1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
28 /* This file handles functionality common to the different MIPS ABI's. */
33 #include "libiberty.h"
35 #include "elfxx-mips.h"
38 /* Get the ECOFF swapping routines. */
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
46 /* This structure is used to hold .got entries while estimating got
50 /* The input bfd in which the symbol is defined. */
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
57 /* If abfd == NULL, an address that must be stored in the got. */
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
65 struct mips_elf_link_hash_entry
*h
;
68 /* The TLS types included in this GOT entry (specifically, GD and
69 IE). The GD and IE flags can be added as we encounter new
70 relocations. LDM can also be set; it will always be alone, not
71 combined with any GD or IE flags. An LDM GOT entry will be
72 a local symbol entry with r_symndx == 0. */
73 unsigned char tls_type
;
75 /* The offset from the beginning of the .got section to the entry
76 corresponding to this symbol+addend. If it's a global symbol
77 whose offset is yet to be decided, it's going to be -1. */
81 /* This structure is used to hold .got information when linking. */
85 /* The global symbol in the GOT with the lowest index in the dynamic
87 struct elf_link_hash_entry
*global_gotsym
;
88 /* The number of global .got entries. */
89 unsigned int global_gotno
;
90 /* The number of .got slots used for TLS. */
91 unsigned int tls_gotno
;
92 /* The first unused TLS .got entry. Used only during
93 mips_elf_initialize_tls_index. */
94 unsigned int tls_assigned_gotno
;
95 /* The number of local .got entries. */
96 unsigned int local_gotno
;
97 /* The number of local .got entries we have used. */
98 unsigned int assigned_gotno
;
99 /* A hash table holding members of the got. */
100 struct htab
*got_entries
;
101 /* A hash table mapping input bfds to other mips_got_info. NULL
102 unless multi-got was necessary. */
103 struct htab
*bfd2got
;
104 /* In multi-got links, a pointer to the next got (err, rather, most
105 of the time, it points to the previous got). */
106 struct mips_got_info
*next
;
107 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
108 for none, or MINUS_TWO for not yet assigned. This is needed
109 because a single-GOT link may have multiple hash table entries
110 for the LDM. It does not get initialized in multi-GOT mode. */
111 bfd_vma tls_ldm_offset
;
114 /* Map an input bfd to a got in a multi-got link. */
116 struct mips_elf_bfd2got_hash
{
118 struct mips_got_info
*g
;
121 /* Structure passed when traversing the bfd2got hash table, used to
122 create and merge bfd's gots. */
124 struct mips_elf_got_per_bfd_arg
126 /* A hashtable that maps bfds to gots. */
128 /* The output bfd. */
130 /* The link information. */
131 struct bfd_link_info
*info
;
132 /* A pointer to the primary got, i.e., the one that's going to get
133 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
135 struct mips_got_info
*primary
;
136 /* A non-primary got we're trying to merge with other input bfd's
138 struct mips_got_info
*current
;
139 /* The maximum number of got entries that can be addressed with a
141 unsigned int max_count
;
142 /* The number of local and global entries in the primary got. */
143 unsigned int primary_count
;
144 /* The number of local and global entries in the current got. */
145 unsigned int current_count
;
146 /* The total number of global entries which will live in the
147 primary got and be automatically relocated. This includes
148 those not referenced by the primary GOT but included in
150 unsigned int global_count
;
153 /* Another structure used to pass arguments for got entries traversal. */
155 struct mips_elf_set_global_got_offset_arg
157 struct mips_got_info
*g
;
159 unsigned int needed_relocs
;
160 struct bfd_link_info
*info
;
163 /* A structure used to count TLS relocations or GOT entries, for GOT
164 entry or ELF symbol table traversal. */
166 struct mips_elf_count_tls_arg
168 struct bfd_link_info
*info
;
172 struct _mips_elf_section_data
174 struct bfd_elf_section_data elf
;
177 struct mips_got_info
*got_info
;
182 #define mips_elf_section_data(sec) \
183 ((struct _mips_elf_section_data *) elf_section_data (sec))
185 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
186 the dynamic symbols. */
188 struct mips_elf_hash_sort_data
190 /* The symbol in the global GOT with the lowest dynamic symbol table
192 struct elf_link_hash_entry
*low
;
193 /* The least dynamic symbol table index corresponding to a non-TLS
194 symbol with a GOT entry. */
195 long min_got_dynindx
;
196 /* The greatest dynamic symbol table index corresponding to a symbol
197 with a GOT entry that is not referenced (e.g., a dynamic symbol
198 with dynamic relocations pointing to it from non-primary GOTs). */
199 long max_unref_got_dynindx
;
200 /* The greatest dynamic symbol table index not corresponding to a
201 symbol without a GOT entry. */
202 long max_non_got_dynindx
;
205 /* The MIPS ELF linker needs additional information for each symbol in
206 the global hash table. */
208 struct mips_elf_link_hash_entry
210 struct elf_link_hash_entry root
;
212 /* External symbol information. */
215 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
217 unsigned int possibly_dynamic_relocs
;
219 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
220 a readonly section. */
221 bfd_boolean readonly_reloc
;
223 /* We must not create a stub for a symbol that has relocations
224 related to taking the function's address, i.e. any but
225 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
227 bfd_boolean no_fn_stub
;
229 /* If there is a stub that 32 bit functions should use to call this
230 16 bit function, this points to the section containing the stub. */
233 /* Whether we need the fn_stub; this is set if this symbol appears
234 in any relocs other than a 16 bit call. */
235 bfd_boolean need_fn_stub
;
237 /* If there is a stub that 16 bit functions should use to call this
238 32 bit function, this points to the section containing the stub. */
241 /* This is like the call_stub field, but it is used if the function
242 being called returns a floating point value. */
243 asection
*call_fp_stub
;
245 /* Are we forced local? This will only be set if we have converted
246 the initial global GOT entry to a local GOT entry. */
247 bfd_boolean forced_local
;
251 #define GOT_TLS_LDM 2
253 #define GOT_TLS_OFFSET_DONE 0x40
254 #define GOT_TLS_DONE 0x80
255 unsigned char tls_type
;
256 /* This is only used in single-GOT mode; in multi-GOT mode there
257 is one mips_got_entry per GOT entry, so the offset is stored
258 there. In single-GOT mode there may be many mips_got_entry
259 structures all referring to the same GOT slot. It might be
260 possible to use root.got.offset instead, but that field is
261 overloaded already. */
262 bfd_vma tls_got_offset
;
265 /* MIPS ELF linker hash table. */
267 struct mips_elf_link_hash_table
269 struct elf_link_hash_table root
;
271 /* We no longer use this. */
272 /* String section indices for the dynamic section symbols. */
273 bfd_size_type dynsym_sec_strindex
[SIZEOF_MIPS_DYNSYM_SECNAMES
];
275 /* The number of .rtproc entries. */
276 bfd_size_type procedure_count
;
277 /* The size of the .compact_rel section (if SGI_COMPAT). */
278 bfd_size_type compact_rel_size
;
279 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
280 entry is set to the address of __rld_obj_head as in IRIX5. */
281 bfd_boolean use_rld_obj_head
;
282 /* This is the value of the __rld_map or __rld_obj_head symbol. */
284 /* This is set if we see any mips16 stub sections. */
285 bfd_boolean mips16_stubs_seen
;
288 #define TLS_RELOC_P(r_type) \
289 (r_type == R_MIPS_TLS_DTPMOD32 \
290 || r_type == R_MIPS_TLS_DTPMOD64 \
291 || r_type == R_MIPS_TLS_DTPREL32 \
292 || r_type == R_MIPS_TLS_DTPREL64 \
293 || r_type == R_MIPS_TLS_GD \
294 || r_type == R_MIPS_TLS_LDM \
295 || r_type == R_MIPS_TLS_DTPREL_HI16 \
296 || r_type == R_MIPS_TLS_DTPREL_LO16 \
297 || r_type == R_MIPS_TLS_GOTTPREL \
298 || r_type == R_MIPS_TLS_TPREL32 \
299 || r_type == R_MIPS_TLS_TPREL64 \
300 || r_type == R_MIPS_TLS_TPREL_HI16 \
301 || r_type == R_MIPS_TLS_TPREL_LO16)
303 /* Structure used to pass information to mips_elf_output_extsym. */
308 struct bfd_link_info
*info
;
309 struct ecoff_debug_info
*debug
;
310 const struct ecoff_debug_swap
*swap
;
314 /* The names of the runtime procedure table symbols used on IRIX5. */
316 static const char * const mips_elf_dynsym_rtproc_names
[] =
319 "_procedure_string_table",
320 "_procedure_table_size",
324 /* These structures are used to generate the .compact_rel section on
329 unsigned long id1
; /* Always one? */
330 unsigned long num
; /* Number of compact relocation entries. */
331 unsigned long id2
; /* Always two? */
332 unsigned long offset
; /* The file offset of the first relocation. */
333 unsigned long reserved0
; /* Zero? */
334 unsigned long reserved1
; /* Zero? */
343 bfd_byte reserved0
[4];
344 bfd_byte reserved1
[4];
345 } Elf32_External_compact_rel
;
349 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
350 unsigned int rtype
: 4; /* Relocation types. See below. */
351 unsigned int dist2to
: 8;
352 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
353 unsigned long konst
; /* KONST field. See below. */
354 unsigned long vaddr
; /* VADDR to be relocated. */
359 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
360 unsigned int rtype
: 4; /* Relocation types. See below. */
361 unsigned int dist2to
: 8;
362 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
363 unsigned long konst
; /* KONST field. See below. */
371 } Elf32_External_crinfo
;
377 } Elf32_External_crinfo2
;
379 /* These are the constants used to swap the bitfields in a crinfo. */
381 #define CRINFO_CTYPE (0x1)
382 #define CRINFO_CTYPE_SH (31)
383 #define CRINFO_RTYPE (0xf)
384 #define CRINFO_RTYPE_SH (27)
385 #define CRINFO_DIST2TO (0xff)
386 #define CRINFO_DIST2TO_SH (19)
387 #define CRINFO_RELVADDR (0x7ffff)
388 #define CRINFO_RELVADDR_SH (0)
390 /* A compact relocation info has long (3 words) or short (2 words)
391 formats. A short format doesn't have VADDR field and relvaddr
392 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
393 #define CRF_MIPS_LONG 1
394 #define CRF_MIPS_SHORT 0
396 /* There are 4 types of compact relocation at least. The value KONST
397 has different meaning for each type:
400 CT_MIPS_REL32 Address in data
401 CT_MIPS_WORD Address in word (XXX)
402 CT_MIPS_GPHI_LO GP - vaddr
403 CT_MIPS_JMPAD Address to jump
406 #define CRT_MIPS_REL32 0xa
407 #define CRT_MIPS_WORD 0xb
408 #define CRT_MIPS_GPHI_LO 0xc
409 #define CRT_MIPS_JMPAD 0xd
411 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
412 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
413 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
414 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
416 /* The structure of the runtime procedure descriptor created by the
417 loader for use by the static exception system. */
419 typedef struct runtime_pdr
{
420 bfd_vma adr
; /* Memory address of start of procedure. */
421 long regmask
; /* Save register mask. */
422 long regoffset
; /* Save register offset. */
423 long fregmask
; /* Save floating point register mask. */
424 long fregoffset
; /* Save floating point register offset. */
425 long frameoffset
; /* Frame size. */
426 short framereg
; /* Frame pointer register. */
427 short pcreg
; /* Offset or reg of return pc. */
428 long irpss
; /* Index into the runtime string table. */
430 struct exception_info
*exception_info
;/* Pointer to exception array. */
432 #define cbRPDR sizeof (RPDR)
433 #define rpdNil ((pRPDR) 0)
435 static struct mips_got_entry
*mips_elf_create_local_got_entry
436 (bfd
*, bfd
*, struct mips_got_info
*, asection
*, bfd_vma
, unsigned long,
437 struct mips_elf_link_hash_entry
*, int);
438 static bfd_boolean mips_elf_sort_hash_table_f
439 (struct mips_elf_link_hash_entry
*, void *);
440 static bfd_vma mips_elf_high
442 static bfd_boolean mips_elf_stub_section_p
444 static bfd_boolean mips_elf_create_dynamic_relocation
445 (bfd
*, struct bfd_link_info
*, const Elf_Internal_Rela
*,
446 struct mips_elf_link_hash_entry
*, asection
*, bfd_vma
,
447 bfd_vma
*, asection
*);
448 static hashval_t mips_elf_got_entry_hash
450 static bfd_vma mips_elf_adjust_gp
451 (bfd
*, struct mips_got_info
*, bfd
*);
452 static struct mips_got_info
*mips_elf_got_for_ibfd
453 (struct mips_got_info
*, bfd
*);
455 /* This will be used when we sort the dynamic relocation records. */
456 static bfd
*reldyn_sorting_bfd
;
458 /* Nonzero if ABFD is using the N32 ABI. */
459 #define ABI_N32_P(abfd) \
460 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
462 /* Nonzero if ABFD is using the N64 ABI. */
463 #define ABI_64_P(abfd) \
464 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
466 /* Nonzero if ABFD is using NewABI conventions. */
467 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
469 /* The IRIX compatibility level we are striving for. */
470 #define IRIX_COMPAT(abfd) \
471 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
473 /* Whether we are trying to be compatible with IRIX at all. */
474 #define SGI_COMPAT(abfd) \
475 (IRIX_COMPAT (abfd) != ict_none)
477 /* The name of the options section. */
478 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
479 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
481 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
482 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
483 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
484 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
486 /* The name of the stub section. */
487 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
489 /* The size of an external REL relocation. */
490 #define MIPS_ELF_REL_SIZE(abfd) \
491 (get_elf_backend_data (abfd)->s->sizeof_rel)
493 /* The size of an external dynamic table entry. */
494 #define MIPS_ELF_DYN_SIZE(abfd) \
495 (get_elf_backend_data (abfd)->s->sizeof_dyn)
497 /* The size of a GOT entry. */
498 #define MIPS_ELF_GOT_SIZE(abfd) \
499 (get_elf_backend_data (abfd)->s->arch_size / 8)
501 /* The size of a symbol-table entry. */
502 #define MIPS_ELF_SYM_SIZE(abfd) \
503 (get_elf_backend_data (abfd)->s->sizeof_sym)
505 /* The default alignment for sections, as a power of two. */
506 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
507 (get_elf_backend_data (abfd)->s->log_file_align)
509 /* Get word-sized data. */
510 #define MIPS_ELF_GET_WORD(abfd, ptr) \
511 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
513 /* Put out word-sized data. */
514 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
516 ? bfd_put_64 (abfd, val, ptr) \
517 : bfd_put_32 (abfd, val, ptr))
519 /* Add a dynamic symbol table-entry. */
520 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
521 _bfd_elf_add_dynamic_entry (info, tag, val)
523 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
524 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
526 /* Determine whether the internal relocation of index REL_IDX is REL
527 (zero) or RELA (non-zero). The assumption is that, if there are
528 two relocation sections for this section, one of them is REL and
529 the other is RELA. If the index of the relocation we're testing is
530 in range for the first relocation section, check that the external
531 relocation size is that for RELA. It is also assumed that, if
532 rel_idx is not in range for the first section, and this first
533 section contains REL relocs, then the relocation is in the second
534 section, that is RELA. */
535 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
536 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
537 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
538 > (bfd_vma)(rel_idx)) \
539 == (elf_section_data (sec)->rel_hdr.sh_entsize \
540 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
541 : sizeof (Elf32_External_Rela))))
543 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
544 from smaller values. Start with zero, widen, *then* decrement. */
545 #define MINUS_ONE (((bfd_vma)0) - 1)
546 #define MINUS_TWO (((bfd_vma)0) - 2)
548 /* The number of local .got entries we reserve. */
549 #define MIPS_RESERVED_GOTNO (2)
551 /* The offset of $gp from the beginning of the .got section. */
552 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
554 /* The maximum size of the GOT for it to be addressable using 16-bit
556 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
558 /* Instructions which appear in a stub. */
559 #define STUB_LW(abfd) \
561 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
562 : 0x8f998010)) /* lw t9,0x8010(gp) */
563 #define STUB_MOVE(abfd) \
565 ? 0x03e0782d /* daddu t7,ra */ \
566 : 0x03e07821)) /* addu t7,ra */
567 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
568 #define STUB_LI16(abfd) \
570 ? 0x64180000 /* daddiu t8,zero,0 */ \
571 : 0x24180000)) /* addiu t8,zero,0 */
572 #define MIPS_FUNCTION_STUB_SIZE (16)
574 /* The name of the dynamic interpreter. This is put in the .interp
577 #define ELF_DYNAMIC_INTERPRETER(abfd) \
578 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
579 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
580 : "/usr/lib/libc.so.1")
583 #define MNAME(bfd,pre,pos) \
584 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
585 #define ELF_R_SYM(bfd, i) \
586 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
587 #define ELF_R_TYPE(bfd, i) \
588 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
589 #define ELF_R_INFO(bfd, s, t) \
590 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
592 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
593 #define ELF_R_SYM(bfd, i) \
595 #define ELF_R_TYPE(bfd, i) \
597 #define ELF_R_INFO(bfd, s, t) \
598 (ELF32_R_INFO (s, t))
601 /* The mips16 compiler uses a couple of special sections to handle
602 floating point arguments.
604 Section names that look like .mips16.fn.FNNAME contain stubs that
605 copy floating point arguments from the fp regs to the gp regs and
606 then jump to FNNAME. If any 32 bit function calls FNNAME, the
607 call should be redirected to the stub instead. If no 32 bit
608 function calls FNNAME, the stub should be discarded. We need to
609 consider any reference to the function, not just a call, because
610 if the address of the function is taken we will need the stub,
611 since the address might be passed to a 32 bit function.
613 Section names that look like .mips16.call.FNNAME contain stubs
614 that copy floating point arguments from the gp regs to the fp
615 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
616 then any 16 bit function that calls FNNAME should be redirected
617 to the stub instead. If FNNAME is not a 32 bit function, the
618 stub should be discarded.
620 .mips16.call.fp.FNNAME sections are similar, but contain stubs
621 which call FNNAME and then copy the return value from the fp regs
622 to the gp regs. These stubs store the return value in $18 while
623 calling FNNAME; any function which might call one of these stubs
624 must arrange to save $18 around the call. (This case is not
625 needed for 32 bit functions that call 16 bit functions, because
626 16 bit functions always return floating point values in both
629 Note that in all cases FNNAME might be defined statically.
630 Therefore, FNNAME is not used literally. Instead, the relocation
631 information will indicate which symbol the section is for.
633 We record any stubs that we find in the symbol table. */
635 #define FN_STUB ".mips16.fn."
636 #define CALL_STUB ".mips16.call."
637 #define CALL_FP_STUB ".mips16.call.fp."
639 /* Look up an entry in a MIPS ELF linker hash table. */
641 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
642 ((struct mips_elf_link_hash_entry *) \
643 elf_link_hash_lookup (&(table)->root, (string), (create), \
646 /* Traverse a MIPS ELF linker hash table. */
648 #define mips_elf_link_hash_traverse(table, func, info) \
649 (elf_link_hash_traverse \
651 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
654 /* Get the MIPS ELF linker hash table from a link_info structure. */
656 #define mips_elf_hash_table(p) \
657 ((struct mips_elf_link_hash_table *) ((p)->hash))
659 /* Find the base offsets for thread-local storage in this object,
660 for GD/LD and IE/LE respectively. */
662 #define TP_OFFSET 0x7000
663 #define DTP_OFFSET 0x8000
666 dtprel_base (struct bfd_link_info
*info
)
668 /* If tls_sec is NULL, we should have signalled an error already. */
669 if (elf_hash_table (info
)->tls_sec
== NULL
)
671 return elf_hash_table (info
)->tls_sec
->vma
+ DTP_OFFSET
;
675 tprel_base (struct bfd_link_info
*info
)
677 /* If tls_sec is NULL, we should have signalled an error already. */
678 if (elf_hash_table (info
)->tls_sec
== NULL
)
680 return elf_hash_table (info
)->tls_sec
->vma
+ TP_OFFSET
;
683 /* Create an entry in a MIPS ELF linker hash table. */
685 static struct bfd_hash_entry
*
686 mips_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
687 struct bfd_hash_table
*table
, const char *string
)
689 struct mips_elf_link_hash_entry
*ret
=
690 (struct mips_elf_link_hash_entry
*) entry
;
692 /* Allocate the structure if it has not already been allocated by a
695 ret
= bfd_hash_allocate (table
, sizeof (struct mips_elf_link_hash_entry
));
697 return (struct bfd_hash_entry
*) ret
;
699 /* Call the allocation method of the superclass. */
700 ret
= ((struct mips_elf_link_hash_entry
*)
701 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
705 /* Set local fields. */
706 memset (&ret
->esym
, 0, sizeof (EXTR
));
707 /* We use -2 as a marker to indicate that the information has
708 not been set. -1 means there is no associated ifd. */
710 ret
->possibly_dynamic_relocs
= 0;
711 ret
->readonly_reloc
= FALSE
;
712 ret
->no_fn_stub
= FALSE
;
714 ret
->need_fn_stub
= FALSE
;
715 ret
->call_stub
= NULL
;
716 ret
->call_fp_stub
= NULL
;
717 ret
->forced_local
= FALSE
;
718 ret
->tls_type
= GOT_NORMAL
;
721 return (struct bfd_hash_entry
*) ret
;
725 _bfd_mips_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
727 struct _mips_elf_section_data
*sdata
;
728 bfd_size_type amt
= sizeof (*sdata
);
730 sdata
= bfd_zalloc (abfd
, amt
);
733 sec
->used_by_bfd
= sdata
;
735 return _bfd_elf_new_section_hook (abfd
, sec
);
738 /* Read ECOFF debugging information from a .mdebug section into a
739 ecoff_debug_info structure. */
742 _bfd_mips_elf_read_ecoff_info (bfd
*abfd
, asection
*section
,
743 struct ecoff_debug_info
*debug
)
746 const struct ecoff_debug_swap
*swap
;
749 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
750 memset (debug
, 0, sizeof (*debug
));
752 ext_hdr
= bfd_malloc (swap
->external_hdr_size
);
753 if (ext_hdr
== NULL
&& swap
->external_hdr_size
!= 0)
756 if (! bfd_get_section_contents (abfd
, section
, ext_hdr
, 0,
757 swap
->external_hdr_size
))
760 symhdr
= &debug
->symbolic_header
;
761 (*swap
->swap_hdr_in
) (abfd
, ext_hdr
, symhdr
);
763 /* The symbolic header contains absolute file offsets and sizes to
765 #define READ(ptr, offset, count, size, type) \
766 if (symhdr->count == 0) \
770 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
771 debug->ptr = bfd_malloc (amt); \
772 if (debug->ptr == NULL) \
774 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
775 || bfd_bread (debug->ptr, amt, abfd) != amt) \
779 READ (line
, cbLineOffset
, cbLine
, sizeof (unsigned char), unsigned char *);
780 READ (external_dnr
, cbDnOffset
, idnMax
, swap
->external_dnr_size
, void *);
781 READ (external_pdr
, cbPdOffset
, ipdMax
, swap
->external_pdr_size
, void *);
782 READ (external_sym
, cbSymOffset
, isymMax
, swap
->external_sym_size
, void *);
783 READ (external_opt
, cbOptOffset
, ioptMax
, swap
->external_opt_size
, void *);
784 READ (external_aux
, cbAuxOffset
, iauxMax
, sizeof (union aux_ext
),
786 READ (ss
, cbSsOffset
, issMax
, sizeof (char), char *);
787 READ (ssext
, cbSsExtOffset
, issExtMax
, sizeof (char), char *);
788 READ (external_fdr
, cbFdOffset
, ifdMax
, swap
->external_fdr_size
, void *);
789 READ (external_rfd
, cbRfdOffset
, crfd
, swap
->external_rfd_size
, void *);
790 READ (external_ext
, cbExtOffset
, iextMax
, swap
->external_ext_size
, void *);
800 if (debug
->line
!= NULL
)
802 if (debug
->external_dnr
!= NULL
)
803 free (debug
->external_dnr
);
804 if (debug
->external_pdr
!= NULL
)
805 free (debug
->external_pdr
);
806 if (debug
->external_sym
!= NULL
)
807 free (debug
->external_sym
);
808 if (debug
->external_opt
!= NULL
)
809 free (debug
->external_opt
);
810 if (debug
->external_aux
!= NULL
)
811 free (debug
->external_aux
);
812 if (debug
->ss
!= NULL
)
814 if (debug
->ssext
!= NULL
)
816 if (debug
->external_fdr
!= NULL
)
817 free (debug
->external_fdr
);
818 if (debug
->external_rfd
!= NULL
)
819 free (debug
->external_rfd
);
820 if (debug
->external_ext
!= NULL
)
821 free (debug
->external_ext
);
825 /* Swap RPDR (runtime procedure table entry) for output. */
828 ecoff_swap_rpdr_out (bfd
*abfd
, const RPDR
*in
, struct rpdr_ext
*ex
)
830 H_PUT_S32 (abfd
, in
->adr
, ex
->p_adr
);
831 H_PUT_32 (abfd
, in
->regmask
, ex
->p_regmask
);
832 H_PUT_32 (abfd
, in
->regoffset
, ex
->p_regoffset
);
833 H_PUT_32 (abfd
, in
->fregmask
, ex
->p_fregmask
);
834 H_PUT_32 (abfd
, in
->fregoffset
, ex
->p_fregoffset
);
835 H_PUT_32 (abfd
, in
->frameoffset
, ex
->p_frameoffset
);
837 H_PUT_16 (abfd
, in
->framereg
, ex
->p_framereg
);
838 H_PUT_16 (abfd
, in
->pcreg
, ex
->p_pcreg
);
840 H_PUT_32 (abfd
, in
->irpss
, ex
->p_irpss
);
843 /* Create a runtime procedure table from the .mdebug section. */
846 mips_elf_create_procedure_table (void *handle
, bfd
*abfd
,
847 struct bfd_link_info
*info
, asection
*s
,
848 struct ecoff_debug_info
*debug
)
850 const struct ecoff_debug_swap
*swap
;
851 HDRR
*hdr
= &debug
->symbolic_header
;
853 struct rpdr_ext
*erp
;
855 struct pdr_ext
*epdr
;
856 struct sym_ext
*esym
;
861 unsigned long sindex
;
865 const char *no_name_func
= _("static procedure (no name)");
873 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
875 sindex
= strlen (no_name_func
) + 1;
879 size
= swap
->external_pdr_size
;
881 epdr
= bfd_malloc (size
* count
);
885 if (! _bfd_ecoff_get_accumulated_pdr (handle
, (bfd_byte
*) epdr
))
888 size
= sizeof (RPDR
);
889 rp
= rpdr
= bfd_malloc (size
* count
);
893 size
= sizeof (char *);
894 sv
= bfd_malloc (size
* count
);
898 count
= hdr
->isymMax
;
899 size
= swap
->external_sym_size
;
900 esym
= bfd_malloc (size
* count
);
904 if (! _bfd_ecoff_get_accumulated_sym (handle
, (bfd_byte
*) esym
))
908 ss
= bfd_malloc (count
);
911 if (! _bfd_ecoff_get_accumulated_ss (handle
, (bfd_byte
*) ss
))
915 for (i
= 0; i
< (unsigned long) count
; i
++, rp
++)
917 (*swap
->swap_pdr_in
) (abfd
, epdr
+ i
, &pdr
);
918 (*swap
->swap_sym_in
) (abfd
, &esym
[pdr
.isym
], &sym
);
920 rp
->regmask
= pdr
.regmask
;
921 rp
->regoffset
= pdr
.regoffset
;
922 rp
->fregmask
= pdr
.fregmask
;
923 rp
->fregoffset
= pdr
.fregoffset
;
924 rp
->frameoffset
= pdr
.frameoffset
;
925 rp
->framereg
= pdr
.framereg
;
926 rp
->pcreg
= pdr
.pcreg
;
928 sv
[i
] = ss
+ sym
.iss
;
929 sindex
+= strlen (sv
[i
]) + 1;
933 size
= sizeof (struct rpdr_ext
) * (count
+ 2) + sindex
;
934 size
= BFD_ALIGN (size
, 16);
935 rtproc
= bfd_alloc (abfd
, size
);
938 mips_elf_hash_table (info
)->procedure_count
= 0;
942 mips_elf_hash_table (info
)->procedure_count
= count
+ 2;
945 memset (erp
, 0, sizeof (struct rpdr_ext
));
947 str
= (char *) rtproc
+ sizeof (struct rpdr_ext
) * (count
+ 2);
948 strcpy (str
, no_name_func
);
949 str
+= strlen (no_name_func
) + 1;
950 for (i
= 0; i
< count
; i
++)
952 ecoff_swap_rpdr_out (abfd
, rpdr
+ i
, erp
+ i
);
954 str
+= strlen (sv
[i
]) + 1;
956 H_PUT_S32 (abfd
, -1, (erp
+ count
)->p_adr
);
958 /* Set the size and contents of .rtproc section. */
960 s
->contents
= rtproc
;
962 /* Skip this section later on (I don't think this currently
963 matters, but someday it might). */
964 s
->map_head
.link_order
= NULL
;
993 /* Check the mips16 stubs for a particular symbol, and see if we can
997 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry
*h
,
998 void *data ATTRIBUTE_UNUSED
)
1000 if (h
->root
.root
.type
== bfd_link_hash_warning
)
1001 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
1003 if (h
->fn_stub
!= NULL
1004 && ! h
->need_fn_stub
)
1006 /* We don't need the fn_stub; the only references to this symbol
1007 are 16 bit calls. Clobber the size to 0 to prevent it from
1008 being included in the link. */
1009 h
->fn_stub
->size
= 0;
1010 h
->fn_stub
->flags
&= ~SEC_RELOC
;
1011 h
->fn_stub
->reloc_count
= 0;
1012 h
->fn_stub
->flags
|= SEC_EXCLUDE
;
1015 if (h
->call_stub
!= NULL
1016 && h
->root
.other
== STO_MIPS16
)
1018 /* We don't need the call_stub; this is a 16 bit function, so
1019 calls from other 16 bit functions are OK. Clobber the size
1020 to 0 to prevent it from being included in the link. */
1021 h
->call_stub
->size
= 0;
1022 h
->call_stub
->flags
&= ~SEC_RELOC
;
1023 h
->call_stub
->reloc_count
= 0;
1024 h
->call_stub
->flags
|= SEC_EXCLUDE
;
1027 if (h
->call_fp_stub
!= NULL
1028 && h
->root
.other
== STO_MIPS16
)
1030 /* We don't need the call_stub; this is a 16 bit function, so
1031 calls from other 16 bit functions are OK. Clobber the size
1032 to 0 to prevent it from being included in the link. */
1033 h
->call_fp_stub
->size
= 0;
1034 h
->call_fp_stub
->flags
&= ~SEC_RELOC
;
1035 h
->call_fp_stub
->reloc_count
= 0;
1036 h
->call_fp_stub
->flags
|= SEC_EXCLUDE
;
1042 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1043 Most mips16 instructions are 16 bits, but these instructions
1046 The format of these instructions is:
1048 +--------------+--------------------------------+
1049 | JALX | X| Imm 20:16 | Imm 25:21 |
1050 +--------------+--------------------------------+
1052 +-----------------------------------------------+
1054 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1055 Note that the immediate value in the first word is swapped.
1057 When producing a relocatable object file, R_MIPS16_26 is
1058 handled mostly like R_MIPS_26. In particular, the addend is
1059 stored as a straight 26-bit value in a 32-bit instruction.
1060 (gas makes life simpler for itself by never adjusting a
1061 R_MIPS16_26 reloc to be against a section, so the addend is
1062 always zero). However, the 32 bit instruction is stored as 2
1063 16-bit values, rather than a single 32-bit value. In a
1064 big-endian file, the result is the same; in a little-endian
1065 file, the two 16-bit halves of the 32 bit value are swapped.
1066 This is so that a disassembler can recognize the jal
1069 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1070 instruction stored as two 16-bit values. The addend A is the
1071 contents of the targ26 field. The calculation is the same as
1072 R_MIPS_26. When storing the calculated value, reorder the
1073 immediate value as shown above, and don't forget to store the
1074 value as two 16-bit values.
1076 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1080 +--------+----------------------+
1084 +--------+----------------------+
1087 +----------+------+-------------+
1091 +----------+--------------------+
1092 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1093 ((sub1 << 16) | sub2)).
1095 When producing a relocatable object file, the calculation is
1096 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1097 When producing a fully linked file, the calculation is
1098 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1099 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1101 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1102 mode. A typical instruction will have a format like this:
1104 +--------------+--------------------------------+
1105 | EXTEND | Imm 10:5 | Imm 15:11 |
1106 +--------------+--------------------------------+
1107 | Major | rx | ry | Imm 4:0 |
1108 +--------------+--------------------------------+
1110 EXTEND is the five bit value 11110. Major is the instruction
1113 This is handled exactly like R_MIPS_GPREL16, except that the
1114 addend is retrieved and stored as shown in this diagram; that
1115 is, the Imm fields above replace the V-rel16 field.
1117 All we need to do here is shuffle the bits appropriately. As
1118 above, the two 16-bit halves must be swapped on a
1119 little-endian system.
1121 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1122 access data when neither GP-relative nor PC-relative addressing
1123 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1124 except that the addend is retrieved and stored as shown above
1128 _bfd_mips16_elf_reloc_unshuffle (bfd
*abfd
, int r_type
,
1129 bfd_boolean jal_shuffle
, bfd_byte
*data
)
1131 bfd_vma extend
, insn
, val
;
1133 if (r_type
!= R_MIPS16_26
&& r_type
!= R_MIPS16_GPREL
1134 && r_type
!= R_MIPS16_HI16
&& r_type
!= R_MIPS16_LO16
)
1137 /* Pick up the mips16 extend instruction and the real instruction. */
1138 extend
= bfd_get_16 (abfd
, data
);
1139 insn
= bfd_get_16 (abfd
, data
+ 2);
1140 if (r_type
== R_MIPS16_26
)
1143 val
= ((extend
& 0xfc00) << 16) | ((extend
& 0x3e0) << 11)
1144 | ((extend
& 0x1f) << 21) | insn
;
1146 val
= extend
<< 16 | insn
;
1149 val
= ((extend
& 0xf800) << 16) | ((insn
& 0xffe0) << 11)
1150 | ((extend
& 0x1f) << 11) | (extend
& 0x7e0) | (insn
& 0x1f);
1151 bfd_put_32 (abfd
, val
, data
);
1155 _bfd_mips16_elf_reloc_shuffle (bfd
*abfd
, int r_type
,
1156 bfd_boolean jal_shuffle
, bfd_byte
*data
)
1158 bfd_vma extend
, insn
, val
;
1160 if (r_type
!= R_MIPS16_26
&& r_type
!= R_MIPS16_GPREL
1161 && r_type
!= R_MIPS16_HI16
&& r_type
!= R_MIPS16_LO16
)
1164 val
= bfd_get_32 (abfd
, data
);
1165 if (r_type
== R_MIPS16_26
)
1169 insn
= val
& 0xffff;
1170 extend
= ((val
>> 16) & 0xfc00) | ((val
>> 11) & 0x3e0)
1171 | ((val
>> 21) & 0x1f);
1175 insn
= val
& 0xffff;
1181 insn
= ((val
>> 11) & 0xffe0) | (val
& 0x1f);
1182 extend
= ((val
>> 16) & 0xf800) | ((val
>> 11) & 0x1f) | (val
& 0x7e0);
1184 bfd_put_16 (abfd
, insn
, data
+ 2);
1185 bfd_put_16 (abfd
, extend
, data
);
1188 bfd_reloc_status_type
1189 _bfd_mips_elf_gprel16_with_gp (bfd
*abfd
, asymbol
*symbol
,
1190 arelent
*reloc_entry
, asection
*input_section
,
1191 bfd_boolean relocatable
, void *data
, bfd_vma gp
)
1195 bfd_reloc_status_type status
;
1197 if (bfd_is_com_section (symbol
->section
))
1200 relocation
= symbol
->value
;
1202 relocation
+= symbol
->section
->output_section
->vma
;
1203 relocation
+= symbol
->section
->output_offset
;
1205 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1206 return bfd_reloc_outofrange
;
1208 /* Set val to the offset into the section or symbol. */
1209 val
= reloc_entry
->addend
;
1211 _bfd_mips_elf_sign_extend (val
, 16);
1213 /* Adjust val for the final section location and GP value. If we
1214 are producing relocatable output, we don't want to do this for
1215 an external symbol. */
1217 || (symbol
->flags
& BSF_SECTION_SYM
) != 0)
1218 val
+= relocation
- gp
;
1220 if (reloc_entry
->howto
->partial_inplace
)
1222 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
1224 + reloc_entry
->address
);
1225 if (status
!= bfd_reloc_ok
)
1229 reloc_entry
->addend
= val
;
1232 reloc_entry
->address
+= input_section
->output_offset
;
1234 return bfd_reloc_ok
;
1237 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1238 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1239 that contains the relocation field and DATA points to the start of
1244 struct mips_hi16
*next
;
1246 asection
*input_section
;
1250 /* FIXME: This should not be a static variable. */
1252 static struct mips_hi16
*mips_hi16_list
;
1254 /* A howto special_function for REL *HI16 relocations. We can only
1255 calculate the correct value once we've seen the partnering
1256 *LO16 relocation, so just save the information for later.
1258 The ABI requires that the *LO16 immediately follow the *HI16.
1259 However, as a GNU extension, we permit an arbitrary number of
1260 *HI16s to be associated with a single *LO16. This significantly
1261 simplies the relocation handling in gcc. */
1263 bfd_reloc_status_type
1264 _bfd_mips_elf_hi16_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
1265 asymbol
*symbol ATTRIBUTE_UNUSED
, void *data
,
1266 asection
*input_section
, bfd
*output_bfd
,
1267 char **error_message ATTRIBUTE_UNUSED
)
1269 struct mips_hi16
*n
;
1271 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1272 return bfd_reloc_outofrange
;
1274 n
= bfd_malloc (sizeof *n
);
1276 return bfd_reloc_outofrange
;
1278 n
->next
= mips_hi16_list
;
1280 n
->input_section
= input_section
;
1281 n
->rel
= *reloc_entry
;
1284 if (output_bfd
!= NULL
)
1285 reloc_entry
->address
+= input_section
->output_offset
;
1287 return bfd_reloc_ok
;
1290 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1291 like any other 16-bit relocation when applied to global symbols, but is
1292 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1294 bfd_reloc_status_type
1295 _bfd_mips_elf_got16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
1296 void *data
, asection
*input_section
,
1297 bfd
*output_bfd
, char **error_message
)
1299 if ((symbol
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
1300 || bfd_is_und_section (bfd_get_section (symbol
))
1301 || bfd_is_com_section (bfd_get_section (symbol
)))
1302 /* The relocation is against a global symbol. */
1303 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1304 input_section
, output_bfd
,
1307 return _bfd_mips_elf_hi16_reloc (abfd
, reloc_entry
, symbol
, data
,
1308 input_section
, output_bfd
, error_message
);
1311 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1312 is a straightforward 16 bit inplace relocation, but we must deal with
1313 any partnering high-part relocations as well. */
1315 bfd_reloc_status_type
1316 _bfd_mips_elf_lo16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
1317 void *data
, asection
*input_section
,
1318 bfd
*output_bfd
, char **error_message
)
1321 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
1323 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1324 return bfd_reloc_outofrange
;
1326 _bfd_mips16_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
1328 vallo
= bfd_get_32 (abfd
, location
);
1329 _bfd_mips16_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
1332 while (mips_hi16_list
!= NULL
)
1334 bfd_reloc_status_type ret
;
1335 struct mips_hi16
*hi
;
1337 hi
= mips_hi16_list
;
1339 /* R_MIPS_GOT16 relocations are something of a special case. We
1340 want to install the addend in the same way as for a R_MIPS_HI16
1341 relocation (with a rightshift of 16). However, since GOT16
1342 relocations can also be used with global symbols, their howto
1343 has a rightshift of 0. */
1344 if (hi
->rel
.howto
->type
== R_MIPS_GOT16
)
1345 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS_HI16
, FALSE
);
1347 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1348 carry or borrow will induce a change of +1 or -1 in the high part. */
1349 hi
->rel
.addend
+= (vallo
+ 0x8000) & 0xffff;
1351 ret
= _bfd_mips_elf_generic_reloc (abfd
, &hi
->rel
, symbol
, hi
->data
,
1352 hi
->input_section
, output_bfd
,
1354 if (ret
!= bfd_reloc_ok
)
1357 mips_hi16_list
= hi
->next
;
1361 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1362 input_section
, output_bfd
,
1366 /* A generic howto special_function. This calculates and installs the
1367 relocation itself, thus avoiding the oft-discussed problems in
1368 bfd_perform_relocation and bfd_install_relocation. */
1370 bfd_reloc_status_type
1371 _bfd_mips_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
1372 asymbol
*symbol
, void *data ATTRIBUTE_UNUSED
,
1373 asection
*input_section
, bfd
*output_bfd
,
1374 char **error_message ATTRIBUTE_UNUSED
)
1377 bfd_reloc_status_type status
;
1378 bfd_boolean relocatable
;
1380 relocatable
= (output_bfd
!= NULL
);
1382 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1383 return bfd_reloc_outofrange
;
1385 /* Build up the field adjustment in VAL. */
1387 if (!relocatable
|| (symbol
->flags
& BSF_SECTION_SYM
) != 0)
1389 /* Either we're calculating the final field value or we have a
1390 relocation against a section symbol. Add in the section's
1391 offset or address. */
1392 val
+= symbol
->section
->output_section
->vma
;
1393 val
+= symbol
->section
->output_offset
;
1398 /* We're calculating the final field value. Add in the symbol's value
1399 and, if pc-relative, subtract the address of the field itself. */
1400 val
+= symbol
->value
;
1401 if (reloc_entry
->howto
->pc_relative
)
1403 val
-= input_section
->output_section
->vma
;
1404 val
-= input_section
->output_offset
;
1405 val
-= reloc_entry
->address
;
1409 /* VAL is now the final adjustment. If we're keeping this relocation
1410 in the output file, and if the relocation uses a separate addend,
1411 we just need to add VAL to that addend. Otherwise we need to add
1412 VAL to the relocation field itself. */
1413 if (relocatable
&& !reloc_entry
->howto
->partial_inplace
)
1414 reloc_entry
->addend
+= val
;
1417 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
1419 /* Add in the separate addend, if any. */
1420 val
+= reloc_entry
->addend
;
1422 /* Add VAL to the relocation field. */
1423 _bfd_mips16_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
1425 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
1427 _bfd_mips16_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
1430 if (status
!= bfd_reloc_ok
)
1435 reloc_entry
->address
+= input_section
->output_offset
;
1437 return bfd_reloc_ok
;
1440 /* Swap an entry in a .gptab section. Note that these routines rely
1441 on the equivalence of the two elements of the union. */
1444 bfd_mips_elf32_swap_gptab_in (bfd
*abfd
, const Elf32_External_gptab
*ex
,
1447 in
->gt_entry
.gt_g_value
= H_GET_32 (abfd
, ex
->gt_entry
.gt_g_value
);
1448 in
->gt_entry
.gt_bytes
= H_GET_32 (abfd
, ex
->gt_entry
.gt_bytes
);
1452 bfd_mips_elf32_swap_gptab_out (bfd
*abfd
, const Elf32_gptab
*in
,
1453 Elf32_External_gptab
*ex
)
1455 H_PUT_32 (abfd
, in
->gt_entry
.gt_g_value
, ex
->gt_entry
.gt_g_value
);
1456 H_PUT_32 (abfd
, in
->gt_entry
.gt_bytes
, ex
->gt_entry
.gt_bytes
);
1460 bfd_elf32_swap_compact_rel_out (bfd
*abfd
, const Elf32_compact_rel
*in
,
1461 Elf32_External_compact_rel
*ex
)
1463 H_PUT_32 (abfd
, in
->id1
, ex
->id1
);
1464 H_PUT_32 (abfd
, in
->num
, ex
->num
);
1465 H_PUT_32 (abfd
, in
->id2
, ex
->id2
);
1466 H_PUT_32 (abfd
, in
->offset
, ex
->offset
);
1467 H_PUT_32 (abfd
, in
->reserved0
, ex
->reserved0
);
1468 H_PUT_32 (abfd
, in
->reserved1
, ex
->reserved1
);
1472 bfd_elf32_swap_crinfo_out (bfd
*abfd
, const Elf32_crinfo
*in
,
1473 Elf32_External_crinfo
*ex
)
1477 l
= (((in
->ctype
& CRINFO_CTYPE
) << CRINFO_CTYPE_SH
)
1478 | ((in
->rtype
& CRINFO_RTYPE
) << CRINFO_RTYPE_SH
)
1479 | ((in
->dist2to
& CRINFO_DIST2TO
) << CRINFO_DIST2TO_SH
)
1480 | ((in
->relvaddr
& CRINFO_RELVADDR
) << CRINFO_RELVADDR_SH
));
1481 H_PUT_32 (abfd
, l
, ex
->info
);
1482 H_PUT_32 (abfd
, in
->konst
, ex
->konst
);
1483 H_PUT_32 (abfd
, in
->vaddr
, ex
->vaddr
);
1486 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1487 routines swap this structure in and out. They are used outside of
1488 BFD, so they are globally visible. */
1491 bfd_mips_elf32_swap_reginfo_in (bfd
*abfd
, const Elf32_External_RegInfo
*ex
,
1494 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
1495 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
1496 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
1497 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
1498 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
1499 in
->ri_gp_value
= H_GET_32 (abfd
, ex
->ri_gp_value
);
1503 bfd_mips_elf32_swap_reginfo_out (bfd
*abfd
, const Elf32_RegInfo
*in
,
1504 Elf32_External_RegInfo
*ex
)
1506 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
1507 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
1508 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
1509 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
1510 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
1511 H_PUT_32 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
1514 /* In the 64 bit ABI, the .MIPS.options section holds register
1515 information in an Elf64_Reginfo structure. These routines swap
1516 them in and out. They are globally visible because they are used
1517 outside of BFD. These routines are here so that gas can call them
1518 without worrying about whether the 64 bit ABI has been included. */
1521 bfd_mips_elf64_swap_reginfo_in (bfd
*abfd
, const Elf64_External_RegInfo
*ex
,
1522 Elf64_Internal_RegInfo
*in
)
1524 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
1525 in
->ri_pad
= H_GET_32 (abfd
, ex
->ri_pad
);
1526 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
1527 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
1528 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
1529 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
1530 in
->ri_gp_value
= H_GET_64 (abfd
, ex
->ri_gp_value
);
1534 bfd_mips_elf64_swap_reginfo_out (bfd
*abfd
, const Elf64_Internal_RegInfo
*in
,
1535 Elf64_External_RegInfo
*ex
)
1537 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
1538 H_PUT_32 (abfd
, in
->ri_pad
, ex
->ri_pad
);
1539 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
1540 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
1541 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
1542 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
1543 H_PUT_64 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
1546 /* Swap in an options header. */
1549 bfd_mips_elf_swap_options_in (bfd
*abfd
, const Elf_External_Options
*ex
,
1550 Elf_Internal_Options
*in
)
1552 in
->kind
= H_GET_8 (abfd
, ex
->kind
);
1553 in
->size
= H_GET_8 (abfd
, ex
->size
);
1554 in
->section
= H_GET_16 (abfd
, ex
->section
);
1555 in
->info
= H_GET_32 (abfd
, ex
->info
);
1558 /* Swap out an options header. */
1561 bfd_mips_elf_swap_options_out (bfd
*abfd
, const Elf_Internal_Options
*in
,
1562 Elf_External_Options
*ex
)
1564 H_PUT_8 (abfd
, in
->kind
, ex
->kind
);
1565 H_PUT_8 (abfd
, in
->size
, ex
->size
);
1566 H_PUT_16 (abfd
, in
->section
, ex
->section
);
1567 H_PUT_32 (abfd
, in
->info
, ex
->info
);
1570 /* This function is called via qsort() to sort the dynamic relocation
1571 entries by increasing r_symndx value. */
1574 sort_dynamic_relocs (const void *arg1
, const void *arg2
)
1576 Elf_Internal_Rela int_reloc1
;
1577 Elf_Internal_Rela int_reloc2
;
1579 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg1
, &int_reloc1
);
1580 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg2
, &int_reloc2
);
1582 return ELF32_R_SYM (int_reloc1
.r_info
) - ELF32_R_SYM (int_reloc2
.r_info
);
1585 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1588 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED
,
1589 const void *arg2 ATTRIBUTE_UNUSED
)
1592 Elf_Internal_Rela int_reloc1
[3];
1593 Elf_Internal_Rela int_reloc2
[3];
1595 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
1596 (reldyn_sorting_bfd
, arg1
, int_reloc1
);
1597 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
1598 (reldyn_sorting_bfd
, arg2
, int_reloc2
);
1600 return (ELF64_R_SYM (int_reloc1
[0].r_info
)
1601 - ELF64_R_SYM (int_reloc2
[0].r_info
));
1608 /* This routine is used to write out ECOFF debugging external symbol
1609 information. It is called via mips_elf_link_hash_traverse. The
1610 ECOFF external symbol information must match the ELF external
1611 symbol information. Unfortunately, at this point we don't know
1612 whether a symbol is required by reloc information, so the two
1613 tables may wind up being different. We must sort out the external
1614 symbol information before we can set the final size of the .mdebug
1615 section, and we must set the size of the .mdebug section before we
1616 can relocate any sections, and we can't know which symbols are
1617 required by relocation until we relocate the sections.
1618 Fortunately, it is relatively unlikely that any symbol will be
1619 stripped but required by a reloc. In particular, it can not happen
1620 when generating a final executable. */
1623 mips_elf_output_extsym (struct mips_elf_link_hash_entry
*h
, void *data
)
1625 struct extsym_info
*einfo
= data
;
1627 asection
*sec
, *output_section
;
1629 if (h
->root
.root
.type
== bfd_link_hash_warning
)
1630 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
1632 if (h
->root
.indx
== -2)
1634 else if ((h
->root
.def_dynamic
1635 || h
->root
.ref_dynamic
1636 || h
->root
.type
== bfd_link_hash_new
)
1637 && !h
->root
.def_regular
1638 && !h
->root
.ref_regular
)
1640 else if (einfo
->info
->strip
== strip_all
1641 || (einfo
->info
->strip
== strip_some
1642 && bfd_hash_lookup (einfo
->info
->keep_hash
,
1643 h
->root
.root
.root
.string
,
1644 FALSE
, FALSE
) == NULL
))
1652 if (h
->esym
.ifd
== -2)
1655 h
->esym
.cobol_main
= 0;
1656 h
->esym
.weakext
= 0;
1657 h
->esym
.reserved
= 0;
1658 h
->esym
.ifd
= ifdNil
;
1659 h
->esym
.asym
.value
= 0;
1660 h
->esym
.asym
.st
= stGlobal
;
1662 if (h
->root
.root
.type
== bfd_link_hash_undefined
1663 || h
->root
.root
.type
== bfd_link_hash_undefweak
)
1667 /* Use undefined class. Also, set class and type for some
1669 name
= h
->root
.root
.root
.string
;
1670 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
1671 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
1673 h
->esym
.asym
.sc
= scData
;
1674 h
->esym
.asym
.st
= stLabel
;
1675 h
->esym
.asym
.value
= 0;
1677 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
1679 h
->esym
.asym
.sc
= scAbs
;
1680 h
->esym
.asym
.st
= stLabel
;
1681 h
->esym
.asym
.value
=
1682 mips_elf_hash_table (einfo
->info
)->procedure_count
;
1684 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (einfo
->abfd
))
1686 h
->esym
.asym
.sc
= scAbs
;
1687 h
->esym
.asym
.st
= stLabel
;
1688 h
->esym
.asym
.value
= elf_gp (einfo
->abfd
);
1691 h
->esym
.asym
.sc
= scUndefined
;
1693 else if (h
->root
.root
.type
!= bfd_link_hash_defined
1694 && h
->root
.root
.type
!= bfd_link_hash_defweak
)
1695 h
->esym
.asym
.sc
= scAbs
;
1700 sec
= h
->root
.root
.u
.def
.section
;
1701 output_section
= sec
->output_section
;
1703 /* When making a shared library and symbol h is the one from
1704 the another shared library, OUTPUT_SECTION may be null. */
1705 if (output_section
== NULL
)
1706 h
->esym
.asym
.sc
= scUndefined
;
1709 name
= bfd_section_name (output_section
->owner
, output_section
);
1711 if (strcmp (name
, ".text") == 0)
1712 h
->esym
.asym
.sc
= scText
;
1713 else if (strcmp (name
, ".data") == 0)
1714 h
->esym
.asym
.sc
= scData
;
1715 else if (strcmp (name
, ".sdata") == 0)
1716 h
->esym
.asym
.sc
= scSData
;
1717 else if (strcmp (name
, ".rodata") == 0
1718 || strcmp (name
, ".rdata") == 0)
1719 h
->esym
.asym
.sc
= scRData
;
1720 else if (strcmp (name
, ".bss") == 0)
1721 h
->esym
.asym
.sc
= scBss
;
1722 else if (strcmp (name
, ".sbss") == 0)
1723 h
->esym
.asym
.sc
= scSBss
;
1724 else if (strcmp (name
, ".init") == 0)
1725 h
->esym
.asym
.sc
= scInit
;
1726 else if (strcmp (name
, ".fini") == 0)
1727 h
->esym
.asym
.sc
= scFini
;
1729 h
->esym
.asym
.sc
= scAbs
;
1733 h
->esym
.asym
.reserved
= 0;
1734 h
->esym
.asym
.index
= indexNil
;
1737 if (h
->root
.root
.type
== bfd_link_hash_common
)
1738 h
->esym
.asym
.value
= h
->root
.root
.u
.c
.size
;
1739 else if (h
->root
.root
.type
== bfd_link_hash_defined
1740 || h
->root
.root
.type
== bfd_link_hash_defweak
)
1742 if (h
->esym
.asym
.sc
== scCommon
)
1743 h
->esym
.asym
.sc
= scBss
;
1744 else if (h
->esym
.asym
.sc
== scSCommon
)
1745 h
->esym
.asym
.sc
= scSBss
;
1747 sec
= h
->root
.root
.u
.def
.section
;
1748 output_section
= sec
->output_section
;
1749 if (output_section
!= NULL
)
1750 h
->esym
.asym
.value
= (h
->root
.root
.u
.def
.value
1751 + sec
->output_offset
1752 + output_section
->vma
);
1754 h
->esym
.asym
.value
= 0;
1756 else if (h
->root
.needs_plt
)
1758 struct mips_elf_link_hash_entry
*hd
= h
;
1759 bfd_boolean no_fn_stub
= h
->no_fn_stub
;
1761 while (hd
->root
.root
.type
== bfd_link_hash_indirect
)
1763 hd
= (struct mips_elf_link_hash_entry
*)h
->root
.root
.u
.i
.link
;
1764 no_fn_stub
= no_fn_stub
|| hd
->no_fn_stub
;
1769 /* Set type and value for a symbol with a function stub. */
1770 h
->esym
.asym
.st
= stProc
;
1771 sec
= hd
->root
.root
.u
.def
.section
;
1773 h
->esym
.asym
.value
= 0;
1776 output_section
= sec
->output_section
;
1777 if (output_section
!= NULL
)
1778 h
->esym
.asym
.value
= (hd
->root
.plt
.offset
1779 + sec
->output_offset
1780 + output_section
->vma
);
1782 h
->esym
.asym
.value
= 0;
1787 if (! bfd_ecoff_debug_one_external (einfo
->abfd
, einfo
->debug
, einfo
->swap
,
1788 h
->root
.root
.root
.string
,
1791 einfo
->failed
= TRUE
;
1798 /* A comparison routine used to sort .gptab entries. */
1801 gptab_compare (const void *p1
, const void *p2
)
1803 const Elf32_gptab
*a1
= p1
;
1804 const Elf32_gptab
*a2
= p2
;
1806 return a1
->gt_entry
.gt_g_value
- a2
->gt_entry
.gt_g_value
;
1809 /* Functions to manage the got entry hash table. */
1811 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1814 static INLINE hashval_t
1815 mips_elf_hash_bfd_vma (bfd_vma addr
)
1818 return addr
+ (addr
>> 32);
1824 /* got_entries only match if they're identical, except for gotidx, so
1825 use all fields to compute the hash, and compare the appropriate
1829 mips_elf_got_entry_hash (const void *entry_
)
1831 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
1833 return entry
->symndx
1834 + ((entry
->tls_type
& GOT_TLS_LDM
) << 17)
1835 + (! entry
->abfd
? mips_elf_hash_bfd_vma (entry
->d
.address
)
1837 + (entry
->symndx
>= 0 ? mips_elf_hash_bfd_vma (entry
->d
.addend
)
1838 : entry
->d
.h
->root
.root
.root
.hash
));
1842 mips_elf_got_entry_eq (const void *entry1
, const void *entry2
)
1844 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
1845 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
1847 /* An LDM entry can only match another LDM entry. */
1848 if ((e1
->tls_type
^ e2
->tls_type
) & GOT_TLS_LDM
)
1851 return e1
->abfd
== e2
->abfd
&& e1
->symndx
== e2
->symndx
1852 && (! e1
->abfd
? e1
->d
.address
== e2
->d
.address
1853 : e1
->symndx
>= 0 ? e1
->d
.addend
== e2
->d
.addend
1854 : e1
->d
.h
== e2
->d
.h
);
1857 /* multi_got_entries are still a match in the case of global objects,
1858 even if the input bfd in which they're referenced differs, so the
1859 hash computation and compare functions are adjusted
1863 mips_elf_multi_got_entry_hash (const void *entry_
)
1865 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
1867 return entry
->symndx
1869 ? mips_elf_hash_bfd_vma (entry
->d
.address
)
1870 : entry
->symndx
>= 0
1871 ? ((entry
->tls_type
& GOT_TLS_LDM
)
1872 ? (GOT_TLS_LDM
<< 17)
1874 + mips_elf_hash_bfd_vma (entry
->d
.addend
)))
1875 : entry
->d
.h
->root
.root
.root
.hash
);
1879 mips_elf_multi_got_entry_eq (const void *entry1
, const void *entry2
)
1881 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
1882 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
1884 /* Any two LDM entries match. */
1885 if (e1
->tls_type
& e2
->tls_type
& GOT_TLS_LDM
)
1888 /* Nothing else matches an LDM entry. */
1889 if ((e1
->tls_type
^ e2
->tls_type
) & GOT_TLS_LDM
)
1892 return e1
->symndx
== e2
->symndx
1893 && (e1
->symndx
>= 0 ? e1
->abfd
== e2
->abfd
&& e1
->d
.addend
== e2
->d
.addend
1894 : e1
->abfd
== NULL
|| e2
->abfd
== NULL
1895 ? e1
->abfd
== e2
->abfd
&& e1
->d
.address
== e2
->d
.address
1896 : e1
->d
.h
== e2
->d
.h
);
1899 /* Returns the dynamic relocation section for DYNOBJ. */
1902 mips_elf_rel_dyn_section (bfd
*dynobj
, bfd_boolean create_p
)
1904 static const char dname
[] = ".rel.dyn";
1907 sreloc
= bfd_get_section_by_name (dynobj
, dname
);
1908 if (sreloc
== NULL
&& create_p
)
1910 sreloc
= bfd_make_section_with_flags (dynobj
, dname
,
1915 | SEC_LINKER_CREATED
1918 || ! bfd_set_section_alignment (dynobj
, sreloc
,
1919 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
1925 /* Returns the GOT section for ABFD. */
1928 mips_elf_got_section (bfd
*abfd
, bfd_boolean maybe_excluded
)
1930 asection
*sgot
= bfd_get_section_by_name (abfd
, ".got");
1932 || (! maybe_excluded
&& (sgot
->flags
& SEC_EXCLUDE
) != 0))
1937 /* Returns the GOT information associated with the link indicated by
1938 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1941 static struct mips_got_info
*
1942 mips_elf_got_info (bfd
*abfd
, asection
**sgotp
)
1945 struct mips_got_info
*g
;
1947 sgot
= mips_elf_got_section (abfd
, TRUE
);
1948 BFD_ASSERT (sgot
!= NULL
);
1949 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
1950 g
= mips_elf_section_data (sgot
)->u
.got_info
;
1951 BFD_ASSERT (g
!= NULL
);
1954 *sgotp
= (sgot
->flags
& SEC_EXCLUDE
) == 0 ? sgot
: NULL
;
1959 /* Count the number of relocations needed for a TLS GOT entry, with
1960 access types from TLS_TYPE, and symbol H (or a local symbol if H
1964 mips_tls_got_relocs (struct bfd_link_info
*info
, unsigned char tls_type
,
1965 struct elf_link_hash_entry
*h
)
1969 bfd_boolean need_relocs
= FALSE
;
1970 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
1972 if (h
&& WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
1973 && (!info
->shared
|| !SYMBOL_REFERENCES_LOCAL (info
, h
)))
1976 if ((info
->shared
|| indx
!= 0)
1978 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
1979 || h
->root
.type
!= bfd_link_hash_undefweak
))
1985 if (tls_type
& GOT_TLS_GD
)
1992 if (tls_type
& GOT_TLS_IE
)
1995 if ((tls_type
& GOT_TLS_LDM
) && info
->shared
)
2001 /* Count the number of TLS relocations required for the GOT entry in
2002 ARG1, if it describes a local symbol. */
2005 mips_elf_count_local_tls_relocs (void **arg1
, void *arg2
)
2007 struct mips_got_entry
*entry
= * (struct mips_got_entry
**) arg1
;
2008 struct mips_elf_count_tls_arg
*arg
= arg2
;
2010 if (entry
->abfd
!= NULL
&& entry
->symndx
!= -1)
2011 arg
->needed
+= mips_tls_got_relocs (arg
->info
, entry
->tls_type
, NULL
);
2016 /* Count the number of TLS GOT entries required for the global (or
2017 forced-local) symbol in ARG1. */
2020 mips_elf_count_global_tls_entries (void *arg1
, void *arg2
)
2022 struct mips_elf_link_hash_entry
*hm
2023 = (struct mips_elf_link_hash_entry
*) arg1
;
2024 struct mips_elf_count_tls_arg
*arg
= arg2
;
2026 if (hm
->tls_type
& GOT_TLS_GD
)
2028 if (hm
->tls_type
& GOT_TLS_IE
)
2034 /* Count the number of TLS relocations required for the global (or
2035 forced-local) symbol in ARG1. */
2038 mips_elf_count_global_tls_relocs (void *arg1
, void *arg2
)
2040 struct mips_elf_link_hash_entry
*hm
2041 = (struct mips_elf_link_hash_entry
*) arg1
;
2042 struct mips_elf_count_tls_arg
*arg
= arg2
;
2044 arg
->needed
+= mips_tls_got_relocs (arg
->info
, hm
->tls_type
, &hm
->root
);
2049 /* Output a simple dynamic relocation into SRELOC. */
2052 mips_elf_output_dynamic_relocation (bfd
*output_bfd
,
2058 Elf_Internal_Rela rel
[3];
2060 memset (rel
, 0, sizeof (rel
));
2062 rel
[0].r_info
= ELF_R_INFO (output_bfd
, indx
, r_type
);
2063 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
2065 if (ABI_64_P (output_bfd
))
2067 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
2068 (output_bfd
, &rel
[0],
2070 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
2073 bfd_elf32_swap_reloc_out
2074 (output_bfd
, &rel
[0],
2076 + sreloc
->reloc_count
* sizeof (Elf32_External_Rel
)));
2077 ++sreloc
->reloc_count
;
2080 /* Initialize a set of TLS GOT entries for one symbol. */
2083 mips_elf_initialize_tls_slots (bfd
*abfd
, bfd_vma got_offset
,
2084 unsigned char *tls_type_p
,
2085 struct bfd_link_info
*info
,
2086 struct mips_elf_link_hash_entry
*h
,
2090 asection
*sreloc
, *sgot
;
2091 bfd_vma offset
, offset2
;
2093 bfd_boolean need_relocs
= FALSE
;
2095 dynobj
= elf_hash_table (info
)->dynobj
;
2096 sgot
= mips_elf_got_section (dynobj
, FALSE
);
2101 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
2103 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, &h
->root
)
2104 && (!info
->shared
|| !SYMBOL_REFERENCES_LOCAL (info
, &h
->root
)))
2105 indx
= h
->root
.dynindx
;
2108 if (*tls_type_p
& GOT_TLS_DONE
)
2111 if ((info
->shared
|| indx
!= 0)
2113 || ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
2114 || h
->root
.type
!= bfd_link_hash_undefweak
))
2117 /* MINUS_ONE means the symbol is not defined in this object. It may not
2118 be defined at all; assume that the value doesn't matter in that
2119 case. Otherwise complain if we would use the value. */
2120 BFD_ASSERT (value
!= MINUS_ONE
|| (indx
!= 0 && need_relocs
)
2121 || h
->root
.root
.type
== bfd_link_hash_undefweak
);
2123 /* Emit necessary relocations. */
2124 sreloc
= mips_elf_rel_dyn_section (dynobj
, FALSE
);
2126 /* General Dynamic. */
2127 if (*tls_type_p
& GOT_TLS_GD
)
2129 offset
= got_offset
;
2130 offset2
= offset
+ MIPS_ELF_GOT_SIZE (abfd
);
2134 mips_elf_output_dynamic_relocation
2135 (abfd
, sreloc
, indx
,
2136 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
2137 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset
);
2140 mips_elf_output_dynamic_relocation
2141 (abfd
, sreloc
, indx
,
2142 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPREL64
: R_MIPS_TLS_DTPREL32
,
2143 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset2
);
2145 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
2146 sgot
->contents
+ offset2
);
2150 MIPS_ELF_PUT_WORD (abfd
, 1,
2151 sgot
->contents
+ offset
);
2152 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
2153 sgot
->contents
+ offset2
);
2156 got_offset
+= 2 * MIPS_ELF_GOT_SIZE (abfd
);
2159 /* Initial Exec model. */
2160 if (*tls_type_p
& GOT_TLS_IE
)
2162 offset
= got_offset
;
2167 MIPS_ELF_PUT_WORD (abfd
, value
- elf_hash_table (info
)->tls_sec
->vma
,
2168 sgot
->contents
+ offset
);
2170 MIPS_ELF_PUT_WORD (abfd
, 0,
2171 sgot
->contents
+ offset
);
2173 mips_elf_output_dynamic_relocation
2174 (abfd
, sreloc
, indx
,
2175 ABI_64_P (abfd
) ? R_MIPS_TLS_TPREL64
: R_MIPS_TLS_TPREL32
,
2176 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset
);
2179 MIPS_ELF_PUT_WORD (abfd
, value
- tprel_base (info
),
2180 sgot
->contents
+ offset
);
2183 if (*tls_type_p
& GOT_TLS_LDM
)
2185 /* The initial offset is zero, and the LD offsets will include the
2186 bias by DTP_OFFSET. */
2187 MIPS_ELF_PUT_WORD (abfd
, 0,
2188 sgot
->contents
+ got_offset
2189 + MIPS_ELF_GOT_SIZE (abfd
));
2192 MIPS_ELF_PUT_WORD (abfd
, 1,
2193 sgot
->contents
+ got_offset
);
2195 mips_elf_output_dynamic_relocation
2196 (abfd
, sreloc
, indx
,
2197 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
2198 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset
);
2201 *tls_type_p
|= GOT_TLS_DONE
;
2204 /* Return the GOT index to use for a relocation of type R_TYPE against
2205 a symbol accessed using TLS_TYPE models. The GOT entries for this
2206 symbol in this GOT start at GOT_INDEX. This function initializes the
2207 GOT entries and corresponding relocations. */
2210 mips_tls_got_index (bfd
*abfd
, bfd_vma got_index
, unsigned char *tls_type
,
2211 int r_type
, struct bfd_link_info
*info
,
2212 struct mips_elf_link_hash_entry
*h
, bfd_vma symbol
)
2214 BFD_ASSERT (r_type
== R_MIPS_TLS_GOTTPREL
|| r_type
== R_MIPS_TLS_GD
2215 || r_type
== R_MIPS_TLS_LDM
);
2217 mips_elf_initialize_tls_slots (abfd
, got_index
, tls_type
, info
, h
, symbol
);
2219 if (r_type
== R_MIPS_TLS_GOTTPREL
)
2221 BFD_ASSERT (*tls_type
& GOT_TLS_IE
);
2222 if (*tls_type
& GOT_TLS_GD
)
2223 return got_index
+ 2 * MIPS_ELF_GOT_SIZE (abfd
);
2228 if (r_type
== R_MIPS_TLS_GD
)
2230 BFD_ASSERT (*tls_type
& GOT_TLS_GD
);
2234 if (r_type
== R_MIPS_TLS_LDM
)
2236 BFD_ASSERT (*tls_type
& GOT_TLS_LDM
);
2243 /* Returns the GOT offset at which the indicated address can be found.
2244 If there is not yet a GOT entry for this value, create one. If
2245 R_SYMNDX refers to a TLS symbol, create a TLS GOT entry instead.
2246 Returns -1 if no satisfactory GOT offset can be found. */
2249 mips_elf_local_got_index (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
2250 bfd_vma value
, unsigned long r_symndx
,
2251 struct mips_elf_link_hash_entry
*h
, int r_type
)
2254 struct mips_got_info
*g
;
2255 struct mips_got_entry
*entry
;
2257 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
2259 entry
= mips_elf_create_local_got_entry (abfd
, ibfd
, g
, sgot
, value
,
2260 r_symndx
, h
, r_type
);
2264 if (TLS_RELOC_P (r_type
))
2265 return mips_tls_got_index (abfd
, entry
->gotidx
, &entry
->tls_type
, r_type
,
2268 return entry
->gotidx
;
2271 /* Returns the GOT index for the global symbol indicated by H. */
2274 mips_elf_global_got_index (bfd
*abfd
, bfd
*ibfd
, struct elf_link_hash_entry
*h
,
2275 int r_type
, struct bfd_link_info
*info
)
2279 struct mips_got_info
*g
, *gg
;
2280 long global_got_dynindx
= 0;
2282 gg
= g
= mips_elf_got_info (abfd
, &sgot
);
2283 if (g
->bfd2got
&& ibfd
)
2285 struct mips_got_entry e
, *p
;
2287 BFD_ASSERT (h
->dynindx
>= 0);
2289 g
= mips_elf_got_for_ibfd (g
, ibfd
);
2290 if (g
->next
!= gg
|| TLS_RELOC_P (r_type
))
2294 e
.d
.h
= (struct mips_elf_link_hash_entry
*)h
;
2297 p
= htab_find (g
->got_entries
, &e
);
2299 BFD_ASSERT (p
->gotidx
> 0);
2301 if (TLS_RELOC_P (r_type
))
2303 bfd_vma value
= MINUS_ONE
;
2304 if ((h
->root
.type
== bfd_link_hash_defined
2305 || h
->root
.type
== bfd_link_hash_defweak
)
2306 && h
->root
.u
.def
.section
->output_section
)
2307 value
= (h
->root
.u
.def
.value
2308 + h
->root
.u
.def
.section
->output_offset
2309 + h
->root
.u
.def
.section
->output_section
->vma
);
2311 return mips_tls_got_index (abfd
, p
->gotidx
, &p
->tls_type
, r_type
,
2312 info
, e
.d
.h
, value
);
2319 if (gg
->global_gotsym
!= NULL
)
2320 global_got_dynindx
= gg
->global_gotsym
->dynindx
;
2322 if (TLS_RELOC_P (r_type
))
2324 struct mips_elf_link_hash_entry
*hm
2325 = (struct mips_elf_link_hash_entry
*) h
;
2326 bfd_vma value
= MINUS_ONE
;
2328 if ((h
->root
.type
== bfd_link_hash_defined
2329 || h
->root
.type
== bfd_link_hash_defweak
)
2330 && h
->root
.u
.def
.section
->output_section
)
2331 value
= (h
->root
.u
.def
.value
2332 + h
->root
.u
.def
.section
->output_offset
2333 + h
->root
.u
.def
.section
->output_section
->vma
);
2335 index
= mips_tls_got_index (abfd
, hm
->tls_got_offset
, &hm
->tls_type
,
2336 r_type
, info
, hm
, value
);
2340 /* Once we determine the global GOT entry with the lowest dynamic
2341 symbol table index, we must put all dynamic symbols with greater
2342 indices into the GOT. That makes it easy to calculate the GOT
2344 BFD_ASSERT (h
->dynindx
>= global_got_dynindx
);
2345 index
= ((h
->dynindx
- global_got_dynindx
+ g
->local_gotno
)
2346 * MIPS_ELF_GOT_SIZE (abfd
));
2348 BFD_ASSERT (index
< sgot
->size
);
2353 /* Find a GOT entry that is within 32KB of the VALUE. These entries
2354 are supposed to be placed at small offsets in the GOT, i.e.,
2355 within 32KB of GP. Return the index into the GOT for this page,
2356 and store the offset from this entry to the desired address in
2357 OFFSETP, if it is non-NULL. */
2360 mips_elf_got_page (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
2361 bfd_vma value
, bfd_vma
*offsetp
)
2364 struct mips_got_info
*g
;
2366 struct mips_got_entry
*entry
;
2368 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
2370 entry
= mips_elf_create_local_got_entry (abfd
, ibfd
, g
, sgot
,
2372 & (~(bfd_vma
)0xffff), 0,
2373 NULL
, R_MIPS_GOT_PAGE
);
2378 index
= entry
->gotidx
;
2381 *offsetp
= value
- entry
->d
.address
;
2386 /* Find a GOT entry whose higher-order 16 bits are the same as those
2387 for value. Return the index into the GOT for this entry. */
2390 mips_elf_got16_entry (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
2391 bfd_vma value
, bfd_boolean external
)
2394 struct mips_got_info
*g
;
2395 struct mips_got_entry
*entry
;
2399 /* Although the ABI says that it is "the high-order 16 bits" that we
2400 want, it is really the %high value. The complete value is
2401 calculated with a `addiu' of a LO16 relocation, just as with a
2403 value
= mips_elf_high (value
) << 16;
2406 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
2408 entry
= mips_elf_create_local_got_entry (abfd
, ibfd
, g
, sgot
, value
, 0, NULL
,
2411 return entry
->gotidx
;
2416 /* Returns the offset for the entry at the INDEXth position
2420 mips_elf_got_offset_from_index (bfd
*dynobj
, bfd
*output_bfd
,
2421 bfd
*input_bfd
, bfd_vma index
)
2425 struct mips_got_info
*g
;
2427 g
= mips_elf_got_info (dynobj
, &sgot
);
2428 gp
= _bfd_get_gp_value (output_bfd
)
2429 + mips_elf_adjust_gp (output_bfd
, g
, input_bfd
);
2431 return sgot
->output_section
->vma
+ sgot
->output_offset
+ index
- gp
;
2434 /* Create a local GOT entry for VALUE. Return the index of the entry,
2435 or -1 if it could not be created. If R_SYMNDX refers to a TLS symbol,
2436 create a TLS entry instead. */
2438 static struct mips_got_entry
*
2439 mips_elf_create_local_got_entry (bfd
*abfd
, bfd
*ibfd
,
2440 struct mips_got_info
*gg
,
2441 asection
*sgot
, bfd_vma value
,
2442 unsigned long r_symndx
,
2443 struct mips_elf_link_hash_entry
*h
,
2446 struct mips_got_entry entry
, **loc
;
2447 struct mips_got_info
*g
;
2451 entry
.d
.address
= value
;
2454 g
= mips_elf_got_for_ibfd (gg
, ibfd
);
2457 g
= mips_elf_got_for_ibfd (gg
, abfd
);
2458 BFD_ASSERT (g
!= NULL
);
2461 /* We might have a symbol, H, if it has been forced local. Use the
2462 global entry then. It doesn't matter whether an entry is local
2463 or global for TLS, since the dynamic linker does not
2464 automatically relocate TLS GOT entries. */
2465 BFD_ASSERT (h
== NULL
|| h
->root
.forced_local
);
2466 if (TLS_RELOC_P (r_type
))
2468 struct mips_got_entry
*p
;
2471 if (r_type
== R_MIPS_TLS_LDM
)
2473 entry
.tls_type
= GOT_TLS_LDM
;
2479 entry
.symndx
= r_symndx
;
2485 p
= (struct mips_got_entry
*)
2486 htab_find (g
->got_entries
, &entry
);
2492 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
2497 entry
.gotidx
= MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
++;
2500 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
2505 memcpy (*loc
, &entry
, sizeof entry
);
2507 if (g
->assigned_gotno
>= g
->local_gotno
)
2509 (*loc
)->gotidx
= -1;
2510 /* We didn't allocate enough space in the GOT. */
2511 (*_bfd_error_handler
)
2512 (_("not enough GOT space for local GOT entries"));
2513 bfd_set_error (bfd_error_bad_value
);
2517 MIPS_ELF_PUT_WORD (abfd
, value
,
2518 (sgot
->contents
+ entry
.gotidx
));
2523 /* Sort the dynamic symbol table so that symbols that need GOT entries
2524 appear towards the end. This reduces the amount of GOT space
2525 required. MAX_LOCAL is used to set the number of local symbols
2526 known to be in the dynamic symbol table. During
2527 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2528 section symbols are added and the count is higher. */
2531 mips_elf_sort_hash_table (struct bfd_link_info
*info
, unsigned long max_local
)
2533 struct mips_elf_hash_sort_data hsd
;
2534 struct mips_got_info
*g
;
2537 dynobj
= elf_hash_table (info
)->dynobj
;
2539 g
= mips_elf_got_info (dynobj
, NULL
);
2542 hsd
.max_unref_got_dynindx
=
2543 hsd
.min_got_dynindx
= elf_hash_table (info
)->dynsymcount
2544 /* In the multi-got case, assigned_gotno of the master got_info
2545 indicate the number of entries that aren't referenced in the
2546 primary GOT, but that must have entries because there are
2547 dynamic relocations that reference it. Since they aren't
2548 referenced, we move them to the end of the GOT, so that they
2549 don't prevent other entries that are referenced from getting
2550 too large offsets. */
2551 - (g
->next
? g
->assigned_gotno
: 0);
2552 hsd
.max_non_got_dynindx
= max_local
;
2553 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table
*)
2554 elf_hash_table (info
)),
2555 mips_elf_sort_hash_table_f
,
2558 /* There should have been enough room in the symbol table to
2559 accommodate both the GOT and non-GOT symbols. */
2560 BFD_ASSERT (hsd
.max_non_got_dynindx
<= hsd
.min_got_dynindx
);
2561 BFD_ASSERT ((unsigned long)hsd
.max_unref_got_dynindx
2562 <= elf_hash_table (info
)->dynsymcount
);
2564 /* Now we know which dynamic symbol has the lowest dynamic symbol
2565 table index in the GOT. */
2566 g
->global_gotsym
= hsd
.low
;
2571 /* If H needs a GOT entry, assign it the highest available dynamic
2572 index. Otherwise, assign it the lowest available dynamic
2576 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry
*h
, void *data
)
2578 struct mips_elf_hash_sort_data
*hsd
= data
;
2580 if (h
->root
.root
.type
== bfd_link_hash_warning
)
2581 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
2583 /* Symbols without dynamic symbol table entries aren't interesting
2585 if (h
->root
.dynindx
== -1)
2588 /* Global symbols that need GOT entries that are not explicitly
2589 referenced are marked with got offset 2. Those that are
2590 referenced get a 1, and those that don't need GOT entries get
2592 if (h
->root
.got
.offset
== 2)
2594 BFD_ASSERT (h
->tls_type
== GOT_NORMAL
);
2596 if (hsd
->max_unref_got_dynindx
== hsd
->min_got_dynindx
)
2597 hsd
->low
= (struct elf_link_hash_entry
*) h
;
2598 h
->root
.dynindx
= hsd
->max_unref_got_dynindx
++;
2600 else if (h
->root
.got
.offset
!= 1)
2601 h
->root
.dynindx
= hsd
->max_non_got_dynindx
++;
2604 BFD_ASSERT (h
->tls_type
== GOT_NORMAL
);
2606 h
->root
.dynindx
= --hsd
->min_got_dynindx
;
2607 hsd
->low
= (struct elf_link_hash_entry
*) h
;
2613 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2614 symbol table index lower than any we've seen to date, record it for
2618 mips_elf_record_global_got_symbol (struct elf_link_hash_entry
*h
,
2619 bfd
*abfd
, struct bfd_link_info
*info
,
2620 struct mips_got_info
*g
,
2621 unsigned char tls_flag
)
2623 struct mips_got_entry entry
, **loc
;
2625 /* A global symbol in the GOT must also be in the dynamic symbol
2627 if (h
->dynindx
== -1)
2629 switch (ELF_ST_VISIBILITY (h
->other
))
2633 _bfd_mips_elf_hide_symbol (info
, h
, TRUE
);
2636 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
2640 /* Make sure we have a GOT to put this entry into. */
2641 BFD_ASSERT (g
!= NULL
);
2645 entry
.d
.h
= (struct mips_elf_link_hash_entry
*) h
;
2648 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
2651 /* If we've already marked this entry as needing GOT space, we don't
2652 need to do it again. */
2655 (*loc
)->tls_type
|= tls_flag
;
2659 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
2665 entry
.tls_type
= tls_flag
;
2667 memcpy (*loc
, &entry
, sizeof entry
);
2669 if (h
->got
.offset
!= MINUS_ONE
)
2672 /* By setting this to a value other than -1, we are indicating that
2673 there needs to be a GOT entry for H. Avoid using zero, as the
2674 generic ELF copy_indirect_symbol tests for <= 0. */
2681 /* Reserve space in G for a GOT entry containing the value of symbol
2682 SYMNDX in input bfd ABDF, plus ADDEND. */
2685 mips_elf_record_local_got_symbol (bfd
*abfd
, long symndx
, bfd_vma addend
,
2686 struct mips_got_info
*g
,
2687 unsigned char tls_flag
)
2689 struct mips_got_entry entry
, **loc
;
2692 entry
.symndx
= symndx
;
2693 entry
.d
.addend
= addend
;
2694 entry
.tls_type
= tls_flag
;
2695 loc
= (struct mips_got_entry
**)
2696 htab_find_slot (g
->got_entries
, &entry
, INSERT
);
2700 if (tls_flag
== GOT_TLS_GD
&& !((*loc
)->tls_type
& GOT_TLS_GD
))
2703 (*loc
)->tls_type
|= tls_flag
;
2705 else if (tls_flag
== GOT_TLS_IE
&& !((*loc
)->tls_type
& GOT_TLS_IE
))
2708 (*loc
)->tls_type
|= tls_flag
;
2716 entry
.tls_type
= tls_flag
;
2717 if (tls_flag
== GOT_TLS_IE
)
2719 else if (tls_flag
== GOT_TLS_GD
)
2721 else if (g
->tls_ldm_offset
== MINUS_ONE
)
2723 g
->tls_ldm_offset
= MINUS_TWO
;
2729 entry
.gotidx
= g
->local_gotno
++;
2733 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
2738 memcpy (*loc
, &entry
, sizeof entry
);
2743 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2746 mips_elf_bfd2got_entry_hash (const void *entry_
)
2748 const struct mips_elf_bfd2got_hash
*entry
2749 = (struct mips_elf_bfd2got_hash
*)entry_
;
2751 return entry
->bfd
->id
;
2754 /* Check whether two hash entries have the same bfd. */
2757 mips_elf_bfd2got_entry_eq (const void *entry1
, const void *entry2
)
2759 const struct mips_elf_bfd2got_hash
*e1
2760 = (const struct mips_elf_bfd2got_hash
*)entry1
;
2761 const struct mips_elf_bfd2got_hash
*e2
2762 = (const struct mips_elf_bfd2got_hash
*)entry2
;
2764 return e1
->bfd
== e2
->bfd
;
2767 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2768 be the master GOT data. */
2770 static struct mips_got_info
*
2771 mips_elf_got_for_ibfd (struct mips_got_info
*g
, bfd
*ibfd
)
2773 struct mips_elf_bfd2got_hash e
, *p
;
2779 p
= htab_find (g
->bfd2got
, &e
);
2780 return p
? p
->g
: NULL
;
2783 /* Create one separate got for each bfd that has entries in the global
2784 got, such that we can tell how many local and global entries each
2788 mips_elf_make_got_per_bfd (void **entryp
, void *p
)
2790 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
2791 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
2792 htab_t bfd2got
= arg
->bfd2got
;
2793 struct mips_got_info
*g
;
2794 struct mips_elf_bfd2got_hash bfdgot_entry
, *bfdgot
;
2797 /* Find the got_info for this GOT entry's input bfd. Create one if
2799 bfdgot_entry
.bfd
= entry
->abfd
;
2800 bfdgotp
= htab_find_slot (bfd2got
, &bfdgot_entry
, INSERT
);
2801 bfdgot
= (struct mips_elf_bfd2got_hash
*)*bfdgotp
;
2807 bfdgot
= (struct mips_elf_bfd2got_hash
*)bfd_alloc
2808 (arg
->obfd
, sizeof (struct mips_elf_bfd2got_hash
));
2818 bfdgot
->bfd
= entry
->abfd
;
2819 bfdgot
->g
= g
= (struct mips_got_info
*)
2820 bfd_alloc (arg
->obfd
, sizeof (struct mips_got_info
));
2827 g
->global_gotsym
= NULL
;
2828 g
->global_gotno
= 0;
2830 g
->assigned_gotno
= -1;
2832 g
->tls_assigned_gotno
= 0;
2833 g
->tls_ldm_offset
= MINUS_ONE
;
2834 g
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
2835 mips_elf_multi_got_entry_eq
, NULL
);
2836 if (g
->got_entries
== NULL
)
2846 /* Insert the GOT entry in the bfd's got entry hash table. */
2847 entryp
= htab_find_slot (g
->got_entries
, entry
, INSERT
);
2848 if (*entryp
!= NULL
)
2853 if (entry
->tls_type
)
2855 if (entry
->tls_type
& (GOT_TLS_GD
| GOT_TLS_LDM
))
2857 if (entry
->tls_type
& GOT_TLS_IE
)
2860 else if (entry
->symndx
>= 0 || entry
->d
.h
->forced_local
)
2868 /* Attempt to merge gots of different input bfds. Try to use as much
2869 as possible of the primary got, since it doesn't require explicit
2870 dynamic relocations, but don't use bfds that would reference global
2871 symbols out of the addressable range. Failing the primary got,
2872 attempt to merge with the current got, or finish the current got
2873 and then make make the new got current. */
2876 mips_elf_merge_gots (void **bfd2got_
, void *p
)
2878 struct mips_elf_bfd2got_hash
*bfd2got
2879 = (struct mips_elf_bfd2got_hash
*)*bfd2got_
;
2880 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
2881 unsigned int lcount
= bfd2got
->g
->local_gotno
;
2882 unsigned int gcount
= bfd2got
->g
->global_gotno
;
2883 unsigned int tcount
= bfd2got
->g
->tls_gotno
;
2884 unsigned int maxcnt
= arg
->max_count
;
2885 bfd_boolean too_many_for_tls
= FALSE
;
2887 /* We place TLS GOT entries after both locals and globals. The globals
2888 for the primary GOT may overflow the normal GOT size limit, so be
2889 sure not to merge a GOT which requires TLS with the primary GOT in that
2890 case. This doesn't affect non-primary GOTs. */
2893 unsigned int primary_total
= lcount
+ tcount
+ arg
->global_count
;
2894 if (primary_total
* MIPS_ELF_GOT_SIZE (bfd2got
->bfd
)
2895 >= MIPS_ELF_GOT_MAX_SIZE (bfd2got
->bfd
))
2896 too_many_for_tls
= TRUE
;
2899 /* If we don't have a primary GOT and this is not too big, use it as
2900 a starting point for the primary GOT. */
2901 if (! arg
->primary
&& lcount
+ gcount
+ tcount
<= maxcnt
2902 && ! too_many_for_tls
)
2904 arg
->primary
= bfd2got
->g
;
2905 arg
->primary_count
= lcount
+ gcount
;
2907 /* If it looks like we can merge this bfd's entries with those of
2908 the primary, merge them. The heuristics is conservative, but we
2909 don't have to squeeze it too hard. */
2910 else if (arg
->primary
&& ! too_many_for_tls
2911 && (arg
->primary_count
+ lcount
+ gcount
+ tcount
) <= maxcnt
)
2913 struct mips_got_info
*g
= bfd2got
->g
;
2914 int old_lcount
= arg
->primary
->local_gotno
;
2915 int old_gcount
= arg
->primary
->global_gotno
;
2916 int old_tcount
= arg
->primary
->tls_gotno
;
2918 bfd2got
->g
= arg
->primary
;
2920 htab_traverse (g
->got_entries
,
2921 mips_elf_make_got_per_bfd
,
2923 if (arg
->obfd
== NULL
)
2926 htab_delete (g
->got_entries
);
2927 /* We don't have to worry about releasing memory of the actual
2928 got entries, since they're all in the master got_entries hash
2931 BFD_ASSERT (old_lcount
+ lcount
>= arg
->primary
->local_gotno
);
2932 BFD_ASSERT (old_gcount
+ gcount
>= arg
->primary
->global_gotno
);
2933 BFD_ASSERT (old_tcount
+ tcount
>= arg
->primary
->tls_gotno
);
2935 arg
->primary_count
= arg
->primary
->local_gotno
2936 + arg
->primary
->global_gotno
+ arg
->primary
->tls_gotno
;
2938 /* If we can merge with the last-created got, do it. */
2939 else if (arg
->current
2940 && arg
->current_count
+ lcount
+ gcount
+ tcount
<= maxcnt
)
2942 struct mips_got_info
*g
= bfd2got
->g
;
2943 int old_lcount
= arg
->current
->local_gotno
;
2944 int old_gcount
= arg
->current
->global_gotno
;
2945 int old_tcount
= arg
->current
->tls_gotno
;
2947 bfd2got
->g
= arg
->current
;
2949 htab_traverse (g
->got_entries
,
2950 mips_elf_make_got_per_bfd
,
2952 if (arg
->obfd
== NULL
)
2955 htab_delete (g
->got_entries
);
2957 BFD_ASSERT (old_lcount
+ lcount
>= arg
->current
->local_gotno
);
2958 BFD_ASSERT (old_gcount
+ gcount
>= arg
->current
->global_gotno
);
2959 BFD_ASSERT (old_tcount
+ tcount
>= arg
->current
->tls_gotno
);
2961 arg
->current_count
= arg
->current
->local_gotno
2962 + arg
->current
->global_gotno
+ arg
->current
->tls_gotno
;
2964 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2965 fits; if it turns out that it doesn't, we'll get relocation
2966 overflows anyway. */
2969 bfd2got
->g
->next
= arg
->current
;
2970 arg
->current
= bfd2got
->g
;
2972 arg
->current_count
= lcount
+ gcount
+ 2 * tcount
;
2978 /* Set the TLS GOT index for the GOT entry in ENTRYP. */
2981 mips_elf_initialize_tls_index (void **entryp
, void *p
)
2983 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
2984 struct mips_got_info
*g
= p
;
2986 /* We're only interested in TLS symbols. */
2987 if (entry
->tls_type
== 0)
2990 if (entry
->symndx
== -1)
2992 /* There may be multiple mips_got_entry structs for a global variable
2993 if there is just one GOT. Just do this once. */
2994 if (g
->next
== NULL
)
2996 if (entry
->d
.h
->tls_type
& GOT_TLS_OFFSET_DONE
)
2998 entry
->gotidx
= entry
->d
.h
->tls_got_offset
;
3001 entry
->d
.h
->tls_type
|= GOT_TLS_OFFSET_DONE
;
3004 else if (entry
->tls_type
& GOT_TLS_LDM
)
3006 /* Similarly, there may be multiple structs for the LDM entry. */
3007 if (g
->tls_ldm_offset
!= MINUS_TWO
&& g
->tls_ldm_offset
!= MINUS_ONE
)
3009 entry
->gotidx
= g
->tls_ldm_offset
;
3014 /* Initialize the GOT offset. */
3015 entry
->gotidx
= MIPS_ELF_GOT_SIZE (entry
->abfd
) * (long) g
->tls_assigned_gotno
;
3016 if (g
->next
== NULL
&& entry
->symndx
== -1)
3017 entry
->d
.h
->tls_got_offset
= entry
->gotidx
;
3019 if (entry
->tls_type
& (GOT_TLS_GD
| GOT_TLS_LDM
))
3020 g
->tls_assigned_gotno
+= 2;
3021 if (entry
->tls_type
& GOT_TLS_IE
)
3022 g
->tls_assigned_gotno
+= 1;
3024 if (entry
->tls_type
& GOT_TLS_LDM
)
3025 g
->tls_ldm_offset
= entry
->gotidx
;
3030 /* If passed a NULL mips_got_info in the argument, set the marker used
3031 to tell whether a global symbol needs a got entry (in the primary
3032 got) to the given VALUE.
3034 If passed a pointer G to a mips_got_info in the argument (it must
3035 not be the primary GOT), compute the offset from the beginning of
3036 the (primary) GOT section to the entry in G corresponding to the
3037 global symbol. G's assigned_gotno must contain the index of the
3038 first available global GOT entry in G. VALUE must contain the size
3039 of a GOT entry in bytes. For each global GOT entry that requires a
3040 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3041 marked as not eligible for lazy resolution through a function
3044 mips_elf_set_global_got_offset (void **entryp
, void *p
)
3046 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
3047 struct mips_elf_set_global_got_offset_arg
*arg
3048 = (struct mips_elf_set_global_got_offset_arg
*)p
;
3049 struct mips_got_info
*g
= arg
->g
;
3051 if (g
&& entry
->tls_type
!= GOT_NORMAL
)
3052 arg
->needed_relocs
+=
3053 mips_tls_got_relocs (arg
->info
, entry
->tls_type
,
3054 entry
->symndx
== -1 ? &entry
->d
.h
->root
: NULL
);
3056 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1
3057 && entry
->d
.h
->root
.dynindx
!= -1
3058 && entry
->d
.h
->tls_type
== GOT_NORMAL
)
3062 BFD_ASSERT (g
->global_gotsym
== NULL
);
3064 entry
->gotidx
= arg
->value
* (long) g
->assigned_gotno
++;
3065 if (arg
->info
->shared
3066 || (elf_hash_table (arg
->info
)->dynamic_sections_created
3067 && entry
->d
.h
->root
.def_dynamic
3068 && !entry
->d
.h
->root
.def_regular
))
3069 ++arg
->needed_relocs
;
3072 entry
->d
.h
->root
.got
.offset
= arg
->value
;
3078 /* Mark any global symbols referenced in the GOT we are iterating over
3079 as inelligible for lazy resolution stubs. */
3081 mips_elf_set_no_stub (void **entryp
, void *p ATTRIBUTE_UNUSED
)
3083 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
3085 if (entry
->abfd
!= NULL
3086 && entry
->symndx
== -1
3087 && entry
->d
.h
->root
.dynindx
!= -1)
3088 entry
->d
.h
->no_fn_stub
= TRUE
;
3093 /* Follow indirect and warning hash entries so that each got entry
3094 points to the final symbol definition. P must point to a pointer
3095 to the hash table we're traversing. Since this traversal may
3096 modify the hash table, we set this pointer to NULL to indicate
3097 we've made a potentially-destructive change to the hash table, so
3098 the traversal must be restarted. */
3100 mips_elf_resolve_final_got_entry (void **entryp
, void *p
)
3102 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
3103 htab_t got_entries
= *(htab_t
*)p
;
3105 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1)
3107 struct mips_elf_link_hash_entry
*h
= entry
->d
.h
;
3109 while (h
->root
.root
.type
== bfd_link_hash_indirect
3110 || h
->root
.root
.type
== bfd_link_hash_warning
)
3111 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3113 if (entry
->d
.h
== h
)
3118 /* If we can't find this entry with the new bfd hash, re-insert
3119 it, and get the traversal restarted. */
3120 if (! htab_find (got_entries
, entry
))
3122 htab_clear_slot (got_entries
, entryp
);
3123 entryp
= htab_find_slot (got_entries
, entry
, INSERT
);
3126 /* Abort the traversal, since the whole table may have
3127 moved, and leave it up to the parent to restart the
3129 *(htab_t
*)p
= NULL
;
3132 /* We might want to decrement the global_gotno count, but it's
3133 either too early or too late for that at this point. */
3139 /* Turn indirect got entries in a got_entries table into their final
3142 mips_elf_resolve_final_got_entries (struct mips_got_info
*g
)
3148 got_entries
= g
->got_entries
;
3150 htab_traverse (got_entries
,
3151 mips_elf_resolve_final_got_entry
,
3154 while (got_entries
== NULL
);
3157 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3160 mips_elf_adjust_gp (bfd
*abfd
, struct mips_got_info
*g
, bfd
*ibfd
)
3162 if (g
->bfd2got
== NULL
)
3165 g
= mips_elf_got_for_ibfd (g
, ibfd
);
3169 BFD_ASSERT (g
->next
);
3173 return (g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
)
3174 * MIPS_ELF_GOT_SIZE (abfd
);
3177 /* Turn a single GOT that is too big for 16-bit addressing into
3178 a sequence of GOTs, each one 16-bit addressable. */
3181 mips_elf_multi_got (bfd
*abfd
, struct bfd_link_info
*info
,
3182 struct mips_got_info
*g
, asection
*got
,
3183 bfd_size_type pages
)
3185 struct mips_elf_got_per_bfd_arg got_per_bfd_arg
;
3186 struct mips_elf_set_global_got_offset_arg set_got_offset_arg
;
3187 struct mips_got_info
*gg
;
3188 unsigned int assign
;
3190 g
->bfd2got
= htab_try_create (1, mips_elf_bfd2got_entry_hash
,
3191 mips_elf_bfd2got_entry_eq
, NULL
);
3192 if (g
->bfd2got
== NULL
)
3195 got_per_bfd_arg
.bfd2got
= g
->bfd2got
;
3196 got_per_bfd_arg
.obfd
= abfd
;
3197 got_per_bfd_arg
.info
= info
;
3199 /* Count how many GOT entries each input bfd requires, creating a
3200 map from bfd to got info while at that. */
3201 htab_traverse (g
->got_entries
, mips_elf_make_got_per_bfd
, &got_per_bfd_arg
);
3202 if (got_per_bfd_arg
.obfd
== NULL
)
3205 got_per_bfd_arg
.current
= NULL
;
3206 got_per_bfd_arg
.primary
= NULL
;
3207 /* Taking out PAGES entries is a worst-case estimate. We could
3208 compute the maximum number of pages that each separate input bfd
3209 uses, but it's probably not worth it. */
3210 got_per_bfd_arg
.max_count
= ((MIPS_ELF_GOT_MAX_SIZE (abfd
)
3211 / MIPS_ELF_GOT_SIZE (abfd
))
3212 - MIPS_RESERVED_GOTNO
- pages
);
3213 /* The number of globals that will be included in the primary GOT.
3214 See the calls to mips_elf_set_global_got_offset below for more
3216 got_per_bfd_arg
.global_count
= g
->global_gotno
;
3218 /* Try to merge the GOTs of input bfds together, as long as they
3219 don't seem to exceed the maximum GOT size, choosing one of them
3220 to be the primary GOT. */
3221 htab_traverse (g
->bfd2got
, mips_elf_merge_gots
, &got_per_bfd_arg
);
3222 if (got_per_bfd_arg
.obfd
== NULL
)
3225 /* If we do not find any suitable primary GOT, create an empty one. */
3226 if (got_per_bfd_arg
.primary
== NULL
)
3228 g
->next
= (struct mips_got_info
*)
3229 bfd_alloc (abfd
, sizeof (struct mips_got_info
));
3230 if (g
->next
== NULL
)
3233 g
->next
->global_gotsym
= NULL
;
3234 g
->next
->global_gotno
= 0;
3235 g
->next
->local_gotno
= 0;
3236 g
->next
->tls_gotno
= 0;
3237 g
->next
->assigned_gotno
= 0;
3238 g
->next
->tls_assigned_gotno
= 0;
3239 g
->next
->tls_ldm_offset
= MINUS_ONE
;
3240 g
->next
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
3241 mips_elf_multi_got_entry_eq
,
3243 if (g
->next
->got_entries
== NULL
)
3245 g
->next
->bfd2got
= NULL
;
3248 g
->next
= got_per_bfd_arg
.primary
;
3249 g
->next
->next
= got_per_bfd_arg
.current
;
3251 /* GG is now the master GOT, and G is the primary GOT. */
3255 /* Map the output bfd to the primary got. That's what we're going
3256 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3257 didn't mark in check_relocs, and we want a quick way to find it.
3258 We can't just use gg->next because we're going to reverse the
3261 struct mips_elf_bfd2got_hash
*bfdgot
;
3264 bfdgot
= (struct mips_elf_bfd2got_hash
*)bfd_alloc
3265 (abfd
, sizeof (struct mips_elf_bfd2got_hash
));
3272 bfdgotp
= htab_find_slot (gg
->bfd2got
, bfdgot
, INSERT
);
3274 BFD_ASSERT (*bfdgotp
== NULL
);
3278 /* The IRIX dynamic linker requires every symbol that is referenced
3279 in a dynamic relocation to be present in the primary GOT, so
3280 arrange for them to appear after those that are actually
3283 GNU/Linux could very well do without it, but it would slow down
3284 the dynamic linker, since it would have to resolve every dynamic
3285 symbol referenced in other GOTs more than once, without help from
3286 the cache. Also, knowing that every external symbol has a GOT
3287 helps speed up the resolution of local symbols too, so GNU/Linux
3288 follows IRIX's practice.
3290 The number 2 is used by mips_elf_sort_hash_table_f to count
3291 global GOT symbols that are unreferenced in the primary GOT, with
3292 an initial dynamic index computed from gg->assigned_gotno, where
3293 the number of unreferenced global entries in the primary GOT is
3297 gg
->assigned_gotno
= gg
->global_gotno
- g
->global_gotno
;
3298 g
->global_gotno
= gg
->global_gotno
;
3299 set_got_offset_arg
.value
= 2;
3303 /* This could be used for dynamic linkers that don't optimize
3304 symbol resolution while applying relocations so as to use
3305 primary GOT entries or assuming the symbol is locally-defined.
3306 With this code, we assign lower dynamic indices to global
3307 symbols that are not referenced in the primary GOT, so that
3308 their entries can be omitted. */
3309 gg
->assigned_gotno
= 0;
3310 set_got_offset_arg
.value
= -1;
3313 /* Reorder dynamic symbols as described above (which behavior
3314 depends on the setting of VALUE). */
3315 set_got_offset_arg
.g
= NULL
;
3316 htab_traverse (gg
->got_entries
, mips_elf_set_global_got_offset
,
3317 &set_got_offset_arg
);
3318 set_got_offset_arg
.value
= 1;
3319 htab_traverse (g
->got_entries
, mips_elf_set_global_got_offset
,
3320 &set_got_offset_arg
);
3321 if (! mips_elf_sort_hash_table (info
, 1))
3324 /* Now go through the GOTs assigning them offset ranges.
3325 [assigned_gotno, local_gotno[ will be set to the range of local
3326 entries in each GOT. We can then compute the end of a GOT by
3327 adding local_gotno to global_gotno. We reverse the list and make
3328 it circular since then we'll be able to quickly compute the
3329 beginning of a GOT, by computing the end of its predecessor. To
3330 avoid special cases for the primary GOT, while still preserving
3331 assertions that are valid for both single- and multi-got links,
3332 we arrange for the main got struct to have the right number of
3333 global entries, but set its local_gotno such that the initial
3334 offset of the primary GOT is zero. Remember that the primary GOT
3335 will become the last item in the circular linked list, so it
3336 points back to the master GOT. */
3337 gg
->local_gotno
= -g
->global_gotno
;
3338 gg
->global_gotno
= g
->global_gotno
;
3345 struct mips_got_info
*gn
;
3347 assign
+= MIPS_RESERVED_GOTNO
;
3348 g
->assigned_gotno
= assign
;
3349 g
->local_gotno
+= assign
+ pages
;
3350 assign
= g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
;
3352 /* Set up any TLS entries. We always place the TLS entries after
3353 all non-TLS entries. */
3354 g
->tls_assigned_gotno
= g
->local_gotno
+ g
->global_gotno
;
3355 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, g
);
3357 /* Take g out of the direct list, and push it onto the reversed
3358 list that gg points to. */
3364 /* Mark global symbols in every non-primary GOT as ineligible for
3367 htab_traverse (g
->got_entries
, mips_elf_set_no_stub
, NULL
);
3371 got
->size
= (gg
->next
->local_gotno
3372 + gg
->next
->global_gotno
3373 + gg
->next
->tls_gotno
) * MIPS_ELF_GOT_SIZE (abfd
);
3379 /* Returns the first relocation of type r_type found, beginning with
3380 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3382 static const Elf_Internal_Rela
*
3383 mips_elf_next_relocation (bfd
*abfd ATTRIBUTE_UNUSED
, unsigned int r_type
,
3384 const Elf_Internal_Rela
*relocation
,
3385 const Elf_Internal_Rela
*relend
)
3387 while (relocation
< relend
)
3389 if (ELF_R_TYPE (abfd
, relocation
->r_info
) == r_type
)
3395 /* We didn't find it. */
3396 bfd_set_error (bfd_error_bad_value
);
3400 /* Return whether a relocation is against a local symbol. */
3403 mips_elf_local_relocation_p (bfd
*input_bfd
,
3404 const Elf_Internal_Rela
*relocation
,
3405 asection
**local_sections
,
3406 bfd_boolean check_forced
)
3408 unsigned long r_symndx
;
3409 Elf_Internal_Shdr
*symtab_hdr
;
3410 struct mips_elf_link_hash_entry
*h
;
3413 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
3414 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3415 extsymoff
= (elf_bad_symtab (input_bfd
)) ? 0 : symtab_hdr
->sh_info
;
3417 if (r_symndx
< extsymoff
)
3419 if (elf_bad_symtab (input_bfd
) && local_sections
[r_symndx
] != NULL
)
3424 /* Look up the hash table to check whether the symbol
3425 was forced local. */
3426 h
= (struct mips_elf_link_hash_entry
*)
3427 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
3428 /* Find the real hash-table entry for this symbol. */
3429 while (h
->root
.root
.type
== bfd_link_hash_indirect
3430 || h
->root
.root
.type
== bfd_link_hash_warning
)
3431 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3432 if (h
->root
.forced_local
)
3439 /* Sign-extend VALUE, which has the indicated number of BITS. */
3442 _bfd_mips_elf_sign_extend (bfd_vma value
, int bits
)
3444 if (value
& ((bfd_vma
) 1 << (bits
- 1)))
3445 /* VALUE is negative. */
3446 value
|= ((bfd_vma
) - 1) << bits
;
3451 /* Return non-zero if the indicated VALUE has overflowed the maximum
3452 range expressible by a signed number with the indicated number of
3456 mips_elf_overflow_p (bfd_vma value
, int bits
)
3458 bfd_signed_vma svalue
= (bfd_signed_vma
) value
;
3460 if (svalue
> (1 << (bits
- 1)) - 1)
3461 /* The value is too big. */
3463 else if (svalue
< -(1 << (bits
- 1)))
3464 /* The value is too small. */
3471 /* Calculate the %high function. */
3474 mips_elf_high (bfd_vma value
)
3476 return ((value
+ (bfd_vma
) 0x8000) >> 16) & 0xffff;
3479 /* Calculate the %higher function. */
3482 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED
)
3485 return ((value
+ (bfd_vma
) 0x80008000) >> 32) & 0xffff;
3492 /* Calculate the %highest function. */
3495 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED
)
3498 return ((value
+ (((bfd_vma
) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3505 /* Create the .compact_rel section. */
3508 mips_elf_create_compact_rel_section
3509 (bfd
*abfd
, struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
3512 register asection
*s
;
3514 if (bfd_get_section_by_name (abfd
, ".compact_rel") == NULL
)
3516 flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
3519 s
= bfd_make_section_with_flags (abfd
, ".compact_rel", flags
);
3521 || ! bfd_set_section_alignment (abfd
, s
,
3522 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
3525 s
->size
= sizeof (Elf32_External_compact_rel
);
3531 /* Create the .got section to hold the global offset table. */
3534 mips_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
,
3535 bfd_boolean maybe_exclude
)
3538 register asection
*s
;
3539 struct elf_link_hash_entry
*h
;
3540 struct bfd_link_hash_entry
*bh
;
3541 struct mips_got_info
*g
;
3544 /* This function may be called more than once. */
3545 s
= mips_elf_got_section (abfd
, TRUE
);
3548 if (! maybe_exclude
)
3549 s
->flags
&= ~SEC_EXCLUDE
;
3553 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
3554 | SEC_LINKER_CREATED
);
3557 flags
|= SEC_EXCLUDE
;
3559 /* We have to use an alignment of 2**4 here because this is hardcoded
3560 in the function stub generation and in the linker script. */
3561 s
= bfd_make_section_with_flags (abfd
, ".got", flags
);
3563 || ! bfd_set_section_alignment (abfd
, s
, 4))
3566 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3567 linker script because we don't want to define the symbol if we
3568 are not creating a global offset table. */
3570 if (! (_bfd_generic_link_add_one_symbol
3571 (info
, abfd
, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL
, s
,
3572 0, NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
3575 h
= (struct elf_link_hash_entry
*) bh
;
3578 h
->type
= STT_OBJECT
;
3579 elf_hash_table (info
)->hgot
= h
;
3582 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
3585 amt
= sizeof (struct mips_got_info
);
3586 g
= bfd_alloc (abfd
, amt
);
3589 g
->global_gotsym
= NULL
;
3590 g
->global_gotno
= 0;
3592 g
->local_gotno
= MIPS_RESERVED_GOTNO
;
3593 g
->assigned_gotno
= MIPS_RESERVED_GOTNO
;
3596 g
->tls_ldm_offset
= MINUS_ONE
;
3597 g
->got_entries
= htab_try_create (1, mips_elf_got_entry_hash
,
3598 mips_elf_got_entry_eq
, NULL
);
3599 if (g
->got_entries
== NULL
)
3601 mips_elf_section_data (s
)->u
.got_info
= g
;
3602 mips_elf_section_data (s
)->elf
.this_hdr
.sh_flags
3603 |= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
3608 /* Calculate the value produced by the RELOCATION (which comes from
3609 the INPUT_BFD). The ADDEND is the addend to use for this
3610 RELOCATION; RELOCATION->R_ADDEND is ignored.
3612 The result of the relocation calculation is stored in VALUEP.
3613 REQUIRE_JALXP indicates whether or not the opcode used with this
3614 relocation must be JALX.
3616 This function returns bfd_reloc_continue if the caller need take no
3617 further action regarding this relocation, bfd_reloc_notsupported if
3618 something goes dramatically wrong, bfd_reloc_overflow if an
3619 overflow occurs, and bfd_reloc_ok to indicate success. */
3621 static bfd_reloc_status_type
3622 mips_elf_calculate_relocation (bfd
*abfd
, bfd
*input_bfd
,
3623 asection
*input_section
,
3624 struct bfd_link_info
*info
,
3625 const Elf_Internal_Rela
*relocation
,
3626 bfd_vma addend
, reloc_howto_type
*howto
,
3627 Elf_Internal_Sym
*local_syms
,
3628 asection
**local_sections
, bfd_vma
*valuep
,
3629 const char **namep
, bfd_boolean
*require_jalxp
,
3630 bfd_boolean save_addend
)
3632 /* The eventual value we will return. */
3634 /* The address of the symbol against which the relocation is
3637 /* The final GP value to be used for the relocatable, executable, or
3638 shared object file being produced. */
3639 bfd_vma gp
= MINUS_ONE
;
3640 /* The place (section offset or address) of the storage unit being
3643 /* The value of GP used to create the relocatable object. */
3644 bfd_vma gp0
= MINUS_ONE
;
3645 /* The offset into the global offset table at which the address of
3646 the relocation entry symbol, adjusted by the addend, resides
3647 during execution. */
3648 bfd_vma g
= MINUS_ONE
;
3649 /* The section in which the symbol referenced by the relocation is
3651 asection
*sec
= NULL
;
3652 struct mips_elf_link_hash_entry
*h
= NULL
;
3653 /* TRUE if the symbol referred to by this relocation is a local
3655 bfd_boolean local_p
, was_local_p
;
3656 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3657 bfd_boolean gp_disp_p
= FALSE
;
3658 /* TRUE if the symbol referred to by this relocation is
3659 "__gnu_local_gp". */
3660 bfd_boolean gnu_local_gp_p
= FALSE
;
3661 Elf_Internal_Shdr
*symtab_hdr
;
3663 unsigned long r_symndx
;
3665 /* TRUE if overflow occurred during the calculation of the
3666 relocation value. */
3667 bfd_boolean overflowed_p
;
3668 /* TRUE if this relocation refers to a MIPS16 function. */
3669 bfd_boolean target_is_16_bit_code_p
= FALSE
;
3671 /* Parse the relocation. */
3672 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
3673 r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
3674 p
= (input_section
->output_section
->vma
3675 + input_section
->output_offset
3676 + relocation
->r_offset
);
3678 /* Assume that there will be no overflow. */
3679 overflowed_p
= FALSE
;
3681 /* Figure out whether or not the symbol is local, and get the offset
3682 used in the array of hash table entries. */
3683 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3684 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
3685 local_sections
, FALSE
);
3686 was_local_p
= local_p
;
3687 if (! elf_bad_symtab (input_bfd
))
3688 extsymoff
= symtab_hdr
->sh_info
;
3691 /* The symbol table does not follow the rule that local symbols
3692 must come before globals. */
3696 /* Figure out the value of the symbol. */
3699 Elf_Internal_Sym
*sym
;
3701 sym
= local_syms
+ r_symndx
;
3702 sec
= local_sections
[r_symndx
];
3704 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
3705 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
3706 || (sec
->flags
& SEC_MERGE
))
3707 symbol
+= sym
->st_value
;
3708 if ((sec
->flags
& SEC_MERGE
)
3709 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
3711 addend
= _bfd_elf_rel_local_sym (abfd
, sym
, &sec
, addend
);
3713 addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
3716 /* MIPS16 text labels should be treated as odd. */
3717 if (sym
->st_other
== STO_MIPS16
)
3720 /* Record the name of this symbol, for our caller. */
3721 *namep
= bfd_elf_string_from_elf_section (input_bfd
,
3722 symtab_hdr
->sh_link
,
3725 *namep
= bfd_section_name (input_bfd
, sec
);
3727 target_is_16_bit_code_p
= (sym
->st_other
== STO_MIPS16
);
3731 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3733 /* For global symbols we look up the symbol in the hash-table. */
3734 h
= ((struct mips_elf_link_hash_entry
*)
3735 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
]);
3736 /* Find the real hash-table entry for this symbol. */
3737 while (h
->root
.root
.type
== bfd_link_hash_indirect
3738 || h
->root
.root
.type
== bfd_link_hash_warning
)
3739 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3741 /* Record the name of this symbol, for our caller. */
3742 *namep
= h
->root
.root
.root
.string
;
3744 /* See if this is the special _gp_disp symbol. Note that such a
3745 symbol must always be a global symbol. */
3746 if (strcmp (*namep
, "_gp_disp") == 0
3747 && ! NEWABI_P (input_bfd
))
3749 /* Relocations against _gp_disp are permitted only with
3750 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3751 if (r_type
!= R_MIPS_HI16
&& r_type
!= R_MIPS_LO16
3752 && r_type
!= R_MIPS16_HI16
&& r_type
!= R_MIPS16_LO16
)
3753 return bfd_reloc_notsupported
;
3757 /* See if this is the special _gp symbol. Note that such a
3758 symbol must always be a global symbol. */
3759 else if (strcmp (*namep
, "__gnu_local_gp") == 0)
3760 gnu_local_gp_p
= TRUE
;
3763 /* If this symbol is defined, calculate its address. Note that
3764 _gp_disp is a magic symbol, always implicitly defined by the
3765 linker, so it's inappropriate to check to see whether or not
3767 else if ((h
->root
.root
.type
== bfd_link_hash_defined
3768 || h
->root
.root
.type
== bfd_link_hash_defweak
)
3769 && h
->root
.root
.u
.def
.section
)
3771 sec
= h
->root
.root
.u
.def
.section
;
3772 if (sec
->output_section
)
3773 symbol
= (h
->root
.root
.u
.def
.value
3774 + sec
->output_section
->vma
3775 + sec
->output_offset
);
3777 symbol
= h
->root
.root
.u
.def
.value
;
3779 else if (h
->root
.root
.type
== bfd_link_hash_undefweak
)
3780 /* We allow relocations against undefined weak symbols, giving
3781 it the value zero, so that you can undefined weak functions
3782 and check to see if they exist by looking at their
3785 else if (info
->unresolved_syms_in_objects
== RM_IGNORE
3786 && ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
3788 else if (strcmp (*namep
, SGI_COMPAT (input_bfd
)
3789 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
3791 /* If this is a dynamic link, we should have created a
3792 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3793 in in _bfd_mips_elf_create_dynamic_sections.
3794 Otherwise, we should define the symbol with a value of 0.
3795 FIXME: It should probably get into the symbol table
3797 BFD_ASSERT (! info
->shared
);
3798 BFD_ASSERT (bfd_get_section_by_name (abfd
, ".dynamic") == NULL
);
3801 else if (ELF_MIPS_IS_OPTIONAL (h
->root
.other
))
3803 /* This is an optional symbol - an Irix specific extension to the
3804 ELF spec. Ignore it for now.
3805 XXX - FIXME - there is more to the spec for OPTIONAL symbols
3806 than simply ignoring them, but we do not handle this for now.
3807 For information see the "64-bit ELF Object File Specification"
3808 which is available from here:
3809 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
3814 if (! ((*info
->callbacks
->undefined_symbol
)
3815 (info
, h
->root
.root
.root
.string
, input_bfd
,
3816 input_section
, relocation
->r_offset
,
3817 (info
->unresolved_syms_in_objects
== RM_GENERATE_ERROR
)
3818 || ELF_ST_VISIBILITY (h
->root
.other
))))
3819 return bfd_reloc_undefined
;
3823 target_is_16_bit_code_p
= (h
->root
.other
== STO_MIPS16
);
3826 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3827 need to redirect the call to the stub, unless we're already *in*
3829 if (r_type
!= R_MIPS16_26
&& !info
->relocatable
3830 && ((h
!= NULL
&& h
->fn_stub
!= NULL
)
3831 || (local_p
&& elf_tdata (input_bfd
)->local_stubs
!= NULL
3832 && elf_tdata (input_bfd
)->local_stubs
[r_symndx
] != NULL
))
3833 && !mips_elf_stub_section_p (input_bfd
, input_section
))
3835 /* This is a 32- or 64-bit call to a 16-bit function. We should
3836 have already noticed that we were going to need the
3839 sec
= elf_tdata (input_bfd
)->local_stubs
[r_symndx
];
3842 BFD_ASSERT (h
->need_fn_stub
);
3846 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
3848 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3849 need to redirect the call to the stub. */
3850 else if (r_type
== R_MIPS16_26
&& !info
->relocatable
3852 && (h
->call_stub
!= NULL
|| h
->call_fp_stub
!= NULL
)
3853 && !target_is_16_bit_code_p
)
3855 /* If both call_stub and call_fp_stub are defined, we can figure
3856 out which one to use by seeing which one appears in the input
3858 if (h
->call_stub
!= NULL
&& h
->call_fp_stub
!= NULL
)
3863 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
3865 if (strncmp (bfd_get_section_name (input_bfd
, o
),
3866 CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
3868 sec
= h
->call_fp_stub
;
3875 else if (h
->call_stub
!= NULL
)
3878 sec
= h
->call_fp_stub
;
3880 BFD_ASSERT (sec
->size
> 0);
3881 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
3884 /* Calls from 16-bit code to 32-bit code and vice versa require the
3885 special jalx instruction. */
3886 *require_jalxp
= (!info
->relocatable
3887 && (((r_type
== R_MIPS16_26
) && !target_is_16_bit_code_p
)
3888 || ((r_type
== R_MIPS_26
) && target_is_16_bit_code_p
)));
3890 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
3891 local_sections
, TRUE
);
3893 /* If we haven't already determined the GOT offset, or the GP value,
3894 and we're going to need it, get it now. */
3897 case R_MIPS_GOT_PAGE
:
3898 case R_MIPS_GOT_OFST
:
3899 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3901 local_p
= local_p
|| _bfd_elf_symbol_refs_local_p (&h
->root
, info
, 1);
3902 if (local_p
|| r_type
== R_MIPS_GOT_OFST
)
3908 case R_MIPS_GOT_DISP
:
3909 case R_MIPS_GOT_HI16
:
3910 case R_MIPS_CALL_HI16
:
3911 case R_MIPS_GOT_LO16
:
3912 case R_MIPS_CALL_LO16
:
3914 case R_MIPS_TLS_GOTTPREL
:
3915 case R_MIPS_TLS_LDM
:
3916 /* Find the index into the GOT where this value is located. */
3917 if (r_type
== R_MIPS_TLS_LDM
)
3919 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
, 0, 0, NULL
,
3922 return bfd_reloc_outofrange
;
3926 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3927 GOT_PAGE relocation that decays to GOT_DISP because the
3928 symbol turns out to be global. The addend is then added
3930 BFD_ASSERT (addend
== 0 || r_type
== R_MIPS_GOT_PAGE
);
3931 g
= mips_elf_global_got_index (elf_hash_table (info
)->dynobj
,
3933 (struct elf_link_hash_entry
*) h
,
3935 if (h
->tls_type
== GOT_NORMAL
3936 && (! elf_hash_table(info
)->dynamic_sections_created
3938 && (info
->symbolic
|| h
->root
.forced_local
)
3939 && h
->root
.def_regular
)))
3941 /* This is a static link or a -Bsymbolic link. The
3942 symbol is defined locally, or was forced to be local.
3943 We must initialize this entry in the GOT. */
3944 bfd
*tmpbfd
= elf_hash_table (info
)->dynobj
;
3945 asection
*sgot
= mips_elf_got_section (tmpbfd
, FALSE
);
3946 MIPS_ELF_PUT_WORD (tmpbfd
, symbol
, sgot
->contents
+ g
);
3949 else if (r_type
== R_MIPS_GOT16
|| r_type
== R_MIPS_CALL16
)
3950 /* There's no need to create a local GOT entry here; the
3951 calculation for a local GOT16 entry does not involve G. */
3955 g
= mips_elf_local_got_index (abfd
, input_bfd
,
3956 info
, symbol
+ addend
, r_symndx
, h
,
3959 return bfd_reloc_outofrange
;
3962 /* Convert GOT indices to actual offsets. */
3963 g
= mips_elf_got_offset_from_index (elf_hash_table (info
)->dynobj
,
3964 abfd
, input_bfd
, g
);
3969 case R_MIPS_GPREL16
:
3970 case R_MIPS_GPREL32
:
3971 case R_MIPS_LITERAL
:
3974 case R_MIPS16_GPREL
:
3975 gp0
= _bfd_get_gp_value (input_bfd
);
3976 gp
= _bfd_get_gp_value (abfd
);
3977 if (elf_hash_table (info
)->dynobj
)
3978 gp
+= mips_elf_adjust_gp (abfd
,
3980 (elf_hash_table (info
)->dynobj
, NULL
),
3991 /* Figure out what kind of relocation is being performed. */
3995 return bfd_reloc_continue
;
3998 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 16);
3999 overflowed_p
= mips_elf_overflow_p (value
, 16);
4006 || (elf_hash_table (info
)->dynamic_sections_created
4008 && h
->root
.def_dynamic
4009 && !h
->root
.def_regular
))
4011 && (input_section
->flags
& SEC_ALLOC
) != 0)
4013 /* If we're creating a shared library, or this relocation is
4014 against a symbol in a shared library, then we can't know
4015 where the symbol will end up. So, we create a relocation
4016 record in the output, and leave the job up to the dynamic
4019 if (!mips_elf_create_dynamic_relocation (abfd
,
4027 return bfd_reloc_undefined
;
4031 if (r_type
!= R_MIPS_REL32
)
4032 value
= symbol
+ addend
;
4036 value
&= howto
->dst_mask
;
4040 value
= symbol
+ addend
- p
;
4041 value
&= howto
->dst_mask
;
4045 /* The calculation for R_MIPS16_26 is just the same as for an
4046 R_MIPS_26. It's only the storage of the relocated field into
4047 the output file that's different. That's handled in
4048 mips_elf_perform_relocation. So, we just fall through to the
4049 R_MIPS_26 case here. */
4052 value
= ((addend
| ((p
+ 4) & 0xf0000000)) + symbol
) >> 2;
4055 value
= (_bfd_mips_elf_sign_extend (addend
, 28) + symbol
) >> 2;
4056 if (h
->root
.root
.type
!= bfd_link_hash_undefweak
)
4057 overflowed_p
= (value
>> 26) != ((p
+ 4) >> 28);
4059 value
&= howto
->dst_mask
;
4062 case R_MIPS_TLS_DTPREL_HI16
:
4063 value
= (mips_elf_high (addend
+ symbol
- dtprel_base (info
))
4067 case R_MIPS_TLS_DTPREL_LO16
:
4068 value
= (symbol
+ addend
- dtprel_base (info
)) & howto
->dst_mask
;
4071 case R_MIPS_TLS_TPREL_HI16
:
4072 value
= (mips_elf_high (addend
+ symbol
- tprel_base (info
))
4076 case R_MIPS_TLS_TPREL_LO16
:
4077 value
= (symbol
+ addend
- tprel_base (info
)) & howto
->dst_mask
;
4084 value
= mips_elf_high (addend
+ symbol
);
4085 value
&= howto
->dst_mask
;
4089 /* For MIPS16 ABI code we generate this sequence
4090 0: li $v0,%hi(_gp_disp)
4091 4: addiupc $v1,%lo(_gp_disp)
4095 So the offsets of hi and lo relocs are the same, but the
4096 $pc is four higher than $t9 would be, so reduce
4097 both reloc addends by 4. */
4098 if (r_type
== R_MIPS16_HI16
)
4099 value
= mips_elf_high (addend
+ gp
- p
- 4);
4101 value
= mips_elf_high (addend
+ gp
- p
);
4102 overflowed_p
= mips_elf_overflow_p (value
, 16);
4109 value
= (symbol
+ addend
) & howto
->dst_mask
;
4112 /* See the comment for R_MIPS16_HI16 above for the reason
4113 for this conditional. */
4114 if (r_type
== R_MIPS16_LO16
)
4115 value
= addend
+ gp
- p
;
4117 value
= addend
+ gp
- p
+ 4;
4118 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4119 for overflow. But, on, say, IRIX5, relocations against
4120 _gp_disp are normally generated from the .cpload
4121 pseudo-op. It generates code that normally looks like
4124 lui $gp,%hi(_gp_disp)
4125 addiu $gp,$gp,%lo(_gp_disp)
4128 Here $t9 holds the address of the function being called,
4129 as required by the MIPS ELF ABI. The R_MIPS_LO16
4130 relocation can easily overflow in this situation, but the
4131 R_MIPS_HI16 relocation will handle the overflow.
4132 Therefore, we consider this a bug in the MIPS ABI, and do
4133 not check for overflow here. */
4137 case R_MIPS_LITERAL
:
4138 /* Because we don't merge literal sections, we can handle this
4139 just like R_MIPS_GPREL16. In the long run, we should merge
4140 shared literals, and then we will need to additional work
4145 case R_MIPS16_GPREL
:
4146 /* The R_MIPS16_GPREL performs the same calculation as
4147 R_MIPS_GPREL16, but stores the relocated bits in a different
4148 order. We don't need to do anything special here; the
4149 differences are handled in mips_elf_perform_relocation. */
4150 case R_MIPS_GPREL16
:
4151 /* Only sign-extend the addend if it was extracted from the
4152 instruction. If the addend was separate, leave it alone,
4153 otherwise we may lose significant bits. */
4154 if (howto
->partial_inplace
)
4155 addend
= _bfd_mips_elf_sign_extend (addend
, 16);
4156 value
= symbol
+ addend
- gp
;
4157 /* If the symbol was local, any earlier relocatable links will
4158 have adjusted its addend with the gp offset, so compensate
4159 for that now. Don't do it for symbols forced local in this
4160 link, though, since they won't have had the gp offset applied
4164 overflowed_p
= mips_elf_overflow_p (value
, 16);
4173 /* The special case is when the symbol is forced to be local. We
4174 need the full address in the GOT since no R_MIPS_LO16 relocation
4176 forced
= ! mips_elf_local_relocation_p (input_bfd
, relocation
,
4177 local_sections
, FALSE
);
4178 value
= mips_elf_got16_entry (abfd
, input_bfd
, info
,
4179 symbol
+ addend
, forced
);
4180 if (value
== MINUS_ONE
)
4181 return bfd_reloc_outofrange
;
4183 = mips_elf_got_offset_from_index (elf_hash_table (info
)->dynobj
,
4184 abfd
, input_bfd
, value
);
4185 overflowed_p
= mips_elf_overflow_p (value
, 16);
4192 case R_MIPS_TLS_GOTTPREL
:
4193 case R_MIPS_TLS_LDM
:
4194 case R_MIPS_GOT_DISP
:
4197 overflowed_p
= mips_elf_overflow_p (value
, 16);
4200 case R_MIPS_GPREL32
:
4201 value
= (addend
+ symbol
+ gp0
- gp
);
4203 value
&= howto
->dst_mask
;
4207 case R_MIPS_GNU_REL16_S2
:
4208 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 18) - p
;
4209 overflowed_p
= mips_elf_overflow_p (value
, 18);
4210 value
= (value
>> 2) & howto
->dst_mask
;
4213 case R_MIPS_GOT_HI16
:
4214 case R_MIPS_CALL_HI16
:
4215 /* We're allowed to handle these two relocations identically.
4216 The dynamic linker is allowed to handle the CALL relocations
4217 differently by creating a lazy evaluation stub. */
4219 value
= mips_elf_high (value
);
4220 value
&= howto
->dst_mask
;
4223 case R_MIPS_GOT_LO16
:
4224 case R_MIPS_CALL_LO16
:
4225 value
= g
& howto
->dst_mask
;
4228 case R_MIPS_GOT_PAGE
:
4229 /* GOT_PAGE relocations that reference non-local symbols decay
4230 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4234 value
= mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, NULL
);
4235 if (value
== MINUS_ONE
)
4236 return bfd_reloc_outofrange
;
4237 value
= mips_elf_got_offset_from_index (elf_hash_table (info
)->dynobj
,
4238 abfd
, input_bfd
, value
);
4239 overflowed_p
= mips_elf_overflow_p (value
, 16);
4242 case R_MIPS_GOT_OFST
:
4244 mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, &value
);
4247 overflowed_p
= mips_elf_overflow_p (value
, 16);
4251 value
= symbol
- addend
;
4252 value
&= howto
->dst_mask
;
4256 value
= mips_elf_higher (addend
+ symbol
);
4257 value
&= howto
->dst_mask
;
4260 case R_MIPS_HIGHEST
:
4261 value
= mips_elf_highest (addend
+ symbol
);
4262 value
&= howto
->dst_mask
;
4265 case R_MIPS_SCN_DISP
:
4266 value
= symbol
+ addend
- sec
->output_offset
;
4267 value
&= howto
->dst_mask
;
4271 /* This relocation is only a hint. In some cases, we optimize
4272 it into a bal instruction. But we don't try to optimize
4273 branches to the PLT; that will wind up wasting time. */
4274 if (h
!= NULL
&& h
->root
.plt
.offset
!= (bfd_vma
) -1)
4275 return bfd_reloc_continue
;
4276 value
= symbol
+ addend
;
4280 case R_MIPS_GNU_VTINHERIT
:
4281 case R_MIPS_GNU_VTENTRY
:
4282 /* We don't do anything with these at present. */
4283 return bfd_reloc_continue
;
4286 /* An unrecognized relocation type. */
4287 return bfd_reloc_notsupported
;
4290 /* Store the VALUE for our caller. */
4292 return overflowed_p
? bfd_reloc_overflow
: bfd_reloc_ok
;
4295 /* Obtain the field relocated by RELOCATION. */
4298 mips_elf_obtain_contents (reloc_howto_type
*howto
,
4299 const Elf_Internal_Rela
*relocation
,
4300 bfd
*input_bfd
, bfd_byte
*contents
)
4303 bfd_byte
*location
= contents
+ relocation
->r_offset
;
4305 /* Obtain the bytes. */
4306 x
= bfd_get ((8 * bfd_get_reloc_size (howto
)), input_bfd
, location
);
4311 /* It has been determined that the result of the RELOCATION is the
4312 VALUE. Use HOWTO to place VALUE into the output file at the
4313 appropriate position. The SECTION is the section to which the
4314 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4315 for the relocation must be either JAL or JALX, and it is
4316 unconditionally converted to JALX.
4318 Returns FALSE if anything goes wrong. */
4321 mips_elf_perform_relocation (struct bfd_link_info
*info
,
4322 reloc_howto_type
*howto
,
4323 const Elf_Internal_Rela
*relocation
,
4324 bfd_vma value
, bfd
*input_bfd
,
4325 asection
*input_section
, bfd_byte
*contents
,
4326 bfd_boolean require_jalx
)
4330 int r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
4332 /* Figure out where the relocation is occurring. */
4333 location
= contents
+ relocation
->r_offset
;
4335 _bfd_mips16_elf_reloc_unshuffle (input_bfd
, r_type
, FALSE
, location
);
4337 /* Obtain the current value. */
4338 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
4340 /* Clear the field we are setting. */
4341 x
&= ~howto
->dst_mask
;
4343 /* Set the field. */
4344 x
|= (value
& howto
->dst_mask
);
4346 /* If required, turn JAL into JALX. */
4350 bfd_vma opcode
= x
>> 26;
4351 bfd_vma jalx_opcode
;
4353 /* Check to see if the opcode is already JAL or JALX. */
4354 if (r_type
== R_MIPS16_26
)
4356 ok
= ((opcode
== 0x6) || (opcode
== 0x7));
4361 ok
= ((opcode
== 0x3) || (opcode
== 0x1d));
4365 /* If the opcode is not JAL or JALX, there's a problem. */
4368 (*_bfd_error_handler
)
4369 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4372 (unsigned long) relocation
->r_offset
);
4373 bfd_set_error (bfd_error_bad_value
);
4377 /* Make this the JALX opcode. */
4378 x
= (x
& ~(0x3f << 26)) | (jalx_opcode
<< 26);
4381 /* On the RM9000, bal is faster than jal, because bal uses branch
4382 prediction hardware. If we are linking for the RM9000, and we
4383 see jal, and bal fits, use it instead. Note that this
4384 transformation should be safe for all architectures. */
4385 if (bfd_get_mach (input_bfd
) == bfd_mach_mips9000
4386 && !info
->relocatable
4388 && ((r_type
== R_MIPS_26
&& (x
>> 26) == 0x3) /* jal addr */
4389 || (r_type
== R_MIPS_JALR
&& x
== 0x0320f809))) /* jalr t9 */
4395 addr
= (input_section
->output_section
->vma
4396 + input_section
->output_offset
4397 + relocation
->r_offset
4399 if (r_type
== R_MIPS_26
)
4400 dest
= (value
<< 2) | ((addr
>> 28) << 28);
4404 if (off
<= 0x1ffff && off
>= -0x20000)
4405 x
= 0x04110000 | (((bfd_vma
) off
>> 2) & 0xffff); /* bal addr */
4408 /* Put the value into the output. */
4409 bfd_put (8 * bfd_get_reloc_size (howto
), input_bfd
, x
, location
);
4411 _bfd_mips16_elf_reloc_shuffle(input_bfd
, r_type
, !info
->relocatable
,
4417 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4420 mips_elf_stub_section_p (bfd
*abfd ATTRIBUTE_UNUSED
, asection
*section
)
4422 const char *name
= bfd_get_section_name (abfd
, section
);
4424 return (strncmp (name
, FN_STUB
, sizeof FN_STUB
- 1) == 0
4425 || strncmp (name
, CALL_STUB
, sizeof CALL_STUB
- 1) == 0
4426 || strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0);
4429 /* Add room for N relocations to the .rel.dyn section in ABFD. */
4432 mips_elf_allocate_dynamic_relocations (bfd
*abfd
, unsigned int n
)
4436 s
= mips_elf_rel_dyn_section (abfd
, FALSE
);
4437 BFD_ASSERT (s
!= NULL
);
4441 /* Make room for a null element. */
4442 s
->size
+= MIPS_ELF_REL_SIZE (abfd
);
4445 s
->size
+= n
* MIPS_ELF_REL_SIZE (abfd
);
4448 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4449 is the original relocation, which is now being transformed into a
4450 dynamic relocation. The ADDENDP is adjusted if necessary; the
4451 caller should store the result in place of the original addend. */
4454 mips_elf_create_dynamic_relocation (bfd
*output_bfd
,
4455 struct bfd_link_info
*info
,
4456 const Elf_Internal_Rela
*rel
,
4457 struct mips_elf_link_hash_entry
*h
,
4458 asection
*sec
, bfd_vma symbol
,
4459 bfd_vma
*addendp
, asection
*input_section
)
4461 Elf_Internal_Rela outrel
[3];
4466 bfd_boolean defined_p
;
4468 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
4469 dynobj
= elf_hash_table (info
)->dynobj
;
4470 sreloc
= mips_elf_rel_dyn_section (dynobj
, FALSE
);
4471 BFD_ASSERT (sreloc
!= NULL
);
4472 BFD_ASSERT (sreloc
->contents
!= NULL
);
4473 BFD_ASSERT (sreloc
->reloc_count
* MIPS_ELF_REL_SIZE (output_bfd
)
4476 outrel
[0].r_offset
=
4477 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[0].r_offset
);
4478 outrel
[1].r_offset
=
4479 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[1].r_offset
);
4480 outrel
[2].r_offset
=
4481 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[2].r_offset
);
4483 if (outrel
[0].r_offset
== MINUS_ONE
)
4484 /* The relocation field has been deleted. */
4487 if (outrel
[0].r_offset
== MINUS_TWO
)
4489 /* The relocation field has been converted into a relative value of
4490 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4491 the field to be fully relocated, so add in the symbol's value. */
4496 /* We must now calculate the dynamic symbol table index to use
4497 in the relocation. */
4499 && (!h
->root
.def_regular
4500 || (info
->shared
&& !info
->symbolic
&& !h
->root
.forced_local
)))
4502 indx
= h
->root
.dynindx
;
4503 if (SGI_COMPAT (output_bfd
))
4504 defined_p
= h
->root
.def_regular
;
4506 /* ??? glibc's ld.so just adds the final GOT entry to the
4507 relocation field. It therefore treats relocs against
4508 defined symbols in the same way as relocs against
4509 undefined symbols. */
4514 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
4516 else if (sec
== NULL
|| sec
->owner
== NULL
)
4518 bfd_set_error (bfd_error_bad_value
);
4523 indx
= elf_section_data (sec
->output_section
)->dynindx
;
4528 /* Instead of generating a relocation using the section
4529 symbol, we may as well make it a fully relative
4530 relocation. We want to avoid generating relocations to
4531 local symbols because we used to generate them
4532 incorrectly, without adding the original symbol value,
4533 which is mandated by the ABI for section symbols. In
4534 order to give dynamic loaders and applications time to
4535 phase out the incorrect use, we refrain from emitting
4536 section-relative relocations. It's not like they're
4537 useful, after all. This should be a bit more efficient
4539 /* ??? Although this behavior is compatible with glibc's ld.so,
4540 the ABI says that relocations against STN_UNDEF should have
4541 a symbol value of 0. Irix rld honors this, so relocations
4542 against STN_UNDEF have no effect. */
4543 if (!SGI_COMPAT (output_bfd
))
4548 /* If the relocation was previously an absolute relocation and
4549 this symbol will not be referred to by the relocation, we must
4550 adjust it by the value we give it in the dynamic symbol table.
4551 Otherwise leave the job up to the dynamic linker. */
4552 if (defined_p
&& r_type
!= R_MIPS_REL32
)
4555 /* The relocation is always an REL32 relocation because we don't
4556 know where the shared library will wind up at load-time. */
4557 outrel
[0].r_info
= ELF_R_INFO (output_bfd
, (unsigned long) indx
,
4559 /* For strict adherence to the ABI specification, we should
4560 generate a R_MIPS_64 relocation record by itself before the
4561 _REL32/_64 record as well, such that the addend is read in as
4562 a 64-bit value (REL32 is a 32-bit relocation, after all).
4563 However, since none of the existing ELF64 MIPS dynamic
4564 loaders seems to care, we don't waste space with these
4565 artificial relocations. If this turns out to not be true,
4566 mips_elf_allocate_dynamic_relocation() should be tweaked so
4567 as to make room for a pair of dynamic relocations per
4568 invocation if ABI_64_P, and here we should generate an
4569 additional relocation record with R_MIPS_64 by itself for a
4570 NULL symbol before this relocation record. */
4571 outrel
[1].r_info
= ELF_R_INFO (output_bfd
, 0,
4572 ABI_64_P (output_bfd
)
4575 outrel
[2].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_NONE
);
4577 /* Adjust the output offset of the relocation to reference the
4578 correct location in the output file. */
4579 outrel
[0].r_offset
+= (input_section
->output_section
->vma
4580 + input_section
->output_offset
);
4581 outrel
[1].r_offset
+= (input_section
->output_section
->vma
4582 + input_section
->output_offset
);
4583 outrel
[2].r_offset
+= (input_section
->output_section
->vma
4584 + input_section
->output_offset
);
4586 /* Put the relocation back out. We have to use the special
4587 relocation outputter in the 64-bit case since the 64-bit
4588 relocation format is non-standard. */
4589 if (ABI_64_P (output_bfd
))
4591 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
4592 (output_bfd
, &outrel
[0],
4594 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
4597 bfd_elf32_swap_reloc_out
4598 (output_bfd
, &outrel
[0],
4599 (sreloc
->contents
+ sreloc
->reloc_count
* sizeof (Elf32_External_Rel
)));
4601 /* We've now added another relocation. */
4602 ++sreloc
->reloc_count
;
4604 /* Make sure the output section is writable. The dynamic linker
4605 will be writing to it. */
4606 elf_section_data (input_section
->output_section
)->this_hdr
.sh_flags
4609 /* On IRIX5, make an entry of compact relocation info. */
4610 if (IRIX_COMPAT (output_bfd
) == ict_irix5
)
4612 asection
*scpt
= bfd_get_section_by_name (dynobj
, ".compact_rel");
4617 Elf32_crinfo cptrel
;
4619 mips_elf_set_cr_format (cptrel
, CRF_MIPS_LONG
);
4620 cptrel
.vaddr
= (rel
->r_offset
4621 + input_section
->output_section
->vma
4622 + input_section
->output_offset
);
4623 if (r_type
== R_MIPS_REL32
)
4624 mips_elf_set_cr_type (cptrel
, CRT_MIPS_REL32
);
4626 mips_elf_set_cr_type (cptrel
, CRT_MIPS_WORD
);
4627 mips_elf_set_cr_dist2to (cptrel
, 0);
4628 cptrel
.konst
= *addendp
;
4630 cr
= (scpt
->contents
4631 + sizeof (Elf32_External_compact_rel
));
4632 mips_elf_set_cr_relvaddr (cptrel
, 0);
4633 bfd_elf32_swap_crinfo_out (output_bfd
, &cptrel
,
4634 ((Elf32_External_crinfo
*) cr
4635 + scpt
->reloc_count
));
4636 ++scpt
->reloc_count
;
4643 /* Return the MACH for a MIPS e_flags value. */
4646 _bfd_elf_mips_mach (flagword flags
)
4648 switch (flags
& EF_MIPS_MACH
)
4650 case E_MIPS_MACH_3900
:
4651 return bfd_mach_mips3900
;
4653 case E_MIPS_MACH_4010
:
4654 return bfd_mach_mips4010
;
4656 case E_MIPS_MACH_4100
:
4657 return bfd_mach_mips4100
;
4659 case E_MIPS_MACH_4111
:
4660 return bfd_mach_mips4111
;
4662 case E_MIPS_MACH_4120
:
4663 return bfd_mach_mips4120
;
4665 case E_MIPS_MACH_4650
:
4666 return bfd_mach_mips4650
;
4668 case E_MIPS_MACH_5400
:
4669 return bfd_mach_mips5400
;
4671 case E_MIPS_MACH_5500
:
4672 return bfd_mach_mips5500
;
4674 case E_MIPS_MACH_9000
:
4675 return bfd_mach_mips9000
;
4677 case E_MIPS_MACH_SB1
:
4678 return bfd_mach_mips_sb1
;
4681 switch (flags
& EF_MIPS_ARCH
)
4685 return bfd_mach_mips3000
;
4689 return bfd_mach_mips6000
;
4693 return bfd_mach_mips4000
;
4697 return bfd_mach_mips8000
;
4701 return bfd_mach_mips5
;
4704 case E_MIPS_ARCH_32
:
4705 return bfd_mach_mipsisa32
;
4708 case E_MIPS_ARCH_64
:
4709 return bfd_mach_mipsisa64
;
4712 case E_MIPS_ARCH_32R2
:
4713 return bfd_mach_mipsisa32r2
;
4716 case E_MIPS_ARCH_64R2
:
4717 return bfd_mach_mipsisa64r2
;
4725 /* Return printable name for ABI. */
4727 static INLINE
char *
4728 elf_mips_abi_name (bfd
*abfd
)
4732 flags
= elf_elfheader (abfd
)->e_flags
;
4733 switch (flags
& EF_MIPS_ABI
)
4736 if (ABI_N32_P (abfd
))
4738 else if (ABI_64_P (abfd
))
4742 case E_MIPS_ABI_O32
:
4744 case E_MIPS_ABI_O64
:
4746 case E_MIPS_ABI_EABI32
:
4748 case E_MIPS_ABI_EABI64
:
4751 return "unknown abi";
4755 /* MIPS ELF uses two common sections. One is the usual one, and the
4756 other is for small objects. All the small objects are kept
4757 together, and then referenced via the gp pointer, which yields
4758 faster assembler code. This is what we use for the small common
4759 section. This approach is copied from ecoff.c. */
4760 static asection mips_elf_scom_section
;
4761 static asymbol mips_elf_scom_symbol
;
4762 static asymbol
*mips_elf_scom_symbol_ptr
;
4764 /* MIPS ELF also uses an acommon section, which represents an
4765 allocated common symbol which may be overridden by a
4766 definition in a shared library. */
4767 static asection mips_elf_acom_section
;
4768 static asymbol mips_elf_acom_symbol
;
4769 static asymbol
*mips_elf_acom_symbol_ptr
;
4771 /* Handle the special MIPS section numbers that a symbol may use.
4772 This is used for both the 32-bit and the 64-bit ABI. */
4775 _bfd_mips_elf_symbol_processing (bfd
*abfd
, asymbol
*asym
)
4777 elf_symbol_type
*elfsym
;
4779 elfsym
= (elf_symbol_type
*) asym
;
4780 switch (elfsym
->internal_elf_sym
.st_shndx
)
4782 case SHN_MIPS_ACOMMON
:
4783 /* This section is used in a dynamically linked executable file.
4784 It is an allocated common section. The dynamic linker can
4785 either resolve these symbols to something in a shared
4786 library, or it can just leave them here. For our purposes,
4787 we can consider these symbols to be in a new section. */
4788 if (mips_elf_acom_section
.name
== NULL
)
4790 /* Initialize the acommon section. */
4791 mips_elf_acom_section
.name
= ".acommon";
4792 mips_elf_acom_section
.flags
= SEC_ALLOC
;
4793 mips_elf_acom_section
.output_section
= &mips_elf_acom_section
;
4794 mips_elf_acom_section
.symbol
= &mips_elf_acom_symbol
;
4795 mips_elf_acom_section
.symbol_ptr_ptr
= &mips_elf_acom_symbol_ptr
;
4796 mips_elf_acom_symbol
.name
= ".acommon";
4797 mips_elf_acom_symbol
.flags
= BSF_SECTION_SYM
;
4798 mips_elf_acom_symbol
.section
= &mips_elf_acom_section
;
4799 mips_elf_acom_symbol_ptr
= &mips_elf_acom_symbol
;
4801 asym
->section
= &mips_elf_acom_section
;
4805 /* Common symbols less than the GP size are automatically
4806 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4807 if (asym
->value
> elf_gp_size (abfd
)
4808 || IRIX_COMPAT (abfd
) == ict_irix6
)
4811 case SHN_MIPS_SCOMMON
:
4812 if (mips_elf_scom_section
.name
== NULL
)
4814 /* Initialize the small common section. */
4815 mips_elf_scom_section
.name
= ".scommon";
4816 mips_elf_scom_section
.flags
= SEC_IS_COMMON
;
4817 mips_elf_scom_section
.output_section
= &mips_elf_scom_section
;
4818 mips_elf_scom_section
.symbol
= &mips_elf_scom_symbol
;
4819 mips_elf_scom_section
.symbol_ptr_ptr
= &mips_elf_scom_symbol_ptr
;
4820 mips_elf_scom_symbol
.name
= ".scommon";
4821 mips_elf_scom_symbol
.flags
= BSF_SECTION_SYM
;
4822 mips_elf_scom_symbol
.section
= &mips_elf_scom_section
;
4823 mips_elf_scom_symbol_ptr
= &mips_elf_scom_symbol
;
4825 asym
->section
= &mips_elf_scom_section
;
4826 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
4829 case SHN_MIPS_SUNDEFINED
:
4830 asym
->section
= bfd_und_section_ptr
;
4835 asection
*section
= bfd_get_section_by_name (abfd
, ".text");
4837 BFD_ASSERT (SGI_COMPAT (abfd
));
4838 if (section
!= NULL
)
4840 asym
->section
= section
;
4841 /* MIPS_TEXT is a bit special, the address is not an offset
4842 to the base of the .text section. So substract the section
4843 base address to make it an offset. */
4844 asym
->value
-= section
->vma
;
4851 asection
*section
= bfd_get_section_by_name (abfd
, ".data");
4853 BFD_ASSERT (SGI_COMPAT (abfd
));
4854 if (section
!= NULL
)
4856 asym
->section
= section
;
4857 /* MIPS_DATA is a bit special, the address is not an offset
4858 to the base of the .data section. So substract the section
4859 base address to make it an offset. */
4860 asym
->value
-= section
->vma
;
4867 /* Implement elf_backend_eh_frame_address_size. This differs from
4868 the default in the way it handles EABI64.
4870 EABI64 was originally specified as an LP64 ABI, and that is what
4871 -mabi=eabi normally gives on a 64-bit target. However, gcc has
4872 historically accepted the combination of -mabi=eabi and -mlong32,
4873 and this ILP32 variation has become semi-official over time.
4874 Both forms use elf32 and have pointer-sized FDE addresses.
4876 If an EABI object was generated by GCC 4.0 or above, it will have
4877 an empty .gcc_compiled_longXX section, where XX is the size of longs
4878 in bits. Unfortunately, ILP32 objects generated by earlier compilers
4879 have no special marking to distinguish them from LP64 objects.
4881 We don't want users of the official LP64 ABI to be punished for the
4882 existence of the ILP32 variant, but at the same time, we don't want
4883 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
4884 We therefore take the following approach:
4886 - If ABFD contains a .gcc_compiled_longXX section, use it to
4887 determine the pointer size.
4889 - Otherwise check the type of the first relocation. Assume that
4890 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
4894 The second check is enough to detect LP64 objects generated by pre-4.0
4895 compilers because, in the kind of output generated by those compilers,
4896 the first relocation will be associated with either a CIE personality
4897 routine or an FDE start address. Furthermore, the compilers never
4898 used a special (non-pointer) encoding for this ABI.
4900 Checking the relocation type should also be safe because there is no
4901 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
4905 _bfd_mips_elf_eh_frame_address_size (bfd
*abfd
, asection
*sec
)
4907 if (elf_elfheader (abfd
)->e_ident
[EI_CLASS
] == ELFCLASS64
)
4909 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
4911 bfd_boolean long32_p
, long64_p
;
4913 long32_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long32") != 0;
4914 long64_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long64") != 0;
4915 if (long32_p
&& long64_p
)
4922 if (sec
->reloc_count
> 0
4923 && elf_section_data (sec
)->relocs
!= NULL
4924 && (ELF32_R_TYPE (elf_section_data (sec
)->relocs
[0].r_info
)
4933 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4934 relocations against two unnamed section symbols to resolve to the
4935 same address. For example, if we have code like:
4937 lw $4,%got_disp(.data)($gp)
4938 lw $25,%got_disp(.text)($gp)
4941 then the linker will resolve both relocations to .data and the program
4942 will jump there rather than to .text.
4944 We can work around this problem by giving names to local section symbols.
4945 This is also what the MIPSpro tools do. */
4948 _bfd_mips_elf_name_local_section_symbols (bfd
*abfd
)
4950 return SGI_COMPAT (abfd
);
4953 /* Work over a section just before writing it out. This routine is
4954 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4955 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4959 _bfd_mips_elf_section_processing (bfd
*abfd
, Elf_Internal_Shdr
*hdr
)
4961 if (hdr
->sh_type
== SHT_MIPS_REGINFO
4962 && hdr
->sh_size
> 0)
4966 BFD_ASSERT (hdr
->sh_size
== sizeof (Elf32_External_RegInfo
));
4967 BFD_ASSERT (hdr
->contents
== NULL
);
4970 hdr
->sh_offset
+ sizeof (Elf32_External_RegInfo
) - 4,
4973 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
4974 if (bfd_bwrite (buf
, 4, abfd
) != 4)
4978 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
4979 && hdr
->bfd_section
!= NULL
4980 && mips_elf_section_data (hdr
->bfd_section
) != NULL
4981 && mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
!= NULL
)
4983 bfd_byte
*contents
, *l
, *lend
;
4985 /* We stored the section contents in the tdata field in the
4986 set_section_contents routine. We save the section contents
4987 so that we don't have to read them again.
4988 At this point we know that elf_gp is set, so we can look
4989 through the section contents to see if there is an
4990 ODK_REGINFO structure. */
4992 contents
= mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
;
4994 lend
= contents
+ hdr
->sh_size
;
4995 while (l
+ sizeof (Elf_External_Options
) <= lend
)
4997 Elf_Internal_Options intopt
;
4999 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
5001 if (intopt
.size
< sizeof (Elf_External_Options
))
5003 (*_bfd_error_handler
)
5004 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5005 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
5008 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
5015 + sizeof (Elf_External_Options
)
5016 + (sizeof (Elf64_External_RegInfo
) - 8)),
5019 H_PUT_64 (abfd
, elf_gp (abfd
), buf
);
5020 if (bfd_bwrite (buf
, 8, abfd
) != 8)
5023 else if (intopt
.kind
== ODK_REGINFO
)
5030 + sizeof (Elf_External_Options
)
5031 + (sizeof (Elf32_External_RegInfo
) - 4)),
5034 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
5035 if (bfd_bwrite (buf
, 4, abfd
) != 4)
5042 if (hdr
->bfd_section
!= NULL
)
5044 const char *name
= bfd_get_section_name (abfd
, hdr
->bfd_section
);
5046 if (strcmp (name
, ".sdata") == 0
5047 || strcmp (name
, ".lit8") == 0
5048 || strcmp (name
, ".lit4") == 0)
5050 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
5051 hdr
->sh_type
= SHT_PROGBITS
;
5053 else if (strcmp (name
, ".sbss") == 0)
5055 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
5056 hdr
->sh_type
= SHT_NOBITS
;
5058 else if (strcmp (name
, ".srdata") == 0)
5060 hdr
->sh_flags
|= SHF_ALLOC
| SHF_MIPS_GPREL
;
5061 hdr
->sh_type
= SHT_PROGBITS
;
5063 else if (strcmp (name
, ".compact_rel") == 0)
5066 hdr
->sh_type
= SHT_PROGBITS
;
5068 else if (strcmp (name
, ".rtproc") == 0)
5070 if (hdr
->sh_addralign
!= 0 && hdr
->sh_entsize
== 0)
5072 unsigned int adjust
;
5074 adjust
= hdr
->sh_size
% hdr
->sh_addralign
;
5076 hdr
->sh_size
+= hdr
->sh_addralign
- adjust
;
5084 /* Handle a MIPS specific section when reading an object file. This
5085 is called when elfcode.h finds a section with an unknown type.
5086 This routine supports both the 32-bit and 64-bit ELF ABI.
5088 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5092 _bfd_mips_elf_section_from_shdr (bfd
*abfd
,
5093 Elf_Internal_Shdr
*hdr
,
5099 /* There ought to be a place to keep ELF backend specific flags, but
5100 at the moment there isn't one. We just keep track of the
5101 sections by their name, instead. Fortunately, the ABI gives
5102 suggested names for all the MIPS specific sections, so we will
5103 probably get away with this. */
5104 switch (hdr
->sh_type
)
5106 case SHT_MIPS_LIBLIST
:
5107 if (strcmp (name
, ".liblist") != 0)
5111 if (strcmp (name
, ".msym") != 0)
5114 case SHT_MIPS_CONFLICT
:
5115 if (strcmp (name
, ".conflict") != 0)
5118 case SHT_MIPS_GPTAB
:
5119 if (strncmp (name
, ".gptab.", sizeof ".gptab." - 1) != 0)
5122 case SHT_MIPS_UCODE
:
5123 if (strcmp (name
, ".ucode") != 0)
5126 case SHT_MIPS_DEBUG
:
5127 if (strcmp (name
, ".mdebug") != 0)
5129 flags
= SEC_DEBUGGING
;
5131 case SHT_MIPS_REGINFO
:
5132 if (strcmp (name
, ".reginfo") != 0
5133 || hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
5135 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
5137 case SHT_MIPS_IFACE
:
5138 if (strcmp (name
, ".MIPS.interfaces") != 0)
5141 case SHT_MIPS_CONTENT
:
5142 if (strncmp (name
, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
5145 case SHT_MIPS_OPTIONS
:
5146 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
5149 case SHT_MIPS_DWARF
:
5150 if (strncmp (name
, ".debug_", sizeof ".debug_" - 1) != 0)
5153 case SHT_MIPS_SYMBOL_LIB
:
5154 if (strcmp (name
, ".MIPS.symlib") != 0)
5157 case SHT_MIPS_EVENTS
:
5158 if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
5159 && strncmp (name
, ".MIPS.post_rel",
5160 sizeof ".MIPS.post_rel" - 1) != 0)
5167 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
5172 if (! bfd_set_section_flags (abfd
, hdr
->bfd_section
,
5173 (bfd_get_section_flags (abfd
,
5179 /* FIXME: We should record sh_info for a .gptab section. */
5181 /* For a .reginfo section, set the gp value in the tdata information
5182 from the contents of this section. We need the gp value while
5183 processing relocs, so we just get it now. The .reginfo section
5184 is not used in the 64-bit MIPS ELF ABI. */
5185 if (hdr
->sh_type
== SHT_MIPS_REGINFO
)
5187 Elf32_External_RegInfo ext
;
5190 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
,
5191 &ext
, 0, sizeof ext
))
5193 bfd_mips_elf32_swap_reginfo_in (abfd
, &ext
, &s
);
5194 elf_gp (abfd
) = s
.ri_gp_value
;
5197 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5198 set the gp value based on what we find. We may see both
5199 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5200 they should agree. */
5201 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
)
5203 bfd_byte
*contents
, *l
, *lend
;
5205 contents
= bfd_malloc (hdr
->sh_size
);
5206 if (contents
== NULL
)
5208 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, contents
,
5215 lend
= contents
+ hdr
->sh_size
;
5216 while (l
+ sizeof (Elf_External_Options
) <= lend
)
5218 Elf_Internal_Options intopt
;
5220 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
5222 if (intopt
.size
< sizeof (Elf_External_Options
))
5224 (*_bfd_error_handler
)
5225 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5226 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
5229 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
5231 Elf64_Internal_RegInfo intreg
;
5233 bfd_mips_elf64_swap_reginfo_in
5235 ((Elf64_External_RegInfo
*)
5236 (l
+ sizeof (Elf_External_Options
))),
5238 elf_gp (abfd
) = intreg
.ri_gp_value
;
5240 else if (intopt
.kind
== ODK_REGINFO
)
5242 Elf32_RegInfo intreg
;
5244 bfd_mips_elf32_swap_reginfo_in
5246 ((Elf32_External_RegInfo
*)
5247 (l
+ sizeof (Elf_External_Options
))),
5249 elf_gp (abfd
) = intreg
.ri_gp_value
;
5259 /* Set the correct type for a MIPS ELF section. We do this by the
5260 section name, which is a hack, but ought to work. This routine is
5261 used by both the 32-bit and the 64-bit ABI. */
5264 _bfd_mips_elf_fake_sections (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*sec
)
5266 register const char *name
;
5267 unsigned int sh_type
;
5269 name
= bfd_get_section_name (abfd
, sec
);
5270 sh_type
= hdr
->sh_type
;
5272 if (strcmp (name
, ".liblist") == 0)
5274 hdr
->sh_type
= SHT_MIPS_LIBLIST
;
5275 hdr
->sh_info
= sec
->size
/ sizeof (Elf32_Lib
);
5276 /* The sh_link field is set in final_write_processing. */
5278 else if (strcmp (name
, ".conflict") == 0)
5279 hdr
->sh_type
= SHT_MIPS_CONFLICT
;
5280 else if (strncmp (name
, ".gptab.", sizeof ".gptab." - 1) == 0)
5282 hdr
->sh_type
= SHT_MIPS_GPTAB
;
5283 hdr
->sh_entsize
= sizeof (Elf32_External_gptab
);
5284 /* The sh_info field is set in final_write_processing. */
5286 else if (strcmp (name
, ".ucode") == 0)
5287 hdr
->sh_type
= SHT_MIPS_UCODE
;
5288 else if (strcmp (name
, ".mdebug") == 0)
5290 hdr
->sh_type
= SHT_MIPS_DEBUG
;
5291 /* In a shared object on IRIX 5.3, the .mdebug section has an
5292 entsize of 0. FIXME: Does this matter? */
5293 if (SGI_COMPAT (abfd
) && (abfd
->flags
& DYNAMIC
) != 0)
5294 hdr
->sh_entsize
= 0;
5296 hdr
->sh_entsize
= 1;
5298 else if (strcmp (name
, ".reginfo") == 0)
5300 hdr
->sh_type
= SHT_MIPS_REGINFO
;
5301 /* In a shared object on IRIX 5.3, the .reginfo section has an
5302 entsize of 0x18. FIXME: Does this matter? */
5303 if (SGI_COMPAT (abfd
))
5305 if ((abfd
->flags
& DYNAMIC
) != 0)
5306 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
5308 hdr
->sh_entsize
= 1;
5311 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
5313 else if (SGI_COMPAT (abfd
)
5314 && (strcmp (name
, ".hash") == 0
5315 || strcmp (name
, ".dynamic") == 0
5316 || strcmp (name
, ".dynstr") == 0))
5318 if (SGI_COMPAT (abfd
))
5319 hdr
->sh_entsize
= 0;
5321 /* This isn't how the IRIX6 linker behaves. */
5322 hdr
->sh_info
= SIZEOF_MIPS_DYNSYM_SECNAMES
;
5325 else if (strcmp (name
, ".got") == 0
5326 || strcmp (name
, ".srdata") == 0
5327 || strcmp (name
, ".sdata") == 0
5328 || strcmp (name
, ".sbss") == 0
5329 || strcmp (name
, ".lit4") == 0
5330 || strcmp (name
, ".lit8") == 0)
5331 hdr
->sh_flags
|= SHF_MIPS_GPREL
;
5332 else if (strcmp (name
, ".MIPS.interfaces") == 0)
5334 hdr
->sh_type
= SHT_MIPS_IFACE
;
5335 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
5337 else if (strncmp (name
, ".MIPS.content", strlen (".MIPS.content")) == 0)
5339 hdr
->sh_type
= SHT_MIPS_CONTENT
;
5340 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
5341 /* The sh_info field is set in final_write_processing. */
5343 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
5345 hdr
->sh_type
= SHT_MIPS_OPTIONS
;
5346 hdr
->sh_entsize
= 1;
5347 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
5349 else if (strncmp (name
, ".debug_", sizeof ".debug_" - 1) == 0)
5350 hdr
->sh_type
= SHT_MIPS_DWARF
;
5351 else if (strcmp (name
, ".MIPS.symlib") == 0)
5353 hdr
->sh_type
= SHT_MIPS_SYMBOL_LIB
;
5354 /* The sh_link and sh_info fields are set in
5355 final_write_processing. */
5357 else if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
5358 || strncmp (name
, ".MIPS.post_rel",
5359 sizeof ".MIPS.post_rel" - 1) == 0)
5361 hdr
->sh_type
= SHT_MIPS_EVENTS
;
5362 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
5363 /* The sh_link field is set in final_write_processing. */
5365 else if (strcmp (name
, ".msym") == 0)
5367 hdr
->sh_type
= SHT_MIPS_MSYM
;
5368 hdr
->sh_flags
|= SHF_ALLOC
;
5369 hdr
->sh_entsize
= 8;
5372 /* In the unlikely event a special section is empty it has to lose its
5373 special meaning. This may happen e.g. when using `strip' with the
5374 "--only-keep-debug" option. */
5375 if (sec
->size
> 0 && !(sec
->flags
& SEC_HAS_CONTENTS
))
5376 hdr
->sh_type
= sh_type
;
5378 /* The generic elf_fake_sections will set up REL_HDR using the default
5379 kind of relocations. We used to set up a second header for the
5380 non-default kind of relocations here, but only NewABI would use
5381 these, and the IRIX ld doesn't like resulting empty RELA sections.
5382 Thus we create those header only on demand now. */
5387 /* Given a BFD section, try to locate the corresponding ELF section
5388 index. This is used by both the 32-bit and the 64-bit ABI.
5389 Actually, it's not clear to me that the 64-bit ABI supports these,
5390 but for non-PIC objects we will certainly want support for at least
5391 the .scommon section. */
5394 _bfd_mips_elf_section_from_bfd_section (bfd
*abfd ATTRIBUTE_UNUSED
,
5395 asection
*sec
, int *retval
)
5397 if (strcmp (bfd_get_section_name (abfd
, sec
), ".scommon") == 0)
5399 *retval
= SHN_MIPS_SCOMMON
;
5402 if (strcmp (bfd_get_section_name (abfd
, sec
), ".acommon") == 0)
5404 *retval
= SHN_MIPS_ACOMMON
;
5410 /* Hook called by the linker routine which adds symbols from an object
5411 file. We must handle the special MIPS section numbers here. */
5414 _bfd_mips_elf_add_symbol_hook (bfd
*abfd
, struct bfd_link_info
*info
,
5415 Elf_Internal_Sym
*sym
, const char **namep
,
5416 flagword
*flagsp ATTRIBUTE_UNUSED
,
5417 asection
**secp
, bfd_vma
*valp
)
5419 if (SGI_COMPAT (abfd
)
5420 && (abfd
->flags
& DYNAMIC
) != 0
5421 && strcmp (*namep
, "_rld_new_interface") == 0)
5423 /* Skip IRIX5 rld entry name. */
5428 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5429 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5430 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5431 a magic symbol resolved by the linker, we ignore this bogus definition
5432 of _gp_disp. New ABI objects do not suffer from this problem so this
5433 is not done for them. */
5435 && (sym
->st_shndx
== SHN_ABS
)
5436 && (strcmp (*namep
, "_gp_disp") == 0))
5442 switch (sym
->st_shndx
)
5445 /* Common symbols less than the GP size are automatically
5446 treated as SHN_MIPS_SCOMMON symbols. */
5447 if (sym
->st_size
> elf_gp_size (abfd
)
5448 || IRIX_COMPAT (abfd
) == ict_irix6
)
5451 case SHN_MIPS_SCOMMON
:
5452 *secp
= bfd_make_section_old_way (abfd
, ".scommon");
5453 (*secp
)->flags
|= SEC_IS_COMMON
;
5454 *valp
= sym
->st_size
;
5458 /* This section is used in a shared object. */
5459 if (elf_tdata (abfd
)->elf_text_section
== NULL
)
5461 asymbol
*elf_text_symbol
;
5462 asection
*elf_text_section
;
5463 bfd_size_type amt
= sizeof (asection
);
5465 elf_text_section
= bfd_zalloc (abfd
, amt
);
5466 if (elf_text_section
== NULL
)
5469 amt
= sizeof (asymbol
);
5470 elf_text_symbol
= bfd_zalloc (abfd
, amt
);
5471 if (elf_text_symbol
== NULL
)
5474 /* Initialize the section. */
5476 elf_tdata (abfd
)->elf_text_section
= elf_text_section
;
5477 elf_tdata (abfd
)->elf_text_symbol
= elf_text_symbol
;
5479 elf_text_section
->symbol
= elf_text_symbol
;
5480 elf_text_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_text_symbol
;
5482 elf_text_section
->name
= ".text";
5483 elf_text_section
->flags
= SEC_NO_FLAGS
;
5484 elf_text_section
->output_section
= NULL
;
5485 elf_text_section
->owner
= abfd
;
5486 elf_text_symbol
->name
= ".text";
5487 elf_text_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
5488 elf_text_symbol
->section
= elf_text_section
;
5490 /* This code used to do *secp = bfd_und_section_ptr if
5491 info->shared. I don't know why, and that doesn't make sense,
5492 so I took it out. */
5493 *secp
= elf_tdata (abfd
)->elf_text_section
;
5496 case SHN_MIPS_ACOMMON
:
5497 /* Fall through. XXX Can we treat this as allocated data? */
5499 /* This section is used in a shared object. */
5500 if (elf_tdata (abfd
)->elf_data_section
== NULL
)
5502 asymbol
*elf_data_symbol
;
5503 asection
*elf_data_section
;
5504 bfd_size_type amt
= sizeof (asection
);
5506 elf_data_section
= bfd_zalloc (abfd
, amt
);
5507 if (elf_data_section
== NULL
)
5510 amt
= sizeof (asymbol
);
5511 elf_data_symbol
= bfd_zalloc (abfd
, amt
);
5512 if (elf_data_symbol
== NULL
)
5515 /* Initialize the section. */
5517 elf_tdata (abfd
)->elf_data_section
= elf_data_section
;
5518 elf_tdata (abfd
)->elf_data_symbol
= elf_data_symbol
;
5520 elf_data_section
->symbol
= elf_data_symbol
;
5521 elf_data_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_data_symbol
;
5523 elf_data_section
->name
= ".data";
5524 elf_data_section
->flags
= SEC_NO_FLAGS
;
5525 elf_data_section
->output_section
= NULL
;
5526 elf_data_section
->owner
= abfd
;
5527 elf_data_symbol
->name
= ".data";
5528 elf_data_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
5529 elf_data_symbol
->section
= elf_data_section
;
5531 /* This code used to do *secp = bfd_und_section_ptr if
5532 info->shared. I don't know why, and that doesn't make sense,
5533 so I took it out. */
5534 *secp
= elf_tdata (abfd
)->elf_data_section
;
5537 case SHN_MIPS_SUNDEFINED
:
5538 *secp
= bfd_und_section_ptr
;
5542 if (SGI_COMPAT (abfd
)
5544 && info
->hash
->creator
== abfd
->xvec
5545 && strcmp (*namep
, "__rld_obj_head") == 0)
5547 struct elf_link_hash_entry
*h
;
5548 struct bfd_link_hash_entry
*bh
;
5550 /* Mark __rld_obj_head as dynamic. */
5552 if (! (_bfd_generic_link_add_one_symbol
5553 (info
, abfd
, *namep
, BSF_GLOBAL
, *secp
, *valp
, NULL
, FALSE
,
5554 get_elf_backend_data (abfd
)->collect
, &bh
)))
5557 h
= (struct elf_link_hash_entry
*) bh
;
5560 h
->type
= STT_OBJECT
;
5562 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5565 mips_elf_hash_table (info
)->use_rld_obj_head
= TRUE
;
5568 /* If this is a mips16 text symbol, add 1 to the value to make it
5569 odd. This will cause something like .word SYM to come up with
5570 the right value when it is loaded into the PC. */
5571 if (sym
->st_other
== STO_MIPS16
)
5577 /* This hook function is called before the linker writes out a global
5578 symbol. We mark symbols as small common if appropriate. This is
5579 also where we undo the increment of the value for a mips16 symbol. */
5582 _bfd_mips_elf_link_output_symbol_hook
5583 (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
5584 const char *name ATTRIBUTE_UNUSED
, Elf_Internal_Sym
*sym
,
5585 asection
*input_sec
, struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
)
5587 /* If we see a common symbol, which implies a relocatable link, then
5588 if a symbol was small common in an input file, mark it as small
5589 common in the output file. */
5590 if (sym
->st_shndx
== SHN_COMMON
5591 && strcmp (input_sec
->name
, ".scommon") == 0)
5592 sym
->st_shndx
= SHN_MIPS_SCOMMON
;
5594 if (sym
->st_other
== STO_MIPS16
)
5595 sym
->st_value
&= ~1;
5600 /* Functions for the dynamic linker. */
5602 /* Create dynamic sections when linking against a dynamic object. */
5605 _bfd_mips_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
5607 struct elf_link_hash_entry
*h
;
5608 struct bfd_link_hash_entry
*bh
;
5610 register asection
*s
;
5611 const char * const *namep
;
5613 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
5614 | SEC_LINKER_CREATED
| SEC_READONLY
);
5616 /* Mips ABI requests the .dynamic section to be read only. */
5617 s
= bfd_get_section_by_name (abfd
, ".dynamic");
5620 if (! bfd_set_section_flags (abfd
, s
, flags
))
5624 /* We need to create .got section. */
5625 if (! mips_elf_create_got_section (abfd
, info
, FALSE
))
5628 if (! mips_elf_rel_dyn_section (elf_hash_table (info
)->dynobj
, TRUE
))
5631 /* Create .stub section. */
5632 if (bfd_get_section_by_name (abfd
,
5633 MIPS_ELF_STUB_SECTION_NAME (abfd
)) == NULL
)
5635 s
= bfd_make_section_with_flags (abfd
,
5636 MIPS_ELF_STUB_SECTION_NAME (abfd
),
5639 || ! bfd_set_section_alignment (abfd
, s
,
5640 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
5644 if ((IRIX_COMPAT (abfd
) == ict_irix5
|| IRIX_COMPAT (abfd
) == ict_none
)
5646 && bfd_get_section_by_name (abfd
, ".rld_map") == NULL
)
5648 s
= bfd_make_section_with_flags (abfd
, ".rld_map",
5649 flags
&~ (flagword
) SEC_READONLY
);
5651 || ! bfd_set_section_alignment (abfd
, s
,
5652 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
5656 /* On IRIX5, we adjust add some additional symbols and change the
5657 alignments of several sections. There is no ABI documentation
5658 indicating that this is necessary on IRIX6, nor any evidence that
5659 the linker takes such action. */
5660 if (IRIX_COMPAT (abfd
) == ict_irix5
)
5662 for (namep
= mips_elf_dynsym_rtproc_names
; *namep
!= NULL
; namep
++)
5665 if (! (_bfd_generic_link_add_one_symbol
5666 (info
, abfd
, *namep
, BSF_GLOBAL
, bfd_und_section_ptr
, 0,
5667 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
5670 h
= (struct elf_link_hash_entry
*) bh
;
5673 h
->type
= STT_SECTION
;
5675 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5679 /* We need to create a .compact_rel section. */
5680 if (SGI_COMPAT (abfd
))
5682 if (!mips_elf_create_compact_rel_section (abfd
, info
))
5686 /* Change alignments of some sections. */
5687 s
= bfd_get_section_by_name (abfd
, ".hash");
5689 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
5690 s
= bfd_get_section_by_name (abfd
, ".dynsym");
5692 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
5693 s
= bfd_get_section_by_name (abfd
, ".dynstr");
5695 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
5696 s
= bfd_get_section_by_name (abfd
, ".reginfo");
5698 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
5699 s
= bfd_get_section_by_name (abfd
, ".dynamic");
5701 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
5708 name
= SGI_COMPAT (abfd
) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
5710 if (!(_bfd_generic_link_add_one_symbol
5711 (info
, abfd
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
, 0,
5712 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
5715 h
= (struct elf_link_hash_entry
*) bh
;
5718 h
->type
= STT_SECTION
;
5720 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5723 if (! mips_elf_hash_table (info
)->use_rld_obj_head
)
5725 /* __rld_map is a four byte word located in the .data section
5726 and is filled in by the rtld to contain a pointer to
5727 the _r_debug structure. Its symbol value will be set in
5728 _bfd_mips_elf_finish_dynamic_symbol. */
5729 s
= bfd_get_section_by_name (abfd
, ".rld_map");
5730 BFD_ASSERT (s
!= NULL
);
5732 name
= SGI_COMPAT (abfd
) ? "__rld_map" : "__RLD_MAP";
5734 if (!(_bfd_generic_link_add_one_symbol
5735 (info
, abfd
, name
, BSF_GLOBAL
, s
, 0, NULL
, FALSE
,
5736 get_elf_backend_data (abfd
)->collect
, &bh
)))
5739 h
= (struct elf_link_hash_entry
*) bh
;
5742 h
->type
= STT_OBJECT
;
5744 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5752 /* Look through the relocs for a section during the first phase, and
5753 allocate space in the global offset table. */
5756 _bfd_mips_elf_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
5757 asection
*sec
, const Elf_Internal_Rela
*relocs
)
5761 Elf_Internal_Shdr
*symtab_hdr
;
5762 struct elf_link_hash_entry
**sym_hashes
;
5763 struct mips_got_info
*g
;
5765 const Elf_Internal_Rela
*rel
;
5766 const Elf_Internal_Rela
*rel_end
;
5769 const struct elf_backend_data
*bed
;
5771 if (info
->relocatable
)
5774 dynobj
= elf_hash_table (info
)->dynobj
;
5775 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5776 sym_hashes
= elf_sym_hashes (abfd
);
5777 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
5779 /* Check for the mips16 stub sections. */
5781 name
= bfd_get_section_name (abfd
, sec
);
5782 if (strncmp (name
, FN_STUB
, sizeof FN_STUB
- 1) == 0)
5784 unsigned long r_symndx
;
5786 /* Look at the relocation information to figure out which symbol
5789 r_symndx
= ELF_R_SYM (abfd
, relocs
->r_info
);
5791 if (r_symndx
< extsymoff
5792 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
5796 /* This stub is for a local symbol. This stub will only be
5797 needed if there is some relocation in this BFD, other
5798 than a 16 bit function call, which refers to this symbol. */
5799 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
5801 Elf_Internal_Rela
*sec_relocs
;
5802 const Elf_Internal_Rela
*r
, *rend
;
5804 /* We can ignore stub sections when looking for relocs. */
5805 if ((o
->flags
& SEC_RELOC
) == 0
5806 || o
->reloc_count
== 0
5807 || strncmp (bfd_get_section_name (abfd
, o
), FN_STUB
,
5808 sizeof FN_STUB
- 1) == 0
5809 || strncmp (bfd_get_section_name (abfd
, o
), CALL_STUB
,
5810 sizeof CALL_STUB
- 1) == 0
5811 || strncmp (bfd_get_section_name (abfd
, o
), CALL_FP_STUB
,
5812 sizeof CALL_FP_STUB
- 1) == 0)
5816 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
5818 if (sec_relocs
== NULL
)
5821 rend
= sec_relocs
+ o
->reloc_count
;
5822 for (r
= sec_relocs
; r
< rend
; r
++)
5823 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
5824 && ELF_R_TYPE (abfd
, r
->r_info
) != R_MIPS16_26
)
5827 if (elf_section_data (o
)->relocs
!= sec_relocs
)
5836 /* There is no non-call reloc for this stub, so we do
5837 not need it. Since this function is called before
5838 the linker maps input sections to output sections, we
5839 can easily discard it by setting the SEC_EXCLUDE
5841 sec
->flags
|= SEC_EXCLUDE
;
5845 /* Record this stub in an array of local symbol stubs for
5847 if (elf_tdata (abfd
)->local_stubs
== NULL
)
5849 unsigned long symcount
;
5853 if (elf_bad_symtab (abfd
))
5854 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
5856 symcount
= symtab_hdr
->sh_info
;
5857 amt
= symcount
* sizeof (asection
*);
5858 n
= bfd_zalloc (abfd
, amt
);
5861 elf_tdata (abfd
)->local_stubs
= n
;
5864 elf_tdata (abfd
)->local_stubs
[r_symndx
] = sec
;
5866 /* We don't need to set mips16_stubs_seen in this case.
5867 That flag is used to see whether we need to look through
5868 the global symbol table for stubs. We don't need to set
5869 it here, because we just have a local stub. */
5873 struct mips_elf_link_hash_entry
*h
;
5875 h
= ((struct mips_elf_link_hash_entry
*)
5876 sym_hashes
[r_symndx
- extsymoff
]);
5878 while (h
->root
.root
.type
== bfd_link_hash_indirect
5879 || h
->root
.root
.type
== bfd_link_hash_warning
)
5880 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
5882 /* H is the symbol this stub is for. */
5885 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
5888 else if (strncmp (name
, CALL_STUB
, sizeof CALL_STUB
- 1) == 0
5889 || strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
5891 unsigned long r_symndx
;
5892 struct mips_elf_link_hash_entry
*h
;
5895 /* Look at the relocation information to figure out which symbol
5898 r_symndx
= ELF_R_SYM (abfd
, relocs
->r_info
);
5900 if (r_symndx
< extsymoff
5901 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
5903 /* This stub was actually built for a static symbol defined
5904 in the same file. We assume that all static symbols in
5905 mips16 code are themselves mips16, so we can simply
5906 discard this stub. Since this function is called before
5907 the linker maps input sections to output sections, we can
5908 easily discard it by setting the SEC_EXCLUDE flag. */
5909 sec
->flags
|= SEC_EXCLUDE
;
5913 h
= ((struct mips_elf_link_hash_entry
*)
5914 sym_hashes
[r_symndx
- extsymoff
]);
5916 /* H is the symbol this stub is for. */
5918 if (strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
5919 loc
= &h
->call_fp_stub
;
5921 loc
= &h
->call_stub
;
5923 /* If we already have an appropriate stub for this function, we
5924 don't need another one, so we can discard this one. Since
5925 this function is called before the linker maps input sections
5926 to output sections, we can easily discard it by setting the
5927 SEC_EXCLUDE flag. We can also discard this section if we
5928 happen to already know that this is a mips16 function; it is
5929 not necessary to check this here, as it is checked later, but
5930 it is slightly faster to check now. */
5931 if (*loc
!= NULL
|| h
->root
.other
== STO_MIPS16
)
5933 sec
->flags
|= SEC_EXCLUDE
;
5938 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
5948 sgot
= mips_elf_got_section (dynobj
, FALSE
);
5953 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
5954 g
= mips_elf_section_data (sgot
)->u
.got_info
;
5955 BFD_ASSERT (g
!= NULL
);
5960 bed
= get_elf_backend_data (abfd
);
5961 rel_end
= relocs
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
5962 for (rel
= relocs
; rel
< rel_end
; ++rel
)
5964 unsigned long r_symndx
;
5965 unsigned int r_type
;
5966 struct elf_link_hash_entry
*h
;
5968 r_symndx
= ELF_R_SYM (abfd
, rel
->r_info
);
5969 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
5971 if (r_symndx
< extsymoff
)
5973 else if (r_symndx
>= extsymoff
+ NUM_SHDR_ENTRIES (symtab_hdr
))
5975 (*_bfd_error_handler
)
5976 (_("%B: Malformed reloc detected for section %s"),
5978 bfd_set_error (bfd_error_bad_value
);
5983 h
= sym_hashes
[r_symndx
- extsymoff
];
5985 /* This may be an indirect symbol created because of a version. */
5988 while (h
->root
.type
== bfd_link_hash_indirect
)
5989 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5993 /* Some relocs require a global offset table. */
5994 if (dynobj
== NULL
|| sgot
== NULL
)
6000 case R_MIPS_CALL_HI16
:
6001 case R_MIPS_CALL_LO16
:
6002 case R_MIPS_GOT_HI16
:
6003 case R_MIPS_GOT_LO16
:
6004 case R_MIPS_GOT_PAGE
:
6005 case R_MIPS_GOT_OFST
:
6006 case R_MIPS_GOT_DISP
:
6007 case R_MIPS_TLS_GOTTPREL
:
6009 case R_MIPS_TLS_LDM
:
6011 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
6012 if (! mips_elf_create_got_section (dynobj
, info
, FALSE
))
6014 g
= mips_elf_got_info (dynobj
, &sgot
);
6021 && (info
->shared
|| h
!= NULL
)
6022 && (sec
->flags
& SEC_ALLOC
) != 0)
6023 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
6031 if (!h
&& (r_type
== R_MIPS_CALL_LO16
6032 || r_type
== R_MIPS_GOT_LO16
6033 || r_type
== R_MIPS_GOT_DISP
))
6035 /* We may need a local GOT entry for this relocation. We
6036 don't count R_MIPS_GOT_PAGE because we can estimate the
6037 maximum number of pages needed by looking at the size of
6038 the segment. Similar comments apply to R_MIPS_GOT16 and
6039 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
6040 R_MIPS_CALL_HI16 because these are always followed by an
6041 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6042 if (! mips_elf_record_local_got_symbol (abfd
, r_symndx
,
6043 rel
->r_addend
, g
, 0))
6052 (*_bfd_error_handler
)
6053 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6054 abfd
, (unsigned long) rel
->r_offset
);
6055 bfd_set_error (bfd_error_bad_value
);
6060 case R_MIPS_CALL_HI16
:
6061 case R_MIPS_CALL_LO16
:
6064 /* This symbol requires a global offset table entry. */
6065 if (! mips_elf_record_global_got_symbol (h
, abfd
, info
, g
, 0))
6068 /* We need a stub, not a plt entry for the undefined
6069 function. But we record it as if it needs plt. See
6070 _bfd_elf_adjust_dynamic_symbol. */
6076 case R_MIPS_GOT_PAGE
:
6077 /* If this is a global, overridable symbol, GOT_PAGE will
6078 decay to GOT_DISP, so we'll need a GOT entry for it. */
6083 struct mips_elf_link_hash_entry
*hmips
=
6084 (struct mips_elf_link_hash_entry
*) h
;
6086 while (hmips
->root
.root
.type
== bfd_link_hash_indirect
6087 || hmips
->root
.root
.type
== bfd_link_hash_warning
)
6088 hmips
= (struct mips_elf_link_hash_entry
*)
6089 hmips
->root
.root
.u
.i
.link
;
6091 if (hmips
->root
.def_regular
6092 && ! (info
->shared
&& ! info
->symbolic
6093 && ! hmips
->root
.forced_local
))
6099 case R_MIPS_GOT_HI16
:
6100 case R_MIPS_GOT_LO16
:
6101 case R_MIPS_GOT_DISP
:
6102 if (h
&& ! mips_elf_record_global_got_symbol (h
, abfd
, info
, g
, 0))
6106 case R_MIPS_TLS_GOTTPREL
:
6108 info
->flags
|= DF_STATIC_TLS
;
6111 case R_MIPS_TLS_LDM
:
6112 if (r_type
== R_MIPS_TLS_LDM
)
6120 /* This symbol requires a global offset table entry, or two
6121 for TLS GD relocations. */
6123 unsigned char flag
= (r_type
== R_MIPS_TLS_GD
6125 : r_type
== R_MIPS_TLS_LDM
6130 struct mips_elf_link_hash_entry
*hmips
=
6131 (struct mips_elf_link_hash_entry
*) h
;
6132 hmips
->tls_type
|= flag
;
6134 if (h
&& ! mips_elf_record_global_got_symbol (h
, abfd
, info
, g
, flag
))
6139 BFD_ASSERT (flag
== GOT_TLS_LDM
|| r_symndx
!= 0);
6141 if (! mips_elf_record_local_got_symbol (abfd
, r_symndx
,
6142 rel
->r_addend
, g
, flag
))
6151 if ((info
->shared
|| h
!= NULL
)
6152 && (sec
->flags
& SEC_ALLOC
) != 0)
6156 sreloc
= mips_elf_rel_dyn_section (dynobj
, TRUE
);
6160 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
6163 /* When creating a shared object, we must copy these
6164 reloc types into the output file as R_MIPS_REL32
6165 relocs. We make room for this reloc in the
6166 .rel.dyn reloc section. */
6167 mips_elf_allocate_dynamic_relocations (dynobj
, 1);
6168 if ((sec
->flags
& MIPS_READONLY_SECTION
)
6169 == MIPS_READONLY_SECTION
)
6170 /* We tell the dynamic linker that there are
6171 relocations against the text segment. */
6172 info
->flags
|= DF_TEXTREL
;
6176 struct mips_elf_link_hash_entry
*hmips
;
6178 /* We only need to copy this reloc if the symbol is
6179 defined in a dynamic object. */
6180 hmips
= (struct mips_elf_link_hash_entry
*) h
;
6181 ++hmips
->possibly_dynamic_relocs
;
6182 if ((sec
->flags
& MIPS_READONLY_SECTION
)
6183 == MIPS_READONLY_SECTION
)
6184 /* We need it to tell the dynamic linker if there
6185 are relocations against the text segment. */
6186 hmips
->readonly_reloc
= TRUE
;
6189 /* Even though we don't directly need a GOT entry for
6190 this symbol, a symbol must have a dynamic symbol
6191 table index greater that DT_MIPS_GOTSYM if there are
6192 dynamic relocations against it. */
6196 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
6197 if (! mips_elf_create_got_section (dynobj
, info
, TRUE
))
6199 g
= mips_elf_got_info (dynobj
, &sgot
);
6200 if (! mips_elf_record_global_got_symbol (h
, abfd
, info
, g
, 0))
6205 if (SGI_COMPAT (abfd
))
6206 mips_elf_hash_table (info
)->compact_rel_size
+=
6207 sizeof (Elf32_External_crinfo
);
6211 case R_MIPS_GPREL16
:
6212 case R_MIPS_LITERAL
:
6213 case R_MIPS_GPREL32
:
6214 if (SGI_COMPAT (abfd
))
6215 mips_elf_hash_table (info
)->compact_rel_size
+=
6216 sizeof (Elf32_External_crinfo
);
6219 /* This relocation describes the C++ object vtable hierarchy.
6220 Reconstruct it for later use during GC. */
6221 case R_MIPS_GNU_VTINHERIT
:
6222 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
6226 /* This relocation describes which C++ vtable entries are actually
6227 used. Record for later use during GC. */
6228 case R_MIPS_GNU_VTENTRY
:
6229 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
6237 /* We must not create a stub for a symbol that has relocations
6238 related to taking the function's address. */
6244 struct mips_elf_link_hash_entry
*mh
;
6246 mh
= (struct mips_elf_link_hash_entry
*) h
;
6247 mh
->no_fn_stub
= TRUE
;
6251 case R_MIPS_CALL_HI16
:
6252 case R_MIPS_CALL_LO16
:
6257 /* If this reloc is not a 16 bit call, and it has a global
6258 symbol, then we will need the fn_stub if there is one.
6259 References from a stub section do not count. */
6261 && r_type
!= R_MIPS16_26
6262 && strncmp (bfd_get_section_name (abfd
, sec
), FN_STUB
,
6263 sizeof FN_STUB
- 1) != 0
6264 && strncmp (bfd_get_section_name (abfd
, sec
), CALL_STUB
,
6265 sizeof CALL_STUB
- 1) != 0
6266 && strncmp (bfd_get_section_name (abfd
, sec
), CALL_FP_STUB
,
6267 sizeof CALL_FP_STUB
- 1) != 0)
6269 struct mips_elf_link_hash_entry
*mh
;
6271 mh
= (struct mips_elf_link_hash_entry
*) h
;
6272 mh
->need_fn_stub
= TRUE
;
6280 _bfd_mips_relax_section (bfd
*abfd
, asection
*sec
,
6281 struct bfd_link_info
*link_info
,
6284 Elf_Internal_Rela
*internal_relocs
;
6285 Elf_Internal_Rela
*irel
, *irelend
;
6286 Elf_Internal_Shdr
*symtab_hdr
;
6287 bfd_byte
*contents
= NULL
;
6289 bfd_boolean changed_contents
= FALSE
;
6290 bfd_vma sec_start
= sec
->output_section
->vma
+ sec
->output_offset
;
6291 Elf_Internal_Sym
*isymbuf
= NULL
;
6293 /* We are not currently changing any sizes, so only one pass. */
6296 if (link_info
->relocatable
)
6299 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
6300 link_info
->keep_memory
);
6301 if (internal_relocs
== NULL
)
6304 irelend
= internal_relocs
+ sec
->reloc_count
6305 * get_elf_backend_data (abfd
)->s
->int_rels_per_ext_rel
;
6306 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6307 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
6309 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
6312 bfd_signed_vma sym_offset
;
6313 unsigned int r_type
;
6314 unsigned long r_symndx
;
6316 unsigned long instruction
;
6318 /* Turn jalr into bgezal, and jr into beq, if they're marked
6319 with a JALR relocation, that indicate where they jump to.
6320 This saves some pipeline bubbles. */
6321 r_type
= ELF_R_TYPE (abfd
, irel
->r_info
);
6322 if (r_type
!= R_MIPS_JALR
)
6325 r_symndx
= ELF_R_SYM (abfd
, irel
->r_info
);
6326 /* Compute the address of the jump target. */
6327 if (r_symndx
>= extsymoff
)
6329 struct mips_elf_link_hash_entry
*h
6330 = ((struct mips_elf_link_hash_entry
*)
6331 elf_sym_hashes (abfd
) [r_symndx
- extsymoff
]);
6333 while (h
->root
.root
.type
== bfd_link_hash_indirect
6334 || h
->root
.root
.type
== bfd_link_hash_warning
)
6335 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
6337 /* If a symbol is undefined, or if it may be overridden,
6339 if (! ((h
->root
.root
.type
== bfd_link_hash_defined
6340 || h
->root
.root
.type
== bfd_link_hash_defweak
)
6341 && h
->root
.root
.u
.def
.section
)
6342 || (link_info
->shared
&& ! link_info
->symbolic
6343 && !h
->root
.forced_local
))
6346 sym_sec
= h
->root
.root
.u
.def
.section
;
6347 if (sym_sec
->output_section
)
6348 symval
= (h
->root
.root
.u
.def
.value
6349 + sym_sec
->output_section
->vma
6350 + sym_sec
->output_offset
);
6352 symval
= h
->root
.root
.u
.def
.value
;
6356 Elf_Internal_Sym
*isym
;
6358 /* Read this BFD's symbols if we haven't done so already. */
6359 if (isymbuf
== NULL
&& symtab_hdr
->sh_info
!= 0)
6361 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
6362 if (isymbuf
== NULL
)
6363 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
6364 symtab_hdr
->sh_info
, 0,
6366 if (isymbuf
== NULL
)
6370 isym
= isymbuf
+ r_symndx
;
6371 if (isym
->st_shndx
== SHN_UNDEF
)
6373 else if (isym
->st_shndx
== SHN_ABS
)
6374 sym_sec
= bfd_abs_section_ptr
;
6375 else if (isym
->st_shndx
== SHN_COMMON
)
6376 sym_sec
= bfd_com_section_ptr
;
6379 = bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
6380 symval
= isym
->st_value
6381 + sym_sec
->output_section
->vma
6382 + sym_sec
->output_offset
;
6385 /* Compute branch offset, from delay slot of the jump to the
6387 sym_offset
= (symval
+ irel
->r_addend
)
6388 - (sec_start
+ irel
->r_offset
+ 4);
6390 /* Branch offset must be properly aligned. */
6391 if ((sym_offset
& 3) != 0)
6396 /* Check that it's in range. */
6397 if (sym_offset
< -0x8000 || sym_offset
>= 0x8000)
6400 /* Get the section contents if we haven't done so already. */
6401 if (contents
== NULL
)
6403 /* Get cached copy if it exists. */
6404 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
6405 contents
= elf_section_data (sec
)->this_hdr
.contents
;
6408 if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
6413 instruction
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
);
6415 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6416 if ((instruction
& 0xfc1fffff) == 0x0000f809)
6417 instruction
= 0x04110000;
6418 /* If it was jr <reg>, turn it into b <target>. */
6419 else if ((instruction
& 0xfc1fffff) == 0x00000008)
6420 instruction
= 0x10000000;
6424 instruction
|= (sym_offset
& 0xffff);
6425 bfd_put_32 (abfd
, instruction
, contents
+ irel
->r_offset
);
6426 changed_contents
= TRUE
;
6429 if (contents
!= NULL
6430 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6432 if (!changed_contents
&& !link_info
->keep_memory
)
6436 /* Cache the section contents for elf_link_input_bfd. */
6437 elf_section_data (sec
)->this_hdr
.contents
= contents
;
6443 if (contents
!= NULL
6444 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6449 /* Adjust a symbol defined by a dynamic object and referenced by a
6450 regular object. The current definition is in some section of the
6451 dynamic object, but we're not including those sections. We have to
6452 change the definition to something the rest of the link can
6456 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info
*info
,
6457 struct elf_link_hash_entry
*h
)
6460 struct mips_elf_link_hash_entry
*hmips
;
6463 dynobj
= elf_hash_table (info
)->dynobj
;
6465 /* Make sure we know what is going on here. */
6466 BFD_ASSERT (dynobj
!= NULL
6468 || h
->u
.weakdef
!= NULL
6471 && !h
->def_regular
)));
6473 /* If this symbol is defined in a dynamic object, we need to copy
6474 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6476 hmips
= (struct mips_elf_link_hash_entry
*) h
;
6477 if (! info
->relocatable
6478 && hmips
->possibly_dynamic_relocs
!= 0
6479 && (h
->root
.type
== bfd_link_hash_defweak
6480 || !h
->def_regular
))
6482 mips_elf_allocate_dynamic_relocations (dynobj
,
6483 hmips
->possibly_dynamic_relocs
);
6484 if (hmips
->readonly_reloc
)
6485 /* We tell the dynamic linker that there are relocations
6486 against the text segment. */
6487 info
->flags
|= DF_TEXTREL
;
6490 /* For a function, create a stub, if allowed. */
6491 if (! hmips
->no_fn_stub
6494 if (! elf_hash_table (info
)->dynamic_sections_created
)
6497 /* If this symbol is not defined in a regular file, then set
6498 the symbol to the stub location. This is required to make
6499 function pointers compare as equal between the normal
6500 executable and the shared library. */
6501 if (!h
->def_regular
)
6503 /* We need .stub section. */
6504 s
= bfd_get_section_by_name (dynobj
,
6505 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
6506 BFD_ASSERT (s
!= NULL
);
6508 h
->root
.u
.def
.section
= s
;
6509 h
->root
.u
.def
.value
= s
->size
;
6511 /* XXX Write this stub address somewhere. */
6512 h
->plt
.offset
= s
->size
;
6514 /* Make room for this stub code. */
6515 s
->size
+= MIPS_FUNCTION_STUB_SIZE
;
6517 /* The last half word of the stub will be filled with the index
6518 of this symbol in .dynsym section. */
6522 else if ((h
->type
== STT_FUNC
)
6525 /* This will set the entry for this symbol in the GOT to 0, and
6526 the dynamic linker will take care of this. */
6527 h
->root
.u
.def
.value
= 0;
6531 /* If this is a weak symbol, and there is a real definition, the
6532 processor independent code will have arranged for us to see the
6533 real definition first, and we can just use the same value. */
6534 if (h
->u
.weakdef
!= NULL
)
6536 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
6537 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
6538 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
6539 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
6543 /* This is a reference to a symbol defined by a dynamic object which
6544 is not a function. */
6549 /* This function is called after all the input files have been read,
6550 and the input sections have been assigned to output sections. We
6551 check for any mips16 stub sections that we can discard. */
6554 _bfd_mips_elf_always_size_sections (bfd
*output_bfd
,
6555 struct bfd_link_info
*info
)
6561 struct mips_got_info
*g
;
6563 bfd_size_type loadable_size
= 0;
6564 bfd_size_type local_gotno
;
6566 struct mips_elf_count_tls_arg count_tls_arg
;
6568 /* The .reginfo section has a fixed size. */
6569 ri
= bfd_get_section_by_name (output_bfd
, ".reginfo");
6571 bfd_set_section_size (output_bfd
, ri
, sizeof (Elf32_External_RegInfo
));
6573 if (! (info
->relocatable
6574 || ! mips_elf_hash_table (info
)->mips16_stubs_seen
))
6575 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
6576 mips_elf_check_mips16_stubs
, NULL
);
6578 dynobj
= elf_hash_table (info
)->dynobj
;
6580 /* Relocatable links don't have it. */
6583 g
= mips_elf_got_info (dynobj
, &s
);
6587 /* Calculate the total loadable size of the output. That
6588 will give us the maximum number of GOT_PAGE entries
6590 for (sub
= info
->input_bfds
; sub
; sub
= sub
->link_next
)
6592 asection
*subsection
;
6594 for (subsection
= sub
->sections
;
6596 subsection
= subsection
->next
)
6598 if ((subsection
->flags
& SEC_ALLOC
) == 0)
6600 loadable_size
+= ((subsection
->size
+ 0xf)
6601 &~ (bfd_size_type
) 0xf);
6605 /* There has to be a global GOT entry for every symbol with
6606 a dynamic symbol table index of DT_MIPS_GOTSYM or
6607 higher. Therefore, it make sense to put those symbols
6608 that need GOT entries at the end of the symbol table. We
6610 if (! mips_elf_sort_hash_table (info
, 1))
6613 if (g
->global_gotsym
!= NULL
)
6614 i
= elf_hash_table (info
)->dynsymcount
- g
->global_gotsym
->dynindx
;
6616 /* If there are no global symbols, or none requiring
6617 relocations, then GLOBAL_GOTSYM will be NULL. */
6620 /* In the worst case, we'll get one stub per dynamic symbol, plus
6621 one to account for the dummy entry at the end required by IRIX
6623 loadable_size
+= MIPS_FUNCTION_STUB_SIZE
* (i
+ 1);
6625 /* Assume there are two loadable segments consisting of
6626 contiguous sections. Is 5 enough? */
6627 local_gotno
= (loadable_size
>> 16) + 5;
6629 g
->local_gotno
+= local_gotno
;
6630 s
->size
+= g
->local_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
6632 g
->global_gotno
= i
;
6633 s
->size
+= i
* MIPS_ELF_GOT_SIZE (output_bfd
);
6635 /* We need to calculate tls_gotno for global symbols at this point
6636 instead of building it up earlier, to avoid doublecounting
6637 entries for one global symbol from multiple input files. */
6638 count_tls_arg
.info
= info
;
6639 count_tls_arg
.needed
= 0;
6640 elf_link_hash_traverse (elf_hash_table (info
),
6641 mips_elf_count_global_tls_entries
,
6643 g
->tls_gotno
+= count_tls_arg
.needed
;
6644 s
->size
+= g
->tls_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
6646 mips_elf_resolve_final_got_entries (g
);
6648 if (s
->size
> MIPS_ELF_GOT_MAX_SIZE (output_bfd
))
6650 if (! mips_elf_multi_got (output_bfd
, info
, g
, s
, local_gotno
))
6655 /* Set up TLS entries for the first GOT. */
6656 g
->tls_assigned_gotno
= g
->global_gotno
+ g
->local_gotno
;
6657 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, g
);
6663 /* Set the sizes of the dynamic sections. */
6666 _bfd_mips_elf_size_dynamic_sections (bfd
*output_bfd
,
6667 struct bfd_link_info
*info
)
6671 bfd_boolean reltext
;
6673 dynobj
= elf_hash_table (info
)->dynobj
;
6674 BFD_ASSERT (dynobj
!= NULL
);
6676 if (elf_hash_table (info
)->dynamic_sections_created
)
6678 /* Set the contents of the .interp section to the interpreter. */
6679 if (info
->executable
)
6681 s
= bfd_get_section_by_name (dynobj
, ".interp");
6682 BFD_ASSERT (s
!= NULL
);
6684 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd
)) + 1;
6686 = (bfd_byte
*) ELF_DYNAMIC_INTERPRETER (output_bfd
);
6690 /* The check_relocs and adjust_dynamic_symbol entry points have
6691 determined the sizes of the various dynamic sections. Allocate
6694 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
6698 /* It's OK to base decisions on the section name, because none
6699 of the dynobj section names depend upon the input files. */
6700 name
= bfd_get_section_name (dynobj
, s
);
6702 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
6705 if (strncmp (name
, ".rel", 4) == 0)
6709 const char *outname
;
6712 /* If this relocation section applies to a read only
6713 section, then we probably need a DT_TEXTREL entry.
6714 If the relocation section is .rel.dyn, we always
6715 assert a DT_TEXTREL entry rather than testing whether
6716 there exists a relocation to a read only section or
6718 outname
= bfd_get_section_name (output_bfd
,
6720 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
6722 && (target
->flags
& SEC_READONLY
) != 0
6723 && (target
->flags
& SEC_ALLOC
) != 0)
6724 || strcmp (outname
, ".rel.dyn") == 0)
6727 /* We use the reloc_count field as a counter if we need
6728 to copy relocs into the output file. */
6729 if (strcmp (name
, ".rel.dyn") != 0)
6732 /* If combreloc is enabled, elf_link_sort_relocs() will
6733 sort relocations, but in a different way than we do,
6734 and before we're done creating relocations. Also, it
6735 will move them around between input sections'
6736 relocation's contents, so our sorting would be
6737 broken, so don't let it run. */
6738 info
->combreloc
= 0;
6741 else if (strncmp (name
, ".got", 4) == 0)
6743 /* _bfd_mips_elf_always_size_sections() has already done
6744 most of the work, but some symbols may have been mapped
6745 to versions that we must now resolve in the got_entries
6747 struct mips_got_info
*gg
= mips_elf_got_info (dynobj
, NULL
);
6748 struct mips_got_info
*g
= gg
;
6749 struct mips_elf_set_global_got_offset_arg set_got_offset_arg
;
6750 unsigned int needed_relocs
= 0;
6754 set_got_offset_arg
.value
= MIPS_ELF_GOT_SIZE (output_bfd
);
6755 set_got_offset_arg
.info
= info
;
6757 /* NOTE 2005-02-03: How can this call, or the next, ever
6758 find any indirect entries to resolve? They were all
6759 resolved in mips_elf_multi_got. */
6760 mips_elf_resolve_final_got_entries (gg
);
6761 for (g
= gg
->next
; g
&& g
->next
!= gg
; g
= g
->next
)
6763 unsigned int save_assign
;
6765 mips_elf_resolve_final_got_entries (g
);
6767 /* Assign offsets to global GOT entries. */
6768 save_assign
= g
->assigned_gotno
;
6769 g
->assigned_gotno
= g
->local_gotno
;
6770 set_got_offset_arg
.g
= g
;
6771 set_got_offset_arg
.needed_relocs
= 0;
6772 htab_traverse (g
->got_entries
,
6773 mips_elf_set_global_got_offset
,
6774 &set_got_offset_arg
);
6775 needed_relocs
+= set_got_offset_arg
.needed_relocs
;
6776 BFD_ASSERT (g
->assigned_gotno
- g
->local_gotno
6777 <= g
->global_gotno
);
6779 g
->assigned_gotno
= save_assign
;
6782 needed_relocs
+= g
->local_gotno
- g
->assigned_gotno
;
6783 BFD_ASSERT (g
->assigned_gotno
== g
->next
->local_gotno
6784 + g
->next
->global_gotno
6785 + g
->next
->tls_gotno
6786 + MIPS_RESERVED_GOTNO
);
6792 struct mips_elf_count_tls_arg arg
;
6796 htab_traverse (gg
->got_entries
, mips_elf_count_local_tls_relocs
,
6798 elf_link_hash_traverse (elf_hash_table (info
),
6799 mips_elf_count_global_tls_relocs
,
6802 needed_relocs
+= arg
.needed
;
6806 mips_elf_allocate_dynamic_relocations (dynobj
, needed_relocs
);
6808 else if (strcmp (name
, MIPS_ELF_STUB_SECTION_NAME (output_bfd
)) == 0)
6810 /* IRIX rld assumes that the function stub isn't at the end
6811 of .text section. So put a dummy. XXX */
6812 s
->size
+= MIPS_FUNCTION_STUB_SIZE
;
6814 else if (! info
->shared
6815 && ! mips_elf_hash_table (info
)->use_rld_obj_head
6816 && strncmp (name
, ".rld_map", 8) == 0)
6818 /* We add a room for __rld_map. It will be filled in by the
6819 rtld to contain a pointer to the _r_debug structure. */
6822 else if (SGI_COMPAT (output_bfd
)
6823 && strncmp (name
, ".compact_rel", 12) == 0)
6824 s
->size
+= mips_elf_hash_table (info
)->compact_rel_size
;
6825 else if (strncmp (name
, ".init", 5) != 0)
6827 /* It's not one of our sections, so don't allocate space. */
6833 s
->flags
|= SEC_EXCLUDE
;
6837 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
6840 /* Allocate memory for the section contents. */
6841 s
->contents
= bfd_zalloc (dynobj
, s
->size
);
6842 if (s
->contents
== NULL
)
6844 bfd_set_error (bfd_error_no_memory
);
6849 if (elf_hash_table (info
)->dynamic_sections_created
)
6851 /* Add some entries to the .dynamic section. We fill in the
6852 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6853 must add the entries now so that we get the correct size for
6854 the .dynamic section. The DT_DEBUG entry is filled in by the
6855 dynamic linker and used by the debugger. */
6858 /* SGI object has the equivalence of DT_DEBUG in the
6859 DT_MIPS_RLD_MAP entry. */
6860 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP
, 0))
6862 if (!SGI_COMPAT (output_bfd
))
6864 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
6870 /* Shared libraries on traditional mips have DT_DEBUG. */
6871 if (!SGI_COMPAT (output_bfd
))
6873 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
6878 if (reltext
&& SGI_COMPAT (output_bfd
))
6879 info
->flags
|= DF_TEXTREL
;
6881 if ((info
->flags
& DF_TEXTREL
) != 0)
6883 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_TEXTREL
, 0))
6887 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTGOT
, 0))
6890 if (mips_elf_rel_dyn_section (dynobj
, FALSE
))
6892 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_REL
, 0))
6895 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELSZ
, 0))
6898 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELENT
, 0))
6902 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_VERSION
, 0))
6905 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_FLAGS
, 0))
6908 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_BASE_ADDRESS
, 0))
6911 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LOCAL_GOTNO
, 0))
6914 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_SYMTABNO
, 0))
6917 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_UNREFEXTNO
, 0))
6920 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_GOTSYM
, 0))
6923 if (IRIX_COMPAT (dynobj
) == ict_irix5
6924 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_HIPAGENO
, 0))
6927 if (IRIX_COMPAT (dynobj
) == ict_irix6
6928 && (bfd_get_section_by_name
6929 (dynobj
, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj
)))
6930 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_OPTIONS
, 0))
6937 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
6938 Adjust its R_ADDEND field so that it is correct for the output file.
6939 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
6940 and sections respectively; both use symbol indexes. */
6943 mips_elf_adjust_addend (bfd
*output_bfd
, struct bfd_link_info
*info
,
6944 bfd
*input_bfd
, Elf_Internal_Sym
*local_syms
,
6945 asection
**local_sections
, Elf_Internal_Rela
*rel
)
6947 unsigned int r_type
, r_symndx
;
6948 Elf_Internal_Sym
*sym
;
6951 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
, FALSE
))
6953 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
6954 if (r_type
== R_MIPS16_GPREL
6955 || r_type
== R_MIPS_GPREL16
6956 || r_type
== R_MIPS_GPREL32
6957 || r_type
== R_MIPS_LITERAL
)
6959 rel
->r_addend
+= _bfd_get_gp_value (input_bfd
);
6960 rel
->r_addend
-= _bfd_get_gp_value (output_bfd
);
6963 r_symndx
= ELF_R_SYM (output_bfd
, rel
->r_info
);
6964 sym
= local_syms
+ r_symndx
;
6966 /* Adjust REL's addend to account for section merging. */
6967 if (!info
->relocatable
)
6969 sec
= local_sections
[r_symndx
];
6970 _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
6973 /* This would normally be done by the rela_normal code in elflink.c. */
6974 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
6975 rel
->r_addend
+= local_sections
[r_symndx
]->output_offset
;
6979 /* Relocate a MIPS ELF section. */
6982 _bfd_mips_elf_relocate_section (bfd
*output_bfd
, struct bfd_link_info
*info
,
6983 bfd
*input_bfd
, asection
*input_section
,
6984 bfd_byte
*contents
, Elf_Internal_Rela
*relocs
,
6985 Elf_Internal_Sym
*local_syms
,
6986 asection
**local_sections
)
6988 Elf_Internal_Rela
*rel
;
6989 const Elf_Internal_Rela
*relend
;
6991 bfd_boolean use_saved_addend_p
= FALSE
;
6992 const struct elf_backend_data
*bed
;
6994 bed
= get_elf_backend_data (output_bfd
);
6995 relend
= relocs
+ input_section
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
6996 for (rel
= relocs
; rel
< relend
; ++rel
)
7000 reloc_howto_type
*howto
;
7001 bfd_boolean require_jalx
;
7002 /* TRUE if the relocation is a RELA relocation, rather than a
7004 bfd_boolean rela_relocation_p
= TRUE
;
7005 unsigned int r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
7008 /* Find the relocation howto for this relocation. */
7009 if (r_type
== R_MIPS_64
&& ! NEWABI_P (input_bfd
))
7011 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7012 64-bit code, but make sure all their addresses are in the
7013 lowermost or uppermost 32-bit section of the 64-bit address
7014 space. Thus, when they use an R_MIPS_64 they mean what is
7015 usually meant by R_MIPS_32, with the exception that the
7016 stored value is sign-extended to 64 bits. */
7017 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, R_MIPS_32
, FALSE
);
7019 /* On big-endian systems, we need to lie about the position
7021 if (bfd_big_endian (input_bfd
))
7025 /* NewABI defaults to RELA relocations. */
7026 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, r_type
,
7027 NEWABI_P (input_bfd
)
7028 && (MIPS_RELOC_RELA_P
7029 (input_bfd
, input_section
,
7032 if (!use_saved_addend_p
)
7034 Elf_Internal_Shdr
*rel_hdr
;
7036 /* If these relocations were originally of the REL variety,
7037 we must pull the addend out of the field that will be
7038 relocated. Otherwise, we simply use the contents of the
7039 RELA relocation. To determine which flavor or relocation
7040 this is, we depend on the fact that the INPUT_SECTION's
7041 REL_HDR is read before its REL_HDR2. */
7042 rel_hdr
= &elf_section_data (input_section
)->rel_hdr
;
7043 if ((size_t) (rel
- relocs
)
7044 >= (NUM_SHDR_ENTRIES (rel_hdr
) * bed
->s
->int_rels_per_ext_rel
))
7045 rel_hdr
= elf_section_data (input_section
)->rel_hdr2
;
7046 if (rel_hdr
->sh_entsize
== MIPS_ELF_REL_SIZE (input_bfd
))
7048 bfd_byte
*location
= contents
+ rel
->r_offset
;
7050 /* Note that this is a REL relocation. */
7051 rela_relocation_p
= FALSE
;
7053 /* Get the addend, which is stored in the input file. */
7054 _bfd_mips16_elf_reloc_unshuffle (input_bfd
, r_type
, FALSE
,
7056 addend
= mips_elf_obtain_contents (howto
, rel
, input_bfd
,
7058 _bfd_mips16_elf_reloc_shuffle(input_bfd
, r_type
, FALSE
,
7061 addend
&= howto
->src_mask
;
7063 /* For some kinds of relocations, the ADDEND is a
7064 combination of the addend stored in two different
7066 if (r_type
== R_MIPS_HI16
|| r_type
== R_MIPS16_HI16
7067 || (r_type
== R_MIPS_GOT16
7068 && mips_elf_local_relocation_p (input_bfd
, rel
,
7069 local_sections
, FALSE
)))
7072 const Elf_Internal_Rela
*lo16_relocation
;
7073 reloc_howto_type
*lo16_howto
;
7074 bfd_byte
*lo16_location
;
7077 if (r_type
== R_MIPS16_HI16
)
7078 lo16_type
= R_MIPS16_LO16
;
7080 lo16_type
= R_MIPS_LO16
;
7082 /* The combined value is the sum of the HI16 addend,
7083 left-shifted by sixteen bits, and the LO16
7084 addend, sign extended. (Usually, the code does
7085 a `lui' of the HI16 value, and then an `addiu' of
7088 Scan ahead to find a matching LO16 relocation.
7090 According to the MIPS ELF ABI, the R_MIPS_LO16
7091 relocation must be immediately following.
7092 However, for the IRIX6 ABI, the next relocation
7093 may be a composed relocation consisting of
7094 several relocations for the same address. In
7095 that case, the R_MIPS_LO16 relocation may occur
7096 as one of these. We permit a similar extension
7097 in general, as that is useful for GCC. */
7098 lo16_relocation
= mips_elf_next_relocation (input_bfd
,
7101 if (lo16_relocation
== NULL
)
7104 lo16_location
= contents
+ lo16_relocation
->r_offset
;
7106 /* Obtain the addend kept there. */
7107 lo16_howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
,
7109 _bfd_mips16_elf_reloc_unshuffle (input_bfd
, lo16_type
, FALSE
,
7111 l
= mips_elf_obtain_contents (lo16_howto
, lo16_relocation
,
7112 input_bfd
, contents
);
7113 _bfd_mips16_elf_reloc_shuffle (input_bfd
, lo16_type
, FALSE
,
7115 l
&= lo16_howto
->src_mask
;
7116 l
<<= lo16_howto
->rightshift
;
7117 l
= _bfd_mips_elf_sign_extend (l
, 16);
7121 /* Compute the combined addend. */
7125 addend
<<= howto
->rightshift
;
7128 addend
= rel
->r_addend
;
7129 mips_elf_adjust_addend (output_bfd
, info
, input_bfd
,
7130 local_syms
, local_sections
, rel
);
7133 if (info
->relocatable
)
7135 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
)
7136 && bfd_big_endian (input_bfd
))
7139 if (!rela_relocation_p
&& rel
->r_addend
)
7141 addend
+= rel
->r_addend
;
7142 if (r_type
== R_MIPS_HI16
7143 || r_type
== R_MIPS_GOT16
)
7144 addend
= mips_elf_high (addend
);
7145 else if (r_type
== R_MIPS_HIGHER
)
7146 addend
= mips_elf_higher (addend
);
7147 else if (r_type
== R_MIPS_HIGHEST
)
7148 addend
= mips_elf_highest (addend
);
7150 addend
>>= howto
->rightshift
;
7152 /* We use the source mask, rather than the destination
7153 mask because the place to which we are writing will be
7154 source of the addend in the final link. */
7155 addend
&= howto
->src_mask
;
7157 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
7158 /* See the comment above about using R_MIPS_64 in the 32-bit
7159 ABI. Here, we need to update the addend. It would be
7160 possible to get away with just using the R_MIPS_32 reloc
7161 but for endianness. */
7167 if (addend
& ((bfd_vma
) 1 << 31))
7169 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
7176 /* If we don't know that we have a 64-bit type,
7177 do two separate stores. */
7178 if (bfd_big_endian (input_bfd
))
7180 /* Store the sign-bits (which are most significant)
7182 low_bits
= sign_bits
;
7188 high_bits
= sign_bits
;
7190 bfd_put_32 (input_bfd
, low_bits
,
7191 contents
+ rel
->r_offset
);
7192 bfd_put_32 (input_bfd
, high_bits
,
7193 contents
+ rel
->r_offset
+ 4);
7197 if (! mips_elf_perform_relocation (info
, howto
, rel
, addend
,
7198 input_bfd
, input_section
,
7203 /* Go on to the next relocation. */
7207 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7208 relocations for the same offset. In that case we are
7209 supposed to treat the output of each relocation as the addend
7211 if (rel
+ 1 < relend
7212 && rel
->r_offset
== rel
[1].r_offset
7213 && ELF_R_TYPE (input_bfd
, rel
[1].r_info
) != R_MIPS_NONE
)
7214 use_saved_addend_p
= TRUE
;
7216 use_saved_addend_p
= FALSE
;
7218 /* Figure out what value we are supposed to relocate. */
7219 switch (mips_elf_calculate_relocation (output_bfd
, input_bfd
,
7220 input_section
, info
, rel
,
7221 addend
, howto
, local_syms
,
7222 local_sections
, &value
,
7223 &name
, &require_jalx
,
7224 use_saved_addend_p
))
7226 case bfd_reloc_continue
:
7227 /* There's nothing to do. */
7230 case bfd_reloc_undefined
:
7231 /* mips_elf_calculate_relocation already called the
7232 undefined_symbol callback. There's no real point in
7233 trying to perform the relocation at this point, so we
7234 just skip ahead to the next relocation. */
7237 case bfd_reloc_notsupported
:
7238 msg
= _("internal error: unsupported relocation error");
7239 info
->callbacks
->warning
7240 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
7243 case bfd_reloc_overflow
:
7244 if (use_saved_addend_p
)
7245 /* Ignore overflow until we reach the last relocation for
7246 a given location. */
7250 BFD_ASSERT (name
!= NULL
);
7251 if (! ((*info
->callbacks
->reloc_overflow
)
7252 (info
, NULL
, name
, howto
->name
, (bfd_vma
) 0,
7253 input_bfd
, input_section
, rel
->r_offset
)))
7266 /* If we've got another relocation for the address, keep going
7267 until we reach the last one. */
7268 if (use_saved_addend_p
)
7274 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
7275 /* See the comment above about using R_MIPS_64 in the 32-bit
7276 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7277 that calculated the right value. Now, however, we
7278 sign-extend the 32-bit result to 64-bits, and store it as a
7279 64-bit value. We are especially generous here in that we
7280 go to extreme lengths to support this usage on systems with
7281 only a 32-bit VMA. */
7287 if (value
& ((bfd_vma
) 1 << 31))
7289 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
7296 /* If we don't know that we have a 64-bit type,
7297 do two separate stores. */
7298 if (bfd_big_endian (input_bfd
))
7300 /* Undo what we did above. */
7302 /* Store the sign-bits (which are most significant)
7304 low_bits
= sign_bits
;
7310 high_bits
= sign_bits
;
7312 bfd_put_32 (input_bfd
, low_bits
,
7313 contents
+ rel
->r_offset
);
7314 bfd_put_32 (input_bfd
, high_bits
,
7315 contents
+ rel
->r_offset
+ 4);
7319 /* Actually perform the relocation. */
7320 if (! mips_elf_perform_relocation (info
, howto
, rel
, value
,
7321 input_bfd
, input_section
,
7322 contents
, require_jalx
))
7329 /* If NAME is one of the special IRIX6 symbols defined by the linker,
7330 adjust it appropriately now. */
7333 mips_elf_irix6_finish_dynamic_symbol (bfd
*abfd ATTRIBUTE_UNUSED
,
7334 const char *name
, Elf_Internal_Sym
*sym
)
7336 /* The linker script takes care of providing names and values for
7337 these, but we must place them into the right sections. */
7338 static const char* const text_section_symbols
[] = {
7341 "__dso_displacement",
7343 "__program_header_table",
7347 static const char* const data_section_symbols
[] = {
7355 const char* const *p
;
7358 for (i
= 0; i
< 2; ++i
)
7359 for (p
= (i
== 0) ? text_section_symbols
: data_section_symbols
;
7362 if (strcmp (*p
, name
) == 0)
7364 /* All of these symbols are given type STT_SECTION by the
7366 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
7367 sym
->st_other
= STO_PROTECTED
;
7369 /* The IRIX linker puts these symbols in special sections. */
7371 sym
->st_shndx
= SHN_MIPS_TEXT
;
7373 sym
->st_shndx
= SHN_MIPS_DATA
;
7379 /* Finish up dynamic symbol handling. We set the contents of various
7380 dynamic sections here. */
7383 _bfd_mips_elf_finish_dynamic_symbol (bfd
*output_bfd
,
7384 struct bfd_link_info
*info
,
7385 struct elf_link_hash_entry
*h
,
7386 Elf_Internal_Sym
*sym
)
7390 struct mips_got_info
*g
, *gg
;
7393 dynobj
= elf_hash_table (info
)->dynobj
;
7395 if (h
->plt
.offset
!= MINUS_ONE
)
7398 bfd_byte stub
[MIPS_FUNCTION_STUB_SIZE
];
7400 /* This symbol has a stub. Set it up. */
7402 BFD_ASSERT (h
->dynindx
!= -1);
7404 s
= bfd_get_section_by_name (dynobj
,
7405 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
7406 BFD_ASSERT (s
!= NULL
);
7408 /* FIXME: Can h->dynindx be more than 64K? */
7409 if (h
->dynindx
& 0xffff0000)
7412 /* Fill the stub. */
7413 bfd_put_32 (output_bfd
, STUB_LW (output_bfd
), stub
);
7414 bfd_put_32 (output_bfd
, STUB_MOVE (output_bfd
), stub
+ 4);
7415 bfd_put_32 (output_bfd
, STUB_JALR
, stub
+ 8);
7416 bfd_put_32 (output_bfd
, STUB_LI16 (output_bfd
) + h
->dynindx
, stub
+ 12);
7418 BFD_ASSERT (h
->plt
.offset
<= s
->size
);
7419 memcpy (s
->contents
+ h
->plt
.offset
, stub
, MIPS_FUNCTION_STUB_SIZE
);
7421 /* Mark the symbol as undefined. plt.offset != -1 occurs
7422 only for the referenced symbol. */
7423 sym
->st_shndx
= SHN_UNDEF
;
7425 /* The run-time linker uses the st_value field of the symbol
7426 to reset the global offset table entry for this external
7427 to its stub address when unlinking a shared object. */
7428 sym
->st_value
= (s
->output_section
->vma
+ s
->output_offset
7432 BFD_ASSERT (h
->dynindx
!= -1
7433 || h
->forced_local
);
7435 sgot
= mips_elf_got_section (dynobj
, FALSE
);
7436 BFD_ASSERT (sgot
!= NULL
);
7437 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
7438 g
= mips_elf_section_data (sgot
)->u
.got_info
;
7439 BFD_ASSERT (g
!= NULL
);
7441 /* Run through the global symbol table, creating GOT entries for all
7442 the symbols that need them. */
7443 if (g
->global_gotsym
!= NULL
7444 && h
->dynindx
>= g
->global_gotsym
->dynindx
)
7449 value
= sym
->st_value
;
7450 offset
= mips_elf_global_got_index (dynobj
, output_bfd
, h
, R_MIPS_GOT16
, info
);
7451 MIPS_ELF_PUT_WORD (output_bfd
, value
, sgot
->contents
+ offset
);
7454 if (g
->next
&& h
->dynindx
!= -1 && h
->type
!= STT_TLS
)
7456 struct mips_got_entry e
, *p
;
7462 e
.abfd
= output_bfd
;
7464 e
.d
.h
= (struct mips_elf_link_hash_entry
*)h
;
7467 for (g
= g
->next
; g
->next
!= gg
; g
= g
->next
)
7470 && (p
= (struct mips_got_entry
*) htab_find (g
->got_entries
,
7475 || (elf_hash_table (info
)->dynamic_sections_created
7477 && p
->d
.h
->root
.def_dynamic
7478 && !p
->d
.h
->root
.def_regular
))
7480 /* Create an R_MIPS_REL32 relocation for this entry. Due to
7481 the various compatibility problems, it's easier to mock
7482 up an R_MIPS_32 or R_MIPS_64 relocation and leave
7483 mips_elf_create_dynamic_relocation to calculate the
7484 appropriate addend. */
7485 Elf_Internal_Rela rel
[3];
7487 memset (rel
, 0, sizeof (rel
));
7488 if (ABI_64_P (output_bfd
))
7489 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_64
);
7491 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_32
);
7492 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
7495 if (! (mips_elf_create_dynamic_relocation
7496 (output_bfd
, info
, rel
,
7497 e
.d
.h
, NULL
, sym
->st_value
, &entry
, sgot
)))
7501 entry
= sym
->st_value
;
7502 MIPS_ELF_PUT_WORD (output_bfd
, entry
, sgot
->contents
+ offset
);
7507 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
7508 name
= h
->root
.root
.string
;
7509 if (strcmp (name
, "_DYNAMIC") == 0
7510 || h
== elf_hash_table (info
)->hgot
)
7511 sym
->st_shndx
= SHN_ABS
;
7512 else if (strcmp (name
, "_DYNAMIC_LINK") == 0
7513 || strcmp (name
, "_DYNAMIC_LINKING") == 0)
7515 sym
->st_shndx
= SHN_ABS
;
7516 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
7519 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (output_bfd
))
7521 sym
->st_shndx
= SHN_ABS
;
7522 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
7523 sym
->st_value
= elf_gp (output_bfd
);
7525 else if (SGI_COMPAT (output_bfd
))
7527 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
7528 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
7530 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
7531 sym
->st_other
= STO_PROTECTED
;
7533 sym
->st_shndx
= SHN_MIPS_DATA
;
7535 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
7537 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
7538 sym
->st_other
= STO_PROTECTED
;
7539 sym
->st_value
= mips_elf_hash_table (info
)->procedure_count
;
7540 sym
->st_shndx
= SHN_ABS
;
7542 else if (sym
->st_shndx
!= SHN_UNDEF
&& sym
->st_shndx
!= SHN_ABS
)
7544 if (h
->type
== STT_FUNC
)
7545 sym
->st_shndx
= SHN_MIPS_TEXT
;
7546 else if (h
->type
== STT_OBJECT
)
7547 sym
->st_shndx
= SHN_MIPS_DATA
;
7551 /* Handle the IRIX6-specific symbols. */
7552 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
7553 mips_elf_irix6_finish_dynamic_symbol (output_bfd
, name
, sym
);
7557 if (! mips_elf_hash_table (info
)->use_rld_obj_head
7558 && (strcmp (name
, "__rld_map") == 0
7559 || strcmp (name
, "__RLD_MAP") == 0))
7561 asection
*s
= bfd_get_section_by_name (dynobj
, ".rld_map");
7562 BFD_ASSERT (s
!= NULL
);
7563 sym
->st_value
= s
->output_section
->vma
+ s
->output_offset
;
7564 bfd_put_32 (output_bfd
, 0, s
->contents
);
7565 if (mips_elf_hash_table (info
)->rld_value
== 0)
7566 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
7568 else if (mips_elf_hash_table (info
)->use_rld_obj_head
7569 && strcmp (name
, "__rld_obj_head") == 0)
7571 /* IRIX6 does not use a .rld_map section. */
7572 if (IRIX_COMPAT (output_bfd
) == ict_irix5
7573 || IRIX_COMPAT (output_bfd
) == ict_none
)
7574 BFD_ASSERT (bfd_get_section_by_name (dynobj
, ".rld_map")
7576 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
7580 /* If this is a mips16 symbol, force the value to be even. */
7581 if (sym
->st_other
== STO_MIPS16
)
7582 sym
->st_value
&= ~1;
7587 /* Finish up the dynamic sections. */
7590 _bfd_mips_elf_finish_dynamic_sections (bfd
*output_bfd
,
7591 struct bfd_link_info
*info
)
7596 struct mips_got_info
*gg
, *g
;
7598 dynobj
= elf_hash_table (info
)->dynobj
;
7600 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
7602 sgot
= mips_elf_got_section (dynobj
, FALSE
);
7607 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
7608 gg
= mips_elf_section_data (sgot
)->u
.got_info
;
7609 BFD_ASSERT (gg
!= NULL
);
7610 g
= mips_elf_got_for_ibfd (gg
, output_bfd
);
7611 BFD_ASSERT (g
!= NULL
);
7614 if (elf_hash_table (info
)->dynamic_sections_created
)
7618 BFD_ASSERT (sdyn
!= NULL
);
7619 BFD_ASSERT (g
!= NULL
);
7621 for (b
= sdyn
->contents
;
7622 b
< sdyn
->contents
+ sdyn
->size
;
7623 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
7625 Elf_Internal_Dyn dyn
;
7629 bfd_boolean swap_out_p
;
7631 /* Read in the current dynamic entry. */
7632 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
7634 /* Assume that we're going to modify it and write it out. */
7640 s
= mips_elf_rel_dyn_section (dynobj
, FALSE
);
7641 BFD_ASSERT (s
!= NULL
);
7642 dyn
.d_un
.d_val
= MIPS_ELF_REL_SIZE (dynobj
);
7646 /* Rewrite DT_STRSZ. */
7648 _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
7653 s
= bfd_get_section_by_name (output_bfd
, name
);
7654 BFD_ASSERT (s
!= NULL
);
7655 dyn
.d_un
.d_ptr
= s
->vma
;
7658 case DT_MIPS_RLD_VERSION
:
7659 dyn
.d_un
.d_val
= 1; /* XXX */
7663 dyn
.d_un
.d_val
= RHF_NOTPOT
; /* XXX */
7666 case DT_MIPS_TIME_STAMP
:
7674 case DT_MIPS_ICHECKSUM
:
7679 case DT_MIPS_IVERSION
:
7684 case DT_MIPS_BASE_ADDRESS
:
7685 s
= output_bfd
->sections
;
7686 BFD_ASSERT (s
!= NULL
);
7687 dyn
.d_un
.d_ptr
= s
->vma
& ~(bfd_vma
) 0xffff;
7690 case DT_MIPS_LOCAL_GOTNO
:
7691 dyn
.d_un
.d_val
= g
->local_gotno
;
7694 case DT_MIPS_UNREFEXTNO
:
7695 /* The index into the dynamic symbol table which is the
7696 entry of the first external symbol that is not
7697 referenced within the same object. */
7698 dyn
.d_un
.d_val
= bfd_count_sections (output_bfd
) + 1;
7701 case DT_MIPS_GOTSYM
:
7702 if (gg
->global_gotsym
)
7704 dyn
.d_un
.d_val
= gg
->global_gotsym
->dynindx
;
7707 /* In case if we don't have global got symbols we default
7708 to setting DT_MIPS_GOTSYM to the same value as
7709 DT_MIPS_SYMTABNO, so we just fall through. */
7711 case DT_MIPS_SYMTABNO
:
7713 elemsize
= MIPS_ELF_SYM_SIZE (output_bfd
);
7714 s
= bfd_get_section_by_name (output_bfd
, name
);
7715 BFD_ASSERT (s
!= NULL
);
7717 dyn
.d_un
.d_val
= s
->size
/ elemsize
;
7720 case DT_MIPS_HIPAGENO
:
7721 dyn
.d_un
.d_val
= g
->local_gotno
- MIPS_RESERVED_GOTNO
;
7724 case DT_MIPS_RLD_MAP
:
7725 dyn
.d_un
.d_ptr
= mips_elf_hash_table (info
)->rld_value
;
7728 case DT_MIPS_OPTIONS
:
7729 s
= (bfd_get_section_by_name
7730 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd
)));
7731 dyn
.d_un
.d_ptr
= s
->vma
;
7740 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
7745 /* The first entry of the global offset table will be filled at
7746 runtime. The second entry will be used by some runtime loaders.
7747 This isn't the case of IRIX rld. */
7748 if (sgot
!= NULL
&& sgot
->size
> 0)
7750 MIPS_ELF_PUT_WORD (output_bfd
, 0, sgot
->contents
);
7751 MIPS_ELF_PUT_WORD (output_bfd
, 0x80000000,
7752 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
7756 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
7757 = MIPS_ELF_GOT_SIZE (output_bfd
);
7759 /* Generate dynamic relocations for the non-primary gots. */
7760 if (gg
!= NULL
&& gg
->next
)
7762 Elf_Internal_Rela rel
[3];
7765 memset (rel
, 0, sizeof (rel
));
7766 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_REL32
);
7768 for (g
= gg
->next
; g
->next
!= gg
; g
= g
->next
)
7770 bfd_vma index
= g
->next
->local_gotno
+ g
->next
->global_gotno
7771 + g
->next
->tls_gotno
;
7773 MIPS_ELF_PUT_WORD (output_bfd
, 0, sgot
->contents
7774 + index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
7775 MIPS_ELF_PUT_WORD (output_bfd
, 0x80000000, sgot
->contents
7776 + index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
7781 while (index
< g
->assigned_gotno
)
7783 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
7784 = index
++ * MIPS_ELF_GOT_SIZE (output_bfd
);
7785 if (!(mips_elf_create_dynamic_relocation
7786 (output_bfd
, info
, rel
, NULL
,
7787 bfd_abs_section_ptr
,
7790 BFD_ASSERT (addend
== 0);
7795 /* The generation of dynamic relocations for the non-primary gots
7796 adds more dynamic relocations. We cannot count them until
7799 if (elf_hash_table (info
)->dynamic_sections_created
)
7802 bfd_boolean swap_out_p
;
7804 BFD_ASSERT (sdyn
!= NULL
);
7806 for (b
= sdyn
->contents
;
7807 b
< sdyn
->contents
+ sdyn
->size
;
7808 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
7810 Elf_Internal_Dyn dyn
;
7813 /* Read in the current dynamic entry. */
7814 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
7816 /* Assume that we're going to modify it and write it out. */
7822 /* Reduce DT_RELSZ to account for any relocations we
7823 decided not to make. This is for the n64 irix rld,
7824 which doesn't seem to apply any relocations if there
7825 are trailing null entries. */
7826 s
= mips_elf_rel_dyn_section (dynobj
, FALSE
);
7827 dyn
.d_un
.d_val
= (s
->reloc_count
7828 * (ABI_64_P (output_bfd
)
7829 ? sizeof (Elf64_Mips_External_Rel
)
7830 : sizeof (Elf32_External_Rel
)));
7839 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
7846 Elf32_compact_rel cpt
;
7848 if (SGI_COMPAT (output_bfd
))
7850 /* Write .compact_rel section out. */
7851 s
= bfd_get_section_by_name (dynobj
, ".compact_rel");
7855 cpt
.num
= s
->reloc_count
;
7857 cpt
.offset
= (s
->output_section
->filepos
7858 + sizeof (Elf32_External_compact_rel
));
7861 bfd_elf32_swap_compact_rel_out (output_bfd
, &cpt
,
7862 ((Elf32_External_compact_rel
*)
7865 /* Clean up a dummy stub function entry in .text. */
7866 s
= bfd_get_section_by_name (dynobj
,
7867 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
7870 file_ptr dummy_offset
;
7872 BFD_ASSERT (s
->size
>= MIPS_FUNCTION_STUB_SIZE
);
7873 dummy_offset
= s
->size
- MIPS_FUNCTION_STUB_SIZE
;
7874 memset (s
->contents
+ dummy_offset
, 0,
7875 MIPS_FUNCTION_STUB_SIZE
);
7880 /* We need to sort the entries of the dynamic relocation section. */
7882 s
= mips_elf_rel_dyn_section (dynobj
, FALSE
);
7885 && s
->size
> (bfd_vma
)2 * MIPS_ELF_REL_SIZE (output_bfd
))
7887 reldyn_sorting_bfd
= output_bfd
;
7889 if (ABI_64_P (output_bfd
))
7890 qsort ((Elf64_External_Rel
*) s
->contents
+ 1, s
->reloc_count
- 1,
7891 sizeof (Elf64_Mips_External_Rel
), sort_dynamic_relocs_64
);
7893 qsort ((Elf32_External_Rel
*) s
->contents
+ 1, s
->reloc_count
- 1,
7894 sizeof (Elf32_External_Rel
), sort_dynamic_relocs
);
7902 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7905 mips_set_isa_flags (bfd
*abfd
)
7909 switch (bfd_get_mach (abfd
))
7912 case bfd_mach_mips3000
:
7913 val
= E_MIPS_ARCH_1
;
7916 case bfd_mach_mips3900
:
7917 val
= E_MIPS_ARCH_1
| E_MIPS_MACH_3900
;
7920 case bfd_mach_mips6000
:
7921 val
= E_MIPS_ARCH_2
;
7924 case bfd_mach_mips4000
:
7925 case bfd_mach_mips4300
:
7926 case bfd_mach_mips4400
:
7927 case bfd_mach_mips4600
:
7928 val
= E_MIPS_ARCH_3
;
7931 case bfd_mach_mips4010
:
7932 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4010
;
7935 case bfd_mach_mips4100
:
7936 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4100
;
7939 case bfd_mach_mips4111
:
7940 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4111
;
7943 case bfd_mach_mips4120
:
7944 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4120
;
7947 case bfd_mach_mips4650
:
7948 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4650
;
7951 case bfd_mach_mips5400
:
7952 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5400
;
7955 case bfd_mach_mips5500
:
7956 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5500
;
7959 case bfd_mach_mips9000
:
7960 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_9000
;
7963 case bfd_mach_mips5000
:
7964 case bfd_mach_mips7000
:
7965 case bfd_mach_mips8000
:
7966 case bfd_mach_mips10000
:
7967 case bfd_mach_mips12000
:
7968 val
= E_MIPS_ARCH_4
;
7971 case bfd_mach_mips5
:
7972 val
= E_MIPS_ARCH_5
;
7975 case bfd_mach_mips_sb1
:
7976 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_SB1
;
7979 case bfd_mach_mipsisa32
:
7980 val
= E_MIPS_ARCH_32
;
7983 case bfd_mach_mipsisa64
:
7984 val
= E_MIPS_ARCH_64
;
7987 case bfd_mach_mipsisa32r2
:
7988 val
= E_MIPS_ARCH_32R2
;
7991 case bfd_mach_mipsisa64r2
:
7992 val
= E_MIPS_ARCH_64R2
;
7995 elf_elfheader (abfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
7996 elf_elfheader (abfd
)->e_flags
|= val
;
8001 /* The final processing done just before writing out a MIPS ELF object
8002 file. This gets the MIPS architecture right based on the machine
8003 number. This is used by both the 32-bit and the 64-bit ABI. */
8006 _bfd_mips_elf_final_write_processing (bfd
*abfd
,
8007 bfd_boolean linker ATTRIBUTE_UNUSED
)
8010 Elf_Internal_Shdr
**hdrpp
;
8014 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
8015 is nonzero. This is for compatibility with old objects, which used
8016 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
8017 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_MACH
) == 0)
8018 mips_set_isa_flags (abfd
);
8020 /* Set the sh_info field for .gptab sections and other appropriate
8021 info for each special section. */
8022 for (i
= 1, hdrpp
= elf_elfsections (abfd
) + 1;
8023 i
< elf_numsections (abfd
);
8026 switch ((*hdrpp
)->sh_type
)
8029 case SHT_MIPS_LIBLIST
:
8030 sec
= bfd_get_section_by_name (abfd
, ".dynstr");
8032 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
8035 case SHT_MIPS_GPTAB
:
8036 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
8037 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
8038 BFD_ASSERT (name
!= NULL
8039 && strncmp (name
, ".gptab.", sizeof ".gptab." - 1) == 0);
8040 sec
= bfd_get_section_by_name (abfd
, name
+ sizeof ".gptab" - 1);
8041 BFD_ASSERT (sec
!= NULL
);
8042 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
8045 case SHT_MIPS_CONTENT
:
8046 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
8047 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
8048 BFD_ASSERT (name
!= NULL
8049 && strncmp (name
, ".MIPS.content",
8050 sizeof ".MIPS.content" - 1) == 0);
8051 sec
= bfd_get_section_by_name (abfd
,
8052 name
+ sizeof ".MIPS.content" - 1);
8053 BFD_ASSERT (sec
!= NULL
);
8054 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
8057 case SHT_MIPS_SYMBOL_LIB
:
8058 sec
= bfd_get_section_by_name (abfd
, ".dynsym");
8060 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
8061 sec
= bfd_get_section_by_name (abfd
, ".liblist");
8063 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
8066 case SHT_MIPS_EVENTS
:
8067 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
8068 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
8069 BFD_ASSERT (name
!= NULL
);
8070 if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
8071 sec
= bfd_get_section_by_name (abfd
,
8072 name
+ sizeof ".MIPS.events" - 1);
8075 BFD_ASSERT (strncmp (name
, ".MIPS.post_rel",
8076 sizeof ".MIPS.post_rel" - 1) == 0);
8077 sec
= bfd_get_section_by_name (abfd
,
8079 + sizeof ".MIPS.post_rel" - 1));
8081 BFD_ASSERT (sec
!= NULL
);
8082 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
8089 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
8093 _bfd_mips_elf_additional_program_headers (bfd
*abfd
)
8098 /* See if we need a PT_MIPS_REGINFO segment. */
8099 s
= bfd_get_section_by_name (abfd
, ".reginfo");
8100 if (s
&& (s
->flags
& SEC_LOAD
))
8103 /* See if we need a PT_MIPS_OPTIONS segment. */
8104 if (IRIX_COMPAT (abfd
) == ict_irix6
8105 && bfd_get_section_by_name (abfd
,
8106 MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)))
8109 /* See if we need a PT_MIPS_RTPROC segment. */
8110 if (IRIX_COMPAT (abfd
) == ict_irix5
8111 && bfd_get_section_by_name (abfd
, ".dynamic")
8112 && bfd_get_section_by_name (abfd
, ".mdebug"))
8118 /* Modify the segment map for an IRIX5 executable. */
8121 _bfd_mips_elf_modify_segment_map (bfd
*abfd
,
8122 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
8125 struct elf_segment_map
*m
, **pm
;
8128 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
8130 s
= bfd_get_section_by_name (abfd
, ".reginfo");
8131 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
8133 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
8134 if (m
->p_type
== PT_MIPS_REGINFO
)
8139 m
= bfd_zalloc (abfd
, amt
);
8143 m
->p_type
= PT_MIPS_REGINFO
;
8147 /* We want to put it after the PHDR and INTERP segments. */
8148 pm
= &elf_tdata (abfd
)->segment_map
;
8150 && ((*pm
)->p_type
== PT_PHDR
8151 || (*pm
)->p_type
== PT_INTERP
))
8159 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
8160 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
8161 PT_MIPS_OPTIONS segment immediately following the program header
8164 /* On non-IRIX6 new abi, we'll have already created a segment
8165 for this section, so don't create another. I'm not sure this
8166 is not also the case for IRIX 6, but I can't test it right
8168 && IRIX_COMPAT (abfd
) == ict_irix6
)
8170 for (s
= abfd
->sections
; s
; s
= s
->next
)
8171 if (elf_section_data (s
)->this_hdr
.sh_type
== SHT_MIPS_OPTIONS
)
8176 struct elf_segment_map
*options_segment
;
8178 pm
= &elf_tdata (abfd
)->segment_map
;
8180 && ((*pm
)->p_type
== PT_PHDR
8181 || (*pm
)->p_type
== PT_INTERP
))
8184 amt
= sizeof (struct elf_segment_map
);
8185 options_segment
= bfd_zalloc (abfd
, amt
);
8186 options_segment
->next
= *pm
;
8187 options_segment
->p_type
= PT_MIPS_OPTIONS
;
8188 options_segment
->p_flags
= PF_R
;
8189 options_segment
->p_flags_valid
= TRUE
;
8190 options_segment
->count
= 1;
8191 options_segment
->sections
[0] = s
;
8192 *pm
= options_segment
;
8197 if (IRIX_COMPAT (abfd
) == ict_irix5
)
8199 /* If there are .dynamic and .mdebug sections, we make a room
8200 for the RTPROC header. FIXME: Rewrite without section names. */
8201 if (bfd_get_section_by_name (abfd
, ".interp") == NULL
8202 && bfd_get_section_by_name (abfd
, ".dynamic") != NULL
8203 && bfd_get_section_by_name (abfd
, ".mdebug") != NULL
)
8205 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
8206 if (m
->p_type
== PT_MIPS_RTPROC
)
8211 m
= bfd_zalloc (abfd
, amt
);
8215 m
->p_type
= PT_MIPS_RTPROC
;
8217 s
= bfd_get_section_by_name (abfd
, ".rtproc");
8222 m
->p_flags_valid
= 1;
8230 /* We want to put it after the DYNAMIC segment. */
8231 pm
= &elf_tdata (abfd
)->segment_map
;
8232 while (*pm
!= NULL
&& (*pm
)->p_type
!= PT_DYNAMIC
)
8242 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
8243 .dynstr, .dynsym, and .hash sections, and everything in
8245 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
;
8247 if ((*pm
)->p_type
== PT_DYNAMIC
)
8250 if (m
!= NULL
&& IRIX_COMPAT (abfd
) == ict_none
)
8252 /* For a normal mips executable the permissions for the PT_DYNAMIC
8253 segment are read, write and execute. We do that here since
8254 the code in elf.c sets only the read permission. This matters
8255 sometimes for the dynamic linker. */
8256 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
8258 m
->p_flags
= PF_R
| PF_W
| PF_X
;
8259 m
->p_flags_valid
= 1;
8263 && m
->count
== 1 && strcmp (m
->sections
[0]->name
, ".dynamic") == 0)
8265 static const char *sec_names
[] =
8267 ".dynamic", ".dynstr", ".dynsym", ".hash"
8271 struct elf_segment_map
*n
;
8275 for (i
= 0; i
< sizeof sec_names
/ sizeof sec_names
[0]; i
++)
8277 s
= bfd_get_section_by_name (abfd
, sec_names
[i
]);
8278 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
8285 if (high
< s
->vma
+ sz
)
8291 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
8292 if ((s
->flags
& SEC_LOAD
) != 0
8294 && s
->vma
+ s
->size
<= high
)
8297 amt
= sizeof *n
+ (bfd_size_type
) (c
- 1) * sizeof (asection
*);
8298 n
= bfd_zalloc (abfd
, amt
);
8305 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
8307 if ((s
->flags
& SEC_LOAD
) != 0
8309 && s
->vma
+ s
->size
<= high
)
8323 /* Return the section that should be marked against GC for a given
8327 _bfd_mips_elf_gc_mark_hook (asection
*sec
,
8328 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
8329 Elf_Internal_Rela
*rel
,
8330 struct elf_link_hash_entry
*h
,
8331 Elf_Internal_Sym
*sym
)
8333 /* ??? Do mips16 stub sections need to be handled special? */
8337 switch (ELF_R_TYPE (sec
->owner
, rel
->r_info
))
8339 case R_MIPS_GNU_VTINHERIT
:
8340 case R_MIPS_GNU_VTENTRY
:
8344 switch (h
->root
.type
)
8346 case bfd_link_hash_defined
:
8347 case bfd_link_hash_defweak
:
8348 return h
->root
.u
.def
.section
;
8350 case bfd_link_hash_common
:
8351 return h
->root
.u
.c
.p
->section
;
8359 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
8364 /* Update the got entry reference counts for the section being removed. */
8367 _bfd_mips_elf_gc_sweep_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
8368 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
8369 asection
*sec ATTRIBUTE_UNUSED
,
8370 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
)
8373 Elf_Internal_Shdr
*symtab_hdr
;
8374 struct elf_link_hash_entry
**sym_hashes
;
8375 bfd_signed_vma
*local_got_refcounts
;
8376 const Elf_Internal_Rela
*rel
, *relend
;
8377 unsigned long r_symndx
;
8378 struct elf_link_hash_entry
*h
;
8380 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
8381 sym_hashes
= elf_sym_hashes (abfd
);
8382 local_got_refcounts
= elf_local_got_refcounts (abfd
);
8384 relend
= relocs
+ sec
->reloc_count
;
8385 for (rel
= relocs
; rel
< relend
; rel
++)
8386 switch (ELF_R_TYPE (abfd
, rel
->r_info
))
8390 case R_MIPS_CALL_HI16
:
8391 case R_MIPS_CALL_LO16
:
8392 case R_MIPS_GOT_HI16
:
8393 case R_MIPS_GOT_LO16
:
8394 case R_MIPS_GOT_DISP
:
8395 case R_MIPS_GOT_PAGE
:
8396 case R_MIPS_GOT_OFST
:
8397 /* ??? It would seem that the existing MIPS code does no sort
8398 of reference counting or whatnot on its GOT and PLT entries,
8399 so it is not possible to garbage collect them at this time. */
8410 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
8411 hiding the old indirect symbol. Process additional relocation
8412 information. Also called for weakdefs, in which case we just let
8413 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
8416 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info
*info
,
8417 struct elf_link_hash_entry
*dir
,
8418 struct elf_link_hash_entry
*ind
)
8420 struct mips_elf_link_hash_entry
*dirmips
, *indmips
;
8422 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
8424 if (ind
->root
.type
!= bfd_link_hash_indirect
)
8427 dirmips
= (struct mips_elf_link_hash_entry
*) dir
;
8428 indmips
= (struct mips_elf_link_hash_entry
*) ind
;
8429 dirmips
->possibly_dynamic_relocs
+= indmips
->possibly_dynamic_relocs
;
8430 if (indmips
->readonly_reloc
)
8431 dirmips
->readonly_reloc
= TRUE
;
8432 if (indmips
->no_fn_stub
)
8433 dirmips
->no_fn_stub
= TRUE
;
8435 if (dirmips
->tls_type
== 0)
8436 dirmips
->tls_type
= indmips
->tls_type
;
8440 _bfd_mips_elf_hide_symbol (struct bfd_link_info
*info
,
8441 struct elf_link_hash_entry
*entry
,
8442 bfd_boolean force_local
)
8446 struct mips_got_info
*g
;
8447 struct mips_elf_link_hash_entry
*h
;
8449 h
= (struct mips_elf_link_hash_entry
*) entry
;
8450 if (h
->forced_local
)
8452 h
->forced_local
= force_local
;
8454 dynobj
= elf_hash_table (info
)->dynobj
;
8455 if (dynobj
!= NULL
&& force_local
&& h
->root
.type
!= STT_TLS
8456 && (got
= mips_elf_got_section (dynobj
, FALSE
)) != NULL
8457 && (g
= mips_elf_section_data (got
)->u
.got_info
) != NULL
)
8461 struct mips_got_entry e
;
8462 struct mips_got_info
*gg
= g
;
8464 /* Since we're turning what used to be a global symbol into a
8465 local one, bump up the number of local entries of each GOT
8466 that had an entry for it. This will automatically decrease
8467 the number of global entries, since global_gotno is actually
8468 the upper limit of global entries. */
8474 for (g
= g
->next
; g
!= gg
; g
= g
->next
)
8475 if (htab_find (g
->got_entries
, &e
))
8477 BFD_ASSERT (g
->global_gotno
> 0);
8482 /* If this was a global symbol forced into the primary GOT, we
8483 no longer need an entry for it. We can't release the entry
8484 at this point, but we must at least stop counting it as one
8485 of the symbols that required a forced got entry. */
8486 if (h
->root
.got
.offset
== 2)
8488 BFD_ASSERT (gg
->assigned_gotno
> 0);
8489 gg
->assigned_gotno
--;
8492 else if (g
->global_gotno
== 0 && g
->global_gotsym
== NULL
)
8493 /* If we haven't got through GOT allocation yet, just bump up the
8494 number of local entries, as this symbol won't be counted as
8497 else if (h
->root
.got
.offset
== 1)
8499 /* If we're past non-multi-GOT allocation and this symbol had
8500 been marked for a global got entry, give it a local entry
8502 BFD_ASSERT (g
->global_gotno
> 0);
8508 _bfd_elf_link_hash_hide_symbol (info
, &h
->root
, force_local
);
8514 _bfd_mips_elf_discard_info (bfd
*abfd
, struct elf_reloc_cookie
*cookie
,
8515 struct bfd_link_info
*info
)
8518 bfd_boolean ret
= FALSE
;
8519 unsigned char *tdata
;
8522 o
= bfd_get_section_by_name (abfd
, ".pdr");
8527 if (o
->size
% PDR_SIZE
!= 0)
8529 if (o
->output_section
!= NULL
8530 && bfd_is_abs_section (o
->output_section
))
8533 tdata
= bfd_zmalloc (o
->size
/ PDR_SIZE
);
8537 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
8545 cookie
->rel
= cookie
->rels
;
8546 cookie
->relend
= cookie
->rels
+ o
->reloc_count
;
8548 for (i
= 0, skip
= 0; i
< o
->size
/ PDR_SIZE
; i
++)
8550 if (bfd_elf_reloc_symbol_deleted_p (i
* PDR_SIZE
, cookie
))
8559 mips_elf_section_data (o
)->u
.tdata
= tdata
;
8560 o
->size
-= skip
* PDR_SIZE
;
8566 if (! info
->keep_memory
)
8567 free (cookie
->rels
);
8573 _bfd_mips_elf_ignore_discarded_relocs (asection
*sec
)
8575 if (strcmp (sec
->name
, ".pdr") == 0)
8581 _bfd_mips_elf_write_section (bfd
*output_bfd
, asection
*sec
,
8584 bfd_byte
*to
, *from
, *end
;
8587 if (strcmp (sec
->name
, ".pdr") != 0)
8590 if (mips_elf_section_data (sec
)->u
.tdata
== NULL
)
8594 end
= contents
+ sec
->size
;
8595 for (from
= contents
, i
= 0;
8597 from
+= PDR_SIZE
, i
++)
8599 if ((mips_elf_section_data (sec
)->u
.tdata
)[i
] == 1)
8602 memcpy (to
, from
, PDR_SIZE
);
8605 bfd_set_section_contents (output_bfd
, sec
->output_section
, contents
,
8606 sec
->output_offset
, sec
->size
);
8610 /* MIPS ELF uses a special find_nearest_line routine in order the
8611 handle the ECOFF debugging information. */
8613 struct mips_elf_find_line
8615 struct ecoff_debug_info d
;
8616 struct ecoff_find_line i
;
8620 _bfd_mips_elf_find_nearest_line (bfd
*abfd
, asection
*section
,
8621 asymbol
**symbols
, bfd_vma offset
,
8622 const char **filename_ptr
,
8623 const char **functionname_ptr
,
8624 unsigned int *line_ptr
)
8628 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
8629 filename_ptr
, functionname_ptr
,
8633 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
8634 filename_ptr
, functionname_ptr
,
8635 line_ptr
, ABI_64_P (abfd
) ? 8 : 0,
8636 &elf_tdata (abfd
)->dwarf2_find_line_info
))
8639 msec
= bfd_get_section_by_name (abfd
, ".mdebug");
8643 struct mips_elf_find_line
*fi
;
8644 const struct ecoff_debug_swap
* const swap
=
8645 get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
8647 /* If we are called during a link, mips_elf_final_link may have
8648 cleared the SEC_HAS_CONTENTS field. We force it back on here
8649 if appropriate (which it normally will be). */
8650 origflags
= msec
->flags
;
8651 if (elf_section_data (msec
)->this_hdr
.sh_type
!= SHT_NOBITS
)
8652 msec
->flags
|= SEC_HAS_CONTENTS
;
8654 fi
= elf_tdata (abfd
)->find_line_info
;
8657 bfd_size_type external_fdr_size
;
8660 struct fdr
*fdr_ptr
;
8661 bfd_size_type amt
= sizeof (struct mips_elf_find_line
);
8663 fi
= bfd_zalloc (abfd
, amt
);
8666 msec
->flags
= origflags
;
8670 if (! _bfd_mips_elf_read_ecoff_info (abfd
, msec
, &fi
->d
))
8672 msec
->flags
= origflags
;
8676 /* Swap in the FDR information. */
8677 amt
= fi
->d
.symbolic_header
.ifdMax
* sizeof (struct fdr
);
8678 fi
->d
.fdr
= bfd_alloc (abfd
, amt
);
8679 if (fi
->d
.fdr
== NULL
)
8681 msec
->flags
= origflags
;
8684 external_fdr_size
= swap
->external_fdr_size
;
8685 fdr_ptr
= fi
->d
.fdr
;
8686 fraw_src
= (char *) fi
->d
.external_fdr
;
8687 fraw_end
= (fraw_src
8688 + fi
->d
.symbolic_header
.ifdMax
* external_fdr_size
);
8689 for (; fraw_src
< fraw_end
; fraw_src
+= external_fdr_size
, fdr_ptr
++)
8690 (*swap
->swap_fdr_in
) (abfd
, fraw_src
, fdr_ptr
);
8692 elf_tdata (abfd
)->find_line_info
= fi
;
8694 /* Note that we don't bother to ever free this information.
8695 find_nearest_line is either called all the time, as in
8696 objdump -l, so the information should be saved, or it is
8697 rarely called, as in ld error messages, so the memory
8698 wasted is unimportant. Still, it would probably be a
8699 good idea for free_cached_info to throw it away. */
8702 if (_bfd_ecoff_locate_line (abfd
, section
, offset
, &fi
->d
, swap
,
8703 &fi
->i
, filename_ptr
, functionname_ptr
,
8706 msec
->flags
= origflags
;
8710 msec
->flags
= origflags
;
8713 /* Fall back on the generic ELF find_nearest_line routine. */
8715 return _bfd_elf_find_nearest_line (abfd
, section
, symbols
, offset
,
8716 filename_ptr
, functionname_ptr
,
8721 _bfd_mips_elf_find_inliner_info (bfd
*abfd
,
8722 const char **filename_ptr
,
8723 const char **functionname_ptr
,
8724 unsigned int *line_ptr
)
8727 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
8728 functionname_ptr
, line_ptr
,
8729 & elf_tdata (abfd
)->dwarf2_find_line_info
);
8734 /* When are writing out the .options or .MIPS.options section,
8735 remember the bytes we are writing out, so that we can install the
8736 GP value in the section_processing routine. */
8739 _bfd_mips_elf_set_section_contents (bfd
*abfd
, sec_ptr section
,
8740 const void *location
,
8741 file_ptr offset
, bfd_size_type count
)
8743 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section
->name
))
8747 if (elf_section_data (section
) == NULL
)
8749 bfd_size_type amt
= sizeof (struct bfd_elf_section_data
);
8750 section
->used_by_bfd
= bfd_zalloc (abfd
, amt
);
8751 if (elf_section_data (section
) == NULL
)
8754 c
= mips_elf_section_data (section
)->u
.tdata
;
8757 c
= bfd_zalloc (abfd
, section
->size
);
8760 mips_elf_section_data (section
)->u
.tdata
= c
;
8763 memcpy (c
+ offset
, location
, count
);
8766 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
,
8770 /* This is almost identical to bfd_generic_get_... except that some
8771 MIPS relocations need to be handled specially. Sigh. */
8774 _bfd_elf_mips_get_relocated_section_contents
8776 struct bfd_link_info
*link_info
,
8777 struct bfd_link_order
*link_order
,
8779 bfd_boolean relocatable
,
8782 /* Get enough memory to hold the stuff */
8783 bfd
*input_bfd
= link_order
->u
.indirect
.section
->owner
;
8784 asection
*input_section
= link_order
->u
.indirect
.section
;
8787 long reloc_size
= bfd_get_reloc_upper_bound (input_bfd
, input_section
);
8788 arelent
**reloc_vector
= NULL
;
8794 reloc_vector
= bfd_malloc (reloc_size
);
8795 if (reloc_vector
== NULL
&& reloc_size
!= 0)
8798 /* read in the section */
8799 sz
= input_section
->rawsize
? input_section
->rawsize
: input_section
->size
;
8800 if (!bfd_get_section_contents (input_bfd
, input_section
, data
, 0, sz
))
8803 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
8807 if (reloc_count
< 0)
8810 if (reloc_count
> 0)
8815 bfd_vma gp
= 0x12345678; /* initialize just to shut gcc up */
8818 struct bfd_hash_entry
*h
;
8819 struct bfd_link_hash_entry
*lh
;
8820 /* Skip all this stuff if we aren't mixing formats. */
8821 if (abfd
&& input_bfd
8822 && abfd
->xvec
== input_bfd
->xvec
)
8826 h
= bfd_hash_lookup (&link_info
->hash
->table
, "_gp", FALSE
, FALSE
);
8827 lh
= (struct bfd_link_hash_entry
*) h
;
8834 case bfd_link_hash_undefined
:
8835 case bfd_link_hash_undefweak
:
8836 case bfd_link_hash_common
:
8839 case bfd_link_hash_defined
:
8840 case bfd_link_hash_defweak
:
8842 gp
= lh
->u
.def
.value
;
8844 case bfd_link_hash_indirect
:
8845 case bfd_link_hash_warning
:
8847 /* @@FIXME ignoring warning for now */
8849 case bfd_link_hash_new
:
8858 for (parent
= reloc_vector
; *parent
!= NULL
; parent
++)
8860 char *error_message
= NULL
;
8861 bfd_reloc_status_type r
;
8863 /* Specific to MIPS: Deal with relocation types that require
8864 knowing the gp of the output bfd. */
8865 asymbol
*sym
= *(*parent
)->sym_ptr_ptr
;
8867 /* If we've managed to find the gp and have a special
8868 function for the relocation then go ahead, else default
8869 to the generic handling. */
8871 && (*parent
)->howto
->special_function
8872 == _bfd_mips_elf32_gprel16_reloc
)
8873 r
= _bfd_mips_elf_gprel16_with_gp (input_bfd
, sym
, *parent
,
8874 input_section
, relocatable
,
8877 r
= bfd_perform_relocation (input_bfd
, *parent
, data
,
8879 relocatable
? abfd
: NULL
,
8884 asection
*os
= input_section
->output_section
;
8886 /* A partial link, so keep the relocs */
8887 os
->orelocation
[os
->reloc_count
] = *parent
;
8891 if (r
!= bfd_reloc_ok
)
8895 case bfd_reloc_undefined
:
8896 if (!((*link_info
->callbacks
->undefined_symbol
)
8897 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
8898 input_bfd
, input_section
, (*parent
)->address
, TRUE
)))
8901 case bfd_reloc_dangerous
:
8902 BFD_ASSERT (error_message
!= NULL
);
8903 if (!((*link_info
->callbacks
->reloc_dangerous
)
8904 (link_info
, error_message
, input_bfd
, input_section
,
8905 (*parent
)->address
)))
8908 case bfd_reloc_overflow
:
8909 if (!((*link_info
->callbacks
->reloc_overflow
)
8911 bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
8912 (*parent
)->howto
->name
, (*parent
)->addend
,
8913 input_bfd
, input_section
, (*parent
)->address
)))
8916 case bfd_reloc_outofrange
:
8925 if (reloc_vector
!= NULL
)
8926 free (reloc_vector
);
8930 if (reloc_vector
!= NULL
)
8931 free (reloc_vector
);
8935 /* Create a MIPS ELF linker hash table. */
8937 struct bfd_link_hash_table
*
8938 _bfd_mips_elf_link_hash_table_create (bfd
*abfd
)
8940 struct mips_elf_link_hash_table
*ret
;
8941 bfd_size_type amt
= sizeof (struct mips_elf_link_hash_table
);
8943 ret
= bfd_malloc (amt
);
8947 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
8948 mips_elf_link_hash_newfunc
,
8949 sizeof (struct mips_elf_link_hash_entry
)))
8956 /* We no longer use this. */
8957 for (i
= 0; i
< SIZEOF_MIPS_DYNSYM_SECNAMES
; i
++)
8958 ret
->dynsym_sec_strindex
[i
] = (bfd_size_type
) -1;
8960 ret
->procedure_count
= 0;
8961 ret
->compact_rel_size
= 0;
8962 ret
->use_rld_obj_head
= FALSE
;
8964 ret
->mips16_stubs_seen
= FALSE
;
8966 return &ret
->root
.root
;
8969 /* We need to use a special link routine to handle the .reginfo and
8970 the .mdebug sections. We need to merge all instances of these
8971 sections together, not write them all out sequentially. */
8974 _bfd_mips_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
8977 struct bfd_link_order
*p
;
8978 asection
*reginfo_sec
, *mdebug_sec
, *gptab_data_sec
, *gptab_bss_sec
;
8979 asection
*rtproc_sec
;
8980 Elf32_RegInfo reginfo
;
8981 struct ecoff_debug_info debug
;
8982 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8983 const struct ecoff_debug_swap
*swap
= bed
->elf_backend_ecoff_debug_swap
;
8984 HDRR
*symhdr
= &debug
.symbolic_header
;
8985 void *mdebug_handle
= NULL
;
8991 static const char * const secname
[] =
8993 ".text", ".init", ".fini", ".data",
8994 ".rodata", ".sdata", ".sbss", ".bss"
8996 static const int sc
[] =
8998 scText
, scInit
, scFini
, scData
,
8999 scRData
, scSData
, scSBss
, scBss
9002 /* We'd carefully arranged the dynamic symbol indices, and then the
9003 generic size_dynamic_sections renumbered them out from under us.
9004 Rather than trying somehow to prevent the renumbering, just do
9006 if (elf_hash_table (info
)->dynamic_sections_created
)
9010 struct mips_got_info
*g
;
9011 bfd_size_type dynsecsymcount
;
9013 /* When we resort, we must tell mips_elf_sort_hash_table what
9014 the lowest index it may use is. That's the number of section
9015 symbols we're going to add. The generic ELF linker only
9016 adds these symbols when building a shared object. Note that
9017 we count the sections after (possibly) removing the .options
9025 for (p
= abfd
->sections
; p
; p
= p
->next
)
9026 if ((p
->flags
& SEC_EXCLUDE
) == 0
9027 && (p
->flags
& SEC_ALLOC
) != 0
9028 && !(*bed
->elf_backend_omit_section_dynsym
) (abfd
, info
, p
))
9032 if (! mips_elf_sort_hash_table (info
, dynsecsymcount
+ 1))
9035 /* Make sure we didn't grow the global .got region. */
9036 dynobj
= elf_hash_table (info
)->dynobj
;
9037 got
= mips_elf_got_section (dynobj
, FALSE
);
9038 g
= mips_elf_section_data (got
)->u
.got_info
;
9040 if (g
->global_gotsym
!= NULL
)
9041 BFD_ASSERT ((elf_hash_table (info
)->dynsymcount
9042 - g
->global_gotsym
->dynindx
)
9043 <= g
->global_gotno
);
9046 /* Get a value for the GP register. */
9047 if (elf_gp (abfd
) == 0)
9049 struct bfd_link_hash_entry
*h
;
9051 h
= bfd_link_hash_lookup (info
->hash
, "_gp", FALSE
, FALSE
, TRUE
);
9052 if (h
!= NULL
&& h
->type
== bfd_link_hash_defined
)
9053 elf_gp (abfd
) = (h
->u
.def
.value
9054 + h
->u
.def
.section
->output_section
->vma
9055 + h
->u
.def
.section
->output_offset
);
9056 else if (info
->relocatable
)
9058 bfd_vma lo
= MINUS_ONE
;
9060 /* Find the GP-relative section with the lowest offset. */
9061 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
9063 && (elf_section_data (o
)->this_hdr
.sh_flags
& SHF_MIPS_GPREL
))
9066 /* And calculate GP relative to that. */
9067 elf_gp (abfd
) = lo
+ ELF_MIPS_GP_OFFSET (abfd
);
9071 /* If the relocate_section function needs to do a reloc
9072 involving the GP value, it should make a reloc_dangerous
9073 callback to warn that GP is not defined. */
9077 /* Go through the sections and collect the .reginfo and .mdebug
9081 gptab_data_sec
= NULL
;
9082 gptab_bss_sec
= NULL
;
9083 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
9085 if (strcmp (o
->name
, ".reginfo") == 0)
9087 memset (®info
, 0, sizeof reginfo
);
9089 /* We have found the .reginfo section in the output file.
9090 Look through all the link_orders comprising it and merge
9091 the information together. */
9092 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
9094 asection
*input_section
;
9096 Elf32_External_RegInfo ext
;
9099 if (p
->type
!= bfd_indirect_link_order
)
9101 if (p
->type
== bfd_data_link_order
)
9106 input_section
= p
->u
.indirect
.section
;
9107 input_bfd
= input_section
->owner
;
9109 if (! bfd_get_section_contents (input_bfd
, input_section
,
9110 &ext
, 0, sizeof ext
))
9113 bfd_mips_elf32_swap_reginfo_in (input_bfd
, &ext
, &sub
);
9115 reginfo
.ri_gprmask
|= sub
.ri_gprmask
;
9116 reginfo
.ri_cprmask
[0] |= sub
.ri_cprmask
[0];
9117 reginfo
.ri_cprmask
[1] |= sub
.ri_cprmask
[1];
9118 reginfo
.ri_cprmask
[2] |= sub
.ri_cprmask
[2];
9119 reginfo
.ri_cprmask
[3] |= sub
.ri_cprmask
[3];
9121 /* ri_gp_value is set by the function
9122 mips_elf32_section_processing when the section is
9123 finally written out. */
9125 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9126 elf_link_input_bfd ignores this section. */
9127 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
9130 /* Size has been set in _bfd_mips_elf_always_size_sections. */
9131 BFD_ASSERT(o
->size
== sizeof (Elf32_External_RegInfo
));
9133 /* Skip this section later on (I don't think this currently
9134 matters, but someday it might). */
9135 o
->map_head
.link_order
= NULL
;
9140 if (strcmp (o
->name
, ".mdebug") == 0)
9142 struct extsym_info einfo
;
9145 /* We have found the .mdebug section in the output file.
9146 Look through all the link_orders comprising it and merge
9147 the information together. */
9148 symhdr
->magic
= swap
->sym_magic
;
9149 /* FIXME: What should the version stamp be? */
9151 symhdr
->ilineMax
= 0;
9155 symhdr
->isymMax
= 0;
9156 symhdr
->ioptMax
= 0;
9157 symhdr
->iauxMax
= 0;
9159 symhdr
->issExtMax
= 0;
9162 symhdr
->iextMax
= 0;
9164 /* We accumulate the debugging information itself in the
9165 debug_info structure. */
9167 debug
.external_dnr
= NULL
;
9168 debug
.external_pdr
= NULL
;
9169 debug
.external_sym
= NULL
;
9170 debug
.external_opt
= NULL
;
9171 debug
.external_aux
= NULL
;
9173 debug
.ssext
= debug
.ssext_end
= NULL
;
9174 debug
.external_fdr
= NULL
;
9175 debug
.external_rfd
= NULL
;
9176 debug
.external_ext
= debug
.external_ext_end
= NULL
;
9178 mdebug_handle
= bfd_ecoff_debug_init (abfd
, &debug
, swap
, info
);
9179 if (mdebug_handle
== NULL
)
9183 esym
.cobol_main
= 0;
9187 esym
.asym
.iss
= issNil
;
9188 esym
.asym
.st
= stLocal
;
9189 esym
.asym
.reserved
= 0;
9190 esym
.asym
.index
= indexNil
;
9192 for (i
= 0; i
< sizeof (secname
) / sizeof (secname
[0]); i
++)
9194 esym
.asym
.sc
= sc
[i
];
9195 s
= bfd_get_section_by_name (abfd
, secname
[i
]);
9198 esym
.asym
.value
= s
->vma
;
9199 last
= s
->vma
+ s
->size
;
9202 esym
.asym
.value
= last
;
9203 if (!bfd_ecoff_debug_one_external (abfd
, &debug
, swap
,
9208 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
9210 asection
*input_section
;
9212 const struct ecoff_debug_swap
*input_swap
;
9213 struct ecoff_debug_info input_debug
;
9217 if (p
->type
!= bfd_indirect_link_order
)
9219 if (p
->type
== bfd_data_link_order
)
9224 input_section
= p
->u
.indirect
.section
;
9225 input_bfd
= input_section
->owner
;
9227 if (bfd_get_flavour (input_bfd
) != bfd_target_elf_flavour
9228 || (get_elf_backend_data (input_bfd
)
9229 ->elf_backend_ecoff_debug_swap
) == NULL
)
9231 /* I don't know what a non MIPS ELF bfd would be
9232 doing with a .mdebug section, but I don't really
9233 want to deal with it. */
9237 input_swap
= (get_elf_backend_data (input_bfd
)
9238 ->elf_backend_ecoff_debug_swap
);
9240 BFD_ASSERT (p
->size
== input_section
->size
);
9242 /* The ECOFF linking code expects that we have already
9243 read in the debugging information and set up an
9244 ecoff_debug_info structure, so we do that now. */
9245 if (! _bfd_mips_elf_read_ecoff_info (input_bfd
, input_section
,
9249 if (! (bfd_ecoff_debug_accumulate
9250 (mdebug_handle
, abfd
, &debug
, swap
, input_bfd
,
9251 &input_debug
, input_swap
, info
)))
9254 /* Loop through the external symbols. For each one with
9255 interesting information, try to find the symbol in
9256 the linker global hash table and save the information
9257 for the output external symbols. */
9258 eraw_src
= input_debug
.external_ext
;
9259 eraw_end
= (eraw_src
9260 + (input_debug
.symbolic_header
.iextMax
9261 * input_swap
->external_ext_size
));
9263 eraw_src
< eraw_end
;
9264 eraw_src
+= input_swap
->external_ext_size
)
9268 struct mips_elf_link_hash_entry
*h
;
9270 (*input_swap
->swap_ext_in
) (input_bfd
, eraw_src
, &ext
);
9271 if (ext
.asym
.sc
== scNil
9272 || ext
.asym
.sc
== scUndefined
9273 || ext
.asym
.sc
== scSUndefined
)
9276 name
= input_debug
.ssext
+ ext
.asym
.iss
;
9277 h
= mips_elf_link_hash_lookup (mips_elf_hash_table (info
),
9278 name
, FALSE
, FALSE
, TRUE
);
9279 if (h
== NULL
|| h
->esym
.ifd
!= -2)
9285 < input_debug
.symbolic_header
.ifdMax
);
9286 ext
.ifd
= input_debug
.ifdmap
[ext
.ifd
];
9292 /* Free up the information we just read. */
9293 free (input_debug
.line
);
9294 free (input_debug
.external_dnr
);
9295 free (input_debug
.external_pdr
);
9296 free (input_debug
.external_sym
);
9297 free (input_debug
.external_opt
);
9298 free (input_debug
.external_aux
);
9299 free (input_debug
.ss
);
9300 free (input_debug
.ssext
);
9301 free (input_debug
.external_fdr
);
9302 free (input_debug
.external_rfd
);
9303 free (input_debug
.external_ext
);
9305 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9306 elf_link_input_bfd ignores this section. */
9307 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
9310 if (SGI_COMPAT (abfd
) && info
->shared
)
9312 /* Create .rtproc section. */
9313 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
9314 if (rtproc_sec
== NULL
)
9316 flagword flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
9317 | SEC_LINKER_CREATED
| SEC_READONLY
);
9319 rtproc_sec
= bfd_make_section_with_flags (abfd
,
9322 if (rtproc_sec
== NULL
9323 || ! bfd_set_section_alignment (abfd
, rtproc_sec
, 4))
9327 if (! mips_elf_create_procedure_table (mdebug_handle
, abfd
,
9333 /* Build the external symbol information. */
9336 einfo
.debug
= &debug
;
9338 einfo
.failed
= FALSE
;
9339 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
9340 mips_elf_output_extsym
, &einfo
);
9344 /* Set the size of the .mdebug section. */
9345 o
->size
= bfd_ecoff_debug_size (abfd
, &debug
, swap
);
9347 /* Skip this section later on (I don't think this currently
9348 matters, but someday it might). */
9349 o
->map_head
.link_order
= NULL
;
9354 if (strncmp (o
->name
, ".gptab.", sizeof ".gptab." - 1) == 0)
9356 const char *subname
;
9359 Elf32_External_gptab
*ext_tab
;
9362 /* The .gptab.sdata and .gptab.sbss sections hold
9363 information describing how the small data area would
9364 change depending upon the -G switch. These sections
9365 not used in executables files. */
9366 if (! info
->relocatable
)
9368 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
9370 asection
*input_section
;
9372 if (p
->type
!= bfd_indirect_link_order
)
9374 if (p
->type
== bfd_data_link_order
)
9379 input_section
= p
->u
.indirect
.section
;
9381 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9382 elf_link_input_bfd ignores this section. */
9383 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
9386 /* Skip this section later on (I don't think this
9387 currently matters, but someday it might). */
9388 o
->map_head
.link_order
= NULL
;
9390 /* Really remove the section. */
9391 bfd_section_list_remove (abfd
, o
);
9392 --abfd
->section_count
;
9397 /* There is one gptab for initialized data, and one for
9398 uninitialized data. */
9399 if (strcmp (o
->name
, ".gptab.sdata") == 0)
9401 else if (strcmp (o
->name
, ".gptab.sbss") == 0)
9405 (*_bfd_error_handler
)
9406 (_("%s: illegal section name `%s'"),
9407 bfd_get_filename (abfd
), o
->name
);
9408 bfd_set_error (bfd_error_nonrepresentable_section
);
9412 /* The linker script always combines .gptab.data and
9413 .gptab.sdata into .gptab.sdata, and likewise for
9414 .gptab.bss and .gptab.sbss. It is possible that there is
9415 no .sdata or .sbss section in the output file, in which
9416 case we must change the name of the output section. */
9417 subname
= o
->name
+ sizeof ".gptab" - 1;
9418 if (bfd_get_section_by_name (abfd
, subname
) == NULL
)
9420 if (o
== gptab_data_sec
)
9421 o
->name
= ".gptab.data";
9423 o
->name
= ".gptab.bss";
9424 subname
= o
->name
+ sizeof ".gptab" - 1;
9425 BFD_ASSERT (bfd_get_section_by_name (abfd
, subname
) != NULL
);
9428 /* Set up the first entry. */
9430 amt
= c
* sizeof (Elf32_gptab
);
9431 tab
= bfd_malloc (amt
);
9434 tab
[0].gt_header
.gt_current_g_value
= elf_gp_size (abfd
);
9435 tab
[0].gt_header
.gt_unused
= 0;
9437 /* Combine the input sections. */
9438 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
9440 asection
*input_section
;
9444 bfd_size_type gpentry
;
9446 if (p
->type
!= bfd_indirect_link_order
)
9448 if (p
->type
== bfd_data_link_order
)
9453 input_section
= p
->u
.indirect
.section
;
9454 input_bfd
= input_section
->owner
;
9456 /* Combine the gptab entries for this input section one
9457 by one. We know that the input gptab entries are
9458 sorted by ascending -G value. */
9459 size
= input_section
->size
;
9461 for (gpentry
= sizeof (Elf32_External_gptab
);
9463 gpentry
+= sizeof (Elf32_External_gptab
))
9465 Elf32_External_gptab ext_gptab
;
9466 Elf32_gptab int_gptab
;
9472 if (! (bfd_get_section_contents
9473 (input_bfd
, input_section
, &ext_gptab
, gpentry
,
9474 sizeof (Elf32_External_gptab
))))
9480 bfd_mips_elf32_swap_gptab_in (input_bfd
, &ext_gptab
,
9482 val
= int_gptab
.gt_entry
.gt_g_value
;
9483 add
= int_gptab
.gt_entry
.gt_bytes
- last
;
9486 for (look
= 1; look
< c
; look
++)
9488 if (tab
[look
].gt_entry
.gt_g_value
>= val
)
9489 tab
[look
].gt_entry
.gt_bytes
+= add
;
9491 if (tab
[look
].gt_entry
.gt_g_value
== val
)
9497 Elf32_gptab
*new_tab
;
9500 /* We need a new table entry. */
9501 amt
= (bfd_size_type
) (c
+ 1) * sizeof (Elf32_gptab
);
9502 new_tab
= bfd_realloc (tab
, amt
);
9503 if (new_tab
== NULL
)
9509 tab
[c
].gt_entry
.gt_g_value
= val
;
9510 tab
[c
].gt_entry
.gt_bytes
= add
;
9512 /* Merge in the size for the next smallest -G
9513 value, since that will be implied by this new
9516 for (look
= 1; look
< c
; look
++)
9518 if (tab
[look
].gt_entry
.gt_g_value
< val
9520 || (tab
[look
].gt_entry
.gt_g_value
9521 > tab
[max
].gt_entry
.gt_g_value
)))
9525 tab
[c
].gt_entry
.gt_bytes
+=
9526 tab
[max
].gt_entry
.gt_bytes
;
9531 last
= int_gptab
.gt_entry
.gt_bytes
;
9534 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9535 elf_link_input_bfd ignores this section. */
9536 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
9539 /* The table must be sorted by -G value. */
9541 qsort (tab
+ 1, c
- 1, sizeof (tab
[0]), gptab_compare
);
9543 /* Swap out the table. */
9544 amt
= (bfd_size_type
) c
* sizeof (Elf32_External_gptab
);
9545 ext_tab
= bfd_alloc (abfd
, amt
);
9546 if (ext_tab
== NULL
)
9552 for (j
= 0; j
< c
; j
++)
9553 bfd_mips_elf32_swap_gptab_out (abfd
, tab
+ j
, ext_tab
+ j
);
9556 o
->size
= c
* sizeof (Elf32_External_gptab
);
9557 o
->contents
= (bfd_byte
*) ext_tab
;
9559 /* Skip this section later on (I don't think this currently
9560 matters, but someday it might). */
9561 o
->map_head
.link_order
= NULL
;
9565 /* Invoke the regular ELF backend linker to do all the work. */
9566 if (!bfd_elf_final_link (abfd
, info
))
9569 /* Now write out the computed sections. */
9571 if (reginfo_sec
!= NULL
)
9573 Elf32_External_RegInfo ext
;
9575 bfd_mips_elf32_swap_reginfo_out (abfd
, ®info
, &ext
);
9576 if (! bfd_set_section_contents (abfd
, reginfo_sec
, &ext
, 0, sizeof ext
))
9580 if (mdebug_sec
!= NULL
)
9582 BFD_ASSERT (abfd
->output_has_begun
);
9583 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle
, abfd
, &debug
,
9585 mdebug_sec
->filepos
))
9588 bfd_ecoff_debug_free (mdebug_handle
, abfd
, &debug
, swap
, info
);
9591 if (gptab_data_sec
!= NULL
)
9593 if (! bfd_set_section_contents (abfd
, gptab_data_sec
,
9594 gptab_data_sec
->contents
,
9595 0, gptab_data_sec
->size
))
9599 if (gptab_bss_sec
!= NULL
)
9601 if (! bfd_set_section_contents (abfd
, gptab_bss_sec
,
9602 gptab_bss_sec
->contents
,
9603 0, gptab_bss_sec
->size
))
9607 if (SGI_COMPAT (abfd
))
9609 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
9610 if (rtproc_sec
!= NULL
)
9612 if (! bfd_set_section_contents (abfd
, rtproc_sec
,
9613 rtproc_sec
->contents
,
9614 0, rtproc_sec
->size
))
9622 /* Structure for saying that BFD machine EXTENSION extends BASE. */
9624 struct mips_mach_extension
{
9625 unsigned long extension
, base
;
9629 /* An array describing how BFD machines relate to one another. The entries
9630 are ordered topologically with MIPS I extensions listed last. */
9632 static const struct mips_mach_extension mips_mach_extensions
[] = {
9633 /* MIPS64 extensions. */
9634 { bfd_mach_mipsisa64r2
, bfd_mach_mipsisa64
},
9635 { bfd_mach_mips_sb1
, bfd_mach_mipsisa64
},
9637 /* MIPS V extensions. */
9638 { bfd_mach_mipsisa64
, bfd_mach_mips5
},
9640 /* R10000 extensions. */
9641 { bfd_mach_mips12000
, bfd_mach_mips10000
},
9643 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
9644 vr5400 ISA, but doesn't include the multimedia stuff. It seems
9645 better to allow vr5400 and vr5500 code to be merged anyway, since
9646 many libraries will just use the core ISA. Perhaps we could add
9647 some sort of ASE flag if this ever proves a problem. */
9648 { bfd_mach_mips5500
, bfd_mach_mips5400
},
9649 { bfd_mach_mips5400
, bfd_mach_mips5000
},
9651 /* MIPS IV extensions. */
9652 { bfd_mach_mips5
, bfd_mach_mips8000
},
9653 { bfd_mach_mips10000
, bfd_mach_mips8000
},
9654 { bfd_mach_mips5000
, bfd_mach_mips8000
},
9655 { bfd_mach_mips7000
, bfd_mach_mips8000
},
9656 { bfd_mach_mips9000
, bfd_mach_mips8000
},
9658 /* VR4100 extensions. */
9659 { bfd_mach_mips4120
, bfd_mach_mips4100
},
9660 { bfd_mach_mips4111
, bfd_mach_mips4100
},
9662 /* MIPS III extensions. */
9663 { bfd_mach_mips8000
, bfd_mach_mips4000
},
9664 { bfd_mach_mips4650
, bfd_mach_mips4000
},
9665 { bfd_mach_mips4600
, bfd_mach_mips4000
},
9666 { bfd_mach_mips4400
, bfd_mach_mips4000
},
9667 { bfd_mach_mips4300
, bfd_mach_mips4000
},
9668 { bfd_mach_mips4100
, bfd_mach_mips4000
},
9669 { bfd_mach_mips4010
, bfd_mach_mips4000
},
9671 /* MIPS32 extensions. */
9672 { bfd_mach_mipsisa32r2
, bfd_mach_mipsisa32
},
9674 /* MIPS II extensions. */
9675 { bfd_mach_mips4000
, bfd_mach_mips6000
},
9676 { bfd_mach_mipsisa32
, bfd_mach_mips6000
},
9678 /* MIPS I extensions. */
9679 { bfd_mach_mips6000
, bfd_mach_mips3000
},
9680 { bfd_mach_mips3900
, bfd_mach_mips3000
}
9684 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
9687 mips_mach_extends_p (unsigned long base
, unsigned long extension
)
9691 if (extension
== base
)
9694 if (base
== bfd_mach_mipsisa32
9695 && mips_mach_extends_p (bfd_mach_mipsisa64
, extension
))
9698 if (base
== bfd_mach_mipsisa32r2
9699 && mips_mach_extends_p (bfd_mach_mipsisa64r2
, extension
))
9702 for (i
= 0; i
< ARRAY_SIZE (mips_mach_extensions
); i
++)
9703 if (extension
== mips_mach_extensions
[i
].extension
)
9705 extension
= mips_mach_extensions
[i
].base
;
9706 if (extension
== base
)
9714 /* Return true if the given ELF header flags describe a 32-bit binary. */
9717 mips_32bit_flags_p (flagword flags
)
9719 return ((flags
& EF_MIPS_32BITMODE
) != 0
9720 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
9721 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
9722 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
9723 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
9724 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
9725 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
);
9729 /* Merge backend specific data from an object file to the output
9730 object file when linking. */
9733 _bfd_mips_elf_merge_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
9738 bfd_boolean null_input_bfd
= TRUE
;
9741 /* Check if we have the same endianess */
9742 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
9744 (*_bfd_error_handler
)
9745 (_("%B: endianness incompatible with that of the selected emulation"),
9750 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
9751 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
9754 if (strcmp (bfd_get_target (ibfd
), bfd_get_target (obfd
)) != 0)
9756 (*_bfd_error_handler
)
9757 (_("%B: ABI is incompatible with that of the selected emulation"),
9762 new_flags
= elf_elfheader (ibfd
)->e_flags
;
9763 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_NOREORDER
;
9764 old_flags
= elf_elfheader (obfd
)->e_flags
;
9766 if (! elf_flags_init (obfd
))
9768 elf_flags_init (obfd
) = TRUE
;
9769 elf_elfheader (obfd
)->e_flags
= new_flags
;
9770 elf_elfheader (obfd
)->e_ident
[EI_CLASS
]
9771 = elf_elfheader (ibfd
)->e_ident
[EI_CLASS
];
9773 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
9774 && bfd_get_arch_info (obfd
)->the_default
)
9776 if (! bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
9777 bfd_get_mach (ibfd
)))
9784 /* Check flag compatibility. */
9786 new_flags
&= ~EF_MIPS_NOREORDER
;
9787 old_flags
&= ~EF_MIPS_NOREORDER
;
9789 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
9790 doesn't seem to matter. */
9791 new_flags
&= ~EF_MIPS_XGOT
;
9792 old_flags
&= ~EF_MIPS_XGOT
;
9794 /* MIPSpro generates ucode info in n64 objects. Again, we should
9795 just be able to ignore this. */
9796 new_flags
&= ~EF_MIPS_UCODE
;
9797 old_flags
&= ~EF_MIPS_UCODE
;
9799 if (new_flags
== old_flags
)
9802 /* Check to see if the input BFD actually contains any sections.
9803 If not, its flags may not have been initialised either, but it cannot
9804 actually cause any incompatibility. */
9805 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
9807 /* Ignore synthetic sections and empty .text, .data and .bss sections
9808 which are automatically generated by gas. */
9809 if (strcmp (sec
->name
, ".reginfo")
9810 && strcmp (sec
->name
, ".mdebug")
9812 || (strcmp (sec
->name
, ".text")
9813 && strcmp (sec
->name
, ".data")
9814 && strcmp (sec
->name
, ".bss"))))
9816 null_input_bfd
= FALSE
;
9825 if (((new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0)
9826 != ((old_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0))
9828 (*_bfd_error_handler
)
9829 (_("%B: warning: linking PIC files with non-PIC files"),
9834 if (new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
))
9835 elf_elfheader (obfd
)->e_flags
|= EF_MIPS_CPIC
;
9836 if (! (new_flags
& EF_MIPS_PIC
))
9837 elf_elfheader (obfd
)->e_flags
&= ~EF_MIPS_PIC
;
9839 new_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
9840 old_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
9842 /* Compare the ISAs. */
9843 if (mips_32bit_flags_p (old_flags
) != mips_32bit_flags_p (new_flags
))
9845 (*_bfd_error_handler
)
9846 (_("%B: linking 32-bit code with 64-bit code"),
9850 else if (!mips_mach_extends_p (bfd_get_mach (ibfd
), bfd_get_mach (obfd
)))
9852 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9853 if (mips_mach_extends_p (bfd_get_mach (obfd
), bfd_get_mach (ibfd
)))
9855 /* Copy the architecture info from IBFD to OBFD. Also copy
9856 the 32-bit flag (if set) so that we continue to recognise
9857 OBFD as a 32-bit binary. */
9858 bfd_set_arch_info (obfd
, bfd_get_arch_info (ibfd
));
9859 elf_elfheader (obfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
9860 elf_elfheader (obfd
)->e_flags
9861 |= new_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
9863 /* Copy across the ABI flags if OBFD doesn't use them
9864 and if that was what caused us to treat IBFD as 32-bit. */
9865 if ((old_flags
& EF_MIPS_ABI
) == 0
9866 && mips_32bit_flags_p (new_flags
)
9867 && !mips_32bit_flags_p (new_flags
& ~EF_MIPS_ABI
))
9868 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ABI
;
9872 /* The ISAs aren't compatible. */
9873 (*_bfd_error_handler
)
9874 (_("%B: linking %s module with previous %s modules"),
9876 bfd_printable_name (ibfd
),
9877 bfd_printable_name (obfd
));
9882 new_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
9883 old_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
9885 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9886 does set EI_CLASS differently from any 32-bit ABI. */
9887 if ((new_flags
& EF_MIPS_ABI
) != (old_flags
& EF_MIPS_ABI
)
9888 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
9889 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
9891 /* Only error if both are set (to different values). */
9892 if (((new_flags
& EF_MIPS_ABI
) && (old_flags
& EF_MIPS_ABI
))
9893 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
9894 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
9896 (*_bfd_error_handler
)
9897 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
9899 elf_mips_abi_name (ibfd
),
9900 elf_mips_abi_name (obfd
));
9903 new_flags
&= ~EF_MIPS_ABI
;
9904 old_flags
&= ~EF_MIPS_ABI
;
9907 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9908 if ((new_flags
& EF_MIPS_ARCH_ASE
) != (old_flags
& EF_MIPS_ARCH_ASE
))
9910 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ARCH_ASE
;
9912 new_flags
&= ~ EF_MIPS_ARCH_ASE
;
9913 old_flags
&= ~ EF_MIPS_ARCH_ASE
;
9916 /* Warn about any other mismatches */
9917 if (new_flags
!= old_flags
)
9919 (*_bfd_error_handler
)
9920 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9921 ibfd
, (unsigned long) new_flags
,
9922 (unsigned long) old_flags
);
9928 bfd_set_error (bfd_error_bad_value
);
9935 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9938 _bfd_mips_elf_set_private_flags (bfd
*abfd
, flagword flags
)
9940 BFD_ASSERT (!elf_flags_init (abfd
)
9941 || elf_elfheader (abfd
)->e_flags
== flags
);
9943 elf_elfheader (abfd
)->e_flags
= flags
;
9944 elf_flags_init (abfd
) = TRUE
;
9949 _bfd_mips_elf_print_private_bfd_data (bfd
*abfd
, void *ptr
)
9953 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
9955 /* Print normal ELF private data. */
9956 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
9958 /* xgettext:c-format */
9959 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
9961 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
)
9962 fprintf (file
, _(" [abi=O32]"));
9963 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O64
)
9964 fprintf (file
, _(" [abi=O64]"));
9965 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
)
9966 fprintf (file
, _(" [abi=EABI32]"));
9967 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
9968 fprintf (file
, _(" [abi=EABI64]"));
9969 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
))
9970 fprintf (file
, _(" [abi unknown]"));
9971 else if (ABI_N32_P (abfd
))
9972 fprintf (file
, _(" [abi=N32]"));
9973 else if (ABI_64_P (abfd
))
9974 fprintf (file
, _(" [abi=64]"));
9976 fprintf (file
, _(" [no abi set]"));
9978 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
)
9979 fprintf (file
, _(" [mips1]"));
9980 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
)
9981 fprintf (file
, _(" [mips2]"));
9982 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_3
)
9983 fprintf (file
, _(" [mips3]"));
9984 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_4
)
9985 fprintf (file
, _(" [mips4]"));
9986 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_5
)
9987 fprintf (file
, _(" [mips5]"));
9988 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
)
9989 fprintf (file
, _(" [mips32]"));
9990 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64
)
9991 fprintf (file
, _(" [mips64]"));
9992 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
)
9993 fprintf (file
, _(" [mips32r2]"));
9994 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64R2
)
9995 fprintf (file
, _(" [mips64r2]"));
9997 fprintf (file
, _(" [unknown ISA]"));
9999 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MDMX
)
10000 fprintf (file
, _(" [mdmx]"));
10002 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_M16
)
10003 fprintf (file
, _(" [mips16]"));
10005 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_32BITMODE
)
10006 fprintf (file
, _(" [32bitmode]"));
10008 fprintf (file
, _(" [not 32bitmode]"));
10010 fputc ('\n', file
);
10015 const struct bfd_elf_special_section _bfd_mips_elf_special_sections
[] =
10017 { ".lit4", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
10018 { ".lit8", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
10019 { ".mdebug", 7, 0, SHT_MIPS_DEBUG
, 0 },
10020 { ".sbss", 5, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
10021 { ".sdata", 6, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
10022 { ".ucode", 6, 0, SHT_MIPS_UCODE
, 0 },
10023 { NULL
, 0, 0, 0, 0 }
10026 /* Ensure that the STO_OPTIONAL flag is copied into h->other,
10027 even if this is not a defintion of the symbol. */
10029 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry
*h
,
10030 const Elf_Internal_Sym
*isym
,
10031 bfd_boolean definition
,
10032 bfd_boolean dynamic ATTRIBUTE_UNUSED
)
10035 && ELF_MIPS_IS_OPTIONAL (isym
->st_other
))
10036 h
->other
|= STO_OPTIONAL
;
10039 /* Decide whether an undefined symbol is special and can be ignored.
10040 This is the case for OPTIONAL symbols on IRIX. */
10042 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry
*h
)
10044 return ELF_MIPS_IS_OPTIONAL (h
->other
) ? TRUE
: FALSE
;