1 /* Table of opcodes for the AMD 29000 family.
2 Copyright 1990, 1991, 1993, 1994 Free Software Foundation, Inc.
4 This file is part of GDB and GAS.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 /* Name of the instruction. */
27 /* A string of characters which describe the operands.
29 , Itself. The character appears in the assembly code.
30 a RA. The register number is in bits 8-15 of the instruction.
31 b RB. The register number is in bits 0-7 of the instruction.
32 c RC. The register number is in bits 16-23 of the instruction.
33 i An immediate operand is in bits 0-7 of the instruction.
34 x Bits 0-7 and 16-23 of the instruction are bits 0-7 and 8-15
35 (respectively) of the immediate operand.
36 h Same as x but the instruction contains bits 16-31 of the
38 X Same as x but bits 16-31 of the signed immediate operand
39 are set to 1 (thus the operand is always negative).
40 P,A Bits 0-7 and 16-23 of the instruction are bits 2-9 and 10-17
41 (respectively) of the immediate operand.
42 P=PC-relative, sign-extended to 32 bits.
43 A=Absolute, zero-extended to 32 bits.
44 e CE bit (bit 23) for a load/store instruction.
45 n Control field (bits 16-22) for a load/store instruction.
46 v Immediate operand in bits 16-23 of the instruction.
47 (used for trap numbers).
48 s SA. Special-purpose register number in bits 8-15
50 u UI--bit 7 of the instruction.
51 r RND--bits 4-6 of the instruction.
52 d FD--bits 2-3 of the instruction.
53 f FS--bits 0-1 of the instruction.
54 I ID--bits 16-17 of the instruction.
58 d FMT--bits 2-3 of the instruction (not really new).
59 f ACN--bits 0-1 of the instruction (not really new).
60 F FUNC--Special function in bits 18-21 of the instruction.
61 C ACN--bits 16-17 specifying the accumlator register. */
69 static CONST
struct a29k_opcode a29k_opcodes
[] =
72 { "add", 0x14000000, "c,a,b" },
73 { "add", 0x15000000, "c,a,i" },
74 { "addc", 0x1c000000, "c,a,b" },
75 { "addc", 0x1d000000, "c,a,i" },
76 { "addcs", 0x18000000, "c,a,b" },
77 { "addcs", 0x19000000, "c,a,i" },
78 { "addcu", 0x1a000000, "c,a,b" },
79 { "addcu", 0x1b000000, "c,a,i" },
80 { "adds", 0x10000000, "c,a,b" },
81 { "adds", 0x11000000, "c,a,i" },
82 { "addu", 0x12000000, "c,a,b" },
83 { "addu", 0x13000000, "c,a,i" },
84 { "and", 0x90000000, "c,a,b" },
85 { "and", 0x91000000, "c,a,i" },
86 { "andn", 0x9c000000, "c,a,b" },
87 { "andn", 0x9d000000, "c,a,i" },
88 { "aseq", 0x70000000, "v,a,b" },
89 { "aseq", 0x71000000, "v,a,i" },
90 { "asge", 0x5c000000, "v,a,b" },
91 { "asge", 0x5d000000, "v,a,i" },
92 { "asgeu", 0x5e000000, "v,a,b" },
93 { "asgeu", 0x5f000000, "v,a,i" },
94 { "asgt", 0x58000000, "v,a,b" },
95 { "asgt", 0x59000000, "v,a,i" },
96 { "asgtu", 0x5a000000, "v,a,b" },
97 { "asgtu", 0x5b000000, "v,a,i" },
98 { "asle", 0x54000000, "v,a,b" },
99 { "asle", 0x55000000, "v,a,i" },
100 { "asleu", 0x56000000, "v,a,b" },
101 { "asleu", 0x57000000, "v,a,i" },
102 { "aslt", 0x50000000, "v,a,b" },
103 { "aslt", 0x51000000, "v,a,i" },
104 { "asltu", 0x52000000, "v,a,b" },
105 { "asltu", 0x53000000, "v,a,i" },
106 { "asneq", 0x72000000, "v,a,b" },
107 { "asneq", 0x73000000, "v,a,i" },
108 { "call", 0xa8000000, "a,P" },
109 { "call", 0xa9000000, "a,A" },
110 { "calli", 0xc8000000, "a,b" },
111 { "class", 0xe6000000, "c,a,f" },
112 { "clz", 0x08000000, "c,b" },
113 { "clz", 0x09000000, "c,i" },
114 { "const", 0x03000000, "a,x" },
115 { "consth", 0x02000000, "a,h" },
116 { "consthz", 0x05000000, "a,h" },
117 { "constn", 0x01000000, "a,X" },
118 { "convert", 0xe4000000, "c,a,u,r,d,f" },
119 { "cpbyte", 0x2e000000, "c,a,b" },
120 { "cpbyte", 0x2f000000, "c,a,i" },
121 { "cpeq", 0x60000000, "c,a,b" },
122 { "cpeq", 0x61000000, "c,a,i" },
123 { "cpge", 0x4c000000, "c,a,b" },
124 { "cpge", 0x4d000000, "c,a,i" },
125 { "cpgeu", 0x4e000000, "c,a,b" },
126 { "cpgeu", 0x4f000000, "c,a,i" },
127 { "cpgt", 0x48000000, "c,a,b" },
128 { "cpgt", 0x49000000, "c,a,i" },
129 { "cpgtu", 0x4a000000, "c,a,b" },
130 { "cpgtu", 0x4b000000, "c,a,i" },
131 { "cple", 0x44000000, "c,a,b" },
132 { "cple", 0x45000000, "c,a,i" },
133 { "cpleu", 0x46000000, "c,a,b" },
134 { "cpleu", 0x47000000, "c,a,i" },
135 { "cplt", 0x40000000, "c,a,b" },
136 { "cplt", 0x41000000, "c,a,i" },
137 { "cpltu", 0x42000000, "c,a,b" },
138 { "cpltu", 0x43000000, "c,a,i" },
139 { "cpneq", 0x62000000, "c,a,b" },
140 { "cpneq", 0x63000000, "c,a,i" },
141 { "dadd", 0xf1000000, "c,a,b" },
142 { "ddiv", 0xf7000000, "c,a,b" },
143 { "deq", 0xeb000000, "c,a,b" },
144 { "dge", 0xef000000, "c,a,b" },
145 { "dgt", 0xed000000, "c,a,b" },
146 { "div", 0x6a000000, "c,a,b" },
147 { "div", 0x6b000000, "c,a,i" },
148 { "div0", 0x68000000, "c,b" },
149 { "div0", 0x69000000, "c,i" },
150 { "divide", 0xe1000000, "c,a,b" },
151 { "dividu", 0xe3000000, "c,a,b" },
152 { "divl", 0x6c000000, "c,a,b" },
153 { "divl", 0x6d000000, "c,a,i" },
154 { "divrem", 0x6e000000, "c,a,b" },
155 { "divrem", 0x6f000000, "c,a,i" },
156 { "dmac", 0xd9000000, "F,C,a,b" },
157 { "dmsm", 0xdb000000, "c,a,b" },
158 { "dmul", 0xf5000000, "c,a,b" },
159 { "dsub", 0xf3000000, "c,a,b" },
160 { "emulate", 0xd7000000, "v,a,b" },
161 { "exbyte", 0x0a000000, "c,a,b" },
162 { "exbyte", 0x0b000000, "c,a,i" },
163 { "exhw", 0x7c000000, "c,a,b" },
164 { "exhw", 0x7d000000, "c,a,i" },
165 { "exhws", 0x7e000000, "c,a" },
166 { "extract", 0x7a000000, "c,a,b" },
167 { "extract", 0x7b000000, "c,a,i" },
168 { "fadd", 0xf0000000, "c,a,b" },
169 { "fdiv", 0xf6000000, "c,a,b" },
170 { "fdmul", 0xf9000000, "c,a,b" },
171 { "feq", 0xea000000, "c,a,b" },
172 { "fge", 0xee000000, "c,a,b" },
173 { "fgt", 0xec000000, "c,a,b" },
174 { "fmac", 0xd8000000, "F,C,a,b" },
175 { "fmsm", 0xda000000, "c,a,b" },
176 { "fmul", 0xf4000000, "c,a,b" },
177 { "fsub", 0xf2000000, "c,a,b" },
178 { "halt", 0x89000000, "" },
179 { "inbyte", 0x0c000000, "c,a,b" },
180 { "inbyte", 0x0d000000, "c,a,i" },
181 { "inhw", 0x78000000, "c,a,b" },
182 { "inhw", 0x79000000, "c,a,i" },
183 { "inv", 0x9f000000, "I" },
184 { "iret", 0x88000000, "" },
185 { "iretinv", 0x8c000000, "I" },
186 { "jmp", 0xa0000000, "P" },
187 { "jmp", 0xa1000000, "A" },
188 { "jmpf", 0xa4000000, "a,P" },
189 { "jmpf", 0xa5000000, "a,A" },
190 { "jmpfdec", 0xb4000000, "a,P" },
191 { "jmpfdec", 0xb5000000, "a,A" },
192 { "jmpfi", 0xc4000000, "a,b" },
193 { "jmpi", 0xc0000000, "b" },
194 { "jmpt", 0xac000000, "a,P" },
195 { "jmpt", 0xad000000, "a,A" },
196 { "jmpti", 0xcc000000, "a,b" },
197 { "load", 0x16000000, "e,n,a,b" },
198 { "load", 0x17000000, "e,n,a,i" },
199 { "loadl", 0x06000000, "e,n,a,b" },
200 { "loadl", 0x07000000, "e,n,a,i" },
201 { "loadm", 0x36000000, "e,n,a,b" },
202 { "loadm", 0x37000000, "e,n,a,i" },
203 { "loadset", 0x26000000, "e,n,a,b" },
204 { "loadset", 0x27000000, "e,n,a,i" },
205 { "mfacc", 0xe9000100, "c,d,f" },
206 { "mfsr", 0xc6000000, "c,s" },
207 { "mftlb", 0xb6000000, "c,a" },
208 { "mtacc", 0xe8010000, "a,d,f" },
209 { "mtsr", 0xce000000, "s,b" },
210 { "mtsrim", 0x04000000, "s,x" },
211 { "mttlb", 0xbe000000, "a,b" },
212 { "mul", 0x64000000, "c,a,b" },
213 { "mul", 0x65000000, "c,a,i" },
214 { "mull", 0x66000000, "c,a,b" },
215 { "mull", 0x67000000, "c,a,i" },
216 { "multiplu", 0xe2000000, "c,a,b" },
217 { "multiply", 0xe0000000, "c,a,b" },
218 { "multm", 0xde000000, "c,a,b" },
219 { "multmu", 0xdf000000, "c,a,b" },
220 { "mulu", 0x74000000, "c,a,b" },
221 { "mulu", 0x75000000, "c,a,i" },
222 { "nand", 0x9a000000, "c,a,b" },
223 { "nand", 0x9b000000, "c,a,i" },
224 { "nop", 0x70400101, "" },
225 { "nor", 0x98000000, "c,a,b" },
226 { "nor", 0x99000000, "c,a,i" },
227 { "or", 0x92000000, "c,a,b" },
228 { "or", 0x93000000, "c,a,i" },
229 { "orn", 0xaa000000, "c,a,b" },
230 { "orn", 0xab000000, "c,a,i" },
232 /* The description of "setip" in Chapter 8 ("instruction set") of the user's
233 manual claims that these are absolute register numbers. But section
234 7.2.1 explains that they are not. The latter is correct, so print
235 these normally ("lr0", "lr5", etc.). */
236 { "setip", 0x9e000000, "c,a,b" },
238 { "sll", 0x80000000, "c,a,b" },
239 { "sll", 0x81000000, "c,a,i" },
240 { "sqrt", 0xe5000000, "c,a,f" },
241 { "sra", 0x86000000, "c,a,b" },
242 { "sra", 0x87000000, "c,a,i" },
243 { "srl", 0x82000000, "c,a,b" },
244 { "srl", 0x83000000, "c,a,i" },
245 { "store", 0x1e000000, "e,n,a,b" },
246 { "store", 0x1f000000, "e,n,a,i" },
247 { "storel", 0x0e000000, "e,n,a,b" },
248 { "storel", 0x0f000000, "e,n,a,i" },
249 { "storem", 0x3e000000, "e,n,a,b" },
250 { "storem", 0x3f000000, "e,n,a,i" },
251 { "sub", 0x24000000, "c,a,b" },
252 { "sub", 0x25000000, "c,a,i" },
253 { "subc", 0x2c000000, "c,a,b" },
254 { "subc", 0x2d000000, "c,a,i" },
255 { "subcs", 0x28000000, "c,a,b" },
256 { "subcs", 0x29000000, "c,a,i" },
257 { "subcu", 0x2a000000, "c,a,b" },
258 { "subcu", 0x2b000000, "c,a,i" },
259 { "subr", 0x34000000, "c,a,b" },
260 { "subr", 0x35000000, "c,a,i" },
261 { "subrc", 0x3c000000, "c,a,b" },
262 { "subrc", 0x3d000000, "c,a,i" },
263 { "subrcs", 0x38000000, "c,a,b" },
264 { "subrcs", 0x39000000, "c,a,i" },
265 { "subrcu", 0x3a000000, "c,a,b" },
266 { "subrcu", 0x3b000000, "c,a,i" },
267 { "subrs", 0x30000000, "c,a,b" },
268 { "subrs", 0x31000000, "c,a,i" },
269 { "subru", 0x32000000, "c,a,b" },
270 { "subru", 0x33000000, "c,a,i" },
271 { "subs", 0x20000000, "c,a,b" },
272 { "subs", 0x21000000, "c,a,i" },
273 { "subu", 0x22000000, "c,a,b" },
274 { "subu", 0x23000000, "c,a,i" },
275 { "xnor", 0x96000000, "c,a,b" },
276 { "xnor", 0x97000000, "c,a,i" },
277 { "xor", 0x94000000, "c,a,b" },
278 { "xor", 0x95000000, "c,a,i" },
280 { "", 0x0, "" } /* Dummy entry, not included in NUM_OPCODES. This
281 lets code examine entry i+1 without checking
282 if we've run off the end of the table. */
285 CONST
unsigned int num_opcodes
= (((sizeof a29k_opcodes
) / (sizeof a29k_opcodes
[0])) - 1);