1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
31 #include "safe-ctype.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "elf/x86-64.h"
36 #include "opcodes/i386-init.h"
38 #ifndef REGISTER_WARNINGS
39 #define REGISTER_WARNINGS 1
42 #ifndef INFER_ADDR_PREFIX
43 #define INFER_ADDR_PREFIX 1
47 #define DEFAULT_ARCH "i386"
52 #define INLINE __inline__
58 /* Prefixes will be emitted in the order defined below.
59 WAIT_PREFIX must be the first prefix since FWAIT is really is an
60 instruction, and so must come before any prefixes.
61 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
62 REP_PREFIX, LOCK_PREFIX. */
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 /* Intel Syntax. Use a non-ascii letter since since it never appears
88 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90 #define END_OF_INSN '\0'
93 'templates' is for grouping together 'template' structures for opcodes
94 of the same name. This is only used for storing the insns in the grand
95 ole hash table of insns.
96 The templates themselves start at START and range up to (but not including)
101 const insn_template
*start
;
102 const insn_template
*end
;
106 /* 386 operand encoding bytes: see 386 book for details of this. */
109 unsigned int regmem
; /* codes register or memory operand */
110 unsigned int reg
; /* codes register operand (or extended opcode) */
111 unsigned int mode
; /* how to interpret regmem & reg */
115 /* x86-64 extension prefix. */
116 typedef int rex_byte
;
118 /* 386 opcode byte to code indirect addressing. */
127 /* x86 arch names, types and features */
130 const char *name
; /* arch name */
131 unsigned int len
; /* arch string length */
132 enum processor_type type
; /* arch type */
133 i386_cpu_flags flags
; /* cpu feature flags */
134 unsigned int skip
; /* show_arch should skip this. */
138 static void set_code_flag (int);
139 static void set_16bit_gcc_code_flag (int);
140 static void set_intel_syntax (int);
141 static void set_intel_mnemonic (int);
142 static void set_allow_index_reg (int);
143 static void set_sse_check (int);
144 static void set_cpu_arch (int);
146 static void pe_directive_secrel (int);
148 static void signed_cons (int);
149 static char *output_invalid (int c
);
150 static int i386_finalize_immediate (segT
, expressionS
*, i386_operand_type
,
152 static int i386_finalize_displacement (segT
, expressionS
*, i386_operand_type
,
154 static int i386_att_operand (char *);
155 static int i386_intel_operand (char *, int);
156 static int i386_intel_simplify (expressionS
*);
157 static int i386_intel_parse_name (const char *, expressionS
*);
158 static const reg_entry
*parse_register (char *, char **);
159 static char *parse_insn (char *, char *);
160 static char *parse_operands (char *, const char *);
161 static void swap_operands (void);
162 static void swap_2_operands (int, int);
163 static void optimize_imm (void);
164 static void optimize_disp (void);
165 static const insn_template
*match_template (void);
166 static int check_string (void);
167 static int process_suffix (void);
168 static int check_byte_reg (void);
169 static int check_long_reg (void);
170 static int check_qword_reg (void);
171 static int check_word_reg (void);
172 static int finalize_imm (void);
173 static int process_operands (void);
174 static const seg_entry
*build_modrm_byte (void);
175 static void output_insn (void);
176 static void output_imm (fragS
*, offsetT
);
177 static void output_disp (fragS
*, offsetT
);
179 static void s_bss (int);
181 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
182 static void handle_large_common (int small ATTRIBUTE_UNUSED
);
185 static const char *default_arch
= DEFAULT_ARCH
;
190 /* VEX prefix is either 2 byte or 3 byte. */
191 unsigned char bytes
[3];
193 /* Destination or source register specifier. */
194 const reg_entry
*register_specifier
;
197 /* 'md_assemble ()' gathers together information and puts it into a
204 const reg_entry
*regs
;
209 operand_size_mismatch
,
210 operand_type_mismatch
,
211 register_type_mismatch
,
212 number_of_operands_mismatch
,
213 invalid_instruction_suffix
,
216 unsupported_with_intel_mnemonic
,
223 /* TM holds the template for the insn were currently assembling. */
226 /* SUFFIX holds the instruction size suffix for byte, word, dword
227 or qword, if given. */
230 /* OPERANDS gives the number of given operands. */
231 unsigned int operands
;
233 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
234 of given register, displacement, memory operands and immediate
236 unsigned int reg_operands
, disp_operands
, mem_operands
, imm_operands
;
238 /* TYPES [i] is the type (see above #defines) which tells us how to
239 use OP[i] for the corresponding operand. */
240 i386_operand_type types
[MAX_OPERANDS
];
242 /* Displacement expression, immediate expression, or register for each
244 union i386_op op
[MAX_OPERANDS
];
246 /* Flags for operands. */
247 unsigned int flags
[MAX_OPERANDS
];
248 #define Operand_PCrel 1
250 /* Relocation type for operand */
251 enum bfd_reloc_code_real reloc
[MAX_OPERANDS
];
253 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
254 the base index byte below. */
255 const reg_entry
*base_reg
;
256 const reg_entry
*index_reg
;
257 unsigned int log2_scale_factor
;
259 /* SEG gives the seg_entries of this insn. They are zero unless
260 explicit segment overrides are given. */
261 const seg_entry
*seg
[2];
263 /* PREFIX holds all the given prefix opcodes (usually null).
264 PREFIXES is the number of prefix opcodes. */
265 unsigned int prefixes
;
266 unsigned char prefix
[MAX_PREFIXES
];
268 /* RM and SIB are the modrm byte and the sib byte where the
269 addressing modes of this insn are encoded. */
275 /* Swap operand in encoding. */
276 unsigned int swap_operand
;
279 enum i386_error error
;
282 typedef struct _i386_insn i386_insn
;
284 /* List of chars besides those in app.c:symbol_chars that can start an
285 operand. Used to prevent the scrubber eating vital white-space. */
286 const char extra_symbol_chars
[] = "*%-(["
295 #if (defined (TE_I386AIX) \
296 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
297 && !defined (TE_GNU) \
298 && !defined (TE_LINUX) \
299 && !defined (TE_NETWARE) \
300 && !defined (TE_FreeBSD) \
301 && !defined (TE_NetBSD)))
302 /* This array holds the chars that always start a comment. If the
303 pre-processor is disabled, these aren't very useful. The option
304 --divide will remove '/' from this list. */
305 const char *i386_comment_chars
= "#/";
306 #define SVR4_COMMENT_CHARS 1
307 #define PREFIX_SEPARATOR '\\'
310 const char *i386_comment_chars
= "#";
311 #define PREFIX_SEPARATOR '/'
314 /* This array holds the chars that only start a comment at the beginning of
315 a line. If the line seems to have the form '# 123 filename'
316 .line and .file directives will appear in the pre-processed output.
317 Note that input_file.c hand checks for '#' at the beginning of the
318 first line of the input file. This is because the compiler outputs
319 #NO_APP at the beginning of its output.
320 Also note that comments started like this one will always work if
321 '/' isn't otherwise defined. */
322 const char line_comment_chars
[] = "#/";
324 const char line_separator_chars
[] = ";";
326 /* Chars that can be used to separate mant from exp in floating point
328 const char EXP_CHARS
[] = "eE";
330 /* Chars that mean this number is a floating point constant
333 const char FLT_CHARS
[] = "fFdDxX";
335 /* Tables for lexical analysis. */
336 static char mnemonic_chars
[256];
337 static char register_chars
[256];
338 static char operand_chars
[256];
339 static char identifier_chars
[256];
340 static char digit_chars
[256];
342 /* Lexical macros. */
343 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
344 #define is_operand_char(x) (operand_chars[(unsigned char) x])
345 #define is_register_char(x) (register_chars[(unsigned char) x])
346 #define is_space_char(x) ((x) == ' ')
347 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
348 #define is_digit_char(x) (digit_chars[(unsigned char) x])
350 /* All non-digit non-letter characters that may occur in an operand. */
351 static char operand_special_chars
[] = "%$-+(,)*._~/<>|&^!:[@]";
353 /* md_assemble() always leaves the strings it's passed unaltered. To
354 effect this we maintain a stack of saved characters that we've smashed
355 with '\0's (indicating end of strings for various sub-fields of the
356 assembler instruction). */
357 static char save_stack
[32];
358 static char *save_stack_p
;
359 #define END_STRING_AND_SAVE(s) \
360 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
361 #define RESTORE_END_STRING(s) \
362 do { *(s) = *--save_stack_p; } while (0)
364 /* The instruction we're assembling. */
367 /* Possible templates for current insn. */
368 static const templates
*current_templates
;
370 /* Per instruction expressionS buffers: max displacements & immediates. */
371 static expressionS disp_expressions
[MAX_MEMORY_OPERANDS
];
372 static expressionS im_expressions
[MAX_IMMEDIATE_OPERANDS
];
374 /* Current operand we are working on. */
375 static int this_operand
= -1;
377 /* We support four different modes. FLAG_CODE variable is used to distinguish
385 static enum flag_code flag_code
;
386 static unsigned int object_64bit
;
387 static int use_rela_relocations
= 0;
389 /* The names used to print error messages. */
390 static const char *flag_code_names
[] =
397 /* 1 for intel syntax,
399 static int intel_syntax
= 0;
401 /* 1 for intel mnemonic,
402 0 if att mnemonic. */
403 static int intel_mnemonic
= !SYSV386_COMPAT
;
405 /* 1 if support old (<= 2.8.1) versions of gcc. */
406 static int old_gcc
= OLDGCC_COMPAT
;
408 /* 1 if pseudo registers are permitted. */
409 static int allow_pseudo_reg
= 0;
411 /* 1 if register prefix % not required. */
412 static int allow_naked_reg
= 0;
414 /* 1 if pseudo index register, eiz/riz, is allowed . */
415 static int allow_index_reg
= 0;
425 /* Register prefix used for error message. */
426 static const char *register_prefix
= "%";
428 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
429 leave, push, and pop instructions so that gcc has the same stack
430 frame as in 32 bit mode. */
431 static char stackop_size
= '\0';
433 /* Non-zero to optimize code alignment. */
434 int optimize_align_code
= 1;
436 /* Non-zero to quieten some warnings. */
437 static int quiet_warnings
= 0;
440 static const char *cpu_arch_name
= NULL
;
441 static char *cpu_sub_arch_name
= NULL
;
443 /* CPU feature flags. */
444 static i386_cpu_flags cpu_arch_flags
= CPU_UNKNOWN_FLAGS
;
446 /* If we have selected a cpu we are generating instructions for. */
447 static int cpu_arch_tune_set
= 0;
449 /* Cpu we are generating instructions for. */
450 enum processor_type cpu_arch_tune
= PROCESSOR_UNKNOWN
;
452 /* CPU feature flags of cpu we are generating instructions for. */
453 static i386_cpu_flags cpu_arch_tune_flags
;
455 /* CPU instruction set architecture used. */
456 enum processor_type cpu_arch_isa
= PROCESSOR_UNKNOWN
;
458 /* CPU feature flags of instruction set architecture used. */
459 i386_cpu_flags cpu_arch_isa_flags
;
461 /* If set, conditional jumps are not automatically promoted to handle
462 larger than a byte offset. */
463 static unsigned int no_cond_jump_promotion
= 0;
465 /* Encode SSE instructions with VEX prefix. */
466 static unsigned int sse2avx
;
468 /* Encode scalar AVX instructions with specific vector length. */
475 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
476 static symbolS
*GOT_symbol
;
478 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
479 unsigned int x86_dwarf2_return_column
;
481 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
482 int x86_cie_data_alignment
;
484 /* Interface to relax_segment.
485 There are 3 major relax states for 386 jump insns because the
486 different types of jumps add different sizes to frags when we're
487 figuring out what sort of jump to choose to reach a given label. */
490 #define UNCOND_JUMP 0
492 #define COND_JUMP86 2
497 #define SMALL16 (SMALL | CODE16)
499 #define BIG16 (BIG | CODE16)
503 #define INLINE __inline__
509 #define ENCODE_RELAX_STATE(type, size) \
510 ((relax_substateT) (((type) << 2) | (size)))
511 #define TYPE_FROM_RELAX_STATE(s) \
513 #define DISP_SIZE_FROM_RELAX_STATE(s) \
514 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
516 /* This table is used by relax_frag to promote short jumps to long
517 ones where necessary. SMALL (short) jumps may be promoted to BIG
518 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
519 don't allow a short jump in a 32 bit code segment to be promoted to
520 a 16 bit offset jump because it's slower (requires data size
521 prefix), and doesn't work, unless the destination is in the bottom
522 64k of the code segment (The top 16 bits of eip are zeroed). */
524 const relax_typeS md_relax_table
[] =
527 1) most positive reach of this state,
528 2) most negative reach of this state,
529 3) how many bytes this mode will have in the variable part of the frag
530 4) which index into the table to try if we can't fit into this one. */
532 /* UNCOND_JUMP states. */
533 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG
)},
534 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG16
)},
535 /* dword jmp adds 4 bytes to frag:
536 0 extra opcode bytes, 4 displacement bytes. */
538 /* word jmp adds 2 byte2 to frag:
539 0 extra opcode bytes, 2 displacement bytes. */
542 /* COND_JUMP states. */
543 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP
, BIG
)},
544 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP
, BIG16
)},
545 /* dword conditionals adds 5 bytes to frag:
546 1 extra opcode byte, 4 displacement bytes. */
548 /* word conditionals add 3 bytes to frag:
549 1 extra opcode byte, 2 displacement bytes. */
552 /* COND_JUMP86 states. */
553 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86
, BIG
)},
554 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86
, BIG16
)},
555 /* dword conditionals adds 5 bytes to frag:
556 1 extra opcode byte, 4 displacement bytes. */
558 /* word conditionals add 4 bytes to frag:
559 1 displacement byte and a 3 byte long branch insn. */
563 static const arch_entry cpu_arch
[] =
565 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32
,
566 CPU_GENERIC32_FLAGS
, 0 },
567 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64
,
568 CPU_GENERIC64_FLAGS
, 0 },
569 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN
,
571 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN
,
573 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN
,
575 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386
,
577 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486
,
579 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM
,
581 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO
,
583 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM
,
585 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO
,
587 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO
,
589 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO
,
591 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4
,
593 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA
,
595 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA
,
596 CPU_NOCONA_FLAGS
, 0 },
597 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE
,
599 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE
,
601 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2
,
602 CPU_CORE2_FLAGS
, 1 },
603 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2
,
604 CPU_CORE2_FLAGS
, 0 },
605 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7
,
606 CPU_COREI7_FLAGS
, 0 },
607 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM
,
609 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6
,
611 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6
,
613 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON
,
614 CPU_ATHLON_FLAGS
, 0 },
615 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8
,
617 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8
,
619 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8
,
621 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10
,
622 CPU_AMDFAM10_FLAGS
, 0 },
623 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BDVER1
,
624 CPU_BDVER1_FLAGS
, 0 },
625 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN
,
627 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN
,
629 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN
,
631 { STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN
,
632 CPU_ANY87_FLAGS
, 0 },
633 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN
,
635 { STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN
,
636 CPU_3DNOWA_FLAGS
, 0 },
637 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN
,
639 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN
,
641 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN
,
643 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN
,
644 CPU_SSSE3_FLAGS
, 0 },
645 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN
,
646 CPU_SSE4_1_FLAGS
, 0 },
647 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN
,
648 CPU_SSE4_2_FLAGS
, 0 },
649 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN
,
650 CPU_SSE4_2_FLAGS
, 0 },
651 { STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN
,
652 CPU_ANY_SSE_FLAGS
, 0 },
653 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN
,
655 { STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN
,
656 CPU_ANY_AVX_FLAGS
, 0 },
657 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN
,
659 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN
,
661 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN
,
662 CPU_XSAVE_FLAGS
, 0 },
663 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN
,
665 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN
,
666 CPU_PCLMUL_FLAGS
, 0 },
667 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN
,
668 CPU_PCLMUL_FLAGS
, 1 },
669 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN
,
671 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN
,
673 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN
,
675 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN
,
677 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN
,
678 CPU_MOVBE_FLAGS
, 0 },
679 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN
,
681 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN
,
682 CPU_CLFLUSH_FLAGS
, 0 },
683 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN
,
684 CPU_SYSCALL_FLAGS
, 0 },
685 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN
,
686 CPU_RDTSCP_FLAGS
, 0 },
687 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN
,
688 CPU_3DNOW_FLAGS
, 0 },
689 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN
,
690 CPU_3DNOWA_FLAGS
, 0 },
691 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN
,
692 CPU_PADLOCK_FLAGS
, 0 },
693 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN
,
695 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN
,
697 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN
,
698 CPU_SSE4A_FLAGS
, 0 },
699 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN
,
704 /* Like s_lcomm_internal in gas/read.c but the alignment string
705 is allowed to be optional. */
708 pe_lcomm_internal (int needs_align
, symbolS
*symbolP
, addressT size
)
715 && *input_line_pointer
== ',')
717 align
= parse_align (needs_align
- 1);
719 if (align
== (addressT
) -1)
734 bss_alloc (symbolP
, size
, align
);
739 pe_lcomm (int needs_align
)
741 s_comm_internal (needs_align
* 2, pe_lcomm_internal
);
745 const pseudo_typeS md_pseudo_table
[] =
747 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
748 {"align", s_align_bytes
, 0},
750 {"align", s_align_ptwo
, 0},
752 {"arch", set_cpu_arch
, 0},
756 {"lcomm", pe_lcomm
, 1},
758 {"ffloat", float_cons
, 'f'},
759 {"dfloat", float_cons
, 'd'},
760 {"tfloat", float_cons
, 'x'},
762 {"slong", signed_cons
, 4},
763 {"noopt", s_ignore
, 0},
764 {"optim", s_ignore
, 0},
765 {"code16gcc", set_16bit_gcc_code_flag
, CODE_16BIT
},
766 {"code16", set_code_flag
, CODE_16BIT
},
767 {"code32", set_code_flag
, CODE_32BIT
},
768 {"code64", set_code_flag
, CODE_64BIT
},
769 {"intel_syntax", set_intel_syntax
, 1},
770 {"att_syntax", set_intel_syntax
, 0},
771 {"intel_mnemonic", set_intel_mnemonic
, 1},
772 {"att_mnemonic", set_intel_mnemonic
, 0},
773 {"allow_index_reg", set_allow_index_reg
, 1},
774 {"disallow_index_reg", set_allow_index_reg
, 0},
775 {"sse_check", set_sse_check
, 0},
776 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
777 {"largecomm", handle_large_common
, 0},
779 {"file", (void (*) (int)) dwarf2_directive_file
, 0},
780 {"loc", dwarf2_directive_loc
, 0},
781 {"loc_mark_labels", dwarf2_directive_loc_mark_labels
, 0},
784 {"secrel32", pe_directive_secrel
, 0},
789 /* For interface with expression (). */
790 extern char *input_line_pointer
;
792 /* Hash table for instruction mnemonic lookup. */
793 static struct hash_control
*op_hash
;
795 /* Hash table for register lookup. */
796 static struct hash_control
*reg_hash
;
799 i386_align_code (fragS
*fragP
, int count
)
801 /* Various efficient no-op patterns for aligning code labels.
802 Note: Don't try to assemble the instructions in the comments.
803 0L and 0w are not legal. */
804 static const char f32_1
[] =
806 static const char f32_2
[] =
807 {0x66,0x90}; /* xchg %ax,%ax */
808 static const char f32_3
[] =
809 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
810 static const char f32_4
[] =
811 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
812 static const char f32_5
[] =
814 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
815 static const char f32_6
[] =
816 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
817 static const char f32_7
[] =
818 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
819 static const char f32_8
[] =
821 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
822 static const char f32_9
[] =
823 {0x89,0xf6, /* movl %esi,%esi */
824 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
825 static const char f32_10
[] =
826 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
827 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
828 static const char f32_11
[] =
829 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
830 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
831 static const char f32_12
[] =
832 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
833 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
834 static const char f32_13
[] =
835 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
836 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
837 static const char f32_14
[] =
838 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
839 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
840 static const char f16_3
[] =
841 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
842 static const char f16_4
[] =
843 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
844 static const char f16_5
[] =
846 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
847 static const char f16_6
[] =
848 {0x89,0xf6, /* mov %si,%si */
849 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
850 static const char f16_7
[] =
851 {0x8d,0x74,0x00, /* lea 0(%si),%si */
852 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
853 static const char f16_8
[] =
854 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
855 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
856 static const char jump_31
[] =
857 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
858 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
859 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
860 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
861 static const char *const f32_patt
[] = {
862 f32_1
, f32_2
, f32_3
, f32_4
, f32_5
, f32_6
, f32_7
, f32_8
,
863 f32_9
, f32_10
, f32_11
, f32_12
, f32_13
, f32_14
865 static const char *const f16_patt
[] = {
866 f32_1
, f32_2
, f16_3
, f16_4
, f16_5
, f16_6
, f16_7
, f16_8
869 static const char alt_3
[] =
871 /* nopl 0(%[re]ax) */
872 static const char alt_4
[] =
873 {0x0f,0x1f,0x40,0x00};
874 /* nopl 0(%[re]ax,%[re]ax,1) */
875 static const char alt_5
[] =
876 {0x0f,0x1f,0x44,0x00,0x00};
877 /* nopw 0(%[re]ax,%[re]ax,1) */
878 static const char alt_6
[] =
879 {0x66,0x0f,0x1f,0x44,0x00,0x00};
880 /* nopl 0L(%[re]ax) */
881 static const char alt_7
[] =
882 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
883 /* nopl 0L(%[re]ax,%[re]ax,1) */
884 static const char alt_8
[] =
885 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
886 /* nopw 0L(%[re]ax,%[re]ax,1) */
887 static const char alt_9
[] =
888 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
889 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
890 static const char alt_10
[] =
891 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
893 nopw %cs:0L(%[re]ax,%[re]ax,1) */
894 static const char alt_long_11
[] =
896 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
899 nopw %cs:0L(%[re]ax,%[re]ax,1) */
900 static const char alt_long_12
[] =
903 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
907 nopw %cs:0L(%[re]ax,%[re]ax,1) */
908 static const char alt_long_13
[] =
912 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
917 nopw %cs:0L(%[re]ax,%[re]ax,1) */
918 static const char alt_long_14
[] =
923 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
929 nopw %cs:0L(%[re]ax,%[re]ax,1) */
930 static const char alt_long_15
[] =
936 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
937 /* nopl 0(%[re]ax,%[re]ax,1)
938 nopw 0(%[re]ax,%[re]ax,1) */
939 static const char alt_short_11
[] =
940 {0x0f,0x1f,0x44,0x00,0x00,
941 0x66,0x0f,0x1f,0x44,0x00,0x00};
942 /* nopw 0(%[re]ax,%[re]ax,1)
943 nopw 0(%[re]ax,%[re]ax,1) */
944 static const char alt_short_12
[] =
945 {0x66,0x0f,0x1f,0x44,0x00,0x00,
946 0x66,0x0f,0x1f,0x44,0x00,0x00};
947 /* nopw 0(%[re]ax,%[re]ax,1)
949 static const char alt_short_13
[] =
950 {0x66,0x0f,0x1f,0x44,0x00,0x00,
951 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
954 static const char alt_short_14
[] =
955 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
956 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
958 nopl 0L(%[re]ax,%[re]ax,1) */
959 static const char alt_short_15
[] =
960 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
961 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
962 static const char *const alt_short_patt
[] = {
963 f32_1
, f32_2
, alt_3
, alt_4
, alt_5
, alt_6
, alt_7
, alt_8
,
964 alt_9
, alt_10
, alt_short_11
, alt_short_12
, alt_short_13
,
965 alt_short_14
, alt_short_15
967 static const char *const alt_long_patt
[] = {
968 f32_1
, f32_2
, alt_3
, alt_4
, alt_5
, alt_6
, alt_7
, alt_8
,
969 alt_9
, alt_10
, alt_long_11
, alt_long_12
, alt_long_13
,
970 alt_long_14
, alt_long_15
973 /* Only align for at least a positive non-zero boundary. */
974 if (count
<= 0 || count
> MAX_MEM_FOR_RS_ALIGN_CODE
)
977 /* We need to decide which NOP sequence to use for 32bit and
978 64bit. When -mtune= is used:
980 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
981 PROCESSOR_GENERIC32, f32_patt will be used.
982 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
983 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
984 PROCESSOR_GENERIC64, alt_long_patt will be used.
985 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
986 PROCESSOR_AMDFAM10, and PROCESSOR_BDVER1, alt_short_patt
989 When -mtune= isn't used, alt_long_patt will be used if
990 cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will
993 When -march= or .arch is used, we can't use anything beyond
994 cpu_arch_isa_flags. */
996 if (flag_code
== CODE_16BIT
)
1000 memcpy (fragP
->fr_literal
+ fragP
->fr_fix
,
1002 /* Adjust jump offset. */
1003 fragP
->fr_literal
[fragP
->fr_fix
+ 1] = count
- 2;
1006 memcpy (fragP
->fr_literal
+ fragP
->fr_fix
,
1007 f16_patt
[count
- 1], count
);
1011 const char *const *patt
= NULL
;
1013 if (fragP
->tc_frag_data
.isa
== PROCESSOR_UNKNOWN
)
1015 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1016 switch (cpu_arch_tune
)
1018 case PROCESSOR_UNKNOWN
:
1019 /* We use cpu_arch_isa_flags to check if we SHOULD
1020 optimize for Cpu686. */
1021 if (fragP
->tc_frag_data
.isa_flags
.bitfield
.cpui686
)
1022 patt
= alt_long_patt
;
1026 case PROCESSOR_PENTIUMPRO
:
1027 case PROCESSOR_PENTIUM4
:
1028 case PROCESSOR_NOCONA
:
1029 case PROCESSOR_CORE
:
1030 case PROCESSOR_CORE2
:
1031 case PROCESSOR_COREI7
:
1032 case PROCESSOR_L1OM
:
1033 case PROCESSOR_GENERIC64
:
1034 patt
= alt_long_patt
;
1037 case PROCESSOR_ATHLON
:
1039 case PROCESSOR_AMDFAM10
:
1040 case PROCESSOR_BDVER1
:
1041 patt
= alt_short_patt
;
1043 case PROCESSOR_I386
:
1044 case PROCESSOR_I486
:
1045 case PROCESSOR_PENTIUM
:
1046 case PROCESSOR_GENERIC32
:
1053 switch (fragP
->tc_frag_data
.tune
)
1055 case PROCESSOR_UNKNOWN
:
1056 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1057 PROCESSOR_UNKNOWN. */
1061 case PROCESSOR_I386
:
1062 case PROCESSOR_I486
:
1063 case PROCESSOR_PENTIUM
:
1065 case PROCESSOR_ATHLON
:
1067 case PROCESSOR_AMDFAM10
:
1068 case PROCESSOR_BDVER1
:
1069 case PROCESSOR_GENERIC32
:
1070 /* We use cpu_arch_isa_flags to check if we CAN optimize
1072 if (fragP
->tc_frag_data
.isa_flags
.bitfield
.cpui686
)
1073 patt
= alt_short_patt
;
1077 case PROCESSOR_PENTIUMPRO
:
1078 case PROCESSOR_PENTIUM4
:
1079 case PROCESSOR_NOCONA
:
1080 case PROCESSOR_CORE
:
1081 case PROCESSOR_CORE2
:
1082 case PROCESSOR_COREI7
:
1083 case PROCESSOR_L1OM
:
1084 if (fragP
->tc_frag_data
.isa_flags
.bitfield
.cpui686
)
1085 patt
= alt_long_patt
;
1089 case PROCESSOR_GENERIC64
:
1090 patt
= alt_long_patt
;
1095 if (patt
== f32_patt
)
1097 /* If the padding is less than 15 bytes, we use the normal
1098 ones. Otherwise, we use a jump instruction and adjust
1102 /* For 64bit, the limit is 3 bytes. */
1103 if (flag_code
== CODE_64BIT
1104 && fragP
->tc_frag_data
.isa_flags
.bitfield
.cpulm
)
1109 memcpy (fragP
->fr_literal
+ fragP
->fr_fix
,
1110 patt
[count
- 1], count
);
1113 memcpy (fragP
->fr_literal
+ fragP
->fr_fix
,
1115 /* Adjust jump offset. */
1116 fragP
->fr_literal
[fragP
->fr_fix
+ 1] = count
- 2;
1121 /* Maximum length of an instruction is 15 byte. If the
1122 padding is greater than 15 bytes and we don't use jump,
1123 we have to break it into smaller pieces. */
1124 int padding
= count
;
1125 while (padding
> 15)
1128 memcpy (fragP
->fr_literal
+ fragP
->fr_fix
+ padding
,
1133 memcpy (fragP
->fr_literal
+ fragP
->fr_fix
,
1134 patt
[padding
- 1], padding
);
1137 fragP
->fr_var
= count
;
1141 operand_type_all_zero (const union i386_operand_type
*x
)
1143 switch (ARRAY_SIZE(x
->array
))
1152 return !x
->array
[0];
1159 operand_type_set (union i386_operand_type
*x
, unsigned int v
)
1161 switch (ARRAY_SIZE(x
->array
))
1176 operand_type_equal (const union i386_operand_type
*x
,
1177 const union i386_operand_type
*y
)
1179 switch (ARRAY_SIZE(x
->array
))
1182 if (x
->array
[2] != y
->array
[2])
1185 if (x
->array
[1] != y
->array
[1])
1188 return x
->array
[0] == y
->array
[0];
1196 cpu_flags_all_zero (const union i386_cpu_flags
*x
)
1198 switch (ARRAY_SIZE(x
->array
))
1207 return !x
->array
[0];
1214 cpu_flags_set (union i386_cpu_flags
*x
, unsigned int v
)
1216 switch (ARRAY_SIZE(x
->array
))
1231 cpu_flags_equal (const union i386_cpu_flags
*x
,
1232 const union i386_cpu_flags
*y
)
1234 switch (ARRAY_SIZE(x
->array
))
1237 if (x
->array
[2] != y
->array
[2])
1240 if (x
->array
[1] != y
->array
[1])
1243 return x
->array
[0] == y
->array
[0];
1251 cpu_flags_check_cpu64 (i386_cpu_flags f
)
1253 return !((flag_code
== CODE_64BIT
&& f
.bitfield
.cpuno64
)
1254 || (flag_code
!= CODE_64BIT
&& f
.bitfield
.cpu64
));
1257 static INLINE i386_cpu_flags
1258 cpu_flags_and (i386_cpu_flags x
, i386_cpu_flags y
)
1260 switch (ARRAY_SIZE (x
.array
))
1263 x
.array
[2] &= y
.array
[2];
1265 x
.array
[1] &= y
.array
[1];
1267 x
.array
[0] &= y
.array
[0];
1275 static INLINE i386_cpu_flags
1276 cpu_flags_or (i386_cpu_flags x
, i386_cpu_flags y
)
1278 switch (ARRAY_SIZE (x
.array
))
1281 x
.array
[2] |= y
.array
[2];
1283 x
.array
[1] |= y
.array
[1];
1285 x
.array
[0] |= y
.array
[0];
1293 static INLINE i386_cpu_flags
1294 cpu_flags_and_not (i386_cpu_flags x
, i386_cpu_flags y
)
1296 switch (ARRAY_SIZE (x
.array
))
1299 x
.array
[2] &= ~y
.array
[2];
1301 x
.array
[1] &= ~y
.array
[1];
1303 x
.array
[0] &= ~y
.array
[0];
1311 #define CPU_FLAGS_ARCH_MATCH 0x1
1312 #define CPU_FLAGS_64BIT_MATCH 0x2
1313 #define CPU_FLAGS_AES_MATCH 0x4
1314 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1315 #define CPU_FLAGS_AVX_MATCH 0x10
1317 #define CPU_FLAGS_32BIT_MATCH \
1318 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1319 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1320 #define CPU_FLAGS_PERFECT_MATCH \
1321 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1323 /* Return CPU flags match bits. */
1326 cpu_flags_match (const insn_template
*t
)
1328 i386_cpu_flags x
= t
->cpu_flags
;
1329 int match
= cpu_flags_check_cpu64 (x
) ? CPU_FLAGS_64BIT_MATCH
: 0;
1331 x
.bitfield
.cpu64
= 0;
1332 x
.bitfield
.cpuno64
= 0;
1334 if (cpu_flags_all_zero (&x
))
1336 /* This instruction is available on all archs. */
1337 match
|= CPU_FLAGS_32BIT_MATCH
;
1341 /* This instruction is available only on some archs. */
1342 i386_cpu_flags cpu
= cpu_arch_flags
;
1344 cpu
.bitfield
.cpu64
= 0;
1345 cpu
.bitfield
.cpuno64
= 0;
1346 cpu
= cpu_flags_and (x
, cpu
);
1347 if (!cpu_flags_all_zero (&cpu
))
1349 if (x
.bitfield
.cpuavx
)
1351 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1352 if (cpu
.bitfield
.cpuavx
)
1354 /* Check SSE2AVX. */
1355 if (!t
->opcode_modifier
.sse2avx
|| sse2avx
)
1357 match
|= (CPU_FLAGS_ARCH_MATCH
1358 | CPU_FLAGS_AVX_MATCH
);
1360 if (!x
.bitfield
.cpuaes
|| cpu
.bitfield
.cpuaes
)
1361 match
|= CPU_FLAGS_AES_MATCH
;
1363 if (!x
.bitfield
.cpupclmul
1364 || cpu
.bitfield
.cpupclmul
)
1365 match
|= CPU_FLAGS_PCLMUL_MATCH
;
1369 match
|= CPU_FLAGS_ARCH_MATCH
;
1372 match
|= CPU_FLAGS_32BIT_MATCH
;
1378 static INLINE i386_operand_type
1379 operand_type_and (i386_operand_type x
, i386_operand_type y
)
1381 switch (ARRAY_SIZE (x
.array
))
1384 x
.array
[2] &= y
.array
[2];
1386 x
.array
[1] &= y
.array
[1];
1388 x
.array
[0] &= y
.array
[0];
1396 static INLINE i386_operand_type
1397 operand_type_or (i386_operand_type x
, i386_operand_type y
)
1399 switch (ARRAY_SIZE (x
.array
))
1402 x
.array
[2] |= y
.array
[2];
1404 x
.array
[1] |= y
.array
[1];
1406 x
.array
[0] |= y
.array
[0];
1414 static INLINE i386_operand_type
1415 operand_type_xor (i386_operand_type x
, i386_operand_type y
)
1417 switch (ARRAY_SIZE (x
.array
))
1420 x
.array
[2] ^= y
.array
[2];
1422 x
.array
[1] ^= y
.array
[1];
1424 x
.array
[0] ^= y
.array
[0];
1432 static const i386_operand_type acc32
= OPERAND_TYPE_ACC32
;
1433 static const i386_operand_type acc64
= OPERAND_TYPE_ACC64
;
1434 static const i386_operand_type control
= OPERAND_TYPE_CONTROL
;
1435 static const i386_operand_type inoutportreg
1436 = OPERAND_TYPE_INOUTPORTREG
;
1437 static const i386_operand_type reg16_inoutportreg
1438 = OPERAND_TYPE_REG16_INOUTPORTREG
;
1439 static const i386_operand_type disp16
= OPERAND_TYPE_DISP16
;
1440 static const i386_operand_type disp32
= OPERAND_TYPE_DISP32
;
1441 static const i386_operand_type disp32s
= OPERAND_TYPE_DISP32S
;
1442 static const i386_operand_type disp16_32
= OPERAND_TYPE_DISP16_32
;
1443 static const i386_operand_type anydisp
1444 = OPERAND_TYPE_ANYDISP
;
1445 static const i386_operand_type regxmm
= OPERAND_TYPE_REGXMM
;
1446 static const i386_operand_type regymm
= OPERAND_TYPE_REGYMM
;
1447 static const i386_operand_type imm8
= OPERAND_TYPE_IMM8
;
1448 static const i386_operand_type imm8s
= OPERAND_TYPE_IMM8S
;
1449 static const i386_operand_type imm16
= OPERAND_TYPE_IMM16
;
1450 static const i386_operand_type imm32
= OPERAND_TYPE_IMM32
;
1451 static const i386_operand_type imm32s
= OPERAND_TYPE_IMM32S
;
1452 static const i386_operand_type imm64
= OPERAND_TYPE_IMM64
;
1453 static const i386_operand_type imm16_32
= OPERAND_TYPE_IMM16_32
;
1454 static const i386_operand_type imm16_32s
= OPERAND_TYPE_IMM16_32S
;
1455 static const i386_operand_type imm16_32_32s
= OPERAND_TYPE_IMM16_32_32S
;
1456 static const i386_operand_type vec_imm4
= OPERAND_TYPE_VEC_IMM4
;
1467 operand_type_check (i386_operand_type t
, enum operand_type c
)
1472 return (t
.bitfield
.reg8
1475 || t
.bitfield
.reg64
);
1478 return (t
.bitfield
.imm8
1482 || t
.bitfield
.imm32s
1483 || t
.bitfield
.imm64
);
1486 return (t
.bitfield
.disp8
1487 || t
.bitfield
.disp16
1488 || t
.bitfield
.disp32
1489 || t
.bitfield
.disp32s
1490 || t
.bitfield
.disp64
);
1493 return (t
.bitfield
.disp8
1494 || t
.bitfield
.disp16
1495 || t
.bitfield
.disp32
1496 || t
.bitfield
.disp32s
1497 || t
.bitfield
.disp64
1498 || t
.bitfield
.baseindex
);
1507 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1508 operand J for instruction template T. */
1511 match_reg_size (const insn_template
*t
, unsigned int j
)
1513 return !((i
.types
[j
].bitfield
.byte
1514 && !t
->operand_types
[j
].bitfield
.byte
)
1515 || (i
.types
[j
].bitfield
.word
1516 && !t
->operand_types
[j
].bitfield
.word
)
1517 || (i
.types
[j
].bitfield
.dword
1518 && !t
->operand_types
[j
].bitfield
.dword
)
1519 || (i
.types
[j
].bitfield
.qword
1520 && !t
->operand_types
[j
].bitfield
.qword
));
1523 /* Return 1 if there is no conflict in any size on operand J for
1524 instruction template T. */
1527 match_mem_size (const insn_template
*t
, unsigned int j
)
1529 return (match_reg_size (t
, j
)
1530 && !((i
.types
[j
].bitfield
.unspecified
1531 && !t
->operand_types
[j
].bitfield
.unspecified
)
1532 || (i
.types
[j
].bitfield
.fword
1533 && !t
->operand_types
[j
].bitfield
.fword
)
1534 || (i
.types
[j
].bitfield
.tbyte
1535 && !t
->operand_types
[j
].bitfield
.tbyte
)
1536 || (i
.types
[j
].bitfield
.xmmword
1537 && !t
->operand_types
[j
].bitfield
.xmmword
)
1538 || (i
.types
[j
].bitfield
.ymmword
1539 && !t
->operand_types
[j
].bitfield
.ymmword
)));
1542 /* Return 1 if there is no size conflict on any operands for
1543 instruction template T. */
1546 operand_size_match (const insn_template
*t
)
1551 /* Don't check jump instructions. */
1552 if (t
->opcode_modifier
.jump
1553 || t
->opcode_modifier
.jumpbyte
1554 || t
->opcode_modifier
.jumpdword
1555 || t
->opcode_modifier
.jumpintersegment
)
1558 /* Check memory and accumulator operand size. */
1559 for (j
= 0; j
< i
.operands
; j
++)
1561 if (t
->operand_types
[j
].bitfield
.anysize
)
1564 if (t
->operand_types
[j
].bitfield
.acc
&& !match_reg_size (t
, j
))
1570 if (i
.types
[j
].bitfield
.mem
&& !match_mem_size (t
, j
))
1579 else if (!t
->opcode_modifier
.d
&& !t
->opcode_modifier
.floatd
)
1582 i
.error
= operand_size_mismatch
;
1586 /* Check reverse. */
1587 gas_assert (i
.operands
== 2);
1590 for (j
= 0; j
< 2; j
++)
1592 if (t
->operand_types
[j
].bitfield
.acc
1593 && !match_reg_size (t
, j
? 0 : 1))
1596 if (i
.types
[j
].bitfield
.mem
1597 && !match_mem_size (t
, j
? 0 : 1))
1605 operand_type_match (i386_operand_type overlap
,
1606 i386_operand_type given
)
1608 i386_operand_type temp
= overlap
;
1610 temp
.bitfield
.jumpabsolute
= 0;
1611 temp
.bitfield
.unspecified
= 0;
1612 temp
.bitfield
.byte
= 0;
1613 temp
.bitfield
.word
= 0;
1614 temp
.bitfield
.dword
= 0;
1615 temp
.bitfield
.fword
= 0;
1616 temp
.bitfield
.qword
= 0;
1617 temp
.bitfield
.tbyte
= 0;
1618 temp
.bitfield
.xmmword
= 0;
1619 temp
.bitfield
.ymmword
= 0;
1620 if (operand_type_all_zero (&temp
))
1623 if (given
.bitfield
.baseindex
== overlap
.bitfield
.baseindex
1624 && given
.bitfield
.jumpabsolute
== overlap
.bitfield
.jumpabsolute
)
1628 i
.error
= operand_type_mismatch
;
1632 /* If given types g0 and g1 are registers they must be of the same type
1633 unless the expected operand type register overlap is null.
1634 Note that Acc in a template matches every size of reg. */
1637 operand_type_register_match (i386_operand_type m0
,
1638 i386_operand_type g0
,
1639 i386_operand_type t0
,
1640 i386_operand_type m1
,
1641 i386_operand_type g1
,
1642 i386_operand_type t1
)
1644 if (!operand_type_check (g0
, reg
))
1647 if (!operand_type_check (g1
, reg
))
1650 if (g0
.bitfield
.reg8
== g1
.bitfield
.reg8
1651 && g0
.bitfield
.reg16
== g1
.bitfield
.reg16
1652 && g0
.bitfield
.reg32
== g1
.bitfield
.reg32
1653 && g0
.bitfield
.reg64
== g1
.bitfield
.reg64
)
1656 if (m0
.bitfield
.acc
)
1658 t0
.bitfield
.reg8
= 1;
1659 t0
.bitfield
.reg16
= 1;
1660 t0
.bitfield
.reg32
= 1;
1661 t0
.bitfield
.reg64
= 1;
1664 if (m1
.bitfield
.acc
)
1666 t1
.bitfield
.reg8
= 1;
1667 t1
.bitfield
.reg16
= 1;
1668 t1
.bitfield
.reg32
= 1;
1669 t1
.bitfield
.reg64
= 1;
1672 if (!(t0
.bitfield
.reg8
& t1
.bitfield
.reg8
)
1673 && !(t0
.bitfield
.reg16
& t1
.bitfield
.reg16
)
1674 && !(t0
.bitfield
.reg32
& t1
.bitfield
.reg32
)
1675 && !(t0
.bitfield
.reg64
& t1
.bitfield
.reg64
))
1678 i
.error
= register_type_mismatch
;
1683 static INLINE
unsigned int
1684 mode_from_disp_size (i386_operand_type t
)
1686 if (t
.bitfield
.disp8
)
1688 else if (t
.bitfield
.disp16
1689 || t
.bitfield
.disp32
1690 || t
.bitfield
.disp32s
)
1697 fits_in_signed_byte (offsetT num
)
1699 return (num
>= -128) && (num
<= 127);
1703 fits_in_unsigned_byte (offsetT num
)
1705 return (num
& 0xff) == num
;
1709 fits_in_unsigned_word (offsetT num
)
1711 return (num
& 0xffff) == num
;
1715 fits_in_signed_word (offsetT num
)
1717 return (-32768 <= num
) && (num
<= 32767);
1721 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED
)
1726 return (!(((offsetT
) -1 << 31) & num
)
1727 || (((offsetT
) -1 << 31) & num
) == ((offsetT
) -1 << 31));
1729 } /* fits_in_signed_long() */
1732 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED
)
1737 return (num
& (((offsetT
) 2 << 31) - 1)) == num
;
1739 } /* fits_in_unsigned_long() */
1742 fits_in_imm4 (offsetT num
)
1744 return (num
& 0xf) == num
;
1747 static i386_operand_type
1748 smallest_imm_type (offsetT num
)
1750 i386_operand_type t
;
1752 operand_type_set (&t
, 0);
1753 t
.bitfield
.imm64
= 1;
1755 if (cpu_arch_tune
!= PROCESSOR_I486
&& num
== 1)
1757 /* This code is disabled on the 486 because all the Imm1 forms
1758 in the opcode table are slower on the i486. They're the
1759 versions with the implicitly specified single-position
1760 displacement, which has another syntax if you really want to
1762 t
.bitfield
.imm1
= 1;
1763 t
.bitfield
.imm8
= 1;
1764 t
.bitfield
.imm8s
= 1;
1765 t
.bitfield
.imm16
= 1;
1766 t
.bitfield
.imm32
= 1;
1767 t
.bitfield
.imm32s
= 1;
1769 else if (fits_in_signed_byte (num
))
1771 t
.bitfield
.imm8
= 1;
1772 t
.bitfield
.imm8s
= 1;
1773 t
.bitfield
.imm16
= 1;
1774 t
.bitfield
.imm32
= 1;
1775 t
.bitfield
.imm32s
= 1;
1777 else if (fits_in_unsigned_byte (num
))
1779 t
.bitfield
.imm8
= 1;
1780 t
.bitfield
.imm16
= 1;
1781 t
.bitfield
.imm32
= 1;
1782 t
.bitfield
.imm32s
= 1;
1784 else if (fits_in_signed_word (num
) || fits_in_unsigned_word (num
))
1786 t
.bitfield
.imm16
= 1;
1787 t
.bitfield
.imm32
= 1;
1788 t
.bitfield
.imm32s
= 1;
1790 else if (fits_in_signed_long (num
))
1792 t
.bitfield
.imm32
= 1;
1793 t
.bitfield
.imm32s
= 1;
1795 else if (fits_in_unsigned_long (num
))
1796 t
.bitfield
.imm32
= 1;
1802 offset_in_range (offsetT val
, int size
)
1808 case 1: mask
= ((addressT
) 1 << 8) - 1; break;
1809 case 2: mask
= ((addressT
) 1 << 16) - 1; break;
1810 case 4: mask
= ((addressT
) 2 << 31) - 1; break;
1812 case 8: mask
= ((addressT
) 2 << 63) - 1; break;
1818 /* If BFD64, sign extend val for 32bit address mode. */
1819 if (flag_code
!= CODE_64BIT
1820 || i
.prefix
[ADDR_PREFIX
])
1821 if ((val
& ~(((addressT
) 2 << 31) - 1)) == 0)
1822 val
= (val
^ ((addressT
) 1 << 31)) - ((addressT
) 1 << 31);
1825 if ((val
& ~mask
) != 0 && (val
& ~mask
) != ~mask
)
1827 char buf1
[40], buf2
[40];
1829 sprint_value (buf1
, val
);
1830 sprint_value (buf2
, val
& mask
);
1831 as_warn (_("%s shortened to %s"), buf1
, buf2
);
1845 a. PREFIX_EXIST if attempting to add a prefix where one from the
1846 same class already exists.
1847 b. PREFIX_LOCK if lock prefix is added.
1848 c. PREFIX_REP if rep/repne prefix is added.
1849 d. PREFIX_OTHER if other prefix is added.
1852 static enum PREFIX_GROUP
1853 add_prefix (unsigned int prefix
)
1855 enum PREFIX_GROUP ret
= PREFIX_OTHER
;
1858 if (prefix
>= REX_OPCODE
&& prefix
< REX_OPCODE
+ 16
1859 && flag_code
== CODE_64BIT
)
1861 if ((i
.prefix
[REX_PREFIX
] & prefix
& REX_W
)
1862 || ((i
.prefix
[REX_PREFIX
] & (REX_R
| REX_X
| REX_B
))
1863 && (prefix
& (REX_R
| REX_X
| REX_B
))))
1874 case CS_PREFIX_OPCODE
:
1875 case DS_PREFIX_OPCODE
:
1876 case ES_PREFIX_OPCODE
:
1877 case FS_PREFIX_OPCODE
:
1878 case GS_PREFIX_OPCODE
:
1879 case SS_PREFIX_OPCODE
:
1883 case REPNE_PREFIX_OPCODE
:
1884 case REPE_PREFIX_OPCODE
:
1889 case LOCK_PREFIX_OPCODE
:
1898 case ADDR_PREFIX_OPCODE
:
1902 case DATA_PREFIX_OPCODE
:
1906 if (i
.prefix
[q
] != 0)
1914 i
.prefix
[q
] |= prefix
;
1917 as_bad (_("same type of prefix used twice"));
1923 set_code_flag (int value
)
1925 flag_code
= (enum flag_code
) value
;
1926 if (flag_code
== CODE_64BIT
)
1928 cpu_arch_flags
.bitfield
.cpu64
= 1;
1929 cpu_arch_flags
.bitfield
.cpuno64
= 0;
1933 cpu_arch_flags
.bitfield
.cpu64
= 0;
1934 cpu_arch_flags
.bitfield
.cpuno64
= 1;
1936 if (value
== CODE_64BIT
&& !cpu_arch_flags
.bitfield
.cpulm
)
1938 as_bad (_("64bit mode not supported on this CPU."));
1940 if (value
== CODE_32BIT
&& !cpu_arch_flags
.bitfield
.cpui386
)
1942 as_bad (_("32bit mode not supported on this CPU."));
1944 stackop_size
= '\0';
1948 set_16bit_gcc_code_flag (int new_code_flag
)
1950 flag_code
= (enum flag_code
) new_code_flag
;
1951 if (flag_code
!= CODE_16BIT
)
1953 cpu_arch_flags
.bitfield
.cpu64
= 0;
1954 cpu_arch_flags
.bitfield
.cpuno64
= 1;
1955 stackop_size
= LONG_MNEM_SUFFIX
;
1959 set_intel_syntax (int syntax_flag
)
1961 /* Find out if register prefixing is specified. */
1962 int ask_naked_reg
= 0;
1965 if (!is_end_of_line
[(unsigned char) *input_line_pointer
])
1967 char *string
= input_line_pointer
;
1968 int e
= get_symbol_end ();
1970 if (strcmp (string
, "prefix") == 0)
1972 else if (strcmp (string
, "noprefix") == 0)
1975 as_bad (_("bad argument to syntax directive."));
1976 *input_line_pointer
= e
;
1978 demand_empty_rest_of_line ();
1980 intel_syntax
= syntax_flag
;
1982 if (ask_naked_reg
== 0)
1983 allow_naked_reg
= (intel_syntax
1984 && (bfd_get_symbol_leading_char (stdoutput
) != '\0'));
1986 allow_naked_reg
= (ask_naked_reg
< 0);
1988 expr_set_rank (O_full_ptr
, syntax_flag
? 10 : 0);
1990 identifier_chars
['%'] = intel_syntax
&& allow_naked_reg
? '%' : 0;
1991 identifier_chars
['$'] = intel_syntax
? '$' : 0;
1992 register_prefix
= allow_naked_reg
? "" : "%";
1996 set_intel_mnemonic (int mnemonic_flag
)
1998 intel_mnemonic
= mnemonic_flag
;
2002 set_allow_index_reg (int flag
)
2004 allow_index_reg
= flag
;
2008 set_sse_check (int dummy ATTRIBUTE_UNUSED
)
2012 if (!is_end_of_line
[(unsigned char) *input_line_pointer
])
2014 char *string
= input_line_pointer
;
2015 int e
= get_symbol_end ();
2017 if (strcmp (string
, "none") == 0)
2018 sse_check
= sse_check_none
;
2019 else if (strcmp (string
, "warning") == 0)
2020 sse_check
= sse_check_warning
;
2021 else if (strcmp (string
, "error") == 0)
2022 sse_check
= sse_check_error
;
2024 as_bad (_("bad argument to sse_check directive."));
2025 *input_line_pointer
= e
;
2028 as_bad (_("missing argument for sse_check directive"));
2030 demand_empty_rest_of_line ();
2034 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED
,
2035 i386_cpu_flags new_flag ATTRIBUTE_UNUSED
)
2037 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2038 static const char *arch
;
2040 /* Intel LIOM is only supported on ELF. */
2046 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2047 use default_arch. */
2048 arch
= cpu_arch_name
;
2050 arch
= default_arch
;
2053 /* If we are targeting Intel L1OM, we must enable it. */
2054 if (get_elf_backend_data (stdoutput
)->elf_machine_code
!= EM_L1OM
2055 || new_flag
.bitfield
.cpul1om
)
2058 as_bad (_("`%s' is not supported on `%s'"), name
, arch
);
2063 set_cpu_arch (int dummy ATTRIBUTE_UNUSED
)
2067 if (!is_end_of_line
[(unsigned char) *input_line_pointer
])
2069 char *string
= input_line_pointer
;
2070 int e
= get_symbol_end ();
2072 i386_cpu_flags flags
;
2074 for (j
= 0; j
< ARRAY_SIZE (cpu_arch
); j
++)
2076 if (strcmp (string
, cpu_arch
[j
].name
) == 0)
2078 check_cpu_arch_compatible (string
, cpu_arch
[j
].flags
);
2082 cpu_arch_name
= cpu_arch
[j
].name
;
2083 cpu_sub_arch_name
= NULL
;
2084 cpu_arch_flags
= cpu_arch
[j
].flags
;
2085 if (flag_code
== CODE_64BIT
)
2087 cpu_arch_flags
.bitfield
.cpu64
= 1;
2088 cpu_arch_flags
.bitfield
.cpuno64
= 0;
2092 cpu_arch_flags
.bitfield
.cpu64
= 0;
2093 cpu_arch_flags
.bitfield
.cpuno64
= 1;
2095 cpu_arch_isa
= cpu_arch
[j
].type
;
2096 cpu_arch_isa_flags
= cpu_arch
[j
].flags
;
2097 if (!cpu_arch_tune_set
)
2099 cpu_arch_tune
= cpu_arch_isa
;
2100 cpu_arch_tune_flags
= cpu_arch_isa_flags
;
2105 if (strncmp (string
+ 1, "no", 2))
2106 flags
= cpu_flags_or (cpu_arch_flags
,
2109 flags
= cpu_flags_and_not (cpu_arch_flags
,
2111 if (!cpu_flags_equal (&flags
, &cpu_arch_flags
))
2113 if (cpu_sub_arch_name
)
2115 char *name
= cpu_sub_arch_name
;
2116 cpu_sub_arch_name
= concat (name
,
2118 (const char *) NULL
);
2122 cpu_sub_arch_name
= xstrdup (cpu_arch
[j
].name
);
2123 cpu_arch_flags
= flags
;
2125 *input_line_pointer
= e
;
2126 demand_empty_rest_of_line ();
2130 if (j
>= ARRAY_SIZE (cpu_arch
))
2131 as_bad (_("no such architecture: `%s'"), string
);
2133 *input_line_pointer
= e
;
2136 as_bad (_("missing cpu architecture"));
2138 no_cond_jump_promotion
= 0;
2139 if (*input_line_pointer
== ','
2140 && !is_end_of_line
[(unsigned char) input_line_pointer
[1]])
2142 char *string
= ++input_line_pointer
;
2143 int e
= get_symbol_end ();
2145 if (strcmp (string
, "nojumps") == 0)
2146 no_cond_jump_promotion
= 1;
2147 else if (strcmp (string
, "jumps") == 0)
2150 as_bad (_("no such architecture modifier: `%s'"), string
);
2152 *input_line_pointer
= e
;
2155 demand_empty_rest_of_line ();
2158 enum bfd_architecture
2161 if (cpu_arch_isa
== PROCESSOR_L1OM
)
2163 if (OUTPUT_FLAVOR
!= bfd_target_elf_flavour
2164 || flag_code
!= CODE_64BIT
)
2165 as_fatal (_("Intel L1OM is 64bit ELF only"));
2166 return bfd_arch_l1om
;
2169 return bfd_arch_i386
;
2175 if (!strcmp (default_arch
, "x86_64"))
2177 if (cpu_arch_isa
== PROCESSOR_L1OM
)
2179 if (OUTPUT_FLAVOR
!= bfd_target_elf_flavour
)
2180 as_fatal (_("Intel L1OM is 64bit ELF only"));
2181 return bfd_mach_l1om
;
2184 return bfd_mach_x86_64
;
2186 else if (!strcmp (default_arch
, "i386"))
2187 return bfd_mach_i386_i386
;
2189 as_fatal (_("Unknown architecture"));
2195 const char *hash_err
;
2197 /* Initialize op_hash hash table. */
2198 op_hash
= hash_new ();
2201 const insn_template
*optab
;
2202 templates
*core_optab
;
2204 /* Setup for loop. */
2206 core_optab
= (templates
*) xmalloc (sizeof (templates
));
2207 core_optab
->start
= optab
;
2212 if (optab
->name
== NULL
2213 || strcmp (optab
->name
, (optab
- 1)->name
) != 0)
2215 /* different name --> ship out current template list;
2216 add to hash table; & begin anew. */
2217 core_optab
->end
= optab
;
2218 hash_err
= hash_insert (op_hash
,
2220 (void *) core_optab
);
2223 as_fatal (_("Internal Error: Can't hash %s: %s"),
2227 if (optab
->name
== NULL
)
2229 core_optab
= (templates
*) xmalloc (sizeof (templates
));
2230 core_optab
->start
= optab
;
2235 /* Initialize reg_hash hash table. */
2236 reg_hash
= hash_new ();
2238 const reg_entry
*regtab
;
2239 unsigned int regtab_size
= i386_regtab_size
;
2241 for (regtab
= i386_regtab
; regtab_size
--; regtab
++)
2243 hash_err
= hash_insert (reg_hash
, regtab
->reg_name
, (void *) regtab
);
2245 as_fatal (_("Internal Error: Can't hash %s: %s"),
2251 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2256 for (c
= 0; c
< 256; c
++)
2261 mnemonic_chars
[c
] = c
;
2262 register_chars
[c
] = c
;
2263 operand_chars
[c
] = c
;
2265 else if (ISLOWER (c
))
2267 mnemonic_chars
[c
] = c
;
2268 register_chars
[c
] = c
;
2269 operand_chars
[c
] = c
;
2271 else if (ISUPPER (c
))
2273 mnemonic_chars
[c
] = TOLOWER (c
);
2274 register_chars
[c
] = mnemonic_chars
[c
];
2275 operand_chars
[c
] = c
;
2278 if (ISALPHA (c
) || ISDIGIT (c
))
2279 identifier_chars
[c
] = c
;
2282 identifier_chars
[c
] = c
;
2283 operand_chars
[c
] = c
;
2288 identifier_chars
['@'] = '@';
2291 identifier_chars
['?'] = '?';
2292 operand_chars
['?'] = '?';
2294 digit_chars
['-'] = '-';
2295 mnemonic_chars
['_'] = '_';
2296 mnemonic_chars
['-'] = '-';
2297 mnemonic_chars
['.'] = '.';
2298 identifier_chars
['_'] = '_';
2299 identifier_chars
['.'] = '.';
2301 for (p
= operand_special_chars
; *p
!= '\0'; p
++)
2302 operand_chars
[(unsigned char) *p
] = *p
;
2305 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2308 record_alignment (text_section
, 2);
2309 record_alignment (data_section
, 2);
2310 record_alignment (bss_section
, 2);
2314 if (flag_code
== CODE_64BIT
)
2316 x86_dwarf2_return_column
= 16;
2317 x86_cie_data_alignment
= -8;
2321 x86_dwarf2_return_column
= 8;
2322 x86_cie_data_alignment
= -4;
2327 i386_print_statistics (FILE *file
)
2329 hash_print_statistics (file
, "i386 opcode", op_hash
);
2330 hash_print_statistics (file
, "i386 register", reg_hash
);
2335 /* Debugging routines for md_assemble. */
2336 static void pte (insn_template
*);
2337 static void pt (i386_operand_type
);
2338 static void pe (expressionS
*);
2339 static void ps (symbolS
*);
2342 pi (char *line
, i386_insn
*x
)
2346 fprintf (stdout
, "%s: template ", line
);
2348 fprintf (stdout
, " address: base %s index %s scale %x\n",
2349 x
->base_reg
? x
->base_reg
->reg_name
: "none",
2350 x
->index_reg
? x
->index_reg
->reg_name
: "none",
2351 x
->log2_scale_factor
);
2352 fprintf (stdout
, " modrm: mode %x reg %x reg/mem %x\n",
2353 x
->rm
.mode
, x
->rm
.reg
, x
->rm
.regmem
);
2354 fprintf (stdout
, " sib: base %x index %x scale %x\n",
2355 x
->sib
.base
, x
->sib
.index
, x
->sib
.scale
);
2356 fprintf (stdout
, " rex: 64bit %x extX %x extY %x extZ %x\n",
2357 (x
->rex
& REX_W
) != 0,
2358 (x
->rex
& REX_R
) != 0,
2359 (x
->rex
& REX_X
) != 0,
2360 (x
->rex
& REX_B
) != 0);
2361 for (i
= 0; i
< x
->operands
; i
++)
2363 fprintf (stdout
, " #%d: ", i
+ 1);
2365 fprintf (stdout
, "\n");
2366 if (x
->types
[i
].bitfield
.reg8
2367 || x
->types
[i
].bitfield
.reg16
2368 || x
->types
[i
].bitfield
.reg32
2369 || x
->types
[i
].bitfield
.reg64
2370 || x
->types
[i
].bitfield
.regmmx
2371 || x
->types
[i
].bitfield
.regxmm
2372 || x
->types
[i
].bitfield
.regymm
2373 || x
->types
[i
].bitfield
.sreg2
2374 || x
->types
[i
].bitfield
.sreg3
2375 || x
->types
[i
].bitfield
.control
2376 || x
->types
[i
].bitfield
.debug
2377 || x
->types
[i
].bitfield
.test
)
2378 fprintf (stdout
, "%s\n", x
->op
[i
].regs
->reg_name
);
2379 if (operand_type_check (x
->types
[i
], imm
))
2381 if (operand_type_check (x
->types
[i
], disp
))
2382 pe (x
->op
[i
].disps
);
2387 pte (insn_template
*t
)
2390 fprintf (stdout
, " %d operands ", t
->operands
);
2391 fprintf (stdout
, "opcode %x ", t
->base_opcode
);
2392 if (t
->extension_opcode
!= None
)
2393 fprintf (stdout
, "ext %x ", t
->extension_opcode
);
2394 if (t
->opcode_modifier
.d
)
2395 fprintf (stdout
, "D");
2396 if (t
->opcode_modifier
.w
)
2397 fprintf (stdout
, "W");
2398 fprintf (stdout
, "\n");
2399 for (i
= 0; i
< t
->operands
; i
++)
2401 fprintf (stdout
, " #%d type ", i
+ 1);
2402 pt (t
->operand_types
[i
]);
2403 fprintf (stdout
, "\n");
2410 fprintf (stdout
, " operation %d\n", e
->X_op
);
2411 fprintf (stdout
, " add_number %ld (%lx)\n",
2412 (long) e
->X_add_number
, (long) e
->X_add_number
);
2413 if (e
->X_add_symbol
)
2415 fprintf (stdout
, " add_symbol ");
2416 ps (e
->X_add_symbol
);
2417 fprintf (stdout
, "\n");
2421 fprintf (stdout
, " op_symbol ");
2422 ps (e
->X_op_symbol
);
2423 fprintf (stdout
, "\n");
2430 fprintf (stdout
, "%s type %s%s",
2432 S_IS_EXTERNAL (s
) ? "EXTERNAL " : "",
2433 segment_name (S_GET_SEGMENT (s
)));
2436 static struct type_name
2438 i386_operand_type mask
;
2441 const type_names
[] =
2443 { OPERAND_TYPE_REG8
, "r8" },
2444 { OPERAND_TYPE_REG16
, "r16" },
2445 { OPERAND_TYPE_REG32
, "r32" },
2446 { OPERAND_TYPE_REG64
, "r64" },
2447 { OPERAND_TYPE_IMM8
, "i8" },
2448 { OPERAND_TYPE_IMM8
, "i8s" },
2449 { OPERAND_TYPE_IMM16
, "i16" },
2450 { OPERAND_TYPE_IMM32
, "i32" },
2451 { OPERAND_TYPE_IMM32S
, "i32s" },
2452 { OPERAND_TYPE_IMM64
, "i64" },
2453 { OPERAND_TYPE_IMM1
, "i1" },
2454 { OPERAND_TYPE_BASEINDEX
, "BaseIndex" },
2455 { OPERAND_TYPE_DISP8
, "d8" },
2456 { OPERAND_TYPE_DISP16
, "d16" },
2457 { OPERAND_TYPE_DISP32
, "d32" },
2458 { OPERAND_TYPE_DISP32S
, "d32s" },
2459 { OPERAND_TYPE_DISP64
, "d64" },
2460 { OPERAND_TYPE_INOUTPORTREG
, "InOutPortReg" },
2461 { OPERAND_TYPE_SHIFTCOUNT
, "ShiftCount" },
2462 { OPERAND_TYPE_CONTROL
, "control reg" },
2463 { OPERAND_TYPE_TEST
, "test reg" },
2464 { OPERAND_TYPE_DEBUG
, "debug reg" },
2465 { OPERAND_TYPE_FLOATREG
, "FReg" },
2466 { OPERAND_TYPE_FLOATACC
, "FAcc" },
2467 { OPERAND_TYPE_SREG2
, "SReg2" },
2468 { OPERAND_TYPE_SREG3
, "SReg3" },
2469 { OPERAND_TYPE_ACC
, "Acc" },
2470 { OPERAND_TYPE_JUMPABSOLUTE
, "Jump Absolute" },
2471 { OPERAND_TYPE_REGMMX
, "rMMX" },
2472 { OPERAND_TYPE_REGXMM
, "rXMM" },
2473 { OPERAND_TYPE_REGYMM
, "rYMM" },
2474 { OPERAND_TYPE_ESSEG
, "es" },
2478 pt (i386_operand_type t
)
2481 i386_operand_type a
;
2483 for (j
= 0; j
< ARRAY_SIZE (type_names
); j
++)
2485 a
= operand_type_and (t
, type_names
[j
].mask
);
2486 if (!operand_type_all_zero (&a
))
2487 fprintf (stdout
, "%s, ", type_names
[j
].name
);
2492 #endif /* DEBUG386 */
2494 static bfd_reloc_code_real_type
2495 reloc (unsigned int size
,
2498 bfd_reloc_code_real_type other
)
2500 if (other
!= NO_RELOC
)
2502 reloc_howto_type
*rel
;
2507 case BFD_RELOC_X86_64_GOT32
:
2508 return BFD_RELOC_X86_64_GOT64
;
2510 case BFD_RELOC_X86_64_PLTOFF64
:
2511 return BFD_RELOC_X86_64_PLTOFF64
;
2513 case BFD_RELOC_X86_64_GOTPC32
:
2514 other
= BFD_RELOC_X86_64_GOTPC64
;
2516 case BFD_RELOC_X86_64_GOTPCREL
:
2517 other
= BFD_RELOC_X86_64_GOTPCREL64
;
2519 case BFD_RELOC_X86_64_TPOFF32
:
2520 other
= BFD_RELOC_X86_64_TPOFF64
;
2522 case BFD_RELOC_X86_64_DTPOFF32
:
2523 other
= BFD_RELOC_X86_64_DTPOFF64
;
2529 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2530 if (size
== 4 && flag_code
!= CODE_64BIT
)
2533 rel
= bfd_reloc_type_lookup (stdoutput
, other
);
2535 as_bad (_("unknown relocation (%u)"), other
);
2536 else if (size
!= bfd_get_reloc_size (rel
))
2537 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2538 bfd_get_reloc_size (rel
),
2540 else if (pcrel
&& !rel
->pc_relative
)
2541 as_bad (_("non-pc-relative relocation for pc-relative field"));
2542 else if ((rel
->complain_on_overflow
== complain_overflow_signed
2544 || (rel
->complain_on_overflow
== complain_overflow_unsigned
2546 as_bad (_("relocated field and relocation type differ in signedness"));
2555 as_bad (_("there are no unsigned pc-relative relocations"));
2558 case 1: return BFD_RELOC_8_PCREL
;
2559 case 2: return BFD_RELOC_16_PCREL
;
2560 case 4: return BFD_RELOC_32_PCREL
;
2561 case 8: return BFD_RELOC_64_PCREL
;
2563 as_bad (_("cannot do %u byte pc-relative relocation"), size
);
2570 case 4: return BFD_RELOC_X86_64_32S
;
2575 case 1: return BFD_RELOC_8
;
2576 case 2: return BFD_RELOC_16
;
2577 case 4: return BFD_RELOC_32
;
2578 case 8: return BFD_RELOC_64
;
2580 as_bad (_("cannot do %s %u byte relocation"),
2581 sign
> 0 ? "signed" : "unsigned", size
);
2587 /* Here we decide which fixups can be adjusted to make them relative to
2588 the beginning of the section instead of the symbol. Basically we need
2589 to make sure that the dynamic relocations are done correctly, so in
2590 some cases we force the original symbol to be used. */
2593 tc_i386_fix_adjustable (fixS
*fixP ATTRIBUTE_UNUSED
)
2595 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2599 /* Don't adjust pc-relative references to merge sections in 64-bit
2601 if (use_rela_relocations
2602 && (S_GET_SEGMENT (fixP
->fx_addsy
)->flags
& SEC_MERGE
) != 0
2606 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2607 and changed later by validate_fix. */
2608 if (GOT_symbol
&& fixP
->fx_subsy
== GOT_symbol
2609 && fixP
->fx_r_type
== BFD_RELOC_32_PCREL
)
2612 /* adjust_reloc_syms doesn't know about the GOT. */
2613 if (fixP
->fx_r_type
== BFD_RELOC_386_GOTOFF
2614 || fixP
->fx_r_type
== BFD_RELOC_386_PLT32
2615 || fixP
->fx_r_type
== BFD_RELOC_386_GOT32
2616 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_GD
2617 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_LDM
2618 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_LDO_32
2619 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_IE_32
2620 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_IE
2621 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_GOTIE
2622 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_LE_32
2623 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_LE
2624 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_GOTDESC
2625 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_DESC_CALL
2626 || fixP
->fx_r_type
== BFD_RELOC_X86_64_PLT32
2627 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOT32
2628 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOTPCREL
2629 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TLSGD
2630 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TLSLD
2631 || fixP
->fx_r_type
== BFD_RELOC_X86_64_DTPOFF32
2632 || fixP
->fx_r_type
== BFD_RELOC_X86_64_DTPOFF64
2633 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOTTPOFF
2634 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TPOFF32
2635 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TPOFF64
2636 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOTOFF64
2637 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOTPC32_TLSDESC
2638 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TLSDESC_CALL
2639 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
2640 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
2647 intel_float_operand (const char *mnemonic
)
2649 /* Note that the value returned is meaningful only for opcodes with (memory)
2650 operands, hence the code here is free to improperly handle opcodes that
2651 have no operands (for better performance and smaller code). */
2653 if (mnemonic
[0] != 'f')
2654 return 0; /* non-math */
2656 switch (mnemonic
[1])
2658 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2659 the fs segment override prefix not currently handled because no
2660 call path can make opcodes without operands get here */
2662 return 2 /* integer op */;
2664 if (mnemonic
[2] == 'd' && (mnemonic
[3] == 'c' || mnemonic
[3] == 'e'))
2665 return 3; /* fldcw/fldenv */
2668 if (mnemonic
[2] != 'o' /* fnop */)
2669 return 3; /* non-waiting control op */
2672 if (mnemonic
[2] == 's')
2673 return 3; /* frstor/frstpm */
2676 if (mnemonic
[2] == 'a')
2677 return 3; /* fsave */
2678 if (mnemonic
[2] == 't')
2680 switch (mnemonic
[3])
2682 case 'c': /* fstcw */
2683 case 'd': /* fstdw */
2684 case 'e': /* fstenv */
2685 case 's': /* fsts[gw] */
2691 if (mnemonic
[2] == 'r' || mnemonic
[2] == 's')
2692 return 0; /* fxsave/fxrstor are not really math ops */
2699 /* Build the VEX prefix. */
2702 build_vex_prefix (const insn_template
*t
)
2704 unsigned int register_specifier
;
2705 unsigned int implied_prefix
;
2706 unsigned int vector_length
;
2708 /* Check register specifier. */
2709 if (i
.vex
.register_specifier
)
2711 register_specifier
= i
.vex
.register_specifier
->reg_num
;
2712 if ((i
.vex
.register_specifier
->reg_flags
& RegRex
))
2713 register_specifier
+= 8;
2714 register_specifier
= ~register_specifier
& 0xf;
2717 register_specifier
= 0xf;
2719 /* Use 2-byte VEX prefix by swappping destination and source
2722 && i
.operands
== i
.reg_operands
2723 && i
.tm
.opcode_modifier
.vexopcode
== VEX0F
2724 && i
.tm
.opcode_modifier
.s
2727 unsigned int xchg
= i
.operands
- 1;
2728 union i386_op temp_op
;
2729 i386_operand_type temp_type
;
2731 temp_type
= i
.types
[xchg
];
2732 i
.types
[xchg
] = i
.types
[0];
2733 i
.types
[0] = temp_type
;
2734 temp_op
= i
.op
[xchg
];
2735 i
.op
[xchg
] = i
.op
[0];
2738 gas_assert (i
.rm
.mode
== 3);
2742 i
.rm
.regmem
= i
.rm
.reg
;
2745 /* Use the next insn. */
2749 if (i
.tm
.opcode_modifier
.vex
== VEXScalar
)
2750 vector_length
= avxscalar
;
2752 vector_length
= i
.tm
.opcode_modifier
.vex
== VEX256
? 1 : 0;
2754 switch ((i
.tm
.base_opcode
>> 8) & 0xff)
2759 case DATA_PREFIX_OPCODE
:
2762 case REPE_PREFIX_OPCODE
:
2765 case REPNE_PREFIX_OPCODE
:
2772 /* Use 2-byte VEX prefix if possible. */
2773 if (i
.tm
.opcode_modifier
.vexopcode
== VEX0F
2774 && (i
.rex
& (REX_W
| REX_X
| REX_B
)) == 0)
2776 /* 2-byte VEX prefix. */
2780 i
.vex
.bytes
[0] = 0xc5;
2782 /* Check the REX.R bit. */
2783 r
= (i
.rex
& REX_R
) ? 0 : 1;
2784 i
.vex
.bytes
[1] = (r
<< 7
2785 | register_specifier
<< 3
2786 | vector_length
<< 2
2791 /* 3-byte VEX prefix. */
2796 switch (i
.tm
.opcode_modifier
.vexopcode
)
2800 i
.vex
.bytes
[0] = 0xc4;
2804 i
.vex
.bytes
[0] = 0xc4;
2808 i
.vex
.bytes
[0] = 0xc4;
2812 i
.vex
.bytes
[0] = 0x8f;
2816 i
.vex
.bytes
[0] = 0x8f;
2820 i
.vex
.bytes
[0] = 0x8f;
2826 /* The high 3 bits of the second VEX byte are 1's compliment
2827 of RXB bits from REX. */
2828 i
.vex
.bytes
[1] = (~i
.rex
& 0x7) << 5 | m
;
2830 /* Check the REX.W bit. */
2831 w
= (i
.rex
& REX_W
) ? 1 : 0;
2832 if (i
.tm
.opcode_modifier
.vexw
)
2837 if (i
.tm
.opcode_modifier
.vexw
== VEXW1
)
2841 i
.vex
.bytes
[2] = (w
<< 7
2842 | register_specifier
<< 3
2843 | vector_length
<< 2
2849 process_immext (void)
2853 if (i
.tm
.cpu_flags
.bitfield
.cpusse3
&& i
.operands
> 0)
2855 /* SSE3 Instructions have the fixed operands with an opcode
2856 suffix which is coded in the same place as an 8-bit immediate
2857 field would be. Here we check those operands and remove them
2861 for (x
= 0; x
< i
.operands
; x
++)
2862 if (i
.op
[x
].regs
->reg_num
!= x
)
2863 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
2864 register_prefix
, i
.op
[x
].regs
->reg_name
, x
+ 1,
2870 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
2871 which is coded in the same place as an 8-bit immediate field
2872 would be. Here we fake an 8-bit immediate operand from the
2873 opcode suffix stored in tm.extension_opcode.
2875 AVX instructions also use this encoding, for some of
2876 3 argument instructions. */
2878 gas_assert (i
.imm_operands
== 0
2880 || (i
.tm
.opcode_modifier
.vex
2881 && i
.operands
<= 4)));
2883 exp
= &im_expressions
[i
.imm_operands
++];
2884 i
.op
[i
.operands
].imms
= exp
;
2885 i
.types
[i
.operands
] = imm8
;
2887 exp
->X_op
= O_constant
;
2888 exp
->X_add_number
= i
.tm
.extension_opcode
;
2889 i
.tm
.extension_opcode
= None
;
2892 /* This is the guts of the machine-dependent assembler. LINE points to a
2893 machine dependent instruction. This function is supposed to emit
2894 the frags/bytes it assembles to. */
2897 md_assemble (char *line
)
2900 char mnemonic
[MAX_MNEM_SIZE
];
2901 const insn_template
*t
;
2903 /* Initialize globals. */
2904 memset (&i
, '\0', sizeof (i
));
2905 for (j
= 0; j
< MAX_OPERANDS
; j
++)
2906 i
.reloc
[j
] = NO_RELOC
;
2907 memset (disp_expressions
, '\0', sizeof (disp_expressions
));
2908 memset (im_expressions
, '\0', sizeof (im_expressions
));
2909 save_stack_p
= save_stack
;
2911 /* First parse an instruction mnemonic & call i386_operand for the operands.
2912 We assume that the scrubber has arranged it so that line[0] is the valid
2913 start of a (possibly prefixed) mnemonic. */
2915 line
= parse_insn (line
, mnemonic
);
2919 line
= parse_operands (line
, mnemonic
);
2924 /* Now we've parsed the mnemonic into a set of templates, and have the
2925 operands at hand. */
2927 /* All intel opcodes have reversed operands except for "bound" and
2928 "enter". We also don't reverse intersegment "jmp" and "call"
2929 instructions with 2 immediate operands so that the immediate segment
2930 precedes the offset, as it does when in AT&T mode. */
2933 && (strcmp (mnemonic
, "bound") != 0)
2934 && (strcmp (mnemonic
, "invlpga") != 0)
2935 && !(operand_type_check (i
.types
[0], imm
)
2936 && operand_type_check (i
.types
[1], imm
)))
2939 /* The order of the immediates should be reversed
2940 for 2 immediates extrq and insertq instructions */
2941 if (i
.imm_operands
== 2
2942 && (strcmp (mnemonic
, "extrq") == 0
2943 || strcmp (mnemonic
, "insertq") == 0))
2944 swap_2_operands (0, 1);
2949 /* Don't optimize displacement for movabs since it only takes 64bit
2952 && (flag_code
!= CODE_64BIT
2953 || strcmp (mnemonic
, "movabs") != 0))
2956 /* Next, we find a template that matches the given insn,
2957 making sure the overlap of the given operands types is consistent
2958 with the template operand types. */
2960 if (!(t
= match_template ()))
2963 if (sse_check
!= sse_check_none
2964 && !i
.tm
.opcode_modifier
.noavx
2965 && (i
.tm
.cpu_flags
.bitfield
.cpusse
2966 || i
.tm
.cpu_flags
.bitfield
.cpusse2
2967 || i
.tm
.cpu_flags
.bitfield
.cpusse3
2968 || i
.tm
.cpu_flags
.bitfield
.cpussse3
2969 || i
.tm
.cpu_flags
.bitfield
.cpusse4_1
2970 || i
.tm
.cpu_flags
.bitfield
.cpusse4_2
))
2972 (sse_check
== sse_check_warning
2974 : as_bad
) (_("SSE instruction `%s' is used"), i
.tm
.name
);
2977 /* Zap movzx and movsx suffix. The suffix has been set from
2978 "word ptr" or "byte ptr" on the source operand in Intel syntax
2979 or extracted from mnemonic in AT&T syntax. But we'll use
2980 the destination register to choose the suffix for encoding. */
2981 if ((i
.tm
.base_opcode
& ~9) == 0x0fb6)
2983 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
2984 there is no suffix, the default will be byte extension. */
2985 if (i
.reg_operands
!= 2
2988 as_bad (_("ambiguous operand size for `%s'"), i
.tm
.name
);
2993 if (i
.tm
.opcode_modifier
.fwait
)
2994 if (!add_prefix (FWAIT_OPCODE
))
2997 /* Check for lock without a lockable instruction. Destination operand
2998 must be memory unless it is xchg (0x86). */
2999 if (i
.prefix
[LOCK_PREFIX
]
3000 && (!i
.tm
.opcode_modifier
.islockable
3001 || i
.mem_operands
== 0
3002 || (i
.tm
.base_opcode
!= 0x86
3003 && !operand_type_check (i
.types
[i
.operands
- 1], anymem
))))
3005 as_bad (_("expecting lockable instruction after `lock'"));
3009 /* Check string instruction segment overrides. */
3010 if (i
.tm
.opcode_modifier
.isstring
&& i
.mem_operands
!= 0)
3012 if (!check_string ())
3014 i
.disp_operands
= 0;
3017 if (!process_suffix ())
3020 /* Update operand types. */
3021 for (j
= 0; j
< i
.operands
; j
++)
3022 i
.types
[j
] = operand_type_and (i
.types
[j
], i
.tm
.operand_types
[j
]);
3024 /* Make still unresolved immediate matches conform to size of immediate
3025 given in i.suffix. */
3026 if (!finalize_imm ())
3029 if (i
.types
[0].bitfield
.imm1
)
3030 i
.imm_operands
= 0; /* kludge for shift insns. */
3032 /* We only need to check those implicit registers for instructions
3033 with 3 operands or less. */
3034 if (i
.operands
<= 3)
3035 for (j
= 0; j
< i
.operands
; j
++)
3036 if (i
.types
[j
].bitfield
.inoutportreg
3037 || i
.types
[j
].bitfield
.shiftcount
3038 || i
.types
[j
].bitfield
.acc
3039 || i
.types
[j
].bitfield
.floatacc
)
3042 /* ImmExt should be processed after SSE2AVX. */
3043 if (!i
.tm
.opcode_modifier
.sse2avx
3044 && i
.tm
.opcode_modifier
.immext
)
3047 /* For insns with operands there are more diddles to do to the opcode. */
3050 if (!process_operands ())
3053 else if (!quiet_warnings
&& i
.tm
.opcode_modifier
.ugh
)
3055 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3056 as_warn (_("translating to `%sp'"), i
.tm
.name
);
3059 if (i
.tm
.opcode_modifier
.vex
)
3060 build_vex_prefix (t
);
3062 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3063 instructions may define INT_OPCODE as well, so avoid this corner
3064 case for those instructions that use MODRM. */
3065 if (i
.tm
.base_opcode
== INT_OPCODE
3066 && !i
.tm
.opcode_modifier
.modrm
3067 && i
.op
[0].imms
->X_add_number
== 3)
3069 i
.tm
.base_opcode
= INT3_OPCODE
;
3073 if ((i
.tm
.opcode_modifier
.jump
3074 || i
.tm
.opcode_modifier
.jumpbyte
3075 || i
.tm
.opcode_modifier
.jumpdword
)
3076 && i
.op
[0].disps
->X_op
== O_constant
)
3078 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3079 the absolute address given by the constant. Since ix86 jumps and
3080 calls are pc relative, we need to generate a reloc. */
3081 i
.op
[0].disps
->X_add_symbol
= &abs_symbol
;
3082 i
.op
[0].disps
->X_op
= O_symbol
;
3085 if (i
.tm
.opcode_modifier
.rex64
)
3088 /* For 8 bit registers we need an empty rex prefix. Also if the
3089 instruction already has a prefix, we need to convert old
3090 registers to new ones. */
3092 if ((i
.types
[0].bitfield
.reg8
3093 && (i
.op
[0].regs
->reg_flags
& RegRex64
) != 0)
3094 || (i
.types
[1].bitfield
.reg8
3095 && (i
.op
[1].regs
->reg_flags
& RegRex64
) != 0)
3096 || ((i
.types
[0].bitfield
.reg8
3097 || i
.types
[1].bitfield
.reg8
)
3102 i
.rex
|= REX_OPCODE
;
3103 for (x
= 0; x
< 2; x
++)
3105 /* Look for 8 bit operand that uses old registers. */
3106 if (i
.types
[x
].bitfield
.reg8
3107 && (i
.op
[x
].regs
->reg_flags
& RegRex64
) == 0)
3109 /* In case it is "hi" register, give up. */
3110 if (i
.op
[x
].regs
->reg_num
> 3)
3111 as_bad (_("can't encode register '%s%s' in an "
3112 "instruction requiring REX prefix."),
3113 register_prefix
, i
.op
[x
].regs
->reg_name
);
3115 /* Otherwise it is equivalent to the extended register.
3116 Since the encoding doesn't change this is merely
3117 cosmetic cleanup for debug output. */
3119 i
.op
[x
].regs
= i
.op
[x
].regs
+ 8;
3125 add_prefix (REX_OPCODE
| i
.rex
);
3127 /* We are ready to output the insn. */
3132 parse_insn (char *line
, char *mnemonic
)
3135 char *token_start
= l
;
3138 const insn_template
*t
;
3141 /* Non-zero if we found a prefix only acceptable with string insns. */
3142 const char *expecting_string_instruction
= NULL
;
3147 while ((*mnem_p
= mnemonic_chars
[(unsigned char) *l
]) != 0)
3152 if (mnem_p
>= mnemonic
+ MAX_MNEM_SIZE
)
3154 as_bad (_("no such instruction: `%s'"), token_start
);
3159 if (!is_space_char (*l
)
3160 && *l
!= END_OF_INSN
3162 || (*l
!= PREFIX_SEPARATOR
3165 as_bad (_("invalid character %s in mnemonic"),
3166 output_invalid (*l
));
3169 if (token_start
== l
)
3171 if (!intel_syntax
&& *l
== PREFIX_SEPARATOR
)
3172 as_bad (_("expecting prefix; got nothing"));
3174 as_bad (_("expecting mnemonic; got nothing"));
3178 /* Look up instruction (or prefix) via hash table. */
3179 current_templates
= (const templates
*) hash_find (op_hash
, mnemonic
);
3181 if (*l
!= END_OF_INSN
3182 && (!is_space_char (*l
) || l
[1] != END_OF_INSN
)
3183 && current_templates
3184 && current_templates
->start
->opcode_modifier
.isprefix
)
3186 if (!cpu_flags_check_cpu64 (current_templates
->start
->cpu_flags
))
3188 as_bad ((flag_code
!= CODE_64BIT
3189 ? _("`%s' is only supported in 64-bit mode")
3190 : _("`%s' is not supported in 64-bit mode")),
3191 current_templates
->start
->name
);
3194 /* If we are in 16-bit mode, do not allow addr16 or data16.
3195 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3196 if ((current_templates
->start
->opcode_modifier
.size16
3197 || current_templates
->start
->opcode_modifier
.size32
)
3198 && flag_code
!= CODE_64BIT
3199 && (current_templates
->start
->opcode_modifier
.size32
3200 ^ (flag_code
== CODE_16BIT
)))
3202 as_bad (_("redundant %s prefix"),
3203 current_templates
->start
->name
);
3206 /* Add prefix, checking for repeated prefixes. */
3207 switch (add_prefix (current_templates
->start
->base_opcode
))
3212 expecting_string_instruction
= current_templates
->start
->name
;
3217 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3224 if (!current_templates
)
3226 /* Check if we should swap operand in encoding. */
3227 if (mnem_p
- 2 == dot_p
&& dot_p
[1] == 's')
3233 current_templates
= (const templates
*) hash_find (op_hash
, mnemonic
);
3236 if (!current_templates
)
3239 /* See if we can get a match by trimming off a suffix. */
3242 case WORD_MNEM_SUFFIX
:
3243 if (intel_syntax
&& (intel_float_operand (mnemonic
) & 2))
3244 i
.suffix
= SHORT_MNEM_SUFFIX
;
3246 case BYTE_MNEM_SUFFIX
:
3247 case QWORD_MNEM_SUFFIX
:
3248 i
.suffix
= mnem_p
[-1];
3250 current_templates
= (const templates
*) hash_find (op_hash
,
3253 case SHORT_MNEM_SUFFIX
:
3254 case LONG_MNEM_SUFFIX
:
3257 i
.suffix
= mnem_p
[-1];
3259 current_templates
= (const templates
*) hash_find (op_hash
,
3268 if (intel_float_operand (mnemonic
) == 1)
3269 i
.suffix
= SHORT_MNEM_SUFFIX
;
3271 i
.suffix
= LONG_MNEM_SUFFIX
;
3273 current_templates
= (const templates
*) hash_find (op_hash
,
3278 if (!current_templates
)
3280 as_bad (_("no such instruction: `%s'"), token_start
);
3285 if (current_templates
->start
->opcode_modifier
.jump
3286 || current_templates
->start
->opcode_modifier
.jumpbyte
)
3288 /* Check for a branch hint. We allow ",pt" and ",pn" for
3289 predict taken and predict not taken respectively.
3290 I'm not sure that branch hints actually do anything on loop
3291 and jcxz insns (JumpByte) for current Pentium4 chips. They
3292 may work in the future and it doesn't hurt to accept them
3294 if (l
[0] == ',' && l
[1] == 'p')
3298 if (!add_prefix (DS_PREFIX_OPCODE
))
3302 else if (l
[2] == 'n')
3304 if (!add_prefix (CS_PREFIX_OPCODE
))
3310 /* Any other comma loses. */
3313 as_bad (_("invalid character %s in mnemonic"),
3314 output_invalid (*l
));
3318 /* Check if instruction is supported on specified architecture. */
3320 for (t
= current_templates
->start
; t
< current_templates
->end
; ++t
)
3322 supported
|= cpu_flags_match (t
);
3323 if (supported
== CPU_FLAGS_PERFECT_MATCH
)
3327 if (!(supported
& CPU_FLAGS_64BIT_MATCH
))
3329 as_bad (flag_code
== CODE_64BIT
3330 ? _("`%s' is not supported in 64-bit mode")
3331 : _("`%s' is only supported in 64-bit mode"),
3332 current_templates
->start
->name
);
3335 if (supported
!= CPU_FLAGS_PERFECT_MATCH
)
3337 as_bad (_("`%s' is not supported on `%s%s'"),
3338 current_templates
->start
->name
,
3339 cpu_arch_name
? cpu_arch_name
: default_arch
,
3340 cpu_sub_arch_name
? cpu_sub_arch_name
: "");
3345 if (!cpu_arch_flags
.bitfield
.cpui386
3346 && (flag_code
!= CODE_16BIT
))
3348 as_warn (_("use .code16 to ensure correct addressing mode"));
3351 /* Check for rep/repne without a string instruction. */
3352 if (expecting_string_instruction
)
3354 static templates override
;
3356 for (t
= current_templates
->start
; t
< current_templates
->end
; ++t
)
3357 if (t
->opcode_modifier
.isstring
)
3359 if (t
>= current_templates
->end
)
3361 as_bad (_("expecting string instruction after `%s'"),
3362 expecting_string_instruction
);
3365 for (override
.start
= t
; t
< current_templates
->end
; ++t
)
3366 if (!t
->opcode_modifier
.isstring
)
3369 current_templates
= &override
;
3376 parse_operands (char *l
, const char *mnemonic
)
3380 /* 1 if operand is pending after ','. */
3381 unsigned int expecting_operand
= 0;
3383 /* Non-zero if operand parens not balanced. */
3384 unsigned int paren_not_balanced
;
3386 while (*l
!= END_OF_INSN
)
3388 /* Skip optional white space before operand. */
3389 if (is_space_char (*l
))
3391 if (!is_operand_char (*l
) && *l
!= END_OF_INSN
)
3393 as_bad (_("invalid character %s before operand %d"),
3394 output_invalid (*l
),
3398 token_start
= l
; /* after white space */
3399 paren_not_balanced
= 0;
3400 while (paren_not_balanced
|| *l
!= ',')
3402 if (*l
== END_OF_INSN
)
3404 if (paren_not_balanced
)
3407 as_bad (_("unbalanced parenthesis in operand %d."),
3410 as_bad (_("unbalanced brackets in operand %d."),
3415 break; /* we are done */
3417 else if (!is_operand_char (*l
) && !is_space_char (*l
))
3419 as_bad (_("invalid character %s in operand %d"),
3420 output_invalid (*l
),
3427 ++paren_not_balanced
;
3429 --paren_not_balanced
;
3434 ++paren_not_balanced
;
3436 --paren_not_balanced
;
3440 if (l
!= token_start
)
3441 { /* Yes, we've read in another operand. */
3442 unsigned int operand_ok
;
3443 this_operand
= i
.operands
++;
3444 i
.types
[this_operand
].bitfield
.unspecified
= 1;
3445 if (i
.operands
> MAX_OPERANDS
)
3447 as_bad (_("spurious operands; (%d operands/instruction max)"),
3451 /* Now parse operand adding info to 'i' as we go along. */
3452 END_STRING_AND_SAVE (l
);
3456 i386_intel_operand (token_start
,
3457 intel_float_operand (mnemonic
));
3459 operand_ok
= i386_att_operand (token_start
);
3461 RESTORE_END_STRING (l
);
3467 if (expecting_operand
)
3469 expecting_operand_after_comma
:
3470 as_bad (_("expecting operand after ','; got nothing"));
3475 as_bad (_("expecting operand before ','; got nothing"));
3480 /* Now *l must be either ',' or END_OF_INSN. */
3483 if (*++l
== END_OF_INSN
)
3485 /* Just skip it, if it's \n complain. */
3486 goto expecting_operand_after_comma
;
3488 expecting_operand
= 1;
3495 swap_2_operands (int xchg1
, int xchg2
)
3497 union i386_op temp_op
;
3498 i386_operand_type temp_type
;
3499 enum bfd_reloc_code_real temp_reloc
;
3501 temp_type
= i
.types
[xchg2
];
3502 i
.types
[xchg2
] = i
.types
[xchg1
];
3503 i
.types
[xchg1
] = temp_type
;
3504 temp_op
= i
.op
[xchg2
];
3505 i
.op
[xchg2
] = i
.op
[xchg1
];
3506 i
.op
[xchg1
] = temp_op
;
3507 temp_reloc
= i
.reloc
[xchg2
];
3508 i
.reloc
[xchg2
] = i
.reloc
[xchg1
];
3509 i
.reloc
[xchg1
] = temp_reloc
;
3513 swap_operands (void)
3519 swap_2_operands (1, i
.operands
- 2);
3522 swap_2_operands (0, i
.operands
- 1);
3528 if (i
.mem_operands
== 2)
3530 const seg_entry
*temp_seg
;
3531 temp_seg
= i
.seg
[0];
3532 i
.seg
[0] = i
.seg
[1];
3533 i
.seg
[1] = temp_seg
;
3537 /* Try to ensure constant immediates are represented in the smallest
3542 char guess_suffix
= 0;
3546 guess_suffix
= i
.suffix
;
3547 else if (i
.reg_operands
)
3549 /* Figure out a suffix from the last register operand specified.
3550 We can't do this properly yet, ie. excluding InOutPortReg,
3551 but the following works for instructions with immediates.
3552 In any case, we can't set i.suffix yet. */
3553 for (op
= i
.operands
; --op
>= 0;)
3554 if (i
.types
[op
].bitfield
.reg8
)
3556 guess_suffix
= BYTE_MNEM_SUFFIX
;
3559 else if (i
.types
[op
].bitfield
.reg16
)
3561 guess_suffix
= WORD_MNEM_SUFFIX
;
3564 else if (i
.types
[op
].bitfield
.reg32
)
3566 guess_suffix
= LONG_MNEM_SUFFIX
;
3569 else if (i
.types
[op
].bitfield
.reg64
)
3571 guess_suffix
= QWORD_MNEM_SUFFIX
;
3575 else if ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[DATA_PREFIX
] != 0))
3576 guess_suffix
= WORD_MNEM_SUFFIX
;
3578 for (op
= i
.operands
; --op
>= 0;)
3579 if (operand_type_check (i
.types
[op
], imm
))
3581 switch (i
.op
[op
].imms
->X_op
)
3584 /* If a suffix is given, this operand may be shortened. */
3585 switch (guess_suffix
)
3587 case LONG_MNEM_SUFFIX
:
3588 i
.types
[op
].bitfield
.imm32
= 1;
3589 i
.types
[op
].bitfield
.imm64
= 1;
3591 case WORD_MNEM_SUFFIX
:
3592 i
.types
[op
].bitfield
.imm16
= 1;
3593 i
.types
[op
].bitfield
.imm32
= 1;
3594 i
.types
[op
].bitfield
.imm32s
= 1;
3595 i
.types
[op
].bitfield
.imm64
= 1;
3597 case BYTE_MNEM_SUFFIX
:
3598 i
.types
[op
].bitfield
.imm8
= 1;
3599 i
.types
[op
].bitfield
.imm8s
= 1;
3600 i
.types
[op
].bitfield
.imm16
= 1;
3601 i
.types
[op
].bitfield
.imm32
= 1;
3602 i
.types
[op
].bitfield
.imm32s
= 1;
3603 i
.types
[op
].bitfield
.imm64
= 1;
3607 /* If this operand is at most 16 bits, convert it
3608 to a signed 16 bit number before trying to see
3609 whether it will fit in an even smaller size.
3610 This allows a 16-bit operand such as $0xffe0 to
3611 be recognised as within Imm8S range. */
3612 if ((i
.types
[op
].bitfield
.imm16
)
3613 && (i
.op
[op
].imms
->X_add_number
& ~(offsetT
) 0xffff) == 0)
3615 i
.op
[op
].imms
->X_add_number
=
3616 (((i
.op
[op
].imms
->X_add_number
& 0xffff) ^ 0x8000) - 0x8000);
3618 if ((i
.types
[op
].bitfield
.imm32
)
3619 && ((i
.op
[op
].imms
->X_add_number
& ~(((offsetT
) 2 << 31) - 1))
3622 i
.op
[op
].imms
->X_add_number
= ((i
.op
[op
].imms
->X_add_number
3623 ^ ((offsetT
) 1 << 31))
3624 - ((offsetT
) 1 << 31));
3627 = operand_type_or (i
.types
[op
],
3628 smallest_imm_type (i
.op
[op
].imms
->X_add_number
));
3630 /* We must avoid matching of Imm32 templates when 64bit
3631 only immediate is available. */
3632 if (guess_suffix
== QWORD_MNEM_SUFFIX
)
3633 i
.types
[op
].bitfield
.imm32
= 0;
3640 /* Symbols and expressions. */
3642 /* Convert symbolic operand to proper sizes for matching, but don't
3643 prevent matching a set of insns that only supports sizes other
3644 than those matching the insn suffix. */
3646 i386_operand_type mask
, allowed
;
3647 const insn_template
*t
;
3649 operand_type_set (&mask
, 0);
3650 operand_type_set (&allowed
, 0);
3652 for (t
= current_templates
->start
;
3653 t
< current_templates
->end
;
3655 allowed
= operand_type_or (allowed
,
3656 t
->operand_types
[op
]);
3657 switch (guess_suffix
)
3659 case QWORD_MNEM_SUFFIX
:
3660 mask
.bitfield
.imm64
= 1;
3661 mask
.bitfield
.imm32s
= 1;
3663 case LONG_MNEM_SUFFIX
:
3664 mask
.bitfield
.imm32
= 1;
3666 case WORD_MNEM_SUFFIX
:
3667 mask
.bitfield
.imm16
= 1;
3669 case BYTE_MNEM_SUFFIX
:
3670 mask
.bitfield
.imm8
= 1;
3675 allowed
= operand_type_and (mask
, allowed
);
3676 if (!operand_type_all_zero (&allowed
))
3677 i
.types
[op
] = operand_type_and (i
.types
[op
], mask
);
3684 /* Try to use the smallest displacement type too. */
3686 optimize_disp (void)
3690 for (op
= i
.operands
; --op
>= 0;)
3691 if (operand_type_check (i
.types
[op
], disp
))
3693 if (i
.op
[op
].disps
->X_op
== O_constant
)
3695 offsetT op_disp
= i
.op
[op
].disps
->X_add_number
;
3697 if (i
.types
[op
].bitfield
.disp16
3698 && (op_disp
& ~(offsetT
) 0xffff) == 0)
3700 /* If this operand is at most 16 bits, convert
3701 to a signed 16 bit number and don't use 64bit
3703 op_disp
= (((op_disp
& 0xffff) ^ 0x8000) - 0x8000);
3704 i
.types
[op
].bitfield
.disp64
= 0;
3706 if (i
.types
[op
].bitfield
.disp32
3707 && (op_disp
& ~(((offsetT
) 2 << 31) - 1)) == 0)
3709 /* If this operand is at most 32 bits, convert
3710 to a signed 32 bit number and don't use 64bit
3712 op_disp
&= (((offsetT
) 2 << 31) - 1);
3713 op_disp
= (op_disp
^ ((offsetT
) 1 << 31)) - ((addressT
) 1 << 31);
3714 i
.types
[op
].bitfield
.disp64
= 0;
3716 if (!op_disp
&& i
.types
[op
].bitfield
.baseindex
)
3718 i
.types
[op
].bitfield
.disp8
= 0;
3719 i
.types
[op
].bitfield
.disp16
= 0;
3720 i
.types
[op
].bitfield
.disp32
= 0;
3721 i
.types
[op
].bitfield
.disp32s
= 0;
3722 i
.types
[op
].bitfield
.disp64
= 0;
3726 else if (flag_code
== CODE_64BIT
)
3728 if (fits_in_signed_long (op_disp
))
3730 i
.types
[op
].bitfield
.disp64
= 0;
3731 i
.types
[op
].bitfield
.disp32s
= 1;
3733 if (i
.prefix
[ADDR_PREFIX
]
3734 && fits_in_unsigned_long (op_disp
))
3735 i
.types
[op
].bitfield
.disp32
= 1;
3737 if ((i
.types
[op
].bitfield
.disp32
3738 || i
.types
[op
].bitfield
.disp32s
3739 || i
.types
[op
].bitfield
.disp16
)
3740 && fits_in_signed_byte (op_disp
))
3741 i
.types
[op
].bitfield
.disp8
= 1;
3743 else if (i
.reloc
[op
] == BFD_RELOC_386_TLS_DESC_CALL
3744 || i
.reloc
[op
] == BFD_RELOC_X86_64_TLSDESC_CALL
)
3746 fix_new_exp (frag_now
, frag_more (0) - frag_now
->fr_literal
, 0,
3747 i
.op
[op
].disps
, 0, i
.reloc
[op
]);
3748 i
.types
[op
].bitfield
.disp8
= 0;
3749 i
.types
[op
].bitfield
.disp16
= 0;
3750 i
.types
[op
].bitfield
.disp32
= 0;
3751 i
.types
[op
].bitfield
.disp32s
= 0;
3752 i
.types
[op
].bitfield
.disp64
= 0;
3755 /* We only support 64bit displacement on constants. */
3756 i
.types
[op
].bitfield
.disp64
= 0;
3760 /* Check if operands are valid for the instrucrtion. Update VEX
3764 VEX_check_operands (const insn_template
*t
)
3766 if (!t
->opcode_modifier
.vex
)
3769 /* Only check VEX_Imm4, which must be the first operand. */
3770 if (t
->operand_types
[0].bitfield
.vec_imm4
)
3772 if (i
.op
[0].imms
->X_op
!= O_constant
3773 || !fits_in_imm4 (i
.op
[0].imms
->X_add_number
))
3779 /* Turn off Imm8 so that update_imm won't complain. */
3780 i
.types
[0] = vec_imm4
;
3786 static const insn_template
*
3787 match_template (void)
3789 /* Points to template once we've found it. */
3790 const insn_template
*t
;
3791 i386_operand_type overlap0
, overlap1
, overlap2
, overlap3
;
3792 i386_operand_type overlap4
;
3793 unsigned int found_reverse_match
;
3794 i386_opcode_modifier suffix_check
;
3795 i386_operand_type operand_types
[MAX_OPERANDS
];
3796 int addr_prefix_disp
;
3798 unsigned int found_cpu_match
;
3799 unsigned int check_register
;
3801 #if MAX_OPERANDS != 5
3802 # error "MAX_OPERANDS must be 5."
3805 found_reverse_match
= 0;
3806 addr_prefix_disp
= -1;
3808 memset (&suffix_check
, 0, sizeof (suffix_check
));
3809 if (i
.suffix
== BYTE_MNEM_SUFFIX
)
3810 suffix_check
.no_bsuf
= 1;
3811 else if (i
.suffix
== WORD_MNEM_SUFFIX
)
3812 suffix_check
.no_wsuf
= 1;
3813 else if (i
.suffix
== SHORT_MNEM_SUFFIX
)
3814 suffix_check
.no_ssuf
= 1;
3815 else if (i
.suffix
== LONG_MNEM_SUFFIX
)
3816 suffix_check
.no_lsuf
= 1;
3817 else if (i
.suffix
== QWORD_MNEM_SUFFIX
)
3818 suffix_check
.no_qsuf
= 1;
3819 else if (i
.suffix
== LONG_DOUBLE_MNEM_SUFFIX
)
3820 suffix_check
.no_ldsuf
= 1;
3822 for (t
= current_templates
->start
; t
< current_templates
->end
; t
++)
3824 addr_prefix_disp
= -1;
3826 /* Must have right number of operands. */
3827 i
.error
= number_of_operands_mismatch
;
3828 if (i
.operands
!= t
->operands
)
3831 /* Check processor support. */
3832 i
.error
= unsupported
;
3833 found_cpu_match
= (cpu_flags_match (t
)
3834 == CPU_FLAGS_PERFECT_MATCH
);
3835 if (!found_cpu_match
)
3838 /* Check old gcc support. */
3839 i
.error
= old_gcc_only
;
3840 if (!old_gcc
&& t
->opcode_modifier
.oldgcc
)
3843 /* Check AT&T mnemonic. */
3844 i
.error
= unsupported_with_intel_mnemonic
;
3845 if (intel_mnemonic
&& t
->opcode_modifier
.attmnemonic
)
3848 /* Check AT&T/Intel syntax. */
3849 i
.error
= unsupported_syntax
;
3850 if ((intel_syntax
&& t
->opcode_modifier
.attsyntax
)
3851 || (!intel_syntax
&& t
->opcode_modifier
.intelsyntax
))
3854 /* Check the suffix, except for some instructions in intel mode. */
3855 i
.error
= invalid_instruction_suffix
;
3856 if ((!intel_syntax
|| !t
->opcode_modifier
.ignoresize
)
3857 && ((t
->opcode_modifier
.no_bsuf
&& suffix_check
.no_bsuf
)
3858 || (t
->opcode_modifier
.no_wsuf
&& suffix_check
.no_wsuf
)
3859 || (t
->opcode_modifier
.no_lsuf
&& suffix_check
.no_lsuf
)
3860 || (t
->opcode_modifier
.no_ssuf
&& suffix_check
.no_ssuf
)
3861 || (t
->opcode_modifier
.no_qsuf
&& suffix_check
.no_qsuf
)
3862 || (t
->opcode_modifier
.no_ldsuf
&& suffix_check
.no_ldsuf
)))
3865 if (!operand_size_match (t
))
3868 for (j
= 0; j
< MAX_OPERANDS
; j
++)
3869 operand_types
[j
] = t
->operand_types
[j
];
3871 /* In general, don't allow 64-bit operands in 32-bit mode. */
3872 if (i
.suffix
== QWORD_MNEM_SUFFIX
3873 && flag_code
!= CODE_64BIT
3875 ? (!t
->opcode_modifier
.ignoresize
3876 && !intel_float_operand (t
->name
))
3877 : intel_float_operand (t
->name
) != 2)
3878 && ((!operand_types
[0].bitfield
.regmmx
3879 && !operand_types
[0].bitfield
.regxmm
3880 && !operand_types
[0].bitfield
.regymm
)
3881 || (!operand_types
[t
->operands
> 1].bitfield
.regmmx
3882 && !!operand_types
[t
->operands
> 1].bitfield
.regxmm
3883 && !!operand_types
[t
->operands
> 1].bitfield
.regymm
))
3884 && (t
->base_opcode
!= 0x0fc7
3885 || t
->extension_opcode
!= 1 /* cmpxchg8b */))
3888 /* In general, don't allow 32-bit operands on pre-386. */
3889 else if (i
.suffix
== LONG_MNEM_SUFFIX
3890 && !cpu_arch_flags
.bitfield
.cpui386
3892 ? (!t
->opcode_modifier
.ignoresize
3893 && !intel_float_operand (t
->name
))
3894 : intel_float_operand (t
->name
) != 2)
3895 && ((!operand_types
[0].bitfield
.regmmx
3896 && !operand_types
[0].bitfield
.regxmm
)
3897 || (!operand_types
[t
->operands
> 1].bitfield
.regmmx
3898 && !!operand_types
[t
->operands
> 1].bitfield
.regxmm
)))
3901 /* Do not verify operands when there are none. */
3905 /* We've found a match; break out of loop. */
3909 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
3910 into Disp32/Disp16/Disp32 operand. */
3911 if (i
.prefix
[ADDR_PREFIX
] != 0)
3913 /* There should be only one Disp operand. */
3917 for (j
= 0; j
< MAX_OPERANDS
; j
++)
3919 if (operand_types
[j
].bitfield
.disp16
)
3921 addr_prefix_disp
= j
;
3922 operand_types
[j
].bitfield
.disp32
= 1;
3923 operand_types
[j
].bitfield
.disp16
= 0;
3929 for (j
= 0; j
< MAX_OPERANDS
; j
++)
3931 if (operand_types
[j
].bitfield
.disp32
)
3933 addr_prefix_disp
= j
;
3934 operand_types
[j
].bitfield
.disp32
= 0;
3935 operand_types
[j
].bitfield
.disp16
= 1;
3941 for (j
= 0; j
< MAX_OPERANDS
; j
++)
3943 if (operand_types
[j
].bitfield
.disp64
)
3945 addr_prefix_disp
= j
;
3946 operand_types
[j
].bitfield
.disp64
= 0;
3947 operand_types
[j
].bitfield
.disp32
= 1;
3955 /* We check register size only if size of operands can be
3956 encoded the canonical way. */
3957 check_register
= t
->opcode_modifier
.w
;
3958 overlap0
= operand_type_and (i
.types
[0], operand_types
[0]);
3959 switch (t
->operands
)
3962 if (!operand_type_match (overlap0
, i
.types
[0]))
3966 /* xchg %eax, %eax is a special case. It is an aliase for nop
3967 only in 32bit mode and we can use opcode 0x90. In 64bit
3968 mode, we can't use 0x90 for xchg %eax, %eax since it should
3969 zero-extend %eax to %rax. */
3970 if (flag_code
== CODE_64BIT
3971 && t
->base_opcode
== 0x90
3972 && operand_type_equal (&i
.types
[0], &acc32
)
3973 && operand_type_equal (&i
.types
[1], &acc32
))
3977 /* If we swap operand in encoding, we either match
3978 the next one or reverse direction of operands. */
3979 if (t
->opcode_modifier
.s
)
3981 else if (t
->opcode_modifier
.d
)
3986 /* If we swap operand in encoding, we match the next one. */
3987 if (i
.swap_operand
&& t
->opcode_modifier
.s
)
3991 overlap1
= operand_type_and (i
.types
[1], operand_types
[1]);
3992 if (!operand_type_match (overlap0
, i
.types
[0])
3993 || !operand_type_match (overlap1
, i
.types
[1])
3995 && !operand_type_register_match (overlap0
, i
.types
[0],
3997 overlap1
, i
.types
[1],
4000 /* Check if other direction is valid ... */
4001 if (!t
->opcode_modifier
.d
&& !t
->opcode_modifier
.floatd
)
4005 /* Try reversing direction of operands. */
4006 overlap0
= operand_type_and (i
.types
[0], operand_types
[1]);
4007 overlap1
= operand_type_and (i
.types
[1], operand_types
[0]);
4008 if (!operand_type_match (overlap0
, i
.types
[0])
4009 || !operand_type_match (overlap1
, i
.types
[1])
4011 && !operand_type_register_match (overlap0
,
4018 /* Does not match either direction. */
4021 /* found_reverse_match holds which of D or FloatDR
4023 if (t
->opcode_modifier
.d
)
4024 found_reverse_match
= Opcode_D
;
4025 else if (t
->opcode_modifier
.floatd
)
4026 found_reverse_match
= Opcode_FloatD
;
4028 found_reverse_match
= 0;
4029 if (t
->opcode_modifier
.floatr
)
4030 found_reverse_match
|= Opcode_FloatR
;
4034 /* Found a forward 2 operand match here. */
4035 switch (t
->operands
)
4038 overlap4
= operand_type_and (i
.types
[4],
4041 overlap3
= operand_type_and (i
.types
[3],
4044 overlap2
= operand_type_and (i
.types
[2],
4049 switch (t
->operands
)
4052 if (!operand_type_match (overlap4
, i
.types
[4])
4053 || !operand_type_register_match (overlap3
,
4061 if (!operand_type_match (overlap3
, i
.types
[3])
4063 && !operand_type_register_match (overlap2
,
4071 /* Here we make use of the fact that there are no
4072 reverse match 3 operand instructions, and all 3
4073 operand instructions only need to be checked for
4074 register consistency between operands 2 and 3. */
4075 if (!operand_type_match (overlap2
, i
.types
[2])
4077 && !operand_type_register_match (overlap1
,
4087 /* Found either forward/reverse 2, 3 or 4 operand match here:
4088 slip through to break. */
4090 if (!found_cpu_match
)
4092 found_reverse_match
= 0;
4096 /* Check if VEX operands are valid. */
4097 if (VEX_check_operands (t
))
4100 /* We've found a match; break out of loop. */
4104 if (t
== current_templates
->end
)
4106 /* We found no match. */
4107 const char *err_msg
;
4112 case operand_size_mismatch
:
4113 err_msg
= _("operand size mismatch");
4115 case operand_type_mismatch
:
4116 err_msg
= _("operand type mismatch");
4118 case register_type_mismatch
:
4119 err_msg
= _("register type mismatch");
4121 case number_of_operands_mismatch
:
4122 err_msg
= _("number of operands mismatch");
4124 case invalid_instruction_suffix
:
4125 err_msg
= _("invalid instruction suffix");
4128 err_msg
= _("Imm4 isn't the first operand");
4131 err_msg
= _("only supported with old gcc");
4133 case unsupported_with_intel_mnemonic
:
4134 err_msg
= _("unsupported with Intel mnemonic");
4136 case unsupported_syntax
:
4137 err_msg
= _("unsupported syntax");
4140 err_msg
= _("unsupported");
4143 as_bad (_("%s for `%s'"), err_msg
,
4144 current_templates
->start
->name
);
4148 if (!quiet_warnings
)
4151 && (i
.types
[0].bitfield
.jumpabsolute
4152 != operand_types
[0].bitfield
.jumpabsolute
))
4154 as_warn (_("indirect %s without `*'"), t
->name
);
4157 if (t
->opcode_modifier
.isprefix
4158 && t
->opcode_modifier
.ignoresize
)
4160 /* Warn them that a data or address size prefix doesn't
4161 affect assembly of the next line of code. */
4162 as_warn (_("stand-alone `%s' prefix"), t
->name
);
4166 /* Copy the template we found. */
4169 if (addr_prefix_disp
!= -1)
4170 i
.tm
.operand_types
[addr_prefix_disp
]
4171 = operand_types
[addr_prefix_disp
];
4173 if (found_reverse_match
)
4175 /* If we found a reverse match we must alter the opcode
4176 direction bit. found_reverse_match holds bits to change
4177 (different for int & float insns). */
4179 i
.tm
.base_opcode
^= found_reverse_match
;
4181 i
.tm
.operand_types
[0] = operand_types
[1];
4182 i
.tm
.operand_types
[1] = operand_types
[0];
4191 int mem_op
= operand_type_check (i
.types
[0], anymem
) ? 0 : 1;
4192 if (i
.tm
.operand_types
[mem_op
].bitfield
.esseg
)
4194 if (i
.seg
[0] != NULL
&& i
.seg
[0] != &es
)
4196 as_bad (_("`%s' operand %d must use `%ses' segment"),
4202 /* There's only ever one segment override allowed per instruction.
4203 This instruction possibly has a legal segment override on the
4204 second operand, so copy the segment to where non-string
4205 instructions store it, allowing common code. */
4206 i
.seg
[0] = i
.seg
[1];
4208 else if (i
.tm
.operand_types
[mem_op
+ 1].bitfield
.esseg
)
4210 if (i
.seg
[1] != NULL
&& i
.seg
[1] != &es
)
4212 as_bad (_("`%s' operand %d must use `%ses' segment"),
4223 process_suffix (void)
4225 /* If matched instruction specifies an explicit instruction mnemonic
4227 if (i
.tm
.opcode_modifier
.size16
)
4228 i
.suffix
= WORD_MNEM_SUFFIX
;
4229 else if (i
.tm
.opcode_modifier
.size32
)
4230 i
.suffix
= LONG_MNEM_SUFFIX
;
4231 else if (i
.tm
.opcode_modifier
.size64
)
4232 i
.suffix
= QWORD_MNEM_SUFFIX
;
4233 else if (i
.reg_operands
)
4235 /* If there's no instruction mnemonic suffix we try to invent one
4236 based on register operands. */
4239 /* We take i.suffix from the last register operand specified,
4240 Destination register type is more significant than source
4241 register type. crc32 in SSE4.2 prefers source register
4243 if (i
.tm
.base_opcode
== 0xf20f38f1)
4245 if (i
.types
[0].bitfield
.reg16
)
4246 i
.suffix
= WORD_MNEM_SUFFIX
;
4247 else if (i
.types
[0].bitfield
.reg32
)
4248 i
.suffix
= LONG_MNEM_SUFFIX
;
4249 else if (i
.types
[0].bitfield
.reg64
)
4250 i
.suffix
= QWORD_MNEM_SUFFIX
;
4252 else if (i
.tm
.base_opcode
== 0xf20f38f0)
4254 if (i
.types
[0].bitfield
.reg8
)
4255 i
.suffix
= BYTE_MNEM_SUFFIX
;
4262 if (i
.tm
.base_opcode
== 0xf20f38f1
4263 || i
.tm
.base_opcode
== 0xf20f38f0)
4265 /* We have to know the operand size for crc32. */
4266 as_bad (_("ambiguous memory operand size for `%s`"),
4271 for (op
= i
.operands
; --op
>= 0;)
4272 if (!i
.tm
.operand_types
[op
].bitfield
.inoutportreg
)
4274 if (i
.types
[op
].bitfield
.reg8
)
4276 i
.suffix
= BYTE_MNEM_SUFFIX
;
4279 else if (i
.types
[op
].bitfield
.reg16
)
4281 i
.suffix
= WORD_MNEM_SUFFIX
;
4284 else if (i
.types
[op
].bitfield
.reg32
)
4286 i
.suffix
= LONG_MNEM_SUFFIX
;
4289 else if (i
.types
[op
].bitfield
.reg64
)
4291 i
.suffix
= QWORD_MNEM_SUFFIX
;
4297 else if (i
.suffix
== BYTE_MNEM_SUFFIX
)
4300 && i
.tm
.opcode_modifier
.ignoresize
4301 && i
.tm
.opcode_modifier
.no_bsuf
)
4303 else if (!check_byte_reg ())
4306 else if (i
.suffix
== LONG_MNEM_SUFFIX
)
4309 && i
.tm
.opcode_modifier
.ignoresize
4310 && i
.tm
.opcode_modifier
.no_lsuf
)
4312 else if (!check_long_reg ())
4315 else if (i
.suffix
== QWORD_MNEM_SUFFIX
)
4318 && i
.tm
.opcode_modifier
.ignoresize
4319 && i
.tm
.opcode_modifier
.no_qsuf
)
4321 else if (!check_qword_reg ())
4324 else if (i
.suffix
== WORD_MNEM_SUFFIX
)
4327 && i
.tm
.opcode_modifier
.ignoresize
4328 && i
.tm
.opcode_modifier
.no_wsuf
)
4330 else if (!check_word_reg ())
4333 else if (i
.suffix
== XMMWORD_MNEM_SUFFIX
4334 || i
.suffix
== YMMWORD_MNEM_SUFFIX
)
4336 /* Skip if the instruction has x/y suffix. match_template
4337 should check if it is a valid suffix. */
4339 else if (intel_syntax
&& i
.tm
.opcode_modifier
.ignoresize
)
4340 /* Do nothing if the instruction is going to ignore the prefix. */
4345 else if (i
.tm
.opcode_modifier
.defaultsize
4347 /* exclude fldenv/frstor/fsave/fstenv */
4348 && i
.tm
.opcode_modifier
.no_ssuf
)
4350 i
.suffix
= stackop_size
;
4352 else if (intel_syntax
4354 && (i
.tm
.operand_types
[0].bitfield
.jumpabsolute
4355 || i
.tm
.opcode_modifier
.jumpbyte
4356 || i
.tm
.opcode_modifier
.jumpintersegment
4357 || (i
.tm
.base_opcode
== 0x0f01 /* [ls][gi]dt */
4358 && i
.tm
.extension_opcode
<= 3)))
4363 if (!i
.tm
.opcode_modifier
.no_qsuf
)
4365 i
.suffix
= QWORD_MNEM_SUFFIX
;
4369 if (!i
.tm
.opcode_modifier
.no_lsuf
)
4370 i
.suffix
= LONG_MNEM_SUFFIX
;
4373 if (!i
.tm
.opcode_modifier
.no_wsuf
)
4374 i
.suffix
= WORD_MNEM_SUFFIX
;
4383 if (i
.tm
.opcode_modifier
.w
)
4385 as_bad (_("no instruction mnemonic suffix given and "
4386 "no register operands; can't size instruction"));
4392 unsigned int suffixes
;
4394 suffixes
= !i
.tm
.opcode_modifier
.no_bsuf
;
4395 if (!i
.tm
.opcode_modifier
.no_wsuf
)
4397 if (!i
.tm
.opcode_modifier
.no_lsuf
)
4399 if (!i
.tm
.opcode_modifier
.no_ldsuf
)
4401 if (!i
.tm
.opcode_modifier
.no_ssuf
)
4403 if (!i
.tm
.opcode_modifier
.no_qsuf
)
4406 /* There are more than suffix matches. */
4407 if (i
.tm
.opcode_modifier
.w
4408 || ((suffixes
& (suffixes
- 1))
4409 && !i
.tm
.opcode_modifier
.defaultsize
4410 && !i
.tm
.opcode_modifier
.ignoresize
))
4412 as_bad (_("ambiguous operand size for `%s'"), i
.tm
.name
);
4418 /* Change the opcode based on the operand size given by i.suffix;
4419 We don't need to change things for byte insns. */
4422 && i
.suffix
!= BYTE_MNEM_SUFFIX
4423 && i
.suffix
!= XMMWORD_MNEM_SUFFIX
4424 && i
.suffix
!= YMMWORD_MNEM_SUFFIX
)
4426 /* It's not a byte, select word/dword operation. */
4427 if (i
.tm
.opcode_modifier
.w
)
4429 if (i
.tm
.opcode_modifier
.shortform
)
4430 i
.tm
.base_opcode
|= 8;
4432 i
.tm
.base_opcode
|= 1;
4435 /* Now select between word & dword operations via the operand
4436 size prefix, except for instructions that will ignore this
4438 if (i
.tm
.opcode_modifier
.addrprefixop0
)
4440 /* The address size override prefix changes the size of the
4442 if ((flag_code
== CODE_32BIT
4443 && i
.op
->regs
[0].reg_type
.bitfield
.reg16
)
4444 || (flag_code
!= CODE_32BIT
4445 && i
.op
->regs
[0].reg_type
.bitfield
.reg32
))
4446 if (!add_prefix (ADDR_PREFIX_OPCODE
))
4449 else if (i
.suffix
!= QWORD_MNEM_SUFFIX
4450 && i
.suffix
!= LONG_DOUBLE_MNEM_SUFFIX
4451 && !i
.tm
.opcode_modifier
.ignoresize
4452 && !i
.tm
.opcode_modifier
.floatmf
4453 && ((i
.suffix
== LONG_MNEM_SUFFIX
) == (flag_code
== CODE_16BIT
)
4454 || (flag_code
== CODE_64BIT
4455 && i
.tm
.opcode_modifier
.jumpbyte
)))
4457 unsigned int prefix
= DATA_PREFIX_OPCODE
;
4459 if (i
.tm
.opcode_modifier
.jumpbyte
) /* jcxz, loop */
4460 prefix
= ADDR_PREFIX_OPCODE
;
4462 if (!add_prefix (prefix
))
4466 /* Set mode64 for an operand. */
4467 if (i
.suffix
== QWORD_MNEM_SUFFIX
4468 && flag_code
== CODE_64BIT
4469 && !i
.tm
.opcode_modifier
.norex64
)
4471 /* Special case for xchg %rax,%rax. It is NOP and doesn't
4472 need rex64. cmpxchg8b is also a special case. */
4473 if (! (i
.operands
== 2
4474 && i
.tm
.base_opcode
== 0x90
4475 && i
.tm
.extension_opcode
== None
4476 && operand_type_equal (&i
.types
[0], &acc64
)
4477 && operand_type_equal (&i
.types
[1], &acc64
))
4478 && ! (i
.operands
== 1
4479 && i
.tm
.base_opcode
== 0xfc7
4480 && i
.tm
.extension_opcode
== 1
4481 && !operand_type_check (i
.types
[0], reg
)
4482 && operand_type_check (i
.types
[0], anymem
)))
4486 /* Size floating point instruction. */
4487 if (i
.suffix
== LONG_MNEM_SUFFIX
)
4488 if (i
.tm
.opcode_modifier
.floatmf
)
4489 i
.tm
.base_opcode
^= 4;
4496 check_byte_reg (void)
4500 for (op
= i
.operands
; --op
>= 0;)
4502 /* If this is an eight bit register, it's OK. If it's the 16 or
4503 32 bit version of an eight bit register, we will just use the
4504 low portion, and that's OK too. */
4505 if (i
.types
[op
].bitfield
.reg8
)
4508 /* crc32 doesn't generate this warning. */
4509 if (i
.tm
.base_opcode
== 0xf20f38f0)
4512 if ((i
.types
[op
].bitfield
.reg16
4513 || i
.types
[op
].bitfield
.reg32
4514 || i
.types
[op
].bitfield
.reg64
)
4515 && i
.op
[op
].regs
->reg_num
< 4)
4517 /* Prohibit these changes in the 64bit mode, since the
4518 lowering is more complicated. */
4519 if (flag_code
== CODE_64BIT
4520 && !i
.tm
.operand_types
[op
].bitfield
.inoutportreg
)
4522 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4523 register_prefix
, i
.op
[op
].regs
->reg_name
,
4527 #if REGISTER_WARNINGS
4529 && !i
.tm
.operand_types
[op
].bitfield
.inoutportreg
)
4530 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4532 (i
.op
[op
].regs
+ (i
.types
[op
].bitfield
.reg16
4533 ? REGNAM_AL
- REGNAM_AX
4534 : REGNAM_AL
- REGNAM_EAX
))->reg_name
,
4536 i
.op
[op
].regs
->reg_name
,
4541 /* Any other register is bad. */
4542 if (i
.types
[op
].bitfield
.reg16
4543 || i
.types
[op
].bitfield
.reg32
4544 || i
.types
[op
].bitfield
.reg64
4545 || i
.types
[op
].bitfield
.regmmx
4546 || i
.types
[op
].bitfield
.regxmm
4547 || i
.types
[op
].bitfield
.regymm
4548 || i
.types
[op
].bitfield
.sreg2
4549 || i
.types
[op
].bitfield
.sreg3
4550 || i
.types
[op
].bitfield
.control
4551 || i
.types
[op
].bitfield
.debug
4552 || i
.types
[op
].bitfield
.test
4553 || i
.types
[op
].bitfield
.floatreg
4554 || i
.types
[op
].bitfield
.floatacc
)
4556 as_bad (_("`%s%s' not allowed with `%s%c'"),
4558 i
.op
[op
].regs
->reg_name
,
4568 check_long_reg (void)
4572 for (op
= i
.operands
; --op
>= 0;)
4573 /* Reject eight bit registers, except where the template requires
4574 them. (eg. movzb) */
4575 if (i
.types
[op
].bitfield
.reg8
4576 && (i
.tm
.operand_types
[op
].bitfield
.reg16
4577 || i
.tm
.operand_types
[op
].bitfield
.reg32
4578 || i
.tm
.operand_types
[op
].bitfield
.acc
))
4580 as_bad (_("`%s%s' not allowed with `%s%c'"),
4582 i
.op
[op
].regs
->reg_name
,
4587 /* Warn if the e prefix on a general reg is missing. */
4588 else if ((!quiet_warnings
|| flag_code
== CODE_64BIT
)
4589 && i
.types
[op
].bitfield
.reg16
4590 && (i
.tm
.operand_types
[op
].bitfield
.reg32
4591 || i
.tm
.operand_types
[op
].bitfield
.acc
))
4593 /* Prohibit these changes in the 64bit mode, since the
4594 lowering is more complicated. */
4595 if (flag_code
== CODE_64BIT
)
4597 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4598 register_prefix
, i
.op
[op
].regs
->reg_name
,
4602 #if REGISTER_WARNINGS
4604 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4606 (i
.op
[op
].regs
+ REGNAM_EAX
- REGNAM_AX
)->reg_name
,
4608 i
.op
[op
].regs
->reg_name
,
4612 /* Warn if the r prefix on a general reg is missing. */
4613 else if (i
.types
[op
].bitfield
.reg64
4614 && (i
.tm
.operand_types
[op
].bitfield
.reg32
4615 || i
.tm
.operand_types
[op
].bitfield
.acc
))
4618 && i
.tm
.opcode_modifier
.toqword
4619 && !i
.types
[0].bitfield
.regxmm
)
4621 /* Convert to QWORD. We want REX byte. */
4622 i
.suffix
= QWORD_MNEM_SUFFIX
;
4626 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4627 register_prefix
, i
.op
[op
].regs
->reg_name
,
4636 check_qword_reg (void)
4640 for (op
= i
.operands
; --op
>= 0; )
4641 /* Reject eight bit registers, except where the template requires
4642 them. (eg. movzb) */
4643 if (i
.types
[op
].bitfield
.reg8
4644 && (i
.tm
.operand_types
[op
].bitfield
.reg16
4645 || i
.tm
.operand_types
[op
].bitfield
.reg32
4646 || i
.tm
.operand_types
[op
].bitfield
.acc
))
4648 as_bad (_("`%s%s' not allowed with `%s%c'"),
4650 i
.op
[op
].regs
->reg_name
,
4655 /* Warn if the e prefix on a general reg is missing. */
4656 else if ((i
.types
[op
].bitfield
.reg16
4657 || i
.types
[op
].bitfield
.reg32
)
4658 && (i
.tm
.operand_types
[op
].bitfield
.reg32
4659 || i
.tm
.operand_types
[op
].bitfield
.acc
))
4661 /* Prohibit these changes in the 64bit mode, since the
4662 lowering is more complicated. */
4664 && i
.tm
.opcode_modifier
.todword
4665 && !i
.types
[0].bitfield
.regxmm
)
4667 /* Convert to DWORD. We don't want REX byte. */
4668 i
.suffix
= LONG_MNEM_SUFFIX
;
4672 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4673 register_prefix
, i
.op
[op
].regs
->reg_name
,
4682 check_word_reg (void)
4685 for (op
= i
.operands
; --op
>= 0;)
4686 /* Reject eight bit registers, except where the template requires
4687 them. (eg. movzb) */
4688 if (i
.types
[op
].bitfield
.reg8
4689 && (i
.tm
.operand_types
[op
].bitfield
.reg16
4690 || i
.tm
.operand_types
[op
].bitfield
.reg32
4691 || i
.tm
.operand_types
[op
].bitfield
.acc
))
4693 as_bad (_("`%s%s' not allowed with `%s%c'"),
4695 i
.op
[op
].regs
->reg_name
,
4700 /* Warn if the e prefix on a general reg is present. */
4701 else if ((!quiet_warnings
|| flag_code
== CODE_64BIT
)
4702 && i
.types
[op
].bitfield
.reg32
4703 && (i
.tm
.operand_types
[op
].bitfield
.reg16
4704 || i
.tm
.operand_types
[op
].bitfield
.acc
))
4706 /* Prohibit these changes in the 64bit mode, since the
4707 lowering is more complicated. */
4708 if (flag_code
== CODE_64BIT
)
4710 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4711 register_prefix
, i
.op
[op
].regs
->reg_name
,
4716 #if REGISTER_WARNINGS
4717 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4719 (i
.op
[op
].regs
+ REGNAM_AX
- REGNAM_EAX
)->reg_name
,
4721 i
.op
[op
].regs
->reg_name
,
4729 update_imm (unsigned int j
)
4731 i386_operand_type overlap
= i
.types
[j
];
4732 if ((overlap
.bitfield
.imm8
4733 || overlap
.bitfield
.imm8s
4734 || overlap
.bitfield
.imm16
4735 || overlap
.bitfield
.imm32
4736 || overlap
.bitfield
.imm32s
4737 || overlap
.bitfield
.imm64
)
4738 && !operand_type_equal (&overlap
, &imm8
)
4739 && !operand_type_equal (&overlap
, &imm8s
)
4740 && !operand_type_equal (&overlap
, &imm16
)
4741 && !operand_type_equal (&overlap
, &imm32
)
4742 && !operand_type_equal (&overlap
, &imm32s
)
4743 && !operand_type_equal (&overlap
, &imm64
))
4747 i386_operand_type temp
;
4749 operand_type_set (&temp
, 0);
4750 if (i
.suffix
== BYTE_MNEM_SUFFIX
)
4752 temp
.bitfield
.imm8
= overlap
.bitfield
.imm8
;
4753 temp
.bitfield
.imm8s
= overlap
.bitfield
.imm8s
;
4755 else if (i
.suffix
== WORD_MNEM_SUFFIX
)
4756 temp
.bitfield
.imm16
= overlap
.bitfield
.imm16
;
4757 else if (i
.suffix
== QWORD_MNEM_SUFFIX
)
4759 temp
.bitfield
.imm64
= overlap
.bitfield
.imm64
;
4760 temp
.bitfield
.imm32s
= overlap
.bitfield
.imm32s
;
4763 temp
.bitfield
.imm32
= overlap
.bitfield
.imm32
;
4766 else if (operand_type_equal (&overlap
, &imm16_32_32s
)
4767 || operand_type_equal (&overlap
, &imm16_32
)
4768 || operand_type_equal (&overlap
, &imm16_32s
))
4770 if ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[DATA_PREFIX
] != 0))
4775 if (!operand_type_equal (&overlap
, &imm8
)
4776 && !operand_type_equal (&overlap
, &imm8s
)
4777 && !operand_type_equal (&overlap
, &imm16
)
4778 && !operand_type_equal (&overlap
, &imm32
)
4779 && !operand_type_equal (&overlap
, &imm32s
)
4780 && !operand_type_equal (&overlap
, &imm64
))
4782 as_bad (_("no instruction mnemonic suffix given; "
4783 "can't determine immediate size"));
4787 i
.types
[j
] = overlap
;
4797 /* Update the first 2 immediate operands. */
4798 n
= i
.operands
> 2 ? 2 : i
.operands
;
4801 for (j
= 0; j
< n
; j
++)
4802 if (update_imm (j
) == 0)
4805 /* The 3rd operand can't be immediate operand. */
4806 gas_assert (operand_type_check (i
.types
[2], imm
) == 0);
4813 bad_implicit_operand (int xmm
)
4815 const char *ireg
= xmm
? "xmm0" : "ymm0";
4818 as_bad (_("the last operand of `%s' must be `%s%s'"),
4819 i
.tm
.name
, register_prefix
, ireg
);
4821 as_bad (_("the first operand of `%s' must be `%s%s'"),
4822 i
.tm
.name
, register_prefix
, ireg
);
4827 process_operands (void)
4829 /* Default segment register this instruction will use for memory
4830 accesses. 0 means unknown. This is only for optimizing out
4831 unnecessary segment overrides. */
4832 const seg_entry
*default_seg
= 0;
4834 if (i
.tm
.opcode_modifier
.sse2avx
&& i
.tm
.opcode_modifier
.vexvvvv
)
4836 unsigned int dupl
= i
.operands
;
4837 unsigned int dest
= dupl
- 1;
4840 /* The destination must be an xmm register. */
4841 gas_assert (i
.reg_operands
4842 && MAX_OPERANDS
> dupl
4843 && operand_type_equal (&i
.types
[dest
], ®xmm
));
4845 if (i
.tm
.opcode_modifier
.firstxmm0
)
4847 /* The first operand is implicit and must be xmm0. */
4848 gas_assert (operand_type_equal (&i
.types
[0], ®xmm
));
4849 if (i
.op
[0].regs
->reg_num
!= 0)
4850 return bad_implicit_operand (1);
4852 if (i
.tm
.opcode_modifier
.vexsources
== VEX3SOURCES
)
4854 /* Keep xmm0 for instructions with VEX prefix and 3
4860 /* We remove the first xmm0 and keep the number of
4861 operands unchanged, which in fact duplicates the
4863 for (j
= 1; j
< i
.operands
; j
++)
4865 i
.op
[j
- 1] = i
.op
[j
];
4866 i
.types
[j
- 1] = i
.types
[j
];
4867 i
.tm
.operand_types
[j
- 1] = i
.tm
.operand_types
[j
];
4871 else if (i
.tm
.opcode_modifier
.implicit1stxmm0
)
4873 gas_assert ((MAX_OPERANDS
- 1) > dupl
4874 && (i
.tm
.opcode_modifier
.vexsources
4877 /* Add the implicit xmm0 for instructions with VEX prefix
4879 for (j
= i
.operands
; j
> 0; j
--)
4881 i
.op
[j
] = i
.op
[j
- 1];
4882 i
.types
[j
] = i
.types
[j
- 1];
4883 i
.tm
.operand_types
[j
] = i
.tm
.operand_types
[j
- 1];
4886 = (const reg_entry
*) hash_find (reg_hash
, "xmm0");
4887 i
.types
[0] = regxmm
;
4888 i
.tm
.operand_types
[0] = regxmm
;
4891 i
.reg_operands
+= 2;
4896 i
.op
[dupl
] = i
.op
[dest
];
4897 i
.types
[dupl
] = i
.types
[dest
];
4898 i
.tm
.operand_types
[dupl
] = i
.tm
.operand_types
[dest
];
4907 i
.op
[dupl
] = i
.op
[dest
];
4908 i
.types
[dupl
] = i
.types
[dest
];
4909 i
.tm
.operand_types
[dupl
] = i
.tm
.operand_types
[dest
];
4912 if (i
.tm
.opcode_modifier
.immext
)
4915 else if (i
.tm
.opcode_modifier
.firstxmm0
)
4919 /* The first operand is implicit and must be xmm0/ymm0. */
4920 gas_assert (i
.reg_operands
4921 && (operand_type_equal (&i
.types
[0], ®xmm
)
4922 || operand_type_equal (&i
.types
[0], ®ymm
)));
4923 if (i
.op
[0].regs
->reg_num
!= 0)
4924 return bad_implicit_operand (i
.types
[0].bitfield
.regxmm
);
4926 for (j
= 1; j
< i
.operands
; j
++)
4928 i
.op
[j
- 1] = i
.op
[j
];
4929 i
.types
[j
- 1] = i
.types
[j
];
4931 /* We need to adjust fields in i.tm since they are used by
4932 build_modrm_byte. */
4933 i
.tm
.operand_types
[j
- 1] = i
.tm
.operand_types
[j
];
4940 else if (i
.tm
.opcode_modifier
.regkludge
)
4942 /* The imul $imm, %reg instruction is converted into
4943 imul $imm, %reg, %reg, and the clr %reg instruction
4944 is converted into xor %reg, %reg. */
4946 unsigned int first_reg_op
;
4948 if (operand_type_check (i
.types
[0], reg
))
4952 /* Pretend we saw the extra register operand. */
4953 gas_assert (i
.reg_operands
== 1
4954 && i
.op
[first_reg_op
+ 1].regs
== 0);
4955 i
.op
[first_reg_op
+ 1].regs
= i
.op
[first_reg_op
].regs
;
4956 i
.types
[first_reg_op
+ 1] = i
.types
[first_reg_op
];
4961 if (i
.tm
.opcode_modifier
.shortform
)
4963 if (i
.types
[0].bitfield
.sreg2
4964 || i
.types
[0].bitfield
.sreg3
)
4966 if (i
.tm
.base_opcode
== POP_SEG_SHORT
4967 && i
.op
[0].regs
->reg_num
== 1)
4969 as_bad (_("you can't `pop %scs'"), register_prefix
);
4972 i
.tm
.base_opcode
|= (i
.op
[0].regs
->reg_num
<< 3);
4973 if ((i
.op
[0].regs
->reg_flags
& RegRex
) != 0)
4978 /* The register or float register operand is in operand
4982 if (i
.types
[0].bitfield
.floatreg
4983 || operand_type_check (i
.types
[0], reg
))
4987 /* Register goes in low 3 bits of opcode. */
4988 i
.tm
.base_opcode
|= i
.op
[op
].regs
->reg_num
;
4989 if ((i
.op
[op
].regs
->reg_flags
& RegRex
) != 0)
4991 if (!quiet_warnings
&& i
.tm
.opcode_modifier
.ugh
)
4993 /* Warn about some common errors, but press on regardless.
4994 The first case can be generated by gcc (<= 2.8.1). */
4995 if (i
.operands
== 2)
4997 /* Reversed arguments on faddp, fsubp, etc. */
4998 as_warn (_("translating to `%s %s%s,%s%s'"), i
.tm
.name
,
4999 register_prefix
, i
.op
[!intel_syntax
].regs
->reg_name
,
5000 register_prefix
, i
.op
[intel_syntax
].regs
->reg_name
);
5004 /* Extraneous `l' suffix on fp insn. */
5005 as_warn (_("translating to `%s %s%s'"), i
.tm
.name
,
5006 register_prefix
, i
.op
[0].regs
->reg_name
);
5011 else if (i
.tm
.opcode_modifier
.modrm
)
5013 /* The opcode is completed (modulo i.tm.extension_opcode which
5014 must be put into the modrm byte). Now, we make the modrm and
5015 index base bytes based on all the info we've collected. */
5017 default_seg
= build_modrm_byte ();
5019 else if ((i
.tm
.base_opcode
& ~0x3) == MOV_AX_DISP32
)
5023 else if (i
.tm
.opcode_modifier
.isstring
)
5025 /* For the string instructions that allow a segment override
5026 on one of their operands, the default segment is ds. */
5030 if (i
.tm
.base_opcode
== 0x8d /* lea */
5033 as_warn (_("segment override on `%s' is ineffectual"), i
.tm
.name
);
5035 /* If a segment was explicitly specified, and the specified segment
5036 is not the default, use an opcode prefix to select it. If we
5037 never figured out what the default segment is, then default_seg
5038 will be zero at this point, and the specified segment prefix will
5040 if ((i
.seg
[0]) && (i
.seg
[0] != default_seg
))
5042 if (!add_prefix (i
.seg
[0]->seg_prefix
))
5048 static const seg_entry
*
5049 build_modrm_byte (void)
5051 const seg_entry
*default_seg
= 0;
5052 unsigned int source
, dest
;
5055 /* The first operand of instructions with VEX prefix and 3 sources
5056 must be VEX_Imm4. */
5057 vex_3_sources
= i
.tm
.opcode_modifier
.vexsources
== VEX3SOURCES
;
5060 unsigned int nds
, reg_slot
;
5063 if (i
.tm
.opcode_modifier
.veximmext
5064 && i
.tm
.opcode_modifier
.immext
)
5066 dest
= i
.operands
- 2;
5067 gas_assert (dest
== 3);
5070 dest
= i
.operands
- 1;
5073 /* There are 2 kinds of instructions:
5074 1. 5 operands: 4 register operands or 3 register operands
5075 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
5076 VexW0 or VexW1. The destination must be either XMM or YMM
5078 2. 4 operands: 4 register operands or 3 register operands
5079 plus 1 memory operand, VexXDS, and VexImmExt */
5080 gas_assert ((i
.reg_operands
== 4
5081 || (i
.reg_operands
== 3 && i
.mem_operands
== 1))
5082 && i
.tm
.opcode_modifier
.vexvvvv
== VEXXDS
5083 && (i
.tm
.opcode_modifier
.veximmext
5084 || (i
.imm_operands
== 1
5085 && i
.types
[0].bitfield
.vec_imm4
5086 && (i
.tm
.opcode_modifier
.vexw
== VEXW0
5087 || i
.tm
.opcode_modifier
.vexw
== VEXW1
)
5088 && (operand_type_equal (&i
.tm
.operand_types
[dest
], ®xmm
)
5089 || operand_type_equal (&i
.tm
.operand_types
[dest
], ®ymm
)))));
5091 if (i
.imm_operands
== 0)
5093 /* When there is no immediate operand, generate an 8bit
5094 immediate operand to encode the first operand. */
5095 exp
= &im_expressions
[i
.imm_operands
++];
5096 i
.op
[i
.operands
].imms
= exp
;
5097 i
.types
[i
.operands
] = imm8
;
5099 /* If VexW1 is set, the first operand is the source and
5100 the second operand is encoded in the immediate operand. */
5101 if (i
.tm
.opcode_modifier
.vexw
== VEXW1
)
5112 /* FMA swaps REG and NDS. */
5113 if (i
.tm
.cpu_flags
.bitfield
.cpufma
)
5121 gas_assert (operand_type_equal (&i
.tm
.operand_types
[reg_slot
],
5123 || operand_type_equal (&i
.tm
.operand_types
[reg_slot
],
5125 exp
->X_op
= O_constant
;
5127 = ((i
.op
[reg_slot
].regs
->reg_num
5128 + ((i
.op
[reg_slot
].regs
->reg_flags
& RegRex
) ? 8 : 0))
5133 unsigned int imm_slot
;
5135 if (i
.tm
.opcode_modifier
.vexw
== VEXW0
)
5137 /* If VexW0 is set, the third operand is the source and
5138 the second operand is encoded in the immediate
5145 /* VexW1 is set, the second operand is the source and
5146 the third operand is encoded in the immediate
5152 if (i
.tm
.opcode_modifier
.immext
)
5154 /* When ImmExt is set, the immdiate byte is the last
5156 imm_slot
= i
.operands
- 1;
5164 /* Turn on Imm8 so that output_imm will generate it. */
5165 i
.types
[imm_slot
].bitfield
.imm8
= 1;
5168 gas_assert (operand_type_equal (&i
.tm
.operand_types
[reg_slot
],
5170 || operand_type_equal (&i
.tm
.operand_types
[reg_slot
],
5172 i
.op
[imm_slot
].imms
->X_add_number
5173 |= ((i
.op
[reg_slot
].regs
->reg_num
5174 + ((i
.op
[reg_slot
].regs
->reg_flags
& RegRex
) ? 8 : 0))
5178 gas_assert (operand_type_equal (&i
.tm
.operand_types
[nds
], ®xmm
)
5179 || operand_type_equal (&i
.tm
.operand_types
[nds
],
5181 i
.vex
.register_specifier
= i
.op
[nds
].regs
;
5186 /* i.reg_operands MUST be the number of real register operands;
5187 implicit registers do not count. If there are 3 register
5188 operands, it must be a instruction with VexNDS. For a
5189 instruction with VexNDD, the destination register is encoded
5190 in VEX prefix. If there are 4 register operands, it must be
5191 a instruction with VEX prefix and 3 sources. */
5192 if (i
.mem_operands
== 0
5193 && ((i
.reg_operands
== 2
5194 && i
.tm
.opcode_modifier
.vexvvvv
<= VEXXDS
)
5195 || (i
.reg_operands
== 3
5196 && i
.tm
.opcode_modifier
.vexvvvv
== VEXXDS
)
5197 || (i
.reg_operands
== 4 && vex_3_sources
)))
5205 /* When there are 3 operands, one of them may be immediate,
5206 which may be the first or the last operand. Otherwise,
5207 the first operand must be shift count register (cl) or it
5208 is an instruction with VexNDS. */
5209 gas_assert (i
.imm_operands
== 1
5210 || (i
.imm_operands
== 0
5211 && (i
.tm
.opcode_modifier
.vexvvvv
== VEXXDS
5212 || i
.types
[0].bitfield
.shiftcount
)));
5213 if (operand_type_check (i
.types
[0], imm
)
5214 || i
.types
[0].bitfield
.shiftcount
)
5220 /* When there are 4 operands, the first two must be 8bit
5221 immediate operands. The source operand will be the 3rd
5224 For instructions with VexNDS, if the first operand
5225 an imm8, the source operand is the 2nd one. If the last
5226 operand is imm8, the source operand is the first one. */
5227 gas_assert ((i
.imm_operands
== 2
5228 && i
.types
[0].bitfield
.imm8
5229 && i
.types
[1].bitfield
.imm8
)
5230 || (i
.tm
.opcode_modifier
.vexvvvv
== VEXXDS
5231 && i
.imm_operands
== 1
5232 && (i
.types
[0].bitfield
.imm8
5233 || i
.types
[i
.operands
- 1].bitfield
.imm8
)));
5234 if (i
.tm
.opcode_modifier
.vexvvvv
== VEXXDS
)
5236 if (i
.types
[0].bitfield
.imm8
)
5254 if (i
.tm
.opcode_modifier
.vexvvvv
== VEXXDS
)
5256 /* For instructions with VexNDS, the register-only
5257 source operand must be XMM or YMM register. It is
5258 encoded in VEX prefix. We need to clear RegMem bit
5259 before calling operand_type_equal. */
5260 i386_operand_type op
= i
.tm
.operand_types
[dest
];
5261 op
.bitfield
.regmem
= 0;
5262 if ((dest
+ 1) >= i
.operands
5263 || (!operand_type_equal (&op
, ®xmm
)
5264 && !operand_type_equal (&op
, ®ymm
)))
5266 i
.vex
.register_specifier
= i
.op
[dest
].regs
;
5272 /* One of the register operands will be encoded in the i.tm.reg
5273 field, the other in the combined i.tm.mode and i.tm.regmem
5274 fields. If no form of this instruction supports a memory
5275 destination operand, then we assume the source operand may
5276 sometimes be a memory operand and so we need to store the
5277 destination in the i.rm.reg field. */
5278 if (!i
.tm
.operand_types
[dest
].bitfield
.regmem
5279 && operand_type_check (i
.tm
.operand_types
[dest
], anymem
) == 0)
5281 i
.rm
.reg
= i
.op
[dest
].regs
->reg_num
;
5282 i
.rm
.regmem
= i
.op
[source
].regs
->reg_num
;
5283 if ((i
.op
[dest
].regs
->reg_flags
& RegRex
) != 0)
5285 if ((i
.op
[source
].regs
->reg_flags
& RegRex
) != 0)
5290 i
.rm
.reg
= i
.op
[source
].regs
->reg_num
;
5291 i
.rm
.regmem
= i
.op
[dest
].regs
->reg_num
;
5292 if ((i
.op
[dest
].regs
->reg_flags
& RegRex
) != 0)
5294 if ((i
.op
[source
].regs
->reg_flags
& RegRex
) != 0)
5297 if (flag_code
!= CODE_64BIT
&& (i
.rex
& (REX_R
| REX_B
)))
5299 if (!i
.types
[0].bitfield
.control
5300 && !i
.types
[1].bitfield
.control
)
5302 i
.rex
&= ~(REX_R
| REX_B
);
5303 add_prefix (LOCK_PREFIX_OPCODE
);
5307 { /* If it's not 2 reg operands... */
5312 unsigned int fake_zero_displacement
= 0;
5315 for (op
= 0; op
< i
.operands
; op
++)
5316 if (operand_type_check (i
.types
[op
], anymem
))
5318 gas_assert (op
< i
.operands
);
5322 if (i
.base_reg
== 0)
5325 if (!i
.disp_operands
)
5326 fake_zero_displacement
= 1;
5327 if (i
.index_reg
== 0)
5329 /* Operand is just <disp> */
5330 if (flag_code
== CODE_64BIT
)
5332 /* 64bit mode overwrites the 32bit absolute
5333 addressing by RIP relative addressing and
5334 absolute addressing is encoded by one of the
5335 redundant SIB forms. */
5336 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
5337 i
.sib
.base
= NO_BASE_REGISTER
;
5338 i
.sib
.index
= NO_INDEX_REGISTER
;
5339 i
.types
[op
] = ((i
.prefix
[ADDR_PREFIX
] == 0)
5340 ? disp32s
: disp32
);
5342 else if ((flag_code
== CODE_16BIT
)
5343 ^ (i
.prefix
[ADDR_PREFIX
] != 0))
5345 i
.rm
.regmem
= NO_BASE_REGISTER_16
;
5346 i
.types
[op
] = disp16
;
5350 i
.rm
.regmem
= NO_BASE_REGISTER
;
5351 i
.types
[op
] = disp32
;
5354 else /* !i.base_reg && i.index_reg */
5356 if (i
.index_reg
->reg_num
== RegEiz
5357 || i
.index_reg
->reg_num
== RegRiz
)
5358 i
.sib
.index
= NO_INDEX_REGISTER
;
5360 i
.sib
.index
= i
.index_reg
->reg_num
;
5361 i
.sib
.base
= NO_BASE_REGISTER
;
5362 i
.sib
.scale
= i
.log2_scale_factor
;
5363 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
5364 i
.types
[op
].bitfield
.disp8
= 0;
5365 i
.types
[op
].bitfield
.disp16
= 0;
5366 i
.types
[op
].bitfield
.disp64
= 0;
5367 if (flag_code
!= CODE_64BIT
)
5369 /* Must be 32 bit */
5370 i
.types
[op
].bitfield
.disp32
= 1;
5371 i
.types
[op
].bitfield
.disp32s
= 0;
5375 i
.types
[op
].bitfield
.disp32
= 0;
5376 i
.types
[op
].bitfield
.disp32s
= 1;
5378 if ((i
.index_reg
->reg_flags
& RegRex
) != 0)
5382 /* RIP addressing for 64bit mode. */
5383 else if (i
.base_reg
->reg_num
== RegRip
||
5384 i
.base_reg
->reg_num
== RegEip
)
5386 i
.rm
.regmem
= NO_BASE_REGISTER
;
5387 i
.types
[op
].bitfield
.disp8
= 0;
5388 i
.types
[op
].bitfield
.disp16
= 0;
5389 i
.types
[op
].bitfield
.disp32
= 0;
5390 i
.types
[op
].bitfield
.disp32s
= 1;
5391 i
.types
[op
].bitfield
.disp64
= 0;
5392 i
.flags
[op
] |= Operand_PCrel
;
5393 if (! i
.disp_operands
)
5394 fake_zero_displacement
= 1;
5396 else if (i
.base_reg
->reg_type
.bitfield
.reg16
)
5398 switch (i
.base_reg
->reg_num
)
5401 if (i
.index_reg
== 0)
5403 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
5404 i
.rm
.regmem
= i
.index_reg
->reg_num
- 6;
5408 if (i
.index_reg
== 0)
5411 if (operand_type_check (i
.types
[op
], disp
) == 0)
5413 /* fake (%bp) into 0(%bp) */
5414 i
.types
[op
].bitfield
.disp8
= 1;
5415 fake_zero_displacement
= 1;
5418 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
5419 i
.rm
.regmem
= i
.index_reg
->reg_num
- 6 + 2;
5421 default: /* (%si) -> 4 or (%di) -> 5 */
5422 i
.rm
.regmem
= i
.base_reg
->reg_num
- 6 + 4;
5424 i
.rm
.mode
= mode_from_disp_size (i
.types
[op
]);
5426 else /* i.base_reg and 32/64 bit mode */
5428 if (flag_code
== CODE_64BIT
5429 && operand_type_check (i
.types
[op
], disp
))
5431 i386_operand_type temp
;
5432 operand_type_set (&temp
, 0);
5433 temp
.bitfield
.disp8
= i
.types
[op
].bitfield
.disp8
;
5435 if (i
.prefix
[ADDR_PREFIX
] == 0)
5436 i
.types
[op
].bitfield
.disp32s
= 1;
5438 i
.types
[op
].bitfield
.disp32
= 1;
5441 i
.rm
.regmem
= i
.base_reg
->reg_num
;
5442 if ((i
.base_reg
->reg_flags
& RegRex
) != 0)
5444 i
.sib
.base
= i
.base_reg
->reg_num
;
5445 /* x86-64 ignores REX prefix bit here to avoid decoder
5447 if ((i
.base_reg
->reg_num
& 7) == EBP_REG_NUM
)
5450 if (i
.disp_operands
== 0)
5452 fake_zero_displacement
= 1;
5453 i
.types
[op
].bitfield
.disp8
= 1;
5456 else if (i
.base_reg
->reg_num
== ESP_REG_NUM
)
5460 i
.sib
.scale
= i
.log2_scale_factor
;
5461 if (i
.index_reg
== 0)
5463 /* <disp>(%esp) becomes two byte modrm with no index
5464 register. We've already stored the code for esp
5465 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
5466 Any base register besides %esp will not use the
5467 extra modrm byte. */
5468 i
.sib
.index
= NO_INDEX_REGISTER
;
5472 if (i
.index_reg
->reg_num
== RegEiz
5473 || i
.index_reg
->reg_num
== RegRiz
)
5474 i
.sib
.index
= NO_INDEX_REGISTER
;
5476 i
.sib
.index
= i
.index_reg
->reg_num
;
5477 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
5478 if ((i
.index_reg
->reg_flags
& RegRex
) != 0)
5483 && (i
.reloc
[op
] == BFD_RELOC_386_TLS_DESC_CALL
5484 || i
.reloc
[op
] == BFD_RELOC_X86_64_TLSDESC_CALL
))
5487 i
.rm
.mode
= mode_from_disp_size (i
.types
[op
]);
5490 if (fake_zero_displacement
)
5492 /* Fakes a zero displacement assuming that i.types[op]
5493 holds the correct displacement size. */
5496 gas_assert (i
.op
[op
].disps
== 0);
5497 exp
= &disp_expressions
[i
.disp_operands
++];
5498 i
.op
[op
].disps
= exp
;
5499 exp
->X_op
= O_constant
;
5500 exp
->X_add_number
= 0;
5501 exp
->X_add_symbol
= (symbolS
*) 0;
5502 exp
->X_op_symbol
= (symbolS
*) 0;
5510 if (i
.tm
.opcode_modifier
.vexsources
== XOP2SOURCES
)
5512 if (operand_type_check (i
.types
[0], imm
))
5513 i
.vex
.register_specifier
= NULL
;
5516 /* VEX.vvvv encodes one of the sources when the first
5517 operand is not an immediate. */
5518 if (i
.tm
.opcode_modifier
.vexw
== VEXW0
)
5519 i
.vex
.register_specifier
= i
.op
[0].regs
;
5521 i
.vex
.register_specifier
= i
.op
[1].regs
;
5524 /* Destination is a XMM register encoded in the ModRM.reg
5526 i
.rm
.reg
= i
.op
[2].regs
->reg_num
;
5527 if ((i
.op
[2].regs
->reg_flags
& RegRex
) != 0)
5530 /* ModRM.rm and VEX.B encodes the other source. */
5531 if (!i
.mem_operands
)
5535 if (i
.tm
.opcode_modifier
.vexw
== VEXW0
)
5536 i
.rm
.regmem
= i
.op
[1].regs
->reg_num
;
5538 i
.rm
.regmem
= i
.op
[0].regs
->reg_num
;
5540 if ((i
.op
[1].regs
->reg_flags
& RegRex
) != 0)
5544 else if (i
.tm
.opcode_modifier
.vexvvvv
== VEXLWP
)
5546 i
.vex
.register_specifier
= i
.op
[2].regs
;
5547 if (!i
.mem_operands
)
5550 i
.rm
.regmem
= i
.op
[1].regs
->reg_num
;
5551 if ((i
.op
[1].regs
->reg_flags
& RegRex
) != 0)
5555 /* Fill in i.rm.reg or i.rm.regmem field with register operand
5556 (if any) based on i.tm.extension_opcode. Again, we must be
5557 careful to make sure that segment/control/debug/test/MMX
5558 registers are coded into the i.rm.reg field. */
5559 else if (i
.reg_operands
)
5562 unsigned int vex_reg
= ~0;
5564 for (op
= 0; op
< i
.operands
; op
++)
5565 if (i
.types
[op
].bitfield
.reg8
5566 || i
.types
[op
].bitfield
.reg16
5567 || i
.types
[op
].bitfield
.reg32
5568 || i
.types
[op
].bitfield
.reg64
5569 || i
.types
[op
].bitfield
.regmmx
5570 || i
.types
[op
].bitfield
.regxmm
5571 || i
.types
[op
].bitfield
.regymm
5572 || i
.types
[op
].bitfield
.sreg2
5573 || i
.types
[op
].bitfield
.sreg3
5574 || i
.types
[op
].bitfield
.control
5575 || i
.types
[op
].bitfield
.debug
5576 || i
.types
[op
].bitfield
.test
)
5581 else if (i
.tm
.opcode_modifier
.vexvvvv
== VEXXDS
)
5583 /* For instructions with VexNDS, the register-only
5584 source operand is encoded in VEX prefix. */
5585 gas_assert (mem
!= (unsigned int) ~0);
5590 gas_assert (op
< i
.operands
);
5595 gas_assert (vex_reg
< i
.operands
);
5598 else if (i
.tm
.opcode_modifier
.vexvvvv
== VEXNDD
)
5600 /* For instructions with VexNDD, there should be
5601 no memory operand and the register destination
5602 is encoded in VEX prefix. */
5603 gas_assert (i
.mem_operands
== 0
5604 && (op
+ 2) == i
.operands
);
5608 gas_assert (op
< i
.operands
);
5610 if (vex_reg
!= (unsigned int) ~0)
5612 gas_assert (i
.reg_operands
== 2);
5614 if (!operand_type_equal (&i
.tm
.operand_types
[vex_reg
],
5616 && !operand_type_equal (&i
.tm
.operand_types
[vex_reg
],
5620 i
.vex
.register_specifier
= i
.op
[vex_reg
].regs
;
5623 /* Don't set OP operand twice. */
5626 /* If there is an extension opcode to put here, the
5627 register number must be put into the regmem field. */
5628 if (i
.tm
.extension_opcode
!= None
)
5630 i
.rm
.regmem
= i
.op
[op
].regs
->reg_num
;
5631 if ((i
.op
[op
].regs
->reg_flags
& RegRex
) != 0)
5636 i
.rm
.reg
= i
.op
[op
].regs
->reg_num
;
5637 if ((i
.op
[op
].regs
->reg_flags
& RegRex
) != 0)
5642 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
5643 must set it to 3 to indicate this is a register operand
5644 in the regmem field. */
5645 if (!i
.mem_operands
)
5649 /* Fill in i.rm.reg field with extension opcode (if any). */
5650 if (i
.tm
.extension_opcode
!= None
)
5651 i
.rm
.reg
= i
.tm
.extension_opcode
;
5657 output_branch (void)
5662 relax_substateT subtype
;
5667 if (flag_code
== CODE_16BIT
)
5671 if (i
.prefix
[DATA_PREFIX
] != 0)
5677 /* Pentium4 branch hints. */
5678 if (i
.prefix
[SEG_PREFIX
] == CS_PREFIX_OPCODE
/* not taken */
5679 || i
.prefix
[SEG_PREFIX
] == DS_PREFIX_OPCODE
/* taken */)
5684 if (i
.prefix
[REX_PREFIX
] != 0)
5690 if (i
.prefixes
!= 0 && !intel_syntax
)
5691 as_warn (_("skipping prefixes on this instruction"));
5693 /* It's always a symbol; End frag & setup for relax.
5694 Make sure there is enough room in this frag for the largest
5695 instruction we may generate in md_convert_frag. This is 2
5696 bytes for the opcode and room for the prefix and largest
5698 frag_grow (prefix
+ 2 + 4);
5699 /* Prefix and 1 opcode byte go in fr_fix. */
5700 p
= frag_more (prefix
+ 1);
5701 if (i
.prefix
[DATA_PREFIX
] != 0)
5702 *p
++ = DATA_PREFIX_OPCODE
;
5703 if (i
.prefix
[SEG_PREFIX
] == CS_PREFIX_OPCODE
5704 || i
.prefix
[SEG_PREFIX
] == DS_PREFIX_OPCODE
)
5705 *p
++ = i
.prefix
[SEG_PREFIX
];
5706 if (i
.prefix
[REX_PREFIX
] != 0)
5707 *p
++ = i
.prefix
[REX_PREFIX
];
5708 *p
= i
.tm
.base_opcode
;
5710 if ((unsigned char) *p
== JUMP_PC_RELATIVE
)
5711 subtype
= ENCODE_RELAX_STATE (UNCOND_JUMP
, SMALL
);
5712 else if (cpu_arch_flags
.bitfield
.cpui386
)
5713 subtype
= ENCODE_RELAX_STATE (COND_JUMP
, SMALL
);
5715 subtype
= ENCODE_RELAX_STATE (COND_JUMP86
, SMALL
);
5718 sym
= i
.op
[0].disps
->X_add_symbol
;
5719 off
= i
.op
[0].disps
->X_add_number
;
5721 if (i
.op
[0].disps
->X_op
!= O_constant
5722 && i
.op
[0].disps
->X_op
!= O_symbol
)
5724 /* Handle complex expressions. */
5725 sym
= make_expr_symbol (i
.op
[0].disps
);
5729 /* 1 possible extra opcode + 4 byte displacement go in var part.
5730 Pass reloc in fr_var. */
5731 frag_var (rs_machine_dependent
, 5, i
.reloc
[0], subtype
, sym
, off
, p
);
5741 if (i
.tm
.opcode_modifier
.jumpbyte
)
5743 /* This is a loop or jecxz type instruction. */
5745 if (i
.prefix
[ADDR_PREFIX
] != 0)
5747 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE
);
5750 /* Pentium4 branch hints. */
5751 if (i
.prefix
[SEG_PREFIX
] == CS_PREFIX_OPCODE
/* not taken */
5752 || i
.prefix
[SEG_PREFIX
] == DS_PREFIX_OPCODE
/* taken */)
5754 FRAG_APPEND_1_CHAR (i
.prefix
[SEG_PREFIX
]);
5763 if (flag_code
== CODE_16BIT
)
5766 if (i
.prefix
[DATA_PREFIX
] != 0)
5768 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE
);
5778 if (i
.prefix
[REX_PREFIX
] != 0)
5780 FRAG_APPEND_1_CHAR (i
.prefix
[REX_PREFIX
]);
5784 if (i
.prefixes
!= 0 && !intel_syntax
)
5785 as_warn (_("skipping prefixes on this instruction"));
5787 p
= frag_more (1 + size
);
5788 *p
++ = i
.tm
.base_opcode
;
5790 fixP
= fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
5791 i
.op
[0].disps
, 1, reloc (size
, 1, 1, i
.reloc
[0]));
5793 /* All jumps handled here are signed, but don't use a signed limit
5794 check for 32 and 16 bit jumps as we want to allow wrap around at
5795 4G and 64k respectively. */
5797 fixP
->fx_signed
= 1;
5801 output_interseg_jump (void)
5809 if (flag_code
== CODE_16BIT
)
5813 if (i
.prefix
[DATA_PREFIX
] != 0)
5819 if (i
.prefix
[REX_PREFIX
] != 0)
5829 if (i
.prefixes
!= 0 && !intel_syntax
)
5830 as_warn (_("skipping prefixes on this instruction"));
5832 /* 1 opcode; 2 segment; offset */
5833 p
= frag_more (prefix
+ 1 + 2 + size
);
5835 if (i
.prefix
[DATA_PREFIX
] != 0)
5836 *p
++ = DATA_PREFIX_OPCODE
;
5838 if (i
.prefix
[REX_PREFIX
] != 0)
5839 *p
++ = i
.prefix
[REX_PREFIX
];
5841 *p
++ = i
.tm
.base_opcode
;
5842 if (i
.op
[1].imms
->X_op
== O_constant
)
5844 offsetT n
= i
.op
[1].imms
->X_add_number
;
5847 && !fits_in_unsigned_word (n
)
5848 && !fits_in_signed_word (n
))
5850 as_bad (_("16-bit jump out of range"));
5853 md_number_to_chars (p
, n
, size
);
5856 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
5857 i
.op
[1].imms
, 0, reloc (size
, 0, 0, i
.reloc
[1]));
5858 if (i
.op
[0].imms
->X_op
!= O_constant
)
5859 as_bad (_("can't handle non absolute segment in `%s'"),
5861 md_number_to_chars (p
+ size
, (valueT
) i
.op
[0].imms
->X_add_number
, 2);
5867 fragS
*insn_start_frag
;
5868 offsetT insn_start_off
;
5870 /* Tie dwarf2 debug info to the address at the start of the insn.
5871 We can't do this after the insn has been output as the current
5872 frag may have been closed off. eg. by frag_var. */
5873 dwarf2_emit_insn (0);
5875 insn_start_frag
= frag_now
;
5876 insn_start_off
= frag_now_fix ();
5879 if (i
.tm
.opcode_modifier
.jump
)
5881 else if (i
.tm
.opcode_modifier
.jumpbyte
5882 || i
.tm
.opcode_modifier
.jumpdword
)
5884 else if (i
.tm
.opcode_modifier
.jumpintersegment
)
5885 output_interseg_jump ();
5888 /* Output normal instructions here. */
5892 unsigned int prefix
;
5894 /* Since the VEX prefix contains the implicit prefix, we don't
5895 need the explicit prefix. */
5896 if (!i
.tm
.opcode_modifier
.vex
)
5898 switch (i
.tm
.opcode_length
)
5901 if (i
.tm
.base_opcode
& 0xff000000)
5903 prefix
= (i
.tm
.base_opcode
>> 24) & 0xff;
5908 if ((i
.tm
.base_opcode
& 0xff0000) != 0)
5910 prefix
= (i
.tm
.base_opcode
>> 16) & 0xff;
5911 if (i
.tm
.cpu_flags
.bitfield
.cpupadlock
)
5914 if (prefix
!= REPE_PREFIX_OPCODE
5915 || (i
.prefix
[REP_PREFIX
]
5916 != REPE_PREFIX_OPCODE
))
5917 add_prefix (prefix
);
5920 add_prefix (prefix
);
5929 /* The prefix bytes. */
5930 for (j
= ARRAY_SIZE (i
.prefix
), q
= i
.prefix
; j
> 0; j
--, q
++)
5932 FRAG_APPEND_1_CHAR (*q
);
5935 if (i
.tm
.opcode_modifier
.vex
)
5937 for (j
= 0, q
= i
.prefix
; j
< ARRAY_SIZE (i
.prefix
); j
++, q
++)
5942 /* REX byte is encoded in VEX prefix. */
5946 FRAG_APPEND_1_CHAR (*q
);
5949 /* There should be no other prefixes for instructions
5954 /* Now the VEX prefix. */
5955 p
= frag_more (i
.vex
.length
);
5956 for (j
= 0; j
< i
.vex
.length
; j
++)
5957 p
[j
] = i
.vex
.bytes
[j
];
5960 /* Now the opcode; be careful about word order here! */
5961 if (i
.tm
.opcode_length
== 1)
5963 FRAG_APPEND_1_CHAR (i
.tm
.base_opcode
);
5967 switch (i
.tm
.opcode_length
)
5971 *p
++ = (i
.tm
.base_opcode
>> 16) & 0xff;
5981 /* Put out high byte first: can't use md_number_to_chars! */
5982 *p
++ = (i
.tm
.base_opcode
>> 8) & 0xff;
5983 *p
= i
.tm
.base_opcode
& 0xff;
5986 /* Now the modrm byte and sib byte (if present). */
5987 if (i
.tm
.opcode_modifier
.modrm
)
5989 FRAG_APPEND_1_CHAR ((i
.rm
.regmem
<< 0
5992 /* If i.rm.regmem == ESP (4)
5993 && i.rm.mode != (Register mode)
5995 ==> need second modrm byte. */
5996 if (i
.rm
.regmem
== ESCAPE_TO_TWO_BYTE_ADDRESSING
5998 && !(i
.base_reg
&& i
.base_reg
->reg_type
.bitfield
.reg16
))
5999 FRAG_APPEND_1_CHAR ((i
.sib
.base
<< 0
6001 | i
.sib
.scale
<< 6));
6004 if (i
.disp_operands
)
6005 output_disp (insn_start_frag
, insn_start_off
);
6008 output_imm (insn_start_frag
, insn_start_off
);
6014 pi ("" /*line*/, &i
);
6016 #endif /* DEBUG386 */
6019 /* Return the size of the displacement operand N. */
6022 disp_size (unsigned int n
)
6025 if (i
.types
[n
].bitfield
.disp64
)
6027 else if (i
.types
[n
].bitfield
.disp8
)
6029 else if (i
.types
[n
].bitfield
.disp16
)
6034 /* Return the size of the immediate operand N. */
6037 imm_size (unsigned int n
)
6040 if (i
.types
[n
].bitfield
.imm64
)
6042 else if (i
.types
[n
].bitfield
.imm8
|| i
.types
[n
].bitfield
.imm8s
)
6044 else if (i
.types
[n
].bitfield
.imm16
)
6050 output_disp (fragS
*insn_start_frag
, offsetT insn_start_off
)
6055 for (n
= 0; n
< i
.operands
; n
++)
6057 if (operand_type_check (i
.types
[n
], disp
))
6059 if (i
.op
[n
].disps
->X_op
== O_constant
)
6061 int size
= disp_size (n
);
6064 val
= offset_in_range (i
.op
[n
].disps
->X_add_number
,
6066 p
= frag_more (size
);
6067 md_number_to_chars (p
, val
, size
);
6071 enum bfd_reloc_code_real reloc_type
;
6072 int size
= disp_size (n
);
6073 int sign
= i
.types
[n
].bitfield
.disp32s
;
6074 int pcrel
= (i
.flags
[n
] & Operand_PCrel
) != 0;
6076 /* We can't have 8 bit displacement here. */
6077 gas_assert (!i
.types
[n
].bitfield
.disp8
);
6079 /* The PC relative address is computed relative
6080 to the instruction boundary, so in case immediate
6081 fields follows, we need to adjust the value. */
6082 if (pcrel
&& i
.imm_operands
)
6087 for (n1
= 0; n1
< i
.operands
; n1
++)
6088 if (operand_type_check (i
.types
[n1
], imm
))
6090 /* Only one immediate is allowed for PC
6091 relative address. */
6092 gas_assert (sz
== 0);
6094 i
.op
[n
].disps
->X_add_number
-= sz
;
6096 /* We should find the immediate. */
6097 gas_assert (sz
!= 0);
6100 p
= frag_more (size
);
6101 reloc_type
= reloc (size
, pcrel
, sign
, i
.reloc
[n
]);
6103 && GOT_symbol
== i
.op
[n
].disps
->X_add_symbol
6104 && (((reloc_type
== BFD_RELOC_32
6105 || reloc_type
== BFD_RELOC_X86_64_32S
6106 || (reloc_type
== BFD_RELOC_64
6108 && (i
.op
[n
].disps
->X_op
== O_symbol
6109 || (i
.op
[n
].disps
->X_op
== O_add
6110 && ((symbol_get_value_expression
6111 (i
.op
[n
].disps
->X_op_symbol
)->X_op
)
6113 || reloc_type
== BFD_RELOC_32_PCREL
))
6117 if (insn_start_frag
== frag_now
)
6118 add
= (p
- frag_now
->fr_literal
) - insn_start_off
;
6123 add
= insn_start_frag
->fr_fix
- insn_start_off
;
6124 for (fr
= insn_start_frag
->fr_next
;
6125 fr
&& fr
!= frag_now
; fr
= fr
->fr_next
)
6127 add
+= p
- frag_now
->fr_literal
;
6132 reloc_type
= BFD_RELOC_386_GOTPC
;
6133 i
.op
[n
].imms
->X_add_number
+= add
;
6135 else if (reloc_type
== BFD_RELOC_64
)
6136 reloc_type
= BFD_RELOC_X86_64_GOTPC64
;
6138 /* Don't do the adjustment for x86-64, as there
6139 the pcrel addressing is relative to the _next_
6140 insn, and that is taken care of in other code. */
6141 reloc_type
= BFD_RELOC_X86_64_GOTPC32
;
6143 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
6144 i
.op
[n
].disps
, pcrel
, reloc_type
);
6151 output_imm (fragS
*insn_start_frag
, offsetT insn_start_off
)
6156 for (n
= 0; n
< i
.operands
; n
++)
6158 if (operand_type_check (i
.types
[n
], imm
))
6160 if (i
.op
[n
].imms
->X_op
== O_constant
)
6162 int size
= imm_size (n
);
6165 val
= offset_in_range (i
.op
[n
].imms
->X_add_number
,
6167 p
= frag_more (size
);
6168 md_number_to_chars (p
, val
, size
);
6172 /* Not absolute_section.
6173 Need a 32-bit fixup (don't support 8bit
6174 non-absolute imms). Try to support other
6176 enum bfd_reloc_code_real reloc_type
;
6177 int size
= imm_size (n
);
6180 if (i
.types
[n
].bitfield
.imm32s
6181 && (i
.suffix
== QWORD_MNEM_SUFFIX
6182 || (!i
.suffix
&& i
.tm
.opcode_modifier
.no_lsuf
)))
6187 p
= frag_more (size
);
6188 reloc_type
= reloc (size
, 0, sign
, i
.reloc
[n
]);
6190 /* This is tough to explain. We end up with this one if we
6191 * have operands that look like
6192 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
6193 * obtain the absolute address of the GOT, and it is strongly
6194 * preferable from a performance point of view to avoid using
6195 * a runtime relocation for this. The actual sequence of
6196 * instructions often look something like:
6201 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
6203 * The call and pop essentially return the absolute address
6204 * of the label .L66 and store it in %ebx. The linker itself
6205 * will ultimately change the first operand of the addl so
6206 * that %ebx points to the GOT, but to keep things simple, the
6207 * .o file must have this operand set so that it generates not
6208 * the absolute address of .L66, but the absolute address of
6209 * itself. This allows the linker itself simply treat a GOTPC
6210 * relocation as asking for a pcrel offset to the GOT to be
6211 * added in, and the addend of the relocation is stored in the
6212 * operand field for the instruction itself.
6214 * Our job here is to fix the operand so that it would add
6215 * the correct offset so that %ebx would point to itself. The
6216 * thing that is tricky is that .-.L66 will point to the
6217 * beginning of the instruction, so we need to further modify
6218 * the operand so that it will point to itself. There are
6219 * other cases where you have something like:
6221 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
6223 * and here no correction would be required. Internally in
6224 * the assembler we treat operands of this form as not being
6225 * pcrel since the '.' is explicitly mentioned, and I wonder
6226 * whether it would simplify matters to do it this way. Who
6227 * knows. In earlier versions of the PIC patches, the
6228 * pcrel_adjust field was used to store the correction, but
6229 * since the expression is not pcrel, I felt it would be
6230 * confusing to do it this way. */
6232 if ((reloc_type
== BFD_RELOC_32
6233 || reloc_type
== BFD_RELOC_X86_64_32S
6234 || reloc_type
== BFD_RELOC_64
)
6236 && GOT_symbol
== i
.op
[n
].imms
->X_add_symbol
6237 && (i
.op
[n
].imms
->X_op
== O_symbol
6238 || (i
.op
[n
].imms
->X_op
== O_add
6239 && ((symbol_get_value_expression
6240 (i
.op
[n
].imms
->X_op_symbol
)->X_op
)
6245 if (insn_start_frag
== frag_now
)
6246 add
= (p
- frag_now
->fr_literal
) - insn_start_off
;
6251 add
= insn_start_frag
->fr_fix
- insn_start_off
;
6252 for (fr
= insn_start_frag
->fr_next
;
6253 fr
&& fr
!= frag_now
; fr
= fr
->fr_next
)
6255 add
+= p
- frag_now
->fr_literal
;
6259 reloc_type
= BFD_RELOC_386_GOTPC
;
6261 reloc_type
= BFD_RELOC_X86_64_GOTPC32
;
6263 reloc_type
= BFD_RELOC_X86_64_GOTPC64
;
6264 i
.op
[n
].imms
->X_add_number
+= add
;
6266 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
6267 i
.op
[n
].imms
, 0, reloc_type
);
6273 /* x86_cons_fix_new is called via the expression parsing code when a
6274 reloc is needed. We use this hook to get the correct .got reloc. */
6275 static enum bfd_reloc_code_real got_reloc
= NO_RELOC
;
6276 static int cons_sign
= -1;
6279 x86_cons_fix_new (fragS
*frag
, unsigned int off
, unsigned int len
,
6282 enum bfd_reloc_code_real r
= reloc (len
, 0, cons_sign
, got_reloc
);
6284 got_reloc
= NO_RELOC
;
6287 if (exp
->X_op
== O_secrel
)
6289 exp
->X_op
= O_symbol
;
6290 r
= BFD_RELOC_32_SECREL
;
6294 fix_new_exp (frag
, off
, len
, exp
, 0, r
);
6297 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
6298 # define lex_got(reloc, adjust, types) NULL
6300 /* Parse operands of the form
6301 <symbol>@GOTOFF+<nnn>
6302 and similar .plt or .got references.
6304 If we find one, set up the correct relocation in RELOC and copy the
6305 input string, minus the `@GOTOFF' into a malloc'd buffer for
6306 parsing by the calling routine. Return this buffer, and if ADJUST
6307 is non-null set it to the length of the string we removed from the
6308 input line. Otherwise return NULL. */
6310 lex_got (enum bfd_reloc_code_real
*rel
,
6312 i386_operand_type
*types
)
6314 /* Some of the relocations depend on the size of what field is to
6315 be relocated. But in our callers i386_immediate and i386_displacement
6316 we don't yet know the operand size (this will be set by insn
6317 matching). Hence we record the word32 relocation here,
6318 and adjust the reloc according to the real size in reloc(). */
6319 static const struct {
6322 const enum bfd_reloc_code_real rel
[2];
6323 const i386_operand_type types64
;
6325 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real
,
6326 BFD_RELOC_X86_64_PLTOFF64
},
6327 OPERAND_TYPE_IMM64
},
6328 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32
,
6329 BFD_RELOC_X86_64_PLT32
},
6330 OPERAND_TYPE_IMM32_32S_DISP32
},
6331 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real
,
6332 BFD_RELOC_X86_64_GOTPLT64
},
6333 OPERAND_TYPE_IMM64_DISP64
},
6334 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF
,
6335 BFD_RELOC_X86_64_GOTOFF64
},
6336 OPERAND_TYPE_IMM64_DISP64
},
6337 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real
,
6338 BFD_RELOC_X86_64_GOTPCREL
},
6339 OPERAND_TYPE_IMM32_32S_DISP32
},
6340 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD
,
6341 BFD_RELOC_X86_64_TLSGD
},
6342 OPERAND_TYPE_IMM32_32S_DISP32
},
6343 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM
,
6344 _dummy_first_bfd_reloc_code_real
},
6345 OPERAND_TYPE_NONE
},
6346 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real
,
6347 BFD_RELOC_X86_64_TLSLD
},
6348 OPERAND_TYPE_IMM32_32S_DISP32
},
6349 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32
,
6350 BFD_RELOC_X86_64_GOTTPOFF
},
6351 OPERAND_TYPE_IMM32_32S_DISP32
},
6352 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32
,
6353 BFD_RELOC_X86_64_TPOFF32
},
6354 OPERAND_TYPE_IMM32_32S_64_DISP32_64
},
6355 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE
,
6356 _dummy_first_bfd_reloc_code_real
},
6357 OPERAND_TYPE_NONE
},
6358 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32
,
6359 BFD_RELOC_X86_64_DTPOFF32
},
6360 OPERAND_TYPE_IMM32_32S_64_DISP32_64
},
6361 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE
,
6362 _dummy_first_bfd_reloc_code_real
},
6363 OPERAND_TYPE_NONE
},
6364 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE
,
6365 _dummy_first_bfd_reloc_code_real
},
6366 OPERAND_TYPE_NONE
},
6367 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32
,
6368 BFD_RELOC_X86_64_GOT32
},
6369 OPERAND_TYPE_IMM32_32S_64_DISP32
},
6370 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC
,
6371 BFD_RELOC_X86_64_GOTPC32_TLSDESC
},
6372 OPERAND_TYPE_IMM32_32S_DISP32
},
6373 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL
,
6374 BFD_RELOC_X86_64_TLSDESC_CALL
},
6375 OPERAND_TYPE_IMM32_32S_DISP32
},
6383 for (cp
= input_line_pointer
; *cp
!= '@'; cp
++)
6384 if (is_end_of_line
[(unsigned char) *cp
] || *cp
== ',')
6387 for (j
= 0; j
< ARRAY_SIZE (gotrel
); j
++)
6389 int len
= gotrel
[j
].len
;
6390 if (strncasecmp (cp
+ 1, gotrel
[j
].str
, len
) == 0)
6392 if (gotrel
[j
].rel
[object_64bit
] != 0)
6395 char *tmpbuf
, *past_reloc
;
6397 *rel
= gotrel
[j
].rel
[object_64bit
];
6403 if (flag_code
!= CODE_64BIT
)
6405 types
->bitfield
.imm32
= 1;
6406 types
->bitfield
.disp32
= 1;
6409 *types
= gotrel
[j
].types64
;
6412 if (GOT_symbol
== NULL
)
6413 GOT_symbol
= symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME
);
6415 /* The length of the first part of our input line. */
6416 first
= cp
- input_line_pointer
;
6418 /* The second part goes from after the reloc token until
6419 (and including) an end_of_line char or comma. */
6420 past_reloc
= cp
+ 1 + len
;
6422 while (!is_end_of_line
[(unsigned char) *cp
] && *cp
!= ',')
6424 second
= cp
+ 1 - past_reloc
;
6426 /* Allocate and copy string. The trailing NUL shouldn't
6427 be necessary, but be safe. */
6428 tmpbuf
= (char *) xmalloc (first
+ second
+ 2);
6429 memcpy (tmpbuf
, input_line_pointer
, first
);
6430 if (second
!= 0 && *past_reloc
!= ' ')
6431 /* Replace the relocation token with ' ', so that
6432 errors like foo@GOTOFF1 will be detected. */
6433 tmpbuf
[first
++] = ' ';
6434 memcpy (tmpbuf
+ first
, past_reloc
, second
);
6435 tmpbuf
[first
+ second
] = '\0';
6439 as_bad (_("@%s reloc is not supported with %d-bit output format"),
6440 gotrel
[j
].str
, 1 << (5 + object_64bit
));
6445 /* Might be a symbol version string. Don't as_bad here. */
6450 x86_cons (expressionS
*exp
, int size
)
6452 intel_syntax
= -intel_syntax
;
6455 if (size
== 4 || (object_64bit
&& size
== 8))
6457 /* Handle @GOTOFF and the like in an expression. */
6459 char *gotfree_input_line
;
6462 save
= input_line_pointer
;
6463 gotfree_input_line
= lex_got (&got_reloc
, &adjust
, NULL
);
6464 if (gotfree_input_line
)
6465 input_line_pointer
= gotfree_input_line
;
6469 if (gotfree_input_line
)
6471 /* expression () has merrily parsed up to the end of line,
6472 or a comma - in the wrong buffer. Transfer how far
6473 input_line_pointer has moved to the right buffer. */
6474 input_line_pointer
= (save
6475 + (input_line_pointer
- gotfree_input_line
)
6477 free (gotfree_input_line
);
6478 if (exp
->X_op
== O_constant
6479 || exp
->X_op
== O_absent
6480 || exp
->X_op
== O_illegal
6481 || exp
->X_op
== O_register
6482 || exp
->X_op
== O_big
)
6484 char c
= *input_line_pointer
;
6485 *input_line_pointer
= 0;
6486 as_bad (_("missing or invalid expression `%s'"), save
);
6487 *input_line_pointer
= c
;
6494 intel_syntax
= -intel_syntax
;
6497 i386_intel_simplify (exp
);
6502 signed_cons (int size
)
6504 if (flag_code
== CODE_64BIT
)
6512 pe_directive_secrel (dummy
)
6513 int dummy ATTRIBUTE_UNUSED
;
6520 if (exp
.X_op
== O_symbol
)
6521 exp
.X_op
= O_secrel
;
6523 emit_expr (&exp
, 4);
6525 while (*input_line_pointer
++ == ',');
6527 input_line_pointer
--;
6528 demand_empty_rest_of_line ();
6533 i386_immediate (char *imm_start
)
6535 char *save_input_line_pointer
;
6536 char *gotfree_input_line
;
6539 i386_operand_type types
;
6541 operand_type_set (&types
, ~0);
6543 if (i
.imm_operands
== MAX_IMMEDIATE_OPERANDS
)
6545 as_bad (_("at most %d immediate operands are allowed"),
6546 MAX_IMMEDIATE_OPERANDS
);
6550 exp
= &im_expressions
[i
.imm_operands
++];
6551 i
.op
[this_operand
].imms
= exp
;
6553 if (is_space_char (*imm_start
))
6556 save_input_line_pointer
= input_line_pointer
;
6557 input_line_pointer
= imm_start
;
6559 gotfree_input_line
= lex_got (&i
.reloc
[this_operand
], NULL
, &types
);
6560 if (gotfree_input_line
)
6561 input_line_pointer
= gotfree_input_line
;
6563 exp_seg
= expression (exp
);
6566 if (*input_line_pointer
)
6567 as_bad (_("junk `%s' after expression"), input_line_pointer
);
6569 input_line_pointer
= save_input_line_pointer
;
6570 if (gotfree_input_line
)
6572 free (gotfree_input_line
);
6574 if (exp
->X_op
== O_constant
|| exp
->X_op
== O_register
)
6575 exp
->X_op
= O_illegal
;
6578 return i386_finalize_immediate (exp_seg
, exp
, types
, imm_start
);
6582 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED
, expressionS
*exp
,
6583 i386_operand_type types
, const char *imm_start
)
6585 if (exp
->X_op
== O_absent
|| exp
->X_op
== O_illegal
|| exp
->X_op
== O_big
)
6588 as_bad (_("missing or invalid immediate expression `%s'"),
6592 else if (exp
->X_op
== O_constant
)
6594 /* Size it properly later. */
6595 i
.types
[this_operand
].bitfield
.imm64
= 1;
6596 /* If BFD64, sign extend val. */
6597 if (!use_rela_relocations
6598 && (exp
->X_add_number
& ~(((addressT
) 2 << 31) - 1)) == 0)
6600 = (exp
->X_add_number
^ ((addressT
) 1 << 31)) - ((addressT
) 1 << 31);
6602 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6603 else if (OUTPUT_FLAVOR
== bfd_target_aout_flavour
6604 && exp_seg
!= absolute_section
6605 && exp_seg
!= text_section
6606 && exp_seg
!= data_section
6607 && exp_seg
!= bss_section
6608 && exp_seg
!= undefined_section
6609 && !bfd_is_com_section (exp_seg
))
6611 as_bad (_("unimplemented segment %s in operand"), exp_seg
->name
);
6615 else if (!intel_syntax
&& exp
->X_op
== O_register
)
6618 as_bad (_("illegal immediate register operand %s"), imm_start
);
6623 /* This is an address. The size of the address will be
6624 determined later, depending on destination register,
6625 suffix, or the default for the section. */
6626 i
.types
[this_operand
].bitfield
.imm8
= 1;
6627 i
.types
[this_operand
].bitfield
.imm16
= 1;
6628 i
.types
[this_operand
].bitfield
.imm32
= 1;
6629 i
.types
[this_operand
].bitfield
.imm32s
= 1;
6630 i
.types
[this_operand
].bitfield
.imm64
= 1;
6631 i
.types
[this_operand
] = operand_type_and (i
.types
[this_operand
],
6639 i386_scale (char *scale
)
6642 char *save
= input_line_pointer
;
6644 input_line_pointer
= scale
;
6645 val
= get_absolute_expression ();
6650 i
.log2_scale_factor
= 0;
6653 i
.log2_scale_factor
= 1;
6656 i
.log2_scale_factor
= 2;
6659 i
.log2_scale_factor
= 3;
6663 char sep
= *input_line_pointer
;
6665 *input_line_pointer
= '\0';
6666 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
6668 *input_line_pointer
= sep
;
6669 input_line_pointer
= save
;
6673 if (i
.log2_scale_factor
!= 0 && i
.index_reg
== 0)
6675 as_warn (_("scale factor of %d without an index register"),
6676 1 << i
.log2_scale_factor
);
6677 i
.log2_scale_factor
= 0;
6679 scale
= input_line_pointer
;
6680 input_line_pointer
= save
;
6685 i386_displacement (char *disp_start
, char *disp_end
)
6689 char *save_input_line_pointer
;
6690 char *gotfree_input_line
;
6692 i386_operand_type bigdisp
, types
= anydisp
;
6695 if (i
.disp_operands
== MAX_MEMORY_OPERANDS
)
6697 as_bad (_("at most %d displacement operands are allowed"),
6698 MAX_MEMORY_OPERANDS
);
6702 operand_type_set (&bigdisp
, 0);
6703 if ((i
.types
[this_operand
].bitfield
.jumpabsolute
)
6704 || (!current_templates
->start
->opcode_modifier
.jump
6705 && !current_templates
->start
->opcode_modifier
.jumpdword
))
6707 bigdisp
.bitfield
.disp32
= 1;
6708 override
= (i
.prefix
[ADDR_PREFIX
] != 0);
6709 if (flag_code
== CODE_64BIT
)
6713 bigdisp
.bitfield
.disp32s
= 1;
6714 bigdisp
.bitfield
.disp64
= 1;
6717 else if ((flag_code
== CODE_16BIT
) ^ override
)
6719 bigdisp
.bitfield
.disp32
= 0;
6720 bigdisp
.bitfield
.disp16
= 1;
6725 /* For PC-relative branches, the width of the displacement
6726 is dependent upon data size, not address size. */
6727 override
= (i
.prefix
[DATA_PREFIX
] != 0);
6728 if (flag_code
== CODE_64BIT
)
6730 if (override
|| i
.suffix
== WORD_MNEM_SUFFIX
)
6731 bigdisp
.bitfield
.disp16
= 1;
6734 bigdisp
.bitfield
.disp32
= 1;
6735 bigdisp
.bitfield
.disp32s
= 1;
6741 override
= (i
.suffix
== (flag_code
!= CODE_16BIT
6743 : LONG_MNEM_SUFFIX
));
6744 bigdisp
.bitfield
.disp32
= 1;
6745 if ((flag_code
== CODE_16BIT
) ^ override
)
6747 bigdisp
.bitfield
.disp32
= 0;
6748 bigdisp
.bitfield
.disp16
= 1;
6752 i
.types
[this_operand
] = operand_type_or (i
.types
[this_operand
],
6755 exp
= &disp_expressions
[i
.disp_operands
];
6756 i
.op
[this_operand
].disps
= exp
;
6758 save_input_line_pointer
= input_line_pointer
;
6759 input_line_pointer
= disp_start
;
6760 END_STRING_AND_SAVE (disp_end
);
6762 #ifndef GCC_ASM_O_HACK
6763 #define GCC_ASM_O_HACK 0
6766 END_STRING_AND_SAVE (disp_end
+ 1);
6767 if (i
.types
[this_operand
].bitfield
.baseIndex
6768 && displacement_string_end
[-1] == '+')
6770 /* This hack is to avoid a warning when using the "o"
6771 constraint within gcc asm statements.
6774 #define _set_tssldt_desc(n,addr,limit,type) \
6775 __asm__ __volatile__ ( \
6777 "movw %w1,2+%0\n\t" \
6779 "movb %b1,4+%0\n\t" \
6780 "movb %4,5+%0\n\t" \
6781 "movb $0,6+%0\n\t" \
6782 "movb %h1,7+%0\n\t" \
6784 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
6786 This works great except that the output assembler ends
6787 up looking a bit weird if it turns out that there is
6788 no offset. You end up producing code that looks like:
6801 So here we provide the missing zero. */
6803 *displacement_string_end
= '0';
6806 gotfree_input_line
= lex_got (&i
.reloc
[this_operand
], NULL
, &types
);
6807 if (gotfree_input_line
)
6808 input_line_pointer
= gotfree_input_line
;
6810 exp_seg
= expression (exp
);
6813 if (*input_line_pointer
)
6814 as_bad (_("junk `%s' after expression"), input_line_pointer
);
6816 RESTORE_END_STRING (disp_end
+ 1);
6818 input_line_pointer
= save_input_line_pointer
;
6819 if (gotfree_input_line
)
6821 free (gotfree_input_line
);
6823 if (exp
->X_op
== O_constant
|| exp
->X_op
== O_register
)
6824 exp
->X_op
= O_illegal
;
6827 ret
= i386_finalize_displacement (exp_seg
, exp
, types
, disp_start
);
6829 RESTORE_END_STRING (disp_end
);
6835 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED
, expressionS
*exp
,
6836 i386_operand_type types
, const char *disp_start
)
6838 i386_operand_type bigdisp
;
6841 /* We do this to make sure that the section symbol is in
6842 the symbol table. We will ultimately change the relocation
6843 to be relative to the beginning of the section. */
6844 if (i
.reloc
[this_operand
] == BFD_RELOC_386_GOTOFF
6845 || i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTPCREL
6846 || i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTOFF64
)
6848 if (exp
->X_op
!= O_symbol
)
6851 if (S_IS_LOCAL (exp
->X_add_symbol
)
6852 && S_GET_SEGMENT (exp
->X_add_symbol
) != undefined_section
)
6853 section_symbol (S_GET_SEGMENT (exp
->X_add_symbol
));
6854 exp
->X_op
= O_subtract
;
6855 exp
->X_op_symbol
= GOT_symbol
;
6856 if (i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTPCREL
)
6857 i
.reloc
[this_operand
] = BFD_RELOC_32_PCREL
;
6858 else if (i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTOFF64
)
6859 i
.reloc
[this_operand
] = BFD_RELOC_64
;
6861 i
.reloc
[this_operand
] = BFD_RELOC_32
;
6864 else if (exp
->X_op
== O_absent
6865 || exp
->X_op
== O_illegal
6866 || exp
->X_op
== O_big
)
6869 as_bad (_("missing or invalid displacement expression `%s'"),
6874 else if (flag_code
== CODE_64BIT
6875 && !i
.prefix
[ADDR_PREFIX
]
6876 && exp
->X_op
== O_constant
)
6878 /* Since displacement is signed extended to 64bit, don't allow
6879 disp32 and turn off disp32s if they are out of range. */
6880 i
.types
[this_operand
].bitfield
.disp32
= 0;
6881 if (!fits_in_signed_long (exp
->X_add_number
))
6883 i
.types
[this_operand
].bitfield
.disp32s
= 0;
6884 if (i
.types
[this_operand
].bitfield
.baseindex
)
6886 as_bad (_("0x%lx out range of signed 32bit displacement"),
6887 (long) exp
->X_add_number
);
6893 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6894 else if (exp
->X_op
!= O_constant
6895 && OUTPUT_FLAVOR
== bfd_target_aout_flavour
6896 && exp_seg
!= absolute_section
6897 && exp_seg
!= text_section
6898 && exp_seg
!= data_section
6899 && exp_seg
!= bss_section
6900 && exp_seg
!= undefined_section
6901 && !bfd_is_com_section (exp_seg
))
6903 as_bad (_("unimplemented segment %s in operand"), exp_seg
->name
);
6908 /* Check if this is a displacement only operand. */
6909 bigdisp
= i
.types
[this_operand
];
6910 bigdisp
.bitfield
.disp8
= 0;
6911 bigdisp
.bitfield
.disp16
= 0;
6912 bigdisp
.bitfield
.disp32
= 0;
6913 bigdisp
.bitfield
.disp32s
= 0;
6914 bigdisp
.bitfield
.disp64
= 0;
6915 if (operand_type_all_zero (&bigdisp
))
6916 i
.types
[this_operand
] = operand_type_and (i
.types
[this_operand
],
6922 /* Make sure the memory operand we've been dealt is valid.
6923 Return 1 on success, 0 on a failure. */
6926 i386_index_check (const char *operand_string
)
6929 const char *kind
= "base/index";
6930 #if INFER_ADDR_PREFIX
6936 if (current_templates
->start
->opcode_modifier
.isstring
6937 && !current_templates
->start
->opcode_modifier
.immext
6938 && (current_templates
->end
[-1].opcode_modifier
.isstring
6941 /* Memory operands of string insns are special in that they only allow
6942 a single register (rDI, rSI, or rBX) as their memory address. */
6943 unsigned int expected
;
6945 kind
= "string address";
6947 if (current_templates
->start
->opcode_modifier
.w
)
6949 i386_operand_type type
= current_templates
->end
[-1].operand_types
[0];
6951 if (!type
.bitfield
.baseindex
6952 || ((!i
.mem_operands
!= !intel_syntax
)
6953 && current_templates
->end
[-1].operand_types
[1]
6954 .bitfield
.baseindex
))
6955 type
= current_templates
->end
[-1].operand_types
[1];
6956 expected
= type
.bitfield
.esseg
? 7 /* rDI */ : 6 /* rSI */;
6959 expected
= 3 /* rBX */;
6961 if (!i
.base_reg
|| i
.index_reg
6962 || operand_type_check (i
.types
[this_operand
], disp
))
6964 else if (!(flag_code
== CODE_64BIT
6965 ? i
.prefix
[ADDR_PREFIX
]
6966 ? i
.base_reg
->reg_type
.bitfield
.reg32
6967 : i
.base_reg
->reg_type
.bitfield
.reg64
6968 : (flag_code
== CODE_16BIT
) ^ !i
.prefix
[ADDR_PREFIX
]
6969 ? i
.base_reg
->reg_type
.bitfield
.reg32
6970 : i
.base_reg
->reg_type
.bitfield
.reg16
))
6972 else if (i
.base_reg
->reg_num
!= expected
)
6979 for (j
= 0; j
< i386_regtab_size
; ++j
)
6980 if ((flag_code
== CODE_64BIT
6981 ? i
.prefix
[ADDR_PREFIX
]
6982 ? i386_regtab
[j
].reg_type
.bitfield
.reg32
6983 : i386_regtab
[j
].reg_type
.bitfield
.reg64
6984 : (flag_code
== CODE_16BIT
) ^ !i
.prefix
[ADDR_PREFIX
]
6985 ? i386_regtab
[j
].reg_type
.bitfield
.reg32
6986 : i386_regtab
[j
].reg_type
.bitfield
.reg16
)
6987 && i386_regtab
[j
].reg_num
== expected
)
6989 gas_assert (j
< i386_regtab_size
);
6990 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
6992 intel_syntax
? '[' : '(',
6994 i386_regtab
[j
].reg_name
,
6995 intel_syntax
? ']' : ')');
6999 else if (flag_code
== CODE_64BIT
)
7002 && ((i
.prefix
[ADDR_PREFIX
] == 0
7003 && !i
.base_reg
->reg_type
.bitfield
.reg64
)
7004 || (i
.prefix
[ADDR_PREFIX
]
7005 && !i
.base_reg
->reg_type
.bitfield
.reg32
))
7007 || i
.base_reg
->reg_num
!=
7008 (i
.prefix
[ADDR_PREFIX
] == 0 ? RegRip
: RegEip
)))
7010 && (!i
.index_reg
->reg_type
.bitfield
.baseindex
7011 || (i
.prefix
[ADDR_PREFIX
] == 0
7012 && i
.index_reg
->reg_num
!= RegRiz
7013 && !i
.index_reg
->reg_type
.bitfield
.reg64
7015 || (i
.prefix
[ADDR_PREFIX
]
7016 && i
.index_reg
->reg_num
!= RegEiz
7017 && !i
.index_reg
->reg_type
.bitfield
.reg32
))))
7022 if ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[ADDR_PREFIX
] != 0))
7026 && (!i
.base_reg
->reg_type
.bitfield
.reg16
7027 || !i
.base_reg
->reg_type
.bitfield
.baseindex
))
7029 && (!i
.index_reg
->reg_type
.bitfield
.reg16
7030 || !i
.index_reg
->reg_type
.bitfield
.baseindex
7032 && i
.base_reg
->reg_num
< 6
7033 && i
.index_reg
->reg_num
>= 6
7034 && i
.log2_scale_factor
== 0))))
7041 && !i
.base_reg
->reg_type
.bitfield
.reg32
)
7043 && ((!i
.index_reg
->reg_type
.bitfield
.reg32
7044 && i
.index_reg
->reg_num
!= RegEiz
)
7045 || !i
.index_reg
->reg_type
.bitfield
.baseindex
)))
7051 #if INFER_ADDR_PREFIX
7052 if (!i
.mem_operands
&& !i
.prefix
[ADDR_PREFIX
])
7054 i
.prefix
[ADDR_PREFIX
] = ADDR_PREFIX_OPCODE
;
7056 /* Change the size of any displacement too. At most one of
7057 Disp16 or Disp32 is set.
7058 FIXME. There doesn't seem to be any real need for separate
7059 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
7060 Removing them would probably clean up the code quite a lot. */
7061 if (flag_code
!= CODE_64BIT
7062 && (i
.types
[this_operand
].bitfield
.disp16
7063 || i
.types
[this_operand
].bitfield
.disp32
))
7064 i
.types
[this_operand
]
7065 = operand_type_xor (i
.types
[this_operand
], disp16_32
);
7070 as_bad (_("`%s' is not a valid %s expression"),
7075 as_bad (_("`%s' is not a valid %s-bit %s expression"),
7077 flag_code_names
[i
.prefix
[ADDR_PREFIX
]
7078 ? flag_code
== CODE_32BIT
7087 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
7091 i386_att_operand (char *operand_string
)
7095 char *op_string
= operand_string
;
7097 if (is_space_char (*op_string
))
7100 /* We check for an absolute prefix (differentiating,
7101 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
7102 if (*op_string
== ABSOLUTE_PREFIX
)
7105 if (is_space_char (*op_string
))
7107 i
.types
[this_operand
].bitfield
.jumpabsolute
= 1;
7110 /* Check if operand is a register. */
7111 if ((r
= parse_register (op_string
, &end_op
)) != NULL
)
7113 i386_operand_type temp
;
7115 /* Check for a segment override by searching for ':' after a
7116 segment register. */
7118 if (is_space_char (*op_string
))
7120 if (*op_string
== ':'
7121 && (r
->reg_type
.bitfield
.sreg2
7122 || r
->reg_type
.bitfield
.sreg3
))
7127 i
.seg
[i
.mem_operands
] = &es
;
7130 i
.seg
[i
.mem_operands
] = &cs
;
7133 i
.seg
[i
.mem_operands
] = &ss
;
7136 i
.seg
[i
.mem_operands
] = &ds
;
7139 i
.seg
[i
.mem_operands
] = &fs
;
7142 i
.seg
[i
.mem_operands
] = &gs
;
7146 /* Skip the ':' and whitespace. */
7148 if (is_space_char (*op_string
))
7151 if (!is_digit_char (*op_string
)
7152 && !is_identifier_char (*op_string
)
7153 && *op_string
!= '('
7154 && *op_string
!= ABSOLUTE_PREFIX
)
7156 as_bad (_("bad memory operand `%s'"), op_string
);
7159 /* Handle case of %es:*foo. */
7160 if (*op_string
== ABSOLUTE_PREFIX
)
7163 if (is_space_char (*op_string
))
7165 i
.types
[this_operand
].bitfield
.jumpabsolute
= 1;
7167 goto do_memory_reference
;
7171 as_bad (_("junk `%s' after register"), op_string
);
7175 temp
.bitfield
.baseindex
= 0;
7176 i
.types
[this_operand
] = operand_type_or (i
.types
[this_operand
],
7178 i
.types
[this_operand
].bitfield
.unspecified
= 0;
7179 i
.op
[this_operand
].regs
= r
;
7182 else if (*op_string
== REGISTER_PREFIX
)
7184 as_bad (_("bad register name `%s'"), op_string
);
7187 else if (*op_string
== IMMEDIATE_PREFIX
)
7190 if (i
.types
[this_operand
].bitfield
.jumpabsolute
)
7192 as_bad (_("immediate operand illegal with absolute jump"));
7195 if (!i386_immediate (op_string
))
7198 else if (is_digit_char (*op_string
)
7199 || is_identifier_char (*op_string
)
7200 || *op_string
== '(')
7202 /* This is a memory reference of some sort. */
7205 /* Start and end of displacement string expression (if found). */
7206 char *displacement_string_start
;
7207 char *displacement_string_end
;
7209 do_memory_reference
:
7210 if ((i
.mem_operands
== 1
7211 && !current_templates
->start
->opcode_modifier
.isstring
)
7212 || i
.mem_operands
== 2)
7214 as_bad (_("too many memory references for `%s'"),
7215 current_templates
->start
->name
);
7219 /* Check for base index form. We detect the base index form by
7220 looking for an ')' at the end of the operand, searching
7221 for the '(' matching it, and finding a REGISTER_PREFIX or ','
7223 base_string
= op_string
+ strlen (op_string
);
7226 if (is_space_char (*base_string
))
7229 /* If we only have a displacement, set-up for it to be parsed later. */
7230 displacement_string_start
= op_string
;
7231 displacement_string_end
= base_string
+ 1;
7233 if (*base_string
== ')')
7236 unsigned int parens_balanced
= 1;
7237 /* We've already checked that the number of left & right ()'s are
7238 equal, so this loop will not be infinite. */
7242 if (*base_string
== ')')
7244 if (*base_string
== '(')
7247 while (parens_balanced
);
7249 temp_string
= base_string
;
7251 /* Skip past '(' and whitespace. */
7253 if (is_space_char (*base_string
))
7256 if (*base_string
== ','
7257 || ((i
.base_reg
= parse_register (base_string
, &end_op
))
7260 displacement_string_end
= temp_string
;
7262 i
.types
[this_operand
].bitfield
.baseindex
= 1;
7266 base_string
= end_op
;
7267 if (is_space_char (*base_string
))
7271 /* There may be an index reg or scale factor here. */
7272 if (*base_string
== ',')
7275 if (is_space_char (*base_string
))
7278 if ((i
.index_reg
= parse_register (base_string
, &end_op
))
7281 base_string
= end_op
;
7282 if (is_space_char (*base_string
))
7284 if (*base_string
== ',')
7287 if (is_space_char (*base_string
))
7290 else if (*base_string
!= ')')
7292 as_bad (_("expecting `,' or `)' "
7293 "after index register in `%s'"),
7298 else if (*base_string
== REGISTER_PREFIX
)
7300 as_bad (_("bad register name `%s'"), base_string
);
7304 /* Check for scale factor. */
7305 if (*base_string
!= ')')
7307 char *end_scale
= i386_scale (base_string
);
7312 base_string
= end_scale
;
7313 if (is_space_char (*base_string
))
7315 if (*base_string
!= ')')
7317 as_bad (_("expecting `)' "
7318 "after scale factor in `%s'"),
7323 else if (!i
.index_reg
)
7325 as_bad (_("expecting index register or scale factor "
7326 "after `,'; got '%c'"),
7331 else if (*base_string
!= ')')
7333 as_bad (_("expecting `,' or `)' "
7334 "after base register in `%s'"),
7339 else if (*base_string
== REGISTER_PREFIX
)
7341 as_bad (_("bad register name `%s'"), base_string
);
7346 /* If there's an expression beginning the operand, parse it,
7347 assuming displacement_string_start and
7348 displacement_string_end are meaningful. */
7349 if (displacement_string_start
!= displacement_string_end
)
7351 if (!i386_displacement (displacement_string_start
,
7352 displacement_string_end
))
7356 /* Special case for (%dx) while doing input/output op. */
7358 && operand_type_equal (&i
.base_reg
->reg_type
,
7359 ®16_inoutportreg
)
7361 && i
.log2_scale_factor
== 0
7362 && i
.seg
[i
.mem_operands
] == 0
7363 && !operand_type_check (i
.types
[this_operand
], disp
))
7365 i
.types
[this_operand
] = inoutportreg
;
7369 if (i386_index_check (operand_string
) == 0)
7371 i
.types
[this_operand
].bitfield
.mem
= 1;
7376 /* It's not a memory operand; argh! */
7377 as_bad (_("invalid char %s beginning operand %d `%s'"),
7378 output_invalid (*op_string
),
7383 return 1; /* Normal return. */
7386 /* md_estimate_size_before_relax()
7388 Called just before relax() for rs_machine_dependent frags. The x86
7389 assembler uses these frags to handle variable size jump
7392 Any symbol that is now undefined will not become defined.
7393 Return the correct fr_subtype in the frag.
7394 Return the initial "guess for variable size of frag" to caller.
7395 The guess is actually the growth beyond the fixed part. Whatever
7396 we do to grow the fixed or variable part contributes to our
7400 md_estimate_size_before_relax (fragP
, segment
)
7404 /* We've already got fragP->fr_subtype right; all we have to do is
7405 check for un-relaxable symbols. On an ELF system, we can't relax
7406 an externally visible symbol, because it may be overridden by a
7408 if (S_GET_SEGMENT (fragP
->fr_symbol
) != segment
7409 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7411 && (S_IS_EXTERNAL (fragP
->fr_symbol
)
7412 || S_IS_WEAK (fragP
->fr_symbol
)
7413 || ((symbol_get_bfdsym (fragP
->fr_symbol
)->flags
7414 & BSF_GNU_INDIRECT_FUNCTION
))))
7416 #if defined (OBJ_COFF) && defined (TE_PE)
7417 || (OUTPUT_FLAVOR
== bfd_target_coff_flavour
7418 && S_IS_WEAK (fragP
->fr_symbol
))
7422 /* Symbol is undefined in this segment, or we need to keep a
7423 reloc so that weak symbols can be overridden. */
7424 int size
= (fragP
->fr_subtype
& CODE16
) ? 2 : 4;
7425 enum bfd_reloc_code_real reloc_type
;
7426 unsigned char *opcode
;
7429 if (fragP
->fr_var
!= NO_RELOC
)
7430 reloc_type
= (enum bfd_reloc_code_real
) fragP
->fr_var
;
7432 reloc_type
= BFD_RELOC_16_PCREL
;
7434 reloc_type
= BFD_RELOC_32_PCREL
;
7436 old_fr_fix
= fragP
->fr_fix
;
7437 opcode
= (unsigned char *) fragP
->fr_opcode
;
7439 switch (TYPE_FROM_RELAX_STATE (fragP
->fr_subtype
))
7442 /* Make jmp (0xeb) a (d)word displacement jump. */
7444 fragP
->fr_fix
+= size
;
7445 fix_new (fragP
, old_fr_fix
, size
,
7447 fragP
->fr_offset
, 1,
7453 && (!no_cond_jump_promotion
|| fragP
->fr_var
!= NO_RELOC
))
7455 /* Negate the condition, and branch past an
7456 unconditional jump. */
7459 /* Insert an unconditional jump. */
7461 /* We added two extra opcode bytes, and have a two byte
7463 fragP
->fr_fix
+= 2 + 2;
7464 fix_new (fragP
, old_fr_fix
+ 2, 2,
7466 fragP
->fr_offset
, 1,
7473 if (no_cond_jump_promotion
&& fragP
->fr_var
== NO_RELOC
)
7478 fixP
= fix_new (fragP
, old_fr_fix
, 1,
7480 fragP
->fr_offset
, 1,
7482 fixP
->fx_signed
= 1;
7486 /* This changes the byte-displacement jump 0x7N
7487 to the (d)word-displacement jump 0x0f,0x8N. */
7488 opcode
[1] = opcode
[0] + 0x10;
7489 opcode
[0] = TWO_BYTE_OPCODE_ESCAPE
;
7490 /* We've added an opcode byte. */
7491 fragP
->fr_fix
+= 1 + size
;
7492 fix_new (fragP
, old_fr_fix
+ 1, size
,
7494 fragP
->fr_offset
, 1,
7499 BAD_CASE (fragP
->fr_subtype
);
7503 return fragP
->fr_fix
- old_fr_fix
;
7506 /* Guess size depending on current relax state. Initially the relax
7507 state will correspond to a short jump and we return 1, because
7508 the variable part of the frag (the branch offset) is one byte
7509 long. However, we can relax a section more than once and in that
7510 case we must either set fr_subtype back to the unrelaxed state,
7511 or return the value for the appropriate branch. */
7512 return md_relax_table
[fragP
->fr_subtype
].rlx_length
;
7515 /* Called after relax() is finished.
7517 In: Address of frag.
7518 fr_type == rs_machine_dependent.
7519 fr_subtype is what the address relaxed to.
7521 Out: Any fixSs and constants are set up.
7522 Caller will turn frag into a ".space 0". */
7525 md_convert_frag (abfd
, sec
, fragP
)
7526 bfd
*abfd ATTRIBUTE_UNUSED
;
7527 segT sec ATTRIBUTE_UNUSED
;
7530 unsigned char *opcode
;
7531 unsigned char *where_to_put_displacement
= NULL
;
7532 offsetT target_address
;
7533 offsetT opcode_address
;
7534 unsigned int extension
= 0;
7535 offsetT displacement_from_opcode_start
;
7537 opcode
= (unsigned char *) fragP
->fr_opcode
;
7539 /* Address we want to reach in file space. */
7540 target_address
= S_GET_VALUE (fragP
->fr_symbol
) + fragP
->fr_offset
;
7542 /* Address opcode resides at in file space. */
7543 opcode_address
= fragP
->fr_address
+ fragP
->fr_fix
;
7545 /* Displacement from opcode start to fill into instruction. */
7546 displacement_from_opcode_start
= target_address
- opcode_address
;
7548 if ((fragP
->fr_subtype
& BIG
) == 0)
7550 /* Don't have to change opcode. */
7551 extension
= 1; /* 1 opcode + 1 displacement */
7552 where_to_put_displacement
= &opcode
[1];
7556 if (no_cond_jump_promotion
7557 && TYPE_FROM_RELAX_STATE (fragP
->fr_subtype
) != UNCOND_JUMP
)
7558 as_warn_where (fragP
->fr_file
, fragP
->fr_line
,
7559 _("long jump required"));
7561 switch (fragP
->fr_subtype
)
7563 case ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG
):
7564 extension
= 4; /* 1 opcode + 4 displacement */
7566 where_to_put_displacement
= &opcode
[1];
7569 case ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG16
):
7570 extension
= 2; /* 1 opcode + 2 displacement */
7572 where_to_put_displacement
= &opcode
[1];
7575 case ENCODE_RELAX_STATE (COND_JUMP
, BIG
):
7576 case ENCODE_RELAX_STATE (COND_JUMP86
, BIG
):
7577 extension
= 5; /* 2 opcode + 4 displacement */
7578 opcode
[1] = opcode
[0] + 0x10;
7579 opcode
[0] = TWO_BYTE_OPCODE_ESCAPE
;
7580 where_to_put_displacement
= &opcode
[2];
7583 case ENCODE_RELAX_STATE (COND_JUMP
, BIG16
):
7584 extension
= 3; /* 2 opcode + 2 displacement */
7585 opcode
[1] = opcode
[0] + 0x10;
7586 opcode
[0] = TWO_BYTE_OPCODE_ESCAPE
;
7587 where_to_put_displacement
= &opcode
[2];
7590 case ENCODE_RELAX_STATE (COND_JUMP86
, BIG16
):
7595 where_to_put_displacement
= &opcode
[3];
7599 BAD_CASE (fragP
->fr_subtype
);
7604 /* If size if less then four we are sure that the operand fits,
7605 but if it's 4, then it could be that the displacement is larger
7607 if (DISP_SIZE_FROM_RELAX_STATE (fragP
->fr_subtype
) == 4
7609 && ((addressT
) (displacement_from_opcode_start
- extension
7610 + ((addressT
) 1 << 31))
7611 > (((addressT
) 2 << 31) - 1)))
7613 as_bad_where (fragP
->fr_file
, fragP
->fr_line
,
7614 _("jump target out of range"));
7615 /* Make us emit 0. */
7616 displacement_from_opcode_start
= extension
;
7618 /* Now put displacement after opcode. */
7619 md_number_to_chars ((char *) where_to_put_displacement
,
7620 (valueT
) (displacement_from_opcode_start
- extension
),
7621 DISP_SIZE_FROM_RELAX_STATE (fragP
->fr_subtype
));
7622 fragP
->fr_fix
+= extension
;
7625 /* Apply a fixup (fixS) to segment data, once it has been determined
7626 by our caller that we have all the info we need to fix it up.
7628 On the 386, immediates, displacements, and data pointers are all in
7629 the same (little-endian) format, so we don't need to care about which
7633 md_apply_fix (fixP
, valP
, seg
)
7634 /* The fix we're to put in. */
7636 /* Pointer to the value of the bits. */
7638 /* Segment fix is from. */
7639 segT seg ATTRIBUTE_UNUSED
;
7641 char *p
= fixP
->fx_where
+ fixP
->fx_frag
->fr_literal
;
7642 valueT value
= *valP
;
7644 #if !defined (TE_Mach)
7647 switch (fixP
->fx_r_type
)
7653 fixP
->fx_r_type
= BFD_RELOC_64_PCREL
;
7656 case BFD_RELOC_X86_64_32S
:
7657 fixP
->fx_r_type
= BFD_RELOC_32_PCREL
;
7660 fixP
->fx_r_type
= BFD_RELOC_16_PCREL
;
7663 fixP
->fx_r_type
= BFD_RELOC_8_PCREL
;
7668 if (fixP
->fx_addsy
!= NULL
7669 && (fixP
->fx_r_type
== BFD_RELOC_32_PCREL
7670 || fixP
->fx_r_type
== BFD_RELOC_64_PCREL
7671 || fixP
->fx_r_type
== BFD_RELOC_16_PCREL
7672 || fixP
->fx_r_type
== BFD_RELOC_8_PCREL
)
7673 && !use_rela_relocations
)
7675 /* This is a hack. There should be a better way to handle this.
7676 This covers for the fact that bfd_install_relocation will
7677 subtract the current location (for partial_inplace, PC relative
7678 relocations); see more below. */
7682 || OUTPUT_FLAVOR
== bfd_target_coff_flavour
7685 value
+= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
7687 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7690 segT sym_seg
= S_GET_SEGMENT (fixP
->fx_addsy
);
7693 || (symbol_section_p (fixP
->fx_addsy
)
7694 && sym_seg
!= absolute_section
))
7695 && !generic_force_reloc (fixP
))
7697 /* Yes, we add the values in twice. This is because
7698 bfd_install_relocation subtracts them out again. I think
7699 bfd_install_relocation is broken, but I don't dare change
7701 value
+= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
7705 #if defined (OBJ_COFF) && defined (TE_PE)
7706 /* For some reason, the PE format does not store a
7707 section address offset for a PC relative symbol. */
7708 if (S_GET_SEGMENT (fixP
->fx_addsy
) != seg
7709 || S_IS_WEAK (fixP
->fx_addsy
))
7710 value
+= md_pcrel_from (fixP
);
7713 #if defined (OBJ_COFF) && defined (TE_PE)
7714 if (fixP
->fx_addsy
!= NULL
&& S_IS_WEAK (fixP
->fx_addsy
))
7716 value
-= S_GET_VALUE (fixP
->fx_addsy
);
7720 /* Fix a few things - the dynamic linker expects certain values here,
7721 and we must not disappoint it. */
7722 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7723 if (IS_ELF
&& fixP
->fx_addsy
)
7724 switch (fixP
->fx_r_type
)
7726 case BFD_RELOC_386_PLT32
:
7727 case BFD_RELOC_X86_64_PLT32
:
7728 /* Make the jump instruction point to the address of the operand. At
7729 runtime we merely add the offset to the actual PLT entry. */
7733 case BFD_RELOC_386_TLS_GD
:
7734 case BFD_RELOC_386_TLS_LDM
:
7735 case BFD_RELOC_386_TLS_IE_32
:
7736 case BFD_RELOC_386_TLS_IE
:
7737 case BFD_RELOC_386_TLS_GOTIE
:
7738 case BFD_RELOC_386_TLS_GOTDESC
:
7739 case BFD_RELOC_X86_64_TLSGD
:
7740 case BFD_RELOC_X86_64_TLSLD
:
7741 case BFD_RELOC_X86_64_GOTTPOFF
:
7742 case BFD_RELOC_X86_64_GOTPC32_TLSDESC
:
7743 value
= 0; /* Fully resolved at runtime. No addend. */
7745 case BFD_RELOC_386_TLS_LE
:
7746 case BFD_RELOC_386_TLS_LDO_32
:
7747 case BFD_RELOC_386_TLS_LE_32
:
7748 case BFD_RELOC_X86_64_DTPOFF32
:
7749 case BFD_RELOC_X86_64_DTPOFF64
:
7750 case BFD_RELOC_X86_64_TPOFF32
:
7751 case BFD_RELOC_X86_64_TPOFF64
:
7752 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
7755 case BFD_RELOC_386_TLS_DESC_CALL
:
7756 case BFD_RELOC_X86_64_TLSDESC_CALL
:
7757 value
= 0; /* Fully resolved at runtime. No addend. */
7758 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
7762 case BFD_RELOC_386_GOT32
:
7763 case BFD_RELOC_X86_64_GOT32
:
7764 value
= 0; /* Fully resolved at runtime. No addend. */
7767 case BFD_RELOC_VTABLE_INHERIT
:
7768 case BFD_RELOC_VTABLE_ENTRY
:
7775 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
7777 #endif /* !defined (TE_Mach) */
7779 /* Are we finished with this relocation now? */
7780 if (fixP
->fx_addsy
== NULL
)
7782 #if defined (OBJ_COFF) && defined (TE_PE)
7783 else if (fixP
->fx_addsy
!= NULL
&& S_IS_WEAK (fixP
->fx_addsy
))
7786 /* Remember value for tc_gen_reloc. */
7787 fixP
->fx_addnumber
= value
;
7788 /* Clear out the frag for now. */
7792 else if (use_rela_relocations
)
7794 fixP
->fx_no_overflow
= 1;
7795 /* Remember value for tc_gen_reloc. */
7796 fixP
->fx_addnumber
= value
;
7800 md_number_to_chars (p
, value
, fixP
->fx_size
);
7804 md_atof (int type
, char *litP
, int *sizeP
)
7806 /* This outputs the LITTLENUMs in REVERSE order;
7807 in accord with the bigendian 386. */
7808 return ieee_md_atof (type
, litP
, sizeP
, FALSE
);
7811 static char output_invalid_buf
[sizeof (unsigned char) * 2 + 6];
7814 output_invalid (int c
)
7817 snprintf (output_invalid_buf
, sizeof (output_invalid_buf
),
7820 snprintf (output_invalid_buf
, sizeof (output_invalid_buf
),
7821 "(0x%x)", (unsigned char) c
);
7822 return output_invalid_buf
;
7825 /* REG_STRING starts *before* REGISTER_PREFIX. */
7827 static const reg_entry
*
7828 parse_real_register (char *reg_string
, char **end_op
)
7830 char *s
= reg_string
;
7832 char reg_name_given
[MAX_REG_NAME_SIZE
+ 1];
7835 /* Skip possible REGISTER_PREFIX and possible whitespace. */
7836 if (*s
== REGISTER_PREFIX
)
7839 if (is_space_char (*s
))
7843 while ((*p
++ = register_chars
[(unsigned char) *s
]) != '\0')
7845 if (p
>= reg_name_given
+ MAX_REG_NAME_SIZE
)
7846 return (const reg_entry
*) NULL
;
7850 /* For naked regs, make sure that we are not dealing with an identifier.
7851 This prevents confusing an identifier like `eax_var' with register
7853 if (allow_naked_reg
&& identifier_chars
[(unsigned char) *s
])
7854 return (const reg_entry
*) NULL
;
7858 r
= (const reg_entry
*) hash_find (reg_hash
, reg_name_given
);
7860 /* Handle floating point regs, allowing spaces in the (i) part. */
7861 if (r
== i386_regtab
/* %st is first entry of table */)
7863 if (is_space_char (*s
))
7868 if (is_space_char (*s
))
7870 if (*s
>= '0' && *s
<= '7')
7874 if (is_space_char (*s
))
7879 r
= (const reg_entry
*) hash_find (reg_hash
, "st(0)");
7884 /* We have "%st(" then garbage. */
7885 return (const reg_entry
*) NULL
;
7889 if (r
== NULL
|| allow_pseudo_reg
)
7892 if (operand_type_all_zero (&r
->reg_type
))
7893 return (const reg_entry
*) NULL
;
7895 if ((r
->reg_type
.bitfield
.reg32
7896 || r
->reg_type
.bitfield
.sreg3
7897 || r
->reg_type
.bitfield
.control
7898 || r
->reg_type
.bitfield
.debug
7899 || r
->reg_type
.bitfield
.test
)
7900 && !cpu_arch_flags
.bitfield
.cpui386
)
7901 return (const reg_entry
*) NULL
;
7903 if (r
->reg_type
.bitfield
.floatreg
7904 && !cpu_arch_flags
.bitfield
.cpu8087
7905 && !cpu_arch_flags
.bitfield
.cpu287
7906 && !cpu_arch_flags
.bitfield
.cpu387
)
7907 return (const reg_entry
*) NULL
;
7909 if (r
->reg_type
.bitfield
.regmmx
&& !cpu_arch_flags
.bitfield
.cpummx
)
7910 return (const reg_entry
*) NULL
;
7912 if (r
->reg_type
.bitfield
.regxmm
&& !cpu_arch_flags
.bitfield
.cpusse
)
7913 return (const reg_entry
*) NULL
;
7915 if (r
->reg_type
.bitfield
.regymm
&& !cpu_arch_flags
.bitfield
.cpuavx
)
7916 return (const reg_entry
*) NULL
;
7918 /* Don't allow fake index register unless allow_index_reg isn't 0. */
7919 if (!allow_index_reg
7920 && (r
->reg_num
== RegEiz
|| r
->reg_num
== RegRiz
))
7921 return (const reg_entry
*) NULL
;
7923 if (((r
->reg_flags
& (RegRex64
| RegRex
))
7924 || r
->reg_type
.bitfield
.reg64
)
7925 && (!cpu_arch_flags
.bitfield
.cpulm
7926 || !operand_type_equal (&r
->reg_type
, &control
))
7927 && flag_code
!= CODE_64BIT
)
7928 return (const reg_entry
*) NULL
;
7930 if (r
->reg_type
.bitfield
.sreg3
&& r
->reg_num
== RegFlat
&& !intel_syntax
)
7931 return (const reg_entry
*) NULL
;
7936 /* REG_STRING starts *before* REGISTER_PREFIX. */
7938 static const reg_entry
*
7939 parse_register (char *reg_string
, char **end_op
)
7943 if (*reg_string
== REGISTER_PREFIX
|| allow_naked_reg
)
7944 r
= parse_real_register (reg_string
, end_op
);
7949 char *save
= input_line_pointer
;
7953 input_line_pointer
= reg_string
;
7954 c
= get_symbol_end ();
7955 symbolP
= symbol_find (reg_string
);
7956 if (symbolP
&& S_GET_SEGMENT (symbolP
) == reg_section
)
7958 const expressionS
*e
= symbol_get_value_expression (symbolP
);
7960 know (e
->X_op
== O_register
);
7961 know (e
->X_add_number
>= 0
7962 && (valueT
) e
->X_add_number
< i386_regtab_size
);
7963 r
= i386_regtab
+ e
->X_add_number
;
7964 *end_op
= input_line_pointer
;
7966 *input_line_pointer
= c
;
7967 input_line_pointer
= save
;
7973 i386_parse_name (char *name
, expressionS
*e
, char *nextcharP
)
7976 char *end
= input_line_pointer
;
7979 r
= parse_register (name
, &input_line_pointer
);
7980 if (r
&& end
<= input_line_pointer
)
7982 *nextcharP
= *input_line_pointer
;
7983 *input_line_pointer
= 0;
7984 e
->X_op
= O_register
;
7985 e
->X_add_number
= r
- i386_regtab
;
7988 input_line_pointer
= end
;
7990 return intel_syntax
? i386_intel_parse_name (name
, e
) : 0;
7994 md_operand (expressionS
*e
)
7999 switch (*input_line_pointer
)
8001 case REGISTER_PREFIX
:
8002 r
= parse_real_register (input_line_pointer
, &end
);
8005 e
->X_op
= O_register
;
8006 e
->X_add_number
= r
- i386_regtab
;
8007 input_line_pointer
= end
;
8012 gas_assert (intel_syntax
);
8013 end
= input_line_pointer
++;
8015 if (*input_line_pointer
== ']')
8017 ++input_line_pointer
;
8018 e
->X_op_symbol
= make_expr_symbol (e
);
8019 e
->X_add_symbol
= NULL
;
8020 e
->X_add_number
= 0;
8026 input_line_pointer
= end
;
8033 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8034 const char *md_shortopts
= "kVQ:sqn";
8036 const char *md_shortopts
= "qn";
8039 #define OPTION_32 (OPTION_MD_BASE + 0)
8040 #define OPTION_64 (OPTION_MD_BASE + 1)
8041 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
8042 #define OPTION_MARCH (OPTION_MD_BASE + 3)
8043 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
8044 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
8045 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
8046 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
8047 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
8048 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
8049 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
8050 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
8051 #define OPTION_MAVXSCALAR (OPTION_MSSE_CHECK + 11)
8053 struct option md_longopts
[] =
8055 {"32", no_argument
, NULL
, OPTION_32
},
8056 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8057 || defined (TE_PE) || defined (TE_PEP))
8058 {"64", no_argument
, NULL
, OPTION_64
},
8060 {"divide", no_argument
, NULL
, OPTION_DIVIDE
},
8061 {"march", required_argument
, NULL
, OPTION_MARCH
},
8062 {"mtune", required_argument
, NULL
, OPTION_MTUNE
},
8063 {"mmnemonic", required_argument
, NULL
, OPTION_MMNEMONIC
},
8064 {"msyntax", required_argument
, NULL
, OPTION_MSYNTAX
},
8065 {"mindex-reg", no_argument
, NULL
, OPTION_MINDEX_REG
},
8066 {"mnaked-reg", no_argument
, NULL
, OPTION_MNAKED_REG
},
8067 {"mold-gcc", no_argument
, NULL
, OPTION_MOLD_GCC
},
8068 {"msse2avx", no_argument
, NULL
, OPTION_MSSE2AVX
},
8069 {"msse-check", required_argument
, NULL
, OPTION_MSSE_CHECK
},
8070 {"mavxscalar", required_argument
, NULL
, OPTION_MAVXSCALAR
},
8071 {NULL
, no_argument
, NULL
, 0}
8073 size_t md_longopts_size
= sizeof (md_longopts
);
8076 md_parse_option (int c
, char *arg
)
8084 optimize_align_code
= 0;
8091 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8092 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
8093 should be emitted or not. FIXME: Not implemented. */
8097 /* -V: SVR4 argument to print version ID. */
8099 print_version_id ();
8102 /* -k: Ignore for FreeBSD compatibility. */
8107 /* -s: On i386 Solaris, this tells the native assembler to use
8108 .stab instead of .stab.excl. We always use .stab anyhow. */
8111 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8112 || defined (TE_PE) || defined (TE_PEP))
8115 const char **list
, **l
;
8117 list
= bfd_target_list ();
8118 for (l
= list
; *l
!= NULL
; l
++)
8119 if (CONST_STRNEQ (*l
, "elf64-x86-64")
8120 || strcmp (*l
, "coff-x86-64") == 0
8121 || strcmp (*l
, "pe-x86-64") == 0
8122 || strcmp (*l
, "pei-x86-64") == 0)
8124 default_arch
= "x86_64";
8128 as_fatal (_("No compiled in support for x86_64"));
8135 default_arch
= "i386";
8139 #ifdef SVR4_COMMENT_CHARS
8144 n
= (char *) xmalloc (strlen (i386_comment_chars
) + 1);
8146 for (s
= i386_comment_chars
; *s
!= '\0'; s
++)
8150 i386_comment_chars
= n
;
8156 arch
= xstrdup (arg
);
8160 as_fatal (_("Invalid -march= option: `%s'"), arg
);
8161 next
= strchr (arch
, '+');
8164 for (j
= 0; j
< ARRAY_SIZE (cpu_arch
); j
++)
8166 if (strcmp (arch
, cpu_arch
[j
].name
) == 0)
8169 cpu_arch_name
= cpu_arch
[j
].name
;
8170 cpu_sub_arch_name
= NULL
;
8171 cpu_arch_flags
= cpu_arch
[j
].flags
;
8172 cpu_arch_isa
= cpu_arch
[j
].type
;
8173 cpu_arch_isa_flags
= cpu_arch
[j
].flags
;
8174 if (!cpu_arch_tune_set
)
8176 cpu_arch_tune
= cpu_arch_isa
;
8177 cpu_arch_tune_flags
= cpu_arch_isa_flags
;
8181 else if (*cpu_arch
[j
].name
== '.'
8182 && strcmp (arch
, cpu_arch
[j
].name
+ 1) == 0)
8184 /* ISA entension. */
8185 i386_cpu_flags flags
;
8187 if (strncmp (arch
, "no", 2))
8188 flags
= cpu_flags_or (cpu_arch_flags
,
8191 flags
= cpu_flags_and_not (cpu_arch_flags
,
8193 if (!cpu_flags_equal (&flags
, &cpu_arch_flags
))
8195 if (cpu_sub_arch_name
)
8197 char *name
= cpu_sub_arch_name
;
8198 cpu_sub_arch_name
= concat (name
,
8200 (const char *) NULL
);
8204 cpu_sub_arch_name
= xstrdup (cpu_arch
[j
].name
);
8205 cpu_arch_flags
= flags
;
8211 if (j
>= ARRAY_SIZE (cpu_arch
))
8212 as_fatal (_("Invalid -march= option: `%s'"), arg
);
8216 while (next
!= NULL
);
8221 as_fatal (_("Invalid -mtune= option: `%s'"), arg
);
8222 for (j
= 0; j
< ARRAY_SIZE (cpu_arch
); j
++)
8224 if (strcmp (arg
, cpu_arch
[j
].name
) == 0)
8226 cpu_arch_tune_set
= 1;
8227 cpu_arch_tune
= cpu_arch
[j
].type
;
8228 cpu_arch_tune_flags
= cpu_arch
[j
].flags
;
8232 if (j
>= ARRAY_SIZE (cpu_arch
))
8233 as_fatal (_("Invalid -mtune= option: `%s'"), arg
);
8236 case OPTION_MMNEMONIC
:
8237 if (strcasecmp (arg
, "att") == 0)
8239 else if (strcasecmp (arg
, "intel") == 0)
8242 as_fatal (_("Invalid -mmnemonic= option: `%s'"), arg
);
8245 case OPTION_MSYNTAX
:
8246 if (strcasecmp (arg
, "att") == 0)
8248 else if (strcasecmp (arg
, "intel") == 0)
8251 as_fatal (_("Invalid -msyntax= option: `%s'"), arg
);
8254 case OPTION_MINDEX_REG
:
8255 allow_index_reg
= 1;
8258 case OPTION_MNAKED_REG
:
8259 allow_naked_reg
= 1;
8262 case OPTION_MOLD_GCC
:
8266 case OPTION_MSSE2AVX
:
8270 case OPTION_MSSE_CHECK
:
8271 if (strcasecmp (arg
, "error") == 0)
8272 sse_check
= sse_check_error
;
8273 else if (strcasecmp (arg
, "warning") == 0)
8274 sse_check
= sse_check_warning
;
8275 else if (strcasecmp (arg
, "none") == 0)
8276 sse_check
= sse_check_none
;
8278 as_fatal (_("Invalid -msse-check= option: `%s'"), arg
);
8281 case OPTION_MAVXSCALAR
:
8282 if (strcasecmp (arg
, "128") == 0)
8284 else if (strcasecmp (arg
, "256") == 0)
8287 as_fatal (_("Invalid -mavxscalar= option: `%s'"), arg
);
8296 #define MESSAGE_TEMPLATE \
8300 show_arch (FILE *stream
, int ext
)
8302 static char message
[] = MESSAGE_TEMPLATE
;
8303 char *start
= message
+ 27;
8305 int size
= sizeof (MESSAGE_TEMPLATE
);
8312 left
= size
- (start
- message
);
8313 for (j
= 0; j
< ARRAY_SIZE (cpu_arch
); j
++)
8315 /* Should it be skipped? */
8316 if (cpu_arch
[j
].skip
)
8319 name
= cpu_arch
[j
].name
;
8320 len
= cpu_arch
[j
].len
;
8323 /* It is an extension. Skip if we aren't asked to show it. */
8334 /* It is an processor. Skip if we show only extension. */
8338 /* Reserve 2 spaces for ", " or ",\0" */
8341 /* Check if there is any room. */
8349 p
= mempcpy (p
, name
, len
);
8353 /* Output the current message now and start a new one. */
8356 fprintf (stream
, "%s\n", message
);
8358 left
= size
- (start
- message
) - len
- 2;
8360 gas_assert (left
>= 0);
8362 p
= mempcpy (p
, name
, len
);
8367 fprintf (stream
, "%s\n", message
);
8371 md_show_usage (FILE *stream
)
8373 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8374 fprintf (stream
, _("\
8376 -V print assembler version number\n\
8379 fprintf (stream
, _("\
8380 -n Do not optimize code alignment\n\
8381 -q quieten some warnings\n"));
8382 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8383 fprintf (stream
, _("\
8386 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8387 || defined (TE_PE) || defined (TE_PEP))
8388 fprintf (stream
, _("\
8389 --32/--64 generate 32bit/64bit code\n"));
8391 #ifdef SVR4_COMMENT_CHARS
8392 fprintf (stream
, _("\
8393 --divide do not treat `/' as a comment character\n"));
8395 fprintf (stream
, _("\
8396 --divide ignored\n"));
8398 fprintf (stream
, _("\
8399 -march=CPU[,+EXTENSION...]\n\
8400 generate code for CPU and EXTENSION, CPU is one of:\n"));
8401 show_arch (stream
, 0);
8402 fprintf (stream
, _("\
8403 EXTENSION is combination of:\n"));
8404 show_arch (stream
, 1);
8405 fprintf (stream
, _("\
8406 -mtune=CPU optimize for CPU, CPU is one of:\n"));
8407 show_arch (stream
, 0);
8408 fprintf (stream
, _("\
8409 -msse2avx encode SSE instructions with VEX prefix\n"));
8410 fprintf (stream
, _("\
8411 -msse-check=[none|error|warning]\n\
8412 check SSE instructions\n"));
8413 fprintf (stream
, _("\
8414 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
8416 fprintf (stream
, _("\
8417 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
8418 fprintf (stream
, _("\
8419 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
8420 fprintf (stream
, _("\
8421 -mindex-reg support pseudo index registers\n"));
8422 fprintf (stream
, _("\
8423 -mnaked-reg don't require `%%' prefix for registers\n"));
8424 fprintf (stream
, _("\
8425 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
8428 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
8429 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8430 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
8432 /* Pick the target format to use. */
8435 i386_target_format (void)
8437 if (!strcmp (default_arch
, "x86_64"))
8439 set_code_flag (CODE_64BIT
);
8440 if (cpu_flags_all_zero (&cpu_arch_isa_flags
))
8442 cpu_arch_isa_flags
.bitfield
.cpui186
= 1;
8443 cpu_arch_isa_flags
.bitfield
.cpui286
= 1;
8444 cpu_arch_isa_flags
.bitfield
.cpui386
= 1;
8445 cpu_arch_isa_flags
.bitfield
.cpui486
= 1;
8446 cpu_arch_isa_flags
.bitfield
.cpui586
= 1;
8447 cpu_arch_isa_flags
.bitfield
.cpui686
= 1;
8448 cpu_arch_isa_flags
.bitfield
.cpuclflush
= 1;
8449 cpu_arch_isa_flags
.bitfield
.cpummx
= 1;
8450 cpu_arch_isa_flags
.bitfield
.cpusse
= 1;
8451 cpu_arch_isa_flags
.bitfield
.cpusse2
= 1;
8452 cpu_arch_isa_flags
.bitfield
.cpulm
= 1;
8454 if (cpu_flags_all_zero (&cpu_arch_tune_flags
))
8456 cpu_arch_tune_flags
.bitfield
.cpui186
= 1;
8457 cpu_arch_tune_flags
.bitfield
.cpui286
= 1;
8458 cpu_arch_tune_flags
.bitfield
.cpui386
= 1;
8459 cpu_arch_tune_flags
.bitfield
.cpui486
= 1;
8460 cpu_arch_tune_flags
.bitfield
.cpui586
= 1;
8461 cpu_arch_tune_flags
.bitfield
.cpui686
= 1;
8462 cpu_arch_tune_flags
.bitfield
.cpuclflush
= 1;
8463 cpu_arch_tune_flags
.bitfield
.cpummx
= 1;
8464 cpu_arch_tune_flags
.bitfield
.cpusse
= 1;
8465 cpu_arch_tune_flags
.bitfield
.cpusse2
= 1;
8468 else if (!strcmp (default_arch
, "i386"))
8470 set_code_flag (CODE_32BIT
);
8471 if (cpu_flags_all_zero (&cpu_arch_isa_flags
))
8473 cpu_arch_isa_flags
.bitfield
.cpui186
= 1;
8474 cpu_arch_isa_flags
.bitfield
.cpui286
= 1;
8475 cpu_arch_isa_flags
.bitfield
.cpui386
= 1;
8477 if (cpu_flags_all_zero (&cpu_arch_tune_flags
))
8479 cpu_arch_tune_flags
.bitfield
.cpui186
= 1;
8480 cpu_arch_tune_flags
.bitfield
.cpui286
= 1;
8481 cpu_arch_tune_flags
.bitfield
.cpui386
= 1;
8485 as_fatal (_("Unknown architecture"));
8486 switch (OUTPUT_FLAVOR
)
8488 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
8489 case bfd_target_aout_flavour
:
8490 return AOUT_TARGET_FORMAT
;
8492 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
8493 # if defined (TE_PE) || defined (TE_PEP)
8494 case bfd_target_coff_flavour
:
8495 return flag_code
== CODE_64BIT
? "pe-x86-64" : "pe-i386";
8496 # elif defined (TE_GO32)
8497 case bfd_target_coff_flavour
:
8500 case bfd_target_coff_flavour
:
8504 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8505 case bfd_target_elf_flavour
:
8507 if (flag_code
== CODE_64BIT
)
8510 use_rela_relocations
= 1;
8512 if (cpu_arch_isa
== PROCESSOR_L1OM
)
8514 if (flag_code
!= CODE_64BIT
)
8515 as_fatal (_("Intel L1OM is 64bit only"));
8516 return ELF_TARGET_L1OM_FORMAT
;
8519 return (flag_code
== CODE_64BIT
8520 ? ELF_TARGET_FORMAT64
: ELF_TARGET_FORMAT
);
8523 #if defined (OBJ_MACH_O)
8524 case bfd_target_mach_o_flavour
:
8525 return flag_code
== CODE_64BIT
? "mach-o-x86-64" : "mach-o-i386";
8533 #endif /* OBJ_MAYBE_ more than one */
8535 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
8537 i386_elf_emit_arch_note (void)
8539 if (IS_ELF
&& cpu_arch_name
!= NULL
)
8542 asection
*seg
= now_seg
;
8543 subsegT subseg
= now_subseg
;
8544 Elf_Internal_Note i_note
;
8545 Elf_External_Note e_note
;
8546 asection
*note_secp
;
8549 /* Create the .note section. */
8550 note_secp
= subseg_new (".note", 0);
8551 bfd_set_section_flags (stdoutput
,
8553 SEC_HAS_CONTENTS
| SEC_READONLY
);
8555 /* Process the arch string. */
8556 len
= strlen (cpu_arch_name
);
8558 i_note
.namesz
= len
+ 1;
8560 i_note
.type
= NT_ARCH
;
8561 p
= frag_more (sizeof (e_note
.namesz
));
8562 md_number_to_chars (p
, (valueT
) i_note
.namesz
, sizeof (e_note
.namesz
));
8563 p
= frag_more (sizeof (e_note
.descsz
));
8564 md_number_to_chars (p
, (valueT
) i_note
.descsz
, sizeof (e_note
.descsz
));
8565 p
= frag_more (sizeof (e_note
.type
));
8566 md_number_to_chars (p
, (valueT
) i_note
.type
, sizeof (e_note
.type
));
8567 p
= frag_more (len
+ 1);
8568 strcpy (p
, cpu_arch_name
);
8570 frag_align (2, 0, 0);
8572 subseg_set (seg
, subseg
);
8578 md_undefined_symbol (name
)
8581 if (name
[0] == GLOBAL_OFFSET_TABLE_NAME
[0]
8582 && name
[1] == GLOBAL_OFFSET_TABLE_NAME
[1]
8583 && name
[2] == GLOBAL_OFFSET_TABLE_NAME
[2]
8584 && strcmp (name
, GLOBAL_OFFSET_TABLE_NAME
) == 0)
8588 if (symbol_find (name
))
8589 as_bad (_("GOT already in symbol table"));
8590 GOT_symbol
= symbol_new (name
, undefined_section
,
8591 (valueT
) 0, &zero_address_frag
);
8598 /* Round up a section size to the appropriate boundary. */
8601 md_section_align (segment
, size
)
8602 segT segment ATTRIBUTE_UNUSED
;
8605 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8606 if (OUTPUT_FLAVOR
== bfd_target_aout_flavour
)
8608 /* For a.out, force the section size to be aligned. If we don't do
8609 this, BFD will align it for us, but it will not write out the
8610 final bytes of the section. This may be a bug in BFD, but it is
8611 easier to fix it here since that is how the other a.out targets
8615 align
= bfd_get_section_alignment (stdoutput
, segment
);
8616 size
= ((size
+ (1 << align
) - 1) & ((valueT
) -1 << align
));
8623 /* On the i386, PC-relative offsets are relative to the start of the
8624 next instruction. That is, the address of the offset, plus its
8625 size, since the offset is always the last part of the insn. */
8628 md_pcrel_from (fixS
*fixP
)
8630 return fixP
->fx_size
+ fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
8636 s_bss (int ignore ATTRIBUTE_UNUSED
)
8640 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8642 obj_elf_section_change_hook ();
8644 temp
= get_absolute_expression ();
8645 subseg_set (bss_section
, (subsegT
) temp
);
8646 demand_empty_rest_of_line ();
8652 i386_validate_fix (fixS
*fixp
)
8654 if (fixp
->fx_subsy
&& fixp
->fx_subsy
== GOT_symbol
)
8656 if (fixp
->fx_r_type
== BFD_RELOC_32_PCREL
)
8660 fixp
->fx_r_type
= BFD_RELOC_X86_64_GOTPCREL
;
8665 fixp
->fx_r_type
= BFD_RELOC_386_GOTOFF
;
8667 fixp
->fx_r_type
= BFD_RELOC_X86_64_GOTOFF64
;
8674 tc_gen_reloc (section
, fixp
)
8675 asection
*section ATTRIBUTE_UNUSED
;
8679 bfd_reloc_code_real_type code
;
8681 switch (fixp
->fx_r_type
)
8683 case BFD_RELOC_X86_64_PLT32
:
8684 case BFD_RELOC_X86_64_GOT32
:
8685 case BFD_RELOC_X86_64_GOTPCREL
:
8686 case BFD_RELOC_386_PLT32
:
8687 case BFD_RELOC_386_GOT32
:
8688 case BFD_RELOC_386_GOTOFF
:
8689 case BFD_RELOC_386_GOTPC
:
8690 case BFD_RELOC_386_TLS_GD
:
8691 case BFD_RELOC_386_TLS_LDM
:
8692 case BFD_RELOC_386_TLS_LDO_32
:
8693 case BFD_RELOC_386_TLS_IE_32
:
8694 case BFD_RELOC_386_TLS_IE
:
8695 case BFD_RELOC_386_TLS_GOTIE
:
8696 case BFD_RELOC_386_TLS_LE_32
:
8697 case BFD_RELOC_386_TLS_LE
:
8698 case BFD_RELOC_386_TLS_GOTDESC
:
8699 case BFD_RELOC_386_TLS_DESC_CALL
:
8700 case BFD_RELOC_X86_64_TLSGD
:
8701 case BFD_RELOC_X86_64_TLSLD
:
8702 case BFD_RELOC_X86_64_DTPOFF32
:
8703 case BFD_RELOC_X86_64_DTPOFF64
:
8704 case BFD_RELOC_X86_64_GOTTPOFF
:
8705 case BFD_RELOC_X86_64_TPOFF32
:
8706 case BFD_RELOC_X86_64_TPOFF64
:
8707 case BFD_RELOC_X86_64_GOTOFF64
:
8708 case BFD_RELOC_X86_64_GOTPC32
:
8709 case BFD_RELOC_X86_64_GOT64
:
8710 case BFD_RELOC_X86_64_GOTPCREL64
:
8711 case BFD_RELOC_X86_64_GOTPC64
:
8712 case BFD_RELOC_X86_64_GOTPLT64
:
8713 case BFD_RELOC_X86_64_PLTOFF64
:
8714 case BFD_RELOC_X86_64_GOTPC32_TLSDESC
:
8715 case BFD_RELOC_X86_64_TLSDESC_CALL
:
8717 case BFD_RELOC_VTABLE_ENTRY
:
8718 case BFD_RELOC_VTABLE_INHERIT
:
8720 case BFD_RELOC_32_SECREL
:
8722 code
= fixp
->fx_r_type
;
8724 case BFD_RELOC_X86_64_32S
:
8725 if (!fixp
->fx_pcrel
)
8727 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
8728 code
= fixp
->fx_r_type
;
8734 switch (fixp
->fx_size
)
8737 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
8738 _("can not do %d byte pc-relative relocation"),
8740 code
= BFD_RELOC_32_PCREL
;
8742 case 1: code
= BFD_RELOC_8_PCREL
; break;
8743 case 2: code
= BFD_RELOC_16_PCREL
; break;
8744 case 4: code
= BFD_RELOC_32_PCREL
; break;
8746 case 8: code
= BFD_RELOC_64_PCREL
; break;
8752 switch (fixp
->fx_size
)
8755 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
8756 _("can not do %d byte relocation"),
8758 code
= BFD_RELOC_32
;
8760 case 1: code
= BFD_RELOC_8
; break;
8761 case 2: code
= BFD_RELOC_16
; break;
8762 case 4: code
= BFD_RELOC_32
; break;
8764 case 8: code
= BFD_RELOC_64
; break;
8771 if ((code
== BFD_RELOC_32
8772 || code
== BFD_RELOC_32_PCREL
8773 || code
== BFD_RELOC_X86_64_32S
)
8775 && fixp
->fx_addsy
== GOT_symbol
)
8778 code
= BFD_RELOC_386_GOTPC
;
8780 code
= BFD_RELOC_X86_64_GOTPC32
;
8782 if ((code
== BFD_RELOC_64
|| code
== BFD_RELOC_64_PCREL
)
8784 && fixp
->fx_addsy
== GOT_symbol
)
8786 code
= BFD_RELOC_X86_64_GOTPC64
;
8789 rel
= (arelent
*) xmalloc (sizeof (arelent
));
8790 rel
->sym_ptr_ptr
= (asymbol
**) xmalloc (sizeof (asymbol
*));
8791 *rel
->sym_ptr_ptr
= symbol_get_bfdsym (fixp
->fx_addsy
);
8793 rel
->address
= fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
8795 if (!use_rela_relocations
)
8797 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
8798 vtable entry to be used in the relocation's section offset. */
8799 if (fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
8800 rel
->address
= fixp
->fx_offset
;
8801 #if defined (OBJ_COFF) && defined (TE_PE)
8802 else if (fixp
->fx_addsy
&& S_IS_WEAK (fixp
->fx_addsy
))
8803 rel
->addend
= fixp
->fx_addnumber
- (S_GET_VALUE (fixp
->fx_addsy
) * 2);
8808 /* Use the rela in 64bit mode. */
8811 if (!fixp
->fx_pcrel
)
8812 rel
->addend
= fixp
->fx_offset
;
8816 case BFD_RELOC_X86_64_PLT32
:
8817 case BFD_RELOC_X86_64_GOT32
:
8818 case BFD_RELOC_X86_64_GOTPCREL
:
8819 case BFD_RELOC_X86_64_TLSGD
:
8820 case BFD_RELOC_X86_64_TLSLD
:
8821 case BFD_RELOC_X86_64_GOTTPOFF
:
8822 case BFD_RELOC_X86_64_GOTPC32_TLSDESC
:
8823 case BFD_RELOC_X86_64_TLSDESC_CALL
:
8824 rel
->addend
= fixp
->fx_offset
- fixp
->fx_size
;
8827 rel
->addend
= (section
->vma
8829 + fixp
->fx_addnumber
8830 + md_pcrel_from (fixp
));
8835 rel
->howto
= bfd_reloc_type_lookup (stdoutput
, code
);
8836 if (rel
->howto
== NULL
)
8838 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
8839 _("cannot represent relocation type %s"),
8840 bfd_get_reloc_code_name (code
));
8841 /* Set howto to a garbage value so that we can keep going. */
8842 rel
->howto
= bfd_reloc_type_lookup (stdoutput
, BFD_RELOC_32
);
8843 gas_assert (rel
->howto
!= NULL
);
8849 #include "tc-i386-intel.c"
8852 tc_x86_parse_to_dw2regnum (expressionS
*exp
)
8854 int saved_naked_reg
;
8855 char saved_register_dot
;
8857 saved_naked_reg
= allow_naked_reg
;
8858 allow_naked_reg
= 1;
8859 saved_register_dot
= register_chars
['.'];
8860 register_chars
['.'] = '.';
8861 allow_pseudo_reg
= 1;
8862 expression_and_evaluate (exp
);
8863 allow_pseudo_reg
= 0;
8864 register_chars
['.'] = saved_register_dot
;
8865 allow_naked_reg
= saved_naked_reg
;
8867 if (exp
->X_op
== O_register
&& exp
->X_add_number
>= 0)
8869 if ((addressT
) exp
->X_add_number
< i386_regtab_size
)
8871 exp
->X_op
= O_constant
;
8872 exp
->X_add_number
= i386_regtab
[exp
->X_add_number
]
8873 .dw2_regnum
[flag_code
>> 1];
8876 exp
->X_op
= O_illegal
;
8881 tc_x86_frame_initial_instructions (void)
8883 static unsigned int sp_regno
[2];
8885 if (!sp_regno
[flag_code
>> 1])
8887 char *saved_input
= input_line_pointer
;
8888 char sp
[][4] = {"esp", "rsp"};
8891 input_line_pointer
= sp
[flag_code
>> 1];
8892 tc_x86_parse_to_dw2regnum (&exp
);
8893 gas_assert (exp
.X_op
== O_constant
);
8894 sp_regno
[flag_code
>> 1] = exp
.X_add_number
;
8895 input_line_pointer
= saved_input
;
8898 cfi_add_CFA_def_cfa (sp_regno
[flag_code
>> 1], -x86_cie_data_alignment
);
8899 cfi_add_CFA_offset (x86_dwarf2_return_column
, x86_cie_data_alignment
);
8903 i386_elf_section_type (const char *str
, size_t len
)
8905 if (flag_code
== CODE_64BIT
8906 && len
== sizeof ("unwind") - 1
8907 && strncmp (str
, "unwind", 6) == 0)
8908 return SHT_X86_64_UNWIND
;
8915 i386_solaris_fix_up_eh_frame (segT sec
)
8917 if (flag_code
== CODE_64BIT
)
8918 elf_section_type (sec
) = SHT_X86_64_UNWIND
;
8924 tc_pe_dwarf2_emit_offset (symbolS
*symbol
, unsigned int size
)
8928 exp
.X_op
= O_secrel
;
8929 exp
.X_add_symbol
= symbol
;
8930 exp
.X_add_number
= 0;
8931 emit_expr (&exp
, size
);
8935 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8936 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
8939 x86_64_section_letter (int letter
, char **ptr_msg
)
8941 if (flag_code
== CODE_64BIT
)
8944 return SHF_X86_64_LARGE
;
8946 *ptr_msg
= _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
8949 *ptr_msg
= _("Bad .section directive: want a,w,x,M,S,G,T in string");
8954 x86_64_section_word (char *str
, size_t len
)
8956 if (len
== 5 && flag_code
== CODE_64BIT
&& CONST_STRNEQ (str
, "large"))
8957 return SHF_X86_64_LARGE
;
8963 handle_large_common (int small ATTRIBUTE_UNUSED
)
8965 if (flag_code
!= CODE_64BIT
)
8967 s_comm_internal (0, elf_common_parse
);
8968 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
8972 static segT lbss_section
;
8973 asection
*saved_com_section_ptr
= elf_com_section_ptr
;
8974 asection
*saved_bss_section
= bss_section
;
8976 if (lbss_section
== NULL
)
8978 flagword applicable
;
8980 subsegT subseg
= now_subseg
;
8982 /* The .lbss section is for local .largecomm symbols. */
8983 lbss_section
= subseg_new (".lbss", 0);
8984 applicable
= bfd_applicable_section_flags (stdoutput
);
8985 bfd_set_section_flags (stdoutput
, lbss_section
,
8986 applicable
& SEC_ALLOC
);
8987 seg_info (lbss_section
)->bss
= 1;
8989 subseg_set (seg
, subseg
);
8992 elf_com_section_ptr
= &_bfd_elf_large_com_section
;
8993 bss_section
= lbss_section
;
8995 s_comm_internal (0, elf_common_parse
);
8997 elf_com_section_ptr
= saved_com_section_ptr
;
8998 bss_section
= saved_bss_section
;
9001 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */