1 /* An expandable hash tables datatype.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
6 This file is part of the libiberty library.
7 Libiberty is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 Libiberty is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Library General Public License for more details.
17 You should have received a copy of the GNU Library General Public
18 License along with libiberty; see the file COPYING.LIB. If
19 not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 /* This package implements basic hash table functionality. It is possible
23 to search for an entry, create an entry and destroy an entry.
25 Elements in the table are generic pointers.
27 The size of the table is not fixed; if the occupancy of the table
28 grows too high the hash table will be expanded.
30 The abstract data implementation is based on generalized Algorithm D
31 from Knuth's book "The art of computer programming". Hash table is
32 expanded by creation of new hash table and transferring elements from
33 the old table to the new table. */
39 #include <sys/types.h>
59 #include "libiberty.h"
67 /* This macro defines reserved value for empty table entry. */
69 #define EMPTY_ENTRY ((PTR) 0)
71 /* This macro defines reserved value for table entry which contained
74 #define DELETED_ENTRY ((PTR) 1)
76 static unsigned int higher_prime_index (unsigned long);
77 static hashval_t
htab_mod_1 (hashval_t
, hashval_t
, hashval_t
, int);
78 static hashval_t
htab_mod (hashval_t
, htab_t
);
79 static hashval_t
htab_mod_m2 (hashval_t
, htab_t
);
80 static hashval_t
hash_pointer (const void *);
81 static int eq_pointer (const void *, const void *);
82 static int htab_expand (htab_t
);
83 static PTR
*find_empty_slot_for_expand (htab_t
, hashval_t
);
85 /* At some point, we could make these be NULL, and modify the
86 hash-table routines to handle NULL specially; that would avoid
87 function-call overhead for the common case of hashing pointers. */
88 htab_hash htab_hash_pointer
= hash_pointer
;
89 htab_eq htab_eq_pointer
= eq_pointer
;
91 /* Table of primes and multiplicative inverses.
93 Note that these are not minimally reduced inverses. Unlike when generating
94 code to divide by a constant, we want to be able to use the same algorithm
95 all the time. All of these inverses (are implied to) have bit 32 set.
97 For the record, here's the function that computed the table; it's a
98 vastly simplified version of the function of the same name from gcc. */
102 ceil_log2 (unsigned int x
)
105 for (i
= 31; i
>= 0 ; --i
)
112 choose_multiplier (unsigned int d
, unsigned int *mlp
, unsigned char *shiftp
)
114 unsigned long long mhigh
;
116 int lgup
, post_shift
;
118 int n
= 32, precision
= 32;
120 lgup
= ceil_log2 (d
);
122 pow2
= n
+ lgup
- precision
;
124 nx
= ldexp (1.0, pow
) + ldexp (1.0, pow2
);
137 hashval_t inv_m2
; /* inverse of prime-2 */
141 static struct prime_ent
const prime_tab
[] = {
142 { 7, 0x24924925, 0x9999999b, 2 },
143 { 13, 0x3b13b13c, 0x745d1747, 3 },
144 { 31, 0x08421085, 0x1a7b9612, 4 },
145 { 61, 0x0c9714fc, 0x15b1e5f8, 5 },
146 { 127, 0x02040811, 0x0624dd30, 6 },
147 { 251, 0x05197f7e, 0x073260a5, 7 },
148 { 509, 0x01824366, 0x02864fc8, 8 },
149 { 1021, 0x00c0906d, 0x014191f7, 9 },
150 { 2039, 0x0121456f, 0x0161e69e, 10 },
151 { 4093, 0x00300902, 0x00501908, 11 },
152 { 8191, 0x00080041, 0x00180241, 12 },
153 { 16381, 0x000c0091, 0x00140191, 13 },
154 { 32749, 0x002605a5, 0x002a06e6, 14 },
155 { 65521, 0x000f00e2, 0x00110122, 15 },
156 { 131071, 0x00008001, 0x00018003, 16 },
157 { 262139, 0x00014002, 0x0001c004, 17 },
158 { 524287, 0x00002001, 0x00006001, 18 },
159 { 1048573, 0x00003001, 0x00005001, 19 },
160 { 2097143, 0x00004801, 0x00005801, 20 },
161 { 4194301, 0x00000c01, 0x00001401, 21 },
162 { 8388593, 0x00001e01, 0x00002201, 22 },
163 { 16777213, 0x00000301, 0x00000501, 23 },
164 { 33554393, 0x00001381, 0x00001481, 24 },
165 { 67108859, 0x00000141, 0x000001c1, 25 },
166 { 134217689, 0x000004e1, 0x00000521, 26 },
167 { 268435399, 0x00000391, 0x000003b1, 27 },
168 { 536870909, 0x00000019, 0x00000029, 28 },
169 { 1073741789, 0x0000008d, 0x00000095, 29 },
170 { 2147483647, 0x00000003, 0x00000007, 30 },
171 /* Avoid "decimal constant so large it is unsigned" for 4294967291. */
172 { 0xfffffffb, 0x00000006, 0x00000008, 31 }
175 /* The following function returns an index into the above table of the
176 nearest prime number which is greater than N, and near a power of two. */
179 higher_prime_index (unsigned long n
)
181 unsigned int low
= 0;
182 unsigned int high
= sizeof(prime_tab
) / sizeof(prime_tab
[0]);
186 unsigned int mid
= low
+ (high
- low
) / 2;
187 if (n
> prime_tab
[mid
].prime
)
193 /* If we've run out of primes, abort. */
194 if (n
> prime_tab
[low
].prime
)
196 fprintf (stderr
, "Cannot find prime bigger than %lu\n", n
);
203 /* Returns a hash code for P. */
206 hash_pointer (const PTR p
)
208 return (hashval_t
) ((long)p
>> 3);
211 /* Returns non-zero if P1 and P2 are equal. */
214 eq_pointer (const PTR p1
, const PTR p2
)
219 /* Return the current size of given hash table. */
222 htab_size (htab_t htab
)
227 /* Return the current number of elements in given hash table. */
230 htab_elements (htab_t htab
)
232 return htab
->n_elements
- htab
->n_deleted
;
237 static inline hashval_t
238 htab_mod_1 (hashval_t x
, hashval_t y
, hashval_t inv
, int shift
)
240 /* The multiplicative inverses computed above are for 32-bit types, and
241 requires that we be able to compute a highpart multiply. */
242 #ifdef UNSIGNED_64BIT_TYPE
243 __extension__
typedef UNSIGNED_64BIT_TYPE ull
;
244 if (sizeof (hashval_t
) * CHAR_BIT
<= 32)
246 hashval_t t1
, t2
, t3
, t4
, q
, r
;
248 t1
= ((ull
)x
* inv
) >> 32;
259 /* Otherwise just use the native division routines. */
263 /* Compute the primary hash for HASH given HTAB's current size. */
265 static inline hashval_t
266 htab_mod (hashval_t hash
, htab_t htab
)
268 const struct prime_ent
*p
= &prime_tab
[htab
->size_prime_index
];
269 return htab_mod_1 (hash
, p
->prime
, p
->inv
, p
->shift
);
272 /* Compute the secondary hash for HASH given HTAB's current size. */
274 static inline hashval_t
275 htab_mod_m2 (hashval_t hash
, htab_t htab
)
277 const struct prime_ent
*p
= &prime_tab
[htab
->size_prime_index
];
278 return 1 + htab_mod_1 (hash
, p
->prime
- 2, p
->inv_m2
, p
->shift
);
281 /* This function creates table with length slightly longer than given
282 source length. Created hash table is initiated as empty (all the
283 hash table entries are EMPTY_ENTRY). The function returns the
284 created hash table, or NULL if memory allocation fails. */
287 htab_create_alloc (size_t size
, htab_hash hash_f
, htab_eq eq_f
,
288 htab_del del_f
, htab_alloc alloc_f
, htab_free free_f
)
291 unsigned int size_prime_index
;
293 size_prime_index
= higher_prime_index (size
);
294 size
= prime_tab
[size_prime_index
].prime
;
296 result
= (htab_t
) (*alloc_f
) (1, sizeof (struct htab
));
299 result
->entries
= (PTR
*) (*alloc_f
) (size
, sizeof (PTR
));
300 if (result
->entries
== NULL
)
307 result
->size_prime_index
= size_prime_index
;
308 result
->hash_f
= hash_f
;
310 result
->del_f
= del_f
;
311 result
->alloc_f
= alloc_f
;
312 result
->free_f
= free_f
;
316 /* As above, but use the variants of alloc_f and free_f which accept
317 an extra argument. */
320 htab_create_alloc_ex (size
, hash_f
, eq_f
, del_f
, alloc_arg
, alloc_f
,
327 htab_alloc_with_arg alloc_f
;
328 htab_free_with_arg free_f
;
331 unsigned int size_prime_index
;
333 size_prime_index
= higher_prime_index (size
);
334 size
= prime_tab
[size_prime_index
].prime
;
336 result
= (htab_t
) (*alloc_f
) (alloc_arg
, 1, sizeof (struct htab
));
339 result
->entries
= (PTR
*) (*alloc_f
) (alloc_arg
, size
, sizeof (PTR
));
340 if (result
->entries
== NULL
)
343 (*free_f
) (alloc_arg
, result
);
347 result
->size_prime_index
= size_prime_index
;
348 result
->hash_f
= hash_f
;
350 result
->del_f
= del_f
;
351 result
->alloc_arg
= alloc_arg
;
352 result
->alloc_with_arg_f
= alloc_f
;
353 result
->free_with_arg_f
= free_f
;
357 /* Update the function pointers and allocation parameter in the htab_t. */
360 htab_set_functions_ex (htab_t htab
, htab_hash hash_f
, htab_eq eq_f
,
361 htab_del del_f
, PTR alloc_arg
,
362 htab_alloc_with_arg alloc_f
, htab_free_with_arg free_f
)
364 htab
->hash_f
= hash_f
;
367 htab
->alloc_arg
= alloc_arg
;
368 htab
->alloc_with_arg_f
= alloc_f
;
369 htab
->free_with_arg_f
= free_f
;
372 /* These functions exist solely for backward compatibility. */
376 htab_create (size_t size
, htab_hash hash_f
, htab_eq eq_f
, htab_del del_f
)
378 return htab_create_alloc (size
, hash_f
, eq_f
, del_f
, xcalloc
, free
);
382 htab_try_create (size_t size
, htab_hash hash_f
, htab_eq eq_f
, htab_del del_f
)
384 return htab_create_alloc (size
, hash_f
, eq_f
, del_f
, calloc
, free
);
387 /* This function frees all memory allocated for given hash table.
388 Naturally the hash table must already exist. */
391 htab_delete (htab_t htab
)
393 size_t size
= htab_size (htab
);
394 PTR
*entries
= htab
->entries
;
398 for (i
= size
- 1; i
>= 0; i
--)
399 if (entries
[i
] != EMPTY_ENTRY
&& entries
[i
] != DELETED_ENTRY
)
400 (*htab
->del_f
) (entries
[i
]);
402 if (htab
->free_f
!= NULL
)
404 (*htab
->free_f
) (entries
);
405 (*htab
->free_f
) (htab
);
407 else if (htab
->free_with_arg_f
!= NULL
)
409 (*htab
->free_with_arg_f
) (htab
->alloc_arg
, entries
);
410 (*htab
->free_with_arg_f
) (htab
->alloc_arg
, htab
);
414 /* This function clears all entries in the given hash table. */
417 htab_empty (htab_t htab
)
419 size_t size
= htab_size (htab
);
420 PTR
*entries
= htab
->entries
;
424 for (i
= size
- 1; i
>= 0; i
--)
425 if (entries
[i
] != EMPTY_ENTRY
&& entries
[i
] != DELETED_ENTRY
)
426 (*htab
->del_f
) (entries
[i
]);
428 memset (entries
, 0, size
* sizeof (PTR
));
431 /* Similar to htab_find_slot, but without several unwanted side effects:
432 - Does not call htab->eq_f when it finds an existing entry.
433 - Does not change the count of elements/searches/collisions in the
435 This function also assumes there are no deleted entries in the table.
436 HASH is the hash value for the element to be inserted. */
439 find_empty_slot_for_expand (htab_t htab
, hashval_t hash
)
441 hashval_t index
= htab_mod (hash
, htab
);
442 size_t size
= htab_size (htab
);
443 PTR
*slot
= htab
->entries
+ index
;
446 if (*slot
== EMPTY_ENTRY
)
448 else if (*slot
== DELETED_ENTRY
)
451 hash2
= htab_mod_m2 (hash
, htab
);
458 slot
= htab
->entries
+ index
;
459 if (*slot
== EMPTY_ENTRY
)
461 else if (*slot
== DELETED_ENTRY
)
466 /* The following function changes size of memory allocated for the
467 entries and repeatedly inserts the table elements. The occupancy
468 of the table after the call will be about 50%. Naturally the hash
469 table must already exist. Remember also that the place of the
470 table entries is changed. If memory allocation failures are allowed,
471 this function will return zero, indicating that the table could not be
472 expanded. If all goes well, it will return a non-zero value. */
475 htab_expand (htab_t htab
)
481 size_t nsize
, osize
, elts
;
482 unsigned int oindex
, nindex
;
484 oentries
= htab
->entries
;
485 oindex
= htab
->size_prime_index
;
487 olimit
= oentries
+ osize
;
488 elts
= htab_elements (htab
);
490 /* Resize only when table after removal of unused elements is either
491 too full or too empty. */
492 if (elts
* 2 > osize
|| (elts
* 8 < osize
&& osize
> 32))
494 nindex
= higher_prime_index (elts
* 2);
495 nsize
= prime_tab
[nindex
].prime
;
503 if (htab
->alloc_with_arg_f
!= NULL
)
504 nentries
= (PTR
*) (*htab
->alloc_with_arg_f
) (htab
->alloc_arg
, nsize
,
507 nentries
= (PTR
*) (*htab
->alloc_f
) (nsize
, sizeof (PTR
*));
508 if (nentries
== NULL
)
510 htab
->entries
= nentries
;
512 htab
->size_prime_index
= nindex
;
513 htab
->n_elements
-= htab
->n_deleted
;
521 if (x
!= EMPTY_ENTRY
&& x
!= DELETED_ENTRY
)
523 PTR
*q
= find_empty_slot_for_expand (htab
, (*htab
->hash_f
) (x
));
532 if (htab
->free_f
!= NULL
)
533 (*htab
->free_f
) (oentries
);
534 else if (htab
->free_with_arg_f
!= NULL
)
535 (*htab
->free_with_arg_f
) (htab
->alloc_arg
, oentries
);
539 /* This function searches for a hash table entry equal to the given
540 element. It cannot be used to insert or delete an element. */
543 htab_find_with_hash (htab_t htab
, const PTR element
, hashval_t hash
)
545 hashval_t index
, hash2
;
550 size
= htab_size (htab
);
551 index
= htab_mod (hash
, htab
);
553 entry
= htab
->entries
[index
];
554 if (entry
== EMPTY_ENTRY
555 || (entry
!= DELETED_ENTRY
&& (*htab
->eq_f
) (entry
, element
)))
558 hash2
= htab_mod_m2 (hash
, htab
);
566 entry
= htab
->entries
[index
];
567 if (entry
== EMPTY_ENTRY
568 || (entry
!= DELETED_ENTRY
&& (*htab
->eq_f
) (entry
, element
)))
573 /* Like htab_find_slot_with_hash, but compute the hash value from the
577 htab_find (htab_t htab
, const PTR element
)
579 return htab_find_with_hash (htab
, element
, (*htab
->hash_f
) (element
));
582 /* This function searches for a hash table slot containing an entry
583 equal to the given element. To delete an entry, call this with
584 insert=NO_INSERT, then call htab_clear_slot on the slot returned
585 (possibly after doing some checks). To insert an entry, call this
586 with insert=INSERT, then write the value you want into the returned
587 slot. When inserting an entry, NULL may be returned if memory
591 htab_find_slot_with_hash (htab_t htab
, const PTR element
,
592 hashval_t hash
, enum insert_option insert
)
594 PTR
*first_deleted_slot
;
595 hashval_t index
, hash2
;
599 size
= htab_size (htab
);
600 if (insert
== INSERT
&& size
* 3 <= htab
->n_elements
* 4)
602 if (htab_expand (htab
) == 0)
604 size
= htab_size (htab
);
607 index
= htab_mod (hash
, htab
);
610 first_deleted_slot
= NULL
;
612 entry
= htab
->entries
[index
];
613 if (entry
== EMPTY_ENTRY
)
615 else if (entry
== DELETED_ENTRY
)
616 first_deleted_slot
= &htab
->entries
[index
];
617 else if ((*htab
->eq_f
) (entry
, element
))
618 return &htab
->entries
[index
];
620 hash2
= htab_mod_m2 (hash
, htab
);
628 entry
= htab
->entries
[index
];
629 if (entry
== EMPTY_ENTRY
)
631 else if (entry
== DELETED_ENTRY
)
633 if (!first_deleted_slot
)
634 first_deleted_slot
= &htab
->entries
[index
];
636 else if ((*htab
->eq_f
) (entry
, element
))
637 return &htab
->entries
[index
];
641 if (insert
== NO_INSERT
)
644 if (first_deleted_slot
)
647 *first_deleted_slot
= EMPTY_ENTRY
;
648 return first_deleted_slot
;
652 return &htab
->entries
[index
];
655 /* Like htab_find_slot_with_hash, but compute the hash value from the
659 htab_find_slot (htab_t htab
, const PTR element
, enum insert_option insert
)
661 return htab_find_slot_with_hash (htab
, element
, (*htab
->hash_f
) (element
),
665 /* This function deletes an element with the given value from hash
666 table (the hash is computed from the element). If there is no matching
667 element in the hash table, this function does nothing. */
670 htab_remove_elt (htab_t htab
, PTR element
)
672 htab_remove_elt_with_hash (htab
, element
, (*htab
->hash_f
) (element
));
676 /* This function deletes an element with the given value from hash
677 table. If there is no matching element in the hash table, this
678 function does nothing. */
681 htab_remove_elt_with_hash (htab_t htab
, PTR element
, hashval_t hash
)
685 slot
= htab_find_slot_with_hash (htab
, element
, hash
, NO_INSERT
);
686 if (*slot
== EMPTY_ENTRY
)
690 (*htab
->del_f
) (*slot
);
692 *slot
= DELETED_ENTRY
;
696 /* This function clears a specified slot in a hash table. It is
697 useful when you've already done the lookup and don't want to do it
701 htab_clear_slot (htab_t htab
, PTR
*slot
)
703 if (slot
< htab
->entries
|| slot
>= htab
->entries
+ htab_size (htab
)
704 || *slot
== EMPTY_ENTRY
|| *slot
== DELETED_ENTRY
)
708 (*htab
->del_f
) (*slot
);
710 *slot
= DELETED_ENTRY
;
714 /* This function scans over the entire hash table calling
715 CALLBACK for each live entry. If CALLBACK returns false,
716 the iteration stops. INFO is passed as CALLBACK's second
720 htab_traverse_noresize (htab_t htab
, htab_trav callback
, PTR info
)
725 slot
= htab
->entries
;
726 limit
= slot
+ htab_size (htab
);
732 if (x
!= EMPTY_ENTRY
&& x
!= DELETED_ENTRY
)
733 if (!(*callback
) (slot
, info
))
736 while (++slot
< limit
);
739 /* Like htab_traverse_noresize, but does resize the table when it is
740 too empty to improve effectivity of subsequent calls. */
743 htab_traverse (htab_t htab
, htab_trav callback
, PTR info
)
745 if (htab_elements (htab
) * 8 < htab_size (htab
))
748 htab_traverse_noresize (htab
, callback
, info
);
751 /* Return the fraction of fixed collisions during all work with given
755 htab_collisions (htab_t htab
)
757 if (htab
->searches
== 0)
760 return (double) htab
->collisions
/ (double) htab
->searches
;
763 /* Hash P as a null-terminated string.
765 Copied from gcc/hashtable.c. Zack had the following to say with respect
766 to applicability, though note that unlike hashtable.c, this hash table
767 implementation re-hashes rather than chain buckets.
769 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
770 From: Zack Weinberg <zackw@panix.com>
771 Date: Fri, 17 Aug 2001 02:15:56 -0400
773 I got it by extracting all the identifiers from all the source code
774 I had lying around in mid-1999, and testing many recurrences of
775 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
776 prime numbers or the appropriate identity. This was the best one.
777 I don't remember exactly what constituted "best", except I was
778 looking at bucket-length distributions mostly.
780 So it should be very good at hashing identifiers, but might not be
781 as good at arbitrary strings.
783 I'll add that it thoroughly trounces the hash functions recommended
784 for this use at http://burtleburtle.net/bob/hash/index.html, both
785 on speed and bucket distribution. I haven't tried it against the
786 function they just started using for Perl's hashes. */
789 htab_hash_string (const PTR p
)
791 const unsigned char *str
= (const unsigned char *) p
;
795 while ((c
= *str
++) != 0)
796 r
= r
* 67 + c
- 113;
802 --------------------------------------------------------------------
803 lookup2.c, by Bob Jenkins, December 1996, Public Domain.
804 hash(), hash2(), hash3, and mix() are externally useful functions.
805 Routines to test the hash are included if SELF_TEST is defined.
806 You can use this free for any purpose. It has no warranty.
807 --------------------------------------------------------------------
811 --------------------------------------------------------------------
812 mix -- mix 3 32-bit values reversibly.
813 For every delta with one or two bit set, and the deltas of all three
814 high bits or all three low bits, whether the original value of a,b,c
815 is almost all zero or is uniformly distributed,
816 * If mix() is run forward or backward, at least 32 bits in a,b,c
817 have at least 1/4 probability of changing.
818 * If mix() is run forward, every bit of c will change between 1/3 and
819 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
820 mix() was built out of 36 single-cycle latency instructions in a
821 structure that could supported 2x parallelism, like so:
829 Unfortunately, superscalar Pentiums and Sparcs can't take advantage
830 of that parallelism. They've also turned some of those single-cycle
831 latency instructions into multi-cycle latency instructions. Still,
832 this is the fastest good hash I could find. There were about 2^^68
833 to choose from. I only looked at a billion or so.
834 --------------------------------------------------------------------
836 /* same, but slower, works on systems that might have 8 byte hashval_t's */
839 a -= b; a -= c; a ^= (c>>13); \
840 b -= c; b -= a; b ^= (a<< 8); \
841 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
842 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
843 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
844 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
845 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
846 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
847 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
851 --------------------------------------------------------------------
852 hash() -- hash a variable-length key into a 32-bit value
853 k : the key (the unaligned variable-length array of bytes)
854 len : the length of the key, counting by bytes
855 level : can be any 4-byte value
856 Returns a 32-bit value. Every bit of the key affects every bit of
857 the return value. Every 1-bit and 2-bit delta achieves avalanche.
858 About 36+6len instructions.
860 The best hash table sizes are powers of 2. There is no need to do
861 mod a prime (mod is sooo slow!). If you need less than 32 bits,
862 use a bitmask. For example, if you need only 10 bits, do
863 h = (h & hashmask(10));
864 In which case, the hash table should have hashsize(10) elements.
866 If you are hashing n strings (ub1 **)k, do it like this:
867 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
869 By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
870 code any way you wish, private, educational, or commercial. It's free.
872 See http://burtleburtle.net/bob/hash/evahash.html
873 Use for hash table lookup, or anything where one collision in 2^32 is
874 acceptable. Do NOT use for cryptographic purposes.
875 --------------------------------------------------------------------
879 iterative_hash (const PTR k_in
/* the key */,
880 register size_t length
/* the length of the key */,
881 register hashval_t initval
/* the previous hash, or
882 an arbitrary value */)
884 register const unsigned char *k
= (const unsigned char *)k_in
;
885 register hashval_t a
,b
,c
,len
;
887 /* Set up the internal state */
889 a
= b
= 0x9e3779b9; /* the golden ratio; an arbitrary value */
890 c
= initval
; /* the previous hash value */
892 /*---------------------------------------- handle most of the key */
893 #ifndef WORDS_BIGENDIAN
894 /* On a little-endian machine, if the data is 4-byte aligned we can hash
895 by word for better speed. This gives nondeterministic results on
896 big-endian machines. */
897 if (sizeof (hashval_t
) == 4 && (((size_t)k
)&3) == 0)
898 while (len
>= 12) /* aligned */
900 a
+= *(hashval_t
*)(k
+0);
901 b
+= *(hashval_t
*)(k
+4);
902 c
+= *(hashval_t
*)(k
+8);
910 a
+= (k
[0] +((hashval_t
)k
[1]<<8) +((hashval_t
)k
[2]<<16) +((hashval_t
)k
[3]<<24));
911 b
+= (k
[4] +((hashval_t
)k
[5]<<8) +((hashval_t
)k
[6]<<16) +((hashval_t
)k
[7]<<24));
912 c
+= (k
[8] +((hashval_t
)k
[9]<<8) +((hashval_t
)k
[10]<<16)+((hashval_t
)k
[11]<<24));
917 /*------------------------------------- handle the last 11 bytes */
919 switch(len
) /* all the case statements fall through */
921 case 11: c
+=((hashval_t
)k
[10]<<24);
922 case 10: c
+=((hashval_t
)k
[9]<<16);
923 case 9 : c
+=((hashval_t
)k
[8]<<8);
924 /* the first byte of c is reserved for the length */
925 case 8 : b
+=((hashval_t
)k
[7]<<24);
926 case 7 : b
+=((hashval_t
)k
[6]<<16);
927 case 6 : b
+=((hashval_t
)k
[5]<<8);
929 case 4 : a
+=((hashval_t
)k
[3]<<24);
930 case 3 : a
+=((hashval_t
)k
[2]<<16);
931 case 2 : a
+=((hashval_t
)k
[1]<<8);
933 /* case 0: nothing left to add */
936 /*-------------------------------------------- report the result */