daily update
[binutils/dougsmingw.git] / gas / config / tc-i386.c
blobdb50c62b9e9fbd151078c753878e80daa84ff254
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "elf/x86-64.h"
36 #include "opcodes/i386-init.h"
38 #ifndef REGISTER_WARNINGS
39 #define REGISTER_WARNINGS 1
40 #endif
42 #ifndef INFER_ADDR_PREFIX
43 #define INFER_ADDR_PREFIX 1
44 #endif
46 #ifndef DEFAULT_ARCH
47 #define DEFAULT_ARCH "i386"
48 #endif
50 #ifndef INLINE
51 #if __GNUC__ >= 2
52 #define INLINE __inline__
53 #else
54 #define INLINE
55 #endif
56 #endif
58 /* Prefixes will be emitted in the order defined below.
59 WAIT_PREFIX must be the first prefix since FWAIT is really is an
60 instruction, and so must come before any prefixes.
61 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
62 REP_PREFIX, LOCK_PREFIX. */
63 #define WAIT_PREFIX 0
64 #define SEG_PREFIX 1
65 #define ADDR_PREFIX 2
66 #define DATA_PREFIX 3
67 #define REP_PREFIX 4
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 /* Intel Syntax. Use a non-ascii letter since since it never appears
87 in instructions. */
88 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90 #define END_OF_INSN '\0'
93 'templates' is for grouping together 'template' structures for opcodes
94 of the same name. This is only used for storing the insns in the grand
95 ole hash table of insns.
96 The templates themselves start at START and range up to (but not including)
97 END.
99 typedef struct
101 const insn_template *start;
102 const insn_template *end;
104 templates;
106 /* 386 operand encoding bytes: see 386 book for details of this. */
107 typedef struct
109 unsigned int regmem; /* codes register or memory operand */
110 unsigned int reg; /* codes register operand (or extended opcode) */
111 unsigned int mode; /* how to interpret regmem & reg */
113 modrm_byte;
115 /* x86-64 extension prefix. */
116 typedef int rex_byte;
118 /* 386 opcode byte to code indirect addressing. */
119 typedef struct
121 unsigned base;
122 unsigned index;
123 unsigned scale;
125 sib_byte;
127 /* x86 arch names, types and features */
128 typedef struct
130 const char *name; /* arch name */
131 unsigned int len; /* arch string length */
132 enum processor_type type; /* arch type */
133 i386_cpu_flags flags; /* cpu feature flags */
134 unsigned int skip; /* show_arch should skip this. */
136 arch_entry;
138 static void set_code_flag (int);
139 static void set_16bit_gcc_code_flag (int);
140 static void set_intel_syntax (int);
141 static void set_intel_mnemonic (int);
142 static void set_allow_index_reg (int);
143 static void set_sse_check (int);
144 static void set_cpu_arch (int);
145 #ifdef TE_PE
146 static void pe_directive_secrel (int);
147 #endif
148 static void signed_cons (int);
149 static char *output_invalid (int c);
150 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
151 const char *);
152 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
153 const char *);
154 static int i386_att_operand (char *);
155 static int i386_intel_operand (char *, int);
156 static int i386_intel_simplify (expressionS *);
157 static int i386_intel_parse_name (const char *, expressionS *);
158 static const reg_entry *parse_register (char *, char **);
159 static char *parse_insn (char *, char *);
160 static char *parse_operands (char *, const char *);
161 static void swap_operands (void);
162 static void swap_2_operands (int, int);
163 static void optimize_imm (void);
164 static void optimize_disp (void);
165 static const insn_template *match_template (void);
166 static int check_string (void);
167 static int process_suffix (void);
168 static int check_byte_reg (void);
169 static int check_long_reg (void);
170 static int check_qword_reg (void);
171 static int check_word_reg (void);
172 static int finalize_imm (void);
173 static int process_operands (void);
174 static const seg_entry *build_modrm_byte (void);
175 static void output_insn (void);
176 static void output_imm (fragS *, offsetT);
177 static void output_disp (fragS *, offsetT);
178 #ifndef I386COFF
179 static void s_bss (int);
180 #endif
181 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
182 static void handle_large_common (int small ATTRIBUTE_UNUSED);
183 #endif
185 static const char *default_arch = DEFAULT_ARCH;
187 /* VEX prefix. */
188 typedef struct
190 /* VEX prefix is either 2 byte or 3 byte. */
191 unsigned char bytes[3];
192 unsigned int length;
193 /* Destination or source register specifier. */
194 const reg_entry *register_specifier;
195 } vex_prefix;
197 /* 'md_assemble ()' gathers together information and puts it into a
198 i386_insn. */
200 union i386_op
202 expressionS *disps;
203 expressionS *imms;
204 const reg_entry *regs;
207 enum i386_error
209 operand_size_mismatch,
210 operand_type_mismatch,
211 register_type_mismatch,
212 number_of_operands_mismatch,
213 invalid_instruction_suffix,
214 bad_imm4,
215 old_gcc_only,
216 unsupported_with_intel_mnemonic,
217 unsupported_syntax,
218 unsupported
221 struct _i386_insn
223 /* TM holds the template for the insn were currently assembling. */
224 insn_template tm;
226 /* SUFFIX holds the instruction size suffix for byte, word, dword
227 or qword, if given. */
228 char suffix;
230 /* OPERANDS gives the number of given operands. */
231 unsigned int operands;
233 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
234 of given register, displacement, memory operands and immediate
235 operands. */
236 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
238 /* TYPES [i] is the type (see above #defines) which tells us how to
239 use OP[i] for the corresponding operand. */
240 i386_operand_type types[MAX_OPERANDS];
242 /* Displacement expression, immediate expression, or register for each
243 operand. */
244 union i386_op op[MAX_OPERANDS];
246 /* Flags for operands. */
247 unsigned int flags[MAX_OPERANDS];
248 #define Operand_PCrel 1
250 /* Relocation type for operand */
251 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
253 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
254 the base index byte below. */
255 const reg_entry *base_reg;
256 const reg_entry *index_reg;
257 unsigned int log2_scale_factor;
259 /* SEG gives the seg_entries of this insn. They are zero unless
260 explicit segment overrides are given. */
261 const seg_entry *seg[2];
263 /* PREFIX holds all the given prefix opcodes (usually null).
264 PREFIXES is the number of prefix opcodes. */
265 unsigned int prefixes;
266 unsigned char prefix[MAX_PREFIXES];
268 /* RM and SIB are the modrm byte and the sib byte where the
269 addressing modes of this insn are encoded. */
270 modrm_byte rm;
271 rex_byte rex;
272 sib_byte sib;
273 vex_prefix vex;
275 /* Swap operand in encoding. */
276 unsigned int swap_operand;
278 /* Error message. */
279 enum i386_error error;
282 typedef struct _i386_insn i386_insn;
284 /* List of chars besides those in app.c:symbol_chars that can start an
285 operand. Used to prevent the scrubber eating vital white-space. */
286 const char extra_symbol_chars[] = "*%-(["
287 #ifdef LEX_AT
289 #endif
290 #ifdef LEX_QM
292 #endif
295 #if (defined (TE_I386AIX) \
296 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
297 && !defined (TE_GNU) \
298 && !defined (TE_LINUX) \
299 && !defined (TE_NETWARE) \
300 && !defined (TE_FreeBSD) \
301 && !defined (TE_NetBSD)))
302 /* This array holds the chars that always start a comment. If the
303 pre-processor is disabled, these aren't very useful. The option
304 --divide will remove '/' from this list. */
305 const char *i386_comment_chars = "#/";
306 #define SVR4_COMMENT_CHARS 1
307 #define PREFIX_SEPARATOR '\\'
309 #else
310 const char *i386_comment_chars = "#";
311 #define PREFIX_SEPARATOR '/'
312 #endif
314 /* This array holds the chars that only start a comment at the beginning of
315 a line. If the line seems to have the form '# 123 filename'
316 .line and .file directives will appear in the pre-processed output.
317 Note that input_file.c hand checks for '#' at the beginning of the
318 first line of the input file. This is because the compiler outputs
319 #NO_APP at the beginning of its output.
320 Also note that comments started like this one will always work if
321 '/' isn't otherwise defined. */
322 const char line_comment_chars[] = "#/";
324 const char line_separator_chars[] = ";";
326 /* Chars that can be used to separate mant from exp in floating point
327 nums. */
328 const char EXP_CHARS[] = "eE";
330 /* Chars that mean this number is a floating point constant
331 As in 0f12.456
332 or 0d1.2345e12. */
333 const char FLT_CHARS[] = "fFdDxX";
335 /* Tables for lexical analysis. */
336 static char mnemonic_chars[256];
337 static char register_chars[256];
338 static char operand_chars[256];
339 static char identifier_chars[256];
340 static char digit_chars[256];
342 /* Lexical macros. */
343 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
344 #define is_operand_char(x) (operand_chars[(unsigned char) x])
345 #define is_register_char(x) (register_chars[(unsigned char) x])
346 #define is_space_char(x) ((x) == ' ')
347 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
348 #define is_digit_char(x) (digit_chars[(unsigned char) x])
350 /* All non-digit non-letter characters that may occur in an operand. */
351 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
353 /* md_assemble() always leaves the strings it's passed unaltered. To
354 effect this we maintain a stack of saved characters that we've smashed
355 with '\0's (indicating end of strings for various sub-fields of the
356 assembler instruction). */
357 static char save_stack[32];
358 static char *save_stack_p;
359 #define END_STRING_AND_SAVE(s) \
360 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
361 #define RESTORE_END_STRING(s) \
362 do { *(s) = *--save_stack_p; } while (0)
364 /* The instruction we're assembling. */
365 static i386_insn i;
367 /* Possible templates for current insn. */
368 static const templates *current_templates;
370 /* Per instruction expressionS buffers: max displacements & immediates. */
371 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
372 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
374 /* Current operand we are working on. */
375 static int this_operand = -1;
377 /* We support four different modes. FLAG_CODE variable is used to distinguish
378 these. */
380 enum flag_code {
381 CODE_32BIT,
382 CODE_16BIT,
383 CODE_64BIT };
385 static enum flag_code flag_code;
386 static unsigned int object_64bit;
387 static int use_rela_relocations = 0;
389 /* The names used to print error messages. */
390 static const char *flag_code_names[] =
392 "32",
393 "16",
394 "64"
397 /* 1 for intel syntax,
398 0 if att syntax. */
399 static int intel_syntax = 0;
401 /* 1 for intel mnemonic,
402 0 if att mnemonic. */
403 static int intel_mnemonic = !SYSV386_COMPAT;
405 /* 1 if support old (<= 2.8.1) versions of gcc. */
406 static int old_gcc = OLDGCC_COMPAT;
408 /* 1 if pseudo registers are permitted. */
409 static int allow_pseudo_reg = 0;
411 /* 1 if register prefix % not required. */
412 static int allow_naked_reg = 0;
414 /* 1 if pseudo index register, eiz/riz, is allowed . */
415 static int allow_index_reg = 0;
417 static enum
419 sse_check_none = 0,
420 sse_check_warning,
421 sse_check_error
423 sse_check;
425 /* Register prefix used for error message. */
426 static const char *register_prefix = "%";
428 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
429 leave, push, and pop instructions so that gcc has the same stack
430 frame as in 32 bit mode. */
431 static char stackop_size = '\0';
433 /* Non-zero to optimize code alignment. */
434 int optimize_align_code = 1;
436 /* Non-zero to quieten some warnings. */
437 static int quiet_warnings = 0;
439 /* CPU name. */
440 static const char *cpu_arch_name = NULL;
441 static char *cpu_sub_arch_name = NULL;
443 /* CPU feature flags. */
444 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
446 /* If we have selected a cpu we are generating instructions for. */
447 static int cpu_arch_tune_set = 0;
449 /* Cpu we are generating instructions for. */
450 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
452 /* CPU feature flags of cpu we are generating instructions for. */
453 static i386_cpu_flags cpu_arch_tune_flags;
455 /* CPU instruction set architecture used. */
456 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
458 /* CPU feature flags of instruction set architecture used. */
459 i386_cpu_flags cpu_arch_isa_flags;
461 /* If set, conditional jumps are not automatically promoted to handle
462 larger than a byte offset. */
463 static unsigned int no_cond_jump_promotion = 0;
465 /* Encode SSE instructions with VEX prefix. */
466 static unsigned int sse2avx;
468 /* Encode scalar AVX instructions with specific vector length. */
469 static enum
471 vex128 = 0,
472 vex256
473 } avxscalar;
475 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
476 static symbolS *GOT_symbol;
478 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
479 unsigned int x86_dwarf2_return_column;
481 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
482 int x86_cie_data_alignment;
484 /* Interface to relax_segment.
485 There are 3 major relax states for 386 jump insns because the
486 different types of jumps add different sizes to frags when we're
487 figuring out what sort of jump to choose to reach a given label. */
489 /* Types. */
490 #define UNCOND_JUMP 0
491 #define COND_JUMP 1
492 #define COND_JUMP86 2
494 /* Sizes. */
495 #define CODE16 1
496 #define SMALL 0
497 #define SMALL16 (SMALL | CODE16)
498 #define BIG 2
499 #define BIG16 (BIG | CODE16)
501 #ifndef INLINE
502 #ifdef __GNUC__
503 #define INLINE __inline__
504 #else
505 #define INLINE
506 #endif
507 #endif
509 #define ENCODE_RELAX_STATE(type, size) \
510 ((relax_substateT) (((type) << 2) | (size)))
511 #define TYPE_FROM_RELAX_STATE(s) \
512 ((s) >> 2)
513 #define DISP_SIZE_FROM_RELAX_STATE(s) \
514 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
516 /* This table is used by relax_frag to promote short jumps to long
517 ones where necessary. SMALL (short) jumps may be promoted to BIG
518 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
519 don't allow a short jump in a 32 bit code segment to be promoted to
520 a 16 bit offset jump because it's slower (requires data size
521 prefix), and doesn't work, unless the destination is in the bottom
522 64k of the code segment (The top 16 bits of eip are zeroed). */
524 const relax_typeS md_relax_table[] =
526 /* The fields are:
527 1) most positive reach of this state,
528 2) most negative reach of this state,
529 3) how many bytes this mode will have in the variable part of the frag
530 4) which index into the table to try if we can't fit into this one. */
532 /* UNCOND_JUMP states. */
533 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
534 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
535 /* dword jmp adds 4 bytes to frag:
536 0 extra opcode bytes, 4 displacement bytes. */
537 {0, 0, 4, 0},
538 /* word jmp adds 2 byte2 to frag:
539 0 extra opcode bytes, 2 displacement bytes. */
540 {0, 0, 2, 0},
542 /* COND_JUMP states. */
543 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
544 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
545 /* dword conditionals adds 5 bytes to frag:
546 1 extra opcode byte, 4 displacement bytes. */
547 {0, 0, 5, 0},
548 /* word conditionals add 3 bytes to frag:
549 1 extra opcode byte, 2 displacement bytes. */
550 {0, 0, 3, 0},
552 /* COND_JUMP86 states. */
553 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
554 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
555 /* dword conditionals adds 5 bytes to frag:
556 1 extra opcode byte, 4 displacement bytes. */
557 {0, 0, 5, 0},
558 /* word conditionals add 4 bytes to frag:
559 1 displacement byte and a 3 byte long branch insn. */
560 {0, 0, 4, 0}
563 static const arch_entry cpu_arch[] =
565 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
566 CPU_GENERIC32_FLAGS, 0 },
567 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
568 CPU_GENERIC64_FLAGS, 0 },
569 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
570 CPU_NONE_FLAGS, 0 },
571 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
572 CPU_I186_FLAGS, 0 },
573 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
574 CPU_I286_FLAGS, 0 },
575 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
576 CPU_I386_FLAGS, 0 },
577 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
578 CPU_I486_FLAGS, 0 },
579 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
580 CPU_I586_FLAGS, 0 },
581 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
582 CPU_I686_FLAGS, 0 },
583 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
584 CPU_I586_FLAGS, 0 },
585 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
586 CPU_I686_FLAGS, 0 },
587 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
588 CPU_P2_FLAGS, 0 },
589 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
590 CPU_P3_FLAGS, 0 },
591 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
592 CPU_P4_FLAGS, 0 },
593 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
594 CPU_CORE_FLAGS, 0 },
595 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
596 CPU_NOCONA_FLAGS, 0 },
597 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
598 CPU_CORE_FLAGS, 1 },
599 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
600 CPU_CORE_FLAGS, 0 },
601 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
602 CPU_CORE2_FLAGS, 1 },
603 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
604 CPU_CORE2_FLAGS, 0 },
605 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
606 CPU_COREI7_FLAGS, 0 },
607 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
608 CPU_L1OM_FLAGS, 0 },
609 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
610 CPU_K6_FLAGS, 0 },
611 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
612 CPU_K6_2_FLAGS, 0 },
613 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
614 CPU_ATHLON_FLAGS, 0 },
615 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
616 CPU_K8_FLAGS, 1 },
617 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
618 CPU_K8_FLAGS, 0 },
619 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
620 CPU_K8_FLAGS, 0 },
621 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
622 CPU_AMDFAM10_FLAGS, 0 },
623 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BDVER1,
624 CPU_BDVER1_FLAGS, 0 },
625 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
626 CPU_8087_FLAGS, 0 },
627 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
628 CPU_287_FLAGS, 0 },
629 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
630 CPU_387_FLAGS, 0 },
631 { STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN,
632 CPU_ANY87_FLAGS, 0 },
633 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
634 CPU_MMX_FLAGS, 0 },
635 { STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN,
636 CPU_3DNOWA_FLAGS, 0 },
637 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
638 CPU_SSE_FLAGS, 0 },
639 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
640 CPU_SSE2_FLAGS, 0 },
641 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
642 CPU_SSE3_FLAGS, 0 },
643 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
644 CPU_SSSE3_FLAGS, 0 },
645 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
646 CPU_SSE4_1_FLAGS, 0 },
647 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
648 CPU_SSE4_2_FLAGS, 0 },
649 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
650 CPU_SSE4_2_FLAGS, 0 },
651 { STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN,
652 CPU_ANY_SSE_FLAGS, 0 },
653 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
654 CPU_AVX_FLAGS, 0 },
655 { STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN,
656 CPU_ANY_AVX_FLAGS, 0 },
657 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
658 CPU_VMX_FLAGS, 0 },
659 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
660 CPU_SMX_FLAGS, 0 },
661 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
662 CPU_XSAVE_FLAGS, 0 },
663 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
664 CPU_AES_FLAGS, 0 },
665 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
666 CPU_PCLMUL_FLAGS, 0 },
667 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
668 CPU_PCLMUL_FLAGS, 1 },
669 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
670 CPU_FMA_FLAGS, 0 },
671 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
672 CPU_FMA4_FLAGS, 0 },
673 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
674 CPU_XOP_FLAGS, 0 },
675 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
676 CPU_LWP_FLAGS, 0 },
677 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
678 CPU_MOVBE_FLAGS, 0 },
679 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
680 CPU_EPT_FLAGS, 0 },
681 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
682 CPU_CLFLUSH_FLAGS, 0 },
683 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
684 CPU_SYSCALL_FLAGS, 0 },
685 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
686 CPU_RDTSCP_FLAGS, 0 },
687 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
688 CPU_3DNOW_FLAGS, 0 },
689 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
690 CPU_3DNOWA_FLAGS, 0 },
691 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
692 CPU_PADLOCK_FLAGS, 0 },
693 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
694 CPU_SVME_FLAGS, 1 },
695 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
696 CPU_SVME_FLAGS, 0 },
697 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
698 CPU_SSE4A_FLAGS, 0 },
699 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
700 CPU_ABM_FLAGS, 0 },
703 #ifdef I386COFF
704 /* Like s_lcomm_internal in gas/read.c but the alignment string
705 is allowed to be optional. */
707 static symbolS *
708 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
710 addressT align = 0;
712 SKIP_WHITESPACE ();
714 if (needs_align
715 && *input_line_pointer == ',')
717 align = parse_align (needs_align - 1);
719 if (align == (addressT) -1)
720 return NULL;
722 else
724 if (size >= 8)
725 align = 3;
726 else if (size >= 4)
727 align = 2;
728 else if (size >= 2)
729 align = 1;
730 else
731 align = 0;
734 bss_alloc (symbolP, size, align);
735 return symbolP;
738 static void
739 pe_lcomm (int needs_align)
741 s_comm_internal (needs_align * 2, pe_lcomm_internal);
743 #endif
745 const pseudo_typeS md_pseudo_table[] =
747 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
748 {"align", s_align_bytes, 0},
749 #else
750 {"align", s_align_ptwo, 0},
751 #endif
752 {"arch", set_cpu_arch, 0},
753 #ifndef I386COFF
754 {"bss", s_bss, 0},
755 #else
756 {"lcomm", pe_lcomm, 1},
757 #endif
758 {"ffloat", float_cons, 'f'},
759 {"dfloat", float_cons, 'd'},
760 {"tfloat", float_cons, 'x'},
761 {"value", cons, 2},
762 {"slong", signed_cons, 4},
763 {"noopt", s_ignore, 0},
764 {"optim", s_ignore, 0},
765 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
766 {"code16", set_code_flag, CODE_16BIT},
767 {"code32", set_code_flag, CODE_32BIT},
768 {"code64", set_code_flag, CODE_64BIT},
769 {"intel_syntax", set_intel_syntax, 1},
770 {"att_syntax", set_intel_syntax, 0},
771 {"intel_mnemonic", set_intel_mnemonic, 1},
772 {"att_mnemonic", set_intel_mnemonic, 0},
773 {"allow_index_reg", set_allow_index_reg, 1},
774 {"disallow_index_reg", set_allow_index_reg, 0},
775 {"sse_check", set_sse_check, 0},
776 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
777 {"largecomm", handle_large_common, 0},
778 #else
779 {"file", (void (*) (int)) dwarf2_directive_file, 0},
780 {"loc", dwarf2_directive_loc, 0},
781 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
782 #endif
783 #ifdef TE_PE
784 {"secrel32", pe_directive_secrel, 0},
785 #endif
786 {0, 0, 0}
789 /* For interface with expression (). */
790 extern char *input_line_pointer;
792 /* Hash table for instruction mnemonic lookup. */
793 static struct hash_control *op_hash;
795 /* Hash table for register lookup. */
796 static struct hash_control *reg_hash;
798 void
799 i386_align_code (fragS *fragP, int count)
801 /* Various efficient no-op patterns for aligning code labels.
802 Note: Don't try to assemble the instructions in the comments.
803 0L and 0w are not legal. */
804 static const char f32_1[] =
805 {0x90}; /* nop */
806 static const char f32_2[] =
807 {0x66,0x90}; /* xchg %ax,%ax */
808 static const char f32_3[] =
809 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
810 static const char f32_4[] =
811 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
812 static const char f32_5[] =
813 {0x90, /* nop */
814 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
815 static const char f32_6[] =
816 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
817 static const char f32_7[] =
818 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
819 static const char f32_8[] =
820 {0x90, /* nop */
821 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
822 static const char f32_9[] =
823 {0x89,0xf6, /* movl %esi,%esi */
824 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
825 static const char f32_10[] =
826 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
827 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
828 static const char f32_11[] =
829 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
830 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
831 static const char f32_12[] =
832 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
833 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
834 static const char f32_13[] =
835 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
836 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
837 static const char f32_14[] =
838 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
839 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
840 static const char f16_3[] =
841 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
842 static const char f16_4[] =
843 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
844 static const char f16_5[] =
845 {0x90, /* nop */
846 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
847 static const char f16_6[] =
848 {0x89,0xf6, /* mov %si,%si */
849 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
850 static const char f16_7[] =
851 {0x8d,0x74,0x00, /* lea 0(%si),%si */
852 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
853 static const char f16_8[] =
854 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
855 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
856 static const char jump_31[] =
857 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
858 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
859 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
860 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
861 static const char *const f32_patt[] = {
862 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
863 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
865 static const char *const f16_patt[] = {
866 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
868 /* nopl (%[re]ax) */
869 static const char alt_3[] =
870 {0x0f,0x1f,0x00};
871 /* nopl 0(%[re]ax) */
872 static const char alt_4[] =
873 {0x0f,0x1f,0x40,0x00};
874 /* nopl 0(%[re]ax,%[re]ax,1) */
875 static const char alt_5[] =
876 {0x0f,0x1f,0x44,0x00,0x00};
877 /* nopw 0(%[re]ax,%[re]ax,1) */
878 static const char alt_6[] =
879 {0x66,0x0f,0x1f,0x44,0x00,0x00};
880 /* nopl 0L(%[re]ax) */
881 static const char alt_7[] =
882 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
883 /* nopl 0L(%[re]ax,%[re]ax,1) */
884 static const char alt_8[] =
885 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
886 /* nopw 0L(%[re]ax,%[re]ax,1) */
887 static const char alt_9[] =
888 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
889 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
890 static const char alt_10[] =
891 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
892 /* data16
893 nopw %cs:0L(%[re]ax,%[re]ax,1) */
894 static const char alt_long_11[] =
895 {0x66,
896 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
897 /* data16
898 data16
899 nopw %cs:0L(%[re]ax,%[re]ax,1) */
900 static const char alt_long_12[] =
901 {0x66,
902 0x66,
903 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
904 /* data16
905 data16
906 data16
907 nopw %cs:0L(%[re]ax,%[re]ax,1) */
908 static const char alt_long_13[] =
909 {0x66,
910 0x66,
911 0x66,
912 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
913 /* data16
914 data16
915 data16
916 data16
917 nopw %cs:0L(%[re]ax,%[re]ax,1) */
918 static const char alt_long_14[] =
919 {0x66,
920 0x66,
921 0x66,
922 0x66,
923 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
924 /* data16
925 data16
926 data16
927 data16
928 data16
929 nopw %cs:0L(%[re]ax,%[re]ax,1) */
930 static const char alt_long_15[] =
931 {0x66,
932 0x66,
933 0x66,
934 0x66,
935 0x66,
936 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
937 /* nopl 0(%[re]ax,%[re]ax,1)
938 nopw 0(%[re]ax,%[re]ax,1) */
939 static const char alt_short_11[] =
940 {0x0f,0x1f,0x44,0x00,0x00,
941 0x66,0x0f,0x1f,0x44,0x00,0x00};
942 /* nopw 0(%[re]ax,%[re]ax,1)
943 nopw 0(%[re]ax,%[re]ax,1) */
944 static const char alt_short_12[] =
945 {0x66,0x0f,0x1f,0x44,0x00,0x00,
946 0x66,0x0f,0x1f,0x44,0x00,0x00};
947 /* nopw 0(%[re]ax,%[re]ax,1)
948 nopl 0L(%[re]ax) */
949 static const char alt_short_13[] =
950 {0x66,0x0f,0x1f,0x44,0x00,0x00,
951 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
952 /* nopl 0L(%[re]ax)
953 nopl 0L(%[re]ax) */
954 static const char alt_short_14[] =
955 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
956 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
957 /* nopl 0L(%[re]ax)
958 nopl 0L(%[re]ax,%[re]ax,1) */
959 static const char alt_short_15[] =
960 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
961 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
962 static const char *const alt_short_patt[] = {
963 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
964 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
965 alt_short_14, alt_short_15
967 static const char *const alt_long_patt[] = {
968 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
969 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
970 alt_long_14, alt_long_15
973 /* Only align for at least a positive non-zero boundary. */
974 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
975 return;
977 /* We need to decide which NOP sequence to use for 32bit and
978 64bit. When -mtune= is used:
980 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
981 PROCESSOR_GENERIC32, f32_patt will be used.
982 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
983 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
984 PROCESSOR_GENERIC64, alt_long_patt will be used.
985 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
986 PROCESSOR_AMDFAM10, and PROCESSOR_BDVER1, alt_short_patt
987 will be used.
989 When -mtune= isn't used, alt_long_patt will be used if
990 cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will
991 be used.
993 When -march= or .arch is used, we can't use anything beyond
994 cpu_arch_isa_flags. */
996 if (flag_code == CODE_16BIT)
998 if (count > 8)
1000 memcpy (fragP->fr_literal + fragP->fr_fix,
1001 jump_31, count);
1002 /* Adjust jump offset. */
1003 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1005 else
1006 memcpy (fragP->fr_literal + fragP->fr_fix,
1007 f16_patt[count - 1], count);
1009 else
1011 const char *const *patt = NULL;
1013 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1015 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1016 switch (cpu_arch_tune)
1018 case PROCESSOR_UNKNOWN:
1019 /* We use cpu_arch_isa_flags to check if we SHOULD
1020 optimize for Cpu686. */
1021 if (fragP->tc_frag_data.isa_flags.bitfield.cpui686)
1022 patt = alt_long_patt;
1023 else
1024 patt = f32_patt;
1025 break;
1026 case PROCESSOR_PENTIUMPRO:
1027 case PROCESSOR_PENTIUM4:
1028 case PROCESSOR_NOCONA:
1029 case PROCESSOR_CORE:
1030 case PROCESSOR_CORE2:
1031 case PROCESSOR_COREI7:
1032 case PROCESSOR_L1OM:
1033 case PROCESSOR_GENERIC64:
1034 patt = alt_long_patt;
1035 break;
1036 case PROCESSOR_K6:
1037 case PROCESSOR_ATHLON:
1038 case PROCESSOR_K8:
1039 case PROCESSOR_AMDFAM10:
1040 case PROCESSOR_BDVER1:
1041 patt = alt_short_patt;
1042 break;
1043 case PROCESSOR_I386:
1044 case PROCESSOR_I486:
1045 case PROCESSOR_PENTIUM:
1046 case PROCESSOR_GENERIC32:
1047 patt = f32_patt;
1048 break;
1051 else
1053 switch (fragP->tc_frag_data.tune)
1055 case PROCESSOR_UNKNOWN:
1056 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1057 PROCESSOR_UNKNOWN. */
1058 abort ();
1059 break;
1061 case PROCESSOR_I386:
1062 case PROCESSOR_I486:
1063 case PROCESSOR_PENTIUM:
1064 case PROCESSOR_K6:
1065 case PROCESSOR_ATHLON:
1066 case PROCESSOR_K8:
1067 case PROCESSOR_AMDFAM10:
1068 case PROCESSOR_BDVER1:
1069 case PROCESSOR_GENERIC32:
1070 /* We use cpu_arch_isa_flags to check if we CAN optimize
1071 for Cpu686. */
1072 if (fragP->tc_frag_data.isa_flags.bitfield.cpui686)
1073 patt = alt_short_patt;
1074 else
1075 patt = f32_patt;
1076 break;
1077 case PROCESSOR_PENTIUMPRO:
1078 case PROCESSOR_PENTIUM4:
1079 case PROCESSOR_NOCONA:
1080 case PROCESSOR_CORE:
1081 case PROCESSOR_CORE2:
1082 case PROCESSOR_COREI7:
1083 case PROCESSOR_L1OM:
1084 if (fragP->tc_frag_data.isa_flags.bitfield.cpui686)
1085 patt = alt_long_patt;
1086 else
1087 patt = f32_patt;
1088 break;
1089 case PROCESSOR_GENERIC64:
1090 patt = alt_long_patt;
1091 break;
1095 if (patt == f32_patt)
1097 /* If the padding is less than 15 bytes, we use the normal
1098 ones. Otherwise, we use a jump instruction and adjust
1099 its offset. */
1100 int limit;
1102 /* For 64bit, the limit is 3 bytes. */
1103 if (flag_code == CODE_64BIT
1104 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1105 limit = 3;
1106 else
1107 limit = 15;
1108 if (count < limit)
1109 memcpy (fragP->fr_literal + fragP->fr_fix,
1110 patt[count - 1], count);
1111 else
1113 memcpy (fragP->fr_literal + fragP->fr_fix,
1114 jump_31, count);
1115 /* Adjust jump offset. */
1116 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1119 else
1121 /* Maximum length of an instruction is 15 byte. If the
1122 padding is greater than 15 bytes and we don't use jump,
1123 we have to break it into smaller pieces. */
1124 int padding = count;
1125 while (padding > 15)
1127 padding -= 15;
1128 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1129 patt [14], 15);
1132 if (padding)
1133 memcpy (fragP->fr_literal + fragP->fr_fix,
1134 patt [padding - 1], padding);
1137 fragP->fr_var = count;
1140 static INLINE int
1141 operand_type_all_zero (const union i386_operand_type *x)
1143 switch (ARRAY_SIZE(x->array))
1145 case 3:
1146 if (x->array[2])
1147 return 0;
1148 case 2:
1149 if (x->array[1])
1150 return 0;
1151 case 1:
1152 return !x->array[0];
1153 default:
1154 abort ();
1158 static INLINE void
1159 operand_type_set (union i386_operand_type *x, unsigned int v)
1161 switch (ARRAY_SIZE(x->array))
1163 case 3:
1164 x->array[2] = v;
1165 case 2:
1166 x->array[1] = v;
1167 case 1:
1168 x->array[0] = v;
1169 break;
1170 default:
1171 abort ();
1175 static INLINE int
1176 operand_type_equal (const union i386_operand_type *x,
1177 const union i386_operand_type *y)
1179 switch (ARRAY_SIZE(x->array))
1181 case 3:
1182 if (x->array[2] != y->array[2])
1183 return 0;
1184 case 2:
1185 if (x->array[1] != y->array[1])
1186 return 0;
1187 case 1:
1188 return x->array[0] == y->array[0];
1189 break;
1190 default:
1191 abort ();
1195 static INLINE int
1196 cpu_flags_all_zero (const union i386_cpu_flags *x)
1198 switch (ARRAY_SIZE(x->array))
1200 case 3:
1201 if (x->array[2])
1202 return 0;
1203 case 2:
1204 if (x->array[1])
1205 return 0;
1206 case 1:
1207 return !x->array[0];
1208 default:
1209 abort ();
1213 static INLINE void
1214 cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
1216 switch (ARRAY_SIZE(x->array))
1218 case 3:
1219 x->array[2] = v;
1220 case 2:
1221 x->array[1] = v;
1222 case 1:
1223 x->array[0] = v;
1224 break;
1225 default:
1226 abort ();
1230 static INLINE int
1231 cpu_flags_equal (const union i386_cpu_flags *x,
1232 const union i386_cpu_flags *y)
1234 switch (ARRAY_SIZE(x->array))
1236 case 3:
1237 if (x->array[2] != y->array[2])
1238 return 0;
1239 case 2:
1240 if (x->array[1] != y->array[1])
1241 return 0;
1242 case 1:
1243 return x->array[0] == y->array[0];
1244 break;
1245 default:
1246 abort ();
1250 static INLINE int
1251 cpu_flags_check_cpu64 (i386_cpu_flags f)
1253 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1254 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1257 static INLINE i386_cpu_flags
1258 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1260 switch (ARRAY_SIZE (x.array))
1262 case 3:
1263 x.array [2] &= y.array [2];
1264 case 2:
1265 x.array [1] &= y.array [1];
1266 case 1:
1267 x.array [0] &= y.array [0];
1268 break;
1269 default:
1270 abort ();
1272 return x;
1275 static INLINE i386_cpu_flags
1276 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1278 switch (ARRAY_SIZE (x.array))
1280 case 3:
1281 x.array [2] |= y.array [2];
1282 case 2:
1283 x.array [1] |= y.array [1];
1284 case 1:
1285 x.array [0] |= y.array [0];
1286 break;
1287 default:
1288 abort ();
1290 return x;
1293 static INLINE i386_cpu_flags
1294 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1296 switch (ARRAY_SIZE (x.array))
1298 case 3:
1299 x.array [2] &= ~y.array [2];
1300 case 2:
1301 x.array [1] &= ~y.array [1];
1302 case 1:
1303 x.array [0] &= ~y.array [0];
1304 break;
1305 default:
1306 abort ();
1308 return x;
1311 #define CPU_FLAGS_ARCH_MATCH 0x1
1312 #define CPU_FLAGS_64BIT_MATCH 0x2
1313 #define CPU_FLAGS_AES_MATCH 0x4
1314 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1315 #define CPU_FLAGS_AVX_MATCH 0x10
1317 #define CPU_FLAGS_32BIT_MATCH \
1318 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1319 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1320 #define CPU_FLAGS_PERFECT_MATCH \
1321 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1323 /* Return CPU flags match bits. */
1325 static int
1326 cpu_flags_match (const insn_template *t)
1328 i386_cpu_flags x = t->cpu_flags;
1329 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1331 x.bitfield.cpu64 = 0;
1332 x.bitfield.cpuno64 = 0;
1334 if (cpu_flags_all_zero (&x))
1336 /* This instruction is available on all archs. */
1337 match |= CPU_FLAGS_32BIT_MATCH;
1339 else
1341 /* This instruction is available only on some archs. */
1342 i386_cpu_flags cpu = cpu_arch_flags;
1344 cpu.bitfield.cpu64 = 0;
1345 cpu.bitfield.cpuno64 = 0;
1346 cpu = cpu_flags_and (x, cpu);
1347 if (!cpu_flags_all_zero (&cpu))
1349 if (x.bitfield.cpuavx)
1351 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1352 if (cpu.bitfield.cpuavx)
1354 /* Check SSE2AVX. */
1355 if (!t->opcode_modifier.sse2avx|| sse2avx)
1357 match |= (CPU_FLAGS_ARCH_MATCH
1358 | CPU_FLAGS_AVX_MATCH);
1359 /* Check AES. */
1360 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1361 match |= CPU_FLAGS_AES_MATCH;
1362 /* Check PCLMUL. */
1363 if (!x.bitfield.cpupclmul
1364 || cpu.bitfield.cpupclmul)
1365 match |= CPU_FLAGS_PCLMUL_MATCH;
1368 else
1369 match |= CPU_FLAGS_ARCH_MATCH;
1371 else
1372 match |= CPU_FLAGS_32BIT_MATCH;
1375 return match;
1378 static INLINE i386_operand_type
1379 operand_type_and (i386_operand_type x, i386_operand_type y)
1381 switch (ARRAY_SIZE (x.array))
1383 case 3:
1384 x.array [2] &= y.array [2];
1385 case 2:
1386 x.array [1] &= y.array [1];
1387 case 1:
1388 x.array [0] &= y.array [0];
1389 break;
1390 default:
1391 abort ();
1393 return x;
1396 static INLINE i386_operand_type
1397 operand_type_or (i386_operand_type x, i386_operand_type y)
1399 switch (ARRAY_SIZE (x.array))
1401 case 3:
1402 x.array [2] |= y.array [2];
1403 case 2:
1404 x.array [1] |= y.array [1];
1405 case 1:
1406 x.array [0] |= y.array [0];
1407 break;
1408 default:
1409 abort ();
1411 return x;
1414 static INLINE i386_operand_type
1415 operand_type_xor (i386_operand_type x, i386_operand_type y)
1417 switch (ARRAY_SIZE (x.array))
1419 case 3:
1420 x.array [2] ^= y.array [2];
1421 case 2:
1422 x.array [1] ^= y.array [1];
1423 case 1:
1424 x.array [0] ^= y.array [0];
1425 break;
1426 default:
1427 abort ();
1429 return x;
1432 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1433 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1434 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1435 static const i386_operand_type inoutportreg
1436 = OPERAND_TYPE_INOUTPORTREG;
1437 static const i386_operand_type reg16_inoutportreg
1438 = OPERAND_TYPE_REG16_INOUTPORTREG;
1439 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1440 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1441 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1442 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1443 static const i386_operand_type anydisp
1444 = OPERAND_TYPE_ANYDISP;
1445 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1446 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1447 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1448 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1449 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1450 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1451 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1452 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1453 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1454 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1455 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1456 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1458 enum operand_type
1460 reg,
1461 imm,
1462 disp,
1463 anymem
1466 static INLINE int
1467 operand_type_check (i386_operand_type t, enum operand_type c)
1469 switch (c)
1471 case reg:
1472 return (t.bitfield.reg8
1473 || t.bitfield.reg16
1474 || t.bitfield.reg32
1475 || t.bitfield.reg64);
1477 case imm:
1478 return (t.bitfield.imm8
1479 || t.bitfield.imm8s
1480 || t.bitfield.imm16
1481 || t.bitfield.imm32
1482 || t.bitfield.imm32s
1483 || t.bitfield.imm64);
1485 case disp:
1486 return (t.bitfield.disp8
1487 || t.bitfield.disp16
1488 || t.bitfield.disp32
1489 || t.bitfield.disp32s
1490 || t.bitfield.disp64);
1492 case anymem:
1493 return (t.bitfield.disp8
1494 || t.bitfield.disp16
1495 || t.bitfield.disp32
1496 || t.bitfield.disp32s
1497 || t.bitfield.disp64
1498 || t.bitfield.baseindex);
1500 default:
1501 abort ();
1504 return 0;
1507 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1508 operand J for instruction template T. */
1510 static INLINE int
1511 match_reg_size (const insn_template *t, unsigned int j)
1513 return !((i.types[j].bitfield.byte
1514 && !t->operand_types[j].bitfield.byte)
1515 || (i.types[j].bitfield.word
1516 && !t->operand_types[j].bitfield.word)
1517 || (i.types[j].bitfield.dword
1518 && !t->operand_types[j].bitfield.dword)
1519 || (i.types[j].bitfield.qword
1520 && !t->operand_types[j].bitfield.qword));
1523 /* Return 1 if there is no conflict in any size on operand J for
1524 instruction template T. */
1526 static INLINE int
1527 match_mem_size (const insn_template *t, unsigned int j)
1529 return (match_reg_size (t, j)
1530 && !((i.types[j].bitfield.unspecified
1531 && !t->operand_types[j].bitfield.unspecified)
1532 || (i.types[j].bitfield.fword
1533 && !t->operand_types[j].bitfield.fword)
1534 || (i.types[j].bitfield.tbyte
1535 && !t->operand_types[j].bitfield.tbyte)
1536 || (i.types[j].bitfield.xmmword
1537 && !t->operand_types[j].bitfield.xmmword)
1538 || (i.types[j].bitfield.ymmword
1539 && !t->operand_types[j].bitfield.ymmword)));
1542 /* Return 1 if there is no size conflict on any operands for
1543 instruction template T. */
1545 static INLINE int
1546 operand_size_match (const insn_template *t)
1548 unsigned int j;
1549 int match = 1;
1551 /* Don't check jump instructions. */
1552 if (t->opcode_modifier.jump
1553 || t->opcode_modifier.jumpbyte
1554 || t->opcode_modifier.jumpdword
1555 || t->opcode_modifier.jumpintersegment)
1556 return match;
1558 /* Check memory and accumulator operand size. */
1559 for (j = 0; j < i.operands; j++)
1561 if (t->operand_types[j].bitfield.anysize)
1562 continue;
1564 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1566 match = 0;
1567 break;
1570 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1572 match = 0;
1573 break;
1577 if (match)
1578 return match;
1579 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1581 mismatch:
1582 i.error = operand_size_mismatch;
1583 return 0;
1586 /* Check reverse. */
1587 gas_assert (i.operands == 2);
1589 match = 1;
1590 for (j = 0; j < 2; j++)
1592 if (t->operand_types[j].bitfield.acc
1593 && !match_reg_size (t, j ? 0 : 1))
1594 goto mismatch;
1596 if (i.types[j].bitfield.mem
1597 && !match_mem_size (t, j ? 0 : 1))
1598 goto mismatch;
1601 return match;
1604 static INLINE int
1605 operand_type_match (i386_operand_type overlap,
1606 i386_operand_type given)
1608 i386_operand_type temp = overlap;
1610 temp.bitfield.jumpabsolute = 0;
1611 temp.bitfield.unspecified = 0;
1612 temp.bitfield.byte = 0;
1613 temp.bitfield.word = 0;
1614 temp.bitfield.dword = 0;
1615 temp.bitfield.fword = 0;
1616 temp.bitfield.qword = 0;
1617 temp.bitfield.tbyte = 0;
1618 temp.bitfield.xmmword = 0;
1619 temp.bitfield.ymmword = 0;
1620 if (operand_type_all_zero (&temp))
1621 goto mismatch;
1623 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1624 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1625 return 1;
1627 mismatch:
1628 i.error = operand_type_mismatch;
1629 return 0;
1632 /* If given types g0 and g1 are registers they must be of the same type
1633 unless the expected operand type register overlap is null.
1634 Note that Acc in a template matches every size of reg. */
1636 static INLINE int
1637 operand_type_register_match (i386_operand_type m0,
1638 i386_operand_type g0,
1639 i386_operand_type t0,
1640 i386_operand_type m1,
1641 i386_operand_type g1,
1642 i386_operand_type t1)
1644 if (!operand_type_check (g0, reg))
1645 return 1;
1647 if (!operand_type_check (g1, reg))
1648 return 1;
1650 if (g0.bitfield.reg8 == g1.bitfield.reg8
1651 && g0.bitfield.reg16 == g1.bitfield.reg16
1652 && g0.bitfield.reg32 == g1.bitfield.reg32
1653 && g0.bitfield.reg64 == g1.bitfield.reg64)
1654 return 1;
1656 if (m0.bitfield.acc)
1658 t0.bitfield.reg8 = 1;
1659 t0.bitfield.reg16 = 1;
1660 t0.bitfield.reg32 = 1;
1661 t0.bitfield.reg64 = 1;
1664 if (m1.bitfield.acc)
1666 t1.bitfield.reg8 = 1;
1667 t1.bitfield.reg16 = 1;
1668 t1.bitfield.reg32 = 1;
1669 t1.bitfield.reg64 = 1;
1672 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1673 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1674 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1675 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1676 return 1;
1678 i.error = register_type_mismatch;
1680 return 0;
1683 static INLINE unsigned int
1684 mode_from_disp_size (i386_operand_type t)
1686 if (t.bitfield.disp8)
1687 return 1;
1688 else if (t.bitfield.disp16
1689 || t.bitfield.disp32
1690 || t.bitfield.disp32s)
1691 return 2;
1692 else
1693 return 0;
1696 static INLINE int
1697 fits_in_signed_byte (offsetT num)
1699 return (num >= -128) && (num <= 127);
1702 static INLINE int
1703 fits_in_unsigned_byte (offsetT num)
1705 return (num & 0xff) == num;
1708 static INLINE int
1709 fits_in_unsigned_word (offsetT num)
1711 return (num & 0xffff) == num;
1714 static INLINE int
1715 fits_in_signed_word (offsetT num)
1717 return (-32768 <= num) && (num <= 32767);
1720 static INLINE int
1721 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
1723 #ifndef BFD64
1724 return 1;
1725 #else
1726 return (!(((offsetT) -1 << 31) & num)
1727 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
1728 #endif
1729 } /* fits_in_signed_long() */
1731 static INLINE int
1732 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
1734 #ifndef BFD64
1735 return 1;
1736 #else
1737 return (num & (((offsetT) 2 << 31) - 1)) == num;
1738 #endif
1739 } /* fits_in_unsigned_long() */
1741 static INLINE int
1742 fits_in_imm4 (offsetT num)
1744 return (num & 0xf) == num;
1747 static i386_operand_type
1748 smallest_imm_type (offsetT num)
1750 i386_operand_type t;
1752 operand_type_set (&t, 0);
1753 t.bitfield.imm64 = 1;
1755 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
1757 /* This code is disabled on the 486 because all the Imm1 forms
1758 in the opcode table are slower on the i486. They're the
1759 versions with the implicitly specified single-position
1760 displacement, which has another syntax if you really want to
1761 use that form. */
1762 t.bitfield.imm1 = 1;
1763 t.bitfield.imm8 = 1;
1764 t.bitfield.imm8s = 1;
1765 t.bitfield.imm16 = 1;
1766 t.bitfield.imm32 = 1;
1767 t.bitfield.imm32s = 1;
1769 else if (fits_in_signed_byte (num))
1771 t.bitfield.imm8 = 1;
1772 t.bitfield.imm8s = 1;
1773 t.bitfield.imm16 = 1;
1774 t.bitfield.imm32 = 1;
1775 t.bitfield.imm32s = 1;
1777 else if (fits_in_unsigned_byte (num))
1779 t.bitfield.imm8 = 1;
1780 t.bitfield.imm16 = 1;
1781 t.bitfield.imm32 = 1;
1782 t.bitfield.imm32s = 1;
1784 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
1786 t.bitfield.imm16 = 1;
1787 t.bitfield.imm32 = 1;
1788 t.bitfield.imm32s = 1;
1790 else if (fits_in_signed_long (num))
1792 t.bitfield.imm32 = 1;
1793 t.bitfield.imm32s = 1;
1795 else if (fits_in_unsigned_long (num))
1796 t.bitfield.imm32 = 1;
1798 return t;
1801 static offsetT
1802 offset_in_range (offsetT val, int size)
1804 addressT mask;
1806 switch (size)
1808 case 1: mask = ((addressT) 1 << 8) - 1; break;
1809 case 2: mask = ((addressT) 1 << 16) - 1; break;
1810 case 4: mask = ((addressT) 2 << 31) - 1; break;
1811 #ifdef BFD64
1812 case 8: mask = ((addressT) 2 << 63) - 1; break;
1813 #endif
1814 default: abort ();
1817 #ifdef BFD64
1818 /* If BFD64, sign extend val for 32bit address mode. */
1819 if (flag_code != CODE_64BIT
1820 || i.prefix[ADDR_PREFIX])
1821 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
1822 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
1823 #endif
1825 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
1827 char buf1[40], buf2[40];
1829 sprint_value (buf1, val);
1830 sprint_value (buf2, val & mask);
1831 as_warn (_("%s shortened to %s"), buf1, buf2);
1833 return val & mask;
1836 enum PREFIX_GROUP
1838 PREFIX_EXIST = 0,
1839 PREFIX_LOCK,
1840 PREFIX_REP,
1841 PREFIX_OTHER
1844 /* Returns
1845 a. PREFIX_EXIST if attempting to add a prefix where one from the
1846 same class already exists.
1847 b. PREFIX_LOCK if lock prefix is added.
1848 c. PREFIX_REP if rep/repne prefix is added.
1849 d. PREFIX_OTHER if other prefix is added.
1852 static enum PREFIX_GROUP
1853 add_prefix (unsigned int prefix)
1855 enum PREFIX_GROUP ret = PREFIX_OTHER;
1856 unsigned int q;
1858 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
1859 && flag_code == CODE_64BIT)
1861 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
1862 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
1863 && (prefix & (REX_R | REX_X | REX_B))))
1864 ret = PREFIX_EXIST;
1865 q = REX_PREFIX;
1867 else
1869 switch (prefix)
1871 default:
1872 abort ();
1874 case CS_PREFIX_OPCODE:
1875 case DS_PREFIX_OPCODE:
1876 case ES_PREFIX_OPCODE:
1877 case FS_PREFIX_OPCODE:
1878 case GS_PREFIX_OPCODE:
1879 case SS_PREFIX_OPCODE:
1880 q = SEG_PREFIX;
1881 break;
1883 case REPNE_PREFIX_OPCODE:
1884 case REPE_PREFIX_OPCODE:
1885 q = REP_PREFIX;
1886 ret = PREFIX_REP;
1887 break;
1889 case LOCK_PREFIX_OPCODE:
1890 q = LOCK_PREFIX;
1891 ret = PREFIX_LOCK;
1892 break;
1894 case FWAIT_OPCODE:
1895 q = WAIT_PREFIX;
1896 break;
1898 case ADDR_PREFIX_OPCODE:
1899 q = ADDR_PREFIX;
1900 break;
1902 case DATA_PREFIX_OPCODE:
1903 q = DATA_PREFIX;
1904 break;
1906 if (i.prefix[q] != 0)
1907 ret = PREFIX_EXIST;
1910 if (ret)
1912 if (!i.prefix[q])
1913 ++i.prefixes;
1914 i.prefix[q] |= prefix;
1916 else
1917 as_bad (_("same type of prefix used twice"));
1919 return ret;
1922 static void
1923 set_code_flag (int value)
1925 flag_code = (enum flag_code) value;
1926 if (flag_code == CODE_64BIT)
1928 cpu_arch_flags.bitfield.cpu64 = 1;
1929 cpu_arch_flags.bitfield.cpuno64 = 0;
1931 else
1933 cpu_arch_flags.bitfield.cpu64 = 0;
1934 cpu_arch_flags.bitfield.cpuno64 = 1;
1936 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
1938 as_bad (_("64bit mode not supported on this CPU."));
1940 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
1942 as_bad (_("32bit mode not supported on this CPU."));
1944 stackop_size = '\0';
1947 static void
1948 set_16bit_gcc_code_flag (int new_code_flag)
1950 flag_code = (enum flag_code) new_code_flag;
1951 if (flag_code != CODE_16BIT)
1952 abort ();
1953 cpu_arch_flags.bitfield.cpu64 = 0;
1954 cpu_arch_flags.bitfield.cpuno64 = 1;
1955 stackop_size = LONG_MNEM_SUFFIX;
1958 static void
1959 set_intel_syntax (int syntax_flag)
1961 /* Find out if register prefixing is specified. */
1962 int ask_naked_reg = 0;
1964 SKIP_WHITESPACE ();
1965 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1967 char *string = input_line_pointer;
1968 int e = get_symbol_end ();
1970 if (strcmp (string, "prefix") == 0)
1971 ask_naked_reg = 1;
1972 else if (strcmp (string, "noprefix") == 0)
1973 ask_naked_reg = -1;
1974 else
1975 as_bad (_("bad argument to syntax directive."));
1976 *input_line_pointer = e;
1978 demand_empty_rest_of_line ();
1980 intel_syntax = syntax_flag;
1982 if (ask_naked_reg == 0)
1983 allow_naked_reg = (intel_syntax
1984 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
1985 else
1986 allow_naked_reg = (ask_naked_reg < 0);
1988 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
1990 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
1991 identifier_chars['$'] = intel_syntax ? '$' : 0;
1992 register_prefix = allow_naked_reg ? "" : "%";
1995 static void
1996 set_intel_mnemonic (int mnemonic_flag)
1998 intel_mnemonic = mnemonic_flag;
2001 static void
2002 set_allow_index_reg (int flag)
2004 allow_index_reg = flag;
2007 static void
2008 set_sse_check (int dummy ATTRIBUTE_UNUSED)
2010 SKIP_WHITESPACE ();
2012 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2014 char *string = input_line_pointer;
2015 int e = get_symbol_end ();
2017 if (strcmp (string, "none") == 0)
2018 sse_check = sse_check_none;
2019 else if (strcmp (string, "warning") == 0)
2020 sse_check = sse_check_warning;
2021 else if (strcmp (string, "error") == 0)
2022 sse_check = sse_check_error;
2023 else
2024 as_bad (_("bad argument to sse_check directive."));
2025 *input_line_pointer = e;
2027 else
2028 as_bad (_("missing argument for sse_check directive"));
2030 demand_empty_rest_of_line ();
2033 static void
2034 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2035 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2037 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2038 static const char *arch;
2040 /* Intel LIOM is only supported on ELF. */
2041 if (!IS_ELF)
2042 return;
2044 if (!arch)
2046 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2047 use default_arch. */
2048 arch = cpu_arch_name;
2049 if (!arch)
2050 arch = default_arch;
2053 /* If we are targeting Intel L1OM, we must enable it. */
2054 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2055 || new_flag.bitfield.cpul1om)
2056 return;
2058 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2059 #endif
2062 static void
2063 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2065 SKIP_WHITESPACE ();
2067 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2069 char *string = input_line_pointer;
2070 int e = get_symbol_end ();
2071 unsigned int j;
2072 i386_cpu_flags flags;
2074 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2076 if (strcmp (string, cpu_arch[j].name) == 0)
2078 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2080 if (*string != '.')
2082 cpu_arch_name = cpu_arch[j].name;
2083 cpu_sub_arch_name = NULL;
2084 cpu_arch_flags = cpu_arch[j].flags;
2085 if (flag_code == CODE_64BIT)
2087 cpu_arch_flags.bitfield.cpu64 = 1;
2088 cpu_arch_flags.bitfield.cpuno64 = 0;
2090 else
2092 cpu_arch_flags.bitfield.cpu64 = 0;
2093 cpu_arch_flags.bitfield.cpuno64 = 1;
2095 cpu_arch_isa = cpu_arch[j].type;
2096 cpu_arch_isa_flags = cpu_arch[j].flags;
2097 if (!cpu_arch_tune_set)
2099 cpu_arch_tune = cpu_arch_isa;
2100 cpu_arch_tune_flags = cpu_arch_isa_flags;
2102 break;
2105 if (strncmp (string + 1, "no", 2))
2106 flags = cpu_flags_or (cpu_arch_flags,
2107 cpu_arch[j].flags);
2108 else
2109 flags = cpu_flags_and_not (cpu_arch_flags,
2110 cpu_arch[j].flags);
2111 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2113 if (cpu_sub_arch_name)
2115 char *name = cpu_sub_arch_name;
2116 cpu_sub_arch_name = concat (name,
2117 cpu_arch[j].name,
2118 (const char *) NULL);
2119 free (name);
2121 else
2122 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2123 cpu_arch_flags = flags;
2125 *input_line_pointer = e;
2126 demand_empty_rest_of_line ();
2127 return;
2130 if (j >= ARRAY_SIZE (cpu_arch))
2131 as_bad (_("no such architecture: `%s'"), string);
2133 *input_line_pointer = e;
2135 else
2136 as_bad (_("missing cpu architecture"));
2138 no_cond_jump_promotion = 0;
2139 if (*input_line_pointer == ','
2140 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2142 char *string = ++input_line_pointer;
2143 int e = get_symbol_end ();
2145 if (strcmp (string, "nojumps") == 0)
2146 no_cond_jump_promotion = 1;
2147 else if (strcmp (string, "jumps") == 0)
2149 else
2150 as_bad (_("no such architecture modifier: `%s'"), string);
2152 *input_line_pointer = e;
2155 demand_empty_rest_of_line ();
2158 enum bfd_architecture
2159 i386_arch (void)
2161 if (cpu_arch_isa == PROCESSOR_L1OM)
2163 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2164 || flag_code != CODE_64BIT)
2165 as_fatal (_("Intel L1OM is 64bit ELF only"));
2166 return bfd_arch_l1om;
2168 else
2169 return bfd_arch_i386;
2172 unsigned long
2173 i386_mach ()
2175 if (!strcmp (default_arch, "x86_64"))
2177 if (cpu_arch_isa == PROCESSOR_L1OM)
2179 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2180 as_fatal (_("Intel L1OM is 64bit ELF only"));
2181 return bfd_mach_l1om;
2183 else
2184 return bfd_mach_x86_64;
2186 else if (!strcmp (default_arch, "i386"))
2187 return bfd_mach_i386_i386;
2188 else
2189 as_fatal (_("Unknown architecture"));
2192 void
2193 md_begin ()
2195 const char *hash_err;
2197 /* Initialize op_hash hash table. */
2198 op_hash = hash_new ();
2201 const insn_template *optab;
2202 templates *core_optab;
2204 /* Setup for loop. */
2205 optab = i386_optab;
2206 core_optab = (templates *) xmalloc (sizeof (templates));
2207 core_optab->start = optab;
2209 while (1)
2211 ++optab;
2212 if (optab->name == NULL
2213 || strcmp (optab->name, (optab - 1)->name) != 0)
2215 /* different name --> ship out current template list;
2216 add to hash table; & begin anew. */
2217 core_optab->end = optab;
2218 hash_err = hash_insert (op_hash,
2219 (optab - 1)->name,
2220 (void *) core_optab);
2221 if (hash_err)
2223 as_fatal (_("Internal Error: Can't hash %s: %s"),
2224 (optab - 1)->name,
2225 hash_err);
2227 if (optab->name == NULL)
2228 break;
2229 core_optab = (templates *) xmalloc (sizeof (templates));
2230 core_optab->start = optab;
2235 /* Initialize reg_hash hash table. */
2236 reg_hash = hash_new ();
2238 const reg_entry *regtab;
2239 unsigned int regtab_size = i386_regtab_size;
2241 for (regtab = i386_regtab; regtab_size--; regtab++)
2243 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2244 if (hash_err)
2245 as_fatal (_("Internal Error: Can't hash %s: %s"),
2246 regtab->reg_name,
2247 hash_err);
2251 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2253 int c;
2254 char *p;
2256 for (c = 0; c < 256; c++)
2258 if (ISDIGIT (c))
2260 digit_chars[c] = c;
2261 mnemonic_chars[c] = c;
2262 register_chars[c] = c;
2263 operand_chars[c] = c;
2265 else if (ISLOWER (c))
2267 mnemonic_chars[c] = c;
2268 register_chars[c] = c;
2269 operand_chars[c] = c;
2271 else if (ISUPPER (c))
2273 mnemonic_chars[c] = TOLOWER (c);
2274 register_chars[c] = mnemonic_chars[c];
2275 operand_chars[c] = c;
2278 if (ISALPHA (c) || ISDIGIT (c))
2279 identifier_chars[c] = c;
2280 else if (c >= 128)
2282 identifier_chars[c] = c;
2283 operand_chars[c] = c;
2287 #ifdef LEX_AT
2288 identifier_chars['@'] = '@';
2289 #endif
2290 #ifdef LEX_QM
2291 identifier_chars['?'] = '?';
2292 operand_chars['?'] = '?';
2293 #endif
2294 digit_chars['-'] = '-';
2295 mnemonic_chars['_'] = '_';
2296 mnemonic_chars['-'] = '-';
2297 mnemonic_chars['.'] = '.';
2298 identifier_chars['_'] = '_';
2299 identifier_chars['.'] = '.';
2301 for (p = operand_special_chars; *p != '\0'; p++)
2302 operand_chars[(unsigned char) *p] = *p;
2305 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2306 if (IS_ELF)
2308 record_alignment (text_section, 2);
2309 record_alignment (data_section, 2);
2310 record_alignment (bss_section, 2);
2312 #endif
2314 if (flag_code == CODE_64BIT)
2316 x86_dwarf2_return_column = 16;
2317 x86_cie_data_alignment = -8;
2319 else
2321 x86_dwarf2_return_column = 8;
2322 x86_cie_data_alignment = -4;
2326 void
2327 i386_print_statistics (FILE *file)
2329 hash_print_statistics (file, "i386 opcode", op_hash);
2330 hash_print_statistics (file, "i386 register", reg_hash);
2333 #ifdef DEBUG386
2335 /* Debugging routines for md_assemble. */
2336 static void pte (insn_template *);
2337 static void pt (i386_operand_type);
2338 static void pe (expressionS *);
2339 static void ps (symbolS *);
2341 static void
2342 pi (char *line, i386_insn *x)
2344 unsigned int i;
2346 fprintf (stdout, "%s: template ", line);
2347 pte (&x->tm);
2348 fprintf (stdout, " address: base %s index %s scale %x\n",
2349 x->base_reg ? x->base_reg->reg_name : "none",
2350 x->index_reg ? x->index_reg->reg_name : "none",
2351 x->log2_scale_factor);
2352 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2353 x->rm.mode, x->rm.reg, x->rm.regmem);
2354 fprintf (stdout, " sib: base %x index %x scale %x\n",
2355 x->sib.base, x->sib.index, x->sib.scale);
2356 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2357 (x->rex & REX_W) != 0,
2358 (x->rex & REX_R) != 0,
2359 (x->rex & REX_X) != 0,
2360 (x->rex & REX_B) != 0);
2361 for (i = 0; i < x->operands; i++)
2363 fprintf (stdout, " #%d: ", i + 1);
2364 pt (x->types[i]);
2365 fprintf (stdout, "\n");
2366 if (x->types[i].bitfield.reg8
2367 || x->types[i].bitfield.reg16
2368 || x->types[i].bitfield.reg32
2369 || x->types[i].bitfield.reg64
2370 || x->types[i].bitfield.regmmx
2371 || x->types[i].bitfield.regxmm
2372 || x->types[i].bitfield.regymm
2373 || x->types[i].bitfield.sreg2
2374 || x->types[i].bitfield.sreg3
2375 || x->types[i].bitfield.control
2376 || x->types[i].bitfield.debug
2377 || x->types[i].bitfield.test)
2378 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
2379 if (operand_type_check (x->types[i], imm))
2380 pe (x->op[i].imms);
2381 if (operand_type_check (x->types[i], disp))
2382 pe (x->op[i].disps);
2386 static void
2387 pte (insn_template *t)
2389 unsigned int i;
2390 fprintf (stdout, " %d operands ", t->operands);
2391 fprintf (stdout, "opcode %x ", t->base_opcode);
2392 if (t->extension_opcode != None)
2393 fprintf (stdout, "ext %x ", t->extension_opcode);
2394 if (t->opcode_modifier.d)
2395 fprintf (stdout, "D");
2396 if (t->opcode_modifier.w)
2397 fprintf (stdout, "W");
2398 fprintf (stdout, "\n");
2399 for (i = 0; i < t->operands; i++)
2401 fprintf (stdout, " #%d type ", i + 1);
2402 pt (t->operand_types[i]);
2403 fprintf (stdout, "\n");
2407 static void
2408 pe (expressionS *e)
2410 fprintf (stdout, " operation %d\n", e->X_op);
2411 fprintf (stdout, " add_number %ld (%lx)\n",
2412 (long) e->X_add_number, (long) e->X_add_number);
2413 if (e->X_add_symbol)
2415 fprintf (stdout, " add_symbol ");
2416 ps (e->X_add_symbol);
2417 fprintf (stdout, "\n");
2419 if (e->X_op_symbol)
2421 fprintf (stdout, " op_symbol ");
2422 ps (e->X_op_symbol);
2423 fprintf (stdout, "\n");
2427 static void
2428 ps (symbolS *s)
2430 fprintf (stdout, "%s type %s%s",
2431 S_GET_NAME (s),
2432 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2433 segment_name (S_GET_SEGMENT (s)));
2436 static struct type_name
2438 i386_operand_type mask;
2439 const char *name;
2441 const type_names[] =
2443 { OPERAND_TYPE_REG8, "r8" },
2444 { OPERAND_TYPE_REG16, "r16" },
2445 { OPERAND_TYPE_REG32, "r32" },
2446 { OPERAND_TYPE_REG64, "r64" },
2447 { OPERAND_TYPE_IMM8, "i8" },
2448 { OPERAND_TYPE_IMM8, "i8s" },
2449 { OPERAND_TYPE_IMM16, "i16" },
2450 { OPERAND_TYPE_IMM32, "i32" },
2451 { OPERAND_TYPE_IMM32S, "i32s" },
2452 { OPERAND_TYPE_IMM64, "i64" },
2453 { OPERAND_TYPE_IMM1, "i1" },
2454 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2455 { OPERAND_TYPE_DISP8, "d8" },
2456 { OPERAND_TYPE_DISP16, "d16" },
2457 { OPERAND_TYPE_DISP32, "d32" },
2458 { OPERAND_TYPE_DISP32S, "d32s" },
2459 { OPERAND_TYPE_DISP64, "d64" },
2460 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2461 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2462 { OPERAND_TYPE_CONTROL, "control reg" },
2463 { OPERAND_TYPE_TEST, "test reg" },
2464 { OPERAND_TYPE_DEBUG, "debug reg" },
2465 { OPERAND_TYPE_FLOATREG, "FReg" },
2466 { OPERAND_TYPE_FLOATACC, "FAcc" },
2467 { OPERAND_TYPE_SREG2, "SReg2" },
2468 { OPERAND_TYPE_SREG3, "SReg3" },
2469 { OPERAND_TYPE_ACC, "Acc" },
2470 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2471 { OPERAND_TYPE_REGMMX, "rMMX" },
2472 { OPERAND_TYPE_REGXMM, "rXMM" },
2473 { OPERAND_TYPE_REGYMM, "rYMM" },
2474 { OPERAND_TYPE_ESSEG, "es" },
2477 static void
2478 pt (i386_operand_type t)
2480 unsigned int j;
2481 i386_operand_type a;
2483 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2485 a = operand_type_and (t, type_names[j].mask);
2486 if (!operand_type_all_zero (&a))
2487 fprintf (stdout, "%s, ", type_names[j].name);
2489 fflush (stdout);
2492 #endif /* DEBUG386 */
2494 static bfd_reloc_code_real_type
2495 reloc (unsigned int size,
2496 int pcrel,
2497 int sign,
2498 bfd_reloc_code_real_type other)
2500 if (other != NO_RELOC)
2502 reloc_howto_type *rel;
2504 if (size == 8)
2505 switch (other)
2507 case BFD_RELOC_X86_64_GOT32:
2508 return BFD_RELOC_X86_64_GOT64;
2509 break;
2510 case BFD_RELOC_X86_64_PLTOFF64:
2511 return BFD_RELOC_X86_64_PLTOFF64;
2512 break;
2513 case BFD_RELOC_X86_64_GOTPC32:
2514 other = BFD_RELOC_X86_64_GOTPC64;
2515 break;
2516 case BFD_RELOC_X86_64_GOTPCREL:
2517 other = BFD_RELOC_X86_64_GOTPCREL64;
2518 break;
2519 case BFD_RELOC_X86_64_TPOFF32:
2520 other = BFD_RELOC_X86_64_TPOFF64;
2521 break;
2522 case BFD_RELOC_X86_64_DTPOFF32:
2523 other = BFD_RELOC_X86_64_DTPOFF64;
2524 break;
2525 default:
2526 break;
2529 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2530 if (size == 4 && flag_code != CODE_64BIT)
2531 sign = -1;
2533 rel = bfd_reloc_type_lookup (stdoutput, other);
2534 if (!rel)
2535 as_bad (_("unknown relocation (%u)"), other);
2536 else if (size != bfd_get_reloc_size (rel))
2537 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2538 bfd_get_reloc_size (rel),
2539 size);
2540 else if (pcrel && !rel->pc_relative)
2541 as_bad (_("non-pc-relative relocation for pc-relative field"));
2542 else if ((rel->complain_on_overflow == complain_overflow_signed
2543 && !sign)
2544 || (rel->complain_on_overflow == complain_overflow_unsigned
2545 && sign > 0))
2546 as_bad (_("relocated field and relocation type differ in signedness"));
2547 else
2548 return other;
2549 return NO_RELOC;
2552 if (pcrel)
2554 if (!sign)
2555 as_bad (_("there are no unsigned pc-relative relocations"));
2556 switch (size)
2558 case 1: return BFD_RELOC_8_PCREL;
2559 case 2: return BFD_RELOC_16_PCREL;
2560 case 4: return BFD_RELOC_32_PCREL;
2561 case 8: return BFD_RELOC_64_PCREL;
2563 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2565 else
2567 if (sign > 0)
2568 switch (size)
2570 case 4: return BFD_RELOC_X86_64_32S;
2572 else
2573 switch (size)
2575 case 1: return BFD_RELOC_8;
2576 case 2: return BFD_RELOC_16;
2577 case 4: return BFD_RELOC_32;
2578 case 8: return BFD_RELOC_64;
2580 as_bad (_("cannot do %s %u byte relocation"),
2581 sign > 0 ? "signed" : "unsigned", size);
2584 return NO_RELOC;
2587 /* Here we decide which fixups can be adjusted to make them relative to
2588 the beginning of the section instead of the symbol. Basically we need
2589 to make sure that the dynamic relocations are done correctly, so in
2590 some cases we force the original symbol to be used. */
2593 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2595 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2596 if (!IS_ELF)
2597 return 1;
2599 /* Don't adjust pc-relative references to merge sections in 64-bit
2600 mode. */
2601 if (use_rela_relocations
2602 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2603 && fixP->fx_pcrel)
2604 return 0;
2606 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2607 and changed later by validate_fix. */
2608 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2609 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2610 return 0;
2612 /* adjust_reloc_syms doesn't know about the GOT. */
2613 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2614 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2615 || fixP->fx_r_type == BFD_RELOC_386_GOT32
2616 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2617 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2618 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2619 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2620 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2621 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2622 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2623 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2624 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2625 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2626 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2627 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2628 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2629 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2630 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2631 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2632 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2633 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2634 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2635 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2636 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2637 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2638 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2639 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2640 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2641 return 0;
2642 #endif
2643 return 1;
2646 static int
2647 intel_float_operand (const char *mnemonic)
2649 /* Note that the value returned is meaningful only for opcodes with (memory)
2650 operands, hence the code here is free to improperly handle opcodes that
2651 have no operands (for better performance and smaller code). */
2653 if (mnemonic[0] != 'f')
2654 return 0; /* non-math */
2656 switch (mnemonic[1])
2658 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2659 the fs segment override prefix not currently handled because no
2660 call path can make opcodes without operands get here */
2661 case 'i':
2662 return 2 /* integer op */;
2663 case 'l':
2664 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2665 return 3; /* fldcw/fldenv */
2666 break;
2667 case 'n':
2668 if (mnemonic[2] != 'o' /* fnop */)
2669 return 3; /* non-waiting control op */
2670 break;
2671 case 'r':
2672 if (mnemonic[2] == 's')
2673 return 3; /* frstor/frstpm */
2674 break;
2675 case 's':
2676 if (mnemonic[2] == 'a')
2677 return 3; /* fsave */
2678 if (mnemonic[2] == 't')
2680 switch (mnemonic[3])
2682 case 'c': /* fstcw */
2683 case 'd': /* fstdw */
2684 case 'e': /* fstenv */
2685 case 's': /* fsts[gw] */
2686 return 3;
2689 break;
2690 case 'x':
2691 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
2692 return 0; /* fxsave/fxrstor are not really math ops */
2693 break;
2696 return 1;
2699 /* Build the VEX prefix. */
2701 static void
2702 build_vex_prefix (const insn_template *t)
2704 unsigned int register_specifier;
2705 unsigned int implied_prefix;
2706 unsigned int vector_length;
2708 /* Check register specifier. */
2709 if (i.vex.register_specifier)
2711 register_specifier = i.vex.register_specifier->reg_num;
2712 if ((i.vex.register_specifier->reg_flags & RegRex))
2713 register_specifier += 8;
2714 register_specifier = ~register_specifier & 0xf;
2716 else
2717 register_specifier = 0xf;
2719 /* Use 2-byte VEX prefix by swappping destination and source
2720 operand. */
2721 if (!i.swap_operand
2722 && i.operands == i.reg_operands
2723 && i.tm.opcode_modifier.vexopcode == VEX0F
2724 && i.tm.opcode_modifier.s
2725 && i.rex == REX_B)
2727 unsigned int xchg = i.operands - 1;
2728 union i386_op temp_op;
2729 i386_operand_type temp_type;
2731 temp_type = i.types[xchg];
2732 i.types[xchg] = i.types[0];
2733 i.types[0] = temp_type;
2734 temp_op = i.op[xchg];
2735 i.op[xchg] = i.op[0];
2736 i.op[0] = temp_op;
2738 gas_assert (i.rm.mode == 3);
2740 i.rex = REX_R;
2741 xchg = i.rm.regmem;
2742 i.rm.regmem = i.rm.reg;
2743 i.rm.reg = xchg;
2745 /* Use the next insn. */
2746 i.tm = t[1];
2749 if (i.tm.opcode_modifier.vex == VEXScalar)
2750 vector_length = avxscalar;
2751 else
2752 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
2754 switch ((i.tm.base_opcode >> 8) & 0xff)
2756 case 0:
2757 implied_prefix = 0;
2758 break;
2759 case DATA_PREFIX_OPCODE:
2760 implied_prefix = 1;
2761 break;
2762 case REPE_PREFIX_OPCODE:
2763 implied_prefix = 2;
2764 break;
2765 case REPNE_PREFIX_OPCODE:
2766 implied_prefix = 3;
2767 break;
2768 default:
2769 abort ();
2772 /* Use 2-byte VEX prefix if possible. */
2773 if (i.tm.opcode_modifier.vexopcode == VEX0F
2774 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
2776 /* 2-byte VEX prefix. */
2777 unsigned int r;
2779 i.vex.length = 2;
2780 i.vex.bytes[0] = 0xc5;
2782 /* Check the REX.R bit. */
2783 r = (i.rex & REX_R) ? 0 : 1;
2784 i.vex.bytes[1] = (r << 7
2785 | register_specifier << 3
2786 | vector_length << 2
2787 | implied_prefix);
2789 else
2791 /* 3-byte VEX prefix. */
2792 unsigned int m, w;
2794 i.vex.length = 3;
2796 switch (i.tm.opcode_modifier.vexopcode)
2798 case VEX0F:
2799 m = 0x1;
2800 i.vex.bytes[0] = 0xc4;
2801 break;
2802 case VEX0F38:
2803 m = 0x2;
2804 i.vex.bytes[0] = 0xc4;
2805 break;
2806 case VEX0F3A:
2807 m = 0x3;
2808 i.vex.bytes[0] = 0xc4;
2809 break;
2810 case XOP08:
2811 m = 0x8;
2812 i.vex.bytes[0] = 0x8f;
2813 break;
2814 case XOP09:
2815 m = 0x9;
2816 i.vex.bytes[0] = 0x8f;
2817 break;
2818 case XOP0A:
2819 m = 0xa;
2820 i.vex.bytes[0] = 0x8f;
2821 break;
2822 default:
2823 abort ();
2826 /* The high 3 bits of the second VEX byte are 1's compliment
2827 of RXB bits from REX. */
2828 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
2830 /* Check the REX.W bit. */
2831 w = (i.rex & REX_W) ? 1 : 0;
2832 if (i.tm.opcode_modifier.vexw)
2834 if (w)
2835 abort ();
2837 if (i.tm.opcode_modifier.vexw == VEXW1)
2838 w = 1;
2841 i.vex.bytes[2] = (w << 7
2842 | register_specifier << 3
2843 | vector_length << 2
2844 | implied_prefix);
2848 static void
2849 process_immext (void)
2851 expressionS *exp;
2853 if (i.tm.cpu_flags.bitfield.cpusse3 && i.operands > 0)
2855 /* SSE3 Instructions have the fixed operands with an opcode
2856 suffix which is coded in the same place as an 8-bit immediate
2857 field would be. Here we check those operands and remove them
2858 afterwards. */
2859 unsigned int x;
2861 for (x = 0; x < i.operands; x++)
2862 if (i.op[x].regs->reg_num != x)
2863 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
2864 register_prefix, i.op[x].regs->reg_name, x + 1,
2865 i.tm.name);
2867 i.operands = 0;
2870 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
2871 which is coded in the same place as an 8-bit immediate field
2872 would be. Here we fake an 8-bit immediate operand from the
2873 opcode suffix stored in tm.extension_opcode.
2875 AVX instructions also use this encoding, for some of
2876 3 argument instructions. */
2878 gas_assert (i.imm_operands == 0
2879 && (i.operands <= 2
2880 || (i.tm.opcode_modifier.vex
2881 && i.operands <= 4)));
2883 exp = &im_expressions[i.imm_operands++];
2884 i.op[i.operands].imms = exp;
2885 i.types[i.operands] = imm8;
2886 i.operands++;
2887 exp->X_op = O_constant;
2888 exp->X_add_number = i.tm.extension_opcode;
2889 i.tm.extension_opcode = None;
2892 /* This is the guts of the machine-dependent assembler. LINE points to a
2893 machine dependent instruction. This function is supposed to emit
2894 the frags/bytes it assembles to. */
2896 void
2897 md_assemble (char *line)
2899 unsigned int j;
2900 char mnemonic[MAX_MNEM_SIZE];
2901 const insn_template *t;
2903 /* Initialize globals. */
2904 memset (&i, '\0', sizeof (i));
2905 for (j = 0; j < MAX_OPERANDS; j++)
2906 i.reloc[j] = NO_RELOC;
2907 memset (disp_expressions, '\0', sizeof (disp_expressions));
2908 memset (im_expressions, '\0', sizeof (im_expressions));
2909 save_stack_p = save_stack;
2911 /* First parse an instruction mnemonic & call i386_operand for the operands.
2912 We assume that the scrubber has arranged it so that line[0] is the valid
2913 start of a (possibly prefixed) mnemonic. */
2915 line = parse_insn (line, mnemonic);
2916 if (line == NULL)
2917 return;
2919 line = parse_operands (line, mnemonic);
2920 this_operand = -1;
2921 if (line == NULL)
2922 return;
2924 /* Now we've parsed the mnemonic into a set of templates, and have the
2925 operands at hand. */
2927 /* All intel opcodes have reversed operands except for "bound" and
2928 "enter". We also don't reverse intersegment "jmp" and "call"
2929 instructions with 2 immediate operands so that the immediate segment
2930 precedes the offset, as it does when in AT&T mode. */
2931 if (intel_syntax
2932 && i.operands > 1
2933 && (strcmp (mnemonic, "bound") != 0)
2934 && (strcmp (mnemonic, "invlpga") != 0)
2935 && !(operand_type_check (i.types[0], imm)
2936 && operand_type_check (i.types[1], imm)))
2937 swap_operands ();
2939 /* The order of the immediates should be reversed
2940 for 2 immediates extrq and insertq instructions */
2941 if (i.imm_operands == 2
2942 && (strcmp (mnemonic, "extrq") == 0
2943 || strcmp (mnemonic, "insertq") == 0))
2944 swap_2_operands (0, 1);
2946 if (i.imm_operands)
2947 optimize_imm ();
2949 /* Don't optimize displacement for movabs since it only takes 64bit
2950 displacement. */
2951 if (i.disp_operands
2952 && (flag_code != CODE_64BIT
2953 || strcmp (mnemonic, "movabs") != 0))
2954 optimize_disp ();
2956 /* Next, we find a template that matches the given insn,
2957 making sure the overlap of the given operands types is consistent
2958 with the template operand types. */
2960 if (!(t = match_template ()))
2961 return;
2963 if (sse_check != sse_check_none
2964 && !i.tm.opcode_modifier.noavx
2965 && (i.tm.cpu_flags.bitfield.cpusse
2966 || i.tm.cpu_flags.bitfield.cpusse2
2967 || i.tm.cpu_flags.bitfield.cpusse3
2968 || i.tm.cpu_flags.bitfield.cpussse3
2969 || i.tm.cpu_flags.bitfield.cpusse4_1
2970 || i.tm.cpu_flags.bitfield.cpusse4_2))
2972 (sse_check == sse_check_warning
2973 ? as_warn
2974 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
2977 /* Zap movzx and movsx suffix. The suffix has been set from
2978 "word ptr" or "byte ptr" on the source operand in Intel syntax
2979 or extracted from mnemonic in AT&T syntax. But we'll use
2980 the destination register to choose the suffix for encoding. */
2981 if ((i.tm.base_opcode & ~9) == 0x0fb6)
2983 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
2984 there is no suffix, the default will be byte extension. */
2985 if (i.reg_operands != 2
2986 && !i.suffix
2987 && intel_syntax)
2988 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2990 i.suffix = 0;
2993 if (i.tm.opcode_modifier.fwait)
2994 if (!add_prefix (FWAIT_OPCODE))
2995 return;
2997 /* Check for lock without a lockable instruction. Destination operand
2998 must be memory unless it is xchg (0x86). */
2999 if (i.prefix[LOCK_PREFIX]
3000 && (!i.tm.opcode_modifier.islockable
3001 || i.mem_operands == 0
3002 || (i.tm.base_opcode != 0x86
3003 && !operand_type_check (i.types[i.operands - 1], anymem))))
3005 as_bad (_("expecting lockable instruction after `lock'"));
3006 return;
3009 /* Check string instruction segment overrides. */
3010 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3012 if (!check_string ())
3013 return;
3014 i.disp_operands = 0;
3017 if (!process_suffix ())
3018 return;
3020 /* Update operand types. */
3021 for (j = 0; j < i.operands; j++)
3022 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3024 /* Make still unresolved immediate matches conform to size of immediate
3025 given in i.suffix. */
3026 if (!finalize_imm ())
3027 return;
3029 if (i.types[0].bitfield.imm1)
3030 i.imm_operands = 0; /* kludge for shift insns. */
3032 /* We only need to check those implicit registers for instructions
3033 with 3 operands or less. */
3034 if (i.operands <= 3)
3035 for (j = 0; j < i.operands; j++)
3036 if (i.types[j].bitfield.inoutportreg
3037 || i.types[j].bitfield.shiftcount
3038 || i.types[j].bitfield.acc
3039 || i.types[j].bitfield.floatacc)
3040 i.reg_operands--;
3042 /* ImmExt should be processed after SSE2AVX. */
3043 if (!i.tm.opcode_modifier.sse2avx
3044 && i.tm.opcode_modifier.immext)
3045 process_immext ();
3047 /* For insns with operands there are more diddles to do to the opcode. */
3048 if (i.operands)
3050 if (!process_operands ())
3051 return;
3053 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3055 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3056 as_warn (_("translating to `%sp'"), i.tm.name);
3059 if (i.tm.opcode_modifier.vex)
3060 build_vex_prefix (t);
3062 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3063 instructions may define INT_OPCODE as well, so avoid this corner
3064 case for those instructions that use MODRM. */
3065 if (i.tm.base_opcode == INT_OPCODE
3066 && !i.tm.opcode_modifier.modrm
3067 && i.op[0].imms->X_add_number == 3)
3069 i.tm.base_opcode = INT3_OPCODE;
3070 i.imm_operands = 0;
3073 if ((i.tm.opcode_modifier.jump
3074 || i.tm.opcode_modifier.jumpbyte
3075 || i.tm.opcode_modifier.jumpdword)
3076 && i.op[0].disps->X_op == O_constant)
3078 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3079 the absolute address given by the constant. Since ix86 jumps and
3080 calls are pc relative, we need to generate a reloc. */
3081 i.op[0].disps->X_add_symbol = &abs_symbol;
3082 i.op[0].disps->X_op = O_symbol;
3085 if (i.tm.opcode_modifier.rex64)
3086 i.rex |= REX_W;
3088 /* For 8 bit registers we need an empty rex prefix. Also if the
3089 instruction already has a prefix, we need to convert old
3090 registers to new ones. */
3092 if ((i.types[0].bitfield.reg8
3093 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3094 || (i.types[1].bitfield.reg8
3095 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3096 || ((i.types[0].bitfield.reg8
3097 || i.types[1].bitfield.reg8)
3098 && i.rex != 0))
3100 int x;
3102 i.rex |= REX_OPCODE;
3103 for (x = 0; x < 2; x++)
3105 /* Look for 8 bit operand that uses old registers. */
3106 if (i.types[x].bitfield.reg8
3107 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3109 /* In case it is "hi" register, give up. */
3110 if (i.op[x].regs->reg_num > 3)
3111 as_bad (_("can't encode register '%s%s' in an "
3112 "instruction requiring REX prefix."),
3113 register_prefix, i.op[x].regs->reg_name);
3115 /* Otherwise it is equivalent to the extended register.
3116 Since the encoding doesn't change this is merely
3117 cosmetic cleanup for debug output. */
3119 i.op[x].regs = i.op[x].regs + 8;
3124 if (i.rex != 0)
3125 add_prefix (REX_OPCODE | i.rex);
3127 /* We are ready to output the insn. */
3128 output_insn ();
3131 static char *
3132 parse_insn (char *line, char *mnemonic)
3134 char *l = line;
3135 char *token_start = l;
3136 char *mnem_p;
3137 int supported;
3138 const insn_template *t;
3139 char *dot_p = NULL;
3141 /* Non-zero if we found a prefix only acceptable with string insns. */
3142 const char *expecting_string_instruction = NULL;
3144 while (1)
3146 mnem_p = mnemonic;
3147 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3149 if (*mnem_p == '.')
3150 dot_p = mnem_p;
3151 mnem_p++;
3152 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3154 as_bad (_("no such instruction: `%s'"), token_start);
3155 return NULL;
3157 l++;
3159 if (!is_space_char (*l)
3160 && *l != END_OF_INSN
3161 && (intel_syntax
3162 || (*l != PREFIX_SEPARATOR
3163 && *l != ',')))
3165 as_bad (_("invalid character %s in mnemonic"),
3166 output_invalid (*l));
3167 return NULL;
3169 if (token_start == l)
3171 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3172 as_bad (_("expecting prefix; got nothing"));
3173 else
3174 as_bad (_("expecting mnemonic; got nothing"));
3175 return NULL;
3178 /* Look up instruction (or prefix) via hash table. */
3179 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3181 if (*l != END_OF_INSN
3182 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3183 && current_templates
3184 && current_templates->start->opcode_modifier.isprefix)
3186 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3188 as_bad ((flag_code != CODE_64BIT
3189 ? _("`%s' is only supported in 64-bit mode")
3190 : _("`%s' is not supported in 64-bit mode")),
3191 current_templates->start->name);
3192 return NULL;
3194 /* If we are in 16-bit mode, do not allow addr16 or data16.
3195 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3196 if ((current_templates->start->opcode_modifier.size16
3197 || current_templates->start->opcode_modifier.size32)
3198 && flag_code != CODE_64BIT
3199 && (current_templates->start->opcode_modifier.size32
3200 ^ (flag_code == CODE_16BIT)))
3202 as_bad (_("redundant %s prefix"),
3203 current_templates->start->name);
3204 return NULL;
3206 /* Add prefix, checking for repeated prefixes. */
3207 switch (add_prefix (current_templates->start->base_opcode))
3209 case PREFIX_EXIST:
3210 return NULL;
3211 case PREFIX_REP:
3212 expecting_string_instruction = current_templates->start->name;
3213 break;
3214 default:
3215 break;
3217 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3218 token_start = ++l;
3220 else
3221 break;
3224 if (!current_templates)
3226 /* Check if we should swap operand in encoding. */
3227 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3228 i.swap_operand = 1;
3229 else
3230 goto check_suffix;
3231 mnem_p = dot_p;
3232 *dot_p = '\0';
3233 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3236 if (!current_templates)
3238 check_suffix:
3239 /* See if we can get a match by trimming off a suffix. */
3240 switch (mnem_p[-1])
3242 case WORD_MNEM_SUFFIX:
3243 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3244 i.suffix = SHORT_MNEM_SUFFIX;
3245 else
3246 case BYTE_MNEM_SUFFIX:
3247 case QWORD_MNEM_SUFFIX:
3248 i.suffix = mnem_p[-1];
3249 mnem_p[-1] = '\0';
3250 current_templates = (const templates *) hash_find (op_hash,
3251 mnemonic);
3252 break;
3253 case SHORT_MNEM_SUFFIX:
3254 case LONG_MNEM_SUFFIX:
3255 if (!intel_syntax)
3257 i.suffix = mnem_p[-1];
3258 mnem_p[-1] = '\0';
3259 current_templates = (const templates *) hash_find (op_hash,
3260 mnemonic);
3262 break;
3264 /* Intel Syntax. */
3265 case 'd':
3266 if (intel_syntax)
3268 if (intel_float_operand (mnemonic) == 1)
3269 i.suffix = SHORT_MNEM_SUFFIX;
3270 else
3271 i.suffix = LONG_MNEM_SUFFIX;
3272 mnem_p[-1] = '\0';
3273 current_templates = (const templates *) hash_find (op_hash,
3274 mnemonic);
3276 break;
3278 if (!current_templates)
3280 as_bad (_("no such instruction: `%s'"), token_start);
3281 return NULL;
3285 if (current_templates->start->opcode_modifier.jump
3286 || current_templates->start->opcode_modifier.jumpbyte)
3288 /* Check for a branch hint. We allow ",pt" and ",pn" for
3289 predict taken and predict not taken respectively.
3290 I'm not sure that branch hints actually do anything on loop
3291 and jcxz insns (JumpByte) for current Pentium4 chips. They
3292 may work in the future and it doesn't hurt to accept them
3293 now. */
3294 if (l[0] == ',' && l[1] == 'p')
3296 if (l[2] == 't')
3298 if (!add_prefix (DS_PREFIX_OPCODE))
3299 return NULL;
3300 l += 3;
3302 else if (l[2] == 'n')
3304 if (!add_prefix (CS_PREFIX_OPCODE))
3305 return NULL;
3306 l += 3;
3310 /* Any other comma loses. */
3311 if (*l == ',')
3313 as_bad (_("invalid character %s in mnemonic"),
3314 output_invalid (*l));
3315 return NULL;
3318 /* Check if instruction is supported on specified architecture. */
3319 supported = 0;
3320 for (t = current_templates->start; t < current_templates->end; ++t)
3322 supported |= cpu_flags_match (t);
3323 if (supported == CPU_FLAGS_PERFECT_MATCH)
3324 goto skip;
3327 if (!(supported & CPU_FLAGS_64BIT_MATCH))
3329 as_bad (flag_code == CODE_64BIT
3330 ? _("`%s' is not supported in 64-bit mode")
3331 : _("`%s' is only supported in 64-bit mode"),
3332 current_templates->start->name);
3333 return NULL;
3335 if (supported != CPU_FLAGS_PERFECT_MATCH)
3337 as_bad (_("`%s' is not supported on `%s%s'"),
3338 current_templates->start->name,
3339 cpu_arch_name ? cpu_arch_name : default_arch,
3340 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3341 return NULL;
3344 skip:
3345 if (!cpu_arch_flags.bitfield.cpui386
3346 && (flag_code != CODE_16BIT))
3348 as_warn (_("use .code16 to ensure correct addressing mode"));
3351 /* Check for rep/repne without a string instruction. */
3352 if (expecting_string_instruction)
3354 static templates override;
3356 for (t = current_templates->start; t < current_templates->end; ++t)
3357 if (t->opcode_modifier.isstring)
3358 break;
3359 if (t >= current_templates->end)
3361 as_bad (_("expecting string instruction after `%s'"),
3362 expecting_string_instruction);
3363 return NULL;
3365 for (override.start = t; t < current_templates->end; ++t)
3366 if (!t->opcode_modifier.isstring)
3367 break;
3368 override.end = t;
3369 current_templates = &override;
3372 return l;
3375 static char *
3376 parse_operands (char *l, const char *mnemonic)
3378 char *token_start;
3380 /* 1 if operand is pending after ','. */
3381 unsigned int expecting_operand = 0;
3383 /* Non-zero if operand parens not balanced. */
3384 unsigned int paren_not_balanced;
3386 while (*l != END_OF_INSN)
3388 /* Skip optional white space before operand. */
3389 if (is_space_char (*l))
3390 ++l;
3391 if (!is_operand_char (*l) && *l != END_OF_INSN)
3393 as_bad (_("invalid character %s before operand %d"),
3394 output_invalid (*l),
3395 i.operands + 1);
3396 return NULL;
3398 token_start = l; /* after white space */
3399 paren_not_balanced = 0;
3400 while (paren_not_balanced || *l != ',')
3402 if (*l == END_OF_INSN)
3404 if (paren_not_balanced)
3406 if (!intel_syntax)
3407 as_bad (_("unbalanced parenthesis in operand %d."),
3408 i.operands + 1);
3409 else
3410 as_bad (_("unbalanced brackets in operand %d."),
3411 i.operands + 1);
3412 return NULL;
3414 else
3415 break; /* we are done */
3417 else if (!is_operand_char (*l) && !is_space_char (*l))
3419 as_bad (_("invalid character %s in operand %d"),
3420 output_invalid (*l),
3421 i.operands + 1);
3422 return NULL;
3424 if (!intel_syntax)
3426 if (*l == '(')
3427 ++paren_not_balanced;
3428 if (*l == ')')
3429 --paren_not_balanced;
3431 else
3433 if (*l == '[')
3434 ++paren_not_balanced;
3435 if (*l == ']')
3436 --paren_not_balanced;
3438 l++;
3440 if (l != token_start)
3441 { /* Yes, we've read in another operand. */
3442 unsigned int operand_ok;
3443 this_operand = i.operands++;
3444 i.types[this_operand].bitfield.unspecified = 1;
3445 if (i.operands > MAX_OPERANDS)
3447 as_bad (_("spurious operands; (%d operands/instruction max)"),
3448 MAX_OPERANDS);
3449 return NULL;
3451 /* Now parse operand adding info to 'i' as we go along. */
3452 END_STRING_AND_SAVE (l);
3454 if (intel_syntax)
3455 operand_ok =
3456 i386_intel_operand (token_start,
3457 intel_float_operand (mnemonic));
3458 else
3459 operand_ok = i386_att_operand (token_start);
3461 RESTORE_END_STRING (l);
3462 if (!operand_ok)
3463 return NULL;
3465 else
3467 if (expecting_operand)
3469 expecting_operand_after_comma:
3470 as_bad (_("expecting operand after ','; got nothing"));
3471 return NULL;
3473 if (*l == ',')
3475 as_bad (_("expecting operand before ','; got nothing"));
3476 return NULL;
3480 /* Now *l must be either ',' or END_OF_INSN. */
3481 if (*l == ',')
3483 if (*++l == END_OF_INSN)
3485 /* Just skip it, if it's \n complain. */
3486 goto expecting_operand_after_comma;
3488 expecting_operand = 1;
3491 return l;
3494 static void
3495 swap_2_operands (int xchg1, int xchg2)
3497 union i386_op temp_op;
3498 i386_operand_type temp_type;
3499 enum bfd_reloc_code_real temp_reloc;
3501 temp_type = i.types[xchg2];
3502 i.types[xchg2] = i.types[xchg1];
3503 i.types[xchg1] = temp_type;
3504 temp_op = i.op[xchg2];
3505 i.op[xchg2] = i.op[xchg1];
3506 i.op[xchg1] = temp_op;
3507 temp_reloc = i.reloc[xchg2];
3508 i.reloc[xchg2] = i.reloc[xchg1];
3509 i.reloc[xchg1] = temp_reloc;
3512 static void
3513 swap_operands (void)
3515 switch (i.operands)
3517 case 5:
3518 case 4:
3519 swap_2_operands (1, i.operands - 2);
3520 case 3:
3521 case 2:
3522 swap_2_operands (0, i.operands - 1);
3523 break;
3524 default:
3525 abort ();
3528 if (i.mem_operands == 2)
3530 const seg_entry *temp_seg;
3531 temp_seg = i.seg[0];
3532 i.seg[0] = i.seg[1];
3533 i.seg[1] = temp_seg;
3537 /* Try to ensure constant immediates are represented in the smallest
3538 opcode possible. */
3539 static void
3540 optimize_imm (void)
3542 char guess_suffix = 0;
3543 int op;
3545 if (i.suffix)
3546 guess_suffix = i.suffix;
3547 else if (i.reg_operands)
3549 /* Figure out a suffix from the last register operand specified.
3550 We can't do this properly yet, ie. excluding InOutPortReg,
3551 but the following works for instructions with immediates.
3552 In any case, we can't set i.suffix yet. */
3553 for (op = i.operands; --op >= 0;)
3554 if (i.types[op].bitfield.reg8)
3556 guess_suffix = BYTE_MNEM_SUFFIX;
3557 break;
3559 else if (i.types[op].bitfield.reg16)
3561 guess_suffix = WORD_MNEM_SUFFIX;
3562 break;
3564 else if (i.types[op].bitfield.reg32)
3566 guess_suffix = LONG_MNEM_SUFFIX;
3567 break;
3569 else if (i.types[op].bitfield.reg64)
3571 guess_suffix = QWORD_MNEM_SUFFIX;
3572 break;
3575 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
3576 guess_suffix = WORD_MNEM_SUFFIX;
3578 for (op = i.operands; --op >= 0;)
3579 if (operand_type_check (i.types[op], imm))
3581 switch (i.op[op].imms->X_op)
3583 case O_constant:
3584 /* If a suffix is given, this operand may be shortened. */
3585 switch (guess_suffix)
3587 case LONG_MNEM_SUFFIX:
3588 i.types[op].bitfield.imm32 = 1;
3589 i.types[op].bitfield.imm64 = 1;
3590 break;
3591 case WORD_MNEM_SUFFIX:
3592 i.types[op].bitfield.imm16 = 1;
3593 i.types[op].bitfield.imm32 = 1;
3594 i.types[op].bitfield.imm32s = 1;
3595 i.types[op].bitfield.imm64 = 1;
3596 break;
3597 case BYTE_MNEM_SUFFIX:
3598 i.types[op].bitfield.imm8 = 1;
3599 i.types[op].bitfield.imm8s = 1;
3600 i.types[op].bitfield.imm16 = 1;
3601 i.types[op].bitfield.imm32 = 1;
3602 i.types[op].bitfield.imm32s = 1;
3603 i.types[op].bitfield.imm64 = 1;
3604 break;
3607 /* If this operand is at most 16 bits, convert it
3608 to a signed 16 bit number before trying to see
3609 whether it will fit in an even smaller size.
3610 This allows a 16-bit operand such as $0xffe0 to
3611 be recognised as within Imm8S range. */
3612 if ((i.types[op].bitfield.imm16)
3613 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
3615 i.op[op].imms->X_add_number =
3616 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
3618 if ((i.types[op].bitfield.imm32)
3619 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
3620 == 0))
3622 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
3623 ^ ((offsetT) 1 << 31))
3624 - ((offsetT) 1 << 31));
3626 i.types[op]
3627 = operand_type_or (i.types[op],
3628 smallest_imm_type (i.op[op].imms->X_add_number));
3630 /* We must avoid matching of Imm32 templates when 64bit
3631 only immediate is available. */
3632 if (guess_suffix == QWORD_MNEM_SUFFIX)
3633 i.types[op].bitfield.imm32 = 0;
3634 break;
3636 case O_absent:
3637 case O_register:
3638 abort ();
3640 /* Symbols and expressions. */
3641 default:
3642 /* Convert symbolic operand to proper sizes for matching, but don't
3643 prevent matching a set of insns that only supports sizes other
3644 than those matching the insn suffix. */
3646 i386_operand_type mask, allowed;
3647 const insn_template *t;
3649 operand_type_set (&mask, 0);
3650 operand_type_set (&allowed, 0);
3652 for (t = current_templates->start;
3653 t < current_templates->end;
3654 ++t)
3655 allowed = operand_type_or (allowed,
3656 t->operand_types[op]);
3657 switch (guess_suffix)
3659 case QWORD_MNEM_SUFFIX:
3660 mask.bitfield.imm64 = 1;
3661 mask.bitfield.imm32s = 1;
3662 break;
3663 case LONG_MNEM_SUFFIX:
3664 mask.bitfield.imm32 = 1;
3665 break;
3666 case WORD_MNEM_SUFFIX:
3667 mask.bitfield.imm16 = 1;
3668 break;
3669 case BYTE_MNEM_SUFFIX:
3670 mask.bitfield.imm8 = 1;
3671 break;
3672 default:
3673 break;
3675 allowed = operand_type_and (mask, allowed);
3676 if (!operand_type_all_zero (&allowed))
3677 i.types[op] = operand_type_and (i.types[op], mask);
3679 break;
3684 /* Try to use the smallest displacement type too. */
3685 static void
3686 optimize_disp (void)
3688 int op;
3690 for (op = i.operands; --op >= 0;)
3691 if (operand_type_check (i.types[op], disp))
3693 if (i.op[op].disps->X_op == O_constant)
3695 offsetT op_disp = i.op[op].disps->X_add_number;
3697 if (i.types[op].bitfield.disp16
3698 && (op_disp & ~(offsetT) 0xffff) == 0)
3700 /* If this operand is at most 16 bits, convert
3701 to a signed 16 bit number and don't use 64bit
3702 displacement. */
3703 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
3704 i.types[op].bitfield.disp64 = 0;
3706 if (i.types[op].bitfield.disp32
3707 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
3709 /* If this operand is at most 32 bits, convert
3710 to a signed 32 bit number and don't use 64bit
3711 displacement. */
3712 op_disp &= (((offsetT) 2 << 31) - 1);
3713 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
3714 i.types[op].bitfield.disp64 = 0;
3716 if (!op_disp && i.types[op].bitfield.baseindex)
3718 i.types[op].bitfield.disp8 = 0;
3719 i.types[op].bitfield.disp16 = 0;
3720 i.types[op].bitfield.disp32 = 0;
3721 i.types[op].bitfield.disp32s = 0;
3722 i.types[op].bitfield.disp64 = 0;
3723 i.op[op].disps = 0;
3724 i.disp_operands--;
3726 else if (flag_code == CODE_64BIT)
3728 if (fits_in_signed_long (op_disp))
3730 i.types[op].bitfield.disp64 = 0;
3731 i.types[op].bitfield.disp32s = 1;
3733 if (i.prefix[ADDR_PREFIX]
3734 && fits_in_unsigned_long (op_disp))
3735 i.types[op].bitfield.disp32 = 1;
3737 if ((i.types[op].bitfield.disp32
3738 || i.types[op].bitfield.disp32s
3739 || i.types[op].bitfield.disp16)
3740 && fits_in_signed_byte (op_disp))
3741 i.types[op].bitfield.disp8 = 1;
3743 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3744 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
3746 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
3747 i.op[op].disps, 0, i.reloc[op]);
3748 i.types[op].bitfield.disp8 = 0;
3749 i.types[op].bitfield.disp16 = 0;
3750 i.types[op].bitfield.disp32 = 0;
3751 i.types[op].bitfield.disp32s = 0;
3752 i.types[op].bitfield.disp64 = 0;
3754 else
3755 /* We only support 64bit displacement on constants. */
3756 i.types[op].bitfield.disp64 = 0;
3760 /* Check if operands are valid for the instrucrtion. Update VEX
3761 operand types. */
3763 static int
3764 VEX_check_operands (const insn_template *t)
3766 if (!t->opcode_modifier.vex)
3767 return 0;
3769 /* Only check VEX_Imm4, which must be the first operand. */
3770 if (t->operand_types[0].bitfield.vec_imm4)
3772 if (i.op[0].imms->X_op != O_constant
3773 || !fits_in_imm4 (i.op[0].imms->X_add_number))
3775 i.error = bad_imm4;
3776 return 1;
3779 /* Turn off Imm8 so that update_imm won't complain. */
3780 i.types[0] = vec_imm4;
3783 return 0;
3786 static const insn_template *
3787 match_template (void)
3789 /* Points to template once we've found it. */
3790 const insn_template *t;
3791 i386_operand_type overlap0, overlap1, overlap2, overlap3;
3792 i386_operand_type overlap4;
3793 unsigned int found_reverse_match;
3794 i386_opcode_modifier suffix_check;
3795 i386_operand_type operand_types [MAX_OPERANDS];
3796 int addr_prefix_disp;
3797 unsigned int j;
3798 unsigned int found_cpu_match;
3799 unsigned int check_register;
3801 #if MAX_OPERANDS != 5
3802 # error "MAX_OPERANDS must be 5."
3803 #endif
3805 found_reverse_match = 0;
3806 addr_prefix_disp = -1;
3808 memset (&suffix_check, 0, sizeof (suffix_check));
3809 if (i.suffix == BYTE_MNEM_SUFFIX)
3810 suffix_check.no_bsuf = 1;
3811 else if (i.suffix == WORD_MNEM_SUFFIX)
3812 suffix_check.no_wsuf = 1;
3813 else if (i.suffix == SHORT_MNEM_SUFFIX)
3814 suffix_check.no_ssuf = 1;
3815 else if (i.suffix == LONG_MNEM_SUFFIX)
3816 suffix_check.no_lsuf = 1;
3817 else if (i.suffix == QWORD_MNEM_SUFFIX)
3818 suffix_check.no_qsuf = 1;
3819 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
3820 suffix_check.no_ldsuf = 1;
3822 for (t = current_templates->start; t < current_templates->end; t++)
3824 addr_prefix_disp = -1;
3826 /* Must have right number of operands. */
3827 i.error = number_of_operands_mismatch;
3828 if (i.operands != t->operands)
3829 continue;
3831 /* Check processor support. */
3832 i.error = unsupported;
3833 found_cpu_match = (cpu_flags_match (t)
3834 == CPU_FLAGS_PERFECT_MATCH);
3835 if (!found_cpu_match)
3836 continue;
3838 /* Check old gcc support. */
3839 i.error = old_gcc_only;
3840 if (!old_gcc && t->opcode_modifier.oldgcc)
3841 continue;
3843 /* Check AT&T mnemonic. */
3844 i.error = unsupported_with_intel_mnemonic;
3845 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
3846 continue;
3848 /* Check AT&T/Intel syntax. */
3849 i.error = unsupported_syntax;
3850 if ((intel_syntax && t->opcode_modifier.attsyntax)
3851 || (!intel_syntax && t->opcode_modifier.intelsyntax))
3852 continue;
3854 /* Check the suffix, except for some instructions in intel mode. */
3855 i.error = invalid_instruction_suffix;
3856 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
3857 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
3858 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
3859 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
3860 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
3861 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
3862 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
3863 continue;
3865 if (!operand_size_match (t))
3866 continue;
3868 for (j = 0; j < MAX_OPERANDS; j++)
3869 operand_types[j] = t->operand_types[j];
3871 /* In general, don't allow 64-bit operands in 32-bit mode. */
3872 if (i.suffix == QWORD_MNEM_SUFFIX
3873 && flag_code != CODE_64BIT
3874 && (intel_syntax
3875 ? (!t->opcode_modifier.ignoresize
3876 && !intel_float_operand (t->name))
3877 : intel_float_operand (t->name) != 2)
3878 && ((!operand_types[0].bitfield.regmmx
3879 && !operand_types[0].bitfield.regxmm
3880 && !operand_types[0].bitfield.regymm)
3881 || (!operand_types[t->operands > 1].bitfield.regmmx
3882 && !!operand_types[t->operands > 1].bitfield.regxmm
3883 && !!operand_types[t->operands > 1].bitfield.regymm))
3884 && (t->base_opcode != 0x0fc7
3885 || t->extension_opcode != 1 /* cmpxchg8b */))
3886 continue;
3888 /* In general, don't allow 32-bit operands on pre-386. */
3889 else if (i.suffix == LONG_MNEM_SUFFIX
3890 && !cpu_arch_flags.bitfield.cpui386
3891 && (intel_syntax
3892 ? (!t->opcode_modifier.ignoresize
3893 && !intel_float_operand (t->name))
3894 : intel_float_operand (t->name) != 2)
3895 && ((!operand_types[0].bitfield.regmmx
3896 && !operand_types[0].bitfield.regxmm)
3897 || (!operand_types[t->operands > 1].bitfield.regmmx
3898 && !!operand_types[t->operands > 1].bitfield.regxmm)))
3899 continue;
3901 /* Do not verify operands when there are none. */
3902 else
3904 if (!t->operands)
3905 /* We've found a match; break out of loop. */
3906 break;
3909 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
3910 into Disp32/Disp16/Disp32 operand. */
3911 if (i.prefix[ADDR_PREFIX] != 0)
3913 /* There should be only one Disp operand. */
3914 switch (flag_code)
3916 case CODE_16BIT:
3917 for (j = 0; j < MAX_OPERANDS; j++)
3919 if (operand_types[j].bitfield.disp16)
3921 addr_prefix_disp = j;
3922 operand_types[j].bitfield.disp32 = 1;
3923 operand_types[j].bitfield.disp16 = 0;
3924 break;
3927 break;
3928 case CODE_32BIT:
3929 for (j = 0; j < MAX_OPERANDS; j++)
3931 if (operand_types[j].bitfield.disp32)
3933 addr_prefix_disp = j;
3934 operand_types[j].bitfield.disp32 = 0;
3935 operand_types[j].bitfield.disp16 = 1;
3936 break;
3939 break;
3940 case CODE_64BIT:
3941 for (j = 0; j < MAX_OPERANDS; j++)
3943 if (operand_types[j].bitfield.disp64)
3945 addr_prefix_disp = j;
3946 operand_types[j].bitfield.disp64 = 0;
3947 operand_types[j].bitfield.disp32 = 1;
3948 break;
3951 break;
3955 /* We check register size only if size of operands can be
3956 encoded the canonical way. */
3957 check_register = t->opcode_modifier.w;
3958 overlap0 = operand_type_and (i.types[0], operand_types[0]);
3959 switch (t->operands)
3961 case 1:
3962 if (!operand_type_match (overlap0, i.types[0]))
3963 continue;
3964 break;
3965 case 2:
3966 /* xchg %eax, %eax is a special case. It is an aliase for nop
3967 only in 32bit mode and we can use opcode 0x90. In 64bit
3968 mode, we can't use 0x90 for xchg %eax, %eax since it should
3969 zero-extend %eax to %rax. */
3970 if (flag_code == CODE_64BIT
3971 && t->base_opcode == 0x90
3972 && operand_type_equal (&i.types [0], &acc32)
3973 && operand_type_equal (&i.types [1], &acc32))
3974 continue;
3975 if (i.swap_operand)
3977 /* If we swap operand in encoding, we either match
3978 the next one or reverse direction of operands. */
3979 if (t->opcode_modifier.s)
3980 continue;
3981 else if (t->opcode_modifier.d)
3982 goto check_reverse;
3985 case 3:
3986 /* If we swap operand in encoding, we match the next one. */
3987 if (i.swap_operand && t->opcode_modifier.s)
3988 continue;
3989 case 4:
3990 case 5:
3991 overlap1 = operand_type_and (i.types[1], operand_types[1]);
3992 if (!operand_type_match (overlap0, i.types[0])
3993 || !operand_type_match (overlap1, i.types[1])
3994 || (check_register
3995 && !operand_type_register_match (overlap0, i.types[0],
3996 operand_types[0],
3997 overlap1, i.types[1],
3998 operand_types[1])))
4000 /* Check if other direction is valid ... */
4001 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
4002 continue;
4004 check_reverse:
4005 /* Try reversing direction of operands. */
4006 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4007 overlap1 = operand_type_and (i.types[1], operand_types[0]);
4008 if (!operand_type_match (overlap0, i.types[0])
4009 || !operand_type_match (overlap1, i.types[1])
4010 || (check_register
4011 && !operand_type_register_match (overlap0,
4012 i.types[0],
4013 operand_types[1],
4014 overlap1,
4015 i.types[1],
4016 operand_types[0])))
4018 /* Does not match either direction. */
4019 continue;
4021 /* found_reverse_match holds which of D or FloatDR
4022 we've found. */
4023 if (t->opcode_modifier.d)
4024 found_reverse_match = Opcode_D;
4025 else if (t->opcode_modifier.floatd)
4026 found_reverse_match = Opcode_FloatD;
4027 else
4028 found_reverse_match = 0;
4029 if (t->opcode_modifier.floatr)
4030 found_reverse_match |= Opcode_FloatR;
4032 else
4034 /* Found a forward 2 operand match here. */
4035 switch (t->operands)
4037 case 5:
4038 overlap4 = operand_type_and (i.types[4],
4039 operand_types[4]);
4040 case 4:
4041 overlap3 = operand_type_and (i.types[3],
4042 operand_types[3]);
4043 case 3:
4044 overlap2 = operand_type_and (i.types[2],
4045 operand_types[2]);
4046 break;
4049 switch (t->operands)
4051 case 5:
4052 if (!operand_type_match (overlap4, i.types[4])
4053 || !operand_type_register_match (overlap3,
4054 i.types[3],
4055 operand_types[3],
4056 overlap4,
4057 i.types[4],
4058 operand_types[4]))
4059 continue;
4060 case 4:
4061 if (!operand_type_match (overlap3, i.types[3])
4062 || (check_register
4063 && !operand_type_register_match (overlap2,
4064 i.types[2],
4065 operand_types[2],
4066 overlap3,
4067 i.types[3],
4068 operand_types[3])))
4069 continue;
4070 case 3:
4071 /* Here we make use of the fact that there are no
4072 reverse match 3 operand instructions, and all 3
4073 operand instructions only need to be checked for
4074 register consistency between operands 2 and 3. */
4075 if (!operand_type_match (overlap2, i.types[2])
4076 || (check_register
4077 && !operand_type_register_match (overlap1,
4078 i.types[1],
4079 operand_types[1],
4080 overlap2,
4081 i.types[2],
4082 operand_types[2])))
4083 continue;
4084 break;
4087 /* Found either forward/reverse 2, 3 or 4 operand match here:
4088 slip through to break. */
4090 if (!found_cpu_match)
4092 found_reverse_match = 0;
4093 continue;
4096 /* Check if VEX operands are valid. */
4097 if (VEX_check_operands (t))
4098 continue;
4100 /* We've found a match; break out of loop. */
4101 break;
4104 if (t == current_templates->end)
4106 /* We found no match. */
4107 const char *err_msg;
4108 switch (i.error)
4110 default:
4111 abort ();
4112 case operand_size_mismatch:
4113 err_msg = _("operand size mismatch");
4114 break;
4115 case operand_type_mismatch:
4116 err_msg = _("operand type mismatch");
4117 break;
4118 case register_type_mismatch:
4119 err_msg = _("register type mismatch");
4120 break;
4121 case number_of_operands_mismatch:
4122 err_msg = _("number of operands mismatch");
4123 break;
4124 case invalid_instruction_suffix:
4125 err_msg = _("invalid instruction suffix");
4126 break;
4127 case bad_imm4:
4128 err_msg = _("Imm4 isn't the first operand");
4129 break;
4130 case old_gcc_only:
4131 err_msg = _("only supported with old gcc");
4132 break;
4133 case unsupported_with_intel_mnemonic:
4134 err_msg = _("unsupported with Intel mnemonic");
4135 break;
4136 case unsupported_syntax:
4137 err_msg = _("unsupported syntax");
4138 break;
4139 case unsupported:
4140 err_msg = _("unsupported");
4141 break;
4143 as_bad (_("%s for `%s'"), err_msg,
4144 current_templates->start->name);
4145 return NULL;
4148 if (!quiet_warnings)
4150 if (!intel_syntax
4151 && (i.types[0].bitfield.jumpabsolute
4152 != operand_types[0].bitfield.jumpabsolute))
4154 as_warn (_("indirect %s without `*'"), t->name);
4157 if (t->opcode_modifier.isprefix
4158 && t->opcode_modifier.ignoresize)
4160 /* Warn them that a data or address size prefix doesn't
4161 affect assembly of the next line of code. */
4162 as_warn (_("stand-alone `%s' prefix"), t->name);
4166 /* Copy the template we found. */
4167 i.tm = *t;
4169 if (addr_prefix_disp != -1)
4170 i.tm.operand_types[addr_prefix_disp]
4171 = operand_types[addr_prefix_disp];
4173 if (found_reverse_match)
4175 /* If we found a reverse match we must alter the opcode
4176 direction bit. found_reverse_match holds bits to change
4177 (different for int & float insns). */
4179 i.tm.base_opcode ^= found_reverse_match;
4181 i.tm.operand_types[0] = operand_types[1];
4182 i.tm.operand_types[1] = operand_types[0];
4185 return t;
4188 static int
4189 check_string (void)
4191 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
4192 if (i.tm.operand_types[mem_op].bitfield.esseg)
4194 if (i.seg[0] != NULL && i.seg[0] != &es)
4196 as_bad (_("`%s' operand %d must use `%ses' segment"),
4197 i.tm.name,
4198 mem_op + 1,
4199 register_prefix);
4200 return 0;
4202 /* There's only ever one segment override allowed per instruction.
4203 This instruction possibly has a legal segment override on the
4204 second operand, so copy the segment to where non-string
4205 instructions store it, allowing common code. */
4206 i.seg[0] = i.seg[1];
4208 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
4210 if (i.seg[1] != NULL && i.seg[1] != &es)
4212 as_bad (_("`%s' operand %d must use `%ses' segment"),
4213 i.tm.name,
4214 mem_op + 2,
4215 register_prefix);
4216 return 0;
4219 return 1;
4222 static int
4223 process_suffix (void)
4225 /* If matched instruction specifies an explicit instruction mnemonic
4226 suffix, use it. */
4227 if (i.tm.opcode_modifier.size16)
4228 i.suffix = WORD_MNEM_SUFFIX;
4229 else if (i.tm.opcode_modifier.size32)
4230 i.suffix = LONG_MNEM_SUFFIX;
4231 else if (i.tm.opcode_modifier.size64)
4232 i.suffix = QWORD_MNEM_SUFFIX;
4233 else if (i.reg_operands)
4235 /* If there's no instruction mnemonic suffix we try to invent one
4236 based on register operands. */
4237 if (!i.suffix)
4239 /* We take i.suffix from the last register operand specified,
4240 Destination register type is more significant than source
4241 register type. crc32 in SSE4.2 prefers source register
4242 type. */
4243 if (i.tm.base_opcode == 0xf20f38f1)
4245 if (i.types[0].bitfield.reg16)
4246 i.suffix = WORD_MNEM_SUFFIX;
4247 else if (i.types[0].bitfield.reg32)
4248 i.suffix = LONG_MNEM_SUFFIX;
4249 else if (i.types[0].bitfield.reg64)
4250 i.suffix = QWORD_MNEM_SUFFIX;
4252 else if (i.tm.base_opcode == 0xf20f38f0)
4254 if (i.types[0].bitfield.reg8)
4255 i.suffix = BYTE_MNEM_SUFFIX;
4258 if (!i.suffix)
4260 int op;
4262 if (i.tm.base_opcode == 0xf20f38f1
4263 || i.tm.base_opcode == 0xf20f38f0)
4265 /* We have to know the operand size for crc32. */
4266 as_bad (_("ambiguous memory operand size for `%s`"),
4267 i.tm.name);
4268 return 0;
4271 for (op = i.operands; --op >= 0;)
4272 if (!i.tm.operand_types[op].bitfield.inoutportreg)
4274 if (i.types[op].bitfield.reg8)
4276 i.suffix = BYTE_MNEM_SUFFIX;
4277 break;
4279 else if (i.types[op].bitfield.reg16)
4281 i.suffix = WORD_MNEM_SUFFIX;
4282 break;
4284 else if (i.types[op].bitfield.reg32)
4286 i.suffix = LONG_MNEM_SUFFIX;
4287 break;
4289 else if (i.types[op].bitfield.reg64)
4291 i.suffix = QWORD_MNEM_SUFFIX;
4292 break;
4297 else if (i.suffix == BYTE_MNEM_SUFFIX)
4299 if (intel_syntax
4300 && i.tm.opcode_modifier.ignoresize
4301 && i.tm.opcode_modifier.no_bsuf)
4302 i.suffix = 0;
4303 else if (!check_byte_reg ())
4304 return 0;
4306 else if (i.suffix == LONG_MNEM_SUFFIX)
4308 if (intel_syntax
4309 && i.tm.opcode_modifier.ignoresize
4310 && i.tm.opcode_modifier.no_lsuf)
4311 i.suffix = 0;
4312 else if (!check_long_reg ())
4313 return 0;
4315 else if (i.suffix == QWORD_MNEM_SUFFIX)
4317 if (intel_syntax
4318 && i.tm.opcode_modifier.ignoresize
4319 && i.tm.opcode_modifier.no_qsuf)
4320 i.suffix = 0;
4321 else if (!check_qword_reg ())
4322 return 0;
4324 else if (i.suffix == WORD_MNEM_SUFFIX)
4326 if (intel_syntax
4327 && i.tm.opcode_modifier.ignoresize
4328 && i.tm.opcode_modifier.no_wsuf)
4329 i.suffix = 0;
4330 else if (!check_word_reg ())
4331 return 0;
4333 else if (i.suffix == XMMWORD_MNEM_SUFFIX
4334 || i.suffix == YMMWORD_MNEM_SUFFIX)
4336 /* Skip if the instruction has x/y suffix. match_template
4337 should check if it is a valid suffix. */
4339 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
4340 /* Do nothing if the instruction is going to ignore the prefix. */
4342 else
4343 abort ();
4345 else if (i.tm.opcode_modifier.defaultsize
4346 && !i.suffix
4347 /* exclude fldenv/frstor/fsave/fstenv */
4348 && i.tm.opcode_modifier.no_ssuf)
4350 i.suffix = stackop_size;
4352 else if (intel_syntax
4353 && !i.suffix
4354 && (i.tm.operand_types[0].bitfield.jumpabsolute
4355 || i.tm.opcode_modifier.jumpbyte
4356 || i.tm.opcode_modifier.jumpintersegment
4357 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
4358 && i.tm.extension_opcode <= 3)))
4360 switch (flag_code)
4362 case CODE_64BIT:
4363 if (!i.tm.opcode_modifier.no_qsuf)
4365 i.suffix = QWORD_MNEM_SUFFIX;
4366 break;
4368 case CODE_32BIT:
4369 if (!i.tm.opcode_modifier.no_lsuf)
4370 i.suffix = LONG_MNEM_SUFFIX;
4371 break;
4372 case CODE_16BIT:
4373 if (!i.tm.opcode_modifier.no_wsuf)
4374 i.suffix = WORD_MNEM_SUFFIX;
4375 break;
4379 if (!i.suffix)
4381 if (!intel_syntax)
4383 if (i.tm.opcode_modifier.w)
4385 as_bad (_("no instruction mnemonic suffix given and "
4386 "no register operands; can't size instruction"));
4387 return 0;
4390 else
4392 unsigned int suffixes;
4394 suffixes = !i.tm.opcode_modifier.no_bsuf;
4395 if (!i.tm.opcode_modifier.no_wsuf)
4396 suffixes |= 1 << 1;
4397 if (!i.tm.opcode_modifier.no_lsuf)
4398 suffixes |= 1 << 2;
4399 if (!i.tm.opcode_modifier.no_ldsuf)
4400 suffixes |= 1 << 3;
4401 if (!i.tm.opcode_modifier.no_ssuf)
4402 suffixes |= 1 << 4;
4403 if (!i.tm.opcode_modifier.no_qsuf)
4404 suffixes |= 1 << 5;
4406 /* There are more than suffix matches. */
4407 if (i.tm.opcode_modifier.w
4408 || ((suffixes & (suffixes - 1))
4409 && !i.tm.opcode_modifier.defaultsize
4410 && !i.tm.opcode_modifier.ignoresize))
4412 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4413 return 0;
4418 /* Change the opcode based on the operand size given by i.suffix;
4419 We don't need to change things for byte insns. */
4421 if (i.suffix
4422 && i.suffix != BYTE_MNEM_SUFFIX
4423 && i.suffix != XMMWORD_MNEM_SUFFIX
4424 && i.suffix != YMMWORD_MNEM_SUFFIX)
4426 /* It's not a byte, select word/dword operation. */
4427 if (i.tm.opcode_modifier.w)
4429 if (i.tm.opcode_modifier.shortform)
4430 i.tm.base_opcode |= 8;
4431 else
4432 i.tm.base_opcode |= 1;
4435 /* Now select between word & dword operations via the operand
4436 size prefix, except for instructions that will ignore this
4437 prefix anyway. */
4438 if (i.tm.opcode_modifier.addrprefixop0)
4440 /* The address size override prefix changes the size of the
4441 first operand. */
4442 if ((flag_code == CODE_32BIT
4443 && i.op->regs[0].reg_type.bitfield.reg16)
4444 || (flag_code != CODE_32BIT
4445 && i.op->regs[0].reg_type.bitfield.reg32))
4446 if (!add_prefix (ADDR_PREFIX_OPCODE))
4447 return 0;
4449 else if (i.suffix != QWORD_MNEM_SUFFIX
4450 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
4451 && !i.tm.opcode_modifier.ignoresize
4452 && !i.tm.opcode_modifier.floatmf
4453 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
4454 || (flag_code == CODE_64BIT
4455 && i.tm.opcode_modifier.jumpbyte)))
4457 unsigned int prefix = DATA_PREFIX_OPCODE;
4459 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
4460 prefix = ADDR_PREFIX_OPCODE;
4462 if (!add_prefix (prefix))
4463 return 0;
4466 /* Set mode64 for an operand. */
4467 if (i.suffix == QWORD_MNEM_SUFFIX
4468 && flag_code == CODE_64BIT
4469 && !i.tm.opcode_modifier.norex64)
4471 /* Special case for xchg %rax,%rax. It is NOP and doesn't
4472 need rex64. cmpxchg8b is also a special case. */
4473 if (! (i.operands == 2
4474 && i.tm.base_opcode == 0x90
4475 && i.tm.extension_opcode == None
4476 && operand_type_equal (&i.types [0], &acc64)
4477 && operand_type_equal (&i.types [1], &acc64))
4478 && ! (i.operands == 1
4479 && i.tm.base_opcode == 0xfc7
4480 && i.tm.extension_opcode == 1
4481 && !operand_type_check (i.types [0], reg)
4482 && operand_type_check (i.types [0], anymem)))
4483 i.rex |= REX_W;
4486 /* Size floating point instruction. */
4487 if (i.suffix == LONG_MNEM_SUFFIX)
4488 if (i.tm.opcode_modifier.floatmf)
4489 i.tm.base_opcode ^= 4;
4492 return 1;
4495 static int
4496 check_byte_reg (void)
4498 int op;
4500 for (op = i.operands; --op >= 0;)
4502 /* If this is an eight bit register, it's OK. If it's the 16 or
4503 32 bit version of an eight bit register, we will just use the
4504 low portion, and that's OK too. */
4505 if (i.types[op].bitfield.reg8)
4506 continue;
4508 /* crc32 doesn't generate this warning. */
4509 if (i.tm.base_opcode == 0xf20f38f0)
4510 continue;
4512 if ((i.types[op].bitfield.reg16
4513 || i.types[op].bitfield.reg32
4514 || i.types[op].bitfield.reg64)
4515 && i.op[op].regs->reg_num < 4)
4517 /* Prohibit these changes in the 64bit mode, since the
4518 lowering is more complicated. */
4519 if (flag_code == CODE_64BIT
4520 && !i.tm.operand_types[op].bitfield.inoutportreg)
4522 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4523 register_prefix, i.op[op].regs->reg_name,
4524 i.suffix);
4525 return 0;
4527 #if REGISTER_WARNINGS
4528 if (!quiet_warnings
4529 && !i.tm.operand_types[op].bitfield.inoutportreg)
4530 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4531 register_prefix,
4532 (i.op[op].regs + (i.types[op].bitfield.reg16
4533 ? REGNAM_AL - REGNAM_AX
4534 : REGNAM_AL - REGNAM_EAX))->reg_name,
4535 register_prefix,
4536 i.op[op].regs->reg_name,
4537 i.suffix);
4538 #endif
4539 continue;
4541 /* Any other register is bad. */
4542 if (i.types[op].bitfield.reg16
4543 || i.types[op].bitfield.reg32
4544 || i.types[op].bitfield.reg64
4545 || i.types[op].bitfield.regmmx
4546 || i.types[op].bitfield.regxmm
4547 || i.types[op].bitfield.regymm
4548 || i.types[op].bitfield.sreg2
4549 || i.types[op].bitfield.sreg3
4550 || i.types[op].bitfield.control
4551 || i.types[op].bitfield.debug
4552 || i.types[op].bitfield.test
4553 || i.types[op].bitfield.floatreg
4554 || i.types[op].bitfield.floatacc)
4556 as_bad (_("`%s%s' not allowed with `%s%c'"),
4557 register_prefix,
4558 i.op[op].regs->reg_name,
4559 i.tm.name,
4560 i.suffix);
4561 return 0;
4564 return 1;
4567 static int
4568 check_long_reg (void)
4570 int op;
4572 for (op = i.operands; --op >= 0;)
4573 /* Reject eight bit registers, except where the template requires
4574 them. (eg. movzb) */
4575 if (i.types[op].bitfield.reg8
4576 && (i.tm.operand_types[op].bitfield.reg16
4577 || i.tm.operand_types[op].bitfield.reg32
4578 || i.tm.operand_types[op].bitfield.acc))
4580 as_bad (_("`%s%s' not allowed with `%s%c'"),
4581 register_prefix,
4582 i.op[op].regs->reg_name,
4583 i.tm.name,
4584 i.suffix);
4585 return 0;
4587 /* Warn if the e prefix on a general reg is missing. */
4588 else if ((!quiet_warnings || flag_code == CODE_64BIT)
4589 && i.types[op].bitfield.reg16
4590 && (i.tm.operand_types[op].bitfield.reg32
4591 || i.tm.operand_types[op].bitfield.acc))
4593 /* Prohibit these changes in the 64bit mode, since the
4594 lowering is more complicated. */
4595 if (flag_code == CODE_64BIT)
4597 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4598 register_prefix, i.op[op].regs->reg_name,
4599 i.suffix);
4600 return 0;
4602 #if REGISTER_WARNINGS
4603 else
4604 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4605 register_prefix,
4606 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
4607 register_prefix,
4608 i.op[op].regs->reg_name,
4609 i.suffix);
4610 #endif
4612 /* Warn if the r prefix on a general reg is missing. */
4613 else if (i.types[op].bitfield.reg64
4614 && (i.tm.operand_types[op].bitfield.reg32
4615 || i.tm.operand_types[op].bitfield.acc))
4617 if (intel_syntax
4618 && i.tm.opcode_modifier.toqword
4619 && !i.types[0].bitfield.regxmm)
4621 /* Convert to QWORD. We want REX byte. */
4622 i.suffix = QWORD_MNEM_SUFFIX;
4624 else
4626 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4627 register_prefix, i.op[op].regs->reg_name,
4628 i.suffix);
4629 return 0;
4632 return 1;
4635 static int
4636 check_qword_reg (void)
4638 int op;
4640 for (op = i.operands; --op >= 0; )
4641 /* Reject eight bit registers, except where the template requires
4642 them. (eg. movzb) */
4643 if (i.types[op].bitfield.reg8
4644 && (i.tm.operand_types[op].bitfield.reg16
4645 || i.tm.operand_types[op].bitfield.reg32
4646 || i.tm.operand_types[op].bitfield.acc))
4648 as_bad (_("`%s%s' not allowed with `%s%c'"),
4649 register_prefix,
4650 i.op[op].regs->reg_name,
4651 i.tm.name,
4652 i.suffix);
4653 return 0;
4655 /* Warn if the e prefix on a general reg is missing. */
4656 else if ((i.types[op].bitfield.reg16
4657 || i.types[op].bitfield.reg32)
4658 && (i.tm.operand_types[op].bitfield.reg32
4659 || i.tm.operand_types[op].bitfield.acc))
4661 /* Prohibit these changes in the 64bit mode, since the
4662 lowering is more complicated. */
4663 if (intel_syntax
4664 && i.tm.opcode_modifier.todword
4665 && !i.types[0].bitfield.regxmm)
4667 /* Convert to DWORD. We don't want REX byte. */
4668 i.suffix = LONG_MNEM_SUFFIX;
4670 else
4672 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4673 register_prefix, i.op[op].regs->reg_name,
4674 i.suffix);
4675 return 0;
4678 return 1;
4681 static int
4682 check_word_reg (void)
4684 int op;
4685 for (op = i.operands; --op >= 0;)
4686 /* Reject eight bit registers, except where the template requires
4687 them. (eg. movzb) */
4688 if (i.types[op].bitfield.reg8
4689 && (i.tm.operand_types[op].bitfield.reg16
4690 || i.tm.operand_types[op].bitfield.reg32
4691 || i.tm.operand_types[op].bitfield.acc))
4693 as_bad (_("`%s%s' not allowed with `%s%c'"),
4694 register_prefix,
4695 i.op[op].regs->reg_name,
4696 i.tm.name,
4697 i.suffix);
4698 return 0;
4700 /* Warn if the e prefix on a general reg is present. */
4701 else if ((!quiet_warnings || flag_code == CODE_64BIT)
4702 && i.types[op].bitfield.reg32
4703 && (i.tm.operand_types[op].bitfield.reg16
4704 || i.tm.operand_types[op].bitfield.acc))
4706 /* Prohibit these changes in the 64bit mode, since the
4707 lowering is more complicated. */
4708 if (flag_code == CODE_64BIT)
4710 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4711 register_prefix, i.op[op].regs->reg_name,
4712 i.suffix);
4713 return 0;
4715 else
4716 #if REGISTER_WARNINGS
4717 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4718 register_prefix,
4719 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
4720 register_prefix,
4721 i.op[op].regs->reg_name,
4722 i.suffix);
4723 #endif
4725 return 1;
4728 static int
4729 update_imm (unsigned int j)
4731 i386_operand_type overlap = i.types[j];
4732 if ((overlap.bitfield.imm8
4733 || overlap.bitfield.imm8s
4734 || overlap.bitfield.imm16
4735 || overlap.bitfield.imm32
4736 || overlap.bitfield.imm32s
4737 || overlap.bitfield.imm64)
4738 && !operand_type_equal (&overlap, &imm8)
4739 && !operand_type_equal (&overlap, &imm8s)
4740 && !operand_type_equal (&overlap, &imm16)
4741 && !operand_type_equal (&overlap, &imm32)
4742 && !operand_type_equal (&overlap, &imm32s)
4743 && !operand_type_equal (&overlap, &imm64))
4745 if (i.suffix)
4747 i386_operand_type temp;
4749 operand_type_set (&temp, 0);
4750 if (i.suffix == BYTE_MNEM_SUFFIX)
4752 temp.bitfield.imm8 = overlap.bitfield.imm8;
4753 temp.bitfield.imm8s = overlap.bitfield.imm8s;
4755 else if (i.suffix == WORD_MNEM_SUFFIX)
4756 temp.bitfield.imm16 = overlap.bitfield.imm16;
4757 else if (i.suffix == QWORD_MNEM_SUFFIX)
4759 temp.bitfield.imm64 = overlap.bitfield.imm64;
4760 temp.bitfield.imm32s = overlap.bitfield.imm32s;
4762 else
4763 temp.bitfield.imm32 = overlap.bitfield.imm32;
4764 overlap = temp;
4766 else if (operand_type_equal (&overlap, &imm16_32_32s)
4767 || operand_type_equal (&overlap, &imm16_32)
4768 || operand_type_equal (&overlap, &imm16_32s))
4770 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4771 overlap = imm16;
4772 else
4773 overlap = imm32s;
4775 if (!operand_type_equal (&overlap, &imm8)
4776 && !operand_type_equal (&overlap, &imm8s)
4777 && !operand_type_equal (&overlap, &imm16)
4778 && !operand_type_equal (&overlap, &imm32)
4779 && !operand_type_equal (&overlap, &imm32s)
4780 && !operand_type_equal (&overlap, &imm64))
4782 as_bad (_("no instruction mnemonic suffix given; "
4783 "can't determine immediate size"));
4784 return 0;
4787 i.types[j] = overlap;
4789 return 1;
4792 static int
4793 finalize_imm (void)
4795 unsigned int j, n;
4797 /* Update the first 2 immediate operands. */
4798 n = i.operands > 2 ? 2 : i.operands;
4799 if (n)
4801 for (j = 0; j < n; j++)
4802 if (update_imm (j) == 0)
4803 return 0;
4805 /* The 3rd operand can't be immediate operand. */
4806 gas_assert (operand_type_check (i.types[2], imm) == 0);
4809 return 1;
4812 static int
4813 bad_implicit_operand (int xmm)
4815 const char *ireg = xmm ? "xmm0" : "ymm0";
4817 if (intel_syntax)
4818 as_bad (_("the last operand of `%s' must be `%s%s'"),
4819 i.tm.name, register_prefix, ireg);
4820 else
4821 as_bad (_("the first operand of `%s' must be `%s%s'"),
4822 i.tm.name, register_prefix, ireg);
4823 return 0;
4826 static int
4827 process_operands (void)
4829 /* Default segment register this instruction will use for memory
4830 accesses. 0 means unknown. This is only for optimizing out
4831 unnecessary segment overrides. */
4832 const seg_entry *default_seg = 0;
4834 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
4836 unsigned int dupl = i.operands;
4837 unsigned int dest = dupl - 1;
4838 unsigned int j;
4840 /* The destination must be an xmm register. */
4841 gas_assert (i.reg_operands
4842 && MAX_OPERANDS > dupl
4843 && operand_type_equal (&i.types[dest], &regxmm));
4845 if (i.tm.opcode_modifier.firstxmm0)
4847 /* The first operand is implicit and must be xmm0. */
4848 gas_assert (operand_type_equal (&i.types[0], &regxmm));
4849 if (i.op[0].regs->reg_num != 0)
4850 return bad_implicit_operand (1);
4852 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
4854 /* Keep xmm0 for instructions with VEX prefix and 3
4855 sources. */
4856 goto duplicate;
4858 else
4860 /* We remove the first xmm0 and keep the number of
4861 operands unchanged, which in fact duplicates the
4862 destination. */
4863 for (j = 1; j < i.operands; j++)
4865 i.op[j - 1] = i.op[j];
4866 i.types[j - 1] = i.types[j];
4867 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
4871 else if (i.tm.opcode_modifier.implicit1stxmm0)
4873 gas_assert ((MAX_OPERANDS - 1) > dupl
4874 && (i.tm.opcode_modifier.vexsources
4875 == VEX3SOURCES));
4877 /* Add the implicit xmm0 for instructions with VEX prefix
4878 and 3 sources. */
4879 for (j = i.operands; j > 0; j--)
4881 i.op[j] = i.op[j - 1];
4882 i.types[j] = i.types[j - 1];
4883 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
4885 i.op[0].regs
4886 = (const reg_entry *) hash_find (reg_hash, "xmm0");
4887 i.types[0] = regxmm;
4888 i.tm.operand_types[0] = regxmm;
4890 i.operands += 2;
4891 i.reg_operands += 2;
4892 i.tm.operands += 2;
4894 dupl++;
4895 dest++;
4896 i.op[dupl] = i.op[dest];
4897 i.types[dupl] = i.types[dest];
4898 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
4900 else
4902 duplicate:
4903 i.operands++;
4904 i.reg_operands++;
4905 i.tm.operands++;
4907 i.op[dupl] = i.op[dest];
4908 i.types[dupl] = i.types[dest];
4909 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
4912 if (i.tm.opcode_modifier.immext)
4913 process_immext ();
4915 else if (i.tm.opcode_modifier.firstxmm0)
4917 unsigned int j;
4919 /* The first operand is implicit and must be xmm0/ymm0. */
4920 gas_assert (i.reg_operands
4921 && (operand_type_equal (&i.types[0], &regxmm)
4922 || operand_type_equal (&i.types[0], &regymm)));
4923 if (i.op[0].regs->reg_num != 0)
4924 return bad_implicit_operand (i.types[0].bitfield.regxmm);
4926 for (j = 1; j < i.operands; j++)
4928 i.op[j - 1] = i.op[j];
4929 i.types[j - 1] = i.types[j];
4931 /* We need to adjust fields in i.tm since they are used by
4932 build_modrm_byte. */
4933 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
4936 i.operands--;
4937 i.reg_operands--;
4938 i.tm.operands--;
4940 else if (i.tm.opcode_modifier.regkludge)
4942 /* The imul $imm, %reg instruction is converted into
4943 imul $imm, %reg, %reg, and the clr %reg instruction
4944 is converted into xor %reg, %reg. */
4946 unsigned int first_reg_op;
4948 if (operand_type_check (i.types[0], reg))
4949 first_reg_op = 0;
4950 else
4951 first_reg_op = 1;
4952 /* Pretend we saw the extra register operand. */
4953 gas_assert (i.reg_operands == 1
4954 && i.op[first_reg_op + 1].regs == 0);
4955 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
4956 i.types[first_reg_op + 1] = i.types[first_reg_op];
4957 i.operands++;
4958 i.reg_operands++;
4961 if (i.tm.opcode_modifier.shortform)
4963 if (i.types[0].bitfield.sreg2
4964 || i.types[0].bitfield.sreg3)
4966 if (i.tm.base_opcode == POP_SEG_SHORT
4967 && i.op[0].regs->reg_num == 1)
4969 as_bad (_("you can't `pop %scs'"), register_prefix);
4970 return 0;
4972 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
4973 if ((i.op[0].regs->reg_flags & RegRex) != 0)
4974 i.rex |= REX_B;
4976 else
4978 /* The register or float register operand is in operand
4979 0 or 1. */
4980 unsigned int op;
4982 if (i.types[0].bitfield.floatreg
4983 || operand_type_check (i.types[0], reg))
4984 op = 0;
4985 else
4986 op = 1;
4987 /* Register goes in low 3 bits of opcode. */
4988 i.tm.base_opcode |= i.op[op].regs->reg_num;
4989 if ((i.op[op].regs->reg_flags & RegRex) != 0)
4990 i.rex |= REX_B;
4991 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4993 /* Warn about some common errors, but press on regardless.
4994 The first case can be generated by gcc (<= 2.8.1). */
4995 if (i.operands == 2)
4997 /* Reversed arguments on faddp, fsubp, etc. */
4998 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
4999 register_prefix, i.op[!intel_syntax].regs->reg_name,
5000 register_prefix, i.op[intel_syntax].regs->reg_name);
5002 else
5004 /* Extraneous `l' suffix on fp insn. */
5005 as_warn (_("translating to `%s %s%s'"), i.tm.name,
5006 register_prefix, i.op[0].regs->reg_name);
5011 else if (i.tm.opcode_modifier.modrm)
5013 /* The opcode is completed (modulo i.tm.extension_opcode which
5014 must be put into the modrm byte). Now, we make the modrm and
5015 index base bytes based on all the info we've collected. */
5017 default_seg = build_modrm_byte ();
5019 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
5021 default_seg = &ds;
5023 else if (i.tm.opcode_modifier.isstring)
5025 /* For the string instructions that allow a segment override
5026 on one of their operands, the default segment is ds. */
5027 default_seg = &ds;
5030 if (i.tm.base_opcode == 0x8d /* lea */
5031 && i.seg[0]
5032 && !quiet_warnings)
5033 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
5035 /* If a segment was explicitly specified, and the specified segment
5036 is not the default, use an opcode prefix to select it. If we
5037 never figured out what the default segment is, then default_seg
5038 will be zero at this point, and the specified segment prefix will
5039 always be used. */
5040 if ((i.seg[0]) && (i.seg[0] != default_seg))
5042 if (!add_prefix (i.seg[0]->seg_prefix))
5043 return 0;
5045 return 1;
5048 static const seg_entry *
5049 build_modrm_byte (void)
5051 const seg_entry *default_seg = 0;
5052 unsigned int source, dest;
5053 int vex_3_sources;
5055 /* The first operand of instructions with VEX prefix and 3 sources
5056 must be VEX_Imm4. */
5057 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
5058 if (vex_3_sources)
5060 unsigned int nds, reg_slot;
5061 expressionS *exp;
5063 if (i.tm.opcode_modifier.veximmext
5064 && i.tm.opcode_modifier.immext)
5066 dest = i.operands - 2;
5067 gas_assert (dest == 3);
5069 else
5070 dest = i.operands - 1;
5071 nds = dest - 1;
5073 /* There are 2 kinds of instructions:
5074 1. 5 operands: 4 register operands or 3 register operands
5075 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
5076 VexW0 or VexW1. The destination must be either XMM or YMM
5077 register.
5078 2. 4 operands: 4 register operands or 3 register operands
5079 plus 1 memory operand, VexXDS, and VexImmExt */
5080 gas_assert ((i.reg_operands == 4
5081 || (i.reg_operands == 3 && i.mem_operands == 1))
5082 && i.tm.opcode_modifier.vexvvvv == VEXXDS
5083 && (i.tm.opcode_modifier.veximmext
5084 || (i.imm_operands == 1
5085 && i.types[0].bitfield.vec_imm4
5086 && (i.tm.opcode_modifier.vexw == VEXW0
5087 || i.tm.opcode_modifier.vexw == VEXW1)
5088 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
5089 || operand_type_equal (&i.tm.operand_types[dest], &regymm)))));
5091 if (i.imm_operands == 0)
5093 /* When there is no immediate operand, generate an 8bit
5094 immediate operand to encode the first operand. */
5095 exp = &im_expressions[i.imm_operands++];
5096 i.op[i.operands].imms = exp;
5097 i.types[i.operands] = imm8;
5098 i.operands++;
5099 /* If VexW1 is set, the first operand is the source and
5100 the second operand is encoded in the immediate operand. */
5101 if (i.tm.opcode_modifier.vexw == VEXW1)
5103 source = 0;
5104 reg_slot = 1;
5106 else
5108 source = 1;
5109 reg_slot = 0;
5112 /* FMA swaps REG and NDS. */
5113 if (i.tm.cpu_flags.bitfield.cpufma)
5115 unsigned int tmp;
5116 tmp = reg_slot;
5117 reg_slot = nds;
5118 nds = tmp;
5121 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
5122 &regxmm)
5123 || operand_type_equal (&i.tm.operand_types[reg_slot],
5124 &regymm));
5125 exp->X_op = O_constant;
5126 exp->X_add_number
5127 = ((i.op[reg_slot].regs->reg_num
5128 + ((i.op[reg_slot].regs->reg_flags & RegRex) ? 8 : 0))
5129 << 4);
5131 else
5133 unsigned int imm_slot;
5135 if (i.tm.opcode_modifier.vexw == VEXW0)
5137 /* If VexW0 is set, the third operand is the source and
5138 the second operand is encoded in the immediate
5139 operand. */
5140 source = 2;
5141 reg_slot = 1;
5143 else
5145 /* VexW1 is set, the second operand is the source and
5146 the third operand is encoded in the immediate
5147 operand. */
5148 source = 1;
5149 reg_slot = 2;
5152 if (i.tm.opcode_modifier.immext)
5154 /* When ImmExt is set, the immdiate byte is the last
5155 operand. */
5156 imm_slot = i.operands - 1;
5157 source--;
5158 reg_slot--;
5160 else
5162 imm_slot = 0;
5164 /* Turn on Imm8 so that output_imm will generate it. */
5165 i.types[imm_slot].bitfield.imm8 = 1;
5168 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
5169 &regxmm)
5170 || operand_type_equal (&i.tm.operand_types[reg_slot],
5171 &regymm));
5172 i.op[imm_slot].imms->X_add_number
5173 |= ((i.op[reg_slot].regs->reg_num
5174 + ((i.op[reg_slot].regs->reg_flags & RegRex) ? 8 : 0))
5175 << 4);
5178 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
5179 || operand_type_equal (&i.tm.operand_types[nds],
5180 &regymm));
5181 i.vex.register_specifier = i.op[nds].regs;
5183 else
5184 source = dest = 0;
5186 /* i.reg_operands MUST be the number of real register operands;
5187 implicit registers do not count. If there are 3 register
5188 operands, it must be a instruction with VexNDS. For a
5189 instruction with VexNDD, the destination register is encoded
5190 in VEX prefix. If there are 4 register operands, it must be
5191 a instruction with VEX prefix and 3 sources. */
5192 if (i.mem_operands == 0
5193 && ((i.reg_operands == 2
5194 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
5195 || (i.reg_operands == 3
5196 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
5197 || (i.reg_operands == 4 && vex_3_sources)))
5199 switch (i.operands)
5201 case 2:
5202 source = 0;
5203 break;
5204 case 3:
5205 /* When there are 3 operands, one of them may be immediate,
5206 which may be the first or the last operand. Otherwise,
5207 the first operand must be shift count register (cl) or it
5208 is an instruction with VexNDS. */
5209 gas_assert (i.imm_operands == 1
5210 || (i.imm_operands == 0
5211 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
5212 || i.types[0].bitfield.shiftcount)));
5213 if (operand_type_check (i.types[0], imm)
5214 || i.types[0].bitfield.shiftcount)
5215 source = 1;
5216 else
5217 source = 0;
5218 break;
5219 case 4:
5220 /* When there are 4 operands, the first two must be 8bit
5221 immediate operands. The source operand will be the 3rd
5222 one.
5224 For instructions with VexNDS, if the first operand
5225 an imm8, the source operand is the 2nd one. If the last
5226 operand is imm8, the source operand is the first one. */
5227 gas_assert ((i.imm_operands == 2
5228 && i.types[0].bitfield.imm8
5229 && i.types[1].bitfield.imm8)
5230 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
5231 && i.imm_operands == 1
5232 && (i.types[0].bitfield.imm8
5233 || i.types[i.operands - 1].bitfield.imm8)));
5234 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
5236 if (i.types[0].bitfield.imm8)
5237 source = 1;
5238 else
5239 source = 0;
5241 else
5242 source = 2;
5243 break;
5244 case 5:
5245 break;
5246 default:
5247 abort ();
5250 if (!vex_3_sources)
5252 dest = source + 1;
5254 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
5256 /* For instructions with VexNDS, the register-only
5257 source operand must be XMM or YMM register. It is
5258 encoded in VEX prefix. We need to clear RegMem bit
5259 before calling operand_type_equal. */
5260 i386_operand_type op = i.tm.operand_types[dest];
5261 op.bitfield.regmem = 0;
5262 if ((dest + 1) >= i.operands
5263 || (!operand_type_equal (&op, &regxmm)
5264 && !operand_type_equal (&op, &regymm)))
5265 abort ();
5266 i.vex.register_specifier = i.op[dest].regs;
5267 dest++;
5271 i.rm.mode = 3;
5272 /* One of the register operands will be encoded in the i.tm.reg
5273 field, the other in the combined i.tm.mode and i.tm.regmem
5274 fields. If no form of this instruction supports a memory
5275 destination operand, then we assume the source operand may
5276 sometimes be a memory operand and so we need to store the
5277 destination in the i.rm.reg field. */
5278 if (!i.tm.operand_types[dest].bitfield.regmem
5279 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
5281 i.rm.reg = i.op[dest].regs->reg_num;
5282 i.rm.regmem = i.op[source].regs->reg_num;
5283 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
5284 i.rex |= REX_R;
5285 if ((i.op[source].regs->reg_flags & RegRex) != 0)
5286 i.rex |= REX_B;
5288 else
5290 i.rm.reg = i.op[source].regs->reg_num;
5291 i.rm.regmem = i.op[dest].regs->reg_num;
5292 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
5293 i.rex |= REX_B;
5294 if ((i.op[source].regs->reg_flags & RegRex) != 0)
5295 i.rex |= REX_R;
5297 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
5299 if (!i.types[0].bitfield.control
5300 && !i.types[1].bitfield.control)
5301 abort ();
5302 i.rex &= ~(REX_R | REX_B);
5303 add_prefix (LOCK_PREFIX_OPCODE);
5306 else
5307 { /* If it's not 2 reg operands... */
5308 unsigned int mem;
5310 if (i.mem_operands)
5312 unsigned int fake_zero_displacement = 0;
5313 unsigned int op;
5315 for (op = 0; op < i.operands; op++)
5316 if (operand_type_check (i.types[op], anymem))
5317 break;
5318 gas_assert (op < i.operands);
5320 default_seg = &ds;
5322 if (i.base_reg == 0)
5324 i.rm.mode = 0;
5325 if (!i.disp_operands)
5326 fake_zero_displacement = 1;
5327 if (i.index_reg == 0)
5329 /* Operand is just <disp> */
5330 if (flag_code == CODE_64BIT)
5332 /* 64bit mode overwrites the 32bit absolute
5333 addressing by RIP relative addressing and
5334 absolute addressing is encoded by one of the
5335 redundant SIB forms. */
5336 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5337 i.sib.base = NO_BASE_REGISTER;
5338 i.sib.index = NO_INDEX_REGISTER;
5339 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
5340 ? disp32s : disp32);
5342 else if ((flag_code == CODE_16BIT)
5343 ^ (i.prefix[ADDR_PREFIX] != 0))
5345 i.rm.regmem = NO_BASE_REGISTER_16;
5346 i.types[op] = disp16;
5348 else
5350 i.rm.regmem = NO_BASE_REGISTER;
5351 i.types[op] = disp32;
5354 else /* !i.base_reg && i.index_reg */
5356 if (i.index_reg->reg_num == RegEiz
5357 || i.index_reg->reg_num == RegRiz)
5358 i.sib.index = NO_INDEX_REGISTER;
5359 else
5360 i.sib.index = i.index_reg->reg_num;
5361 i.sib.base = NO_BASE_REGISTER;
5362 i.sib.scale = i.log2_scale_factor;
5363 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5364 i.types[op].bitfield.disp8 = 0;
5365 i.types[op].bitfield.disp16 = 0;
5366 i.types[op].bitfield.disp64 = 0;
5367 if (flag_code != CODE_64BIT)
5369 /* Must be 32 bit */
5370 i.types[op].bitfield.disp32 = 1;
5371 i.types[op].bitfield.disp32s = 0;
5373 else
5375 i.types[op].bitfield.disp32 = 0;
5376 i.types[op].bitfield.disp32s = 1;
5378 if ((i.index_reg->reg_flags & RegRex) != 0)
5379 i.rex |= REX_X;
5382 /* RIP addressing for 64bit mode. */
5383 else if (i.base_reg->reg_num == RegRip ||
5384 i.base_reg->reg_num == RegEip)
5386 i.rm.regmem = NO_BASE_REGISTER;
5387 i.types[op].bitfield.disp8 = 0;
5388 i.types[op].bitfield.disp16 = 0;
5389 i.types[op].bitfield.disp32 = 0;
5390 i.types[op].bitfield.disp32s = 1;
5391 i.types[op].bitfield.disp64 = 0;
5392 i.flags[op] |= Operand_PCrel;
5393 if (! i.disp_operands)
5394 fake_zero_displacement = 1;
5396 else if (i.base_reg->reg_type.bitfield.reg16)
5398 switch (i.base_reg->reg_num)
5400 case 3: /* (%bx) */
5401 if (i.index_reg == 0)
5402 i.rm.regmem = 7;
5403 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
5404 i.rm.regmem = i.index_reg->reg_num - 6;
5405 break;
5406 case 5: /* (%bp) */
5407 default_seg = &ss;
5408 if (i.index_reg == 0)
5410 i.rm.regmem = 6;
5411 if (operand_type_check (i.types[op], disp) == 0)
5413 /* fake (%bp) into 0(%bp) */
5414 i.types[op].bitfield.disp8 = 1;
5415 fake_zero_displacement = 1;
5418 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
5419 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
5420 break;
5421 default: /* (%si) -> 4 or (%di) -> 5 */
5422 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
5424 i.rm.mode = mode_from_disp_size (i.types[op]);
5426 else /* i.base_reg and 32/64 bit mode */
5428 if (flag_code == CODE_64BIT
5429 && operand_type_check (i.types[op], disp))
5431 i386_operand_type temp;
5432 operand_type_set (&temp, 0);
5433 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
5434 i.types[op] = temp;
5435 if (i.prefix[ADDR_PREFIX] == 0)
5436 i.types[op].bitfield.disp32s = 1;
5437 else
5438 i.types[op].bitfield.disp32 = 1;
5441 i.rm.regmem = i.base_reg->reg_num;
5442 if ((i.base_reg->reg_flags & RegRex) != 0)
5443 i.rex |= REX_B;
5444 i.sib.base = i.base_reg->reg_num;
5445 /* x86-64 ignores REX prefix bit here to avoid decoder
5446 complications. */
5447 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
5449 default_seg = &ss;
5450 if (i.disp_operands == 0)
5452 fake_zero_displacement = 1;
5453 i.types[op].bitfield.disp8 = 1;
5456 else if (i.base_reg->reg_num == ESP_REG_NUM)
5458 default_seg = &ss;
5460 i.sib.scale = i.log2_scale_factor;
5461 if (i.index_reg == 0)
5463 /* <disp>(%esp) becomes two byte modrm with no index
5464 register. We've already stored the code for esp
5465 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
5466 Any base register besides %esp will not use the
5467 extra modrm byte. */
5468 i.sib.index = NO_INDEX_REGISTER;
5470 else
5472 if (i.index_reg->reg_num == RegEiz
5473 || i.index_reg->reg_num == RegRiz)
5474 i.sib.index = NO_INDEX_REGISTER;
5475 else
5476 i.sib.index = i.index_reg->reg_num;
5477 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5478 if ((i.index_reg->reg_flags & RegRex) != 0)
5479 i.rex |= REX_X;
5482 if (i.disp_operands
5483 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5484 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
5485 i.rm.mode = 0;
5486 else
5487 i.rm.mode = mode_from_disp_size (i.types[op]);
5490 if (fake_zero_displacement)
5492 /* Fakes a zero displacement assuming that i.types[op]
5493 holds the correct displacement size. */
5494 expressionS *exp;
5496 gas_assert (i.op[op].disps == 0);
5497 exp = &disp_expressions[i.disp_operands++];
5498 i.op[op].disps = exp;
5499 exp->X_op = O_constant;
5500 exp->X_add_number = 0;
5501 exp->X_add_symbol = (symbolS *) 0;
5502 exp->X_op_symbol = (symbolS *) 0;
5505 mem = op;
5507 else
5508 mem = ~0;
5510 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5512 if (operand_type_check (i.types[0], imm))
5513 i.vex.register_specifier = NULL;
5514 else
5516 /* VEX.vvvv encodes one of the sources when the first
5517 operand is not an immediate. */
5518 if (i.tm.opcode_modifier.vexw == VEXW0)
5519 i.vex.register_specifier = i.op[0].regs;
5520 else
5521 i.vex.register_specifier = i.op[1].regs;
5524 /* Destination is a XMM register encoded in the ModRM.reg
5525 and VEX.R bit. */
5526 i.rm.reg = i.op[2].regs->reg_num;
5527 if ((i.op[2].regs->reg_flags & RegRex) != 0)
5528 i.rex |= REX_R;
5530 /* ModRM.rm and VEX.B encodes the other source. */
5531 if (!i.mem_operands)
5533 i.rm.mode = 3;
5535 if (i.tm.opcode_modifier.vexw == VEXW0)
5536 i.rm.regmem = i.op[1].regs->reg_num;
5537 else
5538 i.rm.regmem = i.op[0].regs->reg_num;
5540 if ((i.op[1].regs->reg_flags & RegRex) != 0)
5541 i.rex |= REX_B;
5544 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
5546 i.vex.register_specifier = i.op[2].regs;
5547 if (!i.mem_operands)
5549 i.rm.mode = 3;
5550 i.rm.regmem = i.op[1].regs->reg_num;
5551 if ((i.op[1].regs->reg_flags & RegRex) != 0)
5552 i.rex |= REX_B;
5555 /* Fill in i.rm.reg or i.rm.regmem field with register operand
5556 (if any) based on i.tm.extension_opcode. Again, we must be
5557 careful to make sure that segment/control/debug/test/MMX
5558 registers are coded into the i.rm.reg field. */
5559 else if (i.reg_operands)
5561 unsigned int op;
5562 unsigned int vex_reg = ~0;
5564 for (op = 0; op < i.operands; op++)
5565 if (i.types[op].bitfield.reg8
5566 || i.types[op].bitfield.reg16
5567 || i.types[op].bitfield.reg32
5568 || i.types[op].bitfield.reg64
5569 || i.types[op].bitfield.regmmx
5570 || i.types[op].bitfield.regxmm
5571 || i.types[op].bitfield.regymm
5572 || i.types[op].bitfield.sreg2
5573 || i.types[op].bitfield.sreg3
5574 || i.types[op].bitfield.control
5575 || i.types[op].bitfield.debug
5576 || i.types[op].bitfield.test)
5577 break;
5579 if (vex_3_sources)
5580 op = dest;
5581 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
5583 /* For instructions with VexNDS, the register-only
5584 source operand is encoded in VEX prefix. */
5585 gas_assert (mem != (unsigned int) ~0);
5587 if (op > mem)
5589 vex_reg = op++;
5590 gas_assert (op < i.operands);
5592 else
5594 vex_reg = op + 1;
5595 gas_assert (vex_reg < i.operands);
5598 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
5600 /* For instructions with VexNDD, there should be
5601 no memory operand and the register destination
5602 is encoded in VEX prefix. */
5603 gas_assert (i.mem_operands == 0
5604 && (op + 2) == i.operands);
5605 vex_reg = op + 1;
5607 else
5608 gas_assert (op < i.operands);
5610 if (vex_reg != (unsigned int) ~0)
5612 gas_assert (i.reg_operands == 2);
5614 if (!operand_type_equal (&i.tm.operand_types[vex_reg],
5615 &regxmm)
5616 && !operand_type_equal (&i.tm.operand_types[vex_reg],
5617 &regymm))
5618 abort ();
5620 i.vex.register_specifier = i.op[vex_reg].regs;
5623 /* Don't set OP operand twice. */
5624 if (vex_reg != op)
5626 /* If there is an extension opcode to put here, the
5627 register number must be put into the regmem field. */
5628 if (i.tm.extension_opcode != None)
5630 i.rm.regmem = i.op[op].regs->reg_num;
5631 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5632 i.rex |= REX_B;
5634 else
5636 i.rm.reg = i.op[op].regs->reg_num;
5637 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5638 i.rex |= REX_R;
5642 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
5643 must set it to 3 to indicate this is a register operand
5644 in the regmem field. */
5645 if (!i.mem_operands)
5646 i.rm.mode = 3;
5649 /* Fill in i.rm.reg field with extension opcode (if any). */
5650 if (i.tm.extension_opcode != None)
5651 i.rm.reg = i.tm.extension_opcode;
5653 return default_seg;
5656 static void
5657 output_branch (void)
5659 char *p;
5660 int code16;
5661 int prefix;
5662 relax_substateT subtype;
5663 symbolS *sym;
5664 offsetT off;
5666 code16 = 0;
5667 if (flag_code == CODE_16BIT)
5668 code16 = CODE16;
5670 prefix = 0;
5671 if (i.prefix[DATA_PREFIX] != 0)
5673 prefix = 1;
5674 i.prefixes -= 1;
5675 code16 ^= CODE16;
5677 /* Pentium4 branch hints. */
5678 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
5679 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
5681 prefix++;
5682 i.prefixes--;
5684 if (i.prefix[REX_PREFIX] != 0)
5686 prefix++;
5687 i.prefixes--;
5690 if (i.prefixes != 0 && !intel_syntax)
5691 as_warn (_("skipping prefixes on this instruction"));
5693 /* It's always a symbol; End frag & setup for relax.
5694 Make sure there is enough room in this frag for the largest
5695 instruction we may generate in md_convert_frag. This is 2
5696 bytes for the opcode and room for the prefix and largest
5697 displacement. */
5698 frag_grow (prefix + 2 + 4);
5699 /* Prefix and 1 opcode byte go in fr_fix. */
5700 p = frag_more (prefix + 1);
5701 if (i.prefix[DATA_PREFIX] != 0)
5702 *p++ = DATA_PREFIX_OPCODE;
5703 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
5704 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
5705 *p++ = i.prefix[SEG_PREFIX];
5706 if (i.prefix[REX_PREFIX] != 0)
5707 *p++ = i.prefix[REX_PREFIX];
5708 *p = i.tm.base_opcode;
5710 if ((unsigned char) *p == JUMP_PC_RELATIVE)
5711 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
5712 else if (cpu_arch_flags.bitfield.cpui386)
5713 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
5714 else
5715 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
5716 subtype |= code16;
5718 sym = i.op[0].disps->X_add_symbol;
5719 off = i.op[0].disps->X_add_number;
5721 if (i.op[0].disps->X_op != O_constant
5722 && i.op[0].disps->X_op != O_symbol)
5724 /* Handle complex expressions. */
5725 sym = make_expr_symbol (i.op[0].disps);
5726 off = 0;
5729 /* 1 possible extra opcode + 4 byte displacement go in var part.
5730 Pass reloc in fr_var. */
5731 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
5734 static void
5735 output_jump (void)
5737 char *p;
5738 int size;
5739 fixS *fixP;
5741 if (i.tm.opcode_modifier.jumpbyte)
5743 /* This is a loop or jecxz type instruction. */
5744 size = 1;
5745 if (i.prefix[ADDR_PREFIX] != 0)
5747 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
5748 i.prefixes -= 1;
5750 /* Pentium4 branch hints. */
5751 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
5752 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
5754 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
5755 i.prefixes--;
5758 else
5760 int code16;
5762 code16 = 0;
5763 if (flag_code == CODE_16BIT)
5764 code16 = CODE16;
5766 if (i.prefix[DATA_PREFIX] != 0)
5768 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
5769 i.prefixes -= 1;
5770 code16 ^= CODE16;
5773 size = 4;
5774 if (code16)
5775 size = 2;
5778 if (i.prefix[REX_PREFIX] != 0)
5780 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
5781 i.prefixes -= 1;
5784 if (i.prefixes != 0 && !intel_syntax)
5785 as_warn (_("skipping prefixes on this instruction"));
5787 p = frag_more (1 + size);
5788 *p++ = i.tm.base_opcode;
5790 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5791 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
5793 /* All jumps handled here are signed, but don't use a signed limit
5794 check for 32 and 16 bit jumps as we want to allow wrap around at
5795 4G and 64k respectively. */
5796 if (size == 1)
5797 fixP->fx_signed = 1;
5800 static void
5801 output_interseg_jump (void)
5803 char *p;
5804 int size;
5805 int prefix;
5806 int code16;
5808 code16 = 0;
5809 if (flag_code == CODE_16BIT)
5810 code16 = CODE16;
5812 prefix = 0;
5813 if (i.prefix[DATA_PREFIX] != 0)
5815 prefix = 1;
5816 i.prefixes -= 1;
5817 code16 ^= CODE16;
5819 if (i.prefix[REX_PREFIX] != 0)
5821 prefix++;
5822 i.prefixes -= 1;
5825 size = 4;
5826 if (code16)
5827 size = 2;
5829 if (i.prefixes != 0 && !intel_syntax)
5830 as_warn (_("skipping prefixes on this instruction"));
5832 /* 1 opcode; 2 segment; offset */
5833 p = frag_more (prefix + 1 + 2 + size);
5835 if (i.prefix[DATA_PREFIX] != 0)
5836 *p++ = DATA_PREFIX_OPCODE;
5838 if (i.prefix[REX_PREFIX] != 0)
5839 *p++ = i.prefix[REX_PREFIX];
5841 *p++ = i.tm.base_opcode;
5842 if (i.op[1].imms->X_op == O_constant)
5844 offsetT n = i.op[1].imms->X_add_number;
5846 if (size == 2
5847 && !fits_in_unsigned_word (n)
5848 && !fits_in_signed_word (n))
5850 as_bad (_("16-bit jump out of range"));
5851 return;
5853 md_number_to_chars (p, n, size);
5855 else
5856 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5857 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
5858 if (i.op[0].imms->X_op != O_constant)
5859 as_bad (_("can't handle non absolute segment in `%s'"),
5860 i.tm.name);
5861 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
5864 static void
5865 output_insn (void)
5867 fragS *insn_start_frag;
5868 offsetT insn_start_off;
5870 /* Tie dwarf2 debug info to the address at the start of the insn.
5871 We can't do this after the insn has been output as the current
5872 frag may have been closed off. eg. by frag_var. */
5873 dwarf2_emit_insn (0);
5875 insn_start_frag = frag_now;
5876 insn_start_off = frag_now_fix ();
5878 /* Output jumps. */
5879 if (i.tm.opcode_modifier.jump)
5880 output_branch ();
5881 else if (i.tm.opcode_modifier.jumpbyte
5882 || i.tm.opcode_modifier.jumpdword)
5883 output_jump ();
5884 else if (i.tm.opcode_modifier.jumpintersegment)
5885 output_interseg_jump ();
5886 else
5888 /* Output normal instructions here. */
5889 char *p;
5890 unsigned char *q;
5891 unsigned int j;
5892 unsigned int prefix;
5894 /* Since the VEX prefix contains the implicit prefix, we don't
5895 need the explicit prefix. */
5896 if (!i.tm.opcode_modifier.vex)
5898 switch (i.tm.opcode_length)
5900 case 3:
5901 if (i.tm.base_opcode & 0xff000000)
5903 prefix = (i.tm.base_opcode >> 24) & 0xff;
5904 goto check_prefix;
5906 break;
5907 case 2:
5908 if ((i.tm.base_opcode & 0xff0000) != 0)
5910 prefix = (i.tm.base_opcode >> 16) & 0xff;
5911 if (i.tm.cpu_flags.bitfield.cpupadlock)
5913 check_prefix:
5914 if (prefix != REPE_PREFIX_OPCODE
5915 || (i.prefix[REP_PREFIX]
5916 != REPE_PREFIX_OPCODE))
5917 add_prefix (prefix);
5919 else
5920 add_prefix (prefix);
5922 break;
5923 case 1:
5924 break;
5925 default:
5926 abort ();
5929 /* The prefix bytes. */
5930 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
5931 if (*q)
5932 FRAG_APPEND_1_CHAR (*q);
5935 if (i.tm.opcode_modifier.vex)
5937 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
5938 if (*q)
5939 switch (j)
5941 case REX_PREFIX:
5942 /* REX byte is encoded in VEX prefix. */
5943 break;
5944 case SEG_PREFIX:
5945 case ADDR_PREFIX:
5946 FRAG_APPEND_1_CHAR (*q);
5947 break;
5948 default:
5949 /* There should be no other prefixes for instructions
5950 with VEX prefix. */
5951 abort ();
5954 /* Now the VEX prefix. */
5955 p = frag_more (i.vex.length);
5956 for (j = 0; j < i.vex.length; j++)
5957 p[j] = i.vex.bytes[j];
5960 /* Now the opcode; be careful about word order here! */
5961 if (i.tm.opcode_length == 1)
5963 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
5965 else
5967 switch (i.tm.opcode_length)
5969 case 3:
5970 p = frag_more (3);
5971 *p++ = (i.tm.base_opcode >> 16) & 0xff;
5972 break;
5973 case 2:
5974 p = frag_more (2);
5975 break;
5976 default:
5977 abort ();
5978 break;
5981 /* Put out high byte first: can't use md_number_to_chars! */
5982 *p++ = (i.tm.base_opcode >> 8) & 0xff;
5983 *p = i.tm.base_opcode & 0xff;
5986 /* Now the modrm byte and sib byte (if present). */
5987 if (i.tm.opcode_modifier.modrm)
5989 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
5990 | i.rm.reg << 3
5991 | i.rm.mode << 6));
5992 /* If i.rm.regmem == ESP (4)
5993 && i.rm.mode != (Register mode)
5994 && not 16 bit
5995 ==> need second modrm byte. */
5996 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
5997 && i.rm.mode != 3
5998 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
5999 FRAG_APPEND_1_CHAR ((i.sib.base << 0
6000 | i.sib.index << 3
6001 | i.sib.scale << 6));
6004 if (i.disp_operands)
6005 output_disp (insn_start_frag, insn_start_off);
6007 if (i.imm_operands)
6008 output_imm (insn_start_frag, insn_start_off);
6011 #ifdef DEBUG386
6012 if (flag_debug)
6014 pi ("" /*line*/, &i);
6016 #endif /* DEBUG386 */
6019 /* Return the size of the displacement operand N. */
6021 static int
6022 disp_size (unsigned int n)
6024 int size = 4;
6025 if (i.types[n].bitfield.disp64)
6026 size = 8;
6027 else if (i.types[n].bitfield.disp8)
6028 size = 1;
6029 else if (i.types[n].bitfield.disp16)
6030 size = 2;
6031 return size;
6034 /* Return the size of the immediate operand N. */
6036 static int
6037 imm_size (unsigned int n)
6039 int size = 4;
6040 if (i.types[n].bitfield.imm64)
6041 size = 8;
6042 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
6043 size = 1;
6044 else if (i.types[n].bitfield.imm16)
6045 size = 2;
6046 return size;
6049 static void
6050 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
6052 char *p;
6053 unsigned int n;
6055 for (n = 0; n < i.operands; n++)
6057 if (operand_type_check (i.types[n], disp))
6059 if (i.op[n].disps->X_op == O_constant)
6061 int size = disp_size (n);
6062 offsetT val;
6064 val = offset_in_range (i.op[n].disps->X_add_number,
6065 size);
6066 p = frag_more (size);
6067 md_number_to_chars (p, val, size);
6069 else
6071 enum bfd_reloc_code_real reloc_type;
6072 int size = disp_size (n);
6073 int sign = i.types[n].bitfield.disp32s;
6074 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
6076 /* We can't have 8 bit displacement here. */
6077 gas_assert (!i.types[n].bitfield.disp8);
6079 /* The PC relative address is computed relative
6080 to the instruction boundary, so in case immediate
6081 fields follows, we need to adjust the value. */
6082 if (pcrel && i.imm_operands)
6084 unsigned int n1;
6085 int sz = 0;
6087 for (n1 = 0; n1 < i.operands; n1++)
6088 if (operand_type_check (i.types[n1], imm))
6090 /* Only one immediate is allowed for PC
6091 relative address. */
6092 gas_assert (sz == 0);
6093 sz = imm_size (n1);
6094 i.op[n].disps->X_add_number -= sz;
6096 /* We should find the immediate. */
6097 gas_assert (sz != 0);
6100 p = frag_more (size);
6101 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
6102 if (GOT_symbol
6103 && GOT_symbol == i.op[n].disps->X_add_symbol
6104 && (((reloc_type == BFD_RELOC_32
6105 || reloc_type == BFD_RELOC_X86_64_32S
6106 || (reloc_type == BFD_RELOC_64
6107 && object_64bit))
6108 && (i.op[n].disps->X_op == O_symbol
6109 || (i.op[n].disps->X_op == O_add
6110 && ((symbol_get_value_expression
6111 (i.op[n].disps->X_op_symbol)->X_op)
6112 == O_subtract))))
6113 || reloc_type == BFD_RELOC_32_PCREL))
6115 offsetT add;
6117 if (insn_start_frag == frag_now)
6118 add = (p - frag_now->fr_literal) - insn_start_off;
6119 else
6121 fragS *fr;
6123 add = insn_start_frag->fr_fix - insn_start_off;
6124 for (fr = insn_start_frag->fr_next;
6125 fr && fr != frag_now; fr = fr->fr_next)
6126 add += fr->fr_fix;
6127 add += p - frag_now->fr_literal;
6130 if (!object_64bit)
6132 reloc_type = BFD_RELOC_386_GOTPC;
6133 i.op[n].imms->X_add_number += add;
6135 else if (reloc_type == BFD_RELOC_64)
6136 reloc_type = BFD_RELOC_X86_64_GOTPC64;
6137 else
6138 /* Don't do the adjustment for x86-64, as there
6139 the pcrel addressing is relative to the _next_
6140 insn, and that is taken care of in other code. */
6141 reloc_type = BFD_RELOC_X86_64_GOTPC32;
6143 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6144 i.op[n].disps, pcrel, reloc_type);
6150 static void
6151 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
6153 char *p;
6154 unsigned int n;
6156 for (n = 0; n < i.operands; n++)
6158 if (operand_type_check (i.types[n], imm))
6160 if (i.op[n].imms->X_op == O_constant)
6162 int size = imm_size (n);
6163 offsetT val;
6165 val = offset_in_range (i.op[n].imms->X_add_number,
6166 size);
6167 p = frag_more (size);
6168 md_number_to_chars (p, val, size);
6170 else
6172 /* Not absolute_section.
6173 Need a 32-bit fixup (don't support 8bit
6174 non-absolute imms). Try to support other
6175 sizes ... */
6176 enum bfd_reloc_code_real reloc_type;
6177 int size = imm_size (n);
6178 int sign;
6180 if (i.types[n].bitfield.imm32s
6181 && (i.suffix == QWORD_MNEM_SUFFIX
6182 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
6183 sign = 1;
6184 else
6185 sign = 0;
6187 p = frag_more (size);
6188 reloc_type = reloc (size, 0, sign, i.reloc[n]);
6190 /* This is tough to explain. We end up with this one if we
6191 * have operands that look like
6192 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
6193 * obtain the absolute address of the GOT, and it is strongly
6194 * preferable from a performance point of view to avoid using
6195 * a runtime relocation for this. The actual sequence of
6196 * instructions often look something like:
6198 * call .L66
6199 * .L66:
6200 * popl %ebx
6201 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
6203 * The call and pop essentially return the absolute address
6204 * of the label .L66 and store it in %ebx. The linker itself
6205 * will ultimately change the first operand of the addl so
6206 * that %ebx points to the GOT, but to keep things simple, the
6207 * .o file must have this operand set so that it generates not
6208 * the absolute address of .L66, but the absolute address of
6209 * itself. This allows the linker itself simply treat a GOTPC
6210 * relocation as asking for a pcrel offset to the GOT to be
6211 * added in, and the addend of the relocation is stored in the
6212 * operand field for the instruction itself.
6214 * Our job here is to fix the operand so that it would add
6215 * the correct offset so that %ebx would point to itself. The
6216 * thing that is tricky is that .-.L66 will point to the
6217 * beginning of the instruction, so we need to further modify
6218 * the operand so that it will point to itself. There are
6219 * other cases where you have something like:
6221 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
6223 * and here no correction would be required. Internally in
6224 * the assembler we treat operands of this form as not being
6225 * pcrel since the '.' is explicitly mentioned, and I wonder
6226 * whether it would simplify matters to do it this way. Who
6227 * knows. In earlier versions of the PIC patches, the
6228 * pcrel_adjust field was used to store the correction, but
6229 * since the expression is not pcrel, I felt it would be
6230 * confusing to do it this way. */
6232 if ((reloc_type == BFD_RELOC_32
6233 || reloc_type == BFD_RELOC_X86_64_32S
6234 || reloc_type == BFD_RELOC_64)
6235 && GOT_symbol
6236 && GOT_symbol == i.op[n].imms->X_add_symbol
6237 && (i.op[n].imms->X_op == O_symbol
6238 || (i.op[n].imms->X_op == O_add
6239 && ((symbol_get_value_expression
6240 (i.op[n].imms->X_op_symbol)->X_op)
6241 == O_subtract))))
6243 offsetT add;
6245 if (insn_start_frag == frag_now)
6246 add = (p - frag_now->fr_literal) - insn_start_off;
6247 else
6249 fragS *fr;
6251 add = insn_start_frag->fr_fix - insn_start_off;
6252 for (fr = insn_start_frag->fr_next;
6253 fr && fr != frag_now; fr = fr->fr_next)
6254 add += fr->fr_fix;
6255 add += p - frag_now->fr_literal;
6258 if (!object_64bit)
6259 reloc_type = BFD_RELOC_386_GOTPC;
6260 else if (size == 4)
6261 reloc_type = BFD_RELOC_X86_64_GOTPC32;
6262 else if (size == 8)
6263 reloc_type = BFD_RELOC_X86_64_GOTPC64;
6264 i.op[n].imms->X_add_number += add;
6266 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6267 i.op[n].imms, 0, reloc_type);
6273 /* x86_cons_fix_new is called via the expression parsing code when a
6274 reloc is needed. We use this hook to get the correct .got reloc. */
6275 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
6276 static int cons_sign = -1;
6278 void
6279 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
6280 expressionS *exp)
6282 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
6284 got_reloc = NO_RELOC;
6286 #ifdef TE_PE
6287 if (exp->X_op == O_secrel)
6289 exp->X_op = O_symbol;
6290 r = BFD_RELOC_32_SECREL;
6292 #endif
6294 fix_new_exp (frag, off, len, exp, 0, r);
6297 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
6298 # define lex_got(reloc, adjust, types) NULL
6299 #else
6300 /* Parse operands of the form
6301 <symbol>@GOTOFF+<nnn>
6302 and similar .plt or .got references.
6304 If we find one, set up the correct relocation in RELOC and copy the
6305 input string, minus the `@GOTOFF' into a malloc'd buffer for
6306 parsing by the calling routine. Return this buffer, and if ADJUST
6307 is non-null set it to the length of the string we removed from the
6308 input line. Otherwise return NULL. */
6309 static char *
6310 lex_got (enum bfd_reloc_code_real *rel,
6311 int *adjust,
6312 i386_operand_type *types)
6314 /* Some of the relocations depend on the size of what field is to
6315 be relocated. But in our callers i386_immediate and i386_displacement
6316 we don't yet know the operand size (this will be set by insn
6317 matching). Hence we record the word32 relocation here,
6318 and adjust the reloc according to the real size in reloc(). */
6319 static const struct {
6320 const char *str;
6321 int len;
6322 const enum bfd_reloc_code_real rel[2];
6323 const i386_operand_type types64;
6324 } gotrel[] = {
6325 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
6326 BFD_RELOC_X86_64_PLTOFF64 },
6327 OPERAND_TYPE_IMM64 },
6328 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
6329 BFD_RELOC_X86_64_PLT32 },
6330 OPERAND_TYPE_IMM32_32S_DISP32 },
6331 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
6332 BFD_RELOC_X86_64_GOTPLT64 },
6333 OPERAND_TYPE_IMM64_DISP64 },
6334 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
6335 BFD_RELOC_X86_64_GOTOFF64 },
6336 OPERAND_TYPE_IMM64_DISP64 },
6337 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
6338 BFD_RELOC_X86_64_GOTPCREL },
6339 OPERAND_TYPE_IMM32_32S_DISP32 },
6340 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
6341 BFD_RELOC_X86_64_TLSGD },
6342 OPERAND_TYPE_IMM32_32S_DISP32 },
6343 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
6344 _dummy_first_bfd_reloc_code_real },
6345 OPERAND_TYPE_NONE },
6346 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
6347 BFD_RELOC_X86_64_TLSLD },
6348 OPERAND_TYPE_IMM32_32S_DISP32 },
6349 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
6350 BFD_RELOC_X86_64_GOTTPOFF },
6351 OPERAND_TYPE_IMM32_32S_DISP32 },
6352 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
6353 BFD_RELOC_X86_64_TPOFF32 },
6354 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
6355 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
6356 _dummy_first_bfd_reloc_code_real },
6357 OPERAND_TYPE_NONE },
6358 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
6359 BFD_RELOC_X86_64_DTPOFF32 },
6360 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
6361 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
6362 _dummy_first_bfd_reloc_code_real },
6363 OPERAND_TYPE_NONE },
6364 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
6365 _dummy_first_bfd_reloc_code_real },
6366 OPERAND_TYPE_NONE },
6367 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
6368 BFD_RELOC_X86_64_GOT32 },
6369 OPERAND_TYPE_IMM32_32S_64_DISP32 },
6370 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
6371 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
6372 OPERAND_TYPE_IMM32_32S_DISP32 },
6373 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
6374 BFD_RELOC_X86_64_TLSDESC_CALL },
6375 OPERAND_TYPE_IMM32_32S_DISP32 },
6377 char *cp;
6378 unsigned int j;
6380 if (!IS_ELF)
6381 return NULL;
6383 for (cp = input_line_pointer; *cp != '@'; cp++)
6384 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
6385 return NULL;
6387 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
6389 int len = gotrel[j].len;
6390 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
6392 if (gotrel[j].rel[object_64bit] != 0)
6394 int first, second;
6395 char *tmpbuf, *past_reloc;
6397 *rel = gotrel[j].rel[object_64bit];
6398 if (adjust)
6399 *adjust = len;
6401 if (types)
6403 if (flag_code != CODE_64BIT)
6405 types->bitfield.imm32 = 1;
6406 types->bitfield.disp32 = 1;
6408 else
6409 *types = gotrel[j].types64;
6412 if (GOT_symbol == NULL)
6413 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
6415 /* The length of the first part of our input line. */
6416 first = cp - input_line_pointer;
6418 /* The second part goes from after the reloc token until
6419 (and including) an end_of_line char or comma. */
6420 past_reloc = cp + 1 + len;
6421 cp = past_reloc;
6422 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
6423 ++cp;
6424 second = cp + 1 - past_reloc;
6426 /* Allocate and copy string. The trailing NUL shouldn't
6427 be necessary, but be safe. */
6428 tmpbuf = (char *) xmalloc (first + second + 2);
6429 memcpy (tmpbuf, input_line_pointer, first);
6430 if (second != 0 && *past_reloc != ' ')
6431 /* Replace the relocation token with ' ', so that
6432 errors like foo@GOTOFF1 will be detected. */
6433 tmpbuf[first++] = ' ';
6434 memcpy (tmpbuf + first, past_reloc, second);
6435 tmpbuf[first + second] = '\0';
6436 return tmpbuf;
6439 as_bad (_("@%s reloc is not supported with %d-bit output format"),
6440 gotrel[j].str, 1 << (5 + object_64bit));
6441 return NULL;
6445 /* Might be a symbol version string. Don't as_bad here. */
6446 return NULL;
6449 void
6450 x86_cons (expressionS *exp, int size)
6452 intel_syntax = -intel_syntax;
6454 if (size == 4 || (object_64bit && size == 8))
6456 /* Handle @GOTOFF and the like in an expression. */
6457 char *save;
6458 char *gotfree_input_line;
6459 int adjust;
6461 save = input_line_pointer;
6462 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
6463 if (gotfree_input_line)
6464 input_line_pointer = gotfree_input_line;
6466 expression (exp);
6468 if (gotfree_input_line)
6470 /* expression () has merrily parsed up to the end of line,
6471 or a comma - in the wrong buffer. Transfer how far
6472 input_line_pointer has moved to the right buffer. */
6473 input_line_pointer = (save
6474 + (input_line_pointer - gotfree_input_line)
6475 + adjust);
6476 free (gotfree_input_line);
6477 if (exp->X_op == O_constant
6478 || exp->X_op == O_absent
6479 || exp->X_op == O_illegal
6480 || exp->X_op == O_register
6481 || exp->X_op == O_big)
6483 char c = *input_line_pointer;
6484 *input_line_pointer = 0;
6485 as_bad (_("missing or invalid expression `%s'"), save);
6486 *input_line_pointer = c;
6490 else
6491 expression (exp);
6493 intel_syntax = -intel_syntax;
6495 if (intel_syntax)
6496 i386_intel_simplify (exp);
6498 #endif
6500 static void
6501 signed_cons (int size)
6503 if (flag_code == CODE_64BIT)
6504 cons_sign = 1;
6505 cons (size);
6506 cons_sign = -1;
6509 #ifdef TE_PE
6510 static void
6511 pe_directive_secrel (dummy)
6512 int dummy ATTRIBUTE_UNUSED;
6514 expressionS exp;
6518 expression (&exp);
6519 if (exp.X_op == O_symbol)
6520 exp.X_op = O_secrel;
6522 emit_expr (&exp, 4);
6524 while (*input_line_pointer++ == ',');
6526 input_line_pointer--;
6527 demand_empty_rest_of_line ();
6529 #endif
6531 static int
6532 i386_immediate (char *imm_start)
6534 char *save_input_line_pointer;
6535 char *gotfree_input_line;
6536 segT exp_seg = 0;
6537 expressionS *exp;
6538 i386_operand_type types;
6540 operand_type_set (&types, ~0);
6542 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
6544 as_bad (_("at most %d immediate operands are allowed"),
6545 MAX_IMMEDIATE_OPERANDS);
6546 return 0;
6549 exp = &im_expressions[i.imm_operands++];
6550 i.op[this_operand].imms = exp;
6552 if (is_space_char (*imm_start))
6553 ++imm_start;
6555 save_input_line_pointer = input_line_pointer;
6556 input_line_pointer = imm_start;
6558 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
6559 if (gotfree_input_line)
6560 input_line_pointer = gotfree_input_line;
6562 exp_seg = expression (exp);
6564 SKIP_WHITESPACE ();
6565 if (*input_line_pointer)
6566 as_bad (_("junk `%s' after expression"), input_line_pointer);
6568 input_line_pointer = save_input_line_pointer;
6569 if (gotfree_input_line)
6571 free (gotfree_input_line);
6573 if (exp->X_op == O_constant || exp->X_op == O_register)
6574 exp->X_op = O_illegal;
6577 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
6580 static int
6581 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
6582 i386_operand_type types, const char *imm_start)
6584 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
6586 if (imm_start)
6587 as_bad (_("missing or invalid immediate expression `%s'"),
6588 imm_start);
6589 return 0;
6591 else if (exp->X_op == O_constant)
6593 /* Size it properly later. */
6594 i.types[this_operand].bitfield.imm64 = 1;
6595 /* If BFD64, sign extend val. */
6596 if (!use_rela_relocations
6597 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
6598 exp->X_add_number
6599 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
6601 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6602 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
6603 && exp_seg != absolute_section
6604 && exp_seg != text_section
6605 && exp_seg != data_section
6606 && exp_seg != bss_section
6607 && exp_seg != undefined_section
6608 && !bfd_is_com_section (exp_seg))
6610 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
6611 return 0;
6613 #endif
6614 else if (!intel_syntax && exp->X_op == O_register)
6616 if (imm_start)
6617 as_bad (_("illegal immediate register operand %s"), imm_start);
6618 return 0;
6620 else
6622 /* This is an address. The size of the address will be
6623 determined later, depending on destination register,
6624 suffix, or the default for the section. */
6625 i.types[this_operand].bitfield.imm8 = 1;
6626 i.types[this_operand].bitfield.imm16 = 1;
6627 i.types[this_operand].bitfield.imm32 = 1;
6628 i.types[this_operand].bitfield.imm32s = 1;
6629 i.types[this_operand].bitfield.imm64 = 1;
6630 i.types[this_operand] = operand_type_and (i.types[this_operand],
6631 types);
6634 return 1;
6637 static char *
6638 i386_scale (char *scale)
6640 offsetT val;
6641 char *save = input_line_pointer;
6643 input_line_pointer = scale;
6644 val = get_absolute_expression ();
6646 switch (val)
6648 case 1:
6649 i.log2_scale_factor = 0;
6650 break;
6651 case 2:
6652 i.log2_scale_factor = 1;
6653 break;
6654 case 4:
6655 i.log2_scale_factor = 2;
6656 break;
6657 case 8:
6658 i.log2_scale_factor = 3;
6659 break;
6660 default:
6662 char sep = *input_line_pointer;
6664 *input_line_pointer = '\0';
6665 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
6666 scale);
6667 *input_line_pointer = sep;
6668 input_line_pointer = save;
6669 return NULL;
6672 if (i.log2_scale_factor != 0 && i.index_reg == 0)
6674 as_warn (_("scale factor of %d without an index register"),
6675 1 << i.log2_scale_factor);
6676 i.log2_scale_factor = 0;
6678 scale = input_line_pointer;
6679 input_line_pointer = save;
6680 return scale;
6683 static int
6684 i386_displacement (char *disp_start, char *disp_end)
6686 expressionS *exp;
6687 segT exp_seg = 0;
6688 char *save_input_line_pointer;
6689 char *gotfree_input_line;
6690 int override;
6691 i386_operand_type bigdisp, types = anydisp;
6692 int ret;
6694 if (i.disp_operands == MAX_MEMORY_OPERANDS)
6696 as_bad (_("at most %d displacement operands are allowed"),
6697 MAX_MEMORY_OPERANDS);
6698 return 0;
6701 operand_type_set (&bigdisp, 0);
6702 if ((i.types[this_operand].bitfield.jumpabsolute)
6703 || (!current_templates->start->opcode_modifier.jump
6704 && !current_templates->start->opcode_modifier.jumpdword))
6706 bigdisp.bitfield.disp32 = 1;
6707 override = (i.prefix[ADDR_PREFIX] != 0);
6708 if (flag_code == CODE_64BIT)
6710 if (!override)
6712 bigdisp.bitfield.disp32s = 1;
6713 bigdisp.bitfield.disp64 = 1;
6716 else if ((flag_code == CODE_16BIT) ^ override)
6718 bigdisp.bitfield.disp32 = 0;
6719 bigdisp.bitfield.disp16 = 1;
6722 else
6724 /* For PC-relative branches, the width of the displacement
6725 is dependent upon data size, not address size. */
6726 override = (i.prefix[DATA_PREFIX] != 0);
6727 if (flag_code == CODE_64BIT)
6729 if (override || i.suffix == WORD_MNEM_SUFFIX)
6730 bigdisp.bitfield.disp16 = 1;
6731 else
6733 bigdisp.bitfield.disp32 = 1;
6734 bigdisp.bitfield.disp32s = 1;
6737 else
6739 if (!override)
6740 override = (i.suffix == (flag_code != CODE_16BIT
6741 ? WORD_MNEM_SUFFIX
6742 : LONG_MNEM_SUFFIX));
6743 bigdisp.bitfield.disp32 = 1;
6744 if ((flag_code == CODE_16BIT) ^ override)
6746 bigdisp.bitfield.disp32 = 0;
6747 bigdisp.bitfield.disp16 = 1;
6751 i.types[this_operand] = operand_type_or (i.types[this_operand],
6752 bigdisp);
6754 exp = &disp_expressions[i.disp_operands];
6755 i.op[this_operand].disps = exp;
6756 i.disp_operands++;
6757 save_input_line_pointer = input_line_pointer;
6758 input_line_pointer = disp_start;
6759 END_STRING_AND_SAVE (disp_end);
6761 #ifndef GCC_ASM_O_HACK
6762 #define GCC_ASM_O_HACK 0
6763 #endif
6764 #if GCC_ASM_O_HACK
6765 END_STRING_AND_SAVE (disp_end + 1);
6766 if (i.types[this_operand].bitfield.baseIndex
6767 && displacement_string_end[-1] == '+')
6769 /* This hack is to avoid a warning when using the "o"
6770 constraint within gcc asm statements.
6771 For instance:
6773 #define _set_tssldt_desc(n,addr,limit,type) \
6774 __asm__ __volatile__ ( \
6775 "movw %w2,%0\n\t" \
6776 "movw %w1,2+%0\n\t" \
6777 "rorl $16,%1\n\t" \
6778 "movb %b1,4+%0\n\t" \
6779 "movb %4,5+%0\n\t" \
6780 "movb $0,6+%0\n\t" \
6781 "movb %h1,7+%0\n\t" \
6782 "rorl $16,%1" \
6783 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
6785 This works great except that the output assembler ends
6786 up looking a bit weird if it turns out that there is
6787 no offset. You end up producing code that looks like:
6789 #APP
6790 movw $235,(%eax)
6791 movw %dx,2+(%eax)
6792 rorl $16,%edx
6793 movb %dl,4+(%eax)
6794 movb $137,5+(%eax)
6795 movb $0,6+(%eax)
6796 movb %dh,7+(%eax)
6797 rorl $16,%edx
6798 #NO_APP
6800 So here we provide the missing zero. */
6802 *displacement_string_end = '0';
6804 #endif
6805 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
6806 if (gotfree_input_line)
6807 input_line_pointer = gotfree_input_line;
6809 exp_seg = expression (exp);
6811 SKIP_WHITESPACE ();
6812 if (*input_line_pointer)
6813 as_bad (_("junk `%s' after expression"), input_line_pointer);
6814 #if GCC_ASM_O_HACK
6815 RESTORE_END_STRING (disp_end + 1);
6816 #endif
6817 input_line_pointer = save_input_line_pointer;
6818 if (gotfree_input_line)
6820 free (gotfree_input_line);
6822 if (exp->X_op == O_constant || exp->X_op == O_register)
6823 exp->X_op = O_illegal;
6826 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
6828 RESTORE_END_STRING (disp_end);
6830 return ret;
6833 static int
6834 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
6835 i386_operand_type types, const char *disp_start)
6837 i386_operand_type bigdisp;
6838 int ret = 1;
6840 /* We do this to make sure that the section symbol is in
6841 the symbol table. We will ultimately change the relocation
6842 to be relative to the beginning of the section. */
6843 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
6844 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
6845 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
6847 if (exp->X_op != O_symbol)
6848 goto inv_disp;
6850 if (S_IS_LOCAL (exp->X_add_symbol)
6851 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
6852 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
6853 exp->X_op = O_subtract;
6854 exp->X_op_symbol = GOT_symbol;
6855 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
6856 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
6857 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
6858 i.reloc[this_operand] = BFD_RELOC_64;
6859 else
6860 i.reloc[this_operand] = BFD_RELOC_32;
6863 else if (exp->X_op == O_absent
6864 || exp->X_op == O_illegal
6865 || exp->X_op == O_big)
6867 inv_disp:
6868 as_bad (_("missing or invalid displacement expression `%s'"),
6869 disp_start);
6870 ret = 0;
6873 else if (flag_code == CODE_64BIT
6874 && !i.prefix[ADDR_PREFIX]
6875 && exp->X_op == O_constant)
6877 /* Since displacement is signed extended to 64bit, don't allow
6878 disp32 and turn off disp32s if they are out of range. */
6879 i.types[this_operand].bitfield.disp32 = 0;
6880 if (!fits_in_signed_long (exp->X_add_number))
6882 i.types[this_operand].bitfield.disp32s = 0;
6883 if (i.types[this_operand].bitfield.baseindex)
6885 as_bad (_("0x%lx out range of signed 32bit displacement"),
6886 (long) exp->X_add_number);
6887 ret = 0;
6892 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6893 else if (exp->X_op != O_constant
6894 && OUTPUT_FLAVOR == bfd_target_aout_flavour
6895 && exp_seg != absolute_section
6896 && exp_seg != text_section
6897 && exp_seg != data_section
6898 && exp_seg != bss_section
6899 && exp_seg != undefined_section
6900 && !bfd_is_com_section (exp_seg))
6902 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
6903 ret = 0;
6905 #endif
6907 /* Check if this is a displacement only operand. */
6908 bigdisp = i.types[this_operand];
6909 bigdisp.bitfield.disp8 = 0;
6910 bigdisp.bitfield.disp16 = 0;
6911 bigdisp.bitfield.disp32 = 0;
6912 bigdisp.bitfield.disp32s = 0;
6913 bigdisp.bitfield.disp64 = 0;
6914 if (operand_type_all_zero (&bigdisp))
6915 i.types[this_operand] = operand_type_and (i.types[this_operand],
6916 types);
6918 return ret;
6921 /* Make sure the memory operand we've been dealt is valid.
6922 Return 1 on success, 0 on a failure. */
6924 static int
6925 i386_index_check (const char *operand_string)
6927 int ok;
6928 const char *kind = "base/index";
6929 #if INFER_ADDR_PREFIX
6930 int fudged = 0;
6932 tryprefix:
6933 #endif
6934 ok = 1;
6935 if (current_templates->start->opcode_modifier.isstring
6936 && !current_templates->start->opcode_modifier.immext
6937 && (current_templates->end[-1].opcode_modifier.isstring
6938 || i.mem_operands))
6940 /* Memory operands of string insns are special in that they only allow
6941 a single register (rDI, rSI, or rBX) as their memory address. */
6942 unsigned int expected;
6944 kind = "string address";
6946 if (current_templates->start->opcode_modifier.w)
6948 i386_operand_type type = current_templates->end[-1].operand_types[0];
6950 if (!type.bitfield.baseindex
6951 || ((!i.mem_operands != !intel_syntax)
6952 && current_templates->end[-1].operand_types[1]
6953 .bitfield.baseindex))
6954 type = current_templates->end[-1].operand_types[1];
6955 expected = type.bitfield.esseg ? 7 /* rDI */ : 6 /* rSI */;
6957 else
6958 expected = 3 /* rBX */;
6960 if (!i.base_reg || i.index_reg
6961 || operand_type_check (i.types[this_operand], disp))
6962 ok = -1;
6963 else if (!(flag_code == CODE_64BIT
6964 ? i.prefix[ADDR_PREFIX]
6965 ? i.base_reg->reg_type.bitfield.reg32
6966 : i.base_reg->reg_type.bitfield.reg64
6967 : (flag_code == CODE_16BIT) ^ !i.prefix[ADDR_PREFIX]
6968 ? i.base_reg->reg_type.bitfield.reg32
6969 : i.base_reg->reg_type.bitfield.reg16))
6970 ok = 0;
6971 else if (i.base_reg->reg_num != expected)
6972 ok = -1;
6974 if (ok < 0)
6976 unsigned int j;
6978 for (j = 0; j < i386_regtab_size; ++j)
6979 if ((flag_code == CODE_64BIT
6980 ? i.prefix[ADDR_PREFIX]
6981 ? i386_regtab[j].reg_type.bitfield.reg32
6982 : i386_regtab[j].reg_type.bitfield.reg64
6983 : (flag_code == CODE_16BIT) ^ !i.prefix[ADDR_PREFIX]
6984 ? i386_regtab[j].reg_type.bitfield.reg32
6985 : i386_regtab[j].reg_type.bitfield.reg16)
6986 && i386_regtab[j].reg_num == expected)
6987 break;
6988 gas_assert (j < i386_regtab_size);
6989 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
6990 operand_string,
6991 intel_syntax ? '[' : '(',
6992 register_prefix,
6993 i386_regtab[j].reg_name,
6994 intel_syntax ? ']' : ')');
6995 ok = 1;
6998 else if (flag_code == CODE_64BIT)
7000 if ((i.base_reg
7001 && ((i.prefix[ADDR_PREFIX] == 0
7002 && !i.base_reg->reg_type.bitfield.reg64)
7003 || (i.prefix[ADDR_PREFIX]
7004 && !i.base_reg->reg_type.bitfield.reg32))
7005 && (i.index_reg
7006 || i.base_reg->reg_num !=
7007 (i.prefix[ADDR_PREFIX] == 0 ? RegRip : RegEip)))
7008 || (i.index_reg
7009 && (!i.index_reg->reg_type.bitfield.baseindex
7010 || (i.prefix[ADDR_PREFIX] == 0
7011 && i.index_reg->reg_num != RegRiz
7012 && !i.index_reg->reg_type.bitfield.reg64
7014 || (i.prefix[ADDR_PREFIX]
7015 && i.index_reg->reg_num != RegEiz
7016 && !i.index_reg->reg_type.bitfield.reg32))))
7017 ok = 0;
7019 else
7021 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
7023 /* 16bit checks. */
7024 if ((i.base_reg
7025 && (!i.base_reg->reg_type.bitfield.reg16
7026 || !i.base_reg->reg_type.bitfield.baseindex))
7027 || (i.index_reg
7028 && (!i.index_reg->reg_type.bitfield.reg16
7029 || !i.index_reg->reg_type.bitfield.baseindex
7030 || !(i.base_reg
7031 && i.base_reg->reg_num < 6
7032 && i.index_reg->reg_num >= 6
7033 && i.log2_scale_factor == 0))))
7034 ok = 0;
7036 else
7038 /* 32bit checks. */
7039 if ((i.base_reg
7040 && !i.base_reg->reg_type.bitfield.reg32)
7041 || (i.index_reg
7042 && ((!i.index_reg->reg_type.bitfield.reg32
7043 && i.index_reg->reg_num != RegEiz)
7044 || !i.index_reg->reg_type.bitfield.baseindex)))
7045 ok = 0;
7048 if (!ok)
7050 #if INFER_ADDR_PREFIX
7051 if (!i.mem_operands && !i.prefix[ADDR_PREFIX])
7053 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
7054 i.prefixes += 1;
7055 /* Change the size of any displacement too. At most one of
7056 Disp16 or Disp32 is set.
7057 FIXME. There doesn't seem to be any real need for separate
7058 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
7059 Removing them would probably clean up the code quite a lot. */
7060 if (flag_code != CODE_64BIT
7061 && (i.types[this_operand].bitfield.disp16
7062 || i.types[this_operand].bitfield.disp32))
7063 i.types[this_operand]
7064 = operand_type_xor (i.types[this_operand], disp16_32);
7065 fudged = 1;
7066 goto tryprefix;
7068 if (fudged)
7069 as_bad (_("`%s' is not a valid %s expression"),
7070 operand_string,
7071 kind);
7072 else
7073 #endif
7074 as_bad (_("`%s' is not a valid %s-bit %s expression"),
7075 operand_string,
7076 flag_code_names[i.prefix[ADDR_PREFIX]
7077 ? flag_code == CODE_32BIT
7078 ? CODE_16BIT
7079 : CODE_32BIT
7080 : flag_code],
7081 kind);
7083 return ok;
7086 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
7087 on error. */
7089 static int
7090 i386_att_operand (char *operand_string)
7092 const reg_entry *r;
7093 char *end_op;
7094 char *op_string = operand_string;
7096 if (is_space_char (*op_string))
7097 ++op_string;
7099 /* We check for an absolute prefix (differentiating,
7100 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
7101 if (*op_string == ABSOLUTE_PREFIX)
7103 ++op_string;
7104 if (is_space_char (*op_string))
7105 ++op_string;
7106 i.types[this_operand].bitfield.jumpabsolute = 1;
7109 /* Check if operand is a register. */
7110 if ((r = parse_register (op_string, &end_op)) != NULL)
7112 i386_operand_type temp;
7114 /* Check for a segment override by searching for ':' after a
7115 segment register. */
7116 op_string = end_op;
7117 if (is_space_char (*op_string))
7118 ++op_string;
7119 if (*op_string == ':'
7120 && (r->reg_type.bitfield.sreg2
7121 || r->reg_type.bitfield.sreg3))
7123 switch (r->reg_num)
7125 case 0:
7126 i.seg[i.mem_operands] = &es;
7127 break;
7128 case 1:
7129 i.seg[i.mem_operands] = &cs;
7130 break;
7131 case 2:
7132 i.seg[i.mem_operands] = &ss;
7133 break;
7134 case 3:
7135 i.seg[i.mem_operands] = &ds;
7136 break;
7137 case 4:
7138 i.seg[i.mem_operands] = &fs;
7139 break;
7140 case 5:
7141 i.seg[i.mem_operands] = &gs;
7142 break;
7145 /* Skip the ':' and whitespace. */
7146 ++op_string;
7147 if (is_space_char (*op_string))
7148 ++op_string;
7150 if (!is_digit_char (*op_string)
7151 && !is_identifier_char (*op_string)
7152 && *op_string != '('
7153 && *op_string != ABSOLUTE_PREFIX)
7155 as_bad (_("bad memory operand `%s'"), op_string);
7156 return 0;
7158 /* Handle case of %es:*foo. */
7159 if (*op_string == ABSOLUTE_PREFIX)
7161 ++op_string;
7162 if (is_space_char (*op_string))
7163 ++op_string;
7164 i.types[this_operand].bitfield.jumpabsolute = 1;
7166 goto do_memory_reference;
7168 if (*op_string)
7170 as_bad (_("junk `%s' after register"), op_string);
7171 return 0;
7173 temp = r->reg_type;
7174 temp.bitfield.baseindex = 0;
7175 i.types[this_operand] = operand_type_or (i.types[this_operand],
7176 temp);
7177 i.types[this_operand].bitfield.unspecified = 0;
7178 i.op[this_operand].regs = r;
7179 i.reg_operands++;
7181 else if (*op_string == REGISTER_PREFIX)
7183 as_bad (_("bad register name `%s'"), op_string);
7184 return 0;
7186 else if (*op_string == IMMEDIATE_PREFIX)
7188 ++op_string;
7189 if (i.types[this_operand].bitfield.jumpabsolute)
7191 as_bad (_("immediate operand illegal with absolute jump"));
7192 return 0;
7194 if (!i386_immediate (op_string))
7195 return 0;
7197 else if (is_digit_char (*op_string)
7198 || is_identifier_char (*op_string)
7199 || *op_string == '(')
7201 /* This is a memory reference of some sort. */
7202 char *base_string;
7204 /* Start and end of displacement string expression (if found). */
7205 char *displacement_string_start;
7206 char *displacement_string_end;
7208 do_memory_reference:
7209 if ((i.mem_operands == 1
7210 && !current_templates->start->opcode_modifier.isstring)
7211 || i.mem_operands == 2)
7213 as_bad (_("too many memory references for `%s'"),
7214 current_templates->start->name);
7215 return 0;
7218 /* Check for base index form. We detect the base index form by
7219 looking for an ')' at the end of the operand, searching
7220 for the '(' matching it, and finding a REGISTER_PREFIX or ','
7221 after the '('. */
7222 base_string = op_string + strlen (op_string);
7224 --base_string;
7225 if (is_space_char (*base_string))
7226 --base_string;
7228 /* If we only have a displacement, set-up for it to be parsed later. */
7229 displacement_string_start = op_string;
7230 displacement_string_end = base_string + 1;
7232 if (*base_string == ')')
7234 char *temp_string;
7235 unsigned int parens_balanced = 1;
7236 /* We've already checked that the number of left & right ()'s are
7237 equal, so this loop will not be infinite. */
7240 base_string--;
7241 if (*base_string == ')')
7242 parens_balanced++;
7243 if (*base_string == '(')
7244 parens_balanced--;
7246 while (parens_balanced);
7248 temp_string = base_string;
7250 /* Skip past '(' and whitespace. */
7251 ++base_string;
7252 if (is_space_char (*base_string))
7253 ++base_string;
7255 if (*base_string == ','
7256 || ((i.base_reg = parse_register (base_string, &end_op))
7257 != NULL))
7259 displacement_string_end = temp_string;
7261 i.types[this_operand].bitfield.baseindex = 1;
7263 if (i.base_reg)
7265 base_string = end_op;
7266 if (is_space_char (*base_string))
7267 ++base_string;
7270 /* There may be an index reg or scale factor here. */
7271 if (*base_string == ',')
7273 ++base_string;
7274 if (is_space_char (*base_string))
7275 ++base_string;
7277 if ((i.index_reg = parse_register (base_string, &end_op))
7278 != NULL)
7280 base_string = end_op;
7281 if (is_space_char (*base_string))
7282 ++base_string;
7283 if (*base_string == ',')
7285 ++base_string;
7286 if (is_space_char (*base_string))
7287 ++base_string;
7289 else if (*base_string != ')')
7291 as_bad (_("expecting `,' or `)' "
7292 "after index register in `%s'"),
7293 operand_string);
7294 return 0;
7297 else if (*base_string == REGISTER_PREFIX)
7299 as_bad (_("bad register name `%s'"), base_string);
7300 return 0;
7303 /* Check for scale factor. */
7304 if (*base_string != ')')
7306 char *end_scale = i386_scale (base_string);
7308 if (!end_scale)
7309 return 0;
7311 base_string = end_scale;
7312 if (is_space_char (*base_string))
7313 ++base_string;
7314 if (*base_string != ')')
7316 as_bad (_("expecting `)' "
7317 "after scale factor in `%s'"),
7318 operand_string);
7319 return 0;
7322 else if (!i.index_reg)
7324 as_bad (_("expecting index register or scale factor "
7325 "after `,'; got '%c'"),
7326 *base_string);
7327 return 0;
7330 else if (*base_string != ')')
7332 as_bad (_("expecting `,' or `)' "
7333 "after base register in `%s'"),
7334 operand_string);
7335 return 0;
7338 else if (*base_string == REGISTER_PREFIX)
7340 as_bad (_("bad register name `%s'"), base_string);
7341 return 0;
7345 /* If there's an expression beginning the operand, parse it,
7346 assuming displacement_string_start and
7347 displacement_string_end are meaningful. */
7348 if (displacement_string_start != displacement_string_end)
7350 if (!i386_displacement (displacement_string_start,
7351 displacement_string_end))
7352 return 0;
7355 /* Special case for (%dx) while doing input/output op. */
7356 if (i.base_reg
7357 && operand_type_equal (&i.base_reg->reg_type,
7358 &reg16_inoutportreg)
7359 && i.index_reg == 0
7360 && i.log2_scale_factor == 0
7361 && i.seg[i.mem_operands] == 0
7362 && !operand_type_check (i.types[this_operand], disp))
7364 i.types[this_operand] = inoutportreg;
7365 return 1;
7368 if (i386_index_check (operand_string) == 0)
7369 return 0;
7370 i.types[this_operand].bitfield.mem = 1;
7371 i.mem_operands++;
7373 else
7375 /* It's not a memory operand; argh! */
7376 as_bad (_("invalid char %s beginning operand %d `%s'"),
7377 output_invalid (*op_string),
7378 this_operand + 1,
7379 op_string);
7380 return 0;
7382 return 1; /* Normal return. */
7385 /* md_estimate_size_before_relax()
7387 Called just before relax() for rs_machine_dependent frags. The x86
7388 assembler uses these frags to handle variable size jump
7389 instructions.
7391 Any symbol that is now undefined will not become defined.
7392 Return the correct fr_subtype in the frag.
7393 Return the initial "guess for variable size of frag" to caller.
7394 The guess is actually the growth beyond the fixed part. Whatever
7395 we do to grow the fixed or variable part contributes to our
7396 returned value. */
7399 md_estimate_size_before_relax (fragP, segment)
7400 fragS *fragP;
7401 segT segment;
7403 /* We've already got fragP->fr_subtype right; all we have to do is
7404 check for un-relaxable symbols. On an ELF system, we can't relax
7405 an externally visible symbol, because it may be overridden by a
7406 shared library. */
7407 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
7408 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7409 || (IS_ELF
7410 && (S_IS_EXTERNAL (fragP->fr_symbol)
7411 || S_IS_WEAK (fragP->fr_symbol)
7412 || ((symbol_get_bfdsym (fragP->fr_symbol)->flags
7413 & BSF_GNU_INDIRECT_FUNCTION))))
7414 #endif
7415 #if defined (OBJ_COFF) && defined (TE_PE)
7416 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
7417 && S_IS_WEAK (fragP->fr_symbol))
7418 #endif
7421 /* Symbol is undefined in this segment, or we need to keep a
7422 reloc so that weak symbols can be overridden. */
7423 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
7424 enum bfd_reloc_code_real reloc_type;
7425 unsigned char *opcode;
7426 int old_fr_fix;
7428 if (fragP->fr_var != NO_RELOC)
7429 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
7430 else if (size == 2)
7431 reloc_type = BFD_RELOC_16_PCREL;
7432 else
7433 reloc_type = BFD_RELOC_32_PCREL;
7435 old_fr_fix = fragP->fr_fix;
7436 opcode = (unsigned char *) fragP->fr_opcode;
7438 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
7440 case UNCOND_JUMP:
7441 /* Make jmp (0xeb) a (d)word displacement jump. */
7442 opcode[0] = 0xe9;
7443 fragP->fr_fix += size;
7444 fix_new (fragP, old_fr_fix, size,
7445 fragP->fr_symbol,
7446 fragP->fr_offset, 1,
7447 reloc_type);
7448 break;
7450 case COND_JUMP86:
7451 if (size == 2
7452 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
7454 /* Negate the condition, and branch past an
7455 unconditional jump. */
7456 opcode[0] ^= 1;
7457 opcode[1] = 3;
7458 /* Insert an unconditional jump. */
7459 opcode[2] = 0xe9;
7460 /* We added two extra opcode bytes, and have a two byte
7461 offset. */
7462 fragP->fr_fix += 2 + 2;
7463 fix_new (fragP, old_fr_fix + 2, 2,
7464 fragP->fr_symbol,
7465 fragP->fr_offset, 1,
7466 reloc_type);
7467 break;
7469 /* Fall through. */
7471 case COND_JUMP:
7472 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
7474 fixS *fixP;
7476 fragP->fr_fix += 1;
7477 fixP = fix_new (fragP, old_fr_fix, 1,
7478 fragP->fr_symbol,
7479 fragP->fr_offset, 1,
7480 BFD_RELOC_8_PCREL);
7481 fixP->fx_signed = 1;
7482 break;
7485 /* This changes the byte-displacement jump 0x7N
7486 to the (d)word-displacement jump 0x0f,0x8N. */
7487 opcode[1] = opcode[0] + 0x10;
7488 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7489 /* We've added an opcode byte. */
7490 fragP->fr_fix += 1 + size;
7491 fix_new (fragP, old_fr_fix + 1, size,
7492 fragP->fr_symbol,
7493 fragP->fr_offset, 1,
7494 reloc_type);
7495 break;
7497 default:
7498 BAD_CASE (fragP->fr_subtype);
7499 break;
7501 frag_wane (fragP);
7502 return fragP->fr_fix - old_fr_fix;
7505 /* Guess size depending on current relax state. Initially the relax
7506 state will correspond to a short jump and we return 1, because
7507 the variable part of the frag (the branch offset) is one byte
7508 long. However, we can relax a section more than once and in that
7509 case we must either set fr_subtype back to the unrelaxed state,
7510 or return the value for the appropriate branch. */
7511 return md_relax_table[fragP->fr_subtype].rlx_length;
7514 /* Called after relax() is finished.
7516 In: Address of frag.
7517 fr_type == rs_machine_dependent.
7518 fr_subtype is what the address relaxed to.
7520 Out: Any fixSs and constants are set up.
7521 Caller will turn frag into a ".space 0". */
7523 void
7524 md_convert_frag (abfd, sec, fragP)
7525 bfd *abfd ATTRIBUTE_UNUSED;
7526 segT sec ATTRIBUTE_UNUSED;
7527 fragS *fragP;
7529 unsigned char *opcode;
7530 unsigned char *where_to_put_displacement = NULL;
7531 offsetT target_address;
7532 offsetT opcode_address;
7533 unsigned int extension = 0;
7534 offsetT displacement_from_opcode_start;
7536 opcode = (unsigned char *) fragP->fr_opcode;
7538 /* Address we want to reach in file space. */
7539 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
7541 /* Address opcode resides at in file space. */
7542 opcode_address = fragP->fr_address + fragP->fr_fix;
7544 /* Displacement from opcode start to fill into instruction. */
7545 displacement_from_opcode_start = target_address - opcode_address;
7547 if ((fragP->fr_subtype & BIG) == 0)
7549 /* Don't have to change opcode. */
7550 extension = 1; /* 1 opcode + 1 displacement */
7551 where_to_put_displacement = &opcode[1];
7553 else
7555 if (no_cond_jump_promotion
7556 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
7557 as_warn_where (fragP->fr_file, fragP->fr_line,
7558 _("long jump required"));
7560 switch (fragP->fr_subtype)
7562 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
7563 extension = 4; /* 1 opcode + 4 displacement */
7564 opcode[0] = 0xe9;
7565 where_to_put_displacement = &opcode[1];
7566 break;
7568 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
7569 extension = 2; /* 1 opcode + 2 displacement */
7570 opcode[0] = 0xe9;
7571 where_to_put_displacement = &opcode[1];
7572 break;
7574 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
7575 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
7576 extension = 5; /* 2 opcode + 4 displacement */
7577 opcode[1] = opcode[0] + 0x10;
7578 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7579 where_to_put_displacement = &opcode[2];
7580 break;
7582 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
7583 extension = 3; /* 2 opcode + 2 displacement */
7584 opcode[1] = opcode[0] + 0x10;
7585 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7586 where_to_put_displacement = &opcode[2];
7587 break;
7589 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
7590 extension = 4;
7591 opcode[0] ^= 1;
7592 opcode[1] = 3;
7593 opcode[2] = 0xe9;
7594 where_to_put_displacement = &opcode[3];
7595 break;
7597 default:
7598 BAD_CASE (fragP->fr_subtype);
7599 break;
7603 /* If size if less then four we are sure that the operand fits,
7604 but if it's 4, then it could be that the displacement is larger
7605 then -/+ 2GB. */
7606 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
7607 && object_64bit
7608 && ((addressT) (displacement_from_opcode_start - extension
7609 + ((addressT) 1 << 31))
7610 > (((addressT) 2 << 31) - 1)))
7612 as_bad_where (fragP->fr_file, fragP->fr_line,
7613 _("jump target out of range"));
7614 /* Make us emit 0. */
7615 displacement_from_opcode_start = extension;
7617 /* Now put displacement after opcode. */
7618 md_number_to_chars ((char *) where_to_put_displacement,
7619 (valueT) (displacement_from_opcode_start - extension),
7620 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
7621 fragP->fr_fix += extension;
7624 /* Apply a fixup (fixS) to segment data, once it has been determined
7625 by our caller that we have all the info we need to fix it up.
7627 On the 386, immediates, displacements, and data pointers are all in
7628 the same (little-endian) format, so we don't need to care about which
7629 we are handling. */
7631 void
7632 md_apply_fix (fixP, valP, seg)
7633 /* The fix we're to put in. */
7634 fixS *fixP;
7635 /* Pointer to the value of the bits. */
7636 valueT *valP;
7637 /* Segment fix is from. */
7638 segT seg ATTRIBUTE_UNUSED;
7640 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
7641 valueT value = *valP;
7643 #if !defined (TE_Mach)
7644 if (fixP->fx_pcrel)
7646 switch (fixP->fx_r_type)
7648 default:
7649 break;
7651 case BFD_RELOC_64:
7652 fixP->fx_r_type = BFD_RELOC_64_PCREL;
7653 break;
7654 case BFD_RELOC_32:
7655 case BFD_RELOC_X86_64_32S:
7656 fixP->fx_r_type = BFD_RELOC_32_PCREL;
7657 break;
7658 case BFD_RELOC_16:
7659 fixP->fx_r_type = BFD_RELOC_16_PCREL;
7660 break;
7661 case BFD_RELOC_8:
7662 fixP->fx_r_type = BFD_RELOC_8_PCREL;
7663 break;
7667 if (fixP->fx_addsy != NULL
7668 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
7669 || fixP->fx_r_type == BFD_RELOC_64_PCREL
7670 || fixP->fx_r_type == BFD_RELOC_16_PCREL
7671 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
7672 && !use_rela_relocations)
7674 /* This is a hack. There should be a better way to handle this.
7675 This covers for the fact that bfd_install_relocation will
7676 subtract the current location (for partial_inplace, PC relative
7677 relocations); see more below. */
7678 #ifndef OBJ_AOUT
7679 if (IS_ELF
7680 #ifdef TE_PE
7681 || OUTPUT_FLAVOR == bfd_target_coff_flavour
7682 #endif
7684 value += fixP->fx_where + fixP->fx_frag->fr_address;
7685 #endif
7686 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7687 if (IS_ELF)
7689 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
7691 if ((sym_seg == seg
7692 || (symbol_section_p (fixP->fx_addsy)
7693 && sym_seg != absolute_section))
7694 && !generic_force_reloc (fixP))
7696 /* Yes, we add the values in twice. This is because
7697 bfd_install_relocation subtracts them out again. I think
7698 bfd_install_relocation is broken, but I don't dare change
7699 it. FIXME. */
7700 value += fixP->fx_where + fixP->fx_frag->fr_address;
7703 #endif
7704 #if defined (OBJ_COFF) && defined (TE_PE)
7705 /* For some reason, the PE format does not store a
7706 section address offset for a PC relative symbol. */
7707 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7708 || S_IS_WEAK (fixP->fx_addsy))
7709 value += md_pcrel_from (fixP);
7710 #endif
7712 #if defined (OBJ_COFF) && defined (TE_PE)
7713 if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
7715 value -= S_GET_VALUE (fixP->fx_addsy);
7717 #endif
7719 /* Fix a few things - the dynamic linker expects certain values here,
7720 and we must not disappoint it. */
7721 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7722 if (IS_ELF && fixP->fx_addsy)
7723 switch (fixP->fx_r_type)
7725 case BFD_RELOC_386_PLT32:
7726 case BFD_RELOC_X86_64_PLT32:
7727 /* Make the jump instruction point to the address of the operand. At
7728 runtime we merely add the offset to the actual PLT entry. */
7729 value = -4;
7730 break;
7732 case BFD_RELOC_386_TLS_GD:
7733 case BFD_RELOC_386_TLS_LDM:
7734 case BFD_RELOC_386_TLS_IE_32:
7735 case BFD_RELOC_386_TLS_IE:
7736 case BFD_RELOC_386_TLS_GOTIE:
7737 case BFD_RELOC_386_TLS_GOTDESC:
7738 case BFD_RELOC_X86_64_TLSGD:
7739 case BFD_RELOC_X86_64_TLSLD:
7740 case BFD_RELOC_X86_64_GOTTPOFF:
7741 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
7742 value = 0; /* Fully resolved at runtime. No addend. */
7743 /* Fallthrough */
7744 case BFD_RELOC_386_TLS_LE:
7745 case BFD_RELOC_386_TLS_LDO_32:
7746 case BFD_RELOC_386_TLS_LE_32:
7747 case BFD_RELOC_X86_64_DTPOFF32:
7748 case BFD_RELOC_X86_64_DTPOFF64:
7749 case BFD_RELOC_X86_64_TPOFF32:
7750 case BFD_RELOC_X86_64_TPOFF64:
7751 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7752 break;
7754 case BFD_RELOC_386_TLS_DESC_CALL:
7755 case BFD_RELOC_X86_64_TLSDESC_CALL:
7756 value = 0; /* Fully resolved at runtime. No addend. */
7757 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7758 fixP->fx_done = 0;
7759 return;
7761 case BFD_RELOC_386_GOT32:
7762 case BFD_RELOC_X86_64_GOT32:
7763 value = 0; /* Fully resolved at runtime. No addend. */
7764 break;
7766 case BFD_RELOC_VTABLE_INHERIT:
7767 case BFD_RELOC_VTABLE_ENTRY:
7768 fixP->fx_done = 0;
7769 return;
7771 default:
7772 break;
7774 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
7775 *valP = value;
7776 #endif /* !defined (TE_Mach) */
7778 /* Are we finished with this relocation now? */
7779 if (fixP->fx_addsy == NULL)
7780 fixP->fx_done = 1;
7781 #if defined (OBJ_COFF) && defined (TE_PE)
7782 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
7784 fixP->fx_done = 0;
7785 /* Remember value for tc_gen_reloc. */
7786 fixP->fx_addnumber = value;
7787 /* Clear out the frag for now. */
7788 value = 0;
7790 #endif
7791 else if (use_rela_relocations)
7793 fixP->fx_no_overflow = 1;
7794 /* Remember value for tc_gen_reloc. */
7795 fixP->fx_addnumber = value;
7796 value = 0;
7799 md_number_to_chars (p, value, fixP->fx_size);
7802 char *
7803 md_atof (int type, char *litP, int *sizeP)
7805 /* This outputs the LITTLENUMs in REVERSE order;
7806 in accord with the bigendian 386. */
7807 return ieee_md_atof (type, litP, sizeP, FALSE);
7810 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
7812 static char *
7813 output_invalid (int c)
7815 if (ISPRINT (c))
7816 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
7817 "'%c'", c);
7818 else
7819 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
7820 "(0x%x)", (unsigned char) c);
7821 return output_invalid_buf;
7824 /* REG_STRING starts *before* REGISTER_PREFIX. */
7826 static const reg_entry *
7827 parse_real_register (char *reg_string, char **end_op)
7829 char *s = reg_string;
7830 char *p;
7831 char reg_name_given[MAX_REG_NAME_SIZE + 1];
7832 const reg_entry *r;
7834 /* Skip possible REGISTER_PREFIX and possible whitespace. */
7835 if (*s == REGISTER_PREFIX)
7836 ++s;
7838 if (is_space_char (*s))
7839 ++s;
7841 p = reg_name_given;
7842 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
7844 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
7845 return (const reg_entry *) NULL;
7846 s++;
7849 /* For naked regs, make sure that we are not dealing with an identifier.
7850 This prevents confusing an identifier like `eax_var' with register
7851 `eax'. */
7852 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
7853 return (const reg_entry *) NULL;
7855 *end_op = s;
7857 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
7859 /* Handle floating point regs, allowing spaces in the (i) part. */
7860 if (r == i386_regtab /* %st is first entry of table */)
7862 if (is_space_char (*s))
7863 ++s;
7864 if (*s == '(')
7866 ++s;
7867 if (is_space_char (*s))
7868 ++s;
7869 if (*s >= '0' && *s <= '7')
7871 int fpr = *s - '0';
7872 ++s;
7873 if (is_space_char (*s))
7874 ++s;
7875 if (*s == ')')
7877 *end_op = s + 1;
7878 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
7879 know (r);
7880 return r + fpr;
7883 /* We have "%st(" then garbage. */
7884 return (const reg_entry *) NULL;
7888 if (r == NULL || allow_pseudo_reg)
7889 return r;
7891 if (operand_type_all_zero (&r->reg_type))
7892 return (const reg_entry *) NULL;
7894 if ((r->reg_type.bitfield.reg32
7895 || r->reg_type.bitfield.sreg3
7896 || r->reg_type.bitfield.control
7897 || r->reg_type.bitfield.debug
7898 || r->reg_type.bitfield.test)
7899 && !cpu_arch_flags.bitfield.cpui386)
7900 return (const reg_entry *) NULL;
7902 if (r->reg_type.bitfield.floatreg
7903 && !cpu_arch_flags.bitfield.cpu8087
7904 && !cpu_arch_flags.bitfield.cpu287
7905 && !cpu_arch_flags.bitfield.cpu387)
7906 return (const reg_entry *) NULL;
7908 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
7909 return (const reg_entry *) NULL;
7911 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
7912 return (const reg_entry *) NULL;
7914 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
7915 return (const reg_entry *) NULL;
7917 /* Don't allow fake index register unless allow_index_reg isn't 0. */
7918 if (!allow_index_reg
7919 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
7920 return (const reg_entry *) NULL;
7922 if (((r->reg_flags & (RegRex64 | RegRex))
7923 || r->reg_type.bitfield.reg64)
7924 && (!cpu_arch_flags.bitfield.cpulm
7925 || !operand_type_equal (&r->reg_type, &control))
7926 && flag_code != CODE_64BIT)
7927 return (const reg_entry *) NULL;
7929 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
7930 return (const reg_entry *) NULL;
7932 return r;
7935 /* REG_STRING starts *before* REGISTER_PREFIX. */
7937 static const reg_entry *
7938 parse_register (char *reg_string, char **end_op)
7940 const reg_entry *r;
7942 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
7943 r = parse_real_register (reg_string, end_op);
7944 else
7945 r = NULL;
7946 if (!r)
7948 char *save = input_line_pointer;
7949 char c;
7950 symbolS *symbolP;
7952 input_line_pointer = reg_string;
7953 c = get_symbol_end ();
7954 symbolP = symbol_find (reg_string);
7955 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
7957 const expressionS *e = symbol_get_value_expression (symbolP);
7959 know (e->X_op == O_register);
7960 know (e->X_add_number >= 0
7961 && (valueT) e->X_add_number < i386_regtab_size);
7962 r = i386_regtab + e->X_add_number;
7963 *end_op = input_line_pointer;
7965 *input_line_pointer = c;
7966 input_line_pointer = save;
7968 return r;
7972 i386_parse_name (char *name, expressionS *e, char *nextcharP)
7974 const reg_entry *r;
7975 char *end = input_line_pointer;
7977 *end = *nextcharP;
7978 r = parse_register (name, &input_line_pointer);
7979 if (r && end <= input_line_pointer)
7981 *nextcharP = *input_line_pointer;
7982 *input_line_pointer = 0;
7983 e->X_op = O_register;
7984 e->X_add_number = r - i386_regtab;
7985 return 1;
7987 input_line_pointer = end;
7988 *end = 0;
7989 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
7992 void
7993 md_operand (expressionS *e)
7995 char *end;
7996 const reg_entry *r;
7998 switch (*input_line_pointer)
8000 case REGISTER_PREFIX:
8001 r = parse_real_register (input_line_pointer, &end);
8002 if (r)
8004 e->X_op = O_register;
8005 e->X_add_number = r - i386_regtab;
8006 input_line_pointer = end;
8008 break;
8010 case '[':
8011 gas_assert (intel_syntax);
8012 end = input_line_pointer++;
8013 expression (e);
8014 if (*input_line_pointer == ']')
8016 ++input_line_pointer;
8017 e->X_op_symbol = make_expr_symbol (e);
8018 e->X_add_symbol = NULL;
8019 e->X_add_number = 0;
8020 e->X_op = O_index;
8022 else
8024 e->X_op = O_absent;
8025 input_line_pointer = end;
8027 break;
8032 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8033 const char *md_shortopts = "kVQ:sqn";
8034 #else
8035 const char *md_shortopts = "qn";
8036 #endif
8038 #define OPTION_32 (OPTION_MD_BASE + 0)
8039 #define OPTION_64 (OPTION_MD_BASE + 1)
8040 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
8041 #define OPTION_MARCH (OPTION_MD_BASE + 3)
8042 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
8043 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
8044 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
8045 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
8046 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
8047 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
8048 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
8049 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
8050 #define OPTION_MAVXSCALAR (OPTION_MSSE_CHECK + 11)
8052 struct option md_longopts[] =
8054 {"32", no_argument, NULL, OPTION_32},
8055 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8056 || defined (TE_PE) || defined (TE_PEP))
8057 {"64", no_argument, NULL, OPTION_64},
8058 #endif
8059 {"divide", no_argument, NULL, OPTION_DIVIDE},
8060 {"march", required_argument, NULL, OPTION_MARCH},
8061 {"mtune", required_argument, NULL, OPTION_MTUNE},
8062 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
8063 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
8064 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
8065 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
8066 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
8067 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
8068 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
8069 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
8070 {NULL, no_argument, NULL, 0}
8072 size_t md_longopts_size = sizeof (md_longopts);
8075 md_parse_option (int c, char *arg)
8077 unsigned int j;
8078 char *arch, *next;
8080 switch (c)
8082 case 'n':
8083 optimize_align_code = 0;
8084 break;
8086 case 'q':
8087 quiet_warnings = 1;
8088 break;
8090 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8091 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
8092 should be emitted or not. FIXME: Not implemented. */
8093 case 'Q':
8094 break;
8096 /* -V: SVR4 argument to print version ID. */
8097 case 'V':
8098 print_version_id ();
8099 break;
8101 /* -k: Ignore for FreeBSD compatibility. */
8102 case 'k':
8103 break;
8105 case 's':
8106 /* -s: On i386 Solaris, this tells the native assembler to use
8107 .stab instead of .stab.excl. We always use .stab anyhow. */
8108 break;
8109 #endif
8110 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8111 || defined (TE_PE) || defined (TE_PEP))
8112 case OPTION_64:
8114 const char **list, **l;
8116 list = bfd_target_list ();
8117 for (l = list; *l != NULL; l++)
8118 if (CONST_STRNEQ (*l, "elf64-x86-64")
8119 || strcmp (*l, "coff-x86-64") == 0
8120 || strcmp (*l, "pe-x86-64") == 0
8121 || strcmp (*l, "pei-x86-64") == 0)
8123 default_arch = "x86_64";
8124 break;
8126 if (*l == NULL)
8127 as_fatal (_("No compiled in support for x86_64"));
8128 free (list);
8130 break;
8131 #endif
8133 case OPTION_32:
8134 default_arch = "i386";
8135 break;
8137 case OPTION_DIVIDE:
8138 #ifdef SVR4_COMMENT_CHARS
8140 char *n, *t;
8141 const char *s;
8143 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
8144 t = n;
8145 for (s = i386_comment_chars; *s != '\0'; s++)
8146 if (*s != '/')
8147 *t++ = *s;
8148 *t = '\0';
8149 i386_comment_chars = n;
8151 #endif
8152 break;
8154 case OPTION_MARCH:
8155 arch = xstrdup (arg);
8158 if (*arch == '.')
8159 as_fatal (_("Invalid -march= option: `%s'"), arg);
8160 next = strchr (arch, '+');
8161 if (next)
8162 *next++ = '\0';
8163 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
8165 if (strcmp (arch, cpu_arch [j].name) == 0)
8167 /* Processor. */
8168 cpu_arch_name = cpu_arch[j].name;
8169 cpu_sub_arch_name = NULL;
8170 cpu_arch_flags = cpu_arch[j].flags;
8171 cpu_arch_isa = cpu_arch[j].type;
8172 cpu_arch_isa_flags = cpu_arch[j].flags;
8173 if (!cpu_arch_tune_set)
8175 cpu_arch_tune = cpu_arch_isa;
8176 cpu_arch_tune_flags = cpu_arch_isa_flags;
8178 break;
8180 else if (*cpu_arch [j].name == '.'
8181 && strcmp (arch, cpu_arch [j].name + 1) == 0)
8183 /* ISA entension. */
8184 i386_cpu_flags flags;
8186 if (strncmp (arch, "no", 2))
8187 flags = cpu_flags_or (cpu_arch_flags,
8188 cpu_arch[j].flags);
8189 else
8190 flags = cpu_flags_and_not (cpu_arch_flags,
8191 cpu_arch[j].flags);
8192 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
8194 if (cpu_sub_arch_name)
8196 char *name = cpu_sub_arch_name;
8197 cpu_sub_arch_name = concat (name,
8198 cpu_arch[j].name,
8199 (const char *) NULL);
8200 free (name);
8202 else
8203 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
8204 cpu_arch_flags = flags;
8206 break;
8210 if (j >= ARRAY_SIZE (cpu_arch))
8211 as_fatal (_("Invalid -march= option: `%s'"), arg);
8213 arch = next;
8215 while (next != NULL );
8216 break;
8218 case OPTION_MTUNE:
8219 if (*arg == '.')
8220 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
8221 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
8223 if (strcmp (arg, cpu_arch [j].name) == 0)
8225 cpu_arch_tune_set = 1;
8226 cpu_arch_tune = cpu_arch [j].type;
8227 cpu_arch_tune_flags = cpu_arch[j].flags;
8228 break;
8231 if (j >= ARRAY_SIZE (cpu_arch))
8232 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
8233 break;
8235 case OPTION_MMNEMONIC:
8236 if (strcasecmp (arg, "att") == 0)
8237 intel_mnemonic = 0;
8238 else if (strcasecmp (arg, "intel") == 0)
8239 intel_mnemonic = 1;
8240 else
8241 as_fatal (_("Invalid -mmnemonic= option: `%s'"), arg);
8242 break;
8244 case OPTION_MSYNTAX:
8245 if (strcasecmp (arg, "att") == 0)
8246 intel_syntax = 0;
8247 else if (strcasecmp (arg, "intel") == 0)
8248 intel_syntax = 1;
8249 else
8250 as_fatal (_("Invalid -msyntax= option: `%s'"), arg);
8251 break;
8253 case OPTION_MINDEX_REG:
8254 allow_index_reg = 1;
8255 break;
8257 case OPTION_MNAKED_REG:
8258 allow_naked_reg = 1;
8259 break;
8261 case OPTION_MOLD_GCC:
8262 old_gcc = 1;
8263 break;
8265 case OPTION_MSSE2AVX:
8266 sse2avx = 1;
8267 break;
8269 case OPTION_MSSE_CHECK:
8270 if (strcasecmp (arg, "error") == 0)
8271 sse_check = sse_check_error;
8272 else if (strcasecmp (arg, "warning") == 0)
8273 sse_check = sse_check_warning;
8274 else if (strcasecmp (arg, "none") == 0)
8275 sse_check = sse_check_none;
8276 else
8277 as_fatal (_("Invalid -msse-check= option: `%s'"), arg);
8278 break;
8280 case OPTION_MAVXSCALAR:
8281 if (strcasecmp (arg, "128") == 0)
8282 avxscalar = vex128;
8283 else if (strcasecmp (arg, "256") == 0)
8284 avxscalar = vex256;
8285 else
8286 as_fatal (_("Invalid -mavxscalar= option: `%s'"), arg);
8287 break;
8289 default:
8290 return 0;
8292 return 1;
8295 #define MESSAGE_TEMPLATE \
8298 static void
8299 show_arch (FILE *stream, int ext)
8301 static char message[] = MESSAGE_TEMPLATE;
8302 char *start = message + 27;
8303 char *p;
8304 int size = sizeof (MESSAGE_TEMPLATE);
8305 int left;
8306 const char *name;
8307 int len;
8308 unsigned int j;
8310 p = start;
8311 left = size - (start - message);
8312 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
8314 /* Should it be skipped? */
8315 if (cpu_arch [j].skip)
8316 continue;
8318 name = cpu_arch [j].name;
8319 len = cpu_arch [j].len;
8320 if (*name == '.')
8322 /* It is an extension. Skip if we aren't asked to show it. */
8323 if (ext)
8325 name++;
8326 len--;
8328 else
8329 continue;
8331 else if (ext)
8333 /* It is an processor. Skip if we show only extension. */
8334 continue;
8337 /* Reserve 2 spaces for ", " or ",\0" */
8338 left -= len + 2;
8340 /* Check if there is any room. */
8341 if (left >= 0)
8343 if (p != start)
8345 *p++ = ',';
8346 *p++ = ' ';
8348 p = mempcpy (p, name, len);
8350 else
8352 /* Output the current message now and start a new one. */
8353 *p++ = ',';
8354 *p = '\0';
8355 fprintf (stream, "%s\n", message);
8356 p = start;
8357 left = size - (start - message) - len - 2;
8359 gas_assert (left >= 0);
8361 p = mempcpy (p, name, len);
8365 *p = '\0';
8366 fprintf (stream, "%s\n", message);
8369 void
8370 md_show_usage (FILE *stream)
8372 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8373 fprintf (stream, _("\
8374 -Q ignored\n\
8375 -V print assembler version number\n\
8376 -k ignored\n"));
8377 #endif
8378 fprintf (stream, _("\
8379 -n Do not optimize code alignment\n\
8380 -q quieten some warnings\n"));
8381 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8382 fprintf (stream, _("\
8383 -s ignored\n"));
8384 #endif
8385 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8386 || defined (TE_PE) || defined (TE_PEP))
8387 fprintf (stream, _("\
8388 --32/--64 generate 32bit/64bit code\n"));
8389 #endif
8390 #ifdef SVR4_COMMENT_CHARS
8391 fprintf (stream, _("\
8392 --divide do not treat `/' as a comment character\n"));
8393 #else
8394 fprintf (stream, _("\
8395 --divide ignored\n"));
8396 #endif
8397 fprintf (stream, _("\
8398 -march=CPU[,+EXTENSION...]\n\
8399 generate code for CPU and EXTENSION, CPU is one of:\n"));
8400 show_arch (stream, 0);
8401 fprintf (stream, _("\
8402 EXTENSION is combination of:\n"));
8403 show_arch (stream, 1);
8404 fprintf (stream, _("\
8405 -mtune=CPU optimize for CPU, CPU is one of:\n"));
8406 show_arch (stream, 0);
8407 fprintf (stream, _("\
8408 -msse2avx encode SSE instructions with VEX prefix\n"));
8409 fprintf (stream, _("\
8410 -msse-check=[none|error|warning]\n\
8411 check SSE instructions\n"));
8412 fprintf (stream, _("\
8413 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
8414 length\n"));
8415 fprintf (stream, _("\
8416 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
8417 fprintf (stream, _("\
8418 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
8419 fprintf (stream, _("\
8420 -mindex-reg support pseudo index registers\n"));
8421 fprintf (stream, _("\
8422 -mnaked-reg don't require `%%' prefix for registers\n"));
8423 fprintf (stream, _("\
8424 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
8427 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
8428 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8429 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
8431 /* Pick the target format to use. */
8433 const char *
8434 i386_target_format (void)
8436 if (!strcmp (default_arch, "x86_64"))
8438 set_code_flag (CODE_64BIT);
8439 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
8441 cpu_arch_isa_flags.bitfield.cpui186 = 1;
8442 cpu_arch_isa_flags.bitfield.cpui286 = 1;
8443 cpu_arch_isa_flags.bitfield.cpui386 = 1;
8444 cpu_arch_isa_flags.bitfield.cpui486 = 1;
8445 cpu_arch_isa_flags.bitfield.cpui586 = 1;
8446 cpu_arch_isa_flags.bitfield.cpui686 = 1;
8447 cpu_arch_isa_flags.bitfield.cpuclflush = 1;
8448 cpu_arch_isa_flags.bitfield.cpummx= 1;
8449 cpu_arch_isa_flags.bitfield.cpusse = 1;
8450 cpu_arch_isa_flags.bitfield.cpusse2 = 1;
8451 cpu_arch_isa_flags.bitfield.cpulm = 1;
8453 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
8455 cpu_arch_tune_flags.bitfield.cpui186 = 1;
8456 cpu_arch_tune_flags.bitfield.cpui286 = 1;
8457 cpu_arch_tune_flags.bitfield.cpui386 = 1;
8458 cpu_arch_tune_flags.bitfield.cpui486 = 1;
8459 cpu_arch_tune_flags.bitfield.cpui586 = 1;
8460 cpu_arch_tune_flags.bitfield.cpui686 = 1;
8461 cpu_arch_tune_flags.bitfield.cpuclflush = 1;
8462 cpu_arch_tune_flags.bitfield.cpummx= 1;
8463 cpu_arch_tune_flags.bitfield.cpusse = 1;
8464 cpu_arch_tune_flags.bitfield.cpusse2 = 1;
8467 else if (!strcmp (default_arch, "i386"))
8469 set_code_flag (CODE_32BIT);
8470 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
8472 cpu_arch_isa_flags.bitfield.cpui186 = 1;
8473 cpu_arch_isa_flags.bitfield.cpui286 = 1;
8474 cpu_arch_isa_flags.bitfield.cpui386 = 1;
8476 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
8478 cpu_arch_tune_flags.bitfield.cpui186 = 1;
8479 cpu_arch_tune_flags.bitfield.cpui286 = 1;
8480 cpu_arch_tune_flags.bitfield.cpui386 = 1;
8483 else
8484 as_fatal (_("Unknown architecture"));
8485 switch (OUTPUT_FLAVOR)
8487 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
8488 case bfd_target_aout_flavour:
8489 return AOUT_TARGET_FORMAT;
8490 #endif
8491 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
8492 # if defined (TE_PE) || defined (TE_PEP)
8493 case bfd_target_coff_flavour:
8494 return flag_code == CODE_64BIT ? "pe-x86-64" : "pe-i386";
8495 # elif defined (TE_GO32)
8496 case bfd_target_coff_flavour:
8497 return "coff-go32";
8498 # else
8499 case bfd_target_coff_flavour:
8500 return "coff-i386";
8501 # endif
8502 #endif
8503 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8504 case bfd_target_elf_flavour:
8506 if (flag_code == CODE_64BIT)
8508 object_64bit = 1;
8509 use_rela_relocations = 1;
8511 if (cpu_arch_isa == PROCESSOR_L1OM)
8513 if (flag_code != CODE_64BIT)
8514 as_fatal (_("Intel L1OM is 64bit only"));
8515 return ELF_TARGET_L1OM_FORMAT;
8517 else
8518 return (flag_code == CODE_64BIT
8519 ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT);
8521 #endif
8522 #if defined (OBJ_MACH_O)
8523 case bfd_target_mach_o_flavour:
8524 return flag_code == CODE_64BIT ? "mach-o-x86-64" : "mach-o-i386";
8525 #endif
8526 default:
8527 abort ();
8528 return NULL;
8532 #endif /* OBJ_MAYBE_ more than one */
8534 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
8535 void
8536 i386_elf_emit_arch_note (void)
8538 if (IS_ELF && cpu_arch_name != NULL)
8540 char *p;
8541 asection *seg = now_seg;
8542 subsegT subseg = now_subseg;
8543 Elf_Internal_Note i_note;
8544 Elf_External_Note e_note;
8545 asection *note_secp;
8546 int len;
8548 /* Create the .note section. */
8549 note_secp = subseg_new (".note", 0);
8550 bfd_set_section_flags (stdoutput,
8551 note_secp,
8552 SEC_HAS_CONTENTS | SEC_READONLY);
8554 /* Process the arch string. */
8555 len = strlen (cpu_arch_name);
8557 i_note.namesz = len + 1;
8558 i_note.descsz = 0;
8559 i_note.type = NT_ARCH;
8560 p = frag_more (sizeof (e_note.namesz));
8561 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
8562 p = frag_more (sizeof (e_note.descsz));
8563 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
8564 p = frag_more (sizeof (e_note.type));
8565 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
8566 p = frag_more (len + 1);
8567 strcpy (p, cpu_arch_name);
8569 frag_align (2, 0, 0);
8571 subseg_set (seg, subseg);
8574 #endif
8576 symbolS *
8577 md_undefined_symbol (name)
8578 char *name;
8580 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
8581 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
8582 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
8583 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
8585 if (!GOT_symbol)
8587 if (symbol_find (name))
8588 as_bad (_("GOT already in symbol table"));
8589 GOT_symbol = symbol_new (name, undefined_section,
8590 (valueT) 0, &zero_address_frag);
8592 return GOT_symbol;
8594 return 0;
8597 /* Round up a section size to the appropriate boundary. */
8599 valueT
8600 md_section_align (segment, size)
8601 segT segment ATTRIBUTE_UNUSED;
8602 valueT size;
8604 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8605 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
8607 /* For a.out, force the section size to be aligned. If we don't do
8608 this, BFD will align it for us, but it will not write out the
8609 final bytes of the section. This may be a bug in BFD, but it is
8610 easier to fix it here since that is how the other a.out targets
8611 work. */
8612 int align;
8614 align = bfd_get_section_alignment (stdoutput, segment);
8615 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
8617 #endif
8619 return size;
8622 /* On the i386, PC-relative offsets are relative to the start of the
8623 next instruction. That is, the address of the offset, plus its
8624 size, since the offset is always the last part of the insn. */
8626 long
8627 md_pcrel_from (fixS *fixP)
8629 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
8632 #ifndef I386COFF
8634 static void
8635 s_bss (int ignore ATTRIBUTE_UNUSED)
8637 int temp;
8639 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8640 if (IS_ELF)
8641 obj_elf_section_change_hook ();
8642 #endif
8643 temp = get_absolute_expression ();
8644 subseg_set (bss_section, (subsegT) temp);
8645 demand_empty_rest_of_line ();
8648 #endif
8650 void
8651 i386_validate_fix (fixS *fixp)
8653 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
8655 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
8657 if (!object_64bit)
8658 abort ();
8659 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
8661 else
8663 if (!object_64bit)
8664 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
8665 else
8666 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
8668 fixp->fx_subsy = 0;
8672 arelent *
8673 tc_gen_reloc (section, fixp)
8674 asection *section ATTRIBUTE_UNUSED;
8675 fixS *fixp;
8677 arelent *rel;
8678 bfd_reloc_code_real_type code;
8680 switch (fixp->fx_r_type)
8682 case BFD_RELOC_X86_64_PLT32:
8683 case BFD_RELOC_X86_64_GOT32:
8684 case BFD_RELOC_X86_64_GOTPCREL:
8685 case BFD_RELOC_386_PLT32:
8686 case BFD_RELOC_386_GOT32:
8687 case BFD_RELOC_386_GOTOFF:
8688 case BFD_RELOC_386_GOTPC:
8689 case BFD_RELOC_386_TLS_GD:
8690 case BFD_RELOC_386_TLS_LDM:
8691 case BFD_RELOC_386_TLS_LDO_32:
8692 case BFD_RELOC_386_TLS_IE_32:
8693 case BFD_RELOC_386_TLS_IE:
8694 case BFD_RELOC_386_TLS_GOTIE:
8695 case BFD_RELOC_386_TLS_LE_32:
8696 case BFD_RELOC_386_TLS_LE:
8697 case BFD_RELOC_386_TLS_GOTDESC:
8698 case BFD_RELOC_386_TLS_DESC_CALL:
8699 case BFD_RELOC_X86_64_TLSGD:
8700 case BFD_RELOC_X86_64_TLSLD:
8701 case BFD_RELOC_X86_64_DTPOFF32:
8702 case BFD_RELOC_X86_64_DTPOFF64:
8703 case BFD_RELOC_X86_64_GOTTPOFF:
8704 case BFD_RELOC_X86_64_TPOFF32:
8705 case BFD_RELOC_X86_64_TPOFF64:
8706 case BFD_RELOC_X86_64_GOTOFF64:
8707 case BFD_RELOC_X86_64_GOTPC32:
8708 case BFD_RELOC_X86_64_GOT64:
8709 case BFD_RELOC_X86_64_GOTPCREL64:
8710 case BFD_RELOC_X86_64_GOTPC64:
8711 case BFD_RELOC_X86_64_GOTPLT64:
8712 case BFD_RELOC_X86_64_PLTOFF64:
8713 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
8714 case BFD_RELOC_X86_64_TLSDESC_CALL:
8715 case BFD_RELOC_RVA:
8716 case BFD_RELOC_VTABLE_ENTRY:
8717 case BFD_RELOC_VTABLE_INHERIT:
8718 #ifdef TE_PE
8719 case BFD_RELOC_32_SECREL:
8720 #endif
8721 code = fixp->fx_r_type;
8722 break;
8723 case BFD_RELOC_X86_64_32S:
8724 if (!fixp->fx_pcrel)
8726 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
8727 code = fixp->fx_r_type;
8728 break;
8730 default:
8731 if (fixp->fx_pcrel)
8733 switch (fixp->fx_size)
8735 default:
8736 as_bad_where (fixp->fx_file, fixp->fx_line,
8737 _("can not do %d byte pc-relative relocation"),
8738 fixp->fx_size);
8739 code = BFD_RELOC_32_PCREL;
8740 break;
8741 case 1: code = BFD_RELOC_8_PCREL; break;
8742 case 2: code = BFD_RELOC_16_PCREL; break;
8743 case 4: code = BFD_RELOC_32_PCREL; break;
8744 #ifdef BFD64
8745 case 8: code = BFD_RELOC_64_PCREL; break;
8746 #endif
8749 else
8751 switch (fixp->fx_size)
8753 default:
8754 as_bad_where (fixp->fx_file, fixp->fx_line,
8755 _("can not do %d byte relocation"),
8756 fixp->fx_size);
8757 code = BFD_RELOC_32;
8758 break;
8759 case 1: code = BFD_RELOC_8; break;
8760 case 2: code = BFD_RELOC_16; break;
8761 case 4: code = BFD_RELOC_32; break;
8762 #ifdef BFD64
8763 case 8: code = BFD_RELOC_64; break;
8764 #endif
8767 break;
8770 if ((code == BFD_RELOC_32
8771 || code == BFD_RELOC_32_PCREL
8772 || code == BFD_RELOC_X86_64_32S)
8773 && GOT_symbol
8774 && fixp->fx_addsy == GOT_symbol)
8776 if (!object_64bit)
8777 code = BFD_RELOC_386_GOTPC;
8778 else
8779 code = BFD_RELOC_X86_64_GOTPC32;
8781 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
8782 && GOT_symbol
8783 && fixp->fx_addsy == GOT_symbol)
8785 code = BFD_RELOC_X86_64_GOTPC64;
8788 rel = (arelent *) xmalloc (sizeof (arelent));
8789 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
8790 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
8792 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
8794 if (!use_rela_relocations)
8796 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
8797 vtable entry to be used in the relocation's section offset. */
8798 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
8799 rel->address = fixp->fx_offset;
8800 #if defined (OBJ_COFF) && defined (TE_PE)
8801 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
8802 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
8803 else
8804 #endif
8805 rel->addend = 0;
8807 /* Use the rela in 64bit mode. */
8808 else
8810 if (!fixp->fx_pcrel)
8811 rel->addend = fixp->fx_offset;
8812 else
8813 switch (code)
8815 case BFD_RELOC_X86_64_PLT32:
8816 case BFD_RELOC_X86_64_GOT32:
8817 case BFD_RELOC_X86_64_GOTPCREL:
8818 case BFD_RELOC_X86_64_TLSGD:
8819 case BFD_RELOC_X86_64_TLSLD:
8820 case BFD_RELOC_X86_64_GOTTPOFF:
8821 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
8822 case BFD_RELOC_X86_64_TLSDESC_CALL:
8823 rel->addend = fixp->fx_offset - fixp->fx_size;
8824 break;
8825 default:
8826 rel->addend = (section->vma
8827 - fixp->fx_size
8828 + fixp->fx_addnumber
8829 + md_pcrel_from (fixp));
8830 break;
8834 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
8835 if (rel->howto == NULL)
8837 as_bad_where (fixp->fx_file, fixp->fx_line,
8838 _("cannot represent relocation type %s"),
8839 bfd_get_reloc_code_name (code));
8840 /* Set howto to a garbage value so that we can keep going. */
8841 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
8842 gas_assert (rel->howto != NULL);
8845 return rel;
8848 #include "tc-i386-intel.c"
8850 void
8851 tc_x86_parse_to_dw2regnum (expressionS *exp)
8853 int saved_naked_reg;
8854 char saved_register_dot;
8856 saved_naked_reg = allow_naked_reg;
8857 allow_naked_reg = 1;
8858 saved_register_dot = register_chars['.'];
8859 register_chars['.'] = '.';
8860 allow_pseudo_reg = 1;
8861 expression_and_evaluate (exp);
8862 allow_pseudo_reg = 0;
8863 register_chars['.'] = saved_register_dot;
8864 allow_naked_reg = saved_naked_reg;
8866 if (exp->X_op == O_register && exp->X_add_number >= 0)
8868 if ((addressT) exp->X_add_number < i386_regtab_size)
8870 exp->X_op = O_constant;
8871 exp->X_add_number = i386_regtab[exp->X_add_number]
8872 .dw2_regnum[flag_code >> 1];
8874 else
8875 exp->X_op = O_illegal;
8879 void
8880 tc_x86_frame_initial_instructions (void)
8882 static unsigned int sp_regno[2];
8884 if (!sp_regno[flag_code >> 1])
8886 char *saved_input = input_line_pointer;
8887 char sp[][4] = {"esp", "rsp"};
8888 expressionS exp;
8890 input_line_pointer = sp[flag_code >> 1];
8891 tc_x86_parse_to_dw2regnum (&exp);
8892 gas_assert (exp.X_op == O_constant);
8893 sp_regno[flag_code >> 1] = exp.X_add_number;
8894 input_line_pointer = saved_input;
8897 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
8898 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
8902 i386_elf_section_type (const char *str, size_t len)
8904 if (flag_code == CODE_64BIT
8905 && len == sizeof ("unwind") - 1
8906 && strncmp (str, "unwind", 6) == 0)
8907 return SHT_X86_64_UNWIND;
8909 return -1;
8912 #ifdef TE_SOLARIS
8913 void
8914 i386_solaris_fix_up_eh_frame (segT sec)
8916 if (flag_code == CODE_64BIT)
8917 elf_section_type (sec) = SHT_X86_64_UNWIND;
8919 #endif
8921 #ifdef TE_PE
8922 void
8923 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
8925 expressionS exp;
8927 exp.X_op = O_secrel;
8928 exp.X_add_symbol = symbol;
8929 exp.X_add_number = 0;
8930 emit_expr (&exp, size);
8932 #endif
8934 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8935 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
8937 bfd_vma
8938 x86_64_section_letter (int letter, char **ptr_msg)
8940 if (flag_code == CODE_64BIT)
8942 if (letter == 'l')
8943 return SHF_X86_64_LARGE;
8945 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
8947 else
8948 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
8949 return -1;
8952 bfd_vma
8953 x86_64_section_word (char *str, size_t len)
8955 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
8956 return SHF_X86_64_LARGE;
8958 return -1;
8961 static void
8962 handle_large_common (int small ATTRIBUTE_UNUSED)
8964 if (flag_code != CODE_64BIT)
8966 s_comm_internal (0, elf_common_parse);
8967 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
8969 else
8971 static segT lbss_section;
8972 asection *saved_com_section_ptr = elf_com_section_ptr;
8973 asection *saved_bss_section = bss_section;
8975 if (lbss_section == NULL)
8977 flagword applicable;
8978 segT seg = now_seg;
8979 subsegT subseg = now_subseg;
8981 /* The .lbss section is for local .largecomm symbols. */
8982 lbss_section = subseg_new (".lbss", 0);
8983 applicable = bfd_applicable_section_flags (stdoutput);
8984 bfd_set_section_flags (stdoutput, lbss_section,
8985 applicable & SEC_ALLOC);
8986 seg_info (lbss_section)->bss = 1;
8988 subseg_set (seg, subseg);
8991 elf_com_section_ptr = &_bfd_elf_large_com_section;
8992 bss_section = lbss_section;
8994 s_comm_internal (0, elf_common_parse);
8996 elf_com_section_ptr = saved_com_section_ptr;
8997 bss_section = saved_bss_section;
9000 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */