */
10562 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
10565 if (SGI_COMPAT (abfd
) && info
->shared
)
10567 /* Create .rtproc section. */
10568 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
10569 if (rtproc_sec
== NULL
)
10571 flagword flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
10572 | SEC_LINKER_CREATED
| SEC_READONLY
);
10574 rtproc_sec
= bfd_make_section_with_flags (abfd
,
10577 if (rtproc_sec
== NULL
10578 || ! bfd_set_section_alignment (abfd
, rtproc_sec
, 4))
10582 if (! mips_elf_create_procedure_table (mdebug_handle
, abfd
,
10588 /* Build the external symbol information. */
10591 einfo
.debug
= &debug
;
10593 einfo
.failed
= FALSE
;
10594 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
10595 mips_elf_output_extsym
, &einfo
);
10599 /* Set the size of the .mdebug section. */
10600 o
->size
= bfd_ecoff_debug_size (abfd
, &debug
, swap
);
10602 /* Skip this section later on (I don't think this currently
10603 matters, but someday it might). */
10604 o
->map_head
.link_order
= NULL
;
10609 if (CONST_STRNEQ (o
->name
, ".gptab."))
10611 const char *subname
;
10614 Elf32_External_gptab
*ext_tab
;
10617 /* The .gptab.sdata and .gptab.sbss sections hold
10618 information describing how the small data area would
10619 change depending upon the -G switch. These sections
10620 not used in executables files. */
10621 if (! info
->relocatable
)
10623 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10625 asection
*input_section
;
10627 if (p
->type
!= bfd_indirect_link_order
)
10629 if (p
->type
== bfd_data_link_order
)
10634 input_section
= p
->u
.indirect
.section
;
10636 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10637 elf_link_input_bfd ignores this section. */
10638 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
10641 /* Skip this section later on (I don't think this
10642 currently matters, but someday it might). */
10643 o
->map_head
.link_order
= NULL
;
10645 /* Really remove the section. */
10646 bfd_section_list_remove (abfd
, o
);
10647 --abfd
->section_count
;
10652 /* There is one gptab for initialized data, and one for
10653 uninitialized data. */
10654 if (strcmp (o
->name
, ".gptab.sdata") == 0)
10655 gptab_data_sec
= o
;
10656 else if (strcmp (o
->name
, ".gptab.sbss") == 0)
10660 (*_bfd_error_handler
)
10661 (_("%s: illegal section name `%s'"),
10662 bfd_get_filename (abfd
), o
->name
);
10663 bfd_set_error (bfd_error_nonrepresentable_section
);
10667 /* The linker script always combines .gptab.data and
10668 .gptab.sdata into .gptab.sdata, and likewise for
10669 .gptab.bss and .gptab.sbss. It is possible that there is
10670 no .sdata or .sbss section in the output file, in which
10671 case we must change the name of the output section. */
10672 subname
= o
->name
+ sizeof ".gptab" - 1;
10673 if (bfd_get_section_by_name (abfd
, subname
) == NULL
)
10675 if (o
== gptab_data_sec
)
10676 o
->name
= ".gptab.data";
10678 o
->name
= ".gptab.bss";
10679 subname
= o
->name
+ sizeof ".gptab" - 1;
10680 BFD_ASSERT (bfd_get_section_by_name (abfd
, subname
) != NULL
);
10683 /* Set up the first entry. */
10685 amt
= c
* sizeof (Elf32_gptab
);
10686 tab
= bfd_malloc (amt
);
10689 tab
[0].gt_header
.gt_current_g_value
= elf_gp_size (abfd
);
10690 tab
[0].gt_header
.gt_unused
= 0;
10692 /* Combine the input sections. */
10693 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10695 asection
*input_section
;
10697 bfd_size_type size
;
10698 unsigned long last
;
10699 bfd_size_type gpentry
;
10701 if (p
->type
!= bfd_indirect_link_order
)
10703 if (p
->type
== bfd_data_link_order
)
10708 input_section
= p
->u
.indirect
.section
;
10709 input_bfd
= input_section
->owner
;
10711 /* Combine the gptab entries for this input section one
10712 by one. We know that the input gptab entries are
10713 sorted by ascending -G value. */
10714 size
= input_section
->size
;
10716 for (gpentry
= sizeof (Elf32_External_gptab
);
10718 gpentry
+= sizeof (Elf32_External_gptab
))
10720 Elf32_External_gptab ext_gptab
;
10721 Elf32_gptab int_gptab
;
10727 if (! (bfd_get_section_contents
10728 (input_bfd
, input_section
, &ext_gptab
, gpentry
,
10729 sizeof (Elf32_External_gptab
))))
10735 bfd_mips_elf32_swap_gptab_in (input_bfd
, &ext_gptab
,
10737 val
= int_gptab
.gt_entry
.gt_g_value
;
10738 add
= int_gptab
.gt_entry
.gt_bytes
- last
;
10741 for (look
= 1; look
< c
; look
++)
10743 if (tab
[look
].gt_entry
.gt_g_value
>= val
)
10744 tab
[look
].gt_entry
.gt_bytes
+= add
;
10746 if (tab
[look
].gt_entry
.gt_g_value
== val
)
10752 Elf32_gptab
*new_tab
;
10755 /* We need a new table entry. */
10756 amt
= (bfd_size_type
) (c
+ 1) * sizeof (Elf32_gptab
);
10757 new_tab
= bfd_realloc (tab
, amt
);
10758 if (new_tab
== NULL
)
10764 tab
[c
].gt_entry
.gt_g_value
= val
;
10765 tab
[c
].gt_entry
.gt_bytes
= add
;
10767 /* Merge in the size for the next smallest -G
10768 value, since that will be implied by this new
10771 for (look
= 1; look
< c
; look
++)
10773 if (tab
[look
].gt_entry
.gt_g_value
< val
10775 || (tab
[look
].gt_entry
.gt_g_value
10776 > tab
[max
].gt_entry
.gt_g_value
)))
10780 tab
[c
].gt_entry
.gt_bytes
+=
10781 tab
[max
].gt_entry
.gt_bytes
;
10786 last
= int_gptab
.gt_entry
.gt_bytes
;
10789 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10790 elf_link_input_bfd ignores this section. */
10791 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
10794 /* The table must be sorted by -G value. */
10796 qsort (tab
+ 1, c
- 1, sizeof (tab
[0]), gptab_compare
);
10798 /* Swap out the table. */
10799 amt
= (bfd_size_type
) c
* sizeof (Elf32_External_gptab
);
10800 ext_tab
= bfd_alloc (abfd
, amt
);
10801 if (ext_tab
== NULL
)
10807 for (j
= 0; j
< c
; j
++)
10808 bfd_mips_elf32_swap_gptab_out (abfd
, tab
+ j
, ext_tab
+ j
);
10811 o
->size
= c
* sizeof (Elf32_External_gptab
);
10812 o
->contents
= (bfd_byte
*) ext_tab
;
10814 /* Skip this section later on (I don't think this currently
10815 matters, but someday it might). */
10816 o
->map_head
.link_order
= NULL
;
10820 /* Invoke the regular ELF backend linker to do all the work. */
10821 if (!bfd_elf_final_link (abfd
, info
))
10824 /* Now write out the computed sections. */
10826 if (reginfo_sec
!= NULL
)
10828 Elf32_External_RegInfo ext
;
10830 bfd_mips_elf32_swap_reginfo_out (abfd
, ®info
, &ext
);
10831 if (! bfd_set_section_contents (abfd
, reginfo_sec
, &ext
, 0, sizeof ext
))
10835 if (mdebug_sec
!= NULL
)
10837 BFD_ASSERT (abfd
->output_has_begun
);
10838 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle
, abfd
, &debug
,
10840 mdebug_sec
->filepos
))
10843 bfd_ecoff_debug_free (mdebug_handle
, abfd
, &debug
, swap
, info
);
10846 if (gptab_data_sec
!= NULL
)
10848 if (! bfd_set_section_contents (abfd
, gptab_data_sec
,
10849 gptab_data_sec
->contents
,
10850 0, gptab_data_sec
->size
))
10854 if (gptab_bss_sec
!= NULL
)
10856 if (! bfd_set_section_contents (abfd
, gptab_bss_sec
,
10857 gptab_bss_sec
->contents
,
10858 0, gptab_bss_sec
->size
))
10862 if (SGI_COMPAT (abfd
))
10864 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
10865 if (rtproc_sec
!= NULL
)
10867 if (! bfd_set_section_contents (abfd
, rtproc_sec
,
10868 rtproc_sec
->contents
,
10869 0, rtproc_sec
->size
))
10877 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10879 struct mips_mach_extension
{
10880 unsigned long extension
, base
;
10884 /* An array describing how BFD machines relate to one another. The entries
10885 are ordered topologically with MIPS I extensions listed last. */
10887 static const struct mips_mach_extension mips_mach_extensions
[] = {
10888 /* MIPS64 extensions. */
10889 { bfd_mach_mipsisa64r2
, bfd_mach_mipsisa64
},
10890 { bfd_mach_mips_sb1
, bfd_mach_mipsisa64
},
10892 /* MIPS V extensions. */
10893 { bfd_mach_mipsisa64
, bfd_mach_mips5
},
10895 /* R10000 extensions. */
10896 { bfd_mach_mips12000
, bfd_mach_mips10000
},
10898 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10899 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10900 better to allow vr5400 and vr5500 code to be merged anyway, since
10901 many libraries will just use the core ISA. Perhaps we could add
10902 some sort of ASE flag if this ever proves a problem. */
10903 { bfd_mach_mips5500
, bfd_mach_mips5400
},
10904 { bfd_mach_mips5400
, bfd_mach_mips5000
},
10906 /* MIPS IV extensions. */
10907 { bfd_mach_mips5
, bfd_mach_mips8000
},
10908 { bfd_mach_mips10000
, bfd_mach_mips8000
},
10909 { bfd_mach_mips5000
, bfd_mach_mips8000
},
10910 { bfd_mach_mips7000
, bfd_mach_mips8000
},
10911 { bfd_mach_mips9000
, bfd_mach_mips8000
},
10913 /* VR4100 extensions. */
10914 { bfd_mach_mips4120
, bfd_mach_mips4100
},
10915 { bfd_mach_mips4111
, bfd_mach_mips4100
},
10917 /* MIPS III extensions. */
10918 { bfd_mach_mips8000
, bfd_mach_mips4000
},
10919 { bfd_mach_mips4650
, bfd_mach_mips4000
},
10920 { bfd_mach_mips4600
, bfd_mach_mips4000
},
10921 { bfd_mach_mips4400
, bfd_mach_mips4000
},
10922 { bfd_mach_mips4300
, bfd_mach_mips4000
},
10923 { bfd_mach_mips4100
, bfd_mach_mips4000
},
10924 { bfd_mach_mips4010
, bfd_mach_mips4000
},
10926 /* MIPS32 extensions. */
10927 { bfd_mach_mipsisa32r2
, bfd_mach_mipsisa32
},
10929 /* MIPS II extensions. */
10930 { bfd_mach_mips4000
, bfd_mach_mips6000
},
10931 { bfd_mach_mipsisa32
, bfd_mach_mips6000
},
10933 /* MIPS I extensions. */
10934 { bfd_mach_mips6000
, bfd_mach_mips3000
},
10935 { bfd_mach_mips3900
, bfd_mach_mips3000
}
10939 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10942 mips_mach_extends_p (unsigned long base
, unsigned long extension
)
10946 if (extension
== base
)
10949 if (base
== bfd_mach_mipsisa32
10950 && mips_mach_extends_p (bfd_mach_mipsisa64
, extension
))
10953 if (base
== bfd_mach_mipsisa32r2
10954 && mips_mach_extends_p (bfd_mach_mipsisa64r2
, extension
))
10957 for (i
= 0; i
< ARRAY_SIZE (mips_mach_extensions
); i
++)
10958 if (extension
== mips_mach_extensions
[i
].extension
)
10960 extension
= mips_mach_extensions
[i
].base
;
10961 if (extension
== base
)
10969 /* Return true if the given ELF header flags describe a 32-bit binary. */
10972 mips_32bit_flags_p (flagword flags
)
10974 return ((flags
& EF_MIPS_32BITMODE
) != 0
10975 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
10976 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
10977 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
10978 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
10979 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
10980 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
);
10984 /* Merge object attributes from IBFD into OBFD. Raise an error if
10985 there are conflicting attributes. */
10987 mips_elf_merge_obj_attributes (bfd
*ibfd
, bfd
*obfd
)
10989 obj_attribute
*in_attr
;
10990 obj_attribute
*out_attr
;
10992 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
10994 /* This is the first object. Copy the attributes. */
10995 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
10997 /* Use the Tag_null value to indicate the attributes have been
10999 elf_known_obj_attributes_proc (obfd
)[0].i
= 1;
11004 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
11005 non-conflicting ones. */
11006 in_attr
= elf_known_obj_attributes (ibfd
)[OBJ_ATTR_GNU
];
11007 out_attr
= elf_known_obj_attributes (obfd
)[OBJ_ATTR_GNU
];
11008 if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
!= out_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
11010 out_attr
[Tag_GNU_MIPS_ABI_FP
].type
= 1;
11011 if (out_attr
[Tag_GNU_MIPS_ABI_FP
].i
== 0)
11012 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
= in_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
11013 else if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
== 0)
11015 else if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
> 3)
11017 (_("Warning: %B uses unknown floating point ABI %d"), ibfd
,
11018 in_attr
[Tag_GNU_MIPS_ABI_FP
].i
);
11019 else if (out_attr
[Tag_GNU_MIPS_ABI_FP
].i
> 3)
11021 (_("Warning: %B uses unknown floating point ABI %d"), obfd
,
11022 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
);
11024 switch (out_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
11027 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
11031 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11036 (_("Warning: %B uses hard float, %B uses soft float"),
11046 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
11050 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11055 (_("Warning: %B uses hard float, %B uses soft float"),
11065 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
11070 (_("Warning: %B uses hard float, %B uses soft float"),
11084 /* Merge Tag_compatibility attributes and any common GNU ones. */
11085 _bfd_elf_merge_object_attributes (ibfd
, obfd
);
11090 /* Merge backend specific data from an object file to the output
11091 object file when linking. */
11094 _bfd_mips_elf_merge_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
11096 flagword old_flags
;
11097 flagword new_flags
;
11099 bfd_boolean null_input_bfd
= TRUE
;
11102 /* Check if we have the same endianess */
11103 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
11105 (*_bfd_error_handler
)
11106 (_("%B: endianness incompatible with that of the selected emulation"),
11111 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
11112 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
11115 if (strcmp (bfd_get_target (ibfd
), bfd_get_target (obfd
)) != 0)
11117 (*_bfd_error_handler
)
11118 (_("%B: ABI is incompatible with that of the selected emulation"),
11123 if (!mips_elf_merge_obj_attributes (ibfd
, obfd
))
11126 new_flags
= elf_elfheader (ibfd
)->e_flags
;
11127 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_NOREORDER
;
11128 old_flags
= elf_elfheader (obfd
)->e_flags
;
11130 if (! elf_flags_init (obfd
))
11132 elf_flags_init (obfd
) = TRUE
;
11133 elf_elfheader (obfd
)->e_flags
= new_flags
;
11134 elf_elfheader (obfd
)->e_ident
[EI_CLASS
]
11135 = elf_elfheader (ibfd
)->e_ident
[EI_CLASS
];
11137 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
11138 && (bfd_get_arch_info (obfd
)->the_default
11139 || mips_mach_extends_p (bfd_get_mach (obfd
),
11140 bfd_get_mach (ibfd
))))
11142 if (! bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
11143 bfd_get_mach (ibfd
)))
11150 /* Check flag compatibility. */
11152 new_flags
&= ~EF_MIPS_NOREORDER
;
11153 old_flags
&= ~EF_MIPS_NOREORDER
;
11155 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11156 doesn't seem to matter. */
11157 new_flags
&= ~EF_MIPS_XGOT
;
11158 old_flags
&= ~EF_MIPS_XGOT
;
11160 /* MIPSpro generates ucode info in n64 objects. Again, we should
11161 just be able to ignore this. */
11162 new_flags
&= ~EF_MIPS_UCODE
;
11163 old_flags
&= ~EF_MIPS_UCODE
;
11165 /* Don't care about the PIC flags from dynamic objects; they are
11167 if ((new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0
11168 && (ibfd
->flags
& DYNAMIC
) != 0)
11169 new_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
11171 if (new_flags
== old_flags
)
11174 /* Check to see if the input BFD actually contains any sections.
11175 If not, its flags may not have been initialised either, but it cannot
11176 actually cause any incompatibility. */
11177 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
11179 /* Ignore synthetic sections and empty .text, .data and .bss sections
11180 which are automatically generated by gas. */
11181 if (strcmp (sec
->name
, ".reginfo")
11182 && strcmp (sec
->name
, ".mdebug")
11184 || (strcmp (sec
->name
, ".text")
11185 && strcmp (sec
->name
, ".data")
11186 && strcmp (sec
->name
, ".bss"))))
11188 null_input_bfd
= FALSE
;
11192 if (null_input_bfd
)
11197 if (((new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0)
11198 != ((old_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0))
11200 (*_bfd_error_handler
)
11201 (_("%B: warning: linking PIC files with non-PIC files"),
11206 if (new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
))
11207 elf_elfheader (obfd
)->e_flags
|= EF_MIPS_CPIC
;
11208 if (! (new_flags
& EF_MIPS_PIC
))
11209 elf_elfheader (obfd
)->e_flags
&= ~EF_MIPS_PIC
;
11211 new_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
11212 old_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
11214 /* Compare the ISAs. */
11215 if (mips_32bit_flags_p (old_flags
) != mips_32bit_flags_p (new_flags
))
11217 (*_bfd_error_handler
)
11218 (_("%B: linking 32-bit code with 64-bit code"),
11222 else if (!mips_mach_extends_p (bfd_get_mach (ibfd
), bfd_get_mach (obfd
)))
11224 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11225 if (mips_mach_extends_p (bfd_get_mach (obfd
), bfd_get_mach (ibfd
)))
11227 /* Copy the architecture info from IBFD to OBFD. Also copy
11228 the 32-bit flag (if set) so that we continue to recognise
11229 OBFD as a 32-bit binary. */
11230 bfd_set_arch_info (obfd
, bfd_get_arch_info (ibfd
));
11231 elf_elfheader (obfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
11232 elf_elfheader (obfd
)->e_flags
11233 |= new_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
11235 /* Copy across the ABI flags if OBFD doesn't use them
11236 and if that was what caused us to treat IBFD as 32-bit. */
11237 if ((old_flags
& EF_MIPS_ABI
) == 0
11238 && mips_32bit_flags_p (new_flags
)
11239 && !mips_32bit_flags_p (new_flags
& ~EF_MIPS_ABI
))
11240 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ABI
;
11244 /* The ISAs aren't compatible. */
11245 (*_bfd_error_handler
)
11246 (_("%B: linking %s module with previous %s modules"),
11248 bfd_printable_name (ibfd
),
11249 bfd_printable_name (obfd
));
11254 new_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
11255 old_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
11257 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
11258 does set EI_CLASS differently from any 32-bit ABI. */
11259 if ((new_flags
& EF_MIPS_ABI
) != (old_flags
& EF_MIPS_ABI
)
11260 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
11261 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
11263 /* Only error if both are set (to different values). */
11264 if (((new_flags
& EF_MIPS_ABI
) && (old_flags
& EF_MIPS_ABI
))
11265 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
11266 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
11268 (*_bfd_error_handler
)
11269 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11271 elf_mips_abi_name (ibfd
),
11272 elf_mips_abi_name (obfd
));
11275 new_flags
&= ~EF_MIPS_ABI
;
11276 old_flags
&= ~EF_MIPS_ABI
;
11279 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11280 if ((new_flags
& EF_MIPS_ARCH_ASE
) != (old_flags
& EF_MIPS_ARCH_ASE
))
11282 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ARCH_ASE
;
11284 new_flags
&= ~ EF_MIPS_ARCH_ASE
;
11285 old_flags
&= ~ EF_MIPS_ARCH_ASE
;
11288 /* Warn about any other mismatches */
11289 if (new_flags
!= old_flags
)
11291 (*_bfd_error_handler
)
11292 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11293 ibfd
, (unsigned long) new_flags
,
11294 (unsigned long) old_flags
);
11300 bfd_set_error (bfd_error_bad_value
);
11307 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11310 _bfd_mips_elf_set_private_flags (bfd
*abfd
, flagword flags
)
11312 BFD_ASSERT (!elf_flags_init (abfd
)
11313 || elf_elfheader (abfd
)->e_flags
== flags
);
11315 elf_elfheader (abfd
)->e_flags
= flags
;
11316 elf_flags_init (abfd
) = TRUE
;
11321 _bfd_mips_elf_print_private_bfd_data (bfd
*abfd
, void *ptr
)
11325 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
11327 /* Print normal ELF private data. */
11328 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
11330 /* xgettext:c-format */
11331 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
11333 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
)
11334 fprintf (file
, _(" [abi=O32]"));
11335 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O64
)
11336 fprintf (file
, _(" [abi=O64]"));
11337 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
)
11338 fprintf (file
, _(" [abi=EABI32]"));
11339 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
11340 fprintf (file
, _(" [abi=EABI64]"));
11341 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
))
11342 fprintf (file
, _(" [abi unknown]"));
11343 else if (ABI_N32_P (abfd
))
11344 fprintf (file
, _(" [abi=N32]"));
11345 else if (ABI_64_P (abfd
))
11346 fprintf (file
, _(" [abi=64]"));
11348 fprintf (file
, _(" [no abi set]"));
11350 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
)
11351 fprintf (file
, " [mips1]");
11352 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
)
11353 fprintf (file
, " [mips2]");
11354 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_3
)
11355 fprintf (file
, " [mips3]");
11356 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_4
)
11357 fprintf (file
, " [mips4]");
11358 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_5
)
11359 fprintf (file
, " [mips5]");
11360 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
)
11361 fprintf (file
, " [mips32]");
11362 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64
)
11363 fprintf (file
, " [mips64]");
11364 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
)
11365 fprintf (file
, " [mips32r2]");
11366 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64R2
)
11367 fprintf (file
, " [mips64r2]");
11369 fprintf (file
, _(" [unknown ISA]"));
11371 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MDMX
)
11372 fprintf (file
, " [mdmx]");
11374 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_M16
)
11375 fprintf (file
, " [mips16]");
11377 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_32BITMODE
)
11378 fprintf (file
, " [32bitmode]");
11380 fprintf (file
, _(" [not 32bitmode]"));
11382 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_NOREORDER
)
11383 fprintf (file
, " [noreorder]");
11385 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_PIC
)
11386 fprintf (file
, " [PIC]");
11388 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_CPIC
)
11389 fprintf (file
, " [CPIC]");
11391 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_XGOT
)
11392 fprintf (file
, " [XGOT]");
11394 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_UCODE
)
11395 fprintf (file
, " [UCODE]");
11397 fputc ('\n', file
);
11402 const struct bfd_elf_special_section _bfd_mips_elf_special_sections
[] =
11404 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
11405 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
11406 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG
, 0 },
11407 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
11408 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
11409 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE
, 0 },
11410 { NULL
, 0, 0, 0, 0 }
11413 /* Merge non visibility st_other attributes. Ensure that the
11414 STO_OPTIONAL flag is copied into h->other, even if this is not a
11415 definiton of the symbol. */
11417 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry
*h
,
11418 const Elf_Internal_Sym
*isym
,
11419 bfd_boolean definition
,
11420 bfd_boolean dynamic ATTRIBUTE_UNUSED
)
11422 if ((isym
->st_other
& ~ELF_ST_VISIBILITY (-1)) != 0)
11424 unsigned char other
;
11426 other
= (definition
? isym
->st_other
: h
->other
);
11427 other
&= ~ELF_ST_VISIBILITY (-1);
11428 h
->other
= other
| ELF_ST_VISIBILITY (h
->other
);
11432 && ELF_MIPS_IS_OPTIONAL (isym
->st_other
))
11433 h
->other
|= STO_OPTIONAL
;
11436 /* Decide whether an undefined symbol is special and can be ignored.
11437 This is the case for OPTIONAL symbols on IRIX. */
11439 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry
*h
)
11441 return ELF_MIPS_IS_OPTIONAL (h
->other
) ? TRUE
: FALSE
;
11445 _bfd_mips_elf_common_definition (Elf_Internal_Sym
*sym
)
11447 return (sym
->st_shndx
== SHN_COMMON
11448 || sym
->st_shndx
== SHN_MIPS_ACOMMON
11449 || sym
->st_shndx
== SHN_MIPS_SCOMMON
);