1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
11 This file is part of GAS, the GNU Assembler.
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
32 #include "safe-ctype.h"
36 #include "opcode/arm.h"
40 #include "dw2gencfi.h"
43 #include "dwarf2dbg.h"
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
49 /* This structure holds the unwinding state. */
54 symbolS
* table_entry
;
55 symbolS
* personality_routine
;
56 int personality_index
;
57 /* The segment containing the function. */
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes
;
64 /* The number of bytes pushed to the stack. */
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset
;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
74 /* Nonzero if an unwind_setfp directive has been seen. */
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored
:1;
82 /* Results from operand parsing worker functions. */
86 PARSE_OPERAND_SUCCESS
,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result
;
98 /* Types of processor to assemble for. */
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
124 #endif /* ifndef FPU_DEFAULT */
126 #define streq(a, b) (strcmp (a, b) == 0)
128 static arm_feature_set cpu_variant
;
129 static arm_feature_set arm_arch_used
;
130 static arm_feature_set thumb_arch_used
;
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26
= FALSE
;
134 static int atpcs
= FALSE
;
135 static int support_interwork
= FALSE
;
136 static int uses_apcs_float
= FALSE
;
137 static int pic_code
= FALSE
;
138 static int fix_v4bx
= FALSE
;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated
= TRUE
;
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
146 static const arm_feature_set
*legacy_cpu
= NULL
;
147 static const arm_feature_set
*legacy_fpu
= NULL
;
149 static const arm_feature_set
*mcpu_cpu_opt
= NULL
;
150 static const arm_feature_set
*mcpu_fpu_opt
= NULL
;
151 static const arm_feature_set
*march_cpu_opt
= NULL
;
152 static const arm_feature_set
*march_fpu_opt
= NULL
;
153 static const arm_feature_set
*mfpu_opt
= NULL
;
154 static const arm_feature_set
*object_arch
= NULL
;
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default
= FPU_DEFAULT
;
158 static const arm_feature_set fpu_arch_vfp_v1
= FPU_ARCH_VFP_V1
;
159 static const arm_feature_set fpu_arch_vfp_v2
= FPU_ARCH_VFP_V2
;
160 static const arm_feature_set fpu_arch_vfp_v3
= FPU_ARCH_VFP_V3
;
161 static const arm_feature_set fpu_arch_neon_v1
= FPU_ARCH_NEON_V1
;
162 static const arm_feature_set fpu_arch_fpa
= FPU_ARCH_FPA
;
163 static const arm_feature_set fpu_any_hard
= FPU_ANY_HARD
;
164 static const arm_feature_set fpu_arch_maverick
= FPU_ARCH_MAVERICK
;
165 static const arm_feature_set fpu_endian_pure
= FPU_ARCH_ENDIAN_PURE
;
168 static const arm_feature_set cpu_default
= CPU_DEFAULT
;
171 static const arm_feature_set arm_ext_v1
= ARM_FEATURE (ARM_EXT_V1
, 0);
172 static const arm_feature_set arm_ext_v2
= ARM_FEATURE (ARM_EXT_V1
, 0);
173 static const arm_feature_set arm_ext_v2s
= ARM_FEATURE (ARM_EXT_V2S
, 0);
174 static const arm_feature_set arm_ext_v3
= ARM_FEATURE (ARM_EXT_V3
, 0);
175 static const arm_feature_set arm_ext_v3m
= ARM_FEATURE (ARM_EXT_V3M
, 0);
176 static const arm_feature_set arm_ext_v4
= ARM_FEATURE (ARM_EXT_V4
, 0);
177 static const arm_feature_set arm_ext_v4t
= ARM_FEATURE (ARM_EXT_V4T
, 0);
178 static const arm_feature_set arm_ext_v5
= ARM_FEATURE (ARM_EXT_V5
, 0);
179 static const arm_feature_set arm_ext_v4t_5
=
180 ARM_FEATURE (ARM_EXT_V4T
| ARM_EXT_V5
, 0);
181 static const arm_feature_set arm_ext_v5t
= ARM_FEATURE (ARM_EXT_V5T
, 0);
182 static const arm_feature_set arm_ext_v5e
= ARM_FEATURE (ARM_EXT_V5E
, 0);
183 static const arm_feature_set arm_ext_v5exp
= ARM_FEATURE (ARM_EXT_V5ExP
, 0);
184 static const arm_feature_set arm_ext_v5j
= ARM_FEATURE (ARM_EXT_V5J
, 0);
185 static const arm_feature_set arm_ext_v6
= ARM_FEATURE (ARM_EXT_V6
, 0);
186 static const arm_feature_set arm_ext_v6k
= ARM_FEATURE (ARM_EXT_V6K
, 0);
187 static const arm_feature_set arm_ext_v6z
= ARM_FEATURE (ARM_EXT_V6Z
, 0);
188 static const arm_feature_set arm_ext_v6t2
= ARM_FEATURE (ARM_EXT_V6T2
, 0);
189 static const arm_feature_set arm_ext_v6_notm
= ARM_FEATURE (ARM_EXT_V6_NOTM
, 0);
190 static const arm_feature_set arm_ext_v6_dsp
= ARM_FEATURE (ARM_EXT_V6_DSP
, 0);
191 static const arm_feature_set arm_ext_barrier
= ARM_FEATURE (ARM_EXT_BARRIER
, 0);
192 static const arm_feature_set arm_ext_msr
= ARM_FEATURE (ARM_EXT_THUMB_MSR
, 0);
193 static const arm_feature_set arm_ext_div
= ARM_FEATURE (ARM_EXT_DIV
, 0);
194 static const arm_feature_set arm_ext_v7
= ARM_FEATURE (ARM_EXT_V7
, 0);
195 static const arm_feature_set arm_ext_v7a
= ARM_FEATURE (ARM_EXT_V7A
, 0);
196 static const arm_feature_set arm_ext_v7r
= ARM_FEATURE (ARM_EXT_V7R
, 0);
197 static const arm_feature_set arm_ext_v7m
= ARM_FEATURE (ARM_EXT_V7M
, 0);
198 static const arm_feature_set arm_ext_m
=
199 ARM_FEATURE (ARM_EXT_V6M
| ARM_EXT_V7M
, 0);
201 static const arm_feature_set arm_arch_any
= ARM_ANY
;
202 static const arm_feature_set arm_arch_full
= ARM_FEATURE (-1, -1);
203 static const arm_feature_set arm_arch_t2
= ARM_ARCH_THUMB2
;
204 static const arm_feature_set arm_arch_none
= ARM_ARCH_NONE
;
206 static const arm_feature_set arm_cext_iwmmxt2
=
207 ARM_FEATURE (0, ARM_CEXT_IWMMXT2
);
208 static const arm_feature_set arm_cext_iwmmxt
=
209 ARM_FEATURE (0, ARM_CEXT_IWMMXT
);
210 static const arm_feature_set arm_cext_xscale
=
211 ARM_FEATURE (0, ARM_CEXT_XSCALE
);
212 static const arm_feature_set arm_cext_maverick
=
213 ARM_FEATURE (0, ARM_CEXT_MAVERICK
);
214 static const arm_feature_set fpu_fpa_ext_v1
= ARM_FEATURE (0, FPU_FPA_EXT_V1
);
215 static const arm_feature_set fpu_fpa_ext_v2
= ARM_FEATURE (0, FPU_FPA_EXT_V2
);
216 static const arm_feature_set fpu_vfp_ext_v1xd
=
217 ARM_FEATURE (0, FPU_VFP_EXT_V1xD
);
218 static const arm_feature_set fpu_vfp_ext_v1
= ARM_FEATURE (0, FPU_VFP_EXT_V1
);
219 static const arm_feature_set fpu_vfp_ext_v2
= ARM_FEATURE (0, FPU_VFP_EXT_V2
);
220 static const arm_feature_set fpu_vfp_ext_v3xd
= ARM_FEATURE (0, FPU_VFP_EXT_V3xD
);
221 static const arm_feature_set fpu_vfp_ext_v3
= ARM_FEATURE (0, FPU_VFP_EXT_V3
);
222 static const arm_feature_set fpu_vfp_ext_d32
=
223 ARM_FEATURE (0, FPU_VFP_EXT_D32
);
224 static const arm_feature_set fpu_neon_ext_v1
= ARM_FEATURE (0, FPU_NEON_EXT_V1
);
225 static const arm_feature_set fpu_vfp_v3_or_neon_ext
=
226 ARM_FEATURE (0, FPU_NEON_EXT_V1
| FPU_VFP_EXT_V3
);
227 static const arm_feature_set fpu_vfp_fp16
= ARM_FEATURE (0, FPU_VFP_EXT_FP16
);
228 static const arm_feature_set fpu_neon_ext_fma
= ARM_FEATURE (0, FPU_NEON_EXT_FMA
);
229 static const arm_feature_set fpu_vfp_ext_fma
= ARM_FEATURE (0, FPU_VFP_EXT_FMA
);
231 static int mfloat_abi_opt
= -1;
232 /* Record user cpu selection for object attributes. */
233 static arm_feature_set selected_cpu
= ARM_ARCH_NONE
;
234 /* Must be long enough to hold any of the names in arm_cpus. */
235 static char selected_cpu_name
[16];
238 static int meabi_flags
= EABI_DEFAULT
;
240 static int meabi_flags
= EF_ARM_EABI_UNKNOWN
;
243 static int attributes_set_explicitly
[NUM_KNOWN_OBJ_ATTRIBUTES
];
248 return (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
);
253 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
254 symbolS
* GOT_symbol
;
257 /* 0: assemble for ARM,
258 1: assemble for Thumb,
259 2: assemble for Thumb even though target CPU does not support thumb
261 static int thumb_mode
= 0;
262 /* A value distinct from the possible values for thumb_mode that we
263 can use to record whether thumb_mode has been copied into the
264 tc_frag_data field of a frag. */
265 #define MODE_RECORDED (1 << 4)
267 /* Specifies the intrinsic IT insn behavior mode. */
268 enum implicit_it_mode
270 IMPLICIT_IT_MODE_NEVER
= 0x00,
271 IMPLICIT_IT_MODE_ARM
= 0x01,
272 IMPLICIT_IT_MODE_THUMB
= 0x02,
273 IMPLICIT_IT_MODE_ALWAYS
= (IMPLICIT_IT_MODE_ARM
| IMPLICIT_IT_MODE_THUMB
)
275 static int implicit_it_mode
= IMPLICIT_IT_MODE_ARM
;
277 /* If unified_syntax is true, we are processing the new unified
278 ARM/Thumb syntax. Important differences from the old ARM mode:
280 - Immediate operands do not require a # prefix.
281 - Conditional affixes always appear at the end of the
282 instruction. (For backward compatibility, those instructions
283 that formerly had them in the middle, continue to accept them
285 - The IT instruction may appear, and if it does is validated
286 against subsequent conditional affixes. It does not generate
289 Important differences from the old Thumb mode:
291 - Immediate operands do not require a # prefix.
292 - Most of the V6T2 instructions are only available in unified mode.
293 - The .N and .W suffixes are recognized and honored (it is an error
294 if they cannot be honored).
295 - All instructions set the flags if and only if they have an 's' affix.
296 - Conditional affixes may be used. They are validated against
297 preceding IT instructions. Unlike ARM mode, you cannot use a
298 conditional affix except in the scope of an IT instruction. */
300 static bfd_boolean unified_syntax
= FALSE
;
315 enum neon_el_type type
;
319 #define NEON_MAX_TYPE_ELS 4
323 struct neon_type_el el
[NEON_MAX_TYPE_ELS
];
327 enum it_instruction_type
332 IF_INSIDE_IT_LAST_INSN
, /* Either outside or inside;
333 if inside, should be the last one. */
334 NEUTRAL_IT_INSN
, /* This could be either inside or outside,
335 i.e. BKPT and NOP. */
336 IT_INSN
/* The IT insn has been parsed. */
342 unsigned long instruction
;
346 /* "uncond_value" is set to the value in place of the conditional field in
347 unconditional versions of the instruction, or -1 if nothing is
350 struct neon_type vectype
;
351 /* This does not indicate an actual NEON instruction, only that
352 the mnemonic accepts neon-style type suffixes. */
354 /* Set to the opcode if the instruction needs relaxation.
355 Zero if the instruction is not relaxed. */
359 bfd_reloc_code_real_type type
;
364 enum it_instruction_type it_insn_type
;
370 struct neon_type_el vectype
;
371 unsigned present
: 1; /* Operand present. */
372 unsigned isreg
: 1; /* Operand was a register. */
373 unsigned immisreg
: 1; /* .imm field is a second register. */
374 unsigned isscalar
: 1; /* Operand is a (Neon) scalar. */
375 unsigned immisalign
: 1; /* Immediate is an alignment specifier. */
376 unsigned immisfloat
: 1; /* Immediate was parsed as a float. */
377 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
378 instructions. This allows us to disambiguate ARM <-> vector insns. */
379 unsigned regisimm
: 1; /* 64-bit immediate, reg forms high 32 bits. */
380 unsigned isvec
: 1; /* Is a single, double or quad VFP/Neon reg. */
381 unsigned isquad
: 1; /* Operand is Neon quad-precision register. */
382 unsigned issingle
: 1; /* Operand is VFP single-precision register. */
383 unsigned hasreloc
: 1; /* Operand has relocation suffix. */
384 unsigned writeback
: 1; /* Operand has trailing ! */
385 unsigned preind
: 1; /* Preindexed address. */
386 unsigned postind
: 1; /* Postindexed address. */
387 unsigned negative
: 1; /* Index register was negated. */
388 unsigned shifted
: 1; /* Shift applied to operation. */
389 unsigned shift_kind
: 3; /* Shift operation (enum shift_kind). */
393 static struct arm_it inst
;
395 #define NUM_FLOAT_VALS 8
397 const char * fp_const
[] =
399 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
402 /* Number of littlenums required to hold an extended precision number. */
403 #define MAX_LITTLENUMS 6
405 LITTLENUM_TYPE fp_values
[NUM_FLOAT_VALS
][MAX_LITTLENUMS
];
415 #define CP_T_X 0x00008000
416 #define CP_T_Y 0x00400000
418 #define CONDS_BIT 0x00100000
419 #define LOAD_BIT 0x00100000
421 #define DOUBLE_LOAD_FLAG 0x00000001
425 const char * template_name
;
429 #define COND_ALWAYS 0xE
433 const char * template_name
;
437 struct asm_barrier_opt
439 const char * template_name
;
443 /* The bit that distinguishes CPSR and SPSR. */
444 #define SPSR_BIT (1 << 22)
446 /* The individual PSR flag bits. */
447 #define PSR_c (1 << 16)
448 #define PSR_x (1 << 17)
449 #define PSR_s (1 << 18)
450 #define PSR_f (1 << 19)
455 bfd_reloc_code_real_type reloc
;
460 VFP_REG_Sd
, VFP_REG_Sm
, VFP_REG_Sn
,
461 VFP_REG_Dd
, VFP_REG_Dm
, VFP_REG_Dn
466 VFP_LDSTMIA
, VFP_LDSTMDB
, VFP_LDSTMIAX
, VFP_LDSTMDBX
469 /* Bits for DEFINED field in neon_typed_alias. */
470 #define NTA_HASTYPE 1
471 #define NTA_HASINDEX 2
473 struct neon_typed_alias
475 unsigned char defined
;
477 struct neon_type_el eltype
;
480 /* ARM register categories. This includes coprocessor numbers and various
481 architecture extensions' registers. */
507 /* Structure for a hash table entry for a register.
508 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
509 information which states whether a vector type or index is specified (for a
510 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
514 unsigned char number
;
516 unsigned char builtin
;
517 struct neon_typed_alias
* neon
;
520 /* Diagnostics used when we don't get a register of the expected type. */
521 const char * const reg_expected_msgs
[] =
523 N_("ARM register expected"),
524 N_("bad or missing co-processor number"),
525 N_("co-processor register expected"),
526 N_("FPA register expected"),
527 N_("VFP single precision register expected"),
528 N_("VFP/Neon double precision register expected"),
529 N_("Neon quad precision register expected"),
530 N_("VFP single or double precision register expected"),
531 N_("Neon double or quad precision register expected"),
532 N_("VFP single, double or Neon quad precision register expected"),
533 N_("VFP system register expected"),
534 N_("Maverick MVF register expected"),
535 N_("Maverick MVD register expected"),
536 N_("Maverick MVFX register expected"),
537 N_("Maverick MVDX register expected"),
538 N_("Maverick MVAX register expected"),
539 N_("Maverick DSPSC register expected"),
540 N_("iWMMXt data register expected"),
541 N_("iWMMXt control register expected"),
542 N_("iWMMXt scalar register expected"),
543 N_("XScale accumulator register expected"),
546 /* Some well known registers that we refer to directly elsewhere. */
551 /* ARM instructions take 4bytes in the object file, Thumb instructions
557 /* Basic string to match. */
558 const char * template_name
;
560 /* Parameters to instruction. */
561 unsigned int operands
[8];
563 /* Conditional tag - see opcode_lookup. */
564 unsigned int tag
: 4;
566 /* Basic instruction code. */
567 unsigned int avalue
: 28;
569 /* Thumb-format instruction code. */
572 /* Which architecture variant provides this instruction. */
573 const arm_feature_set
* avariant
;
574 const arm_feature_set
* tvariant
;
576 /* Function to call to encode instruction in ARM format. */
577 void (* aencode
) (void);
579 /* Function to call to encode instruction in Thumb format. */
580 void (* tencode
) (void);
583 /* Defines for various bits that we will want to toggle. */
584 #define INST_IMMEDIATE 0x02000000
585 #define OFFSET_REG 0x02000000
586 #define HWOFFSET_IMM 0x00400000
587 #define SHIFT_BY_REG 0x00000010
588 #define PRE_INDEX 0x01000000
589 #define INDEX_UP 0x00800000
590 #define WRITE_BACK 0x00200000
591 #define LDM_TYPE_2_OR_3 0x00400000
592 #define CPSI_MMOD 0x00020000
594 #define LITERAL_MASK 0xf000f000
595 #define OPCODE_MASK 0xfe1fffff
596 #define V4_STR_BIT 0x00000020
598 #define T2_SUBS_PC_LR 0xf3de8f00
600 #define DATA_OP_SHIFT 21
602 #define T2_OPCODE_MASK 0xfe1fffff
603 #define T2_DATA_OP_SHIFT 21
605 /* Codes to distinguish the arithmetic instructions. */
616 #define OPCODE_CMP 10
617 #define OPCODE_CMN 11
618 #define OPCODE_ORR 12
619 #define OPCODE_MOV 13
620 #define OPCODE_BIC 14
621 #define OPCODE_MVN 15
623 #define T2_OPCODE_AND 0
624 #define T2_OPCODE_BIC 1
625 #define T2_OPCODE_ORR 2
626 #define T2_OPCODE_ORN 3
627 #define T2_OPCODE_EOR 4
628 #define T2_OPCODE_ADD 8
629 #define T2_OPCODE_ADC 10
630 #define T2_OPCODE_SBC 11
631 #define T2_OPCODE_SUB 13
632 #define T2_OPCODE_RSB 14
634 #define T_OPCODE_MUL 0x4340
635 #define T_OPCODE_TST 0x4200
636 #define T_OPCODE_CMN 0x42c0
637 #define T_OPCODE_NEG 0x4240
638 #define T_OPCODE_MVN 0x43c0
640 #define T_OPCODE_ADD_R3 0x1800
641 #define T_OPCODE_SUB_R3 0x1a00
642 #define T_OPCODE_ADD_HI 0x4400
643 #define T_OPCODE_ADD_ST 0xb000
644 #define T_OPCODE_SUB_ST 0xb080
645 #define T_OPCODE_ADD_SP 0xa800
646 #define T_OPCODE_ADD_PC 0xa000
647 #define T_OPCODE_ADD_I8 0x3000
648 #define T_OPCODE_SUB_I8 0x3800
649 #define T_OPCODE_ADD_I3 0x1c00
650 #define T_OPCODE_SUB_I3 0x1e00
652 #define T_OPCODE_ASR_R 0x4100
653 #define T_OPCODE_LSL_R 0x4080
654 #define T_OPCODE_LSR_R 0x40c0
655 #define T_OPCODE_ROR_R 0x41c0
656 #define T_OPCODE_ASR_I 0x1000
657 #define T_OPCODE_LSL_I 0x0000
658 #define T_OPCODE_LSR_I 0x0800
660 #define T_OPCODE_MOV_I8 0x2000
661 #define T_OPCODE_CMP_I8 0x2800
662 #define T_OPCODE_CMP_LR 0x4280
663 #define T_OPCODE_MOV_HR 0x4600
664 #define T_OPCODE_CMP_HR 0x4500
666 #define T_OPCODE_LDR_PC 0x4800
667 #define T_OPCODE_LDR_SP 0x9800
668 #define T_OPCODE_STR_SP 0x9000
669 #define T_OPCODE_LDR_IW 0x6800
670 #define T_OPCODE_STR_IW 0x6000
671 #define T_OPCODE_LDR_IH 0x8800
672 #define T_OPCODE_STR_IH 0x8000
673 #define T_OPCODE_LDR_IB 0x7800
674 #define T_OPCODE_STR_IB 0x7000
675 #define T_OPCODE_LDR_RW 0x5800
676 #define T_OPCODE_STR_RW 0x5000
677 #define T_OPCODE_LDR_RH 0x5a00
678 #define T_OPCODE_STR_RH 0x5200
679 #define T_OPCODE_LDR_RB 0x5c00
680 #define T_OPCODE_STR_RB 0x5400
682 #define T_OPCODE_PUSH 0xb400
683 #define T_OPCODE_POP 0xbc00
685 #define T_OPCODE_BRANCH 0xe000
687 #define THUMB_SIZE 2 /* Size of thumb instruction. */
688 #define THUMB_PP_PC_LR 0x0100
689 #define THUMB_LOAD_BIT 0x0800
690 #define THUMB2_LOAD_BIT 0x00100000
692 #define BAD_ARGS _("bad arguments to instruction")
693 #define BAD_SP _("r13 not allowed here")
694 #define BAD_PC _("r15 not allowed here")
695 #define BAD_COND _("instruction cannot be conditional")
696 #define BAD_OVERLAP _("registers may not be the same")
697 #define BAD_HIREG _("lo register required")
698 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
699 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
700 #define BAD_BRANCH _("branch must be last instruction in IT block")
701 #define BAD_NOT_IT _("instruction not allowed in IT block")
702 #define BAD_FPU _("selected FPU does not support instruction")
703 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
704 #define BAD_IT_COND _("incorrect condition in IT block")
705 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
706 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
707 #define BAD_PC_ADDRESSING \
708 _("cannot use register index with PC-relative addressing")
709 #define BAD_PC_WRITEBACK \
710 _("cannot use writeback with PC-relative addressing")
712 static struct hash_control
* arm_ops_hsh
;
713 static struct hash_control
* arm_cond_hsh
;
714 static struct hash_control
* arm_shift_hsh
;
715 static struct hash_control
* arm_psr_hsh
;
716 static struct hash_control
* arm_v7m_psr_hsh
;
717 static struct hash_control
* arm_reg_hsh
;
718 static struct hash_control
* arm_reloc_hsh
;
719 static struct hash_control
* arm_barrier_opt_hsh
;
721 /* Stuff needed to resolve the label ambiguity
730 symbolS
* last_label_seen
;
731 static int label_is_thumb_function_name
= FALSE
;
733 /* Literal pool structure. Held on a per-section
734 and per-sub-section basis. */
736 #define MAX_LITERAL_POOL_SIZE 1024
737 typedef struct literal_pool
739 expressionS literals
[MAX_LITERAL_POOL_SIZE
];
740 unsigned int next_free_entry
;
745 struct literal_pool
* next
;
748 /* Pointer to a linked list of literal pools. */
749 literal_pool
* list_of_pools
= NULL
;
752 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
754 static struct current_it now_it
;
758 now_it_compatible (int cond
)
760 return (cond
& ~1) == (now_it
.cc
& ~1);
764 conditional_insn (void)
766 return inst
.cond
!= COND_ALWAYS
;
769 static int in_it_block (void);
771 static int handle_it_state (void);
773 static void force_automatic_it_block_close (void);
775 static void it_fsm_post_encode (void);
777 #define set_it_insn_type(type) \
780 inst.it_insn_type = type; \
781 if (handle_it_state () == FAIL) \
786 #define set_it_insn_type_nonvoid(type, failret) \
789 inst.it_insn_type = type; \
790 if (handle_it_state () == FAIL) \
795 #define set_it_insn_type_last() \
798 if (inst.cond == COND_ALWAYS) \
799 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
801 set_it_insn_type (INSIDE_IT_LAST_INSN); \
807 /* This array holds the chars that always start a comment. If the
808 pre-processor is disabled, these aren't very useful. */
809 const char comment_chars
[] = "@";
811 /* This array holds the chars that only start a comment at the beginning of
812 a line. If the line seems to have the form '# 123 filename'
813 .line and .file directives will appear in the pre-processed output. */
814 /* Note that input_file.c hand checks for '#' at the beginning of the
815 first line of the input file. This is because the compiler outputs
816 #NO_APP at the beginning of its output. */
817 /* Also note that comments like this one will always work. */
818 const char line_comment_chars
[] = "#";
820 const char line_separator_chars
[] = ";";
822 /* Chars that can be used to separate mant
823 from exp in floating point numbers. */
824 const char EXP_CHARS
[] = "eE";
826 /* Chars that mean this number is a floating point constant. */
830 const char FLT_CHARS
[] = "rRsSfFdDxXeEpP";
832 /* Prefix characters that indicate the start of an immediate
834 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
836 /* Separator character handling. */
838 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
841 skip_past_char (char ** str
, char c
)
852 #define skip_past_comma(str) skip_past_char (str, ',')
854 /* Arithmetic expressions (possibly involving symbols). */
856 /* Return TRUE if anything in the expression is a bignum. */
859 walk_no_bignums (symbolS
* sp
)
861 if (symbol_get_value_expression (sp
)->X_op
== O_big
)
864 if (symbol_get_value_expression (sp
)->X_add_symbol
)
866 return (walk_no_bignums (symbol_get_value_expression (sp
)->X_add_symbol
)
867 || (symbol_get_value_expression (sp
)->X_op_symbol
868 && walk_no_bignums (symbol_get_value_expression (sp
)->X_op_symbol
)));
874 static int in_my_get_expression
= 0;
876 /* Third argument to my_get_expression. */
877 #define GE_NO_PREFIX 0
878 #define GE_IMM_PREFIX 1
879 #define GE_OPT_PREFIX 2
880 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
881 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
882 #define GE_OPT_PREFIX_BIG 3
885 my_get_expression (expressionS
* ep
, char ** str
, int prefix_mode
)
890 /* In unified syntax, all prefixes are optional. */
892 prefix_mode
= (prefix_mode
== GE_OPT_PREFIX_BIG
) ? prefix_mode
897 case GE_NO_PREFIX
: break;
899 if (!is_immediate_prefix (**str
))
901 inst
.error
= _("immediate expression requires a # prefix");
907 case GE_OPT_PREFIX_BIG
:
908 if (is_immediate_prefix (**str
))
914 memset (ep
, 0, sizeof (expressionS
));
916 save_in
= input_line_pointer
;
917 input_line_pointer
= *str
;
918 in_my_get_expression
= 1;
919 seg
= expression (ep
);
920 in_my_get_expression
= 0;
922 if (ep
->X_op
== O_illegal
|| ep
->X_op
== O_absent
)
924 /* We found a bad or missing expression in md_operand(). */
925 *str
= input_line_pointer
;
926 input_line_pointer
= save_in
;
927 if (inst
.error
== NULL
)
928 inst
.error
= (ep
->X_op
== O_absent
929 ? _("missing expression") :_("bad expression"));
934 if (seg
!= absolute_section
935 && seg
!= text_section
936 && seg
!= data_section
937 && seg
!= bss_section
938 && seg
!= undefined_section
)
940 inst
.error
= _("bad segment");
941 *str
= input_line_pointer
;
942 input_line_pointer
= save_in
;
947 /* Get rid of any bignums now, so that we don't generate an error for which
948 we can't establish a line number later on. Big numbers are never valid
949 in instructions, which is where this routine is always called. */
950 if (prefix_mode
!= GE_OPT_PREFIX_BIG
951 && (ep
->X_op
== O_big
953 && (walk_no_bignums (ep
->X_add_symbol
)
955 && walk_no_bignums (ep
->X_op_symbol
))))))
957 inst
.error
= _("invalid constant");
958 *str
= input_line_pointer
;
959 input_line_pointer
= save_in
;
963 *str
= input_line_pointer
;
964 input_line_pointer
= save_in
;
968 /* Turn a string in input_line_pointer into a floating point constant
969 of type TYPE, and store the appropriate bytes in *LITP. The number
970 of LITTLENUMS emitted is stored in *SIZEP. An error message is
971 returned, or NULL on OK.
973 Note that fp constants aren't represent in the normal way on the ARM.
974 In big endian mode, things are as expected. However, in little endian
975 mode fp constants are big-endian word-wise, and little-endian byte-wise
976 within the words. For example, (double) 1.1 in big endian mode is
977 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
978 the byte sequence 99 99 f1 3f 9a 99 99 99.
980 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
983 md_atof (int type
, char * litP
, int * sizeP
)
986 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
1018 return _("Unrecognized or unsupported floating point constant");
1021 t
= atof_ieee (input_line_pointer
, type
, words
);
1023 input_line_pointer
= t
;
1024 *sizeP
= prec
* sizeof (LITTLENUM_TYPE
);
1026 if (target_big_endian
)
1028 for (i
= 0; i
< prec
; i
++)
1030 md_number_to_chars (litP
, (valueT
) words
[i
], sizeof (LITTLENUM_TYPE
));
1031 litP
+= sizeof (LITTLENUM_TYPE
);
1036 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_endian_pure
))
1037 for (i
= prec
- 1; i
>= 0; i
--)
1039 md_number_to_chars (litP
, (valueT
) words
[i
], sizeof (LITTLENUM_TYPE
));
1040 litP
+= sizeof (LITTLENUM_TYPE
);
1043 /* For a 4 byte float the order of elements in `words' is 1 0.
1044 For an 8 byte float the order is 1 0 3 2. */
1045 for (i
= 0; i
< prec
; i
+= 2)
1047 md_number_to_chars (litP
, (valueT
) words
[i
+ 1],
1048 sizeof (LITTLENUM_TYPE
));
1049 md_number_to_chars (litP
+ sizeof (LITTLENUM_TYPE
),
1050 (valueT
) words
[i
], sizeof (LITTLENUM_TYPE
));
1051 litP
+= 2 * sizeof (LITTLENUM_TYPE
);
1058 /* We handle all bad expressions here, so that we can report the faulty
1059 instruction in the error message. */
1061 md_operand (expressionS
* exp
)
1063 if (in_my_get_expression
)
1064 exp
->X_op
= O_illegal
;
1067 /* Immediate values. */
1069 /* Generic immediate-value read function for use in directives.
1070 Accepts anything that 'expression' can fold to a constant.
1071 *val receives the number. */
1074 immediate_for_directive (int *val
)
1077 exp
.X_op
= O_illegal
;
1079 if (is_immediate_prefix (*input_line_pointer
))
1081 input_line_pointer
++;
1085 if (exp
.X_op
!= O_constant
)
1087 as_bad (_("expected #constant"));
1088 ignore_rest_of_line ();
1091 *val
= exp
.X_add_number
;
1096 /* Register parsing. */
1098 /* Generic register parser. CCP points to what should be the
1099 beginning of a register name. If it is indeed a valid register
1100 name, advance CCP over it and return the reg_entry structure;
1101 otherwise return NULL. Does not issue diagnostics. */
1103 static struct reg_entry
*
1104 arm_reg_parse_multi (char **ccp
)
1108 struct reg_entry
*reg
;
1110 #ifdef REGISTER_PREFIX
1111 if (*start
!= REGISTER_PREFIX
)
1115 #ifdef OPTIONAL_REGISTER_PREFIX
1116 if (*start
== OPTIONAL_REGISTER_PREFIX
)
1121 if (!ISALPHA (*p
) || !is_name_beginner (*p
))
1126 while (ISALPHA (*p
) || ISDIGIT (*p
) || *p
== '_');
1128 reg
= (struct reg_entry
*) hash_find_n (arm_reg_hsh
, start
, p
- start
);
1138 arm_reg_alt_syntax (char **ccp
, char *start
, struct reg_entry
*reg
,
1139 enum arm_reg_type type
)
1141 /* Alternative syntaxes are accepted for a few register classes. */
1148 /* Generic coprocessor register names are allowed for these. */
1149 if (reg
&& reg
->type
== REG_TYPE_CN
)
1154 /* For backward compatibility, a bare number is valid here. */
1156 unsigned long processor
= strtoul (start
, ccp
, 10);
1157 if (*ccp
!= start
&& processor
<= 15)
1161 case REG_TYPE_MMXWC
:
1162 /* WC includes WCG. ??? I'm not sure this is true for all
1163 instructions that take WC registers. */
1164 if (reg
&& reg
->type
== REG_TYPE_MMXWCG
)
1175 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1176 return value is the register number or FAIL. */
1179 arm_reg_parse (char **ccp
, enum arm_reg_type type
)
1182 struct reg_entry
*reg
= arm_reg_parse_multi (ccp
);
1185 /* Do not allow a scalar (reg+index) to parse as a register. */
1186 if (reg
&& reg
->neon
&& (reg
->neon
->defined
& NTA_HASINDEX
))
1189 if (reg
&& reg
->type
== type
)
1192 if ((ret
= arm_reg_alt_syntax (ccp
, start
, reg
, type
)) != FAIL
)
1199 /* Parse a Neon type specifier. *STR should point at the leading '.'
1200 character. Does no verification at this stage that the type fits the opcode
1207 Can all be legally parsed by this function.
1209 Fills in neon_type struct pointer with parsed information, and updates STR
1210 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1211 type, FAIL if not. */
1214 parse_neon_type (struct neon_type
*type
, char **str
)
1221 while (type
->elems
< NEON_MAX_TYPE_ELS
)
1223 enum neon_el_type thistype
= NT_untyped
;
1224 unsigned thissize
= -1u;
1231 /* Just a size without an explicit type. */
1235 switch (TOLOWER (*ptr
))
1237 case 'i': thistype
= NT_integer
; break;
1238 case 'f': thistype
= NT_float
; break;
1239 case 'p': thistype
= NT_poly
; break;
1240 case 's': thistype
= NT_signed
; break;
1241 case 'u': thistype
= NT_unsigned
; break;
1243 thistype
= NT_float
;
1248 as_bad (_("unexpected character `%c' in type specifier"), *ptr
);
1254 /* .f is an abbreviation for .f32. */
1255 if (thistype
== NT_float
&& !ISDIGIT (*ptr
))
1260 thissize
= strtoul (ptr
, &ptr
, 10);
1262 if (thissize
!= 8 && thissize
!= 16 && thissize
!= 32
1265 as_bad (_("bad size %d in type specifier"), thissize
);
1273 type
->el
[type
->elems
].type
= thistype
;
1274 type
->el
[type
->elems
].size
= thissize
;
1279 /* Empty/missing type is not a successful parse. */
1280 if (type
->elems
== 0)
1288 /* Errors may be set multiple times during parsing or bit encoding
1289 (particularly in the Neon bits), but usually the earliest error which is set
1290 will be the most meaningful. Avoid overwriting it with later (cascading)
1291 errors by calling this function. */
1294 first_error (const char *err
)
1300 /* Parse a single type, e.g. ".s32", leading period included. */
1302 parse_neon_operand_type (struct neon_type_el
*vectype
, char **ccp
)
1305 struct neon_type optype
;
1309 if (parse_neon_type (&optype
, &str
) == SUCCESS
)
1311 if (optype
.elems
== 1)
1312 *vectype
= optype
.el
[0];
1315 first_error (_("only one type should be specified for operand"));
1321 first_error (_("vector type expected"));
1333 /* Special meanings for indices (which have a range of 0-7), which will fit into
1336 #define NEON_ALL_LANES 15
1337 #define NEON_INTERLEAVE_LANES 14
1339 /* Parse either a register or a scalar, with an optional type. Return the
1340 register number, and optionally fill in the actual type of the register
1341 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1342 type/index information in *TYPEINFO. */
1345 parse_typed_reg_or_scalar (char **ccp
, enum arm_reg_type type
,
1346 enum arm_reg_type
*rtype
,
1347 struct neon_typed_alias
*typeinfo
)
1350 struct reg_entry
*reg
= arm_reg_parse_multi (&str
);
1351 struct neon_typed_alias atype
;
1352 struct neon_type_el parsetype
;
1356 atype
.eltype
.type
= NT_invtype
;
1357 atype
.eltype
.size
= -1;
1359 /* Try alternate syntax for some types of register. Note these are mutually
1360 exclusive with the Neon syntax extensions. */
1363 int altreg
= arm_reg_alt_syntax (&str
, *ccp
, reg
, type
);
1371 /* Undo polymorphism when a set of register types may be accepted. */
1372 if ((type
== REG_TYPE_NDQ
1373 && (reg
->type
== REG_TYPE_NQ
|| reg
->type
== REG_TYPE_VFD
))
1374 || (type
== REG_TYPE_VFSD
1375 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
))
1376 || (type
== REG_TYPE_NSDQ
1377 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
1378 || reg
->type
== REG_TYPE_NQ
))
1379 || (type
== REG_TYPE_MMXWC
1380 && (reg
->type
== REG_TYPE_MMXWCG
)))
1381 type
= (enum arm_reg_type
) reg
->type
;
1383 if (type
!= reg
->type
)
1389 if (parse_neon_operand_type (&parsetype
, &str
) == SUCCESS
)
1391 if ((atype
.defined
& NTA_HASTYPE
) != 0)
1393 first_error (_("can't redefine type for operand"));
1396 atype
.defined
|= NTA_HASTYPE
;
1397 atype
.eltype
= parsetype
;
1400 if (skip_past_char (&str
, '[') == SUCCESS
)
1402 if (type
!= REG_TYPE_VFD
)
1404 first_error (_("only D registers may be indexed"));
1408 if ((atype
.defined
& NTA_HASINDEX
) != 0)
1410 first_error (_("can't change index for operand"));
1414 atype
.defined
|= NTA_HASINDEX
;
1416 if (skip_past_char (&str
, ']') == SUCCESS
)
1417 atype
.index
= NEON_ALL_LANES
;
1422 my_get_expression (&exp
, &str
, GE_NO_PREFIX
);
1424 if (exp
.X_op
!= O_constant
)
1426 first_error (_("constant expression required"));
1430 if (skip_past_char (&str
, ']') == FAIL
)
1433 atype
.index
= exp
.X_add_number
;
1448 /* Like arm_reg_parse, but allow allow the following extra features:
1449 - If RTYPE is non-zero, return the (possibly restricted) type of the
1450 register (e.g. Neon double or quad reg when either has been requested).
1451 - If this is a Neon vector type with additional type information, fill
1452 in the struct pointed to by VECTYPE (if non-NULL).
1453 This function will fault on encountering a scalar. */
1456 arm_typed_reg_parse (char **ccp
, enum arm_reg_type type
,
1457 enum arm_reg_type
*rtype
, struct neon_type_el
*vectype
)
1459 struct neon_typed_alias atype
;
1461 int reg
= parse_typed_reg_or_scalar (&str
, type
, rtype
, &atype
);
1466 /* Do not allow a scalar (reg+index) to parse as a register. */
1467 if ((atype
.defined
& NTA_HASINDEX
) != 0)
1469 first_error (_("register operand expected, but got scalar"));
1474 *vectype
= atype
.eltype
;
1481 #define NEON_SCALAR_REG(X) ((X) >> 4)
1482 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1484 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1485 have enough information to be able to do a good job bounds-checking. So, we
1486 just do easy checks here, and do further checks later. */
1489 parse_scalar (char **ccp
, int elsize
, struct neon_type_el
*type
)
1493 struct neon_typed_alias atype
;
1495 reg
= parse_typed_reg_or_scalar (&str
, REG_TYPE_VFD
, NULL
, &atype
);
1497 if (reg
== FAIL
|| (atype
.defined
& NTA_HASINDEX
) == 0)
1500 if (atype
.index
== NEON_ALL_LANES
)
1502 first_error (_("scalar must have an index"));
1505 else if (atype
.index
>= 64 / elsize
)
1507 first_error (_("scalar index out of range"));
1512 *type
= atype
.eltype
;
1516 return reg
* 16 + atype
.index
;
1519 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1522 parse_reg_list (char ** strp
)
1524 char * str
= * strp
;
1528 /* We come back here if we get ranges concatenated by '+' or '|'. */
1543 if ((reg
= arm_reg_parse (&str
, REG_TYPE_RN
)) == FAIL
)
1545 first_error (_(reg_expected_msgs
[REG_TYPE_RN
]));
1555 first_error (_("bad range in register list"));
1559 for (i
= cur_reg
+ 1; i
< reg
; i
++)
1561 if (range
& (1 << i
))
1563 (_("Warning: duplicated register (r%d) in register list"),
1571 if (range
& (1 << reg
))
1572 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1574 else if (reg
<= cur_reg
)
1575 as_tsktsk (_("Warning: register range not in ascending order"));
1580 while (skip_past_comma (&str
) != FAIL
1581 || (in_range
= 1, *str
++ == '-'));
1586 first_error (_("missing `}'"));
1594 if (my_get_expression (&exp
, &str
, GE_NO_PREFIX
))
1597 if (exp
.X_op
== O_constant
)
1599 if (exp
.X_add_number
1600 != (exp
.X_add_number
& 0x0000ffff))
1602 inst
.error
= _("invalid register mask");
1606 if ((range
& exp
.X_add_number
) != 0)
1608 int regno
= range
& exp
.X_add_number
;
1611 regno
= (1 << regno
) - 1;
1613 (_("Warning: duplicated register (r%d) in register list"),
1617 range
|= exp
.X_add_number
;
1621 if (inst
.reloc
.type
!= 0)
1623 inst
.error
= _("expression too complex");
1627 memcpy (&inst
.reloc
.exp
, &exp
, sizeof (expressionS
));
1628 inst
.reloc
.type
= BFD_RELOC_ARM_MULTI
;
1629 inst
.reloc
.pc_rel
= 0;
1633 if (*str
== '|' || *str
== '+')
1639 while (another_range
);
1645 /* Types of registers in a list. */
1654 /* Parse a VFP register list. If the string is invalid return FAIL.
1655 Otherwise return the number of registers, and set PBASE to the first
1656 register. Parses registers of type ETYPE.
1657 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1658 - Q registers can be used to specify pairs of D registers
1659 - { } can be omitted from around a singleton register list
1660 FIXME: This is not implemented, as it would require backtracking in
1663 This could be done (the meaning isn't really ambiguous), but doesn't
1664 fit in well with the current parsing framework.
1665 - 32 D registers may be used (also true for VFPv3).
1666 FIXME: Types are ignored in these register lists, which is probably a
1670 parse_vfp_reg_list (char **ccp
, unsigned int *pbase
, enum reg_list_els etype
)
1675 enum arm_reg_type regtype
= (enum arm_reg_type
) 0;
1679 unsigned long mask
= 0;
1684 inst
.error
= _("expecting {");
1693 regtype
= REG_TYPE_VFS
;
1698 regtype
= REG_TYPE_VFD
;
1701 case REGLIST_NEON_D
:
1702 regtype
= REG_TYPE_NDQ
;
1706 if (etype
!= REGLIST_VFP_S
)
1708 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1709 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_d32
))
1713 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
1716 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
1723 base_reg
= max_regs
;
1727 int setmask
= 1, addregs
= 1;
1729 new_base
= arm_typed_reg_parse (&str
, regtype
, ®type
, NULL
);
1731 if (new_base
== FAIL
)
1733 first_error (_(reg_expected_msgs
[regtype
]));
1737 if (new_base
>= max_regs
)
1739 first_error (_("register out of range in list"));
1743 /* Note: a value of 2 * n is returned for the register Q<n>. */
1744 if (regtype
== REG_TYPE_NQ
)
1750 if (new_base
< base_reg
)
1751 base_reg
= new_base
;
1753 if (mask
& (setmask
<< new_base
))
1755 first_error (_("invalid register list"));
1759 if ((mask
>> new_base
) != 0 && ! warned
)
1761 as_tsktsk (_("register list not in ascending order"));
1765 mask
|= setmask
<< new_base
;
1768 if (*str
== '-') /* We have the start of a range expression */
1774 if ((high_range
= arm_typed_reg_parse (&str
, regtype
, NULL
, NULL
))
1777 inst
.error
= gettext (reg_expected_msgs
[regtype
]);
1781 if (high_range
>= max_regs
)
1783 first_error (_("register out of range in list"));
1787 if (regtype
== REG_TYPE_NQ
)
1788 high_range
= high_range
+ 1;
1790 if (high_range
<= new_base
)
1792 inst
.error
= _("register range not in ascending order");
1796 for (new_base
+= addregs
; new_base
<= high_range
; new_base
+= addregs
)
1798 if (mask
& (setmask
<< new_base
))
1800 inst
.error
= _("invalid register list");
1804 mask
|= setmask
<< new_base
;
1809 while (skip_past_comma (&str
) != FAIL
);
1813 /* Sanity check -- should have raised a parse error above. */
1814 if (count
== 0 || count
> max_regs
)
1819 /* Final test -- the registers must be consecutive. */
1821 for (i
= 0; i
< count
; i
++)
1823 if ((mask
& (1u << i
)) == 0)
1825 inst
.error
= _("non-contiguous register range");
1835 /* True if two alias types are the same. */
1838 neon_alias_types_same (struct neon_typed_alias
*a
, struct neon_typed_alias
*b
)
1846 if (a
->defined
!= b
->defined
)
1849 if ((a
->defined
& NTA_HASTYPE
) != 0
1850 && (a
->eltype
.type
!= b
->eltype
.type
1851 || a
->eltype
.size
!= b
->eltype
.size
))
1854 if ((a
->defined
& NTA_HASINDEX
) != 0
1855 && (a
->index
!= b
->index
))
1861 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1862 The base register is put in *PBASE.
1863 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1865 The register stride (minus one) is put in bit 4 of the return value.
1866 Bits [6:5] encode the list length (minus one).
1867 The type of the list elements is put in *ELTYPE, if non-NULL. */
1869 #define NEON_LANE(X) ((X) & 0xf)
1870 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1871 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1874 parse_neon_el_struct_list (char **str
, unsigned *pbase
,
1875 struct neon_type_el
*eltype
)
1882 int leading_brace
= 0;
1883 enum arm_reg_type rtype
= REG_TYPE_NDQ
;
1885 const char *const incr_error
= _("register stride must be 1 or 2");
1886 const char *const type_error
= _("mismatched element/structure types in list");
1887 struct neon_typed_alias firsttype
;
1889 if (skip_past_char (&ptr
, '{') == SUCCESS
)
1894 struct neon_typed_alias atype
;
1895 int getreg
= parse_typed_reg_or_scalar (&ptr
, rtype
, &rtype
, &atype
);
1899 first_error (_(reg_expected_msgs
[rtype
]));
1906 if (rtype
== REG_TYPE_NQ
)
1913 else if (reg_incr
== -1)
1915 reg_incr
= getreg
- base_reg
;
1916 if (reg_incr
< 1 || reg_incr
> 2)
1918 first_error (_(incr_error
));
1922 else if (getreg
!= base_reg
+ reg_incr
* count
)
1924 first_error (_(incr_error
));
1928 if (! neon_alias_types_same (&atype
, &firsttype
))
1930 first_error (_(type_error
));
1934 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1938 struct neon_typed_alias htype
;
1939 int hireg
, dregs
= (rtype
== REG_TYPE_NQ
) ? 2 : 1;
1941 lane
= NEON_INTERLEAVE_LANES
;
1942 else if (lane
!= NEON_INTERLEAVE_LANES
)
1944 first_error (_(type_error
));
1949 else if (reg_incr
!= 1)
1951 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1955 hireg
= parse_typed_reg_or_scalar (&ptr
, rtype
, NULL
, &htype
);
1958 first_error (_(reg_expected_msgs
[rtype
]));
1961 if (! neon_alias_types_same (&htype
, &firsttype
))
1963 first_error (_(type_error
));
1966 count
+= hireg
+ dregs
- getreg
;
1970 /* If we're using Q registers, we can't use [] or [n] syntax. */
1971 if (rtype
== REG_TYPE_NQ
)
1977 if ((atype
.defined
& NTA_HASINDEX
) != 0)
1981 else if (lane
!= atype
.index
)
1983 first_error (_(type_error
));
1987 else if (lane
== -1)
1988 lane
= NEON_INTERLEAVE_LANES
;
1989 else if (lane
!= NEON_INTERLEAVE_LANES
)
1991 first_error (_(type_error
));
1996 while ((count
!= 1 || leading_brace
) && skip_past_comma (&ptr
) != FAIL
);
1998 /* No lane set by [x]. We must be interleaving structures. */
2000 lane
= NEON_INTERLEAVE_LANES
;
2003 if (lane
== -1 || base_reg
== -1 || count
< 1 || count
> 4
2004 || (count
> 1 && reg_incr
== -1))
2006 first_error (_("error parsing element/structure list"));
2010 if ((count
> 1 || leading_brace
) && skip_past_char (&ptr
, '}') == FAIL
)
2012 first_error (_("expected }"));
2020 *eltype
= firsttype
.eltype
;
2025 return lane
| ((reg_incr
- 1) << 4) | ((count
- 1) << 5);
2028 /* Parse an explicit relocation suffix on an expression. This is
2029 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2030 arm_reloc_hsh contains no entries, so this function can only
2031 succeed if there is no () after the word. Returns -1 on error,
2032 BFD_RELOC_UNUSED if there wasn't any suffix. */
2034 parse_reloc (char **str
)
2036 struct reloc_entry
*r
;
2040 return BFD_RELOC_UNUSED
;
2045 while (*q
&& *q
!= ')' && *q
!= ',')
2050 if ((r
= (struct reloc_entry
*)
2051 hash_find_n (arm_reloc_hsh
, p
, q
- p
)) == NULL
)
2058 /* Directives: register aliases. */
2060 static struct reg_entry
*
2061 insert_reg_alias (char *str
, int number
, int type
)
2063 struct reg_entry
*new_reg
;
2066 if ((new_reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
, str
)) != 0)
2068 if (new_reg
->builtin
)
2069 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str
);
2071 /* Only warn about a redefinition if it's not defined as the
2073 else if (new_reg
->number
!= number
|| new_reg
->type
!= type
)
2074 as_warn (_("ignoring redefinition of register alias '%s'"), str
);
2079 name
= xstrdup (str
);
2080 new_reg
= (struct reg_entry
*) xmalloc (sizeof (struct reg_entry
));
2082 new_reg
->name
= name
;
2083 new_reg
->number
= number
;
2084 new_reg
->type
= type
;
2085 new_reg
->builtin
= FALSE
;
2086 new_reg
->neon
= NULL
;
2088 if (hash_insert (arm_reg_hsh
, name
, (void *) new_reg
))
2095 insert_neon_reg_alias (char *str
, int number
, int type
,
2096 struct neon_typed_alias
*atype
)
2098 struct reg_entry
*reg
= insert_reg_alias (str
, number
, type
);
2102 first_error (_("attempt to redefine typed alias"));
2108 reg
->neon
= (struct neon_typed_alias
*)
2109 xmalloc (sizeof (struct neon_typed_alias
));
2110 *reg
->neon
= *atype
;
2114 /* Look for the .req directive. This is of the form:
2116 new_register_name .req existing_register_name
2118 If we find one, or if it looks sufficiently like one that we want to
2119 handle any error here, return TRUE. Otherwise return FALSE. */
2122 create_register_alias (char * newname
, char *p
)
2124 struct reg_entry
*old
;
2125 char *oldname
, *nbuf
;
2128 /* The input scrubber ensures that whitespace after the mnemonic is
2129 collapsed to single spaces. */
2131 if (strncmp (oldname
, " .req ", 6) != 0)
2135 if (*oldname
== '\0')
2138 old
= (struct reg_entry
*) hash_find (arm_reg_hsh
, oldname
);
2141 as_warn (_("unknown register '%s' -- .req ignored"), oldname
);
2145 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2146 the desired alias name, and p points to its end. If not, then
2147 the desired alias name is in the global original_case_string. */
2148 #ifdef TC_CASE_SENSITIVE
2151 newname
= original_case_string
;
2152 nlen
= strlen (newname
);
2155 nbuf
= (char *) alloca (nlen
+ 1);
2156 memcpy (nbuf
, newname
, nlen
);
2159 /* Create aliases under the new name as stated; an all-lowercase
2160 version of the new name; and an all-uppercase version of the new
2162 if (insert_reg_alias (nbuf
, old
->number
, old
->type
) != NULL
)
2164 for (p
= nbuf
; *p
; p
++)
2167 if (strncmp (nbuf
, newname
, nlen
))
2169 /* If this attempt to create an additional alias fails, do not bother
2170 trying to create the all-lower case alias. We will fail and issue
2171 a second, duplicate error message. This situation arises when the
2172 programmer does something like:
2175 The second .req creates the "Foo" alias but then fails to create
2176 the artificial FOO alias because it has already been created by the
2178 if (insert_reg_alias (nbuf
, old
->number
, old
->type
) == NULL
)
2182 for (p
= nbuf
; *p
; p
++)
2185 if (strncmp (nbuf
, newname
, nlen
))
2186 insert_reg_alias (nbuf
, old
->number
, old
->type
);
2192 /* Create a Neon typed/indexed register alias using directives, e.g.:
2197 These typed registers can be used instead of the types specified after the
2198 Neon mnemonic, so long as all operands given have types. Types can also be
2199 specified directly, e.g.:
2200 vadd d0.s32, d1.s32, d2.s32 */
2203 create_neon_reg_alias (char *newname
, char *p
)
2205 enum arm_reg_type basetype
;
2206 struct reg_entry
*basereg
;
2207 struct reg_entry mybasereg
;
2208 struct neon_type ntype
;
2209 struct neon_typed_alias typeinfo
;
2210 char *namebuf
, *nameend
;
2213 typeinfo
.defined
= 0;
2214 typeinfo
.eltype
.type
= NT_invtype
;
2215 typeinfo
.eltype
.size
= -1;
2216 typeinfo
.index
= -1;
2220 if (strncmp (p
, " .dn ", 5) == 0)
2221 basetype
= REG_TYPE_VFD
;
2222 else if (strncmp (p
, " .qn ", 5) == 0)
2223 basetype
= REG_TYPE_NQ
;
2232 basereg
= arm_reg_parse_multi (&p
);
2234 if (basereg
&& basereg
->type
!= basetype
)
2236 as_bad (_("bad type for register"));
2240 if (basereg
== NULL
)
2243 /* Try parsing as an integer. */
2244 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
2245 if (exp
.X_op
!= O_constant
)
2247 as_bad (_("expression must be constant"));
2250 basereg
= &mybasereg
;
2251 basereg
->number
= (basetype
== REG_TYPE_NQ
) ? exp
.X_add_number
* 2
2257 typeinfo
= *basereg
->neon
;
2259 if (parse_neon_type (&ntype
, &p
) == SUCCESS
)
2261 /* We got a type. */
2262 if (typeinfo
.defined
& NTA_HASTYPE
)
2264 as_bad (_("can't redefine the type of a register alias"));
2268 typeinfo
.defined
|= NTA_HASTYPE
;
2269 if (ntype
.elems
!= 1)
2271 as_bad (_("you must specify a single type only"));
2274 typeinfo
.eltype
= ntype
.el
[0];
2277 if (skip_past_char (&p
, '[') == SUCCESS
)
2280 /* We got a scalar index. */
2282 if (typeinfo
.defined
& NTA_HASINDEX
)
2284 as_bad (_("can't redefine the index of a scalar alias"));
2288 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
2290 if (exp
.X_op
!= O_constant
)
2292 as_bad (_("scalar index must be constant"));
2296 typeinfo
.defined
|= NTA_HASINDEX
;
2297 typeinfo
.index
= exp
.X_add_number
;
2299 if (skip_past_char (&p
, ']') == FAIL
)
2301 as_bad (_("expecting ]"));
2306 namelen
= nameend
- newname
;
2307 namebuf
= (char *) alloca (namelen
+ 1);
2308 strncpy (namebuf
, newname
, namelen
);
2309 namebuf
[namelen
] = '\0';
2311 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2312 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2314 /* Insert name in all uppercase. */
2315 for (p
= namebuf
; *p
; p
++)
2318 if (strncmp (namebuf
, newname
, namelen
))
2319 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2320 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2322 /* Insert name in all lowercase. */
2323 for (p
= namebuf
; *p
; p
++)
2326 if (strncmp (namebuf
, newname
, namelen
))
2327 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2328 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2333 /* Should never be called, as .req goes between the alias and the
2334 register name, not at the beginning of the line. */
2337 s_req (int a ATTRIBUTE_UNUSED
)
2339 as_bad (_("invalid syntax for .req directive"));
2343 s_dn (int a ATTRIBUTE_UNUSED
)
2345 as_bad (_("invalid syntax for .dn directive"));
2349 s_qn (int a ATTRIBUTE_UNUSED
)
2351 as_bad (_("invalid syntax for .qn directive"));
2354 /* The .unreq directive deletes an alias which was previously defined
2355 by .req. For example:
2361 s_unreq (int a ATTRIBUTE_UNUSED
)
2366 name
= input_line_pointer
;
2368 while (*input_line_pointer
!= 0
2369 && *input_line_pointer
!= ' '
2370 && *input_line_pointer
!= '\n')
2371 ++input_line_pointer
;
2373 saved_char
= *input_line_pointer
;
2374 *input_line_pointer
= 0;
2377 as_bad (_("invalid syntax for .unreq directive"));
2380 struct reg_entry
*reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
,
2384 as_bad (_("unknown register alias '%s'"), name
);
2385 else if (reg
->builtin
)
2386 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2393 hash_delete (arm_reg_hsh
, name
, FALSE
);
2394 free ((char *) reg
->name
);
2399 /* Also locate the all upper case and all lower case versions.
2400 Do not complain if we cannot find one or the other as it
2401 was probably deleted above. */
2403 nbuf
= strdup (name
);
2404 for (p
= nbuf
; *p
; p
++)
2406 reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
, nbuf
);
2409 hash_delete (arm_reg_hsh
, nbuf
, FALSE
);
2410 free ((char *) reg
->name
);
2416 for (p
= nbuf
; *p
; p
++)
2418 reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
, nbuf
);
2421 hash_delete (arm_reg_hsh
, nbuf
, FALSE
);
2422 free ((char *) reg
->name
);
2432 *input_line_pointer
= saved_char
;
2433 demand_empty_rest_of_line ();
2436 /* Directives: Instruction set selection. */
2439 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2440 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2441 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2442 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2444 /* Create a new mapping symbol for the transition to STATE. */
2447 make_mapping_symbol (enum mstate state
, valueT value
, fragS
*frag
)
2450 const char * symname
;
2457 type
= BSF_NO_FLAGS
;
2461 type
= BSF_NO_FLAGS
;
2465 type
= BSF_NO_FLAGS
;
2471 symbolP
= symbol_new (symname
, now_seg
, value
, frag
);
2472 symbol_get_bfdsym (symbolP
)->flags
|= type
| BSF_LOCAL
;
2477 THUMB_SET_FUNC (symbolP
, 0);
2478 ARM_SET_THUMB (symbolP
, 0);
2479 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2483 THUMB_SET_FUNC (symbolP
, 1);
2484 ARM_SET_THUMB (symbolP
, 1);
2485 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2493 /* Save the mapping symbols for future reference. Also check that
2494 we do not place two mapping symbols at the same offset within a
2495 frag. We'll handle overlap between frags in
2496 check_mapping_symbols. */
2499 know (frag
->tc_frag_data
.first_map
== NULL
);
2500 frag
->tc_frag_data
.first_map
= symbolP
;
2502 if (frag
->tc_frag_data
.last_map
!= NULL
)
2503 know (S_GET_VALUE (frag
->tc_frag_data
.last_map
) < S_GET_VALUE (symbolP
));
2504 frag
->tc_frag_data
.last_map
= symbolP
;
2507 /* We must sometimes convert a region marked as code to data during
2508 code alignment, if an odd number of bytes have to be padded. The
2509 code mapping symbol is pushed to an aligned address. */
2512 insert_data_mapping_symbol (enum mstate state
,
2513 valueT value
, fragS
*frag
, offsetT bytes
)
2515 /* If there was already a mapping symbol, remove it. */
2516 if (frag
->tc_frag_data
.last_map
!= NULL
2517 && S_GET_VALUE (frag
->tc_frag_data
.last_map
) == frag
->fr_address
+ value
)
2519 symbolS
*symp
= frag
->tc_frag_data
.last_map
;
2523 know (frag
->tc_frag_data
.first_map
== symp
);
2524 frag
->tc_frag_data
.first_map
= NULL
;
2526 frag
->tc_frag_data
.last_map
= NULL
;
2527 symbol_remove (symp
, &symbol_rootP
, &symbol_lastP
);
2530 make_mapping_symbol (MAP_DATA
, value
, frag
);
2531 make_mapping_symbol (state
, value
+ bytes
, frag
);
2534 static void mapping_state_2 (enum mstate state
, int max_chars
);
2536 /* Set the mapping state to STATE. Only call this when about to
2537 emit some STATE bytes to the file. */
2540 mapping_state (enum mstate state
)
2542 enum mstate mapstate
= seg_info (now_seg
)->tc_segment_info_data
.mapstate
;
2544 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2546 if (mapstate
== state
)
2547 /* The mapping symbol has already been emitted.
2548 There is nothing else to do. */
2550 else if (TRANSITION (MAP_UNDEFINED
, MAP_DATA
))
2551 /* This case will be evaluated later in the next else. */
2553 else if (TRANSITION (MAP_UNDEFINED
, MAP_ARM
)
2554 || TRANSITION (MAP_UNDEFINED
, MAP_THUMB
))
2556 /* Only add the symbol if the offset is > 0:
2557 if we're at the first frag, check it's size > 0;
2558 if we're not at the first frag, then for sure
2559 the offset is > 0. */
2560 struct frag
* const frag_first
= seg_info (now_seg
)->frchainP
->frch_root
;
2561 const int add_symbol
= (frag_now
!= frag_first
) || (frag_now_fix () > 0);
2564 make_mapping_symbol (MAP_DATA
, (valueT
) 0, frag_first
);
2567 mapping_state_2 (state
, 0);
2571 /* Same as mapping_state, but MAX_CHARS bytes have already been
2572 allocated. Put the mapping symbol that far back. */
2575 mapping_state_2 (enum mstate state
, int max_chars
)
2577 enum mstate mapstate
= seg_info (now_seg
)->tc_segment_info_data
.mapstate
;
2579 if (!SEG_NORMAL (now_seg
))
2582 if (mapstate
== state
)
2583 /* The mapping symbol has already been emitted.
2584 There is nothing else to do. */
2587 seg_info (now_seg
)->tc_segment_info_data
.mapstate
= state
;
2588 make_mapping_symbol (state
, (valueT
) frag_now_fix () - max_chars
, frag_now
);
2591 #define mapping_state(x) ((void)0)
2592 #define mapping_state_2(x, y) ((void)0)
2595 /* Find the real, Thumb encoded start of a Thumb function. */
2599 find_real_start (symbolS
* symbolP
)
2602 const char * name
= S_GET_NAME (symbolP
);
2603 symbolS
* new_target
;
2605 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2606 #define STUB_NAME ".real_start_of"
2611 /* The compiler may generate BL instructions to local labels because
2612 it needs to perform a branch to a far away location. These labels
2613 do not have a corresponding ".real_start_of" label. We check
2614 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2615 the ".real_start_of" convention for nonlocal branches. */
2616 if (S_IS_LOCAL (symbolP
) || name
[0] == '.')
2619 real_start
= ACONCAT ((STUB_NAME
, name
, NULL
));
2620 new_target
= symbol_find (real_start
);
2622 if (new_target
== NULL
)
2624 as_warn (_("Failed to find real start of function: %s\n"), name
);
2625 new_target
= symbolP
;
2633 opcode_select (int width
)
2640 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
2641 as_bad (_("selected processor does not support THUMB opcodes"));
2644 /* No need to force the alignment, since we will have been
2645 coming from ARM mode, which is word-aligned. */
2646 record_alignment (now_seg
, 1);
2653 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
2654 as_bad (_("selected processor does not support ARM opcodes"));
2659 frag_align (2, 0, 0);
2661 record_alignment (now_seg
, 1);
2666 as_bad (_("invalid instruction size selected (%d)"), width
);
2671 s_arm (int ignore ATTRIBUTE_UNUSED
)
2674 demand_empty_rest_of_line ();
2678 s_thumb (int ignore ATTRIBUTE_UNUSED
)
2681 demand_empty_rest_of_line ();
2685 s_code (int unused ATTRIBUTE_UNUSED
)
2689 temp
= get_absolute_expression ();
2694 opcode_select (temp
);
2698 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp
);
2703 s_force_thumb (int ignore ATTRIBUTE_UNUSED
)
2705 /* If we are not already in thumb mode go into it, EVEN if
2706 the target processor does not support thumb instructions.
2707 This is used by gcc/config/arm/lib1funcs.asm for example
2708 to compile interworking support functions even if the
2709 target processor should not support interworking. */
2713 record_alignment (now_seg
, 1);
2716 demand_empty_rest_of_line ();
2720 s_thumb_func (int ignore ATTRIBUTE_UNUSED
)
2724 /* The following label is the name/address of the start of a Thumb function.
2725 We need to know this for the interworking support. */
2726 label_is_thumb_function_name
= TRUE
;
2729 /* Perform a .set directive, but also mark the alias as
2730 being a thumb function. */
2733 s_thumb_set (int equiv
)
2735 /* XXX the following is a duplicate of the code for s_set() in read.c
2736 We cannot just call that code as we need to get at the symbol that
2743 /* Especial apologies for the random logic:
2744 This just grew, and could be parsed much more simply!
2746 name
= input_line_pointer
;
2747 delim
= get_symbol_end ();
2748 end_name
= input_line_pointer
;
2751 if (*input_line_pointer
!= ',')
2754 as_bad (_("expected comma after name \"%s\""), name
);
2756 ignore_rest_of_line ();
2760 input_line_pointer
++;
2763 if (name
[0] == '.' && name
[1] == '\0')
2765 /* XXX - this should not happen to .thumb_set. */
2769 if ((symbolP
= symbol_find (name
)) == NULL
2770 && (symbolP
= md_undefined_symbol (name
)) == NULL
)
2773 /* When doing symbol listings, play games with dummy fragments living
2774 outside the normal fragment chain to record the file and line info
2776 if (listing
& LISTING_SYMBOLS
)
2778 extern struct list_info_struct
* listing_tail
;
2779 fragS
* dummy_frag
= (fragS
* ) xmalloc (sizeof (fragS
));
2781 memset (dummy_frag
, 0, sizeof (fragS
));
2782 dummy_frag
->fr_type
= rs_fill
;
2783 dummy_frag
->line
= listing_tail
;
2784 symbolP
= symbol_new (name
, undefined_section
, 0, dummy_frag
);
2785 dummy_frag
->fr_symbol
= symbolP
;
2789 symbolP
= symbol_new (name
, undefined_section
, 0, &zero_address_frag
);
2792 /* "set" symbols are local unless otherwise specified. */
2793 SF_SET_LOCAL (symbolP
);
2794 #endif /* OBJ_COFF */
2795 } /* Make a new symbol. */
2797 symbol_table_insert (symbolP
);
2802 && S_IS_DEFINED (symbolP
)
2803 && S_GET_SEGMENT (symbolP
) != reg_section
)
2804 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP
));
2806 pseudo_set (symbolP
);
2808 demand_empty_rest_of_line ();
2810 /* XXX Now we come to the Thumb specific bit of code. */
2812 THUMB_SET_FUNC (symbolP
, 1);
2813 ARM_SET_THUMB (symbolP
, 1);
2814 #if defined OBJ_ELF || defined OBJ_COFF
2815 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2819 /* Directives: Mode selection. */
2821 /* .syntax [unified|divided] - choose the new unified syntax
2822 (same for Arm and Thumb encoding, modulo slight differences in what
2823 can be represented) or the old divergent syntax for each mode. */
2825 s_syntax (int unused ATTRIBUTE_UNUSED
)
2829 name
= input_line_pointer
;
2830 delim
= get_symbol_end ();
2832 if (!strcasecmp (name
, "unified"))
2833 unified_syntax
= TRUE
;
2834 else if (!strcasecmp (name
, "divided"))
2835 unified_syntax
= FALSE
;
2838 as_bad (_("unrecognized syntax mode \"%s\""), name
);
2841 *input_line_pointer
= delim
;
2842 demand_empty_rest_of_line ();
2845 /* Directives: sectioning and alignment. */
2847 /* Same as s_align_ptwo but align 0 => align 2. */
2850 s_align (int unused ATTRIBUTE_UNUSED
)
2855 long max_alignment
= 15;
2857 temp
= get_absolute_expression ();
2858 if (temp
> max_alignment
)
2859 as_bad (_("alignment too large: %d assumed"), temp
= max_alignment
);
2862 as_bad (_("alignment negative. 0 assumed."));
2866 if (*input_line_pointer
== ',')
2868 input_line_pointer
++;
2869 temp_fill
= get_absolute_expression ();
2881 /* Only make a frag if we HAVE to. */
2882 if (temp
&& !need_pass_2
)
2884 if (!fill_p
&& subseg_text_p (now_seg
))
2885 frag_align_code (temp
, 0);
2887 frag_align (temp
, (int) temp_fill
, 0);
2889 demand_empty_rest_of_line ();
2891 record_alignment (now_seg
, temp
);
2895 s_bss (int ignore ATTRIBUTE_UNUSED
)
2897 /* We don't support putting frags in the BSS segment, we fake it by
2898 marking in_bss, then looking at s_skip for clues. */
2899 subseg_set (bss_section
, 0);
2900 demand_empty_rest_of_line ();
2902 #ifdef md_elf_section_change_hook
2903 md_elf_section_change_hook ();
2908 s_even (int ignore ATTRIBUTE_UNUSED
)
2910 /* Never make frag if expect extra pass. */
2912 frag_align (1, 0, 0);
2914 record_alignment (now_seg
, 1);
2916 demand_empty_rest_of_line ();
2919 /* Directives: Literal pools. */
2921 static literal_pool
*
2922 find_literal_pool (void)
2924 literal_pool
* pool
;
2926 for (pool
= list_of_pools
; pool
!= NULL
; pool
= pool
->next
)
2928 if (pool
->section
== now_seg
2929 && pool
->sub_section
== now_subseg
)
2936 static literal_pool
*
2937 find_or_make_literal_pool (void)
2939 /* Next literal pool ID number. */
2940 static unsigned int latest_pool_num
= 1;
2941 literal_pool
* pool
;
2943 pool
= find_literal_pool ();
2947 /* Create a new pool. */
2948 pool
= (literal_pool
*) xmalloc (sizeof (* pool
));
2952 pool
->next_free_entry
= 0;
2953 pool
->section
= now_seg
;
2954 pool
->sub_section
= now_subseg
;
2955 pool
->next
= list_of_pools
;
2956 pool
->symbol
= NULL
;
2958 /* Add it to the list. */
2959 list_of_pools
= pool
;
2962 /* New pools, and emptied pools, will have a NULL symbol. */
2963 if (pool
->symbol
== NULL
)
2965 pool
->symbol
= symbol_create (FAKE_LABEL_NAME
, undefined_section
,
2966 (valueT
) 0, &zero_address_frag
);
2967 pool
->id
= latest_pool_num
++;
2974 /* Add the literal in the global 'inst'
2975 structure to the relevant literal pool. */
2978 add_to_lit_pool (void)
2980 literal_pool
* pool
;
2983 pool
= find_or_make_literal_pool ();
2985 /* Check if this literal value is already in the pool. */
2986 for (entry
= 0; entry
< pool
->next_free_entry
; entry
++)
2988 if ((pool
->literals
[entry
].X_op
== inst
.reloc
.exp
.X_op
)
2989 && (inst
.reloc
.exp
.X_op
== O_constant
)
2990 && (pool
->literals
[entry
].X_add_number
2991 == inst
.reloc
.exp
.X_add_number
)
2992 && (pool
->literals
[entry
].X_unsigned
2993 == inst
.reloc
.exp
.X_unsigned
))
2996 if ((pool
->literals
[entry
].X_op
== inst
.reloc
.exp
.X_op
)
2997 && (inst
.reloc
.exp
.X_op
== O_symbol
)
2998 && (pool
->literals
[entry
].X_add_number
2999 == inst
.reloc
.exp
.X_add_number
)
3000 && (pool
->literals
[entry
].X_add_symbol
3001 == inst
.reloc
.exp
.X_add_symbol
)
3002 && (pool
->literals
[entry
].X_op_symbol
3003 == inst
.reloc
.exp
.X_op_symbol
))
3007 /* Do we need to create a new entry? */
3008 if (entry
== pool
->next_free_entry
)
3010 if (entry
>= MAX_LITERAL_POOL_SIZE
)
3012 inst
.error
= _("literal pool overflow");
3016 pool
->literals
[entry
] = inst
.reloc
.exp
;
3017 pool
->next_free_entry
+= 1;
3020 inst
.reloc
.exp
.X_op
= O_symbol
;
3021 inst
.reloc
.exp
.X_add_number
= ((int) entry
) * 4;
3022 inst
.reloc
.exp
.X_add_symbol
= pool
->symbol
;
3027 /* Can't use symbol_new here, so have to create a symbol and then at
3028 a later date assign it a value. Thats what these functions do. */
3031 symbol_locate (symbolS
* symbolP
,
3032 const char * name
, /* It is copied, the caller can modify. */
3033 segT segment
, /* Segment identifier (SEG_<something>). */
3034 valueT valu
, /* Symbol value. */
3035 fragS
* frag
) /* Associated fragment. */
3037 unsigned int name_length
;
3038 char * preserved_copy_of_name
;
3040 name_length
= strlen (name
) + 1; /* +1 for \0. */
3041 obstack_grow (¬es
, name
, name_length
);
3042 preserved_copy_of_name
= (char *) obstack_finish (¬es
);
3044 #ifdef tc_canonicalize_symbol_name
3045 preserved_copy_of_name
=
3046 tc_canonicalize_symbol_name (preserved_copy_of_name
);
3049 S_SET_NAME (symbolP
, preserved_copy_of_name
);
3051 S_SET_SEGMENT (symbolP
, segment
);
3052 S_SET_VALUE (symbolP
, valu
);
3053 symbol_clear_list_pointers (symbolP
);
3055 symbol_set_frag (symbolP
, frag
);
3057 /* Link to end of symbol chain. */
3059 extern int symbol_table_frozen
;
3061 if (symbol_table_frozen
)
3065 symbol_append (symbolP
, symbol_lastP
, & symbol_rootP
, & symbol_lastP
);
3067 obj_symbol_new_hook (symbolP
);
3069 #ifdef tc_symbol_new_hook
3070 tc_symbol_new_hook (symbolP
);
3074 verify_symbol_chain (symbol_rootP
, symbol_lastP
);
3075 #endif /* DEBUG_SYMS */
3080 s_ltorg (int ignored ATTRIBUTE_UNUSED
)
3083 literal_pool
* pool
;
3086 pool
= find_literal_pool ();
3088 || pool
->symbol
== NULL
3089 || pool
->next_free_entry
== 0)
3092 mapping_state (MAP_DATA
);
3094 /* Align pool as you have word accesses.
3095 Only make a frag if we have to. */
3097 frag_align (2, 0, 0);
3099 record_alignment (now_seg
, 2);
3101 sprintf (sym_name
, "$$lit_\002%x", pool
->id
);
3103 symbol_locate (pool
->symbol
, sym_name
, now_seg
,
3104 (valueT
) frag_now_fix (), frag_now
);
3105 symbol_table_insert (pool
->symbol
);
3107 ARM_SET_THUMB (pool
->symbol
, thumb_mode
);
3109 #if defined OBJ_COFF || defined OBJ_ELF
3110 ARM_SET_INTERWORK (pool
->symbol
, support_interwork
);
3113 for (entry
= 0; entry
< pool
->next_free_entry
; entry
++)
3114 /* First output the expression in the instruction to the pool. */
3115 emit_expr (&(pool
->literals
[entry
]), 4); /* .word */
3117 /* Mark the pool as empty. */
3118 pool
->next_free_entry
= 0;
3119 pool
->symbol
= NULL
;
3123 /* Forward declarations for functions below, in the MD interface
3125 static void fix_new_arm (fragS
*, int, short, expressionS
*, int, int);
3126 static valueT
create_unwind_entry (int);
3127 static void start_unwind_section (const segT
, int);
3128 static void add_unwind_opcode (valueT
, int);
3129 static void flush_pending_unwind (void);
3131 /* Directives: Data. */
3134 s_arm_elf_cons (int nbytes
)
3138 #ifdef md_flush_pending_output
3139 md_flush_pending_output ();
3142 if (is_it_end_of_statement ())
3144 demand_empty_rest_of_line ();
3148 #ifdef md_cons_align
3149 md_cons_align (nbytes
);
3152 mapping_state (MAP_DATA
);
3156 char *base
= input_line_pointer
;
3160 if (exp
.X_op
!= O_symbol
)
3161 emit_expr (&exp
, (unsigned int) nbytes
);
3164 char *before_reloc
= input_line_pointer
;
3165 reloc
= parse_reloc (&input_line_pointer
);
3168 as_bad (_("unrecognized relocation suffix"));
3169 ignore_rest_of_line ();
3172 else if (reloc
== BFD_RELOC_UNUSED
)
3173 emit_expr (&exp
, (unsigned int) nbytes
);
3176 reloc_howto_type
*howto
= (reloc_howto_type
*)
3177 bfd_reloc_type_lookup (stdoutput
,
3178 (bfd_reloc_code_real_type
) reloc
);
3179 int size
= bfd_get_reloc_size (howto
);
3181 if (reloc
== BFD_RELOC_ARM_PLT32
)
3183 as_bad (_("(plt) is only valid on branch targets"));
3184 reloc
= BFD_RELOC_UNUSED
;
3189 as_bad (_("%s relocations do not fit in %d bytes"),
3190 howto
->name
, nbytes
);
3193 /* We've parsed an expression stopping at O_symbol.
3194 But there may be more expression left now that we
3195 have parsed the relocation marker. Parse it again.
3196 XXX Surely there is a cleaner way to do this. */
3197 char *p
= input_line_pointer
;
3199 char *save_buf
= (char *) alloca (input_line_pointer
- base
);
3200 memcpy (save_buf
, base
, input_line_pointer
- base
);
3201 memmove (base
+ (input_line_pointer
- before_reloc
),
3202 base
, before_reloc
- base
);
3204 input_line_pointer
= base
+ (input_line_pointer
-before_reloc
);
3206 memcpy (base
, save_buf
, p
- base
);
3208 offset
= nbytes
- size
;
3209 p
= frag_more ((int) nbytes
);
3210 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
+ offset
,
3211 size
, &exp
, 0, (enum bfd_reloc_code_real
) reloc
);
3216 while (*input_line_pointer
++ == ',');
3218 /* Put terminator back into stream. */
3219 input_line_pointer
--;
3220 demand_empty_rest_of_line ();
3223 /* Emit an expression containing a 32-bit thumb instruction.
3224 Implementation based on put_thumb32_insn. */
3227 emit_thumb32_expr (expressionS
* exp
)
3229 expressionS exp_high
= *exp
;
3231 exp_high
.X_add_number
= (unsigned long)exp_high
.X_add_number
>> 16;
3232 emit_expr (& exp_high
, (unsigned int) THUMB_SIZE
);
3233 exp
->X_add_number
&= 0xffff;
3234 emit_expr (exp
, (unsigned int) THUMB_SIZE
);
3237 /* Guess the instruction size based on the opcode. */
3240 thumb_insn_size (int opcode
)
3242 if ((unsigned int) opcode
< 0xe800u
)
3244 else if ((unsigned int) opcode
>= 0xe8000000u
)
3251 emit_insn (expressionS
*exp
, int nbytes
)
3255 if (exp
->X_op
== O_constant
)
3260 size
= thumb_insn_size (exp
->X_add_number
);
3264 if (size
== 2 && (unsigned int)exp
->X_add_number
> 0xffffu
)
3266 as_bad (_(".inst.n operand too big. "\
3267 "Use .inst.w instead"));
3272 if (now_it
.state
== AUTOMATIC_IT_BLOCK
)
3273 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN
, 0);
3275 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN
, 0);
3277 if (thumb_mode
&& (size
> THUMB_SIZE
) && !target_big_endian
)
3278 emit_thumb32_expr (exp
);
3280 emit_expr (exp
, (unsigned int) size
);
3282 it_fsm_post_encode ();
3286 as_bad (_("cannot determine Thumb instruction size. " \
3287 "Use .inst.n/.inst.w instead"));
3290 as_bad (_("constant expression required"));
3295 /* Like s_arm_elf_cons but do not use md_cons_align and
3296 set the mapping state to MAP_ARM/MAP_THUMB. */
3299 s_arm_elf_inst (int nbytes
)
3301 if (is_it_end_of_statement ())
3303 demand_empty_rest_of_line ();
3307 /* Calling mapping_state () here will not change ARM/THUMB,
3308 but will ensure not to be in DATA state. */
3311 mapping_state (MAP_THUMB
);
3316 as_bad (_("width suffixes are invalid in ARM mode"));
3317 ignore_rest_of_line ();
3323 mapping_state (MAP_ARM
);
3332 if (! emit_insn (& exp
, nbytes
))
3334 ignore_rest_of_line ();
3338 while (*input_line_pointer
++ == ',');
3340 /* Put terminator back into stream. */
3341 input_line_pointer
--;
3342 demand_empty_rest_of_line ();
3345 /* Parse a .rel31 directive. */
3348 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED
)
3355 if (*input_line_pointer
== '1')
3356 highbit
= 0x80000000;
3357 else if (*input_line_pointer
!= '0')
3358 as_bad (_("expected 0 or 1"));
3360 input_line_pointer
++;
3361 if (*input_line_pointer
!= ',')
3362 as_bad (_("missing comma"));
3363 input_line_pointer
++;
3365 #ifdef md_flush_pending_output
3366 md_flush_pending_output ();
3369 #ifdef md_cons_align
3373 mapping_state (MAP_DATA
);
3378 md_number_to_chars (p
, highbit
, 4);
3379 fix_new_arm (frag_now
, p
- frag_now
->fr_literal
, 4, &exp
, 1,
3380 BFD_RELOC_ARM_PREL31
);
3382 demand_empty_rest_of_line ();
3385 /* Directives: AEABI stack-unwind tables. */
3387 /* Parse an unwind_fnstart directive. Simply records the current location. */
3390 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED
)
3392 demand_empty_rest_of_line ();
3393 if (unwind
.proc_start
)
3395 as_bad (_("duplicate .fnstart directive"));
3399 /* Mark the start of the function. */
3400 unwind
.proc_start
= expr_build_dot ();
3402 /* Reset the rest of the unwind info. */
3403 unwind
.opcode_count
= 0;
3404 unwind
.table_entry
= NULL
;
3405 unwind
.personality_routine
= NULL
;
3406 unwind
.personality_index
= -1;
3407 unwind
.frame_size
= 0;
3408 unwind
.fp_offset
= 0;
3409 unwind
.fp_reg
= REG_SP
;
3411 unwind
.sp_restored
= 0;
3415 /* Parse a handlerdata directive. Creates the exception handling table entry
3416 for the function. */
3419 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED
)
3421 demand_empty_rest_of_line ();
3422 if (!unwind
.proc_start
)
3423 as_bad (MISSING_FNSTART
);
3425 if (unwind
.table_entry
)
3426 as_bad (_("duplicate .handlerdata directive"));
3428 create_unwind_entry (1);
3431 /* Parse an unwind_fnend directive. Generates the index table entry. */
3434 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED
)
3439 unsigned int marked_pr_dependency
;
3441 demand_empty_rest_of_line ();
3443 if (!unwind
.proc_start
)
3445 as_bad (_(".fnend directive without .fnstart"));
3449 /* Add eh table entry. */
3450 if (unwind
.table_entry
== NULL
)
3451 val
= create_unwind_entry (0);
3455 /* Add index table entry. This is two words. */
3456 start_unwind_section (unwind
.saved_seg
, 1);
3457 frag_align (2, 0, 0);
3458 record_alignment (now_seg
, 2);
3460 ptr
= frag_more (8);
3461 where
= frag_now_fix () - 8;
3463 /* Self relative offset of the function start. */
3464 fix_new (frag_now
, where
, 4, unwind
.proc_start
, 0, 1,
3465 BFD_RELOC_ARM_PREL31
);
3467 /* Indicate dependency on EHABI-defined personality routines to the
3468 linker, if it hasn't been done already. */
3469 marked_pr_dependency
3470 = seg_info (now_seg
)->tc_segment_info_data
.marked_pr_dependency
;
3471 if (unwind
.personality_index
>= 0 && unwind
.personality_index
< 3
3472 && !(marked_pr_dependency
& (1 << unwind
.personality_index
)))
3474 static const char *const name
[] =
3476 "__aeabi_unwind_cpp_pr0",
3477 "__aeabi_unwind_cpp_pr1",
3478 "__aeabi_unwind_cpp_pr2"
3480 symbolS
*pr
= symbol_find_or_make (name
[unwind
.personality_index
]);
3481 fix_new (frag_now
, where
, 0, pr
, 0, 1, BFD_RELOC_NONE
);
3482 seg_info (now_seg
)->tc_segment_info_data
.marked_pr_dependency
3483 |= 1 << unwind
.personality_index
;
3487 /* Inline exception table entry. */
3488 md_number_to_chars (ptr
+ 4, val
, 4);
3490 /* Self relative offset of the table entry. */
3491 fix_new (frag_now
, where
+ 4, 4, unwind
.table_entry
, 0, 1,
3492 BFD_RELOC_ARM_PREL31
);
3494 /* Restore the original section. */
3495 subseg_set (unwind
.saved_seg
, unwind
.saved_subseg
);
3497 unwind
.proc_start
= NULL
;
3501 /* Parse an unwind_cantunwind directive. */
3504 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED
)
3506 demand_empty_rest_of_line ();
3507 if (!unwind
.proc_start
)
3508 as_bad (MISSING_FNSTART
);
3510 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
3511 as_bad (_("personality routine specified for cantunwind frame"));
3513 unwind
.personality_index
= -2;
3517 /* Parse a personalityindex directive. */
3520 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED
)
3524 if (!unwind
.proc_start
)
3525 as_bad (MISSING_FNSTART
);
3527 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
3528 as_bad (_("duplicate .personalityindex directive"));
3532 if (exp
.X_op
!= O_constant
3533 || exp
.X_add_number
< 0 || exp
.X_add_number
> 15)
3535 as_bad (_("bad personality routine number"));
3536 ignore_rest_of_line ();
3540 unwind
.personality_index
= exp
.X_add_number
;
3542 demand_empty_rest_of_line ();
3546 /* Parse a personality directive. */
3549 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED
)
3553 if (!unwind
.proc_start
)
3554 as_bad (MISSING_FNSTART
);
3556 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
3557 as_bad (_("duplicate .personality directive"));
3559 name
= input_line_pointer
;
3560 c
= get_symbol_end ();
3561 p
= input_line_pointer
;
3562 unwind
.personality_routine
= symbol_find_or_make (name
);
3564 demand_empty_rest_of_line ();
3568 /* Parse a directive saving core registers. */
3571 s_arm_unwind_save_core (void)
3577 range
= parse_reg_list (&input_line_pointer
);
3580 as_bad (_("expected register list"));
3581 ignore_rest_of_line ();
3585 demand_empty_rest_of_line ();
3587 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3588 into .unwind_save {..., sp...}. We aren't bothered about the value of
3589 ip because it is clobbered by calls. */
3590 if (unwind
.sp_restored
&& unwind
.fp_reg
== 12
3591 && (range
& 0x3000) == 0x1000)
3593 unwind
.opcode_count
--;
3594 unwind
.sp_restored
= 0;
3595 range
= (range
| 0x2000) & ~0x1000;
3596 unwind
.pending_offset
= 0;
3602 /* See if we can use the short opcodes. These pop a block of up to 8
3603 registers starting with r4, plus maybe r14. */
3604 for (n
= 0; n
< 8; n
++)
3606 /* Break at the first non-saved register. */
3607 if ((range
& (1 << (n
+ 4))) == 0)
3610 /* See if there are any other bits set. */
3611 if (n
== 0 || (range
& (0xfff0 << n
) & 0xbff0) != 0)
3613 /* Use the long form. */
3614 op
= 0x8000 | ((range
>> 4) & 0xfff);
3615 add_unwind_opcode (op
, 2);
3619 /* Use the short form. */
3621 op
= 0xa8; /* Pop r14. */
3623 op
= 0xa0; /* Do not pop r14. */
3625 add_unwind_opcode (op
, 1);
3632 op
= 0xb100 | (range
& 0xf);
3633 add_unwind_opcode (op
, 2);
3636 /* Record the number of bytes pushed. */
3637 for (n
= 0; n
< 16; n
++)
3639 if (range
& (1 << n
))
3640 unwind
.frame_size
+= 4;
3645 /* Parse a directive saving FPA registers. */
3648 s_arm_unwind_save_fpa (int reg
)
3654 /* Get Number of registers to transfer. */
3655 if (skip_past_comma (&input_line_pointer
) != FAIL
)
3658 exp
.X_op
= O_illegal
;
3660 if (exp
.X_op
!= O_constant
)
3662 as_bad (_("expected , <constant>"));
3663 ignore_rest_of_line ();
3667 num_regs
= exp
.X_add_number
;
3669 if (num_regs
< 1 || num_regs
> 4)
3671 as_bad (_("number of registers must be in the range [1:4]"));
3672 ignore_rest_of_line ();
3676 demand_empty_rest_of_line ();
3681 op
= 0xb4 | (num_regs
- 1);
3682 add_unwind_opcode (op
, 1);
3687 op
= 0xc800 | (reg
<< 4) | (num_regs
- 1);
3688 add_unwind_opcode (op
, 2);
3690 unwind
.frame_size
+= num_regs
* 12;
3694 /* Parse a directive saving VFP registers for ARMv6 and above. */
3697 s_arm_unwind_save_vfp_armv6 (void)
3702 int num_vfpv3_regs
= 0;
3703 int num_regs_below_16
;
3705 count
= parse_vfp_reg_list (&input_line_pointer
, &start
, REGLIST_VFP_D
);
3708 as_bad (_("expected register list"));
3709 ignore_rest_of_line ();
3713 demand_empty_rest_of_line ();
3715 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3716 than FSTMX/FLDMX-style ones). */
3718 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3720 num_vfpv3_regs
= count
;
3721 else if (start
+ count
> 16)
3722 num_vfpv3_regs
= start
+ count
- 16;
3724 if (num_vfpv3_regs
> 0)
3726 int start_offset
= start
> 16 ? start
- 16 : 0;
3727 op
= 0xc800 | (start_offset
<< 4) | (num_vfpv3_regs
- 1);
3728 add_unwind_opcode (op
, 2);
3731 /* Generate opcode for registers numbered in the range 0 .. 15. */
3732 num_regs_below_16
= num_vfpv3_regs
> 0 ? 16 - (int) start
: count
;
3733 gas_assert (num_regs_below_16
+ num_vfpv3_regs
== count
);
3734 if (num_regs_below_16
> 0)
3736 op
= 0xc900 | (start
<< 4) | (num_regs_below_16
- 1);
3737 add_unwind_opcode (op
, 2);
3740 unwind
.frame_size
+= count
* 8;
3744 /* Parse a directive saving VFP registers for pre-ARMv6. */
3747 s_arm_unwind_save_vfp (void)
3753 count
= parse_vfp_reg_list (&input_line_pointer
, ®
, REGLIST_VFP_D
);
3756 as_bad (_("expected register list"));
3757 ignore_rest_of_line ();
3761 demand_empty_rest_of_line ();
3766 op
= 0xb8 | (count
- 1);
3767 add_unwind_opcode (op
, 1);
3772 op
= 0xb300 | (reg
<< 4) | (count
- 1);
3773 add_unwind_opcode (op
, 2);
3775 unwind
.frame_size
+= count
* 8 + 4;
3779 /* Parse a directive saving iWMMXt data registers. */
3782 s_arm_unwind_save_mmxwr (void)
3790 if (*input_line_pointer
== '{')
3791 input_line_pointer
++;
3795 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWR
);
3799 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWR
]));
3804 as_tsktsk (_("register list not in ascending order"));
3807 if (*input_line_pointer
== '-')
3809 input_line_pointer
++;
3810 hi_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWR
);
3813 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWR
]));
3816 else if (reg
>= hi_reg
)
3818 as_bad (_("bad register range"));
3821 for (; reg
< hi_reg
; reg
++)
3825 while (skip_past_comma (&input_line_pointer
) != FAIL
);
3827 if (*input_line_pointer
== '}')
3828 input_line_pointer
++;
3830 demand_empty_rest_of_line ();
3832 /* Generate any deferred opcodes because we're going to be looking at
3834 flush_pending_unwind ();
3836 for (i
= 0; i
< 16; i
++)
3838 if (mask
& (1 << i
))
3839 unwind
.frame_size
+= 8;
3842 /* Attempt to combine with a previous opcode. We do this because gcc
3843 likes to output separate unwind directives for a single block of
3845 if (unwind
.opcode_count
> 0)
3847 i
= unwind
.opcodes
[unwind
.opcode_count
- 1];
3848 if ((i
& 0xf8) == 0xc0)
3851 /* Only merge if the blocks are contiguous. */
3854 if ((mask
& 0xfe00) == (1 << 9))
3856 mask
|= ((1 << (i
+ 11)) - 1) & 0xfc00;
3857 unwind
.opcode_count
--;
3860 else if (i
== 6 && unwind
.opcode_count
>= 2)
3862 i
= unwind
.opcodes
[unwind
.opcode_count
- 2];
3866 op
= 0xffff << (reg
- 1);
3868 && ((mask
& op
) == (1u << (reg
- 1))))
3870 op
= (1 << (reg
+ i
+ 1)) - 1;
3871 op
&= ~((1 << reg
) - 1);
3873 unwind
.opcode_count
-= 2;
3880 /* We want to generate opcodes in the order the registers have been
3881 saved, ie. descending order. */
3882 for (reg
= 15; reg
>= -1; reg
--)
3884 /* Save registers in blocks. */
3886 || !(mask
& (1 << reg
)))
3888 /* We found an unsaved reg. Generate opcodes to save the
3895 op
= 0xc0 | (hi_reg
- 10);
3896 add_unwind_opcode (op
, 1);
3901 op
= 0xc600 | ((reg
+ 1) << 4) | ((hi_reg
- reg
) - 1);
3902 add_unwind_opcode (op
, 2);
3911 ignore_rest_of_line ();
3915 s_arm_unwind_save_mmxwcg (void)
3922 if (*input_line_pointer
== '{')
3923 input_line_pointer
++;
3927 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWCG
);
3931 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWCG
]));
3937 as_tsktsk (_("register list not in ascending order"));
3940 if (*input_line_pointer
== '-')
3942 input_line_pointer
++;
3943 hi_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWCG
);
3946 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWCG
]));
3949 else if (reg
>= hi_reg
)
3951 as_bad (_("bad register range"));
3954 for (; reg
< hi_reg
; reg
++)
3958 while (skip_past_comma (&input_line_pointer
) != FAIL
);
3960 if (*input_line_pointer
== '}')
3961 input_line_pointer
++;
3963 demand_empty_rest_of_line ();
3965 /* Generate any deferred opcodes because we're going to be looking at
3967 flush_pending_unwind ();
3969 for (reg
= 0; reg
< 16; reg
++)
3971 if (mask
& (1 << reg
))
3972 unwind
.frame_size
+= 4;
3975 add_unwind_opcode (op
, 2);
3978 ignore_rest_of_line ();
3982 /* Parse an unwind_save directive.
3983 If the argument is non-zero, this is a .vsave directive. */
3986 s_arm_unwind_save (int arch_v6
)
3989 struct reg_entry
*reg
;
3990 bfd_boolean had_brace
= FALSE
;
3992 if (!unwind
.proc_start
)
3993 as_bad (MISSING_FNSTART
);
3995 /* Figure out what sort of save we have. */
3996 peek
= input_line_pointer
;
4004 reg
= arm_reg_parse_multi (&peek
);
4008 as_bad (_("register expected"));
4009 ignore_rest_of_line ();
4018 as_bad (_("FPA .unwind_save does not take a register list"));
4019 ignore_rest_of_line ();
4022 input_line_pointer
= peek
;
4023 s_arm_unwind_save_fpa (reg
->number
);
4026 case REG_TYPE_RN
: s_arm_unwind_save_core (); return;
4029 s_arm_unwind_save_vfp_armv6 ();
4031 s_arm_unwind_save_vfp ();
4033 case REG_TYPE_MMXWR
: s_arm_unwind_save_mmxwr (); return;
4034 case REG_TYPE_MMXWCG
: s_arm_unwind_save_mmxwcg (); return;
4037 as_bad (_(".unwind_save does not support this kind of register"));
4038 ignore_rest_of_line ();
4043 /* Parse an unwind_movsp directive. */
4046 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED
)
4052 if (!unwind
.proc_start
)
4053 as_bad (MISSING_FNSTART
);
4055 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
4058 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_RN
]));
4059 ignore_rest_of_line ();
4063 /* Optional constant. */
4064 if (skip_past_comma (&input_line_pointer
) != FAIL
)
4066 if (immediate_for_directive (&offset
) == FAIL
)
4072 demand_empty_rest_of_line ();
4074 if (reg
== REG_SP
|| reg
== REG_PC
)
4076 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4080 if (unwind
.fp_reg
!= REG_SP
)
4081 as_bad (_("unexpected .unwind_movsp directive"));
4083 /* Generate opcode to restore the value. */
4085 add_unwind_opcode (op
, 1);
4087 /* Record the information for later. */
4088 unwind
.fp_reg
= reg
;
4089 unwind
.fp_offset
= unwind
.frame_size
- offset
;
4090 unwind
.sp_restored
= 1;
4093 /* Parse an unwind_pad directive. */
4096 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED
)
4100 if (!unwind
.proc_start
)
4101 as_bad (MISSING_FNSTART
);
4103 if (immediate_for_directive (&offset
) == FAIL
)
4108 as_bad (_("stack increment must be multiple of 4"));
4109 ignore_rest_of_line ();
4113 /* Don't generate any opcodes, just record the details for later. */
4114 unwind
.frame_size
+= offset
;
4115 unwind
.pending_offset
+= offset
;
4117 demand_empty_rest_of_line ();
4120 /* Parse an unwind_setfp directive. */
4123 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED
)
4129 if (!unwind
.proc_start
)
4130 as_bad (MISSING_FNSTART
);
4132 fp_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
4133 if (skip_past_comma (&input_line_pointer
) == FAIL
)
4136 sp_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
4138 if (fp_reg
== FAIL
|| sp_reg
== FAIL
)
4140 as_bad (_("expected <reg>, <reg>"));
4141 ignore_rest_of_line ();
4145 /* Optional constant. */
4146 if (skip_past_comma (&input_line_pointer
) != FAIL
)
4148 if (immediate_for_directive (&offset
) == FAIL
)
4154 demand_empty_rest_of_line ();
4156 if (sp_reg
!= REG_SP
&& sp_reg
!= unwind
.fp_reg
)
4158 as_bad (_("register must be either sp or set by a previous"
4159 "unwind_movsp directive"));
4163 /* Don't generate any opcodes, just record the information for later. */
4164 unwind
.fp_reg
= fp_reg
;
4166 if (sp_reg
== REG_SP
)
4167 unwind
.fp_offset
= unwind
.frame_size
- offset
;
4169 unwind
.fp_offset
-= offset
;
4172 /* Parse an unwind_raw directive. */
4175 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED
)
4178 /* This is an arbitrary limit. */
4179 unsigned char op
[16];
4182 if (!unwind
.proc_start
)
4183 as_bad (MISSING_FNSTART
);
4186 if (exp
.X_op
== O_constant
4187 && skip_past_comma (&input_line_pointer
) != FAIL
)
4189 unwind
.frame_size
+= exp
.X_add_number
;
4193 exp
.X_op
= O_illegal
;
4195 if (exp
.X_op
!= O_constant
)
4197 as_bad (_("expected <offset>, <opcode>"));
4198 ignore_rest_of_line ();
4204 /* Parse the opcode. */
4209 as_bad (_("unwind opcode too long"));
4210 ignore_rest_of_line ();
4212 if (exp
.X_op
!= O_constant
|| exp
.X_add_number
& ~0xff)
4214 as_bad (_("invalid unwind opcode"));
4215 ignore_rest_of_line ();
4218 op
[count
++] = exp
.X_add_number
;
4220 /* Parse the next byte. */
4221 if (skip_past_comma (&input_line_pointer
) == FAIL
)
4227 /* Add the opcode bytes in reverse order. */
4229 add_unwind_opcode (op
[count
], 1);
4231 demand_empty_rest_of_line ();
4235 /* Parse a .eabi_attribute directive. */
4238 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED
)
4240 int tag
= s_vendor_attribute (OBJ_ATTR_PROC
);
4242 if (tag
< NUM_KNOWN_OBJ_ATTRIBUTES
)
4243 attributes_set_explicitly
[tag
] = 1;
4245 #endif /* OBJ_ELF */
4247 static void s_arm_arch (int);
4248 static void s_arm_object_arch (int);
4249 static void s_arm_cpu (int);
4250 static void s_arm_fpu (int);
4255 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED
)
4262 if (exp
.X_op
== O_symbol
)
4263 exp
.X_op
= O_secrel
;
4265 emit_expr (&exp
, 4);
4267 while (*input_line_pointer
++ == ',');
4269 input_line_pointer
--;
4270 demand_empty_rest_of_line ();
4274 /* This table describes all the machine specific pseudo-ops the assembler
4275 has to support. The fields are:
4276 pseudo-op name without dot
4277 function to call to execute this pseudo-op
4278 Integer arg to pass to the function. */
4280 const pseudo_typeS md_pseudo_table
[] =
4282 /* Never called because '.req' does not start a line. */
4283 { "req", s_req
, 0 },
4284 /* Following two are likewise never called. */
4287 { "unreq", s_unreq
, 0 },
4288 { "bss", s_bss
, 0 },
4289 { "align", s_align
, 0 },
4290 { "arm", s_arm
, 0 },
4291 { "thumb", s_thumb
, 0 },
4292 { "code", s_code
, 0 },
4293 { "force_thumb", s_force_thumb
, 0 },
4294 { "thumb_func", s_thumb_func
, 0 },
4295 { "thumb_set", s_thumb_set
, 0 },
4296 { "even", s_even
, 0 },
4297 { "ltorg", s_ltorg
, 0 },
4298 { "pool", s_ltorg
, 0 },
4299 { "syntax", s_syntax
, 0 },
4300 { "cpu", s_arm_cpu
, 0 },
4301 { "arch", s_arm_arch
, 0 },
4302 { "object_arch", s_arm_object_arch
, 0 },
4303 { "fpu", s_arm_fpu
, 0 },
4305 { "word", s_arm_elf_cons
, 4 },
4306 { "long", s_arm_elf_cons
, 4 },
4307 { "inst.n", s_arm_elf_inst
, 2 },
4308 { "inst.w", s_arm_elf_inst
, 4 },
4309 { "inst", s_arm_elf_inst
, 0 },
4310 { "rel31", s_arm_rel31
, 0 },
4311 { "fnstart", s_arm_unwind_fnstart
, 0 },
4312 { "fnend", s_arm_unwind_fnend
, 0 },
4313 { "cantunwind", s_arm_unwind_cantunwind
, 0 },
4314 { "personality", s_arm_unwind_personality
, 0 },
4315 { "personalityindex", s_arm_unwind_personalityindex
, 0 },
4316 { "handlerdata", s_arm_unwind_handlerdata
, 0 },
4317 { "save", s_arm_unwind_save
, 0 },
4318 { "vsave", s_arm_unwind_save
, 1 },
4319 { "movsp", s_arm_unwind_movsp
, 0 },
4320 { "pad", s_arm_unwind_pad
, 0 },
4321 { "setfp", s_arm_unwind_setfp
, 0 },
4322 { "unwind_raw", s_arm_unwind_raw
, 0 },
4323 { "eabi_attribute", s_arm_eabi_attribute
, 0 },
4327 /* These are used for dwarf. */
4331 /* These are used for dwarf2. */
4332 { "file", (void (*) (int)) dwarf2_directive_file
, 0 },
4333 { "loc", dwarf2_directive_loc
, 0 },
4334 { "loc_mark_labels", dwarf2_directive_loc_mark_labels
, 0 },
4336 { "extend", float_cons
, 'x' },
4337 { "ldouble", float_cons
, 'x' },
4338 { "packed", float_cons
, 'p' },
4340 {"secrel32", pe_directive_secrel
, 0},
4345 /* Parser functions used exclusively in instruction operands. */
4347 /* Generic immediate-value read function for use in insn parsing.
4348 STR points to the beginning of the immediate (the leading #);
4349 VAL receives the value; if the value is outside [MIN, MAX]
4350 issue an error. PREFIX_OPT is true if the immediate prefix is
4354 parse_immediate (char **str
, int *val
, int min
, int max
,
4355 bfd_boolean prefix_opt
)
4358 my_get_expression (&exp
, str
, prefix_opt
? GE_OPT_PREFIX
: GE_IMM_PREFIX
);
4359 if (exp
.X_op
!= O_constant
)
4361 inst
.error
= _("constant expression required");
4365 if (exp
.X_add_number
< min
|| exp
.X_add_number
> max
)
4367 inst
.error
= _("immediate value out of range");
4371 *val
= exp
.X_add_number
;
4375 /* Less-generic immediate-value read function with the possibility of loading a
4376 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4377 instructions. Puts the result directly in inst.operands[i]. */
4380 parse_big_immediate (char **str
, int i
)
4385 my_get_expression (&exp
, &ptr
, GE_OPT_PREFIX_BIG
);
4387 if (exp
.X_op
== O_constant
)
4389 inst
.operands
[i
].imm
= exp
.X_add_number
& 0xffffffff;
4390 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4391 O_constant. We have to be careful not to break compilation for
4392 32-bit X_add_number, though. */
4393 if ((exp
.X_add_number
& ~0xffffffffl
) != 0)
4395 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4396 inst
.operands
[i
].reg
= ((exp
.X_add_number
>> 16) >> 16) & 0xffffffff;
4397 inst
.operands
[i
].regisimm
= 1;
4400 else if (exp
.X_op
== O_big
4401 && LITTLENUM_NUMBER_OF_BITS
* exp
.X_add_number
> 32
4402 && LITTLENUM_NUMBER_OF_BITS
* exp
.X_add_number
<= 64)
4404 unsigned parts
= 32 / LITTLENUM_NUMBER_OF_BITS
, j
, idx
= 0;
4405 /* Bignums have their least significant bits in
4406 generic_bignum[0]. Make sure we put 32 bits in imm and
4407 32 bits in reg, in a (hopefully) portable way. */
4408 gas_assert (parts
!= 0);
4409 inst
.operands
[i
].imm
= 0;
4410 for (j
= 0; j
< parts
; j
++, idx
++)
4411 inst
.operands
[i
].imm
|= generic_bignum
[idx
]
4412 << (LITTLENUM_NUMBER_OF_BITS
* j
);
4413 inst
.operands
[i
].reg
= 0;
4414 for (j
= 0; j
< parts
; j
++, idx
++)
4415 inst
.operands
[i
].reg
|= generic_bignum
[idx
]
4416 << (LITTLENUM_NUMBER_OF_BITS
* j
);
4417 inst
.operands
[i
].regisimm
= 1;
4427 /* Returns the pseudo-register number of an FPA immediate constant,
4428 or FAIL if there isn't a valid constant here. */
4431 parse_fpa_immediate (char ** str
)
4433 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
4439 /* First try and match exact strings, this is to guarantee
4440 that some formats will work even for cross assembly. */
4442 for (i
= 0; fp_const
[i
]; i
++)
4444 if (strncmp (*str
, fp_const
[i
], strlen (fp_const
[i
])) == 0)
4448 *str
+= strlen (fp_const
[i
]);
4449 if (is_end_of_line
[(unsigned char) **str
])
4455 /* Just because we didn't get a match doesn't mean that the constant
4456 isn't valid, just that it is in a format that we don't
4457 automatically recognize. Try parsing it with the standard
4458 expression routines. */
4460 memset (words
, 0, MAX_LITTLENUMS
* sizeof (LITTLENUM_TYPE
));
4462 /* Look for a raw floating point number. */
4463 if ((save_in
= atof_ieee (*str
, 'x', words
)) != NULL
4464 && is_end_of_line
[(unsigned char) *save_in
])
4466 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
4468 for (j
= 0; j
< MAX_LITTLENUMS
; j
++)
4470 if (words
[j
] != fp_values
[i
][j
])
4474 if (j
== MAX_LITTLENUMS
)
4482 /* Try and parse a more complex expression, this will probably fail
4483 unless the code uses a floating point prefix (eg "0f"). */
4484 save_in
= input_line_pointer
;
4485 input_line_pointer
= *str
;
4486 if (expression (&exp
) == absolute_section
4487 && exp
.X_op
== O_big
4488 && exp
.X_add_number
< 0)
4490 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4492 if (gen_to_words (words
, 5, (long) 15) == 0)
4494 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
4496 for (j
= 0; j
< MAX_LITTLENUMS
; j
++)
4498 if (words
[j
] != fp_values
[i
][j
])
4502 if (j
== MAX_LITTLENUMS
)
4504 *str
= input_line_pointer
;
4505 input_line_pointer
= save_in
;
4512 *str
= input_line_pointer
;
4513 input_line_pointer
= save_in
;
4514 inst
.error
= _("invalid FPA immediate expression");
4518 /* Returns 1 if a number has "quarter-precision" float format
4519 0baBbbbbbc defgh000 00000000 00000000. */
4522 is_quarter_float (unsigned imm
)
4524 int bs
= (imm
& 0x20000000) ? 0x3e000000 : 0x40000000;
4525 return (imm
& 0x7ffff) == 0 && ((imm
& 0x7e000000) ^ bs
) == 0;
4528 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4529 0baBbbbbbc defgh000 00000000 00000000.
4530 The zero and minus-zero cases need special handling, since they can't be
4531 encoded in the "quarter-precision" float format, but can nonetheless be
4532 loaded as integer constants. */
4535 parse_qfloat_immediate (char **ccp
, int *immed
)
4539 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
4540 int found_fpchar
= 0;
4542 skip_past_char (&str
, '#');
4544 /* We must not accidentally parse an integer as a floating-point number. Make
4545 sure that the value we parse is not an integer by checking for special
4546 characters '.' or 'e'.
4547 FIXME: This is a horrible hack, but doing better is tricky because type
4548 information isn't in a very usable state at parse time. */
4550 skip_whitespace (fpnum
);
4552 if (strncmp (fpnum
, "0x", 2) == 0)
4556 for (; *fpnum
!= '\0' && *fpnum
!= ' ' && *fpnum
!= '\n'; fpnum
++)
4557 if (*fpnum
== '.' || *fpnum
== 'e' || *fpnum
== 'E')
4567 if ((str
= atof_ieee (str
, 's', words
)) != NULL
)
4569 unsigned fpword
= 0;
4572 /* Our FP word must be 32 bits (single-precision FP). */
4573 for (i
= 0; i
< 32 / LITTLENUM_NUMBER_OF_BITS
; i
++)
4575 fpword
<<= LITTLENUM_NUMBER_OF_BITS
;
4579 if (is_quarter_float (fpword
) || (fpword
& 0x7fffffff) == 0)
4592 /* Shift operands. */
4595 SHIFT_LSL
, SHIFT_LSR
, SHIFT_ASR
, SHIFT_ROR
, SHIFT_RRX
4598 struct asm_shift_name
4601 enum shift_kind kind
;
4604 /* Third argument to parse_shift. */
4605 enum parse_shift_mode
4607 NO_SHIFT_RESTRICT
, /* Any kind of shift is accepted. */
4608 SHIFT_IMMEDIATE
, /* Shift operand must be an immediate. */
4609 SHIFT_LSL_OR_ASR_IMMEDIATE
, /* Shift must be LSL or ASR immediate. */
4610 SHIFT_ASR_IMMEDIATE
, /* Shift must be ASR immediate. */
4611 SHIFT_LSL_IMMEDIATE
, /* Shift must be LSL immediate. */
4614 /* Parse a <shift> specifier on an ARM data processing instruction.
4615 This has three forms:
4617 (LSL|LSR|ASL|ASR|ROR) Rs
4618 (LSL|LSR|ASL|ASR|ROR) #imm
4621 Note that ASL is assimilated to LSL in the instruction encoding, and
4622 RRX to ROR #0 (which cannot be written as such). */
4625 parse_shift (char **str
, int i
, enum parse_shift_mode mode
)
4627 const struct asm_shift_name
*shift_name
;
4628 enum shift_kind shift
;
4633 for (p
= *str
; ISALPHA (*p
); p
++)
4638 inst
.error
= _("shift expression expected");
4642 shift_name
= (const struct asm_shift_name
*) hash_find_n (arm_shift_hsh
, *str
,
4645 if (shift_name
== NULL
)
4647 inst
.error
= _("shift expression expected");
4651 shift
= shift_name
->kind
;
4655 case NO_SHIFT_RESTRICT
:
4656 case SHIFT_IMMEDIATE
: break;
4658 case SHIFT_LSL_OR_ASR_IMMEDIATE
:
4659 if (shift
!= SHIFT_LSL
&& shift
!= SHIFT_ASR
)
4661 inst
.error
= _("'LSL' or 'ASR' required");
4666 case SHIFT_LSL_IMMEDIATE
:
4667 if (shift
!= SHIFT_LSL
)
4669 inst
.error
= _("'LSL' required");
4674 case SHIFT_ASR_IMMEDIATE
:
4675 if (shift
!= SHIFT_ASR
)
4677 inst
.error
= _("'ASR' required");
4685 if (shift
!= SHIFT_RRX
)
4687 /* Whitespace can appear here if the next thing is a bare digit. */
4688 skip_whitespace (p
);
4690 if (mode
== NO_SHIFT_RESTRICT
4691 && (reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
4693 inst
.operands
[i
].imm
= reg
;
4694 inst
.operands
[i
].immisreg
= 1;
4696 else if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_IMM_PREFIX
))
4699 inst
.operands
[i
].shift_kind
= shift
;
4700 inst
.operands
[i
].shifted
= 1;
4705 /* Parse a <shifter_operand> for an ARM data processing instruction:
4708 #<immediate>, <rotate>
4712 where <shift> is defined by parse_shift above, and <rotate> is a
4713 multiple of 2 between 0 and 30. Validation of immediate operands
4714 is deferred to md_apply_fix. */
4717 parse_shifter_operand (char **str
, int i
)
4722 if ((value
= arm_reg_parse (str
, REG_TYPE_RN
)) != FAIL
)
4724 inst
.operands
[i
].reg
= value
;
4725 inst
.operands
[i
].isreg
= 1;
4727 /* parse_shift will override this if appropriate */
4728 inst
.reloc
.exp
.X_op
= O_constant
;
4729 inst
.reloc
.exp
.X_add_number
= 0;
4731 if (skip_past_comma (str
) == FAIL
)
4734 /* Shift operation on register. */
4735 return parse_shift (str
, i
, NO_SHIFT_RESTRICT
);
4738 if (my_get_expression (&inst
.reloc
.exp
, str
, GE_IMM_PREFIX
))
4741 if (skip_past_comma (str
) == SUCCESS
)
4743 /* #x, y -- ie explicit rotation by Y. */
4744 if (my_get_expression (&exp
, str
, GE_NO_PREFIX
))
4747 if (exp
.X_op
!= O_constant
|| inst
.reloc
.exp
.X_op
!= O_constant
)
4749 inst
.error
= _("constant expression expected");
4753 value
= exp
.X_add_number
;
4754 if (value
< 0 || value
> 30 || value
% 2 != 0)
4756 inst
.error
= _("invalid rotation");
4759 if (inst
.reloc
.exp
.X_add_number
< 0 || inst
.reloc
.exp
.X_add_number
> 255)
4761 inst
.error
= _("invalid constant");
4765 /* Convert to decoded value. md_apply_fix will put it back. */
4766 inst
.reloc
.exp
.X_add_number
4767 = (((inst
.reloc
.exp
.X_add_number
<< (32 - value
))
4768 | (inst
.reloc
.exp
.X_add_number
>> value
)) & 0xffffffff);
4771 inst
.reloc
.type
= BFD_RELOC_ARM_IMMEDIATE
;
4772 inst
.reloc
.pc_rel
= 0;
4776 /* Group relocation information. Each entry in the table contains the
4777 textual name of the relocation as may appear in assembler source
4778 and must end with a colon.
4779 Along with this textual name are the relocation codes to be used if
4780 the corresponding instruction is an ALU instruction (ADD or SUB only),
4781 an LDR, an LDRS, or an LDC. */
4783 struct group_reloc_table_entry
4794 /* Varieties of non-ALU group relocation. */
4801 static struct group_reloc_table_entry group_reloc_table
[] =
4802 { /* Program counter relative: */
4804 BFD_RELOC_ARM_ALU_PC_G0_NC
, /* ALU */
4809 BFD_RELOC_ARM_ALU_PC_G0
, /* ALU */
4810 BFD_RELOC_ARM_LDR_PC_G0
, /* LDR */
4811 BFD_RELOC_ARM_LDRS_PC_G0
, /* LDRS */
4812 BFD_RELOC_ARM_LDC_PC_G0
}, /* LDC */
4814 BFD_RELOC_ARM_ALU_PC_G1_NC
, /* ALU */
4819 BFD_RELOC_ARM_ALU_PC_G1
, /* ALU */
4820 BFD_RELOC_ARM_LDR_PC_G1
, /* LDR */
4821 BFD_RELOC_ARM_LDRS_PC_G1
, /* LDRS */
4822 BFD_RELOC_ARM_LDC_PC_G1
}, /* LDC */
4824 BFD_RELOC_ARM_ALU_PC_G2
, /* ALU */
4825 BFD_RELOC_ARM_LDR_PC_G2
, /* LDR */
4826 BFD_RELOC_ARM_LDRS_PC_G2
, /* LDRS */
4827 BFD_RELOC_ARM_LDC_PC_G2
}, /* LDC */
4828 /* Section base relative */
4830 BFD_RELOC_ARM_ALU_SB_G0_NC
, /* ALU */
4835 BFD_RELOC_ARM_ALU_SB_G0
, /* ALU */
4836 BFD_RELOC_ARM_LDR_SB_G0
, /* LDR */
4837 BFD_RELOC_ARM_LDRS_SB_G0
, /* LDRS */
4838 BFD_RELOC_ARM_LDC_SB_G0
}, /* LDC */
4840 BFD_RELOC_ARM_ALU_SB_G1_NC
, /* ALU */
4845 BFD_RELOC_ARM_ALU_SB_G1
, /* ALU */
4846 BFD_RELOC_ARM_LDR_SB_G1
, /* LDR */
4847 BFD_RELOC_ARM_LDRS_SB_G1
, /* LDRS */
4848 BFD_RELOC_ARM_LDC_SB_G1
}, /* LDC */
4850 BFD_RELOC_ARM_ALU_SB_G2
, /* ALU */
4851 BFD_RELOC_ARM_LDR_SB_G2
, /* LDR */
4852 BFD_RELOC_ARM_LDRS_SB_G2
, /* LDRS */
4853 BFD_RELOC_ARM_LDC_SB_G2
} }; /* LDC */
4855 /* Given the address of a pointer pointing to the textual name of a group
4856 relocation as may appear in assembler source, attempt to find its details
4857 in group_reloc_table. The pointer will be updated to the character after
4858 the trailing colon. On failure, FAIL will be returned; SUCCESS
4859 otherwise. On success, *entry will be updated to point at the relevant
4860 group_reloc_table entry. */
4863 find_group_reloc_table_entry (char **str
, struct group_reloc_table_entry
**out
)
4866 for (i
= 0; i
< ARRAY_SIZE (group_reloc_table
); i
++)
4868 int length
= strlen (group_reloc_table
[i
].name
);
4870 if (strncasecmp (group_reloc_table
[i
].name
, *str
, length
) == 0
4871 && (*str
)[length
] == ':')
4873 *out
= &group_reloc_table
[i
];
4874 *str
+= (length
+ 1);
4882 /* Parse a <shifter_operand> for an ARM data processing instruction
4883 (as for parse_shifter_operand) where group relocations are allowed:
4886 #<immediate>, <rotate>
4887 #:<group_reloc>:<expression>
4891 where <group_reloc> is one of the strings defined in group_reloc_table.
4892 The hashes are optional.
4894 Everything else is as for parse_shifter_operand. */
4896 static parse_operand_result
4897 parse_shifter_operand_group_reloc (char **str
, int i
)
4899 /* Determine if we have the sequence of characters #: or just :
4900 coming next. If we do, then we check for a group relocation.
4901 If we don't, punt the whole lot to parse_shifter_operand. */
4903 if (((*str
)[0] == '#' && (*str
)[1] == ':')
4904 || (*str
)[0] == ':')
4906 struct group_reloc_table_entry
*entry
;
4908 if ((*str
)[0] == '#')
4913 /* Try to parse a group relocation. Anything else is an error. */
4914 if (find_group_reloc_table_entry (str
, &entry
) == FAIL
)
4916 inst
.error
= _("unknown group relocation");
4917 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
4920 /* We now have the group relocation table entry corresponding to
4921 the name in the assembler source. Next, we parse the expression. */
4922 if (my_get_expression (&inst
.reloc
.exp
, str
, GE_NO_PREFIX
))
4923 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
4925 /* Record the relocation type (always the ALU variant here). */
4926 inst
.reloc
.type
= (bfd_reloc_code_real_type
) entry
->alu_code
;
4927 gas_assert (inst
.reloc
.type
!= 0);
4929 return PARSE_OPERAND_SUCCESS
;
4932 return parse_shifter_operand (str
, i
) == SUCCESS
4933 ? PARSE_OPERAND_SUCCESS
: PARSE_OPERAND_FAIL
;
4935 /* Never reached. */
4938 /* Parse all forms of an ARM address expression. Information is written
4939 to inst.operands[i] and/or inst.reloc.
4941 Preindexed addressing (.preind=1):
4943 [Rn, #offset] .reg=Rn .reloc.exp=offset
4944 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4945 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4946 .shift_kind=shift .reloc.exp=shift_imm
4948 These three may have a trailing ! which causes .writeback to be set also.
4950 Postindexed addressing (.postind=1, .writeback=1):
4952 [Rn], #offset .reg=Rn .reloc.exp=offset
4953 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4954 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4955 .shift_kind=shift .reloc.exp=shift_imm
4957 Unindexed addressing (.preind=0, .postind=0):
4959 [Rn], {option} .reg=Rn .imm=option .immisreg=0
4963 [Rn]{!} shorthand for [Rn,#0]{!}
4964 =immediate .isreg=0 .reloc.exp=immediate
4965 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
4967 It is the caller's responsibility to check for addressing modes not
4968 supported by the instruction, and to set inst.reloc.type. */
4970 static parse_operand_result
4971 parse_address_main (char **str
, int i
, int group_relocations
,
4972 group_reloc_type group_type
)
4977 if (skip_past_char (&p
, '[') == FAIL
)
4979 if (skip_past_char (&p
, '=') == FAIL
)
4981 /* Bare address - translate to PC-relative offset. */
4982 inst
.reloc
.pc_rel
= 1;
4983 inst
.operands
[i
].reg
= REG_PC
;
4984 inst
.operands
[i
].isreg
= 1;
4985 inst
.operands
[i
].preind
= 1;
4987 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
4989 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_NO_PREFIX
))
4990 return PARSE_OPERAND_FAIL
;
4993 return PARSE_OPERAND_SUCCESS
;
4996 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
4998 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
4999 return PARSE_OPERAND_FAIL
;
5001 inst
.operands
[i
].reg
= reg
;
5002 inst
.operands
[i
].isreg
= 1;
5004 if (skip_past_comma (&p
) == SUCCESS
)
5006 inst
.operands
[i
].preind
= 1;
5009 else if (*p
== '-') p
++, inst
.operands
[i
].negative
= 1;
5011 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
5013 inst
.operands
[i
].imm
= reg
;
5014 inst
.operands
[i
].immisreg
= 1;
5016 if (skip_past_comma (&p
) == SUCCESS
)
5017 if (parse_shift (&p
, i
, SHIFT_IMMEDIATE
) == FAIL
)
5018 return PARSE_OPERAND_FAIL
;
5020 else if (skip_past_char (&p
, ':') == SUCCESS
)
5022 /* FIXME: '@' should be used here, but it's filtered out by generic
5023 code before we get to see it here. This may be subject to
5026 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
5027 if (exp
.X_op
!= O_constant
)
5029 inst
.error
= _("alignment must be constant");
5030 return PARSE_OPERAND_FAIL
;
5032 inst
.operands
[i
].imm
= exp
.X_add_number
<< 8;
5033 inst
.operands
[i
].immisalign
= 1;
5034 /* Alignments are not pre-indexes. */
5035 inst
.operands
[i
].preind
= 0;
5039 if (inst
.operands
[i
].negative
)
5041 inst
.operands
[i
].negative
= 0;
5045 if (group_relocations
5046 && ((*p
== '#' && *(p
+ 1) == ':') || *p
== ':'))
5048 struct group_reloc_table_entry
*entry
;
5050 /* Skip over the #: or : sequence. */
5056 /* Try to parse a group relocation. Anything else is an
5058 if (find_group_reloc_table_entry (&p
, &entry
) == FAIL
)
5060 inst
.error
= _("unknown group relocation");
5061 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5064 /* We now have the group relocation table entry corresponding to
5065 the name in the assembler source. Next, we parse the
5067 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_NO_PREFIX
))
5068 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5070 /* Record the relocation type. */
5074 inst
.reloc
.type
= (bfd_reloc_code_real_type
) entry
->ldr_code
;
5078 inst
.reloc
.type
= (bfd_reloc_code_real_type
) entry
->ldrs_code
;
5082 inst
.reloc
.type
= (bfd_reloc_code_real_type
) entry
->ldc_code
;
5089 if (inst
.reloc
.type
== 0)
5091 inst
.error
= _("this group relocation is not allowed on this instruction");
5092 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5096 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_IMM_PREFIX
))
5097 return PARSE_OPERAND_FAIL
;
5101 if (skip_past_char (&p
, ']') == FAIL
)
5103 inst
.error
= _("']' expected");
5104 return PARSE_OPERAND_FAIL
;
5107 if (skip_past_char (&p
, '!') == SUCCESS
)
5108 inst
.operands
[i
].writeback
= 1;
5110 else if (skip_past_comma (&p
) == SUCCESS
)
5112 if (skip_past_char (&p
, '{') == SUCCESS
)
5114 /* [Rn], {expr} - unindexed, with option */
5115 if (parse_immediate (&p
, &inst
.operands
[i
].imm
,
5116 0, 255, TRUE
) == FAIL
)
5117 return PARSE_OPERAND_FAIL
;
5119 if (skip_past_char (&p
, '}') == FAIL
)
5121 inst
.error
= _("'}' expected at end of 'option' field");
5122 return PARSE_OPERAND_FAIL
;
5124 if (inst
.operands
[i
].preind
)
5126 inst
.error
= _("cannot combine index with option");
5127 return PARSE_OPERAND_FAIL
;
5130 return PARSE_OPERAND_SUCCESS
;
5134 inst
.operands
[i
].postind
= 1;
5135 inst
.operands
[i
].writeback
= 1;
5137 if (inst
.operands
[i
].preind
)
5139 inst
.error
= _("cannot combine pre- and post-indexing");
5140 return PARSE_OPERAND_FAIL
;
5144 else if (*p
== '-') p
++, inst
.operands
[i
].negative
= 1;
5146 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
5148 /* We might be using the immediate for alignment already. If we
5149 are, OR the register number into the low-order bits. */
5150 if (inst
.operands
[i
].immisalign
)
5151 inst
.operands
[i
].imm
|= reg
;
5153 inst
.operands
[i
].imm
= reg
;
5154 inst
.operands
[i
].immisreg
= 1;
5156 if (skip_past_comma (&p
) == SUCCESS
)
5157 if (parse_shift (&p
, i
, SHIFT_IMMEDIATE
) == FAIL
)
5158 return PARSE_OPERAND_FAIL
;
5162 if (inst
.operands
[i
].negative
)
5164 inst
.operands
[i
].negative
= 0;
5167 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_IMM_PREFIX
))
5168 return PARSE_OPERAND_FAIL
;
5173 /* If at this point neither .preind nor .postind is set, we have a
5174 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5175 if (inst
.operands
[i
].preind
== 0 && inst
.operands
[i
].postind
== 0)
5177 inst
.operands
[i
].preind
= 1;
5178 inst
.reloc
.exp
.X_op
= O_constant
;
5179 inst
.reloc
.exp
.X_add_number
= 0;
5182 return PARSE_OPERAND_SUCCESS
;
5186 parse_address (char **str
, int i
)
5188 return parse_address_main (str
, i
, 0, GROUP_LDR
) == PARSE_OPERAND_SUCCESS
5192 static parse_operand_result
5193 parse_address_group_reloc (char **str
, int i
, group_reloc_type type
)
5195 return parse_address_main (str
, i
, 1, type
);
5198 /* Parse an operand for a MOVW or MOVT instruction. */
5200 parse_half (char **str
)
5205 skip_past_char (&p
, '#');
5206 if (strncasecmp (p
, ":lower16:", 9) == 0)
5207 inst
.reloc
.type
= BFD_RELOC_ARM_MOVW
;
5208 else if (strncasecmp (p
, ":upper16:", 9) == 0)
5209 inst
.reloc
.type
= BFD_RELOC_ARM_MOVT
;
5211 if (inst
.reloc
.type
!= BFD_RELOC_UNUSED
)
5214 skip_whitespace (p
);
5217 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_NO_PREFIX
))
5220 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
5222 if (inst
.reloc
.exp
.X_op
!= O_constant
)
5224 inst
.error
= _("constant expression expected");
5227 if (inst
.reloc
.exp
.X_add_number
< 0
5228 || inst
.reloc
.exp
.X_add_number
> 0xffff)
5230 inst
.error
= _("immediate value out of range");
5238 /* Miscellaneous. */
5240 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5241 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5243 parse_psr (char **str
)
5246 unsigned long psr_field
;
5247 const struct asm_psr
*psr
;
5250 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5251 feature for ease of use and backwards compatibility. */
5253 if (strncasecmp (p
, "SPSR", 4) == 0)
5254 psr_field
= SPSR_BIT
;
5255 else if (strncasecmp (p
, "CPSR", 4) == 0)
5262 while (ISALNUM (*p
) || *p
== '_');
5264 psr
= (const struct asm_psr
*) hash_find_n (arm_v7m_psr_hsh
, start
,
5276 /* A suffix follows. */
5282 while (ISALNUM (*p
) || *p
== '_');
5284 psr
= (const struct asm_psr
*) hash_find_n (arm_psr_hsh
, start
,
5289 psr_field
|= psr
->field
;
5294 goto error
; /* Garbage after "[CS]PSR". */
5296 psr_field
|= (PSR_c
| PSR_f
);
5302 inst
.error
= _("flag for {c}psr instruction expected");
5306 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5307 value suitable for splatting into the AIF field of the instruction. */
5310 parse_cps_flags (char **str
)
5319 case '\0': case ',':
5322 case 'a': case 'A': saw_a_flag
= 1; val
|= 0x4; break;
5323 case 'i': case 'I': saw_a_flag
= 1; val
|= 0x2; break;
5324 case 'f': case 'F': saw_a_flag
= 1; val
|= 0x1; break;
5327 inst
.error
= _("unrecognized CPS flag");
5332 if (saw_a_flag
== 0)
5334 inst
.error
= _("missing CPS flags");
5342 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5343 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5346 parse_endian_specifier (char **str
)
5351 if (strncasecmp (s
, "BE", 2))
5353 else if (strncasecmp (s
, "LE", 2))
5357 inst
.error
= _("valid endian specifiers are be or le");
5361 if (ISALNUM (s
[2]) || s
[2] == '_')
5363 inst
.error
= _("valid endian specifiers are be or le");
5368 return little_endian
;
5371 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5372 value suitable for poking into the rotate field of an sxt or sxta
5373 instruction, or FAIL on error. */
5376 parse_ror (char **str
)
5381 if (strncasecmp (s
, "ROR", 3) == 0)
5385 inst
.error
= _("missing rotation field after comma");
5389 if (parse_immediate (&s
, &rot
, 0, 24, FALSE
) == FAIL
)
5394 case 0: *str
= s
; return 0x0;
5395 case 8: *str
= s
; return 0x1;
5396 case 16: *str
= s
; return 0x2;
5397 case 24: *str
= s
; return 0x3;
5400 inst
.error
= _("rotation can only be 0, 8, 16, or 24");
5405 /* Parse a conditional code (from conds[] below). The value returned is in the
5406 range 0 .. 14, or FAIL. */
5408 parse_cond (char **str
)
5411 const struct asm_cond
*c
;
5413 /* Condition codes are always 2 characters, so matching up to
5414 3 characters is sufficient. */
5419 while (ISALPHA (*q
) && n
< 3)
5421 cond
[n
] = TOLOWER (*q
);
5426 c
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, cond
, n
);
5429 inst
.error
= _("condition required");
5437 /* Parse an option for a barrier instruction. Returns the encoding for the
5440 parse_barrier (char **str
)
5443 const struct asm_barrier_opt
*o
;
5446 while (ISALPHA (*q
))
5449 o
= (const struct asm_barrier_opt
*) hash_find_n (arm_barrier_opt_hsh
, p
,
5458 /* Parse the operands of a table branch instruction. Similar to a memory
5461 parse_tb (char **str
)
5466 if (skip_past_char (&p
, '[') == FAIL
)
5468 inst
.error
= _("'[' expected");
5472 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
5474 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
5477 inst
.operands
[0].reg
= reg
;
5479 if (skip_past_comma (&p
) == FAIL
)
5481 inst
.error
= _("',' expected");
5485 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
5487 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
5490 inst
.operands
[0].imm
= reg
;
5492 if (skip_past_comma (&p
) == SUCCESS
)
5494 if (parse_shift (&p
, 0, SHIFT_LSL_IMMEDIATE
) == FAIL
)
5496 if (inst
.reloc
.exp
.X_add_number
!= 1)
5498 inst
.error
= _("invalid shift");
5501 inst
.operands
[0].shifted
= 1;
5504 if (skip_past_char (&p
, ']') == FAIL
)
5506 inst
.error
= _("']' expected");
5513 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5514 information on the types the operands can take and how they are encoded.
5515 Up to four operands may be read; this function handles setting the
5516 ".present" field for each read operand itself.
5517 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5518 else returns FAIL. */
5521 parse_neon_mov (char **str
, int *which_operand
)
5523 int i
= *which_operand
, val
;
5524 enum arm_reg_type rtype
;
5526 struct neon_type_el optype
;
5528 if ((val
= parse_scalar (&ptr
, 8, &optype
)) != FAIL
)
5530 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5531 inst
.operands
[i
].reg
= val
;
5532 inst
.operands
[i
].isscalar
= 1;
5533 inst
.operands
[i
].vectype
= optype
;
5534 inst
.operands
[i
++].present
= 1;
5536 if (skip_past_comma (&ptr
) == FAIL
)
5539 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
5542 inst
.operands
[i
].reg
= val
;
5543 inst
.operands
[i
].isreg
= 1;
5544 inst
.operands
[i
].present
= 1;
5546 else if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_NSDQ
, &rtype
, &optype
))
5549 /* Cases 0, 1, 2, 3, 5 (D only). */
5550 if (skip_past_comma (&ptr
) == FAIL
)
5553 inst
.operands
[i
].reg
= val
;
5554 inst
.operands
[i
].isreg
= 1;
5555 inst
.operands
[i
].isquad
= (rtype
== REG_TYPE_NQ
);
5556 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
5557 inst
.operands
[i
].isvec
= 1;
5558 inst
.operands
[i
].vectype
= optype
;
5559 inst
.operands
[i
++].present
= 1;
5561 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
5563 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5564 Case 13: VMOV <Sd>, <Rm> */
5565 inst
.operands
[i
].reg
= val
;
5566 inst
.operands
[i
].isreg
= 1;
5567 inst
.operands
[i
].present
= 1;
5569 if (rtype
== REG_TYPE_NQ
)
5571 first_error (_("can't use Neon quad register here"));
5574 else if (rtype
!= REG_TYPE_VFS
)
5577 if (skip_past_comma (&ptr
) == FAIL
)
5579 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
5581 inst
.operands
[i
].reg
= val
;
5582 inst
.operands
[i
].isreg
= 1;
5583 inst
.operands
[i
].present
= 1;
5586 else if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_NSDQ
, &rtype
,
5589 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5590 Case 1: VMOV<c><q> <Dd>, <Dm>
5591 Case 8: VMOV.F32 <Sd>, <Sm>
5592 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5594 inst
.operands
[i
].reg
= val
;
5595 inst
.operands
[i
].isreg
= 1;
5596 inst
.operands
[i
].isquad
= (rtype
== REG_TYPE_NQ
);
5597 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
5598 inst
.operands
[i
].isvec
= 1;
5599 inst
.operands
[i
].vectype
= optype
;
5600 inst
.operands
[i
].present
= 1;
5602 if (skip_past_comma (&ptr
) == SUCCESS
)
5607 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
5610 inst
.operands
[i
].reg
= val
;
5611 inst
.operands
[i
].isreg
= 1;
5612 inst
.operands
[i
++].present
= 1;
5614 if (skip_past_comma (&ptr
) == FAIL
)
5617 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
5620 inst
.operands
[i
].reg
= val
;
5621 inst
.operands
[i
].isreg
= 1;
5622 inst
.operands
[i
++].present
= 1;
5625 else if (parse_qfloat_immediate (&ptr
, &inst
.operands
[i
].imm
) == SUCCESS
)
5626 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5627 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5628 Case 10: VMOV.F32 <Sd>, #<imm>
5629 Case 11: VMOV.F64 <Dd>, #<imm> */
5630 inst
.operands
[i
].immisfloat
= 1;
5631 else if (parse_big_immediate (&ptr
, i
) == SUCCESS
)
5632 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5633 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5637 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5641 else if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
5644 inst
.operands
[i
].reg
= val
;
5645 inst
.operands
[i
].isreg
= 1;
5646 inst
.operands
[i
++].present
= 1;
5648 if (skip_past_comma (&ptr
) == FAIL
)
5651 if ((val
= parse_scalar (&ptr
, 8, &optype
)) != FAIL
)
5653 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5654 inst
.operands
[i
].reg
= val
;
5655 inst
.operands
[i
].isscalar
= 1;
5656 inst
.operands
[i
].present
= 1;
5657 inst
.operands
[i
].vectype
= optype
;
5659 else if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
5661 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5662 inst
.operands
[i
].reg
= val
;
5663 inst
.operands
[i
].isreg
= 1;
5664 inst
.operands
[i
++].present
= 1;
5666 if (skip_past_comma (&ptr
) == FAIL
)
5669 if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFSD
, &rtype
, &optype
))
5672 first_error (_(reg_expected_msgs
[REG_TYPE_VFSD
]));
5676 inst
.operands
[i
].reg
= val
;
5677 inst
.operands
[i
].isreg
= 1;
5678 inst
.operands
[i
].isvec
= 1;
5679 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
5680 inst
.operands
[i
].vectype
= optype
;
5681 inst
.operands
[i
].present
= 1;
5683 if (rtype
== REG_TYPE_VFS
)
5687 if (skip_past_comma (&ptr
) == FAIL
)
5689 if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFS
, NULL
,
5692 first_error (_(reg_expected_msgs
[REG_TYPE_VFS
]));
5695 inst
.operands
[i
].reg
= val
;
5696 inst
.operands
[i
].isreg
= 1;
5697 inst
.operands
[i
].isvec
= 1;
5698 inst
.operands
[i
].issingle
= 1;
5699 inst
.operands
[i
].vectype
= optype
;
5700 inst
.operands
[i
].present
= 1;
5703 else if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFS
, NULL
, &optype
))
5707 inst
.operands
[i
].reg
= val
;
5708 inst
.operands
[i
].isreg
= 1;
5709 inst
.operands
[i
].isvec
= 1;
5710 inst
.operands
[i
].issingle
= 1;
5711 inst
.operands
[i
].vectype
= optype
;
5712 inst
.operands
[i
++].present
= 1;
5717 first_error (_("parse error"));
5721 /* Successfully parsed the operands. Update args. */
5727 first_error (_("expected comma"));
5731 first_error (_(reg_expected_msgs
[REG_TYPE_RN
]));
5735 /* Use this macro when the operand constraints are different
5736 for ARM and THUMB (e.g. ldrd). */
5737 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
5738 ((arm_operand) | ((thumb_operand) << 16))
5740 /* Matcher codes for parse_operands. */
5741 enum operand_parse_code
5743 OP_stop
, /* end of line */
5745 OP_RR
, /* ARM register */
5746 OP_RRnpc
, /* ARM register, not r15 */
5747 OP_RRnpcsp
, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
5748 OP_RRnpcb
, /* ARM register, not r15, in square brackets */
5749 OP_RRw
, /* ARM register, not r15, optional trailing ! */
5750 OP_RCP
, /* Coprocessor number */
5751 OP_RCN
, /* Coprocessor register */
5752 OP_RF
, /* FPA register */
5753 OP_RVS
, /* VFP single precision register */
5754 OP_RVD
, /* VFP double precision register (0..15) */
5755 OP_RND
, /* Neon double precision register (0..31) */
5756 OP_RNQ
, /* Neon quad precision register */
5757 OP_RVSD
, /* VFP single or double precision register */
5758 OP_RNDQ
, /* Neon double or quad precision register */
5759 OP_RNSDQ
, /* Neon single, double or quad precision register */
5760 OP_RNSC
, /* Neon scalar D[X] */
5761 OP_RVC
, /* VFP control register */
5762 OP_RMF
, /* Maverick F register */
5763 OP_RMD
, /* Maverick D register */
5764 OP_RMFX
, /* Maverick FX register */
5765 OP_RMDX
, /* Maverick DX register */
5766 OP_RMAX
, /* Maverick AX register */
5767 OP_RMDS
, /* Maverick DSPSC register */
5768 OP_RIWR
, /* iWMMXt wR register */
5769 OP_RIWC
, /* iWMMXt wC register */
5770 OP_RIWG
, /* iWMMXt wCG register */
5771 OP_RXA
, /* XScale accumulator register */
5773 OP_REGLST
, /* ARM register list */
5774 OP_VRSLST
, /* VFP single-precision register list */
5775 OP_VRDLST
, /* VFP double-precision register list */
5776 OP_VRSDLST
, /* VFP single or double-precision register list (& quad) */
5777 OP_NRDLST
, /* Neon double-precision register list (d0-d31, qN aliases) */
5778 OP_NSTRLST
, /* Neon element/structure list */
5780 OP_RNDQ_I0
, /* Neon D or Q reg, or immediate zero. */
5781 OP_RVSD_I0
, /* VFP S or D reg, or immediate zero. */
5782 OP_RR_RNSC
, /* ARM reg or Neon scalar. */
5783 OP_RNSDQ_RNSC
, /* Vector S, D or Q reg, or Neon scalar. */
5784 OP_RNDQ_RNSC
, /* Neon D or Q reg, or Neon scalar. */
5785 OP_RND_RNSC
, /* Neon D reg, or Neon scalar. */
5786 OP_VMOV
, /* Neon VMOV operands. */
5787 OP_RNDQ_Ibig
, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5788 OP_RNDQ_I63b
, /* Neon D or Q reg, or immediate for shift. */
5789 OP_RIWR_I32z
, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5791 OP_I0
, /* immediate zero */
5792 OP_I7
, /* immediate value 0 .. 7 */
5793 OP_I15
, /* 0 .. 15 */
5794 OP_I16
, /* 1 .. 16 */
5795 OP_I16z
, /* 0 .. 16 */
5796 OP_I31
, /* 0 .. 31 */
5797 OP_I31w
, /* 0 .. 31, optional trailing ! */
5798 OP_I32
, /* 1 .. 32 */
5799 OP_I32z
, /* 0 .. 32 */
5800 OP_I63
, /* 0 .. 63 */
5801 OP_I63s
, /* -64 .. 63 */
5802 OP_I64
, /* 1 .. 64 */
5803 OP_I64z
, /* 0 .. 64 */
5804 OP_I255
, /* 0 .. 255 */
5806 OP_I4b
, /* immediate, prefix optional, 1 .. 4 */
5807 OP_I7b
, /* 0 .. 7 */
5808 OP_I15b
, /* 0 .. 15 */
5809 OP_I31b
, /* 0 .. 31 */
5811 OP_SH
, /* shifter operand */
5812 OP_SHG
, /* shifter operand with possible group relocation */
5813 OP_ADDR
, /* Memory address expression (any mode) */
5814 OP_ADDRGLDR
, /* Mem addr expr (any mode) with possible LDR group reloc */
5815 OP_ADDRGLDRS
, /* Mem addr expr (any mode) with possible LDRS group reloc */
5816 OP_ADDRGLDC
, /* Mem addr expr (any mode) with possible LDC group reloc */
5817 OP_EXP
, /* arbitrary expression */
5818 OP_EXPi
, /* same, with optional immediate prefix */
5819 OP_EXPr
, /* same, with optional relocation suffix */
5820 OP_HALF
, /* 0 .. 65535 or low/high reloc. */
5822 OP_CPSF
, /* CPS flags */
5823 OP_ENDI
, /* Endianness specifier */
5824 OP_PSR
, /* CPSR/SPSR mask for msr */
5825 OP_COND
, /* conditional code */
5826 OP_TB
, /* Table branch. */
5828 OP_RVC_PSR
, /* CPSR/SPSR mask for msr, or VFP control register. */
5829 OP_APSR_RR
, /* ARM register or "APSR_nzcv". */
5831 OP_RRnpc_I0
, /* ARM register or literal 0 */
5832 OP_RR_EXr
, /* ARM register or expression with opt. reloc suff. */
5833 OP_RR_EXi
, /* ARM register or expression with imm prefix */
5834 OP_RF_IF
, /* FPA register or immediate */
5835 OP_RIWR_RIWC
, /* iWMMXt R or C reg */
5836 OP_RIWC_RIWG
, /* iWMMXt wC or wCG reg */
5838 /* Optional operands. */
5839 OP_oI7b
, /* immediate, prefix optional, 0 .. 7 */
5840 OP_oI31b
, /* 0 .. 31 */
5841 OP_oI32b
, /* 1 .. 32 */
5842 OP_oIffffb
, /* 0 .. 65535 */
5843 OP_oI255c
, /* curly-brace enclosed, 0 .. 255 */
5845 OP_oRR
, /* ARM register */
5846 OP_oRRnpc
, /* ARM register, not the PC */
5847 OP_oRRnpcsp
, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
5848 OP_oRRw
, /* ARM register, not r15, optional trailing ! */
5849 OP_oRND
, /* Optional Neon double precision register */
5850 OP_oRNQ
, /* Optional Neon quad precision register */
5851 OP_oRNDQ
, /* Optional Neon double or quad precision register */
5852 OP_oRNSDQ
, /* Optional single, double or quad precision vector register */
5853 OP_oSHll
, /* LSL immediate */
5854 OP_oSHar
, /* ASR immediate */
5855 OP_oSHllar
, /* LSL or ASR immediate */
5856 OP_oROR
, /* ROR 0/8/16/24 */
5857 OP_oBARRIER
, /* Option argument for a barrier instruction. */
5859 /* Some pre-defined mixed (ARM/THUMB) operands. */
5860 OP_RR_npcsp
= MIX_ARM_THUMB_OPERANDS (OP_RR
, OP_RRnpcsp
),
5861 OP_RRnpc_npcsp
= MIX_ARM_THUMB_OPERANDS (OP_RRnpc
, OP_RRnpcsp
),
5862 OP_oRRnpc_npcsp
= MIX_ARM_THUMB_OPERANDS (OP_oRRnpc
, OP_oRRnpcsp
),
5864 OP_FIRST_OPTIONAL
= OP_oI7b
5867 /* Generic instruction operand parser. This does no encoding and no
5868 semantic validation; it merely squirrels values away in the inst
5869 structure. Returns SUCCESS or FAIL depending on whether the
5870 specified grammar matched. */
5872 parse_operands (char *str
, const unsigned int *pattern
, bfd_boolean thumb
)
5874 unsigned const int *upat
= pattern
;
5875 char *backtrack_pos
= 0;
5876 const char *backtrack_error
= 0;
5877 int i
, val
, backtrack_index
= 0;
5878 enum arm_reg_type rtype
;
5879 parse_operand_result result
;
5880 unsigned int op_parse_code
;
5882 #define po_char_or_fail(chr) \
5885 if (skip_past_char (&str, chr) == FAIL) \
5890 #define po_reg_or_fail(regtype) \
5893 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5894 & inst.operands[i].vectype); \
5897 first_error (_(reg_expected_msgs[regtype])); \
5900 inst.operands[i].reg = val; \
5901 inst.operands[i].isreg = 1; \
5902 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5903 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5904 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5905 || rtype == REG_TYPE_VFD \
5906 || rtype == REG_TYPE_NQ); \
5910 #define po_reg_or_goto(regtype, label) \
5913 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5914 & inst.operands[i].vectype); \
5918 inst.operands[i].reg = val; \
5919 inst.operands[i].isreg = 1; \
5920 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5921 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5922 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5923 || rtype == REG_TYPE_VFD \
5924 || rtype == REG_TYPE_NQ); \
5928 #define po_imm_or_fail(min, max, popt) \
5931 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5933 inst.operands[i].imm = val; \
5937 #define po_scalar_or_goto(elsz, label) \
5940 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
5943 inst.operands[i].reg = val; \
5944 inst.operands[i].isscalar = 1; \
5948 #define po_misc_or_fail(expr) \
5956 #define po_misc_or_fail_no_backtrack(expr) \
5960 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
5961 backtrack_pos = 0; \
5962 if (result != PARSE_OPERAND_SUCCESS) \
5967 skip_whitespace (str
);
5969 for (i
= 0; upat
[i
] != OP_stop
; i
++)
5971 op_parse_code
= upat
[i
];
5972 if (op_parse_code
>= 1<<16)
5973 op_parse_code
= thumb
? (op_parse_code
>> 16)
5974 : (op_parse_code
& ((1<<16)-1));
5976 if (op_parse_code
>= OP_FIRST_OPTIONAL
)
5978 /* Remember where we are in case we need to backtrack. */
5979 gas_assert (!backtrack_pos
);
5980 backtrack_pos
= str
;
5981 backtrack_error
= inst
.error
;
5982 backtrack_index
= i
;
5985 if (i
> 0 && (i
> 1 || inst
.operands
[0].present
))
5986 po_char_or_fail (',');
5988 switch (op_parse_code
)
5996 case OP_RR
: po_reg_or_fail (REG_TYPE_RN
); break;
5997 case OP_RCP
: po_reg_or_fail (REG_TYPE_CP
); break;
5998 case OP_RCN
: po_reg_or_fail (REG_TYPE_CN
); break;
5999 case OP_RF
: po_reg_or_fail (REG_TYPE_FN
); break;
6000 case OP_RVS
: po_reg_or_fail (REG_TYPE_VFS
); break;
6001 case OP_RVD
: po_reg_or_fail (REG_TYPE_VFD
); break;
6003 case OP_RND
: po_reg_or_fail (REG_TYPE_VFD
); break;
6005 po_reg_or_goto (REG_TYPE_VFC
, coproc_reg
);
6007 /* Also accept generic coprocessor regs for unknown registers. */
6009 po_reg_or_fail (REG_TYPE_CN
);
6011 case OP_RMF
: po_reg_or_fail (REG_TYPE_MVF
); break;
6012 case OP_RMD
: po_reg_or_fail (REG_TYPE_MVD
); break;
6013 case OP_RMFX
: po_reg_or_fail (REG_TYPE_MVFX
); break;
6014 case OP_RMDX
: po_reg_or_fail (REG_TYPE_MVDX
); break;
6015 case OP_RMAX
: po_reg_or_fail (REG_TYPE_MVAX
); break;
6016 case OP_RMDS
: po_reg_or_fail (REG_TYPE_DSPSC
); break;
6017 case OP_RIWR
: po_reg_or_fail (REG_TYPE_MMXWR
); break;
6018 case OP_RIWC
: po_reg_or_fail (REG_TYPE_MMXWC
); break;
6019 case OP_RIWG
: po_reg_or_fail (REG_TYPE_MMXWCG
); break;
6020 case OP_RXA
: po_reg_or_fail (REG_TYPE_XSCALE
); break;
6022 case OP_RNQ
: po_reg_or_fail (REG_TYPE_NQ
); break;
6024 case OP_RNDQ
: po_reg_or_fail (REG_TYPE_NDQ
); break;
6025 case OP_RVSD
: po_reg_or_fail (REG_TYPE_VFSD
); break;
6027 case OP_RNSDQ
: po_reg_or_fail (REG_TYPE_NSDQ
); break;
6029 /* Neon scalar. Using an element size of 8 means that some invalid
6030 scalars are accepted here, so deal with those in later code. */
6031 case OP_RNSC
: po_scalar_or_goto (8, failure
); break;
6035 po_reg_or_goto (REG_TYPE_NDQ
, try_imm0
);
6038 po_imm_or_fail (0, 0, TRUE
);
6043 po_reg_or_goto (REG_TYPE_VFSD
, try_imm0
);
6048 po_scalar_or_goto (8, try_rr
);
6051 po_reg_or_fail (REG_TYPE_RN
);
6057 po_scalar_or_goto (8, try_nsdq
);
6060 po_reg_or_fail (REG_TYPE_NSDQ
);
6066 po_scalar_or_goto (8, try_ndq
);
6069 po_reg_or_fail (REG_TYPE_NDQ
);
6075 po_scalar_or_goto (8, try_vfd
);
6078 po_reg_or_fail (REG_TYPE_VFD
);
6083 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6084 not careful then bad things might happen. */
6085 po_misc_or_fail (parse_neon_mov (&str
, &i
) == FAIL
);
6090 po_reg_or_goto (REG_TYPE_NDQ
, try_immbig
);
6093 /* There's a possibility of getting a 64-bit immediate here, so
6094 we need special handling. */
6095 if (parse_big_immediate (&str
, i
) == FAIL
)
6097 inst
.error
= _("immediate value is out of range");
6105 po_reg_or_goto (REG_TYPE_NDQ
, try_shimm
);
6108 po_imm_or_fail (0, 63, TRUE
);
6113 po_char_or_fail ('[');
6114 po_reg_or_fail (REG_TYPE_RN
);
6115 po_char_or_fail (']');
6120 po_reg_or_fail (REG_TYPE_RN
);
6121 if (skip_past_char (&str
, '!') == SUCCESS
)
6122 inst
.operands
[i
].writeback
= 1;
6126 case OP_I7
: po_imm_or_fail ( 0, 7, FALSE
); break;
6127 case OP_I15
: po_imm_or_fail ( 0, 15, FALSE
); break;
6128 case OP_I16
: po_imm_or_fail ( 1, 16, FALSE
); break;
6129 case OP_I16z
: po_imm_or_fail ( 0, 16, FALSE
); break;
6130 case OP_I31
: po_imm_or_fail ( 0, 31, FALSE
); break;
6131 case OP_I32
: po_imm_or_fail ( 1, 32, FALSE
); break;
6132 case OP_I32z
: po_imm_or_fail ( 0, 32, FALSE
); break;
6133 case OP_I63s
: po_imm_or_fail (-64, 63, FALSE
); break;
6134 case OP_I63
: po_imm_or_fail ( 0, 63, FALSE
); break;
6135 case OP_I64
: po_imm_or_fail ( 1, 64, FALSE
); break;
6136 case OP_I64z
: po_imm_or_fail ( 0, 64, FALSE
); break;
6137 case OP_I255
: po_imm_or_fail ( 0, 255, FALSE
); break;
6139 case OP_I4b
: po_imm_or_fail ( 1, 4, TRUE
); break;
6141 case OP_I7b
: po_imm_or_fail ( 0, 7, TRUE
); break;
6142 case OP_I15b
: po_imm_or_fail ( 0, 15, TRUE
); break;
6144 case OP_I31b
: po_imm_or_fail ( 0, 31, TRUE
); break;
6145 case OP_oI32b
: po_imm_or_fail ( 1, 32, TRUE
); break;
6146 case OP_oIffffb
: po_imm_or_fail ( 0, 0xffff, TRUE
); break;
6148 /* Immediate variants */
6150 po_char_or_fail ('{');
6151 po_imm_or_fail (0, 255, TRUE
);
6152 po_char_or_fail ('}');
6156 /* The expression parser chokes on a trailing !, so we have
6157 to find it first and zap it. */
6160 while (*s
&& *s
!= ',')
6165 inst
.operands
[i
].writeback
= 1;
6167 po_imm_or_fail (0, 31, TRUE
);
6175 po_misc_or_fail (my_get_expression (&inst
.reloc
.exp
, &str
,
6180 po_misc_or_fail (my_get_expression (&inst
.reloc
.exp
, &str
,
6185 po_misc_or_fail (my_get_expression (&inst
.reloc
.exp
, &str
,
6187 if (inst
.reloc
.exp
.X_op
== O_symbol
)
6189 val
= parse_reloc (&str
);
6192 inst
.error
= _("unrecognized relocation suffix");
6195 else if (val
!= BFD_RELOC_UNUSED
)
6197 inst
.operands
[i
].imm
= val
;
6198 inst
.operands
[i
].hasreloc
= 1;
6203 /* Operand for MOVW or MOVT. */
6205 po_misc_or_fail (parse_half (&str
));
6208 /* Register or expression. */
6209 case OP_RR_EXr
: po_reg_or_goto (REG_TYPE_RN
, EXPr
); break;
6210 case OP_RR_EXi
: po_reg_or_goto (REG_TYPE_RN
, EXPi
); break;
6212 /* Register or immediate. */
6213 case OP_RRnpc_I0
: po_reg_or_goto (REG_TYPE_RN
, I0
); break;
6214 I0
: po_imm_or_fail (0, 0, FALSE
); break;
6216 case OP_RF_IF
: po_reg_or_goto (REG_TYPE_FN
, IF
); break;
6218 if (!is_immediate_prefix (*str
))
6221 val
= parse_fpa_immediate (&str
);
6224 /* FPA immediates are encoded as registers 8-15.
6225 parse_fpa_immediate has already applied the offset. */
6226 inst
.operands
[i
].reg
= val
;
6227 inst
.operands
[i
].isreg
= 1;
6230 case OP_RIWR_I32z
: po_reg_or_goto (REG_TYPE_MMXWR
, I32z
); break;
6231 I32z
: po_imm_or_fail (0, 32, FALSE
); break;
6233 /* Two kinds of register. */
6236 struct reg_entry
*rege
= arm_reg_parse_multi (&str
);
6238 || (rege
->type
!= REG_TYPE_MMXWR
6239 && rege
->type
!= REG_TYPE_MMXWC
6240 && rege
->type
!= REG_TYPE_MMXWCG
))
6242 inst
.error
= _("iWMMXt data or control register expected");
6245 inst
.operands
[i
].reg
= rege
->number
;
6246 inst
.operands
[i
].isreg
= (rege
->type
== REG_TYPE_MMXWR
);
6252 struct reg_entry
*rege
= arm_reg_parse_multi (&str
);
6254 || (rege
->type
!= REG_TYPE_MMXWC
6255 && rege
->type
!= REG_TYPE_MMXWCG
))
6257 inst
.error
= _("iWMMXt control register expected");
6260 inst
.operands
[i
].reg
= rege
->number
;
6261 inst
.operands
[i
].isreg
= 1;
6266 case OP_CPSF
: val
= parse_cps_flags (&str
); break;
6267 case OP_ENDI
: val
= parse_endian_specifier (&str
); break;
6268 case OP_oROR
: val
= parse_ror (&str
); break;
6269 case OP_PSR
: val
= parse_psr (&str
); break;
6270 case OP_COND
: val
= parse_cond (&str
); break;
6271 case OP_oBARRIER
:val
= parse_barrier (&str
); break;
6274 po_reg_or_goto (REG_TYPE_VFC
, try_psr
);
6275 inst
.operands
[i
].isvec
= 1; /* Mark VFP control reg as vector. */
6278 val
= parse_psr (&str
);
6282 po_reg_or_goto (REG_TYPE_RN
, try_apsr
);
6285 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6287 if (strncasecmp (str
, "APSR_", 5) == 0)
6294 case 'c': found
= (found
& 1) ? 16 : found
| 1; break;
6295 case 'n': found
= (found
& 2) ? 16 : found
| 2; break;
6296 case 'z': found
= (found
& 4) ? 16 : found
| 4; break;
6297 case 'v': found
= (found
& 8) ? 16 : found
| 8; break;
6298 default: found
= 16;
6302 inst
.operands
[i
].isvec
= 1;
6303 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6304 inst
.operands
[i
].reg
= REG_PC
;
6311 po_misc_or_fail (parse_tb (&str
));
6314 /* Register lists. */
6316 val
= parse_reg_list (&str
);
6319 inst
.operands
[1].writeback
= 1;
6325 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
, REGLIST_VFP_S
);
6329 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
, REGLIST_VFP_D
);
6333 /* Allow Q registers too. */
6334 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
6339 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
6341 inst
.operands
[i
].issingle
= 1;
6346 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
6351 val
= parse_neon_el_struct_list (&str
, &inst
.operands
[i
].reg
,
6352 &inst
.operands
[i
].vectype
);
6355 /* Addressing modes */
6357 po_misc_or_fail (parse_address (&str
, i
));
6361 po_misc_or_fail_no_backtrack (
6362 parse_address_group_reloc (&str
, i
, GROUP_LDR
));
6366 po_misc_or_fail_no_backtrack (
6367 parse_address_group_reloc (&str
, i
, GROUP_LDRS
));
6371 po_misc_or_fail_no_backtrack (
6372 parse_address_group_reloc (&str
, i
, GROUP_LDC
));
6376 po_misc_or_fail (parse_shifter_operand (&str
, i
));
6380 po_misc_or_fail_no_backtrack (
6381 parse_shifter_operand_group_reloc (&str
, i
));
6385 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_LSL_IMMEDIATE
));
6389 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_ASR_IMMEDIATE
));
6393 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_LSL_OR_ASR_IMMEDIATE
));
6397 as_fatal (_("unhandled operand code %d"), op_parse_code
);
6400 /* Various value-based sanity checks and shared operations. We
6401 do not signal immediate failures for the register constraints;
6402 this allows a syntax error to take precedence. */
6403 switch (op_parse_code
)
6411 if (inst
.operands
[i
].isreg
&& inst
.operands
[i
].reg
== REG_PC
)
6412 inst
.error
= BAD_PC
;
6417 if (inst
.operands
[i
].isreg
)
6419 if (inst
.operands
[i
].reg
== REG_PC
)
6420 inst
.error
= BAD_PC
;
6421 else if (inst
.operands
[i
].reg
== REG_SP
)
6422 inst
.error
= BAD_SP
;
6441 inst
.operands
[i
].imm
= val
;
6448 /* If we get here, this operand was successfully parsed. */
6449 inst
.operands
[i
].present
= 1;
6453 inst
.error
= BAD_ARGS
;
6458 /* The parse routine should already have set inst.error, but set a
6459 default here just in case. */
6461 inst
.error
= _("syntax error");
6465 /* Do not backtrack over a trailing optional argument that
6466 absorbed some text. We will only fail again, with the
6467 'garbage following instruction' error message, which is
6468 probably less helpful than the current one. */
6469 if (backtrack_index
== i
&& backtrack_pos
!= str
6470 && upat
[i
+1] == OP_stop
)
6473 inst
.error
= _("syntax error");
6477 /* Try again, skipping the optional argument at backtrack_pos. */
6478 str
= backtrack_pos
;
6479 inst
.error
= backtrack_error
;
6480 inst
.operands
[backtrack_index
].present
= 0;
6481 i
= backtrack_index
;
6485 /* Check that we have parsed all the arguments. */
6486 if (*str
!= '\0' && !inst
.error
)
6487 inst
.error
= _("garbage following instruction");
6489 return inst
.error
? FAIL
: SUCCESS
;
6492 #undef po_char_or_fail
6493 #undef po_reg_or_fail
6494 #undef po_reg_or_goto
6495 #undef po_imm_or_fail
6496 #undef po_scalar_or_fail
6498 /* Shorthand macro for instruction encoding functions issuing errors. */
6499 #define constraint(expr, err) \
6510 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6511 instructions are unpredictable if these registers are used. This
6512 is the BadReg predicate in ARM's Thumb-2 documentation. */
6513 #define reject_bad_reg(reg) \
6515 if (reg == REG_SP || reg == REG_PC) \
6517 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6522 /* If REG is R13 (the stack pointer), warn that its use is
6524 #define warn_deprecated_sp(reg) \
6526 if (warn_on_deprecated && reg == REG_SP) \
6527 as_warn (_("use of r13 is deprecated")); \
6530 /* Functions for operand encoding. ARM, then Thumb. */
6532 #define rotate_left(v, n) (v << n | v >> (32 - n))
6534 /* If VAL can be encoded in the immediate field of an ARM instruction,
6535 return the encoded form. Otherwise, return FAIL. */
6538 encode_arm_immediate (unsigned int val
)
6542 for (i
= 0; i
< 32; i
+= 2)
6543 if ((a
= rotate_left (val
, i
)) <= 0xff)
6544 return a
| (i
<< 7); /* 12-bit pack: [shift-cnt,const]. */
6549 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6550 return the encoded form. Otherwise, return FAIL. */
6552 encode_thumb32_immediate (unsigned int val
)
6559 for (i
= 1; i
<= 24; i
++)
6562 if ((val
& ~(0xff << i
)) == 0)
6563 return ((val
>> i
) & 0x7f) | ((32 - i
) << 7);
6567 if (val
== ((a
<< 16) | a
))
6569 if (val
== ((a
<< 24) | (a
<< 16) | (a
<< 8) | a
))
6573 if (val
== ((a
<< 16) | a
))
6574 return 0x200 | (a
>> 8);
6578 /* Encode a VFP SP or DP register number into inst.instruction. */
6581 encode_arm_vfp_reg (int reg
, enum vfp_reg_pos pos
)
6583 if ((pos
== VFP_REG_Dd
|| pos
== VFP_REG_Dn
|| pos
== VFP_REG_Dm
)
6586 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_d32
))
6589 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
6592 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
6597 first_error (_("D register out of range for selected VFP version"));
6605 inst
.instruction
|= ((reg
>> 1) << 12) | ((reg
& 1) << 22);
6609 inst
.instruction
|= ((reg
>> 1) << 16) | ((reg
& 1) << 7);
6613 inst
.instruction
|= ((reg
>> 1) << 0) | ((reg
& 1) << 5);
6617 inst
.instruction
|= ((reg
& 15) << 12) | ((reg
>> 4) << 22);
6621 inst
.instruction
|= ((reg
& 15) << 16) | ((reg
>> 4) << 7);
6625 inst
.instruction
|= (reg
& 15) | ((reg
>> 4) << 5);
6633 /* Encode a <shift> in an ARM-format instruction. The immediate,
6634 if any, is handled by md_apply_fix. */
6636 encode_arm_shift (int i
)
6638 if (inst
.operands
[i
].shift_kind
== SHIFT_RRX
)
6639 inst
.instruction
|= SHIFT_ROR
<< 5;
6642 inst
.instruction
|= inst
.operands
[i
].shift_kind
<< 5;
6643 if (inst
.operands
[i
].immisreg
)
6645 inst
.instruction
|= SHIFT_BY_REG
;
6646 inst
.instruction
|= inst
.operands
[i
].imm
<< 8;
6649 inst
.reloc
.type
= BFD_RELOC_ARM_SHIFT_IMM
;
6654 encode_arm_shifter_operand (int i
)
6656 if (inst
.operands
[i
].isreg
)
6658 inst
.instruction
|= inst
.operands
[i
].reg
;
6659 encode_arm_shift (i
);
6662 inst
.instruction
|= INST_IMMEDIATE
;
6665 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6667 encode_arm_addr_mode_common (int i
, bfd_boolean is_t
)
6669 gas_assert (inst
.operands
[i
].isreg
);
6670 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
6672 if (inst
.operands
[i
].preind
)
6676 inst
.error
= _("instruction does not accept preindexed addressing");
6679 inst
.instruction
|= PRE_INDEX
;
6680 if (inst
.operands
[i
].writeback
)
6681 inst
.instruction
|= WRITE_BACK
;
6684 else if (inst
.operands
[i
].postind
)
6686 gas_assert (inst
.operands
[i
].writeback
);
6688 inst
.instruction
|= WRITE_BACK
;
6690 else /* unindexed - only for coprocessor */
6692 inst
.error
= _("instruction does not accept unindexed addressing");
6696 if (((inst
.instruction
& WRITE_BACK
) || !(inst
.instruction
& PRE_INDEX
))
6697 && (((inst
.instruction
& 0x000f0000) >> 16)
6698 == ((inst
.instruction
& 0x0000f000) >> 12)))
6699 as_warn ((inst
.instruction
& LOAD_BIT
)
6700 ? _("destination register same as write-back base")
6701 : _("source register same as write-back base"));
6704 /* inst.operands[i] was set up by parse_address. Encode it into an
6705 ARM-format mode 2 load or store instruction. If is_t is true,
6706 reject forms that cannot be used with a T instruction (i.e. not
6709 encode_arm_addr_mode_2 (int i
, bfd_boolean is_t
)
6711 const bfd_boolean is_pc
= (inst
.operands
[i
].reg
== REG_PC
);
6713 encode_arm_addr_mode_common (i
, is_t
);
6715 if (inst
.operands
[i
].immisreg
)
6717 constraint ((inst
.operands
[i
].imm
== REG_PC
6718 || (is_pc
&& inst
.operands
[i
].writeback
)),
6720 inst
.instruction
|= INST_IMMEDIATE
; /* yes, this is backwards */
6721 inst
.instruction
|= inst
.operands
[i
].imm
;
6722 if (!inst
.operands
[i
].negative
)
6723 inst
.instruction
|= INDEX_UP
;
6724 if (inst
.operands
[i
].shifted
)
6726 if (inst
.operands
[i
].shift_kind
== SHIFT_RRX
)
6727 inst
.instruction
|= SHIFT_ROR
<< 5;
6730 inst
.instruction
|= inst
.operands
[i
].shift_kind
<< 5;
6731 inst
.reloc
.type
= BFD_RELOC_ARM_SHIFT_IMM
;
6735 else /* immediate offset in inst.reloc */
6737 if (is_pc
&& !inst
.reloc
.pc_rel
)
6739 const bfd_boolean is_load
= ((inst
.instruction
& LOAD_BIT
) != 0);
6740 /* BAD_PC_ADDRESSING Condition =
6742 which becomes !is_load || is_t. */
6743 constraint ((!is_load
|| is_t
),
6747 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
6748 inst
.reloc
.type
= BFD_RELOC_ARM_OFFSET_IMM
;
6752 /* inst.operands[i] was set up by parse_address. Encode it into an
6753 ARM-format mode 3 load or store instruction. Reject forms that
6754 cannot be used with such instructions. If is_t is true, reject
6755 forms that cannot be used with a T instruction (i.e. not
6758 encode_arm_addr_mode_3 (int i
, bfd_boolean is_t
)
6760 if (inst
.operands
[i
].immisreg
&& inst
.operands
[i
].shifted
)
6762 inst
.error
= _("instruction does not accept scaled register index");
6766 encode_arm_addr_mode_common (i
, is_t
);
6768 if (inst
.operands
[i
].immisreg
)
6770 constraint ((inst
.operands
[i
].imm
== REG_PC
6771 || inst
.operands
[i
].reg
== REG_PC
),
6773 inst
.instruction
|= inst
.operands
[i
].imm
;
6774 if (!inst
.operands
[i
].negative
)
6775 inst
.instruction
|= INDEX_UP
;
6777 else /* immediate offset in inst.reloc */
6779 constraint ((inst
.operands
[i
].reg
== REG_PC
&& !inst
.reloc
.pc_rel
6780 && inst
.operands
[i
].writeback
),
6782 inst
.instruction
|= HWOFFSET_IMM
;
6783 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
6784 inst
.reloc
.type
= BFD_RELOC_ARM_OFFSET_IMM8
;
6788 /* inst.operands[i] was set up by parse_address. Encode it into an
6789 ARM-format instruction. Reject all forms which cannot be encoded
6790 into a coprocessor load/store instruction. If wb_ok is false,
6791 reject use of writeback; if unind_ok is false, reject use of
6792 unindexed addressing. If reloc_override is not 0, use it instead
6793 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6794 (in which case it is preserved). */
6797 encode_arm_cp_address (int i
, int wb_ok
, int unind_ok
, int reloc_override
)
6799 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
6801 gas_assert (!(inst
.operands
[i
].preind
&& inst
.operands
[i
].postind
));
6803 if (!inst
.operands
[i
].preind
&& !inst
.operands
[i
].postind
) /* unindexed */
6805 gas_assert (!inst
.operands
[i
].writeback
);
6808 inst
.error
= _("instruction does not support unindexed addressing");
6811 inst
.instruction
|= inst
.operands
[i
].imm
;
6812 inst
.instruction
|= INDEX_UP
;
6816 if (inst
.operands
[i
].preind
)
6817 inst
.instruction
|= PRE_INDEX
;
6819 if (inst
.operands
[i
].writeback
)
6821 if (inst
.operands
[i
].reg
== REG_PC
)
6823 inst
.error
= _("pc may not be used with write-back");
6828 inst
.error
= _("instruction does not support writeback");
6831 inst
.instruction
|= WRITE_BACK
;
6835 inst
.reloc
.type
= (bfd_reloc_code_real_type
) reloc_override
;
6836 else if ((inst
.reloc
.type
< BFD_RELOC_ARM_ALU_PC_G0_NC
6837 || inst
.reloc
.type
> BFD_RELOC_ARM_LDC_SB_G2
)
6838 && inst
.reloc
.type
!= BFD_RELOC_ARM_LDR_PC_G0
)
6841 inst
.reloc
.type
= BFD_RELOC_ARM_T32_CP_OFF_IMM
;
6843 inst
.reloc
.type
= BFD_RELOC_ARM_CP_OFF_IMM
;
6849 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
6850 Determine whether it can be performed with a move instruction; if
6851 it can, convert inst.instruction to that move instruction and
6852 return TRUE; if it can't, convert inst.instruction to a literal-pool
6853 load and return FALSE. If this is not a valid thing to do in the
6854 current context, set inst.error and return TRUE.
6856 inst.operands[i] describes the destination register. */
6859 move_or_literal_pool (int i
, bfd_boolean thumb_p
, bfd_boolean mode_3
)
6864 tbit
= (inst
.instruction
> 0xffff) ? THUMB2_LOAD_BIT
: THUMB_LOAD_BIT
;
6868 if ((inst
.instruction
& tbit
) == 0)
6870 inst
.error
= _("invalid pseudo operation");
6873 if (inst
.reloc
.exp
.X_op
!= O_constant
&& inst
.reloc
.exp
.X_op
!= O_symbol
)
6875 inst
.error
= _("constant expression expected");
6878 if (inst
.reloc
.exp
.X_op
== O_constant
)
6882 if (!unified_syntax
&& (inst
.reloc
.exp
.X_add_number
& ~0xFF) == 0)
6884 /* This can be done with a mov(1) instruction. */
6885 inst
.instruction
= T_OPCODE_MOV_I8
| (inst
.operands
[i
].reg
<< 8);
6886 inst
.instruction
|= inst
.reloc
.exp
.X_add_number
;
6892 int value
= encode_arm_immediate (inst
.reloc
.exp
.X_add_number
);
6895 /* This can be done with a mov instruction. */
6896 inst
.instruction
&= LITERAL_MASK
;
6897 inst
.instruction
|= INST_IMMEDIATE
| (OPCODE_MOV
<< DATA_OP_SHIFT
);
6898 inst
.instruction
|= value
& 0xfff;
6902 value
= encode_arm_immediate (~inst
.reloc
.exp
.X_add_number
);
6905 /* This can be done with a mvn instruction. */
6906 inst
.instruction
&= LITERAL_MASK
;
6907 inst
.instruction
|= INST_IMMEDIATE
| (OPCODE_MVN
<< DATA_OP_SHIFT
);
6908 inst
.instruction
|= value
& 0xfff;
6914 if (add_to_lit_pool () == FAIL
)
6916 inst
.error
= _("literal pool insertion failed");
6919 inst
.operands
[1].reg
= REG_PC
;
6920 inst
.operands
[1].isreg
= 1;
6921 inst
.operands
[1].preind
= 1;
6922 inst
.reloc
.pc_rel
= 1;
6923 inst
.reloc
.type
= (thumb_p
6924 ? BFD_RELOC_ARM_THUMB_OFFSET
6926 ? BFD_RELOC_ARM_HWLITERAL
6927 : BFD_RELOC_ARM_LITERAL
));
6931 /* Functions for instruction encoding, sorted by sub-architecture.
6932 First some generics; their names are taken from the conventional
6933 bit positions for register arguments in ARM format instructions. */
6943 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6949 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6950 inst
.instruction
|= inst
.operands
[1].reg
;
6956 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6957 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
6963 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
6964 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
6970 unsigned Rn
= inst
.operands
[2].reg
;
6971 /* Enforce restrictions on SWP instruction. */
6972 if ((inst
.instruction
& 0x0fbfffff) == 0x01000090)
6974 constraint (Rn
== inst
.operands
[0].reg
|| Rn
== inst
.operands
[1].reg
,
6975 _("Rn must not overlap other operands"));
6977 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
6978 if (warn_on_deprecated
6979 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
))
6980 as_warn (_("swp{b} use is deprecated for this architecture"));
6983 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6984 inst
.instruction
|= inst
.operands
[1].reg
;
6985 inst
.instruction
|= Rn
<< 16;
6991 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
6992 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
6993 inst
.instruction
|= inst
.operands
[2].reg
;
6999 constraint ((inst
.operands
[2].reg
== REG_PC
), BAD_PC
);
7000 constraint (((inst
.reloc
.exp
.X_op
!= O_constant
7001 && inst
.reloc
.exp
.X_op
!= O_illegal
)
7002 || inst
.reloc
.exp
.X_add_number
!= 0),
7004 inst
.instruction
|= inst
.operands
[0].reg
;
7005 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
7006 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
7012 inst
.instruction
|= inst
.operands
[0].imm
;
7018 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7019 encode_arm_cp_address (1, TRUE
, TRUE
, 0);
7022 /* ARM instructions, in alphabetical order by function name (except
7023 that wrapper functions appear immediately after the function they
7026 /* This is a pseudo-op of the form "adr rd, label" to be converted
7027 into a relative address of the form "add rd, pc, #label-.-8". */
7032 inst
.instruction
|= (inst
.operands
[0].reg
<< 12); /* Rd */
7034 /* Frag hacking will turn this into a sub instruction if the offset turns
7035 out to be negative. */
7036 inst
.reloc
.type
= BFD_RELOC_ARM_IMMEDIATE
;
7037 inst
.reloc
.pc_rel
= 1;
7038 inst
.reloc
.exp
.X_add_number
-= 8;
7041 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7042 into a relative address of the form:
7043 add rd, pc, #low(label-.-8)"
7044 add rd, rd, #high(label-.-8)" */
7049 inst
.instruction
|= (inst
.operands
[0].reg
<< 12); /* Rd */
7051 /* Frag hacking will turn this into a sub instruction if the offset turns
7052 out to be negative. */
7053 inst
.reloc
.type
= BFD_RELOC_ARM_ADRL_IMMEDIATE
;
7054 inst
.reloc
.pc_rel
= 1;
7055 inst
.size
= INSN_SIZE
* 2;
7056 inst
.reloc
.exp
.X_add_number
-= 8;
7062 if (!inst
.operands
[1].present
)
7063 inst
.operands
[1].reg
= inst
.operands
[0].reg
;
7064 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7065 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7066 encode_arm_shifter_operand (2);
7072 if (inst
.operands
[0].present
)
7074 constraint ((inst
.instruction
& 0xf0) != 0x40
7075 && inst
.operands
[0].imm
!= 0xf,
7076 _("bad barrier type"));
7077 inst
.instruction
|= inst
.operands
[0].imm
;
7080 inst
.instruction
|= 0xf;
7086 unsigned int msb
= inst
.operands
[1].imm
+ inst
.operands
[2].imm
;
7087 constraint (msb
> 32, _("bit-field extends past end of register"));
7088 /* The instruction encoding stores the LSB and MSB,
7089 not the LSB and width. */
7090 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7091 inst
.instruction
|= inst
.operands
[1].imm
<< 7;
7092 inst
.instruction
|= (msb
- 1) << 16;
7100 /* #0 in second position is alternative syntax for bfc, which is
7101 the same instruction but with REG_PC in the Rm field. */
7102 if (!inst
.operands
[1].isreg
)
7103 inst
.operands
[1].reg
= REG_PC
;
7105 msb
= inst
.operands
[2].imm
+ inst
.operands
[3].imm
;
7106 constraint (msb
> 32, _("bit-field extends past end of register"));
7107 /* The instruction encoding stores the LSB and MSB,
7108 not the LSB and width. */
7109 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7110 inst
.instruction
|= inst
.operands
[1].reg
;
7111 inst
.instruction
|= inst
.operands
[2].imm
<< 7;
7112 inst
.instruction
|= (msb
- 1) << 16;
7118 constraint (inst
.operands
[2].imm
+ inst
.operands
[3].imm
> 32,
7119 _("bit-field extends past end of register"));
7120 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7121 inst
.instruction
|= inst
.operands
[1].reg
;
7122 inst
.instruction
|= inst
.operands
[2].imm
<< 7;
7123 inst
.instruction
|= (inst
.operands
[3].imm
- 1) << 16;
7126 /* ARM V5 breakpoint instruction (argument parse)
7127 BKPT <16 bit unsigned immediate>
7128 Instruction is not conditional.
7129 The bit pattern given in insns[] has the COND_ALWAYS condition,
7130 and it is an error if the caller tried to override that. */
7135 /* Top 12 of 16 bits to bits 19:8. */
7136 inst
.instruction
|= (inst
.operands
[0].imm
& 0xfff0) << 4;
7138 /* Bottom 4 of 16 bits to bits 3:0. */
7139 inst
.instruction
|= inst
.operands
[0].imm
& 0xf;
7143 encode_branch (int default_reloc
)
7145 if (inst
.operands
[0].hasreloc
)
7147 constraint (inst
.operands
[0].imm
!= BFD_RELOC_ARM_PLT32
,
7148 _("the only suffix valid here is '(plt)'"));
7149 inst
.reloc
.type
= BFD_RELOC_ARM_PLT32
;
7153 inst
.reloc
.type
= (bfd_reloc_code_real_type
) default_reloc
;
7155 inst
.reloc
.pc_rel
= 1;
7162 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
7163 encode_branch (BFD_RELOC_ARM_PCREL_JUMP
);
7166 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH
);
7173 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
7175 if (inst
.cond
== COND_ALWAYS
)
7176 encode_branch (BFD_RELOC_ARM_PCREL_CALL
);
7178 encode_branch (BFD_RELOC_ARM_PCREL_JUMP
);
7182 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH
);
7185 /* ARM V5 branch-link-exchange instruction (argument parse)
7186 BLX <target_addr> ie BLX(1)
7187 BLX{<condition>} <Rm> ie BLX(2)
7188 Unfortunately, there are two different opcodes for this mnemonic.
7189 So, the insns[].value is not used, and the code here zaps values
7190 into inst.instruction.
7191 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7196 if (inst
.operands
[0].isreg
)
7198 /* Arg is a register; the opcode provided by insns[] is correct.
7199 It is not illegal to do "blx pc", just useless. */
7200 if (inst
.operands
[0].reg
== REG_PC
)
7201 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7203 inst
.instruction
|= inst
.operands
[0].reg
;
7207 /* Arg is an address; this instruction cannot be executed
7208 conditionally, and the opcode must be adjusted.
7209 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7210 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7211 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
7212 inst
.instruction
= 0xfa000000;
7213 encode_branch (BFD_RELOC_ARM_PCREL_BLX
);
7220 bfd_boolean want_reloc
;
7222 if (inst
.operands
[0].reg
== REG_PC
)
7223 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7225 inst
.instruction
|= inst
.operands
[0].reg
;
7226 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7227 it is for ARMv4t or earlier. */
7228 want_reloc
= !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5
);
7229 if (object_arch
&& !ARM_CPU_HAS_FEATURE (*object_arch
, arm_ext_v5
))
7233 if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
7238 inst
.reloc
.type
= BFD_RELOC_ARM_V4BX
;
7242 /* ARM v5TEJ. Jump to Jazelle code. */
7247 if (inst
.operands
[0].reg
== REG_PC
)
7248 as_tsktsk (_("use of r15 in bxj is not really useful"));
7250 inst
.instruction
|= inst
.operands
[0].reg
;
7253 /* Co-processor data operation:
7254 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7255 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7259 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
7260 inst
.instruction
|= inst
.operands
[1].imm
<< 20;
7261 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
7262 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
7263 inst
.instruction
|= inst
.operands
[4].reg
;
7264 inst
.instruction
|= inst
.operands
[5].imm
<< 5;
7270 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7271 encode_arm_shifter_operand (1);
7274 /* Transfer between coprocessor and ARM registers.
7275 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7280 No special properties. */
7287 Rd
= inst
.operands
[2].reg
;
7290 if (inst
.instruction
== 0xee000010
7291 || inst
.instruction
== 0xfe000010)
7293 reject_bad_reg (Rd
);
7296 constraint (Rd
== REG_SP
, BAD_SP
);
7301 if (inst
.instruction
== 0xe000010)
7302 constraint (Rd
== REG_PC
, BAD_PC
);
7306 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
7307 inst
.instruction
|= inst
.operands
[1].imm
<< 21;
7308 inst
.instruction
|= Rd
<< 12;
7309 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
7310 inst
.instruction
|= inst
.operands
[4].reg
;
7311 inst
.instruction
|= inst
.operands
[5].imm
<< 5;
7314 /* Transfer between coprocessor register and pair of ARM registers.
7315 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7320 Two XScale instructions are special cases of these:
7322 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7323 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7325 Result unpredictable if Rd or Rn is R15. */
7332 Rd
= inst
.operands
[2].reg
;
7333 Rn
= inst
.operands
[3].reg
;
7337 reject_bad_reg (Rd
);
7338 reject_bad_reg (Rn
);
7342 constraint (Rd
== REG_PC
, BAD_PC
);
7343 constraint (Rn
== REG_PC
, BAD_PC
);
7346 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
7347 inst
.instruction
|= inst
.operands
[1].imm
<< 4;
7348 inst
.instruction
|= Rd
<< 12;
7349 inst
.instruction
|= Rn
<< 16;
7350 inst
.instruction
|= inst
.operands
[4].reg
;
7356 inst
.instruction
|= inst
.operands
[0].imm
<< 6;
7357 if (inst
.operands
[1].present
)
7359 inst
.instruction
|= CPSI_MMOD
;
7360 inst
.instruction
|= inst
.operands
[1].imm
;
7367 inst
.instruction
|= inst
.operands
[0].imm
;
7373 /* There is no IT instruction in ARM mode. We
7374 process it to do the validation as if in
7375 thumb mode, just in case the code gets
7376 assembled for thumb using the unified syntax. */
7381 set_it_insn_type (IT_INSN
);
7382 now_it
.mask
= (inst
.instruction
& 0xf) | 0x10;
7383 now_it
.cc
= inst
.operands
[0].imm
;
7390 int base_reg
= inst
.operands
[0].reg
;
7391 int range
= inst
.operands
[1].imm
;
7393 inst
.instruction
|= base_reg
<< 16;
7394 inst
.instruction
|= range
;
7396 if (inst
.operands
[1].writeback
)
7397 inst
.instruction
|= LDM_TYPE_2_OR_3
;
7399 if (inst
.operands
[0].writeback
)
7401 inst
.instruction
|= WRITE_BACK
;
7402 /* Check for unpredictable uses of writeback. */
7403 if (inst
.instruction
& LOAD_BIT
)
7405 /* Not allowed in LDM type 2. */
7406 if ((inst
.instruction
& LDM_TYPE_2_OR_3
)
7407 && ((range
& (1 << REG_PC
)) == 0))
7408 as_warn (_("writeback of base register is UNPREDICTABLE"));
7409 /* Only allowed if base reg not in list for other types. */
7410 else if (range
& (1 << base_reg
))
7411 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7415 /* Not allowed for type 2. */
7416 if (inst
.instruction
& LDM_TYPE_2_OR_3
)
7417 as_warn (_("writeback of base register is UNPREDICTABLE"));
7418 /* Only allowed if base reg not in list, or first in list. */
7419 else if ((range
& (1 << base_reg
))
7420 && (range
& ((1 << base_reg
) - 1)))
7421 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7426 /* ARMv5TE load-consecutive (argument parse)
7435 constraint (inst
.operands
[0].reg
% 2 != 0,
7436 _("first destination register must be even"));
7437 constraint (inst
.operands
[1].present
7438 && inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
7439 _("can only load two consecutive registers"));
7440 constraint (inst
.operands
[0].reg
== REG_LR
, _("r14 not allowed here"));
7441 constraint (!inst
.operands
[2].isreg
, _("'[' expected"));
7443 if (!inst
.operands
[1].present
)
7444 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
7446 if (inst
.instruction
& LOAD_BIT
)
7448 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7449 register and the first register written; we have to diagnose
7450 overlap between the base and the second register written here. */
7452 if (inst
.operands
[2].reg
== inst
.operands
[1].reg
7453 && (inst
.operands
[2].writeback
|| inst
.operands
[2].postind
))
7454 as_warn (_("base register written back, and overlaps "
7455 "second destination register"));
7457 /* For an index-register load, the index register must not overlap the
7458 destination (even if not write-back). */
7459 else if (inst
.operands
[2].immisreg
7460 && ((unsigned) inst
.operands
[2].imm
== inst
.operands
[0].reg
7461 || (unsigned) inst
.operands
[2].imm
== inst
.operands
[1].reg
))
7462 as_warn (_("index register overlaps destination register"));
7465 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7466 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE
);
7472 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].preind
7473 || inst
.operands
[1].postind
|| inst
.operands
[1].writeback
7474 || inst
.operands
[1].immisreg
|| inst
.operands
[1].shifted
7475 || inst
.operands
[1].negative
7476 /* This can arise if the programmer has written
7478 or if they have mistakenly used a register name as the last
7481 It is very difficult to distinguish between these two cases
7482 because "rX" might actually be a label. ie the register
7483 name has been occluded by a symbol of the same name. So we
7484 just generate a general 'bad addressing mode' type error
7485 message and leave it up to the programmer to discover the
7486 true cause and fix their mistake. */
7487 || (inst
.operands
[1].reg
== REG_PC
),
7490 constraint (inst
.reloc
.exp
.X_op
!= O_constant
7491 || inst
.reloc
.exp
.X_add_number
!= 0,
7492 _("offset must be zero in ARM encoding"));
7494 constraint ((inst
.operands
[1].reg
== REG_PC
), BAD_PC
);
7496 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7497 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7498 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
7504 constraint (inst
.operands
[0].reg
% 2 != 0,
7505 _("even register required"));
7506 constraint (inst
.operands
[1].present
7507 && inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
7508 _("can only load two consecutive registers"));
7509 /* If op 1 were present and equal to PC, this function wouldn't
7510 have been called in the first place. */
7511 constraint (inst
.operands
[0].reg
== REG_LR
, _("r14 not allowed here"));
7513 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7514 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
7520 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7521 if (!inst
.operands
[1].isreg
)
7522 if (move_or_literal_pool (0, /*thumb_p=*/FALSE
, /*mode_3=*/FALSE
))
7524 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE
);
7530 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7532 if (inst
.operands
[1].preind
)
7534 constraint (inst
.reloc
.exp
.X_op
!= O_constant
7535 || inst
.reloc
.exp
.X_add_number
!= 0,
7536 _("this instruction requires a post-indexed address"));
7538 inst
.operands
[1].preind
= 0;
7539 inst
.operands
[1].postind
= 1;
7540 inst
.operands
[1].writeback
= 1;
7542 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7543 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE
);
7546 /* Halfword and signed-byte load/store operations. */
7551 constraint (inst
.operands
[0].reg
== REG_PC
, BAD_PC
);
7552 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7553 if (!inst
.operands
[1].isreg
)
7554 if (move_or_literal_pool (0, /*thumb_p=*/FALSE
, /*mode_3=*/TRUE
))
7556 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE
);
7562 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7564 if (inst
.operands
[1].preind
)
7566 constraint (inst
.reloc
.exp
.X_op
!= O_constant
7567 || inst
.reloc
.exp
.X_add_number
!= 0,
7568 _("this instruction requires a post-indexed address"));
7570 inst
.operands
[1].preind
= 0;
7571 inst
.operands
[1].postind
= 1;
7572 inst
.operands
[1].writeback
= 1;
7574 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7575 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE
);
7578 /* Co-processor register load/store.
7579 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7583 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
7584 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
7585 encode_arm_cp_address (2, TRUE
, TRUE
, 0);
7591 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7592 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
7593 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
)
7594 && !(inst
.instruction
& 0x00400000))
7595 as_tsktsk (_("Rd and Rm should be different in mla"));
7597 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7598 inst
.instruction
|= inst
.operands
[1].reg
;
7599 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
7600 inst
.instruction
|= inst
.operands
[3].reg
<< 12;
7606 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7607 encode_arm_shifter_operand (1);
7610 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7617 top
= (inst
.instruction
& 0x00400000) != 0;
7618 constraint (top
&& inst
.reloc
.type
== BFD_RELOC_ARM_MOVW
,
7619 _(":lower16: not allowed this instruction"));
7620 constraint (!top
&& inst
.reloc
.type
== BFD_RELOC_ARM_MOVT
,
7621 _(":upper16: not allowed instruction"));
7622 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7623 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
7625 imm
= inst
.reloc
.exp
.X_add_number
;
7626 /* The value is in two pieces: 0:11, 16:19. */
7627 inst
.instruction
|= (imm
& 0x00000fff);
7628 inst
.instruction
|= (imm
& 0x0000f000) << 4;
7632 static void do_vfp_nsyn_opcode (const char *);
7635 do_vfp_nsyn_mrs (void)
7637 if (inst
.operands
[0].isvec
)
7639 if (inst
.operands
[1].reg
!= 1)
7640 first_error (_("operand 1 must be FPSCR"));
7641 memset (&inst
.operands
[0], '\0', sizeof (inst
.operands
[0]));
7642 memset (&inst
.operands
[1], '\0', sizeof (inst
.operands
[1]));
7643 do_vfp_nsyn_opcode ("fmstat");
7645 else if (inst
.operands
[1].isvec
)
7646 do_vfp_nsyn_opcode ("fmrx");
7654 do_vfp_nsyn_msr (void)
7656 if (inst
.operands
[0].isvec
)
7657 do_vfp_nsyn_opcode ("fmxr");
7667 unsigned Rt
= inst
.operands
[0].reg
;
7669 if (thumb_mode
&& inst
.operands
[0].reg
== REG_SP
)
7671 inst
.error
= BAD_SP
;
7675 /* APSR_ sets isvec. All other refs to PC are illegal. */
7676 if (!inst
.operands
[0].isvec
&& inst
.operands
[0].reg
== REG_PC
)
7678 inst
.error
= BAD_PC
;
7682 if (inst
.operands
[1].reg
!= 1)
7683 first_error (_("operand 1 must be FPSCR"));
7685 inst
.instruction
|= (Rt
<< 12);
7691 unsigned Rt
= inst
.operands
[1].reg
;
7694 reject_bad_reg (Rt
);
7695 else if (Rt
== REG_PC
)
7697 inst
.error
= BAD_PC
;
7701 if (inst
.operands
[0].reg
!= 1)
7702 first_error (_("operand 0 must be FPSCR"));
7704 inst
.instruction
|= (Rt
<< 12);
7710 if (do_vfp_nsyn_mrs () == SUCCESS
)
7713 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7714 constraint ((inst
.operands
[1].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
))
7716 _("'CPSR' or 'SPSR' expected"));
7717 constraint (inst
.operands
[0].reg
== REG_PC
, BAD_PC
);
7718 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7719 inst
.instruction
|= (inst
.operands
[1].imm
& SPSR_BIT
);
7722 /* Two possible forms:
7723 "{C|S}PSR_<field>, Rm",
7724 "{C|S}PSR_f, #expression". */
7729 if (do_vfp_nsyn_msr () == SUCCESS
)
7732 inst
.instruction
|= inst
.operands
[0].imm
;
7733 if (inst
.operands
[1].isreg
)
7734 inst
.instruction
|= inst
.operands
[1].reg
;
7737 inst
.instruction
|= INST_IMMEDIATE
;
7738 inst
.reloc
.type
= BFD_RELOC_ARM_IMMEDIATE
;
7739 inst
.reloc
.pc_rel
= 0;
7746 constraint (inst
.operands
[2].reg
== REG_PC
, BAD_PC
);
7748 if (!inst
.operands
[2].present
)
7749 inst
.operands
[2].reg
= inst
.operands
[0].reg
;
7750 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7751 inst
.instruction
|= inst
.operands
[1].reg
;
7752 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
7754 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
7755 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
))
7756 as_tsktsk (_("Rd and Rm should be different in mul"));
7759 /* Long Multiply Parser
7760 UMULL RdLo, RdHi, Rm, Rs
7761 SMULL RdLo, RdHi, Rm, Rs
7762 UMLAL RdLo, RdHi, Rm, Rs
7763 SMLAL RdLo, RdHi, Rm, Rs. */
7768 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7769 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7770 inst
.instruction
|= inst
.operands
[2].reg
;
7771 inst
.instruction
|= inst
.operands
[3].reg
<< 8;
7773 /* rdhi and rdlo must be different. */
7774 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
)
7775 as_tsktsk (_("rdhi and rdlo must be different"));
7777 /* rdhi, rdlo and rm must all be different before armv6. */
7778 if ((inst
.operands
[0].reg
== inst
.operands
[2].reg
7779 || inst
.operands
[1].reg
== inst
.operands
[2].reg
)
7780 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
))
7781 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7787 if (inst
.operands
[0].present
7788 || ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6k
))
7790 /* Architectural NOP hints are CPSR sets with no bits selected. */
7791 inst
.instruction
&= 0xf0000000;
7792 inst
.instruction
|= 0x0320f000;
7793 if (inst
.operands
[0].present
)
7794 inst
.instruction
|= inst
.operands
[0].imm
;
7798 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7799 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7800 Condition defaults to COND_ALWAYS.
7801 Error if Rd, Rn or Rm are R15. */
7806 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7807 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7808 inst
.instruction
|= inst
.operands
[2].reg
;
7809 if (inst
.operands
[3].present
)
7810 encode_arm_shift (3);
7813 /* ARM V6 PKHTB (Argument Parse). */
7818 if (!inst
.operands
[3].present
)
7820 /* If the shift specifier is omitted, turn the instruction
7821 into pkhbt rd, rm, rn. */
7822 inst
.instruction
&= 0xfff00010;
7823 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7824 inst
.instruction
|= inst
.operands
[1].reg
;
7825 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
7829 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7830 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7831 inst
.instruction
|= inst
.operands
[2].reg
;
7832 encode_arm_shift (3);
7836 /* ARMv5TE: Preload-Cache
7840 Syntactically, like LDR with B=1, W=0, L=1. */
7845 constraint (!inst
.operands
[0].isreg
,
7846 _("'[' expected after PLD mnemonic"));
7847 constraint (inst
.operands
[0].postind
,
7848 _("post-indexed expression used in preload instruction"));
7849 constraint (inst
.operands
[0].writeback
,
7850 _("writeback used in preload instruction"));
7851 constraint (!inst
.operands
[0].preind
,
7852 _("unindexed addressing used in preload instruction"));
7853 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE
);
7856 /* ARMv7: PLI <addr_mode> */
7860 constraint (!inst
.operands
[0].isreg
,
7861 _("'[' expected after PLI mnemonic"));
7862 constraint (inst
.operands
[0].postind
,
7863 _("post-indexed expression used in preload instruction"));
7864 constraint (inst
.operands
[0].writeback
,
7865 _("writeback used in preload instruction"));
7866 constraint (!inst
.operands
[0].preind
,
7867 _("unindexed addressing used in preload instruction"));
7868 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE
);
7869 inst
.instruction
&= ~PRE_INDEX
;
7875 inst
.operands
[1] = inst
.operands
[0];
7876 memset (&inst
.operands
[0], 0, sizeof inst
.operands
[0]);
7877 inst
.operands
[0].isreg
= 1;
7878 inst
.operands
[0].writeback
= 1;
7879 inst
.operands
[0].reg
= REG_SP
;
7883 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7884 word at the specified address and the following word
7886 Unconditionally executed.
7887 Error if Rn is R15. */
7892 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7893 if (inst
.operands
[0].writeback
)
7894 inst
.instruction
|= WRITE_BACK
;
7897 /* ARM V6 ssat (argument parse). */
7902 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7903 inst
.instruction
|= (inst
.operands
[1].imm
- 1) << 16;
7904 inst
.instruction
|= inst
.operands
[2].reg
;
7906 if (inst
.operands
[3].present
)
7907 encode_arm_shift (3);
7910 /* ARM V6 usat (argument parse). */
7915 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7916 inst
.instruction
|= inst
.operands
[1].imm
<< 16;
7917 inst
.instruction
|= inst
.operands
[2].reg
;
7919 if (inst
.operands
[3].present
)
7920 encode_arm_shift (3);
7923 /* ARM V6 ssat16 (argument parse). */
7928 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7929 inst
.instruction
|= ((inst
.operands
[1].imm
- 1) << 16);
7930 inst
.instruction
|= inst
.operands
[2].reg
;
7936 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7937 inst
.instruction
|= inst
.operands
[1].imm
<< 16;
7938 inst
.instruction
|= inst
.operands
[2].reg
;
7941 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7942 preserving the other bits.
7944 setend <endian_specifier>, where <endian_specifier> is either
7950 if (inst
.operands
[0].imm
)
7951 inst
.instruction
|= 0x200;
7957 unsigned int Rm
= (inst
.operands
[1].present
7958 ? inst
.operands
[1].reg
7959 : inst
.operands
[0].reg
);
7961 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7962 inst
.instruction
|= Rm
;
7963 if (inst
.operands
[2].isreg
) /* Rd, {Rm,} Rs */
7965 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
7966 inst
.instruction
|= SHIFT_BY_REG
;
7969 inst
.reloc
.type
= BFD_RELOC_ARM_SHIFT_IMM
;
7975 inst
.reloc
.type
= BFD_RELOC_ARM_SMC
;
7976 inst
.reloc
.pc_rel
= 0;
7982 inst
.reloc
.type
= BFD_RELOC_ARM_SWI
;
7983 inst
.reloc
.pc_rel
= 0;
7986 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7987 SMLAxy{cond} Rd,Rm,Rs,Rn
7988 SMLAWy{cond} Rd,Rm,Rs,Rn
7989 Error if any register is R15. */
7994 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7995 inst
.instruction
|= inst
.operands
[1].reg
;
7996 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
7997 inst
.instruction
|= inst
.operands
[3].reg
<< 12;
8000 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8001 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8002 Error if any register is R15.
8003 Warning if Rdlo == Rdhi. */
8008 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8009 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8010 inst
.instruction
|= inst
.operands
[2].reg
;
8011 inst
.instruction
|= inst
.operands
[3].reg
<< 8;
8013 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
)
8014 as_tsktsk (_("rdhi and rdlo must be different"));
8017 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8018 SMULxy{cond} Rd,Rm,Rs
8019 Error if any register is R15. */
8024 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8025 inst
.instruction
|= inst
.operands
[1].reg
;
8026 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
8029 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8030 the same for both ARM and Thumb-2. */
8037 if (inst
.operands
[0].present
)
8039 reg
= inst
.operands
[0].reg
;
8040 constraint (reg
!= REG_SP
, _("SRS base register must be r13"));
8045 inst
.instruction
|= reg
<< 16;
8046 inst
.instruction
|= inst
.operands
[1].imm
;
8047 if (inst
.operands
[0].writeback
|| inst
.operands
[1].writeback
)
8048 inst
.instruction
|= WRITE_BACK
;
8051 /* ARM V6 strex (argument parse). */
8056 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
8057 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
8058 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
8059 || inst
.operands
[2].negative
8060 /* See comment in do_ldrex(). */
8061 || (inst
.operands
[2].reg
== REG_PC
),
8064 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
8065 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
8067 constraint (inst
.reloc
.exp
.X_op
!= O_constant
8068 || inst
.reloc
.exp
.X_add_number
!= 0,
8069 _("offset must be zero in ARM encoding"));
8071 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8072 inst
.instruction
|= inst
.operands
[1].reg
;
8073 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
8074 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
8080 constraint (inst
.operands
[1].reg
% 2 != 0,
8081 _("even register required"));
8082 constraint (inst
.operands
[2].present
8083 && inst
.operands
[2].reg
!= inst
.operands
[1].reg
+ 1,
8084 _("can only store two consecutive registers"));
8085 /* If op 2 were present and equal to PC, this function wouldn't
8086 have been called in the first place. */
8087 constraint (inst
.operands
[1].reg
== REG_LR
, _("r14 not allowed here"));
8089 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
8090 || inst
.operands
[0].reg
== inst
.operands
[1].reg
+ 1
8091 || inst
.operands
[0].reg
== inst
.operands
[3].reg
,
8094 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8095 inst
.instruction
|= inst
.operands
[1].reg
;
8096 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
8099 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8100 extends it to 32-bits, and adds the result to a value in another
8101 register. You can specify a rotation by 0, 8, 16, or 24 bits
8102 before extracting the 16-bit value.
8103 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8104 Condition defaults to COND_ALWAYS.
8105 Error if any register uses R15. */
8110 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8111 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8112 inst
.instruction
|= inst
.operands
[2].reg
;
8113 inst
.instruction
|= inst
.operands
[3].imm
<< 10;
8118 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8119 Condition defaults to COND_ALWAYS.
8120 Error if any register uses R15. */
8125 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8126 inst
.instruction
|= inst
.operands
[1].reg
;
8127 inst
.instruction
|= inst
.operands
[2].imm
<< 10;
8130 /* VFP instructions. In a logical order: SP variant first, monad
8131 before dyad, arithmetic then move then load/store. */
8134 do_vfp_sp_monadic (void)
8136 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
8137 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sm
);
8141 do_vfp_sp_dyadic (void)
8143 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
8144 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sn
);
8145 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Sm
);
8149 do_vfp_sp_compare_z (void)
8151 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
8155 do_vfp_dp_sp_cvt (void)
8157 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
8158 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sm
);
8162 do_vfp_sp_dp_cvt (void)
8164 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
8165 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dm
);
8169 do_vfp_reg_from_sp (void)
8171 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8172 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sn
);
8176 do_vfp_reg2_from_sp2 (void)
8178 constraint (inst
.operands
[2].imm
!= 2,
8179 _("only two consecutive VFP SP registers allowed here"));
8180 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8181 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8182 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Sm
);
8186 do_vfp_sp_from_reg (void)
8188 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sn
);
8189 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
8193 do_vfp_sp2_from_reg2 (void)
8195 constraint (inst
.operands
[0].imm
!= 2,
8196 _("only two consecutive VFP SP registers allowed here"));
8197 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sm
);
8198 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
8199 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
8203 do_vfp_sp_ldst (void)
8205 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
8206 encode_arm_cp_address (1, FALSE
, TRUE
, 0);
8210 do_vfp_dp_ldst (void)
8212 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
8213 encode_arm_cp_address (1, FALSE
, TRUE
, 0);
8218 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type
)
8220 if (inst
.operands
[0].writeback
)
8221 inst
.instruction
|= WRITE_BACK
;
8223 constraint (ldstm_type
!= VFP_LDSTMIA
,
8224 _("this addressing mode requires base-register writeback"));
8225 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8226 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sd
);
8227 inst
.instruction
|= inst
.operands
[1].imm
;
8231 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type
)
8235 if (inst
.operands
[0].writeback
)
8236 inst
.instruction
|= WRITE_BACK
;
8238 constraint (ldstm_type
!= VFP_LDSTMIA
&& ldstm_type
!= VFP_LDSTMIAX
,
8239 _("this addressing mode requires base-register writeback"));
8241 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8242 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
8244 count
= inst
.operands
[1].imm
<< 1;
8245 if (ldstm_type
== VFP_LDSTMIAX
|| ldstm_type
== VFP_LDSTMDBX
)
8248 inst
.instruction
|= count
;
8252 do_vfp_sp_ldstmia (void)
8254 vfp_sp_ldstm (VFP_LDSTMIA
);
8258 do_vfp_sp_ldstmdb (void)
8260 vfp_sp_ldstm (VFP_LDSTMDB
);
8264 do_vfp_dp_ldstmia (void)
8266 vfp_dp_ldstm (VFP_LDSTMIA
);
8270 do_vfp_dp_ldstmdb (void)
8272 vfp_dp_ldstm (VFP_LDSTMDB
);
8276 do_vfp_xp_ldstmia (void)
8278 vfp_dp_ldstm (VFP_LDSTMIAX
);
8282 do_vfp_xp_ldstmdb (void)
8284 vfp_dp_ldstm (VFP_LDSTMDBX
);
8288 do_vfp_dp_rd_rm (void)
8290 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
8291 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dm
);
8295 do_vfp_dp_rn_rd (void)
8297 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dn
);
8298 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
8302 do_vfp_dp_rd_rn (void)
8304 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
8305 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dn
);
8309 do_vfp_dp_rd_rn_rm (void)
8311 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
8312 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dn
);
8313 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Dm
);
8319 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
8323 do_vfp_dp_rm_rd_rn (void)
8325 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dm
);
8326 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
8327 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Dn
);
8330 /* VFPv3 instructions. */
8332 do_vfp_sp_const (void)
8334 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
8335 inst
.instruction
|= (inst
.operands
[1].imm
& 0xf0) << 12;
8336 inst
.instruction
|= (inst
.operands
[1].imm
& 0x0f);
8340 do_vfp_dp_const (void)
8342 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
8343 inst
.instruction
|= (inst
.operands
[1].imm
& 0xf0) << 12;
8344 inst
.instruction
|= (inst
.operands
[1].imm
& 0x0f);
8348 vfp_conv (int srcsize
)
8350 unsigned immbits
= srcsize
- inst
.operands
[1].imm
;
8351 inst
.instruction
|= (immbits
& 1) << 5;
8352 inst
.instruction
|= (immbits
>> 1);
8356 do_vfp_sp_conv_16 (void)
8358 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
8363 do_vfp_dp_conv_16 (void)
8365 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
8370 do_vfp_sp_conv_32 (void)
8372 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
8377 do_vfp_dp_conv_32 (void)
8379 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
8383 /* FPA instructions. Also in a logical order. */
8388 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8389 inst
.instruction
|= inst
.operands
[1].reg
;
8393 do_fpa_ldmstm (void)
8395 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8396 switch (inst
.operands
[1].imm
)
8398 case 1: inst
.instruction
|= CP_T_X
; break;
8399 case 2: inst
.instruction
|= CP_T_Y
; break;
8400 case 3: inst
.instruction
|= CP_T_Y
| CP_T_X
; break;
8405 if (inst
.instruction
& (PRE_INDEX
| INDEX_UP
))
8407 /* The instruction specified "ea" or "fd", so we can only accept
8408 [Rn]{!}. The instruction does not really support stacking or
8409 unstacking, so we have to emulate these by setting appropriate
8410 bits and offsets. */
8411 constraint (inst
.reloc
.exp
.X_op
!= O_constant
8412 || inst
.reloc
.exp
.X_add_number
!= 0,
8413 _("this instruction does not support indexing"));
8415 if ((inst
.instruction
& PRE_INDEX
) || inst
.operands
[2].writeback
)
8416 inst
.reloc
.exp
.X_add_number
= 12 * inst
.operands
[1].imm
;
8418 if (!(inst
.instruction
& INDEX_UP
))
8419 inst
.reloc
.exp
.X_add_number
= -inst
.reloc
.exp
.X_add_number
;
8421 if (!(inst
.instruction
& PRE_INDEX
) && inst
.operands
[2].writeback
)
8423 inst
.operands
[2].preind
= 0;
8424 inst
.operands
[2].postind
= 1;
8428 encode_arm_cp_address (2, TRUE
, TRUE
, 0);
8431 /* iWMMXt instructions: strictly in alphabetical order. */
8434 do_iwmmxt_tandorc (void)
8436 constraint (inst
.operands
[0].reg
!= REG_PC
, _("only r15 allowed here"));
8440 do_iwmmxt_textrc (void)
8442 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8443 inst
.instruction
|= inst
.operands
[1].imm
;
8447 do_iwmmxt_textrm (void)
8449 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8450 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8451 inst
.instruction
|= inst
.operands
[2].imm
;
8455 do_iwmmxt_tinsr (void)
8457 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8458 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
8459 inst
.instruction
|= inst
.operands
[2].imm
;
8463 do_iwmmxt_tmia (void)
8465 inst
.instruction
|= inst
.operands
[0].reg
<< 5;
8466 inst
.instruction
|= inst
.operands
[1].reg
;
8467 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
8471 do_iwmmxt_waligni (void)
8473 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8474 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8475 inst
.instruction
|= inst
.operands
[2].reg
;
8476 inst
.instruction
|= inst
.operands
[3].imm
<< 20;
8480 do_iwmmxt_wmerge (void)
8482 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8483 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8484 inst
.instruction
|= inst
.operands
[2].reg
;
8485 inst
.instruction
|= inst
.operands
[3].imm
<< 21;
8489 do_iwmmxt_wmov (void)
8491 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8492 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8493 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8494 inst
.instruction
|= inst
.operands
[1].reg
;
8498 do_iwmmxt_wldstbh (void)
8501 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8503 reloc
= BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
;
8505 reloc
= BFD_RELOC_ARM_CP_OFF_IMM_S2
;
8506 encode_arm_cp_address (1, TRUE
, FALSE
, reloc
);
8510 do_iwmmxt_wldstw (void)
8512 /* RIWR_RIWC clears .isreg for a control register. */
8513 if (!inst
.operands
[0].isreg
)
8515 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
8516 inst
.instruction
|= 0xf0000000;
8519 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8520 encode_arm_cp_address (1, TRUE
, TRUE
, 0);
8524 do_iwmmxt_wldstd (void)
8526 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8527 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
)
8528 && inst
.operands
[1].immisreg
)
8530 inst
.instruction
&= ~0x1a000ff;
8531 inst
.instruction
|= (0xf << 28);
8532 if (inst
.operands
[1].preind
)
8533 inst
.instruction
|= PRE_INDEX
;
8534 if (!inst
.operands
[1].negative
)
8535 inst
.instruction
|= INDEX_UP
;
8536 if (inst
.operands
[1].writeback
)
8537 inst
.instruction
|= WRITE_BACK
;
8538 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8539 inst
.instruction
|= inst
.reloc
.exp
.X_add_number
<< 4;
8540 inst
.instruction
|= inst
.operands
[1].imm
;
8543 encode_arm_cp_address (1, TRUE
, FALSE
, 0);
8547 do_iwmmxt_wshufh (void)
8549 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8550 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8551 inst
.instruction
|= ((inst
.operands
[2].imm
& 0xf0) << 16);
8552 inst
.instruction
|= (inst
.operands
[2].imm
& 0x0f);
8556 do_iwmmxt_wzero (void)
8558 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8559 inst
.instruction
|= inst
.operands
[0].reg
;
8560 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8561 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8565 do_iwmmxt_wrwrwr_or_imm5 (void)
8567 if (inst
.operands
[2].isreg
)
8570 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
),
8571 _("immediate operand requires iWMMXt2"));
8573 if (inst
.operands
[2].imm
== 0)
8575 switch ((inst
.instruction
>> 20) & 0xf)
8581 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8582 inst
.operands
[2].imm
= 16;
8583 inst
.instruction
= (inst
.instruction
& 0xff0fffff) | (0x7 << 20);
8589 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8590 inst
.operands
[2].imm
= 32;
8591 inst
.instruction
= (inst
.instruction
& 0xff0fffff) | (0xb << 20);
8598 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8600 wrn
= (inst
.instruction
>> 16) & 0xf;
8601 inst
.instruction
&= 0xff0fff0f;
8602 inst
.instruction
|= wrn
;
8603 /* Bail out here; the instruction is now assembled. */
8608 /* Map 32 -> 0, etc. */
8609 inst
.operands
[2].imm
&= 0x1f;
8610 inst
.instruction
|= (0xf << 28) | ((inst
.operands
[2].imm
& 0x10) << 4) | (inst
.operands
[2].imm
& 0xf);
8614 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8615 operations first, then control, shift, and load/store. */
8617 /* Insns like "foo X,Y,Z". */
8620 do_mav_triple (void)
8622 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8623 inst
.instruction
|= inst
.operands
[1].reg
;
8624 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
8627 /* Insns like "foo W,X,Y,Z".
8628 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
8633 inst
.instruction
|= inst
.operands
[0].reg
<< 5;
8634 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
8635 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
8636 inst
.instruction
|= inst
.operands
[3].reg
;
8639 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8643 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
8646 /* Maverick shift immediate instructions.
8647 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8648 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
8653 int imm
= inst
.operands
[2].imm
;
8655 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8656 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8658 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8659 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8660 Bit 4 should be 0. */
8661 imm
= (imm
& 0xf) | ((imm
& 0x70) << 1);
8663 inst
.instruction
|= imm
;
8666 /* XScale instructions. Also sorted arithmetic before move. */
8668 /* Xscale multiply-accumulate (argument parse)
8671 MIAxycc acc0,Rm,Rs. */
8676 inst
.instruction
|= inst
.operands
[1].reg
;
8677 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
8680 /* Xscale move-accumulator-register (argument parse)
8682 MARcc acc0,RdLo,RdHi. */
8687 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
8688 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
8691 /* Xscale move-register-accumulator (argument parse)
8693 MRAcc RdLo,RdHi,acc0. */
8698 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
, BAD_OVERLAP
);
8699 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8700 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8703 /* Encoding functions relevant only to Thumb. */
8705 /* inst.operands[i] is a shifted-register operand; encode
8706 it into inst.instruction in the format used by Thumb32. */
8709 encode_thumb32_shifted_operand (int i
)
8711 unsigned int value
= inst
.reloc
.exp
.X_add_number
;
8712 unsigned int shift
= inst
.operands
[i
].shift_kind
;
8714 constraint (inst
.operands
[i
].immisreg
,
8715 _("shift by register not allowed in thumb mode"));
8716 inst
.instruction
|= inst
.operands
[i
].reg
;
8717 if (shift
== SHIFT_RRX
)
8718 inst
.instruction
|= SHIFT_ROR
<< 4;
8721 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
8722 _("expression too complex"));
8724 constraint (value
> 32
8725 || (value
== 32 && (shift
== SHIFT_LSL
8726 || shift
== SHIFT_ROR
)),
8727 _("shift expression is too large"));
8731 else if (value
== 32)
8734 inst
.instruction
|= shift
<< 4;
8735 inst
.instruction
|= (value
& 0x1c) << 10;
8736 inst
.instruction
|= (value
& 0x03) << 6;
8741 /* inst.operands[i] was set up by parse_address. Encode it into a
8742 Thumb32 format load or store instruction. Reject forms that cannot
8743 be used with such instructions. If is_t is true, reject forms that
8744 cannot be used with a T instruction; if is_d is true, reject forms
8745 that cannot be used with a D instruction. If it is a store insn,
8749 encode_thumb32_addr_mode (int i
, bfd_boolean is_t
, bfd_boolean is_d
)
8751 const bfd_boolean is_pc
= (inst
.operands
[i
].reg
== REG_PC
);
8753 constraint (!inst
.operands
[i
].isreg
,
8754 _("Instruction does not support =N addresses"));
8756 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
8757 if (inst
.operands
[i
].immisreg
)
8759 constraint (is_pc
, BAD_PC_ADDRESSING
);
8760 constraint (is_t
|| is_d
, _("cannot use register index with this instruction"));
8761 constraint (inst
.operands
[i
].negative
,
8762 _("Thumb does not support negative register indexing"));
8763 constraint (inst
.operands
[i
].postind
,
8764 _("Thumb does not support register post-indexing"));
8765 constraint (inst
.operands
[i
].writeback
,
8766 _("Thumb does not support register indexing with writeback"));
8767 constraint (inst
.operands
[i
].shifted
&& inst
.operands
[i
].shift_kind
!= SHIFT_LSL
,
8768 _("Thumb supports only LSL in shifted register indexing"));
8770 inst
.instruction
|= inst
.operands
[i
].imm
;
8771 if (inst
.operands
[i
].shifted
)
8773 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
8774 _("expression too complex"));
8775 constraint (inst
.reloc
.exp
.X_add_number
< 0
8776 || inst
.reloc
.exp
.X_add_number
> 3,
8777 _("shift out of range"));
8778 inst
.instruction
|= inst
.reloc
.exp
.X_add_number
<< 4;
8780 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
8782 else if (inst
.operands
[i
].preind
)
8784 constraint (is_pc
&& inst
.operands
[i
].writeback
, BAD_PC_WRITEBACK
);
8785 constraint (is_t
&& inst
.operands
[i
].writeback
,
8786 _("cannot use writeback with this instruction"));
8787 constraint (is_pc
&& ((inst
.instruction
& THUMB2_LOAD_BIT
) == 0)
8788 && !inst
.reloc
.pc_rel
, BAD_PC_ADDRESSING
);
8792 inst
.instruction
|= 0x01000000;
8793 if (inst
.operands
[i
].writeback
)
8794 inst
.instruction
|= 0x00200000;
8798 inst
.instruction
|= 0x00000c00;
8799 if (inst
.operands
[i
].writeback
)
8800 inst
.instruction
|= 0x00000100;
8802 inst
.reloc
.type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
8804 else if (inst
.operands
[i
].postind
)
8806 gas_assert (inst
.operands
[i
].writeback
);
8807 constraint (is_pc
, _("cannot use post-indexing with PC-relative addressing"));
8808 constraint (is_t
, _("cannot use post-indexing with this instruction"));
8811 inst
.instruction
|= 0x00200000;
8813 inst
.instruction
|= 0x00000900;
8814 inst
.reloc
.type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
8816 else /* unindexed - only for coprocessor */
8817 inst
.error
= _("instruction does not accept unindexed addressing");
8820 /* Table of Thumb instructions which exist in both 16- and 32-bit
8821 encodings (the latter only in post-V6T2 cores). The index is the
8822 value used in the insns table below. When there is more than one
8823 possible 16-bit encoding for the instruction, this table always
8825 Also contains several pseudo-instructions used during relaxation. */
8826 #define T16_32_TAB \
8827 X(_adc, 4140, eb400000), \
8828 X(_adcs, 4140, eb500000), \
8829 X(_add, 1c00, eb000000), \
8830 X(_adds, 1c00, eb100000), \
8831 X(_addi, 0000, f1000000), \
8832 X(_addis, 0000, f1100000), \
8833 X(_add_pc,000f, f20f0000), \
8834 X(_add_sp,000d, f10d0000), \
8835 X(_adr, 000f, f20f0000), \
8836 X(_and, 4000, ea000000), \
8837 X(_ands, 4000, ea100000), \
8838 X(_asr, 1000, fa40f000), \
8839 X(_asrs, 1000, fa50f000), \
8840 X(_b, e000, f000b000), \
8841 X(_bcond, d000, f0008000), \
8842 X(_bic, 4380, ea200000), \
8843 X(_bics, 4380, ea300000), \
8844 X(_cmn, 42c0, eb100f00), \
8845 X(_cmp, 2800, ebb00f00), \
8846 X(_cpsie, b660, f3af8400), \
8847 X(_cpsid, b670, f3af8600), \
8848 X(_cpy, 4600, ea4f0000), \
8849 X(_dec_sp,80dd, f1ad0d00), \
8850 X(_eor, 4040, ea800000), \
8851 X(_eors, 4040, ea900000), \
8852 X(_inc_sp,00dd, f10d0d00), \
8853 X(_ldmia, c800, e8900000), \
8854 X(_ldr, 6800, f8500000), \
8855 X(_ldrb, 7800, f8100000), \
8856 X(_ldrh, 8800, f8300000), \
8857 X(_ldrsb, 5600, f9100000), \
8858 X(_ldrsh, 5e00, f9300000), \
8859 X(_ldr_pc,4800, f85f0000), \
8860 X(_ldr_pc2,4800, f85f0000), \
8861 X(_ldr_sp,9800, f85d0000), \
8862 X(_lsl, 0000, fa00f000), \
8863 X(_lsls, 0000, fa10f000), \
8864 X(_lsr, 0800, fa20f000), \
8865 X(_lsrs, 0800, fa30f000), \
8866 X(_mov, 2000, ea4f0000), \
8867 X(_movs, 2000, ea5f0000), \
8868 X(_mul, 4340, fb00f000), \
8869 X(_muls, 4340, ffffffff), /* no 32b muls */ \
8870 X(_mvn, 43c0, ea6f0000), \
8871 X(_mvns, 43c0, ea7f0000), \
8872 X(_neg, 4240, f1c00000), /* rsb #0 */ \
8873 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
8874 X(_orr, 4300, ea400000), \
8875 X(_orrs, 4300, ea500000), \
8876 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8877 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
8878 X(_rev, ba00, fa90f080), \
8879 X(_rev16, ba40, fa90f090), \
8880 X(_revsh, bac0, fa90f0b0), \
8881 X(_ror, 41c0, fa60f000), \
8882 X(_rors, 41c0, fa70f000), \
8883 X(_sbc, 4180, eb600000), \
8884 X(_sbcs, 4180, eb700000), \
8885 X(_stmia, c000, e8800000), \
8886 X(_str, 6000, f8400000), \
8887 X(_strb, 7000, f8000000), \
8888 X(_strh, 8000, f8200000), \
8889 X(_str_sp,9000, f84d0000), \
8890 X(_sub, 1e00, eba00000), \
8891 X(_subs, 1e00, ebb00000), \
8892 X(_subi, 8000, f1a00000), \
8893 X(_subis, 8000, f1b00000), \
8894 X(_sxtb, b240, fa4ff080), \
8895 X(_sxth, b200, fa0ff080), \
8896 X(_tst, 4200, ea100f00), \
8897 X(_uxtb, b2c0, fa5ff080), \
8898 X(_uxth, b280, fa1ff080), \
8899 X(_nop, bf00, f3af8000), \
8900 X(_yield, bf10, f3af8001), \
8901 X(_wfe, bf20, f3af8002), \
8902 X(_wfi, bf30, f3af8003), \
8903 X(_sev, bf40, f3af8004),
8905 /* To catch errors in encoding functions, the codes are all offset by
8906 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8907 as 16-bit instructions. */
8908 #define X(a,b,c) T_MNEM##a
8909 enum t16_32_codes
{ T16_32_OFFSET
= 0xF7FF, T16_32_TAB
};
8912 #define X(a,b,c) 0x##b
8913 static const unsigned short thumb_op16
[] = { T16_32_TAB
};
8914 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8917 #define X(a,b,c) 0x##c
8918 static const unsigned int thumb_op32
[] = { T16_32_TAB
};
8919 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8920 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8924 /* Thumb instruction encoders, in alphabetical order. */
8929 do_t_add_sub_w (void)
8933 Rd
= inst
.operands
[0].reg
;
8934 Rn
= inst
.operands
[1].reg
;
8936 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
8937 is the SP-{plus,minus}-immediate form of the instruction. */
8939 constraint (Rd
== REG_PC
, BAD_PC
);
8941 reject_bad_reg (Rd
);
8943 inst
.instruction
|= (Rn
<< 16) | (Rd
<< 8);
8944 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMM12
;
8947 /* Parse an add or subtract instruction. We get here with inst.instruction
8948 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8955 Rd
= inst
.operands
[0].reg
;
8956 Rs
= (inst
.operands
[1].present
8957 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
8958 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
8961 set_it_insn_type_last ();
8969 flags
= (inst
.instruction
== T_MNEM_adds
8970 || inst
.instruction
== T_MNEM_subs
);
8972 narrow
= !in_it_block ();
8974 narrow
= in_it_block ();
8975 if (!inst
.operands
[2].isreg
)
8979 constraint (Rd
== REG_SP
&& Rs
!= REG_SP
, BAD_SP
);
8981 add
= (inst
.instruction
== T_MNEM_add
8982 || inst
.instruction
== T_MNEM_adds
);
8984 if (inst
.size_req
!= 4)
8986 /* Attempt to use a narrow opcode, with relaxation if
8988 if (Rd
== REG_SP
&& Rs
== REG_SP
&& !flags
)
8989 opcode
= add
? T_MNEM_inc_sp
: T_MNEM_dec_sp
;
8990 else if (Rd
<= 7 && Rs
== REG_SP
&& add
&& !flags
)
8991 opcode
= T_MNEM_add_sp
;
8992 else if (Rd
<= 7 && Rs
== REG_PC
&& add
&& !flags
)
8993 opcode
= T_MNEM_add_pc
;
8994 else if (Rd
<= 7 && Rs
<= 7 && narrow
)
8997 opcode
= add
? T_MNEM_addis
: T_MNEM_subis
;
8999 opcode
= add
? T_MNEM_addi
: T_MNEM_subi
;
9003 inst
.instruction
= THUMB_OP16(opcode
);
9004 inst
.instruction
|= (Rd
<< 4) | Rs
;
9005 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_ADD
;
9006 if (inst
.size_req
!= 2)
9007 inst
.relax
= opcode
;
9010 constraint (inst
.size_req
== 2, BAD_HIREG
);
9012 if (inst
.size_req
== 4
9013 || (inst
.size_req
!= 2 && !opcode
))
9017 constraint (add
, BAD_PC
);
9018 constraint (Rs
!= REG_LR
|| inst
.instruction
!= T_MNEM_subs
,
9019 _("only SUBS PC, LR, #const allowed"));
9020 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
9021 _("expression too complex"));
9022 constraint (inst
.reloc
.exp
.X_add_number
< 0
9023 || inst
.reloc
.exp
.X_add_number
> 0xff,
9024 _("immediate value out of range"));
9025 inst
.instruction
= T2_SUBS_PC_LR
9026 | inst
.reloc
.exp
.X_add_number
;
9027 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
9030 else if (Rs
== REG_PC
)
9032 /* Always use addw/subw. */
9033 inst
.instruction
= add
? 0xf20f0000 : 0xf2af0000;
9034 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMM12
;
9038 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9039 inst
.instruction
= (inst
.instruction
& 0xe1ffffff)
9042 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
9044 inst
.reloc
.type
= BFD_RELOC_ARM_T32_ADD_IMM
;
9046 inst
.instruction
|= Rd
<< 8;
9047 inst
.instruction
|= Rs
<< 16;
9052 Rn
= inst
.operands
[2].reg
;
9053 /* See if we can do this with a 16-bit instruction. */
9054 if (!inst
.operands
[2].shifted
&& inst
.size_req
!= 4)
9056 if (Rd
> 7 || Rs
> 7 || Rn
> 7)
9061 inst
.instruction
= ((inst
.instruction
== T_MNEM_adds
9062 || inst
.instruction
== T_MNEM_add
)
9065 inst
.instruction
|= Rd
| (Rs
<< 3) | (Rn
<< 6);
9069 if (inst
.instruction
== T_MNEM_add
&& (Rd
== Rs
|| Rd
== Rn
))
9071 /* Thumb-1 cores (except v6-M) require at least one high
9072 register in a narrow non flag setting add. */
9073 if (Rd
> 7 || Rn
> 7
9074 || ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6t2
)
9075 || ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_msr
))
9082 inst
.instruction
= T_OPCODE_ADD_HI
;
9083 inst
.instruction
|= (Rd
& 8) << 4;
9084 inst
.instruction
|= (Rd
& 7);
9085 inst
.instruction
|= Rn
<< 3;
9091 constraint (Rd
== REG_PC
, BAD_PC
);
9092 constraint (Rd
== REG_SP
&& Rs
!= REG_SP
, BAD_SP
);
9093 constraint (Rs
== REG_PC
, BAD_PC
);
9094 reject_bad_reg (Rn
);
9096 /* If we get here, it can't be done in 16 bits. */
9097 constraint (inst
.operands
[2].shifted
&& inst
.operands
[2].immisreg
,
9098 _("shift must be constant"));
9099 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9100 inst
.instruction
|= Rd
<< 8;
9101 inst
.instruction
|= Rs
<< 16;
9102 encode_thumb32_shifted_operand (2);
9107 constraint (inst
.instruction
== T_MNEM_adds
9108 || inst
.instruction
== T_MNEM_subs
,
9111 if (!inst
.operands
[2].isreg
) /* Rd, Rs, #imm */
9113 constraint ((Rd
> 7 && (Rd
!= REG_SP
|| Rs
!= REG_SP
))
9114 || (Rs
> 7 && Rs
!= REG_SP
&& Rs
!= REG_PC
),
9117 inst
.instruction
= (inst
.instruction
== T_MNEM_add
9119 inst
.instruction
|= (Rd
<< 4) | Rs
;
9120 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_ADD
;
9124 Rn
= inst
.operands
[2].reg
;
9125 constraint (inst
.operands
[2].shifted
, _("unshifted register required"));
9127 /* We now have Rd, Rs, and Rn set to registers. */
9128 if (Rd
> 7 || Rs
> 7 || Rn
> 7)
9130 /* Can't do this for SUB. */
9131 constraint (inst
.instruction
== T_MNEM_sub
, BAD_HIREG
);
9132 inst
.instruction
= T_OPCODE_ADD_HI
;
9133 inst
.instruction
|= (Rd
& 8) << 4;
9134 inst
.instruction
|= (Rd
& 7);
9136 inst
.instruction
|= Rn
<< 3;
9138 inst
.instruction
|= Rs
<< 3;
9140 constraint (1, _("dest must overlap one source register"));
9144 inst
.instruction
= (inst
.instruction
== T_MNEM_add
9145 ? T_OPCODE_ADD_R3
: T_OPCODE_SUB_R3
);
9146 inst
.instruction
|= Rd
| (Rs
<< 3) | (Rn
<< 6);
9156 Rd
= inst
.operands
[0].reg
;
9157 reject_bad_reg (Rd
);
9159 if (unified_syntax
&& inst
.size_req
== 0 && Rd
<= 7)
9161 /* Defer to section relaxation. */
9162 inst
.relax
= inst
.instruction
;
9163 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9164 inst
.instruction
|= Rd
<< 4;
9166 else if (unified_syntax
&& inst
.size_req
!= 2)
9168 /* Generate a 32-bit opcode. */
9169 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9170 inst
.instruction
|= Rd
<< 8;
9171 inst
.reloc
.type
= BFD_RELOC_ARM_T32_ADD_PC12
;
9172 inst
.reloc
.pc_rel
= 1;
9176 /* Generate a 16-bit opcode. */
9177 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9178 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_ADD
;
9179 inst
.reloc
.exp
.X_add_number
-= 4; /* PC relative adjust. */
9180 inst
.reloc
.pc_rel
= 1;
9182 inst
.instruction
|= Rd
<< 4;
9186 /* Arithmetic instructions for which there is just one 16-bit
9187 instruction encoding, and it allows only two low registers.
9188 For maximal compatibility with ARM syntax, we allow three register
9189 operands even when Thumb-32 instructions are not available, as long
9190 as the first two are identical. For instance, both "sbc r0,r1" and
9191 "sbc r0,r0,r1" are allowed. */
9197 Rd
= inst
.operands
[0].reg
;
9198 Rs
= (inst
.operands
[1].present
9199 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
9200 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
9201 Rn
= inst
.operands
[2].reg
;
9203 reject_bad_reg (Rd
);
9204 reject_bad_reg (Rs
);
9205 if (inst
.operands
[2].isreg
)
9206 reject_bad_reg (Rn
);
9210 if (!inst
.operands
[2].isreg
)
9212 /* For an immediate, we always generate a 32-bit opcode;
9213 section relaxation will shrink it later if possible. */
9214 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9215 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
9216 inst
.instruction
|= Rd
<< 8;
9217 inst
.instruction
|= Rs
<< 16;
9218 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
9224 /* See if we can do this with a 16-bit instruction. */
9225 if (THUMB_SETS_FLAGS (inst
.instruction
))
9226 narrow
= !in_it_block ();
9228 narrow
= in_it_block ();
9230 if (Rd
> 7 || Rn
> 7 || Rs
> 7)
9232 if (inst
.operands
[2].shifted
)
9234 if (inst
.size_req
== 4)
9240 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9241 inst
.instruction
|= Rd
;
9242 inst
.instruction
|= Rn
<< 3;
9246 /* If we get here, it can't be done in 16 bits. */
9247 constraint (inst
.operands
[2].shifted
9248 && inst
.operands
[2].immisreg
,
9249 _("shift must be constant"));
9250 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9251 inst
.instruction
|= Rd
<< 8;
9252 inst
.instruction
|= Rs
<< 16;
9253 encode_thumb32_shifted_operand (2);
9258 /* On its face this is a lie - the instruction does set the
9259 flags. However, the only supported mnemonic in this mode
9261 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
9263 constraint (!inst
.operands
[2].isreg
|| inst
.operands
[2].shifted
,
9264 _("unshifted register required"));
9265 constraint (Rd
> 7 || Rs
> 7 || Rn
> 7, BAD_HIREG
);
9266 constraint (Rd
!= Rs
,
9267 _("dest and source1 must be the same register"));
9269 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9270 inst
.instruction
|= Rd
;
9271 inst
.instruction
|= Rn
<< 3;
9275 /* Similarly, but for instructions where the arithmetic operation is
9276 commutative, so we can allow either of them to be different from
9277 the destination operand in a 16-bit instruction. For instance, all
9278 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9285 Rd
= inst
.operands
[0].reg
;
9286 Rs
= (inst
.operands
[1].present
9287 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
9288 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
9289 Rn
= inst
.operands
[2].reg
;
9291 reject_bad_reg (Rd
);
9292 reject_bad_reg (Rs
);
9293 if (inst
.operands
[2].isreg
)
9294 reject_bad_reg (Rn
);
9298 if (!inst
.operands
[2].isreg
)
9300 /* For an immediate, we always generate a 32-bit opcode;
9301 section relaxation will shrink it later if possible. */
9302 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9303 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
9304 inst
.instruction
|= Rd
<< 8;
9305 inst
.instruction
|= Rs
<< 16;
9306 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
9312 /* See if we can do this with a 16-bit instruction. */
9313 if (THUMB_SETS_FLAGS (inst
.instruction
))
9314 narrow
= !in_it_block ();
9316 narrow
= in_it_block ();
9318 if (Rd
> 7 || Rn
> 7 || Rs
> 7)
9320 if (inst
.operands
[2].shifted
)
9322 if (inst
.size_req
== 4)
9329 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9330 inst
.instruction
|= Rd
;
9331 inst
.instruction
|= Rn
<< 3;
9336 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9337 inst
.instruction
|= Rd
;
9338 inst
.instruction
|= Rs
<< 3;
9343 /* If we get here, it can't be done in 16 bits. */
9344 constraint (inst
.operands
[2].shifted
9345 && inst
.operands
[2].immisreg
,
9346 _("shift must be constant"));
9347 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9348 inst
.instruction
|= Rd
<< 8;
9349 inst
.instruction
|= Rs
<< 16;
9350 encode_thumb32_shifted_operand (2);
9355 /* On its face this is a lie - the instruction does set the
9356 flags. However, the only supported mnemonic in this mode
9358 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
9360 constraint (!inst
.operands
[2].isreg
|| inst
.operands
[2].shifted
,
9361 _("unshifted register required"));
9362 constraint (Rd
> 7 || Rs
> 7 || Rn
> 7, BAD_HIREG
);
9364 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9365 inst
.instruction
|= Rd
;
9368 inst
.instruction
|= Rn
<< 3;
9370 inst
.instruction
|= Rs
<< 3;
9372 constraint (1, _("dest must overlap one source register"));
9379 if (inst
.operands
[0].present
)
9381 constraint ((inst
.instruction
& 0xf0) != 0x40
9382 && inst
.operands
[0].imm
!= 0xf,
9383 _("bad barrier type"));
9384 inst
.instruction
|= inst
.operands
[0].imm
;
9387 inst
.instruction
|= 0xf;
9394 unsigned int msb
= inst
.operands
[1].imm
+ inst
.operands
[2].imm
;
9395 constraint (msb
> 32, _("bit-field extends past end of register"));
9396 /* The instruction encoding stores the LSB and MSB,
9397 not the LSB and width. */
9398 Rd
= inst
.operands
[0].reg
;
9399 reject_bad_reg (Rd
);
9400 inst
.instruction
|= Rd
<< 8;
9401 inst
.instruction
|= (inst
.operands
[1].imm
& 0x1c) << 10;
9402 inst
.instruction
|= (inst
.operands
[1].imm
& 0x03) << 6;
9403 inst
.instruction
|= msb
- 1;
9412 Rd
= inst
.operands
[0].reg
;
9413 reject_bad_reg (Rd
);
9415 /* #0 in second position is alternative syntax for bfc, which is
9416 the same instruction but with REG_PC in the Rm field. */
9417 if (!inst
.operands
[1].isreg
)
9421 Rn
= inst
.operands
[1].reg
;
9422 reject_bad_reg (Rn
);
9425 msb
= inst
.operands
[2].imm
+ inst
.operands
[3].imm
;
9426 constraint (msb
> 32, _("bit-field extends past end of register"));
9427 /* The instruction encoding stores the LSB and MSB,
9428 not the LSB and width. */
9429 inst
.instruction
|= Rd
<< 8;
9430 inst
.instruction
|= Rn
<< 16;
9431 inst
.instruction
|= (inst
.operands
[2].imm
& 0x1c) << 10;
9432 inst
.instruction
|= (inst
.operands
[2].imm
& 0x03) << 6;
9433 inst
.instruction
|= msb
- 1;
9441 Rd
= inst
.operands
[0].reg
;
9442 Rn
= inst
.operands
[1].reg
;
9444 reject_bad_reg (Rd
);
9445 reject_bad_reg (Rn
);
9447 constraint (inst
.operands
[2].imm
+ inst
.operands
[3].imm
> 32,
9448 _("bit-field extends past end of register"));
9449 inst
.instruction
|= Rd
<< 8;
9450 inst
.instruction
|= Rn
<< 16;
9451 inst
.instruction
|= (inst
.operands
[2].imm
& 0x1c) << 10;
9452 inst
.instruction
|= (inst
.operands
[2].imm
& 0x03) << 6;
9453 inst
.instruction
|= inst
.operands
[3].imm
- 1;
9456 /* ARM V5 Thumb BLX (argument parse)
9457 BLX <target_addr> which is BLX(1)
9458 BLX <Rm> which is BLX(2)
9459 Unfortunately, there are two different opcodes for this mnemonic.
9460 So, the insns[].value is not used, and the code here zaps values
9461 into inst.instruction.
9463 ??? How to take advantage of the additional two bits of displacement
9464 available in Thumb32 mode? Need new relocation? */
9469 set_it_insn_type_last ();
9471 if (inst
.operands
[0].isreg
)
9473 constraint (inst
.operands
[0].reg
== REG_PC
, BAD_PC
);
9474 /* We have a register, so this is BLX(2). */
9475 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
9479 /* No register. This must be BLX(1). */
9480 inst
.instruction
= 0xf000e800;
9481 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BLX
;
9482 inst
.reloc
.pc_rel
= 1;
9493 set_it_insn_type (IF_INSIDE_IT_LAST_INSN
);
9497 /* Conditional branches inside IT blocks are encoded as unconditional
9504 if (cond
!= COND_ALWAYS
)
9505 opcode
= T_MNEM_bcond
;
9507 opcode
= inst
.instruction
;
9509 if (unified_syntax
&& inst
.size_req
== 4)
9511 inst
.instruction
= THUMB_OP32(opcode
);
9512 if (cond
== COND_ALWAYS
)
9513 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BRANCH25
;
9516 gas_assert (cond
!= 0xF);
9517 inst
.instruction
|= cond
<< 22;
9518 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BRANCH20
;
9523 inst
.instruction
= THUMB_OP16(opcode
);
9524 if (cond
== COND_ALWAYS
)
9525 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BRANCH12
;
9528 inst
.instruction
|= cond
<< 8;
9529 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BRANCH9
;
9531 /* Allow section relaxation. */
9532 if (unified_syntax
&& inst
.size_req
!= 2)
9533 inst
.relax
= opcode
;
9536 inst
.reloc
.pc_rel
= 1;
9542 constraint (inst
.cond
!= COND_ALWAYS
,
9543 _("instruction is always unconditional"));
9544 if (inst
.operands
[0].present
)
9546 constraint (inst
.operands
[0].imm
> 255,
9547 _("immediate value out of range"));
9548 inst
.instruction
|= inst
.operands
[0].imm
;
9549 set_it_insn_type (NEUTRAL_IT_INSN
);
9554 do_t_branch23 (void)
9556 set_it_insn_type_last ();
9557 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
9558 inst
.reloc
.pc_rel
= 1;
9560 #if defined(OBJ_COFF)
9561 /* If the destination of the branch is a defined symbol which does not have
9562 the THUMB_FUNC attribute, then we must be calling a function which has
9563 the (interfacearm) attribute. We look for the Thumb entry point to that
9564 function and change the branch to refer to that function instead. */
9565 if ( inst
.reloc
.exp
.X_op
== O_symbol
9566 && inst
.reloc
.exp
.X_add_symbol
!= NULL
9567 && S_IS_DEFINED (inst
.reloc
.exp
.X_add_symbol
)
9568 && ! THUMB_IS_FUNC (inst
.reloc
.exp
.X_add_symbol
))
9569 inst
.reloc
.exp
.X_add_symbol
=
9570 find_real_start (inst
.reloc
.exp
.X_add_symbol
);
9577 set_it_insn_type_last ();
9578 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
9579 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9580 should cause the alignment to be checked once it is known. This is
9581 because BX PC only works if the instruction is word aligned. */
9589 set_it_insn_type_last ();
9590 Rm
= inst
.operands
[0].reg
;
9591 reject_bad_reg (Rm
);
9592 inst
.instruction
|= Rm
<< 16;
9601 Rd
= inst
.operands
[0].reg
;
9602 Rm
= inst
.operands
[1].reg
;
9604 reject_bad_reg (Rd
);
9605 reject_bad_reg (Rm
);
9607 inst
.instruction
|= Rd
<< 8;
9608 inst
.instruction
|= Rm
<< 16;
9609 inst
.instruction
|= Rm
;
9615 set_it_insn_type (OUTSIDE_IT_INSN
);
9616 inst
.instruction
|= inst
.operands
[0].imm
;
9622 set_it_insn_type (OUTSIDE_IT_INSN
);
9624 && (inst
.operands
[1].present
|| inst
.size_req
== 4)
9625 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6_notm
))
9627 unsigned int imod
= (inst
.instruction
& 0x0030) >> 4;
9628 inst
.instruction
= 0xf3af8000;
9629 inst
.instruction
|= imod
<< 9;
9630 inst
.instruction
|= inst
.operands
[0].imm
<< 5;
9631 if (inst
.operands
[1].present
)
9632 inst
.instruction
|= 0x100 | inst
.operands
[1].imm
;
9636 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
)
9637 && (inst
.operands
[0].imm
& 4),
9638 _("selected processor does not support 'A' form "
9639 "of this instruction"));
9640 constraint (inst
.operands
[1].present
|| inst
.size_req
== 4,
9641 _("Thumb does not support the 2-argument "
9642 "form of this instruction"));
9643 inst
.instruction
|= inst
.operands
[0].imm
;
9647 /* THUMB CPY instruction (argument parse). */
9652 if (inst
.size_req
== 4)
9654 inst
.instruction
= THUMB_OP32 (T_MNEM_mov
);
9655 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9656 inst
.instruction
|= inst
.operands
[1].reg
;
9660 inst
.instruction
|= (inst
.operands
[0].reg
& 0x8) << 4;
9661 inst
.instruction
|= (inst
.operands
[0].reg
& 0x7);
9662 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9669 set_it_insn_type (OUTSIDE_IT_INSN
);
9670 constraint (inst
.operands
[0].reg
> 7, BAD_HIREG
);
9671 inst
.instruction
|= inst
.operands
[0].reg
;
9672 inst
.reloc
.pc_rel
= 1;
9673 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BRANCH7
;
9679 inst
.instruction
|= inst
.operands
[0].imm
;
9685 unsigned Rd
, Rn
, Rm
;
9687 Rd
= inst
.operands
[0].reg
;
9688 Rn
= (inst
.operands
[1].present
9689 ? inst
.operands
[1].reg
: Rd
);
9690 Rm
= inst
.operands
[2].reg
;
9692 reject_bad_reg (Rd
);
9693 reject_bad_reg (Rn
);
9694 reject_bad_reg (Rm
);
9696 inst
.instruction
|= Rd
<< 8;
9697 inst
.instruction
|= Rn
<< 16;
9698 inst
.instruction
|= Rm
;
9704 if (unified_syntax
&& inst
.size_req
== 4)
9705 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9707 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9713 unsigned int cond
= inst
.operands
[0].imm
;
9715 set_it_insn_type (IT_INSN
);
9716 now_it
.mask
= (inst
.instruction
& 0xf) | 0x10;
9719 /* If the condition is a negative condition, invert the mask. */
9720 if ((cond
& 0x1) == 0x0)
9722 unsigned int mask
= inst
.instruction
& 0x000f;
9724 if ((mask
& 0x7) == 0)
9725 /* no conversion needed */;
9726 else if ((mask
& 0x3) == 0)
9728 else if ((mask
& 0x1) == 0)
9733 inst
.instruction
&= 0xfff0;
9734 inst
.instruction
|= mask
;
9737 inst
.instruction
|= cond
<< 4;
9740 /* Helper function used for both push/pop and ldm/stm. */
9742 encode_thumb2_ldmstm (int base
, unsigned mask
, bfd_boolean writeback
)
9746 load
= (inst
.instruction
& (1 << 20)) != 0;
9748 if (mask
& (1 << 13))
9749 inst
.error
= _("SP not allowed in register list");
9752 if (mask
& (1 << 15))
9754 if (mask
& (1 << 14))
9755 inst
.error
= _("LR and PC should not both be in register list");
9757 set_it_insn_type_last ();
9760 if ((mask
& (1 << base
)) != 0
9762 as_warn (_("base register should not be in register list "
9763 "when written back"));
9767 if (mask
& (1 << 15))
9768 inst
.error
= _("PC not allowed in register list");
9770 if (mask
& (1 << base
))
9771 as_warn (_("value stored for r%d is UNPREDICTABLE"), base
);
9774 if ((mask
& (mask
- 1)) == 0)
9776 /* Single register transfers implemented as str/ldr. */
9779 if (inst
.instruction
& (1 << 23))
9780 inst
.instruction
= 0x00000b04; /* ia! -> [base], #4 */
9782 inst
.instruction
= 0x00000d04; /* db! -> [base, #-4]! */
9786 if (inst
.instruction
& (1 << 23))
9787 inst
.instruction
= 0x00800000; /* ia -> [base] */
9789 inst
.instruction
= 0x00000c04; /* db -> [base, #-4] */
9792 inst
.instruction
|= 0xf8400000;
9794 inst
.instruction
|= 0x00100000;
9796 mask
= ffs (mask
) - 1;
9800 inst
.instruction
|= WRITE_BACK
;
9802 inst
.instruction
|= mask
;
9803 inst
.instruction
|= base
<< 16;
9809 /* This really doesn't seem worth it. */
9810 constraint (inst
.reloc
.type
!= BFD_RELOC_UNUSED
,
9811 _("expression too complex"));
9812 constraint (inst
.operands
[1].writeback
,
9813 _("Thumb load/store multiple does not support {reglist}^"));
9821 /* See if we can use a 16-bit instruction. */
9822 if (inst
.instruction
< 0xffff /* not ldmdb/stmdb */
9823 && inst
.size_req
!= 4
9824 && !(inst
.operands
[1].imm
& ~0xff))
9826 mask
= 1 << inst
.operands
[0].reg
;
9828 if (inst
.operands
[0].reg
<= 7
9829 && (inst
.instruction
== T_MNEM_stmia
9830 ? inst
.operands
[0].writeback
9831 : (inst
.operands
[0].writeback
9832 == !(inst
.operands
[1].imm
& mask
))))
9834 if (inst
.instruction
== T_MNEM_stmia
9835 && (inst
.operands
[1].imm
& mask
)
9836 && (inst
.operands
[1].imm
& (mask
- 1)))
9837 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9838 inst
.operands
[0].reg
);
9840 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9841 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9842 inst
.instruction
|= inst
.operands
[1].imm
;
9845 else if (inst
.operands
[0] .reg
== REG_SP
9846 && inst
.operands
[0].writeback
)
9848 inst
.instruction
= THUMB_OP16 (inst
.instruction
== T_MNEM_stmia
9849 ? T_MNEM_push
: T_MNEM_pop
);
9850 inst
.instruction
|= inst
.operands
[1].imm
;
9857 if (inst
.instruction
< 0xffff)
9858 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9860 encode_thumb2_ldmstm (inst
.operands
[0].reg
, inst
.operands
[1].imm
,
9861 inst
.operands
[0].writeback
);
9866 constraint (inst
.operands
[0].reg
> 7
9867 || (inst
.operands
[1].imm
& ~0xff), BAD_HIREG
);
9868 constraint (inst
.instruction
!= T_MNEM_ldmia
9869 && inst
.instruction
!= T_MNEM_stmia
,
9870 _("Thumb-2 instruction only valid in unified syntax"));
9871 if (inst
.instruction
== T_MNEM_stmia
)
9873 if (!inst
.operands
[0].writeback
)
9874 as_warn (_("this instruction will write back the base register"));
9875 if ((inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
))
9876 && (inst
.operands
[1].imm
& ((1 << inst
.operands
[0].reg
) - 1)))
9877 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9878 inst
.operands
[0].reg
);
9882 if (!inst
.operands
[0].writeback
9883 && !(inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
)))
9884 as_warn (_("this instruction will write back the base register"));
9885 else if (inst
.operands
[0].writeback
9886 && (inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
)))
9887 as_warn (_("this instruction will not write back the base register"));
9890 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9891 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
9892 inst
.instruction
|= inst
.operands
[1].imm
;
9899 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].preind
9900 || inst
.operands
[1].postind
|| inst
.operands
[1].writeback
9901 || inst
.operands
[1].immisreg
|| inst
.operands
[1].shifted
9902 || inst
.operands
[1].negative
,
9905 constraint ((inst
.operands
[1].reg
== REG_PC
), BAD_PC
);
9907 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9908 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9909 inst
.reloc
.type
= BFD_RELOC_ARM_T32_OFFSET_U8
;
9915 if (!inst
.operands
[1].present
)
9917 constraint (inst
.operands
[0].reg
== REG_LR
,
9918 _("r14 not allowed as first register "
9919 "when second register is omitted"));
9920 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
9922 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
,
9925 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9926 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
9927 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9933 unsigned long opcode
;
9936 if (inst
.operands
[0].isreg
9937 && !inst
.operands
[0].preind
9938 && inst
.operands
[0].reg
== REG_PC
)
9939 set_it_insn_type_last ();
9941 opcode
= inst
.instruction
;
9944 if (!inst
.operands
[1].isreg
)
9946 if (opcode
<= 0xffff)
9947 inst
.instruction
= THUMB_OP32 (opcode
);
9948 if (move_or_literal_pool (0, /*thumb_p=*/TRUE
, /*mode_3=*/FALSE
))
9951 if (inst
.operands
[1].isreg
9952 && !inst
.operands
[1].writeback
9953 && !inst
.operands
[1].shifted
&& !inst
.operands
[1].postind
9954 && !inst
.operands
[1].negative
&& inst
.operands
[0].reg
<= 7
9956 && inst
.size_req
!= 4)
9958 /* Insn may have a 16-bit form. */
9959 Rn
= inst
.operands
[1].reg
;
9960 if (inst
.operands
[1].immisreg
)
9962 inst
.instruction
= THUMB_OP16 (opcode
);
9964 if (Rn
<= 7 && inst
.operands
[1].imm
<= 7)
9966 else if (opcode
!= T_MNEM_ldr
&& opcode
!= T_MNEM_str
)
9967 reject_bad_reg (inst
.operands
[1].imm
);
9969 else if ((Rn
<= 7 && opcode
!= T_MNEM_ldrsh
9970 && opcode
!= T_MNEM_ldrsb
)
9971 || ((Rn
== REG_PC
|| Rn
== REG_SP
) && opcode
== T_MNEM_ldr
)
9972 || (Rn
== REG_SP
&& opcode
== T_MNEM_str
))
9979 if (inst
.reloc
.pc_rel
)
9980 opcode
= T_MNEM_ldr_pc2
;
9982 opcode
= T_MNEM_ldr_pc
;
9986 if (opcode
== T_MNEM_ldr
)
9987 opcode
= T_MNEM_ldr_sp
;
9989 opcode
= T_MNEM_str_sp
;
9991 inst
.instruction
= inst
.operands
[0].reg
<< 8;
9995 inst
.instruction
= inst
.operands
[0].reg
;
9996 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
9998 inst
.instruction
|= THUMB_OP16 (opcode
);
9999 if (inst
.size_req
== 2)
10000 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_OFFSET
;
10002 inst
.relax
= opcode
;
10006 /* Definitely a 32-bit variant. */
10008 /* Do some validations regarding addressing modes. */
10009 if (inst
.operands
[1].immisreg
&& opcode
!= T_MNEM_ldr
10010 && opcode
!= T_MNEM_str
)
10011 reject_bad_reg (inst
.operands
[1].imm
);
10013 inst
.instruction
= THUMB_OP32 (opcode
);
10014 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10015 encode_thumb32_addr_mode (1, /*is_t=*/FALSE
, /*is_d=*/FALSE
);
10019 constraint (inst
.operands
[0].reg
> 7, BAD_HIREG
);
10021 if (inst
.instruction
== T_MNEM_ldrsh
|| inst
.instruction
== T_MNEM_ldrsb
)
10023 /* Only [Rn,Rm] is acceptable. */
10024 constraint (inst
.operands
[1].reg
> 7 || inst
.operands
[1].imm
> 7, BAD_HIREG
);
10025 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].immisreg
10026 || inst
.operands
[1].postind
|| inst
.operands
[1].shifted
10027 || inst
.operands
[1].negative
,
10028 _("Thumb does not support this addressing mode"));
10029 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10033 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10034 if (!inst
.operands
[1].isreg
)
10035 if (move_or_literal_pool (0, /*thumb_p=*/TRUE
, /*mode_3=*/FALSE
))
10038 constraint (!inst
.operands
[1].preind
10039 || inst
.operands
[1].shifted
10040 || inst
.operands
[1].writeback
,
10041 _("Thumb does not support this addressing mode"));
10042 if (inst
.operands
[1].reg
== REG_PC
|| inst
.operands
[1].reg
== REG_SP
)
10044 constraint (inst
.instruction
& 0x0600,
10045 _("byte or halfword not valid for base register"));
10046 constraint (inst
.operands
[1].reg
== REG_PC
10047 && !(inst
.instruction
& THUMB_LOAD_BIT
),
10048 _("r15 based store not allowed"));
10049 constraint (inst
.operands
[1].immisreg
,
10050 _("invalid base register for register offset"));
10052 if (inst
.operands
[1].reg
== REG_PC
)
10053 inst
.instruction
= T_OPCODE_LDR_PC
;
10054 else if (inst
.instruction
& THUMB_LOAD_BIT
)
10055 inst
.instruction
= T_OPCODE_LDR_SP
;
10057 inst
.instruction
= T_OPCODE_STR_SP
;
10059 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
10060 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_OFFSET
;
10064 constraint (inst
.operands
[1].reg
> 7, BAD_HIREG
);
10065 if (!inst
.operands
[1].immisreg
)
10067 /* Immediate offset. */
10068 inst
.instruction
|= inst
.operands
[0].reg
;
10069 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
10070 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_OFFSET
;
10074 /* Register offset. */
10075 constraint (inst
.operands
[1].imm
> 7, BAD_HIREG
);
10076 constraint (inst
.operands
[1].negative
,
10077 _("Thumb does not support this addressing mode"));
10080 switch (inst
.instruction
)
10082 case T_OPCODE_STR_IW
: inst
.instruction
= T_OPCODE_STR_RW
; break;
10083 case T_OPCODE_STR_IH
: inst
.instruction
= T_OPCODE_STR_RH
; break;
10084 case T_OPCODE_STR_IB
: inst
.instruction
= T_OPCODE_STR_RB
; break;
10085 case T_OPCODE_LDR_IW
: inst
.instruction
= T_OPCODE_LDR_RW
; break;
10086 case T_OPCODE_LDR_IH
: inst
.instruction
= T_OPCODE_LDR_RH
; break;
10087 case T_OPCODE_LDR_IB
: inst
.instruction
= T_OPCODE_LDR_RB
; break;
10088 case 0x5600 /* ldrsb */:
10089 case 0x5e00 /* ldrsh */: break;
10093 inst
.instruction
|= inst
.operands
[0].reg
;
10094 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
10095 inst
.instruction
|= inst
.operands
[1].imm
<< 6;
10101 if (!inst
.operands
[1].present
)
10103 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
10104 constraint (inst
.operands
[0].reg
== REG_LR
,
10105 _("r14 not allowed here"));
10107 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10108 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
10109 encode_thumb32_addr_mode (2, /*is_t=*/FALSE
, /*is_d=*/TRUE
);
10115 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10116 encode_thumb32_addr_mode (1, /*is_t=*/TRUE
, /*is_d=*/FALSE
);
10122 unsigned Rd
, Rn
, Rm
, Ra
;
10124 Rd
= inst
.operands
[0].reg
;
10125 Rn
= inst
.operands
[1].reg
;
10126 Rm
= inst
.operands
[2].reg
;
10127 Ra
= inst
.operands
[3].reg
;
10129 reject_bad_reg (Rd
);
10130 reject_bad_reg (Rn
);
10131 reject_bad_reg (Rm
);
10132 reject_bad_reg (Ra
);
10134 inst
.instruction
|= Rd
<< 8;
10135 inst
.instruction
|= Rn
<< 16;
10136 inst
.instruction
|= Rm
;
10137 inst
.instruction
|= Ra
<< 12;
10143 unsigned RdLo
, RdHi
, Rn
, Rm
;
10145 RdLo
= inst
.operands
[0].reg
;
10146 RdHi
= inst
.operands
[1].reg
;
10147 Rn
= inst
.operands
[2].reg
;
10148 Rm
= inst
.operands
[3].reg
;
10150 reject_bad_reg (RdLo
);
10151 reject_bad_reg (RdHi
);
10152 reject_bad_reg (Rn
);
10153 reject_bad_reg (Rm
);
10155 inst
.instruction
|= RdLo
<< 12;
10156 inst
.instruction
|= RdHi
<< 8;
10157 inst
.instruction
|= Rn
<< 16;
10158 inst
.instruction
|= Rm
;
10162 do_t_mov_cmp (void)
10166 Rn
= inst
.operands
[0].reg
;
10167 Rm
= inst
.operands
[1].reg
;
10170 set_it_insn_type_last ();
10172 if (unified_syntax
)
10174 int r0off
= (inst
.instruction
== T_MNEM_mov
10175 || inst
.instruction
== T_MNEM_movs
) ? 8 : 16;
10176 unsigned long opcode
;
10177 bfd_boolean narrow
;
10178 bfd_boolean low_regs
;
10180 low_regs
= (Rn
<= 7 && Rm
<= 7);
10181 opcode
= inst
.instruction
;
10182 if (in_it_block ())
10183 narrow
= opcode
!= T_MNEM_movs
;
10185 narrow
= opcode
!= T_MNEM_movs
|| low_regs
;
10186 if (inst
.size_req
== 4
10187 || inst
.operands
[1].shifted
)
10190 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10191 if (opcode
== T_MNEM_movs
&& inst
.operands
[1].isreg
10192 && !inst
.operands
[1].shifted
10196 inst
.instruction
= T2_SUBS_PC_LR
;
10200 if (opcode
== T_MNEM_cmp
)
10202 constraint (Rn
== REG_PC
, BAD_PC
);
10205 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10207 warn_deprecated_sp (Rm
);
10208 /* R15 was documented as a valid choice for Rm in ARMv6,
10209 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10210 tools reject R15, so we do too. */
10211 constraint (Rm
== REG_PC
, BAD_PC
);
10214 reject_bad_reg (Rm
);
10216 else if (opcode
== T_MNEM_mov
10217 || opcode
== T_MNEM_movs
)
10219 if (inst
.operands
[1].isreg
)
10221 if (opcode
== T_MNEM_movs
)
10223 reject_bad_reg (Rn
);
10224 reject_bad_reg (Rm
);
10226 else if ((Rn
== REG_SP
|| Rn
== REG_PC
)
10227 && (Rm
== REG_SP
|| Rm
== REG_PC
))
10228 reject_bad_reg (Rm
);
10231 reject_bad_reg (Rn
);
10234 if (!inst
.operands
[1].isreg
)
10236 /* Immediate operand. */
10237 if (!in_it_block () && opcode
== T_MNEM_mov
)
10239 if (low_regs
&& narrow
)
10241 inst
.instruction
= THUMB_OP16 (opcode
);
10242 inst
.instruction
|= Rn
<< 8;
10243 if (inst
.size_req
== 2)
10244 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_IMM
;
10246 inst
.relax
= opcode
;
10250 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
10251 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
10252 inst
.instruction
|= Rn
<< r0off
;
10253 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
10256 else if (inst
.operands
[1].shifted
&& inst
.operands
[1].immisreg
10257 && (inst
.instruction
== T_MNEM_mov
10258 || inst
.instruction
== T_MNEM_movs
))
10260 /* Register shifts are encoded as separate shift instructions. */
10261 bfd_boolean flags
= (inst
.instruction
== T_MNEM_movs
);
10263 if (in_it_block ())
10268 if (inst
.size_req
== 4)
10271 if (!low_regs
|| inst
.operands
[1].imm
> 7)
10277 switch (inst
.operands
[1].shift_kind
)
10280 opcode
= narrow
? T_OPCODE_LSL_R
: THUMB_OP32 (T_MNEM_lsl
);
10283 opcode
= narrow
? T_OPCODE_ASR_R
: THUMB_OP32 (T_MNEM_asr
);
10286 opcode
= narrow
? T_OPCODE_LSR_R
: THUMB_OP32 (T_MNEM_lsr
);
10289 opcode
= narrow
? T_OPCODE_ROR_R
: THUMB_OP32 (T_MNEM_ror
);
10295 inst
.instruction
= opcode
;
10298 inst
.instruction
|= Rn
;
10299 inst
.instruction
|= inst
.operands
[1].imm
<< 3;
10304 inst
.instruction
|= CONDS_BIT
;
10306 inst
.instruction
|= Rn
<< 8;
10307 inst
.instruction
|= Rm
<< 16;
10308 inst
.instruction
|= inst
.operands
[1].imm
;
10313 /* Some mov with immediate shift have narrow variants.
10314 Register shifts are handled above. */
10315 if (low_regs
&& inst
.operands
[1].shifted
10316 && (inst
.instruction
== T_MNEM_mov
10317 || inst
.instruction
== T_MNEM_movs
))
10319 if (in_it_block ())
10320 narrow
= (inst
.instruction
== T_MNEM_mov
);
10322 narrow
= (inst
.instruction
== T_MNEM_movs
);
10327 switch (inst
.operands
[1].shift_kind
)
10329 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_I
; break;
10330 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_I
; break;
10331 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_I
; break;
10332 default: narrow
= FALSE
; break;
10338 inst
.instruction
|= Rn
;
10339 inst
.instruction
|= Rm
<< 3;
10340 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_SHIFT
;
10344 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
10345 inst
.instruction
|= Rn
<< r0off
;
10346 encode_thumb32_shifted_operand (1);
10350 switch (inst
.instruction
)
10353 inst
.instruction
= T_OPCODE_MOV_HR
;
10354 inst
.instruction
|= (Rn
& 0x8) << 4;
10355 inst
.instruction
|= (Rn
& 0x7);
10356 inst
.instruction
|= Rm
<< 3;
10360 /* We know we have low registers at this point.
10361 Generate ADD Rd, Rs, #0. */
10362 inst
.instruction
= T_OPCODE_ADD_I3
;
10363 inst
.instruction
|= Rn
;
10364 inst
.instruction
|= Rm
<< 3;
10370 inst
.instruction
= T_OPCODE_CMP_LR
;
10371 inst
.instruction
|= Rn
;
10372 inst
.instruction
|= Rm
<< 3;
10376 inst
.instruction
= T_OPCODE_CMP_HR
;
10377 inst
.instruction
|= (Rn
& 0x8) << 4;
10378 inst
.instruction
|= (Rn
& 0x7);
10379 inst
.instruction
|= Rm
<< 3;
10386 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10388 /* PR 10443: Do not silently ignore shifted operands. */
10389 constraint (inst
.operands
[1].shifted
,
10390 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10392 if (inst
.operands
[1].isreg
)
10394 if (Rn
< 8 && Rm
< 8)
10396 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10397 since a MOV instruction produces unpredictable results. */
10398 if (inst
.instruction
== T_OPCODE_MOV_I8
)
10399 inst
.instruction
= T_OPCODE_ADD_I3
;
10401 inst
.instruction
= T_OPCODE_CMP_LR
;
10403 inst
.instruction
|= Rn
;
10404 inst
.instruction
|= Rm
<< 3;
10408 if (inst
.instruction
== T_OPCODE_MOV_I8
)
10409 inst
.instruction
= T_OPCODE_MOV_HR
;
10411 inst
.instruction
= T_OPCODE_CMP_HR
;
10417 constraint (Rn
> 7,
10418 _("only lo regs allowed with immediate"));
10419 inst
.instruction
|= Rn
<< 8;
10420 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_IMM
;
10431 top
= (inst
.instruction
& 0x00800000) != 0;
10432 if (inst
.reloc
.type
== BFD_RELOC_ARM_MOVW
)
10434 constraint (top
, _(":lower16: not allowed this instruction"));
10435 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_MOVW
;
10437 else if (inst
.reloc
.type
== BFD_RELOC_ARM_MOVT
)
10439 constraint (!top
, _(":upper16: not allowed this instruction"));
10440 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_MOVT
;
10443 Rd
= inst
.operands
[0].reg
;
10444 reject_bad_reg (Rd
);
10446 inst
.instruction
|= Rd
<< 8;
10447 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
10449 imm
= inst
.reloc
.exp
.X_add_number
;
10450 inst
.instruction
|= (imm
& 0xf000) << 4;
10451 inst
.instruction
|= (imm
& 0x0800) << 15;
10452 inst
.instruction
|= (imm
& 0x0700) << 4;
10453 inst
.instruction
|= (imm
& 0x00ff);
10458 do_t_mvn_tst (void)
10462 Rn
= inst
.operands
[0].reg
;
10463 Rm
= inst
.operands
[1].reg
;
10465 if (inst
.instruction
== T_MNEM_cmp
10466 || inst
.instruction
== T_MNEM_cmn
)
10467 constraint (Rn
== REG_PC
, BAD_PC
);
10469 reject_bad_reg (Rn
);
10470 reject_bad_reg (Rm
);
10472 if (unified_syntax
)
10474 int r0off
= (inst
.instruction
== T_MNEM_mvn
10475 || inst
.instruction
== T_MNEM_mvns
) ? 8 : 16;
10476 bfd_boolean narrow
;
10478 if (inst
.size_req
== 4
10479 || inst
.instruction
> 0xffff
10480 || inst
.operands
[1].shifted
10481 || Rn
> 7 || Rm
> 7)
10483 else if (inst
.instruction
== T_MNEM_cmn
)
10485 else if (THUMB_SETS_FLAGS (inst
.instruction
))
10486 narrow
= !in_it_block ();
10488 narrow
= in_it_block ();
10490 if (!inst
.operands
[1].isreg
)
10492 /* For an immediate, we always generate a 32-bit opcode;
10493 section relaxation will shrink it later if possible. */
10494 if (inst
.instruction
< 0xffff)
10495 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
10496 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
10497 inst
.instruction
|= Rn
<< r0off
;
10498 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
10502 /* See if we can do this with a 16-bit instruction. */
10505 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10506 inst
.instruction
|= Rn
;
10507 inst
.instruction
|= Rm
<< 3;
10511 constraint (inst
.operands
[1].shifted
10512 && inst
.operands
[1].immisreg
,
10513 _("shift must be constant"));
10514 if (inst
.instruction
< 0xffff)
10515 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
10516 inst
.instruction
|= Rn
<< r0off
;
10517 encode_thumb32_shifted_operand (1);
10523 constraint (inst
.instruction
> 0xffff
10524 || inst
.instruction
== T_MNEM_mvns
, BAD_THUMB32
);
10525 constraint (!inst
.operands
[1].isreg
|| inst
.operands
[1].shifted
,
10526 _("unshifted register required"));
10527 constraint (Rn
> 7 || Rm
> 7,
10530 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10531 inst
.instruction
|= Rn
;
10532 inst
.instruction
|= Rm
<< 3;
10542 if (do_vfp_nsyn_mrs () == SUCCESS
)
10545 flags
= inst
.operands
[1].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
|SPSR_BIT
);
10548 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_m
),
10549 _("selected processor does not support "
10550 "requested special purpose register"));
10554 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
),
10555 _("selected processor does not support "
10556 "requested special purpose register"));
10557 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10558 constraint ((flags
& ~SPSR_BIT
) != (PSR_c
|PSR_f
),
10559 _("'CPSR' or 'SPSR' expected"));
10562 Rd
= inst
.operands
[0].reg
;
10563 reject_bad_reg (Rd
);
10565 inst
.instruction
|= Rd
<< 8;
10566 inst
.instruction
|= (flags
& SPSR_BIT
) >> 2;
10567 inst
.instruction
|= inst
.operands
[1].imm
& 0xff;
10576 if (do_vfp_nsyn_msr () == SUCCESS
)
10579 constraint (!inst
.operands
[1].isreg
,
10580 _("Thumb encoding does not support an immediate here"));
10581 flags
= inst
.operands
[0].imm
;
10584 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
),
10585 _("selected processor does not support "
10586 "requested special purpose register"));
10590 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_m
),
10591 _("selected processor does not support "
10592 "requested special purpose register"));
10596 Rn
= inst
.operands
[1].reg
;
10597 reject_bad_reg (Rn
);
10599 inst
.instruction
|= (flags
& SPSR_BIT
) >> 2;
10600 inst
.instruction
|= (flags
& ~SPSR_BIT
) >> 8;
10601 inst
.instruction
|= (flags
& 0xff);
10602 inst
.instruction
|= Rn
<< 16;
10608 bfd_boolean narrow
;
10609 unsigned Rd
, Rn
, Rm
;
10611 if (!inst
.operands
[2].present
)
10612 inst
.operands
[2].reg
= inst
.operands
[0].reg
;
10614 Rd
= inst
.operands
[0].reg
;
10615 Rn
= inst
.operands
[1].reg
;
10616 Rm
= inst
.operands
[2].reg
;
10618 if (unified_syntax
)
10620 if (inst
.size_req
== 4
10626 else if (inst
.instruction
== T_MNEM_muls
)
10627 narrow
= !in_it_block ();
10629 narrow
= in_it_block ();
10633 constraint (inst
.instruction
== T_MNEM_muls
, BAD_THUMB32
);
10634 constraint (Rn
> 7 || Rm
> 7,
10641 /* 16-bit MULS/Conditional MUL. */
10642 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10643 inst
.instruction
|= Rd
;
10646 inst
.instruction
|= Rm
<< 3;
10648 inst
.instruction
|= Rn
<< 3;
10650 constraint (1, _("dest must overlap one source register"));
10654 constraint (inst
.instruction
!= T_MNEM_mul
,
10655 _("Thumb-2 MUL must not set flags"));
10657 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
10658 inst
.instruction
|= Rd
<< 8;
10659 inst
.instruction
|= Rn
<< 16;
10660 inst
.instruction
|= Rm
<< 0;
10662 reject_bad_reg (Rd
);
10663 reject_bad_reg (Rn
);
10664 reject_bad_reg (Rm
);
10671 unsigned RdLo
, RdHi
, Rn
, Rm
;
10673 RdLo
= inst
.operands
[0].reg
;
10674 RdHi
= inst
.operands
[1].reg
;
10675 Rn
= inst
.operands
[2].reg
;
10676 Rm
= inst
.operands
[3].reg
;
10678 reject_bad_reg (RdLo
);
10679 reject_bad_reg (RdHi
);
10680 reject_bad_reg (Rn
);
10681 reject_bad_reg (Rm
);
10683 inst
.instruction
|= RdLo
<< 12;
10684 inst
.instruction
|= RdHi
<< 8;
10685 inst
.instruction
|= Rn
<< 16;
10686 inst
.instruction
|= Rm
;
10689 as_tsktsk (_("rdhi and rdlo must be different"));
10695 set_it_insn_type (NEUTRAL_IT_INSN
);
10697 if (unified_syntax
)
10699 if (inst
.size_req
== 4 || inst
.operands
[0].imm
> 15)
10701 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
10702 inst
.instruction
|= inst
.operands
[0].imm
;
10706 /* PR9722: Check for Thumb2 availability before
10707 generating a thumb2 nop instruction. */
10708 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6t2
))
10710 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10711 inst
.instruction
|= inst
.operands
[0].imm
<< 4;
10714 inst
.instruction
= 0x46c0;
10719 constraint (inst
.operands
[0].present
,
10720 _("Thumb does not support NOP with hints"));
10721 inst
.instruction
= 0x46c0;
10728 if (unified_syntax
)
10730 bfd_boolean narrow
;
10732 if (THUMB_SETS_FLAGS (inst
.instruction
))
10733 narrow
= !in_it_block ();
10735 narrow
= in_it_block ();
10736 if (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7)
10738 if (inst
.size_req
== 4)
10743 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
10744 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
10745 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10749 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10750 inst
.instruction
|= inst
.operands
[0].reg
;
10751 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
10756 constraint (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7,
10758 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
10760 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10761 inst
.instruction
|= inst
.operands
[0].reg
;
10762 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
10771 Rd
= inst
.operands
[0].reg
;
10772 Rn
= inst
.operands
[1].present
? inst
.operands
[1].reg
: Rd
;
10774 reject_bad_reg (Rd
);
10775 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
10776 reject_bad_reg (Rn
);
10778 inst
.instruction
|= Rd
<< 8;
10779 inst
.instruction
|= Rn
<< 16;
10781 if (!inst
.operands
[2].isreg
)
10783 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
10784 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
10790 Rm
= inst
.operands
[2].reg
;
10791 reject_bad_reg (Rm
);
10793 constraint (inst
.operands
[2].shifted
10794 && inst
.operands
[2].immisreg
,
10795 _("shift must be constant"));
10796 encode_thumb32_shifted_operand (2);
10803 unsigned Rd
, Rn
, Rm
;
10805 Rd
= inst
.operands
[0].reg
;
10806 Rn
= inst
.operands
[1].reg
;
10807 Rm
= inst
.operands
[2].reg
;
10809 reject_bad_reg (Rd
);
10810 reject_bad_reg (Rn
);
10811 reject_bad_reg (Rm
);
10813 inst
.instruction
|= Rd
<< 8;
10814 inst
.instruction
|= Rn
<< 16;
10815 inst
.instruction
|= Rm
;
10816 if (inst
.operands
[3].present
)
10818 unsigned int val
= inst
.reloc
.exp
.X_add_number
;
10819 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
10820 _("expression too complex"));
10821 inst
.instruction
|= (val
& 0x1c) << 10;
10822 inst
.instruction
|= (val
& 0x03) << 6;
10829 if (!inst
.operands
[3].present
)
10833 inst
.instruction
&= ~0x00000020;
10835 /* PR 10168. Swap the Rm and Rn registers. */
10836 Rtmp
= inst
.operands
[1].reg
;
10837 inst
.operands
[1].reg
= inst
.operands
[2].reg
;
10838 inst
.operands
[2].reg
= Rtmp
;
10846 if (inst
.operands
[0].immisreg
)
10847 reject_bad_reg (inst
.operands
[0].imm
);
10849 encode_thumb32_addr_mode (0, /*is_t=*/FALSE
, /*is_d=*/FALSE
);
10853 do_t_push_pop (void)
10857 constraint (inst
.operands
[0].writeback
,
10858 _("push/pop do not support {reglist}^"));
10859 constraint (inst
.reloc
.type
!= BFD_RELOC_UNUSED
,
10860 _("expression too complex"));
10862 mask
= inst
.operands
[0].imm
;
10863 if ((mask
& ~0xff) == 0)
10864 inst
.instruction
= THUMB_OP16 (inst
.instruction
) | mask
;
10865 else if ((inst
.instruction
== T_MNEM_push
10866 && (mask
& ~0xff) == 1 << REG_LR
)
10867 || (inst
.instruction
== T_MNEM_pop
10868 && (mask
& ~0xff) == 1 << REG_PC
))
10870 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10871 inst
.instruction
|= THUMB_PP_PC_LR
;
10872 inst
.instruction
|= mask
& 0xff;
10874 else if (unified_syntax
)
10876 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
10877 encode_thumb2_ldmstm (13, mask
, TRUE
);
10881 inst
.error
= _("invalid register list to push/pop instruction");
10891 Rd
= inst
.operands
[0].reg
;
10892 Rm
= inst
.operands
[1].reg
;
10894 reject_bad_reg (Rd
);
10895 reject_bad_reg (Rm
);
10897 inst
.instruction
|= Rd
<< 8;
10898 inst
.instruction
|= Rm
<< 16;
10899 inst
.instruction
|= Rm
;
10907 Rd
= inst
.operands
[0].reg
;
10908 Rm
= inst
.operands
[1].reg
;
10910 reject_bad_reg (Rd
);
10911 reject_bad_reg (Rm
);
10913 if (Rd
<= 7 && Rm
<= 7
10914 && inst
.size_req
!= 4)
10916 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10917 inst
.instruction
|= Rd
;
10918 inst
.instruction
|= Rm
<< 3;
10920 else if (unified_syntax
)
10922 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
10923 inst
.instruction
|= Rd
<< 8;
10924 inst
.instruction
|= Rm
<< 16;
10925 inst
.instruction
|= Rm
;
10928 inst
.error
= BAD_HIREG
;
10936 Rd
= inst
.operands
[0].reg
;
10937 Rm
= inst
.operands
[1].reg
;
10939 reject_bad_reg (Rd
);
10940 reject_bad_reg (Rm
);
10942 inst
.instruction
|= Rd
<< 8;
10943 inst
.instruction
|= Rm
;
10951 Rd
= inst
.operands
[0].reg
;
10952 Rs
= (inst
.operands
[1].present
10953 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
10954 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
10956 reject_bad_reg (Rd
);
10957 reject_bad_reg (Rs
);
10958 if (inst
.operands
[2].isreg
)
10959 reject_bad_reg (inst
.operands
[2].reg
);
10961 inst
.instruction
|= Rd
<< 8;
10962 inst
.instruction
|= Rs
<< 16;
10963 if (!inst
.operands
[2].isreg
)
10965 bfd_boolean narrow
;
10967 if ((inst
.instruction
& 0x00100000) != 0)
10968 narrow
= !in_it_block ();
10970 narrow
= in_it_block ();
10972 if (Rd
> 7 || Rs
> 7)
10975 if (inst
.size_req
== 4 || !unified_syntax
)
10978 if (inst
.reloc
.exp
.X_op
!= O_constant
10979 || inst
.reloc
.exp
.X_add_number
!= 0)
10982 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10983 relaxation, but it doesn't seem worth the hassle. */
10986 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
10987 inst
.instruction
= THUMB_OP16 (T_MNEM_negs
);
10988 inst
.instruction
|= Rs
<< 3;
10989 inst
.instruction
|= Rd
;
10993 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
10994 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
10998 encode_thumb32_shifted_operand (2);
11004 set_it_insn_type (OUTSIDE_IT_INSN
);
11005 if (inst
.operands
[0].imm
)
11006 inst
.instruction
|= 0x8;
11012 if (!inst
.operands
[1].present
)
11013 inst
.operands
[1].reg
= inst
.operands
[0].reg
;
11015 if (unified_syntax
)
11017 bfd_boolean narrow
;
11020 switch (inst
.instruction
)
11023 case T_MNEM_asrs
: shift_kind
= SHIFT_ASR
; break;
11025 case T_MNEM_lsls
: shift_kind
= SHIFT_LSL
; break;
11027 case T_MNEM_lsrs
: shift_kind
= SHIFT_LSR
; break;
11029 case T_MNEM_rors
: shift_kind
= SHIFT_ROR
; break;
11033 if (THUMB_SETS_FLAGS (inst
.instruction
))
11034 narrow
= !in_it_block ();
11036 narrow
= in_it_block ();
11037 if (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7)
11039 if (!inst
.operands
[2].isreg
&& shift_kind
== SHIFT_ROR
)
11041 if (inst
.operands
[2].isreg
11042 && (inst
.operands
[1].reg
!= inst
.operands
[0].reg
11043 || inst
.operands
[2].reg
> 7))
11045 if (inst
.size_req
== 4)
11048 reject_bad_reg (inst
.operands
[0].reg
);
11049 reject_bad_reg (inst
.operands
[1].reg
);
11053 if (inst
.operands
[2].isreg
)
11055 reject_bad_reg (inst
.operands
[2].reg
);
11056 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11057 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
11058 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
11059 inst
.instruction
|= inst
.operands
[2].reg
;
11063 inst
.operands
[1].shifted
= 1;
11064 inst
.operands
[1].shift_kind
= shift_kind
;
11065 inst
.instruction
= THUMB_OP32 (THUMB_SETS_FLAGS (inst
.instruction
)
11066 ? T_MNEM_movs
: T_MNEM_mov
);
11067 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
11068 encode_thumb32_shifted_operand (1);
11069 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11070 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
11075 if (inst
.operands
[2].isreg
)
11077 switch (shift_kind
)
11079 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_R
; break;
11080 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_R
; break;
11081 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_R
; break;
11082 case SHIFT_ROR
: inst
.instruction
= T_OPCODE_ROR_R
; break;
11086 inst
.instruction
|= inst
.operands
[0].reg
;
11087 inst
.instruction
|= inst
.operands
[2].reg
<< 3;
11091 switch (shift_kind
)
11093 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_I
; break;
11094 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_I
; break;
11095 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_I
; break;
11098 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_SHIFT
;
11099 inst
.instruction
|= inst
.operands
[0].reg
;
11100 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
11106 constraint (inst
.operands
[0].reg
> 7
11107 || inst
.operands
[1].reg
> 7, BAD_HIREG
);
11108 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
11110 if (inst
.operands
[2].isreg
) /* Rd, {Rs,} Rn */
11112 constraint (inst
.operands
[2].reg
> 7, BAD_HIREG
);
11113 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
11114 _("source1 and dest must be same register"));
11116 switch (inst
.instruction
)
11118 case T_MNEM_asr
: inst
.instruction
= T_OPCODE_ASR_R
; break;
11119 case T_MNEM_lsl
: inst
.instruction
= T_OPCODE_LSL_R
; break;
11120 case T_MNEM_lsr
: inst
.instruction
= T_OPCODE_LSR_R
; break;
11121 case T_MNEM_ror
: inst
.instruction
= T_OPCODE_ROR_R
; break;
11125 inst
.instruction
|= inst
.operands
[0].reg
;
11126 inst
.instruction
|= inst
.operands
[2].reg
<< 3;
11130 switch (inst
.instruction
)
11132 case T_MNEM_asr
: inst
.instruction
= T_OPCODE_ASR_I
; break;
11133 case T_MNEM_lsl
: inst
.instruction
= T_OPCODE_LSL_I
; break;
11134 case T_MNEM_lsr
: inst
.instruction
= T_OPCODE_LSR_I
; break;
11135 case T_MNEM_ror
: inst
.error
= _("ror #imm not supported"); return;
11138 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_SHIFT
;
11139 inst
.instruction
|= inst
.operands
[0].reg
;
11140 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
11148 unsigned Rd
, Rn
, Rm
;
11150 Rd
= inst
.operands
[0].reg
;
11151 Rn
= inst
.operands
[1].reg
;
11152 Rm
= inst
.operands
[2].reg
;
11154 reject_bad_reg (Rd
);
11155 reject_bad_reg (Rn
);
11156 reject_bad_reg (Rm
);
11158 inst
.instruction
|= Rd
<< 8;
11159 inst
.instruction
|= Rn
<< 16;
11160 inst
.instruction
|= Rm
;
11166 unsigned Rd
, Rn
, Rm
;
11168 Rd
= inst
.operands
[0].reg
;
11169 Rm
= inst
.operands
[1].reg
;
11170 Rn
= inst
.operands
[2].reg
;
11172 reject_bad_reg (Rd
);
11173 reject_bad_reg (Rn
);
11174 reject_bad_reg (Rm
);
11176 inst
.instruction
|= Rd
<< 8;
11177 inst
.instruction
|= Rn
<< 16;
11178 inst
.instruction
|= Rm
;
11184 unsigned int value
= inst
.reloc
.exp
.X_add_number
;
11185 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
11186 _("expression too complex"));
11187 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
11188 inst
.instruction
|= (value
& 0xf000) >> 12;
11189 inst
.instruction
|= (value
& 0x0ff0);
11190 inst
.instruction
|= (value
& 0x000f) << 16;
11194 do_t_ssat_usat (int bias
)
11198 Rd
= inst
.operands
[0].reg
;
11199 Rn
= inst
.operands
[2].reg
;
11201 reject_bad_reg (Rd
);
11202 reject_bad_reg (Rn
);
11204 inst
.instruction
|= Rd
<< 8;
11205 inst
.instruction
|= inst
.operands
[1].imm
- bias
;
11206 inst
.instruction
|= Rn
<< 16;
11208 if (inst
.operands
[3].present
)
11210 offsetT shift_amount
= inst
.reloc
.exp
.X_add_number
;
11212 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
11214 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
11215 _("expression too complex"));
11217 if (shift_amount
!= 0)
11219 constraint (shift_amount
> 31,
11220 _("shift expression is too large"));
11222 if (inst
.operands
[3].shift_kind
== SHIFT_ASR
)
11223 inst
.instruction
|= 0x00200000; /* sh bit. */
11225 inst
.instruction
|= (shift_amount
& 0x1c) << 10;
11226 inst
.instruction
|= (shift_amount
& 0x03) << 6;
11234 do_t_ssat_usat (1);
11242 Rd
= inst
.operands
[0].reg
;
11243 Rn
= inst
.operands
[2].reg
;
11245 reject_bad_reg (Rd
);
11246 reject_bad_reg (Rn
);
11248 inst
.instruction
|= Rd
<< 8;
11249 inst
.instruction
|= inst
.operands
[1].imm
- 1;
11250 inst
.instruction
|= Rn
<< 16;
11256 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
11257 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
11258 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
11259 || inst
.operands
[2].negative
,
11262 constraint (inst
.operands
[2].reg
== REG_PC
, BAD_PC
);
11264 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
11265 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
11266 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
11267 inst
.reloc
.type
= BFD_RELOC_ARM_T32_OFFSET_U8
;
11273 if (!inst
.operands
[2].present
)
11274 inst
.operands
[2].reg
= inst
.operands
[1].reg
+ 1;
11276 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
11277 || inst
.operands
[0].reg
== inst
.operands
[2].reg
11278 || inst
.operands
[0].reg
== inst
.operands
[3].reg
,
11281 inst
.instruction
|= inst
.operands
[0].reg
;
11282 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
11283 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
11284 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
11290 unsigned Rd
, Rn
, Rm
;
11292 Rd
= inst
.operands
[0].reg
;
11293 Rn
= inst
.operands
[1].reg
;
11294 Rm
= inst
.operands
[2].reg
;
11296 reject_bad_reg (Rd
);
11297 reject_bad_reg (Rn
);
11298 reject_bad_reg (Rm
);
11300 inst
.instruction
|= Rd
<< 8;
11301 inst
.instruction
|= Rn
<< 16;
11302 inst
.instruction
|= Rm
;
11303 inst
.instruction
|= inst
.operands
[3].imm
<< 4;
11311 Rd
= inst
.operands
[0].reg
;
11312 Rm
= inst
.operands
[1].reg
;
11314 reject_bad_reg (Rd
);
11315 reject_bad_reg (Rm
);
11317 if (inst
.instruction
<= 0xffff
11318 && inst
.size_req
!= 4
11319 && Rd
<= 7 && Rm
<= 7
11320 && (!inst
.operands
[2].present
|| inst
.operands
[2].imm
== 0))
11322 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11323 inst
.instruction
|= Rd
;
11324 inst
.instruction
|= Rm
<< 3;
11326 else if (unified_syntax
)
11328 if (inst
.instruction
<= 0xffff)
11329 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11330 inst
.instruction
|= Rd
<< 8;
11331 inst
.instruction
|= Rm
;
11332 inst
.instruction
|= inst
.operands
[2].imm
<< 4;
11336 constraint (inst
.operands
[2].present
&& inst
.operands
[2].imm
!= 0,
11337 _("Thumb encoding does not support rotation"));
11338 constraint (1, BAD_HIREG
);
11345 inst
.reloc
.type
= BFD_RELOC_ARM_SWI
;
11354 half
= (inst
.instruction
& 0x10) != 0;
11355 set_it_insn_type_last ();
11356 constraint (inst
.operands
[0].immisreg
,
11357 _("instruction requires register index"));
11359 Rn
= inst
.operands
[0].reg
;
11360 Rm
= inst
.operands
[0].imm
;
11362 constraint (Rn
== REG_SP
, BAD_SP
);
11363 reject_bad_reg (Rm
);
11365 constraint (!half
&& inst
.operands
[0].shifted
,
11366 _("instruction does not allow shifted index"));
11367 inst
.instruction
|= (Rn
<< 16) | Rm
;
11373 do_t_ssat_usat (0);
11381 Rd
= inst
.operands
[0].reg
;
11382 Rn
= inst
.operands
[2].reg
;
11384 reject_bad_reg (Rd
);
11385 reject_bad_reg (Rn
);
11387 inst
.instruction
|= Rd
<< 8;
11388 inst
.instruction
|= inst
.operands
[1].imm
;
11389 inst
.instruction
|= Rn
<< 16;
11392 /* Neon instruction encoder helpers. */
11394 /* Encodings for the different types for various Neon opcodes. */
11396 /* An "invalid" code for the following tables. */
11399 struct neon_tab_entry
11402 unsigned float_or_poly
;
11403 unsigned scalar_or_imm
;
11406 /* Map overloaded Neon opcodes to their respective encodings. */
11407 #define NEON_ENC_TAB \
11408 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11409 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11410 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11411 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11412 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11413 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11414 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11415 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11416 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11417 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11418 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11419 /* Register variants of the following two instructions are encoded as
11420 vcge / vcgt with the operands reversed. */ \
11421 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11422 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
11423 X(vfma, N_INV, 0x0000c10, N_INV), \
11424 X(vfms, N_INV, 0x0200c10, N_INV), \
11425 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11426 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11427 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11428 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11429 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11430 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11431 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11432 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11433 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11434 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11435 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11436 X(vshl, 0x0000400, N_INV, 0x0800510), \
11437 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11438 X(vand, 0x0000110, N_INV, 0x0800030), \
11439 X(vbic, 0x0100110, N_INV, 0x0800030), \
11440 X(veor, 0x1000110, N_INV, N_INV), \
11441 X(vorn, 0x0300110, N_INV, 0x0800010), \
11442 X(vorr, 0x0200110, N_INV, 0x0800010), \
11443 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11444 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11445 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11446 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11447 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11448 X(vst1, 0x0000000, 0x0800000, N_INV), \
11449 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11450 X(vst2, 0x0000100, 0x0800100, N_INV), \
11451 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11452 X(vst3, 0x0000200, 0x0800200, N_INV), \
11453 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11454 X(vst4, 0x0000300, 0x0800300, N_INV), \
11455 X(vmovn, 0x1b20200, N_INV, N_INV), \
11456 X(vtrn, 0x1b20080, N_INV, N_INV), \
11457 X(vqmovn, 0x1b20200, N_INV, N_INV), \
11458 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11459 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
11460 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11461 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
11462 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11463 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
11464 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11465 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11466 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11467 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
11471 #define X(OPC,I,F,S) N_MNEM_##OPC
11476 static const struct neon_tab_entry neon_enc_tab
[] =
11478 #define X(OPC,I,F,S) { (I), (F), (S) }
11483 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
11484 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11485 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11486 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11487 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11488 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11489 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11490 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11491 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11492 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11493 #define NEON_ENC_SINGLE_(X) \
11494 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
11495 #define NEON_ENC_DOUBLE_(X) \
11496 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
11498 #define NEON_ENCODE(type, inst) \
11501 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
11502 inst.is_neon = 1; \
11506 #define check_neon_suffixes \
11509 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
11511 as_bad (_("invalid neon suffix for non neon instruction")); \
11517 /* Define shapes for instruction operands. The following mnemonic characters
11518 are used in this table:
11520 F - VFP S<n> register
11521 D - Neon D<n> register
11522 Q - Neon Q<n> register
11526 L - D<n> register list
11528 This table is used to generate various data:
11529 - enumerations of the form NS_DDR to be used as arguments to
11531 - a table classifying shapes into single, double, quad, mixed.
11532 - a table used to drive neon_select_shape. */
11534 #define NEON_SHAPE_DEF \
11535 X(3, (D, D, D), DOUBLE), \
11536 X(3, (Q, Q, Q), QUAD), \
11537 X(3, (D, D, I), DOUBLE), \
11538 X(3, (Q, Q, I), QUAD), \
11539 X(3, (D, D, S), DOUBLE), \
11540 X(3, (Q, Q, S), QUAD), \
11541 X(2, (D, D), DOUBLE), \
11542 X(2, (Q, Q), QUAD), \
11543 X(2, (D, S), DOUBLE), \
11544 X(2, (Q, S), QUAD), \
11545 X(2, (D, R), DOUBLE), \
11546 X(2, (Q, R), QUAD), \
11547 X(2, (D, I), DOUBLE), \
11548 X(2, (Q, I), QUAD), \
11549 X(3, (D, L, D), DOUBLE), \
11550 X(2, (D, Q), MIXED), \
11551 X(2, (Q, D), MIXED), \
11552 X(3, (D, Q, I), MIXED), \
11553 X(3, (Q, D, I), MIXED), \
11554 X(3, (Q, D, D), MIXED), \
11555 X(3, (D, Q, Q), MIXED), \
11556 X(3, (Q, Q, D), MIXED), \
11557 X(3, (Q, D, S), MIXED), \
11558 X(3, (D, Q, S), MIXED), \
11559 X(4, (D, D, D, I), DOUBLE), \
11560 X(4, (Q, Q, Q, I), QUAD), \
11561 X(2, (F, F), SINGLE), \
11562 X(3, (F, F, F), SINGLE), \
11563 X(2, (F, I), SINGLE), \
11564 X(2, (F, D), MIXED), \
11565 X(2, (D, F), MIXED), \
11566 X(3, (F, F, I), MIXED), \
11567 X(4, (R, R, F, F), SINGLE), \
11568 X(4, (F, F, R, R), SINGLE), \
11569 X(3, (D, R, R), DOUBLE), \
11570 X(3, (R, R, D), DOUBLE), \
11571 X(2, (S, R), SINGLE), \
11572 X(2, (R, S), SINGLE), \
11573 X(2, (F, R), SINGLE), \
11574 X(2, (R, F), SINGLE)
11576 #define S2(A,B) NS_##A##B
11577 #define S3(A,B,C) NS_##A##B##C
11578 #define S4(A,B,C,D) NS_##A##B##C##D
11580 #define X(N, L, C) S##N L
11593 enum neon_shape_class
11601 #define X(N, L, C) SC_##C
11603 static enum neon_shape_class neon_shape_class
[] =
11621 /* Register widths of above. */
11622 static unsigned neon_shape_el_size
[] =
11633 struct neon_shape_info
11636 enum neon_shape_el el
[NEON_MAX_TYPE_ELS
];
11639 #define S2(A,B) { SE_##A, SE_##B }
11640 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
11641 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
11643 #define X(N, L, C) { N, S##N L }
11645 static struct neon_shape_info neon_shape_tab
[] =
11655 /* Bit masks used in type checking given instructions.
11656 'N_EQK' means the type must be the same as (or based on in some way) the key
11657 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
11658 set, various other bits can be set as well in order to modify the meaning of
11659 the type constraint. */
11661 enum neon_type_mask
11684 N_KEY
= 0x1000000, /* Key element (main type specifier). */
11685 N_EQK
= 0x2000000, /* Given operand has the same type & size as the key. */
11686 N_VFP
= 0x4000000, /* VFP mode: operand size must match register width. */
11687 N_DBL
= 0x0000001, /* If N_EQK, this operand is twice the size. */
11688 N_HLF
= 0x0000002, /* If N_EQK, this operand is half the size. */
11689 N_SGN
= 0x0000004, /* If N_EQK, this operand is forced to be signed. */
11690 N_UNS
= 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
11691 N_INT
= 0x0000010, /* If N_EQK, this operand is forced to be integer. */
11692 N_FLT
= 0x0000020, /* If N_EQK, this operand is forced to be float. */
11693 N_SIZ
= 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
11695 N_MAX_NONSPECIAL
= N_F64
11698 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
11700 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
11701 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
11702 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
11703 #define N_SUF_32 (N_SU_32 | N_F32)
11704 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
11705 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
11707 /* Pass this as the first type argument to neon_check_type to ignore types
11709 #define N_IGNORE_TYPE (N_KEY | N_EQK)
11711 /* Select a "shape" for the current instruction (describing register types or
11712 sizes) from a list of alternatives. Return NS_NULL if the current instruction
11713 doesn't fit. For non-polymorphic shapes, checking is usually done as a
11714 function of operand parsing, so this function doesn't need to be called.
11715 Shapes should be listed in order of decreasing length. */
11717 static enum neon_shape
11718 neon_select_shape (enum neon_shape shape
, ...)
11721 enum neon_shape first_shape
= shape
;
11723 /* Fix missing optional operands. FIXME: we don't know at this point how
11724 many arguments we should have, so this makes the assumption that we have
11725 > 1. This is true of all current Neon opcodes, I think, but may not be
11726 true in the future. */
11727 if (!inst
.operands
[1].present
)
11728 inst
.operands
[1] = inst
.operands
[0];
11730 va_start (ap
, shape
);
11732 for (; shape
!= NS_NULL
; shape
= (enum neon_shape
) va_arg (ap
, int))
11737 for (j
= 0; j
< neon_shape_tab
[shape
].els
; j
++)
11739 if (!inst
.operands
[j
].present
)
11745 switch (neon_shape_tab
[shape
].el
[j
])
11748 if (!(inst
.operands
[j
].isreg
11749 && inst
.operands
[j
].isvec
11750 && inst
.operands
[j
].issingle
11751 && !inst
.operands
[j
].isquad
))
11756 if (!(inst
.operands
[j
].isreg
11757 && inst
.operands
[j
].isvec
11758 && !inst
.operands
[j
].isquad
11759 && !inst
.operands
[j
].issingle
))
11764 if (!(inst
.operands
[j
].isreg
11765 && !inst
.operands
[j
].isvec
))
11770 if (!(inst
.operands
[j
].isreg
11771 && inst
.operands
[j
].isvec
11772 && inst
.operands
[j
].isquad
11773 && !inst
.operands
[j
].issingle
))
11778 if (!(!inst
.operands
[j
].isreg
11779 && !inst
.operands
[j
].isscalar
))
11784 if (!(!inst
.operands
[j
].isreg
11785 && inst
.operands
[j
].isscalar
))
11801 if (shape
== NS_NULL
&& first_shape
!= NS_NULL
)
11802 first_error (_("invalid instruction shape"));
11807 /* True if SHAPE is predominantly a quadword operation (most of the time, this
11808 means the Q bit should be set). */
11811 neon_quad (enum neon_shape shape
)
11813 return neon_shape_class
[shape
] == SC_QUAD
;
11817 neon_modify_type_size (unsigned typebits
, enum neon_el_type
*g_type
,
11820 /* Allow modification to be made to types which are constrained to be
11821 based on the key element, based on bits set alongside N_EQK. */
11822 if ((typebits
& N_EQK
) != 0)
11824 if ((typebits
& N_HLF
) != 0)
11826 else if ((typebits
& N_DBL
) != 0)
11828 if ((typebits
& N_SGN
) != 0)
11829 *g_type
= NT_signed
;
11830 else if ((typebits
& N_UNS
) != 0)
11831 *g_type
= NT_unsigned
;
11832 else if ((typebits
& N_INT
) != 0)
11833 *g_type
= NT_integer
;
11834 else if ((typebits
& N_FLT
) != 0)
11835 *g_type
= NT_float
;
11836 else if ((typebits
& N_SIZ
) != 0)
11837 *g_type
= NT_untyped
;
11841 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
11842 operand type, i.e. the single type specified in a Neon instruction when it
11843 is the only one given. */
11845 static struct neon_type_el
11846 neon_type_promote (struct neon_type_el
*key
, unsigned thisarg
)
11848 struct neon_type_el dest
= *key
;
11850 gas_assert ((thisarg
& N_EQK
) != 0);
11852 neon_modify_type_size (thisarg
, &dest
.type
, &dest
.size
);
11857 /* Convert Neon type and size into compact bitmask representation. */
11859 static enum neon_type_mask
11860 type_chk_of_el_type (enum neon_el_type type
, unsigned size
)
11867 case 8: return N_8
;
11868 case 16: return N_16
;
11869 case 32: return N_32
;
11870 case 64: return N_64
;
11878 case 8: return N_I8
;
11879 case 16: return N_I16
;
11880 case 32: return N_I32
;
11881 case 64: return N_I64
;
11889 case 16: return N_F16
;
11890 case 32: return N_F32
;
11891 case 64: return N_F64
;
11899 case 8: return N_P8
;
11900 case 16: return N_P16
;
11908 case 8: return N_S8
;
11909 case 16: return N_S16
;
11910 case 32: return N_S32
;
11911 case 64: return N_S64
;
11919 case 8: return N_U8
;
11920 case 16: return N_U16
;
11921 case 32: return N_U32
;
11922 case 64: return N_U64
;
11933 /* Convert compact Neon bitmask type representation to a type and size. Only
11934 handles the case where a single bit is set in the mask. */
11937 el_type_of_type_chk (enum neon_el_type
*type
, unsigned *size
,
11938 enum neon_type_mask mask
)
11940 if ((mask
& N_EQK
) != 0)
11943 if ((mask
& (N_S8
| N_U8
| N_I8
| N_8
| N_P8
)) != 0)
11945 else if ((mask
& (N_S16
| N_U16
| N_I16
| N_16
| N_P16
)) != 0)
11947 else if ((mask
& (N_S32
| N_U32
| N_I32
| N_32
| N_F32
)) != 0)
11949 else if ((mask
& (N_S64
| N_U64
| N_I64
| N_64
| N_F64
)) != 0)
11954 if ((mask
& (N_S8
| N_S16
| N_S32
| N_S64
)) != 0)
11956 else if ((mask
& (N_U8
| N_U16
| N_U32
| N_U64
)) != 0)
11957 *type
= NT_unsigned
;
11958 else if ((mask
& (N_I8
| N_I16
| N_I32
| N_I64
)) != 0)
11959 *type
= NT_integer
;
11960 else if ((mask
& (N_8
| N_16
| N_32
| N_64
)) != 0)
11961 *type
= NT_untyped
;
11962 else if ((mask
& (N_P8
| N_P16
)) != 0)
11964 else if ((mask
& (N_F32
| N_F64
)) != 0)
11972 /* Modify a bitmask of allowed types. This is only needed for type
11976 modify_types_allowed (unsigned allowed
, unsigned mods
)
11979 enum neon_el_type type
;
11985 for (i
= 1; i
<= N_MAX_NONSPECIAL
; i
<<= 1)
11987 if (el_type_of_type_chk (&type
, &size
,
11988 (enum neon_type_mask
) (allowed
& i
)) == SUCCESS
)
11990 neon_modify_type_size (mods
, &type
, &size
);
11991 destmask
|= type_chk_of_el_type (type
, size
);
11998 /* Check type and return type classification.
11999 The manual states (paraphrase): If one datatype is given, it indicates the
12001 - the second operand, if there is one
12002 - the operand, if there is no second operand
12003 - the result, if there are no operands.
12004 This isn't quite good enough though, so we use a concept of a "key" datatype
12005 which is set on a per-instruction basis, which is the one which matters when
12006 only one data type is written.
12007 Note: this function has side-effects (e.g. filling in missing operands). All
12008 Neon instructions should call it before performing bit encoding. */
12010 static struct neon_type_el
12011 neon_check_type (unsigned els
, enum neon_shape ns
, ...)
12014 unsigned i
, pass
, key_el
= 0;
12015 unsigned types
[NEON_MAX_TYPE_ELS
];
12016 enum neon_el_type k_type
= NT_invtype
;
12017 unsigned k_size
= -1u;
12018 struct neon_type_el badtype
= {NT_invtype
, -1};
12019 unsigned key_allowed
= 0;
12021 /* Optional registers in Neon instructions are always (not) in operand 1.
12022 Fill in the missing operand here, if it was omitted. */
12023 if (els
> 1 && !inst
.operands
[1].present
)
12024 inst
.operands
[1] = inst
.operands
[0];
12026 /* Suck up all the varargs. */
12028 for (i
= 0; i
< els
; i
++)
12030 unsigned thisarg
= va_arg (ap
, unsigned);
12031 if (thisarg
== N_IGNORE_TYPE
)
12036 types
[i
] = thisarg
;
12037 if ((thisarg
& N_KEY
) != 0)
12042 if (inst
.vectype
.elems
> 0)
12043 for (i
= 0; i
< els
; i
++)
12044 if (inst
.operands
[i
].vectype
.type
!= NT_invtype
)
12046 first_error (_("types specified in both the mnemonic and operands"));
12050 /* Duplicate inst.vectype elements here as necessary.
12051 FIXME: No idea if this is exactly the same as the ARM assembler,
12052 particularly when an insn takes one register and one non-register
12054 if (inst
.vectype
.elems
== 1 && els
> 1)
12057 inst
.vectype
.elems
= els
;
12058 inst
.vectype
.el
[key_el
] = inst
.vectype
.el
[0];
12059 for (j
= 0; j
< els
; j
++)
12061 inst
.vectype
.el
[j
] = neon_type_promote (&inst
.vectype
.el
[key_el
],
12064 else if (inst
.vectype
.elems
== 0 && els
> 0)
12067 /* No types were given after the mnemonic, so look for types specified
12068 after each operand. We allow some flexibility here; as long as the
12069 "key" operand has a type, we can infer the others. */
12070 for (j
= 0; j
< els
; j
++)
12071 if (inst
.operands
[j
].vectype
.type
!= NT_invtype
)
12072 inst
.vectype
.el
[j
] = inst
.operands
[j
].vectype
;
12074 if (inst
.operands
[key_el
].vectype
.type
!= NT_invtype
)
12076 for (j
= 0; j
< els
; j
++)
12077 if (inst
.operands
[j
].vectype
.type
== NT_invtype
)
12078 inst
.vectype
.el
[j
] = neon_type_promote (&inst
.vectype
.el
[key_el
],
12083 first_error (_("operand types can't be inferred"));
12087 else if (inst
.vectype
.elems
!= els
)
12089 first_error (_("type specifier has the wrong number of parts"));
12093 for (pass
= 0; pass
< 2; pass
++)
12095 for (i
= 0; i
< els
; i
++)
12097 unsigned thisarg
= types
[i
];
12098 unsigned types_allowed
= ((thisarg
& N_EQK
) != 0 && pass
!= 0)
12099 ? modify_types_allowed (key_allowed
, thisarg
) : thisarg
;
12100 enum neon_el_type g_type
= inst
.vectype
.el
[i
].type
;
12101 unsigned g_size
= inst
.vectype
.el
[i
].size
;
12103 /* Decay more-specific signed & unsigned types to sign-insensitive
12104 integer types if sign-specific variants are unavailable. */
12105 if ((g_type
== NT_signed
|| g_type
== NT_unsigned
)
12106 && (types_allowed
& N_SU_ALL
) == 0)
12107 g_type
= NT_integer
;
12109 /* If only untyped args are allowed, decay any more specific types to
12110 them. Some instructions only care about signs for some element
12111 sizes, so handle that properly. */
12112 if ((g_size
== 8 && (types_allowed
& N_8
) != 0)
12113 || (g_size
== 16 && (types_allowed
& N_16
) != 0)
12114 || (g_size
== 32 && (types_allowed
& N_32
) != 0)
12115 || (g_size
== 64 && (types_allowed
& N_64
) != 0))
12116 g_type
= NT_untyped
;
12120 if ((thisarg
& N_KEY
) != 0)
12124 key_allowed
= thisarg
& ~N_KEY
;
12129 if ((thisarg
& N_VFP
) != 0)
12131 enum neon_shape_el regshape
;
12132 unsigned regwidth
, match
;
12134 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12137 first_error (_("invalid instruction shape"));
12140 regshape
= neon_shape_tab
[ns
].el
[i
];
12141 regwidth
= neon_shape_el_size
[regshape
];
12143 /* In VFP mode, operands must match register widths. If we
12144 have a key operand, use its width, else use the width of
12145 the current operand. */
12151 if (regwidth
!= match
)
12153 first_error (_("operand size must match register width"));
12158 if ((thisarg
& N_EQK
) == 0)
12160 unsigned given_type
= type_chk_of_el_type (g_type
, g_size
);
12162 if ((given_type
& types_allowed
) == 0)
12164 first_error (_("bad type in Neon instruction"));
12170 enum neon_el_type mod_k_type
= k_type
;
12171 unsigned mod_k_size
= k_size
;
12172 neon_modify_type_size (thisarg
, &mod_k_type
, &mod_k_size
);
12173 if (g_type
!= mod_k_type
|| g_size
!= mod_k_size
)
12175 first_error (_("inconsistent types in Neon instruction"));
12183 return inst
.vectype
.el
[key_el
];
12186 /* Neon-style VFP instruction forwarding. */
12188 /* Thumb VFP instructions have 0xE in the condition field. */
12191 do_vfp_cond_or_thumb (void)
12196 inst
.instruction
|= 0xe0000000;
12198 inst
.instruction
|= inst
.cond
<< 28;
12201 /* Look up and encode a simple mnemonic, for use as a helper function for the
12202 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12203 etc. It is assumed that operand parsing has already been done, and that the
12204 operands are in the form expected by the given opcode (this isn't necessarily
12205 the same as the form in which they were parsed, hence some massaging must
12206 take place before this function is called).
12207 Checks current arch version against that in the looked-up opcode. */
12210 do_vfp_nsyn_opcode (const char *opname
)
12212 const struct asm_opcode
*opcode
;
12214 opcode
= (const struct asm_opcode
*) hash_find (arm_ops_hsh
, opname
);
12219 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
,
12220 thumb_mode
? *opcode
->tvariant
: *opcode
->avariant
),
12227 inst
.instruction
= opcode
->tvalue
;
12228 opcode
->tencode ();
12232 inst
.instruction
= (inst
.cond
<< 28) | opcode
->avalue
;
12233 opcode
->aencode ();
12238 do_vfp_nsyn_add_sub (enum neon_shape rs
)
12240 int is_add
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vadd
;
12245 do_vfp_nsyn_opcode ("fadds");
12247 do_vfp_nsyn_opcode ("fsubs");
12252 do_vfp_nsyn_opcode ("faddd");
12254 do_vfp_nsyn_opcode ("fsubd");
12258 /* Check operand types to see if this is a VFP instruction, and if so call
12262 try_vfp_nsyn (int args
, void (*pfn
) (enum neon_shape
))
12264 enum neon_shape rs
;
12265 struct neon_type_el et
;
12270 rs
= neon_select_shape (NS_FF
, NS_DD
, NS_NULL
);
12271 et
= neon_check_type (2, rs
,
12272 N_EQK
| N_VFP
, N_F32
| N_F64
| N_KEY
| N_VFP
);
12276 rs
= neon_select_shape (NS_FFF
, NS_DDD
, NS_NULL
);
12277 et
= neon_check_type (3, rs
,
12278 N_EQK
| N_VFP
, N_EQK
| N_VFP
, N_F32
| N_F64
| N_KEY
| N_VFP
);
12285 if (et
.type
!= NT_invtype
)
12296 do_vfp_nsyn_mla_mls (enum neon_shape rs
)
12298 int is_mla
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vmla
;
12303 do_vfp_nsyn_opcode ("fmacs");
12305 do_vfp_nsyn_opcode ("fnmacs");
12310 do_vfp_nsyn_opcode ("fmacd");
12312 do_vfp_nsyn_opcode ("fnmacd");
12317 do_vfp_nsyn_fma_fms (enum neon_shape rs
)
12319 int is_fma
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vfma
;
12324 do_vfp_nsyn_opcode ("ffmas");
12326 do_vfp_nsyn_opcode ("ffnmas");
12331 do_vfp_nsyn_opcode ("ffmad");
12333 do_vfp_nsyn_opcode ("ffnmad");
12338 do_vfp_nsyn_mul (enum neon_shape rs
)
12341 do_vfp_nsyn_opcode ("fmuls");
12343 do_vfp_nsyn_opcode ("fmuld");
12347 do_vfp_nsyn_abs_neg (enum neon_shape rs
)
12349 int is_neg
= (inst
.instruction
& 0x80) != 0;
12350 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F32
| N_F64
| N_VFP
| N_KEY
);
12355 do_vfp_nsyn_opcode ("fnegs");
12357 do_vfp_nsyn_opcode ("fabss");
12362 do_vfp_nsyn_opcode ("fnegd");
12364 do_vfp_nsyn_opcode ("fabsd");
12368 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12369 insns belong to Neon, and are handled elsewhere. */
12372 do_vfp_nsyn_ldm_stm (int is_dbmode
)
12374 int is_ldm
= (inst
.instruction
& (1 << 20)) != 0;
12378 do_vfp_nsyn_opcode ("fldmdbs");
12380 do_vfp_nsyn_opcode ("fldmias");
12385 do_vfp_nsyn_opcode ("fstmdbs");
12387 do_vfp_nsyn_opcode ("fstmias");
12392 do_vfp_nsyn_sqrt (void)
12394 enum neon_shape rs
= neon_select_shape (NS_FF
, NS_DD
, NS_NULL
);
12395 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F32
| N_F64
| N_KEY
| N_VFP
);
12398 do_vfp_nsyn_opcode ("fsqrts");
12400 do_vfp_nsyn_opcode ("fsqrtd");
12404 do_vfp_nsyn_div (void)
12406 enum neon_shape rs
= neon_select_shape (NS_FFF
, NS_DDD
, NS_NULL
);
12407 neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
12408 N_F32
| N_F64
| N_KEY
| N_VFP
);
12411 do_vfp_nsyn_opcode ("fdivs");
12413 do_vfp_nsyn_opcode ("fdivd");
12417 do_vfp_nsyn_nmul (void)
12419 enum neon_shape rs
= neon_select_shape (NS_FFF
, NS_DDD
, NS_NULL
);
12420 neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
12421 N_F32
| N_F64
| N_KEY
| N_VFP
);
12425 NEON_ENCODE (SINGLE
, inst
);
12426 do_vfp_sp_dyadic ();
12430 NEON_ENCODE (DOUBLE
, inst
);
12431 do_vfp_dp_rd_rn_rm ();
12433 do_vfp_cond_or_thumb ();
12437 do_vfp_nsyn_cmp (void)
12439 if (inst
.operands
[1].isreg
)
12441 enum neon_shape rs
= neon_select_shape (NS_FF
, NS_DD
, NS_NULL
);
12442 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F32
| N_F64
| N_KEY
| N_VFP
);
12446 NEON_ENCODE (SINGLE
, inst
);
12447 do_vfp_sp_monadic ();
12451 NEON_ENCODE (DOUBLE
, inst
);
12452 do_vfp_dp_rd_rm ();
12457 enum neon_shape rs
= neon_select_shape (NS_FI
, NS_DI
, NS_NULL
);
12458 neon_check_type (2, rs
, N_F32
| N_F64
| N_KEY
| N_VFP
, N_EQK
);
12460 switch (inst
.instruction
& 0x0fffffff)
12463 inst
.instruction
+= N_MNEM_vcmpz
- N_MNEM_vcmp
;
12466 inst
.instruction
+= N_MNEM_vcmpez
- N_MNEM_vcmpe
;
12474 NEON_ENCODE (SINGLE
, inst
);
12475 do_vfp_sp_compare_z ();
12479 NEON_ENCODE (DOUBLE
, inst
);
12483 do_vfp_cond_or_thumb ();
12487 nsyn_insert_sp (void)
12489 inst
.operands
[1] = inst
.operands
[0];
12490 memset (&inst
.operands
[0], '\0', sizeof (inst
.operands
[0]));
12491 inst
.operands
[0].reg
= REG_SP
;
12492 inst
.operands
[0].isreg
= 1;
12493 inst
.operands
[0].writeback
= 1;
12494 inst
.operands
[0].present
= 1;
12498 do_vfp_nsyn_push (void)
12501 if (inst
.operands
[1].issingle
)
12502 do_vfp_nsyn_opcode ("fstmdbs");
12504 do_vfp_nsyn_opcode ("fstmdbd");
12508 do_vfp_nsyn_pop (void)
12511 if (inst
.operands
[1].issingle
)
12512 do_vfp_nsyn_opcode ("fldmias");
12514 do_vfp_nsyn_opcode ("fldmiad");
12517 /* Fix up Neon data-processing instructions, ORing in the correct bits for
12518 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
12521 neon_dp_fixup (struct arm_it
* insn
)
12523 unsigned int i
= insn
->instruction
;
12528 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
12539 insn
->instruction
= i
;
12542 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
12546 neon_logbits (unsigned x
)
12548 return ffs (x
) - 4;
12551 #define LOW4(R) ((R) & 0xf)
12552 #define HI1(R) (((R) >> 4) & 1)
12554 /* Encode insns with bit pattern:
12556 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12557 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
12559 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
12560 different meaning for some instruction. */
12563 neon_three_same (int isquad
, int ubit
, int size
)
12565 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
12566 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
12567 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
12568 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
12569 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
12570 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
12571 inst
.instruction
|= (isquad
!= 0) << 6;
12572 inst
.instruction
|= (ubit
!= 0) << 24;
12574 inst
.instruction
|= neon_logbits (size
) << 20;
12576 neon_dp_fixup (&inst
);
12579 /* Encode instructions of the form:
12581 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
12582 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
12584 Don't write size if SIZE == -1. */
12587 neon_two_same (int qbit
, int ubit
, int size
)
12589 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
12590 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
12591 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
12592 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
12593 inst
.instruction
|= (qbit
!= 0) << 6;
12594 inst
.instruction
|= (ubit
!= 0) << 24;
12597 inst
.instruction
|= neon_logbits (size
) << 18;
12599 neon_dp_fixup (&inst
);
12602 /* Neon instruction encoders, in approximate order of appearance. */
12605 do_neon_dyadic_i_su (void)
12607 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
12608 struct neon_type_el et
= neon_check_type (3, rs
,
12609 N_EQK
, N_EQK
, N_SU_32
| N_KEY
);
12610 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
12614 do_neon_dyadic_i64_su (void)
12616 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
12617 struct neon_type_el et
= neon_check_type (3, rs
,
12618 N_EQK
, N_EQK
, N_SU_ALL
| N_KEY
);
12619 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
12623 neon_imm_shift (int write_ubit
, int uval
, int isquad
, struct neon_type_el et
,
12626 unsigned size
= et
.size
>> 3;
12627 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
12628 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
12629 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
12630 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
12631 inst
.instruction
|= (isquad
!= 0) << 6;
12632 inst
.instruction
|= immbits
<< 16;
12633 inst
.instruction
|= (size
>> 3) << 7;
12634 inst
.instruction
|= (size
& 0x7) << 19;
12636 inst
.instruction
|= (uval
!= 0) << 24;
12638 neon_dp_fixup (&inst
);
12642 do_neon_shl_imm (void)
12644 if (!inst
.operands
[2].isreg
)
12646 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
12647 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_KEY
| N_I_ALL
);
12648 NEON_ENCODE (IMMED
, inst
);
12649 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, inst
.operands
[2].imm
);
12653 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
12654 struct neon_type_el et
= neon_check_type (3, rs
,
12655 N_EQK
, N_SU_ALL
| N_KEY
, N_EQK
| N_SGN
);
12658 /* VSHL/VQSHL 3-register variants have syntax such as:
12660 whereas other 3-register operations encoded by neon_three_same have
12663 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
12665 tmp
= inst
.operands
[2].reg
;
12666 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
12667 inst
.operands
[1].reg
= tmp
;
12668 NEON_ENCODE (INTEGER
, inst
);
12669 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
12674 do_neon_qshl_imm (void)
12676 if (!inst
.operands
[2].isreg
)
12678 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
12679 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_ALL
| N_KEY
);
12681 NEON_ENCODE (IMMED
, inst
);
12682 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, neon_quad (rs
), et
,
12683 inst
.operands
[2].imm
);
12687 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
12688 struct neon_type_el et
= neon_check_type (3, rs
,
12689 N_EQK
, N_SU_ALL
| N_KEY
, N_EQK
| N_SGN
);
12692 /* See note in do_neon_shl_imm. */
12693 tmp
= inst
.operands
[2].reg
;
12694 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
12695 inst
.operands
[1].reg
= tmp
;
12696 NEON_ENCODE (INTEGER
, inst
);
12697 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
12702 do_neon_rshl (void)
12704 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
12705 struct neon_type_el et
= neon_check_type (3, rs
,
12706 N_EQK
, N_EQK
, N_SU_ALL
| N_KEY
);
12709 tmp
= inst
.operands
[2].reg
;
12710 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
12711 inst
.operands
[1].reg
= tmp
;
12712 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
12716 neon_cmode_for_logic_imm (unsigned immediate
, unsigned *immbits
, int size
)
12718 /* Handle .I8 pseudo-instructions. */
12721 /* Unfortunately, this will make everything apart from zero out-of-range.
12722 FIXME is this the intended semantics? There doesn't seem much point in
12723 accepting .I8 if so. */
12724 immediate
|= immediate
<< 8;
12730 if (immediate
== (immediate
& 0x000000ff))
12732 *immbits
= immediate
;
12735 else if (immediate
== (immediate
& 0x0000ff00))
12737 *immbits
= immediate
>> 8;
12740 else if (immediate
== (immediate
& 0x00ff0000))
12742 *immbits
= immediate
>> 16;
12745 else if (immediate
== (immediate
& 0xff000000))
12747 *immbits
= immediate
>> 24;
12750 if ((immediate
& 0xffff) != (immediate
>> 16))
12751 goto bad_immediate
;
12752 immediate
&= 0xffff;
12755 if (immediate
== (immediate
& 0x000000ff))
12757 *immbits
= immediate
;
12760 else if (immediate
== (immediate
& 0x0000ff00))
12762 *immbits
= immediate
>> 8;
12767 first_error (_("immediate value out of range"));
12771 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
12775 neon_bits_same_in_bytes (unsigned imm
)
12777 return ((imm
& 0x000000ff) == 0 || (imm
& 0x000000ff) == 0x000000ff)
12778 && ((imm
& 0x0000ff00) == 0 || (imm
& 0x0000ff00) == 0x0000ff00)
12779 && ((imm
& 0x00ff0000) == 0 || (imm
& 0x00ff0000) == 0x00ff0000)
12780 && ((imm
& 0xff000000) == 0 || (imm
& 0xff000000) == 0xff000000);
12783 /* For immediate of above form, return 0bABCD. */
12786 neon_squash_bits (unsigned imm
)
12788 return (imm
& 0x01) | ((imm
& 0x0100) >> 7) | ((imm
& 0x010000) >> 14)
12789 | ((imm
& 0x01000000) >> 21);
12792 /* Compress quarter-float representation to 0b...000 abcdefgh. */
12795 neon_qfloat_bits (unsigned imm
)
12797 return ((imm
>> 19) & 0x7f) | ((imm
>> 24) & 0x80);
12800 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
12801 the instruction. *OP is passed as the initial value of the op field, and
12802 may be set to a different value depending on the constant (i.e.
12803 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
12804 MVN). If the immediate looks like a repeated pattern then also
12805 try smaller element sizes. */
12808 neon_cmode_for_move_imm (unsigned immlo
, unsigned immhi
, int float_p
,
12809 unsigned *immbits
, int *op
, int size
,
12810 enum neon_el_type type
)
12812 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
12814 if (type
== NT_float
&& !float_p
)
12817 if (type
== NT_float
&& is_quarter_float (immlo
) && immhi
== 0)
12819 if (size
!= 32 || *op
== 1)
12821 *immbits
= neon_qfloat_bits (immlo
);
12827 if (neon_bits_same_in_bytes (immhi
)
12828 && neon_bits_same_in_bytes (immlo
))
12832 *immbits
= (neon_squash_bits (immhi
) << 4)
12833 | neon_squash_bits (immlo
);
12838 if (immhi
!= immlo
)
12844 if (immlo
== (immlo
& 0x000000ff))
12849 else if (immlo
== (immlo
& 0x0000ff00))
12851 *immbits
= immlo
>> 8;
12854 else if (immlo
== (immlo
& 0x00ff0000))
12856 *immbits
= immlo
>> 16;
12859 else if (immlo
== (immlo
& 0xff000000))
12861 *immbits
= immlo
>> 24;
12864 else if (immlo
== ((immlo
& 0x0000ff00) | 0x000000ff))
12866 *immbits
= (immlo
>> 8) & 0xff;
12869 else if (immlo
== ((immlo
& 0x00ff0000) | 0x0000ffff))
12871 *immbits
= (immlo
>> 16) & 0xff;
12875 if ((immlo
& 0xffff) != (immlo
>> 16))
12882 if (immlo
== (immlo
& 0x000000ff))
12887 else if (immlo
== (immlo
& 0x0000ff00))
12889 *immbits
= immlo
>> 8;
12893 if ((immlo
& 0xff) != (immlo
>> 8))
12898 if (immlo
== (immlo
& 0x000000ff))
12900 /* Don't allow MVN with 8-bit immediate. */
12910 /* Write immediate bits [7:0] to the following locations:
12912 |28/24|23 19|18 16|15 4|3 0|
12913 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
12915 This function is used by VMOV/VMVN/VORR/VBIC. */
12918 neon_write_immbits (unsigned immbits
)
12920 inst
.instruction
|= immbits
& 0xf;
12921 inst
.instruction
|= ((immbits
>> 4) & 0x7) << 16;
12922 inst
.instruction
|= ((immbits
>> 7) & 0x1) << 24;
12925 /* Invert low-order SIZE bits of XHI:XLO. */
12928 neon_invert_size (unsigned *xlo
, unsigned *xhi
, int size
)
12930 unsigned immlo
= xlo
? *xlo
: 0;
12931 unsigned immhi
= xhi
? *xhi
: 0;
12936 immlo
= (~immlo
) & 0xff;
12940 immlo
= (~immlo
) & 0xffff;
12944 immhi
= (~immhi
) & 0xffffffff;
12945 /* fall through. */
12948 immlo
= (~immlo
) & 0xffffffff;
12963 do_neon_logic (void)
12965 if (inst
.operands
[2].present
&& inst
.operands
[2].isreg
)
12967 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
12968 neon_check_type (3, rs
, N_IGNORE_TYPE
);
12969 /* U bit and size field were set as part of the bitmask. */
12970 NEON_ENCODE (INTEGER
, inst
);
12971 neon_three_same (neon_quad (rs
), 0, -1);
12975 const int three_ops_form
= (inst
.operands
[2].present
12976 && !inst
.operands
[2].isreg
);
12977 const int immoperand
= (three_ops_form
? 2 : 1);
12978 enum neon_shape rs
= (three_ops_form
12979 ? neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
)
12980 : neon_select_shape (NS_DI
, NS_QI
, NS_NULL
));
12981 struct neon_type_el et
= neon_check_type (2, rs
,
12982 N_I8
| N_I16
| N_I32
| N_I64
| N_F32
| N_KEY
, N_EQK
);
12983 enum neon_opc opcode
= (enum neon_opc
) inst
.instruction
& 0x0fffffff;
12987 if (et
.type
== NT_invtype
)
12990 if (three_ops_form
)
12991 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
12992 _("first and second operands shall be the same register"));
12994 NEON_ENCODE (IMMED
, inst
);
12996 immbits
= inst
.operands
[immoperand
].imm
;
12999 /* .i64 is a pseudo-op, so the immediate must be a repeating
13001 if (immbits
!= (inst
.operands
[immoperand
].regisimm
?
13002 inst
.operands
[immoperand
].reg
: 0))
13004 /* Set immbits to an invalid constant. */
13005 immbits
= 0xdeadbeef;
13012 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
13016 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
13020 /* Pseudo-instruction for VBIC. */
13021 neon_invert_size (&immbits
, 0, et
.size
);
13022 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
13026 /* Pseudo-instruction for VORR. */
13027 neon_invert_size (&immbits
, 0, et
.size
);
13028 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
13038 inst
.instruction
|= neon_quad (rs
) << 6;
13039 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13040 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13041 inst
.instruction
|= cmode
<< 8;
13042 neon_write_immbits (immbits
);
13044 neon_dp_fixup (&inst
);
13049 do_neon_bitfield (void)
13051 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13052 neon_check_type (3, rs
, N_IGNORE_TYPE
);
13053 neon_three_same (neon_quad (rs
), 0, -1);
13057 neon_dyadic_misc (enum neon_el_type ubit_meaning
, unsigned types
,
13060 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13061 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
| destbits
, N_EQK
,
13063 if (et
.type
== NT_float
)
13065 NEON_ENCODE (FLOAT
, inst
);
13066 neon_three_same (neon_quad (rs
), 0, -1);
13070 NEON_ENCODE (INTEGER
, inst
);
13071 neon_three_same (neon_quad (rs
), et
.type
== ubit_meaning
, et
.size
);
13076 do_neon_dyadic_if_su (void)
13078 neon_dyadic_misc (NT_unsigned
, N_SUF_32
, 0);
13082 do_neon_dyadic_if_su_d (void)
13084 /* This version only allow D registers, but that constraint is enforced during
13085 operand parsing so we don't need to do anything extra here. */
13086 neon_dyadic_misc (NT_unsigned
, N_SUF_32
, 0);
13090 do_neon_dyadic_if_i_d (void)
13092 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13093 affected if we specify unsigned args. */
13094 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
13097 enum vfp_or_neon_is_neon_bits
13100 NEON_CHECK_ARCH
= 2
13103 /* Call this function if an instruction which may have belonged to the VFP or
13104 Neon instruction sets, but turned out to be a Neon instruction (due to the
13105 operand types involved, etc.). We have to check and/or fix-up a couple of
13108 - Make sure the user hasn't attempted to make a Neon instruction
13110 - Alter the value in the condition code field if necessary.
13111 - Make sure that the arch supports Neon instructions.
13113 Which of these operations take place depends on bits from enum
13114 vfp_or_neon_is_neon_bits.
13116 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13117 current instruction's condition is COND_ALWAYS, the condition field is
13118 changed to inst.uncond_value. This is necessary because instructions shared
13119 between VFP and Neon may be conditional for the VFP variants only, and the
13120 unconditional Neon version must have, e.g., 0xF in the condition field. */
13123 vfp_or_neon_is_neon (unsigned check
)
13125 /* Conditions are always legal in Thumb mode (IT blocks). */
13126 if (!thumb_mode
&& (check
& NEON_CHECK_CC
))
13128 if (inst
.cond
!= COND_ALWAYS
)
13130 first_error (_(BAD_COND
));
13133 if (inst
.uncond_value
!= -1)
13134 inst
.instruction
|= inst
.uncond_value
<< 28;
13137 if ((check
& NEON_CHECK_ARCH
)
13138 && !ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
))
13140 first_error (_(BAD_FPU
));
13148 do_neon_addsub_if_i (void)
13150 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub
) == SUCCESS
)
13153 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
13156 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13157 affected if we specify unsigned args. */
13158 neon_dyadic_misc (NT_untyped
, N_IF_32
| N_I64
, 0);
13161 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13163 V<op> A,B (A is operand 0, B is operand 2)
13168 so handle that case specially. */
13171 neon_exchange_operands (void)
13173 void *scratch
= alloca (sizeof (inst
.operands
[0]));
13174 if (inst
.operands
[1].present
)
13176 /* Swap operands[1] and operands[2]. */
13177 memcpy (scratch
, &inst
.operands
[1], sizeof (inst
.operands
[0]));
13178 inst
.operands
[1] = inst
.operands
[2];
13179 memcpy (&inst
.operands
[2], scratch
, sizeof (inst
.operands
[0]));
13183 inst
.operands
[1] = inst
.operands
[2];
13184 inst
.operands
[2] = inst
.operands
[0];
13189 neon_compare (unsigned regtypes
, unsigned immtypes
, int invert
)
13191 if (inst
.operands
[2].isreg
)
13194 neon_exchange_operands ();
13195 neon_dyadic_misc (NT_unsigned
, regtypes
, N_SIZ
);
13199 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
13200 struct neon_type_el et
= neon_check_type (2, rs
,
13201 N_EQK
| N_SIZ
, immtypes
| N_KEY
);
13203 NEON_ENCODE (IMMED
, inst
);
13204 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13205 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13206 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
13207 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
13208 inst
.instruction
|= neon_quad (rs
) << 6;
13209 inst
.instruction
|= (et
.type
== NT_float
) << 10;
13210 inst
.instruction
|= neon_logbits (et
.size
) << 18;
13212 neon_dp_fixup (&inst
);
13219 neon_compare (N_SUF_32
, N_S8
| N_S16
| N_S32
| N_F32
, FALSE
);
13223 do_neon_cmp_inv (void)
13225 neon_compare (N_SUF_32
, N_S8
| N_S16
| N_S32
| N_F32
, TRUE
);
13231 neon_compare (N_IF_32
, N_IF_32
, FALSE
);
13234 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
13235 scalars, which are encoded in 5 bits, M : Rm.
13236 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13237 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13241 neon_scalar_for_mul (unsigned scalar
, unsigned elsize
)
13243 unsigned regno
= NEON_SCALAR_REG (scalar
);
13244 unsigned elno
= NEON_SCALAR_INDEX (scalar
);
13249 if (regno
> 7 || elno
> 3)
13251 return regno
| (elno
<< 3);
13254 if (regno
> 15 || elno
> 1)
13256 return regno
| (elno
<< 4);
13260 first_error (_("scalar out of range for multiply instruction"));
13266 /* Encode multiply / multiply-accumulate scalar instructions. */
13269 neon_mul_mac (struct neon_type_el et
, int ubit
)
13273 /* Give a more helpful error message if we have an invalid type. */
13274 if (et
.type
== NT_invtype
)
13277 scalar
= neon_scalar_for_mul (inst
.operands
[2].reg
, et
.size
);
13278 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13279 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13280 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
13281 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
13282 inst
.instruction
|= LOW4 (scalar
);
13283 inst
.instruction
|= HI1 (scalar
) << 5;
13284 inst
.instruction
|= (et
.type
== NT_float
) << 8;
13285 inst
.instruction
|= neon_logbits (et
.size
) << 20;
13286 inst
.instruction
|= (ubit
!= 0) << 24;
13288 neon_dp_fixup (&inst
);
13292 do_neon_mac_maybe_scalar (void)
13294 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls
) == SUCCESS
)
13297 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
13300 if (inst
.operands
[2].isscalar
)
13302 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
13303 struct neon_type_el et
= neon_check_type (3, rs
,
13304 N_EQK
, N_EQK
, N_I16
| N_I32
| N_F32
| N_KEY
);
13305 NEON_ENCODE (SCALAR
, inst
);
13306 neon_mul_mac (et
, neon_quad (rs
));
13310 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13311 affected if we specify unsigned args. */
13312 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
13317 do_neon_fmac (void)
13319 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms
) == SUCCESS
)
13322 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
13325 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
13331 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13332 struct neon_type_el et
= neon_check_type (3, rs
,
13333 N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
13334 neon_three_same (neon_quad (rs
), 0, et
.size
);
13337 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
13338 same types as the MAC equivalents. The polynomial type for this instruction
13339 is encoded the same as the integer type. */
13344 if (try_vfp_nsyn (3, do_vfp_nsyn_mul
) == SUCCESS
)
13347 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
13350 if (inst
.operands
[2].isscalar
)
13351 do_neon_mac_maybe_scalar ();
13353 neon_dyadic_misc (NT_poly
, N_I8
| N_I16
| N_I32
| N_F32
| N_P8
, 0);
13357 do_neon_qdmulh (void)
13359 if (inst
.operands
[2].isscalar
)
13361 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
13362 struct neon_type_el et
= neon_check_type (3, rs
,
13363 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
13364 NEON_ENCODE (SCALAR
, inst
);
13365 neon_mul_mac (et
, neon_quad (rs
));
13369 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13370 struct neon_type_el et
= neon_check_type (3, rs
,
13371 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
13372 NEON_ENCODE (INTEGER
, inst
);
13373 /* The U bit (rounding) comes from bit mask. */
13374 neon_three_same (neon_quad (rs
), 0, et
.size
);
13379 do_neon_fcmp_absolute (void)
13381 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13382 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_F32
| N_KEY
);
13383 /* Size field comes from bit mask. */
13384 neon_three_same (neon_quad (rs
), 1, -1);
13388 do_neon_fcmp_absolute_inv (void)
13390 neon_exchange_operands ();
13391 do_neon_fcmp_absolute ();
13395 do_neon_step (void)
13397 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13398 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_F32
| N_KEY
);
13399 neon_three_same (neon_quad (rs
), 0, -1);
13403 do_neon_abs_neg (void)
13405 enum neon_shape rs
;
13406 struct neon_type_el et
;
13408 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg
) == SUCCESS
)
13411 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
13414 rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
13415 et
= neon_check_type (2, rs
, N_EQK
, N_S8
| N_S16
| N_S32
| N_F32
| N_KEY
);
13417 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13418 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13419 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
13420 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
13421 inst
.instruction
|= neon_quad (rs
) << 6;
13422 inst
.instruction
|= (et
.type
== NT_float
) << 10;
13423 inst
.instruction
|= neon_logbits (et
.size
) << 18;
13425 neon_dp_fixup (&inst
);
13431 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
13432 struct neon_type_el et
= neon_check_type (2, rs
,
13433 N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
13434 int imm
= inst
.operands
[2].imm
;
13435 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
13436 _("immediate out of range for insert"));
13437 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
13443 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
13444 struct neon_type_el et
= neon_check_type (2, rs
,
13445 N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
13446 int imm
= inst
.operands
[2].imm
;
13447 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
13448 _("immediate out of range for insert"));
13449 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, et
.size
- imm
);
13453 do_neon_qshlu_imm (void)
13455 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
13456 struct neon_type_el et
= neon_check_type (2, rs
,
13457 N_EQK
| N_UNS
, N_S8
| N_S16
| N_S32
| N_S64
| N_KEY
);
13458 int imm
= inst
.operands
[2].imm
;
13459 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
13460 _("immediate out of range for shift"));
13461 /* Only encodes the 'U present' variant of the instruction.
13462 In this case, signed types have OP (bit 8) set to 0.
13463 Unsigned types have OP set to 1. */
13464 inst
.instruction
|= (et
.type
== NT_unsigned
) << 8;
13465 /* The rest of the bits are the same as other immediate shifts. */
13466 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
13470 do_neon_qmovn (void)
13472 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
13473 N_EQK
| N_HLF
, N_SU_16_64
| N_KEY
);
13474 /* Saturating move where operands can be signed or unsigned, and the
13475 destination has the same signedness. */
13476 NEON_ENCODE (INTEGER
, inst
);
13477 if (et
.type
== NT_unsigned
)
13478 inst
.instruction
|= 0xc0;
13480 inst
.instruction
|= 0x80;
13481 neon_two_same (0, 1, et
.size
/ 2);
13485 do_neon_qmovun (void)
13487 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
13488 N_EQK
| N_HLF
| N_UNS
, N_S16
| N_S32
| N_S64
| N_KEY
);
13489 /* Saturating move with unsigned results. Operands must be signed. */
13490 NEON_ENCODE (INTEGER
, inst
);
13491 neon_two_same (0, 1, et
.size
/ 2);
13495 do_neon_rshift_sat_narrow (void)
13497 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13498 or unsigned. If operands are unsigned, results must also be unsigned. */
13499 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
13500 N_EQK
| N_HLF
, N_SU_16_64
| N_KEY
);
13501 int imm
= inst
.operands
[2].imm
;
13502 /* This gets the bounds check, size encoding and immediate bits calculation
13506 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
13507 VQMOVN.I<size> <Dd>, <Qm>. */
13510 inst
.operands
[2].present
= 0;
13511 inst
.instruction
= N_MNEM_vqmovn
;
13516 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
13517 _("immediate out of range"));
13518 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, 0, et
, et
.size
- imm
);
13522 do_neon_rshift_sat_narrow_u (void)
13524 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13525 or unsigned. If operands are unsigned, results must also be unsigned. */
13526 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
13527 N_EQK
| N_HLF
| N_UNS
, N_S16
| N_S32
| N_S64
| N_KEY
);
13528 int imm
= inst
.operands
[2].imm
;
13529 /* This gets the bounds check, size encoding and immediate bits calculation
13533 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
13534 VQMOVUN.I<size> <Dd>, <Qm>. */
13537 inst
.operands
[2].present
= 0;
13538 inst
.instruction
= N_MNEM_vqmovun
;
13543 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
13544 _("immediate out of range"));
13545 /* FIXME: The manual is kind of unclear about what value U should have in
13546 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
13548 neon_imm_shift (TRUE
, 1, 0, et
, et
.size
- imm
);
13552 do_neon_movn (void)
13554 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
13555 N_EQK
| N_HLF
, N_I16
| N_I32
| N_I64
| N_KEY
);
13556 NEON_ENCODE (INTEGER
, inst
);
13557 neon_two_same (0, 1, et
.size
/ 2);
13561 do_neon_rshift_narrow (void)
13563 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
13564 N_EQK
| N_HLF
, N_I16
| N_I32
| N_I64
| N_KEY
);
13565 int imm
= inst
.operands
[2].imm
;
13566 /* This gets the bounds check, size encoding and immediate bits calculation
13570 /* If immediate is zero then we are a pseudo-instruction for
13571 VMOVN.I<size> <Dd>, <Qm> */
13574 inst
.operands
[2].present
= 0;
13575 inst
.instruction
= N_MNEM_vmovn
;
13580 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
13581 _("immediate out of range for narrowing operation"));
13582 neon_imm_shift (FALSE
, 0, 0, et
, et
.size
- imm
);
13586 do_neon_shll (void)
13588 /* FIXME: Type checking when lengthening. */
13589 struct neon_type_el et
= neon_check_type (2, NS_QDI
,
13590 N_EQK
| N_DBL
, N_I8
| N_I16
| N_I32
| N_KEY
);
13591 unsigned imm
= inst
.operands
[2].imm
;
13593 if (imm
== et
.size
)
13595 /* Maximum shift variant. */
13596 NEON_ENCODE (INTEGER
, inst
);
13597 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13598 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13599 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
13600 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
13601 inst
.instruction
|= neon_logbits (et
.size
) << 18;
13603 neon_dp_fixup (&inst
);
13607 /* A more-specific type check for non-max versions. */
13608 et
= neon_check_type (2, NS_QDI
,
13609 N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
13610 NEON_ENCODE (IMMED
, inst
);
13611 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, 0, et
, imm
);
13615 /* Check the various types for the VCVT instruction, and return which version
13616 the current instruction is. */
13619 neon_cvt_flavour (enum neon_shape rs
)
13621 #define CVT_VAR(C,X,Y) \
13622 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
13623 if (et.type != NT_invtype) \
13625 inst.error = NULL; \
13628 struct neon_type_el et
;
13629 unsigned whole_reg
= (rs
== NS_FFI
|| rs
== NS_FD
|| rs
== NS_DF
13630 || rs
== NS_FF
) ? N_VFP
: 0;
13631 /* The instruction versions which take an immediate take one register
13632 argument, which is extended to the width of the full register. Thus the
13633 "source" and "destination" registers must have the same width. Hack that
13634 here by making the size equal to the key (wider, in this case) operand. */
13635 unsigned key
= (rs
== NS_QQI
|| rs
== NS_DDI
|| rs
== NS_FFI
) ? N_KEY
: 0;
13637 CVT_VAR (0, N_S32
, N_F32
);
13638 CVT_VAR (1, N_U32
, N_F32
);
13639 CVT_VAR (2, N_F32
, N_S32
);
13640 CVT_VAR (3, N_F32
, N_U32
);
13641 /* Half-precision conversions. */
13642 CVT_VAR (4, N_F32
, N_F16
);
13643 CVT_VAR (5, N_F16
, N_F32
);
13647 /* VFP instructions. */
13648 CVT_VAR (6, N_F32
, N_F64
);
13649 CVT_VAR (7, N_F64
, N_F32
);
13650 CVT_VAR (8, N_S32
, N_F64
| key
);
13651 CVT_VAR (9, N_U32
, N_F64
| key
);
13652 CVT_VAR (10, N_F64
| key
, N_S32
);
13653 CVT_VAR (11, N_F64
| key
, N_U32
);
13654 /* VFP instructions with bitshift. */
13655 CVT_VAR (12, N_F32
| key
, N_S16
);
13656 CVT_VAR (13, N_F32
| key
, N_U16
);
13657 CVT_VAR (14, N_F64
| key
, N_S16
);
13658 CVT_VAR (15, N_F64
| key
, N_U16
);
13659 CVT_VAR (16, N_S16
, N_F32
| key
);
13660 CVT_VAR (17, N_U16
, N_F32
| key
);
13661 CVT_VAR (18, N_S16
, N_F64
| key
);
13662 CVT_VAR (19, N_U16
, N_F64
| key
);
13668 /* Neon-syntax VFP conversions. */
13671 do_vfp_nsyn_cvt (enum neon_shape rs
, int flavour
)
13673 const char *opname
= 0;
13675 if (rs
== NS_DDI
|| rs
== NS_QQI
|| rs
== NS_FFI
)
13677 /* Conversions with immediate bitshift. */
13678 const char *enc
[] =
13702 if (flavour
>= 0 && flavour
< (int) ARRAY_SIZE (enc
))
13704 opname
= enc
[flavour
];
13705 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
13706 _("operands 0 and 1 must be the same register"));
13707 inst
.operands
[1] = inst
.operands
[2];
13708 memset (&inst
.operands
[2], '\0', sizeof (inst
.operands
[2]));
13713 /* Conversions without bitshift. */
13714 const char *enc
[] =
13730 if (flavour
>= 0 && flavour
< (int) ARRAY_SIZE (enc
))
13731 opname
= enc
[flavour
];
13735 do_vfp_nsyn_opcode (opname
);
13739 do_vfp_nsyn_cvtz (void)
13741 enum neon_shape rs
= neon_select_shape (NS_FF
, NS_FD
, NS_NULL
);
13742 int flavour
= neon_cvt_flavour (rs
);
13743 const char *enc
[] =
13757 if (flavour
>= 0 && flavour
< (int) ARRAY_SIZE (enc
) && enc
[flavour
])
13758 do_vfp_nsyn_opcode (enc
[flavour
]);
13762 do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED
)
13764 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_FFI
, NS_DD
, NS_QQ
,
13765 NS_FD
, NS_DF
, NS_FF
, NS_QD
, NS_DQ
, NS_NULL
);
13766 int flavour
= neon_cvt_flavour (rs
);
13768 /* PR11109: Handle round-to-zero for VCVT conversions. */
13770 && ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_arch_vfp_v2
)
13771 && (flavour
== 0 || flavour
== 1 || flavour
== 8 || flavour
== 9)
13772 && (rs
== NS_FD
|| rs
== NS_FF
))
13774 do_vfp_nsyn_cvtz ();
13778 /* VFP rather than Neon conversions. */
13781 do_vfp_nsyn_cvt (rs
, flavour
);
13791 unsigned enctab
[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
13793 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
13796 /* Fixed-point conversion with #0 immediate is encoded as an
13797 integer conversion. */
13798 if (inst
.operands
[2].present
&& inst
.operands
[2].imm
== 0)
13800 immbits
= 32 - inst
.operands
[2].imm
;
13801 NEON_ENCODE (IMMED
, inst
);
13803 inst
.instruction
|= enctab
[flavour
];
13804 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13805 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13806 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
13807 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
13808 inst
.instruction
|= neon_quad (rs
) << 6;
13809 inst
.instruction
|= 1 << 21;
13810 inst
.instruction
|= immbits
<< 16;
13812 neon_dp_fixup (&inst
);
13820 unsigned enctab
[] = { 0x100, 0x180, 0x0, 0x080 };
13822 NEON_ENCODE (INTEGER
, inst
);
13824 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
13828 inst
.instruction
|= enctab
[flavour
];
13830 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13831 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13832 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
13833 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
13834 inst
.instruction
|= neon_quad (rs
) << 6;
13835 inst
.instruction
|= 2 << 18;
13837 neon_dp_fixup (&inst
);
13841 /* Half-precision conversions for Advanced SIMD -- neon. */
13846 && (inst
.vectype
.el
[0].size
!= 16 || inst
.vectype
.el
[1].size
!= 32))
13848 as_bad (_("operand size must match register width"));
13853 && ((inst
.vectype
.el
[0].size
!= 32 || inst
.vectype
.el
[1].size
!= 16)))
13855 as_bad (_("operand size must match register width"));
13860 inst
.instruction
= 0x3b60600;
13862 inst
.instruction
= 0x3b60700;
13864 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13865 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13866 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
13867 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
13868 neon_dp_fixup (&inst
);
13872 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
13873 do_vfp_nsyn_cvt (rs
, flavour
);
13878 do_neon_cvtr (void)
13880 do_neon_cvt_1 (FALSE
);
13886 do_neon_cvt_1 (TRUE
);
13890 do_neon_cvtb (void)
13892 inst
.instruction
= 0xeb20a40;
13894 /* The sizes are attached to the mnemonic. */
13895 if (inst
.vectype
.el
[0].type
!= NT_invtype
13896 && inst
.vectype
.el
[0].size
== 16)
13897 inst
.instruction
|= 0x00010000;
13899 /* Programmer's syntax: the sizes are attached to the operands. */
13900 else if (inst
.operands
[0].vectype
.type
!= NT_invtype
13901 && inst
.operands
[0].vectype
.size
== 16)
13902 inst
.instruction
|= 0x00010000;
13904 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
13905 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sm
);
13906 do_vfp_cond_or_thumb ();
13911 do_neon_cvtt (void)
13914 inst
.instruction
|= 0x80;
13918 neon_move_immediate (void)
13920 enum neon_shape rs
= neon_select_shape (NS_DI
, NS_QI
, NS_NULL
);
13921 struct neon_type_el et
= neon_check_type (2, rs
,
13922 N_I8
| N_I16
| N_I32
| N_I64
| N_F32
| N_KEY
, N_EQK
);
13923 unsigned immlo
, immhi
= 0, immbits
;
13924 int op
, cmode
, float_p
;
13926 constraint (et
.type
== NT_invtype
,
13927 _("operand size must be specified for immediate VMOV"));
13929 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
13930 op
= (inst
.instruction
& (1 << 5)) != 0;
13932 immlo
= inst
.operands
[1].imm
;
13933 if (inst
.operands
[1].regisimm
)
13934 immhi
= inst
.operands
[1].reg
;
13936 constraint (et
.size
< 32 && (immlo
& ~((1 << et
.size
) - 1)) != 0,
13937 _("immediate has bits set outside the operand size"));
13939 float_p
= inst
.operands
[1].immisfloat
;
13941 if ((cmode
= neon_cmode_for_move_imm (immlo
, immhi
, float_p
, &immbits
, &op
,
13942 et
.size
, et
.type
)) == FAIL
)
13944 /* Invert relevant bits only. */
13945 neon_invert_size (&immlo
, &immhi
, et
.size
);
13946 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
13947 with one or the other; those cases are caught by
13948 neon_cmode_for_move_imm. */
13950 if ((cmode
= neon_cmode_for_move_imm (immlo
, immhi
, float_p
, &immbits
,
13951 &op
, et
.size
, et
.type
)) == FAIL
)
13953 first_error (_("immediate out of range"));
13958 inst
.instruction
&= ~(1 << 5);
13959 inst
.instruction
|= op
<< 5;
13961 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13962 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13963 inst
.instruction
|= neon_quad (rs
) << 6;
13964 inst
.instruction
|= cmode
<< 8;
13966 neon_write_immbits (immbits
);
13972 if (inst
.operands
[1].isreg
)
13974 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
13976 NEON_ENCODE (INTEGER
, inst
);
13977 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13978 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13979 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
13980 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
13981 inst
.instruction
|= neon_quad (rs
) << 6;
13985 NEON_ENCODE (IMMED
, inst
);
13986 neon_move_immediate ();
13989 neon_dp_fixup (&inst
);
13992 /* Encode instructions of form:
13994 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13995 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
13998 neon_mixed_length (struct neon_type_el et
, unsigned size
)
14000 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14001 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14002 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
14003 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
14004 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
14005 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
14006 inst
.instruction
|= (et
.type
== NT_unsigned
) << 24;
14007 inst
.instruction
|= neon_logbits (size
) << 20;
14009 neon_dp_fixup (&inst
);
14013 do_neon_dyadic_long (void)
14015 /* FIXME: Type checking for lengthening op. */
14016 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
14017 N_EQK
| N_DBL
, N_EQK
, N_SU_32
| N_KEY
);
14018 neon_mixed_length (et
, et
.size
);
14022 do_neon_abal (void)
14024 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
14025 N_EQK
| N_INT
| N_DBL
, N_EQK
, N_SU_32
| N_KEY
);
14026 neon_mixed_length (et
, et
.size
);
14030 neon_mac_reg_scalar_long (unsigned regtypes
, unsigned scalartypes
)
14032 if (inst
.operands
[2].isscalar
)
14034 struct neon_type_el et
= neon_check_type (3, NS_QDS
,
14035 N_EQK
| N_DBL
, N_EQK
, regtypes
| N_KEY
);
14036 NEON_ENCODE (SCALAR
, inst
);
14037 neon_mul_mac (et
, et
.type
== NT_unsigned
);
14041 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
14042 N_EQK
| N_DBL
, N_EQK
, scalartypes
| N_KEY
);
14043 NEON_ENCODE (INTEGER
, inst
);
14044 neon_mixed_length (et
, et
.size
);
14049 do_neon_mac_maybe_scalar_long (void)
14051 neon_mac_reg_scalar_long (N_S16
| N_S32
| N_U16
| N_U32
, N_SU_32
);
14055 do_neon_dyadic_wide (void)
14057 struct neon_type_el et
= neon_check_type (3, NS_QQD
,
14058 N_EQK
| N_DBL
, N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
14059 neon_mixed_length (et
, et
.size
);
14063 do_neon_dyadic_narrow (void)
14065 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
14066 N_EQK
| N_DBL
, N_EQK
, N_I16
| N_I32
| N_I64
| N_KEY
);
14067 /* Operand sign is unimportant, and the U bit is part of the opcode,
14068 so force the operand type to integer. */
14069 et
.type
= NT_integer
;
14070 neon_mixed_length (et
, et
.size
/ 2);
14074 do_neon_mul_sat_scalar_long (void)
14076 neon_mac_reg_scalar_long (N_S16
| N_S32
, N_S16
| N_S32
);
14080 do_neon_vmull (void)
14082 if (inst
.operands
[2].isscalar
)
14083 do_neon_mac_maybe_scalar_long ();
14086 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
14087 N_EQK
| N_DBL
, N_EQK
, N_SU_32
| N_P8
| N_KEY
);
14088 if (et
.type
== NT_poly
)
14089 NEON_ENCODE (POLY
, inst
);
14091 NEON_ENCODE (INTEGER
, inst
);
14092 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14093 zero. Should be OK as-is. */
14094 neon_mixed_length (et
, et
.size
);
14101 enum neon_shape rs
= neon_select_shape (NS_DDDI
, NS_QQQI
, NS_NULL
);
14102 struct neon_type_el et
= neon_check_type (3, rs
,
14103 N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
14104 unsigned imm
= (inst
.operands
[3].imm
* et
.size
) / 8;
14106 constraint (imm
>= (unsigned) (neon_quad (rs
) ? 16 : 8),
14107 _("shift out of range"));
14108 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14109 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14110 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
14111 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
14112 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
14113 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
14114 inst
.instruction
|= neon_quad (rs
) << 6;
14115 inst
.instruction
|= imm
<< 8;
14117 neon_dp_fixup (&inst
);
14123 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
14124 struct neon_type_el et
= neon_check_type (2, rs
,
14125 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
14126 unsigned op
= (inst
.instruction
>> 7) & 3;
14127 /* N (width of reversed regions) is encoded as part of the bitmask. We
14128 extract it here to check the elements to be reversed are smaller.
14129 Otherwise we'd get a reserved instruction. */
14130 unsigned elsize
= (op
== 2) ? 16 : (op
== 1) ? 32 : (op
== 0) ? 64 : 0;
14131 gas_assert (elsize
!= 0);
14132 constraint (et
.size
>= elsize
,
14133 _("elements must be smaller than reversal region"));
14134 neon_two_same (neon_quad (rs
), 1, et
.size
);
14140 if (inst
.operands
[1].isscalar
)
14142 enum neon_shape rs
= neon_select_shape (NS_DS
, NS_QS
, NS_NULL
);
14143 struct neon_type_el et
= neon_check_type (2, rs
,
14144 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
14145 unsigned sizebits
= et
.size
>> 3;
14146 unsigned dm
= NEON_SCALAR_REG (inst
.operands
[1].reg
);
14147 int logsize
= neon_logbits (et
.size
);
14148 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[1].reg
) << logsize
;
14150 if (vfp_or_neon_is_neon (NEON_CHECK_CC
) == FAIL
)
14153 NEON_ENCODE (SCALAR
, inst
);
14154 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14155 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14156 inst
.instruction
|= LOW4 (dm
);
14157 inst
.instruction
|= HI1 (dm
) << 5;
14158 inst
.instruction
|= neon_quad (rs
) << 6;
14159 inst
.instruction
|= x
<< 17;
14160 inst
.instruction
|= sizebits
<< 16;
14162 neon_dp_fixup (&inst
);
14166 enum neon_shape rs
= neon_select_shape (NS_DR
, NS_QR
, NS_NULL
);
14167 struct neon_type_el et
= neon_check_type (2, rs
,
14168 N_8
| N_16
| N_32
| N_KEY
, N_EQK
);
14169 /* Duplicate ARM register to lanes of vector. */
14170 NEON_ENCODE (ARMREG
, inst
);
14173 case 8: inst
.instruction
|= 0x400000; break;
14174 case 16: inst
.instruction
|= 0x000020; break;
14175 case 32: inst
.instruction
|= 0x000000; break;
14178 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 12;
14179 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 16;
14180 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 7;
14181 inst
.instruction
|= neon_quad (rs
) << 21;
14182 /* The encoding for this instruction is identical for the ARM and Thumb
14183 variants, except for the condition field. */
14184 do_vfp_cond_or_thumb ();
14188 /* VMOV has particularly many variations. It can be one of:
14189 0. VMOV<c><q> <Qd>, <Qm>
14190 1. VMOV<c><q> <Dd>, <Dm>
14191 (Register operations, which are VORR with Rm = Rn.)
14192 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14193 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14195 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14196 (ARM register to scalar.)
14197 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14198 (Two ARM registers to vector.)
14199 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14200 (Scalar to ARM register.)
14201 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14202 (Vector to two ARM registers.)
14203 8. VMOV.F32 <Sd>, <Sm>
14204 9. VMOV.F64 <Dd>, <Dm>
14205 (VFP register moves.)
14206 10. VMOV.F32 <Sd>, #imm
14207 11. VMOV.F64 <Dd>, #imm
14208 (VFP float immediate load.)
14209 12. VMOV <Rd>, <Sm>
14210 (VFP single to ARM reg.)
14211 13. VMOV <Sd>, <Rm>
14212 (ARM reg to VFP single.)
14213 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14214 (Two ARM regs to two VFP singles.)
14215 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14216 (Two VFP singles to two ARM regs.)
14218 These cases can be disambiguated using neon_select_shape, except cases 1/9
14219 and 3/11 which depend on the operand type too.
14221 All the encoded bits are hardcoded by this function.
14223 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14224 Cases 5, 7 may be used with VFPv2 and above.
14226 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
14227 can specify a type where it doesn't make sense to, and is ignored). */
14232 enum neon_shape rs
= neon_select_shape (NS_RRFF
, NS_FFRR
, NS_DRR
, NS_RRD
,
14233 NS_QQ
, NS_DD
, NS_QI
, NS_DI
, NS_SR
, NS_RS
, NS_FF
, NS_FI
, NS_RF
, NS_FR
,
14235 struct neon_type_el et
;
14236 const char *ldconst
= 0;
14240 case NS_DD
: /* case 1/9. */
14241 et
= neon_check_type (2, rs
, N_EQK
, N_F64
| N_KEY
);
14242 /* It is not an error here if no type is given. */
14244 if (et
.type
== NT_float
&& et
.size
== 64)
14246 do_vfp_nsyn_opcode ("fcpyd");
14249 /* fall through. */
14251 case NS_QQ
: /* case 0/1. */
14253 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
14255 /* The architecture manual I have doesn't explicitly state which
14256 value the U bit should have for register->register moves, but
14257 the equivalent VORR instruction has U = 0, so do that. */
14258 inst
.instruction
= 0x0200110;
14259 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14260 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14261 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
14262 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
14263 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
14264 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
14265 inst
.instruction
|= neon_quad (rs
) << 6;
14267 neon_dp_fixup (&inst
);
14271 case NS_DI
: /* case 3/11. */
14272 et
= neon_check_type (2, rs
, N_EQK
, N_F64
| N_KEY
);
14274 if (et
.type
== NT_float
&& et
.size
== 64)
14276 /* case 11 (fconstd). */
14277 ldconst
= "fconstd";
14278 goto encode_fconstd
;
14280 /* fall through. */
14282 case NS_QI
: /* case 2/3. */
14283 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
14285 inst
.instruction
= 0x0800010;
14286 neon_move_immediate ();
14287 neon_dp_fixup (&inst
);
14290 case NS_SR
: /* case 4. */
14292 unsigned bcdebits
= 0;
14294 unsigned dn
= NEON_SCALAR_REG (inst
.operands
[0].reg
);
14295 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[0].reg
);
14297 et
= neon_check_type (2, NS_NULL
, N_8
| N_16
| N_32
| N_KEY
, N_EQK
);
14298 logsize
= neon_logbits (et
.size
);
14300 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
),
14302 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
)
14303 && et
.size
!= 32, _(BAD_FPU
));
14304 constraint (et
.type
== NT_invtype
, _("bad type for scalar"));
14305 constraint (x
>= 64 / et
.size
, _("scalar index out of range"));
14309 case 8: bcdebits
= 0x8; break;
14310 case 16: bcdebits
= 0x1; break;
14311 case 32: bcdebits
= 0x0; break;
14315 bcdebits
|= x
<< logsize
;
14317 inst
.instruction
= 0xe000b10;
14318 do_vfp_cond_or_thumb ();
14319 inst
.instruction
|= LOW4 (dn
) << 16;
14320 inst
.instruction
|= HI1 (dn
) << 7;
14321 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
14322 inst
.instruction
|= (bcdebits
& 3) << 5;
14323 inst
.instruction
|= (bcdebits
>> 2) << 21;
14327 case NS_DRR
: /* case 5 (fmdrr). */
14328 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
),
14331 inst
.instruction
= 0xc400b10;
14332 do_vfp_cond_or_thumb ();
14333 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
);
14334 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 5;
14335 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
14336 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
14339 case NS_RS
: /* case 6. */
14342 unsigned dn
= NEON_SCALAR_REG (inst
.operands
[1].reg
);
14343 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[1].reg
);
14344 unsigned abcdebits
= 0;
14346 et
= neon_check_type (2, NS_NULL
,
14347 N_EQK
, N_S8
| N_S16
| N_U8
| N_U16
| N_32
| N_KEY
);
14348 logsize
= neon_logbits (et
.size
);
14350 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
),
14352 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
)
14353 && et
.size
!= 32, _(BAD_FPU
));
14354 constraint (et
.type
== NT_invtype
, _("bad type for scalar"));
14355 constraint (x
>= 64 / et
.size
, _("scalar index out of range"));
14359 case 8: abcdebits
= (et
.type
== NT_signed
) ? 0x08 : 0x18; break;
14360 case 16: abcdebits
= (et
.type
== NT_signed
) ? 0x01 : 0x11; break;
14361 case 32: abcdebits
= 0x00; break;
14365 abcdebits
|= x
<< logsize
;
14366 inst
.instruction
= 0xe100b10;
14367 do_vfp_cond_or_thumb ();
14368 inst
.instruction
|= LOW4 (dn
) << 16;
14369 inst
.instruction
|= HI1 (dn
) << 7;
14370 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
14371 inst
.instruction
|= (abcdebits
& 3) << 5;
14372 inst
.instruction
|= (abcdebits
>> 2) << 21;
14376 case NS_RRD
: /* case 7 (fmrrd). */
14377 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
),
14380 inst
.instruction
= 0xc500b10;
14381 do_vfp_cond_or_thumb ();
14382 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
14383 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
14384 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
14385 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
14388 case NS_FF
: /* case 8 (fcpys). */
14389 do_vfp_nsyn_opcode ("fcpys");
14392 case NS_FI
: /* case 10 (fconsts). */
14393 ldconst
= "fconsts";
14395 if (is_quarter_float (inst
.operands
[1].imm
))
14397 inst
.operands
[1].imm
= neon_qfloat_bits (inst
.operands
[1].imm
);
14398 do_vfp_nsyn_opcode (ldconst
);
14401 first_error (_("immediate out of range"));
14404 case NS_RF
: /* case 12 (fmrs). */
14405 do_vfp_nsyn_opcode ("fmrs");
14408 case NS_FR
: /* case 13 (fmsr). */
14409 do_vfp_nsyn_opcode ("fmsr");
14412 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14413 (one of which is a list), but we have parsed four. Do some fiddling to
14414 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14416 case NS_RRFF
: /* case 14 (fmrrs). */
14417 constraint (inst
.operands
[3].reg
!= inst
.operands
[2].reg
+ 1,
14418 _("VFP registers must be adjacent"));
14419 inst
.operands
[2].imm
= 2;
14420 memset (&inst
.operands
[3], '\0', sizeof (inst
.operands
[3]));
14421 do_vfp_nsyn_opcode ("fmrrs");
14424 case NS_FFRR
: /* case 15 (fmsrr). */
14425 constraint (inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
14426 _("VFP registers must be adjacent"));
14427 inst
.operands
[1] = inst
.operands
[2];
14428 inst
.operands
[2] = inst
.operands
[3];
14429 inst
.operands
[0].imm
= 2;
14430 memset (&inst
.operands
[3], '\0', sizeof (inst
.operands
[3]));
14431 do_vfp_nsyn_opcode ("fmsrr");
14440 do_neon_rshift_round_imm (void)
14442 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
14443 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_ALL
| N_KEY
);
14444 int imm
= inst
.operands
[2].imm
;
14446 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14449 inst
.operands
[2].present
= 0;
14454 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
14455 _("immediate out of range for shift"));
14456 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, neon_quad (rs
), et
,
14461 do_neon_movl (void)
14463 struct neon_type_el et
= neon_check_type (2, NS_QD
,
14464 N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
14465 unsigned sizebits
= et
.size
>> 3;
14466 inst
.instruction
|= sizebits
<< 19;
14467 neon_two_same (0, et
.type
== NT_unsigned
, -1);
14473 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
14474 struct neon_type_el et
= neon_check_type (2, rs
,
14475 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
14476 NEON_ENCODE (INTEGER
, inst
);
14477 neon_two_same (neon_quad (rs
), 1, et
.size
);
14481 do_neon_zip_uzp (void)
14483 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
14484 struct neon_type_el et
= neon_check_type (2, rs
,
14485 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
14486 if (rs
== NS_DD
&& et
.size
== 32)
14488 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14489 inst
.instruction
= N_MNEM_vtrn
;
14493 neon_two_same (neon_quad (rs
), 1, et
.size
);
14497 do_neon_sat_abs_neg (void)
14499 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
14500 struct neon_type_el et
= neon_check_type (2, rs
,
14501 N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
14502 neon_two_same (neon_quad (rs
), 1, et
.size
);
14506 do_neon_pair_long (void)
14508 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
14509 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_32
| N_KEY
);
14510 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
14511 inst
.instruction
|= (et
.type
== NT_unsigned
) << 7;
14512 neon_two_same (neon_quad (rs
), 1, et
.size
);
14516 do_neon_recip_est (void)
14518 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
14519 struct neon_type_el et
= neon_check_type (2, rs
,
14520 N_EQK
| N_FLT
, N_F32
| N_U32
| N_KEY
);
14521 inst
.instruction
|= (et
.type
== NT_float
) << 8;
14522 neon_two_same (neon_quad (rs
), 1, et
.size
);
14528 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
14529 struct neon_type_el et
= neon_check_type (2, rs
,
14530 N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
14531 neon_two_same (neon_quad (rs
), 1, et
.size
);
14537 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
14538 struct neon_type_el et
= neon_check_type (2, rs
,
14539 N_EQK
, N_I8
| N_I16
| N_I32
| N_KEY
);
14540 neon_two_same (neon_quad (rs
), 1, et
.size
);
14546 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
14547 struct neon_type_el et
= neon_check_type (2, rs
,
14548 N_EQK
| N_INT
, N_8
| N_KEY
);
14549 neon_two_same (neon_quad (rs
), 1, et
.size
);
14555 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
14556 neon_two_same (neon_quad (rs
), 1, -1);
14560 do_neon_tbl_tbx (void)
14562 unsigned listlenbits
;
14563 neon_check_type (3, NS_DLD
, N_EQK
, N_EQK
, N_8
| N_KEY
);
14565 if (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 4)
14567 first_error (_("bad list length for table lookup"));
14571 listlenbits
= inst
.operands
[1].imm
- 1;
14572 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14573 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14574 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
14575 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
14576 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
14577 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
14578 inst
.instruction
|= listlenbits
<< 8;
14580 neon_dp_fixup (&inst
);
14584 do_neon_ldm_stm (void)
14586 /* P, U and L bits are part of bitmask. */
14587 int is_dbmode
= (inst
.instruction
& (1 << 24)) != 0;
14588 unsigned offsetbits
= inst
.operands
[1].imm
* 2;
14590 if (inst
.operands
[1].issingle
)
14592 do_vfp_nsyn_ldm_stm (is_dbmode
);
14596 constraint (is_dbmode
&& !inst
.operands
[0].writeback
,
14597 _("writeback (!) must be used for VLDMDB and VSTMDB"));
14599 constraint (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 16,
14600 _("register list must contain at least 1 and at most 16 "
14603 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
14604 inst
.instruction
|= inst
.operands
[0].writeback
<< 21;
14605 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 12;
14606 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 22;
14608 inst
.instruction
|= offsetbits
;
14610 do_vfp_cond_or_thumb ();
14614 do_neon_ldr_str (void)
14616 int is_ldr
= (inst
.instruction
& (1 << 20)) != 0;
14618 if (inst
.operands
[0].issingle
)
14621 do_vfp_nsyn_opcode ("flds");
14623 do_vfp_nsyn_opcode ("fsts");
14628 do_vfp_nsyn_opcode ("fldd");
14630 do_vfp_nsyn_opcode ("fstd");
14634 /* "interleave" version also handles non-interleaving register VLD1/VST1
14638 do_neon_ld_st_interleave (void)
14640 struct neon_type_el et
= neon_check_type (1, NS_NULL
,
14641 N_8
| N_16
| N_32
| N_64
);
14642 unsigned alignbits
= 0;
14644 /* The bits in this table go:
14645 0: register stride of one (0) or two (1)
14646 1,2: register list length, minus one (1, 2, 3, 4).
14647 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
14648 We use -1 for invalid entries. */
14649 const int typetable
[] =
14651 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
14652 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
14653 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
14654 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
14658 if (et
.type
== NT_invtype
)
14661 if (inst
.operands
[1].immisalign
)
14662 switch (inst
.operands
[1].imm
>> 8)
14664 case 64: alignbits
= 1; break;
14666 if (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 2
14667 && NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4)
14668 goto bad_alignment
;
14672 if (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4)
14673 goto bad_alignment
;
14678 first_error (_("bad alignment"));
14682 inst
.instruction
|= alignbits
<< 4;
14683 inst
.instruction
|= neon_logbits (et
.size
) << 6;
14685 /* Bits [4:6] of the immediate in a list specifier encode register stride
14686 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
14687 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
14688 up the right value for "type" in a table based on this value and the given
14689 list style, then stick it back. */
14690 idx
= ((inst
.operands
[0].imm
>> 4) & 7)
14691 | (((inst
.instruction
>> 8) & 3) << 3);
14693 typebits
= typetable
[idx
];
14695 constraint (typebits
== -1, _("bad list type for instruction"));
14697 inst
.instruction
&= ~0xf00;
14698 inst
.instruction
|= typebits
<< 8;
14701 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
14702 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
14703 otherwise. The variable arguments are a list of pairs of legal (size, align)
14704 values, terminated with -1. */
14707 neon_alignment_bit (int size
, int align
, int *do_align
, ...)
14710 int result
= FAIL
, thissize
, thisalign
;
14712 if (!inst
.operands
[1].immisalign
)
14718 va_start (ap
, do_align
);
14722 thissize
= va_arg (ap
, int);
14723 if (thissize
== -1)
14725 thisalign
= va_arg (ap
, int);
14727 if (size
== thissize
&& align
== thisalign
)
14730 while (result
!= SUCCESS
);
14734 if (result
== SUCCESS
)
14737 first_error (_("unsupported alignment for instruction"));
14743 do_neon_ld_st_lane (void)
14745 struct neon_type_el et
= neon_check_type (1, NS_NULL
, N_8
| N_16
| N_32
);
14746 int align_good
, do_align
= 0;
14747 int logsize
= neon_logbits (et
.size
);
14748 int align
= inst
.operands
[1].imm
>> 8;
14749 int n
= (inst
.instruction
>> 8) & 3;
14750 int max_el
= 64 / et
.size
;
14752 if (et
.type
== NT_invtype
)
14755 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != n
+ 1,
14756 _("bad list length"));
14757 constraint (NEON_LANE (inst
.operands
[0].imm
) >= max_el
,
14758 _("scalar index out of range"));
14759 constraint (n
!= 0 && NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2
14761 _("stride of 2 unavailable when element size is 8"));
14765 case 0: /* VLD1 / VST1. */
14766 align_good
= neon_alignment_bit (et
.size
, align
, &do_align
, 16, 16,
14768 if (align_good
== FAIL
)
14772 unsigned alignbits
= 0;
14775 case 16: alignbits
= 0x1; break;
14776 case 32: alignbits
= 0x3; break;
14779 inst
.instruction
|= alignbits
<< 4;
14783 case 1: /* VLD2 / VST2. */
14784 align_good
= neon_alignment_bit (et
.size
, align
, &do_align
, 8, 16, 16, 32,
14786 if (align_good
== FAIL
)
14789 inst
.instruction
|= 1 << 4;
14792 case 2: /* VLD3 / VST3. */
14793 constraint (inst
.operands
[1].immisalign
,
14794 _("can't use alignment with this instruction"));
14797 case 3: /* VLD4 / VST4. */
14798 align_good
= neon_alignment_bit (et
.size
, align
, &do_align
, 8, 32,
14799 16, 64, 32, 64, 32, 128, -1);
14800 if (align_good
== FAIL
)
14804 unsigned alignbits
= 0;
14807 case 8: alignbits
= 0x1; break;
14808 case 16: alignbits
= 0x1; break;
14809 case 32: alignbits
= (align
== 64) ? 0x1 : 0x2; break;
14812 inst
.instruction
|= alignbits
<< 4;
14819 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
14820 if (n
!= 0 && NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
14821 inst
.instruction
|= 1 << (4 + logsize
);
14823 inst
.instruction
|= NEON_LANE (inst
.operands
[0].imm
) << (logsize
+ 5);
14824 inst
.instruction
|= logsize
<< 10;
14827 /* Encode single n-element structure to all lanes VLD<n> instructions. */
14830 do_neon_ld_dup (void)
14832 struct neon_type_el et
= neon_check_type (1, NS_NULL
, N_8
| N_16
| N_32
);
14833 int align_good
, do_align
= 0;
14835 if (et
.type
== NT_invtype
)
14838 switch ((inst
.instruction
>> 8) & 3)
14840 case 0: /* VLD1. */
14841 gas_assert (NEON_REG_STRIDE (inst
.operands
[0].imm
) != 2);
14842 align_good
= neon_alignment_bit (et
.size
, inst
.operands
[1].imm
>> 8,
14843 &do_align
, 16, 16, 32, 32, -1);
14844 if (align_good
== FAIL
)
14846 switch (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
))
14849 case 2: inst
.instruction
|= 1 << 5; break;
14850 default: first_error (_("bad list length")); return;
14852 inst
.instruction
|= neon_logbits (et
.size
) << 6;
14855 case 1: /* VLD2. */
14856 align_good
= neon_alignment_bit (et
.size
, inst
.operands
[1].imm
>> 8,
14857 &do_align
, 8, 16, 16, 32, 32, 64, -1);
14858 if (align_good
== FAIL
)
14860 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 2,
14861 _("bad list length"));
14862 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
14863 inst
.instruction
|= 1 << 5;
14864 inst
.instruction
|= neon_logbits (et
.size
) << 6;
14867 case 2: /* VLD3. */
14868 constraint (inst
.operands
[1].immisalign
,
14869 _("can't use alignment with this instruction"));
14870 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 3,
14871 _("bad list length"));
14872 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
14873 inst
.instruction
|= 1 << 5;
14874 inst
.instruction
|= neon_logbits (et
.size
) << 6;
14877 case 3: /* VLD4. */
14879 int align
= inst
.operands
[1].imm
>> 8;
14880 align_good
= neon_alignment_bit (et
.size
, align
, &do_align
, 8, 32,
14881 16, 64, 32, 64, 32, 128, -1);
14882 if (align_good
== FAIL
)
14884 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4,
14885 _("bad list length"));
14886 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
14887 inst
.instruction
|= 1 << 5;
14888 if (et
.size
== 32 && align
== 128)
14889 inst
.instruction
|= 0x3 << 6;
14891 inst
.instruction
|= neon_logbits (et
.size
) << 6;
14898 inst
.instruction
|= do_align
<< 4;
14901 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
14902 apart from bits [11:4]. */
14905 do_neon_ldx_stx (void)
14907 if (inst
.operands
[1].isreg
)
14908 constraint (inst
.operands
[1].reg
== REG_PC
, BAD_PC
);
14910 switch (NEON_LANE (inst
.operands
[0].imm
))
14912 case NEON_INTERLEAVE_LANES
:
14913 NEON_ENCODE (INTERLV
, inst
);
14914 do_neon_ld_st_interleave ();
14917 case NEON_ALL_LANES
:
14918 NEON_ENCODE (DUP
, inst
);
14923 NEON_ENCODE (LANE
, inst
);
14924 do_neon_ld_st_lane ();
14927 /* L bit comes from bit mask. */
14928 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14929 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14930 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
14932 if (inst
.operands
[1].postind
)
14934 int postreg
= inst
.operands
[1].imm
& 0xf;
14935 constraint (!inst
.operands
[1].immisreg
,
14936 _("post-index must be a register"));
14937 constraint (postreg
== 0xd || postreg
== 0xf,
14938 _("bad register for post-index"));
14939 inst
.instruction
|= postreg
;
14941 else if (inst
.operands
[1].writeback
)
14943 inst
.instruction
|= 0xd;
14946 inst
.instruction
|= 0xf;
14949 inst
.instruction
|= 0xf9000000;
14951 inst
.instruction
|= 0xf4000000;
14954 /* Overall per-instruction processing. */
14956 /* We need to be able to fix up arbitrary expressions in some statements.
14957 This is so that we can handle symbols that are an arbitrary distance from
14958 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
14959 which returns part of an address in a form which will be valid for
14960 a data instruction. We do this by pushing the expression into a symbol
14961 in the expr_section, and creating a fix for that. */
14964 fix_new_arm (fragS
* frag
,
14979 new_fix
= fix_new_exp (frag
, where
, size
, exp
, pc_rel
,
14980 (enum bfd_reloc_code_real
) reloc
);
14984 new_fix
= (fixS
*) fix_new (frag
, where
, size
, make_expr_symbol (exp
), 0,
14985 pc_rel
, (enum bfd_reloc_code_real
) reloc
);
14989 /* Mark whether the fix is to a THUMB instruction, or an ARM
14991 new_fix
->tc_fix_data
= thumb_mode
;
14994 /* Create a frg for an instruction requiring relaxation. */
14996 output_relax_insn (void)
15002 /* The size of the instruction is unknown, so tie the debug info to the
15003 start of the instruction. */
15004 dwarf2_emit_insn (0);
15006 switch (inst
.reloc
.exp
.X_op
)
15009 sym
= inst
.reloc
.exp
.X_add_symbol
;
15010 offset
= inst
.reloc
.exp
.X_add_number
;
15014 offset
= inst
.reloc
.exp
.X_add_number
;
15017 sym
= make_expr_symbol (&inst
.reloc
.exp
);
15021 to
= frag_var (rs_machine_dependent
, INSN_SIZE
, THUMB_SIZE
,
15022 inst
.relax
, sym
, offset
, NULL
/*offset, opcode*/);
15023 md_number_to_chars (to
, inst
.instruction
, THUMB_SIZE
);
15026 /* Write a 32-bit thumb instruction to buf. */
15028 put_thumb32_insn (char * buf
, unsigned long insn
)
15030 md_number_to_chars (buf
, insn
>> 16, THUMB_SIZE
);
15031 md_number_to_chars (buf
+ THUMB_SIZE
, insn
, THUMB_SIZE
);
15035 output_inst (const char * str
)
15041 as_bad ("%s -- `%s'", inst
.error
, str
);
15046 output_relax_insn ();
15049 if (inst
.size
== 0)
15052 to
= frag_more (inst
.size
);
15053 /* PR 9814: Record the thumb mode into the current frag so that we know
15054 what type of NOP padding to use, if necessary. We override any previous
15055 setting so that if the mode has changed then the NOPS that we use will
15056 match the encoding of the last instruction in the frag. */
15057 frag_now
->tc_frag_data
.thumb_mode
= thumb_mode
| MODE_RECORDED
;
15059 if (thumb_mode
&& (inst
.size
> THUMB_SIZE
))
15061 gas_assert (inst
.size
== (2 * THUMB_SIZE
));
15062 put_thumb32_insn (to
, inst
.instruction
);
15064 else if (inst
.size
> INSN_SIZE
)
15066 gas_assert (inst
.size
== (2 * INSN_SIZE
));
15067 md_number_to_chars (to
, inst
.instruction
, INSN_SIZE
);
15068 md_number_to_chars (to
+ INSN_SIZE
, inst
.instruction
, INSN_SIZE
);
15071 md_number_to_chars (to
, inst
.instruction
, inst
.size
);
15073 if (inst
.reloc
.type
!= BFD_RELOC_UNUSED
)
15074 fix_new_arm (frag_now
, to
- frag_now
->fr_literal
,
15075 inst
.size
, & inst
.reloc
.exp
, inst
.reloc
.pc_rel
,
15078 dwarf2_emit_insn (inst
.size
);
15082 output_it_inst (int cond
, int mask
, char * to
)
15084 unsigned long instruction
= 0xbf00;
15087 instruction
|= mask
;
15088 instruction
|= cond
<< 4;
15092 to
= frag_more (2);
15094 dwarf2_emit_insn (2);
15098 md_number_to_chars (to
, instruction
, 2);
15103 /* Tag values used in struct asm_opcode's tag field. */
15106 OT_unconditional
, /* Instruction cannot be conditionalized.
15107 The ARM condition field is still 0xE. */
15108 OT_unconditionalF
, /* Instruction cannot be conditionalized
15109 and carries 0xF in its ARM condition field. */
15110 OT_csuffix
, /* Instruction takes a conditional suffix. */
15111 OT_csuffixF
, /* Some forms of the instruction take a conditional
15112 suffix, others place 0xF where the condition field
15114 OT_cinfix3
, /* Instruction takes a conditional infix,
15115 beginning at character index 3. (In
15116 unified mode, it becomes a suffix.) */
15117 OT_cinfix3_deprecated
, /* The same as OT_cinfix3. This is used for
15118 tsts, cmps, cmns, and teqs. */
15119 OT_cinfix3_legacy
, /* Legacy instruction takes a conditional infix at
15120 character index 3, even in unified mode. Used for
15121 legacy instructions where suffix and infix forms
15122 may be ambiguous. */
15123 OT_csuf_or_in3
, /* Instruction takes either a conditional
15124 suffix or an infix at character index 3. */
15125 OT_odd_infix_unc
, /* This is the unconditional variant of an
15126 instruction that takes a conditional infix
15127 at an unusual position. In unified mode,
15128 this variant will accept a suffix. */
15129 OT_odd_infix_0
/* Values greater than or equal to OT_odd_infix_0
15130 are the conditional variants of instructions that
15131 take conditional infixes in unusual positions.
15132 The infix appears at character index
15133 (tag - OT_odd_infix_0). These are not accepted
15134 in unified mode. */
15137 /* Subroutine of md_assemble, responsible for looking up the primary
15138 opcode from the mnemonic the user wrote. STR points to the
15139 beginning of the mnemonic.
15141 This is not simply a hash table lookup, because of conditional
15142 variants. Most instructions have conditional variants, which are
15143 expressed with a _conditional affix_ to the mnemonic. If we were
15144 to encode each conditional variant as a literal string in the opcode
15145 table, it would have approximately 20,000 entries.
15147 Most mnemonics take this affix as a suffix, and in unified syntax,
15148 'most' is upgraded to 'all'. However, in the divided syntax, some
15149 instructions take the affix as an infix, notably the s-variants of
15150 the arithmetic instructions. Of those instructions, all but six
15151 have the infix appear after the third character of the mnemonic.
15153 Accordingly, the algorithm for looking up primary opcodes given
15156 1. Look up the identifier in the opcode table.
15157 If we find a match, go to step U.
15159 2. Look up the last two characters of the identifier in the
15160 conditions table. If we find a match, look up the first N-2
15161 characters of the identifier in the opcode table. If we
15162 find a match, go to step CE.
15164 3. Look up the fourth and fifth characters of the identifier in
15165 the conditions table. If we find a match, extract those
15166 characters from the identifier, and look up the remaining
15167 characters in the opcode table. If we find a match, go
15172 U. Examine the tag field of the opcode structure, in case this is
15173 one of the six instructions with its conditional infix in an
15174 unusual place. If it is, the tag tells us where to find the
15175 infix; look it up in the conditions table and set inst.cond
15176 accordingly. Otherwise, this is an unconditional instruction.
15177 Again set inst.cond accordingly. Return the opcode structure.
15179 CE. Examine the tag field to make sure this is an instruction that
15180 should receive a conditional suffix. If it is not, fail.
15181 Otherwise, set inst.cond from the suffix we already looked up,
15182 and return the opcode structure.
15184 CM. Examine the tag field to make sure this is an instruction that
15185 should receive a conditional infix after the third character.
15186 If it is not, fail. Otherwise, undo the edits to the current
15187 line of input and proceed as for case CE. */
15189 static const struct asm_opcode
*
15190 opcode_lookup (char **str
)
15194 const struct asm_opcode
*opcode
;
15195 const struct asm_cond
*cond
;
15198 /* Scan up to the end of the mnemonic, which must end in white space,
15199 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
15200 for (base
= end
= *str
; *end
!= '\0'; end
++)
15201 if (*end
== ' ' || *end
== '.')
15207 /* Handle a possible width suffix and/or Neon type suffix. */
15212 /* The .w and .n suffixes are only valid if the unified syntax is in
15214 if (unified_syntax
&& end
[1] == 'w')
15216 else if (unified_syntax
&& end
[1] == 'n')
15221 inst
.vectype
.elems
= 0;
15223 *str
= end
+ offset
;
15225 if (end
[offset
] == '.')
15227 /* See if we have a Neon type suffix (possible in either unified or
15228 non-unified ARM syntax mode). */
15229 if (parse_neon_type (&inst
.vectype
, str
) == FAIL
)
15232 else if (end
[offset
] != '\0' && end
[offset
] != ' ')
15238 /* Look for unaffixed or special-case affixed mnemonic. */
15239 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
15244 if (opcode
->tag
< OT_odd_infix_0
)
15246 inst
.cond
= COND_ALWAYS
;
15250 if (warn_on_deprecated
&& unified_syntax
)
15251 as_warn (_("conditional infixes are deprecated in unified syntax"));
15252 affix
= base
+ (opcode
->tag
- OT_odd_infix_0
);
15253 cond
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, affix
, 2);
15256 inst
.cond
= cond
->value
;
15260 /* Cannot have a conditional suffix on a mnemonic of less than two
15262 if (end
- base
< 3)
15265 /* Look for suffixed mnemonic. */
15267 cond
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, affix
, 2);
15268 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
15270 if (opcode
&& cond
)
15273 switch (opcode
->tag
)
15275 case OT_cinfix3_legacy
:
15276 /* Ignore conditional suffixes matched on infix only mnemonics. */
15280 case OT_cinfix3_deprecated
:
15281 case OT_odd_infix_unc
:
15282 if (!unified_syntax
)
15284 /* else fall through */
15288 case OT_csuf_or_in3
:
15289 inst
.cond
= cond
->value
;
15292 case OT_unconditional
:
15293 case OT_unconditionalF
:
15295 inst
.cond
= cond
->value
;
15298 /* Delayed diagnostic. */
15299 inst
.error
= BAD_COND
;
15300 inst
.cond
= COND_ALWAYS
;
15309 /* Cannot have a usual-position infix on a mnemonic of less than
15310 six characters (five would be a suffix). */
15311 if (end
- base
< 6)
15314 /* Look for infixed mnemonic in the usual position. */
15316 cond
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, affix
, 2);
15320 memcpy (save
, affix
, 2);
15321 memmove (affix
, affix
+ 2, (end
- affix
) - 2);
15322 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
15324 memmove (affix
+ 2, affix
, (end
- affix
) - 2);
15325 memcpy (affix
, save
, 2);
15328 && (opcode
->tag
== OT_cinfix3
15329 || opcode
->tag
== OT_cinfix3_deprecated
15330 || opcode
->tag
== OT_csuf_or_in3
15331 || opcode
->tag
== OT_cinfix3_legacy
))
15334 if (warn_on_deprecated
&& unified_syntax
15335 && (opcode
->tag
== OT_cinfix3
15336 || opcode
->tag
== OT_cinfix3_deprecated
))
15337 as_warn (_("conditional infixes are deprecated in unified syntax"));
15339 inst
.cond
= cond
->value
;
15346 /* This function generates an initial IT instruction, leaving its block
15347 virtually open for the new instructions. Eventually,
15348 the mask will be updated by now_it_add_mask () each time
15349 a new instruction needs to be included in the IT block.
15350 Finally, the block is closed with close_automatic_it_block ().
15351 The block closure can be requested either from md_assemble (),
15352 a tencode (), or due to a label hook. */
15355 new_automatic_it_block (int cond
)
15357 now_it
.state
= AUTOMATIC_IT_BLOCK
;
15358 now_it
.mask
= 0x18;
15360 now_it
.block_length
= 1;
15361 mapping_state (MAP_THUMB
);
15362 now_it
.insn
= output_it_inst (cond
, now_it
.mask
, NULL
);
15365 /* Close an automatic IT block.
15366 See comments in new_automatic_it_block (). */
15369 close_automatic_it_block (void)
15371 now_it
.mask
= 0x10;
15372 now_it
.block_length
= 0;
15375 /* Update the mask of the current automatically-generated IT
15376 instruction. See comments in new_automatic_it_block (). */
15379 now_it_add_mask (int cond
)
15381 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15382 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15383 | ((bitvalue) << (nbit)))
15384 const int resulting_bit
= (cond
& 1);
15386 now_it
.mask
&= 0xf;
15387 now_it
.mask
= SET_BIT_VALUE (now_it
.mask
,
15389 (5 - now_it
.block_length
));
15390 now_it
.mask
= SET_BIT_VALUE (now_it
.mask
,
15392 ((5 - now_it
.block_length
) - 1) );
15393 output_it_inst (now_it
.cc
, now_it
.mask
, now_it
.insn
);
15396 #undef SET_BIT_VALUE
15399 /* The IT blocks handling machinery is accessed through the these functions:
15400 it_fsm_pre_encode () from md_assemble ()
15401 set_it_insn_type () optional, from the tencode functions
15402 set_it_insn_type_last () ditto
15403 in_it_block () ditto
15404 it_fsm_post_encode () from md_assemble ()
15405 force_automatic_it_block_close () from label habdling functions
15408 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15409 initializing the IT insn type with a generic initial value depending
15410 on the inst.condition.
15411 2) During the tencode function, two things may happen:
15412 a) The tencode function overrides the IT insn type by
15413 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15414 b) The tencode function queries the IT block state by
15415 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15417 Both set_it_insn_type and in_it_block run the internal FSM state
15418 handling function (handle_it_state), because: a) setting the IT insn
15419 type may incur in an invalid state (exiting the function),
15420 and b) querying the state requires the FSM to be updated.
15421 Specifically we want to avoid creating an IT block for conditional
15422 branches, so it_fsm_pre_encode is actually a guess and we can't
15423 determine whether an IT block is required until the tencode () routine
15424 has decided what type of instruction this actually it.
15425 Because of this, if set_it_insn_type and in_it_block have to be used,
15426 set_it_insn_type has to be called first.
15428 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15429 determines the insn IT type depending on the inst.cond code.
15430 When a tencode () routine encodes an instruction that can be
15431 either outside an IT block, or, in the case of being inside, has to be
15432 the last one, set_it_insn_type_last () will determine the proper
15433 IT instruction type based on the inst.cond code. Otherwise,
15434 set_it_insn_type can be called for overriding that logic or
15435 for covering other cases.
15437 Calling handle_it_state () may not transition the IT block state to
15438 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15439 still queried. Instead, if the FSM determines that the state should
15440 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15441 after the tencode () function: that's what it_fsm_post_encode () does.
15443 Since in_it_block () calls the state handling function to get an
15444 updated state, an error may occur (due to invalid insns combination).
15445 In that case, inst.error is set.
15446 Therefore, inst.error has to be checked after the execution of
15447 the tencode () routine.
15449 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15450 any pending state change (if any) that didn't take place in
15451 handle_it_state () as explained above. */
15454 it_fsm_pre_encode (void)
15456 if (inst
.cond
!= COND_ALWAYS
)
15457 inst
.it_insn_type
= INSIDE_IT_INSN
;
15459 inst
.it_insn_type
= OUTSIDE_IT_INSN
;
15461 now_it
.state_handled
= 0;
15464 /* IT state FSM handling function. */
15467 handle_it_state (void)
15469 now_it
.state_handled
= 1;
15471 switch (now_it
.state
)
15473 case OUTSIDE_IT_BLOCK
:
15474 switch (inst
.it_insn_type
)
15476 case OUTSIDE_IT_INSN
:
15479 case INSIDE_IT_INSN
:
15480 case INSIDE_IT_LAST_INSN
:
15481 if (thumb_mode
== 0)
15484 && !(implicit_it_mode
& IMPLICIT_IT_MODE_ARM
))
15485 as_tsktsk (_("Warning: conditional outside an IT block"\
15490 if ((implicit_it_mode
& IMPLICIT_IT_MODE_THUMB
)
15491 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_arch_t2
))
15493 /* Automatically generate the IT instruction. */
15494 new_automatic_it_block (inst
.cond
);
15495 if (inst
.it_insn_type
== INSIDE_IT_LAST_INSN
)
15496 close_automatic_it_block ();
15500 inst
.error
= BAD_OUT_IT
;
15506 case IF_INSIDE_IT_LAST_INSN
:
15507 case NEUTRAL_IT_INSN
:
15511 now_it
.state
= MANUAL_IT_BLOCK
;
15512 now_it
.block_length
= 0;
15517 case AUTOMATIC_IT_BLOCK
:
15518 /* Three things may happen now:
15519 a) We should increment current it block size;
15520 b) We should close current it block (closing insn or 4 insns);
15521 c) We should close current it block and start a new one (due
15522 to incompatible conditions or
15523 4 insns-length block reached). */
15525 switch (inst
.it_insn_type
)
15527 case OUTSIDE_IT_INSN
:
15528 /* The closure of the block shall happen immediatelly,
15529 so any in_it_block () call reports the block as closed. */
15530 force_automatic_it_block_close ();
15533 case INSIDE_IT_INSN
:
15534 case INSIDE_IT_LAST_INSN
:
15535 case IF_INSIDE_IT_LAST_INSN
:
15536 now_it
.block_length
++;
15538 if (now_it
.block_length
> 4
15539 || !now_it_compatible (inst
.cond
))
15541 force_automatic_it_block_close ();
15542 if (inst
.it_insn_type
!= IF_INSIDE_IT_LAST_INSN
)
15543 new_automatic_it_block (inst
.cond
);
15547 now_it_add_mask (inst
.cond
);
15550 if (now_it
.state
== AUTOMATIC_IT_BLOCK
15551 && (inst
.it_insn_type
== INSIDE_IT_LAST_INSN
15552 || inst
.it_insn_type
== IF_INSIDE_IT_LAST_INSN
))
15553 close_automatic_it_block ();
15556 case NEUTRAL_IT_INSN
:
15557 now_it
.block_length
++;
15559 if (now_it
.block_length
> 4)
15560 force_automatic_it_block_close ();
15562 now_it_add_mask (now_it
.cc
& 1);
15566 close_automatic_it_block ();
15567 now_it
.state
= MANUAL_IT_BLOCK
;
15572 case MANUAL_IT_BLOCK
:
15574 /* Check conditional suffixes. */
15575 const int cond
= now_it
.cc
^ ((now_it
.mask
>> 4) & 1) ^ 1;
15578 now_it
.mask
&= 0x1f;
15579 is_last
= (now_it
.mask
== 0x10);
15581 switch (inst
.it_insn_type
)
15583 case OUTSIDE_IT_INSN
:
15584 inst
.error
= BAD_NOT_IT
;
15587 case INSIDE_IT_INSN
:
15588 if (cond
!= inst
.cond
)
15590 inst
.error
= BAD_IT_COND
;
15595 case INSIDE_IT_LAST_INSN
:
15596 case IF_INSIDE_IT_LAST_INSN
:
15597 if (cond
!= inst
.cond
)
15599 inst
.error
= BAD_IT_COND
;
15604 inst
.error
= BAD_BRANCH
;
15609 case NEUTRAL_IT_INSN
:
15610 /* The BKPT instruction is unconditional even in an IT block. */
15614 inst
.error
= BAD_IT_IT
;
15625 it_fsm_post_encode (void)
15629 if (!now_it
.state_handled
)
15630 handle_it_state ();
15632 is_last
= (now_it
.mask
== 0x10);
15635 now_it
.state
= OUTSIDE_IT_BLOCK
;
15641 force_automatic_it_block_close (void)
15643 if (now_it
.state
== AUTOMATIC_IT_BLOCK
)
15645 close_automatic_it_block ();
15646 now_it
.state
= OUTSIDE_IT_BLOCK
;
15654 if (!now_it
.state_handled
)
15655 handle_it_state ();
15657 return now_it
.state
!= OUTSIDE_IT_BLOCK
;
15661 md_assemble (char *str
)
15664 const struct asm_opcode
* opcode
;
15666 /* Align the previous label if needed. */
15667 if (last_label_seen
!= NULL
)
15669 symbol_set_frag (last_label_seen
, frag_now
);
15670 S_SET_VALUE (last_label_seen
, (valueT
) frag_now_fix ());
15671 S_SET_SEGMENT (last_label_seen
, now_seg
);
15674 memset (&inst
, '\0', sizeof (inst
));
15675 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
15677 opcode
= opcode_lookup (&p
);
15680 /* It wasn't an instruction, but it might be a register alias of
15681 the form alias .req reg, or a Neon .dn/.qn directive. */
15682 if (! create_register_alias (str
, p
)
15683 && ! create_neon_reg_alias (str
, p
))
15684 as_bad (_("bad instruction `%s'"), str
);
15689 if (warn_on_deprecated
&& opcode
->tag
== OT_cinfix3_deprecated
)
15690 as_warn (_("s suffix on comparison instruction is deprecated"));
15692 /* The value which unconditional instructions should have in place of the
15693 condition field. */
15694 inst
.uncond_value
= (opcode
->tag
== OT_csuffixF
) ? 0xf : -1;
15698 arm_feature_set variant
;
15700 variant
= cpu_variant
;
15701 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
15702 if (!ARM_CPU_HAS_FEATURE (variant
, arm_arch_t2
))
15703 ARM_CLEAR_FEATURE (variant
, variant
, fpu_any_hard
);
15704 /* Check that this instruction is supported for this CPU. */
15705 if (!opcode
->tvariant
15706 || (thumb_mode
== 1
15707 && !ARM_CPU_HAS_FEATURE (variant
, *opcode
->tvariant
)))
15709 as_bad (_("selected processor does not support `%s'"), str
);
15712 if (inst
.cond
!= COND_ALWAYS
&& !unified_syntax
15713 && opcode
->tencode
!= do_t_branch
)
15715 as_bad (_("Thumb does not support conditional execution"));
15719 if (!ARM_CPU_HAS_FEATURE (variant
, arm_ext_v6t2
))
15721 if (opcode
->tencode
!= do_t_blx
&& opcode
->tencode
!= do_t_branch23
15722 && !(ARM_CPU_HAS_FEATURE(*opcode
->tvariant
, arm_ext_msr
)
15723 || ARM_CPU_HAS_FEATURE(*opcode
->tvariant
, arm_ext_barrier
)))
15725 /* Two things are addressed here.
15726 1) Implicit require narrow instructions on Thumb-1.
15727 This avoids relaxation accidentally introducing Thumb-2
15729 2) Reject wide instructions in non Thumb-2 cores. */
15730 if (inst
.size_req
== 0)
15732 else if (inst
.size_req
== 4)
15734 as_bad (_("selected processor does not support `%s'"), str
);
15740 inst
.instruction
= opcode
->tvalue
;
15742 if (!parse_operands (p
, opcode
->operands
, /*thumb=*/TRUE
))
15744 /* Prepare the it_insn_type for those encodings that don't set
15746 it_fsm_pre_encode ();
15748 opcode
->tencode ();
15750 it_fsm_post_encode ();
15753 if (!(inst
.error
|| inst
.relax
))
15755 gas_assert (inst
.instruction
< 0xe800 || inst
.instruction
> 0xffff);
15756 inst
.size
= (inst
.instruction
> 0xffff ? 4 : 2);
15757 if (inst
.size_req
&& inst
.size_req
!= inst
.size
)
15759 as_bad (_("cannot honor width suffix -- `%s'"), str
);
15764 /* Something has gone badly wrong if we try to relax a fixed size
15766 gas_assert (inst
.size_req
== 0 || !inst
.relax
);
15768 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
15769 *opcode
->tvariant
);
15770 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
15771 set those bits when Thumb-2 32-bit instructions are seen. ie.
15772 anything other than bl/blx and v6-M instructions.
15773 This is overly pessimistic for relaxable instructions. */
15774 if (((inst
.size
== 4 && (inst
.instruction
& 0xf800e800) != 0xf000e800)
15776 && !(ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_msr
)
15777 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_barrier
)))
15778 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
15781 check_neon_suffixes
;
15785 mapping_state (MAP_THUMB
);
15788 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
15792 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
15793 is_bx
= (opcode
->aencode
== do_bx
);
15795 /* Check that this instruction is supported for this CPU. */
15796 if (!(is_bx
&& fix_v4bx
)
15797 && !(opcode
->avariant
&&
15798 ARM_CPU_HAS_FEATURE (cpu_variant
, *opcode
->avariant
)))
15800 as_bad (_("selected processor does not support `%s'"), str
);
15805 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str
);
15809 inst
.instruction
= opcode
->avalue
;
15810 if (opcode
->tag
== OT_unconditionalF
)
15811 inst
.instruction
|= 0xF << 28;
15813 inst
.instruction
|= inst
.cond
<< 28;
15814 inst
.size
= INSN_SIZE
;
15815 if (!parse_operands (p
, opcode
->operands
, /*thumb=*/FALSE
))
15817 it_fsm_pre_encode ();
15818 opcode
->aencode ();
15819 it_fsm_post_encode ();
15821 /* Arm mode bx is marked as both v4T and v5 because it's still required
15822 on a hypothetical non-thumb v5 core. */
15824 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
, arm_ext_v4t
);
15826 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
15827 *opcode
->avariant
);
15829 check_neon_suffixes
;
15833 mapping_state (MAP_ARM
);
15838 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
15846 check_it_blocks_finished (void)
15851 for (sect
= stdoutput
->sections
; sect
!= NULL
; sect
= sect
->next
)
15852 if (seg_info (sect
)->tc_segment_info_data
.current_it
.state
15853 == MANUAL_IT_BLOCK
)
15855 as_warn (_("section '%s' finished with an open IT block."),
15859 if (now_it
.state
== MANUAL_IT_BLOCK
)
15860 as_warn (_("file finished with an open IT block."));
15864 /* Various frobbings of labels and their addresses. */
15867 arm_start_line_hook (void)
15869 last_label_seen
= NULL
;
15873 arm_frob_label (symbolS
* sym
)
15875 last_label_seen
= sym
;
15877 ARM_SET_THUMB (sym
, thumb_mode
);
15879 #if defined OBJ_COFF || defined OBJ_ELF
15880 ARM_SET_INTERWORK (sym
, support_interwork
);
15883 force_automatic_it_block_close ();
15885 /* Note - do not allow local symbols (.Lxxx) to be labelled
15886 as Thumb functions. This is because these labels, whilst
15887 they exist inside Thumb code, are not the entry points for
15888 possible ARM->Thumb calls. Also, these labels can be used
15889 as part of a computed goto or switch statement. eg gcc
15890 can generate code that looks like this:
15892 ldr r2, [pc, .Laaa]
15902 The first instruction loads the address of the jump table.
15903 The second instruction converts a table index into a byte offset.
15904 The third instruction gets the jump address out of the table.
15905 The fourth instruction performs the jump.
15907 If the address stored at .Laaa is that of a symbol which has the
15908 Thumb_Func bit set, then the linker will arrange for this address
15909 to have the bottom bit set, which in turn would mean that the
15910 address computation performed by the third instruction would end
15911 up with the bottom bit set. Since the ARM is capable of unaligned
15912 word loads, the instruction would then load the incorrect address
15913 out of the jump table, and chaos would ensue. */
15914 if (label_is_thumb_function_name
15915 && (S_GET_NAME (sym
)[0] != '.' || S_GET_NAME (sym
)[1] != 'L')
15916 && (bfd_get_section_flags (stdoutput
, now_seg
) & SEC_CODE
) != 0)
15918 /* When the address of a Thumb function is taken the bottom
15919 bit of that address should be set. This will allow
15920 interworking between Arm and Thumb functions to work
15923 THUMB_SET_FUNC (sym
, 1);
15925 label_is_thumb_function_name
= FALSE
;
15928 dwarf2_emit_label (sym
);
15932 arm_data_in_code (void)
15934 if (thumb_mode
&& ! strncmp (input_line_pointer
+ 1, "data:", 5))
15936 *input_line_pointer
= '/';
15937 input_line_pointer
+= 5;
15938 *input_line_pointer
= 0;
15946 arm_canonicalize_symbol_name (char * name
)
15950 if (thumb_mode
&& (len
= strlen (name
)) > 5
15951 && streq (name
+ len
- 5, "/data"))
15952 *(name
+ len
- 5) = 0;
15957 /* Table of all register names defined by default. The user can
15958 define additional names with .req. Note that all register names
15959 should appear in both upper and lowercase variants. Some registers
15960 also have mixed-case names. */
15962 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
15963 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
15964 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
15965 #define REGSET(p,t) \
15966 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
15967 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
15968 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
15969 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
15970 #define REGSETH(p,t) \
15971 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
15972 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
15973 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
15974 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
15975 #define REGSET2(p,t) \
15976 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
15977 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
15978 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
15979 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
15981 static const struct reg_entry reg_names
[] =
15983 /* ARM integer registers. */
15984 REGSET(r
, RN
), REGSET(R
, RN
),
15986 /* ATPCS synonyms. */
15987 REGDEF(a1
,0,RN
), REGDEF(a2
,1,RN
), REGDEF(a3
, 2,RN
), REGDEF(a4
, 3,RN
),
15988 REGDEF(v1
,4,RN
), REGDEF(v2
,5,RN
), REGDEF(v3
, 6,RN
), REGDEF(v4
, 7,RN
),
15989 REGDEF(v5
,8,RN
), REGDEF(v6
,9,RN
), REGDEF(v7
,10,RN
), REGDEF(v8
,11,RN
),
15991 REGDEF(A1
,0,RN
), REGDEF(A2
,1,RN
), REGDEF(A3
, 2,RN
), REGDEF(A4
, 3,RN
),
15992 REGDEF(V1
,4,RN
), REGDEF(V2
,5,RN
), REGDEF(V3
, 6,RN
), REGDEF(V4
, 7,RN
),
15993 REGDEF(V5
,8,RN
), REGDEF(V6
,9,RN
), REGDEF(V7
,10,RN
), REGDEF(V8
,11,RN
),
15995 /* Well-known aliases. */
15996 REGDEF(wr
, 7,RN
), REGDEF(sb
, 9,RN
), REGDEF(sl
,10,RN
), REGDEF(fp
,11,RN
),
15997 REGDEF(ip
,12,RN
), REGDEF(sp
,13,RN
), REGDEF(lr
,14,RN
), REGDEF(pc
,15,RN
),
15999 REGDEF(WR
, 7,RN
), REGDEF(SB
, 9,RN
), REGDEF(SL
,10,RN
), REGDEF(FP
,11,RN
),
16000 REGDEF(IP
,12,RN
), REGDEF(SP
,13,RN
), REGDEF(LR
,14,RN
), REGDEF(PC
,15,RN
),
16002 /* Coprocessor numbers. */
16003 REGSET(p
, CP
), REGSET(P
, CP
),
16005 /* Coprocessor register numbers. The "cr" variants are for backward
16007 REGSET(c
, CN
), REGSET(C
, CN
),
16008 REGSET(cr
, CN
), REGSET(CR
, CN
),
16010 /* FPA registers. */
16011 REGNUM(f
,0,FN
), REGNUM(f
,1,FN
), REGNUM(f
,2,FN
), REGNUM(f
,3,FN
),
16012 REGNUM(f
,4,FN
), REGNUM(f
,5,FN
), REGNUM(f
,6,FN
), REGNUM(f
,7, FN
),
16014 REGNUM(F
,0,FN
), REGNUM(F
,1,FN
), REGNUM(F
,2,FN
), REGNUM(F
,3,FN
),
16015 REGNUM(F
,4,FN
), REGNUM(F
,5,FN
), REGNUM(F
,6,FN
), REGNUM(F
,7, FN
),
16017 /* VFP SP registers. */
16018 REGSET(s
,VFS
), REGSET(S
,VFS
),
16019 REGSETH(s
,VFS
), REGSETH(S
,VFS
),
16021 /* VFP DP Registers. */
16022 REGSET(d
,VFD
), REGSET(D
,VFD
),
16023 /* Extra Neon DP registers. */
16024 REGSETH(d
,VFD
), REGSETH(D
,VFD
),
16026 /* Neon QP registers. */
16027 REGSET2(q
,NQ
), REGSET2(Q
,NQ
),
16029 /* VFP control registers. */
16030 REGDEF(fpsid
,0,VFC
), REGDEF(fpscr
,1,VFC
), REGDEF(fpexc
,8,VFC
),
16031 REGDEF(FPSID
,0,VFC
), REGDEF(FPSCR
,1,VFC
), REGDEF(FPEXC
,8,VFC
),
16032 REGDEF(fpinst
,9,VFC
), REGDEF(fpinst2
,10,VFC
),
16033 REGDEF(FPINST
,9,VFC
), REGDEF(FPINST2
,10,VFC
),
16034 REGDEF(mvfr0
,7,VFC
), REGDEF(mvfr1
,6,VFC
),
16035 REGDEF(MVFR0
,7,VFC
), REGDEF(MVFR1
,6,VFC
),
16037 /* Maverick DSP coprocessor registers. */
16038 REGSET(mvf
,MVF
), REGSET(mvd
,MVD
), REGSET(mvfx
,MVFX
), REGSET(mvdx
,MVDX
),
16039 REGSET(MVF
,MVF
), REGSET(MVD
,MVD
), REGSET(MVFX
,MVFX
), REGSET(MVDX
,MVDX
),
16041 REGNUM(mvax
,0,MVAX
), REGNUM(mvax
,1,MVAX
),
16042 REGNUM(mvax
,2,MVAX
), REGNUM(mvax
,3,MVAX
),
16043 REGDEF(dspsc
,0,DSPSC
),
16045 REGNUM(MVAX
,0,MVAX
), REGNUM(MVAX
,1,MVAX
),
16046 REGNUM(MVAX
,2,MVAX
), REGNUM(MVAX
,3,MVAX
),
16047 REGDEF(DSPSC
,0,DSPSC
),
16049 /* iWMMXt data registers - p0, c0-15. */
16050 REGSET(wr
,MMXWR
), REGSET(wR
,MMXWR
), REGSET(WR
, MMXWR
),
16052 /* iWMMXt control registers - p1, c0-3. */
16053 REGDEF(wcid
, 0,MMXWC
), REGDEF(wCID
, 0,MMXWC
), REGDEF(WCID
, 0,MMXWC
),
16054 REGDEF(wcon
, 1,MMXWC
), REGDEF(wCon
, 1,MMXWC
), REGDEF(WCON
, 1,MMXWC
),
16055 REGDEF(wcssf
, 2,MMXWC
), REGDEF(wCSSF
, 2,MMXWC
), REGDEF(WCSSF
, 2,MMXWC
),
16056 REGDEF(wcasf
, 3,MMXWC
), REGDEF(wCASF
, 3,MMXWC
), REGDEF(WCASF
, 3,MMXWC
),
16058 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16059 REGDEF(wcgr0
, 8,MMXWCG
), REGDEF(wCGR0
, 8,MMXWCG
), REGDEF(WCGR0
, 8,MMXWCG
),
16060 REGDEF(wcgr1
, 9,MMXWCG
), REGDEF(wCGR1
, 9,MMXWCG
), REGDEF(WCGR1
, 9,MMXWCG
),
16061 REGDEF(wcgr2
,10,MMXWCG
), REGDEF(wCGR2
,10,MMXWCG
), REGDEF(WCGR2
,10,MMXWCG
),
16062 REGDEF(wcgr3
,11,MMXWCG
), REGDEF(wCGR3
,11,MMXWCG
), REGDEF(WCGR3
,11,MMXWCG
),
16064 /* XScale accumulator registers. */
16065 REGNUM(acc
,0,XSCALE
), REGNUM(ACC
,0,XSCALE
),
16071 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16072 within psr_required_here. */
16073 static const struct asm_psr psrs
[] =
16075 /* Backward compatibility notation. Note that "all" is no longer
16076 truly all possible PSR bits. */
16077 {"all", PSR_c
| PSR_f
},
16081 /* Individual flags. */
16086 /* Combinations of flags. */
16087 {"fs", PSR_f
| PSR_s
},
16088 {"fx", PSR_f
| PSR_x
},
16089 {"fc", PSR_f
| PSR_c
},
16090 {"sf", PSR_s
| PSR_f
},
16091 {"sx", PSR_s
| PSR_x
},
16092 {"sc", PSR_s
| PSR_c
},
16093 {"xf", PSR_x
| PSR_f
},
16094 {"xs", PSR_x
| PSR_s
},
16095 {"xc", PSR_x
| PSR_c
},
16096 {"cf", PSR_c
| PSR_f
},
16097 {"cs", PSR_c
| PSR_s
},
16098 {"cx", PSR_c
| PSR_x
},
16099 {"fsx", PSR_f
| PSR_s
| PSR_x
},
16100 {"fsc", PSR_f
| PSR_s
| PSR_c
},
16101 {"fxs", PSR_f
| PSR_x
| PSR_s
},
16102 {"fxc", PSR_f
| PSR_x
| PSR_c
},
16103 {"fcs", PSR_f
| PSR_c
| PSR_s
},
16104 {"fcx", PSR_f
| PSR_c
| PSR_x
},
16105 {"sfx", PSR_s
| PSR_f
| PSR_x
},
16106 {"sfc", PSR_s
| PSR_f
| PSR_c
},
16107 {"sxf", PSR_s
| PSR_x
| PSR_f
},
16108 {"sxc", PSR_s
| PSR_x
| PSR_c
},
16109 {"scf", PSR_s
| PSR_c
| PSR_f
},
16110 {"scx", PSR_s
| PSR_c
| PSR_x
},
16111 {"xfs", PSR_x
| PSR_f
| PSR_s
},
16112 {"xfc", PSR_x
| PSR_f
| PSR_c
},
16113 {"xsf", PSR_x
| PSR_s
| PSR_f
},
16114 {"xsc", PSR_x
| PSR_s
| PSR_c
},
16115 {"xcf", PSR_x
| PSR_c
| PSR_f
},
16116 {"xcs", PSR_x
| PSR_c
| PSR_s
},
16117 {"cfs", PSR_c
| PSR_f
| PSR_s
},
16118 {"cfx", PSR_c
| PSR_f
| PSR_x
},
16119 {"csf", PSR_c
| PSR_s
| PSR_f
},
16120 {"csx", PSR_c
| PSR_s
| PSR_x
},
16121 {"cxf", PSR_c
| PSR_x
| PSR_f
},
16122 {"cxs", PSR_c
| PSR_x
| PSR_s
},
16123 {"fsxc", PSR_f
| PSR_s
| PSR_x
| PSR_c
},
16124 {"fscx", PSR_f
| PSR_s
| PSR_c
| PSR_x
},
16125 {"fxsc", PSR_f
| PSR_x
| PSR_s
| PSR_c
},
16126 {"fxcs", PSR_f
| PSR_x
| PSR_c
| PSR_s
},
16127 {"fcsx", PSR_f
| PSR_c
| PSR_s
| PSR_x
},
16128 {"fcxs", PSR_f
| PSR_c
| PSR_x
| PSR_s
},
16129 {"sfxc", PSR_s
| PSR_f
| PSR_x
| PSR_c
},
16130 {"sfcx", PSR_s
| PSR_f
| PSR_c
| PSR_x
},
16131 {"sxfc", PSR_s
| PSR_x
| PSR_f
| PSR_c
},
16132 {"sxcf", PSR_s
| PSR_x
| PSR_c
| PSR_f
},
16133 {"scfx", PSR_s
| PSR_c
| PSR_f
| PSR_x
},
16134 {"scxf", PSR_s
| PSR_c
| PSR_x
| PSR_f
},
16135 {"xfsc", PSR_x
| PSR_f
| PSR_s
| PSR_c
},
16136 {"xfcs", PSR_x
| PSR_f
| PSR_c
| PSR_s
},
16137 {"xsfc", PSR_x
| PSR_s
| PSR_f
| PSR_c
},
16138 {"xscf", PSR_x
| PSR_s
| PSR_c
| PSR_f
},
16139 {"xcfs", PSR_x
| PSR_c
| PSR_f
| PSR_s
},
16140 {"xcsf", PSR_x
| PSR_c
| PSR_s
| PSR_f
},
16141 {"cfsx", PSR_c
| PSR_f
| PSR_s
| PSR_x
},
16142 {"cfxs", PSR_c
| PSR_f
| PSR_x
| PSR_s
},
16143 {"csfx", PSR_c
| PSR_s
| PSR_f
| PSR_x
},
16144 {"csxf", PSR_c
| PSR_s
| PSR_x
| PSR_f
},
16145 {"cxfs", PSR_c
| PSR_x
| PSR_f
| PSR_s
},
16146 {"cxsf", PSR_c
| PSR_x
| PSR_s
| PSR_f
},
16149 /* Table of V7M psr names. */
16150 static const struct asm_psr v7m_psrs
[] =
16152 {"apsr", 0 }, {"APSR", 0 },
16153 {"iapsr", 1 }, {"IAPSR", 1 },
16154 {"eapsr", 2 }, {"EAPSR", 2 },
16155 {"psr", 3 }, {"PSR", 3 },
16156 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16157 {"ipsr", 5 }, {"IPSR", 5 },
16158 {"epsr", 6 }, {"EPSR", 6 },
16159 {"iepsr", 7 }, {"IEPSR", 7 },
16160 {"msp", 8 }, {"MSP", 8 },
16161 {"psp", 9 }, {"PSP", 9 },
16162 {"primask", 16}, {"PRIMASK", 16},
16163 {"basepri", 17}, {"BASEPRI", 17},
16164 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16165 {"faultmask", 19}, {"FAULTMASK", 19},
16166 {"control", 20}, {"CONTROL", 20}
16169 /* Table of all shift-in-operand names. */
16170 static const struct asm_shift_name shift_names
[] =
16172 { "asl", SHIFT_LSL
}, { "ASL", SHIFT_LSL
},
16173 { "lsl", SHIFT_LSL
}, { "LSL", SHIFT_LSL
},
16174 { "lsr", SHIFT_LSR
}, { "LSR", SHIFT_LSR
},
16175 { "asr", SHIFT_ASR
}, { "ASR", SHIFT_ASR
},
16176 { "ror", SHIFT_ROR
}, { "ROR", SHIFT_ROR
},
16177 { "rrx", SHIFT_RRX
}, { "RRX", SHIFT_RRX
}
16180 /* Table of all explicit relocation names. */
16182 static struct reloc_entry reloc_names
[] =
16184 { "got", BFD_RELOC_ARM_GOT32
}, { "GOT", BFD_RELOC_ARM_GOT32
},
16185 { "gotoff", BFD_RELOC_ARM_GOTOFF
}, { "GOTOFF", BFD_RELOC_ARM_GOTOFF
},
16186 { "plt", BFD_RELOC_ARM_PLT32
}, { "PLT", BFD_RELOC_ARM_PLT32
},
16187 { "target1", BFD_RELOC_ARM_TARGET1
}, { "TARGET1", BFD_RELOC_ARM_TARGET1
},
16188 { "target2", BFD_RELOC_ARM_TARGET2
}, { "TARGET2", BFD_RELOC_ARM_TARGET2
},
16189 { "sbrel", BFD_RELOC_ARM_SBREL32
}, { "SBREL", BFD_RELOC_ARM_SBREL32
},
16190 { "tlsgd", BFD_RELOC_ARM_TLS_GD32
}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32
},
16191 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32
}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32
},
16192 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32
}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32
},
16193 { "gottpoff",BFD_RELOC_ARM_TLS_IE32
}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32
},
16194 { "tpoff", BFD_RELOC_ARM_TLS_LE32
}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32
},
16195 { "got_prel", BFD_RELOC_ARM_GOT_PREL
}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL
}
16199 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
16200 static const struct asm_cond conds
[] =
16204 {"cs", 0x2}, {"hs", 0x2},
16205 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16219 static struct asm_barrier_opt barrier_opt_names
[] =
16227 /* Table of ARM-format instructions. */
16229 /* Macros for gluing together operand strings. N.B. In all cases
16230 other than OPS0, the trailing OP_stop comes from default
16231 zero-initialization of the unspecified elements of the array. */
16232 #define OPS0() { OP_stop, }
16233 #define OPS1(a) { OP_##a, }
16234 #define OPS2(a,b) { OP_##a,OP_##b, }
16235 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16236 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16237 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16238 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16240 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16241 This is useful when mixing operands for ARM and THUMB, i.e. using the
16242 MIX_ARM_THUMB_OPERANDS macro.
16243 In order to use these macros, prefix the number of operands with _
16245 #define OPS_1(a) { a, }
16246 #define OPS_2(a,b) { a,b, }
16247 #define OPS_3(a,b,c) { a,b,c, }
16248 #define OPS_4(a,b,c,d) { a,b,c,d, }
16249 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16250 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16252 /* These macros abstract out the exact format of the mnemonic table and
16253 save some repeated characters. */
16255 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16256 #define TxCE(mnem, op, top, nops, ops, ae, te) \
16257 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
16258 THUMB_VARIANT, do_##ae, do_##te }
16260 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16261 a T_MNEM_xyz enumerator. */
16262 #define TCE(mnem, aop, top, nops, ops, ae, te) \
16263 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
16264 #define tCE(mnem, aop, top, nops, ops, ae, te) \
16265 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16267 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16268 infix after the third character. */
16269 #define TxC3(mnem, op, top, nops, ops, ae, te) \
16270 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
16271 THUMB_VARIANT, do_##ae, do_##te }
16272 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
16273 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
16274 THUMB_VARIANT, do_##ae, do_##te }
16275 #define TC3(mnem, aop, top, nops, ops, ae, te) \
16276 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
16277 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
16278 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
16279 #define tC3(mnem, aop, top, nops, ops, ae, te) \
16280 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16281 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
16282 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16284 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16285 appear in the condition table. */
16286 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
16287 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16288 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
16290 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
16291 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16292 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16293 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16294 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16295 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16296 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16297 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16298 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16299 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16300 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16301 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16302 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16303 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16304 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16305 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16306 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16307 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16308 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16309 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
16311 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
16312 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16313 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
16314 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
16316 /* Mnemonic that cannot be conditionalized. The ARM condition-code
16317 field is still 0xE. Many of the Thumb variants can be executed
16318 conditionally, so this is checked separately. */
16319 #define TUE(mnem, op, top, nops, ops, ae, te) \
16320 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
16321 THUMB_VARIANT, do_##ae, do_##te }
16323 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16324 condition code field. */
16325 #define TUF(mnem, op, top, nops, ops, ae, te) \
16326 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
16327 THUMB_VARIANT, do_##ae, do_##te }
16329 /* ARM-only variants of all the above. */
16330 #define CE(mnem, op, nops, ops, ae) \
16331 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16333 #define C3(mnem, op, nops, ops, ae) \
16334 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16336 /* Legacy mnemonics that always have conditional infix after the third
16338 #define CL(mnem, op, nops, ops, ae) \
16339 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16340 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16342 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16343 #define cCE(mnem, op, nops, ops, ae) \
16344 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16346 /* Legacy coprocessor instructions where conditional infix and conditional
16347 suffix are ambiguous. For consistency this includes all FPA instructions,
16348 not just the potentially ambiguous ones. */
16349 #define cCL(mnem, op, nops, ops, ae) \
16350 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16351 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16353 /* Coprocessor, takes either a suffix or a position-3 infix
16354 (for an FPA corner case). */
16355 #define C3E(mnem, op, nops, ops, ae) \
16356 { mnem, OPS##nops ops, OT_csuf_or_in3, \
16357 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16359 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
16360 { m1 #m2 m3, OPS##nops ops, \
16361 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16362 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16364 #define CM(m1, m2, op, nops, ops, ae) \
16365 xCM_ (m1, , m2, op, nops, ops, ae), \
16366 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16367 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16368 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16369 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16370 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16371 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16372 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16373 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16374 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16375 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16376 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16377 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16378 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16379 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16380 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16381 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16382 xCM_ (m1, le, m2, op, nops, ops, ae), \
16383 xCM_ (m1, al, m2, op, nops, ops, ae)
16385 #define UE(mnem, op, nops, ops, ae) \
16386 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16388 #define UF(mnem, op, nops, ops, ae) \
16389 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16391 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
16392 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16393 use the same encoding function for each. */
16394 #define NUF(mnem, op, nops, ops, enc) \
16395 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16396 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16398 /* Neon data processing, version which indirects through neon_enc_tab for
16399 the various overloaded versions of opcodes. */
16400 #define nUF(mnem, op, nops, ops, enc) \
16401 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
16402 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16404 /* Neon insn with conditional suffix for the ARM version, non-overloaded
16406 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
16407 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
16408 THUMB_VARIANT, do_##enc, do_##enc }
16410 #define NCE(mnem, op, nops, ops, enc) \
16411 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16413 #define NCEF(mnem, op, nops, ops, enc) \
16414 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16416 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
16417 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
16418 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
16419 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16421 #define nCE(mnem, op, nops, ops, enc) \
16422 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16424 #define nCEF(mnem, op, nops, ops, enc) \
16425 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16429 /* Thumb-only, unconditional. */
16430 #define UT(mnem, op, nops, ops, te) TUE (mnem, 0, op, nops, ops, 0, te)
16432 static const struct asm_opcode insns
[] =
16434 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
16435 #define THUMB_VARIANT &arm_ext_v4t
16436 tCE("and", 0000000, _and
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
16437 tC3("ands", 0100000, _ands
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
16438 tCE("eor", 0200000, _eor
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
16439 tC3("eors", 0300000, _eors
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
16440 tCE("sub", 0400000, _sub
, 3, (RR
, oRR
, SH
), arit
, t_add_sub
),
16441 tC3("subs", 0500000, _subs
, 3, (RR
, oRR
, SH
), arit
, t_add_sub
),
16442 tCE("add", 0800000, _add
, 3, (RR
, oRR
, SHG
), arit
, t_add_sub
),
16443 tC3("adds", 0900000, _adds
, 3, (RR
, oRR
, SHG
), arit
, t_add_sub
),
16444 tCE("adc", 0a00000
, _adc
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
16445 tC3("adcs", 0b00000, _adcs
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
16446 tCE("sbc", 0c00000
, _sbc
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
16447 tC3("sbcs", 0d00000
, _sbcs
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
16448 tCE("orr", 1800000, _orr
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
16449 tC3("orrs", 1900000, _orrs
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
16450 tCE("bic", 1c00000
, _bic
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
16451 tC3("bics", 1d00000
, _bics
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
16453 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
16454 for setting PSR flag bits. They are obsolete in V6 and do not
16455 have Thumb equivalents. */
16456 tCE("tst", 1100000, _tst
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
16457 tC3w("tsts", 1100000, _tst
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
16458 CL("tstp", 110f000
, 2, (RR
, SH
), cmp
),
16459 tCE("cmp", 1500000, _cmp
, 2, (RR
, SH
), cmp
, t_mov_cmp
),
16460 tC3w("cmps", 1500000, _cmp
, 2, (RR
, SH
), cmp
, t_mov_cmp
),
16461 CL("cmpp", 150f000
, 2, (RR
, SH
), cmp
),
16462 tCE("cmn", 1700000, _cmn
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
16463 tC3w("cmns", 1700000, _cmn
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
16464 CL("cmnp", 170f000
, 2, (RR
, SH
), cmp
),
16466 tCE("mov", 1a00000
, _mov
, 2, (RR
, SH
), mov
, t_mov_cmp
),
16467 tC3("movs", 1b00000
, _movs
, 2, (RR
, SH
), mov
, t_mov_cmp
),
16468 tCE("mvn", 1e00000
, _mvn
, 2, (RR
, SH
), mov
, t_mvn_tst
),
16469 tC3("mvns", 1f00000
, _mvns
, 2, (RR
, SH
), mov
, t_mvn_tst
),
16471 tCE("ldr", 4100000, _ldr
, 2, (RR
, ADDRGLDR
),ldst
, t_ldst
),
16472 tC3("ldrb", 4500000, _ldrb
, 2, (RRnpc_npcsp
, ADDRGLDR
),ldst
, t_ldst
),
16473 tCE("str", 4000000, _str
, _2
, (MIX_ARM_THUMB_OPERANDS (OP_RR
,
16475 OP_ADDRGLDR
),ldst
, t_ldst
),
16476 tC3("strb", 4400000, _strb
, 2, (RRnpc_npcsp
, ADDRGLDR
),ldst
, t_ldst
),
16478 tCE("stm", 8800000, _stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
16479 tC3("stmia", 8800000, _stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
16480 tC3("stmea", 8800000, _stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
16481 tCE("ldm", 8900000, _ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
16482 tC3("ldmia", 8900000, _ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
16483 tC3("ldmfd", 8900000, _ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
16485 TCE("swi", f000000
, df00
, 1, (EXPi
), swi
, t_swi
),
16486 TCE("svc", f000000
, df00
, 1, (EXPi
), swi
, t_swi
),
16487 tCE("b", a000000
, _b
, 1, (EXPr
), branch
, t_branch
),
16488 TCE("bl", b000000
, f000f800
, 1, (EXPr
), bl
, t_branch23
),
16491 tCE("adr", 28f0000
, _adr
, 2, (RR
, EXP
), adr
, t_adr
),
16492 C3(adrl
, 28f0000
, 2, (RR
, EXP
), adrl
),
16493 tCE("nop", 1a00000
, _nop
, 1, (oI255c
), nop
, t_nop
),
16495 /* Thumb-compatibility pseudo ops. */
16496 tCE("lsl", 1a00000
, _lsl
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
16497 tC3("lsls", 1b00000
, _lsls
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
16498 tCE("lsr", 1a00020
, _lsr
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
16499 tC3("lsrs", 1b00020
, _lsrs
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
16500 tCE("asr", 1a00040
, _asr
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
16501 tC3("asrs", 1b00040
, _asrs
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
16502 tCE("ror", 1a00060
, _ror
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
16503 tC3("rors", 1b00060
, _rors
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
16504 tCE("neg", 2600000, _neg
, 2, (RR
, RR
), rd_rn
, t_neg
),
16505 tC3("negs", 2700000, _negs
, 2, (RR
, RR
), rd_rn
, t_neg
),
16506 tCE("push", 92d0000
, _push
, 1, (REGLST
), push_pop
, t_push_pop
),
16507 tCE("pop", 8bd0000
, _pop
, 1, (REGLST
), push_pop
, t_push_pop
),
16509 /* These may simplify to neg. */
16510 TCE("rsb", 0600000, ebc00000
, 3, (RR
, oRR
, SH
), arit
, t_rsb
),
16511 TC3("rsbs", 0700000, ebd00000
, 3, (RR
, oRR
, SH
), arit
, t_rsb
),
16513 #undef THUMB_VARIANT
16514 #define THUMB_VARIANT & arm_ext_v6
16516 TCE("cpy", 1a00000
, 4600, 2, (RR
, RR
), rd_rm
, t_cpy
),
16518 /* V1 instructions with no Thumb analogue prior to V6T2. */
16519 #undef THUMB_VARIANT
16520 #define THUMB_VARIANT & arm_ext_v6t2
16522 TCE("teq", 1300000, ea900f00
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
16523 TC3w("teqs", 1300000, ea900f00
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
16524 CL("teqp", 130f000
, 2, (RR
, SH
), cmp
),
16526 TC3("ldrt", 4300000, f8500e00
, 2, (RRnpc_npcsp
, ADDR
),ldstt
, t_ldstt
),
16527 TC3("ldrbt", 4700000, f8100e00
, 2, (RRnpc_npcsp
, ADDR
),ldstt
, t_ldstt
),
16528 TC3("strt", 4200000, f8400e00
, 2, (RR_npcsp
, ADDR
), ldstt
, t_ldstt
),
16529 TC3("strbt", 4600000, f8000e00
, 2, (RRnpc_npcsp
, ADDR
),ldstt
, t_ldstt
),
16531 TC3("stmdb", 9000000, e9000000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
16532 TC3("stmfd", 9000000, e9000000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
16534 TC3("ldmdb", 9100000, e9100000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
16535 TC3("ldmea", 9100000, e9100000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
16537 /* V1 instructions with no Thumb analogue at all. */
16538 CE("rsc", 0e00000
, 3, (RR
, oRR
, SH
), arit
),
16539 C3(rscs
, 0f00000
, 3, (RR
, oRR
, SH
), arit
),
16541 C3(stmib
, 9800000, 2, (RRw
, REGLST
), ldmstm
),
16542 C3(stmfa
, 9800000, 2, (RRw
, REGLST
), ldmstm
),
16543 C3(stmda
, 8000000, 2, (RRw
, REGLST
), ldmstm
),
16544 C3(stmed
, 8000000, 2, (RRw
, REGLST
), ldmstm
),
16545 C3(ldmib
, 9900000, 2, (RRw
, REGLST
), ldmstm
),
16546 C3(ldmed
, 9900000, 2, (RRw
, REGLST
), ldmstm
),
16547 C3(ldmda
, 8100000, 2, (RRw
, REGLST
), ldmstm
),
16548 C3(ldmfa
, 8100000, 2, (RRw
, REGLST
), ldmstm
),
16551 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
16552 #undef THUMB_VARIANT
16553 #define THUMB_VARIANT & arm_ext_v4t
16555 tCE("mul", 0000090, _mul
, 3, (RRnpc
, RRnpc
, oRR
), mul
, t_mul
),
16556 tC3("muls", 0100090, _muls
, 3, (RRnpc
, RRnpc
, oRR
), mul
, t_mul
),
16558 #undef THUMB_VARIANT
16559 #define THUMB_VARIANT & arm_ext_v6t2
16561 TCE("mla", 0200090, fb000000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
, t_mla
),
16562 C3(mlas
, 0300090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
),
16564 /* Generic coprocessor instructions. */
16565 TCE("cdp", e000000
, ee000000
, 6, (RCP
, I15b
, RCN
, RCN
, RCN
, oI7b
), cdp
, cdp
),
16566 TCE("ldc", c100000
, ec100000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
16567 TC3("ldcl", c500000
, ec500000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
16568 TCE("stc", c000000
, ec000000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
16569 TC3("stcl", c400000
, ec400000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
16570 TCE("mcr", e000010
, ee000010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
16571 TCE("mrc", e100010
, ee100010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
16574 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
16576 CE("swp", 1000090, 3, (RRnpc
, RRnpc
, RRnpcb
), rd_rm_rn
),
16577 C3(swpb
, 1400090, 3, (RRnpc
, RRnpc
, RRnpcb
), rd_rm_rn
),
16580 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
16581 #undef THUMB_VARIANT
16582 #define THUMB_VARIANT & arm_ext_msr
16584 TCE("mrs", 10f0000
, f3ef8000
, 2, (APSR_RR
, RVC_PSR
), mrs
, t_mrs
),
16585 TCE("msr", 120f000
, f3808000
, 2, (RVC_PSR
, RR_EXi
), msr
, t_msr
),
16588 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
16589 #undef THUMB_VARIANT
16590 #define THUMB_VARIANT & arm_ext_v6t2
16592 TCE("smull", 0c00090
, fb800000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
16593 CM("smull","s", 0d00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
16594 TCE("umull", 0800090, fba00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
16595 CM("umull","s", 0900090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
16596 TCE("smlal", 0e00090
, fbc00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
16597 CM("smlal","s", 0f00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
16598 TCE("umlal", 0a00090
, fbe00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
16599 CM("umlal","s", 0b00090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
16602 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
16603 #undef THUMB_VARIANT
16604 #define THUMB_VARIANT & arm_ext_v4t
16606 tC3("ldrh", 01000b0
, _ldrh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
16607 tC3("strh", 00000b0
, _strh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
16608 tC3("ldrsh", 01000f0
, _ldrsh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
16609 tC3("ldrsb", 01000d0
, _ldrsb
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
16610 tCM("ld","sh", 01000f0
, _ldrsh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
16611 tCM("ld","sb", 01000d0
, _ldrsb
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
16614 #define ARM_VARIANT & arm_ext_v4t_5
16616 /* ARM Architecture 4T. */
16617 /* Note: bx (and blx) are required on V5, even if the processor does
16618 not support Thumb. */
16619 TCE("bx", 12fff10
, 4700, 1, (RR
), bx
, t_bx
),
16622 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
16623 #undef THUMB_VARIANT
16624 #define THUMB_VARIANT & arm_ext_v5t
16626 /* Note: blx has 2 variants; the .value coded here is for
16627 BLX(2). Only this variant has conditional execution. */
16628 TCE("blx", 12fff30
, 4780, 1, (RR_EXr
), blx
, t_blx
),
16629 TUE("bkpt", 1200070, be00
, 1, (oIffffb
), bkpt
, t_bkpt
),
16631 #undef THUMB_VARIANT
16632 #define THUMB_VARIANT & arm_ext_v6t2
16634 TCE("clz", 16f0f10
, fab0f080
, 2, (RRnpc
, RRnpc
), rd_rm
, t_clz
),
16635 TUF("ldc2", c100000
, fc100000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
16636 TUF("ldc2l", c500000
, fc500000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
16637 TUF("stc2", c000000
, fc000000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
16638 TUF("stc2l", c400000
, fc400000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
16639 TUF("cdp2", e000000
, fe000000
, 6, (RCP
, I15b
, RCN
, RCN
, RCN
, oI7b
), cdp
, cdp
),
16640 TUF("mcr2", e000010
, fe000010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
16641 TUF("mrc2", e100010
, fe100010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
16644 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
16645 #undef THUMB_VARIANT
16646 #define THUMB_VARIANT &arm_ext_v5exp
16648 TCE("smlabb", 1000080, fb100000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
16649 TCE("smlatb", 10000a0
, fb100020
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
16650 TCE("smlabt", 10000c0
, fb100010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
16651 TCE("smlatt", 10000e0
, fb100030
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
16653 TCE("smlawb", 1200080, fb300000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
16654 TCE("smlawt", 12000c0
, fb300010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
16656 TCE("smlalbb", 1400080, fbc00080
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
16657 TCE("smlaltb", 14000a0
, fbc000a0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
16658 TCE("smlalbt", 14000c0
, fbc00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
16659 TCE("smlaltt", 14000e0
, fbc000b0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
16661 TCE("smulbb", 1600080, fb10f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
16662 TCE("smultb", 16000a0
, fb10f020
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
16663 TCE("smulbt", 16000c0
, fb10f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
16664 TCE("smultt", 16000e0
, fb10f030
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
16666 TCE("smulwb", 12000a0
, fb30f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
16667 TCE("smulwt", 12000e0
, fb30f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
16669 TCE("qadd", 1000050, fa80f080
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
16670 TCE("qdadd", 1400050, fa80f090
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
16671 TCE("qsub", 1200050, fa80f0a0
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
16672 TCE("qdsub", 1600050, fa80f0b0
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
16675 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
16676 #undef THUMB_VARIANT
16677 #define THUMB_VARIANT &arm_ext_v6t2
16679 TUF("pld", 450f000
, f810f000
, 1, (ADDR
), pld
, t_pld
),
16680 TC3("ldrd", 00000d0
, e8500000
, 3, (RRnpc_npcsp
, oRRnpc_npcsp
, ADDRGLDRS
),
16682 TC3("strd", 00000f0
, e8400000
, 3, (RRnpc_npcsp
, oRRnpc_npcsp
,
16683 ADDRGLDRS
), ldrd
, t_ldstd
),
16685 TCE("mcrr", c400000
, ec400000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
16686 TCE("mrrc", c500000
, ec500000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
16689 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
16691 TCE("bxj", 12fff20
, f3c08f00
, 1, (RR
), bxj
, t_bxj
),
16694 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
16695 #undef THUMB_VARIANT
16696 #define THUMB_VARIANT & arm_ext_v6
16698 TUF("cpsie", 1080000, b660
, 2, (CPSF
, oI31b
), cpsi
, t_cpsi
),
16699 TUF("cpsid", 10c0000
, b670
, 2, (CPSF
, oI31b
), cpsi
, t_cpsi
),
16700 tCE("rev", 6bf0f30
, _rev
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
16701 tCE("rev16", 6bf0fb0
, _rev16
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
16702 tCE("revsh", 6ff0fb0
, _revsh
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
16703 tCE("sxth", 6bf0070
, _sxth
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
16704 tCE("uxth", 6ff0070
, _uxth
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
16705 tCE("sxtb", 6af0070
, _sxtb
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
16706 tCE("uxtb", 6ef0070
, _uxtb
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
16707 TUF("setend", 1010000, b650
, 1, (ENDI
), setend
, t_setend
),
16709 #undef THUMB_VARIANT
16710 #define THUMB_VARIANT & arm_ext_v6t2
16712 TCE("ldrex", 1900f9f
, e8500f00
, 2, (RRnpc_npcsp
, ADDR
), ldrex
, t_ldrex
),
16713 TCE("strex", 1800f90
, e8400000
, 3, (RRnpc_npcsp
, RRnpc_npcsp
, ADDR
),
16715 TUF("mcrr2", c400000
, fc400000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
16716 TUF("mrrc2", c500000
, fc500000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
16718 TCE("ssat", 6a00010
, f3000000
, 4, (RRnpc
, I32
, RRnpc
, oSHllar
),ssat
, t_ssat
),
16719 TCE("usat", 6e00010
, f3800000
, 4, (RRnpc
, I31
, RRnpc
, oSHllar
),usat
, t_usat
),
16721 /* ARM V6 not included in V7M. */
16722 #undef THUMB_VARIANT
16723 #define THUMB_VARIANT & arm_ext_v6_notm
16724 TUF("rfeia", 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
16725 UF(rfeib
, 9900a00
, 1, (RRw
), rfe
),
16726 UF(rfeda
, 8100a00
, 1, (RRw
), rfe
),
16727 TUF("rfedb", 9100a00
, e810c000
, 1, (RRw
), rfe
, rfe
),
16728 TUF("rfefd", 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
16729 UF(rfefa
, 9900a00
, 1, (RRw
), rfe
),
16730 UF(rfeea
, 8100a00
, 1, (RRw
), rfe
),
16731 TUF("rfeed", 9100a00
, e810c000
, 1, (RRw
), rfe
, rfe
),
16732 TUF("srsia", 8c00500
, e980c000
, 2, (oRRw
, I31w
), srs
, srs
),
16733 UF(srsib
, 9c00500
, 2, (oRRw
, I31w
), srs
),
16734 UF(srsda
, 8400500, 2, (oRRw
, I31w
), srs
),
16735 TUF("srsdb", 9400500, e800c000
, 2, (oRRw
, I31w
), srs
, srs
),
16737 /* ARM V6 not included in V7M (eg. integer SIMD). */
16738 #undef THUMB_VARIANT
16739 #define THUMB_VARIANT & arm_ext_v6_dsp
16740 TUF("cps", 1020000, f3af8100
, 1, (I31b
), imm0
, t_cps
),
16741 TCE("pkhbt", 6800010, eac00000
, 4, (RRnpc
, RRnpc
, RRnpc
, oSHll
), pkhbt
, t_pkhbt
),
16742 TCE("pkhtb", 6800050, eac00020
, 4, (RRnpc
, RRnpc
, RRnpc
, oSHar
), pkhtb
, t_pkhtb
),
16743 TCE("qadd16", 6200f10
, fa90f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16744 TCE("qadd8", 6200f90
, fa80f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16745 TCE("qasx", 6200f30
, faa0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16746 /* Old name for QASX. */
16747 TCE("qaddsubx", 6200f30
, faa0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16748 TCE("qsax", 6200f50
, fae0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16749 /* Old name for QSAX. */
16750 TCE("qsubaddx", 6200f50
, fae0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16751 TCE("qsub16", 6200f70
, fad0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16752 TCE("qsub8", 6200ff0
, fac0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16753 TCE("sadd16", 6100f10
, fa90f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16754 TCE("sadd8", 6100f90
, fa80f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16755 TCE("sasx", 6100f30
, faa0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16756 /* Old name for SASX. */
16757 TCE("saddsubx", 6100f30
, faa0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16758 TCE("shadd16", 6300f10
, fa90f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16759 TCE("shadd8", 6300f90
, fa80f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16760 TCE("shasx", 6300f30
, faa0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16761 /* Old name for SHASX. */
16762 TCE("shaddsubx", 6300f30
, faa0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16763 TCE("shsax", 6300f50
, fae0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16764 /* Old name for SHSAX. */
16765 TCE("shsubaddx", 6300f50
, fae0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16766 TCE("shsub16", 6300f70
, fad0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16767 TCE("shsub8", 6300ff0
, fac0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16768 TCE("ssax", 6100f50
, fae0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16769 /* Old name for SSAX. */
16770 TCE("ssubaddx", 6100f50
, fae0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16771 TCE("ssub16", 6100f70
, fad0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16772 TCE("ssub8", 6100ff0
, fac0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16773 TCE("uadd16", 6500f10
, fa90f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16774 TCE("uadd8", 6500f90
, fa80f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16775 TCE("uasx", 6500f30
, faa0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16776 /* Old name for UASX. */
16777 TCE("uaddsubx", 6500f30
, faa0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16778 TCE("uhadd16", 6700f10
, fa90f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16779 TCE("uhadd8", 6700f90
, fa80f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16780 TCE("uhasx", 6700f30
, faa0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16781 /* Old name for UHASX. */
16782 TCE("uhaddsubx", 6700f30
, faa0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16783 TCE("uhsax", 6700f50
, fae0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16784 /* Old name for UHSAX. */
16785 TCE("uhsubaddx", 6700f50
, fae0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16786 TCE("uhsub16", 6700f70
, fad0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16787 TCE("uhsub8", 6700ff0
, fac0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16788 TCE("uqadd16", 6600f10
, fa90f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16789 TCE("uqadd8", 6600f90
, fa80f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16790 TCE("uqasx", 6600f30
, faa0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16791 /* Old name for UQASX. */
16792 TCE("uqaddsubx", 6600f30
, faa0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16793 TCE("uqsax", 6600f50
, fae0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16794 /* Old name for UQSAX. */
16795 TCE("uqsubaddx", 6600f50
, fae0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16796 TCE("uqsub16", 6600f70
, fad0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16797 TCE("uqsub8", 6600ff0
, fac0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16798 TCE("usub16", 6500f70
, fad0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16799 TCE("usax", 6500f50
, fae0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16800 /* Old name for USAX. */
16801 TCE("usubaddx", 6500f50
, fae0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16802 TCE("usub8", 6500ff0
, fac0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16803 TCE("sxtah", 6b00070
, fa00f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
16804 TCE("sxtab16", 6800070, fa20f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
16805 TCE("sxtab", 6a00070
, fa40f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
16806 TCE("sxtb16", 68f0070
, fa2ff080
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
16807 TCE("uxtah", 6f00070
, fa10f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
16808 TCE("uxtab16", 6c00070
, fa30f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
16809 TCE("uxtab", 6e00070
, fa50f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
16810 TCE("uxtb16", 6cf0070
, fa3ff080
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
16811 TCE("sel", 6800fb0
, faa0f080
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
16812 TCE("smlad", 7000010, fb200000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
16813 TCE("smladx", 7000030, fb200010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
16814 TCE("smlald", 7400010, fbc000c0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
16815 TCE("smlaldx", 7400030, fbc000d0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
16816 TCE("smlsd", 7000050, fb400000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
16817 TCE("smlsdx", 7000070, fb400010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
16818 TCE("smlsld", 7400050, fbd000c0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
16819 TCE("smlsldx", 7400070, fbd000d0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
16820 TCE("smmla", 7500010, fb500000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
16821 TCE("smmlar", 7500030, fb500010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
16822 TCE("smmls", 75000d0
, fb600000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
16823 TCE("smmlsr", 75000f0
, fb600010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
16824 TCE("smmul", 750f010
, fb50f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
16825 TCE("smmulr", 750f030
, fb50f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
16826 TCE("smuad", 700f010
, fb20f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
16827 TCE("smuadx", 700f030
, fb20f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
16828 TCE("smusd", 700f050
, fb40f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
16829 TCE("smusdx", 700f070
, fb40f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
16830 TCE("ssat16", 6a00f30
, f3200000
, 3, (RRnpc
, I16
, RRnpc
), ssat16
, t_ssat16
),
16831 TCE("umaal", 0400090, fbe00060
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
, t_mlal
),
16832 TCE("usad8", 780f010
, fb70f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
16833 TCE("usada8", 7800010, fb700000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
16834 TCE("usat16", 6e00f30
, f3a00000
, 3, (RRnpc
, I15
, RRnpc
), usat16
, t_usat16
),
16837 #define ARM_VARIANT & arm_ext_v6k
16838 #undef THUMB_VARIANT
16839 #define THUMB_VARIANT & arm_ext_v6k
16841 tCE("yield", 320f001
, _yield
, 0, (), noargs
, t_hint
),
16842 tCE("wfe", 320f002
, _wfe
, 0, (), noargs
, t_hint
),
16843 tCE("wfi", 320f003
, _wfi
, 0, (), noargs
, t_hint
),
16844 tCE("sev", 320f004
, _sev
, 0, (), noargs
, t_hint
),
16846 #undef THUMB_VARIANT
16847 #define THUMB_VARIANT & arm_ext_v6_notm
16848 TCE("ldrexd", 1b00f9f
, e8d0007f
, 3, (RRnpc_npcsp
, oRRnpc_npcsp
, RRnpcb
),
16850 TCE("strexd", 1a00f90
, e8c00070
, 4, (RRnpc_npcsp
, RRnpc_npcsp
, oRRnpc_npcsp
,
16851 RRnpcb
), strexd
, t_strexd
),
16853 #undef THUMB_VARIANT
16854 #define THUMB_VARIANT & arm_ext_v6t2
16855 TCE("ldrexb", 1d00f9f
, e8d00f4f
, 2, (RRnpc_npcsp
,RRnpcb
),
16857 TCE("ldrexh", 1f00f9f
, e8d00f5f
, 2, (RRnpc_npcsp
, RRnpcb
),
16859 TCE("strexb", 1c00f90
, e8c00f40
, 3, (RRnpc_npcsp
, RRnpc_npcsp
, ADDR
),
16861 TCE("strexh", 1e00f90
, e8c00f50
, 3, (RRnpc_npcsp
, RRnpc_npcsp
, ADDR
),
16863 TUF("clrex", 57ff01f
, f3bf8f2f
, 0, (), noargs
, noargs
),
16866 #define ARM_VARIANT & arm_ext_v6z
16868 TCE("smc", 1600070, f7f08000
, 1, (EXPi
), smc
, t_smc
),
16871 #define ARM_VARIANT & arm_ext_v6t2
16873 TCE("bfc", 7c0001f
, f36f0000
, 3, (RRnpc
, I31
, I32
), bfc
, t_bfc
),
16874 TCE("bfi", 7c00010
, f3600000
, 4, (RRnpc
, RRnpc_I0
, I31
, I32
), bfi
, t_bfi
),
16875 TCE("sbfx", 7a00050
, f3400000
, 4, (RR
, RR
, I31
, I32
), bfx
, t_bfx
),
16876 TCE("ubfx", 7e00050
, f3c00000
, 4, (RR
, RR
, I31
, I32
), bfx
, t_bfx
),
16878 TCE("mls", 0600090, fb000010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
, t_mla
),
16879 TCE("movw", 3000000, f2400000
, 2, (RRnpc
, HALF
), mov16
, t_mov16
),
16880 TCE("movt", 3400000, f2c00000
, 2, (RRnpc
, HALF
), mov16
, t_mov16
),
16881 TCE("rbit", 6ff0f30
, fa90f0a0
, 2, (RR
, RR
), rd_rm
, t_rbit
),
16883 TC3("ldrht", 03000b0
, f8300e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
16884 TC3("ldrsht", 03000f0
, f9300e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
16885 TC3("ldrsbt", 03000d0
, f9100e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
16886 TC3("strht", 02000b0
, f8200e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
16888 UT("cbnz", b900
, 2, (RR
, EXP
), t_cbz
),
16889 UT("cbz", b100
, 2, (RR
, EXP
), t_cbz
),
16891 /* ARM does not really have an IT instruction, so always allow it.
16892 The opcode is copied from Thumb in order to allow warnings in
16893 -mimplicit-it=[never | arm] modes. */
16895 #define ARM_VARIANT & arm_ext_v1
16897 TUE("it", bf08
, bf08
, 1, (COND
), it
, t_it
),
16898 TUE("itt", bf0c
, bf0c
, 1, (COND
), it
, t_it
),
16899 TUE("ite", bf04
, bf04
, 1, (COND
), it
, t_it
),
16900 TUE("ittt", bf0e
, bf0e
, 1, (COND
), it
, t_it
),
16901 TUE("itet", bf06
, bf06
, 1, (COND
), it
, t_it
),
16902 TUE("itte", bf0a
, bf0a
, 1, (COND
), it
, t_it
),
16903 TUE("itee", bf02
, bf02
, 1, (COND
), it
, t_it
),
16904 TUE("itttt", bf0f
, bf0f
, 1, (COND
), it
, t_it
),
16905 TUE("itett", bf07
, bf07
, 1, (COND
), it
, t_it
),
16906 TUE("ittet", bf0b
, bf0b
, 1, (COND
), it
, t_it
),
16907 TUE("iteet", bf03
, bf03
, 1, (COND
), it
, t_it
),
16908 TUE("ittte", bf0d
, bf0d
, 1, (COND
), it
, t_it
),
16909 TUE("itete", bf05
, bf05
, 1, (COND
), it
, t_it
),
16910 TUE("ittee", bf09
, bf09
, 1, (COND
), it
, t_it
),
16911 TUE("iteee", bf01
, bf01
, 1, (COND
), it
, t_it
),
16912 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
16913 TC3("rrx", 01a00060
, ea4f0030
, 2, (RR
, RR
), rd_rm
, t_rrx
),
16914 TC3("rrxs", 01b00060
, ea5f0030
, 2, (RR
, RR
), rd_rm
, t_rrx
),
16916 /* Thumb2 only instructions. */
16918 #define ARM_VARIANT NULL
16920 TCE("addw", 0, f2000000
, 3, (RR
, RR
, EXPi
), 0, t_add_sub_w
),
16921 TCE("subw", 0, f2a00000
, 3, (RR
, RR
, EXPi
), 0, t_add_sub_w
),
16922 TCE("orn", 0, ea600000
, 3, (RR
, oRR
, SH
), 0, t_orn
),
16923 TCE("orns", 0, ea700000
, 3, (RR
, oRR
, SH
), 0, t_orn
),
16924 TCE("tbb", 0, e8d0f000
, 1, (TB
), 0, t_tb
),
16925 TCE("tbh", 0, e8d0f010
, 1, (TB
), 0, t_tb
),
16927 /* Thumb-2 hardware division instructions (R and M profiles only). */
16928 #undef THUMB_VARIANT
16929 #define THUMB_VARIANT & arm_ext_div
16931 TCE("sdiv", 0, fb90f0f0
, 3, (RR
, oRR
, RR
), 0, t_div
),
16932 TCE("udiv", 0, fbb0f0f0
, 3, (RR
, oRR
, RR
), 0, t_div
),
16934 /* ARM V6M/V7 instructions. */
16936 #define ARM_VARIANT & arm_ext_barrier
16937 #undef THUMB_VARIANT
16938 #define THUMB_VARIANT & arm_ext_barrier
16940 TUF("dmb", 57ff050
, f3bf8f50
, 1, (oBARRIER
), barrier
, t_barrier
),
16941 TUF("dsb", 57ff040
, f3bf8f40
, 1, (oBARRIER
), barrier
, t_barrier
),
16942 TUF("isb", 57ff060
, f3bf8f60
, 1, (oBARRIER
), barrier
, t_barrier
),
16944 /* ARM V7 instructions. */
16946 #define ARM_VARIANT & arm_ext_v7
16947 #undef THUMB_VARIANT
16948 #define THUMB_VARIANT & arm_ext_v7
16950 TUF("pli", 450f000
, f910f000
, 1, (ADDR
), pli
, t_pld
),
16951 TCE("dbg", 320f0f0
, f3af80f0
, 1, (I15
), dbg
, t_dbg
),
16954 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
16956 cCE("wfs", e200110
, 1, (RR
), rd
),
16957 cCE("rfs", e300110
, 1, (RR
), rd
),
16958 cCE("wfc", e400110
, 1, (RR
), rd
),
16959 cCE("rfc", e500110
, 1, (RR
), rd
),
16961 cCL("ldfs", c100100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
16962 cCL("ldfd", c108100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
16963 cCL("ldfe", c500100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
16964 cCL("ldfp", c508100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
16966 cCL("stfs", c000100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
16967 cCL("stfd", c008100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
16968 cCL("stfe", c400100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
16969 cCL("stfp", c408100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
16971 cCL("mvfs", e008100
, 2, (RF
, RF_IF
), rd_rm
),
16972 cCL("mvfsp", e008120
, 2, (RF
, RF_IF
), rd_rm
),
16973 cCL("mvfsm", e008140
, 2, (RF
, RF_IF
), rd_rm
),
16974 cCL("mvfsz", e008160
, 2, (RF
, RF_IF
), rd_rm
),
16975 cCL("mvfd", e008180
, 2, (RF
, RF_IF
), rd_rm
),
16976 cCL("mvfdp", e0081a0
, 2, (RF
, RF_IF
), rd_rm
),
16977 cCL("mvfdm", e0081c0
, 2, (RF
, RF_IF
), rd_rm
),
16978 cCL("mvfdz", e0081e0
, 2, (RF
, RF_IF
), rd_rm
),
16979 cCL("mvfe", e088100
, 2, (RF
, RF_IF
), rd_rm
),
16980 cCL("mvfep", e088120
, 2, (RF
, RF_IF
), rd_rm
),
16981 cCL("mvfem", e088140
, 2, (RF
, RF_IF
), rd_rm
),
16982 cCL("mvfez", e088160
, 2, (RF
, RF_IF
), rd_rm
),
16984 cCL("mnfs", e108100
, 2, (RF
, RF_IF
), rd_rm
),
16985 cCL("mnfsp", e108120
, 2, (RF
, RF_IF
), rd_rm
),
16986 cCL("mnfsm", e108140
, 2, (RF
, RF_IF
), rd_rm
),
16987 cCL("mnfsz", e108160
, 2, (RF
, RF_IF
), rd_rm
),
16988 cCL("mnfd", e108180
, 2, (RF
, RF_IF
), rd_rm
),
16989 cCL("mnfdp", e1081a0
, 2, (RF
, RF_IF
), rd_rm
),
16990 cCL("mnfdm", e1081c0
, 2, (RF
, RF_IF
), rd_rm
),
16991 cCL("mnfdz", e1081e0
, 2, (RF
, RF_IF
), rd_rm
),
16992 cCL("mnfe", e188100
, 2, (RF
, RF_IF
), rd_rm
),
16993 cCL("mnfep", e188120
, 2, (RF
, RF_IF
), rd_rm
),
16994 cCL("mnfem", e188140
, 2, (RF
, RF_IF
), rd_rm
),
16995 cCL("mnfez", e188160
, 2, (RF
, RF_IF
), rd_rm
),
16997 cCL("abss", e208100
, 2, (RF
, RF_IF
), rd_rm
),
16998 cCL("abssp", e208120
, 2, (RF
, RF_IF
), rd_rm
),
16999 cCL("abssm", e208140
, 2, (RF
, RF_IF
), rd_rm
),
17000 cCL("abssz", e208160
, 2, (RF
, RF_IF
), rd_rm
),
17001 cCL("absd", e208180
, 2, (RF
, RF_IF
), rd_rm
),
17002 cCL("absdp", e2081a0
, 2, (RF
, RF_IF
), rd_rm
),
17003 cCL("absdm", e2081c0
, 2, (RF
, RF_IF
), rd_rm
),
17004 cCL("absdz", e2081e0
, 2, (RF
, RF_IF
), rd_rm
),
17005 cCL("abse", e288100
, 2, (RF
, RF_IF
), rd_rm
),
17006 cCL("absep", e288120
, 2, (RF
, RF_IF
), rd_rm
),
17007 cCL("absem", e288140
, 2, (RF
, RF_IF
), rd_rm
),
17008 cCL("absez", e288160
, 2, (RF
, RF_IF
), rd_rm
),
17010 cCL("rnds", e308100
, 2, (RF
, RF_IF
), rd_rm
),
17011 cCL("rndsp", e308120
, 2, (RF
, RF_IF
), rd_rm
),
17012 cCL("rndsm", e308140
, 2, (RF
, RF_IF
), rd_rm
),
17013 cCL("rndsz", e308160
, 2, (RF
, RF_IF
), rd_rm
),
17014 cCL("rndd", e308180
, 2, (RF
, RF_IF
), rd_rm
),
17015 cCL("rnddp", e3081a0
, 2, (RF
, RF_IF
), rd_rm
),
17016 cCL("rnddm", e3081c0
, 2, (RF
, RF_IF
), rd_rm
),
17017 cCL("rnddz", e3081e0
, 2, (RF
, RF_IF
), rd_rm
),
17018 cCL("rnde", e388100
, 2, (RF
, RF_IF
), rd_rm
),
17019 cCL("rndep", e388120
, 2, (RF
, RF_IF
), rd_rm
),
17020 cCL("rndem", e388140
, 2, (RF
, RF_IF
), rd_rm
),
17021 cCL("rndez", e388160
, 2, (RF
, RF_IF
), rd_rm
),
17023 cCL("sqts", e408100
, 2, (RF
, RF_IF
), rd_rm
),
17024 cCL("sqtsp", e408120
, 2, (RF
, RF_IF
), rd_rm
),
17025 cCL("sqtsm", e408140
, 2, (RF
, RF_IF
), rd_rm
),
17026 cCL("sqtsz", e408160
, 2, (RF
, RF_IF
), rd_rm
),
17027 cCL("sqtd", e408180
, 2, (RF
, RF_IF
), rd_rm
),
17028 cCL("sqtdp", e4081a0
, 2, (RF
, RF_IF
), rd_rm
),
17029 cCL("sqtdm", e4081c0
, 2, (RF
, RF_IF
), rd_rm
),
17030 cCL("sqtdz", e4081e0
, 2, (RF
, RF_IF
), rd_rm
),
17031 cCL("sqte", e488100
, 2, (RF
, RF_IF
), rd_rm
),
17032 cCL("sqtep", e488120
, 2, (RF
, RF_IF
), rd_rm
),
17033 cCL("sqtem", e488140
, 2, (RF
, RF_IF
), rd_rm
),
17034 cCL("sqtez", e488160
, 2, (RF
, RF_IF
), rd_rm
),
17036 cCL("logs", e508100
, 2, (RF
, RF_IF
), rd_rm
),
17037 cCL("logsp", e508120
, 2, (RF
, RF_IF
), rd_rm
),
17038 cCL("logsm", e508140
, 2, (RF
, RF_IF
), rd_rm
),
17039 cCL("logsz", e508160
, 2, (RF
, RF_IF
), rd_rm
),
17040 cCL("logd", e508180
, 2, (RF
, RF_IF
), rd_rm
),
17041 cCL("logdp", e5081a0
, 2, (RF
, RF_IF
), rd_rm
),
17042 cCL("logdm", e5081c0
, 2, (RF
, RF_IF
), rd_rm
),
17043 cCL("logdz", e5081e0
, 2, (RF
, RF_IF
), rd_rm
),
17044 cCL("loge", e588100
, 2, (RF
, RF_IF
), rd_rm
),
17045 cCL("logep", e588120
, 2, (RF
, RF_IF
), rd_rm
),
17046 cCL("logem", e588140
, 2, (RF
, RF_IF
), rd_rm
),
17047 cCL("logez", e588160
, 2, (RF
, RF_IF
), rd_rm
),
17049 cCL("lgns", e608100
, 2, (RF
, RF_IF
), rd_rm
),
17050 cCL("lgnsp", e608120
, 2, (RF
, RF_IF
), rd_rm
),
17051 cCL("lgnsm", e608140
, 2, (RF
, RF_IF
), rd_rm
),
17052 cCL("lgnsz", e608160
, 2, (RF
, RF_IF
), rd_rm
),
17053 cCL("lgnd", e608180
, 2, (RF
, RF_IF
), rd_rm
),
17054 cCL("lgndp", e6081a0
, 2, (RF
, RF_IF
), rd_rm
),
17055 cCL("lgndm", e6081c0
, 2, (RF
, RF_IF
), rd_rm
),
17056 cCL("lgndz", e6081e0
, 2, (RF
, RF_IF
), rd_rm
),
17057 cCL("lgne", e688100
, 2, (RF
, RF_IF
), rd_rm
),
17058 cCL("lgnep", e688120
, 2, (RF
, RF_IF
), rd_rm
),
17059 cCL("lgnem", e688140
, 2, (RF
, RF_IF
), rd_rm
),
17060 cCL("lgnez", e688160
, 2, (RF
, RF_IF
), rd_rm
),
17062 cCL("exps", e708100
, 2, (RF
, RF_IF
), rd_rm
),
17063 cCL("expsp", e708120
, 2, (RF
, RF_IF
), rd_rm
),
17064 cCL("expsm", e708140
, 2, (RF
, RF_IF
), rd_rm
),
17065 cCL("expsz", e708160
, 2, (RF
, RF_IF
), rd_rm
),
17066 cCL("expd", e708180
, 2, (RF
, RF_IF
), rd_rm
),
17067 cCL("expdp", e7081a0
, 2, (RF
, RF_IF
), rd_rm
),
17068 cCL("expdm", e7081c0
, 2, (RF
, RF_IF
), rd_rm
),
17069 cCL("expdz", e7081e0
, 2, (RF
, RF_IF
), rd_rm
),
17070 cCL("expe", e788100
, 2, (RF
, RF_IF
), rd_rm
),
17071 cCL("expep", e788120
, 2, (RF
, RF_IF
), rd_rm
),
17072 cCL("expem", e788140
, 2, (RF
, RF_IF
), rd_rm
),
17073 cCL("expdz", e788160
, 2, (RF
, RF_IF
), rd_rm
),
17075 cCL("sins", e808100
, 2, (RF
, RF_IF
), rd_rm
),
17076 cCL("sinsp", e808120
, 2, (RF
, RF_IF
), rd_rm
),
17077 cCL("sinsm", e808140
, 2, (RF
, RF_IF
), rd_rm
),
17078 cCL("sinsz", e808160
, 2, (RF
, RF_IF
), rd_rm
),
17079 cCL("sind", e808180
, 2, (RF
, RF_IF
), rd_rm
),
17080 cCL("sindp", e8081a0
, 2, (RF
, RF_IF
), rd_rm
),
17081 cCL("sindm", e8081c0
, 2, (RF
, RF_IF
), rd_rm
),
17082 cCL("sindz", e8081e0
, 2, (RF
, RF_IF
), rd_rm
),
17083 cCL("sine", e888100
, 2, (RF
, RF_IF
), rd_rm
),
17084 cCL("sinep", e888120
, 2, (RF
, RF_IF
), rd_rm
),
17085 cCL("sinem", e888140
, 2, (RF
, RF_IF
), rd_rm
),
17086 cCL("sinez", e888160
, 2, (RF
, RF_IF
), rd_rm
),
17088 cCL("coss", e908100
, 2, (RF
, RF_IF
), rd_rm
),
17089 cCL("cossp", e908120
, 2, (RF
, RF_IF
), rd_rm
),
17090 cCL("cossm", e908140
, 2, (RF
, RF_IF
), rd_rm
),
17091 cCL("cossz", e908160
, 2, (RF
, RF_IF
), rd_rm
),
17092 cCL("cosd", e908180
, 2, (RF
, RF_IF
), rd_rm
),
17093 cCL("cosdp", e9081a0
, 2, (RF
, RF_IF
), rd_rm
),
17094 cCL("cosdm", e9081c0
, 2, (RF
, RF_IF
), rd_rm
),
17095 cCL("cosdz", e9081e0
, 2, (RF
, RF_IF
), rd_rm
),
17096 cCL("cose", e988100
, 2, (RF
, RF_IF
), rd_rm
),
17097 cCL("cosep", e988120
, 2, (RF
, RF_IF
), rd_rm
),
17098 cCL("cosem", e988140
, 2, (RF
, RF_IF
), rd_rm
),
17099 cCL("cosez", e988160
, 2, (RF
, RF_IF
), rd_rm
),
17101 cCL("tans", ea08100
, 2, (RF
, RF_IF
), rd_rm
),
17102 cCL("tansp", ea08120
, 2, (RF
, RF_IF
), rd_rm
),
17103 cCL("tansm", ea08140
, 2, (RF
, RF_IF
), rd_rm
),
17104 cCL("tansz", ea08160
, 2, (RF
, RF_IF
), rd_rm
),
17105 cCL("tand", ea08180
, 2, (RF
, RF_IF
), rd_rm
),
17106 cCL("tandp", ea081a0
, 2, (RF
, RF_IF
), rd_rm
),
17107 cCL("tandm", ea081c0
, 2, (RF
, RF_IF
), rd_rm
),
17108 cCL("tandz", ea081e0
, 2, (RF
, RF_IF
), rd_rm
),
17109 cCL("tane", ea88100
, 2, (RF
, RF_IF
), rd_rm
),
17110 cCL("tanep", ea88120
, 2, (RF
, RF_IF
), rd_rm
),
17111 cCL("tanem", ea88140
, 2, (RF
, RF_IF
), rd_rm
),
17112 cCL("tanez", ea88160
, 2, (RF
, RF_IF
), rd_rm
),
17114 cCL("asns", eb08100
, 2, (RF
, RF_IF
), rd_rm
),
17115 cCL("asnsp", eb08120
, 2, (RF
, RF_IF
), rd_rm
),
17116 cCL("asnsm", eb08140
, 2, (RF
, RF_IF
), rd_rm
),
17117 cCL("asnsz", eb08160
, 2, (RF
, RF_IF
), rd_rm
),
17118 cCL("asnd", eb08180
, 2, (RF
, RF_IF
), rd_rm
),
17119 cCL("asndp", eb081a0
, 2, (RF
, RF_IF
), rd_rm
),
17120 cCL("asndm", eb081c0
, 2, (RF
, RF_IF
), rd_rm
),
17121 cCL("asndz", eb081e0
, 2, (RF
, RF_IF
), rd_rm
),
17122 cCL("asne", eb88100
, 2, (RF
, RF_IF
), rd_rm
),
17123 cCL("asnep", eb88120
, 2, (RF
, RF_IF
), rd_rm
),
17124 cCL("asnem", eb88140
, 2, (RF
, RF_IF
), rd_rm
),
17125 cCL("asnez", eb88160
, 2, (RF
, RF_IF
), rd_rm
),
17127 cCL("acss", ec08100
, 2, (RF
, RF_IF
), rd_rm
),
17128 cCL("acssp", ec08120
, 2, (RF
, RF_IF
), rd_rm
),
17129 cCL("acssm", ec08140
, 2, (RF
, RF_IF
), rd_rm
),
17130 cCL("acssz", ec08160
, 2, (RF
, RF_IF
), rd_rm
),
17131 cCL("acsd", ec08180
, 2, (RF
, RF_IF
), rd_rm
),
17132 cCL("acsdp", ec081a0
, 2, (RF
, RF_IF
), rd_rm
),
17133 cCL("acsdm", ec081c0
, 2, (RF
, RF_IF
), rd_rm
),
17134 cCL("acsdz", ec081e0
, 2, (RF
, RF_IF
), rd_rm
),
17135 cCL("acse", ec88100
, 2, (RF
, RF_IF
), rd_rm
),
17136 cCL("acsep", ec88120
, 2, (RF
, RF_IF
), rd_rm
),
17137 cCL("acsem", ec88140
, 2, (RF
, RF_IF
), rd_rm
),
17138 cCL("acsez", ec88160
, 2, (RF
, RF_IF
), rd_rm
),
17140 cCL("atns", ed08100
, 2, (RF
, RF_IF
), rd_rm
),
17141 cCL("atnsp", ed08120
, 2, (RF
, RF_IF
), rd_rm
),
17142 cCL("atnsm", ed08140
, 2, (RF
, RF_IF
), rd_rm
),
17143 cCL("atnsz", ed08160
, 2, (RF
, RF_IF
), rd_rm
),
17144 cCL("atnd", ed08180
, 2, (RF
, RF_IF
), rd_rm
),
17145 cCL("atndp", ed081a0
, 2, (RF
, RF_IF
), rd_rm
),
17146 cCL("atndm", ed081c0
, 2, (RF
, RF_IF
), rd_rm
),
17147 cCL("atndz", ed081e0
, 2, (RF
, RF_IF
), rd_rm
),
17148 cCL("atne", ed88100
, 2, (RF
, RF_IF
), rd_rm
),
17149 cCL("atnep", ed88120
, 2, (RF
, RF_IF
), rd_rm
),
17150 cCL("atnem", ed88140
, 2, (RF
, RF_IF
), rd_rm
),
17151 cCL("atnez", ed88160
, 2, (RF
, RF_IF
), rd_rm
),
17153 cCL("urds", ee08100
, 2, (RF
, RF_IF
), rd_rm
),
17154 cCL("urdsp", ee08120
, 2, (RF
, RF_IF
), rd_rm
),
17155 cCL("urdsm", ee08140
, 2, (RF
, RF_IF
), rd_rm
),
17156 cCL("urdsz", ee08160
, 2, (RF
, RF_IF
), rd_rm
),
17157 cCL("urdd", ee08180
, 2, (RF
, RF_IF
), rd_rm
),
17158 cCL("urddp", ee081a0
, 2, (RF
, RF_IF
), rd_rm
),
17159 cCL("urddm", ee081c0
, 2, (RF
, RF_IF
), rd_rm
),
17160 cCL("urddz", ee081e0
, 2, (RF
, RF_IF
), rd_rm
),
17161 cCL("urde", ee88100
, 2, (RF
, RF_IF
), rd_rm
),
17162 cCL("urdep", ee88120
, 2, (RF
, RF_IF
), rd_rm
),
17163 cCL("urdem", ee88140
, 2, (RF
, RF_IF
), rd_rm
),
17164 cCL("urdez", ee88160
, 2, (RF
, RF_IF
), rd_rm
),
17166 cCL("nrms", ef08100
, 2, (RF
, RF_IF
), rd_rm
),
17167 cCL("nrmsp", ef08120
, 2, (RF
, RF_IF
), rd_rm
),
17168 cCL("nrmsm", ef08140
, 2, (RF
, RF_IF
), rd_rm
),
17169 cCL("nrmsz", ef08160
, 2, (RF
, RF_IF
), rd_rm
),
17170 cCL("nrmd", ef08180
, 2, (RF
, RF_IF
), rd_rm
),
17171 cCL("nrmdp", ef081a0
, 2, (RF
, RF_IF
), rd_rm
),
17172 cCL("nrmdm", ef081c0
, 2, (RF
, RF_IF
), rd_rm
),
17173 cCL("nrmdz", ef081e0
, 2, (RF
, RF_IF
), rd_rm
),
17174 cCL("nrme", ef88100
, 2, (RF
, RF_IF
), rd_rm
),
17175 cCL("nrmep", ef88120
, 2, (RF
, RF_IF
), rd_rm
),
17176 cCL("nrmem", ef88140
, 2, (RF
, RF_IF
), rd_rm
),
17177 cCL("nrmez", ef88160
, 2, (RF
, RF_IF
), rd_rm
),
17179 cCL("adfs", e000100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17180 cCL("adfsp", e000120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17181 cCL("adfsm", e000140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17182 cCL("adfsz", e000160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17183 cCL("adfd", e000180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17184 cCL("adfdp", e0001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17185 cCL("adfdm", e0001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17186 cCL("adfdz", e0001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17187 cCL("adfe", e080100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17188 cCL("adfep", e080120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17189 cCL("adfem", e080140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17190 cCL("adfez", e080160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17192 cCL("sufs", e200100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17193 cCL("sufsp", e200120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17194 cCL("sufsm", e200140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17195 cCL("sufsz", e200160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17196 cCL("sufd", e200180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17197 cCL("sufdp", e2001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17198 cCL("sufdm", e2001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17199 cCL("sufdz", e2001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17200 cCL("sufe", e280100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17201 cCL("sufep", e280120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17202 cCL("sufem", e280140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17203 cCL("sufez", e280160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17205 cCL("rsfs", e300100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17206 cCL("rsfsp", e300120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17207 cCL("rsfsm", e300140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17208 cCL("rsfsz", e300160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17209 cCL("rsfd", e300180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17210 cCL("rsfdp", e3001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17211 cCL("rsfdm", e3001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17212 cCL("rsfdz", e3001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17213 cCL("rsfe", e380100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17214 cCL("rsfep", e380120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17215 cCL("rsfem", e380140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17216 cCL("rsfez", e380160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17218 cCL("mufs", e100100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17219 cCL("mufsp", e100120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17220 cCL("mufsm", e100140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17221 cCL("mufsz", e100160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17222 cCL("mufd", e100180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17223 cCL("mufdp", e1001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17224 cCL("mufdm", e1001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17225 cCL("mufdz", e1001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17226 cCL("mufe", e180100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17227 cCL("mufep", e180120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17228 cCL("mufem", e180140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17229 cCL("mufez", e180160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17231 cCL("dvfs", e400100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17232 cCL("dvfsp", e400120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17233 cCL("dvfsm", e400140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17234 cCL("dvfsz", e400160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17235 cCL("dvfd", e400180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17236 cCL("dvfdp", e4001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17237 cCL("dvfdm", e4001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17238 cCL("dvfdz", e4001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17239 cCL("dvfe", e480100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17240 cCL("dvfep", e480120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17241 cCL("dvfem", e480140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17242 cCL("dvfez", e480160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17244 cCL("rdfs", e500100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17245 cCL("rdfsp", e500120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17246 cCL("rdfsm", e500140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17247 cCL("rdfsz", e500160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17248 cCL("rdfd", e500180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17249 cCL("rdfdp", e5001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17250 cCL("rdfdm", e5001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17251 cCL("rdfdz", e5001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17252 cCL("rdfe", e580100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17253 cCL("rdfep", e580120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17254 cCL("rdfem", e580140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17255 cCL("rdfez", e580160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17257 cCL("pows", e600100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17258 cCL("powsp", e600120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17259 cCL("powsm", e600140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17260 cCL("powsz", e600160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17261 cCL("powd", e600180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17262 cCL("powdp", e6001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17263 cCL("powdm", e6001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17264 cCL("powdz", e6001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17265 cCL("powe", e680100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17266 cCL("powep", e680120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17267 cCL("powem", e680140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17268 cCL("powez", e680160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17270 cCL("rpws", e700100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17271 cCL("rpwsp", e700120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17272 cCL("rpwsm", e700140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17273 cCL("rpwsz", e700160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17274 cCL("rpwd", e700180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17275 cCL("rpwdp", e7001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17276 cCL("rpwdm", e7001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17277 cCL("rpwdz", e7001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17278 cCL("rpwe", e780100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17279 cCL("rpwep", e780120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17280 cCL("rpwem", e780140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17281 cCL("rpwez", e780160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17283 cCL("rmfs", e800100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17284 cCL("rmfsp", e800120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17285 cCL("rmfsm", e800140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17286 cCL("rmfsz", e800160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17287 cCL("rmfd", e800180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17288 cCL("rmfdp", e8001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17289 cCL("rmfdm", e8001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17290 cCL("rmfdz", e8001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17291 cCL("rmfe", e880100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17292 cCL("rmfep", e880120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17293 cCL("rmfem", e880140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17294 cCL("rmfez", e880160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17296 cCL("fmls", e900100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17297 cCL("fmlsp", e900120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17298 cCL("fmlsm", e900140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17299 cCL("fmlsz", e900160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17300 cCL("fmld", e900180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17301 cCL("fmldp", e9001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17302 cCL("fmldm", e9001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17303 cCL("fmldz", e9001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17304 cCL("fmle", e980100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17305 cCL("fmlep", e980120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17306 cCL("fmlem", e980140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17307 cCL("fmlez", e980160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17309 cCL("fdvs", ea00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17310 cCL("fdvsp", ea00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17311 cCL("fdvsm", ea00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17312 cCL("fdvsz", ea00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17313 cCL("fdvd", ea00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17314 cCL("fdvdp", ea001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17315 cCL("fdvdm", ea001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17316 cCL("fdvdz", ea001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17317 cCL("fdve", ea80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17318 cCL("fdvep", ea80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17319 cCL("fdvem", ea80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17320 cCL("fdvez", ea80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17322 cCL("frds", eb00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17323 cCL("frdsp", eb00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17324 cCL("frdsm", eb00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17325 cCL("frdsz", eb00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17326 cCL("frdd", eb00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17327 cCL("frddp", eb001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17328 cCL("frddm", eb001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17329 cCL("frddz", eb001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17330 cCL("frde", eb80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17331 cCL("frdep", eb80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17332 cCL("frdem", eb80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17333 cCL("frdez", eb80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17335 cCL("pols", ec00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17336 cCL("polsp", ec00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17337 cCL("polsm", ec00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17338 cCL("polsz", ec00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17339 cCL("pold", ec00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17340 cCL("poldp", ec001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17341 cCL("poldm", ec001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17342 cCL("poldz", ec001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17343 cCL("pole", ec80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17344 cCL("polep", ec80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17345 cCL("polem", ec80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17346 cCL("polez", ec80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
17348 cCE("cmf", e90f110
, 2, (RF
, RF_IF
), fpa_cmp
),
17349 C3E("cmfe", ed0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
17350 cCE("cnf", eb0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
17351 C3E("cnfe", ef0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
17353 cCL("flts", e000110
, 2, (RF
, RR
), rn_rd
),
17354 cCL("fltsp", e000130
, 2, (RF
, RR
), rn_rd
),
17355 cCL("fltsm", e000150
, 2, (RF
, RR
), rn_rd
),
17356 cCL("fltsz", e000170
, 2, (RF
, RR
), rn_rd
),
17357 cCL("fltd", e000190
, 2, (RF
, RR
), rn_rd
),
17358 cCL("fltdp", e0001b0
, 2, (RF
, RR
), rn_rd
),
17359 cCL("fltdm", e0001d0
, 2, (RF
, RR
), rn_rd
),
17360 cCL("fltdz", e0001f0
, 2, (RF
, RR
), rn_rd
),
17361 cCL("flte", e080110
, 2, (RF
, RR
), rn_rd
),
17362 cCL("fltep", e080130
, 2, (RF
, RR
), rn_rd
),
17363 cCL("fltem", e080150
, 2, (RF
, RR
), rn_rd
),
17364 cCL("fltez", e080170
, 2, (RF
, RR
), rn_rd
),
17366 /* The implementation of the FIX instruction is broken on some
17367 assemblers, in that it accepts a precision specifier as well as a
17368 rounding specifier, despite the fact that this is meaningless.
17369 To be more compatible, we accept it as well, though of course it
17370 does not set any bits. */
17371 cCE("fix", e100110
, 2, (RR
, RF
), rd_rm
),
17372 cCL("fixp", e100130
, 2, (RR
, RF
), rd_rm
),
17373 cCL("fixm", e100150
, 2, (RR
, RF
), rd_rm
),
17374 cCL("fixz", e100170
, 2, (RR
, RF
), rd_rm
),
17375 cCL("fixsp", e100130
, 2, (RR
, RF
), rd_rm
),
17376 cCL("fixsm", e100150
, 2, (RR
, RF
), rd_rm
),
17377 cCL("fixsz", e100170
, 2, (RR
, RF
), rd_rm
),
17378 cCL("fixdp", e100130
, 2, (RR
, RF
), rd_rm
),
17379 cCL("fixdm", e100150
, 2, (RR
, RF
), rd_rm
),
17380 cCL("fixdz", e100170
, 2, (RR
, RF
), rd_rm
),
17381 cCL("fixep", e100130
, 2, (RR
, RF
), rd_rm
),
17382 cCL("fixem", e100150
, 2, (RR
, RF
), rd_rm
),
17383 cCL("fixez", e100170
, 2, (RR
, RF
), rd_rm
),
17385 /* Instructions that were new with the real FPA, call them V2. */
17387 #define ARM_VARIANT & fpu_fpa_ext_v2
17389 cCE("lfm", c100200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
17390 cCL("lfmfd", c900200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
17391 cCL("lfmea", d100200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
17392 cCE("sfm", c000200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
17393 cCL("sfmfd", d000200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
17394 cCL("sfmea", c800200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
17397 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
17399 /* Moves and type conversions. */
17400 cCE("fcpys", eb00a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
17401 cCE("fmrs", e100a10
, 2, (RR
, RVS
), vfp_reg_from_sp
),
17402 cCE("fmsr", e000a10
, 2, (RVS
, RR
), vfp_sp_from_reg
),
17403 cCE("fmstat", ef1fa10
, 0, (), noargs
),
17404 cCE("vmrs", ef10a10
, 2, (APSR_RR
, RVC
), vmrs
),
17405 cCE("vmsr", ee10a10
, 2, (RVC
, RR
), vmsr
),
17406 cCE("fsitos", eb80ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
17407 cCE("fuitos", eb80a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
17408 cCE("ftosis", ebd0a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
17409 cCE("ftosizs", ebd0ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
17410 cCE("ftouis", ebc0a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
17411 cCE("ftouizs", ebc0ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
17412 cCE("fmrx", ef00a10
, 2, (RR
, RVC
), rd_rn
),
17413 cCE("fmxr", ee00a10
, 2, (RVC
, RR
), rn_rd
),
17415 /* Memory operations. */
17416 cCE("flds", d100a00
, 2, (RVS
, ADDRGLDC
), vfp_sp_ldst
),
17417 cCE("fsts", d000a00
, 2, (RVS
, ADDRGLDC
), vfp_sp_ldst
),
17418 cCE("fldmias", c900a00
, 2, (RRw
, VRSLST
), vfp_sp_ldstmia
),
17419 cCE("fldmfds", c900a00
, 2, (RRw
, VRSLST
), vfp_sp_ldstmia
),
17420 cCE("fldmdbs", d300a00
, 2, (RRw
, VRSLST
), vfp_sp_ldstmdb
),
17421 cCE("fldmeas", d300a00
, 2, (RRw
, VRSLST
), vfp_sp_ldstmdb
),
17422 cCE("fldmiax", c900b00
, 2, (RRw
, VRDLST
), vfp_xp_ldstmia
),
17423 cCE("fldmfdx", c900b00
, 2, (RRw
, VRDLST
), vfp_xp_ldstmia
),
17424 cCE("fldmdbx", d300b00
, 2, (RRw
, VRDLST
), vfp_xp_ldstmdb
),
17425 cCE("fldmeax", d300b00
, 2, (RRw
, VRDLST
), vfp_xp_ldstmdb
),
17426 cCE("fstmias", c800a00
, 2, (RRw
, VRSLST
), vfp_sp_ldstmia
),
17427 cCE("fstmeas", c800a00
, 2, (RRw
, VRSLST
), vfp_sp_ldstmia
),
17428 cCE("fstmdbs", d200a00
, 2, (RRw
, VRSLST
), vfp_sp_ldstmdb
),
17429 cCE("fstmfds", d200a00
, 2, (RRw
, VRSLST
), vfp_sp_ldstmdb
),
17430 cCE("fstmiax", c800b00
, 2, (RRw
, VRDLST
), vfp_xp_ldstmia
),
17431 cCE("fstmeax", c800b00
, 2, (RRw
, VRDLST
), vfp_xp_ldstmia
),
17432 cCE("fstmdbx", d200b00
, 2, (RRw
, VRDLST
), vfp_xp_ldstmdb
),
17433 cCE("fstmfdx", d200b00
, 2, (RRw
, VRDLST
), vfp_xp_ldstmdb
),
17435 /* Monadic operations. */
17436 cCE("fabss", eb00ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
17437 cCE("fnegs", eb10a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
17438 cCE("fsqrts", eb10ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
17440 /* Dyadic operations. */
17441 cCE("fadds", e300a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
17442 cCE("fsubs", e300a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
17443 cCE("fmuls", e200a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
17444 cCE("fdivs", e800a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
17445 cCE("fmacs", e000a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
17446 cCE("fmscs", e100a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
17447 cCE("fnmuls", e200a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
17448 cCE("fnmacs", e000a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
17449 cCE("fnmscs", e100a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
17452 cCE("fcmps", eb40a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
17453 cCE("fcmpzs", eb50a40
, 1, (RVS
), vfp_sp_compare_z
),
17454 cCE("fcmpes", eb40ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
17455 cCE("fcmpezs", eb50ac0
, 1, (RVS
), vfp_sp_compare_z
),
17457 /* Double precision load/store are still present on single precision
17458 implementations. */
17459 cCE("fldd", d100b00
, 2, (RVD
, ADDRGLDC
), vfp_dp_ldst
),
17460 cCE("fstd", d000b00
, 2, (RVD
, ADDRGLDC
), vfp_dp_ldst
),
17461 cCE("fldmiad", c900b00
, 2, (RRw
, VRDLST
), vfp_dp_ldstmia
),
17462 cCE("fldmfdd", c900b00
, 2, (RRw
, VRDLST
), vfp_dp_ldstmia
),
17463 cCE("fldmdbd", d300b00
, 2, (RRw
, VRDLST
), vfp_dp_ldstmdb
),
17464 cCE("fldmead", d300b00
, 2, (RRw
, VRDLST
), vfp_dp_ldstmdb
),
17465 cCE("fstmiad", c800b00
, 2, (RRw
, VRDLST
), vfp_dp_ldstmia
),
17466 cCE("fstmead", c800b00
, 2, (RRw
, VRDLST
), vfp_dp_ldstmia
),
17467 cCE("fstmdbd", d200b00
, 2, (RRw
, VRDLST
), vfp_dp_ldstmdb
),
17468 cCE("fstmfdd", d200b00
, 2, (RRw
, VRDLST
), vfp_dp_ldstmdb
),
17471 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
17473 /* Moves and type conversions. */
17474 cCE("fcpyd", eb00b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
17475 cCE("fcvtds", eb70ac0
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
17476 cCE("fcvtsd", eb70bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
17477 cCE("fmdhr", e200b10
, 2, (RVD
, RR
), vfp_dp_rn_rd
),
17478 cCE("fmdlr", e000b10
, 2, (RVD
, RR
), vfp_dp_rn_rd
),
17479 cCE("fmrdh", e300b10
, 2, (RR
, RVD
), vfp_dp_rd_rn
),
17480 cCE("fmrdl", e100b10
, 2, (RR
, RVD
), vfp_dp_rd_rn
),
17481 cCE("fsitod", eb80bc0
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
17482 cCE("fuitod", eb80b40
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
17483 cCE("ftosid", ebd0b40
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
17484 cCE("ftosizd", ebd0bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
17485 cCE("ftouid", ebc0b40
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
17486 cCE("ftouizd", ebc0bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
17488 /* Monadic operations. */
17489 cCE("fabsd", eb00bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
17490 cCE("fnegd", eb10b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
17491 cCE("fsqrtd", eb10bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
17493 /* Dyadic operations. */
17494 cCE("faddd", e300b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
17495 cCE("fsubd", e300b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
17496 cCE("fmuld", e200b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
17497 cCE("fdivd", e800b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
17498 cCE("fmacd", e000b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
17499 cCE("fmscd", e100b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
17500 cCE("fnmuld", e200b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
17501 cCE("fnmacd", e000b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
17502 cCE("fnmscd", e100b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
17505 cCE("fcmpd", eb40b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
17506 cCE("fcmpzd", eb50b40
, 1, (RVD
), vfp_dp_rd
),
17507 cCE("fcmped", eb40bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
17508 cCE("fcmpezd", eb50bc0
, 1, (RVD
), vfp_dp_rd
),
17511 #define ARM_VARIANT & fpu_vfp_ext_v2
17513 cCE("fmsrr", c400a10
, 3, (VRSLST
, RR
, RR
), vfp_sp2_from_reg2
),
17514 cCE("fmrrs", c500a10
, 3, (RR
, RR
, VRSLST
), vfp_reg2_from_sp2
),
17515 cCE("fmdrr", c400b10
, 3, (RVD
, RR
, RR
), vfp_dp_rm_rd_rn
),
17516 cCE("fmrrd", c500b10
, 3, (RR
, RR
, RVD
), vfp_dp_rd_rn_rm
),
17518 /* Instructions which may belong to either the Neon or VFP instruction sets.
17519 Individual encoder functions perform additional architecture checks. */
17521 #define ARM_VARIANT & fpu_vfp_ext_v1xd
17522 #undef THUMB_VARIANT
17523 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
17525 /* These mnemonics are unique to VFP. */
17526 NCE(vsqrt
, 0, 2, (RVSD
, RVSD
), vfp_nsyn_sqrt
),
17527 NCE(vdiv
, 0, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_div
),
17528 nCE(vnmul
, _vnmul
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
17529 nCE(vnmla
, _vnmla
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
17530 nCE(vnmls
, _vnmls
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
17531 nCE(vcmp
, _vcmp
, 2, (RVSD
, RVSD_I0
), vfp_nsyn_cmp
),
17532 nCE(vcmpe
, _vcmpe
, 2, (RVSD
, RVSD_I0
), vfp_nsyn_cmp
),
17533 NCE(vpush
, 0, 1, (VRSDLST
), vfp_nsyn_push
),
17534 NCE(vpop
, 0, 1, (VRSDLST
), vfp_nsyn_pop
),
17535 NCE(vcvtz
, 0, 2, (RVSD
, RVSD
), vfp_nsyn_cvtz
),
17537 /* Mnemonics shared by Neon and VFP. */
17538 nCEF(vmul
, _vmul
, 3, (RNSDQ
, oRNSDQ
, RNSDQ_RNSC
), neon_mul
),
17539 nCEF(vmla
, _vmla
, 3, (RNSDQ
, oRNSDQ
, RNSDQ_RNSC
), neon_mac_maybe_scalar
),
17540 nCEF(vmls
, _vmls
, 3, (RNSDQ
, oRNSDQ
, RNSDQ_RNSC
), neon_mac_maybe_scalar
),
17542 nCEF(vadd
, _vadd
, 3, (RNSDQ
, oRNSDQ
, RNSDQ
), neon_addsub_if_i
),
17543 nCEF(vsub
, _vsub
, 3, (RNSDQ
, oRNSDQ
, RNSDQ
), neon_addsub_if_i
),
17545 NCEF(vabs
, 1b10300
, 2, (RNSDQ
, RNSDQ
), neon_abs_neg
),
17546 NCEF(vneg
, 1b10380
, 2, (RNSDQ
, RNSDQ
), neon_abs_neg
),
17548 NCE(vldm
, c900b00
, 2, (RRw
, VRSDLST
), neon_ldm_stm
),
17549 NCE(vldmia
, c900b00
, 2, (RRw
, VRSDLST
), neon_ldm_stm
),
17550 NCE(vldmdb
, d100b00
, 2, (RRw
, VRSDLST
), neon_ldm_stm
),
17551 NCE(vstm
, c800b00
, 2, (RRw
, VRSDLST
), neon_ldm_stm
),
17552 NCE(vstmia
, c800b00
, 2, (RRw
, VRSDLST
), neon_ldm_stm
),
17553 NCE(vstmdb
, d000b00
, 2, (RRw
, VRSDLST
), neon_ldm_stm
),
17554 NCE(vldr
, d100b00
, 2, (RVSD
, ADDRGLDC
), neon_ldr_str
),
17555 NCE(vstr
, d000b00
, 2, (RVSD
, ADDRGLDC
), neon_ldr_str
),
17557 nCEF(vcvt
, _vcvt
, 3, (RNSDQ
, RNSDQ
, oI32b
), neon_cvt
),
17558 nCEF(vcvtr
, _vcvt
, 2, (RNSDQ
, RNSDQ
), neon_cvtr
),
17559 nCEF(vcvtb
, _vcvt
, 2, (RVS
, RVS
), neon_cvtb
),
17560 nCEF(vcvtt
, _vcvt
, 2, (RVS
, RVS
), neon_cvtt
),
17563 /* NOTE: All VMOV encoding is special-cased! */
17564 NCE(vmov
, 0, 1, (VMOV
), neon_mov
),
17565 NCE(vmovq
, 0, 1, (VMOV
), neon_mov
),
17567 #undef THUMB_VARIANT
17568 #define THUMB_VARIANT & fpu_neon_ext_v1
17570 #define ARM_VARIANT & fpu_neon_ext_v1
17572 /* Data processing with three registers of the same length. */
17573 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
17574 NUF(vaba
, 0000710, 3, (RNDQ
, RNDQ
, RNDQ
), neon_dyadic_i_su
),
17575 NUF(vabaq
, 0000710, 3, (RNQ
, RNQ
, RNQ
), neon_dyadic_i_su
),
17576 NUF(vhadd
, 0000000, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i_su
),
17577 NUF(vhaddq
, 0000000, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
17578 NUF(vrhadd
, 0000100, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i_su
),
17579 NUF(vrhaddq
, 0000100, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
17580 NUF(vhsub
, 0000200, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i_su
),
17581 NUF(vhsubq
, 0000200, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
17582 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
17583 NUF(vqadd
, 0000010, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i64_su
),
17584 NUF(vqaddq
, 0000010, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i64_su
),
17585 NUF(vqsub
, 0000210, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i64_su
),
17586 NUF(vqsubq
, 0000210, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i64_su
),
17587 NUF(vrshl
, 0000500, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_rshl
),
17588 NUF(vrshlq
, 0000500, 3, (RNQ
, oRNQ
, RNQ
), neon_rshl
),
17589 NUF(vqrshl
, 0000510, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_rshl
),
17590 NUF(vqrshlq
, 0000510, 3, (RNQ
, oRNQ
, RNQ
), neon_rshl
),
17591 /* If not immediate, fall back to neon_dyadic_i64_su.
17592 shl_imm should accept I8 I16 I32 I64,
17593 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
17594 nUF(vshl
, _vshl
, 3, (RNDQ
, oRNDQ
, RNDQ_I63b
), neon_shl_imm
),
17595 nUF(vshlq
, _vshl
, 3, (RNQ
, oRNQ
, RNDQ_I63b
), neon_shl_imm
),
17596 nUF(vqshl
, _vqshl
, 3, (RNDQ
, oRNDQ
, RNDQ_I63b
), neon_qshl_imm
),
17597 nUF(vqshlq
, _vqshl
, 3, (RNQ
, oRNQ
, RNDQ_I63b
), neon_qshl_imm
),
17598 /* Logic ops, types optional & ignored. */
17599 nUF(vand
, _vand
, 3, (RNDQ
, oRNDQ
, RNDQ_Ibig
), neon_logic
),
17600 nUF(vandq
, _vand
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
17601 nUF(vbic
, _vbic
, 3, (RNDQ
, oRNDQ
, RNDQ_Ibig
), neon_logic
),
17602 nUF(vbicq
, _vbic
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
17603 nUF(vorr
, _vorr
, 3, (RNDQ
, oRNDQ
, RNDQ_Ibig
), neon_logic
),
17604 nUF(vorrq
, _vorr
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
17605 nUF(vorn
, _vorn
, 3, (RNDQ
, oRNDQ
, RNDQ_Ibig
), neon_logic
),
17606 nUF(vornq
, _vorn
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
17607 nUF(veor
, _veor
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_logic
),
17608 nUF(veorq
, _veor
, 3, (RNQ
, oRNQ
, RNQ
), neon_logic
),
17609 /* Bitfield ops, untyped. */
17610 NUF(vbsl
, 1100110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
17611 NUF(vbslq
, 1100110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
17612 NUF(vbit
, 1200110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
17613 NUF(vbitq
, 1200110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
17614 NUF(vbif
, 1300110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
17615 NUF(vbifq
, 1300110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
17616 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
17617 nUF(vabd
, _vabd
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_if_su
),
17618 nUF(vabdq
, _vabd
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
17619 nUF(vmax
, _vmax
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_if_su
),
17620 nUF(vmaxq
, _vmax
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
17621 nUF(vmin
, _vmin
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_if_su
),
17622 nUF(vminq
, _vmin
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
17623 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
17624 back to neon_dyadic_if_su. */
17625 nUF(vcge
, _vcge
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp
),
17626 nUF(vcgeq
, _vcge
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp
),
17627 nUF(vcgt
, _vcgt
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp
),
17628 nUF(vcgtq
, _vcgt
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp
),
17629 nUF(vclt
, _vclt
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp_inv
),
17630 nUF(vcltq
, _vclt
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp_inv
),
17631 nUF(vcle
, _vcle
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp_inv
),
17632 nUF(vcleq
, _vcle
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp_inv
),
17633 /* Comparison. Type I8 I16 I32 F32. */
17634 nUF(vceq
, _vceq
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_ceq
),
17635 nUF(vceqq
, _vceq
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_ceq
),
17636 /* As above, D registers only. */
17637 nUF(vpmax
, _vpmax
, 3, (RND
, oRND
, RND
), neon_dyadic_if_su_d
),
17638 nUF(vpmin
, _vpmin
, 3, (RND
, oRND
, RND
), neon_dyadic_if_su_d
),
17639 /* Int and float variants, signedness unimportant. */
17640 nUF(vmlaq
, _vmla
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mac_maybe_scalar
),
17641 nUF(vmlsq
, _vmls
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mac_maybe_scalar
),
17642 nUF(vpadd
, _vpadd
, 3, (RND
, oRND
, RND
), neon_dyadic_if_i_d
),
17643 /* Add/sub take types I8 I16 I32 I64 F32. */
17644 nUF(vaddq
, _vadd
, 3, (RNQ
, oRNQ
, RNQ
), neon_addsub_if_i
),
17645 nUF(vsubq
, _vsub
, 3, (RNQ
, oRNQ
, RNQ
), neon_addsub_if_i
),
17646 /* vtst takes sizes 8, 16, 32. */
17647 NUF(vtst
, 0000810, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_tst
),
17648 NUF(vtstq
, 0000810, 3, (RNQ
, oRNQ
, RNQ
), neon_tst
),
17649 /* VMUL takes I8 I16 I32 F32 P8. */
17650 nUF(vmulq
, _vmul
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mul
),
17651 /* VQD{R}MULH takes S16 S32. */
17652 nUF(vqdmulh
, _vqdmulh
, 3, (RNDQ
, oRNDQ
, RNDQ_RNSC
), neon_qdmulh
),
17653 nUF(vqdmulhq
, _vqdmulh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qdmulh
),
17654 nUF(vqrdmulh
, _vqrdmulh
, 3, (RNDQ
, oRNDQ
, RNDQ_RNSC
), neon_qdmulh
),
17655 nUF(vqrdmulhq
, _vqrdmulh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qdmulh
),
17656 NUF(vacge
, 0000e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute
),
17657 NUF(vacgeq
, 0000e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute
),
17658 NUF(vacgt
, 0200e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute
),
17659 NUF(vacgtq
, 0200e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute
),
17660 NUF(vaclt
, 0200e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute_inv
),
17661 NUF(vacltq
, 0200e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute_inv
),
17662 NUF(vacle
, 0000e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute_inv
),
17663 NUF(vacleq
, 0000e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute_inv
),
17664 NUF(vrecps
, 0000f10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_step
),
17665 NUF(vrecpsq
, 0000f10
, 3, (RNQ
, oRNQ
, RNQ
), neon_step
),
17666 NUF(vrsqrts
, 0200f10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_step
),
17667 NUF(vrsqrtsq
, 0200f10
, 3, (RNQ
, oRNQ
, RNQ
), neon_step
),
17669 /* Two address, int/float. Types S8 S16 S32 F32. */
17670 NUF(vabsq
, 1b10300
, 2, (RNQ
, RNQ
), neon_abs_neg
),
17671 NUF(vnegq
, 1b10380
, 2, (RNQ
, RNQ
), neon_abs_neg
),
17673 /* Data processing with two registers and a shift amount. */
17674 /* Right shifts, and variants with rounding.
17675 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
17676 NUF(vshr
, 0800010, 3, (RNDQ
, oRNDQ
, I64z
), neon_rshift_round_imm
),
17677 NUF(vshrq
, 0800010, 3, (RNQ
, oRNQ
, I64z
), neon_rshift_round_imm
),
17678 NUF(vrshr
, 0800210, 3, (RNDQ
, oRNDQ
, I64z
), neon_rshift_round_imm
),
17679 NUF(vrshrq
, 0800210, 3, (RNQ
, oRNQ
, I64z
), neon_rshift_round_imm
),
17680 NUF(vsra
, 0800110, 3, (RNDQ
, oRNDQ
, I64
), neon_rshift_round_imm
),
17681 NUF(vsraq
, 0800110, 3, (RNQ
, oRNQ
, I64
), neon_rshift_round_imm
),
17682 NUF(vrsra
, 0800310, 3, (RNDQ
, oRNDQ
, I64
), neon_rshift_round_imm
),
17683 NUF(vrsraq
, 0800310, 3, (RNQ
, oRNQ
, I64
), neon_rshift_round_imm
),
17684 /* Shift and insert. Sizes accepted 8 16 32 64. */
17685 NUF(vsli
, 1800510, 3, (RNDQ
, oRNDQ
, I63
), neon_sli
),
17686 NUF(vsliq
, 1800510, 3, (RNQ
, oRNQ
, I63
), neon_sli
),
17687 NUF(vsri
, 1800410, 3, (RNDQ
, oRNDQ
, I64
), neon_sri
),
17688 NUF(vsriq
, 1800410, 3, (RNQ
, oRNQ
, I64
), neon_sri
),
17689 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
17690 NUF(vqshlu
, 1800610, 3, (RNDQ
, oRNDQ
, I63
), neon_qshlu_imm
),
17691 NUF(vqshluq
, 1800610, 3, (RNQ
, oRNQ
, I63
), neon_qshlu_imm
),
17692 /* Right shift immediate, saturating & narrowing, with rounding variants.
17693 Types accepted S16 S32 S64 U16 U32 U64. */
17694 NUF(vqshrn
, 0800910, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow
),
17695 NUF(vqrshrn
, 0800950, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow
),
17696 /* As above, unsigned. Types accepted S16 S32 S64. */
17697 NUF(vqshrun
, 0800810, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow_u
),
17698 NUF(vqrshrun
, 0800850, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow_u
),
17699 /* Right shift narrowing. Types accepted I16 I32 I64. */
17700 NUF(vshrn
, 0800810, 3, (RND
, RNQ
, I32z
), neon_rshift_narrow
),
17701 NUF(vrshrn
, 0800850, 3, (RND
, RNQ
, I32z
), neon_rshift_narrow
),
17702 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
17703 nUF(vshll
, _vshll
, 3, (RNQ
, RND
, I32
), neon_shll
),
17704 /* CVT with optional immediate for fixed-point variant. */
17705 nUF(vcvtq
, _vcvt
, 3, (RNQ
, RNQ
, oI32b
), neon_cvt
),
17707 nUF(vmvn
, _vmvn
, 2, (RNDQ
, RNDQ_Ibig
), neon_mvn
),
17708 nUF(vmvnq
, _vmvn
, 2, (RNQ
, RNDQ_Ibig
), neon_mvn
),
17710 /* Data processing, three registers of different lengths. */
17711 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
17712 NUF(vabal
, 0800500, 3, (RNQ
, RND
, RND
), neon_abal
),
17713 NUF(vabdl
, 0800700, 3, (RNQ
, RND
, RND
), neon_dyadic_long
),
17714 NUF(vaddl
, 0800000, 3, (RNQ
, RND
, RND
), neon_dyadic_long
),
17715 NUF(vsubl
, 0800200, 3, (RNQ
, RND
, RND
), neon_dyadic_long
),
17716 /* If not scalar, fall back to neon_dyadic_long.
17717 Vector types as above, scalar types S16 S32 U16 U32. */
17718 nUF(vmlal
, _vmlal
, 3, (RNQ
, RND
, RND_RNSC
), neon_mac_maybe_scalar_long
),
17719 nUF(vmlsl
, _vmlsl
, 3, (RNQ
, RND
, RND_RNSC
), neon_mac_maybe_scalar_long
),
17720 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
17721 NUF(vaddw
, 0800100, 3, (RNQ
, oRNQ
, RND
), neon_dyadic_wide
),
17722 NUF(vsubw
, 0800300, 3, (RNQ
, oRNQ
, RND
), neon_dyadic_wide
),
17723 /* Dyadic, narrowing insns. Types I16 I32 I64. */
17724 NUF(vaddhn
, 0800400, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
17725 NUF(vraddhn
, 1800400, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
17726 NUF(vsubhn
, 0800600, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
17727 NUF(vrsubhn
, 1800600, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
17728 /* Saturating doubling multiplies. Types S16 S32. */
17729 nUF(vqdmlal
, _vqdmlal
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
17730 nUF(vqdmlsl
, _vqdmlsl
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
17731 nUF(vqdmull
, _vqdmull
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
17732 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
17733 S16 S32 U16 U32. */
17734 nUF(vmull
, _vmull
, 3, (RNQ
, RND
, RND_RNSC
), neon_vmull
),
17736 /* Extract. Size 8. */
17737 NUF(vext
, 0b00000, 4, (RNDQ
, oRNDQ
, RNDQ
, I15
), neon_ext
),
17738 NUF(vextq
, 0b00000, 4, (RNQ
, oRNQ
, RNQ
, I15
), neon_ext
),
17740 /* Two registers, miscellaneous. */
17741 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
17742 NUF(vrev64
, 1b00000
, 2, (RNDQ
, RNDQ
), neon_rev
),
17743 NUF(vrev64q
, 1b00000
, 2, (RNQ
, RNQ
), neon_rev
),
17744 NUF(vrev32
, 1b00080
, 2, (RNDQ
, RNDQ
), neon_rev
),
17745 NUF(vrev32q
, 1b00080
, 2, (RNQ
, RNQ
), neon_rev
),
17746 NUF(vrev16
, 1b00100
, 2, (RNDQ
, RNDQ
), neon_rev
),
17747 NUF(vrev16q
, 1b00100
, 2, (RNQ
, RNQ
), neon_rev
),
17748 /* Vector replicate. Sizes 8 16 32. */
17749 nCE(vdup
, _vdup
, 2, (RNDQ
, RR_RNSC
), neon_dup
),
17750 nCE(vdupq
, _vdup
, 2, (RNQ
, RR_RNSC
), neon_dup
),
17751 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
17752 NUF(vmovl
, 0800a10
, 2, (RNQ
, RND
), neon_movl
),
17753 /* VMOVN. Types I16 I32 I64. */
17754 nUF(vmovn
, _vmovn
, 2, (RND
, RNQ
), neon_movn
),
17755 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
17756 nUF(vqmovn
, _vqmovn
, 2, (RND
, RNQ
), neon_qmovn
),
17757 /* VQMOVUN. Types S16 S32 S64. */
17758 nUF(vqmovun
, _vqmovun
, 2, (RND
, RNQ
), neon_qmovun
),
17759 /* VZIP / VUZP. Sizes 8 16 32. */
17760 NUF(vzip
, 1b20180
, 2, (RNDQ
, RNDQ
), neon_zip_uzp
),
17761 NUF(vzipq
, 1b20180
, 2, (RNQ
, RNQ
), neon_zip_uzp
),
17762 NUF(vuzp
, 1b20100
, 2, (RNDQ
, RNDQ
), neon_zip_uzp
),
17763 NUF(vuzpq
, 1b20100
, 2, (RNQ
, RNQ
), neon_zip_uzp
),
17764 /* VQABS / VQNEG. Types S8 S16 S32. */
17765 NUF(vqabs
, 1b00700
, 2, (RNDQ
, RNDQ
), neon_sat_abs_neg
),
17766 NUF(vqabsq
, 1b00700
, 2, (RNQ
, RNQ
), neon_sat_abs_neg
),
17767 NUF(vqneg
, 1b00780
, 2, (RNDQ
, RNDQ
), neon_sat_abs_neg
),
17768 NUF(vqnegq
, 1b00780
, 2, (RNQ
, RNQ
), neon_sat_abs_neg
),
17769 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
17770 NUF(vpadal
, 1b00600
, 2, (RNDQ
, RNDQ
), neon_pair_long
),
17771 NUF(vpadalq
, 1b00600
, 2, (RNQ
, RNQ
), neon_pair_long
),
17772 NUF(vpaddl
, 1b00200
, 2, (RNDQ
, RNDQ
), neon_pair_long
),
17773 NUF(vpaddlq
, 1b00200
, 2, (RNQ
, RNQ
), neon_pair_long
),
17774 /* Reciprocal estimates. Types U32 F32. */
17775 NUF(vrecpe
, 1b30400
, 2, (RNDQ
, RNDQ
), neon_recip_est
),
17776 NUF(vrecpeq
, 1b30400
, 2, (RNQ
, RNQ
), neon_recip_est
),
17777 NUF(vrsqrte
, 1b30480
, 2, (RNDQ
, RNDQ
), neon_recip_est
),
17778 NUF(vrsqrteq
, 1b30480
, 2, (RNQ
, RNQ
), neon_recip_est
),
17779 /* VCLS. Types S8 S16 S32. */
17780 NUF(vcls
, 1b00400
, 2, (RNDQ
, RNDQ
), neon_cls
),
17781 NUF(vclsq
, 1b00400
, 2, (RNQ
, RNQ
), neon_cls
),
17782 /* VCLZ. Types I8 I16 I32. */
17783 NUF(vclz
, 1b00480
, 2, (RNDQ
, RNDQ
), neon_clz
),
17784 NUF(vclzq
, 1b00480
, 2, (RNQ
, RNQ
), neon_clz
),
17785 /* VCNT. Size 8. */
17786 NUF(vcnt
, 1b00500
, 2, (RNDQ
, RNDQ
), neon_cnt
),
17787 NUF(vcntq
, 1b00500
, 2, (RNQ
, RNQ
), neon_cnt
),
17788 /* Two address, untyped. */
17789 NUF(vswp
, 1b20000
, 2, (RNDQ
, RNDQ
), neon_swp
),
17790 NUF(vswpq
, 1b20000
, 2, (RNQ
, RNQ
), neon_swp
),
17791 /* VTRN. Sizes 8 16 32. */
17792 nUF(vtrn
, _vtrn
, 2, (RNDQ
, RNDQ
), neon_trn
),
17793 nUF(vtrnq
, _vtrn
, 2, (RNQ
, RNQ
), neon_trn
),
17795 /* Table lookup. Size 8. */
17796 NUF(vtbl
, 1b00800
, 3, (RND
, NRDLST
, RND
), neon_tbl_tbx
),
17797 NUF(vtbx
, 1b00840
, 3, (RND
, NRDLST
, RND
), neon_tbl_tbx
),
17799 #undef THUMB_VARIANT
17800 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
17802 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
17804 /* Neon element/structure load/store. */
17805 nUF(vld1
, _vld1
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
17806 nUF(vst1
, _vst1
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
17807 nUF(vld2
, _vld2
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
17808 nUF(vst2
, _vst2
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
17809 nUF(vld3
, _vld3
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
17810 nUF(vst3
, _vst3
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
17811 nUF(vld4
, _vld4
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
17812 nUF(vst4
, _vst4
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
17814 #undef THUMB_VARIANT
17815 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
17817 #define ARM_VARIANT &fpu_vfp_ext_v3xd
17818 cCE("fconsts", eb00a00
, 2, (RVS
, I255
), vfp_sp_const
),
17819 cCE("fshtos", eba0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
17820 cCE("fsltos", eba0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
17821 cCE("fuhtos", ebb0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
17822 cCE("fultos", ebb0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
17823 cCE("ftoshs", ebe0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
17824 cCE("ftosls", ebe0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
17825 cCE("ftouhs", ebf0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
17826 cCE("ftouls", ebf0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
17828 #undef THUMB_VARIANT
17829 #define THUMB_VARIANT & fpu_vfp_ext_v3
17831 #define ARM_VARIANT & fpu_vfp_ext_v3
17833 cCE("fconstd", eb00b00
, 2, (RVD
, I255
), vfp_dp_const
),
17834 cCE("fshtod", eba0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
17835 cCE("fsltod", eba0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
17836 cCE("fuhtod", ebb0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
17837 cCE("fultod", ebb0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
17838 cCE("ftoshd", ebe0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
17839 cCE("ftosld", ebe0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
17840 cCE("ftouhd", ebf0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
17841 cCE("ftould", ebf0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
17844 #define ARM_VARIANT &fpu_vfp_ext_fma
17845 #undef THUMB_VARIANT
17846 #define THUMB_VARIANT &fpu_vfp_ext_fma
17847 /* Mnemonics shared by Neon and VFP. These are included in the
17848 VFP FMA variant; NEON and VFP FMA always includes the NEON
17849 FMA instructions. */
17850 nCEF(vfma
, _vfma
, 3, (RNSDQ
, oRNSDQ
, RNSDQ
), neon_fmac
),
17851 nCEF(vfms
, _vfms
, 3, (RNSDQ
, oRNSDQ
, RNSDQ
), neon_fmac
),
17852 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
17853 the v form should always be used. */
17854 cCE("ffmas", ea00a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
17855 cCE("ffnmas", ea00a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
17856 cCE("ffmad", ea00b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
17857 cCE("ffnmad", ea00b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
17858 nCE(vfnma
, _vfnma
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
17859 nCE(vfnms
, _vfnms
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
17861 #undef THUMB_VARIANT
17863 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
17865 cCE("mia", e200010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
17866 cCE("miaph", e280010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
17867 cCE("miabb", e2c0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
17868 cCE("miabt", e2d0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
17869 cCE("miatb", e2e0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
17870 cCE("miatt", e2f0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
17871 cCE("mar", c400000
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mar
),
17872 cCE("mra", c500000
, 3, (RRnpc
, RRnpc
, RXA
), xsc_mra
),
17875 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
17877 cCE("tandcb", e13f130
, 1, (RR
), iwmmxt_tandorc
),
17878 cCE("tandch", e53f130
, 1, (RR
), iwmmxt_tandorc
),
17879 cCE("tandcw", e93f130
, 1, (RR
), iwmmxt_tandorc
),
17880 cCE("tbcstb", e400010
, 2, (RIWR
, RR
), rn_rd
),
17881 cCE("tbcsth", e400050
, 2, (RIWR
, RR
), rn_rd
),
17882 cCE("tbcstw", e400090
, 2, (RIWR
, RR
), rn_rd
),
17883 cCE("textrcb", e130170
, 2, (RR
, I7
), iwmmxt_textrc
),
17884 cCE("textrch", e530170
, 2, (RR
, I7
), iwmmxt_textrc
),
17885 cCE("textrcw", e930170
, 2, (RR
, I7
), iwmmxt_textrc
),
17886 cCE("textrmub", e100070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
17887 cCE("textrmuh", e500070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
17888 cCE("textrmuw", e900070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
17889 cCE("textrmsb", e100078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
17890 cCE("textrmsh", e500078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
17891 cCE("textrmsw", e900078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
17892 cCE("tinsrb", e600010
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
17893 cCE("tinsrh", e600050
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
17894 cCE("tinsrw", e600090
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
17895 cCE("tmcr", e000110
, 2, (RIWC_RIWG
, RR
), rn_rd
),
17896 cCE("tmcrr", c400000
, 3, (RIWR
, RR
, RR
), rm_rd_rn
),
17897 cCE("tmia", e200010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
17898 cCE("tmiaph", e280010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
17899 cCE("tmiabb", e2c0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
17900 cCE("tmiabt", e2d0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
17901 cCE("tmiatb", e2e0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
17902 cCE("tmiatt", e2f0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
17903 cCE("tmovmskb", e100030
, 2, (RR
, RIWR
), rd_rn
),
17904 cCE("tmovmskh", e500030
, 2, (RR
, RIWR
), rd_rn
),
17905 cCE("tmovmskw", e900030
, 2, (RR
, RIWR
), rd_rn
),
17906 cCE("tmrc", e100110
, 2, (RR
, RIWC_RIWG
), rd_rn
),
17907 cCE("tmrrc", c500000
, 3, (RR
, RR
, RIWR
), rd_rn_rm
),
17908 cCE("torcb", e13f150
, 1, (RR
), iwmmxt_tandorc
),
17909 cCE("torch", e53f150
, 1, (RR
), iwmmxt_tandorc
),
17910 cCE("torcw", e93f150
, 1, (RR
), iwmmxt_tandorc
),
17911 cCE("waccb", e0001c0
, 2, (RIWR
, RIWR
), rd_rn
),
17912 cCE("wacch", e4001c0
, 2, (RIWR
, RIWR
), rd_rn
),
17913 cCE("waccw", e8001c0
, 2, (RIWR
, RIWR
), rd_rn
),
17914 cCE("waddbss", e300180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17915 cCE("waddb", e000180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17916 cCE("waddbus", e100180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17917 cCE("waddhss", e700180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17918 cCE("waddh", e400180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17919 cCE("waddhus", e500180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17920 cCE("waddwss", eb00180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17921 cCE("waddw", e800180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17922 cCE("waddwus", e900180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17923 cCE("waligni", e000020
, 4, (RIWR
, RIWR
, RIWR
, I7
), iwmmxt_waligni
),
17924 cCE("walignr0", e800020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17925 cCE("walignr1", e900020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17926 cCE("walignr2", ea00020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17927 cCE("walignr3", eb00020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17928 cCE("wand", e200000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17929 cCE("wandn", e300000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17930 cCE("wavg2b", e800000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17931 cCE("wavg2br", e900000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17932 cCE("wavg2h", ec00000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17933 cCE("wavg2hr", ed00000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17934 cCE("wcmpeqb", e000060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17935 cCE("wcmpeqh", e400060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17936 cCE("wcmpeqw", e800060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17937 cCE("wcmpgtub", e100060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17938 cCE("wcmpgtuh", e500060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17939 cCE("wcmpgtuw", e900060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17940 cCE("wcmpgtsb", e300060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17941 cCE("wcmpgtsh", e700060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17942 cCE("wcmpgtsw", eb00060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17943 cCE("wldrb", c100000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
17944 cCE("wldrh", c500000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
17945 cCE("wldrw", c100100
, 2, (RIWR_RIWC
, ADDR
), iwmmxt_wldstw
),
17946 cCE("wldrd", c500100
, 2, (RIWR
, ADDR
), iwmmxt_wldstd
),
17947 cCE("wmacs", e600100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17948 cCE("wmacsz", e700100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17949 cCE("wmacu", e400100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17950 cCE("wmacuz", e500100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17951 cCE("wmadds", ea00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17952 cCE("wmaddu", e800100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17953 cCE("wmaxsb", e200160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17954 cCE("wmaxsh", e600160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17955 cCE("wmaxsw", ea00160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17956 cCE("wmaxub", e000160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17957 cCE("wmaxuh", e400160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17958 cCE("wmaxuw", e800160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17959 cCE("wminsb", e300160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17960 cCE("wminsh", e700160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17961 cCE("wminsw", eb00160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17962 cCE("wminub", e100160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17963 cCE("wminuh", e500160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17964 cCE("wminuw", e900160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17965 cCE("wmov", e000000
, 2, (RIWR
, RIWR
), iwmmxt_wmov
),
17966 cCE("wmulsm", e300100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17967 cCE("wmulsl", e200100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17968 cCE("wmulum", e100100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17969 cCE("wmulul", e000100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17970 cCE("wor", e000000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17971 cCE("wpackhss", e700080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17972 cCE("wpackhus", e500080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17973 cCE("wpackwss", eb00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17974 cCE("wpackwus", e900080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17975 cCE("wpackdss", ef00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17976 cCE("wpackdus", ed00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17977 cCE("wrorh", e700040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
17978 cCE("wrorhg", e700148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
17979 cCE("wrorw", eb00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
17980 cCE("wrorwg", eb00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
17981 cCE("wrord", ef00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
17982 cCE("wrordg", ef00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
17983 cCE("wsadb", e000120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17984 cCE("wsadbz", e100120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17985 cCE("wsadh", e400120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17986 cCE("wsadhz", e500120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
17987 cCE("wshufh", e0001e0
, 3, (RIWR
, RIWR
, I255
), iwmmxt_wshufh
),
17988 cCE("wsllh", e500040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
17989 cCE("wsllhg", e500148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
17990 cCE("wsllw", e900040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
17991 cCE("wsllwg", e900148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
17992 cCE("wslld", ed00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
17993 cCE("wslldg", ed00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
17994 cCE("wsrah", e400040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
17995 cCE("wsrahg", e400148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
17996 cCE("wsraw", e800040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
17997 cCE("wsrawg", e800148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
17998 cCE("wsrad", ec00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
17999 cCE("wsradg", ec00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
18000 cCE("wsrlh", e600040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
18001 cCE("wsrlhg", e600148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
18002 cCE("wsrlw", ea00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
18003 cCE("wsrlwg", ea00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
18004 cCE("wsrld", ee00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
18005 cCE("wsrldg", ee00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
18006 cCE("wstrb", c000000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
18007 cCE("wstrh", c400000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
18008 cCE("wstrw", c000100
, 2, (RIWR_RIWC
, ADDR
), iwmmxt_wldstw
),
18009 cCE("wstrd", c400100
, 2, (RIWR
, ADDR
), iwmmxt_wldstd
),
18010 cCE("wsubbss", e3001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18011 cCE("wsubb", e0001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18012 cCE("wsubbus", e1001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18013 cCE("wsubhss", e7001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18014 cCE("wsubh", e4001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18015 cCE("wsubhus", e5001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18016 cCE("wsubwss", eb001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18017 cCE("wsubw", e8001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18018 cCE("wsubwus", e9001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18019 cCE("wunpckehub",e0000c0
, 2, (RIWR
, RIWR
), rd_rn
),
18020 cCE("wunpckehuh",e4000c0
, 2, (RIWR
, RIWR
), rd_rn
),
18021 cCE("wunpckehuw",e8000c0
, 2, (RIWR
, RIWR
), rd_rn
),
18022 cCE("wunpckehsb",e2000c0
, 2, (RIWR
, RIWR
), rd_rn
),
18023 cCE("wunpckehsh",e6000c0
, 2, (RIWR
, RIWR
), rd_rn
),
18024 cCE("wunpckehsw",ea000c0
, 2, (RIWR
, RIWR
), rd_rn
),
18025 cCE("wunpckihb", e1000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18026 cCE("wunpckihh", e5000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18027 cCE("wunpckihw", e9000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18028 cCE("wunpckelub",e0000e0
, 2, (RIWR
, RIWR
), rd_rn
),
18029 cCE("wunpckeluh",e4000e0
, 2, (RIWR
, RIWR
), rd_rn
),
18030 cCE("wunpckeluw",e8000e0
, 2, (RIWR
, RIWR
), rd_rn
),
18031 cCE("wunpckelsb",e2000e0
, 2, (RIWR
, RIWR
), rd_rn
),
18032 cCE("wunpckelsh",e6000e0
, 2, (RIWR
, RIWR
), rd_rn
),
18033 cCE("wunpckelsw",ea000e0
, 2, (RIWR
, RIWR
), rd_rn
),
18034 cCE("wunpckilb", e1000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18035 cCE("wunpckilh", e5000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18036 cCE("wunpckilw", e9000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18037 cCE("wxor", e100000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18038 cCE("wzero", e300000
, 1, (RIWR
), iwmmxt_wzero
),
18041 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18043 cCE("torvscb", e12f190
, 1, (RR
), iwmmxt_tandorc
),
18044 cCE("torvsch", e52f190
, 1, (RR
), iwmmxt_tandorc
),
18045 cCE("torvscw", e92f190
, 1, (RR
), iwmmxt_tandorc
),
18046 cCE("wabsb", e2001c0
, 2, (RIWR
, RIWR
), rd_rn
),
18047 cCE("wabsh", e6001c0
, 2, (RIWR
, RIWR
), rd_rn
),
18048 cCE("wabsw", ea001c0
, 2, (RIWR
, RIWR
), rd_rn
),
18049 cCE("wabsdiffb", e1001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18050 cCE("wabsdiffh", e5001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18051 cCE("wabsdiffw", e9001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18052 cCE("waddbhusl", e2001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18053 cCE("waddbhusm", e6001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18054 cCE("waddhc", e600180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18055 cCE("waddwc", ea00180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18056 cCE("waddsubhx", ea001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18057 cCE("wavg4", e400000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18058 cCE("wavg4r", e500000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18059 cCE("wmaddsn", ee00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18060 cCE("wmaddsx", eb00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18061 cCE("wmaddun", ec00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18062 cCE("wmaddux", e900100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18063 cCE("wmerge", e000080
, 4, (RIWR
, RIWR
, RIWR
, I7
), iwmmxt_wmerge
),
18064 cCE("wmiabb", e0000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18065 cCE("wmiabt", e1000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18066 cCE("wmiatb", e2000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18067 cCE("wmiatt", e3000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18068 cCE("wmiabbn", e4000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18069 cCE("wmiabtn", e5000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18070 cCE("wmiatbn", e6000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18071 cCE("wmiattn", e7000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18072 cCE("wmiawbb", e800120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18073 cCE("wmiawbt", e900120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18074 cCE("wmiawtb", ea00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18075 cCE("wmiawtt", eb00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18076 cCE("wmiawbbn", ec00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18077 cCE("wmiawbtn", ed00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18078 cCE("wmiawtbn", ee00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18079 cCE("wmiawttn", ef00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18080 cCE("wmulsmr", ef00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18081 cCE("wmulumr", ed00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18082 cCE("wmulwumr", ec000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18083 cCE("wmulwsmr", ee000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18084 cCE("wmulwum", ed000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18085 cCE("wmulwsm", ef000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18086 cCE("wmulwl", eb000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18087 cCE("wqmiabb", e8000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18088 cCE("wqmiabt", e9000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18089 cCE("wqmiatb", ea000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18090 cCE("wqmiatt", eb000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18091 cCE("wqmiabbn", ec000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18092 cCE("wqmiabtn", ed000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18093 cCE("wqmiatbn", ee000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18094 cCE("wqmiattn", ef000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18095 cCE("wqmulm", e100080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18096 cCE("wqmulmr", e300080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18097 cCE("wqmulwm", ec000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18098 cCE("wqmulwmr", ee000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18099 cCE("wsubaddhx", ed001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
18102 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18104 cCE("cfldrs", c100400
, 2, (RMF
, ADDRGLDC
), rd_cpaddr
),
18105 cCE("cfldrd", c500400
, 2, (RMD
, ADDRGLDC
), rd_cpaddr
),
18106 cCE("cfldr32", c100500
, 2, (RMFX
, ADDRGLDC
), rd_cpaddr
),
18107 cCE("cfldr64", c500500
, 2, (RMDX
, ADDRGLDC
), rd_cpaddr
),
18108 cCE("cfstrs", c000400
, 2, (RMF
, ADDRGLDC
), rd_cpaddr
),
18109 cCE("cfstrd", c400400
, 2, (RMD
, ADDRGLDC
), rd_cpaddr
),
18110 cCE("cfstr32", c000500
, 2, (RMFX
, ADDRGLDC
), rd_cpaddr
),
18111 cCE("cfstr64", c400500
, 2, (RMDX
, ADDRGLDC
), rd_cpaddr
),
18112 cCE("cfmvsr", e000450
, 2, (RMF
, RR
), rn_rd
),
18113 cCE("cfmvrs", e100450
, 2, (RR
, RMF
), rd_rn
),
18114 cCE("cfmvdlr", e000410
, 2, (RMD
, RR
), rn_rd
),
18115 cCE("cfmvrdl", e100410
, 2, (RR
, RMD
), rd_rn
),
18116 cCE("cfmvdhr", e000430
, 2, (RMD
, RR
), rn_rd
),
18117 cCE("cfmvrdh", e100430
, 2, (RR
, RMD
), rd_rn
),
18118 cCE("cfmv64lr", e000510
, 2, (RMDX
, RR
), rn_rd
),
18119 cCE("cfmvr64l", e100510
, 2, (RR
, RMDX
), rd_rn
),
18120 cCE("cfmv64hr", e000530
, 2, (RMDX
, RR
), rn_rd
),
18121 cCE("cfmvr64h", e100530
, 2, (RR
, RMDX
), rd_rn
),
18122 cCE("cfmval32", e200440
, 2, (RMAX
, RMFX
), rd_rn
),
18123 cCE("cfmv32al", e100440
, 2, (RMFX
, RMAX
), rd_rn
),
18124 cCE("cfmvam32", e200460
, 2, (RMAX
, RMFX
), rd_rn
),
18125 cCE("cfmv32am", e100460
, 2, (RMFX
, RMAX
), rd_rn
),
18126 cCE("cfmvah32", e200480
, 2, (RMAX
, RMFX
), rd_rn
),
18127 cCE("cfmv32ah", e100480
, 2, (RMFX
, RMAX
), rd_rn
),
18128 cCE("cfmva32", e2004a0
, 2, (RMAX
, RMFX
), rd_rn
),
18129 cCE("cfmv32a", e1004a0
, 2, (RMFX
, RMAX
), rd_rn
),
18130 cCE("cfmva64", e2004c0
, 2, (RMAX
, RMDX
), rd_rn
),
18131 cCE("cfmv64a", e1004c0
, 2, (RMDX
, RMAX
), rd_rn
),
18132 cCE("cfmvsc32", e2004e0
, 2, (RMDS
, RMDX
), mav_dspsc
),
18133 cCE("cfmv32sc", e1004e0
, 2, (RMDX
, RMDS
), rd
),
18134 cCE("cfcpys", e000400
, 2, (RMF
, RMF
), rd_rn
),
18135 cCE("cfcpyd", e000420
, 2, (RMD
, RMD
), rd_rn
),
18136 cCE("cfcvtsd", e000460
, 2, (RMD
, RMF
), rd_rn
),
18137 cCE("cfcvtds", e000440
, 2, (RMF
, RMD
), rd_rn
),
18138 cCE("cfcvt32s", e000480
, 2, (RMF
, RMFX
), rd_rn
),
18139 cCE("cfcvt32d", e0004a0
, 2, (RMD
, RMFX
), rd_rn
),
18140 cCE("cfcvt64s", e0004c0
, 2, (RMF
, RMDX
), rd_rn
),
18141 cCE("cfcvt64d", e0004e0
, 2, (RMD
, RMDX
), rd_rn
),
18142 cCE("cfcvts32", e100580
, 2, (RMFX
, RMF
), rd_rn
),
18143 cCE("cfcvtd32", e1005a0
, 2, (RMFX
, RMD
), rd_rn
),
18144 cCE("cftruncs32",e1005c0
, 2, (RMFX
, RMF
), rd_rn
),
18145 cCE("cftruncd32",e1005e0
, 2, (RMFX
, RMD
), rd_rn
),
18146 cCE("cfrshl32", e000550
, 3, (RMFX
, RMFX
, RR
), mav_triple
),
18147 cCE("cfrshl64", e000570
, 3, (RMDX
, RMDX
, RR
), mav_triple
),
18148 cCE("cfsh32", e000500
, 3, (RMFX
, RMFX
, I63s
), mav_shift
),
18149 cCE("cfsh64", e200500
, 3, (RMDX
, RMDX
, I63s
), mav_shift
),
18150 cCE("cfcmps", e100490
, 3, (RR
, RMF
, RMF
), rd_rn_rm
),
18151 cCE("cfcmpd", e1004b0
, 3, (RR
, RMD
, RMD
), rd_rn_rm
),
18152 cCE("cfcmp32", e100590
, 3, (RR
, RMFX
, RMFX
), rd_rn_rm
),
18153 cCE("cfcmp64", e1005b0
, 3, (RR
, RMDX
, RMDX
), rd_rn_rm
),
18154 cCE("cfabss", e300400
, 2, (RMF
, RMF
), rd_rn
),
18155 cCE("cfabsd", e300420
, 2, (RMD
, RMD
), rd_rn
),
18156 cCE("cfnegs", e300440
, 2, (RMF
, RMF
), rd_rn
),
18157 cCE("cfnegd", e300460
, 2, (RMD
, RMD
), rd_rn
),
18158 cCE("cfadds", e300480
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
18159 cCE("cfaddd", e3004a0
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
18160 cCE("cfsubs", e3004c0
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
18161 cCE("cfsubd", e3004e0
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
18162 cCE("cfmuls", e100400
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
18163 cCE("cfmuld", e100420
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
18164 cCE("cfabs32", e300500
, 2, (RMFX
, RMFX
), rd_rn
),
18165 cCE("cfabs64", e300520
, 2, (RMDX
, RMDX
), rd_rn
),
18166 cCE("cfneg32", e300540
, 2, (RMFX
, RMFX
), rd_rn
),
18167 cCE("cfneg64", e300560
, 2, (RMDX
, RMDX
), rd_rn
),
18168 cCE("cfadd32", e300580
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
18169 cCE("cfadd64", e3005a0
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
18170 cCE("cfsub32", e3005c0
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
18171 cCE("cfsub64", e3005e0
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
18172 cCE("cfmul32", e100500
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
18173 cCE("cfmul64", e100520
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
18174 cCE("cfmac32", e100540
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
18175 cCE("cfmsc32", e100560
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
18176 cCE("cfmadd32", e000600
, 4, (RMAX
, RMFX
, RMFX
, RMFX
), mav_quad
),
18177 cCE("cfmsub32", e100600
, 4, (RMAX
, RMFX
, RMFX
, RMFX
), mav_quad
),
18178 cCE("cfmadda32", e200600
, 4, (RMAX
, RMAX
, RMFX
, RMFX
), mav_quad
),
18179 cCE("cfmsuba32", e300600
, 4, (RMAX
, RMAX
, RMFX
, RMFX
), mav_quad
),
18182 #undef THUMB_VARIANT
18209 /* MD interface: bits in the object file. */
18211 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18212 for use in the a.out file, and stores them in the array pointed to by buf.
18213 This knows about the endian-ness of the target machine and does
18214 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18215 2 (short) and 4 (long) Floating numbers are put out as a series of
18216 LITTLENUMS (shorts, here at least). */
18219 md_number_to_chars (char * buf
, valueT val
, int n
)
18221 if (target_big_endian
)
18222 number_to_chars_bigendian (buf
, val
, n
);
18224 number_to_chars_littleendian (buf
, val
, n
);
18228 md_chars_to_number (char * buf
, int n
)
18231 unsigned char * where
= (unsigned char *) buf
;
18233 if (target_big_endian
)
18238 result
|= (*where
++ & 255);
18246 result
|= (where
[n
] & 255);
18253 /* MD interface: Sections. */
18255 /* Estimate the size of a frag before relaxing. Assume everything fits in
18259 md_estimate_size_before_relax (fragS
* fragp
,
18260 segT segtype ATTRIBUTE_UNUSED
)
18266 /* Convert a machine dependent frag. */
18269 md_convert_frag (bfd
*abfd
, segT asec ATTRIBUTE_UNUSED
, fragS
*fragp
)
18271 unsigned long insn
;
18272 unsigned long old_op
;
18280 buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
18282 old_op
= bfd_get_16(abfd
, buf
);
18283 if (fragp
->fr_symbol
)
18285 exp
.X_op
= O_symbol
;
18286 exp
.X_add_symbol
= fragp
->fr_symbol
;
18290 exp
.X_op
= O_constant
;
18292 exp
.X_add_number
= fragp
->fr_offset
;
18293 opcode
= fragp
->fr_subtype
;
18296 case T_MNEM_ldr_pc
:
18297 case T_MNEM_ldr_pc2
:
18298 case T_MNEM_ldr_sp
:
18299 case T_MNEM_str_sp
:
18306 if (fragp
->fr_var
== 4)
18308 insn
= THUMB_OP32 (opcode
);
18309 if ((old_op
>> 12) == 4 || (old_op
>> 12) == 9)
18311 insn
|= (old_op
& 0x700) << 4;
18315 insn
|= (old_op
& 7) << 12;
18316 insn
|= (old_op
& 0x38) << 13;
18318 insn
|= 0x00000c00;
18319 put_thumb32_insn (buf
, insn
);
18320 reloc_type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
18324 reloc_type
= BFD_RELOC_ARM_THUMB_OFFSET
;
18326 pc_rel
= (opcode
== T_MNEM_ldr_pc2
);
18329 if (fragp
->fr_var
== 4)
18331 insn
= THUMB_OP32 (opcode
);
18332 insn
|= (old_op
& 0xf0) << 4;
18333 put_thumb32_insn (buf
, insn
);
18334 reloc_type
= BFD_RELOC_ARM_T32_ADD_PC12
;
18338 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
18339 exp
.X_add_number
-= 4;
18347 if (fragp
->fr_var
== 4)
18349 int r0off
= (opcode
== T_MNEM_mov
18350 || opcode
== T_MNEM_movs
) ? 0 : 8;
18351 insn
= THUMB_OP32 (opcode
);
18352 insn
= (insn
& 0xe1ffffff) | 0x10000000;
18353 insn
|= (old_op
& 0x700) << r0off
;
18354 put_thumb32_insn (buf
, insn
);
18355 reloc_type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
18359 reloc_type
= BFD_RELOC_ARM_THUMB_IMM
;
18364 if (fragp
->fr_var
== 4)
18366 insn
= THUMB_OP32(opcode
);
18367 put_thumb32_insn (buf
, insn
);
18368 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH25
;
18371 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH12
;
18375 if (fragp
->fr_var
== 4)
18377 insn
= THUMB_OP32(opcode
);
18378 insn
|= (old_op
& 0xf00) << 14;
18379 put_thumb32_insn (buf
, insn
);
18380 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH20
;
18383 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH9
;
18386 case T_MNEM_add_sp
:
18387 case T_MNEM_add_pc
:
18388 case T_MNEM_inc_sp
:
18389 case T_MNEM_dec_sp
:
18390 if (fragp
->fr_var
== 4)
18392 /* ??? Choose between add and addw. */
18393 insn
= THUMB_OP32 (opcode
);
18394 insn
|= (old_op
& 0xf0) << 4;
18395 put_thumb32_insn (buf
, insn
);
18396 if (opcode
== T_MNEM_add_pc
)
18397 reloc_type
= BFD_RELOC_ARM_T32_IMM12
;
18399 reloc_type
= BFD_RELOC_ARM_T32_ADD_IMM
;
18402 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
18410 if (fragp
->fr_var
== 4)
18412 insn
= THUMB_OP32 (opcode
);
18413 insn
|= (old_op
& 0xf0) << 4;
18414 insn
|= (old_op
& 0xf) << 16;
18415 put_thumb32_insn (buf
, insn
);
18416 if (insn
& (1 << 20))
18417 reloc_type
= BFD_RELOC_ARM_T32_ADD_IMM
;
18419 reloc_type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
18422 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
18428 fixp
= fix_new_exp (fragp
, fragp
->fr_fix
, fragp
->fr_var
, &exp
, pc_rel
,
18429 (enum bfd_reloc_code_real
) reloc_type
);
18430 fixp
->fx_file
= fragp
->fr_file
;
18431 fixp
->fx_line
= fragp
->fr_line
;
18432 fragp
->fr_fix
+= fragp
->fr_var
;
18435 /* Return the size of a relaxable immediate operand instruction.
18436 SHIFT and SIZE specify the form of the allowable immediate. */
18438 relax_immediate (fragS
*fragp
, int size
, int shift
)
18444 /* ??? Should be able to do better than this. */
18445 if (fragp
->fr_symbol
)
18448 low
= (1 << shift
) - 1;
18449 mask
= (1 << (shift
+ size
)) - (1 << shift
);
18450 offset
= fragp
->fr_offset
;
18451 /* Force misaligned offsets to 32-bit variant. */
18454 if (offset
& ~mask
)
18459 /* Get the address of a symbol during relaxation. */
18461 relaxed_symbol_addr (fragS
*fragp
, long stretch
)
18467 sym
= fragp
->fr_symbol
;
18468 sym_frag
= symbol_get_frag (sym
);
18469 know (S_GET_SEGMENT (sym
) != absolute_section
18470 || sym_frag
== &zero_address_frag
);
18471 addr
= S_GET_VALUE (sym
) + fragp
->fr_offset
;
18473 /* If frag has yet to be reached on this pass, assume it will
18474 move by STRETCH just as we did. If this is not so, it will
18475 be because some frag between grows, and that will force
18479 && sym_frag
->relax_marker
!= fragp
->relax_marker
)
18483 /* Adjust stretch for any alignment frag. Note that if have
18484 been expanding the earlier code, the symbol may be
18485 defined in what appears to be an earlier frag. FIXME:
18486 This doesn't handle the fr_subtype field, which specifies
18487 a maximum number of bytes to skip when doing an
18489 for (f
= fragp
; f
!= NULL
&& f
!= sym_frag
; f
= f
->fr_next
)
18491 if (f
->fr_type
== rs_align
|| f
->fr_type
== rs_align_code
)
18494 stretch
= - ((- stretch
)
18495 & ~ ((1 << (int) f
->fr_offset
) - 1));
18497 stretch
&= ~ ((1 << (int) f
->fr_offset
) - 1);
18509 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
18512 relax_adr (fragS
*fragp
, asection
*sec
, long stretch
)
18517 /* Assume worst case for symbols not known to be in the same section. */
18518 if (fragp
->fr_symbol
== NULL
18519 || !S_IS_DEFINED (fragp
->fr_symbol
)
18520 || sec
!= S_GET_SEGMENT (fragp
->fr_symbol
))
18523 val
= relaxed_symbol_addr (fragp
, stretch
);
18524 addr
= fragp
->fr_address
+ fragp
->fr_fix
;
18525 addr
= (addr
+ 4) & ~3;
18526 /* Force misaligned targets to 32-bit variant. */
18530 if (val
< 0 || val
> 1020)
18535 /* Return the size of a relaxable add/sub immediate instruction. */
18537 relax_addsub (fragS
*fragp
, asection
*sec
)
18542 buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
18543 op
= bfd_get_16(sec
->owner
, buf
);
18544 if ((op
& 0xf) == ((op
>> 4) & 0xf))
18545 return relax_immediate (fragp
, 8, 0);
18547 return relax_immediate (fragp
, 3, 0);
18551 /* Return the size of a relaxable branch instruction. BITS is the
18552 size of the offset field in the narrow instruction. */
18555 relax_branch (fragS
*fragp
, asection
*sec
, int bits
, long stretch
)
18561 /* Assume worst case for symbols not known to be in the same section. */
18562 if (!S_IS_DEFINED (fragp
->fr_symbol
)
18563 || sec
!= S_GET_SEGMENT (fragp
->fr_symbol
))
18567 if (S_IS_DEFINED (fragp
->fr_symbol
)
18568 && ARM_IS_FUNC (fragp
->fr_symbol
))
18572 val
= relaxed_symbol_addr (fragp
, stretch
);
18573 addr
= fragp
->fr_address
+ fragp
->fr_fix
+ 4;
18576 /* Offset is a signed value *2 */
18578 if (val
>= limit
|| val
< -limit
)
18584 /* Relax a machine dependent frag. This returns the amount by which
18585 the current size of the frag should change. */
18588 arm_relax_frag (asection
*sec
, fragS
*fragp
, long stretch
)
18593 oldsize
= fragp
->fr_var
;
18594 switch (fragp
->fr_subtype
)
18596 case T_MNEM_ldr_pc2
:
18597 newsize
= relax_adr (fragp
, sec
, stretch
);
18599 case T_MNEM_ldr_pc
:
18600 case T_MNEM_ldr_sp
:
18601 case T_MNEM_str_sp
:
18602 newsize
= relax_immediate (fragp
, 8, 2);
18606 newsize
= relax_immediate (fragp
, 5, 2);
18610 newsize
= relax_immediate (fragp
, 5, 1);
18614 newsize
= relax_immediate (fragp
, 5, 0);
18617 newsize
= relax_adr (fragp
, sec
, stretch
);
18623 newsize
= relax_immediate (fragp
, 8, 0);
18626 newsize
= relax_branch (fragp
, sec
, 11, stretch
);
18629 newsize
= relax_branch (fragp
, sec
, 8, stretch
);
18631 case T_MNEM_add_sp
:
18632 case T_MNEM_add_pc
:
18633 newsize
= relax_immediate (fragp
, 8, 2);
18635 case T_MNEM_inc_sp
:
18636 case T_MNEM_dec_sp
:
18637 newsize
= relax_immediate (fragp
, 7, 2);
18643 newsize
= relax_addsub (fragp
, sec
);
18649 fragp
->fr_var
= newsize
;
18650 /* Freeze wide instructions that are at or before the same location as
18651 in the previous pass. This avoids infinite loops.
18652 Don't freeze them unconditionally because targets may be artificially
18653 misaligned by the expansion of preceding frags. */
18654 if (stretch
<= 0 && newsize
> 2)
18656 md_convert_frag (sec
->owner
, sec
, fragp
);
18660 return newsize
- oldsize
;
18663 /* Round up a section size to the appropriate boundary. */
18666 md_section_align (segT segment ATTRIBUTE_UNUSED
,
18669 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
18670 if (OUTPUT_FLAVOR
== bfd_target_aout_flavour
)
18672 /* For a.out, force the section size to be aligned. If we don't do
18673 this, BFD will align it for us, but it will not write out the
18674 final bytes of the section. This may be a bug in BFD, but it is
18675 easier to fix it here since that is how the other a.out targets
18679 align
= bfd_get_section_alignment (stdoutput
, segment
);
18680 size
= ((size
+ (1 << align
) - 1) & ((valueT
) -1 << align
));
18687 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
18688 of an rs_align_code fragment. */
18691 arm_handle_align (fragS
* fragP
)
18693 static char const arm_noop
[2][2][4] =
18696 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
18697 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
18700 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
18701 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
18704 static char const thumb_noop
[2][2][2] =
18707 {0xc0, 0x46}, /* LE */
18708 {0x46, 0xc0}, /* BE */
18711 {0x00, 0xbf}, /* LE */
18712 {0xbf, 0x00} /* BE */
18715 static char const wide_thumb_noop
[2][4] =
18716 { /* Wide Thumb-2 */
18717 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
18718 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
18721 unsigned bytes
, fix
, noop_size
;
18724 const char *narrow_noop
= NULL
;
18729 if (fragP
->fr_type
!= rs_align_code
)
18732 bytes
= fragP
->fr_next
->fr_address
- fragP
->fr_address
- fragP
->fr_fix
;
18733 p
= fragP
->fr_literal
+ fragP
->fr_fix
;
18736 if (bytes
> MAX_MEM_FOR_RS_ALIGN_CODE
)
18737 bytes
&= MAX_MEM_FOR_RS_ALIGN_CODE
;
18739 gas_assert ((fragP
->tc_frag_data
.thumb_mode
& MODE_RECORDED
) != 0);
18741 if (fragP
->tc_frag_data
.thumb_mode
& (~ MODE_RECORDED
))
18743 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6t2
))
18745 narrow_noop
= thumb_noop
[1][target_big_endian
];
18746 noop
= wide_thumb_noop
[target_big_endian
];
18749 noop
= thumb_noop
[0][target_big_endian
];
18757 noop
= arm_noop
[ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6k
) != 0]
18758 [target_big_endian
];
18765 fragP
->fr_var
= noop_size
;
18767 if (bytes
& (noop_size
- 1))
18769 fix
= bytes
& (noop_size
- 1);
18771 insert_data_mapping_symbol (state
, fragP
->fr_fix
, fragP
, fix
);
18773 memset (p
, 0, fix
);
18780 if (bytes
& noop_size
)
18782 /* Insert a narrow noop. */
18783 memcpy (p
, narrow_noop
, noop_size
);
18785 bytes
-= noop_size
;
18789 /* Use wide noops for the remainder */
18793 while (bytes
>= noop_size
)
18795 memcpy (p
, noop
, noop_size
);
18797 bytes
-= noop_size
;
18801 fragP
->fr_fix
+= fix
;
18804 /* Called from md_do_align. Used to create an alignment
18805 frag in a code section. */
18808 arm_frag_align_code (int n
, int max
)
18812 /* We assume that there will never be a requirement
18813 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
18814 if (max
> MAX_MEM_FOR_RS_ALIGN_CODE
)
18819 _("alignments greater than %d bytes not supported in .text sections."),
18820 MAX_MEM_FOR_RS_ALIGN_CODE
+ 1);
18821 as_fatal ("%s", err_msg
);
18824 p
= frag_var (rs_align_code
,
18825 MAX_MEM_FOR_RS_ALIGN_CODE
,
18827 (relax_substateT
) max
,
18834 /* Perform target specific initialisation of a frag.
18835 Note - despite the name this initialisation is not done when the frag
18836 is created, but only when its type is assigned. A frag can be created
18837 and used a long time before its type is set, so beware of assuming that
18838 this initialisationis performed first. */
18842 arm_init_frag (fragS
* fragP
, int max_chars ATTRIBUTE_UNUSED
)
18844 /* Record whether this frag is in an ARM or a THUMB area. */
18845 fragP
->tc_frag_data
.thumb_mode
= thumb_mode
| MODE_RECORDED
;
18848 #else /* OBJ_ELF is defined. */
18850 arm_init_frag (fragS
* fragP
, int max_chars
)
18852 /* If the current ARM vs THUMB mode has not already
18853 been recorded into this frag then do so now. */
18854 if ((fragP
->tc_frag_data
.thumb_mode
& MODE_RECORDED
) == 0)
18856 fragP
->tc_frag_data
.thumb_mode
= thumb_mode
| MODE_RECORDED
;
18858 /* Record a mapping symbol for alignment frags. We will delete this
18859 later if the alignment ends up empty. */
18860 switch (fragP
->fr_type
)
18863 case rs_align_test
:
18865 mapping_state_2 (MAP_DATA
, max_chars
);
18867 case rs_align_code
:
18868 mapping_state_2 (thumb_mode
? MAP_THUMB
: MAP_ARM
, max_chars
);
18876 /* When we change sections we need to issue a new mapping symbol. */
18879 arm_elf_change_section (void)
18881 /* Link an unlinked unwind index table section to the .text section. */
18882 if (elf_section_type (now_seg
) == SHT_ARM_EXIDX
18883 && elf_linked_to_section (now_seg
) == NULL
)
18884 elf_linked_to_section (now_seg
) = text_section
;
18888 arm_elf_section_type (const char * str
, size_t len
)
18890 if (len
== 5 && strncmp (str
, "exidx", 5) == 0)
18891 return SHT_ARM_EXIDX
;
18896 /* Code to deal with unwinding tables. */
18898 static void add_unwind_adjustsp (offsetT
);
18900 /* Generate any deferred unwind frame offset. */
18903 flush_pending_unwind (void)
18907 offset
= unwind
.pending_offset
;
18908 unwind
.pending_offset
= 0;
18910 add_unwind_adjustsp (offset
);
18913 /* Add an opcode to this list for this function. Two-byte opcodes should
18914 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
18918 add_unwind_opcode (valueT op
, int length
)
18920 /* Add any deferred stack adjustment. */
18921 if (unwind
.pending_offset
)
18922 flush_pending_unwind ();
18924 unwind
.sp_restored
= 0;
18926 if (unwind
.opcode_count
+ length
> unwind
.opcode_alloc
)
18928 unwind
.opcode_alloc
+= ARM_OPCODE_CHUNK_SIZE
;
18929 if (unwind
.opcodes
)
18930 unwind
.opcodes
= (unsigned char *) xrealloc (unwind
.opcodes
,
18931 unwind
.opcode_alloc
);
18933 unwind
.opcodes
= (unsigned char *) xmalloc (unwind
.opcode_alloc
);
18938 unwind
.opcodes
[unwind
.opcode_count
] = op
& 0xff;
18940 unwind
.opcode_count
++;
18944 /* Add unwind opcodes to adjust the stack pointer. */
18947 add_unwind_adjustsp (offsetT offset
)
18951 if (offset
> 0x200)
18953 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
18958 /* Long form: 0xb2, uleb128. */
18959 /* This might not fit in a word so add the individual bytes,
18960 remembering the list is built in reverse order. */
18961 o
= (valueT
) ((offset
- 0x204) >> 2);
18963 add_unwind_opcode (0, 1);
18965 /* Calculate the uleb128 encoding of the offset. */
18969 bytes
[n
] = o
& 0x7f;
18975 /* Add the insn. */
18977 add_unwind_opcode (bytes
[n
- 1], 1);
18978 add_unwind_opcode (0xb2, 1);
18980 else if (offset
> 0x100)
18982 /* Two short opcodes. */
18983 add_unwind_opcode (0x3f, 1);
18984 op
= (offset
- 0x104) >> 2;
18985 add_unwind_opcode (op
, 1);
18987 else if (offset
> 0)
18989 /* Short opcode. */
18990 op
= (offset
- 4) >> 2;
18991 add_unwind_opcode (op
, 1);
18993 else if (offset
< 0)
18996 while (offset
> 0x100)
18998 add_unwind_opcode (0x7f, 1);
19001 op
= ((offset
- 4) >> 2) | 0x40;
19002 add_unwind_opcode (op
, 1);
19006 /* Finish the list of unwind opcodes for this function. */
19008 finish_unwind_opcodes (void)
19012 if (unwind
.fp_used
)
19014 /* Adjust sp as necessary. */
19015 unwind
.pending_offset
+= unwind
.fp_offset
- unwind
.frame_size
;
19016 flush_pending_unwind ();
19018 /* After restoring sp from the frame pointer. */
19019 op
= 0x90 | unwind
.fp_reg
;
19020 add_unwind_opcode (op
, 1);
19023 flush_pending_unwind ();
19027 /* Start an exception table entry. If idx is nonzero this is an index table
19031 start_unwind_section (const segT text_seg
, int idx
)
19033 const char * text_name
;
19034 const char * prefix
;
19035 const char * prefix_once
;
19036 const char * group_name
;
19040 size_t sec_name_len
;
19047 prefix
= ELF_STRING_ARM_unwind
;
19048 prefix_once
= ELF_STRING_ARM_unwind_once
;
19049 type
= SHT_ARM_EXIDX
;
19053 prefix
= ELF_STRING_ARM_unwind_info
;
19054 prefix_once
= ELF_STRING_ARM_unwind_info_once
;
19055 type
= SHT_PROGBITS
;
19058 text_name
= segment_name (text_seg
);
19059 if (streq (text_name
, ".text"))
19062 if (strncmp (text_name
, ".gnu.linkonce.t.",
19063 strlen (".gnu.linkonce.t.")) == 0)
19065 prefix
= prefix_once
;
19066 text_name
+= strlen (".gnu.linkonce.t.");
19069 prefix_len
= strlen (prefix
);
19070 text_len
= strlen (text_name
);
19071 sec_name_len
= prefix_len
+ text_len
;
19072 sec_name
= (char *) xmalloc (sec_name_len
+ 1);
19073 memcpy (sec_name
, prefix
, prefix_len
);
19074 memcpy (sec_name
+ prefix_len
, text_name
, text_len
);
19075 sec_name
[prefix_len
+ text_len
] = '\0';
19081 /* Handle COMDAT group. */
19082 if (prefix
!= prefix_once
&& (text_seg
->flags
& SEC_LINK_ONCE
) != 0)
19084 group_name
= elf_group_name (text_seg
);
19085 if (group_name
== NULL
)
19087 as_bad (_("Group section `%s' has no group signature"),
19088 segment_name (text_seg
));
19089 ignore_rest_of_line ();
19092 flags
|= SHF_GROUP
;
19096 obj_elf_change_section (sec_name
, type
, flags
, 0, group_name
, linkonce
, 0);
19098 /* Set the section link for index tables. */
19100 elf_linked_to_section (now_seg
) = text_seg
;
19104 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19105 personality routine data. Returns zero, or the index table value for
19106 and inline entry. */
19109 create_unwind_entry (int have_data
)
19114 /* The current word of data. */
19116 /* The number of bytes left in this word. */
19119 finish_unwind_opcodes ();
19121 /* Remember the current text section. */
19122 unwind
.saved_seg
= now_seg
;
19123 unwind
.saved_subseg
= now_subseg
;
19125 start_unwind_section (now_seg
, 0);
19127 if (unwind
.personality_routine
== NULL
)
19129 if (unwind
.personality_index
== -2)
19132 as_bad (_("handlerdata in cantunwind frame"));
19133 return 1; /* EXIDX_CANTUNWIND. */
19136 /* Use a default personality routine if none is specified. */
19137 if (unwind
.personality_index
== -1)
19139 if (unwind
.opcode_count
> 3)
19140 unwind
.personality_index
= 1;
19142 unwind
.personality_index
= 0;
19145 /* Space for the personality routine entry. */
19146 if (unwind
.personality_index
== 0)
19148 if (unwind
.opcode_count
> 3)
19149 as_bad (_("too many unwind opcodes for personality routine 0"));
19153 /* All the data is inline in the index table. */
19156 while (unwind
.opcode_count
> 0)
19158 unwind
.opcode_count
--;
19159 data
= (data
<< 8) | unwind
.opcodes
[unwind
.opcode_count
];
19163 /* Pad with "finish" opcodes. */
19165 data
= (data
<< 8) | 0xb0;
19172 /* We get two opcodes "free" in the first word. */
19173 size
= unwind
.opcode_count
- 2;
19176 /* An extra byte is required for the opcode count. */
19177 size
= unwind
.opcode_count
+ 1;
19179 size
= (size
+ 3) >> 2;
19181 as_bad (_("too many unwind opcodes"));
19183 frag_align (2, 0, 0);
19184 record_alignment (now_seg
, 2);
19185 unwind
.table_entry
= expr_build_dot ();
19187 /* Allocate the table entry. */
19188 ptr
= frag_more ((size
<< 2) + 4);
19189 where
= frag_now_fix () - ((size
<< 2) + 4);
19191 switch (unwind
.personality_index
)
19194 /* ??? Should this be a PLT generating relocation? */
19195 /* Custom personality routine. */
19196 fix_new (frag_now
, where
, 4, unwind
.personality_routine
, 0, 1,
19197 BFD_RELOC_ARM_PREL31
);
19202 /* Set the first byte to the number of additional words. */
19207 /* ABI defined personality routines. */
19209 /* Three opcodes bytes are packed into the first word. */
19216 /* The size and first two opcode bytes go in the first word. */
19217 data
= ((0x80 + unwind
.personality_index
) << 8) | size
;
19222 /* Should never happen. */
19226 /* Pack the opcodes into words (MSB first), reversing the list at the same
19228 while (unwind
.opcode_count
> 0)
19232 md_number_to_chars (ptr
, data
, 4);
19237 unwind
.opcode_count
--;
19239 data
= (data
<< 8) | unwind
.opcodes
[unwind
.opcode_count
];
19242 /* Finish off the last word. */
19245 /* Pad with "finish" opcodes. */
19247 data
= (data
<< 8) | 0xb0;
19249 md_number_to_chars (ptr
, data
, 4);
19254 /* Add an empty descriptor if there is no user-specified data. */
19255 ptr
= frag_more (4);
19256 md_number_to_chars (ptr
, 0, 4);
19263 /* Initialize the DWARF-2 unwind information for this procedure. */
19266 tc_arm_frame_initial_instructions (void)
19268 cfi_add_CFA_def_cfa (REG_SP
, 0);
19270 #endif /* OBJ_ELF */
19272 /* Convert REGNAME to a DWARF-2 register number. */
19275 tc_arm_regname_to_dw2regnum (char *regname
)
19277 int reg
= arm_reg_parse (®name
, REG_TYPE_RN
);
19287 tc_pe_dwarf2_emit_offset (symbolS
*symbol
, unsigned int size
)
19291 exp
.X_op
= O_secrel
;
19292 exp
.X_add_symbol
= symbol
;
19293 exp
.X_add_number
= 0;
19294 emit_expr (&exp
, size
);
19298 /* MD interface: Symbol and relocation handling. */
19300 /* Return the address within the segment that a PC-relative fixup is
19301 relative to. For ARM, PC-relative fixups applied to instructions
19302 are generally relative to the location of the fixup plus 8 bytes.
19303 Thumb branches are offset by 4, and Thumb loads relative to PC
19304 require special handling. */
19307 md_pcrel_from_section (fixS
* fixP
, segT seg
)
19309 offsetT base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
19311 /* If this is pc-relative and we are going to emit a relocation
19312 then we just want to put out any pipeline compensation that the linker
19313 will need. Otherwise we want to use the calculated base.
19314 For WinCE we skip the bias for externals as well, since this
19315 is how the MS ARM-CE assembler behaves and we want to be compatible. */
19317 && ((fixP
->fx_addsy
&& S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
19318 || (arm_force_relocation (fixP
)
19320 && !S_IS_EXTERNAL (fixP
->fx_addsy
)
19326 switch (fixP
->fx_r_type
)
19328 /* PC relative addressing on the Thumb is slightly odd as the
19329 bottom two bits of the PC are forced to zero for the
19330 calculation. This happens *after* application of the
19331 pipeline offset. However, Thumb adrl already adjusts for
19332 this, so we need not do it again. */
19333 case BFD_RELOC_ARM_THUMB_ADD
:
19336 case BFD_RELOC_ARM_THUMB_OFFSET
:
19337 case BFD_RELOC_ARM_T32_OFFSET_IMM
:
19338 case BFD_RELOC_ARM_T32_ADD_PC12
:
19339 case BFD_RELOC_ARM_T32_CP_OFF_IMM
:
19340 return (base
+ 4) & ~3;
19342 /* Thumb branches are simply offset by +4. */
19343 case BFD_RELOC_THUMB_PCREL_BRANCH7
:
19344 case BFD_RELOC_THUMB_PCREL_BRANCH9
:
19345 case BFD_RELOC_THUMB_PCREL_BRANCH12
:
19346 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
19347 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
19350 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
19352 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
19353 && (!S_IS_EXTERNAL (fixP
->fx_addsy
))
19354 && ARM_IS_FUNC (fixP
->fx_addsy
)
19355 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
19356 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
19359 /* BLX is like branches above, but forces the low two bits of PC to
19361 case BFD_RELOC_THUMB_PCREL_BLX
:
19363 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
19364 && (!S_IS_EXTERNAL (fixP
->fx_addsy
))
19365 && THUMB_IS_FUNC (fixP
->fx_addsy
)
19366 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
19367 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
19368 return (base
+ 4) & ~3;
19370 /* ARM mode branches are offset by +8. However, the Windows CE
19371 loader expects the relocation not to take this into account. */
19372 case BFD_RELOC_ARM_PCREL_BLX
:
19374 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
19375 && (!S_IS_EXTERNAL (fixP
->fx_addsy
))
19376 && ARM_IS_FUNC (fixP
->fx_addsy
)
19377 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
19378 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
19381 case BFD_RELOC_ARM_PCREL_CALL
:
19383 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
19384 && (!S_IS_EXTERNAL (fixP
->fx_addsy
))
19385 && THUMB_IS_FUNC (fixP
->fx_addsy
)
19386 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
19387 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
19390 case BFD_RELOC_ARM_PCREL_BRANCH
:
19391 case BFD_RELOC_ARM_PCREL_JUMP
:
19392 case BFD_RELOC_ARM_PLT32
:
19394 /* When handling fixups immediately, because we have already
19395 discovered the value of a symbol, or the address of the frag involved
19396 we must account for the offset by +8, as the OS loader will never see the reloc.
19397 see fixup_segment() in write.c
19398 The S_IS_EXTERNAL test handles the case of global symbols.
19399 Those need the calculated base, not just the pipe compensation the linker will need. */
19401 && fixP
->fx_addsy
!= NULL
19402 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
19403 && (S_IS_EXTERNAL (fixP
->fx_addsy
) || !arm_force_relocation (fixP
)))
19411 /* ARM mode loads relative to PC are also offset by +8. Unlike
19412 branches, the Windows CE loader *does* expect the relocation
19413 to take this into account. */
19414 case BFD_RELOC_ARM_OFFSET_IMM
:
19415 case BFD_RELOC_ARM_OFFSET_IMM8
:
19416 case BFD_RELOC_ARM_HWLITERAL
:
19417 case BFD_RELOC_ARM_LITERAL
:
19418 case BFD_RELOC_ARM_CP_OFF_IMM
:
19422 /* Other PC-relative relocations are un-offset. */
19428 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
19429 Otherwise we have no need to default values of symbols. */
19432 md_undefined_symbol (char * name ATTRIBUTE_UNUSED
)
19435 if (name
[0] == '_' && name
[1] == 'G'
19436 && streq (name
, GLOBAL_OFFSET_TABLE_NAME
))
19440 if (symbol_find (name
))
19441 as_bad (_("GOT already in the symbol table"));
19443 GOT_symbol
= symbol_new (name
, undefined_section
,
19444 (valueT
) 0, & zero_address_frag
);
19454 /* Subroutine of md_apply_fix. Check to see if an immediate can be
19455 computed as two separate immediate values, added together. We
19456 already know that this value cannot be computed by just one ARM
19459 static unsigned int
19460 validate_immediate_twopart (unsigned int val
,
19461 unsigned int * highpart
)
19466 for (i
= 0; i
< 32; i
+= 2)
19467 if (((a
= rotate_left (val
, i
)) & 0xff) != 0)
19473 * highpart
= (a
>> 8) | ((i
+ 24) << 7);
19475 else if (a
& 0xff0000)
19477 if (a
& 0xff000000)
19479 * highpart
= (a
>> 16) | ((i
+ 16) << 7);
19483 gas_assert (a
& 0xff000000);
19484 * highpart
= (a
>> 24) | ((i
+ 8) << 7);
19487 return (a
& 0xff) | (i
<< 7);
19494 validate_offset_imm (unsigned int val
, int hwse
)
19496 if ((hwse
&& val
> 255) || val
> 4095)
19501 /* Subroutine of md_apply_fix. Do those data_ops which can take a
19502 negative immediate constant by altering the instruction. A bit of
19507 by inverting the second operand, and
19510 by negating the second operand. */
19513 negate_data_op (unsigned long * instruction
,
19514 unsigned long value
)
19517 unsigned long negated
, inverted
;
19519 negated
= encode_arm_immediate (-value
);
19520 inverted
= encode_arm_immediate (~value
);
19522 op
= (*instruction
>> DATA_OP_SHIFT
) & 0xf;
19525 /* First negates. */
19526 case OPCODE_SUB
: /* ADD <-> SUB */
19527 new_inst
= OPCODE_ADD
;
19532 new_inst
= OPCODE_SUB
;
19536 case OPCODE_CMP
: /* CMP <-> CMN */
19537 new_inst
= OPCODE_CMN
;
19542 new_inst
= OPCODE_CMP
;
19546 /* Now Inverted ops. */
19547 case OPCODE_MOV
: /* MOV <-> MVN */
19548 new_inst
= OPCODE_MVN
;
19553 new_inst
= OPCODE_MOV
;
19557 case OPCODE_AND
: /* AND <-> BIC */
19558 new_inst
= OPCODE_BIC
;
19563 new_inst
= OPCODE_AND
;
19567 case OPCODE_ADC
: /* ADC <-> SBC */
19568 new_inst
= OPCODE_SBC
;
19573 new_inst
= OPCODE_ADC
;
19577 /* We cannot do anything. */
19582 if (value
== (unsigned) FAIL
)
19585 *instruction
&= OPCODE_MASK
;
19586 *instruction
|= new_inst
<< DATA_OP_SHIFT
;
19590 /* Like negate_data_op, but for Thumb-2. */
19592 static unsigned int
19593 thumb32_negate_data_op (offsetT
*instruction
, unsigned int value
)
19597 unsigned int negated
, inverted
;
19599 negated
= encode_thumb32_immediate (-value
);
19600 inverted
= encode_thumb32_immediate (~value
);
19602 rd
= (*instruction
>> 8) & 0xf;
19603 op
= (*instruction
>> T2_DATA_OP_SHIFT
) & 0xf;
19606 /* ADD <-> SUB. Includes CMP <-> CMN. */
19607 case T2_OPCODE_SUB
:
19608 new_inst
= T2_OPCODE_ADD
;
19612 case T2_OPCODE_ADD
:
19613 new_inst
= T2_OPCODE_SUB
;
19617 /* ORR <-> ORN. Includes MOV <-> MVN. */
19618 case T2_OPCODE_ORR
:
19619 new_inst
= T2_OPCODE_ORN
;
19623 case T2_OPCODE_ORN
:
19624 new_inst
= T2_OPCODE_ORR
;
19628 /* AND <-> BIC. TST has no inverted equivalent. */
19629 case T2_OPCODE_AND
:
19630 new_inst
= T2_OPCODE_BIC
;
19637 case T2_OPCODE_BIC
:
19638 new_inst
= T2_OPCODE_AND
;
19643 case T2_OPCODE_ADC
:
19644 new_inst
= T2_OPCODE_SBC
;
19648 case T2_OPCODE_SBC
:
19649 new_inst
= T2_OPCODE_ADC
;
19653 /* We cannot do anything. */
19658 if (value
== (unsigned int)FAIL
)
19661 *instruction
&= T2_OPCODE_MASK
;
19662 *instruction
|= new_inst
<< T2_DATA_OP_SHIFT
;
19666 /* Read a 32-bit thumb instruction from buf. */
19667 static unsigned long
19668 get_thumb32_insn (char * buf
)
19670 unsigned long insn
;
19671 insn
= md_chars_to_number (buf
, THUMB_SIZE
) << 16;
19672 insn
|= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
19678 /* We usually want to set the low bit on the address of thumb function
19679 symbols. In particular .word foo - . should have the low bit set.
19680 Generic code tries to fold the difference of two symbols to
19681 a constant. Prevent this and force a relocation when the first symbols
19682 is a thumb function. */
19685 arm_optimize_expr (expressionS
*l
, operatorT op
, expressionS
*r
)
19687 if (op
== O_subtract
19688 && l
->X_op
== O_symbol
19689 && r
->X_op
== O_symbol
19690 && THUMB_IS_FUNC (l
->X_add_symbol
))
19692 l
->X_op
= O_subtract
;
19693 l
->X_op_symbol
= r
->X_add_symbol
;
19694 l
->X_add_number
-= r
->X_add_number
;
19698 /* Process as normal. */
19702 /* Encode Thumb2 unconditional branches and calls. The encoding
19703 for the 2 are identical for the immediate values. */
19706 encode_thumb2_b_bl_offset (char * buf
, offsetT value
)
19708 #define T2I1I2MASK ((1 << 13) | (1 << 11))
19711 addressT S
, I1
, I2
, lo
, hi
;
19713 S
= (value
>> 24) & 0x01;
19714 I1
= (value
>> 23) & 0x01;
19715 I2
= (value
>> 22) & 0x01;
19716 hi
= (value
>> 12) & 0x3ff;
19717 lo
= (value
>> 1) & 0x7ff;
19718 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
19719 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
19720 newval
|= (S
<< 10) | hi
;
19721 newval2
&= ~T2I1I2MASK
;
19722 newval2
|= (((I1
^ S
) << 13) | ((I2
^ S
) << 11) | lo
) ^ T2I1I2MASK
;
19723 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
19724 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
19728 md_apply_fix (fixS
* fixP
,
19732 offsetT value
= * valP
;
19734 unsigned int newimm
;
19735 unsigned long temp
;
19737 char * buf
= fixP
->fx_where
+ fixP
->fx_frag
->fr_literal
;
19739 gas_assert (fixP
->fx_r_type
<= BFD_RELOC_UNUSED
);
19741 /* Note whether this will delete the relocation. */
19743 if (fixP
->fx_addsy
== 0 && !fixP
->fx_pcrel
)
19746 /* On a 64-bit host, silently truncate 'value' to 32 bits for
19747 consistency with the behaviour on 32-bit hosts. Remember value
19749 value
&= 0xffffffff;
19750 value
^= 0x80000000;
19751 value
-= 0x80000000;
19754 fixP
->fx_addnumber
= value
;
19756 /* Same treatment for fixP->fx_offset. */
19757 fixP
->fx_offset
&= 0xffffffff;
19758 fixP
->fx_offset
^= 0x80000000;
19759 fixP
->fx_offset
-= 0x80000000;
19761 switch (fixP
->fx_r_type
)
19763 case BFD_RELOC_NONE
:
19764 /* This will need to go in the object file. */
19768 case BFD_RELOC_ARM_IMMEDIATE
:
19769 /* We claim that this fixup has been processed here,
19770 even if in fact we generate an error because we do
19771 not have a reloc for it, so tc_gen_reloc will reject it. */
19775 && ! S_IS_DEFINED (fixP
->fx_addsy
))
19777 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
19778 _("undefined symbol %s used as an immediate value"),
19779 S_GET_NAME (fixP
->fx_addsy
));
19784 && S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
19786 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
19787 _("symbol %s is in a different section"),
19788 S_GET_NAME (fixP
->fx_addsy
));
19792 newimm
= encode_arm_immediate (value
);
19793 temp
= md_chars_to_number (buf
, INSN_SIZE
);
19795 /* If the instruction will fail, see if we can fix things up by
19796 changing the opcode. */
19797 if (newimm
== (unsigned int) FAIL
19798 && (newimm
= negate_data_op (&temp
, value
)) == (unsigned int) FAIL
)
19800 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
19801 _("invalid constant (%lx) after fixup"),
19802 (unsigned long) value
);
19806 newimm
|= (temp
& 0xfffff000);
19807 md_number_to_chars (buf
, (valueT
) newimm
, INSN_SIZE
);
19810 case BFD_RELOC_ARM_ADRL_IMMEDIATE
:
19812 unsigned int highpart
= 0;
19813 unsigned int newinsn
= 0xe1a00000; /* nop. */
19816 && ! S_IS_DEFINED (fixP
->fx_addsy
))
19818 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
19819 _("undefined symbol %s used as an immediate value"),
19820 S_GET_NAME (fixP
->fx_addsy
));
19825 && S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
19827 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
19828 _("symbol %s is in a different section"),
19829 S_GET_NAME (fixP
->fx_addsy
));
19833 newimm
= encode_arm_immediate (value
);
19834 temp
= md_chars_to_number (buf
, INSN_SIZE
);
19836 /* If the instruction will fail, see if we can fix things up by
19837 changing the opcode. */
19838 if (newimm
== (unsigned int) FAIL
19839 && (newimm
= negate_data_op (& temp
, value
)) == (unsigned int) FAIL
)
19841 /* No ? OK - try using two ADD instructions to generate
19843 newimm
= validate_immediate_twopart (value
, & highpart
);
19845 /* Yes - then make sure that the second instruction is
19847 if (newimm
!= (unsigned int) FAIL
)
19849 /* Still No ? Try using a negated value. */
19850 else if ((newimm
= validate_immediate_twopart (- value
, & highpart
)) != (unsigned int) FAIL
)
19851 temp
= newinsn
= (temp
& OPCODE_MASK
) | OPCODE_SUB
<< DATA_OP_SHIFT
;
19852 /* Otherwise - give up. */
19855 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
19856 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
19861 /* Replace the first operand in the 2nd instruction (which
19862 is the PC) with the destination register. We have
19863 already added in the PC in the first instruction and we
19864 do not want to do it again. */
19865 newinsn
&= ~ 0xf0000;
19866 newinsn
|= ((newinsn
& 0x0f000) << 4);
19869 newimm
|= (temp
& 0xfffff000);
19870 md_number_to_chars (buf
, (valueT
) newimm
, INSN_SIZE
);
19872 highpart
|= (newinsn
& 0xfffff000);
19873 md_number_to_chars (buf
+ INSN_SIZE
, (valueT
) highpart
, INSN_SIZE
);
19877 case BFD_RELOC_ARM_OFFSET_IMM
:
19878 if (!fixP
->fx_done
&& seg
->use_rela_p
)
19881 case BFD_RELOC_ARM_LITERAL
:
19887 if (validate_offset_imm (value
, 0) == FAIL
)
19889 if (fixP
->fx_r_type
== BFD_RELOC_ARM_LITERAL
)
19890 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
19891 _("invalid literal constant: pool needs to be closer"));
19893 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
19894 _("bad immediate value for offset (%ld)"),
19899 newval
= md_chars_to_number (buf
, INSN_SIZE
);
19900 newval
&= 0xff7ff000;
19901 newval
|= value
| (sign
? INDEX_UP
: 0);
19902 md_number_to_chars (buf
, newval
, INSN_SIZE
);
19905 case BFD_RELOC_ARM_OFFSET_IMM8
:
19906 case BFD_RELOC_ARM_HWLITERAL
:
19912 if (validate_offset_imm (value
, 1) == FAIL
)
19914 if (fixP
->fx_r_type
== BFD_RELOC_ARM_HWLITERAL
)
19915 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
19916 _("invalid literal constant: pool needs to be closer"));
19918 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
19923 newval
= md_chars_to_number (buf
, INSN_SIZE
);
19924 newval
&= 0xff7ff0f0;
19925 newval
|= ((value
>> 4) << 8) | (value
& 0xf) | (sign
? INDEX_UP
: 0);
19926 md_number_to_chars (buf
, newval
, INSN_SIZE
);
19929 case BFD_RELOC_ARM_T32_OFFSET_U8
:
19930 if (value
< 0 || value
> 1020 || value
% 4 != 0)
19931 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
19932 _("bad immediate value for offset (%ld)"), (long) value
);
19935 newval
= md_chars_to_number (buf
+2, THUMB_SIZE
);
19937 md_number_to_chars (buf
+2, newval
, THUMB_SIZE
);
19940 case BFD_RELOC_ARM_T32_OFFSET_IMM
:
19941 /* This is a complicated relocation used for all varieties of Thumb32
19942 load/store instruction with immediate offset:
19944 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
19945 *4, optional writeback(W)
19946 (doubleword load/store)
19948 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
19949 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
19950 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
19951 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
19952 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
19954 Uppercase letters indicate bits that are already encoded at
19955 this point. Lowercase letters are our problem. For the
19956 second block of instructions, the secondary opcode nybble
19957 (bits 8..11) is present, and bit 23 is zero, even if this is
19958 a PC-relative operation. */
19959 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
19961 newval
|= md_chars_to_number (buf
+THUMB_SIZE
, THUMB_SIZE
);
19963 if ((newval
& 0xf0000000) == 0xe0000000)
19965 /* Doubleword load/store: 8-bit offset, scaled by 4. */
19967 newval
|= (1 << 23);
19970 if (value
% 4 != 0)
19972 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
19973 _("offset not a multiple of 4"));
19979 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
19980 _("offset out of range"));
19985 else if ((newval
& 0x000f0000) == 0x000f0000)
19987 /* PC-relative, 12-bit offset. */
19989 newval
|= (1 << 23);
19994 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
19995 _("offset out of range"));
20000 else if ((newval
& 0x00000100) == 0x00000100)
20002 /* Writeback: 8-bit, +/- offset. */
20004 newval
|= (1 << 9);
20009 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20010 _("offset out of range"));
20015 else if ((newval
& 0x00000f00) == 0x00000e00)
20017 /* T-instruction: positive 8-bit offset. */
20018 if (value
< 0 || value
> 0xff)
20020 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20021 _("offset out of range"));
20029 /* Positive 12-bit or negative 8-bit offset. */
20033 newval
|= (1 << 23);
20043 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20044 _("offset out of range"));
20051 md_number_to_chars (buf
, (newval
>> 16) & 0xffff, THUMB_SIZE
);
20052 md_number_to_chars (buf
+ THUMB_SIZE
, newval
& 0xffff, THUMB_SIZE
);
20055 case BFD_RELOC_ARM_SHIFT_IMM
:
20056 newval
= md_chars_to_number (buf
, INSN_SIZE
);
20057 if (((unsigned long) value
) > 32
20059 && (((newval
& 0x60) == 0) || (newval
& 0x60) == 0x60)))
20061 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20062 _("shift expression is too large"));
20067 /* Shifts of zero must be done as lsl. */
20069 else if (value
== 32)
20071 newval
&= 0xfffff07f;
20072 newval
|= (value
& 0x1f) << 7;
20073 md_number_to_chars (buf
, newval
, INSN_SIZE
);
20076 case BFD_RELOC_ARM_T32_IMMEDIATE
:
20077 case BFD_RELOC_ARM_T32_ADD_IMM
:
20078 case BFD_RELOC_ARM_T32_IMM12
:
20079 case BFD_RELOC_ARM_T32_ADD_PC12
:
20080 /* We claim that this fixup has been processed here,
20081 even if in fact we generate an error because we do
20082 not have a reloc for it, so tc_gen_reloc will reject it. */
20086 && ! S_IS_DEFINED (fixP
->fx_addsy
))
20088 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20089 _("undefined symbol %s used as an immediate value"),
20090 S_GET_NAME (fixP
->fx_addsy
));
20094 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
20096 newval
|= md_chars_to_number (buf
+2, THUMB_SIZE
);
20099 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_IMMEDIATE
20100 || fixP
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
)
20102 newimm
= encode_thumb32_immediate (value
);
20103 if (newimm
== (unsigned int) FAIL
)
20104 newimm
= thumb32_negate_data_op (&newval
, value
);
20106 if (fixP
->fx_r_type
!= BFD_RELOC_ARM_T32_IMMEDIATE
20107 && newimm
== (unsigned int) FAIL
)
20109 /* Turn add/sum into addw/subw. */
20110 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
)
20111 newval
= (newval
& 0xfeffffff) | 0x02000000;
20113 /* 12 bit immediate for addw/subw. */
20117 newval
^= 0x00a00000;
20120 newimm
= (unsigned int) FAIL
;
20125 if (newimm
== (unsigned int)FAIL
)
20127 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20128 _("invalid constant (%lx) after fixup"),
20129 (unsigned long) value
);
20133 newval
|= (newimm
& 0x800) << 15;
20134 newval
|= (newimm
& 0x700) << 4;
20135 newval
|= (newimm
& 0x0ff);
20137 md_number_to_chars (buf
, (valueT
) ((newval
>> 16) & 0xffff), THUMB_SIZE
);
20138 md_number_to_chars (buf
+2, (valueT
) (newval
& 0xffff), THUMB_SIZE
);
20141 case BFD_RELOC_ARM_SMC
:
20142 if (((unsigned long) value
) > 0xffff)
20143 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20144 _("invalid smc expression"));
20145 newval
= md_chars_to_number (buf
, INSN_SIZE
);
20146 newval
|= (value
& 0xf) | ((value
& 0xfff0) << 4);
20147 md_number_to_chars (buf
, newval
, INSN_SIZE
);
20150 case BFD_RELOC_ARM_SWI
:
20151 if (fixP
->tc_fix_data
!= 0)
20153 if (((unsigned long) value
) > 0xff)
20154 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20155 _("invalid swi expression"));
20156 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
20158 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
20162 if (((unsigned long) value
) > 0x00ffffff)
20163 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20164 _("invalid swi expression"));
20165 newval
= md_chars_to_number (buf
, INSN_SIZE
);
20167 md_number_to_chars (buf
, newval
, INSN_SIZE
);
20171 case BFD_RELOC_ARM_MULTI
:
20172 if (((unsigned long) value
) > 0xffff)
20173 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20174 _("invalid expression in load/store multiple"));
20175 newval
= value
| md_chars_to_number (buf
, INSN_SIZE
);
20176 md_number_to_chars (buf
, newval
, INSN_SIZE
);
20180 case BFD_RELOC_ARM_PCREL_CALL
:
20182 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
20184 && !S_IS_EXTERNAL (fixP
->fx_addsy
)
20185 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
20186 && THUMB_IS_FUNC (fixP
->fx_addsy
))
20187 /* Flip the bl to blx. This is a simple flip
20188 bit here because we generate PCREL_CALL for
20189 unconditional bls. */
20191 newval
= md_chars_to_number (buf
, INSN_SIZE
);
20192 newval
= newval
| 0x10000000;
20193 md_number_to_chars (buf
, newval
, INSN_SIZE
);
20199 goto arm_branch_common
;
20201 case BFD_RELOC_ARM_PCREL_JUMP
:
20202 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
20204 && !S_IS_EXTERNAL (fixP
->fx_addsy
)
20205 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
20206 && THUMB_IS_FUNC (fixP
->fx_addsy
))
20208 /* This would map to a bl<cond>, b<cond>,
20209 b<always> to a Thumb function. We
20210 need to force a relocation for this particular
20212 newval
= md_chars_to_number (buf
, INSN_SIZE
);
20216 case BFD_RELOC_ARM_PLT32
:
20218 case BFD_RELOC_ARM_PCREL_BRANCH
:
20220 goto arm_branch_common
;
20222 case BFD_RELOC_ARM_PCREL_BLX
:
20225 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
20227 && !S_IS_EXTERNAL (fixP
->fx_addsy
)
20228 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
20229 && ARM_IS_FUNC (fixP
->fx_addsy
))
20231 /* Flip the blx to a bl and warn. */
20232 const char *name
= S_GET_NAME (fixP
->fx_addsy
);
20233 newval
= 0xeb000000;
20234 as_warn_where (fixP
->fx_file
, fixP
->fx_line
,
20235 _("blx to '%s' an ARM ISA state function changed to bl"),
20237 md_number_to_chars (buf
, newval
, INSN_SIZE
);
20243 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
20244 fixP
->fx_r_type
= BFD_RELOC_ARM_PCREL_CALL
;
20248 /* We are going to store value (shifted right by two) in the
20249 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20250 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20251 also be be clear. */
20253 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20254 _("misaligned branch destination"));
20255 if ((value
& (offsetT
)0xfe000000) != (offsetT
)0
20256 && (value
& (offsetT
)0xfe000000) != (offsetT
)0xfe000000)
20257 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20258 _("branch out of range"));
20260 if (fixP
->fx_done
|| !seg
->use_rela_p
)
20262 newval
= md_chars_to_number (buf
, INSN_SIZE
);
20263 newval
|= (value
>> 2) & 0x00ffffff;
20264 /* Set the H bit on BLX instructions. */
20268 newval
|= 0x01000000;
20270 newval
&= ~0x01000000;
20272 md_number_to_chars (buf
, newval
, INSN_SIZE
);
20276 case BFD_RELOC_THUMB_PCREL_BRANCH7
: /* CBZ */
20277 /* CBZ can only branch forward. */
20279 /* Attempts to use CBZ to branch to the next instruction
20280 (which, strictly speaking, are prohibited) will be turned into
20283 FIXME: It may be better to remove the instruction completely and
20284 perform relaxation. */
20287 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
20288 newval
= 0xbf00; /* NOP encoding T1 */
20289 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
20294 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20295 _("branch out of range"));
20297 if (fixP
->fx_done
|| !seg
->use_rela_p
)
20299 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
20300 newval
|= ((value
& 0x3e) << 2) | ((value
& 0x40) << 3);
20301 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
20306 case BFD_RELOC_THUMB_PCREL_BRANCH9
: /* Conditional branch. */
20307 if ((value
& ~0xff) && ((value
& ~0xff) != ~0xff))
20308 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20309 _("branch out of range"));
20311 if (fixP
->fx_done
|| !seg
->use_rela_p
)
20313 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
20314 newval
|= (value
& 0x1ff) >> 1;
20315 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
20319 case BFD_RELOC_THUMB_PCREL_BRANCH12
: /* Unconditional branch. */
20320 if ((value
& ~0x7ff) && ((value
& ~0x7ff) != ~0x7ff))
20321 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20322 _("branch out of range"));
20324 if (fixP
->fx_done
|| !seg
->use_rela_p
)
20326 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
20327 newval
|= (value
& 0xfff) >> 1;
20328 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
20332 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
20334 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
20335 && !S_IS_EXTERNAL (fixP
->fx_addsy
)
20336 && S_IS_DEFINED (fixP
->fx_addsy
)
20337 && ARM_IS_FUNC (fixP
->fx_addsy
)
20338 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
20340 /* Force a relocation for a branch 20 bits wide. */
20343 if ((value
& ~0x1fffff) && ((value
& ~0x1fffff) != ~0x1fffff))
20344 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20345 _("conditional branch out of range"));
20347 if (fixP
->fx_done
|| !seg
->use_rela_p
)
20350 addressT S
, J1
, J2
, lo
, hi
;
20352 S
= (value
& 0x00100000) >> 20;
20353 J2
= (value
& 0x00080000) >> 19;
20354 J1
= (value
& 0x00040000) >> 18;
20355 hi
= (value
& 0x0003f000) >> 12;
20356 lo
= (value
& 0x00000ffe) >> 1;
20358 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
20359 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
20360 newval
|= (S
<< 10) | hi
;
20361 newval2
|= (J1
<< 13) | (J2
<< 11) | lo
;
20362 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
20363 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
20367 case BFD_RELOC_THUMB_PCREL_BLX
:
20369 /* If there is a blx from a thumb state function to
20370 another thumb function flip this to a bl and warn
20374 && S_IS_DEFINED (fixP
->fx_addsy
)
20375 && !S_IS_EXTERNAL (fixP
->fx_addsy
)
20376 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
20377 && THUMB_IS_FUNC (fixP
->fx_addsy
))
20379 const char *name
= S_GET_NAME (fixP
->fx_addsy
);
20380 as_warn_where (fixP
->fx_file
, fixP
->fx_line
,
20381 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
20383 newval
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
20384 newval
= newval
| 0x1000;
20385 md_number_to_chars (buf
+THUMB_SIZE
, newval
, THUMB_SIZE
);
20386 fixP
->fx_r_type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
20391 goto thumb_bl_common
;
20393 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
20395 /* A bl from Thumb state ISA to an internal ARM state function
20396 is converted to a blx. */
20398 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
20399 && !S_IS_EXTERNAL (fixP
->fx_addsy
)
20400 && S_IS_DEFINED (fixP
->fx_addsy
)
20401 && ARM_IS_FUNC (fixP
->fx_addsy
)
20402 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
20404 newval
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
20405 newval
= newval
& ~0x1000;
20406 md_number_to_chars (buf
+THUMB_SIZE
, newval
, THUMB_SIZE
);
20407 fixP
->fx_r_type
= BFD_RELOC_THUMB_PCREL_BLX
;
20414 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
&&
20415 fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BLX
)
20416 fixP
->fx_r_type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
20419 if (fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BLX
)
20420 /* For a BLX instruction, make sure that the relocation is rounded up
20421 to a word boundary. This follows the semantics of the instruction
20422 which specifies that bit 1 of the target address will come from bit
20423 1 of the base address. */
20424 value
= (value
+ 1) & ~ 1;
20427 if ((value
& ~0x3fffff) && ((value
& ~0x3fffff) != ~0x3fffff))
20429 if (!(ARM_CPU_HAS_FEATURE (cpu_variant
, arm_arch_t2
)))
20431 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20432 _("branch out of range"));
20434 else if ((value
& ~0x1ffffff)
20435 && ((value
& ~0x1ffffff) != ~0x1ffffff))
20437 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20438 _("Thumb2 branch out of range"));
20442 if (fixP
->fx_done
|| !seg
->use_rela_p
)
20443 encode_thumb2_b_bl_offset (buf
, value
);
20447 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
20448 if ((value
& ~0x1ffffff) && ((value
& ~0x1ffffff) != ~0x1ffffff))
20449 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20450 _("branch out of range"));
20452 if (fixP
->fx_done
|| !seg
->use_rela_p
)
20453 encode_thumb2_b_bl_offset (buf
, value
);
20458 if (fixP
->fx_done
|| !seg
->use_rela_p
)
20459 md_number_to_chars (buf
, value
, 1);
20463 if (fixP
->fx_done
|| !seg
->use_rela_p
)
20464 md_number_to_chars (buf
, value
, 2);
20468 case BFD_RELOC_ARM_TLS_GD32
:
20469 case BFD_RELOC_ARM_TLS_LE32
:
20470 case BFD_RELOC_ARM_TLS_IE32
:
20471 case BFD_RELOC_ARM_TLS_LDM32
:
20472 case BFD_RELOC_ARM_TLS_LDO32
:
20473 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
20476 case BFD_RELOC_ARM_GOT32
:
20477 case BFD_RELOC_ARM_GOTOFF
:
20478 if (fixP
->fx_done
|| !seg
->use_rela_p
)
20479 md_number_to_chars (buf
, 0, 4);
20482 case BFD_RELOC_ARM_GOT_PREL
:
20483 if (fixP
->fx_done
|| !seg
->use_rela_p
)
20484 md_number_to_chars (buf
, value
, 4);
20487 case BFD_RELOC_ARM_TARGET2
:
20488 /* TARGET2 is not partial-inplace, so we need to write the
20489 addend here for REL targets, because it won't be written out
20490 during reloc processing later. */
20491 if (fixP
->fx_done
|| !seg
->use_rela_p
)
20492 md_number_to_chars (buf
, fixP
->fx_offset
, 4);
20496 case BFD_RELOC_RVA
:
20498 case BFD_RELOC_ARM_TARGET1
:
20499 case BFD_RELOC_ARM_ROSEGREL32
:
20500 case BFD_RELOC_ARM_SBREL32
:
20501 case BFD_RELOC_32_PCREL
:
20503 case BFD_RELOC_32_SECREL
:
20505 if (fixP
->fx_done
|| !seg
->use_rela_p
)
20507 /* For WinCE we only do this for pcrel fixups. */
20508 if (fixP
->fx_done
|| fixP
->fx_pcrel
)
20510 md_number_to_chars (buf
, value
, 4);
20514 case BFD_RELOC_ARM_PREL31
:
20515 if (fixP
->fx_done
|| !seg
->use_rela_p
)
20517 newval
= md_chars_to_number (buf
, 4) & 0x80000000;
20518 if ((value
^ (value
>> 1)) & 0x40000000)
20520 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20521 _("rel31 relocation overflow"));
20523 newval
|= value
& 0x7fffffff;
20524 md_number_to_chars (buf
, newval
, 4);
20529 case BFD_RELOC_ARM_CP_OFF_IMM
:
20530 case BFD_RELOC_ARM_T32_CP_OFF_IMM
:
20531 if (value
< -1023 || value
> 1023 || (value
& 3))
20532 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20533 _("co-processor offset out of range"));
20538 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
20539 || fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
)
20540 newval
= md_chars_to_number (buf
, INSN_SIZE
);
20542 newval
= get_thumb32_insn (buf
);
20543 newval
&= 0xff7fff00;
20544 newval
|= (value
>> 2) | (sign
? INDEX_UP
: 0);
20545 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
20546 || fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
)
20547 md_number_to_chars (buf
, newval
, INSN_SIZE
);
20549 put_thumb32_insn (buf
, newval
);
20552 case BFD_RELOC_ARM_CP_OFF_IMM_S2
:
20553 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
:
20554 if (value
< -255 || value
> 255)
20555 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20556 _("co-processor offset out of range"));
20558 goto cp_off_common
;
20560 case BFD_RELOC_ARM_THUMB_OFFSET
:
20561 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
20562 /* Exactly what ranges, and where the offset is inserted depends
20563 on the type of instruction, we can establish this from the
20565 switch (newval
>> 12)
20567 case 4: /* PC load. */
20568 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
20569 forced to zero for these loads; md_pcrel_from has already
20570 compensated for this. */
20572 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20573 _("invalid offset, target not word aligned (0x%08lX)"),
20574 (((unsigned long) fixP
->fx_frag
->fr_address
20575 + (unsigned long) fixP
->fx_where
) & ~3)
20576 + (unsigned long) value
);
20578 if (value
& ~0x3fc)
20579 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20580 _("invalid offset, value too big (0x%08lX)"),
20583 newval
|= value
>> 2;
20586 case 9: /* SP load/store. */
20587 if (value
& ~0x3fc)
20588 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20589 _("invalid offset, value too big (0x%08lX)"),
20591 newval
|= value
>> 2;
20594 case 6: /* Word load/store. */
20596 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20597 _("invalid offset, value too big (0x%08lX)"),
20599 newval
|= value
<< 4; /* 6 - 2. */
20602 case 7: /* Byte load/store. */
20604 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20605 _("invalid offset, value too big (0x%08lX)"),
20607 newval
|= value
<< 6;
20610 case 8: /* Halfword load/store. */
20612 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20613 _("invalid offset, value too big (0x%08lX)"),
20615 newval
|= value
<< 5; /* 6 - 1. */
20619 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20620 "Unable to process relocation for thumb opcode: %lx",
20621 (unsigned long) newval
);
20624 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
20627 case BFD_RELOC_ARM_THUMB_ADD
:
20628 /* This is a complicated relocation, since we use it for all of
20629 the following immediate relocations:
20633 9bit ADD/SUB SP word-aligned
20634 10bit ADD PC/SP word-aligned
20636 The type of instruction being processed is encoded in the
20643 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
20645 int rd
= (newval
>> 4) & 0xf;
20646 int rs
= newval
& 0xf;
20647 int subtract
= !!(newval
& 0x8000);
20649 /* Check for HI regs, only very restricted cases allowed:
20650 Adjusting SP, and using PC or SP to get an address. */
20651 if ((rd
> 7 && (rd
!= REG_SP
|| rs
!= REG_SP
))
20652 || (rs
> 7 && rs
!= REG_SP
&& rs
!= REG_PC
))
20653 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20654 _("invalid Hi register with immediate"));
20656 /* If value is negative, choose the opposite instruction. */
20660 subtract
= !subtract
;
20662 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20663 _("immediate value out of range"));
20668 if (value
& ~0x1fc)
20669 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20670 _("invalid immediate for stack address calculation"));
20671 newval
= subtract
? T_OPCODE_SUB_ST
: T_OPCODE_ADD_ST
;
20672 newval
|= value
>> 2;
20674 else if (rs
== REG_PC
|| rs
== REG_SP
)
20676 if (subtract
|| value
& ~0x3fc)
20677 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20678 _("invalid immediate for address calculation (value = 0x%08lX)"),
20679 (unsigned long) value
);
20680 newval
= (rs
== REG_PC
? T_OPCODE_ADD_PC
: T_OPCODE_ADD_SP
);
20682 newval
|= value
>> 2;
20687 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20688 _("immediate value out of range"));
20689 newval
= subtract
? T_OPCODE_SUB_I8
: T_OPCODE_ADD_I8
;
20690 newval
|= (rd
<< 8) | value
;
20695 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20696 _("immediate value out of range"));
20697 newval
= subtract
? T_OPCODE_SUB_I3
: T_OPCODE_ADD_I3
;
20698 newval
|= rd
| (rs
<< 3) | (value
<< 6);
20701 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
20704 case BFD_RELOC_ARM_THUMB_IMM
:
20705 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
20706 if (value
< 0 || value
> 255)
20707 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20708 _("invalid immediate: %ld is out of range"),
20711 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
20714 case BFD_RELOC_ARM_THUMB_SHIFT
:
20715 /* 5bit shift value (0..32). LSL cannot take 32. */
20716 newval
= md_chars_to_number (buf
, THUMB_SIZE
) & 0xf83f;
20717 temp
= newval
& 0xf800;
20718 if (value
< 0 || value
> 32 || (value
== 32 && temp
== T_OPCODE_LSL_I
))
20719 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20720 _("invalid shift value: %ld"), (long) value
);
20721 /* Shifts of zero must be encoded as LSL. */
20723 newval
= (newval
& 0x003f) | T_OPCODE_LSL_I
;
20724 /* Shifts of 32 are encoded as zero. */
20725 else if (value
== 32)
20727 newval
|= value
<< 6;
20728 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
20731 case BFD_RELOC_VTABLE_INHERIT
:
20732 case BFD_RELOC_VTABLE_ENTRY
:
20736 case BFD_RELOC_ARM_MOVW
:
20737 case BFD_RELOC_ARM_MOVT
:
20738 case BFD_RELOC_ARM_THUMB_MOVW
:
20739 case BFD_RELOC_ARM_THUMB_MOVT
:
20740 if (fixP
->fx_done
|| !seg
->use_rela_p
)
20742 /* REL format relocations are limited to a 16-bit addend. */
20743 if (!fixP
->fx_done
)
20745 if (value
< -0x8000 || value
> 0x7fff)
20746 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20747 _("offset out of range"));
20749 else if (fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT
20750 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
)
20755 if (fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW
20756 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
)
20758 newval
= get_thumb32_insn (buf
);
20759 newval
&= 0xfbf08f00;
20760 newval
|= (value
& 0xf000) << 4;
20761 newval
|= (value
& 0x0800) << 15;
20762 newval
|= (value
& 0x0700) << 4;
20763 newval
|= (value
& 0x00ff);
20764 put_thumb32_insn (buf
, newval
);
20768 newval
= md_chars_to_number (buf
, 4);
20769 newval
&= 0xfff0f000;
20770 newval
|= value
& 0x0fff;
20771 newval
|= (value
& 0xf000) << 4;
20772 md_number_to_chars (buf
, newval
, 4);
20777 case BFD_RELOC_ARM_ALU_PC_G0_NC
:
20778 case BFD_RELOC_ARM_ALU_PC_G0
:
20779 case BFD_RELOC_ARM_ALU_PC_G1_NC
:
20780 case BFD_RELOC_ARM_ALU_PC_G1
:
20781 case BFD_RELOC_ARM_ALU_PC_G2
:
20782 case BFD_RELOC_ARM_ALU_SB_G0_NC
:
20783 case BFD_RELOC_ARM_ALU_SB_G0
:
20784 case BFD_RELOC_ARM_ALU_SB_G1_NC
:
20785 case BFD_RELOC_ARM_ALU_SB_G1
:
20786 case BFD_RELOC_ARM_ALU_SB_G2
:
20787 gas_assert (!fixP
->fx_done
);
20788 if (!seg
->use_rela_p
)
20791 bfd_vma encoded_addend
;
20792 bfd_vma addend_abs
= abs (value
);
20794 /* Check that the absolute value of the addend can be
20795 expressed as an 8-bit constant plus a rotation. */
20796 encoded_addend
= encode_arm_immediate (addend_abs
);
20797 if (encoded_addend
== (unsigned int) FAIL
)
20798 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20799 _("the offset 0x%08lX is not representable"),
20800 (unsigned long) addend_abs
);
20802 /* Extract the instruction. */
20803 insn
= md_chars_to_number (buf
, INSN_SIZE
);
20805 /* If the addend is positive, use an ADD instruction.
20806 Otherwise use a SUB. Take care not to destroy the S bit. */
20807 insn
&= 0xff1fffff;
20813 /* Place the encoded addend into the first 12 bits of the
20815 insn
&= 0xfffff000;
20816 insn
|= encoded_addend
;
20818 /* Update the instruction. */
20819 md_number_to_chars (buf
, insn
, INSN_SIZE
);
20823 case BFD_RELOC_ARM_LDR_PC_G0
:
20824 case BFD_RELOC_ARM_LDR_PC_G1
:
20825 case BFD_RELOC_ARM_LDR_PC_G2
:
20826 case BFD_RELOC_ARM_LDR_SB_G0
:
20827 case BFD_RELOC_ARM_LDR_SB_G1
:
20828 case BFD_RELOC_ARM_LDR_SB_G2
:
20829 gas_assert (!fixP
->fx_done
);
20830 if (!seg
->use_rela_p
)
20833 bfd_vma addend_abs
= abs (value
);
20835 /* Check that the absolute value of the addend can be
20836 encoded in 12 bits. */
20837 if (addend_abs
>= 0x1000)
20838 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20839 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
20840 (unsigned long) addend_abs
);
20842 /* Extract the instruction. */
20843 insn
= md_chars_to_number (buf
, INSN_SIZE
);
20845 /* If the addend is negative, clear bit 23 of the instruction.
20846 Otherwise set it. */
20848 insn
&= ~(1 << 23);
20852 /* Place the absolute value of the addend into the first 12 bits
20853 of the instruction. */
20854 insn
&= 0xfffff000;
20855 insn
|= addend_abs
;
20857 /* Update the instruction. */
20858 md_number_to_chars (buf
, insn
, INSN_SIZE
);
20862 case BFD_RELOC_ARM_LDRS_PC_G0
:
20863 case BFD_RELOC_ARM_LDRS_PC_G1
:
20864 case BFD_RELOC_ARM_LDRS_PC_G2
:
20865 case BFD_RELOC_ARM_LDRS_SB_G0
:
20866 case BFD_RELOC_ARM_LDRS_SB_G1
:
20867 case BFD_RELOC_ARM_LDRS_SB_G2
:
20868 gas_assert (!fixP
->fx_done
);
20869 if (!seg
->use_rela_p
)
20872 bfd_vma addend_abs
= abs (value
);
20874 /* Check that the absolute value of the addend can be
20875 encoded in 8 bits. */
20876 if (addend_abs
>= 0x100)
20877 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20878 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
20879 (unsigned long) addend_abs
);
20881 /* Extract the instruction. */
20882 insn
= md_chars_to_number (buf
, INSN_SIZE
);
20884 /* If the addend is negative, clear bit 23 of the instruction.
20885 Otherwise set it. */
20887 insn
&= ~(1 << 23);
20891 /* Place the first four bits of the absolute value of the addend
20892 into the first 4 bits of the instruction, and the remaining
20893 four into bits 8 .. 11. */
20894 insn
&= 0xfffff0f0;
20895 insn
|= (addend_abs
& 0xf) | ((addend_abs
& 0xf0) << 4);
20897 /* Update the instruction. */
20898 md_number_to_chars (buf
, insn
, INSN_SIZE
);
20902 case BFD_RELOC_ARM_LDC_PC_G0
:
20903 case BFD_RELOC_ARM_LDC_PC_G1
:
20904 case BFD_RELOC_ARM_LDC_PC_G2
:
20905 case BFD_RELOC_ARM_LDC_SB_G0
:
20906 case BFD_RELOC_ARM_LDC_SB_G1
:
20907 case BFD_RELOC_ARM_LDC_SB_G2
:
20908 gas_assert (!fixP
->fx_done
);
20909 if (!seg
->use_rela_p
)
20912 bfd_vma addend_abs
= abs (value
);
20914 /* Check that the absolute value of the addend is a multiple of
20915 four and, when divided by four, fits in 8 bits. */
20916 if (addend_abs
& 0x3)
20917 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20918 _("bad offset 0x%08lX (must be word-aligned)"),
20919 (unsigned long) addend_abs
);
20921 if ((addend_abs
>> 2) > 0xff)
20922 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20923 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
20924 (unsigned long) addend_abs
);
20926 /* Extract the instruction. */
20927 insn
= md_chars_to_number (buf
, INSN_SIZE
);
20929 /* If the addend is negative, clear bit 23 of the instruction.
20930 Otherwise set it. */
20932 insn
&= ~(1 << 23);
20936 /* Place the addend (divided by four) into the first eight
20937 bits of the instruction. */
20938 insn
&= 0xfffffff0;
20939 insn
|= addend_abs
>> 2;
20941 /* Update the instruction. */
20942 md_number_to_chars (buf
, insn
, INSN_SIZE
);
20946 case BFD_RELOC_ARM_V4BX
:
20947 /* This will need to go in the object file. */
20951 case BFD_RELOC_UNUSED
:
20953 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20954 _("bad relocation fixup type (%d)"), fixP
->fx_r_type
);
20958 /* Translate internal representation of relocation info to BFD target
20962 tc_gen_reloc (asection
*section
, fixS
*fixp
)
20965 bfd_reloc_code_real_type code
;
20967 reloc
= (arelent
*) xmalloc (sizeof (arelent
));
20969 reloc
->sym_ptr_ptr
= (asymbol
**) xmalloc (sizeof (asymbol
*));
20970 *reloc
->sym_ptr_ptr
= symbol_get_bfdsym (fixp
->fx_addsy
);
20971 reloc
->address
= fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
20973 if (fixp
->fx_pcrel
)
20975 if (section
->use_rela_p
)
20976 fixp
->fx_offset
-= md_pcrel_from_section (fixp
, section
);
20978 fixp
->fx_offset
= reloc
->address
;
20980 reloc
->addend
= fixp
->fx_offset
;
20982 switch (fixp
->fx_r_type
)
20985 if (fixp
->fx_pcrel
)
20987 code
= BFD_RELOC_8_PCREL
;
20992 if (fixp
->fx_pcrel
)
20994 code
= BFD_RELOC_16_PCREL
;
20999 if (fixp
->fx_pcrel
)
21001 code
= BFD_RELOC_32_PCREL
;
21005 case BFD_RELOC_ARM_MOVW
:
21006 if (fixp
->fx_pcrel
)
21008 code
= BFD_RELOC_ARM_MOVW_PCREL
;
21012 case BFD_RELOC_ARM_MOVT
:
21013 if (fixp
->fx_pcrel
)
21015 code
= BFD_RELOC_ARM_MOVT_PCREL
;
21019 case BFD_RELOC_ARM_THUMB_MOVW
:
21020 if (fixp
->fx_pcrel
)
21022 code
= BFD_RELOC_ARM_THUMB_MOVW_PCREL
;
21026 case BFD_RELOC_ARM_THUMB_MOVT
:
21027 if (fixp
->fx_pcrel
)
21029 code
= BFD_RELOC_ARM_THUMB_MOVT_PCREL
;
21033 case BFD_RELOC_NONE
:
21034 case BFD_RELOC_ARM_PCREL_BRANCH
:
21035 case BFD_RELOC_ARM_PCREL_BLX
:
21036 case BFD_RELOC_RVA
:
21037 case BFD_RELOC_THUMB_PCREL_BRANCH7
:
21038 case BFD_RELOC_THUMB_PCREL_BRANCH9
:
21039 case BFD_RELOC_THUMB_PCREL_BRANCH12
:
21040 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
21041 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
21042 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
21043 case BFD_RELOC_VTABLE_ENTRY
:
21044 case BFD_RELOC_VTABLE_INHERIT
:
21046 case BFD_RELOC_32_SECREL
:
21048 code
= fixp
->fx_r_type
;
21051 case BFD_RELOC_THUMB_PCREL_BLX
:
21053 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
21054 code
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
21057 code
= BFD_RELOC_THUMB_PCREL_BLX
;
21060 case BFD_RELOC_ARM_LITERAL
:
21061 case BFD_RELOC_ARM_HWLITERAL
:
21062 /* If this is called then the a literal has
21063 been referenced across a section boundary. */
21064 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
21065 _("literal referenced across section boundary"));
21069 case BFD_RELOC_ARM_GOT32
:
21070 case BFD_RELOC_ARM_GOTOFF
:
21071 case BFD_RELOC_ARM_GOT_PREL
:
21072 case BFD_RELOC_ARM_PLT32
:
21073 case BFD_RELOC_ARM_TARGET1
:
21074 case BFD_RELOC_ARM_ROSEGREL32
:
21075 case BFD_RELOC_ARM_SBREL32
:
21076 case BFD_RELOC_ARM_PREL31
:
21077 case BFD_RELOC_ARM_TARGET2
:
21078 case BFD_RELOC_ARM_TLS_LE32
:
21079 case BFD_RELOC_ARM_TLS_LDO32
:
21080 case BFD_RELOC_ARM_PCREL_CALL
:
21081 case BFD_RELOC_ARM_PCREL_JUMP
:
21082 case BFD_RELOC_ARM_ALU_PC_G0_NC
:
21083 case BFD_RELOC_ARM_ALU_PC_G0
:
21084 case BFD_RELOC_ARM_ALU_PC_G1_NC
:
21085 case BFD_RELOC_ARM_ALU_PC_G1
:
21086 case BFD_RELOC_ARM_ALU_PC_G2
:
21087 case BFD_RELOC_ARM_LDR_PC_G0
:
21088 case BFD_RELOC_ARM_LDR_PC_G1
:
21089 case BFD_RELOC_ARM_LDR_PC_G2
:
21090 case BFD_RELOC_ARM_LDRS_PC_G0
:
21091 case BFD_RELOC_ARM_LDRS_PC_G1
:
21092 case BFD_RELOC_ARM_LDRS_PC_G2
:
21093 case BFD_RELOC_ARM_LDC_PC_G0
:
21094 case BFD_RELOC_ARM_LDC_PC_G1
:
21095 case BFD_RELOC_ARM_LDC_PC_G2
:
21096 case BFD_RELOC_ARM_ALU_SB_G0_NC
:
21097 case BFD_RELOC_ARM_ALU_SB_G0
:
21098 case BFD_RELOC_ARM_ALU_SB_G1_NC
:
21099 case BFD_RELOC_ARM_ALU_SB_G1
:
21100 case BFD_RELOC_ARM_ALU_SB_G2
:
21101 case BFD_RELOC_ARM_LDR_SB_G0
:
21102 case BFD_RELOC_ARM_LDR_SB_G1
:
21103 case BFD_RELOC_ARM_LDR_SB_G2
:
21104 case BFD_RELOC_ARM_LDRS_SB_G0
:
21105 case BFD_RELOC_ARM_LDRS_SB_G1
:
21106 case BFD_RELOC_ARM_LDRS_SB_G2
:
21107 case BFD_RELOC_ARM_LDC_SB_G0
:
21108 case BFD_RELOC_ARM_LDC_SB_G1
:
21109 case BFD_RELOC_ARM_LDC_SB_G2
:
21110 case BFD_RELOC_ARM_V4BX
:
21111 code
= fixp
->fx_r_type
;
21114 case BFD_RELOC_ARM_TLS_GD32
:
21115 case BFD_RELOC_ARM_TLS_IE32
:
21116 case BFD_RELOC_ARM_TLS_LDM32
:
21117 /* BFD will include the symbol's address in the addend.
21118 But we don't want that, so subtract it out again here. */
21119 if (!S_IS_COMMON (fixp
->fx_addsy
))
21120 reloc
->addend
-= (*reloc
->sym_ptr_ptr
)->value
;
21121 code
= fixp
->fx_r_type
;
21125 case BFD_RELOC_ARM_IMMEDIATE
:
21126 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
21127 _("internal relocation (type: IMMEDIATE) not fixed up"));
21130 case BFD_RELOC_ARM_ADRL_IMMEDIATE
:
21131 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
21132 _("ADRL used for a symbol not defined in the same file"));
21135 case BFD_RELOC_ARM_OFFSET_IMM
:
21136 if (section
->use_rela_p
)
21138 code
= fixp
->fx_r_type
;
21142 if (fixp
->fx_addsy
!= NULL
21143 && !S_IS_DEFINED (fixp
->fx_addsy
)
21144 && S_IS_LOCAL (fixp
->fx_addsy
))
21146 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
21147 _("undefined local label `%s'"),
21148 S_GET_NAME (fixp
->fx_addsy
));
21152 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
21153 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21160 switch (fixp
->fx_r_type
)
21162 case BFD_RELOC_NONE
: type
= "NONE"; break;
21163 case BFD_RELOC_ARM_OFFSET_IMM8
: type
= "OFFSET_IMM8"; break;
21164 case BFD_RELOC_ARM_SHIFT_IMM
: type
= "SHIFT_IMM"; break;
21165 case BFD_RELOC_ARM_SMC
: type
= "SMC"; break;
21166 case BFD_RELOC_ARM_SWI
: type
= "SWI"; break;
21167 case BFD_RELOC_ARM_MULTI
: type
= "MULTI"; break;
21168 case BFD_RELOC_ARM_CP_OFF_IMM
: type
= "CP_OFF_IMM"; break;
21169 case BFD_RELOC_ARM_T32_CP_OFF_IMM
: type
= "T32_CP_OFF_IMM"; break;
21170 case BFD_RELOC_ARM_THUMB_ADD
: type
= "THUMB_ADD"; break;
21171 case BFD_RELOC_ARM_THUMB_SHIFT
: type
= "THUMB_SHIFT"; break;
21172 case BFD_RELOC_ARM_THUMB_IMM
: type
= "THUMB_IMM"; break;
21173 case BFD_RELOC_ARM_THUMB_OFFSET
: type
= "THUMB_OFFSET"; break;
21174 default: type
= _("<unknown>"); break;
21176 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
21177 _("cannot represent %s relocation in this object file format"),
21184 if ((code
== BFD_RELOC_32_PCREL
|| code
== BFD_RELOC_32
)
21186 && fixp
->fx_addsy
== GOT_symbol
)
21188 code
= BFD_RELOC_ARM_GOTPC
;
21189 reloc
->addend
= fixp
->fx_offset
= reloc
->address
;
21193 reloc
->howto
= bfd_reloc_type_lookup (stdoutput
, code
);
21195 if (reloc
->howto
== NULL
)
21197 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
21198 _("cannot represent %s relocation in this object file format"),
21199 bfd_get_reloc_code_name (code
));
21203 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21204 vtable entry to be used in the relocation's section offset. */
21205 if (fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
21206 reloc
->address
= fixp
->fx_offset
;
21211 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
21214 cons_fix_new_arm (fragS
* frag
,
21219 bfd_reloc_code_real_type type
;
21223 FIXME: @@ Should look at CPU word size. */
21227 type
= BFD_RELOC_8
;
21230 type
= BFD_RELOC_16
;
21234 type
= BFD_RELOC_32
;
21237 type
= BFD_RELOC_64
;
21242 if (exp
->X_op
== O_secrel
)
21244 exp
->X_op
= O_symbol
;
21245 type
= BFD_RELOC_32_SECREL
;
21249 fix_new_exp (frag
, where
, (int) size
, exp
, pcrel
, type
);
21252 #if defined (OBJ_COFF)
21254 arm_validate_fix (fixS
* fixP
)
21256 /* If the destination of the branch is a defined symbol which does not have
21257 the THUMB_FUNC attribute, then we must be calling a function which has
21258 the (interfacearm) attribute. We look for the Thumb entry point to that
21259 function and change the branch to refer to that function instead. */
21260 if (fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BRANCH23
21261 && fixP
->fx_addsy
!= NULL
21262 && S_IS_DEFINED (fixP
->fx_addsy
)
21263 && ! THUMB_IS_FUNC (fixP
->fx_addsy
))
21265 fixP
->fx_addsy
= find_real_start (fixP
->fx_addsy
);
21272 arm_force_relocation (struct fix
* fixp
)
21274 #if defined (OBJ_COFF) && defined (TE_PE)
21275 if (fixp
->fx_r_type
== BFD_RELOC_RVA
)
21279 /* In case we have a call or a branch to a function in ARM ISA mode from
21280 a thumb function or vice-versa force the relocation. These relocations
21281 are cleared off for some cores that might have blx and simple transformations
21285 switch (fixp
->fx_r_type
)
21287 case BFD_RELOC_ARM_PCREL_JUMP
:
21288 case BFD_RELOC_ARM_PCREL_CALL
:
21289 case BFD_RELOC_THUMB_PCREL_BLX
:
21290 if (THUMB_IS_FUNC (fixp
->fx_addsy
))
21294 case BFD_RELOC_ARM_PCREL_BLX
:
21295 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
21296 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
21297 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
21298 if (ARM_IS_FUNC (fixp
->fx_addsy
))
21307 /* Resolve these relocations even if the symbol is extern or weak. */
21308 if (fixp
->fx_r_type
== BFD_RELOC_ARM_IMMEDIATE
21309 || fixp
->fx_r_type
== BFD_RELOC_ARM_OFFSET_IMM
21310 || fixp
->fx_r_type
== BFD_RELOC_ARM_ADRL_IMMEDIATE
21311 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
21312 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_IMMEDIATE
21313 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_IMM12
21314 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_PC12
)
21317 /* Always leave these relocations for the linker. */
21318 if ((fixp
->fx_r_type
>= BFD_RELOC_ARM_ALU_PC_G0_NC
21319 && fixp
->fx_r_type
<= BFD_RELOC_ARM_LDC_SB_G2
)
21320 || fixp
->fx_r_type
== BFD_RELOC_ARM_LDR_PC_G0
)
21323 /* Always generate relocations against function symbols. */
21324 if (fixp
->fx_r_type
== BFD_RELOC_32
21326 && (symbol_get_bfdsym (fixp
->fx_addsy
)->flags
& BSF_FUNCTION
))
21329 return generic_force_reloc (fixp
);
21332 #if defined (OBJ_ELF) || defined (OBJ_COFF)
21333 /* Relocations against function names must be left unadjusted,
21334 so that the linker can use this information to generate interworking
21335 stubs. The MIPS version of this function
21336 also prevents relocations that are mips-16 specific, but I do not
21337 know why it does this.
21340 There is one other problem that ought to be addressed here, but
21341 which currently is not: Taking the address of a label (rather
21342 than a function) and then later jumping to that address. Such
21343 addresses also ought to have their bottom bit set (assuming that
21344 they reside in Thumb code), but at the moment they will not. */
21347 arm_fix_adjustable (fixS
* fixP
)
21349 if (fixP
->fx_addsy
== NULL
)
21352 /* Preserve relocations against symbols with function type. */
21353 if (symbol_get_bfdsym (fixP
->fx_addsy
)->flags
& BSF_FUNCTION
)
21356 if (THUMB_IS_FUNC (fixP
->fx_addsy
)
21357 && fixP
->fx_subsy
== NULL
)
21360 /* We need the symbol name for the VTABLE entries. */
21361 if ( fixP
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
21362 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
21365 /* Don't allow symbols to be discarded on GOT related relocs. */
21366 if (fixP
->fx_r_type
== BFD_RELOC_ARM_PLT32
21367 || fixP
->fx_r_type
== BFD_RELOC_ARM_GOT32
21368 || fixP
->fx_r_type
== BFD_RELOC_ARM_GOTOFF
21369 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_GD32
21370 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LE32
21371 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_IE32
21372 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDM32
21373 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDO32
21374 || fixP
->fx_r_type
== BFD_RELOC_ARM_TARGET2
)
21377 /* Similarly for group relocations. */
21378 if ((fixP
->fx_r_type
>= BFD_RELOC_ARM_ALU_PC_G0_NC
21379 && fixP
->fx_r_type
<= BFD_RELOC_ARM_LDC_SB_G2
)
21380 || fixP
->fx_r_type
== BFD_RELOC_ARM_LDR_PC_G0
)
21383 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
21384 if (fixP
->fx_r_type
== BFD_RELOC_ARM_MOVW
21385 || fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT
21386 || fixP
->fx_r_type
== BFD_RELOC_ARM_MOVW_PCREL
21387 || fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT_PCREL
21388 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW
21389 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
21390 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW_PCREL
21391 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT_PCREL
)
21396 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
21401 elf32_arm_target_format (void)
21404 return (target_big_endian
21405 ? "elf32-bigarm-symbian"
21406 : "elf32-littlearm-symbian");
21407 #elif defined (TE_VXWORKS)
21408 return (target_big_endian
21409 ? "elf32-bigarm-vxworks"
21410 : "elf32-littlearm-vxworks");
21412 if (target_big_endian
)
21413 return "elf32-bigarm";
21415 return "elf32-littlearm";
21420 armelf_frob_symbol (symbolS
* symp
,
21423 elf_frob_symbol (symp
, puntp
);
21427 /* MD interface: Finalization. */
21432 literal_pool
* pool
;
21434 /* Ensure that all the IT blocks are properly closed. */
21435 check_it_blocks_finished ();
21437 for (pool
= list_of_pools
; pool
; pool
= pool
->next
)
21439 /* Put it at the end of the relevant section. */
21440 subseg_set (pool
->section
, pool
->sub_section
);
21442 arm_elf_change_section ();
21449 /* Remove any excess mapping symbols generated for alignment frags in
21450 SEC. We may have created a mapping symbol before a zero byte
21451 alignment; remove it if there's a mapping symbol after the
21454 check_mapping_symbols (bfd
*abfd ATTRIBUTE_UNUSED
, asection
*sec
,
21455 void *dummy ATTRIBUTE_UNUSED
)
21457 segment_info_type
*seginfo
= seg_info (sec
);
21460 if (seginfo
== NULL
|| seginfo
->frchainP
== NULL
)
21463 for (fragp
= seginfo
->frchainP
->frch_root
;
21465 fragp
= fragp
->fr_next
)
21467 symbolS
*sym
= fragp
->tc_frag_data
.last_map
;
21468 fragS
*next
= fragp
->fr_next
;
21470 /* Variable-sized frags have been converted to fixed size by
21471 this point. But if this was variable-sized to start with,
21472 there will be a fixed-size frag after it. So don't handle
21474 if (sym
== NULL
|| next
== NULL
)
21477 if (S_GET_VALUE (sym
) < next
->fr_address
)
21478 /* Not at the end of this frag. */
21480 know (S_GET_VALUE (sym
) == next
->fr_address
);
21484 if (next
->tc_frag_data
.first_map
!= NULL
)
21486 /* Next frag starts with a mapping symbol. Discard this
21488 symbol_remove (sym
, &symbol_rootP
, &symbol_lastP
);
21492 if (next
->fr_next
== NULL
)
21494 /* This mapping symbol is at the end of the section. Discard
21496 know (next
->fr_fix
== 0 && next
->fr_var
== 0);
21497 symbol_remove (sym
, &symbol_rootP
, &symbol_lastP
);
21501 /* As long as we have empty frags without any mapping symbols,
21503 /* If the next frag is non-empty and does not start with a
21504 mapping symbol, then this mapping symbol is required. */
21505 if (next
->fr_address
!= next
->fr_next
->fr_address
)
21508 next
= next
->fr_next
;
21510 while (next
!= NULL
);
21515 /* Adjust the symbol table. This marks Thumb symbols as distinct from
21519 arm_adjust_symtab (void)
21524 for (sym
= symbol_rootP
; sym
!= NULL
; sym
= symbol_next (sym
))
21526 if (ARM_IS_THUMB (sym
))
21528 if (THUMB_IS_FUNC (sym
))
21530 /* Mark the symbol as a Thumb function. */
21531 if ( S_GET_STORAGE_CLASS (sym
) == C_STAT
21532 || S_GET_STORAGE_CLASS (sym
) == C_LABEL
) /* This can happen! */
21533 S_SET_STORAGE_CLASS (sym
, C_THUMBSTATFUNC
);
21535 else if (S_GET_STORAGE_CLASS (sym
) == C_EXT
)
21536 S_SET_STORAGE_CLASS (sym
, C_THUMBEXTFUNC
);
21538 as_bad (_("%s: unexpected function type: %d"),
21539 S_GET_NAME (sym
), S_GET_STORAGE_CLASS (sym
));
21541 else switch (S_GET_STORAGE_CLASS (sym
))
21544 S_SET_STORAGE_CLASS (sym
, C_THUMBEXT
);
21547 S_SET_STORAGE_CLASS (sym
, C_THUMBSTAT
);
21550 S_SET_STORAGE_CLASS (sym
, C_THUMBLABEL
);
21558 if (ARM_IS_INTERWORK (sym
))
21559 coffsymbol (symbol_get_bfdsym (sym
))->native
->u
.syment
.n_flags
= 0xFF;
21566 for (sym
= symbol_rootP
; sym
!= NULL
; sym
= symbol_next (sym
))
21568 if (ARM_IS_THUMB (sym
))
21570 elf_symbol_type
* elf_sym
;
21572 elf_sym
= elf_symbol (symbol_get_bfdsym (sym
));
21573 bind
= ELF_ST_BIND (elf_sym
->internal_elf_sym
.st_info
);
21575 if (! bfd_is_arm_special_symbol_name (elf_sym
->symbol
.name
,
21576 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
21578 /* If it's a .thumb_func, declare it as so,
21579 otherwise tag label as .code 16. */
21580 if (THUMB_IS_FUNC (sym
))
21581 elf_sym
->internal_elf_sym
.st_info
=
21582 ELF_ST_INFO (bind
, STT_ARM_TFUNC
);
21583 else if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
21584 elf_sym
->internal_elf_sym
.st_info
=
21585 ELF_ST_INFO (bind
, STT_ARM_16BIT
);
21590 /* Remove any overlapping mapping symbols generated by alignment frags. */
21591 bfd_map_over_sections (stdoutput
, check_mapping_symbols
, (char *) 0);
21595 /* MD interface: Initialization. */
21598 set_constant_flonums (void)
21602 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
21603 if (atof_ieee ((char *) fp_const
[i
], 'x', fp_values
[i
]) == NULL
)
21607 /* Auto-select Thumb mode if it's the only available instruction set for the
21608 given architecture. */
21611 autoselect_thumb_from_cpu_variant (void)
21613 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
21614 opcode_select (16);
21623 if ( (arm_ops_hsh
= hash_new ()) == NULL
21624 || (arm_cond_hsh
= hash_new ()) == NULL
21625 || (arm_shift_hsh
= hash_new ()) == NULL
21626 || (arm_psr_hsh
= hash_new ()) == NULL
21627 || (arm_v7m_psr_hsh
= hash_new ()) == NULL
21628 || (arm_reg_hsh
= hash_new ()) == NULL
21629 || (arm_reloc_hsh
= hash_new ()) == NULL
21630 || (arm_barrier_opt_hsh
= hash_new ()) == NULL
)
21631 as_fatal (_("virtual memory exhausted"));
21633 for (i
= 0; i
< sizeof (insns
) / sizeof (struct asm_opcode
); i
++)
21634 hash_insert (arm_ops_hsh
, insns
[i
].template_name
, (void *) (insns
+ i
));
21635 for (i
= 0; i
< sizeof (conds
) / sizeof (struct asm_cond
); i
++)
21636 hash_insert (arm_cond_hsh
, conds
[i
].template_name
, (void *) (conds
+ i
));
21637 for (i
= 0; i
< sizeof (shift_names
) / sizeof (struct asm_shift_name
); i
++)
21638 hash_insert (arm_shift_hsh
, shift_names
[i
].name
, (void *) (shift_names
+ i
));
21639 for (i
= 0; i
< sizeof (psrs
) / sizeof (struct asm_psr
); i
++)
21640 hash_insert (arm_psr_hsh
, psrs
[i
].template_name
, (void *) (psrs
+ i
));
21641 for (i
= 0; i
< sizeof (v7m_psrs
) / sizeof (struct asm_psr
); i
++)
21642 hash_insert (arm_v7m_psr_hsh
, v7m_psrs
[i
].template_name
,
21643 (void *) (v7m_psrs
+ i
));
21644 for (i
= 0; i
< sizeof (reg_names
) / sizeof (struct reg_entry
); i
++)
21645 hash_insert (arm_reg_hsh
, reg_names
[i
].name
, (void *) (reg_names
+ i
));
21647 i
< sizeof (barrier_opt_names
) / sizeof (struct asm_barrier_opt
);
21649 hash_insert (arm_barrier_opt_hsh
, barrier_opt_names
[i
].template_name
,
21650 (void *) (barrier_opt_names
+ i
));
21652 for (i
= 0; i
< sizeof (reloc_names
) / sizeof (struct reloc_entry
); i
++)
21653 hash_insert (arm_reloc_hsh
, reloc_names
[i
].name
, (void *) (reloc_names
+ i
));
21656 set_constant_flonums ();
21658 /* Set the cpu variant based on the command-line options. We prefer
21659 -mcpu= over -march= if both are set (as for GCC); and we prefer
21660 -mfpu= over any other way of setting the floating point unit.
21661 Use of legacy options with new options are faulted. */
21664 if (mcpu_cpu_opt
|| march_cpu_opt
)
21665 as_bad (_("use of old and new-style options to set CPU type"));
21667 mcpu_cpu_opt
= legacy_cpu
;
21669 else if (!mcpu_cpu_opt
)
21670 mcpu_cpu_opt
= march_cpu_opt
;
21675 as_bad (_("use of old and new-style options to set FPU type"));
21677 mfpu_opt
= legacy_fpu
;
21679 else if (!mfpu_opt
)
21681 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
21682 || defined (TE_NetBSD) || defined (TE_VXWORKS))
21683 /* Some environments specify a default FPU. If they don't, infer it
21684 from the processor. */
21686 mfpu_opt
= mcpu_fpu_opt
;
21688 mfpu_opt
= march_fpu_opt
;
21690 mfpu_opt
= &fpu_default
;
21696 if (mcpu_cpu_opt
!= NULL
)
21697 mfpu_opt
= &fpu_default
;
21698 else if (mcpu_fpu_opt
!= NULL
&& ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt
, arm_ext_v5
))
21699 mfpu_opt
= &fpu_arch_vfp_v2
;
21701 mfpu_opt
= &fpu_arch_fpa
;
21707 mcpu_cpu_opt
= &cpu_default
;
21708 selected_cpu
= cpu_default
;
21712 selected_cpu
= *mcpu_cpu_opt
;
21714 mcpu_cpu_opt
= &arm_arch_any
;
21717 ARM_MERGE_FEATURE_SETS (cpu_variant
, *mcpu_cpu_opt
, *mfpu_opt
);
21719 autoselect_thumb_from_cpu_variant ();
21721 arm_arch_used
= thumb_arch_used
= arm_arch_none
;
21723 #if defined OBJ_COFF || defined OBJ_ELF
21725 unsigned int flags
= 0;
21727 #if defined OBJ_ELF
21728 flags
= meabi_flags
;
21730 switch (meabi_flags
)
21732 case EF_ARM_EABI_UNKNOWN
:
21734 /* Set the flags in the private structure. */
21735 if (uses_apcs_26
) flags
|= F_APCS26
;
21736 if (support_interwork
) flags
|= F_INTERWORK
;
21737 if (uses_apcs_float
) flags
|= F_APCS_FLOAT
;
21738 if (pic_code
) flags
|= F_PIC
;
21739 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_any_hard
))
21740 flags
|= F_SOFT_FLOAT
;
21742 switch (mfloat_abi_opt
)
21744 case ARM_FLOAT_ABI_SOFT
:
21745 case ARM_FLOAT_ABI_SOFTFP
:
21746 flags
|= F_SOFT_FLOAT
;
21749 case ARM_FLOAT_ABI_HARD
:
21750 if (flags
& F_SOFT_FLOAT
)
21751 as_bad (_("hard-float conflicts with specified fpu"));
21755 /* Using pure-endian doubles (even if soft-float). */
21756 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_endian_pure
))
21757 flags
|= F_VFP_FLOAT
;
21759 #if defined OBJ_ELF
21760 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_arch_maverick
))
21761 flags
|= EF_ARM_MAVERICK_FLOAT
;
21764 case EF_ARM_EABI_VER4
:
21765 case EF_ARM_EABI_VER5
:
21766 /* No additional flags to set. */
21773 bfd_set_private_flags (stdoutput
, flags
);
21775 /* We have run out flags in the COFF header to encode the
21776 status of ATPCS support, so instead we create a dummy,
21777 empty, debug section called .arm.atpcs. */
21782 sec
= bfd_make_section (stdoutput
, ".arm.atpcs");
21786 bfd_set_section_flags
21787 (stdoutput
, sec
, SEC_READONLY
| SEC_DEBUGGING
/* | SEC_HAS_CONTENTS */);
21788 bfd_set_section_size (stdoutput
, sec
, 0);
21789 bfd_set_section_contents (stdoutput
, sec
, NULL
, 0, 0);
21795 /* Record the CPU type as well. */
21796 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
))
21797 mach
= bfd_mach_arm_iWMMXt2
;
21798 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt
))
21799 mach
= bfd_mach_arm_iWMMXt
;
21800 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_xscale
))
21801 mach
= bfd_mach_arm_XScale
;
21802 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_maverick
))
21803 mach
= bfd_mach_arm_ep9312
;
21804 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v5e
))
21805 mach
= bfd_mach_arm_5TE
;
21806 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v5
))
21808 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
21809 mach
= bfd_mach_arm_5T
;
21811 mach
= bfd_mach_arm_5
;
21813 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4
))
21815 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
21816 mach
= bfd_mach_arm_4T
;
21818 mach
= bfd_mach_arm_4
;
21820 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v3m
))
21821 mach
= bfd_mach_arm_3M
;
21822 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v3
))
21823 mach
= bfd_mach_arm_3
;
21824 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v2s
))
21825 mach
= bfd_mach_arm_2a
;
21826 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v2
))
21827 mach
= bfd_mach_arm_2
;
21829 mach
= bfd_mach_arm_unknown
;
21831 bfd_set_arch_mach (stdoutput
, TARGET_ARCH
, mach
);
21834 /* Command line processing. */
21837 Invocation line includes a switch not recognized by the base assembler.
21838 See if it's a processor-specific option.
21840 This routine is somewhat complicated by the need for backwards
21841 compatibility (since older releases of gcc can't be changed).
21842 The new options try to make the interface as compatible as
21845 New options (supported) are:
21847 -mcpu=<cpu name> Assemble for selected processor
21848 -march=<architecture name> Assemble for selected architecture
21849 -mfpu=<fpu architecture> Assemble for selected FPU.
21850 -EB/-mbig-endian Big-endian
21851 -EL/-mlittle-endian Little-endian
21852 -k Generate PIC code
21853 -mthumb Start in Thumb mode
21854 -mthumb-interwork Code supports ARM/Thumb interworking
21856 -m[no-]warn-deprecated Warn about deprecated features
21858 For now we will also provide support for:
21860 -mapcs-32 32-bit Program counter
21861 -mapcs-26 26-bit Program counter
21862 -macps-float Floats passed in FP registers
21863 -mapcs-reentrant Reentrant code
21865 (sometime these will probably be replaced with -mapcs=<list of options>
21866 and -matpcs=<list of options>)
21868 The remaining options are only supported for back-wards compatibility.
21869 Cpu variants, the arm part is optional:
21870 -m[arm]1 Currently not supported.
21871 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
21872 -m[arm]3 Arm 3 processor
21873 -m[arm]6[xx], Arm 6 processors
21874 -m[arm]7[xx][t][[d]m] Arm 7 processors
21875 -m[arm]8[10] Arm 8 processors
21876 -m[arm]9[20][tdmi] Arm 9 processors
21877 -mstrongarm[110[0]] StrongARM processors
21878 -mxscale XScale processors
21879 -m[arm]v[2345[t[e]]] Arm architectures
21880 -mall All (except the ARM1)
21882 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
21883 -mfpe-old (No float load/store multiples)
21884 -mvfpxd VFP Single precision
21886 -mno-fpu Disable all floating point instructions
21888 The following CPU names are recognized:
21889 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
21890 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
21891 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
21892 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
21893 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
21894 arm10t arm10e, arm1020t, arm1020e, arm10200e,
21895 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
21899 const char * md_shortopts
= "m:k";
21901 #ifdef ARM_BI_ENDIAN
21902 #define OPTION_EB (OPTION_MD_BASE + 0)
21903 #define OPTION_EL (OPTION_MD_BASE + 1)
21905 #if TARGET_BYTES_BIG_ENDIAN
21906 #define OPTION_EB (OPTION_MD_BASE + 0)
21908 #define OPTION_EL (OPTION_MD_BASE + 1)
21911 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
21913 struct option md_longopts
[] =
21916 {"EB", no_argument
, NULL
, OPTION_EB
},
21919 {"EL", no_argument
, NULL
, OPTION_EL
},
21921 {"fix-v4bx", no_argument
, NULL
, OPTION_FIX_V4BX
},
21922 {NULL
, no_argument
, NULL
, 0}
21925 size_t md_longopts_size
= sizeof (md_longopts
);
21927 struct arm_option_table
21929 char *option
; /* Option name to match. */
21930 char *help
; /* Help information. */
21931 int *var
; /* Variable to change. */
21932 int value
; /* What to change it to. */
21933 char *deprecated
; /* If non-null, print this message. */
21936 struct arm_option_table arm_opts
[] =
21938 {"k", N_("generate PIC code"), &pic_code
, 1, NULL
},
21939 {"mthumb", N_("assemble Thumb code"), &thumb_mode
, 1, NULL
},
21940 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
21941 &support_interwork
, 1, NULL
},
21942 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26
, 0, NULL
},
21943 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26
, 1, NULL
},
21944 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float
,
21946 {"mapcs-reentrant", N_("re-entrant code"), &pic_code
, 1, NULL
},
21947 {"matpcs", N_("code is ATPCS conformant"), &atpcs
, 1, NULL
},
21948 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian
, 1, NULL
},
21949 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian
, 0,
21952 /* These are recognized by the assembler, but have no affect on code. */
21953 {"mapcs-frame", N_("use frame pointer"), NULL
, 0, NULL
},
21954 {"mapcs-stack-check", N_("use stack size checking"), NULL
, 0, NULL
},
21956 {"mwarn-deprecated", NULL
, &warn_on_deprecated
, 1, NULL
},
21957 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
21958 &warn_on_deprecated
, 0, NULL
},
21959 {NULL
, NULL
, NULL
, 0, NULL
}
21962 struct arm_legacy_option_table
21964 char *option
; /* Option name to match. */
21965 const arm_feature_set
**var
; /* Variable to change. */
21966 const arm_feature_set value
; /* What to change it to. */
21967 char *deprecated
; /* If non-null, print this message. */
21970 const struct arm_legacy_option_table arm_legacy_opts
[] =
21972 /* DON'T add any new processors to this list -- we want the whole list
21973 to go away... Add them to the processors table instead. */
21974 {"marm1", &legacy_cpu
, ARM_ARCH_V1
, N_("use -mcpu=arm1")},
21975 {"m1", &legacy_cpu
, ARM_ARCH_V1
, N_("use -mcpu=arm1")},
21976 {"marm2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -mcpu=arm2")},
21977 {"m2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -mcpu=arm2")},
21978 {"marm250", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm250")},
21979 {"m250", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm250")},
21980 {"marm3", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm3")},
21981 {"m3", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm3")},
21982 {"marm6", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm6")},
21983 {"m6", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm6")},
21984 {"marm600", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm600")},
21985 {"m600", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm600")},
21986 {"marm610", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm610")},
21987 {"m610", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm610")},
21988 {"marm620", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm620")},
21989 {"m620", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm620")},
21990 {"marm7", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7")},
21991 {"m7", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7")},
21992 {"marm70", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm70")},
21993 {"m70", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm70")},
21994 {"marm700", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700")},
21995 {"m700", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700")},
21996 {"marm700i", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700i")},
21997 {"m700i", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700i")},
21998 {"marm710", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710")},
21999 {"m710", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710")},
22000 {"marm710c", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710c")},
22001 {"m710c", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710c")},
22002 {"marm720", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm720")},
22003 {"m720", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm720")},
22004 {"marm7d", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7d")},
22005 {"m7d", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7d")},
22006 {"marm7di", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7di")},
22007 {"m7di", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7di")},
22008 {"marm7m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7m")},
22009 {"m7m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7m")},
22010 {"marm7dm", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dm")},
22011 {"m7dm", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dm")},
22012 {"marm7dmi", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dmi")},
22013 {"m7dmi", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dmi")},
22014 {"marm7100", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7100")},
22015 {"m7100", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7100")},
22016 {"marm7500", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500")},
22017 {"m7500", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500")},
22018 {"marm7500fe", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500fe")},
22019 {"m7500fe", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500fe")},
22020 {"marm7t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
22021 {"m7t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
22022 {"marm7tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
22023 {"m7tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
22024 {"marm710t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm710t")},
22025 {"m710t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm710t")},
22026 {"marm720t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm720t")},
22027 {"m720t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm720t")},
22028 {"marm740t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm740t")},
22029 {"m740t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm740t")},
22030 {"marm8", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm8")},
22031 {"m8", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm8")},
22032 {"marm810", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm810")},
22033 {"m810", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm810")},
22034 {"marm9", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9")},
22035 {"m9", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9")},
22036 {"marm9tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9tdmi")},
22037 {"m9tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9tdmi")},
22038 {"marm920", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm920")},
22039 {"m920", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm920")},
22040 {"marm940", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm940")},
22041 {"m940", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm940")},
22042 {"mstrongarm", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=strongarm")},
22043 {"mstrongarm110", &legacy_cpu
, ARM_ARCH_V4
,
22044 N_("use -mcpu=strongarm110")},
22045 {"mstrongarm1100", &legacy_cpu
, ARM_ARCH_V4
,
22046 N_("use -mcpu=strongarm1100")},
22047 {"mstrongarm1110", &legacy_cpu
, ARM_ARCH_V4
,
22048 N_("use -mcpu=strongarm1110")},
22049 {"mxscale", &legacy_cpu
, ARM_ARCH_XSCALE
, N_("use -mcpu=xscale")},
22050 {"miwmmxt", &legacy_cpu
, ARM_ARCH_IWMMXT
, N_("use -mcpu=iwmmxt")},
22051 {"mall", &legacy_cpu
, ARM_ANY
, N_("use -mcpu=all")},
22053 /* Architecture variants -- don't add any more to this list either. */
22054 {"mv2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -march=armv2")},
22055 {"marmv2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -march=armv2")},
22056 {"mv2a", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -march=armv2a")},
22057 {"marmv2a", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -march=armv2a")},
22058 {"mv3", &legacy_cpu
, ARM_ARCH_V3
, N_("use -march=armv3")},
22059 {"marmv3", &legacy_cpu
, ARM_ARCH_V3
, N_("use -march=armv3")},
22060 {"mv3m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -march=armv3m")},
22061 {"marmv3m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -march=armv3m")},
22062 {"mv4", &legacy_cpu
, ARM_ARCH_V4
, N_("use -march=armv4")},
22063 {"marmv4", &legacy_cpu
, ARM_ARCH_V4
, N_("use -march=armv4")},
22064 {"mv4t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -march=armv4t")},
22065 {"marmv4t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -march=armv4t")},
22066 {"mv5", &legacy_cpu
, ARM_ARCH_V5
, N_("use -march=armv5")},
22067 {"marmv5", &legacy_cpu
, ARM_ARCH_V5
, N_("use -march=armv5")},
22068 {"mv5t", &legacy_cpu
, ARM_ARCH_V5T
, N_("use -march=armv5t")},
22069 {"marmv5t", &legacy_cpu
, ARM_ARCH_V5T
, N_("use -march=armv5t")},
22070 {"mv5e", &legacy_cpu
, ARM_ARCH_V5TE
, N_("use -march=armv5te")},
22071 {"marmv5e", &legacy_cpu
, ARM_ARCH_V5TE
, N_("use -march=armv5te")},
22073 /* Floating point variants -- don't add any more to this list either. */
22074 {"mfpe-old", &legacy_fpu
, FPU_ARCH_FPE
, N_("use -mfpu=fpe")},
22075 {"mfpa10", &legacy_fpu
, FPU_ARCH_FPA
, N_("use -mfpu=fpa10")},
22076 {"mfpa11", &legacy_fpu
, FPU_ARCH_FPA
, N_("use -mfpu=fpa11")},
22077 {"mno-fpu", &legacy_fpu
, ARM_ARCH_NONE
,
22078 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
22080 {NULL
, NULL
, ARM_ARCH_NONE
, NULL
}
22083 struct arm_cpu_option_table
22086 const arm_feature_set value
;
22087 /* For some CPUs we assume an FPU unless the user explicitly sets
22089 const arm_feature_set default_fpu
;
22090 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22092 const char *canonical_name
;
22095 /* This list should, at a minimum, contain all the cpu names
22096 recognized by GCC. */
22097 static const struct arm_cpu_option_table arm_cpus
[] =
22099 {"all", ARM_ANY
, FPU_ARCH_FPA
, NULL
},
22100 {"arm1", ARM_ARCH_V1
, FPU_ARCH_FPA
, NULL
},
22101 {"arm2", ARM_ARCH_V2
, FPU_ARCH_FPA
, NULL
},
22102 {"arm250", ARM_ARCH_V2S
, FPU_ARCH_FPA
, NULL
},
22103 {"arm3", ARM_ARCH_V2S
, FPU_ARCH_FPA
, NULL
},
22104 {"arm6", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22105 {"arm60", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22106 {"arm600", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22107 {"arm610", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22108 {"arm620", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22109 {"arm7", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22110 {"arm7m", ARM_ARCH_V3M
, FPU_ARCH_FPA
, NULL
},
22111 {"arm7d", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22112 {"arm7dm", ARM_ARCH_V3M
, FPU_ARCH_FPA
, NULL
},
22113 {"arm7di", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22114 {"arm7dmi", ARM_ARCH_V3M
, FPU_ARCH_FPA
, NULL
},
22115 {"arm70", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22116 {"arm700", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22117 {"arm700i", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22118 {"arm710", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22119 {"arm710t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
22120 {"arm720", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22121 {"arm720t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
22122 {"arm740t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
22123 {"arm710c", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22124 {"arm7100", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22125 {"arm7500", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22126 {"arm7500fe", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
},
22127 {"arm7t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
22128 {"arm7tdmi", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
22129 {"arm7tdmi-s", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
22130 {"arm8", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
22131 {"arm810", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
22132 {"strongarm", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
22133 {"strongarm1", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
22134 {"strongarm110", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
22135 {"strongarm1100", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
22136 {"strongarm1110", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
22137 {"arm9", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
22138 {"arm920", ARM_ARCH_V4T
, FPU_ARCH_FPA
, "ARM920T"},
22139 {"arm920t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
22140 {"arm922t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
22141 {"arm940t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
22142 {"arm9tdmi", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
},
22143 {"fa526", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
22144 {"fa626", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
},
22145 /* For V5 or later processors we default to using VFP; but the user
22146 should really set the FPU type explicitly. */
22147 {"arm9e-r0", ARM_ARCH_V5TExP
, FPU_ARCH_VFP_V2
, NULL
},
22148 {"arm9e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
22149 {"arm926ej", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
, "ARM926EJ-S"},
22150 {"arm926ejs", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
, "ARM926EJ-S"},
22151 {"arm926ej-s", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
, NULL
},
22152 {"arm946e-r0", ARM_ARCH_V5TExP
, FPU_ARCH_VFP_V2
, NULL
},
22153 {"arm946e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, "ARM946E-S"},
22154 {"arm946e-s", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
22155 {"arm966e-r0", ARM_ARCH_V5TExP
, FPU_ARCH_VFP_V2
, NULL
},
22156 {"arm966e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, "ARM966E-S"},
22157 {"arm966e-s", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
22158 {"arm968e-s", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
22159 {"arm10t", ARM_ARCH_V5T
, FPU_ARCH_VFP_V1
, NULL
},
22160 {"arm10tdmi", ARM_ARCH_V5T
, FPU_ARCH_VFP_V1
, NULL
},
22161 {"arm10e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
22162 {"arm1020", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, "ARM1020E"},
22163 {"arm1020t", ARM_ARCH_V5T
, FPU_ARCH_VFP_V1
, NULL
},
22164 {"arm1020e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
22165 {"arm1022e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
22166 {"arm1026ejs", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
, "ARM1026EJ-S"},
22167 {"arm1026ej-s", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
, NULL
},
22168 {"fa626te", ARM_ARCH_V5TE
, FPU_NONE
, NULL
},
22169 {"fa726te", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
},
22170 {"arm1136js", ARM_ARCH_V6
, FPU_NONE
, "ARM1136J-S"},
22171 {"arm1136j-s", ARM_ARCH_V6
, FPU_NONE
, NULL
},
22172 {"arm1136jfs", ARM_ARCH_V6
, FPU_ARCH_VFP_V2
, "ARM1136JF-S"},
22173 {"arm1136jf-s", ARM_ARCH_V6
, FPU_ARCH_VFP_V2
, NULL
},
22174 {"mpcore", ARM_ARCH_V6K
, FPU_ARCH_VFP_V2
, NULL
},
22175 {"mpcorenovfp", ARM_ARCH_V6K
, FPU_NONE
, NULL
},
22176 {"arm1156t2-s", ARM_ARCH_V6T2
, FPU_NONE
, NULL
},
22177 {"arm1156t2f-s", ARM_ARCH_V6T2
, FPU_ARCH_VFP_V2
, NULL
},
22178 {"arm1176jz-s", ARM_ARCH_V6ZK
, FPU_NONE
, NULL
},
22179 {"arm1176jzf-s", ARM_ARCH_V6ZK
, FPU_ARCH_VFP_V2
, NULL
},
22180 {"cortex-a5", ARM_ARCH_V7A
, FPU_NONE
, NULL
},
22181 {"cortex-a8", ARM_ARCH_V7A
, ARM_FEATURE (0, FPU_VFP_V3
22182 | FPU_NEON_EXT_V1
),
22184 {"cortex-a9", ARM_ARCH_V7A
, ARM_FEATURE (0, FPU_VFP_V3
22185 | FPU_NEON_EXT_V1
),
22187 {"cortex-r4", ARM_ARCH_V7R
, FPU_NONE
, NULL
},
22188 {"cortex-r4f", ARM_ARCH_V7R
, FPU_ARCH_VFP_V3D16
, NULL
},
22189 {"cortex-m4", ARM_ARCH_V7EM
, FPU_NONE
, NULL
},
22190 {"cortex-m3", ARM_ARCH_V7M
, FPU_NONE
, NULL
},
22191 {"cortex-m1", ARM_ARCH_V6M
, FPU_NONE
, NULL
},
22192 {"cortex-m0", ARM_ARCH_V6M
, FPU_NONE
, NULL
},
22193 /* ??? XSCALE is really an architecture. */
22194 {"xscale", ARM_ARCH_XSCALE
, FPU_ARCH_VFP_V2
, NULL
},
22195 /* ??? iwmmxt is not a processor. */
22196 {"iwmmxt", ARM_ARCH_IWMMXT
, FPU_ARCH_VFP_V2
, NULL
},
22197 {"iwmmxt2", ARM_ARCH_IWMMXT2
,FPU_ARCH_VFP_V2
, NULL
},
22198 {"i80200", ARM_ARCH_XSCALE
, FPU_ARCH_VFP_V2
, NULL
},
22200 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T
, ARM_CEXT_MAVERICK
), FPU_ARCH_MAVERICK
, "ARM920T"},
22201 {NULL
, ARM_ARCH_NONE
, ARM_ARCH_NONE
, NULL
}
22204 struct arm_arch_option_table
22207 const arm_feature_set value
;
22208 const arm_feature_set default_fpu
;
22211 /* This list should, at a minimum, contain all the architecture names
22212 recognized by GCC. */
22213 static const struct arm_arch_option_table arm_archs
[] =
22215 {"all", ARM_ANY
, FPU_ARCH_FPA
},
22216 {"armv1", ARM_ARCH_V1
, FPU_ARCH_FPA
},
22217 {"armv2", ARM_ARCH_V2
, FPU_ARCH_FPA
},
22218 {"armv2a", ARM_ARCH_V2S
, FPU_ARCH_FPA
},
22219 {"armv2s", ARM_ARCH_V2S
, FPU_ARCH_FPA
},
22220 {"armv3", ARM_ARCH_V3
, FPU_ARCH_FPA
},
22221 {"armv3m", ARM_ARCH_V3M
, FPU_ARCH_FPA
},
22222 {"armv4", ARM_ARCH_V4
, FPU_ARCH_FPA
},
22223 {"armv4xm", ARM_ARCH_V4xM
, FPU_ARCH_FPA
},
22224 {"armv4t", ARM_ARCH_V4T
, FPU_ARCH_FPA
},
22225 {"armv4txm", ARM_ARCH_V4TxM
, FPU_ARCH_FPA
},
22226 {"armv5", ARM_ARCH_V5
, FPU_ARCH_VFP
},
22227 {"armv5t", ARM_ARCH_V5T
, FPU_ARCH_VFP
},
22228 {"armv5txm", ARM_ARCH_V5TxM
, FPU_ARCH_VFP
},
22229 {"armv5te", ARM_ARCH_V5TE
, FPU_ARCH_VFP
},
22230 {"armv5texp", ARM_ARCH_V5TExP
, FPU_ARCH_VFP
},
22231 {"armv5tej", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP
},
22232 {"armv6", ARM_ARCH_V6
, FPU_ARCH_VFP
},
22233 {"armv6j", ARM_ARCH_V6
, FPU_ARCH_VFP
},
22234 {"armv6k", ARM_ARCH_V6K
, FPU_ARCH_VFP
},
22235 {"armv6z", ARM_ARCH_V6Z
, FPU_ARCH_VFP
},
22236 {"armv6zk", ARM_ARCH_V6ZK
, FPU_ARCH_VFP
},
22237 {"armv6t2", ARM_ARCH_V6T2
, FPU_ARCH_VFP
},
22238 {"armv6kt2", ARM_ARCH_V6KT2
, FPU_ARCH_VFP
},
22239 {"armv6zt2", ARM_ARCH_V6ZT2
, FPU_ARCH_VFP
},
22240 {"armv6zkt2", ARM_ARCH_V6ZKT2
, FPU_ARCH_VFP
},
22241 {"armv6-m", ARM_ARCH_V6M
, FPU_ARCH_VFP
},
22242 {"armv7", ARM_ARCH_V7
, FPU_ARCH_VFP
},
22243 /* The official spelling of the ARMv7 profile variants is the dashed form.
22244 Accept the non-dashed form for compatibility with old toolchains. */
22245 {"armv7a", ARM_ARCH_V7A
, FPU_ARCH_VFP
},
22246 {"armv7r", ARM_ARCH_V7R
, FPU_ARCH_VFP
},
22247 {"armv7m", ARM_ARCH_V7M
, FPU_ARCH_VFP
},
22248 {"armv7-a", ARM_ARCH_V7A
, FPU_ARCH_VFP
},
22249 {"armv7-r", ARM_ARCH_V7R
, FPU_ARCH_VFP
},
22250 {"armv7-m", ARM_ARCH_V7M
, FPU_ARCH_VFP
},
22251 {"armv7e-m", ARM_ARCH_V7EM
, FPU_ARCH_VFP
},
22252 {"xscale", ARM_ARCH_XSCALE
, FPU_ARCH_VFP
},
22253 {"iwmmxt", ARM_ARCH_IWMMXT
, FPU_ARCH_VFP
},
22254 {"iwmmxt2", ARM_ARCH_IWMMXT2
,FPU_ARCH_VFP
},
22255 {NULL
, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
22258 /* ISA extensions in the co-processor space. */
22259 struct arm_option_cpu_value_table
22262 const arm_feature_set value
;
22265 static const struct arm_option_cpu_value_table arm_extensions
[] =
22267 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK
)},
22268 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE
)},
22269 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT
)},
22270 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2
)},
22271 {NULL
, ARM_ARCH_NONE
}
22274 /* This list should, at a minimum, contain all the fpu names
22275 recognized by GCC. */
22276 static const struct arm_option_cpu_value_table arm_fpus
[] =
22278 {"softfpa", FPU_NONE
},
22279 {"fpe", FPU_ARCH_FPE
},
22280 {"fpe2", FPU_ARCH_FPE
},
22281 {"fpe3", FPU_ARCH_FPA
}, /* Third release supports LFM/SFM. */
22282 {"fpa", FPU_ARCH_FPA
},
22283 {"fpa10", FPU_ARCH_FPA
},
22284 {"fpa11", FPU_ARCH_FPA
},
22285 {"arm7500fe", FPU_ARCH_FPA
},
22286 {"softvfp", FPU_ARCH_VFP
},
22287 {"softvfp+vfp", FPU_ARCH_VFP_V2
},
22288 {"vfp", FPU_ARCH_VFP_V2
},
22289 {"vfp9", FPU_ARCH_VFP_V2
},
22290 {"vfp3", FPU_ARCH_VFP_V3
}, /* For backwards compatbility. */
22291 {"vfp10", FPU_ARCH_VFP_V2
},
22292 {"vfp10-r0", FPU_ARCH_VFP_V1
},
22293 {"vfpxd", FPU_ARCH_VFP_V1xD
},
22294 {"vfpv2", FPU_ARCH_VFP_V2
},
22295 {"vfpv3", FPU_ARCH_VFP_V3
},
22296 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16
},
22297 {"vfpv3-d16", FPU_ARCH_VFP_V3D16
},
22298 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16
},
22299 {"vfpv3xd", FPU_ARCH_VFP_V3xD
},
22300 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16
},
22301 {"arm1020t", FPU_ARCH_VFP_V1
},
22302 {"arm1020e", FPU_ARCH_VFP_V2
},
22303 {"arm1136jfs", FPU_ARCH_VFP_V2
},
22304 {"arm1136jf-s", FPU_ARCH_VFP_V2
},
22305 {"maverick", FPU_ARCH_MAVERICK
},
22306 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1
},
22307 {"neon-fp16", FPU_ARCH_NEON_FP16
},
22308 {"vfpv4", FPU_ARCH_VFP_V4
},
22309 {"vfpv4-d16", FPU_ARCH_VFP_V4D16
},
22310 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16
},
22311 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4
},
22312 {NULL
, ARM_ARCH_NONE
}
22315 struct arm_option_value_table
22321 static const struct arm_option_value_table arm_float_abis
[] =
22323 {"hard", ARM_FLOAT_ABI_HARD
},
22324 {"softfp", ARM_FLOAT_ABI_SOFTFP
},
22325 {"soft", ARM_FLOAT_ABI_SOFT
},
22330 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
22331 static const struct arm_option_value_table arm_eabis
[] =
22333 {"gnu", EF_ARM_EABI_UNKNOWN
},
22334 {"4", EF_ARM_EABI_VER4
},
22335 {"5", EF_ARM_EABI_VER5
},
22340 struct arm_long_option_table
22342 char * option
; /* Substring to match. */
22343 char * help
; /* Help information. */
22344 int (* func
) (char * subopt
); /* Function to decode sub-option. */
22345 char * deprecated
; /* If non-null, print this message. */
22349 arm_parse_extension (char * str
, const arm_feature_set
**opt_p
)
22351 arm_feature_set
*ext_set
= (arm_feature_set
*)
22352 xmalloc (sizeof (arm_feature_set
));
22354 /* Copy the feature set, so that we can modify it. */
22355 *ext_set
= **opt_p
;
22358 while (str
!= NULL
&& *str
!= 0)
22360 const struct arm_option_cpu_value_table
* opt
;
22366 as_bad (_("invalid architectural extension"));
22371 ext
= strchr (str
, '+');
22374 optlen
= ext
- str
;
22376 optlen
= strlen (str
);
22380 as_bad (_("missing architectural extension"));
22384 for (opt
= arm_extensions
; opt
->name
!= NULL
; opt
++)
22385 if (strncmp (opt
->name
, str
, optlen
) == 0)
22387 ARM_MERGE_FEATURE_SETS (*ext_set
, *ext_set
, opt
->value
);
22391 if (opt
->name
== NULL
)
22393 as_bad (_("unknown architectural extension `%s'"), str
);
22404 arm_parse_cpu (char * str
)
22406 const struct arm_cpu_option_table
* opt
;
22407 char * ext
= strchr (str
, '+');
22411 optlen
= ext
- str
;
22413 optlen
= strlen (str
);
22417 as_bad (_("missing cpu name `%s'"), str
);
22421 for (opt
= arm_cpus
; opt
->name
!= NULL
; opt
++)
22422 if (strncmp (opt
->name
, str
, optlen
) == 0)
22424 mcpu_cpu_opt
= &opt
->value
;
22425 mcpu_fpu_opt
= &opt
->default_fpu
;
22426 if (opt
->canonical_name
)
22427 strcpy (selected_cpu_name
, opt
->canonical_name
);
22432 for (i
= 0; i
< optlen
; i
++)
22433 selected_cpu_name
[i
] = TOUPPER (opt
->name
[i
]);
22434 selected_cpu_name
[i
] = 0;
22438 return arm_parse_extension (ext
, &mcpu_cpu_opt
);
22443 as_bad (_("unknown cpu `%s'"), str
);
22448 arm_parse_arch (char * str
)
22450 const struct arm_arch_option_table
*opt
;
22451 char *ext
= strchr (str
, '+');
22455 optlen
= ext
- str
;
22457 optlen
= strlen (str
);
22461 as_bad (_("missing architecture name `%s'"), str
);
22465 for (opt
= arm_archs
; opt
->name
!= NULL
; opt
++)
22466 if (streq (opt
->name
, str
))
22468 march_cpu_opt
= &opt
->value
;
22469 march_fpu_opt
= &opt
->default_fpu
;
22470 strcpy (selected_cpu_name
, opt
->name
);
22473 return arm_parse_extension (ext
, &march_cpu_opt
);
22478 as_bad (_("unknown architecture `%s'\n"), str
);
22483 arm_parse_fpu (char * str
)
22485 const struct arm_option_cpu_value_table
* opt
;
22487 for (opt
= arm_fpus
; opt
->name
!= NULL
; opt
++)
22488 if (streq (opt
->name
, str
))
22490 mfpu_opt
= &opt
->value
;
22494 as_bad (_("unknown floating point format `%s'\n"), str
);
22499 arm_parse_float_abi (char * str
)
22501 const struct arm_option_value_table
* opt
;
22503 for (opt
= arm_float_abis
; opt
->name
!= NULL
; opt
++)
22504 if (streq (opt
->name
, str
))
22506 mfloat_abi_opt
= opt
->value
;
22510 as_bad (_("unknown floating point abi `%s'\n"), str
);
22516 arm_parse_eabi (char * str
)
22518 const struct arm_option_value_table
*opt
;
22520 for (opt
= arm_eabis
; opt
->name
!= NULL
; opt
++)
22521 if (streq (opt
->name
, str
))
22523 meabi_flags
= opt
->value
;
22526 as_bad (_("unknown EABI `%s'\n"), str
);
22532 arm_parse_it_mode (char * str
)
22534 bfd_boolean ret
= TRUE
;
22536 if (streq ("arm", str
))
22537 implicit_it_mode
= IMPLICIT_IT_MODE_ARM
;
22538 else if (streq ("thumb", str
))
22539 implicit_it_mode
= IMPLICIT_IT_MODE_THUMB
;
22540 else if (streq ("always", str
))
22541 implicit_it_mode
= IMPLICIT_IT_MODE_ALWAYS
;
22542 else if (streq ("never", str
))
22543 implicit_it_mode
= IMPLICIT_IT_MODE_NEVER
;
22546 as_bad (_("unknown implicit IT mode `%s', should be "\
22547 "arm, thumb, always, or never."), str
);
22554 struct arm_long_option_table arm_long_opts
[] =
22556 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
22557 arm_parse_cpu
, NULL
},
22558 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
22559 arm_parse_arch
, NULL
},
22560 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
22561 arm_parse_fpu
, NULL
},
22562 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
22563 arm_parse_float_abi
, NULL
},
22565 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
22566 arm_parse_eabi
, NULL
},
22568 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
22569 arm_parse_it_mode
, NULL
},
22570 {NULL
, NULL
, 0, NULL
}
22574 md_parse_option (int c
, char * arg
)
22576 struct arm_option_table
*opt
;
22577 const struct arm_legacy_option_table
*fopt
;
22578 struct arm_long_option_table
*lopt
;
22584 target_big_endian
= 1;
22590 target_big_endian
= 0;
22594 case OPTION_FIX_V4BX
:
22599 /* Listing option. Just ignore these, we don't support additional
22604 for (opt
= arm_opts
; opt
->option
!= NULL
; opt
++)
22606 if (c
== opt
->option
[0]
22607 && ((arg
== NULL
&& opt
->option
[1] == 0)
22608 || streq (arg
, opt
->option
+ 1)))
22610 /* If the option is deprecated, tell the user. */
22611 if (warn_on_deprecated
&& opt
->deprecated
!= NULL
)
22612 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
,
22613 arg
? arg
: "", _(opt
->deprecated
));
22615 if (opt
->var
!= NULL
)
22616 *opt
->var
= opt
->value
;
22622 for (fopt
= arm_legacy_opts
; fopt
->option
!= NULL
; fopt
++)
22624 if (c
== fopt
->option
[0]
22625 && ((arg
== NULL
&& fopt
->option
[1] == 0)
22626 || streq (arg
, fopt
->option
+ 1)))
22628 /* If the option is deprecated, tell the user. */
22629 if (warn_on_deprecated
&& fopt
->deprecated
!= NULL
)
22630 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
,
22631 arg
? arg
: "", _(fopt
->deprecated
));
22633 if (fopt
->var
!= NULL
)
22634 *fopt
->var
= &fopt
->value
;
22640 for (lopt
= arm_long_opts
; lopt
->option
!= NULL
; lopt
++)
22642 /* These options are expected to have an argument. */
22643 if (c
== lopt
->option
[0]
22645 && strncmp (arg
, lopt
->option
+ 1,
22646 strlen (lopt
->option
+ 1)) == 0)
22648 /* If the option is deprecated, tell the user. */
22649 if (warn_on_deprecated
&& lopt
->deprecated
!= NULL
)
22650 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
, arg
,
22651 _(lopt
->deprecated
));
22653 /* Call the sup-option parser. */
22654 return lopt
->func (arg
+ strlen (lopt
->option
) - 1);
22665 md_show_usage (FILE * fp
)
22667 struct arm_option_table
*opt
;
22668 struct arm_long_option_table
*lopt
;
22670 fprintf (fp
, _(" ARM-specific assembler options:\n"));
22672 for (opt
= arm_opts
; opt
->option
!= NULL
; opt
++)
22673 if (opt
->help
!= NULL
)
22674 fprintf (fp
, " -%-23s%s\n", opt
->option
, _(opt
->help
));
22676 for (lopt
= arm_long_opts
; lopt
->option
!= NULL
; lopt
++)
22677 if (lopt
->help
!= NULL
)
22678 fprintf (fp
, " -%s%s\n", lopt
->option
, _(lopt
->help
));
22682 -EB assemble code for a big-endian cpu\n"));
22687 -EL assemble code for a little-endian cpu\n"));
22691 --fix-v4bx Allow BX in ARMv4 code\n"));
22699 arm_feature_set flags
;
22700 } cpu_arch_ver_table
;
22702 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
22703 least features first. */
22704 static const cpu_arch_ver_table cpu_arch_ver
[] =
22710 {4, ARM_ARCH_V5TE
},
22711 {5, ARM_ARCH_V5TEJ
},
22715 {11, ARM_ARCH_V6M
},
22716 {8, ARM_ARCH_V6T2
},
22717 {10, ARM_ARCH_V7A
},
22718 {10, ARM_ARCH_V7R
},
22719 {10, ARM_ARCH_V7M
},
22723 /* Set an attribute if it has not already been set by the user. */
22725 aeabi_set_attribute_int (int tag
, int value
)
22728 || tag
>= NUM_KNOWN_OBJ_ATTRIBUTES
22729 || !attributes_set_explicitly
[tag
])
22730 bfd_elf_add_proc_attr_int (stdoutput
, tag
, value
);
22734 aeabi_set_attribute_string (int tag
, const char *value
)
22737 || tag
>= NUM_KNOWN_OBJ_ATTRIBUTES
22738 || !attributes_set_explicitly
[tag
])
22739 bfd_elf_add_proc_attr_string (stdoutput
, tag
, value
);
22742 /* Set the public EABI object attributes. */
22744 aeabi_set_public_attributes (void)
22747 arm_feature_set flags
;
22748 arm_feature_set tmp
;
22749 const cpu_arch_ver_table
*p
;
22751 /* Choose the architecture based on the capabilities of the requested cpu
22752 (if any) and/or the instructions actually used. */
22753 ARM_MERGE_FEATURE_SETS (flags
, arm_arch_used
, thumb_arch_used
);
22754 ARM_MERGE_FEATURE_SETS (flags
, flags
, *mfpu_opt
);
22755 ARM_MERGE_FEATURE_SETS (flags
, flags
, selected_cpu
);
22756 /*Allow the user to override the reported architecture. */
22759 ARM_CLEAR_FEATURE (flags
, flags
, arm_arch_any
);
22760 ARM_MERGE_FEATURE_SETS (flags
, flags
, *object_arch
);
22765 for (p
= cpu_arch_ver
; p
->val
; p
++)
22767 if (ARM_CPU_HAS_FEATURE (tmp
, p
->flags
))
22770 ARM_CLEAR_FEATURE (tmp
, tmp
, p
->flags
);
22774 /* The table lookup above finds the last architecture to contribute
22775 a new feature. Unfortunately, Tag13 is a subset of the union of
22776 v6T2 and v7-M, so it is never seen as contributing a new feature.
22777 We can not search for the last entry which is entirely used,
22778 because if no CPU is specified we build up only those flags
22779 actually used. Perhaps we should separate out the specified
22780 and implicit cases. Avoid taking this path for -march=all by
22781 checking for contradictory v7-A / v7-M features. */
22783 && !ARM_CPU_HAS_FEATURE (flags
, arm_ext_v7a
)
22784 && ARM_CPU_HAS_FEATURE (flags
, arm_ext_v7m
)
22785 && ARM_CPU_HAS_FEATURE (flags
, arm_ext_v6_dsp
))
22788 /* Tag_CPU_name. */
22789 if (selected_cpu_name
[0])
22793 q
= selected_cpu_name
;
22794 if (strncmp (q
, "armv", 4) == 0)
22799 for (i
= 0; q
[i
]; i
++)
22800 q
[i
] = TOUPPER (q
[i
]);
22802 aeabi_set_attribute_string (Tag_CPU_name
, q
);
22805 /* Tag_CPU_arch. */
22806 aeabi_set_attribute_int (Tag_CPU_arch
, arch
);
22808 /* Tag_CPU_arch_profile. */
22809 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v7a
))
22810 aeabi_set_attribute_int (Tag_CPU_arch_profile
, 'A');
22811 else if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v7r
))
22812 aeabi_set_attribute_int (Tag_CPU_arch_profile
, 'R');
22813 else if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_m
))
22814 aeabi_set_attribute_int (Tag_CPU_arch_profile
, 'M');
22816 /* Tag_ARM_ISA_use. */
22817 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v1
)
22819 aeabi_set_attribute_int (Tag_ARM_ISA_use
, 1);
22821 /* Tag_THUMB_ISA_use. */
22822 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v4t
)
22824 aeabi_set_attribute_int (Tag_THUMB_ISA_use
,
22825 ARM_CPU_HAS_FEATURE (flags
, arm_arch_t2
) ? 2 : 1);
22827 /* Tag_VFP_arch. */
22828 if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_fma
))
22829 aeabi_set_attribute_int (Tag_VFP_arch
,
22830 ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_d32
)
22832 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_d32
))
22833 aeabi_set_attribute_int (Tag_VFP_arch
, 3);
22834 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v3xd
))
22835 aeabi_set_attribute_int (Tag_VFP_arch
, 4);
22836 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v2
))
22837 aeabi_set_attribute_int (Tag_VFP_arch
, 2);
22838 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1
)
22839 || ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1xd
))
22840 aeabi_set_attribute_int (Tag_VFP_arch
, 1);
22842 /* Tag_WMMX_arch. */
22843 if (ARM_CPU_HAS_FEATURE (flags
, arm_cext_iwmmxt2
))
22844 aeabi_set_attribute_int (Tag_WMMX_arch
, 2);
22845 else if (ARM_CPU_HAS_FEATURE (flags
, arm_cext_iwmmxt
))
22846 aeabi_set_attribute_int (Tag_WMMX_arch
, 1);
22848 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
22849 if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_v1
))
22850 aeabi_set_attribute_int
22851 (Tag_Advanced_SIMD_arch
, (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_fma
)
22854 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
22855 if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_fp16
))
22856 aeabi_set_attribute_int (Tag_VFP_HP_extension
, 1);
22859 /* Add the default contents for the .ARM.attributes section. */
22863 if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
22866 aeabi_set_public_attributes ();
22868 #endif /* OBJ_ELF */
22871 /* Parse a .cpu directive. */
22874 s_arm_cpu (int ignored ATTRIBUTE_UNUSED
)
22876 const struct arm_cpu_option_table
*opt
;
22880 name
= input_line_pointer
;
22881 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
22882 input_line_pointer
++;
22883 saved_char
= *input_line_pointer
;
22884 *input_line_pointer
= 0;
22886 /* Skip the first "all" entry. */
22887 for (opt
= arm_cpus
+ 1; opt
->name
!= NULL
; opt
++)
22888 if (streq (opt
->name
, name
))
22890 mcpu_cpu_opt
= &opt
->value
;
22891 selected_cpu
= opt
->value
;
22892 if (opt
->canonical_name
)
22893 strcpy (selected_cpu_name
, opt
->canonical_name
);
22897 for (i
= 0; opt
->name
[i
]; i
++)
22898 selected_cpu_name
[i
] = TOUPPER (opt
->name
[i
]);
22899 selected_cpu_name
[i
] = 0;
22901 ARM_MERGE_FEATURE_SETS (cpu_variant
, *mcpu_cpu_opt
, *mfpu_opt
);
22902 *input_line_pointer
= saved_char
;
22903 demand_empty_rest_of_line ();
22906 as_bad (_("unknown cpu `%s'"), name
);
22907 *input_line_pointer
= saved_char
;
22908 ignore_rest_of_line ();
22912 /* Parse a .arch directive. */
22915 s_arm_arch (int ignored ATTRIBUTE_UNUSED
)
22917 const struct arm_arch_option_table
*opt
;
22921 name
= input_line_pointer
;
22922 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
22923 input_line_pointer
++;
22924 saved_char
= *input_line_pointer
;
22925 *input_line_pointer
= 0;
22927 /* Skip the first "all" entry. */
22928 for (opt
= arm_archs
+ 1; opt
->name
!= NULL
; opt
++)
22929 if (streq (opt
->name
, name
))
22931 mcpu_cpu_opt
= &opt
->value
;
22932 selected_cpu
= opt
->value
;
22933 strcpy (selected_cpu_name
, opt
->name
);
22934 ARM_MERGE_FEATURE_SETS (cpu_variant
, *mcpu_cpu_opt
, *mfpu_opt
);
22935 *input_line_pointer
= saved_char
;
22936 demand_empty_rest_of_line ();
22940 as_bad (_("unknown architecture `%s'\n"), name
);
22941 *input_line_pointer
= saved_char
;
22942 ignore_rest_of_line ();
22946 /* Parse a .object_arch directive. */
22949 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED
)
22951 const struct arm_arch_option_table
*opt
;
22955 name
= input_line_pointer
;
22956 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
22957 input_line_pointer
++;
22958 saved_char
= *input_line_pointer
;
22959 *input_line_pointer
= 0;
22961 /* Skip the first "all" entry. */
22962 for (opt
= arm_archs
+ 1; opt
->name
!= NULL
; opt
++)
22963 if (streq (opt
->name
, name
))
22965 object_arch
= &opt
->value
;
22966 *input_line_pointer
= saved_char
;
22967 demand_empty_rest_of_line ();
22971 as_bad (_("unknown architecture `%s'\n"), name
);
22972 *input_line_pointer
= saved_char
;
22973 ignore_rest_of_line ();
22976 /* Parse a .fpu directive. */
22979 s_arm_fpu (int ignored ATTRIBUTE_UNUSED
)
22981 const struct arm_option_cpu_value_table
*opt
;
22985 name
= input_line_pointer
;
22986 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
22987 input_line_pointer
++;
22988 saved_char
= *input_line_pointer
;
22989 *input_line_pointer
= 0;
22991 for (opt
= arm_fpus
; opt
->name
!= NULL
; opt
++)
22992 if (streq (opt
->name
, name
))
22994 mfpu_opt
= &opt
->value
;
22995 ARM_MERGE_FEATURE_SETS (cpu_variant
, *mcpu_cpu_opt
, *mfpu_opt
);
22996 *input_line_pointer
= saved_char
;
22997 demand_empty_rest_of_line ();
23001 as_bad (_("unknown floating point format `%s'\n"), name
);
23002 *input_line_pointer
= saved_char
;
23003 ignore_rest_of_line ();
23006 /* Copy symbol information. */
23009 arm_copy_symbol_attributes (symbolS
*dest
, symbolS
*src
)
23011 ARM_GET_FLAG (dest
) = ARM_GET_FLAG (src
);
23015 /* Given a symbolic attribute NAME, return the proper integer value.
23016 Returns -1 if the attribute is not known. */
23019 arm_convert_symbolic_attribute (const char *name
)
23021 static const struct
23026 attribute_table
[] =
23028 /* When you modify this table you should
23029 also modify the list in doc/c-arm.texi. */
23030 #define T(tag) {#tag, tag}
23031 T (Tag_CPU_raw_name
),
23034 T (Tag_CPU_arch_profile
),
23035 T (Tag_ARM_ISA_use
),
23036 T (Tag_THUMB_ISA_use
),
23039 T (Tag_Advanced_SIMD_arch
),
23040 T (Tag_PCS_config
),
23041 T (Tag_ABI_PCS_R9_use
),
23042 T (Tag_ABI_PCS_RW_data
),
23043 T (Tag_ABI_PCS_RO_data
),
23044 T (Tag_ABI_PCS_GOT_use
),
23045 T (Tag_ABI_PCS_wchar_t
),
23046 T (Tag_ABI_FP_rounding
),
23047 T (Tag_ABI_FP_denormal
),
23048 T (Tag_ABI_FP_exceptions
),
23049 T (Tag_ABI_FP_user_exceptions
),
23050 T (Tag_ABI_FP_number_model
),
23051 T (Tag_ABI_align8_needed
),
23052 T (Tag_ABI_align8_preserved
),
23053 T (Tag_ABI_enum_size
),
23054 T (Tag_ABI_HardFP_use
),
23055 T (Tag_ABI_VFP_args
),
23056 T (Tag_ABI_WMMX_args
),
23057 T (Tag_ABI_optimization_goals
),
23058 T (Tag_ABI_FP_optimization_goals
),
23059 T (Tag_compatibility
),
23060 T (Tag_CPU_unaligned_access
),
23061 T (Tag_VFP_HP_extension
),
23062 T (Tag_ABI_FP_16bit_format
),
23063 T (Tag_MPextension_use
),
23065 T (Tag_nodefaults
),
23066 T (Tag_also_compatible_with
),
23067 T (Tag_conformance
),
23069 T (Tag_Virtualization_use
),
23070 /* We deliberately do not include Tag_MPextension_use_legacy. */
23078 for (i
= 0; i
< ARRAY_SIZE (attribute_table
); i
++)
23079 if (streq (name
, attribute_table
[i
].name
))
23080 return attribute_table
[i
].tag
;
23086 /* Apply sym value for relocations only in the case that
23087 they are for local symbols and you have the respective
23088 architectural feature for blx and simple switches. */
23090 arm_apply_sym_value (struct fix
* fixP
)
23093 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
23094 && !S_IS_EXTERNAL (fixP
->fx_addsy
))
23096 switch (fixP
->fx_r_type
)
23098 case BFD_RELOC_ARM_PCREL_BLX
:
23099 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
23100 if (ARM_IS_FUNC (fixP
->fx_addsy
))
23104 case BFD_RELOC_ARM_PCREL_CALL
:
23105 case BFD_RELOC_THUMB_PCREL_BLX
:
23106 if (THUMB_IS_FUNC (fixP
->fx_addsy
))
23117 #endif /* OBJ_ELF */