1 // arm.cc -- arm target support for gold.
3 // Copyright 2009, 2010 Free Software Foundation, Inc.
4 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5 // by Ian Lance Taylor <iant@google.com>.
6 // This file also contains borrowed and adapted code from
9 // This file is part of gold.
11 // This program is free software; you can redistribute it and/or modify
12 // it under the terms of the GNU General Public License as published by
13 // the Free Software Foundation; either version 3 of the License, or
14 // (at your option) any later version.
16 // This program is distributed in the hope that it will be useful,
17 // but WITHOUT ANY WARRANTY; without even the implied warranty of
18 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 // GNU General Public License for more details.
21 // You should have received a copy of the GNU General Public License
22 // along with this program; if not, write to the Free Software
23 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24 // MA 02110-1301, USA.
38 #include "parameters.h"
45 #include "copy-relocs.h"
47 #include "target-reloc.h"
48 #include "target-select.h"
52 #include "attributes.h"
53 #include "arm-reloc-property.h"
60 template<bool big_endian
>
61 class Output_data_plt_arm
;
63 template<bool big_endian
>
66 template<bool big_endian
>
67 class Arm_input_section
;
69 class Arm_exidx_cantunwind
;
71 class Arm_exidx_merged_section
;
73 class Arm_exidx_fixup
;
75 template<bool big_endian
>
76 class Arm_output_section
;
78 class Arm_exidx_input_section
;
80 template<bool big_endian
>
83 template<bool big_endian
>
84 class Arm_relocate_functions
;
86 template<bool big_endian
>
87 class Arm_output_data_got
;
89 template<bool big_endian
>
93 typedef elfcpp::Elf_types
<32>::Elf_Addr Arm_address
;
95 // Maximum branch offsets for ARM, THUMB and THUMB2.
96 const int32_t ARM_MAX_FWD_BRANCH_OFFSET
= ((((1 << 23) - 1) << 2) + 8);
97 const int32_t ARM_MAX_BWD_BRANCH_OFFSET
= ((-((1 << 23) << 2)) + 8);
98 const int32_t THM_MAX_FWD_BRANCH_OFFSET
= ((1 << 22) -2 + 4);
99 const int32_t THM_MAX_BWD_BRANCH_OFFSET
= (-(1 << 22) + 4);
100 const int32_t THM2_MAX_FWD_BRANCH_OFFSET
= (((1 << 24) - 2) + 4);
101 const int32_t THM2_MAX_BWD_BRANCH_OFFSET
= (-(1 << 24) + 4);
103 // Thread Control Block size.
104 const size_t ARM_TCB_SIZE
= 8;
106 // The arm target class.
108 // This is a very simple port of gold for ARM-EABI. It is intended for
109 // supporting Android only for the time being.
112 // - Implement all static relocation types documented in arm-reloc.def.
113 // - Make PLTs more flexible for different architecture features like
115 // There are probably a lot more.
117 // Ideally we would like to avoid using global variables but this is used
118 // very in many places and sometimes in loops. If we use a function
119 // returning a static instance of Arm_reloc_property_table, it will very
120 // slow in an threaded environment since the static instance needs to be
121 // locked. The pointer is below initialized in the
122 // Target::do_select_as_default_target() hook so that we do not spend time
123 // building the table if we are not linking ARM objects.
125 // An alternative is to to process the information in arm-reloc.def in
126 // compilation time and generate a representation of it in PODs only. That
127 // way we can avoid initialization when the linker starts.
129 Arm_reloc_property_table
*arm_reloc_property_table
= NULL
;
131 // Instruction template class. This class is similar to the insn_sequence
132 // struct in bfd/elf32-arm.c.
137 // Types of instruction templates.
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE
,
151 // Factory methods to create instruction templates in different formats.
153 static const Insn_template
154 thumb16_insn(uint32_t data
)
155 { return Insn_template(data
, THUMB16_TYPE
, elfcpp::R_ARM_NONE
, 0); }
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data
)
161 { return Insn_template(data
, THUMB16_SPECIAL_TYPE
, elfcpp::R_ARM_NONE
, 1); }
163 static const Insn_template
164 thumb32_insn(uint32_t data
)
165 { return Insn_template(data
, THUMB32_TYPE
, elfcpp::R_ARM_NONE
, 0); }
167 static const Insn_template
168 thumb32_b_insn(uint32_t data
, int reloc_addend
)
170 return Insn_template(data
, THUMB32_TYPE
, elfcpp::R_ARM_THM_JUMP24
,
174 static const Insn_template
175 arm_insn(uint32_t data
)
176 { return Insn_template(data
, ARM_TYPE
, elfcpp::R_ARM_NONE
, 0); }
178 static const Insn_template
179 arm_rel_insn(unsigned data
, int reloc_addend
)
180 { return Insn_template(data
, ARM_TYPE
, elfcpp::R_ARM_JUMP24
, reloc_addend
); }
182 static const Insn_template
183 data_word(unsigned data
, unsigned int r_type
, int reloc_addend
)
184 { return Insn_template(data
, DATA_TYPE
, r_type
, reloc_addend
); }
186 // Accessors. This class is used for read-only objects so no modifiers
191 { return this->data_
; }
193 // Return the instruction sequence type of this.
196 { return this->type_
; }
198 // Return the ARM relocation type of this.
201 { return this->r_type_
; }
205 { return this->reloc_addend_
; }
207 // Return size of instruction template in bytes.
211 // Return byte-alignment of instruction template.
216 // We make the constructor private to ensure that only the factory
219 Insn_template(unsigned data
, Type type
, unsigned int r_type
, int reloc_addend
)
220 : data_(data
), type_(type
), r_type_(r_type
), reloc_addend_(reloc_addend
)
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
226 // Instruction template type.
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_
;
230 // Relocation addend.
231 int32_t reloc_addend_
;
234 // Macro for generating code to stub types. One entry per long/short
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
258 #define DEF_STUB(x) arm_stub_##x,
264 // First reloc stub type.
265 arm_stub_reloc_first
= arm_stub_long_branch_any_any
,
266 // Last reloc stub type.
267 arm_stub_reloc_last
= arm_stub_long_branch_thumb_only_pic
,
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first
= arm_stub_a8_veneer_b_cond
,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last
= arm_stub_a8_veneer_blx
,
275 arm_stub_type_last
= arm_stub_v4_veneer_bx
279 // Stub template class. Templates are meant to be read-only objects.
280 // A stub template for a stub type contains all read-only attributes
281 // common to all stubs of the same type.
286 Stub_template(Stub_type
, const Insn_template
*, size_t);
294 { return this->type_
; }
296 // Return an array of instruction templates.
299 { return this->insns_
; }
301 // Return size of template in number of instructions.
304 { return this->insn_count_
; }
306 // Return size of template in bytes.
309 { return this->size_
; }
311 // Return alignment of the stub template.
314 { return this->alignment_
; }
316 // Return whether entry point is in thumb mode.
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_
; }
321 // Return number of relocations in this template.
324 { return this->relocs_
.size(); }
326 // Return index of the I-th instruction with relocation.
328 reloc_insn_index(size_t i
) const
330 gold_assert(i
< this->relocs_
.size());
331 return this->relocs_
[i
].first
;
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
337 reloc_offset(size_t i
) const
339 gold_assert(i
< this->relocs_
.size());
340 return this->relocs_
[i
].second
;
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair
<size_t, section_size_type
> Reloc
;
348 // A Stub_template may not be copied. We want to share templates as much
350 Stub_template(const Stub_template
&);
351 Stub_template
& operator=(const Stub_template
&);
355 // Points to an array of Insn_templates.
356 const Insn_template
* insns_
;
357 // Number of Insn_templates in insns_[].
359 // Size of templated instructions in bytes.
361 // Alignment of templated instructions.
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_
;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector
<Reloc
> relocs_
;
372 // A class for code stubs. This is a base class for different type of
373 // stubs used in the ARM target.
379 static const section_offset_type invalid_offset
=
380 static_cast<section_offset_type
>(-1);
383 Stub(const Stub_template
* stub_template
)
384 : stub_template_(stub_template
), offset_(invalid_offset
)
391 // Return the stub template.
393 stub_template() const
394 { return this->stub_template_
; }
396 // Return offset of code stub from beginning of its containing stub table.
400 gold_assert(this->offset_
!= invalid_offset
);
401 return this->offset_
;
404 // Set offset of code stub from beginning of its containing stub table.
406 set_offset(section_offset_type offset
)
407 { this->offset_
= offset
; }
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
412 reloc_target(size_t i
)
413 { return this->do_reloc_target(i
); }
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
417 write(unsigned char* view
, section_size_type view_size
, bool big_endian
)
418 { this->do_write(view
, view_size
, big_endian
); }
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
423 thumb16_special(size_t i
)
424 { return this->do_thumb16_special(i
); }
427 // This must be defined in the child class.
429 do_reloc_target(size_t) = 0;
431 // This may be overridden in the child class.
433 do_write(unsigned char* view
, section_size_type view_size
, bool big_endian
)
436 this->do_fixed_endian_write
<true>(view
, view_size
);
438 this->do_fixed_endian_write
<false>(view
, view_size
);
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
448 // A template to implement do_write.
449 template<bool big_endian
>
451 do_fixed_endian_write(unsigned char*, section_size_type
);
454 const Stub_template
* stub_template_
;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_
;
459 // Reloc stub class. These are stubs we use to fix up relocation because
460 // of limited branch ranges.
462 class Reloc_stub
: public Stub
465 static const unsigned int invalid_index
= static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address
= static_cast<Arm_address
>(-1);
469 // Return destination address.
471 destination_address() const
473 gold_assert(this->destination_address_
!= this->invalid_address
);
474 return this->destination_address_
;
477 // Set destination address.
479 set_destination_address(Arm_address address
)
481 gold_assert(address
!= this->invalid_address
);
482 this->destination_address_
= address
;
485 // Reset destination address.
487 reset_destination_address()
488 { this->destination_address_
= this->invalid_address
; }
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
495 stub_type_for_reloc(unsigned int r_type
, Arm_address branch_address
,
496 Arm_address branch_target
, bool target_is_thumb
);
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
508 Key(Stub_type stub_type
, const Symbol
* symbol
, const Relobj
* relobj
,
509 unsigned int r_sym
, int32_t addend
)
510 : stub_type_(stub_type
), addend_(addend
)
514 this->r_sym_
= Reloc_stub::invalid_index
;
515 this->u_
.symbol
= symbol
;
519 gold_assert(relobj
!= NULL
&& r_sym
!= invalid_index
);
520 this->r_sym_
= r_sym
;
521 this->u_
.relobj
= relobj
;
528 // Accessors: Keys are meant to be read-only object so no modifiers are
534 { return this->stub_type_
; }
536 // Return the local symbol index or invalid_index.
539 { return this->r_sym_
; }
541 // Return the symbol if there is one.
544 { return this->r_sym_
== invalid_index
? this->u_
.symbol
: NULL
; }
546 // Return the relobj if there is one.
549 { return this->r_sym_
!= invalid_index
? this->u_
.relobj
: NULL
; }
551 // Whether this equals to another key k.
553 eq(const Key
& k
) const
555 return ((this->stub_type_
== k
.stub_type_
)
556 && (this->r_sym_
== k
.r_sym_
)
557 && ((this->r_sym_
!= Reloc_stub::invalid_index
)
558 ? (this->u_
.relobj
== k
.u_
.relobj
)
559 : (this->u_
.symbol
== k
.u_
.symbol
))
560 && (this->addend_
== k
.addend_
));
563 // Return a hash value.
567 return (this->stub_type_
569 ^ gold::string_hash
<char>(
570 (this->r_sym_
!= Reloc_stub::invalid_index
)
571 ? this->u_
.relobj
->name().c_str()
572 : this->u_
.symbol
->name())
576 // Functors for STL associative containers.
580 operator()(const Key
& k
) const
581 { return k
.hash_value(); }
587 operator()(const Key
& k1
, const Key
& k2
) const
588 { return k1
.eq(k2
); }
591 // Name of key. This is mainly for debugging.
597 Stub_type stub_type_
;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
601 // If r_sym_ is invalid index. This points to a global symbol.
602 // Otherwise, this points a relobj. We used the unsized and target
603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
604 // Arm_relobj. This is done to avoid making the stub class a template
605 // as most of the stub machinery is endianness-neutral. However, it
606 // may require a bit of casting done by users of this class.
609 const Symbol
* symbol
;
610 const Relobj
* relobj
;
612 // Addend associated with a reloc.
617 // Reloc_stubs are created via a stub factory. So these are protected.
618 Reloc_stub(const Stub_template
* stub_template
)
619 : Stub(stub_template
), destination_address_(invalid_address
)
625 friend class Stub_factory
;
627 // Return the relocation target address of the i-th relocation in the
630 do_reloc_target(size_t i
)
632 // All reloc stub have only one relocation.
634 return this->destination_address_
;
638 // Address of destination.
639 Arm_address destination_address_
;
642 // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643 // THUMB branch that meets the following conditions:
645 // 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646 // branch address is 0xffe.
647 // 2. The branch target address is in the same page as the first word of the
649 // 3. The branch follows a 32-bit instruction which is not a branch.
651 // To do the fix up, we need to store the address of the branch instruction
652 // and its target at least. We also need to store the original branch
653 // instruction bits for the condition code in a conditional branch. The
654 // condition code is used in a special instruction template. We also want
655 // to identify input sections needing Cortex-A8 workaround quickly. We store
656 // extra information about object and section index of the code section
657 // containing a branch being fixed up. The information is used to mark
658 // the code section when we finalize the Cortex-A8 stubs.
661 class Cortex_a8_stub
: public Stub
667 // Return the object of the code section containing the branch being fixed
671 { return this->relobj_
; }
673 // Return the section index of the code section containing the branch being
677 { return this->shndx_
; }
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
683 source_address() const
684 { return this->source_address_
; }
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
690 destination_address() const
691 { return this->destination_address_
; }
693 // Return the instruction being fixed up.
695 original_insn() const
696 { return this->original_insn_
; }
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template
* stub_template
, Relobj
* relobj
,
701 unsigned int shndx
, Arm_address source_address
,
702 Arm_address destination_address
, uint32_t original_insn
)
703 : Stub(stub_template
), relobj_(relobj
), shndx_(shndx
),
704 source_address_(source_address
| 1U),
705 destination_address_(destination_address
),
706 original_insn_(original_insn
)
709 friend class Stub_factory
;
711 // Return the relocation target address of the i-th relocation in the
714 do_reloc_target(size_t i
)
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond
)
718 // The conditional branch veneer has two relocations.
720 return i
== 0 ? this->source_address_
+ 4 : this->destination_address_
;
724 // All other Cortex-A8 stubs have only one relocation.
726 return this->destination_address_
;
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
732 do_thumb16_special(size_t);
735 // Object of the code section containing the branch being fixed up.
737 // Section index of the code section containing the branch begin fixed up.
739 // Source address of original branch.
740 Arm_address source_address_
;
741 // Destination address of the original branch.
742 Arm_address destination_address_
;
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_
;
748 // ARMv4 BX Rx branch relocation stub class.
749 class Arm_v4bx_stub
: public Stub
755 // Return the associated register.
758 { return this->reg_
; }
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template
* stub_template
, const uint32_t reg
)
763 : Stub(stub_template
), reg_(reg
)
766 friend class Stub_factory
;
768 // Return the relocation target address of the i-th relocation in the
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
774 // This may be overridden in the child class.
776 do_write(unsigned char* view
, section_size_type view_size
, bool big_endian
)
779 this->do_fixed_endian_v4bx_write
<true>(view
, view_size
);
781 this->do_fixed_endian_v4bx_write
<false>(view
, view_size
);
785 // A template to implement do_write.
786 template<bool big_endian
>
788 do_fixed_endian_v4bx_write(unsigned char* view
, section_size_type
)
790 const Insn_template
* insns
= this->stub_template()->insns();
791 elfcpp::Swap
<32, big_endian
>::writeval(view
,
793 + (this->reg_
<< 16)));
794 view
+= insns
[0].size();
795 elfcpp::Swap
<32, big_endian
>::writeval(view
,
796 (insns
[1].data() + this->reg_
));
797 view
+= insns
[1].size();
798 elfcpp::Swap
<32, big_endian
>::writeval(view
,
799 (insns
[2].data() + this->reg_
));
802 // A register index (r0-r14), which is associated with the stub.
806 // Stub factory class.
811 // Return the unique instance of this class.
812 static const Stub_factory
&
815 static Stub_factory singleton
;
819 // Make a relocation stub.
821 make_reloc_stub(Stub_type stub_type
) const
823 gold_assert(stub_type
>= arm_stub_reloc_first
824 && stub_type
<= arm_stub_reloc_last
);
825 return new Reloc_stub(this->stub_templates_
[stub_type
]);
828 // Make a Cortex-A8 stub.
830 make_cortex_a8_stub(Stub_type stub_type
, Relobj
* relobj
, unsigned int shndx
,
831 Arm_address source
, Arm_address destination
,
832 uint32_t original_insn
) const
834 gold_assert(stub_type
>= arm_stub_cortex_a8_first
835 && stub_type
<= arm_stub_cortex_a8_last
);
836 return new Cortex_a8_stub(this->stub_templates_
[stub_type
], relobj
, shndx
,
837 source
, destination
, original_insn
);
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
843 make_arm_v4bx_stub(uint32_t reg
) const
845 gold_assert(reg
< 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_
[arm_stub_v4_veneer_bx
],
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory
&);
858 Stub_factory
& operator=(Stub_factory
&);
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template
* stub_templates_
[arm_stub_type_last
+1];
864 // A class to hold stubs for the ARM target.
866 template<bool big_endian
>
867 class Stub_table
: public Output_data
870 Stub_table(Arm_input_section
<big_endian
>* owner
)
871 : Output_data(), owner_(owner
), reloc_stubs_(), reloc_stubs_size_(0),
872 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873 prev_data_size_(0), prev_addralign_(1)
879 // Owner of this stub table.
880 Arm_input_section
<big_endian
>*
882 { return this->owner_
; }
884 // Whether this stub table is empty.
888 return (this->reloc_stubs_
.empty()
889 && this->cortex_a8_stubs_
.empty()
890 && this->arm_v4bx_stubs_
.empty());
893 // Return the current data size.
895 current_data_size() const
896 { return this->current_data_size_for_child(); }
898 // Add a STUB with using KEY. Caller is reponsible for avoid adding
899 // if already a STUB with the same key has been added.
901 add_reloc_stub(Reloc_stub
* stub
, const Reloc_stub::Key
& key
)
903 const Stub_template
* stub_template
= stub
->stub_template();
904 gold_assert(stub_template
->type() == key
.stub_type());
905 this->reloc_stubs_
[key
] = stub
;
907 // Assign stub offset early. We can do this because we never remove
908 // reloc stubs and they are in the beginning of the stub table.
909 uint64_t align
= stub_template
->alignment();
910 this->reloc_stubs_size_
= align_address(this->reloc_stubs_size_
, align
);
911 stub
->set_offset(this->reloc_stubs_size_
);
912 this->reloc_stubs_size_
+= stub_template
->size();
913 this->reloc_stubs_addralign_
=
914 std::max(this->reloc_stubs_addralign_
, align
);
917 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918 // Caller is reponsible for avoid adding if already a STUB with the same
919 // address has been added.
921 add_cortex_a8_stub(Arm_address address
, Cortex_a8_stub
* stub
)
923 std::pair
<Arm_address
, Cortex_a8_stub
*> value(address
, stub
);
924 this->cortex_a8_stubs_
.insert(value
);
927 // Add an ARM V4BX relocation stub. A register index will be retrieved
930 add_arm_v4bx_stub(Arm_v4bx_stub
* stub
)
932 gold_assert(stub
!= NULL
&& this->arm_v4bx_stubs_
[stub
->reg()] == NULL
);
933 this->arm_v4bx_stubs_
[stub
->reg()] = stub
;
936 // Remove all Cortex-A8 stubs.
938 remove_all_cortex_a8_stubs();
940 // Look up a relocation stub using KEY. Return NULL if there is none.
942 find_reloc_stub(const Reloc_stub::Key
& key
) const
944 typename
Reloc_stub_map::const_iterator p
= this->reloc_stubs_
.find(key
);
945 return (p
!= this->reloc_stubs_
.end()) ? p
->second
: NULL
;
948 // Look up an arm v4bx relocation stub using the register index.
949 // Return NULL if there is none.
951 find_arm_v4bx_stub(const uint32_t reg
) const
953 gold_assert(reg
< 0xf);
954 return this->arm_v4bx_stubs_
[reg
];
957 // Relocate stubs in this stub table.
959 relocate_stubs(const Relocate_info
<32, big_endian
>*,
960 Target_arm
<big_endian
>*, Output_section
*,
961 unsigned char*, Arm_address
, section_size_type
);
963 // Update data size and alignment at the end of a relaxation pass. Return
964 // true if either data size or alignment is different from that of the
965 // previous relaxation pass.
967 update_data_size_and_addralign();
969 // Finalize stubs. Set the offsets of all stubs and mark input sections
970 // needing the Cortex-A8 workaround.
974 // Apply Cortex-A8 workaround to an address range.
976 apply_cortex_a8_workaround_to_address_range(Target_arm
<big_endian
>*,
977 unsigned char*, Arm_address
,
981 // Write out section contents.
983 do_write(Output_file
*);
985 // Return the required alignment.
988 { return this->prev_addralign_
; }
990 // Reset address and file offset.
992 do_reset_address_and_file_offset()
993 { this->set_current_data_size_for_child(this->prev_data_size_
); }
995 // Set final data size.
997 set_final_data_size()
998 { this->set_data_size(this->current_data_size()); }
1001 // Relocate one stub.
1003 relocate_stub(Stub
*, const Relocate_info
<32, big_endian
>*,
1004 Target_arm
<big_endian
>*, Output_section
*,
1005 unsigned char*, Arm_address
, section_size_type
);
1007 // Unordered map of relocation stubs.
1009 Unordered_map
<Reloc_stub::Key
, Reloc_stub
*, Reloc_stub::Key::hash
,
1010 Reloc_stub::Key::equal_to
>
1013 // List of Cortex-A8 stubs ordered by addresses of branches being
1014 // fixed up in output.
1015 typedef std::map
<Arm_address
, Cortex_a8_stub
*> Cortex_a8_stub_list
;
1016 // List of Arm V4BX relocation stubs ordered by associated registers.
1017 typedef std::vector
<Arm_v4bx_stub
*> Arm_v4bx_stub_list
;
1019 // Owner of this stub table.
1020 Arm_input_section
<big_endian
>* owner_
;
1021 // The relocation stubs.
1022 Reloc_stub_map reloc_stubs_
;
1023 // Size of reloc stubs.
1024 off_t reloc_stubs_size_
;
1025 // Maximum address alignment of reloc stubs.
1026 uint64_t reloc_stubs_addralign_
;
1027 // The cortex_a8_stubs.
1028 Cortex_a8_stub_list cortex_a8_stubs_
;
1029 // The Arm V4BX relocation stubs.
1030 Arm_v4bx_stub_list arm_v4bx_stubs_
;
1031 // data size of this in the previous pass.
1032 off_t prev_data_size_
;
1033 // address alignment of this in the previous pass.
1034 uint64_t prev_addralign_
;
1037 // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1038 // we add to the end of an EXIDX input section that goes into the output.
1040 class Arm_exidx_cantunwind
: public Output_section_data
1043 Arm_exidx_cantunwind(Relobj
* relobj
, unsigned int shndx
)
1044 : Output_section_data(8, 4, true), relobj_(relobj
), shndx_(shndx
)
1047 // Return the object containing the section pointed by this.
1050 { return this->relobj_
; }
1052 // Return the section index of the section pointed by this.
1055 { return this->shndx_
; }
1059 do_write(Output_file
* of
)
1061 if (parameters
->target().is_big_endian())
1062 this->do_fixed_endian_write
<true>(of
);
1064 this->do_fixed_endian_write
<false>(of
);
1068 // Implement do_write for a given endianness.
1069 template<bool big_endian
>
1071 do_fixed_endian_write(Output_file
*);
1073 // The object containing the section pointed by this.
1075 // The section index of the section pointed by this.
1076 unsigned int shndx_
;
1079 // During EXIDX coverage fix-up, we compact an EXIDX section. The
1080 // Offset map is used to map input section offset within the EXIDX section
1081 // to the output offset from the start of this EXIDX section.
1083 typedef std::map
<section_offset_type
, section_offset_type
>
1084 Arm_exidx_section_offset_map
;
1086 // Arm_exidx_merged_section class. This represents an EXIDX input section
1087 // with some of its entries merged.
1089 class Arm_exidx_merged_section
: public Output_relaxed_input_section
1092 // Constructor for Arm_exidx_merged_section.
1093 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1094 // SECTION_OFFSET_MAP points to a section offset map describing how
1095 // parts of the input section are mapped to output. DELETED_BYTES is
1096 // the number of bytes deleted from the EXIDX input section.
1097 Arm_exidx_merged_section(
1098 const Arm_exidx_input_section
& exidx_input_section
,
1099 const Arm_exidx_section_offset_map
& section_offset_map
,
1100 uint32_t deleted_bytes
);
1102 // Return the original EXIDX input section.
1103 const Arm_exidx_input_section
&
1104 exidx_input_section() const
1105 { return this->exidx_input_section_
; }
1107 // Return the section offset map.
1108 const Arm_exidx_section_offset_map
&
1109 section_offset_map() const
1110 { return this->section_offset_map_
; }
1113 // Write merged section into file OF.
1115 do_write(Output_file
* of
);
1118 do_output_offset(const Relobj
*, unsigned int, section_offset_type
,
1119 section_offset_type
*) const;
1122 // Original EXIDX input section.
1123 const Arm_exidx_input_section
& exidx_input_section_
;
1124 // Section offset map.
1125 const Arm_exidx_section_offset_map
& section_offset_map_
;
1128 // A class to wrap an ordinary input section containing executable code.
1130 template<bool big_endian
>
1131 class Arm_input_section
: public Output_relaxed_input_section
1134 Arm_input_section(Relobj
* relobj
, unsigned int shndx
)
1135 : Output_relaxed_input_section(relobj
, shndx
, 1),
1136 original_addralign_(1), original_size_(0), stub_table_(NULL
)
1139 ~Arm_input_section()
1146 // Whether this is a stub table owner.
1148 is_stub_table_owner() const
1149 { return this->stub_table_
!= NULL
&& this->stub_table_
->owner() == this; }
1151 // Return the stub table.
1152 Stub_table
<big_endian
>*
1154 { return this->stub_table_
; }
1156 // Set the stub_table.
1158 set_stub_table(Stub_table
<big_endian
>* stub_table
)
1159 { this->stub_table_
= stub_table
; }
1161 // Downcast a base pointer to an Arm_input_section pointer. This is
1162 // not type-safe but we only use Arm_input_section not the base class.
1163 static Arm_input_section
<big_endian
>*
1164 as_arm_input_section(Output_relaxed_input_section
* poris
)
1165 { return static_cast<Arm_input_section
<big_endian
>*>(poris
); }
1168 // Write data to output file.
1170 do_write(Output_file
*);
1172 // Return required alignment of this.
1174 do_addralign() const
1176 if (this->is_stub_table_owner())
1177 return std::max(this->stub_table_
->addralign(),
1178 this->original_addralign_
);
1180 return this->original_addralign_
;
1183 // Finalize data size.
1185 set_final_data_size();
1187 // Reset address and file offset.
1189 do_reset_address_and_file_offset();
1193 do_output_offset(const Relobj
* object
, unsigned int shndx
,
1194 section_offset_type offset
,
1195 section_offset_type
* poutput
) const
1197 if ((object
== this->relobj())
1198 && (shndx
== this->shndx())
1200 && (convert_types
<uint64_t, section_offset_type
>(offset
)
1201 <= this->original_size_
))
1211 // Copying is not allowed.
1212 Arm_input_section(const Arm_input_section
&);
1213 Arm_input_section
& operator=(const Arm_input_section
&);
1215 // Address alignment of the original input section.
1216 uint64_t original_addralign_
;
1217 // Section size of the original input section.
1218 uint64_t original_size_
;
1220 Stub_table
<big_endian
>* stub_table_
;
1223 // Arm_exidx_fixup class. This is used to define a number of methods
1224 // and keep states for fixing up EXIDX coverage.
1226 class Arm_exidx_fixup
1229 Arm_exidx_fixup(Output_section
* exidx_output_section
,
1230 bool merge_exidx_entries
= true)
1231 : exidx_output_section_(exidx_output_section
), last_unwind_type_(UT_NONE
),
1232 last_inlined_entry_(0), last_input_section_(NULL
),
1233 section_offset_map_(NULL
), first_output_text_section_(NULL
),
1234 merge_exidx_entries_(merge_exidx_entries
)
1238 { delete this->section_offset_map_
; }
1240 // Process an EXIDX section for entry merging. Return number of bytes to
1241 // be deleted in output. If parts of the input EXIDX section are merged
1242 // a heap allocated Arm_exidx_section_offset_map is store in the located
1243 // PSECTION_OFFSET_MAP. The caller owns the map and is reponsible for
1245 template<bool big_endian
>
1247 process_exidx_section(const Arm_exidx_input_section
* exidx_input_section
,
1248 Arm_exidx_section_offset_map
** psection_offset_map
);
1250 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1251 // input section, if there is not one already.
1253 add_exidx_cantunwind_as_needed();
1255 // Return the output section for the text section which is linked to the
1256 // first exidx input in output.
1258 first_output_text_section() const
1259 { return this->first_output_text_section_
; }
1262 // Copying is not allowed.
1263 Arm_exidx_fixup(const Arm_exidx_fixup
&);
1264 Arm_exidx_fixup
& operator=(const Arm_exidx_fixup
&);
1266 // Type of EXIDX unwind entry.
1271 // EXIDX_CANTUNWIND.
1272 UT_EXIDX_CANTUNWIND
,
1279 // Process an EXIDX entry. We only care about the second word of the
1280 // entry. Return true if the entry can be deleted.
1282 process_exidx_entry(uint32_t second_word
);
1284 // Update the current section offset map during EXIDX section fix-up.
1285 // If there is no map, create one. INPUT_OFFSET is the offset of a
1286 // reference point, DELETED_BYTES is the number of deleted by in the
1287 // section so far. If DELETE_ENTRY is true, the reference point and
1288 // all offsets after the previous reference point are discarded.
1290 update_offset_map(section_offset_type input_offset
,
1291 section_size_type deleted_bytes
, bool delete_entry
);
1293 // EXIDX output section.
1294 Output_section
* exidx_output_section_
;
1295 // Unwind type of the last EXIDX entry processed.
1296 Unwind_type last_unwind_type_
;
1297 // Last seen inlined EXIDX entry.
1298 uint32_t last_inlined_entry_
;
1299 // Last processed EXIDX input section.
1300 const Arm_exidx_input_section
* last_input_section_
;
1301 // Section offset map created in process_exidx_section.
1302 Arm_exidx_section_offset_map
* section_offset_map_
;
1303 // Output section for the text section which is linked to the first exidx
1305 Output_section
* first_output_text_section_
;
1307 bool merge_exidx_entries_
;
1310 // Arm output section class. This is defined mainly to add a number of
1311 // stub generation methods.
1313 template<bool big_endian
>
1314 class Arm_output_section
: public Output_section
1317 typedef std::vector
<std::pair
<Relobj
*, unsigned int> > Text_section_list
;
1319 Arm_output_section(const char* name
, elfcpp::Elf_Word type
,
1320 elfcpp::Elf_Xword flags
)
1321 : Output_section(name
, type
, flags
)
1324 ~Arm_output_section()
1327 // Group input sections for stub generation.
1329 group_sections(section_size_type
, bool, Target_arm
<big_endian
>*);
1331 // Downcast a base pointer to an Arm_output_section pointer. This is
1332 // not type-safe but we only use Arm_output_section not the base class.
1333 static Arm_output_section
<big_endian
>*
1334 as_arm_output_section(Output_section
* os
)
1335 { return static_cast<Arm_output_section
<big_endian
>*>(os
); }
1337 // Append all input text sections in this into LIST.
1339 append_text_sections_to_list(Text_section_list
* list
);
1341 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1342 // is a list of text input sections sorted in ascending order of their
1343 // output addresses.
1345 fix_exidx_coverage(Layout
* layout
,
1346 const Text_section_list
& sorted_text_section
,
1347 Symbol_table
* symtab
,
1348 bool merge_exidx_entries
);
1352 typedef Output_section::Input_section Input_section
;
1353 typedef Output_section::Input_section_list Input_section_list
;
1355 // Create a stub group.
1356 void create_stub_group(Input_section_list::const_iterator
,
1357 Input_section_list::const_iterator
,
1358 Input_section_list::const_iterator
,
1359 Target_arm
<big_endian
>*,
1360 std::vector
<Output_relaxed_input_section
*>*);
1363 // Arm_exidx_input_section class. This represents an EXIDX input section.
1365 class Arm_exidx_input_section
1368 static const section_offset_type invalid_offset
=
1369 static_cast<section_offset_type
>(-1);
1371 Arm_exidx_input_section(Relobj
* relobj
, unsigned int shndx
,
1372 unsigned int link
, uint32_t size
, uint32_t addralign
)
1373 : relobj_(relobj
), shndx_(shndx
), link_(link
), size_(size
),
1374 addralign_(addralign
)
1377 ~Arm_exidx_input_section()
1380 // Accessors: This is a read-only class.
1382 // Return the object containing this EXIDX input section.
1385 { return this->relobj_
; }
1387 // Return the section index of this EXIDX input section.
1390 { return this->shndx_
; }
1392 // Return the section index of linked text section in the same object.
1395 { return this->link_
; }
1397 // Return size of the EXIDX input section.
1400 { return this->size_
; }
1402 // Reutnr address alignment of EXIDX input section.
1405 { return this->addralign_
; }
1408 // Object containing this.
1410 // Section index of this.
1411 unsigned int shndx_
;
1412 // text section linked to this in the same object.
1414 // Size of this. For ARM 32-bit is sufficient.
1416 // Address alignment of this. For ARM 32-bit is sufficient.
1417 uint32_t addralign_
;
1420 // Arm_relobj class.
1422 template<bool big_endian
>
1423 class Arm_relobj
: public Sized_relobj
<32, big_endian
>
1426 static const Arm_address invalid_address
= static_cast<Arm_address
>(-1);
1428 Arm_relobj(const std::string
& name
, Input_file
* input_file
, off_t offset
,
1429 const typename
elfcpp::Ehdr
<32, big_endian
>& ehdr
)
1430 : Sized_relobj
<32, big_endian
>(name
, input_file
, offset
, ehdr
),
1431 stub_tables_(), local_symbol_is_thumb_function_(),
1432 attributes_section_data_(NULL
), mapping_symbols_info_(),
1433 section_has_cortex_a8_workaround_(NULL
), exidx_section_map_(),
1434 output_local_symbol_count_needs_update_(false),
1435 merge_flags_and_attributes_(true)
1439 { delete this->attributes_section_data_
; }
1441 // Return the stub table of the SHNDX-th section if there is one.
1442 Stub_table
<big_endian
>*
1443 stub_table(unsigned int shndx
) const
1445 gold_assert(shndx
< this->stub_tables_
.size());
1446 return this->stub_tables_
[shndx
];
1449 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1451 set_stub_table(unsigned int shndx
, Stub_table
<big_endian
>* stub_table
)
1453 gold_assert(shndx
< this->stub_tables_
.size());
1454 this->stub_tables_
[shndx
] = stub_table
;
1457 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1458 // index. This is only valid after do_count_local_symbol is called.
1460 local_symbol_is_thumb_function(unsigned int r_sym
) const
1462 gold_assert(r_sym
< this->local_symbol_is_thumb_function_
.size());
1463 return this->local_symbol_is_thumb_function_
[r_sym
];
1466 // Scan all relocation sections for stub generation.
1468 scan_sections_for_stubs(Target_arm
<big_endian
>*, const Symbol_table
*,
1471 // Convert regular input section with index SHNDX to a relaxed section.
1473 convert_input_section_to_relaxed_section(unsigned shndx
)
1475 // The stubs have relocations and we need to process them after writing
1476 // out the stubs. So relocation now must follow section write.
1477 this->set_section_offset(shndx
, -1ULL);
1478 this->set_relocs_must_follow_section_writes();
1481 // Downcast a base pointer to an Arm_relobj pointer. This is
1482 // not type-safe but we only use Arm_relobj not the base class.
1483 static Arm_relobj
<big_endian
>*
1484 as_arm_relobj(Relobj
* relobj
)
1485 { return static_cast<Arm_relobj
<big_endian
>*>(relobj
); }
1487 // Processor-specific flags in ELF file header. This is valid only after
1490 processor_specific_flags() const
1491 { return this->processor_specific_flags_
; }
1493 // Attribute section data This is the contents of the .ARM.attribute section
1495 const Attributes_section_data
*
1496 attributes_section_data() const
1497 { return this->attributes_section_data_
; }
1499 // Mapping symbol location.
1500 typedef std::pair
<unsigned int, Arm_address
> Mapping_symbol_position
;
1502 // Functor for STL container.
1503 struct Mapping_symbol_position_less
1506 operator()(const Mapping_symbol_position
& p1
,
1507 const Mapping_symbol_position
& p2
) const
1509 return (p1
.first
< p2
.first
1510 || (p1
.first
== p2
.first
&& p1
.second
< p2
.second
));
1514 // We only care about the first character of a mapping symbol, so
1515 // we only store that instead of the whole symbol name.
1516 typedef std::map
<Mapping_symbol_position
, char,
1517 Mapping_symbol_position_less
> Mapping_symbols_info
;
1519 // Whether a section contains any Cortex-A8 workaround.
1521 section_has_cortex_a8_workaround(unsigned int shndx
) const
1523 return (this->section_has_cortex_a8_workaround_
!= NULL
1524 && (*this->section_has_cortex_a8_workaround_
)[shndx
]);
1527 // Mark a section that has Cortex-A8 workaround.
1529 mark_section_for_cortex_a8_workaround(unsigned int shndx
)
1531 if (this->section_has_cortex_a8_workaround_
== NULL
)
1532 this->section_has_cortex_a8_workaround_
=
1533 new std::vector
<bool>(this->shnum(), false);
1534 (*this->section_has_cortex_a8_workaround_
)[shndx
] = true;
1537 // Return the EXIDX section of an text section with index SHNDX or NULL
1538 // if the text section has no associated EXIDX section.
1539 const Arm_exidx_input_section
*
1540 exidx_input_section_by_link(unsigned int shndx
) const
1542 Exidx_section_map::const_iterator p
= this->exidx_section_map_
.find(shndx
);
1543 return ((p
!= this->exidx_section_map_
.end()
1544 && p
->second
->link() == shndx
)
1549 // Return the EXIDX section with index SHNDX or NULL if there is none.
1550 const Arm_exidx_input_section
*
1551 exidx_input_section_by_shndx(unsigned shndx
) const
1553 Exidx_section_map::const_iterator p
= this->exidx_section_map_
.find(shndx
);
1554 return ((p
!= this->exidx_section_map_
.end()
1555 && p
->second
->shndx() == shndx
)
1560 // Whether output local symbol count needs updating.
1562 output_local_symbol_count_needs_update() const
1563 { return this->output_local_symbol_count_needs_update_
; }
1565 // Set output_local_symbol_count_needs_update flag to be true.
1567 set_output_local_symbol_count_needs_update()
1568 { this->output_local_symbol_count_needs_update_
= true; }
1570 // Update output local symbol count at the end of relaxation.
1572 update_output_local_symbol_count();
1574 // Whether we want to merge processor-specific flags and attributes.
1576 merge_flags_and_attributes() const
1577 { return this->merge_flags_and_attributes_
; }
1580 // Post constructor setup.
1584 // Call parent's setup method.
1585 Sized_relobj
<32, big_endian
>::do_setup();
1587 // Initialize look-up tables.
1588 Stub_table_list
empty_stub_table_list(this->shnum(), NULL
);
1589 this->stub_tables_
.swap(empty_stub_table_list
);
1592 // Count the local symbols.
1594 do_count_local_symbols(Stringpool_template
<char>*,
1595 Stringpool_template
<char>*);
1598 do_relocate_sections(const Symbol_table
* symtab
, const Layout
* layout
,
1599 const unsigned char* pshdrs
,
1600 typename Sized_relobj
<32, big_endian
>::Views
* pivews
);
1602 // Read the symbol information.
1604 do_read_symbols(Read_symbols_data
* sd
);
1606 // Process relocs for garbage collection.
1608 do_gc_process_relocs(Symbol_table
*, Layout
*, Read_relocs_data
*);
1612 // Whether a section needs to be scanned for relocation stubs.
1614 section_needs_reloc_stub_scanning(const elfcpp::Shdr
<32, big_endian
>&,
1615 const Relobj::Output_sections
&,
1616 const Symbol_table
*, const unsigned char*);
1618 // Whether a section is a scannable text section.
1620 section_is_scannable(const elfcpp::Shdr
<32, big_endian
>&, unsigned int,
1621 const Output_section
*, const Symbol_table
*);
1623 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1625 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr
<32, big_endian
>&,
1626 unsigned int, Output_section
*,
1627 const Symbol_table
*);
1629 // Scan a section for the Cortex-A8 erratum.
1631 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr
<32, big_endian
>&,
1632 unsigned int, Output_section
*,
1633 Target_arm
<big_endian
>*);
1635 // Find the linked text section of an EXIDX section by looking at the
1636 // first reloction of the EXIDX section. PSHDR points to the section
1637 // headers of a relocation section and PSYMS points to the local symbols.
1638 // PSHNDX points to a location storing the text section index if found.
1639 // Return whether we can find the linked section.
1641 find_linked_text_section(const unsigned char* pshdr
,
1642 const unsigned char* psyms
, unsigned int* pshndx
);
1645 // Make a new Arm_exidx_input_section object for EXIDX section with
1646 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1647 // index of the linked text section.
1649 make_exidx_input_section(unsigned int shndx
,
1650 const elfcpp::Shdr
<32, big_endian
>& shdr
,
1651 unsigned int text_shndx
);
1653 // Return the output address of either a plain input section or a
1654 // relaxed input section. SHNDX is the section index.
1656 simple_input_section_output_address(unsigned int, Output_section
*);
1658 typedef std::vector
<Stub_table
<big_endian
>*> Stub_table_list
;
1659 typedef Unordered_map
<unsigned int, const Arm_exidx_input_section
*>
1662 // List of stub tables.
1663 Stub_table_list stub_tables_
;
1664 // Bit vector to tell if a local symbol is a thumb function or not.
1665 // This is only valid after do_count_local_symbol is called.
1666 std::vector
<bool> local_symbol_is_thumb_function_
;
1667 // processor-specific flags in ELF file header.
1668 elfcpp::Elf_Word processor_specific_flags_
;
1669 // Object attributes if there is an .ARM.attributes section or NULL.
1670 Attributes_section_data
* attributes_section_data_
;
1671 // Mapping symbols information.
1672 Mapping_symbols_info mapping_symbols_info_
;
1673 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1674 std::vector
<bool>* section_has_cortex_a8_workaround_
;
1675 // Map a text section to its associated .ARM.exidx section, if there is one.
1676 Exidx_section_map exidx_section_map_
;
1677 // Whether output local symbol count needs updating.
1678 bool output_local_symbol_count_needs_update_
;
1679 // Whether we merge processor flags and attributes of this object to
1681 bool merge_flags_and_attributes_
;
1684 // Arm_dynobj class.
1686 template<bool big_endian
>
1687 class Arm_dynobj
: public Sized_dynobj
<32, big_endian
>
1690 Arm_dynobj(const std::string
& name
, Input_file
* input_file
, off_t offset
,
1691 const elfcpp::Ehdr
<32, big_endian
>& ehdr
)
1692 : Sized_dynobj
<32, big_endian
>(name
, input_file
, offset
, ehdr
),
1693 processor_specific_flags_(0), attributes_section_data_(NULL
)
1697 { delete this->attributes_section_data_
; }
1699 // Downcast a base pointer to an Arm_relobj pointer. This is
1700 // not type-safe but we only use Arm_relobj not the base class.
1701 static Arm_dynobj
<big_endian
>*
1702 as_arm_dynobj(Dynobj
* dynobj
)
1703 { return static_cast<Arm_dynobj
<big_endian
>*>(dynobj
); }
1705 // Processor-specific flags in ELF file header. This is valid only after
1708 processor_specific_flags() const
1709 { return this->processor_specific_flags_
; }
1711 // Attributes section data.
1712 const Attributes_section_data
*
1713 attributes_section_data() const
1714 { return this->attributes_section_data_
; }
1717 // Read the symbol information.
1719 do_read_symbols(Read_symbols_data
* sd
);
1722 // processor-specific flags in ELF file header.
1723 elfcpp::Elf_Word processor_specific_flags_
;
1724 // Object attributes if there is an .ARM.attributes section or NULL.
1725 Attributes_section_data
* attributes_section_data_
;
1728 // Functor to read reloc addends during stub generation.
1730 template<int sh_type
, bool big_endian
>
1731 struct Stub_addend_reader
1733 // Return the addend for a relocation of a particular type. Depending
1734 // on whether this is a REL or RELA relocation, read the addend from a
1735 // view or from a Reloc object.
1736 elfcpp::Elf_types
<32>::Elf_Swxword
1738 unsigned int /* r_type */,
1739 const unsigned char* /* view */,
1740 const typename Reloc_types
<sh_type
,
1741 32, big_endian
>::Reloc
& /* reloc */) const;
1744 // Specialized Stub_addend_reader for SHT_REL type relocation sections.
1746 template<bool big_endian
>
1747 struct Stub_addend_reader
<elfcpp::SHT_REL
, big_endian
>
1749 elfcpp::Elf_types
<32>::Elf_Swxword
1752 const unsigned char*,
1753 const typename Reloc_types
<elfcpp::SHT_REL
, 32, big_endian
>::Reloc
&) const;
1756 // Specialized Stub_addend_reader for RELA type relocation sections.
1757 // We currently do not handle RELA type relocation sections but it is trivial
1758 // to implement the addend reader. This is provided for completeness and to
1759 // make it easier to add support for RELA relocation sections in the future.
1761 template<bool big_endian
>
1762 struct Stub_addend_reader
<elfcpp::SHT_RELA
, big_endian
>
1764 elfcpp::Elf_types
<32>::Elf_Swxword
1767 const unsigned char*,
1768 const typename Reloc_types
<elfcpp::SHT_RELA
, 32,
1769 big_endian
>::Reloc
& reloc
) const
1770 { return reloc
.get_r_addend(); }
1773 // Cortex_a8_reloc class. We keep record of relocation that may need
1774 // the Cortex-A8 erratum workaround.
1776 class Cortex_a8_reloc
1779 Cortex_a8_reloc(Reloc_stub
* reloc_stub
, unsigned r_type
,
1780 Arm_address destination
)
1781 : reloc_stub_(reloc_stub
), r_type_(r_type
), destination_(destination
)
1787 // Accessors: This is a read-only class.
1789 // Return the relocation stub associated with this relocation if there is
1793 { return this->reloc_stub_
; }
1795 // Return the relocation type.
1798 { return this->r_type_
; }
1800 // Return the destination address of the relocation. LSB stores the THUMB
1804 { return this->destination_
; }
1807 // Associated relocation stub if there is one, or NULL.
1808 const Reloc_stub
* reloc_stub_
;
1810 unsigned int r_type_
;
1811 // Destination address of this relocation. LSB is used to distinguish
1813 Arm_address destination_
;
1816 // Arm_output_data_got class. We derive this from Output_data_got to add
1817 // extra methods to handle TLS relocations in a static link.
1819 template<bool big_endian
>
1820 class Arm_output_data_got
: public Output_data_got
<32, big_endian
>
1823 Arm_output_data_got(Symbol_table
* symtab
, Layout
* layout
)
1824 : Output_data_got
<32, big_endian
>(), symbol_table_(symtab
), layout_(layout
)
1827 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1828 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1829 // applied in a static link.
1831 add_static_reloc(unsigned int got_offset
, unsigned int r_type
, Symbol
* gsym
)
1832 { this->static_relocs_
.push_back(Static_reloc(got_offset
, r_type
, gsym
)); }
1834 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1835 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1836 // relocation that needs to be applied in a static link.
1838 add_static_reloc(unsigned int got_offset
, unsigned int r_type
,
1839 Sized_relobj
<32, big_endian
>* relobj
, unsigned int index
)
1841 this->static_relocs_
.push_back(Static_reloc(got_offset
, r_type
, relobj
,
1845 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1846 // The first one is initialized to be 1, which is the module index for
1847 // the main executable and the second one 0. A reloc of the type
1848 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1849 // be applied by gold. GSYM is a global symbol.
1851 add_tls_gd32_with_static_reloc(unsigned int got_type
, Symbol
* gsym
);
1853 // Same as the above but for a local symbol in OBJECT with INDEX.
1855 add_tls_gd32_with_static_reloc(unsigned int got_type
,
1856 Sized_relobj
<32, big_endian
>* object
,
1857 unsigned int index
);
1860 // Write out the GOT table.
1862 do_write(Output_file
*);
1865 // This class represent dynamic relocations that need to be applied by
1866 // gold because we are using TLS relocations in a static link.
1870 Static_reloc(unsigned int got_offset
, unsigned int r_type
, Symbol
* gsym
)
1871 : got_offset_(got_offset
), r_type_(r_type
), symbol_is_global_(true)
1872 { this->u_
.global
.symbol
= gsym
; }
1874 Static_reloc(unsigned int got_offset
, unsigned int r_type
,
1875 Sized_relobj
<32, big_endian
>* relobj
, unsigned int index
)
1876 : got_offset_(got_offset
), r_type_(r_type
), symbol_is_global_(false)
1878 this->u_
.local
.relobj
= relobj
;
1879 this->u_
.local
.index
= index
;
1882 // Return the GOT offset.
1885 { return this->got_offset_
; }
1890 { return this->r_type_
; }
1892 // Whether the symbol is global or not.
1894 symbol_is_global() const
1895 { return this->symbol_is_global_
; }
1897 // For a relocation against a global symbol, the global symbol.
1901 gold_assert(this->symbol_is_global_
);
1902 return this->u_
.global
.symbol
;
1905 // For a relocation against a local symbol, the defining object.
1906 Sized_relobj
<32, big_endian
>*
1909 gold_assert(!this->symbol_is_global_
);
1910 return this->u_
.local
.relobj
;
1913 // For a relocation against a local symbol, the local symbol index.
1917 gold_assert(!this->symbol_is_global_
);
1918 return this->u_
.local
.index
;
1922 // GOT offset of the entry to which this relocation is applied.
1923 unsigned int got_offset_
;
1924 // Type of relocation.
1925 unsigned int r_type_
;
1926 // Whether this relocation is against a global symbol.
1927 bool symbol_is_global_
;
1928 // A global or local symbol.
1933 // For a global symbol, the symbol itself.
1938 // For a local symbol, the object defining object.
1939 Sized_relobj
<32, big_endian
>* relobj
;
1940 // For a local symbol, the symbol index.
1946 // Symbol table of the output object.
1947 Symbol_table
* symbol_table_
;
1948 // Layout of the output object.
1950 // Static relocs to be applied to the GOT.
1951 std::vector
<Static_reloc
> static_relocs_
;
1954 // Utilities for manipulating integers of up to 32-bits
1958 // Sign extend an n-bit unsigned integer stored in an uint32_t into
1959 // an int32_t. NO_BITS must be between 1 to 32.
1960 template<int no_bits
>
1961 static inline int32_t
1962 sign_extend(uint32_t bits
)
1964 gold_assert(no_bits
>= 0 && no_bits
<= 32);
1966 return static_cast<int32_t>(bits
);
1967 uint32_t mask
= (~((uint32_t) 0)) >> (32 - no_bits
);
1969 uint32_t top_bit
= 1U << (no_bits
- 1);
1970 int32_t as_signed
= static_cast<int32_t>(bits
);
1971 return (bits
& top_bit
) ? as_signed
+ (-top_bit
* 2) : as_signed
;
1974 // Detects overflow of an NO_BITS integer stored in a uint32_t.
1975 template<int no_bits
>
1977 has_overflow(uint32_t bits
)
1979 gold_assert(no_bits
>= 0 && no_bits
<= 32);
1982 int32_t max
= (1 << (no_bits
- 1)) - 1;
1983 int32_t min
= -(1 << (no_bits
- 1));
1984 int32_t as_signed
= static_cast<int32_t>(bits
);
1985 return as_signed
> max
|| as_signed
< min
;
1988 // Detects overflow of an NO_BITS integer stored in a uint32_t when it
1989 // fits in the given number of bits as either a signed or unsigned value.
1990 // For example, has_signed_unsigned_overflow<8> would check
1991 // -128 <= bits <= 255
1992 template<int no_bits
>
1994 has_signed_unsigned_overflow(uint32_t bits
)
1996 gold_assert(no_bits
>= 2 && no_bits
<= 32);
1999 int32_t max
= static_cast<int32_t>((1U << no_bits
) - 1);
2000 int32_t min
= -(1 << (no_bits
- 1));
2001 int32_t as_signed
= static_cast<int32_t>(bits
);
2002 return as_signed
> max
|| as_signed
< min
;
2005 // Select bits from A and B using bits in MASK. For each n in [0..31],
2006 // the n-th bit in the result is chosen from the n-th bits of A and B.
2007 // A zero selects A and a one selects B.
2008 static inline uint32_t
2009 bit_select(uint32_t a
, uint32_t b
, uint32_t mask
)
2010 { return (a
& ~mask
) | (b
& mask
); }
2013 template<bool big_endian
>
2014 class Target_arm
: public Sized_target
<32, big_endian
>
2017 typedef Output_data_reloc
<elfcpp::SHT_REL
, true, 32, big_endian
>
2020 // When were are relocating a stub, we pass this as the relocation number.
2021 static const size_t fake_relnum_for_stubs
= static_cast<size_t>(-1);
2024 : Sized_target
<32, big_endian
>(&arm_info
),
2025 got_(NULL
), plt_(NULL
), got_plt_(NULL
), rel_dyn_(NULL
),
2026 copy_relocs_(elfcpp::R_ARM_COPY
), dynbss_(NULL
),
2027 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2028 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2029 may_use_blx_(false), should_force_pic_veneer_(false),
2030 arm_input_section_map_(), attributes_section_data_(NULL
),
2031 fix_cortex_a8_(false), cortex_a8_relocs_info_()
2034 // Whether we can use BLX.
2037 { return this->may_use_blx_
; }
2039 // Set use-BLX flag.
2041 set_may_use_blx(bool value
)
2042 { this->may_use_blx_
= value
; }
2044 // Whether we force PCI branch veneers.
2046 should_force_pic_veneer() const
2047 { return this->should_force_pic_veneer_
; }
2049 // Set PIC veneer flag.
2051 set_should_force_pic_veneer(bool value
)
2052 { this->should_force_pic_veneer_
= value
; }
2054 // Whether we use THUMB-2 instructions.
2056 using_thumb2() const
2058 Object_attribute
* attr
=
2059 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch
);
2060 int arch
= attr
->int_value();
2061 return arch
== elfcpp::TAG_CPU_ARCH_V6T2
|| arch
>= elfcpp::TAG_CPU_ARCH_V7
;
2064 // Whether we use THUMB/THUMB-2 instructions only.
2066 using_thumb_only() const
2068 Object_attribute
* attr
=
2069 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch
);
2071 if (attr
->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2072 || attr
->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M
)
2074 if (attr
->int_value() != elfcpp::TAG_CPU_ARCH_V7
2075 && attr
->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M
)
2077 attr
= this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile
);
2078 return attr
->int_value() == 'M';
2081 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2083 may_use_arm_nop() const
2085 Object_attribute
* attr
=
2086 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch
);
2087 int arch
= attr
->int_value();
2088 return (arch
== elfcpp::TAG_CPU_ARCH_V6T2
2089 || arch
== elfcpp::TAG_CPU_ARCH_V6K
2090 || arch
== elfcpp::TAG_CPU_ARCH_V7
2091 || arch
== elfcpp::TAG_CPU_ARCH_V7E_M
);
2094 // Whether we have THUMB-2 NOP.W instruction.
2096 may_use_thumb2_nop() const
2098 Object_attribute
* attr
=
2099 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch
);
2100 int arch
= attr
->int_value();
2101 return (arch
== elfcpp::TAG_CPU_ARCH_V6T2
2102 || arch
== elfcpp::TAG_CPU_ARCH_V7
2103 || arch
== elfcpp::TAG_CPU_ARCH_V7E_M
);
2106 // Process the relocations to determine unreferenced sections for
2107 // garbage collection.
2109 gc_process_relocs(Symbol_table
* symtab
,
2111 Sized_relobj
<32, big_endian
>* object
,
2112 unsigned int data_shndx
,
2113 unsigned int sh_type
,
2114 const unsigned char* prelocs
,
2116 Output_section
* output_section
,
2117 bool needs_special_offset_handling
,
2118 size_t local_symbol_count
,
2119 const unsigned char* plocal_symbols
);
2121 // Scan the relocations to look for symbol adjustments.
2123 scan_relocs(Symbol_table
* symtab
,
2125 Sized_relobj
<32, big_endian
>* object
,
2126 unsigned int data_shndx
,
2127 unsigned int sh_type
,
2128 const unsigned char* prelocs
,
2130 Output_section
* output_section
,
2131 bool needs_special_offset_handling
,
2132 size_t local_symbol_count
,
2133 const unsigned char* plocal_symbols
);
2135 // Finalize the sections.
2137 do_finalize_sections(Layout
*, const Input_objects
*, Symbol_table
*);
2139 // Return the value to use for a dynamic symbol which requires special
2142 do_dynsym_value(const Symbol
*) const;
2144 // Relocate a section.
2146 relocate_section(const Relocate_info
<32, big_endian
>*,
2147 unsigned int sh_type
,
2148 const unsigned char* prelocs
,
2150 Output_section
* output_section
,
2151 bool needs_special_offset_handling
,
2152 unsigned char* view
,
2153 Arm_address view_address
,
2154 section_size_type view_size
,
2155 const Reloc_symbol_changes
*);
2157 // Scan the relocs during a relocatable link.
2159 scan_relocatable_relocs(Symbol_table
* symtab
,
2161 Sized_relobj
<32, big_endian
>* object
,
2162 unsigned int data_shndx
,
2163 unsigned int sh_type
,
2164 const unsigned char* prelocs
,
2166 Output_section
* output_section
,
2167 bool needs_special_offset_handling
,
2168 size_t local_symbol_count
,
2169 const unsigned char* plocal_symbols
,
2170 Relocatable_relocs
*);
2172 // Relocate a section during a relocatable link.
2174 relocate_for_relocatable(const Relocate_info
<32, big_endian
>*,
2175 unsigned int sh_type
,
2176 const unsigned char* prelocs
,
2178 Output_section
* output_section
,
2179 off_t offset_in_output_section
,
2180 const Relocatable_relocs
*,
2181 unsigned char* view
,
2182 Arm_address view_address
,
2183 section_size_type view_size
,
2184 unsigned char* reloc_view
,
2185 section_size_type reloc_view_size
);
2187 // Return whether SYM is defined by the ABI.
2189 do_is_defined_by_abi(Symbol
* sym
) const
2190 { return strcmp(sym
->name(), "__tls_get_addr") == 0; }
2192 // Return whether there is a GOT section.
2194 has_got_section() const
2195 { return this->got_
!= NULL
; }
2197 // Return the size of the GOT section.
2201 gold_assert(this->got_
!= NULL
);
2202 return this->got_
->data_size();
2205 // Map platform-specific reloc types
2207 get_real_reloc_type (unsigned int r_type
);
2210 // Methods to support stub-generations.
2213 // Return the stub factory
2215 stub_factory() const
2216 { return this->stub_factory_
; }
2218 // Make a new Arm_input_section object.
2219 Arm_input_section
<big_endian
>*
2220 new_arm_input_section(Relobj
*, unsigned int);
2222 // Find the Arm_input_section object corresponding to the SHNDX-th input
2223 // section of RELOBJ.
2224 Arm_input_section
<big_endian
>*
2225 find_arm_input_section(Relobj
* relobj
, unsigned int shndx
) const;
2227 // Make a new Stub_table
2228 Stub_table
<big_endian
>*
2229 new_stub_table(Arm_input_section
<big_endian
>*);
2231 // Scan a section for stub generation.
2233 scan_section_for_stubs(const Relocate_info
<32, big_endian
>*, unsigned int,
2234 const unsigned char*, size_t, Output_section
*,
2235 bool, const unsigned char*, Arm_address
,
2240 relocate_stub(Stub
*, const Relocate_info
<32, big_endian
>*,
2241 Output_section
*, unsigned char*, Arm_address
,
2244 // Get the default ARM target.
2245 static Target_arm
<big_endian
>*
2248 gold_assert(parameters
->target().machine_code() == elfcpp::EM_ARM
2249 && parameters
->target().is_big_endian() == big_endian
);
2250 return static_cast<Target_arm
<big_endian
>*>(
2251 parameters
->sized_target
<32, big_endian
>());
2254 // Whether NAME belongs to a mapping symbol.
2256 is_mapping_symbol_name(const char* name
)
2260 && (name
[1] == 'a' || name
[1] == 't' || name
[1] == 'd')
2261 && (name
[2] == '\0' || name
[2] == '.'));
2264 // Whether we work around the Cortex-A8 erratum.
2266 fix_cortex_a8() const
2267 { return this->fix_cortex_a8_
; }
2269 // Whether we merge exidx entries in debuginfo.
2271 merge_exidx_entries() const
2272 { return parameters
->options().merge_exidx_entries(); }
2274 // Whether we fix R_ARM_V4BX relocation.
2276 // 1 - replace with MOV instruction (armv4 target)
2277 // 2 - make interworking veneer (>= armv4t targets only)
2278 General_options::Fix_v4bx
2280 { return parameters
->options().fix_v4bx(); }
2282 // Scan a span of THUMB code section for Cortex-A8 erratum.
2284 scan_span_for_cortex_a8_erratum(Arm_relobj
<big_endian
>*, unsigned int,
2285 section_size_type
, section_size_type
,
2286 const unsigned char*, Arm_address
);
2288 // Apply Cortex-A8 workaround to a branch.
2290 apply_cortex_a8_workaround(const Cortex_a8_stub
*, Arm_address
,
2291 unsigned char*, Arm_address
);
2294 // Make an ELF object.
2296 do_make_elf_object(const std::string
&, Input_file
*, off_t
,
2297 const elfcpp::Ehdr
<32, big_endian
>& ehdr
);
2300 do_make_elf_object(const std::string
&, Input_file
*, off_t
,
2301 const elfcpp::Ehdr
<32, !big_endian
>&)
2302 { gold_unreachable(); }
2305 do_make_elf_object(const std::string
&, Input_file
*, off_t
,
2306 const elfcpp::Ehdr
<64, false>&)
2307 { gold_unreachable(); }
2310 do_make_elf_object(const std::string
&, Input_file
*, off_t
,
2311 const elfcpp::Ehdr
<64, true>&)
2312 { gold_unreachable(); }
2314 // Make an output section.
2316 do_make_output_section(const char* name
, elfcpp::Elf_Word type
,
2317 elfcpp::Elf_Xword flags
)
2318 { return new Arm_output_section
<big_endian
>(name
, type
, flags
); }
2321 do_adjust_elf_header(unsigned char* view
, int len
) const;
2323 // We only need to generate stubs, and hence perform relaxation if we are
2324 // not doing relocatable linking.
2326 do_may_relax() const
2327 { return !parameters
->options().relocatable(); }
2330 do_relax(int, const Input_objects
*, Symbol_table
*, Layout
*);
2332 // Determine whether an object attribute tag takes an integer, a
2335 do_attribute_arg_type(int tag
) const;
2337 // Reorder tags during output.
2339 do_attributes_order(int num
) const;
2341 // This is called when the target is selected as the default.
2343 do_select_as_default_target()
2345 // No locking is required since there should only be one default target.
2346 // We cannot have both the big-endian and little-endian ARM targets
2348 gold_assert(arm_reloc_property_table
== NULL
);
2349 arm_reloc_property_table
= new Arm_reloc_property_table();
2353 // The class which scans relocations.
2358 : issued_non_pic_error_(false)
2362 local(Symbol_table
* symtab
, Layout
* layout
, Target_arm
* target
,
2363 Sized_relobj
<32, big_endian
>* object
,
2364 unsigned int data_shndx
,
2365 Output_section
* output_section
,
2366 const elfcpp::Rel
<32, big_endian
>& reloc
, unsigned int r_type
,
2367 const elfcpp::Sym
<32, big_endian
>& lsym
);
2370 global(Symbol_table
* symtab
, Layout
* layout
, Target_arm
* target
,
2371 Sized_relobj
<32, big_endian
>* object
,
2372 unsigned int data_shndx
,
2373 Output_section
* output_section
,
2374 const elfcpp::Rel
<32, big_endian
>& reloc
, unsigned int r_type
,
2378 local_reloc_may_be_function_pointer(Symbol_table
* , Layout
* , Target_arm
* ,
2379 Sized_relobj
<32, big_endian
>* ,
2382 const elfcpp::Rel
<32, big_endian
>& ,
2384 const elfcpp::Sym
<32, big_endian
>&)
2388 global_reloc_may_be_function_pointer(Symbol_table
* , Layout
* , Target_arm
* ,
2389 Sized_relobj
<32, big_endian
>* ,
2392 const elfcpp::Rel
<32, big_endian
>& ,
2393 unsigned int , Symbol
*)
2398 unsupported_reloc_local(Sized_relobj
<32, big_endian
>*,
2399 unsigned int r_type
);
2402 unsupported_reloc_global(Sized_relobj
<32, big_endian
>*,
2403 unsigned int r_type
, Symbol
*);
2406 check_non_pic(Relobj
*, unsigned int r_type
);
2408 // Almost identical to Symbol::needs_plt_entry except that it also
2409 // handles STT_ARM_TFUNC.
2411 symbol_needs_plt_entry(const Symbol
* sym
)
2413 // An undefined symbol from an executable does not need a PLT entry.
2414 if (sym
->is_undefined() && !parameters
->options().shared())
2417 return (!parameters
->doing_static_link()
2418 && (sym
->type() == elfcpp::STT_FUNC
2419 || sym
->type() == elfcpp::STT_ARM_TFUNC
)
2420 && (sym
->is_from_dynobj()
2421 || sym
->is_undefined()
2422 || sym
->is_preemptible()));
2425 // Whether we have issued an error about a non-PIC compilation.
2426 bool issued_non_pic_error_
;
2429 // The class which implements relocation.
2439 // Return whether the static relocation needs to be applied.
2441 should_apply_static_reloc(const Sized_symbol
<32>* gsym
,
2444 Output_section
* output_section
);
2446 // Do a relocation. Return false if the caller should not issue
2447 // any warnings about this relocation.
2449 relocate(const Relocate_info
<32, big_endian
>*, Target_arm
*,
2450 Output_section
*, size_t relnum
,
2451 const elfcpp::Rel
<32, big_endian
>&,
2452 unsigned int r_type
, const Sized_symbol
<32>*,
2453 const Symbol_value
<32>*,
2454 unsigned char*, Arm_address
,
2457 // Return whether we want to pass flag NON_PIC_REF for this
2458 // reloc. This means the relocation type accesses a symbol not via
2461 reloc_is_non_pic (unsigned int r_type
)
2465 // These relocation types reference GOT or PLT entries explicitly.
2466 case elfcpp::R_ARM_GOT_BREL
:
2467 case elfcpp::R_ARM_GOT_ABS
:
2468 case elfcpp::R_ARM_GOT_PREL
:
2469 case elfcpp::R_ARM_GOT_BREL12
:
2470 case elfcpp::R_ARM_PLT32_ABS
:
2471 case elfcpp::R_ARM_TLS_GD32
:
2472 case elfcpp::R_ARM_TLS_LDM32
:
2473 case elfcpp::R_ARM_TLS_IE32
:
2474 case elfcpp::R_ARM_TLS_IE12GP
:
2476 // These relocate types may use PLT entries.
2477 case elfcpp::R_ARM_CALL
:
2478 case elfcpp::R_ARM_THM_CALL
:
2479 case elfcpp::R_ARM_JUMP24
:
2480 case elfcpp::R_ARM_THM_JUMP24
:
2481 case elfcpp::R_ARM_THM_JUMP19
:
2482 case elfcpp::R_ARM_PLT32
:
2483 case elfcpp::R_ARM_THM_XPC22
:
2484 case elfcpp::R_ARM_PREL31
:
2485 case elfcpp::R_ARM_SBREL31
:
2494 // Do a TLS relocation.
2495 inline typename Arm_relocate_functions
<big_endian
>::Status
2496 relocate_tls(const Relocate_info
<32, big_endian
>*, Target_arm
<big_endian
>*,
2497 size_t, const elfcpp::Rel
<32, big_endian
>&, unsigned int,
2498 const Sized_symbol
<32>*, const Symbol_value
<32>*,
2499 unsigned char*, elfcpp::Elf_types
<32>::Elf_Addr
,
2504 // A class which returns the size required for a relocation type,
2505 // used while scanning relocs during a relocatable link.
2506 class Relocatable_size_for_reloc
2510 get_size_for_reloc(unsigned int, Relobj
*);
2513 // Adjust TLS relocation type based on the options and whether this
2514 // is a local symbol.
2515 static tls::Tls_optimization
2516 optimize_tls_reloc(bool is_final
, int r_type
);
2518 // Get the GOT section, creating it if necessary.
2519 Arm_output_data_got
<big_endian
>*
2520 got_section(Symbol_table
*, Layout
*);
2522 // Get the GOT PLT section.
2524 got_plt_section() const
2526 gold_assert(this->got_plt_
!= NULL
);
2527 return this->got_plt_
;
2530 // Create a PLT entry for a global symbol.
2532 make_plt_entry(Symbol_table
*, Layout
*, Symbol
*);
2534 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2536 define_tls_base_symbol(Symbol_table
*, Layout
*);
2538 // Create a GOT entry for the TLS module index.
2540 got_mod_index_entry(Symbol_table
* symtab
, Layout
* layout
,
2541 Sized_relobj
<32, big_endian
>* object
);
2543 // Get the PLT section.
2544 const Output_data_plt_arm
<big_endian
>*
2547 gold_assert(this->plt_
!= NULL
);
2551 // Get the dynamic reloc section, creating it if necessary.
2553 rel_dyn_section(Layout
*);
2555 // Get the section to use for TLS_DESC relocations.
2557 rel_tls_desc_section(Layout
*) const;
2559 // Return true if the symbol may need a COPY relocation.
2560 // References from an executable object to non-function symbols
2561 // defined in a dynamic object may need a COPY relocation.
2563 may_need_copy_reloc(Symbol
* gsym
)
2565 return (gsym
->type() != elfcpp::STT_ARM_TFUNC
2566 && gsym
->may_need_copy_reloc());
2569 // Add a potential copy relocation.
2571 copy_reloc(Symbol_table
* symtab
, Layout
* layout
,
2572 Sized_relobj
<32, big_endian
>* object
,
2573 unsigned int shndx
, Output_section
* output_section
,
2574 Symbol
* sym
, const elfcpp::Rel
<32, big_endian
>& reloc
)
2576 this->copy_relocs_
.copy_reloc(symtab
, layout
,
2577 symtab
->get_sized_symbol
<32>(sym
),
2578 object
, shndx
, output_section
, reloc
,
2579 this->rel_dyn_section(layout
));
2582 // Whether two EABI versions are compatible.
2584 are_eabi_versions_compatible(elfcpp::Elf_Word v1
, elfcpp::Elf_Word v2
);
2586 // Merge processor-specific flags from input object and those in the ELF
2587 // header of the output.
2589 merge_processor_specific_flags(const std::string
&, elfcpp::Elf_Word
);
2591 // Get the secondary compatible architecture.
2593 get_secondary_compatible_arch(const Attributes_section_data
*);
2595 // Set the secondary compatible architecture.
2597 set_secondary_compatible_arch(Attributes_section_data
*, int);
2600 tag_cpu_arch_combine(const char*, int, int*, int, int);
2602 // Helper to print AEABI enum tag value.
2604 aeabi_enum_name(unsigned int);
2606 // Return string value for TAG_CPU_name.
2608 tag_cpu_name_value(unsigned int);
2610 // Merge object attributes from input object and those in the output.
2612 merge_object_attributes(const char*, const Attributes_section_data
*);
2614 // Helper to get an AEABI object attribute
2616 get_aeabi_object_attribute(int tag
) const
2618 Attributes_section_data
* pasd
= this->attributes_section_data_
;
2619 gold_assert(pasd
!= NULL
);
2620 Object_attribute
* attr
=
2621 pasd
->get_attribute(Object_attribute::OBJ_ATTR_PROC
, tag
);
2622 gold_assert(attr
!= NULL
);
2627 // Methods to support stub-generations.
2630 // Group input sections for stub generation.
2632 group_sections(Layout
*, section_size_type
, bool);
2634 // Scan a relocation for stub generation.
2636 scan_reloc_for_stub(const Relocate_info
<32, big_endian
>*, unsigned int,
2637 const Sized_symbol
<32>*, unsigned int,
2638 const Symbol_value
<32>*,
2639 elfcpp::Elf_types
<32>::Elf_Swxword
, Arm_address
);
2641 // Scan a relocation section for stub.
2642 template<int sh_type
>
2644 scan_reloc_section_for_stubs(
2645 const Relocate_info
<32, big_endian
>* relinfo
,
2646 const unsigned char* prelocs
,
2648 Output_section
* output_section
,
2649 bool needs_special_offset_handling
,
2650 const unsigned char* view
,
2651 elfcpp::Elf_types
<32>::Elf_Addr view_address
,
2654 // Fix .ARM.exidx section coverage.
2656 fix_exidx_coverage(Layout
*, Arm_output_section
<big_endian
>*, Symbol_table
*);
2658 // Functors for STL set.
2659 struct output_section_address_less_than
2662 operator()(const Output_section
* s1
, const Output_section
* s2
) const
2663 { return s1
->address() < s2
->address(); }
2666 // Information about this specific target which we pass to the
2667 // general Target structure.
2668 static const Target::Target_info arm_info
;
2670 // The types of GOT entries needed for this platform.
2673 GOT_TYPE_STANDARD
= 0, // GOT entry for a regular symbol
2674 GOT_TYPE_TLS_NOFFSET
= 1, // GOT entry for negative TLS offset
2675 GOT_TYPE_TLS_OFFSET
= 2, // GOT entry for positive TLS offset
2676 GOT_TYPE_TLS_PAIR
= 3, // GOT entry for TLS module/offset pair
2677 GOT_TYPE_TLS_DESC
= 4 // GOT entry for TLS_DESC pair
2680 typedef typename
std::vector
<Stub_table
<big_endian
>*> Stub_table_list
;
2682 // Map input section to Arm_input_section.
2683 typedef Unordered_map
<Section_id
,
2684 Arm_input_section
<big_endian
>*,
2686 Arm_input_section_map
;
2688 // Map output addresses to relocs for Cortex-A8 erratum.
2689 typedef Unordered_map
<Arm_address
, const Cortex_a8_reloc
*>
2690 Cortex_a8_relocs_info
;
2693 Arm_output_data_got
<big_endian
>* got_
;
2695 Output_data_plt_arm
<big_endian
>* plt_
;
2696 // The GOT PLT section.
2697 Output_data_space
* got_plt_
;
2698 // The dynamic reloc section.
2699 Reloc_section
* rel_dyn_
;
2700 // Relocs saved to avoid a COPY reloc.
2701 Copy_relocs
<elfcpp::SHT_REL
, 32, big_endian
> copy_relocs_
;
2702 // Space for variables copied with a COPY reloc.
2703 Output_data_space
* dynbss_
;
2704 // Offset of the GOT entry for the TLS module index.
2705 unsigned int got_mod_index_offset_
;
2706 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2707 bool tls_base_symbol_defined_
;
2708 // Vector of Stub_tables created.
2709 Stub_table_list stub_tables_
;
2711 const Stub_factory
&stub_factory_
;
2712 // Whether we can use BLX.
2714 // Whether we force PIC branch veneers.
2715 bool should_force_pic_veneer_
;
2716 // Map for locating Arm_input_sections.
2717 Arm_input_section_map arm_input_section_map_
;
2718 // Attributes section data in output.
2719 Attributes_section_data
* attributes_section_data_
;
2720 // Whether we want to fix code for Cortex-A8 erratum.
2721 bool fix_cortex_a8_
;
2722 // Map addresses to relocs for Cortex-A8 erratum.
2723 Cortex_a8_relocs_info cortex_a8_relocs_info_
;
2726 template<bool big_endian
>
2727 const Target::Target_info Target_arm
<big_endian
>::arm_info
=
2730 big_endian
, // is_big_endian
2731 elfcpp::EM_ARM
, // machine_code
2732 false, // has_make_symbol
2733 false, // has_resolve
2734 false, // has_code_fill
2735 true, // is_default_stack_executable
2737 "/usr/lib/libc.so.1", // dynamic_linker
2738 0x8000, // default_text_segment_address
2739 0x1000, // abi_pagesize (overridable by -z max-page-size)
2740 0x1000, // common_pagesize (overridable by -z common-page-size)
2741 elfcpp::SHN_UNDEF
, // small_common_shndx
2742 elfcpp::SHN_UNDEF
, // large_common_shndx
2743 0, // small_common_section_flags
2744 0, // large_common_section_flags
2745 ".ARM.attributes", // attributes_section
2746 "aeabi" // attributes_vendor
2749 // Arm relocate functions class
2752 template<bool big_endian
>
2753 class Arm_relocate_functions
: public Relocate_functions
<32, big_endian
>
2758 STATUS_OKAY
, // No error during relocation.
2759 STATUS_OVERFLOW
, // Relocation oveflow.
2760 STATUS_BAD_RELOC
// Relocation cannot be applied.
2764 typedef Relocate_functions
<32, big_endian
> Base
;
2765 typedef Arm_relocate_functions
<big_endian
> This
;
2767 // Encoding of imm16 argument for movt and movw ARM instructions
2770 // imm16 := imm4 | imm12
2772 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2773 // +-------+---------------+-------+-------+-----------------------+
2774 // | | |imm4 | |imm12 |
2775 // +-------+---------------+-------+-------+-----------------------+
2777 // Extract the relocation addend from VAL based on the ARM
2778 // instruction encoding described above.
2779 static inline typename
elfcpp::Swap
<32, big_endian
>::Valtype
2780 extract_arm_movw_movt_addend(
2781 typename
elfcpp::Swap
<32, big_endian
>::Valtype val
)
2783 // According to the Elf ABI for ARM Architecture the immediate
2784 // field is sign-extended to form the addend.
2785 return utils::sign_extend
<16>(((val
>> 4) & 0xf000) | (val
& 0xfff));
2788 // Insert X into VAL based on the ARM instruction encoding described
2790 static inline typename
elfcpp::Swap
<32, big_endian
>::Valtype
2791 insert_val_arm_movw_movt(
2792 typename
elfcpp::Swap
<32, big_endian
>::Valtype val
,
2793 typename
elfcpp::Swap
<32, big_endian
>::Valtype x
)
2797 val
|= (x
& 0xf000) << 4;
2801 // Encoding of imm16 argument for movt and movw Thumb2 instructions
2804 // imm16 := imm4 | i | imm3 | imm8
2806 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2807 // +---------+-+-----------+-------++-+-----+-------+---------------+
2808 // | |i| |imm4 || |imm3 | |imm8 |
2809 // +---------+-+-----------+-------++-+-----+-------+---------------+
2811 // Extract the relocation addend from VAL based on the Thumb2
2812 // instruction encoding described above.
2813 static inline typename
elfcpp::Swap
<32, big_endian
>::Valtype
2814 extract_thumb_movw_movt_addend(
2815 typename
elfcpp::Swap
<32, big_endian
>::Valtype val
)
2817 // According to the Elf ABI for ARM Architecture the immediate
2818 // field is sign-extended to form the addend.
2819 return utils::sign_extend
<16>(((val
>> 4) & 0xf000)
2820 | ((val
>> 15) & 0x0800)
2821 | ((val
>> 4) & 0x0700)
2825 // Insert X into VAL based on the Thumb2 instruction encoding
2827 static inline typename
elfcpp::Swap
<32, big_endian
>::Valtype
2828 insert_val_thumb_movw_movt(
2829 typename
elfcpp::Swap
<32, big_endian
>::Valtype val
,
2830 typename
elfcpp::Swap
<32, big_endian
>::Valtype x
)
2833 val
|= (x
& 0xf000) << 4;
2834 val
|= (x
& 0x0800) << 15;
2835 val
|= (x
& 0x0700) << 4;
2836 val
|= (x
& 0x00ff);
2840 // Calculate the smallest constant Kn for the specified residual.
2841 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2843 calc_grp_kn(typename
elfcpp::Swap
<32, big_endian
>::Valtype residual
)
2849 // Determine the most significant bit in the residual and
2850 // align the resulting value to a 2-bit boundary.
2851 for (msb
= 30; (msb
>= 0) && !(residual
& (3 << msb
)); msb
-= 2)
2853 // The desired shift is now (msb - 6), or zero, whichever
2855 return (((msb
- 6) < 0) ? 0 : (msb
- 6));
2858 // Calculate the final residual for the specified group index.
2859 // If the passed group index is less than zero, the method will return
2860 // the value of the specified residual without any change.
2861 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2862 static typename
elfcpp::Swap
<32, big_endian
>::Valtype
2863 calc_grp_residual(typename
elfcpp::Swap
<32, big_endian
>::Valtype residual
,
2866 for (int n
= 0; n
<= group
; n
++)
2868 // Calculate which part of the value to mask.
2869 uint32_t shift
= calc_grp_kn(residual
);
2870 // Calculate the residual for the next time around.
2871 residual
&= ~(residual
& (0xff << shift
));
2877 // Calculate the value of Gn for the specified group index.
2878 // We return it in the form of an encoded constant-and-rotation.
2879 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2880 static typename
elfcpp::Swap
<32, big_endian
>::Valtype
2881 calc_grp_gn(typename
elfcpp::Swap
<32, big_endian
>::Valtype residual
,
2884 typename
elfcpp::Swap
<32, big_endian
>::Valtype gn
= 0;
2887 for (int n
= 0; n
<= group
; n
++)
2889 // Calculate which part of the value to mask.
2890 shift
= calc_grp_kn(residual
);
2891 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
2892 gn
= residual
& (0xff << shift
);
2893 // Calculate the residual for the next time around.
2896 // Return Gn in the form of an encoded constant-and-rotation.
2897 return ((gn
>> shift
) | ((gn
<= 0xff ? 0 : (32 - shift
) / 2) << 8));
2901 // Handle ARM long branches.
2902 static typename
This::Status
2903 arm_branch_common(unsigned int, const Relocate_info
<32, big_endian
>*,
2904 unsigned char *, const Sized_symbol
<32>*,
2905 const Arm_relobj
<big_endian
>*, unsigned int,
2906 const Symbol_value
<32>*, Arm_address
, Arm_address
, bool);
2908 // Handle THUMB long branches.
2909 static typename
This::Status
2910 thumb_branch_common(unsigned int, const Relocate_info
<32, big_endian
>*,
2911 unsigned char *, const Sized_symbol
<32>*,
2912 const Arm_relobj
<big_endian
>*, unsigned int,
2913 const Symbol_value
<32>*, Arm_address
, Arm_address
, bool);
2916 // Return the branch offset of a 32-bit THUMB branch.
2917 static inline int32_t
2918 thumb32_branch_offset(uint16_t upper_insn
, uint16_t lower_insn
)
2920 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
2921 // involving the J1 and J2 bits.
2922 uint32_t s
= (upper_insn
& (1U << 10)) >> 10;
2923 uint32_t upper
= upper_insn
& 0x3ffU
;
2924 uint32_t lower
= lower_insn
& 0x7ffU
;
2925 uint32_t j1
= (lower_insn
& (1U << 13)) >> 13;
2926 uint32_t j2
= (lower_insn
& (1U << 11)) >> 11;
2927 uint32_t i1
= j1
^ s
? 0 : 1;
2928 uint32_t i2
= j2
^ s
? 0 : 1;
2930 return utils::sign_extend
<25>((s
<< 24) | (i1
<< 23) | (i2
<< 22)
2931 | (upper
<< 12) | (lower
<< 1));
2934 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
2935 // UPPER_INSN is the original upper instruction of the branch. Caller is
2936 // responsible for overflow checking and BLX offset adjustment.
2937 static inline uint16_t
2938 thumb32_branch_upper(uint16_t upper_insn
, int32_t offset
)
2940 uint32_t s
= offset
< 0 ? 1 : 0;
2941 uint32_t bits
= static_cast<uint32_t>(offset
);
2942 return (upper_insn
& ~0x7ffU
) | ((bits
>> 12) & 0x3ffU
) | (s
<< 10);
2945 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
2946 // LOWER_INSN is the original lower instruction of the branch. Caller is
2947 // responsible for overflow checking and BLX offset adjustment.
2948 static inline uint16_t
2949 thumb32_branch_lower(uint16_t lower_insn
, int32_t offset
)
2951 uint32_t s
= offset
< 0 ? 1 : 0;
2952 uint32_t bits
= static_cast<uint32_t>(offset
);
2953 return ((lower_insn
& ~0x2fffU
)
2954 | ((((bits
>> 23) & 1) ^ !s
) << 13)
2955 | ((((bits
>> 22) & 1) ^ !s
) << 11)
2956 | ((bits
>> 1) & 0x7ffU
));
2959 // Return the branch offset of a 32-bit THUMB conditional branch.
2960 static inline int32_t
2961 thumb32_cond_branch_offset(uint16_t upper_insn
, uint16_t lower_insn
)
2963 uint32_t s
= (upper_insn
& 0x0400U
) >> 10;
2964 uint32_t j1
= (lower_insn
& 0x2000U
) >> 13;
2965 uint32_t j2
= (lower_insn
& 0x0800U
) >> 11;
2966 uint32_t lower
= (lower_insn
& 0x07ffU
);
2967 uint32_t upper
= (s
<< 8) | (j2
<< 7) | (j1
<< 6) | (upper_insn
& 0x003fU
);
2969 return utils::sign_extend
<21>((upper
<< 12) | (lower
<< 1));
2972 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
2973 // instruction. UPPER_INSN is the original upper instruction of the branch.
2974 // Caller is responsible for overflow checking.
2975 static inline uint16_t
2976 thumb32_cond_branch_upper(uint16_t upper_insn
, int32_t offset
)
2978 uint32_t s
= offset
< 0 ? 1 : 0;
2979 uint32_t bits
= static_cast<uint32_t>(offset
);
2980 return (upper_insn
& 0xfbc0U
) | (s
<< 10) | ((bits
& 0x0003f000U
) >> 12);
2983 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
2984 // instruction. LOWER_INSN is the original lower instruction of the branch.
2985 // Caller is reponsible for overflow checking.
2986 static inline uint16_t
2987 thumb32_cond_branch_lower(uint16_t lower_insn
, int32_t offset
)
2989 uint32_t bits
= static_cast<uint32_t>(offset
);
2990 uint32_t j2
= (bits
& 0x00080000U
) >> 19;
2991 uint32_t j1
= (bits
& 0x00040000U
) >> 18;
2992 uint32_t lo
= (bits
& 0x00000ffeU
) >> 1;
2994 return (lower_insn
& 0xd000U
) | (j1
<< 13) | (j2
<< 11) | lo
;
2997 // R_ARM_ABS8: S + A
2998 static inline typename
This::Status
2999 abs8(unsigned char *view
,
3000 const Sized_relobj
<32, big_endian
>* object
,
3001 const Symbol_value
<32>* psymval
)
3003 typedef typename
elfcpp::Swap
<8, big_endian
>::Valtype Valtype
;
3004 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Reltype
;
3005 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3006 Valtype val
= elfcpp::Swap
<8, big_endian
>::readval(wv
);
3007 Reltype addend
= utils::sign_extend
<8>(val
);
3008 Reltype x
= psymval
->value(object
, addend
);
3009 val
= utils::bit_select(val
, x
, 0xffU
);
3010 elfcpp::Swap
<8, big_endian
>::writeval(wv
, val
);
3012 // R_ARM_ABS8 permits signed or unsigned results.
3013 int signed_x
= static_cast<int32_t>(x
);
3014 return ((signed_x
< -128 || signed_x
> 255)
3015 ? This::STATUS_OVERFLOW
3016 : This::STATUS_OKAY
);
3019 // R_ARM_THM_ABS5: S + A
3020 static inline typename
This::Status
3021 thm_abs5(unsigned char *view
,
3022 const Sized_relobj
<32, big_endian
>* object
,
3023 const Symbol_value
<32>* psymval
)
3025 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3026 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Reltype
;
3027 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3028 Valtype val
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
3029 Reltype addend
= (val
& 0x7e0U
) >> 6;
3030 Reltype x
= psymval
->value(object
, addend
);
3031 val
= utils::bit_select(val
, x
<< 6, 0x7e0U
);
3032 elfcpp::Swap
<16, big_endian
>::writeval(wv
, val
);
3034 // R_ARM_ABS16 permits signed or unsigned results.
3035 int signed_x
= static_cast<int32_t>(x
);
3036 return ((signed_x
< -32768 || signed_x
> 65535)
3037 ? This::STATUS_OVERFLOW
3038 : This::STATUS_OKAY
);
3041 // R_ARM_ABS12: S + A
3042 static inline typename
This::Status
3043 abs12(unsigned char *view
,
3044 const Sized_relobj
<32, big_endian
>* object
,
3045 const Symbol_value
<32>* psymval
)
3047 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3048 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Reltype
;
3049 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3050 Valtype val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3051 Reltype addend
= val
& 0x0fffU
;
3052 Reltype x
= psymval
->value(object
, addend
);
3053 val
= utils::bit_select(val
, x
, 0x0fffU
);
3054 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
3055 return (utils::has_overflow
<12>(x
)
3056 ? This::STATUS_OVERFLOW
3057 : This::STATUS_OKAY
);
3060 // R_ARM_ABS16: S + A
3061 static inline typename
This::Status
3062 abs16(unsigned char *view
,
3063 const Sized_relobj
<32, big_endian
>* object
,
3064 const Symbol_value
<32>* psymval
)
3066 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3067 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Reltype
;
3068 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3069 Valtype val
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
3070 Reltype addend
= utils::sign_extend
<16>(val
);
3071 Reltype x
= psymval
->value(object
, addend
);
3072 val
= utils::bit_select(val
, x
, 0xffffU
);
3073 elfcpp::Swap
<16, big_endian
>::writeval(wv
, val
);
3074 return (utils::has_signed_unsigned_overflow
<16>(x
)
3075 ? This::STATUS_OVERFLOW
3076 : This::STATUS_OKAY
);
3079 // R_ARM_ABS32: (S + A) | T
3080 static inline typename
This::Status
3081 abs32(unsigned char *view
,
3082 const Sized_relobj
<32, big_endian
>* object
,
3083 const Symbol_value
<32>* psymval
,
3084 Arm_address thumb_bit
)
3086 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3087 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3088 Valtype addend
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3089 Valtype x
= psymval
->value(object
, addend
) | thumb_bit
;
3090 elfcpp::Swap
<32, big_endian
>::writeval(wv
, x
);
3091 return This::STATUS_OKAY
;
3094 // R_ARM_REL32: (S + A) | T - P
3095 static inline typename
This::Status
3096 rel32(unsigned char *view
,
3097 const Sized_relobj
<32, big_endian
>* object
,
3098 const Symbol_value
<32>* psymval
,
3099 Arm_address address
,
3100 Arm_address thumb_bit
)
3102 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3103 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3104 Valtype addend
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3105 Valtype x
= (psymval
->value(object
, addend
) | thumb_bit
) - address
;
3106 elfcpp::Swap
<32, big_endian
>::writeval(wv
, x
);
3107 return This::STATUS_OKAY
;
3110 // R_ARM_THM_JUMP24: (S + A) | T - P
3111 static typename
This::Status
3112 thm_jump19(unsigned char *view
, const Arm_relobj
<big_endian
>* object
,
3113 const Symbol_value
<32>* psymval
, Arm_address address
,
3114 Arm_address thumb_bit
);
3116 // R_ARM_THM_JUMP6: S + A – P
3117 static inline typename
This::Status
3118 thm_jump6(unsigned char *view
,
3119 const Sized_relobj
<32, big_endian
>* object
,
3120 const Symbol_value
<32>* psymval
,
3121 Arm_address address
)
3123 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3124 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Reltype
;
3125 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3126 Valtype val
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
3127 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3128 Reltype addend
= (((val
& 0x0200) >> 3) | ((val
& 0x00f8) >> 2));
3129 Reltype x
= (psymval
->value(object
, addend
) - address
);
3130 val
= (val
& 0xfd07) | ((x
& 0x0040) << 3) | ((val
& 0x003e) << 2);
3131 elfcpp::Swap
<16, big_endian
>::writeval(wv
, val
);
3132 // CZB does only forward jumps.
3133 return ((x
> 0x007e)
3134 ? This::STATUS_OVERFLOW
3135 : This::STATUS_OKAY
);
3138 // R_ARM_THM_JUMP8: S + A – P
3139 static inline typename
This::Status
3140 thm_jump8(unsigned char *view
,
3141 const Sized_relobj
<32, big_endian
>* object
,
3142 const Symbol_value
<32>* psymval
,
3143 Arm_address address
)
3145 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3146 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Reltype
;
3147 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3148 Valtype val
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
3149 Reltype addend
= utils::sign_extend
<8>((val
& 0x00ff) << 1);
3150 Reltype x
= (psymval
->value(object
, addend
) - address
);
3151 elfcpp::Swap
<16, big_endian
>::writeval(wv
, (val
& 0xff00) | ((x
& 0x01fe) >> 1));
3152 return (utils::has_overflow
<8>(x
)
3153 ? This::STATUS_OVERFLOW
3154 : This::STATUS_OKAY
);
3157 // R_ARM_THM_JUMP11: S + A – P
3158 static inline typename
This::Status
3159 thm_jump11(unsigned char *view
,
3160 const Sized_relobj
<32, big_endian
>* object
,
3161 const Symbol_value
<32>* psymval
,
3162 Arm_address address
)
3164 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3165 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Reltype
;
3166 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3167 Valtype val
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
3168 Reltype addend
= utils::sign_extend
<11>((val
& 0x07ff) << 1);
3169 Reltype x
= (psymval
->value(object
, addend
) - address
);
3170 elfcpp::Swap
<16, big_endian
>::writeval(wv
, (val
& 0xf800) | ((x
& 0x0ffe) >> 1));
3171 return (utils::has_overflow
<11>(x
)
3172 ? This::STATUS_OVERFLOW
3173 : This::STATUS_OKAY
);
3176 // R_ARM_BASE_PREL: B(S) + A - P
3177 static inline typename
This::Status
3178 base_prel(unsigned char* view
,
3180 Arm_address address
)
3182 Base::rel32(view
, origin
- address
);
3186 // R_ARM_BASE_ABS: B(S) + A
3187 static inline typename
This::Status
3188 base_abs(unsigned char* view
,
3191 Base::rel32(view
, origin
);
3195 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3196 static inline typename
This::Status
3197 got_brel(unsigned char* view
,
3198 typename
elfcpp::Swap
<32, big_endian
>::Valtype got_offset
)
3200 Base::rel32(view
, got_offset
);
3201 return This::STATUS_OKAY
;
3204 // R_ARM_GOT_PREL: GOT(S) + A - P
3205 static inline typename
This::Status
3206 got_prel(unsigned char *view
,
3207 Arm_address got_entry
,
3208 Arm_address address
)
3210 Base::rel32(view
, got_entry
- address
);
3211 return This::STATUS_OKAY
;
3214 // R_ARM_PREL: (S + A) | T - P
3215 static inline typename
This::Status
3216 prel31(unsigned char *view
,
3217 const Sized_relobj
<32, big_endian
>* object
,
3218 const Symbol_value
<32>* psymval
,
3219 Arm_address address
,
3220 Arm_address thumb_bit
)
3222 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3223 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3224 Valtype val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3225 Valtype addend
= utils::sign_extend
<31>(val
);
3226 Valtype x
= (psymval
->value(object
, addend
) | thumb_bit
) - address
;
3227 val
= utils::bit_select(val
, x
, 0x7fffffffU
);
3228 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
3229 return (utils::has_overflow
<31>(x
) ?
3230 This::STATUS_OVERFLOW
: This::STATUS_OKAY
);
3233 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
3234 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
3235 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3236 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
3237 static inline typename
This::Status
3238 movw(unsigned char* view
,
3239 const Sized_relobj
<32, big_endian
>* object
,
3240 const Symbol_value
<32>* psymval
,
3241 Arm_address relative_address_base
,
3242 Arm_address thumb_bit
,
3243 bool check_overflow
)
3245 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3246 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3247 Valtype val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3248 Valtype addend
= This::extract_arm_movw_movt_addend(val
);
3249 Valtype x
= ((psymval
->value(object
, addend
) | thumb_bit
)
3250 - relative_address_base
);
3251 val
= This::insert_val_arm_movw_movt(val
, x
);
3252 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
3253 return ((check_overflow
&& utils::has_overflow
<16>(x
))
3254 ? This::STATUS_OVERFLOW
3255 : This::STATUS_OKAY
);
3258 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
3259 // R_ARM_MOVT_PREL: S + A - P
3260 // R_ARM_MOVT_BREL: S + A - B(S)
3261 static inline typename
This::Status
3262 movt(unsigned char* view
,
3263 const Sized_relobj
<32, big_endian
>* object
,
3264 const Symbol_value
<32>* psymval
,
3265 Arm_address relative_address_base
)
3267 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3268 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3269 Valtype val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3270 Valtype addend
= This::extract_arm_movw_movt_addend(val
);
3271 Valtype x
= (psymval
->value(object
, addend
) - relative_address_base
) >> 16;
3272 val
= This::insert_val_arm_movw_movt(val
, x
);
3273 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
3274 // FIXME: IHI0044D says that we should check for overflow.
3275 return This::STATUS_OKAY
;
3278 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
3279 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
3280 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3281 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
3282 static inline typename
This::Status
3283 thm_movw(unsigned char *view
,
3284 const Sized_relobj
<32, big_endian
>* object
,
3285 const Symbol_value
<32>* psymval
,
3286 Arm_address relative_address_base
,
3287 Arm_address thumb_bit
,
3288 bool check_overflow
)
3290 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3291 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Reltype
;
3292 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3293 Reltype val
= (elfcpp::Swap
<16, big_endian
>::readval(wv
) << 16)
3294 | elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
3295 Reltype addend
= This::extract_thumb_movw_movt_addend(val
);
3297 (psymval
->value(object
, addend
) | thumb_bit
) - relative_address_base
;
3298 val
= This::insert_val_thumb_movw_movt(val
, x
);
3299 elfcpp::Swap
<16, big_endian
>::writeval(wv
, val
>> 16);
3300 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, val
& 0xffff);
3301 return ((check_overflow
&& utils::has_overflow
<16>(x
))
3302 ? This::STATUS_OVERFLOW
3303 : This::STATUS_OKAY
);
3306 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
3307 // R_ARM_THM_MOVT_PREL: S + A - P
3308 // R_ARM_THM_MOVT_BREL: S + A - B(S)
3309 static inline typename
This::Status
3310 thm_movt(unsigned char* view
,
3311 const Sized_relobj
<32, big_endian
>* object
,
3312 const Symbol_value
<32>* psymval
,
3313 Arm_address relative_address_base
)
3315 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3316 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Reltype
;
3317 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3318 Reltype val
= (elfcpp::Swap
<16, big_endian
>::readval(wv
) << 16)
3319 | elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
3320 Reltype addend
= This::extract_thumb_movw_movt_addend(val
);
3321 Reltype x
= (psymval
->value(object
, addend
) - relative_address_base
) >> 16;
3322 val
= This::insert_val_thumb_movw_movt(val
, x
);
3323 elfcpp::Swap
<16, big_endian
>::writeval(wv
, val
>> 16);
3324 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, val
& 0xffff);
3325 return This::STATUS_OKAY
;
3328 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3329 static inline typename
This::Status
3330 thm_alu11(unsigned char* view
,
3331 const Sized_relobj
<32, big_endian
>* object
,
3332 const Symbol_value
<32>* psymval
,
3333 Arm_address address
,
3334 Arm_address thumb_bit
)
3336 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3337 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Reltype
;
3338 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3339 Reltype insn
= (elfcpp::Swap
<16, big_endian
>::readval(wv
) << 16)
3340 | elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
3342 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3343 // -----------------------------------------------------------------------
3344 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3345 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3346 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3347 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3348 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3349 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3351 // Determine a sign for the addend.
3352 const int sign
= ((insn
& 0xf8ef0000) == 0xf0ad0000
3353 || (insn
& 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3354 // Thumb2 addend encoding:
3355 // imm12 := i | imm3 | imm8
3356 int32_t addend
= (insn
& 0xff)
3357 | ((insn
& 0x00007000) >> 4)
3358 | ((insn
& 0x04000000) >> 15);
3359 // Apply a sign to the added.
3362 int32_t x
= (psymval
->value(object
, addend
) | thumb_bit
)
3363 - (address
& 0xfffffffc);
3364 Reltype val
= abs(x
);
3365 // Mask out the value and a distinct part of the ADD/SUB opcode
3366 // (bits 7:5 of opword).
3367 insn
= (insn
& 0xfb0f8f00)
3369 | ((val
& 0x700) << 4)
3370 | ((val
& 0x800) << 15);
3371 // Set the opcode according to whether the value to go in the
3372 // place is negative.
3376 elfcpp::Swap
<16, big_endian
>::writeval(wv
, insn
>> 16);
3377 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, insn
& 0xffff);
3378 return ((val
> 0xfff) ?
3379 This::STATUS_OVERFLOW
: This::STATUS_OKAY
);
3382 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3383 static inline typename
This::Status
3384 thm_pc8(unsigned char* view
,
3385 const Sized_relobj
<32, big_endian
>* object
,
3386 const Symbol_value
<32>* psymval
,
3387 Arm_address address
)
3389 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3390 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Reltype
;
3391 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3392 Valtype insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
3393 Reltype addend
= ((insn
& 0x00ff) << 2);
3394 int32_t x
= (psymval
->value(object
, addend
) - (address
& 0xfffffffc));
3395 Reltype val
= abs(x
);
3396 insn
= (insn
& 0xff00) | ((val
& 0x03fc) >> 2);
3398 elfcpp::Swap
<16, big_endian
>::writeval(wv
, insn
);
3399 return ((val
> 0x03fc)
3400 ? This::STATUS_OVERFLOW
3401 : This::STATUS_OKAY
);
3404 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3405 static inline typename
This::Status
3406 thm_pc12(unsigned char* view
,
3407 const Sized_relobj
<32, big_endian
>* object
,
3408 const Symbol_value
<32>* psymval
,
3409 Arm_address address
)
3411 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3412 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Reltype
;
3413 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3414 Reltype insn
= (elfcpp::Swap
<16, big_endian
>::readval(wv
) << 16)
3415 | elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
3416 // Determine a sign for the addend (positive if the U bit is 1).
3417 const int sign
= (insn
& 0x00800000) ? 1 : -1;
3418 int32_t addend
= (insn
& 0xfff);
3419 // Apply a sign to the added.
3422 int32_t x
= (psymval
->value(object
, addend
) - (address
& 0xfffffffc));
3423 Reltype val
= abs(x
);
3424 // Mask out and apply the value and the U bit.
3425 insn
= (insn
& 0xff7ff000) | (val
& 0xfff);
3426 // Set the U bit according to whether the value to go in the
3427 // place is positive.
3431 elfcpp::Swap
<16, big_endian
>::writeval(wv
, insn
>> 16);
3432 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, insn
& 0xffff);
3433 return ((val
> 0xfff) ?
3434 This::STATUS_OVERFLOW
: This::STATUS_OKAY
);
3438 static inline typename
This::Status
3439 v4bx(const Relocate_info
<32, big_endian
>* relinfo
,
3440 unsigned char *view
,
3441 const Arm_relobj
<big_endian
>* object
,
3442 const Arm_address address
,
3443 const bool is_interworking
)
3446 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3447 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3448 Valtype val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3450 // Ensure that we have a BX instruction.
3451 gold_assert((val
& 0x0ffffff0) == 0x012fff10);
3452 const uint32_t reg
= (val
& 0xf);
3453 if (is_interworking
&& reg
!= 0xf)
3455 Stub_table
<big_endian
>* stub_table
=
3456 object
->stub_table(relinfo
->data_shndx
);
3457 gold_assert(stub_table
!= NULL
);
3459 Arm_v4bx_stub
* stub
= stub_table
->find_arm_v4bx_stub(reg
);
3460 gold_assert(stub
!= NULL
);
3462 int32_t veneer_address
=
3463 stub_table
->address() + stub
->offset() - 8 - address
;
3464 gold_assert((veneer_address
<= ARM_MAX_FWD_BRANCH_OFFSET
)
3465 && (veneer_address
>= ARM_MAX_BWD_BRANCH_OFFSET
));
3466 // Replace with a branch to veneer (B <addr>)
3467 val
= (val
& 0xf0000000) | 0x0a000000
3468 | ((veneer_address
>> 2) & 0x00ffffff);
3472 // Preserve Rm (lowest four bits) and the condition code
3473 // (highest four bits). Other bits encode MOV PC,Rm.
3474 val
= (val
& 0xf000000f) | 0x01a0f000;
3476 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
3477 return This::STATUS_OKAY
;
3480 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3481 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3482 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3483 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3484 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3485 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3486 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3487 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3488 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3489 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3490 static inline typename
This::Status
3491 arm_grp_alu(unsigned char* view
,
3492 const Sized_relobj
<32, big_endian
>* object
,
3493 const Symbol_value
<32>* psymval
,
3495 Arm_address address
,
3496 Arm_address thumb_bit
,
3497 bool check_overflow
)
3499 gold_assert(group
>= 0 && group
< 3);
3500 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3501 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3502 Valtype insn
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3504 // ALU group relocations are allowed only for the ADD/SUB instructions.
3505 // (0x00800000 - ADD, 0x00400000 - SUB)
3506 const Valtype opcode
= insn
& 0x01e00000;
3507 if (opcode
!= 0x00800000 && opcode
!= 0x00400000)
3508 return This::STATUS_BAD_RELOC
;
3510 // Determine a sign for the addend.
3511 const int sign
= (opcode
== 0x00800000) ? 1 : -1;
3512 // shifter = rotate_imm * 2
3513 const uint32_t shifter
= (insn
& 0xf00) >> 7;
3514 // Initial addend value.
3515 int32_t addend
= insn
& 0xff;
3516 // Rotate addend right by shifter.
3517 addend
= (addend
>> shifter
) | (addend
<< (32 - shifter
));
3518 // Apply a sign to the added.
3521 int32_t x
= ((psymval
->value(object
, addend
) | thumb_bit
) - address
);
3522 Valtype gn
= Arm_relocate_functions::calc_grp_gn(abs(x
), group
);
3523 // Check for overflow if required
3525 && (Arm_relocate_functions::calc_grp_residual(abs(x
), group
) != 0))
3526 return This::STATUS_OVERFLOW
;
3528 // Mask out the value and the ADD/SUB part of the opcode; take care
3529 // not to destroy the S bit.
3531 // Set the opcode according to whether the value to go in the
3532 // place is negative.
3533 insn
|= ((x
< 0) ? 0x00400000 : 0x00800000);
3534 // Encode the offset (encoded Gn).
3537 elfcpp::Swap
<32, big_endian
>::writeval(wv
, insn
);
3538 return This::STATUS_OKAY
;
3541 // R_ARM_LDR_PC_G0: S + A - P
3542 // R_ARM_LDR_PC_G1: S + A - P
3543 // R_ARM_LDR_PC_G2: S + A - P
3544 // R_ARM_LDR_SB_G0: S + A - B(S)
3545 // R_ARM_LDR_SB_G1: S + A - B(S)
3546 // R_ARM_LDR_SB_G2: S + A - B(S)
3547 static inline typename
This::Status
3548 arm_grp_ldr(unsigned char* view
,
3549 const Sized_relobj
<32, big_endian
>* object
,
3550 const Symbol_value
<32>* psymval
,
3552 Arm_address address
)
3554 gold_assert(group
>= 0 && group
< 3);
3555 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3556 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3557 Valtype insn
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3559 const int sign
= (insn
& 0x00800000) ? 1 : -1;
3560 int32_t addend
= (insn
& 0xfff) * sign
;
3561 int32_t x
= (psymval
->value(object
, addend
) - address
);
3562 // Calculate the relevant G(n-1) value to obtain this stage residual.
3564 Arm_relocate_functions::calc_grp_residual(abs(x
), group
- 1);
3565 if (residual
>= 0x1000)
3566 return This::STATUS_OVERFLOW
;
3568 // Mask out the value and U bit.
3570 // Set the U bit for non-negative values.
3575 elfcpp::Swap
<32, big_endian
>::writeval(wv
, insn
);
3576 return This::STATUS_OKAY
;
3579 // R_ARM_LDRS_PC_G0: S + A - P
3580 // R_ARM_LDRS_PC_G1: S + A - P
3581 // R_ARM_LDRS_PC_G2: S + A - P
3582 // R_ARM_LDRS_SB_G0: S + A - B(S)
3583 // R_ARM_LDRS_SB_G1: S + A - B(S)
3584 // R_ARM_LDRS_SB_G2: S + A - B(S)
3585 static inline typename
This::Status
3586 arm_grp_ldrs(unsigned char* view
,
3587 const Sized_relobj
<32, big_endian
>* object
,
3588 const Symbol_value
<32>* psymval
,
3590 Arm_address address
)
3592 gold_assert(group
>= 0 && group
< 3);
3593 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3594 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3595 Valtype insn
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3597 const int sign
= (insn
& 0x00800000) ? 1 : -1;
3598 int32_t addend
= (((insn
& 0xf00) >> 4) + (insn
& 0xf)) * sign
;
3599 int32_t x
= (psymval
->value(object
, addend
) - address
);
3600 // Calculate the relevant G(n-1) value to obtain this stage residual.
3602 Arm_relocate_functions::calc_grp_residual(abs(x
), group
- 1);
3603 if (residual
>= 0x100)
3604 return This::STATUS_OVERFLOW
;
3606 // Mask out the value and U bit.
3608 // Set the U bit for non-negative values.
3611 insn
|= ((residual
& 0xf0) << 4) | (residual
& 0xf);
3613 elfcpp::Swap
<32, big_endian
>::writeval(wv
, insn
);
3614 return This::STATUS_OKAY
;
3617 // R_ARM_LDC_PC_G0: S + A - P
3618 // R_ARM_LDC_PC_G1: S + A - P
3619 // R_ARM_LDC_PC_G2: S + A - P
3620 // R_ARM_LDC_SB_G0: S + A - B(S)
3621 // R_ARM_LDC_SB_G1: S + A - B(S)
3622 // R_ARM_LDC_SB_G2: S + A - B(S)
3623 static inline typename
This::Status
3624 arm_grp_ldc(unsigned char* view
,
3625 const Sized_relobj
<32, big_endian
>* object
,
3626 const Symbol_value
<32>* psymval
,
3628 Arm_address address
)
3630 gold_assert(group
>= 0 && group
< 3);
3631 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3632 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3633 Valtype insn
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3635 const int sign
= (insn
& 0x00800000) ? 1 : -1;
3636 int32_t addend
= ((insn
& 0xff) << 2) * sign
;
3637 int32_t x
= (psymval
->value(object
, addend
) - address
);
3638 // Calculate the relevant G(n-1) value to obtain this stage residual.
3640 Arm_relocate_functions::calc_grp_residual(abs(x
), group
- 1);
3641 if ((residual
& 0x3) != 0 || residual
>= 0x400)
3642 return This::STATUS_OVERFLOW
;
3644 // Mask out the value and U bit.
3646 // Set the U bit for non-negative values.
3649 insn
|= (residual
>> 2);
3651 elfcpp::Swap
<32, big_endian
>::writeval(wv
, insn
);
3652 return This::STATUS_OKAY
;
3656 // Relocate ARM long branches. This handles relocation types
3657 // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3658 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3659 // undefined and we do not use PLT in this relocation. In such a case,
3660 // the branch is converted into an NOP.
3662 template<bool big_endian
>
3663 typename Arm_relocate_functions
<big_endian
>::Status
3664 Arm_relocate_functions
<big_endian
>::arm_branch_common(
3665 unsigned int r_type
,
3666 const Relocate_info
<32, big_endian
>* relinfo
,
3667 unsigned char *view
,
3668 const Sized_symbol
<32>* gsym
,
3669 const Arm_relobj
<big_endian
>* object
,
3671 const Symbol_value
<32>* psymval
,
3672 Arm_address address
,
3673 Arm_address thumb_bit
,
3674 bool is_weakly_undefined_without_plt
)
3676 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
3677 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3678 Valtype val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
3680 bool insn_is_b
= (((val
>> 28) & 0xf) <= 0xe)
3681 && ((val
& 0x0f000000UL
) == 0x0a000000UL
);
3682 bool insn_is_uncond_bl
= (val
& 0xff000000UL
) == 0xeb000000UL
;
3683 bool insn_is_cond_bl
= (((val
>> 28) & 0xf) < 0xe)
3684 && ((val
& 0x0f000000UL
) == 0x0b000000UL
);
3685 bool insn_is_blx
= (val
& 0xfe000000UL
) == 0xfa000000UL
;
3686 bool insn_is_any_branch
= (val
& 0x0e000000UL
) == 0x0a000000UL
;
3688 // Check that the instruction is valid.
3689 if (r_type
== elfcpp::R_ARM_CALL
)
3691 if (!insn_is_uncond_bl
&& !insn_is_blx
)
3692 return This::STATUS_BAD_RELOC
;
3694 else if (r_type
== elfcpp::R_ARM_JUMP24
)
3696 if (!insn_is_b
&& !insn_is_cond_bl
)
3697 return This::STATUS_BAD_RELOC
;
3699 else if (r_type
== elfcpp::R_ARM_PLT32
)
3701 if (!insn_is_any_branch
)
3702 return This::STATUS_BAD_RELOC
;
3704 else if (r_type
== elfcpp::R_ARM_XPC25
)
3706 // FIXME: AAELF document IH0044C does not say much about it other
3707 // than it being obsolete.
3708 if (!insn_is_any_branch
)
3709 return This::STATUS_BAD_RELOC
;
3714 // A branch to an undefined weak symbol is turned into a jump to
3715 // the next instruction unless a PLT entry will be created.
3716 // Do the same for local undefined symbols.
3717 // The jump to the next instruction is optimized as a NOP depending
3718 // on the architecture.
3719 const Target_arm
<big_endian
>* arm_target
=
3720 Target_arm
<big_endian
>::default_target();
3721 if (is_weakly_undefined_without_plt
)
3723 Valtype cond
= val
& 0xf0000000U
;
3724 if (arm_target
->may_use_arm_nop())
3725 val
= cond
| 0x0320f000;
3727 val
= cond
| 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3728 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
3729 return This::STATUS_OKAY
;
3732 Valtype addend
= utils::sign_extend
<26>(val
<< 2);
3733 Valtype branch_target
= psymval
->value(object
, addend
);
3734 int32_t branch_offset
= branch_target
- address
;
3736 // We need a stub if the branch offset is too large or if we need
3738 bool may_use_blx
= arm_target
->may_use_blx();
3739 Reloc_stub
* stub
= NULL
;
3740 if (utils::has_overflow
<26>(branch_offset
)
3741 || ((thumb_bit
!= 0) && !(may_use_blx
&& r_type
== elfcpp::R_ARM_CALL
)))
3743 Valtype unadjusted_branch_target
= psymval
->value(object
, 0);
3745 Stub_type stub_type
=
3746 Reloc_stub::stub_type_for_reloc(r_type
, address
,
3747 unadjusted_branch_target
,
3749 if (stub_type
!= arm_stub_none
)
3751 Stub_table
<big_endian
>* stub_table
=
3752 object
->stub_table(relinfo
->data_shndx
);
3753 gold_assert(stub_table
!= NULL
);
3755 Reloc_stub::Key
stub_key(stub_type
, gsym
, object
, r_sym
, addend
);
3756 stub
= stub_table
->find_reloc_stub(stub_key
);
3757 gold_assert(stub
!= NULL
);
3758 thumb_bit
= stub
->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3759 branch_target
= stub_table
->address() + stub
->offset() + addend
;
3760 branch_offset
= branch_target
- address
;
3761 gold_assert(!utils::has_overflow
<26>(branch_offset
));
3765 // At this point, if we still need to switch mode, the instruction
3766 // must either be a BLX or a BL that can be converted to a BLX.
3770 gold_assert(may_use_blx
&& r_type
== elfcpp::R_ARM_CALL
);
3771 val
= (val
& 0xffffff) | 0xfa000000 | ((branch_offset
& 2) << 23);
3774 val
= utils::bit_select(val
, (branch_offset
>> 2), 0xffffffUL
);
3775 elfcpp::Swap
<32, big_endian
>::writeval(wv
, val
);
3776 return (utils::has_overflow
<26>(branch_offset
)
3777 ? This::STATUS_OVERFLOW
: This::STATUS_OKAY
);
3780 // Relocate THUMB long branches. This handles relocation types
3781 // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3782 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3783 // undefined and we do not use PLT in this relocation. In such a case,
3784 // the branch is converted into an NOP.
3786 template<bool big_endian
>
3787 typename Arm_relocate_functions
<big_endian
>::Status
3788 Arm_relocate_functions
<big_endian
>::thumb_branch_common(
3789 unsigned int r_type
,
3790 const Relocate_info
<32, big_endian
>* relinfo
,
3791 unsigned char *view
,
3792 const Sized_symbol
<32>* gsym
,
3793 const Arm_relobj
<big_endian
>* object
,
3795 const Symbol_value
<32>* psymval
,
3796 Arm_address address
,
3797 Arm_address thumb_bit
,
3798 bool is_weakly_undefined_without_plt
)
3800 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3801 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3802 uint32_t upper_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
3803 uint32_t lower_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
3805 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
3807 bool is_bl_insn
= (lower_insn
& 0x1000U
) == 0x1000U
;
3808 bool is_blx_insn
= (lower_insn
& 0x1000U
) == 0x0000U
;
3810 // Check that the instruction is valid.
3811 if (r_type
== elfcpp::R_ARM_THM_CALL
)
3813 if (!is_bl_insn
&& !is_blx_insn
)
3814 return This::STATUS_BAD_RELOC
;
3816 else if (r_type
== elfcpp::R_ARM_THM_JUMP24
)
3818 // This cannot be a BLX.
3820 return This::STATUS_BAD_RELOC
;
3822 else if (r_type
== elfcpp::R_ARM_THM_XPC22
)
3824 // Check for Thumb to Thumb call.
3826 return This::STATUS_BAD_RELOC
;
3829 gold_warning(_("%s: Thumb BLX instruction targets "
3830 "thumb function '%s'."),
3831 object
->name().c_str(),
3832 (gsym
? gsym
->name() : "(local)"));
3833 // Convert BLX to BL.
3834 lower_insn
|= 0x1000U
;
3840 // A branch to an undefined weak symbol is turned into a jump to
3841 // the next instruction unless a PLT entry will be created.
3842 // The jump to the next instruction is optimized as a NOP.W for
3843 // Thumb-2 enabled architectures.
3844 const Target_arm
<big_endian
>* arm_target
=
3845 Target_arm
<big_endian
>::default_target();
3846 if (is_weakly_undefined_without_plt
)
3848 if (arm_target
->may_use_thumb2_nop())
3850 elfcpp::Swap
<16, big_endian
>::writeval(wv
, 0xf3af);
3851 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, 0x8000);
3855 elfcpp::Swap
<16, big_endian
>::writeval(wv
, 0xe000);
3856 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, 0xbf00);
3858 return This::STATUS_OKAY
;
3861 int32_t addend
= This::thumb32_branch_offset(upper_insn
, lower_insn
);
3862 Arm_address branch_target
= psymval
->value(object
, addend
);
3864 // For BLX, bit 1 of target address comes from bit 1 of base address.
3865 bool may_use_blx
= arm_target
->may_use_blx();
3866 if (thumb_bit
== 0 && may_use_blx
)
3867 branch_target
= utils::bit_select(branch_target
, address
, 0x2);
3869 int32_t branch_offset
= branch_target
- address
;
3871 // We need a stub if the branch offset is too large or if we need
3873 bool thumb2
= arm_target
->using_thumb2();
3874 if ((!thumb2
&& utils::has_overflow
<23>(branch_offset
))
3875 || (thumb2
&& utils::has_overflow
<25>(branch_offset
))
3876 || ((thumb_bit
== 0)
3877 && (((r_type
== elfcpp::R_ARM_THM_CALL
) && !may_use_blx
)
3878 || r_type
== elfcpp::R_ARM_THM_JUMP24
)))
3880 Arm_address unadjusted_branch_target
= psymval
->value(object
, 0);
3882 Stub_type stub_type
=
3883 Reloc_stub::stub_type_for_reloc(r_type
, address
,
3884 unadjusted_branch_target
,
3887 if (stub_type
!= arm_stub_none
)
3889 Stub_table
<big_endian
>* stub_table
=
3890 object
->stub_table(relinfo
->data_shndx
);
3891 gold_assert(stub_table
!= NULL
);
3893 Reloc_stub::Key
stub_key(stub_type
, gsym
, object
, r_sym
, addend
);
3894 Reloc_stub
* stub
= stub_table
->find_reloc_stub(stub_key
);
3895 gold_assert(stub
!= NULL
);
3896 thumb_bit
= stub
->stub_template()->entry_in_thumb_mode() ? 1 : 0;
3897 branch_target
= stub_table
->address() + stub
->offset() + addend
;
3898 if (thumb_bit
== 0 && may_use_blx
)
3899 branch_target
= utils::bit_select(branch_target
, address
, 0x2);
3900 branch_offset
= branch_target
- address
;
3904 // At this point, if we still need to switch mode, the instruction
3905 // must either be a BLX or a BL that can be converted to a BLX.
3908 gold_assert(may_use_blx
3909 && (r_type
== elfcpp::R_ARM_THM_CALL
3910 || r_type
== elfcpp::R_ARM_THM_XPC22
));
3911 // Make sure this is a BLX.
3912 lower_insn
&= ~0x1000U
;
3916 // Make sure this is a BL.
3917 lower_insn
|= 0x1000U
;
3920 // For a BLX instruction, make sure that the relocation is rounded up
3921 // to a word boundary. This follows the semantics of the instruction
3922 // which specifies that bit 1 of the target address will come from bit
3923 // 1 of the base address.
3924 if ((lower_insn
& 0x5000U
) == 0x4000U
)
3925 gold_assert((branch_offset
& 3) == 0);
3927 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
3928 // We use the Thumb-2 encoding, which is safe even if dealing with
3929 // a Thumb-1 instruction by virtue of our overflow check above. */
3930 upper_insn
= This::thumb32_branch_upper(upper_insn
, branch_offset
);
3931 lower_insn
= This::thumb32_branch_lower(lower_insn
, branch_offset
);
3933 elfcpp::Swap
<16, big_endian
>::writeval(wv
, upper_insn
);
3934 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, lower_insn
);
3936 gold_assert(!utils::has_overflow
<25>(branch_offset
));
3939 ? utils::has_overflow
<25>(branch_offset
)
3940 : utils::has_overflow
<23>(branch_offset
))
3941 ? This::STATUS_OVERFLOW
3942 : This::STATUS_OKAY
);
3945 // Relocate THUMB-2 long conditional branches.
3946 // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3947 // undefined and we do not use PLT in this relocation. In such a case,
3948 // the branch is converted into an NOP.
3950 template<bool big_endian
>
3951 typename Arm_relocate_functions
<big_endian
>::Status
3952 Arm_relocate_functions
<big_endian
>::thm_jump19(
3953 unsigned char *view
,
3954 const Arm_relobj
<big_endian
>* object
,
3955 const Symbol_value
<32>* psymval
,
3956 Arm_address address
,
3957 Arm_address thumb_bit
)
3959 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
3960 Valtype
* wv
= reinterpret_cast<Valtype
*>(view
);
3961 uint32_t upper_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
3962 uint32_t lower_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
3963 int32_t addend
= This::thumb32_cond_branch_offset(upper_insn
, lower_insn
);
3965 Arm_address branch_target
= psymval
->value(object
, addend
);
3966 int32_t branch_offset
= branch_target
- address
;
3968 // ??? Should handle interworking? GCC might someday try to
3969 // use this for tail calls.
3970 // FIXME: We do support thumb entry to PLT yet.
3973 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
3974 return This::STATUS_BAD_RELOC
;
3977 // Put RELOCATION back into the insn.
3978 upper_insn
= This::thumb32_cond_branch_upper(upper_insn
, branch_offset
);
3979 lower_insn
= This::thumb32_cond_branch_lower(lower_insn
, branch_offset
);
3981 // Put the relocated value back in the object file:
3982 elfcpp::Swap
<16, big_endian
>::writeval(wv
, upper_insn
);
3983 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, lower_insn
);
3985 return (utils::has_overflow
<21>(branch_offset
)
3986 ? This::STATUS_OVERFLOW
3987 : This::STATUS_OKAY
);
3990 // Get the GOT section, creating it if necessary.
3992 template<bool big_endian
>
3993 Arm_output_data_got
<big_endian
>*
3994 Target_arm
<big_endian
>::got_section(Symbol_table
* symtab
, Layout
* layout
)
3996 if (this->got_
== NULL
)
3998 gold_assert(symtab
!= NULL
&& layout
!= NULL
);
4000 this->got_
= new Arm_output_data_got
<big_endian
>(symtab
, layout
);
4003 os
= layout
->add_output_section_data(".got", elfcpp::SHT_PROGBITS
,
4005 | elfcpp::SHF_WRITE
),
4006 this->got_
, false, false, false,
4008 // The old GNU linker creates a .got.plt section. We just
4009 // create another set of data in the .got section. Note that we
4010 // always create a PLT if we create a GOT, although the PLT
4012 this->got_plt_
= new Output_data_space(4, "** GOT PLT");
4013 os
= layout
->add_output_section_data(".got", elfcpp::SHT_PROGBITS
,
4015 | elfcpp::SHF_WRITE
),
4016 this->got_plt_
, false, false,
4019 // The first three entries are reserved.
4020 this->got_plt_
->set_current_data_size(3 * 4);
4022 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4023 symtab
->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL
,
4024 Symbol_table::PREDEFINED
,
4026 0, 0, elfcpp::STT_OBJECT
,
4028 elfcpp::STV_HIDDEN
, 0,
4034 // Get the dynamic reloc section, creating it if necessary.
4036 template<bool big_endian
>
4037 typename Target_arm
<big_endian
>::Reloc_section
*
4038 Target_arm
<big_endian
>::rel_dyn_section(Layout
* layout
)
4040 if (this->rel_dyn_
== NULL
)
4042 gold_assert(layout
!= NULL
);
4043 this->rel_dyn_
= new Reloc_section(parameters
->options().combreloc());
4044 layout
->add_output_section_data(".rel.dyn", elfcpp::SHT_REL
,
4045 elfcpp::SHF_ALLOC
, this->rel_dyn_
, true,
4046 false, false, false);
4048 return this->rel_dyn_
;
4051 // Insn_template methods.
4053 // Return byte size of an instruction template.
4056 Insn_template::size() const
4058 switch (this->type())
4061 case THUMB16_SPECIAL_TYPE
:
4072 // Return alignment of an instruction template.
4075 Insn_template::alignment() const
4077 switch (this->type())
4080 case THUMB16_SPECIAL_TYPE
:
4091 // Stub_template methods.
4093 Stub_template::Stub_template(
4094 Stub_type type
, const Insn_template
* insns
,
4096 : type_(type
), insns_(insns
), insn_count_(insn_count
), alignment_(1),
4097 entry_in_thumb_mode_(false), relocs_()
4101 // Compute byte size and alignment of stub template.
4102 for (size_t i
= 0; i
< insn_count
; i
++)
4104 unsigned insn_alignment
= insns
[i
].alignment();
4105 size_t insn_size
= insns
[i
].size();
4106 gold_assert((offset
& (insn_alignment
- 1)) == 0);
4107 this->alignment_
= std::max(this->alignment_
, insn_alignment
);
4108 switch (insns
[i
].type())
4110 case Insn_template::THUMB16_TYPE
:
4111 case Insn_template::THUMB16_SPECIAL_TYPE
:
4113 this->entry_in_thumb_mode_
= true;
4116 case Insn_template::THUMB32_TYPE
:
4117 if (insns
[i
].r_type() != elfcpp::R_ARM_NONE
)
4118 this->relocs_
.push_back(Reloc(i
, offset
));
4120 this->entry_in_thumb_mode_
= true;
4123 case Insn_template::ARM_TYPE
:
4124 // Handle cases where the target is encoded within the
4126 if (insns
[i
].r_type() == elfcpp::R_ARM_JUMP24
)
4127 this->relocs_
.push_back(Reloc(i
, offset
));
4130 case Insn_template::DATA_TYPE
:
4131 // Entry point cannot be data.
4132 gold_assert(i
!= 0);
4133 this->relocs_
.push_back(Reloc(i
, offset
));
4139 offset
+= insn_size
;
4141 this->size_
= offset
;
4146 // Template to implement do_write for a specific target endianness.
4148 template<bool big_endian
>
4150 Stub::do_fixed_endian_write(unsigned char* view
, section_size_type view_size
)
4152 const Stub_template
* stub_template
= this->stub_template();
4153 const Insn_template
* insns
= stub_template
->insns();
4155 // FIXME: We do not handle BE8 encoding yet.
4156 unsigned char* pov
= view
;
4157 for (size_t i
= 0; i
< stub_template
->insn_count(); i
++)
4159 switch (insns
[i
].type())
4161 case Insn_template::THUMB16_TYPE
:
4162 elfcpp::Swap
<16, big_endian
>::writeval(pov
, insns
[i
].data() & 0xffff);
4164 case Insn_template::THUMB16_SPECIAL_TYPE
:
4165 elfcpp::Swap
<16, big_endian
>::writeval(
4167 this->thumb16_special(i
));
4169 case Insn_template::THUMB32_TYPE
:
4171 uint32_t hi
= (insns
[i
].data() >> 16) & 0xffff;
4172 uint32_t lo
= insns
[i
].data() & 0xffff;
4173 elfcpp::Swap
<16, big_endian
>::writeval(pov
, hi
);
4174 elfcpp::Swap
<16, big_endian
>::writeval(pov
+ 2, lo
);
4177 case Insn_template::ARM_TYPE
:
4178 case Insn_template::DATA_TYPE
:
4179 elfcpp::Swap
<32, big_endian
>::writeval(pov
, insns
[i
].data());
4184 pov
+= insns
[i
].size();
4186 gold_assert(static_cast<section_size_type
>(pov
- view
) == view_size
);
4189 // Reloc_stub::Key methods.
4191 // Dump a Key as a string for debugging.
4194 Reloc_stub::Key::name() const
4196 if (this->r_sym_
== invalid_index
)
4198 // Global symbol key name
4199 // <stub-type>:<symbol name>:<addend>.
4200 const std::string sym_name
= this->u_
.symbol
->name();
4201 // We need to print two hex number and two colons. So just add 100 bytes
4202 // to the symbol name size.
4203 size_t len
= sym_name
.size() + 100;
4204 char* buffer
= new char[len
];
4205 int c
= snprintf(buffer
, len
, "%d:%s:%x", this->stub_type_
,
4206 sym_name
.c_str(), this->addend_
);
4207 gold_assert(c
> 0 && c
< static_cast<int>(len
));
4209 return std::string(buffer
);
4213 // local symbol key name
4214 // <stub-type>:<object>:<r_sym>:<addend>.
4215 const size_t len
= 200;
4217 int c
= snprintf(buffer
, len
, "%d:%p:%u:%x", this->stub_type_
,
4218 this->u_
.relobj
, this->r_sym_
, this->addend_
);
4219 gold_assert(c
> 0 && c
< static_cast<int>(len
));
4220 return std::string(buffer
);
4224 // Reloc_stub methods.
4226 // Determine the type of stub needed, if any, for a relocation of R_TYPE at
4227 // LOCATION to DESTINATION.
4228 // This code is based on the arm_type_of_stub function in
4229 // bfd/elf32-arm.c. We have changed the interface a liitle to keep the Stub
4233 Reloc_stub::stub_type_for_reloc(
4234 unsigned int r_type
,
4235 Arm_address location
,
4236 Arm_address destination
,
4237 bool target_is_thumb
)
4239 Stub_type stub_type
= arm_stub_none
;
4241 // This is a bit ugly but we want to avoid using a templated class for
4242 // big and little endianities.
4244 bool should_force_pic_veneer
;
4247 if (parameters
->target().is_big_endian())
4249 const Target_arm
<true>* big_endian_target
=
4250 Target_arm
<true>::default_target();
4251 may_use_blx
= big_endian_target
->may_use_blx();
4252 should_force_pic_veneer
= big_endian_target
->should_force_pic_veneer();
4253 thumb2
= big_endian_target
->using_thumb2();
4254 thumb_only
= big_endian_target
->using_thumb_only();
4258 const Target_arm
<false>* little_endian_target
=
4259 Target_arm
<false>::default_target();
4260 may_use_blx
= little_endian_target
->may_use_blx();
4261 should_force_pic_veneer
= little_endian_target
->should_force_pic_veneer();
4262 thumb2
= little_endian_target
->using_thumb2();
4263 thumb_only
= little_endian_target
->using_thumb_only();
4266 int64_t branch_offset
;
4267 if (r_type
== elfcpp::R_ARM_THM_CALL
|| r_type
== elfcpp::R_ARM_THM_JUMP24
)
4269 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4270 // base address (instruction address + 4).
4271 if ((r_type
== elfcpp::R_ARM_THM_CALL
) && may_use_blx
&& !target_is_thumb
)
4272 destination
= utils::bit_select(destination
, location
, 0x2);
4273 branch_offset
= static_cast<int64_t>(destination
) - location
;
4275 // Handle cases where:
4276 // - this call goes too far (different Thumb/Thumb2 max
4278 // - it's a Thumb->Arm call and blx is not available, or it's a
4279 // Thumb->Arm branch (not bl). A stub is needed in this case.
4281 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
4282 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
4284 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
4285 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
4286 || ((!target_is_thumb
)
4287 && (((r_type
== elfcpp::R_ARM_THM_CALL
) && !may_use_blx
)
4288 || (r_type
== elfcpp::R_ARM_THM_JUMP24
))))
4290 if (target_is_thumb
)
4295 stub_type
= (parameters
->options().shared()
4296 || should_force_pic_veneer
)
4299 && (r_type
== elfcpp::R_ARM_THM_CALL
))
4300 // V5T and above. Stub starts with ARM code, so
4301 // we must be able to switch mode before
4302 // reaching it, which is only possible for 'bl'
4303 // (ie R_ARM_THM_CALL relocation).
4304 ? arm_stub_long_branch_any_thumb_pic
4305 // On V4T, use Thumb code only.
4306 : arm_stub_long_branch_v4t_thumb_thumb_pic
)
4310 && (r_type
== elfcpp::R_ARM_THM_CALL
))
4311 ? arm_stub_long_branch_any_any
// V5T and above.
4312 : arm_stub_long_branch_v4t_thumb_thumb
); // V4T.
4316 stub_type
= (parameters
->options().shared()
4317 || should_force_pic_veneer
)
4318 ? arm_stub_long_branch_thumb_only_pic
// PIC stub.
4319 : arm_stub_long_branch_thumb_only
; // non-PIC stub.
4326 // FIXME: We should check that the input section is from an
4327 // object that has interwork enabled.
4329 stub_type
= (parameters
->options().shared()
4330 || should_force_pic_veneer
)
4333 && (r_type
== elfcpp::R_ARM_THM_CALL
))
4334 ? arm_stub_long_branch_any_arm_pic
// V5T and above.
4335 : arm_stub_long_branch_v4t_thumb_arm_pic
) // V4T.
4339 && (r_type
== elfcpp::R_ARM_THM_CALL
))
4340 ? arm_stub_long_branch_any_any
// V5T and above.
4341 : arm_stub_long_branch_v4t_thumb_arm
); // V4T.
4343 // Handle v4t short branches.
4344 if ((stub_type
== arm_stub_long_branch_v4t_thumb_arm
)
4345 && (branch_offset
<= THM_MAX_FWD_BRANCH_OFFSET
)
4346 && (branch_offset
>= THM_MAX_BWD_BRANCH_OFFSET
))
4347 stub_type
= arm_stub_short_branch_v4t_thumb_arm
;
4351 else if (r_type
== elfcpp::R_ARM_CALL
4352 || r_type
== elfcpp::R_ARM_JUMP24
4353 || r_type
== elfcpp::R_ARM_PLT32
)
4355 branch_offset
= static_cast<int64_t>(destination
) - location
;
4356 if (target_is_thumb
)
4360 // FIXME: We should check that the input section is from an
4361 // object that has interwork enabled.
4363 // We have an extra 2-bytes reach because of
4364 // the mode change (bit 24 (H) of BLX encoding).
4365 if (branch_offset
> (ARM_MAX_FWD_BRANCH_OFFSET
+ 2)
4366 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
)
4367 || ((r_type
== elfcpp::R_ARM_CALL
) && !may_use_blx
)
4368 || (r_type
== elfcpp::R_ARM_JUMP24
)
4369 || (r_type
== elfcpp::R_ARM_PLT32
))
4371 stub_type
= (parameters
->options().shared()
4372 || should_force_pic_veneer
)
4375 ? arm_stub_long_branch_any_thumb_pic
// V5T and above.
4376 : arm_stub_long_branch_v4t_arm_thumb_pic
) // V4T stub.
4380 ? arm_stub_long_branch_any_any
// V5T and above.
4381 : arm_stub_long_branch_v4t_arm_thumb
); // V4T.
4387 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
4388 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
))
4390 stub_type
= (parameters
->options().shared()
4391 || should_force_pic_veneer
)
4392 ? arm_stub_long_branch_any_arm_pic
// PIC stubs.
4393 : arm_stub_long_branch_any_any
; /// non-PIC.
4401 // Cortex_a8_stub methods.
4403 // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4404 // I is the position of the instruction template in the stub template.
4407 Cortex_a8_stub::do_thumb16_special(size_t i
)
4409 // The only use of this is to copy condition code from a conditional
4410 // branch being worked around to the corresponding conditional branch in
4412 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4414 uint16_t data
= this->stub_template()->insns()[i
].data();
4415 gold_assert((data
& 0xff00U
) == 0xd000U
);
4416 data
|= ((this->original_insn_
>> 22) & 0xf) << 8;
4420 // Stub_factory methods.
4422 Stub_factory::Stub_factory()
4424 // The instruction template sequences are declared as static
4425 // objects and initialized first time the constructor runs.
4427 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4428 // to reach the stub if necessary.
4429 static const Insn_template elf32_arm_stub_long_branch_any_any
[] =
4431 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4432 Insn_template::data_word(0, elfcpp::R_ARM_ABS32
, 0),
4433 // dcd R_ARM_ABS32(X)
4436 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4438 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb
[] =
4440 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4441 Insn_template::arm_insn(0xe12fff1c), // bx ip
4442 Insn_template::data_word(0, elfcpp::R_ARM_ABS32
, 0),
4443 // dcd R_ARM_ABS32(X)
4446 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4447 static const Insn_template elf32_arm_stub_long_branch_thumb_only
[] =
4449 Insn_template::thumb16_insn(0xb401), // push {r0}
4450 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4451 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4452 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4453 Insn_template::thumb16_insn(0x4760), // bx ip
4454 Insn_template::thumb16_insn(0xbf00), // nop
4455 Insn_template::data_word(0, elfcpp::R_ARM_ABS32
, 0),
4456 // dcd R_ARM_ABS32(X)
4459 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4461 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb
[] =
4463 Insn_template::thumb16_insn(0x4778), // bx pc
4464 Insn_template::thumb16_insn(0x46c0), // nop
4465 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4466 Insn_template::arm_insn(0xe12fff1c), // bx ip
4467 Insn_template::data_word(0, elfcpp::R_ARM_ABS32
, 0),
4468 // dcd R_ARM_ABS32(X)
4471 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4473 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm
[] =
4475 Insn_template::thumb16_insn(0x4778), // bx pc
4476 Insn_template::thumb16_insn(0x46c0), // nop
4477 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4478 Insn_template::data_word(0, elfcpp::R_ARM_ABS32
, 0),
4479 // dcd R_ARM_ABS32(X)
4482 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4483 // one, when the destination is close enough.
4484 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm
[] =
4486 Insn_template::thumb16_insn(0x4778), // bx pc
4487 Insn_template::thumb16_insn(0x46c0), // nop
4488 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4491 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4492 // blx to reach the stub if necessary.
4493 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic
[] =
4495 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4496 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4497 Insn_template::data_word(0, elfcpp::R_ARM_REL32
, -4),
4498 // dcd R_ARM_REL32(X-4)
4501 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4502 // blx to reach the stub if necessary. We can not add into pc;
4503 // it is not guaranteed to mode switch (different in ARMv6 and
4505 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic
[] =
4507 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4508 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4509 Insn_template::arm_insn(0xe12fff1c), // bx ip
4510 Insn_template::data_word(0, elfcpp::R_ARM_REL32
, 0),
4511 // dcd R_ARM_REL32(X)
4514 // V4T ARM -> ARM long branch stub, PIC.
4515 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic
[] =
4517 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4518 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4519 Insn_template::arm_insn(0xe12fff1c), // bx ip
4520 Insn_template::data_word(0, elfcpp::R_ARM_REL32
, 0),
4521 // dcd R_ARM_REL32(X)
4524 // V4T Thumb -> ARM long branch stub, PIC.
4525 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic
[] =
4527 Insn_template::thumb16_insn(0x4778), // bx pc
4528 Insn_template::thumb16_insn(0x46c0), // nop
4529 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4530 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4531 Insn_template::data_word(0, elfcpp::R_ARM_REL32
, -4),
4532 // dcd R_ARM_REL32(X)
4535 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4537 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic
[] =
4539 Insn_template::thumb16_insn(0xb401), // push {r0}
4540 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4541 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4542 Insn_template::thumb16_insn(0x4484), // add ip, r0
4543 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4544 Insn_template::thumb16_insn(0x4760), // bx ip
4545 Insn_template::data_word(0, elfcpp::R_ARM_REL32
, 4),
4546 // dcd R_ARM_REL32(X)
4549 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4551 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic
[] =
4553 Insn_template::thumb16_insn(0x4778), // bx pc
4554 Insn_template::thumb16_insn(0x46c0), // nop
4555 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4556 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4557 Insn_template::arm_insn(0xe12fff1c), // bx ip
4558 Insn_template::data_word(0, elfcpp::R_ARM_REL32
, 0),
4559 // dcd R_ARM_REL32(X)
4562 // Cortex-A8 erratum-workaround stubs.
4564 // Stub used for conditional branches (which may be beyond +/-1MB away,
4565 // so we can't use a conditional branch to reach this stub).
4572 static const Insn_template elf32_arm_stub_a8_veneer_b_cond
[] =
4574 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4575 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4576 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4580 // Stub used for b.w and bl.w instructions.
4582 static const Insn_template elf32_arm_stub_a8_veneer_b
[] =
4584 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4587 static const Insn_template elf32_arm_stub_a8_veneer_bl
[] =
4589 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4592 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4593 // instruction (which switches to ARM mode) to point to this stub. Jump to
4594 // the real destination using an ARM-mode branch.
4595 static const Insn_template elf32_arm_stub_a8_veneer_blx
[] =
4597 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4600 // Stub used to provide an interworking for R_ARM_V4BX relocation
4601 // (bx r[n] instruction).
4602 static const Insn_template elf32_arm_stub_v4_veneer_bx
[] =
4604 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4605 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4606 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4609 // Fill in the stub template look-up table. Stub templates are constructed
4610 // per instance of Stub_factory for fast look-up without locking
4611 // in a thread-enabled environment.
4613 this->stub_templates_
[arm_stub_none
] =
4614 new Stub_template(arm_stub_none
, NULL
, 0);
4616 #define DEF_STUB(x) \
4620 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4621 Stub_type type = arm_stub_##x; \
4622 this->stub_templates_[type] = \
4623 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4631 // Stub_table methods.
4633 // Removel all Cortex-A8 stub.
4635 template<bool big_endian
>
4637 Stub_table
<big_endian
>::remove_all_cortex_a8_stubs()
4639 for (Cortex_a8_stub_list::iterator p
= this->cortex_a8_stubs_
.begin();
4640 p
!= this->cortex_a8_stubs_
.end();
4643 this->cortex_a8_stubs_
.clear();
4646 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4648 template<bool big_endian
>
4650 Stub_table
<big_endian
>::relocate_stub(
4652 const Relocate_info
<32, big_endian
>* relinfo
,
4653 Target_arm
<big_endian
>* arm_target
,
4654 Output_section
* output_section
,
4655 unsigned char* view
,
4656 Arm_address address
,
4657 section_size_type view_size
)
4659 const Stub_template
* stub_template
= stub
->stub_template();
4660 if (stub_template
->reloc_count() != 0)
4662 // Adjust view to cover the stub only.
4663 section_size_type offset
= stub
->offset();
4664 section_size_type stub_size
= stub_template
->size();
4665 gold_assert(offset
+ stub_size
<= view_size
);
4667 arm_target
->relocate_stub(stub
, relinfo
, output_section
, view
+ offset
,
4668 address
+ offset
, stub_size
);
4672 // Relocate all stubs in this stub table.
4674 template<bool big_endian
>
4676 Stub_table
<big_endian
>::relocate_stubs(
4677 const Relocate_info
<32, big_endian
>* relinfo
,
4678 Target_arm
<big_endian
>* arm_target
,
4679 Output_section
* output_section
,
4680 unsigned char* view
,
4681 Arm_address address
,
4682 section_size_type view_size
)
4684 // If we are passed a view bigger than the stub table's. we need to
4686 gold_assert(address
== this->address()
4688 == static_cast<section_size_type
>(this->data_size())));
4690 // Relocate all relocation stubs.
4691 for (typename
Reloc_stub_map::const_iterator p
= this->reloc_stubs_
.begin();
4692 p
!= this->reloc_stubs_
.end();
4694 this->relocate_stub(p
->second
, relinfo
, arm_target
, output_section
, view
,
4695 address
, view_size
);
4697 // Relocate all Cortex-A8 stubs.
4698 for (Cortex_a8_stub_list::iterator p
= this->cortex_a8_stubs_
.begin();
4699 p
!= this->cortex_a8_stubs_
.end();
4701 this->relocate_stub(p
->second
, relinfo
, arm_target
, output_section
, view
,
4702 address
, view_size
);
4704 // Relocate all ARM V4BX stubs.
4705 for (Arm_v4bx_stub_list::iterator p
= this->arm_v4bx_stubs_
.begin();
4706 p
!= this->arm_v4bx_stubs_
.end();
4710 this->relocate_stub(*p
, relinfo
, arm_target
, output_section
, view
,
4711 address
, view_size
);
4715 // Write out the stubs to file.
4717 template<bool big_endian
>
4719 Stub_table
<big_endian
>::do_write(Output_file
* of
)
4721 off_t offset
= this->offset();
4722 const section_size_type oview_size
=
4723 convert_to_section_size_type(this->data_size());
4724 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
4726 // Write relocation stubs.
4727 for (typename
Reloc_stub_map::const_iterator p
= this->reloc_stubs_
.begin();
4728 p
!= this->reloc_stubs_
.end();
4731 Reloc_stub
* stub
= p
->second
;
4732 Arm_address address
= this->address() + stub
->offset();
4734 == align_address(address
,
4735 stub
->stub_template()->alignment()));
4736 stub
->write(oview
+ stub
->offset(), stub
->stub_template()->size(),
4740 // Write Cortex-A8 stubs.
4741 for (Cortex_a8_stub_list::const_iterator p
= this->cortex_a8_stubs_
.begin();
4742 p
!= this->cortex_a8_stubs_
.end();
4745 Cortex_a8_stub
* stub
= p
->second
;
4746 Arm_address address
= this->address() + stub
->offset();
4748 == align_address(address
,
4749 stub
->stub_template()->alignment()));
4750 stub
->write(oview
+ stub
->offset(), stub
->stub_template()->size(),
4754 // Write ARM V4BX relocation stubs.
4755 for (Arm_v4bx_stub_list::const_iterator p
= this->arm_v4bx_stubs_
.begin();
4756 p
!= this->arm_v4bx_stubs_
.end();
4762 Arm_address address
= this->address() + (*p
)->offset();
4764 == align_address(address
,
4765 (*p
)->stub_template()->alignment()));
4766 (*p
)->write(oview
+ (*p
)->offset(), (*p
)->stub_template()->size(),
4770 of
->write_output_view(this->offset(), oview_size
, oview
);
4773 // Update the data size and address alignment of the stub table at the end
4774 // of a relaxation pass. Return true if either the data size or the
4775 // alignment changed in this relaxation pass.
4777 template<bool big_endian
>
4779 Stub_table
<big_endian
>::update_data_size_and_addralign()
4781 // Go over all stubs in table to compute data size and address alignment.
4782 off_t size
= this->reloc_stubs_size_
;
4783 unsigned addralign
= this->reloc_stubs_addralign_
;
4785 for (Cortex_a8_stub_list::const_iterator p
= this->cortex_a8_stubs_
.begin();
4786 p
!= this->cortex_a8_stubs_
.end();
4789 const Stub_template
* stub_template
= p
->second
->stub_template();
4790 addralign
= std::max(addralign
, stub_template
->alignment());
4791 size
= (align_address(size
, stub_template
->alignment())
4792 + stub_template
->size());
4795 for (Arm_v4bx_stub_list::const_iterator p
= this->arm_v4bx_stubs_
.begin();
4796 p
!= this->arm_v4bx_stubs_
.end();
4802 const Stub_template
* stub_template
= (*p
)->stub_template();
4803 addralign
= std::max(addralign
, stub_template
->alignment());
4804 size
= (align_address(size
, stub_template
->alignment())
4805 + stub_template
->size());
4808 // Check if either data size or alignment changed in this pass.
4809 // Update prev_data_size_ and prev_addralign_. These will be used
4810 // as the current data size and address alignment for the next pass.
4811 bool changed
= size
!= this->prev_data_size_
;
4812 this->prev_data_size_
= size
;
4814 if (addralign
!= this->prev_addralign_
)
4816 this->prev_addralign_
= addralign
;
4821 // Finalize the stubs. This sets the offsets of the stubs within the stub
4822 // table. It also marks all input sections needing Cortex-A8 workaround.
4824 template<bool big_endian
>
4826 Stub_table
<big_endian
>::finalize_stubs()
4828 off_t off
= this->reloc_stubs_size_
;
4829 for (Cortex_a8_stub_list::const_iterator p
= this->cortex_a8_stubs_
.begin();
4830 p
!= this->cortex_a8_stubs_
.end();
4833 Cortex_a8_stub
* stub
= p
->second
;
4834 const Stub_template
* stub_template
= stub
->stub_template();
4835 uint64_t stub_addralign
= stub_template
->alignment();
4836 off
= align_address(off
, stub_addralign
);
4837 stub
->set_offset(off
);
4838 off
+= stub_template
->size();
4840 // Mark input section so that we can determine later if a code section
4841 // needs the Cortex-A8 workaround quickly.
4842 Arm_relobj
<big_endian
>* arm_relobj
=
4843 Arm_relobj
<big_endian
>::as_arm_relobj(stub
->relobj());
4844 arm_relobj
->mark_section_for_cortex_a8_workaround(stub
->shndx());
4847 for (Arm_v4bx_stub_list::const_iterator p
= this->arm_v4bx_stubs_
.begin();
4848 p
!= this->arm_v4bx_stubs_
.end();
4854 const Stub_template
* stub_template
= (*p
)->stub_template();
4855 uint64_t stub_addralign
= stub_template
->alignment();
4856 off
= align_address(off
, stub_addralign
);
4857 (*p
)->set_offset(off
);
4858 off
+= stub_template
->size();
4861 gold_assert(off
<= this->prev_data_size_
);
4864 // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
4865 // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
4866 // of the address range seen by the linker.
4868 template<bool big_endian
>
4870 Stub_table
<big_endian
>::apply_cortex_a8_workaround_to_address_range(
4871 Target_arm
<big_endian
>* arm_target
,
4872 unsigned char* view
,
4873 Arm_address view_address
,
4874 section_size_type view_size
)
4876 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
4877 for (Cortex_a8_stub_list::const_iterator p
=
4878 this->cortex_a8_stubs_
.lower_bound(view_address
);
4879 ((p
!= this->cortex_a8_stubs_
.end())
4880 && (p
->first
< (view_address
+ view_size
)));
4883 // We do not store the THUMB bit in the LSB of either the branch address
4884 // or the stub offset. There is no need to strip the LSB.
4885 Arm_address branch_address
= p
->first
;
4886 const Cortex_a8_stub
* stub
= p
->second
;
4887 Arm_address stub_address
= this->address() + stub
->offset();
4889 // Offset of the branch instruction relative to this view.
4890 section_size_type offset
=
4891 convert_to_section_size_type(branch_address
- view_address
);
4892 gold_assert((offset
+ 4) <= view_size
);
4894 arm_target
->apply_cortex_a8_workaround(stub
, stub_address
,
4895 view
+ offset
, branch_address
);
4899 // Arm_input_section methods.
4901 // Initialize an Arm_input_section.
4903 template<bool big_endian
>
4905 Arm_input_section
<big_endian
>::init()
4907 Relobj
* relobj
= this->relobj();
4908 unsigned int shndx
= this->shndx();
4910 // Cache these to speed up size and alignment queries. It is too slow
4911 // to call section_addraglin and section_size every time.
4912 this->original_addralign_
= relobj
->section_addralign(shndx
);
4913 this->original_size_
= relobj
->section_size(shndx
);
4915 // We want to make this look like the original input section after
4916 // output sections are finalized.
4917 Output_section
* os
= relobj
->output_section(shndx
);
4918 off_t offset
= relobj
->output_section_offset(shndx
);
4919 gold_assert(os
!= NULL
&& !relobj
->is_output_section_offset_invalid(shndx
));
4920 this->set_address(os
->address() + offset
);
4921 this->set_file_offset(os
->offset() + offset
);
4923 this->set_current_data_size(this->original_size_
);
4924 this->finalize_data_size();
4927 template<bool big_endian
>
4929 Arm_input_section
<big_endian
>::do_write(Output_file
* of
)
4931 // We have to write out the original section content.
4932 section_size_type section_size
;
4933 const unsigned char* section_contents
=
4934 this->relobj()->section_contents(this->shndx(), §ion_size
, false);
4935 of
->write(this->offset(), section_contents
, section_size
);
4937 // If this owns a stub table and it is not empty, write it.
4938 if (this->is_stub_table_owner() && !this->stub_table_
->empty())
4939 this->stub_table_
->write(of
);
4942 // Finalize data size.
4944 template<bool big_endian
>
4946 Arm_input_section
<big_endian
>::set_final_data_size()
4948 off_t off
= convert_types
<off_t
, uint64_t>(this->original_size_
);
4950 if (this->is_stub_table_owner())
4952 // The stub table comes after the original section contents.
4953 off
= align_address(off
, this->stub_table_
->addralign());
4954 this->stub_table_
->set_address_and_file_offset(this->address() + off
,
4955 this->offset() + off
);
4956 off
+= this->stub_table_
->data_size();
4958 this->set_data_size(off
);
4961 // Reset address and file offset.
4963 template<bool big_endian
>
4965 Arm_input_section
<big_endian
>::do_reset_address_and_file_offset()
4967 // Size of the original input section contents.
4968 off_t off
= convert_types
<off_t
, uint64_t>(this->original_size_
);
4970 // If this is a stub table owner, account for the stub table size.
4971 if (this->is_stub_table_owner())
4973 Stub_table
<big_endian
>* stub_table
= this->stub_table_
;
4975 // Reset the stub table's address and file offset. The
4976 // current data size for child will be updated after that.
4977 stub_table_
->reset_address_and_file_offset();
4978 off
= align_address(off
, stub_table_
->addralign());
4979 off
+= stub_table
->current_data_size();
4982 this->set_current_data_size(off
);
4985 // Arm_exidx_cantunwind methods.
4987 // Write this to Output file OF for a fixed endianness.
4989 template<bool big_endian
>
4991 Arm_exidx_cantunwind::do_fixed_endian_write(Output_file
* of
)
4993 off_t offset
= this->offset();
4994 const section_size_type oview_size
= 8;
4995 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
4997 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
4998 Valtype
* wv
= reinterpret_cast<Valtype
*>(oview
);
5000 Output_section
* os
= this->relobj_
->output_section(this->shndx_
);
5001 gold_assert(os
!= NULL
);
5003 Arm_relobj
<big_endian
>* arm_relobj
=
5004 Arm_relobj
<big_endian
>::as_arm_relobj(this->relobj_
);
5005 Arm_address output_offset
=
5006 arm_relobj
->get_output_section_offset(this->shndx_
);
5007 Arm_address section_start
;
5008 if (output_offset
!= Arm_relobj
<big_endian
>::invalid_address
)
5009 section_start
= os
->address() + output_offset
;
5012 // Currently this only happens for a relaxed section.
5013 const Output_relaxed_input_section
* poris
=
5014 os
->find_relaxed_input_section(this->relobj_
, this->shndx_
);
5015 gold_assert(poris
!= NULL
);
5016 section_start
= poris
->address();
5019 // We always append this to the end of an EXIDX section.
5020 Arm_address output_address
=
5021 section_start
+ this->relobj_
->section_size(this->shndx_
);
5023 // Write out the entry. The first word either points to the beginning
5024 // or after the end of a text section. The second word is the special
5025 // EXIDX_CANTUNWIND value.
5026 uint32_t prel31_offset
= output_address
- this->address();
5027 if (utils::has_overflow
<31>(offset
))
5028 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5029 elfcpp::Swap
<32, big_endian
>::writeval(wv
, prel31_offset
& 0x7fffffffU
);
5030 elfcpp::Swap
<32, big_endian
>::writeval(wv
+ 1, elfcpp::EXIDX_CANTUNWIND
);
5032 of
->write_output_view(this->offset(), oview_size
, oview
);
5035 // Arm_exidx_merged_section methods.
5037 // Constructor for Arm_exidx_merged_section.
5038 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5039 // SECTION_OFFSET_MAP points to a section offset map describing how
5040 // parts of the input section are mapped to output. DELETED_BYTES is
5041 // the number of bytes deleted from the EXIDX input section.
5043 Arm_exidx_merged_section::Arm_exidx_merged_section(
5044 const Arm_exidx_input_section
& exidx_input_section
,
5045 const Arm_exidx_section_offset_map
& section_offset_map
,
5046 uint32_t deleted_bytes
)
5047 : Output_relaxed_input_section(exidx_input_section
.relobj(),
5048 exidx_input_section
.shndx(),
5049 exidx_input_section
.addralign()),
5050 exidx_input_section_(exidx_input_section
),
5051 section_offset_map_(section_offset_map
)
5053 // Fix size here so that we do not need to implement set_final_data_size.
5054 this->set_data_size(exidx_input_section
.size() - deleted_bytes
);
5055 this->fix_data_size();
5058 // Given an input OBJECT, an input section index SHNDX within that
5059 // object, and an OFFSET relative to the start of that input
5060 // section, return whether or not the corresponding offset within
5061 // the output section is known. If this function returns true, it
5062 // sets *POUTPUT to the output offset. The value -1 indicates that
5063 // this input offset is being discarded.
5066 Arm_exidx_merged_section::do_output_offset(
5067 const Relobj
* relobj
,
5069 section_offset_type offset
,
5070 section_offset_type
* poutput
) const
5072 // We only handle offsets for the original EXIDX input section.
5073 if (relobj
!= this->exidx_input_section_
.relobj()
5074 || shndx
!= this->exidx_input_section_
.shndx())
5077 section_offset_type section_size
=
5078 convert_types
<section_offset_type
>(this->exidx_input_section_
.size());
5079 if (offset
< 0 || offset
>= section_size
)
5080 // Input offset is out of valid range.
5084 // We need to look up the section offset map to determine the output
5085 // offset. Find the reference point in map that is first offset
5086 // bigger than or equal to this offset.
5087 Arm_exidx_section_offset_map::const_iterator p
=
5088 this->section_offset_map_
.lower_bound(offset
);
5090 // The section offset maps are build such that this should not happen if
5091 // input offset is in the valid range.
5092 gold_assert(p
!= this->section_offset_map_
.end());
5094 // We need to check if this is dropped.
5095 section_offset_type ref
= p
->first
;
5096 section_offset_type mapped_ref
= p
->second
;
5098 if (mapped_ref
!= Arm_exidx_input_section::invalid_offset
)
5099 // Offset is present in output.
5100 *poutput
= mapped_ref
+ (offset
- ref
);
5102 // Offset is discarded owing to EXIDX entry merging.
5109 // Write this to output file OF.
5112 Arm_exidx_merged_section::do_write(Output_file
* of
)
5114 // If we retain or discard the whole EXIDX input section, we would
5116 gold_assert(this->data_size() != this->exidx_input_section_
.size()
5117 && this->data_size() != 0);
5119 off_t offset
= this->offset();
5120 const section_size_type oview_size
= this->data_size();
5121 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
5123 Output_section
* os
= this->relobj()->output_section(this->shndx());
5124 gold_assert(os
!= NULL
);
5126 // Get contents of EXIDX input section.
5127 section_size_type section_size
;
5128 const unsigned char* section_contents
=
5129 this->relobj()->section_contents(this->shndx(), §ion_size
, false);
5130 gold_assert(section_size
== this->exidx_input_section_
.size());
5132 // Go over spans of input offsets and write only those that are not
5134 section_offset_type in_start
= 0;
5135 section_offset_type out_start
= 0;
5136 for(Arm_exidx_section_offset_map::const_iterator p
=
5137 this->section_offset_map_
.begin();
5138 p
!= this->section_offset_map_
.end();
5141 section_offset_type in_end
= p
->first
;
5142 gold_assert(in_end
>= in_start
);
5143 section_offset_type out_end
= p
->second
;
5144 size_t in_chunk_size
= convert_types
<size_t>(in_end
- in_start
+ 1);
5147 size_t out_chunk_size
=
5148 convert_types
<size_t>(out_end
- out_start
+ 1);
5149 gold_assert(out_chunk_size
== in_chunk_size
);
5150 memcpy(oview
+ out_start
, section_contents
+ in_start
,
5152 out_start
+= out_chunk_size
;
5154 in_start
+= in_chunk_size
;
5157 gold_assert(convert_to_section_size_type(out_start
) == oview_size
);
5158 of
->write_output_view(this->offset(), oview_size
, oview
);
5161 // Arm_exidx_fixup methods.
5163 // Append an EXIDX_CANTUNWIND in the current output section if the last entry
5164 // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5165 // points to the end of the last seen EXIDX section.
5168 Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5170 if (this->last_unwind_type_
!= UT_EXIDX_CANTUNWIND
5171 && this->last_input_section_
!= NULL
)
5173 Relobj
* relobj
= this->last_input_section_
->relobj();
5174 unsigned int text_shndx
= this->last_input_section_
->link();
5175 Arm_exidx_cantunwind
* cantunwind
=
5176 new Arm_exidx_cantunwind(relobj
, text_shndx
);
5177 this->exidx_output_section_
->add_output_section_data(cantunwind
);
5178 this->last_unwind_type_
= UT_EXIDX_CANTUNWIND
;
5182 // Process an EXIDX section entry in input. Return whether this entry
5183 // can be deleted in the output. SECOND_WORD in the second word of the
5187 Arm_exidx_fixup::process_exidx_entry(uint32_t second_word
)
5190 if (second_word
== elfcpp::EXIDX_CANTUNWIND
)
5192 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5193 delete_entry
= this->last_unwind_type_
== UT_EXIDX_CANTUNWIND
;
5194 this->last_unwind_type_
= UT_EXIDX_CANTUNWIND
;
5196 else if ((second_word
& 0x80000000) != 0)
5198 // Inlined unwinding data. Merge if equal to previous.
5199 delete_entry
= (merge_exidx_entries_
5200 && this->last_unwind_type_
== UT_INLINED_ENTRY
5201 && this->last_inlined_entry_
== second_word
);
5202 this->last_unwind_type_
= UT_INLINED_ENTRY
;
5203 this->last_inlined_entry_
= second_word
;
5207 // Normal table entry. In theory we could merge these too,
5208 // but duplicate entries are likely to be much less common.
5209 delete_entry
= false;
5210 this->last_unwind_type_
= UT_NORMAL_ENTRY
;
5212 return delete_entry
;
5215 // Update the current section offset map during EXIDX section fix-up.
5216 // If there is no map, create one. INPUT_OFFSET is the offset of a
5217 // reference point, DELETED_BYTES is the number of deleted by in the
5218 // section so far. If DELETE_ENTRY is true, the reference point and
5219 // all offsets after the previous reference point are discarded.
5222 Arm_exidx_fixup::update_offset_map(
5223 section_offset_type input_offset
,
5224 section_size_type deleted_bytes
,
5227 if (this->section_offset_map_
== NULL
)
5228 this->section_offset_map_
= new Arm_exidx_section_offset_map();
5229 section_offset_type output_offset
;
5231 output_offset
= Arm_exidx_input_section::invalid_offset
;
5233 output_offset
= input_offset
- deleted_bytes
;
5234 (*this->section_offset_map_
)[input_offset
] = output_offset
;
5237 // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5238 // bytes deleted. If some entries are merged, also store a pointer to a newly
5239 // created Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The
5240 // caller owns the map and is responsible for releasing it after use.
5242 template<bool big_endian
>
5244 Arm_exidx_fixup::process_exidx_section(
5245 const Arm_exidx_input_section
* exidx_input_section
,
5246 Arm_exidx_section_offset_map
** psection_offset_map
)
5248 Relobj
* relobj
= exidx_input_section
->relobj();
5249 unsigned shndx
= exidx_input_section
->shndx();
5250 section_size_type section_size
;
5251 const unsigned char* section_contents
=
5252 relobj
->section_contents(shndx
, §ion_size
, false);
5254 if ((section_size
% 8) != 0)
5256 // Something is wrong with this section. Better not touch it.
5257 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5258 relobj
->name().c_str(), shndx
);
5259 this->last_input_section_
= exidx_input_section
;
5260 this->last_unwind_type_
= UT_NONE
;
5264 uint32_t deleted_bytes
= 0;
5265 bool prev_delete_entry
= false;
5266 gold_assert(this->section_offset_map_
== NULL
);
5268 for (section_size_type i
= 0; i
< section_size
; i
+= 8)
5270 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
5272 reinterpret_cast<const Valtype
*>(section_contents
+ i
+ 4);
5273 uint32_t second_word
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
5275 bool delete_entry
= this->process_exidx_entry(second_word
);
5277 // Entry deletion causes changes in output offsets. We use a std::map
5278 // to record these. And entry (x, y) means input offset x
5279 // is mapped to output offset y. If y is invalid_offset, then x is
5280 // dropped in the output. Because of the way std::map::lower_bound
5281 // works, we record the last offset in a region w.r.t to keeping or
5282 // dropping. If there is no entry (x0, y0) for an input offset x0,
5283 // the output offset y0 of it is determined by the output offset y1 of
5284 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5285 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Othewise, y1
5287 if (delete_entry
!= prev_delete_entry
&& i
!= 0)
5288 this->update_offset_map(i
- 1, deleted_bytes
, prev_delete_entry
);
5290 // Update total deleted bytes for this entry.
5294 prev_delete_entry
= delete_entry
;
5297 // If section offset map is not NULL, make an entry for the end of
5299 if (this->section_offset_map_
!= NULL
)
5300 update_offset_map(section_size
- 1, deleted_bytes
, prev_delete_entry
);
5302 *psection_offset_map
= this->section_offset_map_
;
5303 this->section_offset_map_
= NULL
;
5304 this->last_input_section_
= exidx_input_section
;
5306 // Set the first output text section so that we can link the EXIDX output
5307 // section to it. Ignore any EXIDX input section that is completely merged.
5308 if (this->first_output_text_section_
== NULL
5309 && deleted_bytes
!= section_size
)
5311 unsigned int link
= exidx_input_section
->link();
5312 Output_section
* os
= relobj
->output_section(link
);
5313 gold_assert(os
!= NULL
);
5314 this->first_output_text_section_
= os
;
5317 return deleted_bytes
;
5320 // Arm_output_section methods.
5322 // Create a stub group for input sections from BEGIN to END. OWNER
5323 // points to the input section to be the owner a new stub table.
5325 template<bool big_endian
>
5327 Arm_output_section
<big_endian
>::create_stub_group(
5328 Input_section_list::const_iterator begin
,
5329 Input_section_list::const_iterator end
,
5330 Input_section_list::const_iterator owner
,
5331 Target_arm
<big_endian
>* target
,
5332 std::vector
<Output_relaxed_input_section
*>* new_relaxed_sections
)
5334 // We use a different kind of relaxed section in an EXIDX section.
5335 // The static casting from Output_relaxed_input_section to
5336 // Arm_input_section is invalid in an EXIDX section. We are okay
5337 // because we should not be calling this for an EXIDX section.
5338 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX
);
5340 // Currently we convert ordinary input sections into relaxed sections only
5341 // at this point but we may want to support creating relaxed input section
5342 // very early. So we check here to see if owner is already a relaxed
5345 Arm_input_section
<big_endian
>* arm_input_section
;
5346 if (owner
->is_relaxed_input_section())
5349 Arm_input_section
<big_endian
>::as_arm_input_section(
5350 owner
->relaxed_input_section());
5354 gold_assert(owner
->is_input_section());
5355 // Create a new relaxed input section.
5357 target
->new_arm_input_section(owner
->relobj(), owner
->shndx());
5358 new_relaxed_sections
->push_back(arm_input_section
);
5361 // Create a stub table.
5362 Stub_table
<big_endian
>* stub_table
=
5363 target
->new_stub_table(arm_input_section
);
5365 arm_input_section
->set_stub_table(stub_table
);
5367 Input_section_list::const_iterator p
= begin
;
5368 Input_section_list::const_iterator prev_p
;
5370 // Look for input sections or relaxed input sections in [begin ... end].
5373 if (p
->is_input_section() || p
->is_relaxed_input_section())
5375 // The stub table information for input sections live
5376 // in their objects.
5377 Arm_relobj
<big_endian
>* arm_relobj
=
5378 Arm_relobj
<big_endian
>::as_arm_relobj(p
->relobj());
5379 arm_relobj
->set_stub_table(p
->shndx(), stub_table
);
5383 while (prev_p
!= end
);
5386 // Group input sections for stub generation. GROUP_SIZE is roughly the limit
5387 // of stub groups. We grow a stub group by adding input section until the
5388 // size is just below GROUP_SIZE. The last input section will be converted
5389 // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5390 // input section after the stub table, effectively double the group size.
5392 // This is similar to the group_sections() function in elf32-arm.c but is
5393 // implemented differently.
5395 template<bool big_endian
>
5397 Arm_output_section
<big_endian
>::group_sections(
5398 section_size_type group_size
,
5399 bool stubs_always_after_branch
,
5400 Target_arm
<big_endian
>* target
)
5402 // We only care about sections containing code.
5403 if ((this->flags() & elfcpp::SHF_EXECINSTR
) == 0)
5406 // States for grouping.
5409 // No group is being built.
5411 // A group is being built but the stub table is not found yet.
5412 // We keep group a stub group until the size is just under GROUP_SIZE.
5413 // The last input section in the group will be used as the stub table.
5414 FINDING_STUB_SECTION
,
5415 // A group is being built and we have already found a stub table.
5416 // We enter this state to grow a stub group by adding input section
5417 // after the stub table. This effectively doubles the group size.
5421 // Any newly created relaxed sections are stored here.
5422 std::vector
<Output_relaxed_input_section
*> new_relaxed_sections
;
5424 State state
= NO_GROUP
;
5425 section_size_type off
= 0;
5426 section_size_type group_begin_offset
= 0;
5427 section_size_type group_end_offset
= 0;
5428 section_size_type stub_table_end_offset
= 0;
5429 Input_section_list::const_iterator group_begin
=
5430 this->input_sections().end();
5431 Input_section_list::const_iterator stub_table
=
5432 this->input_sections().end();
5433 Input_section_list::const_iterator group_end
= this->input_sections().end();
5434 for (Input_section_list::const_iterator p
= this->input_sections().begin();
5435 p
!= this->input_sections().end();
5438 section_size_type section_begin_offset
=
5439 align_address(off
, p
->addralign());
5440 section_size_type section_end_offset
=
5441 section_begin_offset
+ p
->data_size();
5443 // Check to see if we should group the previously seens sections.
5449 case FINDING_STUB_SECTION
:
5450 // Adding this section makes the group larger than GROUP_SIZE.
5451 if (section_end_offset
- group_begin_offset
>= group_size
)
5453 if (stubs_always_after_branch
)
5455 gold_assert(group_end
!= this->input_sections().end());
5456 this->create_stub_group(group_begin
, group_end
, group_end
,
5457 target
, &new_relaxed_sections
);
5462 // But wait, there's more! Input sections up to
5463 // stub_group_size bytes after the stub table can be
5464 // handled by it too.
5465 state
= HAS_STUB_SECTION
;
5466 stub_table
= group_end
;
5467 stub_table_end_offset
= group_end_offset
;
5472 case HAS_STUB_SECTION
:
5473 // Adding this section makes the post stub-section group larger
5475 if (section_end_offset
- stub_table_end_offset
>= group_size
)
5477 gold_assert(group_end
!= this->input_sections().end());
5478 this->create_stub_group(group_begin
, group_end
, stub_table
,
5479 target
, &new_relaxed_sections
);
5488 // If we see an input section and currently there is no group, start
5489 // a new one. Skip any empty sections.
5490 if ((p
->is_input_section() || p
->is_relaxed_input_section())
5491 && (p
->relobj()->section_size(p
->shndx()) != 0))
5493 if (state
== NO_GROUP
)
5495 state
= FINDING_STUB_SECTION
;
5497 group_begin_offset
= section_begin_offset
;
5500 // Keep track of the last input section seen.
5502 group_end_offset
= section_end_offset
;
5505 off
= section_end_offset
;
5508 // Create a stub group for any ungrouped sections.
5509 if (state
== FINDING_STUB_SECTION
|| state
== HAS_STUB_SECTION
)
5511 gold_assert(group_end
!= this->input_sections().end());
5512 this->create_stub_group(group_begin
, group_end
,
5513 (state
== FINDING_STUB_SECTION
5516 target
, &new_relaxed_sections
);
5519 // Convert input section into relaxed input section in a batch.
5520 if (!new_relaxed_sections
.empty())
5521 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections
);
5523 // Update the section offsets
5524 for (size_t i
= 0; i
< new_relaxed_sections
.size(); ++i
)
5526 Arm_relobj
<big_endian
>* arm_relobj
=
5527 Arm_relobj
<big_endian
>::as_arm_relobj(
5528 new_relaxed_sections
[i
]->relobj());
5529 unsigned int shndx
= new_relaxed_sections
[i
]->shndx();
5530 // Tell Arm_relobj that this input section is converted.
5531 arm_relobj
->convert_input_section_to_relaxed_section(shndx
);
5535 // Append non empty text sections in this to LIST in ascending
5536 // order of their position in this.
5538 template<bool big_endian
>
5540 Arm_output_section
<big_endian
>::append_text_sections_to_list(
5541 Text_section_list
* list
)
5543 // We only care about text sections.
5544 if ((this->flags() & elfcpp::SHF_EXECINSTR
) == 0)
5547 gold_assert((this->flags() & elfcpp::SHF_ALLOC
) != 0);
5549 for (Input_section_list::const_iterator p
= this->input_sections().begin();
5550 p
!= this->input_sections().end();
5553 // We only care about plain or relaxed input sections. We also
5554 // ignore any merged sections.
5555 if ((p
->is_input_section() || p
->is_relaxed_input_section())
5556 && p
->data_size() != 0)
5557 list
->push_back(Text_section_list::value_type(p
->relobj(),
5562 template<bool big_endian
>
5564 Arm_output_section
<big_endian
>::fix_exidx_coverage(
5566 const Text_section_list
& sorted_text_sections
,
5567 Symbol_table
* symtab
,
5568 bool merge_exidx_entries
)
5570 // We should only do this for the EXIDX output section.
5571 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX
);
5573 // We don't want the relaxation loop to undo these changes, so we discard
5574 // the current saved states and take another one after the fix-up.
5575 this->discard_states();
5577 // Remove all input sections.
5578 uint64_t address
= this->address();
5579 typedef std::list
<Simple_input_section
> Simple_input_section_list
;
5580 Simple_input_section_list input_sections
;
5581 this->reset_address_and_file_offset();
5582 this->get_input_sections(address
, std::string(""), &input_sections
);
5584 if (!this->input_sections().empty())
5585 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5587 // Go through all the known input sections and record them.
5588 typedef Unordered_set
<Section_id
, Section_id_hash
> Section_id_set
;
5589 Section_id_set known_input_sections
;
5590 for (Simple_input_section_list::const_iterator p
= input_sections
.begin();
5591 p
!= input_sections
.end();
5594 // This should never happen. At this point, we should only see
5595 // plain EXIDX input sections.
5596 gold_assert(!p
->is_relaxed_input_section());
5597 known_input_sections
.insert(Section_id(p
->relobj(), p
->shndx()));
5600 Arm_exidx_fixup
exidx_fixup(this, merge_exidx_entries
);
5602 // Go over the sorted text sections.
5603 Section_id_set processed_input_sections
;
5604 for (Text_section_list::const_iterator p
= sorted_text_sections
.begin();
5605 p
!= sorted_text_sections
.end();
5608 Relobj
* relobj
= p
->first
;
5609 unsigned int shndx
= p
->second
;
5611 Arm_relobj
<big_endian
>* arm_relobj
=
5612 Arm_relobj
<big_endian
>::as_arm_relobj(relobj
);
5613 const Arm_exidx_input_section
* exidx_input_section
=
5614 arm_relobj
->exidx_input_section_by_link(shndx
);
5616 // If this text section has no EXIDX section, force an EXIDX_CANTUNWIND
5617 // entry pointing to the end of the last seen EXIDX section.
5618 if (exidx_input_section
== NULL
)
5620 exidx_fixup
.add_exidx_cantunwind_as_needed();
5624 Relobj
* exidx_relobj
= exidx_input_section
->relobj();
5625 unsigned int exidx_shndx
= exidx_input_section
->shndx();
5626 Section_id
sid(exidx_relobj
, exidx_shndx
);
5627 if (known_input_sections
.find(sid
) == known_input_sections
.end())
5629 // This is odd. We have not seen this EXIDX input section before.
5630 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5631 // issue a warning instead. We assume the user knows what he
5632 // or she is doing. Otherwise, this is an error.
5633 if (layout
->script_options()->saw_sections_clause())
5634 gold_warning(_("unwinding may not work because EXIDX input section"
5635 " %u of %s is not in EXIDX output section"),
5636 exidx_shndx
, exidx_relobj
->name().c_str());
5638 gold_error(_("unwinding may not work because EXIDX input section"
5639 " %u of %s is not in EXIDX output section"),
5640 exidx_shndx
, exidx_relobj
->name().c_str());
5642 exidx_fixup
.add_exidx_cantunwind_as_needed();
5646 // Fix up coverage and append input section to output data list.
5647 Arm_exidx_section_offset_map
* section_offset_map
= NULL
;
5648 uint32_t deleted_bytes
=
5649 exidx_fixup
.process_exidx_section
<big_endian
>(exidx_input_section
,
5650 §ion_offset_map
);
5652 if (deleted_bytes
== exidx_input_section
->size())
5654 // The whole EXIDX section got merged. Remove it from output.
5655 gold_assert(section_offset_map
== NULL
);
5656 exidx_relobj
->set_output_section(exidx_shndx
, NULL
);
5658 // All local symbols defined in this input section will be dropped.
5659 // We need to adjust output local symbol count.
5660 arm_relobj
->set_output_local_symbol_count_needs_update();
5662 else if (deleted_bytes
> 0)
5664 // Some entries are merged. We need to convert this EXIDX input
5665 // section into a relaxed section.
5666 gold_assert(section_offset_map
!= NULL
);
5667 Arm_exidx_merged_section
* merged_section
=
5668 new Arm_exidx_merged_section(*exidx_input_section
,
5669 *section_offset_map
, deleted_bytes
);
5670 this->add_relaxed_input_section(merged_section
);
5671 arm_relobj
->convert_input_section_to_relaxed_section(exidx_shndx
);
5673 // All local symbols defined in discarded portions of this input
5674 // section will be dropped. We need to adjust output local symbol
5676 arm_relobj
->set_output_local_symbol_count_needs_update();
5680 // Just add back the EXIDX input section.
5681 gold_assert(section_offset_map
== NULL
);
5682 Output_section::Simple_input_section
sis(exidx_relobj
, exidx_shndx
);
5683 this->add_simple_input_section(sis
, exidx_input_section
->size(),
5684 exidx_input_section
->addralign());
5687 processed_input_sections
.insert(Section_id(exidx_relobj
, exidx_shndx
));
5690 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5691 exidx_fixup
.add_exidx_cantunwind_as_needed();
5693 // Remove any known EXIDX input sections that are not processed.
5694 for (Simple_input_section_list::const_iterator p
= input_sections
.begin();
5695 p
!= input_sections
.end();
5698 if (processed_input_sections
.find(Section_id(p
->relobj(), p
->shndx()))
5699 == processed_input_sections
.end())
5701 // We only discard a known EXIDX section because its linked
5702 // text section has been folded by ICF.
5703 Arm_relobj
<big_endian
>* arm_relobj
=
5704 Arm_relobj
<big_endian
>::as_arm_relobj(p
->relobj());
5705 const Arm_exidx_input_section
* exidx_input_section
=
5706 arm_relobj
->exidx_input_section_by_shndx(p
->shndx());
5707 gold_assert(exidx_input_section
!= NULL
);
5708 unsigned int text_shndx
= exidx_input_section
->link();
5709 gold_assert(symtab
->is_section_folded(p
->relobj(), text_shndx
));
5711 // Remove this from link. We also need to recount the
5713 p
->relobj()->set_output_section(p
->shndx(), NULL
);
5714 arm_relobj
->set_output_local_symbol_count_needs_update();
5718 // Link exidx output section to the first seen output section and
5719 // set correct entry size.
5720 this->set_link_section(exidx_fixup
.first_output_text_section());
5721 this->set_entsize(8);
5723 // Make changes permanent.
5724 this->save_states();
5725 this->set_section_offsets_need_adjustment();
5728 // Arm_relobj methods.
5730 // Determine if an input section is scannable for stub processing. SHDR is
5731 // the header of the section and SHNDX is the section index. OS is the output
5732 // section for the input section and SYMTAB is the global symbol table used to
5733 // look up ICF information.
5735 template<bool big_endian
>
5737 Arm_relobj
<big_endian
>::section_is_scannable(
5738 const elfcpp::Shdr
<32, big_endian
>& shdr
,
5740 const Output_section
* os
,
5741 const Symbol_table
*symtab
)
5743 // Skip any empty sections, unallocated sections or sections whose
5744 // type are not SHT_PROGBITS.
5745 if (shdr
.get_sh_size() == 0
5746 || (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0
5747 || shdr
.get_sh_type() != elfcpp::SHT_PROGBITS
)
5750 // Skip any discarded or ICF'ed sections.
5751 if (os
== NULL
|| symtab
->is_section_folded(this, shndx
))
5754 // If this requires special offset handling, check to see if it is
5755 // a relaxed section. If this is not, then it is a merged section that
5756 // we cannot handle.
5757 if (this->is_output_section_offset_invalid(shndx
))
5759 const Output_relaxed_input_section
* poris
=
5760 os
->find_relaxed_input_section(this, shndx
);
5768 // Determine if we want to scan the SHNDX-th section for relocation stubs.
5769 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5771 template<bool big_endian
>
5773 Arm_relobj
<big_endian
>::section_needs_reloc_stub_scanning(
5774 const elfcpp::Shdr
<32, big_endian
>& shdr
,
5775 const Relobj::Output_sections
& out_sections
,
5776 const Symbol_table
*symtab
,
5777 const unsigned char* pshdrs
)
5779 unsigned int sh_type
= shdr
.get_sh_type();
5780 if (sh_type
!= elfcpp::SHT_REL
&& sh_type
!= elfcpp::SHT_RELA
)
5783 // Ignore empty section.
5784 off_t sh_size
= shdr
.get_sh_size();
5788 // Ignore reloc section with unexpected symbol table. The
5789 // error will be reported in the final link.
5790 if (this->adjust_shndx(shdr
.get_sh_link()) != this->symtab_shndx())
5793 unsigned int reloc_size
;
5794 if (sh_type
== elfcpp::SHT_REL
)
5795 reloc_size
= elfcpp::Elf_sizes
<32>::rel_size
;
5797 reloc_size
= elfcpp::Elf_sizes
<32>::rela_size
;
5799 // Ignore reloc section with unexpected entsize or uneven size.
5800 // The error will be reported in the final link.
5801 if (reloc_size
!= shdr
.get_sh_entsize() || sh_size
% reloc_size
!= 0)
5804 // Ignore reloc section with bad info. This error will be
5805 // reported in the final link.
5806 unsigned int index
= this->adjust_shndx(shdr
.get_sh_info());
5807 if (index
>= this->shnum())
5810 const unsigned int shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
5811 const elfcpp::Shdr
<32, big_endian
> text_shdr(pshdrs
+ index
* shdr_size
);
5812 return this->section_is_scannable(text_shdr
, index
,
5813 out_sections
[index
], symtab
);
5816 // Return the output address of either a plain input section or a relaxed
5817 // input section. SHNDX is the section index. We define and use this
5818 // instead of calling Output_section::output_address because that is slow
5819 // for large output.
5821 template<bool big_endian
>
5823 Arm_relobj
<big_endian
>::simple_input_section_output_address(
5827 if (this->is_output_section_offset_invalid(shndx
))
5829 const Output_relaxed_input_section
* poris
=
5830 os
->find_relaxed_input_section(this, shndx
);
5831 // We do not handle merged sections here.
5832 gold_assert(poris
!= NULL
);
5833 return poris
->address();
5836 return os
->address() + this->get_output_section_offset(shndx
);
5839 // Determine if we want to scan the SHNDX-th section for non-relocation stubs.
5840 // This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5842 template<bool big_endian
>
5844 Arm_relobj
<big_endian
>::section_needs_cortex_a8_stub_scanning(
5845 const elfcpp::Shdr
<32, big_endian
>& shdr
,
5848 const Symbol_table
* symtab
)
5850 if (!this->section_is_scannable(shdr
, shndx
, os
, symtab
))
5853 // If the section does not cross any 4K-boundaries, it does not need to
5855 Arm_address address
= this->simple_input_section_output_address(shndx
, os
);
5856 if ((address
& ~0xfffU
) == ((address
+ shdr
.get_sh_size() - 1) & ~0xfffU
))
5862 // Scan a section for Cortex-A8 workaround.
5864 template<bool big_endian
>
5866 Arm_relobj
<big_endian
>::scan_section_for_cortex_a8_erratum(
5867 const elfcpp::Shdr
<32, big_endian
>& shdr
,
5870 Target_arm
<big_endian
>* arm_target
)
5872 // Look for the first mapping symbol in this section. It should be
5874 Mapping_symbol_position
section_start(shndx
, 0);
5875 typename
Mapping_symbols_info::const_iterator p
=
5876 this->mapping_symbols_info_
.lower_bound(section_start
);
5878 // There are no mapping symbols for this section. Treat it as a data-only
5879 // section. Issue a warning if section is marked as containing
5881 if (p
== this->mapping_symbols_info_
.end() || p
->first
.first
!= shndx
)
5883 if ((this->section_flags(shndx
) & elfcpp::SHF_EXECINSTR
) != 0)
5884 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
5885 "erratum because it has no mapping symbols."),
5886 shndx
, this->name().c_str());
5890 Arm_address output_address
=
5891 this->simple_input_section_output_address(shndx
, os
);
5893 // Get the section contents.
5894 section_size_type input_view_size
= 0;
5895 const unsigned char* input_view
=
5896 this->section_contents(shndx
, &input_view_size
, false);
5898 // We need to go through the mapping symbols to determine what to
5899 // scan. There are two reasons. First, we should look at THUMB code and
5900 // THUMB code only. Second, we only want to look at the 4K-page boundary
5901 // to speed up the scanning.
5903 while (p
!= this->mapping_symbols_info_
.end()
5904 && p
->first
.first
== shndx
)
5906 typename
Mapping_symbols_info::const_iterator next
=
5907 this->mapping_symbols_info_
.upper_bound(p
->first
);
5909 // Only scan part of a section with THUMB code.
5910 if (p
->second
== 't')
5912 // Determine the end of this range.
5913 section_size_type span_start
=
5914 convert_to_section_size_type(p
->first
.second
);
5915 section_size_type span_end
;
5916 if (next
!= this->mapping_symbols_info_
.end()
5917 && next
->first
.first
== shndx
)
5918 span_end
= convert_to_section_size_type(next
->first
.second
);
5920 span_end
= convert_to_section_size_type(shdr
.get_sh_size());
5922 if (((span_start
+ output_address
) & ~0xfffUL
)
5923 != ((span_end
+ output_address
- 1) & ~0xfffUL
))
5925 arm_target
->scan_span_for_cortex_a8_erratum(this, shndx
,
5926 span_start
, span_end
,
5936 // Scan relocations for stub generation.
5938 template<bool big_endian
>
5940 Arm_relobj
<big_endian
>::scan_sections_for_stubs(
5941 Target_arm
<big_endian
>* arm_target
,
5942 const Symbol_table
* symtab
,
5943 const Layout
* layout
)
5945 unsigned int shnum
= this->shnum();
5946 const unsigned int shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
5948 // Read the section headers.
5949 const unsigned char* pshdrs
= this->get_view(this->elf_file()->shoff(),
5953 // To speed up processing, we set up hash tables for fast lookup of
5954 // input offsets to output addresses.
5955 this->initialize_input_to_output_maps();
5957 const Relobj::Output_sections
& out_sections(this->output_sections());
5959 Relocate_info
<32, big_endian
> relinfo
;
5960 relinfo
.symtab
= symtab
;
5961 relinfo
.layout
= layout
;
5962 relinfo
.object
= this;
5964 // Do relocation stubs scanning.
5965 const unsigned char* p
= pshdrs
+ shdr_size
;
5966 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= shdr_size
)
5968 const elfcpp::Shdr
<32, big_endian
> shdr(p
);
5969 if (this->section_needs_reloc_stub_scanning(shdr
, out_sections
, symtab
,
5972 unsigned int index
= this->adjust_shndx(shdr
.get_sh_info());
5973 Arm_address output_offset
= this->get_output_section_offset(index
);
5974 Arm_address output_address
;
5975 if (output_offset
!= invalid_address
)
5976 output_address
= out_sections
[index
]->address() + output_offset
;
5979 // Currently this only happens for a relaxed section.
5980 const Output_relaxed_input_section
* poris
=
5981 out_sections
[index
]->find_relaxed_input_section(this, index
);
5982 gold_assert(poris
!= NULL
);
5983 output_address
= poris
->address();
5986 // Get the relocations.
5987 const unsigned char* prelocs
= this->get_view(shdr
.get_sh_offset(),
5991 // Get the section contents. This does work for the case in which
5992 // we modify the contents of an input section. We need to pass the
5993 // output view under such circumstances.
5994 section_size_type input_view_size
= 0;
5995 const unsigned char* input_view
=
5996 this->section_contents(index
, &input_view_size
, false);
5998 relinfo
.reloc_shndx
= i
;
5999 relinfo
.data_shndx
= index
;
6000 unsigned int sh_type
= shdr
.get_sh_type();
6001 unsigned int reloc_size
;
6002 if (sh_type
== elfcpp::SHT_REL
)
6003 reloc_size
= elfcpp::Elf_sizes
<32>::rel_size
;
6005 reloc_size
= elfcpp::Elf_sizes
<32>::rela_size
;
6007 Output_section
* os
= out_sections
[index
];
6008 arm_target
->scan_section_for_stubs(&relinfo
, sh_type
, prelocs
,
6009 shdr
.get_sh_size() / reloc_size
,
6011 output_offset
== invalid_address
,
6012 input_view
, output_address
,
6017 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6018 // after its relocation section, if there is one, is processed for
6019 // relocation stubs. Merging this loop with the one above would have been
6020 // complicated since we would have had to make sure that relocation stub
6021 // scanning is done first.
6022 if (arm_target
->fix_cortex_a8())
6024 const unsigned char* p
= pshdrs
+ shdr_size
;
6025 for (unsigned int i
= 1; i
< shnum
; ++i
, p
+= shdr_size
)
6027 const elfcpp::Shdr
<32, big_endian
> shdr(p
);
6028 if (this->section_needs_cortex_a8_stub_scanning(shdr
, i
,
6031 this->scan_section_for_cortex_a8_erratum(shdr
, i
, out_sections
[i
],
6036 // After we've done the relocations, we release the hash tables,
6037 // since we no longer need them.
6038 this->free_input_to_output_maps();
6041 // Count the local symbols. The ARM backend needs to know if a symbol
6042 // is a THUMB function or not. For global symbols, it is easy because
6043 // the Symbol object keeps the ELF symbol type. For local symbol it is
6044 // harder because we cannot access this information. So we override the
6045 // do_count_local_symbol in parent and scan local symbols to mark
6046 // THUMB functions. This is not the most efficient way but I do not want to
6047 // slow down other ports by calling a per symbol targer hook inside
6048 // Sized_relobj<size, big_endian>::do_count_local_symbols.
6050 template<bool big_endian
>
6052 Arm_relobj
<big_endian
>::do_count_local_symbols(
6053 Stringpool_template
<char>* pool
,
6054 Stringpool_template
<char>* dynpool
)
6056 // We need to fix-up the values of any local symbols whose type are
6059 // Ask parent to count the local symbols.
6060 Sized_relobj
<32, big_endian
>::do_count_local_symbols(pool
, dynpool
);
6061 const unsigned int loccount
= this->local_symbol_count();
6065 // Intialize the thumb function bit-vector.
6066 std::vector
<bool> empty_vector(loccount
, false);
6067 this->local_symbol_is_thumb_function_
.swap(empty_vector
);
6069 // Read the symbol table section header.
6070 const unsigned int symtab_shndx
= this->symtab_shndx();
6071 elfcpp::Shdr
<32, big_endian
>
6072 symtabshdr(this, this->elf_file()->section_header(symtab_shndx
));
6073 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
6075 // Read the local symbols.
6076 const int sym_size
=elfcpp::Elf_sizes
<32>::sym_size
;
6077 gold_assert(loccount
== symtabshdr
.get_sh_info());
6078 off_t locsize
= loccount
* sym_size
;
6079 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
6080 locsize
, true, true);
6082 // For mapping symbol processing, we need to read the symbol names.
6083 unsigned int strtab_shndx
= this->adjust_shndx(symtabshdr
.get_sh_link());
6084 if (strtab_shndx
>= this->shnum())
6086 this->error(_("invalid symbol table name index: %u"), strtab_shndx
);
6090 elfcpp::Shdr
<32, big_endian
>
6091 strtabshdr(this, this->elf_file()->section_header(strtab_shndx
));
6092 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
6094 this->error(_("symbol table name section has wrong type: %u"),
6095 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
6098 const char* pnames
=
6099 reinterpret_cast<const char*>(this->get_view(strtabshdr
.get_sh_offset(),
6100 strtabshdr
.get_sh_size(),
6103 // Loop over the local symbols and mark any local symbols pointing
6104 // to THUMB functions.
6106 // Skip the first dummy symbol.
6108 typename Sized_relobj
<32, big_endian
>::Local_values
* plocal_values
=
6109 this->local_values();
6110 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
6112 elfcpp::Sym
<32, big_endian
> sym(psyms
);
6113 elfcpp::STT st_type
= sym
.get_st_type();
6114 Symbol_value
<32>& lv((*plocal_values
)[i
]);
6115 Arm_address input_value
= lv
.input_value();
6117 // Check to see if this is a mapping symbol.
6118 const char* sym_name
= pnames
+ sym
.get_st_name();
6119 if (Target_arm
<big_endian
>::is_mapping_symbol_name(sym_name
))
6122 unsigned int input_shndx
=
6123 this->adjust_sym_shndx(i
, sym
.get_st_shndx(), &is_ordinary
);
6124 gold_assert(is_ordinary
);
6126 // Strip of LSB in case this is a THUMB symbol.
6127 Mapping_symbol_position
msp(input_shndx
, input_value
& ~1U);
6128 this->mapping_symbols_info_
[msp
] = sym_name
[1];
6131 if (st_type
== elfcpp::STT_ARM_TFUNC
6132 || (st_type
== elfcpp::STT_FUNC
&& ((input_value
& 1) != 0)))
6134 // This is a THUMB function. Mark this and canonicalize the
6135 // symbol value by setting LSB.
6136 this->local_symbol_is_thumb_function_
[i
] = true;
6137 if ((input_value
& 1) == 0)
6138 lv
.set_input_value(input_value
| 1);
6143 // Relocate sections.
6144 template<bool big_endian
>
6146 Arm_relobj
<big_endian
>::do_relocate_sections(
6147 const Symbol_table
* symtab
,
6148 const Layout
* layout
,
6149 const unsigned char* pshdrs
,
6150 typename Sized_relobj
<32, big_endian
>::Views
* pviews
)
6152 // Call parent to relocate sections.
6153 Sized_relobj
<32, big_endian
>::do_relocate_sections(symtab
, layout
, pshdrs
,
6156 // We do not generate stubs if doing a relocatable link.
6157 if (parameters
->options().relocatable())
6160 // Relocate stub tables.
6161 unsigned int shnum
= this->shnum();
6163 Target_arm
<big_endian
>* arm_target
=
6164 Target_arm
<big_endian
>::default_target();
6166 Relocate_info
<32, big_endian
> relinfo
;
6167 relinfo
.symtab
= symtab
;
6168 relinfo
.layout
= layout
;
6169 relinfo
.object
= this;
6171 for (unsigned int i
= 1; i
< shnum
; ++i
)
6173 Arm_input_section
<big_endian
>* arm_input_section
=
6174 arm_target
->find_arm_input_section(this, i
);
6176 if (arm_input_section
!= NULL
6177 && arm_input_section
->is_stub_table_owner()
6178 && !arm_input_section
->stub_table()->empty())
6180 // We cannot discard a section if it owns a stub table.
6181 Output_section
* os
= this->output_section(i
);
6182 gold_assert(os
!= NULL
);
6184 relinfo
.reloc_shndx
= elfcpp::SHN_UNDEF
;
6185 relinfo
.reloc_shdr
= NULL
;
6186 relinfo
.data_shndx
= i
;
6187 relinfo
.data_shdr
= pshdrs
+ i
* elfcpp::Elf_sizes
<32>::shdr_size
;
6189 gold_assert((*pviews
)[i
].view
!= NULL
);
6191 // We are passed the output section view. Adjust it to cover the
6193 Stub_table
<big_endian
>* stub_table
= arm_input_section
->stub_table();
6194 gold_assert((stub_table
->address() >= (*pviews
)[i
].address
)
6195 && ((stub_table
->address() + stub_table
->data_size())
6196 <= (*pviews
)[i
].address
+ (*pviews
)[i
].view_size
));
6198 off_t offset
= stub_table
->address() - (*pviews
)[i
].address
;
6199 unsigned char* view
= (*pviews
)[i
].view
+ offset
;
6200 Arm_address address
= stub_table
->address();
6201 section_size_type view_size
= stub_table
->data_size();
6203 stub_table
->relocate_stubs(&relinfo
, arm_target
, os
, view
, address
,
6207 // Apply Cortex A8 workaround if applicable.
6208 if (this->section_has_cortex_a8_workaround(i
))
6210 unsigned char* view
= (*pviews
)[i
].view
;
6211 Arm_address view_address
= (*pviews
)[i
].address
;
6212 section_size_type view_size
= (*pviews
)[i
].view_size
;
6213 Stub_table
<big_endian
>* stub_table
= this->stub_tables_
[i
];
6215 // Adjust view to cover section.
6216 Output_section
* os
= this->output_section(i
);
6217 gold_assert(os
!= NULL
);
6218 Arm_address section_address
=
6219 this->simple_input_section_output_address(i
, os
);
6220 uint64_t section_size
= this->section_size(i
);
6222 gold_assert(section_address
>= view_address
6223 && ((section_address
+ section_size
)
6224 <= (view_address
+ view_size
)));
6226 unsigned char* section_view
= view
+ (section_address
- view_address
);
6228 // Apply the Cortex-A8 workaround to the output address range
6229 // corresponding to this input section.
6230 stub_table
->apply_cortex_a8_workaround_to_address_range(
6239 // Find the linked text section of an EXIDX section by looking the the first
6240 // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6241 // must be linked to to its associated code section via the sh_link field of
6242 // its section header. However, some tools are broken and the link is not
6243 // always set. LD just drops such an EXIDX section silently, causing the
6244 // associated code not unwindabled. Here we try a little bit harder to
6245 // discover the linked code section.
6247 // PSHDR points to the section header of a relocation section of an EXIDX
6248 // section. If we can find a linked text section, return true and
6249 // store the text section index in the location PSHNDX. Otherwise
6252 template<bool big_endian
>
6254 Arm_relobj
<big_endian
>::find_linked_text_section(
6255 const unsigned char* pshdr
,
6256 const unsigned char* psyms
,
6257 unsigned int* pshndx
)
6259 elfcpp::Shdr
<32, big_endian
> shdr(pshdr
);
6261 // If there is no relocation, we cannot find the linked text section.
6263 if (shdr
.get_sh_type() == elfcpp::SHT_REL
)
6264 reloc_size
= elfcpp::Elf_sizes
<32>::rel_size
;
6266 reloc_size
= elfcpp::Elf_sizes
<32>::rela_size
;
6267 size_t reloc_count
= shdr
.get_sh_size() / reloc_size
;
6269 // Get the relocations.
6270 const unsigned char* prelocs
=
6271 this->get_view(shdr
.get_sh_offset(), shdr
.get_sh_size(), true, false);
6273 // Find the REL31 relocation for the first word of the first EXIDX entry.
6274 for (size_t i
= 0; i
< reloc_count
; ++i
, prelocs
+= reloc_size
)
6276 Arm_address r_offset
;
6277 typename
elfcpp::Elf_types
<32>::Elf_WXword r_info
;
6278 if (shdr
.get_sh_type() == elfcpp::SHT_REL
)
6280 typename
elfcpp::Rel
<32, big_endian
> reloc(prelocs
);
6281 r_info
= reloc
.get_r_info();
6282 r_offset
= reloc
.get_r_offset();
6286 typename
elfcpp::Rela
<32, big_endian
> reloc(prelocs
);
6287 r_info
= reloc
.get_r_info();
6288 r_offset
= reloc
.get_r_offset();
6291 unsigned int r_type
= elfcpp::elf_r_type
<32>(r_info
);
6292 if (r_type
!= elfcpp::R_ARM_PREL31
&& r_type
!= elfcpp::R_ARM_SBREL31
)
6295 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(r_info
);
6297 || r_sym
>= this->local_symbol_count()
6301 // This is the relocation for the first word of the first EXIDX entry.
6302 // We expect to see a local section symbol.
6303 const int sym_size
= elfcpp::Elf_sizes
<32>::sym_size
;
6304 elfcpp::Sym
<32, big_endian
> sym(psyms
+ r_sym
* sym_size
);
6305 if (sym
.get_st_type() == elfcpp::STT_SECTION
)
6309 this->adjust_sym_shndx(r_sym
, sym
.get_st_shndx(), &is_ordinary
);
6310 gold_assert(is_ordinary
);
6320 // Make an EXIDX input section object for an EXIDX section whose index is
6321 // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6322 // is the section index of the linked text section.
6324 template<bool big_endian
>
6326 Arm_relobj
<big_endian
>::make_exidx_input_section(
6328 const elfcpp::Shdr
<32, big_endian
>& shdr
,
6329 unsigned int text_shndx
)
6331 // Issue an error and ignore this EXIDX section if it points to a text
6332 // section already has an EXIDX section.
6333 if (this->exidx_section_map_
[text_shndx
] != NULL
)
6335 gold_error(_("EXIDX sections %u and %u both link to text section %u "
6337 shndx
, this->exidx_section_map_
[text_shndx
]->shndx(),
6338 text_shndx
, this->name().c_str());
6342 // Create an Arm_exidx_input_section object for this EXIDX section.
6343 Arm_exidx_input_section
* exidx_input_section
=
6344 new Arm_exidx_input_section(this, shndx
, text_shndx
, shdr
.get_sh_size(),
6345 shdr
.get_sh_addralign());
6346 this->exidx_section_map_
[text_shndx
] = exidx_input_section
;
6348 // Also map the EXIDX section index to this.
6349 gold_assert(this->exidx_section_map_
[shndx
] == NULL
);
6350 this->exidx_section_map_
[shndx
] = exidx_input_section
;
6353 // Read the symbol information.
6355 template<bool big_endian
>
6357 Arm_relobj
<big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
6359 // Call parent class to read symbol information.
6360 Sized_relobj
<32, big_endian
>::do_read_symbols(sd
);
6362 // If this input file is a binary file, it has no processor
6363 // specific flags and attributes section.
6364 Input_file::Format format
= this->input_file()->format();
6365 if (format
!= Input_file::FORMAT_ELF
)
6367 gold_assert(format
== Input_file::FORMAT_BINARY
);
6368 this->merge_flags_and_attributes_
= false;
6372 // Read processor-specific flags in ELF file header.
6373 const unsigned char* pehdr
= this->get_view(elfcpp::file_header_offset
,
6374 elfcpp::Elf_sizes
<32>::ehdr_size
,
6376 elfcpp::Ehdr
<32, big_endian
> ehdr(pehdr
);
6377 this->processor_specific_flags_
= ehdr
.get_e_flags();
6379 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6381 std::vector
<unsigned int> deferred_exidx_sections
;
6382 const size_t shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
6383 const unsigned char* pshdrs
= sd
->section_headers
->data();
6384 const unsigned char *ps
= pshdrs
+ shdr_size
;
6385 bool must_merge_flags_and_attributes
= false;
6386 for (unsigned int i
= 1; i
< this->shnum(); ++i
, ps
+= shdr_size
)
6388 elfcpp::Shdr
<32, big_endian
> shdr(ps
);
6390 // Sometimes an object has no contents except the section name string
6391 // table and an empty symbol table with the undefined symbol. We
6392 // don't want to merge processor-specific flags from such an object.
6393 if (shdr
.get_sh_type() == elfcpp::SHT_SYMTAB
)
6395 // Symbol table is not empty.
6396 const elfcpp::Elf_types
<32>::Elf_WXword sym_size
=
6397 elfcpp::Elf_sizes
<32>::sym_size
;
6398 if (shdr
.get_sh_size() > sym_size
)
6399 must_merge_flags_and_attributes
= true;
6401 else if (shdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
6402 // If this is neither an empty symbol table nor a string table,
6404 must_merge_flags_and_attributes
= true;
6406 if (shdr
.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES
)
6408 gold_assert(this->attributes_section_data_
== NULL
);
6409 section_offset_type section_offset
= shdr
.get_sh_offset();
6410 section_size_type section_size
=
6411 convert_to_section_size_type(shdr
.get_sh_size());
6412 File_view
* view
= this->get_lasting_view(section_offset
,
6413 section_size
, true, false);
6414 this->attributes_section_data_
=
6415 new Attributes_section_data(view
->data(), section_size
);
6417 else if (shdr
.get_sh_type() == elfcpp::SHT_ARM_EXIDX
)
6419 unsigned int text_shndx
= this->adjust_shndx(shdr
.get_sh_link());
6420 if (text_shndx
>= this->shnum())
6421 gold_error(_("EXIDX section %u linked to invalid section %u"),
6423 else if (text_shndx
== elfcpp::SHN_UNDEF
)
6424 deferred_exidx_sections
.push_back(i
);
6426 this->make_exidx_input_section(i
, shdr
, text_shndx
);
6431 if (!must_merge_flags_and_attributes
)
6433 this->merge_flags_and_attributes_
= false;
6437 // Some tools are broken and they do not set the link of EXIDX sections.
6438 // We look at the first relocation to figure out the linked sections.
6439 if (!deferred_exidx_sections
.empty())
6441 // We need to go over the section headers again to find the mapping
6442 // from sections being relocated to their relocation sections. This is
6443 // a bit inefficient as we could do that in the loop above. However,
6444 // we do not expect any deferred EXIDX sections normally. So we do not
6445 // want to slow down the most common path.
6446 typedef Unordered_map
<unsigned int, unsigned int> Reloc_map
;
6447 Reloc_map reloc_map
;
6448 ps
= pshdrs
+ shdr_size
;
6449 for (unsigned int i
= 1; i
< this->shnum(); ++i
, ps
+= shdr_size
)
6451 elfcpp::Shdr
<32, big_endian
> shdr(ps
);
6452 elfcpp::Elf_Word sh_type
= shdr
.get_sh_type();
6453 if (sh_type
== elfcpp::SHT_REL
|| sh_type
== elfcpp::SHT_RELA
)
6455 unsigned int info_shndx
= this->adjust_shndx(shdr
.get_sh_info());
6456 if (info_shndx
>= this->shnum())
6457 gold_error(_("relocation section %u has invalid info %u"),
6459 Reloc_map::value_type
value(info_shndx
, i
);
6460 std::pair
<Reloc_map::iterator
, bool> result
=
6461 reloc_map
.insert(value
);
6463 gold_error(_("section %u has multiple relocation sections "
6465 info_shndx
, i
, reloc_map
[info_shndx
]);
6469 // Read the symbol table section header.
6470 const unsigned int symtab_shndx
= this->symtab_shndx();
6471 elfcpp::Shdr
<32, big_endian
>
6472 symtabshdr(this, this->elf_file()->section_header(symtab_shndx
));
6473 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
6475 // Read the local symbols.
6476 const int sym_size
=elfcpp::Elf_sizes
<32>::sym_size
;
6477 const unsigned int loccount
= this->local_symbol_count();
6478 gold_assert(loccount
== symtabshdr
.get_sh_info());
6479 off_t locsize
= loccount
* sym_size
;
6480 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
6481 locsize
, true, true);
6483 // Process the deferred EXIDX sections.
6484 for(unsigned int i
= 0; i
< deferred_exidx_sections
.size(); ++i
)
6486 unsigned int shndx
= deferred_exidx_sections
[i
];
6487 elfcpp::Shdr
<32, big_endian
> shdr(pshdrs
+ shndx
* shdr_size
);
6488 unsigned int text_shndx
;
6489 Reloc_map::const_iterator it
= reloc_map
.find(shndx
);
6490 if (it
!= reloc_map
.end()
6491 && find_linked_text_section(pshdrs
+ it
->second
* shdr_size
,
6492 psyms
, &text_shndx
))
6493 this->make_exidx_input_section(shndx
, shdr
, text_shndx
);
6495 gold_error(_("EXIDX section %u has no linked text section."),
6501 // Process relocations for garbage collection. The ARM target uses .ARM.exidx
6502 // sections for unwinding. These sections are referenced implicitly by
6503 // text sections linked in the section headers. If we ignore these implict
6504 // references, the .ARM.exidx sections and any .ARM.extab sections they use
6505 // will be garbage-collected incorrectly. Hence we override the same function
6506 // in the base class to handle these implicit references.
6508 template<bool big_endian
>
6510 Arm_relobj
<big_endian
>::do_gc_process_relocs(Symbol_table
* symtab
,
6512 Read_relocs_data
* rd
)
6514 // First, call base class method to process relocations in this object.
6515 Sized_relobj
<32, big_endian
>::do_gc_process_relocs(symtab
, layout
, rd
);
6517 // If --gc-sections is not specified, there is nothing more to do.
6518 // This happens when --icf is used but --gc-sections is not.
6519 if (!parameters
->options().gc_sections())
6522 unsigned int shnum
= this->shnum();
6523 const unsigned int shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
6524 const unsigned char* pshdrs
= this->get_view(this->elf_file()->shoff(),
6528 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6529 // to these from the linked text sections.
6530 const unsigned char* ps
= pshdrs
+ shdr_size
;
6531 for (unsigned int i
= 1; i
< shnum
; ++i
, ps
+= shdr_size
)
6533 elfcpp::Shdr
<32, big_endian
> shdr(ps
);
6534 if (shdr
.get_sh_type() == elfcpp::SHT_ARM_EXIDX
)
6536 // Found an .ARM.exidx section, add it to the set of reachable
6537 // sections from its linked text section.
6538 unsigned int text_shndx
= this->adjust_shndx(shdr
.get_sh_link());
6539 symtab
->gc()->add_reference(this, text_shndx
, this, i
);
6544 // Update output local symbol count. Owing to EXIDX entry merging, some local
6545 // symbols will be removed in output. Adjust output local symbol count
6546 // accordingly. We can only changed the static output local symbol count. It
6547 // is too late to change the dynamic symbols.
6549 template<bool big_endian
>
6551 Arm_relobj
<big_endian
>::update_output_local_symbol_count()
6553 // Caller should check that this needs updating. We want caller checking
6554 // because output_local_symbol_count_needs_update() is most likely inlined.
6555 gold_assert(this->output_local_symbol_count_needs_update_
);
6557 gold_assert(this->symtab_shndx() != -1U);
6558 if (this->symtab_shndx() == 0)
6560 // This object has no symbols. Weird but legal.
6564 // Read the symbol table section header.
6565 const unsigned int symtab_shndx
= this->symtab_shndx();
6566 elfcpp::Shdr
<32, big_endian
>
6567 symtabshdr(this, this->elf_file()->section_header(symtab_shndx
));
6568 gold_assert(symtabshdr
.get_sh_type() == elfcpp::SHT_SYMTAB
);
6570 // Read the local symbols.
6571 const int sym_size
= elfcpp::Elf_sizes
<32>::sym_size
;
6572 const unsigned int loccount
= this->local_symbol_count();
6573 gold_assert(loccount
== symtabshdr
.get_sh_info());
6574 off_t locsize
= loccount
* sym_size
;
6575 const unsigned char* psyms
= this->get_view(symtabshdr
.get_sh_offset(),
6576 locsize
, true, true);
6578 // Loop over the local symbols.
6580 typedef typename Sized_relobj
<32, big_endian
>::Output_sections
6582 const Output_sections
& out_sections(this->output_sections());
6583 unsigned int shnum
= this->shnum();
6584 unsigned int count
= 0;
6585 // Skip the first, dummy, symbol.
6587 for (unsigned int i
= 1; i
< loccount
; ++i
, psyms
+= sym_size
)
6589 elfcpp::Sym
<32, big_endian
> sym(psyms
);
6591 Symbol_value
<32>& lv((*this->local_values())[i
]);
6593 // This local symbol was already discarded by do_count_local_symbols.
6594 if (lv
.is_output_symtab_index_set() && !lv
.has_output_symtab_entry())
6598 unsigned int shndx
= this->adjust_sym_shndx(i
, sym
.get_st_shndx(),
6603 Output_section
* os
= out_sections
[shndx
];
6605 // This local symbol no longer has an output section. Discard it.
6608 lv
.set_no_output_symtab_entry();
6612 // Currently we only discard parts of EXIDX input sections.
6613 // We explicitly check for a merged EXIDX input section to avoid
6614 // calling Output_section_data::output_offset unless necessary.
6615 if ((this->get_output_section_offset(shndx
) == invalid_address
)
6616 && (this->exidx_input_section_by_shndx(shndx
) != NULL
))
6618 section_offset_type output_offset
=
6619 os
->output_offset(this, shndx
, lv
.input_value());
6620 if (output_offset
== -1)
6622 // This symbol is defined in a part of an EXIDX input section
6623 // that is discarded due to entry merging.
6624 lv
.set_no_output_symtab_entry();
6633 this->set_output_local_symbol_count(count
);
6634 this->output_local_symbol_count_needs_update_
= false;
6637 // Arm_dynobj methods.
6639 // Read the symbol information.
6641 template<bool big_endian
>
6643 Arm_dynobj
<big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
6645 // Call parent class to read symbol information.
6646 Sized_dynobj
<32, big_endian
>::do_read_symbols(sd
);
6648 // Read processor-specific flags in ELF file header.
6649 const unsigned char* pehdr
= this->get_view(elfcpp::file_header_offset
,
6650 elfcpp::Elf_sizes
<32>::ehdr_size
,
6652 elfcpp::Ehdr
<32, big_endian
> ehdr(pehdr
);
6653 this->processor_specific_flags_
= ehdr
.get_e_flags();
6655 // Read the attributes section if there is one.
6656 // We read from the end because gas seems to put it near the end of
6657 // the section headers.
6658 const size_t shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
6659 const unsigned char *ps
=
6660 sd
->section_headers
->data() + shdr_size
* (this->shnum() - 1);
6661 for (unsigned int i
= this->shnum(); i
> 0; --i
, ps
-= shdr_size
)
6663 elfcpp::Shdr
<32, big_endian
> shdr(ps
);
6664 if (shdr
.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES
)
6666 section_offset_type section_offset
= shdr
.get_sh_offset();
6667 section_size_type section_size
=
6668 convert_to_section_size_type(shdr
.get_sh_size());
6669 File_view
* view
= this->get_lasting_view(section_offset
,
6670 section_size
, true, false);
6671 this->attributes_section_data_
=
6672 new Attributes_section_data(view
->data(), section_size
);
6678 // Stub_addend_reader methods.
6680 // Read the addend of a REL relocation of type R_TYPE at VIEW.
6682 template<bool big_endian
>
6683 elfcpp::Elf_types
<32>::Elf_Swxword
6684 Stub_addend_reader
<elfcpp::SHT_REL
, big_endian
>::operator()(
6685 unsigned int r_type
,
6686 const unsigned char* view
,
6687 const typename Reloc_types
<elfcpp::SHT_REL
, 32, big_endian
>::Reloc
&) const
6689 typedef struct Arm_relocate_functions
<big_endian
> RelocFuncs
;
6693 case elfcpp::R_ARM_CALL
:
6694 case elfcpp::R_ARM_JUMP24
:
6695 case elfcpp::R_ARM_PLT32
:
6697 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
6698 const Valtype
* wv
= reinterpret_cast<const Valtype
*>(view
);
6699 Valtype val
= elfcpp::Swap
<32, big_endian
>::readval(wv
);
6700 return utils::sign_extend
<26>(val
<< 2);
6703 case elfcpp::R_ARM_THM_CALL
:
6704 case elfcpp::R_ARM_THM_JUMP24
:
6705 case elfcpp::R_ARM_THM_XPC22
:
6707 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
6708 const Valtype
* wv
= reinterpret_cast<const Valtype
*>(view
);
6709 Valtype upper_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
6710 Valtype lower_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
6711 return RelocFuncs::thumb32_branch_offset(upper_insn
, lower_insn
);
6714 case elfcpp::R_ARM_THM_JUMP19
:
6716 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
6717 const Valtype
* wv
= reinterpret_cast<const Valtype
*>(view
);
6718 Valtype upper_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
6719 Valtype lower_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
6720 return RelocFuncs::thumb32_cond_branch_offset(upper_insn
, lower_insn
);
6728 // Arm_output_data_got methods.
6730 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
6731 // The first one is initialized to be 1, which is the module index for
6732 // the main executable and the second one 0. A reloc of the type
6733 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
6734 // be applied by gold. GSYM is a global symbol.
6736 template<bool big_endian
>
6738 Arm_output_data_got
<big_endian
>::add_tls_gd32_with_static_reloc(
6739 unsigned int got_type
,
6742 if (gsym
->has_got_offset(got_type
))
6745 // We are doing a static link. Just mark it as belong to module 1,
6747 unsigned int got_offset
= this->add_constant(1);
6748 gsym
->set_got_offset(got_type
, got_offset
);
6749 got_offset
= this->add_constant(0);
6750 this->static_relocs_
.push_back(Static_reloc(got_offset
,
6751 elfcpp::R_ARM_TLS_DTPOFF32
,
6755 // Same as the above but for a local symbol.
6757 template<bool big_endian
>
6759 Arm_output_data_got
<big_endian
>::add_tls_gd32_with_static_reloc(
6760 unsigned int got_type
,
6761 Sized_relobj
<32, big_endian
>* object
,
6764 if (object
->local_has_got_offset(index
, got_type
))
6767 // We are doing a static link. Just mark it as belong to module 1,
6769 unsigned int got_offset
= this->add_constant(1);
6770 object
->set_local_got_offset(index
, got_type
, got_offset
);
6771 got_offset
= this->add_constant(0);
6772 this->static_relocs_
.push_back(Static_reloc(got_offset
,
6773 elfcpp::R_ARM_TLS_DTPOFF32
,
6777 template<bool big_endian
>
6779 Arm_output_data_got
<big_endian
>::do_write(Output_file
* of
)
6781 // Call parent to write out GOT.
6782 Output_data_got
<32, big_endian
>::do_write(of
);
6784 // We are done if there is no fix up.
6785 if (this->static_relocs_
.empty())
6788 gold_assert(parameters
->doing_static_link());
6790 const off_t offset
= this->offset();
6791 const section_size_type oview_size
=
6792 convert_to_section_size_type(this->data_size());
6793 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
6795 Output_segment
* tls_segment
= this->layout_
->tls_segment();
6796 gold_assert(tls_segment
!= NULL
);
6798 // The thread pointer $tp points to the TCB, which is followed by the
6799 // TLS. So we need to adjust $tp relative addressing by this amount.
6800 Arm_address aligned_tcb_size
=
6801 align_address(ARM_TCB_SIZE
, tls_segment
->maximum_alignment());
6803 for (size_t i
= 0; i
< this->static_relocs_
.size(); ++i
)
6805 Static_reloc
& reloc(this->static_relocs_
[i
]);
6808 if (!reloc
.symbol_is_global())
6810 Sized_relobj
<32, big_endian
>* object
= reloc
.relobj();
6811 const Symbol_value
<32>* psymval
=
6812 reloc
.relobj()->local_symbol(reloc
.index());
6814 // We are doing static linking. Issue an error and skip this
6815 // relocation if the symbol is undefined or in a discarded_section.
6817 unsigned int shndx
= psymval
->input_shndx(&is_ordinary
);
6818 if ((shndx
== elfcpp::SHN_UNDEF
)
6820 && shndx
!= elfcpp::SHN_UNDEF
6821 && !object
->is_section_included(shndx
)
6822 && !this->symbol_table_
->is_section_folded(object
, shndx
)))
6824 gold_error(_("undefined or discarded local symbol %u from "
6825 " object %s in GOT"),
6826 reloc
.index(), reloc
.relobj()->name().c_str());
6830 value
= psymval
->value(object
, 0);
6834 const Symbol
* gsym
= reloc
.symbol();
6835 gold_assert(gsym
!= NULL
);
6836 if (gsym
->is_forwarder())
6837 gsym
= this->symbol_table_
->resolve_forwards(gsym
);
6839 // We are doing static linking. Issue an error and skip this
6840 // relocation if the symbol is undefined or in a discarded_section
6841 // unless it is a weakly_undefined symbol.
6842 if ((gsym
->is_defined_in_discarded_section()
6843 || gsym
->is_undefined())
6844 && !gsym
->is_weak_undefined())
6846 gold_error(_("undefined or discarded symbol %s in GOT"),
6851 if (!gsym
->is_weak_undefined())
6853 const Sized_symbol
<32>* sym
=
6854 static_cast<const Sized_symbol
<32>*>(gsym
);
6855 value
= sym
->value();
6861 unsigned got_offset
= reloc
.got_offset();
6862 gold_assert(got_offset
< oview_size
);
6864 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
6865 Valtype
* wv
= reinterpret_cast<Valtype
*>(oview
+ got_offset
);
6867 switch (reloc
.r_type())
6869 case elfcpp::R_ARM_TLS_DTPOFF32
:
6872 case elfcpp::R_ARM_TLS_TPOFF32
:
6873 x
= value
+ aligned_tcb_size
;
6878 elfcpp::Swap
<32, big_endian
>::writeval(wv
, x
);
6881 of
->write_output_view(offset
, oview_size
, oview
);
6884 // A class to handle the PLT data.
6886 template<bool big_endian
>
6887 class Output_data_plt_arm
: public Output_section_data
6890 typedef Output_data_reloc
<elfcpp::SHT_REL
, true, 32, big_endian
>
6893 Output_data_plt_arm(Layout
*, Output_data_space
*);
6895 // Add an entry to the PLT.
6897 add_entry(Symbol
* gsym
);
6899 // Return the .rel.plt section data.
6900 const Reloc_section
*
6902 { return this->rel_
; }
6906 do_adjust_output_section(Output_section
* os
);
6908 // Write to a map file.
6910 do_print_to_mapfile(Mapfile
* mapfile
) const
6911 { mapfile
->print_output_data(this, _("** PLT")); }
6914 // Template for the first PLT entry.
6915 static const uint32_t first_plt_entry
[5];
6917 // Template for subsequent PLT entries.
6918 static const uint32_t plt_entry
[3];
6920 // Set the final size.
6922 set_final_data_size()
6924 this->set_data_size(sizeof(first_plt_entry
)
6925 + this->count_
* sizeof(plt_entry
));
6928 // Write out the PLT data.
6930 do_write(Output_file
*);
6932 // The reloc section.
6933 Reloc_section
* rel_
;
6934 // The .got.plt section.
6935 Output_data_space
* got_plt_
;
6936 // The number of PLT entries.
6937 unsigned int count_
;
6940 // Create the PLT section. The ordinary .got section is an argument,
6941 // since we need to refer to the start. We also create our own .got
6942 // section just for PLT entries.
6944 template<bool big_endian
>
6945 Output_data_plt_arm
<big_endian
>::Output_data_plt_arm(Layout
* layout
,
6946 Output_data_space
* got_plt
)
6947 : Output_section_data(4), got_plt_(got_plt
), count_(0)
6949 this->rel_
= new Reloc_section(false);
6950 layout
->add_output_section_data(".rel.plt", elfcpp::SHT_REL
,
6951 elfcpp::SHF_ALLOC
, this->rel_
, true, false,
6955 template<bool big_endian
>
6957 Output_data_plt_arm
<big_endian
>::do_adjust_output_section(Output_section
* os
)
6962 // Add an entry to the PLT.
6964 template<bool big_endian
>
6966 Output_data_plt_arm
<big_endian
>::add_entry(Symbol
* gsym
)
6968 gold_assert(!gsym
->has_plt_offset());
6970 // Note that when setting the PLT offset we skip the initial
6971 // reserved PLT entry.
6972 gsym
->set_plt_offset((this->count_
) * sizeof(plt_entry
)
6973 + sizeof(first_plt_entry
));
6977 section_offset_type got_offset
= this->got_plt_
->current_data_size();
6979 // Every PLT entry needs a GOT entry which points back to the PLT
6980 // entry (this will be changed by the dynamic linker, normally
6981 // lazily when the function is called).
6982 this->got_plt_
->set_current_data_size(got_offset
+ 4);
6984 // Every PLT entry needs a reloc.
6985 gsym
->set_needs_dynsym_entry();
6986 this->rel_
->add_global(gsym
, elfcpp::R_ARM_JUMP_SLOT
, this->got_plt_
,
6989 // Note that we don't need to save the symbol. The contents of the
6990 // PLT are independent of which symbols are used. The symbols only
6991 // appear in the relocations.
6995 // FIXME: This is not very flexible. Right now this has only been tested
6996 // on armv5te. If we are to support additional architecture features like
6997 // Thumb-2 or BE8, we need to make this more flexible like GNU ld.
6999 // The first entry in the PLT.
7000 template<bool big_endian
>
7001 const uint32_t Output_data_plt_arm
<big_endian
>::first_plt_entry
[5] =
7003 0xe52de004, // str lr, [sp, #-4]!
7004 0xe59fe004, // ldr lr, [pc, #4]
7005 0xe08fe00e, // add lr, pc, lr
7006 0xe5bef008, // ldr pc, [lr, #8]!
7007 0x00000000, // &GOT[0] - .
7010 // Subsequent entries in the PLT.
7012 template<bool big_endian
>
7013 const uint32_t Output_data_plt_arm
<big_endian
>::plt_entry
[3] =
7015 0xe28fc600, // add ip, pc, #0xNN00000
7016 0xe28cca00, // add ip, ip, #0xNN000
7017 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7020 // Write out the PLT. This uses the hand-coded instructions above,
7021 // and adjusts them as needed. This is all specified by the arm ELF
7022 // Processor Supplement.
7024 template<bool big_endian
>
7026 Output_data_plt_arm
<big_endian
>::do_write(Output_file
* of
)
7028 const off_t offset
= this->offset();
7029 const section_size_type oview_size
=
7030 convert_to_section_size_type(this->data_size());
7031 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
7033 const off_t got_file_offset
= this->got_plt_
->offset();
7034 const section_size_type got_size
=
7035 convert_to_section_size_type(this->got_plt_
->data_size());
7036 unsigned char* const got_view
= of
->get_output_view(got_file_offset
,
7038 unsigned char* pov
= oview
;
7040 Arm_address plt_address
= this->address();
7041 Arm_address got_address
= this->got_plt_
->address();
7043 // Write first PLT entry. All but the last word are constants.
7044 const size_t num_first_plt_words
= (sizeof(first_plt_entry
)
7045 / sizeof(plt_entry
[0]));
7046 for (size_t i
= 0; i
< num_first_plt_words
- 1; i
++)
7047 elfcpp::Swap
<32, big_endian
>::writeval(pov
+ i
* 4, first_plt_entry
[i
]);
7048 // Last word in first PLT entry is &GOT[0] - .
7049 elfcpp::Swap
<32, big_endian
>::writeval(pov
+ 16,
7050 got_address
- (plt_address
+ 16));
7051 pov
+= sizeof(first_plt_entry
);
7053 unsigned char* got_pov
= got_view
;
7055 memset(got_pov
, 0, 12);
7058 const int rel_size
= elfcpp::Elf_sizes
<32>::rel_size
;
7059 unsigned int plt_offset
= sizeof(first_plt_entry
);
7060 unsigned int plt_rel_offset
= 0;
7061 unsigned int got_offset
= 12;
7062 const unsigned int count
= this->count_
;
7063 for (unsigned int i
= 0;
7066 pov
+= sizeof(plt_entry
),
7068 plt_offset
+= sizeof(plt_entry
),
7069 plt_rel_offset
+= rel_size
,
7072 // Set and adjust the PLT entry itself.
7073 int32_t offset
= ((got_address
+ got_offset
)
7074 - (plt_address
+ plt_offset
+ 8));
7076 gold_assert(offset
>= 0 && offset
< 0x0fffffff);
7077 uint32_t plt_insn0
= plt_entry
[0] | ((offset
>> 20) & 0xff);
7078 elfcpp::Swap
<32, big_endian
>::writeval(pov
, plt_insn0
);
7079 uint32_t plt_insn1
= plt_entry
[1] | ((offset
>> 12) & 0xff);
7080 elfcpp::Swap
<32, big_endian
>::writeval(pov
+ 4, plt_insn1
);
7081 uint32_t plt_insn2
= plt_entry
[2] | (offset
& 0xfff);
7082 elfcpp::Swap
<32, big_endian
>::writeval(pov
+ 8, plt_insn2
);
7084 // Set the entry in the GOT.
7085 elfcpp::Swap
<32, big_endian
>::writeval(got_pov
, plt_address
);
7088 gold_assert(static_cast<section_size_type
>(pov
- oview
) == oview_size
);
7089 gold_assert(static_cast<section_size_type
>(got_pov
- got_view
) == got_size
);
7091 of
->write_output_view(offset
, oview_size
, oview
);
7092 of
->write_output_view(got_file_offset
, got_size
, got_view
);
7095 // Create a PLT entry for a global symbol.
7097 template<bool big_endian
>
7099 Target_arm
<big_endian
>::make_plt_entry(Symbol_table
* symtab
, Layout
* layout
,
7102 if (gsym
->has_plt_offset())
7105 if (this->plt_
== NULL
)
7107 // Create the GOT sections first.
7108 this->got_section(symtab
, layout
);
7110 this->plt_
= new Output_data_plt_arm
<big_endian
>(layout
, this->got_plt_
);
7111 layout
->add_output_section_data(".plt", elfcpp::SHT_PROGBITS
,
7113 | elfcpp::SHF_EXECINSTR
),
7114 this->plt_
, false, false, false, false);
7116 this->plt_
->add_entry(gsym
);
7119 // Get the section to use for TLS_DESC relocations.
7121 template<bool big_endian
>
7122 typename Target_arm
<big_endian
>::Reloc_section
*
7123 Target_arm
<big_endian
>::rel_tls_desc_section(Layout
* layout
) const
7125 return this->plt_section()->rel_tls_desc(layout
);
7128 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7130 template<bool big_endian
>
7132 Target_arm
<big_endian
>::define_tls_base_symbol(
7133 Symbol_table
* symtab
,
7136 if (this->tls_base_symbol_defined_
)
7139 Output_segment
* tls_segment
= layout
->tls_segment();
7140 if (tls_segment
!= NULL
)
7142 bool is_exec
= parameters
->options().output_is_executable();
7143 symtab
->define_in_output_segment("_TLS_MODULE_BASE_", NULL
,
7144 Symbol_table::PREDEFINED
,
7148 elfcpp::STV_HIDDEN
, 0,
7150 ? Symbol::SEGMENT_END
7151 : Symbol::SEGMENT_START
),
7154 this->tls_base_symbol_defined_
= true;
7157 // Create a GOT entry for the TLS module index.
7159 template<bool big_endian
>
7161 Target_arm
<big_endian
>::got_mod_index_entry(
7162 Symbol_table
* symtab
,
7164 Sized_relobj
<32, big_endian
>* object
)
7166 if (this->got_mod_index_offset_
== -1U)
7168 gold_assert(symtab
!= NULL
&& layout
!= NULL
&& object
!= NULL
);
7169 Arm_output_data_got
<big_endian
>* got
= this->got_section(symtab
, layout
);
7170 unsigned int got_offset
;
7171 if (!parameters
->doing_static_link())
7173 got_offset
= got
->add_constant(0);
7174 Reloc_section
* rel_dyn
= this->rel_dyn_section(layout
);
7175 rel_dyn
->add_local(object
, 0, elfcpp::R_ARM_TLS_DTPMOD32
, got
,
7180 // We are doing a static link. Just mark it as belong to module 1,
7182 got_offset
= got
->add_constant(1);
7185 got
->add_constant(0);
7186 this->got_mod_index_offset_
= got_offset
;
7188 return this->got_mod_index_offset_
;
7191 // Optimize the TLS relocation type based on what we know about the
7192 // symbol. IS_FINAL is true if the final address of this symbol is
7193 // known at link time.
7195 template<bool big_endian
>
7196 tls::Tls_optimization
7197 Target_arm
<big_endian
>::optimize_tls_reloc(bool, int)
7199 // FIXME: Currently we do not do any TLS optimization.
7200 return tls::TLSOPT_NONE
;
7203 // Report an unsupported relocation against a local symbol.
7205 template<bool big_endian
>
7207 Target_arm
<big_endian
>::Scan::unsupported_reloc_local(
7208 Sized_relobj
<32, big_endian
>* object
,
7209 unsigned int r_type
)
7211 gold_error(_("%s: unsupported reloc %u against local symbol"),
7212 object
->name().c_str(), r_type
);
7215 // We are about to emit a dynamic relocation of type R_TYPE. If the
7216 // dynamic linker does not support it, issue an error. The GNU linker
7217 // only issues a non-PIC error for an allocated read-only section.
7218 // Here we know the section is allocated, but we don't know that it is
7219 // read-only. But we check for all the relocation types which the
7220 // glibc dynamic linker supports, so it seems appropriate to issue an
7221 // error even if the section is not read-only.
7223 template<bool big_endian
>
7225 Target_arm
<big_endian
>::Scan::check_non_pic(Relobj
* object
,
7226 unsigned int r_type
)
7230 // These are the relocation types supported by glibc for ARM.
7231 case elfcpp::R_ARM_RELATIVE
:
7232 case elfcpp::R_ARM_COPY
:
7233 case elfcpp::R_ARM_GLOB_DAT
:
7234 case elfcpp::R_ARM_JUMP_SLOT
:
7235 case elfcpp::R_ARM_ABS32
:
7236 case elfcpp::R_ARM_ABS32_NOI
:
7237 case elfcpp::R_ARM_PC24
:
7238 // FIXME: The following 3 types are not supported by Android's dynamic
7240 case elfcpp::R_ARM_TLS_DTPMOD32
:
7241 case elfcpp::R_ARM_TLS_DTPOFF32
:
7242 case elfcpp::R_ARM_TLS_TPOFF32
:
7247 // This prevents us from issuing more than one error per reloc
7248 // section. But we can still wind up issuing more than one
7249 // error per object file.
7250 if (this->issued_non_pic_error_
)
7252 const Arm_reloc_property
* reloc_property
=
7253 arm_reloc_property_table
->get_reloc_property(r_type
);
7254 gold_assert(reloc_property
!= NULL
);
7255 object
->error(_("requires unsupported dynamic reloc %s; "
7256 "recompile with -fPIC"),
7257 reloc_property
->name().c_str());
7258 this->issued_non_pic_error_
= true;
7262 case elfcpp::R_ARM_NONE
:
7267 // Scan a relocation for a local symbol.
7268 // FIXME: This only handles a subset of relocation types used by Android
7269 // on ARM v5te devices.
7271 template<bool big_endian
>
7273 Target_arm
<big_endian
>::Scan::local(Symbol_table
* symtab
,
7276 Sized_relobj
<32, big_endian
>* object
,
7277 unsigned int data_shndx
,
7278 Output_section
* output_section
,
7279 const elfcpp::Rel
<32, big_endian
>& reloc
,
7280 unsigned int r_type
,
7281 const elfcpp::Sym
<32, big_endian
>& lsym
)
7283 r_type
= get_real_reloc_type(r_type
);
7286 case elfcpp::R_ARM_NONE
:
7287 case elfcpp::R_ARM_V4BX
:
7288 case elfcpp::R_ARM_GNU_VTENTRY
:
7289 case elfcpp::R_ARM_GNU_VTINHERIT
:
7292 case elfcpp::R_ARM_ABS32
:
7293 case elfcpp::R_ARM_ABS32_NOI
:
7294 // If building a shared library (or a position-independent
7295 // executable), we need to create a dynamic relocation for
7296 // this location. The relocation applied at link time will
7297 // apply the link-time value, so we flag the location with
7298 // an R_ARM_RELATIVE relocation so the dynamic loader can
7299 // relocate it easily.
7300 if (parameters
->options().output_is_position_independent())
7302 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
7303 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(reloc
.get_r_info());
7304 // If we are to add more other reloc types than R_ARM_ABS32,
7305 // we need to add check_non_pic(object, r_type) here.
7306 rel_dyn
->add_local_relative(object
, r_sym
, elfcpp::R_ARM_RELATIVE
,
7307 output_section
, data_shndx
,
7308 reloc
.get_r_offset());
7312 case elfcpp::R_ARM_ABS16
:
7313 case elfcpp::R_ARM_ABS12
:
7314 case elfcpp::R_ARM_THM_ABS5
:
7315 case elfcpp::R_ARM_ABS8
:
7316 case elfcpp::R_ARM_BASE_ABS
:
7317 case elfcpp::R_ARM_MOVW_ABS_NC
:
7318 case elfcpp::R_ARM_MOVT_ABS
:
7319 case elfcpp::R_ARM_THM_MOVW_ABS_NC
:
7320 case elfcpp::R_ARM_THM_MOVT_ABS
:
7321 // If building a shared library (or a position-independent
7322 // executable), we need to create a dynamic relocation for
7323 // this location. Because the addend needs to remain in the
7324 // data section, we need to be careful not to apply this
7325 // relocation statically.
7326 if (parameters
->options().output_is_position_independent())
7328 check_non_pic(object
, r_type
);
7329 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
7330 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(reloc
.get_r_info());
7331 if (lsym
.get_st_type() != elfcpp::STT_SECTION
)
7332 rel_dyn
->add_local(object
, r_sym
, r_type
, output_section
,
7333 data_shndx
, reloc
.get_r_offset());
7336 gold_assert(lsym
.get_st_value() == 0);
7337 unsigned int shndx
= lsym
.get_st_shndx();
7339 shndx
= object
->adjust_sym_shndx(r_sym
, shndx
,
7342 object
->error(_("section symbol %u has bad shndx %u"),
7345 rel_dyn
->add_local_section(object
, shndx
,
7346 r_type
, output_section
,
7347 data_shndx
, reloc
.get_r_offset());
7352 case elfcpp::R_ARM_PC24
:
7353 case elfcpp::R_ARM_REL32
:
7354 case elfcpp::R_ARM_LDR_PC_G0
:
7355 case elfcpp::R_ARM_SBREL32
:
7356 case elfcpp::R_ARM_THM_CALL
:
7357 case elfcpp::R_ARM_THM_PC8
:
7358 case elfcpp::R_ARM_BASE_PREL
:
7359 case elfcpp::R_ARM_PLT32
:
7360 case elfcpp::R_ARM_CALL
:
7361 case elfcpp::R_ARM_JUMP24
:
7362 case elfcpp::R_ARM_THM_JUMP24
:
7363 case elfcpp::R_ARM_LDR_SBREL_11_0_NC
:
7364 case elfcpp::R_ARM_ALU_SBREL_19_12_NC
:
7365 case elfcpp::R_ARM_ALU_SBREL_27_20_CK
:
7366 case elfcpp::R_ARM_SBREL31
:
7367 case elfcpp::R_ARM_PREL31
:
7368 case elfcpp::R_ARM_MOVW_PREL_NC
:
7369 case elfcpp::R_ARM_MOVT_PREL
:
7370 case elfcpp::R_ARM_THM_MOVW_PREL_NC
:
7371 case elfcpp::R_ARM_THM_MOVT_PREL
:
7372 case elfcpp::R_ARM_THM_JUMP19
:
7373 case elfcpp::R_ARM_THM_JUMP6
:
7374 case elfcpp::R_ARM_THM_ALU_PREL_11_0
:
7375 case elfcpp::R_ARM_THM_PC12
:
7376 case elfcpp::R_ARM_REL32_NOI
:
7377 case elfcpp::R_ARM_ALU_PC_G0_NC
:
7378 case elfcpp::R_ARM_ALU_PC_G0
:
7379 case elfcpp::R_ARM_ALU_PC_G1_NC
:
7380 case elfcpp::R_ARM_ALU_PC_G1
:
7381 case elfcpp::R_ARM_ALU_PC_G2
:
7382 case elfcpp::R_ARM_LDR_PC_G1
:
7383 case elfcpp::R_ARM_LDR_PC_G2
:
7384 case elfcpp::R_ARM_LDRS_PC_G0
:
7385 case elfcpp::R_ARM_LDRS_PC_G1
:
7386 case elfcpp::R_ARM_LDRS_PC_G2
:
7387 case elfcpp::R_ARM_LDC_PC_G0
:
7388 case elfcpp::R_ARM_LDC_PC_G1
:
7389 case elfcpp::R_ARM_LDC_PC_G2
:
7390 case elfcpp::R_ARM_ALU_SB_G0_NC
:
7391 case elfcpp::R_ARM_ALU_SB_G0
:
7392 case elfcpp::R_ARM_ALU_SB_G1_NC
:
7393 case elfcpp::R_ARM_ALU_SB_G1
:
7394 case elfcpp::R_ARM_ALU_SB_G2
:
7395 case elfcpp::R_ARM_LDR_SB_G0
:
7396 case elfcpp::R_ARM_LDR_SB_G1
:
7397 case elfcpp::R_ARM_LDR_SB_G2
:
7398 case elfcpp::R_ARM_LDRS_SB_G0
:
7399 case elfcpp::R_ARM_LDRS_SB_G1
:
7400 case elfcpp::R_ARM_LDRS_SB_G2
:
7401 case elfcpp::R_ARM_LDC_SB_G0
:
7402 case elfcpp::R_ARM_LDC_SB_G1
:
7403 case elfcpp::R_ARM_LDC_SB_G2
:
7404 case elfcpp::R_ARM_MOVW_BREL_NC
:
7405 case elfcpp::R_ARM_MOVT_BREL
:
7406 case elfcpp::R_ARM_MOVW_BREL
:
7407 case elfcpp::R_ARM_THM_MOVW_BREL_NC
:
7408 case elfcpp::R_ARM_THM_MOVT_BREL
:
7409 case elfcpp::R_ARM_THM_MOVW_BREL
:
7410 case elfcpp::R_ARM_THM_JUMP11
:
7411 case elfcpp::R_ARM_THM_JUMP8
:
7412 // We don't need to do anything for a relative addressing relocation
7413 // against a local symbol if it does not reference the GOT.
7416 case elfcpp::R_ARM_GOTOFF32
:
7417 case elfcpp::R_ARM_GOTOFF12
:
7418 // We need a GOT section:
7419 target
->got_section(symtab
, layout
);
7422 case elfcpp::R_ARM_GOT_BREL
:
7423 case elfcpp::R_ARM_GOT_PREL
:
7425 // The symbol requires a GOT entry.
7426 Arm_output_data_got
<big_endian
>* got
=
7427 target
->got_section(symtab
, layout
);
7428 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(reloc
.get_r_info());
7429 if (got
->add_local(object
, r_sym
, GOT_TYPE_STANDARD
))
7431 // If we are generating a shared object, we need to add a
7432 // dynamic RELATIVE relocation for this symbol's GOT entry.
7433 if (parameters
->options().output_is_position_independent())
7435 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
7436 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(reloc
.get_r_info());
7437 rel_dyn
->add_local_relative(
7438 object
, r_sym
, elfcpp::R_ARM_RELATIVE
, got
,
7439 object
->local_got_offset(r_sym
, GOT_TYPE_STANDARD
));
7445 case elfcpp::R_ARM_TARGET1
:
7446 case elfcpp::R_ARM_TARGET2
:
7447 // This should have been mapped to another type already.
7449 case elfcpp::R_ARM_COPY
:
7450 case elfcpp::R_ARM_GLOB_DAT
:
7451 case elfcpp::R_ARM_JUMP_SLOT
:
7452 case elfcpp::R_ARM_RELATIVE
:
7453 // These are relocations which should only be seen by the
7454 // dynamic linker, and should never be seen here.
7455 gold_error(_("%s: unexpected reloc %u in object file"),
7456 object
->name().c_str(), r_type
);
7460 // These are initial TLS relocs, which are expected when
7462 case elfcpp::R_ARM_TLS_GD32
: // Global-dynamic
7463 case elfcpp::R_ARM_TLS_LDM32
: // Local-dynamic
7464 case elfcpp::R_ARM_TLS_LDO32
: // Alternate local-dynamic
7465 case elfcpp::R_ARM_TLS_IE32
: // Initial-exec
7466 case elfcpp::R_ARM_TLS_LE32
: // Local-exec
7468 bool output_is_shared
= parameters
->options().shared();
7469 const tls::Tls_optimization optimized_type
7470 = Target_arm
<big_endian
>::optimize_tls_reloc(!output_is_shared
,
7474 case elfcpp::R_ARM_TLS_GD32
: // Global-dynamic
7475 if (optimized_type
== tls::TLSOPT_NONE
)
7477 // Create a pair of GOT entries for the module index and
7478 // dtv-relative offset.
7479 Arm_output_data_got
<big_endian
>* got
7480 = target
->got_section(symtab
, layout
);
7481 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(reloc
.get_r_info());
7482 unsigned int shndx
= lsym
.get_st_shndx();
7484 shndx
= object
->adjust_sym_shndx(r_sym
, shndx
, &is_ordinary
);
7487 object
->error(_("local symbol %u has bad shndx %u"),
7492 if (!parameters
->doing_static_link())
7493 got
->add_local_pair_with_rel(object
, r_sym
, shndx
,
7495 target
->rel_dyn_section(layout
),
7496 elfcpp::R_ARM_TLS_DTPMOD32
, 0);
7498 got
->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR
,
7502 // FIXME: TLS optimization not supported yet.
7506 case elfcpp::R_ARM_TLS_LDM32
: // Local-dynamic
7507 if (optimized_type
== tls::TLSOPT_NONE
)
7509 // Create a GOT entry for the module index.
7510 target
->got_mod_index_entry(symtab
, layout
, object
);
7513 // FIXME: TLS optimization not supported yet.
7517 case elfcpp::R_ARM_TLS_LDO32
: // Alternate local-dynamic
7520 case elfcpp::R_ARM_TLS_IE32
: // Initial-exec
7521 layout
->set_has_static_tls();
7522 if (optimized_type
== tls::TLSOPT_NONE
)
7524 // Create a GOT entry for the tp-relative offset.
7525 Arm_output_data_got
<big_endian
>* got
7526 = target
->got_section(symtab
, layout
);
7527 unsigned int r_sym
=
7528 elfcpp::elf_r_sym
<32>(reloc
.get_r_info());
7529 if (!parameters
->doing_static_link())
7530 got
->add_local_with_rel(object
, r_sym
, GOT_TYPE_TLS_OFFSET
,
7531 target
->rel_dyn_section(layout
),
7532 elfcpp::R_ARM_TLS_TPOFF32
);
7533 else if (!object
->local_has_got_offset(r_sym
,
7534 GOT_TYPE_TLS_OFFSET
))
7536 got
->add_local(object
, r_sym
, GOT_TYPE_TLS_OFFSET
);
7537 unsigned int got_offset
=
7538 object
->local_got_offset(r_sym
, GOT_TYPE_TLS_OFFSET
);
7539 got
->add_static_reloc(got_offset
,
7540 elfcpp::R_ARM_TLS_TPOFF32
, object
,
7545 // FIXME: TLS optimization not supported yet.
7549 case elfcpp::R_ARM_TLS_LE32
: // Local-exec
7550 layout
->set_has_static_tls();
7551 if (output_is_shared
)
7553 // We need to create a dynamic relocation.
7554 gold_assert(lsym
.get_st_type() != elfcpp::STT_SECTION
);
7555 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(reloc
.get_r_info());
7556 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
7557 rel_dyn
->add_local(object
, r_sym
, elfcpp::R_ARM_TLS_TPOFF32
,
7558 output_section
, data_shndx
,
7559 reloc
.get_r_offset());
7570 unsupported_reloc_local(object
, r_type
);
7575 // Report an unsupported relocation against a global symbol.
7577 template<bool big_endian
>
7579 Target_arm
<big_endian
>::Scan::unsupported_reloc_global(
7580 Sized_relobj
<32, big_endian
>* object
,
7581 unsigned int r_type
,
7584 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
7585 object
->name().c_str(), r_type
, gsym
->demangled_name().c_str());
7588 // Scan a relocation for a global symbol.
7590 template<bool big_endian
>
7592 Target_arm
<big_endian
>::Scan::global(Symbol_table
* symtab
,
7595 Sized_relobj
<32, big_endian
>* object
,
7596 unsigned int data_shndx
,
7597 Output_section
* output_section
,
7598 const elfcpp::Rel
<32, big_endian
>& reloc
,
7599 unsigned int r_type
,
7602 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
7603 // section. We check here to avoid creating a dynamic reloc against
7604 // _GLOBAL_OFFSET_TABLE_.
7605 if (!target
->has_got_section()
7606 && strcmp(gsym
->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7607 target
->got_section(symtab
, layout
);
7609 r_type
= get_real_reloc_type(r_type
);
7612 case elfcpp::R_ARM_NONE
:
7613 case elfcpp::R_ARM_V4BX
:
7614 case elfcpp::R_ARM_GNU_VTENTRY
:
7615 case elfcpp::R_ARM_GNU_VTINHERIT
:
7618 case elfcpp::R_ARM_ABS32
:
7619 case elfcpp::R_ARM_ABS16
:
7620 case elfcpp::R_ARM_ABS12
:
7621 case elfcpp::R_ARM_THM_ABS5
:
7622 case elfcpp::R_ARM_ABS8
:
7623 case elfcpp::R_ARM_BASE_ABS
:
7624 case elfcpp::R_ARM_MOVW_ABS_NC
:
7625 case elfcpp::R_ARM_MOVT_ABS
:
7626 case elfcpp::R_ARM_THM_MOVW_ABS_NC
:
7627 case elfcpp::R_ARM_THM_MOVT_ABS
:
7628 case elfcpp::R_ARM_ABS32_NOI
:
7629 // Absolute addressing relocations.
7631 // Make a PLT entry if necessary.
7632 if (this->symbol_needs_plt_entry(gsym
))
7634 target
->make_plt_entry(symtab
, layout
, gsym
);
7635 // Since this is not a PC-relative relocation, we may be
7636 // taking the address of a function. In that case we need to
7637 // set the entry in the dynamic symbol table to the address of
7639 if (gsym
->is_from_dynobj() && !parameters
->options().shared())
7640 gsym
->set_needs_dynsym_value();
7642 // Make a dynamic relocation if necessary.
7643 if (gsym
->needs_dynamic_reloc(Symbol::ABSOLUTE_REF
))
7645 if (gsym
->may_need_copy_reloc())
7647 target
->copy_reloc(symtab
, layout
, object
,
7648 data_shndx
, output_section
, gsym
, reloc
);
7650 else if ((r_type
== elfcpp::R_ARM_ABS32
7651 || r_type
== elfcpp::R_ARM_ABS32_NOI
)
7652 && gsym
->can_use_relative_reloc(false))
7654 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
7655 rel_dyn
->add_global_relative(gsym
, elfcpp::R_ARM_RELATIVE
,
7656 output_section
, object
,
7657 data_shndx
, reloc
.get_r_offset());
7661 check_non_pic(object
, r_type
);
7662 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
7663 rel_dyn
->add_global(gsym
, r_type
, output_section
, object
,
7664 data_shndx
, reloc
.get_r_offset());
7670 case elfcpp::R_ARM_GOTOFF32
:
7671 case elfcpp::R_ARM_GOTOFF12
:
7672 // We need a GOT section.
7673 target
->got_section(symtab
, layout
);
7676 case elfcpp::R_ARM_REL32
:
7677 case elfcpp::R_ARM_LDR_PC_G0
:
7678 case elfcpp::R_ARM_SBREL32
:
7679 case elfcpp::R_ARM_THM_PC8
:
7680 case elfcpp::R_ARM_BASE_PREL
:
7681 case elfcpp::R_ARM_LDR_SBREL_11_0_NC
:
7682 case elfcpp::R_ARM_ALU_SBREL_19_12_NC
:
7683 case elfcpp::R_ARM_ALU_SBREL_27_20_CK
:
7684 case elfcpp::R_ARM_MOVW_PREL_NC
:
7685 case elfcpp::R_ARM_MOVT_PREL
:
7686 case elfcpp::R_ARM_THM_MOVW_PREL_NC
:
7687 case elfcpp::R_ARM_THM_MOVT_PREL
:
7688 case elfcpp::R_ARM_THM_ALU_PREL_11_0
:
7689 case elfcpp::R_ARM_THM_PC12
:
7690 case elfcpp::R_ARM_REL32_NOI
:
7691 case elfcpp::R_ARM_ALU_PC_G0_NC
:
7692 case elfcpp::R_ARM_ALU_PC_G0
:
7693 case elfcpp::R_ARM_ALU_PC_G1_NC
:
7694 case elfcpp::R_ARM_ALU_PC_G1
:
7695 case elfcpp::R_ARM_ALU_PC_G2
:
7696 case elfcpp::R_ARM_LDR_PC_G1
:
7697 case elfcpp::R_ARM_LDR_PC_G2
:
7698 case elfcpp::R_ARM_LDRS_PC_G0
:
7699 case elfcpp::R_ARM_LDRS_PC_G1
:
7700 case elfcpp::R_ARM_LDRS_PC_G2
:
7701 case elfcpp::R_ARM_LDC_PC_G0
:
7702 case elfcpp::R_ARM_LDC_PC_G1
:
7703 case elfcpp::R_ARM_LDC_PC_G2
:
7704 case elfcpp::R_ARM_ALU_SB_G0_NC
:
7705 case elfcpp::R_ARM_ALU_SB_G0
:
7706 case elfcpp::R_ARM_ALU_SB_G1_NC
:
7707 case elfcpp::R_ARM_ALU_SB_G1
:
7708 case elfcpp::R_ARM_ALU_SB_G2
:
7709 case elfcpp::R_ARM_LDR_SB_G0
:
7710 case elfcpp::R_ARM_LDR_SB_G1
:
7711 case elfcpp::R_ARM_LDR_SB_G2
:
7712 case elfcpp::R_ARM_LDRS_SB_G0
:
7713 case elfcpp::R_ARM_LDRS_SB_G1
:
7714 case elfcpp::R_ARM_LDRS_SB_G2
:
7715 case elfcpp::R_ARM_LDC_SB_G0
:
7716 case elfcpp::R_ARM_LDC_SB_G1
:
7717 case elfcpp::R_ARM_LDC_SB_G2
:
7718 case elfcpp::R_ARM_MOVW_BREL_NC
:
7719 case elfcpp::R_ARM_MOVT_BREL
:
7720 case elfcpp::R_ARM_MOVW_BREL
:
7721 case elfcpp::R_ARM_THM_MOVW_BREL_NC
:
7722 case elfcpp::R_ARM_THM_MOVT_BREL
:
7723 case elfcpp::R_ARM_THM_MOVW_BREL
:
7724 // Relative addressing relocations.
7726 // Make a dynamic relocation if necessary.
7727 int flags
= Symbol::NON_PIC_REF
;
7728 if (gsym
->needs_dynamic_reloc(flags
))
7730 if (target
->may_need_copy_reloc(gsym
))
7732 target
->copy_reloc(symtab
, layout
, object
,
7733 data_shndx
, output_section
, gsym
, reloc
);
7737 check_non_pic(object
, r_type
);
7738 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
7739 rel_dyn
->add_global(gsym
, r_type
, output_section
, object
,
7740 data_shndx
, reloc
.get_r_offset());
7746 case elfcpp::R_ARM_PC24
:
7747 case elfcpp::R_ARM_THM_CALL
:
7748 case elfcpp::R_ARM_PLT32
:
7749 case elfcpp::R_ARM_CALL
:
7750 case elfcpp::R_ARM_JUMP24
:
7751 case elfcpp::R_ARM_THM_JUMP24
:
7752 case elfcpp::R_ARM_SBREL31
:
7753 case elfcpp::R_ARM_PREL31
:
7754 case elfcpp::R_ARM_THM_JUMP19
:
7755 case elfcpp::R_ARM_THM_JUMP6
:
7756 case elfcpp::R_ARM_THM_JUMP11
:
7757 case elfcpp::R_ARM_THM_JUMP8
:
7758 // All the relocation above are branches except for the PREL31 ones.
7759 // A PREL31 relocation can point to a personality function in a shared
7760 // library. In that case we want to use a PLT because we want to
7761 // call the personality routine and the dyanmic linkers we care about
7762 // do not support dynamic PREL31 relocations. An REL31 relocation may
7763 // point to a function whose unwinding behaviour is being described but
7764 // we will not mistakenly generate a PLT for that because we should use
7765 // a local section symbol.
7767 // If the symbol is fully resolved, this is just a relative
7768 // local reloc. Otherwise we need a PLT entry.
7769 if (gsym
->final_value_is_known())
7771 // If building a shared library, we can also skip the PLT entry
7772 // if the symbol is defined in the output file and is protected
7774 if (gsym
->is_defined()
7775 && !gsym
->is_from_dynobj()
7776 && !gsym
->is_preemptible())
7778 target
->make_plt_entry(symtab
, layout
, gsym
);
7781 case elfcpp::R_ARM_GOT_BREL
:
7782 case elfcpp::R_ARM_GOT_ABS
:
7783 case elfcpp::R_ARM_GOT_PREL
:
7785 // The symbol requires a GOT entry.
7786 Arm_output_data_got
<big_endian
>* got
=
7787 target
->got_section(symtab
, layout
);
7788 if (gsym
->final_value_is_known())
7789 got
->add_global(gsym
, GOT_TYPE_STANDARD
);
7792 // If this symbol is not fully resolved, we need to add a
7793 // GOT entry with a dynamic relocation.
7794 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
7795 if (gsym
->is_from_dynobj()
7796 || gsym
->is_undefined()
7797 || gsym
->is_preemptible())
7798 got
->add_global_with_rel(gsym
, GOT_TYPE_STANDARD
,
7799 rel_dyn
, elfcpp::R_ARM_GLOB_DAT
);
7802 if (got
->add_global(gsym
, GOT_TYPE_STANDARD
))
7803 rel_dyn
->add_global_relative(
7804 gsym
, elfcpp::R_ARM_RELATIVE
, got
,
7805 gsym
->got_offset(GOT_TYPE_STANDARD
));
7811 case elfcpp::R_ARM_TARGET1
:
7812 case elfcpp::R_ARM_TARGET2
:
7813 // These should have been mapped to other types already.
7815 case elfcpp::R_ARM_COPY
:
7816 case elfcpp::R_ARM_GLOB_DAT
:
7817 case elfcpp::R_ARM_JUMP_SLOT
:
7818 case elfcpp::R_ARM_RELATIVE
:
7819 // These are relocations which should only be seen by the
7820 // dynamic linker, and should never be seen here.
7821 gold_error(_("%s: unexpected reloc %u in object file"),
7822 object
->name().c_str(), r_type
);
7825 // These are initial tls relocs, which are expected when
7827 case elfcpp::R_ARM_TLS_GD32
: // Global-dynamic
7828 case elfcpp::R_ARM_TLS_LDM32
: // Local-dynamic
7829 case elfcpp::R_ARM_TLS_LDO32
: // Alternate local-dynamic
7830 case elfcpp::R_ARM_TLS_IE32
: // Initial-exec
7831 case elfcpp::R_ARM_TLS_LE32
: // Local-exec
7833 const bool is_final
= gsym
->final_value_is_known();
7834 const tls::Tls_optimization optimized_type
7835 = Target_arm
<big_endian
>::optimize_tls_reloc(is_final
, r_type
);
7838 case elfcpp::R_ARM_TLS_GD32
: // Global-dynamic
7839 if (optimized_type
== tls::TLSOPT_NONE
)
7841 // Create a pair of GOT entries for the module index and
7842 // dtv-relative offset.
7843 Arm_output_data_got
<big_endian
>* got
7844 = target
->got_section(symtab
, layout
);
7845 if (!parameters
->doing_static_link())
7846 got
->add_global_pair_with_rel(gsym
, GOT_TYPE_TLS_PAIR
,
7847 target
->rel_dyn_section(layout
),
7848 elfcpp::R_ARM_TLS_DTPMOD32
,
7849 elfcpp::R_ARM_TLS_DTPOFF32
);
7851 got
->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR
, gsym
);
7854 // FIXME: TLS optimization not supported yet.
7858 case elfcpp::R_ARM_TLS_LDM32
: // Local-dynamic
7859 if (optimized_type
== tls::TLSOPT_NONE
)
7861 // Create a GOT entry for the module index.
7862 target
->got_mod_index_entry(symtab
, layout
, object
);
7865 // FIXME: TLS optimization not supported yet.
7869 case elfcpp::R_ARM_TLS_LDO32
: // Alternate local-dynamic
7872 case elfcpp::R_ARM_TLS_IE32
: // Initial-exec
7873 layout
->set_has_static_tls();
7874 if (optimized_type
== tls::TLSOPT_NONE
)
7876 // Create a GOT entry for the tp-relative offset.
7877 Arm_output_data_got
<big_endian
>* got
7878 = target
->got_section(symtab
, layout
);
7879 if (!parameters
->doing_static_link())
7880 got
->add_global_with_rel(gsym
, GOT_TYPE_TLS_OFFSET
,
7881 target
->rel_dyn_section(layout
),
7882 elfcpp::R_ARM_TLS_TPOFF32
);
7883 else if (!gsym
->has_got_offset(GOT_TYPE_TLS_OFFSET
))
7885 got
->add_global(gsym
, GOT_TYPE_TLS_OFFSET
);
7886 unsigned int got_offset
=
7887 gsym
->got_offset(GOT_TYPE_TLS_OFFSET
);
7888 got
->add_static_reloc(got_offset
,
7889 elfcpp::R_ARM_TLS_TPOFF32
, gsym
);
7893 // FIXME: TLS optimization not supported yet.
7897 case elfcpp::R_ARM_TLS_LE32
: // Local-exec
7898 layout
->set_has_static_tls();
7899 if (parameters
->options().shared())
7901 // We need to create a dynamic relocation.
7902 Reloc_section
* rel_dyn
= target
->rel_dyn_section(layout
);
7903 rel_dyn
->add_global(gsym
, elfcpp::R_ARM_TLS_TPOFF32
,
7904 output_section
, object
,
7905 data_shndx
, reloc
.get_r_offset());
7916 unsupported_reloc_global(object
, r_type
, gsym
);
7921 // Process relocations for gc.
7923 template<bool big_endian
>
7925 Target_arm
<big_endian
>::gc_process_relocs(Symbol_table
* symtab
,
7927 Sized_relobj
<32, big_endian
>* object
,
7928 unsigned int data_shndx
,
7930 const unsigned char* prelocs
,
7932 Output_section
* output_section
,
7933 bool needs_special_offset_handling
,
7934 size_t local_symbol_count
,
7935 const unsigned char* plocal_symbols
)
7937 typedef Target_arm
<big_endian
> Arm
;
7938 typedef typename Target_arm
<big_endian
>::Scan Scan
;
7940 gold::gc_process_relocs
<32, big_endian
, Arm
, elfcpp::SHT_REL
, Scan
>(
7949 needs_special_offset_handling
,
7954 // Scan relocations for a section.
7956 template<bool big_endian
>
7958 Target_arm
<big_endian
>::scan_relocs(Symbol_table
* symtab
,
7960 Sized_relobj
<32, big_endian
>* object
,
7961 unsigned int data_shndx
,
7962 unsigned int sh_type
,
7963 const unsigned char* prelocs
,
7965 Output_section
* output_section
,
7966 bool needs_special_offset_handling
,
7967 size_t local_symbol_count
,
7968 const unsigned char* plocal_symbols
)
7970 typedef typename Target_arm
<big_endian
>::Scan Scan
;
7971 if (sh_type
== elfcpp::SHT_RELA
)
7973 gold_error(_("%s: unsupported RELA reloc section"),
7974 object
->name().c_str());
7978 gold::scan_relocs
<32, big_endian
, Target_arm
, elfcpp::SHT_REL
, Scan
>(
7987 needs_special_offset_handling
,
7992 // Finalize the sections.
7994 template<bool big_endian
>
7996 Target_arm
<big_endian
>::do_finalize_sections(
7998 const Input_objects
* input_objects
,
7999 Symbol_table
* symtab
)
8001 // Create an empty uninitialized attribute section if we still don't have it
8003 if (this->attributes_section_data_
== NULL
)
8004 this->attributes_section_data_
= new Attributes_section_data(NULL
, 0);
8006 // Merge processor-specific flags.
8007 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
8008 p
!= input_objects
->relobj_end();
8011 Arm_relobj
<big_endian
>* arm_relobj
=
8012 Arm_relobj
<big_endian
>::as_arm_relobj(*p
);
8013 if (arm_relobj
->merge_flags_and_attributes())
8015 this->merge_processor_specific_flags(
8017 arm_relobj
->processor_specific_flags());
8018 this->merge_object_attributes(arm_relobj
->name().c_str(),
8019 arm_relobj
->attributes_section_data());
8023 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
8024 p
!= input_objects
->dynobj_end();
8027 Arm_dynobj
<big_endian
>* arm_dynobj
=
8028 Arm_dynobj
<big_endian
>::as_arm_dynobj(*p
);
8029 this->merge_processor_specific_flags(
8031 arm_dynobj
->processor_specific_flags());
8032 this->merge_object_attributes(arm_dynobj
->name().c_str(),
8033 arm_dynobj
->attributes_section_data());
8037 const Object_attribute
* cpu_arch_attr
=
8038 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch
);
8039 if (cpu_arch_attr
->int_value() > elfcpp::TAG_CPU_ARCH_V4
)
8040 this->set_may_use_blx(true);
8042 // Check if we need to use Cortex-A8 workaround.
8043 if (parameters
->options().user_set_fix_cortex_a8())
8044 this->fix_cortex_a8_
= parameters
->options().fix_cortex_a8();
8047 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8048 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8050 const Object_attribute
* cpu_arch_profile_attr
=
8051 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile
);
8052 this->fix_cortex_a8_
=
8053 (cpu_arch_attr
->int_value() == elfcpp::TAG_CPU_ARCH_V7
8054 && (cpu_arch_profile_attr
->int_value() == 'A'
8055 || cpu_arch_profile_attr
->int_value() == 0));
8058 // Check if we can use V4BX interworking.
8059 // The V4BX interworking stub contains BX instruction,
8060 // which is not specified for some profiles.
8061 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8062 && !this->may_use_blx())
8063 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8064 "the target profile does not support BX instruction"));
8066 // Fill in some more dynamic tags.
8067 const Reloc_section
* rel_plt
= (this->plt_
== NULL
8069 : this->plt_
->rel_plt());
8070 layout
->add_target_dynamic_tags(true, this->got_plt_
, rel_plt
,
8071 this->rel_dyn_
, true, false);
8073 // Emit any relocs we saved in an attempt to avoid generating COPY
8075 if (this->copy_relocs_
.any_saved_relocs())
8076 this->copy_relocs_
.emit(this->rel_dyn_section(layout
));
8078 // Handle the .ARM.exidx section.
8079 Output_section
* exidx_section
= layout
->find_output_section(".ARM.exidx");
8080 if (exidx_section
!= NULL
8081 && exidx_section
->type() == elfcpp::SHT_ARM_EXIDX
8082 && !parameters
->options().relocatable())
8084 // Create __exidx_start and __exdix_end symbols.
8085 symtab
->define_in_output_data("__exidx_start", NULL
,
8086 Symbol_table::PREDEFINED
,
8087 exidx_section
, 0, 0, elfcpp::STT_OBJECT
,
8088 elfcpp::STB_GLOBAL
, elfcpp::STV_HIDDEN
, 0,
8090 symtab
->define_in_output_data("__exidx_end", NULL
,
8091 Symbol_table::PREDEFINED
,
8092 exidx_section
, 0, 0, elfcpp::STT_OBJECT
,
8093 elfcpp::STB_GLOBAL
, elfcpp::STV_HIDDEN
, 0,
8096 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8097 // the .ARM.exidx section.
8098 if (!layout
->script_options()->saw_phdrs_clause())
8100 gold_assert(layout
->find_output_segment(elfcpp::PT_ARM_EXIDX
, 0, 0)
8102 Output_segment
* exidx_segment
=
8103 layout
->make_output_segment(elfcpp::PT_ARM_EXIDX
, elfcpp::PF_R
);
8104 exidx_segment
->add_output_section(exidx_section
, elfcpp::PF_R
,
8109 // Create an .ARM.attributes section unless we have no regular input
8110 // object. In that case the output will be empty.
8111 if (input_objects
->number_of_relobjs() != 0)
8113 Output_attributes_section_data
* attributes_section
=
8114 new Output_attributes_section_data(*this->attributes_section_data_
);
8115 layout
->add_output_section_data(".ARM.attributes",
8116 elfcpp::SHT_ARM_ATTRIBUTES
, 0,
8117 attributes_section
, false, false, false,
8122 // Return whether a direct absolute static relocation needs to be applied.
8123 // In cases where Scan::local() or Scan::global() has created
8124 // a dynamic relocation other than R_ARM_RELATIVE, the addend
8125 // of the relocation is carried in the data, and we must not
8126 // apply the static relocation.
8128 template<bool big_endian
>
8130 Target_arm
<big_endian
>::Relocate::should_apply_static_reloc(
8131 const Sized_symbol
<32>* gsym
,
8134 Output_section
* output_section
)
8136 // If the output section is not allocated, then we didn't call
8137 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8139 if ((output_section
->flags() & elfcpp::SHF_ALLOC
) == 0)
8142 // For local symbols, we will have created a non-RELATIVE dynamic
8143 // relocation only if (a) the output is position independent,
8144 // (b) the relocation is absolute (not pc- or segment-relative), and
8145 // (c) the relocation is not 32 bits wide.
8147 return !(parameters
->options().output_is_position_independent()
8148 && (ref_flags
& Symbol::ABSOLUTE_REF
)
8151 // For global symbols, we use the same helper routines used in the
8152 // scan pass. If we did not create a dynamic relocation, or if we
8153 // created a RELATIVE dynamic relocation, we should apply the static
8155 bool has_dyn
= gsym
->needs_dynamic_reloc(ref_flags
);
8156 bool is_rel
= (ref_flags
& Symbol::ABSOLUTE_REF
)
8157 && gsym
->can_use_relative_reloc(ref_flags
8158 & Symbol::FUNCTION_CALL
);
8159 return !has_dyn
|| is_rel
;
8162 // Perform a relocation.
8164 template<bool big_endian
>
8166 Target_arm
<big_endian
>::Relocate::relocate(
8167 const Relocate_info
<32, big_endian
>* relinfo
,
8169 Output_section
*output_section
,
8171 const elfcpp::Rel
<32, big_endian
>& rel
,
8172 unsigned int r_type
,
8173 const Sized_symbol
<32>* gsym
,
8174 const Symbol_value
<32>* psymval
,
8175 unsigned char* view
,
8176 Arm_address address
,
8177 section_size_type view_size
)
8179 typedef Arm_relocate_functions
<big_endian
> Arm_relocate_functions
;
8181 r_type
= get_real_reloc_type(r_type
);
8182 const Arm_reloc_property
* reloc_property
=
8183 arm_reloc_property_table
->get_implemented_static_reloc_property(r_type
);
8184 if (reloc_property
== NULL
)
8186 std::string reloc_name
=
8187 arm_reloc_property_table
->reloc_name_in_error_message(r_type
);
8188 gold_error_at_location(relinfo
, relnum
, rel
.get_r_offset(),
8189 _("cannot relocate %s in object file"),
8190 reloc_name
.c_str());
8194 const Arm_relobj
<big_endian
>* object
=
8195 Arm_relobj
<big_endian
>::as_arm_relobj(relinfo
->object
);
8197 // If the final branch target of a relocation is THUMB instruction, this
8198 // is 1. Otherwise it is 0.
8199 Arm_address thumb_bit
= 0;
8200 Symbol_value
<32> symval
;
8201 bool is_weakly_undefined_without_plt
= false;
8202 if (relnum
!= Target_arm
<big_endian
>::fake_relnum_for_stubs
)
8206 // This is a global symbol. Determine if we use PLT and if the
8207 // final target is THUMB.
8208 if (gsym
->use_plt_offset(reloc_is_non_pic(r_type
)))
8210 // This uses a PLT, change the symbol value.
8211 symval
.set_output_value(target
->plt_section()->address()
8212 + gsym
->plt_offset());
8215 else if (gsym
->is_weak_undefined())
8217 // This is a weakly undefined symbol and we do not use PLT
8218 // for this relocation. A branch targeting this symbol will
8219 // be converted into an NOP.
8220 is_weakly_undefined_without_plt
= true;
8224 // Set thumb bit if symbol:
8225 // -Has type STT_ARM_TFUNC or
8226 // -Has type STT_FUNC, is defined and with LSB in value set.
8228 (((gsym
->type() == elfcpp::STT_ARM_TFUNC
)
8229 || (gsym
->type() == elfcpp::STT_FUNC
8230 && !gsym
->is_undefined()
8231 && ((psymval
->value(object
, 0) & 1) != 0)))
8238 // This is a local symbol. Determine if the final target is THUMB.
8239 // We saved this information when all the local symbols were read.
8240 elfcpp::Elf_types
<32>::Elf_WXword r_info
= rel
.get_r_info();
8241 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(r_info
);
8242 thumb_bit
= object
->local_symbol_is_thumb_function(r_sym
) ? 1 : 0;
8247 // This is a fake relocation synthesized for a stub. It does not have
8248 // a real symbol. We just look at the LSB of the symbol value to
8249 // determine if the target is THUMB or not.
8250 thumb_bit
= ((psymval
->value(object
, 0) & 1) != 0);
8253 // Strip LSB if this points to a THUMB target.
8255 && reloc_property
->uses_thumb_bit()
8256 && ((psymval
->value(object
, 0) & 1) != 0))
8258 Arm_address stripped_value
=
8259 psymval
->value(object
, 0) & ~static_cast<Arm_address
>(1);
8260 symval
.set_output_value(stripped_value
);
8264 // Get the GOT offset if needed.
8265 // The GOT pointer points to the end of the GOT section.
8266 // We need to subtract the size of the GOT section to get
8267 // the actual offset to use in the relocation.
8268 bool have_got_offset
= false;
8269 unsigned int got_offset
= 0;
8272 case elfcpp::R_ARM_GOT_BREL
:
8273 case elfcpp::R_ARM_GOT_PREL
:
8276 gold_assert(gsym
->has_got_offset(GOT_TYPE_STANDARD
));
8277 got_offset
= (gsym
->got_offset(GOT_TYPE_STANDARD
)
8278 - target
->got_size());
8282 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(rel
.get_r_info());
8283 gold_assert(object
->local_has_got_offset(r_sym
, GOT_TYPE_STANDARD
));
8284 got_offset
= (object
->local_got_offset(r_sym
, GOT_TYPE_STANDARD
)
8285 - target
->got_size());
8287 have_got_offset
= true;
8294 // To look up relocation stubs, we need to pass the symbol table index of
8296 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(rel
.get_r_info());
8298 // Get the addressing origin of the output segment defining the
8299 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8300 Arm_address sym_origin
= 0;
8301 if (reloc_property
->uses_symbol_base())
8303 if (r_type
== elfcpp::R_ARM_BASE_ABS
&& gsym
== NULL
)
8304 // R_ARM_BASE_ABS with the NULL symbol will give the
8305 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8306 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8307 sym_origin
= target
->got_plt_section()->address();
8308 else if (gsym
== NULL
)
8310 else if (gsym
->source() == Symbol::IN_OUTPUT_SEGMENT
)
8311 sym_origin
= gsym
->output_segment()->vaddr();
8312 else if (gsym
->source() == Symbol::IN_OUTPUT_DATA
)
8313 sym_origin
= gsym
->output_data()->address();
8315 // TODO: Assumes the segment base to be zero for the global symbols
8316 // till the proper support for the segment-base-relative addressing
8317 // will be implemented. This is consistent with GNU ld.
8320 // For relative addressing relocation, find out the relative address base.
8321 Arm_address relative_address_base
= 0;
8322 switch(reloc_property
->relative_address_base())
8324 case Arm_reloc_property::RAB_NONE
:
8325 // Relocations with relative address bases RAB_TLS and RAB_tp are
8326 // handled by relocate_tls. So we do not need to do anything here.
8327 case Arm_reloc_property::RAB_TLS
:
8328 case Arm_reloc_property::RAB_tp
:
8330 case Arm_reloc_property::RAB_B_S
:
8331 relative_address_base
= sym_origin
;
8333 case Arm_reloc_property::RAB_GOT_ORG
:
8334 relative_address_base
= target
->got_plt_section()->address();
8336 case Arm_reloc_property::RAB_P
:
8337 relative_address_base
= address
;
8339 case Arm_reloc_property::RAB_Pa
:
8340 relative_address_base
= address
& 0xfffffffcU
;
8346 typename
Arm_relocate_functions::Status reloc_status
=
8347 Arm_relocate_functions::STATUS_OKAY
;
8348 bool check_overflow
= reloc_property
->checks_overflow();
8351 case elfcpp::R_ARM_NONE
:
8354 case elfcpp::R_ARM_ABS8
:
8355 if (should_apply_static_reloc(gsym
, Symbol::ABSOLUTE_REF
, false,
8357 reloc_status
= Arm_relocate_functions::abs8(view
, object
, psymval
);
8360 case elfcpp::R_ARM_ABS12
:
8361 if (should_apply_static_reloc(gsym
, Symbol::ABSOLUTE_REF
, false,
8363 reloc_status
= Arm_relocate_functions::abs12(view
, object
, psymval
);
8366 case elfcpp::R_ARM_ABS16
:
8367 if (should_apply_static_reloc(gsym
, Symbol::ABSOLUTE_REF
, false,
8369 reloc_status
= Arm_relocate_functions::abs16(view
, object
, psymval
);
8372 case elfcpp::R_ARM_ABS32
:
8373 if (should_apply_static_reloc(gsym
, Symbol::ABSOLUTE_REF
, true,
8375 reloc_status
= Arm_relocate_functions::abs32(view
, object
, psymval
,
8379 case elfcpp::R_ARM_ABS32_NOI
:
8380 if (should_apply_static_reloc(gsym
, Symbol::ABSOLUTE_REF
, true,
8382 // No thumb bit for this relocation: (S + A)
8383 reloc_status
= Arm_relocate_functions::abs32(view
, object
, psymval
,
8387 case elfcpp::R_ARM_MOVW_ABS_NC
:
8388 if (should_apply_static_reloc(gsym
, Symbol::ABSOLUTE_REF
, false,
8390 reloc_status
= Arm_relocate_functions::movw(view
, object
, psymval
,
8395 case elfcpp::R_ARM_MOVT_ABS
:
8396 if (should_apply_static_reloc(gsym
, Symbol::ABSOLUTE_REF
, false,
8398 reloc_status
= Arm_relocate_functions::movt(view
, object
, psymval
, 0);
8401 case elfcpp::R_ARM_THM_MOVW_ABS_NC
:
8402 if (should_apply_static_reloc(gsym
, Symbol::ABSOLUTE_REF
, false,
8404 reloc_status
= Arm_relocate_functions::thm_movw(view
, object
, psymval
,
8405 0, thumb_bit
, false);
8408 case elfcpp::R_ARM_THM_MOVT_ABS
:
8409 if (should_apply_static_reloc(gsym
, Symbol::ABSOLUTE_REF
, false,
8411 reloc_status
= Arm_relocate_functions::thm_movt(view
, object
,
8415 case elfcpp::R_ARM_MOVW_PREL_NC
:
8416 case elfcpp::R_ARM_MOVW_BREL_NC
:
8417 case elfcpp::R_ARM_MOVW_BREL
:
8419 Arm_relocate_functions::movw(view
, object
, psymval
,
8420 relative_address_base
, thumb_bit
,
8424 case elfcpp::R_ARM_MOVT_PREL
:
8425 case elfcpp::R_ARM_MOVT_BREL
:
8427 Arm_relocate_functions::movt(view
, object
, psymval
,
8428 relative_address_base
);
8431 case elfcpp::R_ARM_THM_MOVW_PREL_NC
:
8432 case elfcpp::R_ARM_THM_MOVW_BREL_NC
:
8433 case elfcpp::R_ARM_THM_MOVW_BREL
:
8435 Arm_relocate_functions::thm_movw(view
, object
, psymval
,
8436 relative_address_base
,
8437 thumb_bit
, check_overflow
);
8440 case elfcpp::R_ARM_THM_MOVT_PREL
:
8441 case elfcpp::R_ARM_THM_MOVT_BREL
:
8443 Arm_relocate_functions::thm_movt(view
, object
, psymval
,
8444 relative_address_base
);
8447 case elfcpp::R_ARM_REL32
:
8448 reloc_status
= Arm_relocate_functions::rel32(view
, object
, psymval
,
8449 address
, thumb_bit
);
8452 case elfcpp::R_ARM_THM_ABS5
:
8453 if (should_apply_static_reloc(gsym
, Symbol::ABSOLUTE_REF
, false,
8455 reloc_status
= Arm_relocate_functions::thm_abs5(view
, object
, psymval
);
8458 // Thumb long branches.
8459 case elfcpp::R_ARM_THM_CALL
:
8460 case elfcpp::R_ARM_THM_XPC22
:
8461 case elfcpp::R_ARM_THM_JUMP24
:
8463 Arm_relocate_functions::thumb_branch_common(
8464 r_type
, relinfo
, view
, gsym
, object
, r_sym
, psymval
, address
,
8465 thumb_bit
, is_weakly_undefined_without_plt
);
8468 case elfcpp::R_ARM_GOTOFF32
:
8470 Arm_address got_origin
;
8471 got_origin
= target
->got_plt_section()->address();
8472 reloc_status
= Arm_relocate_functions::rel32(view
, object
, psymval
,
8473 got_origin
, thumb_bit
);
8477 case elfcpp::R_ARM_BASE_PREL
:
8478 gold_assert(gsym
!= NULL
);
8480 Arm_relocate_functions::base_prel(view
, sym_origin
, address
);
8483 case elfcpp::R_ARM_BASE_ABS
:
8485 if (!should_apply_static_reloc(gsym
, Symbol::ABSOLUTE_REF
, false,
8489 reloc_status
= Arm_relocate_functions::base_abs(view
, sym_origin
);
8493 case elfcpp::R_ARM_GOT_BREL
:
8494 gold_assert(have_got_offset
);
8495 reloc_status
= Arm_relocate_functions::got_brel(view
, got_offset
);
8498 case elfcpp::R_ARM_GOT_PREL
:
8499 gold_assert(have_got_offset
);
8500 // Get the address origin for GOT PLT, which is allocated right
8501 // after the GOT section, to calculate an absolute address of
8502 // the symbol GOT entry (got_origin + got_offset).
8503 Arm_address got_origin
;
8504 got_origin
= target
->got_plt_section()->address();
8505 reloc_status
= Arm_relocate_functions::got_prel(view
,
8506 got_origin
+ got_offset
,
8510 case elfcpp::R_ARM_PLT32
:
8511 case elfcpp::R_ARM_CALL
:
8512 case elfcpp::R_ARM_JUMP24
:
8513 case elfcpp::R_ARM_XPC25
:
8514 gold_assert(gsym
== NULL
8515 || gsym
->has_plt_offset()
8516 || gsym
->final_value_is_known()
8517 || (gsym
->is_defined()
8518 && !gsym
->is_from_dynobj()
8519 && !gsym
->is_preemptible()));
8521 Arm_relocate_functions::arm_branch_common(
8522 r_type
, relinfo
, view
, gsym
, object
, r_sym
, psymval
, address
,
8523 thumb_bit
, is_weakly_undefined_without_plt
);
8526 case elfcpp::R_ARM_THM_JUMP19
:
8528 Arm_relocate_functions::thm_jump19(view
, object
, psymval
, address
,
8532 case elfcpp::R_ARM_THM_JUMP6
:
8534 Arm_relocate_functions::thm_jump6(view
, object
, psymval
, address
);
8537 case elfcpp::R_ARM_THM_JUMP8
:
8539 Arm_relocate_functions::thm_jump8(view
, object
, psymval
, address
);
8542 case elfcpp::R_ARM_THM_JUMP11
:
8544 Arm_relocate_functions::thm_jump11(view
, object
, psymval
, address
);
8547 case elfcpp::R_ARM_PREL31
:
8548 reloc_status
= Arm_relocate_functions::prel31(view
, object
, psymval
,
8549 address
, thumb_bit
);
8552 case elfcpp::R_ARM_V4BX
:
8553 if (target
->fix_v4bx() > General_options::FIX_V4BX_NONE
)
8555 const bool is_v4bx_interworking
=
8556 (target
->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
);
8558 Arm_relocate_functions::v4bx(relinfo
, view
, object
, address
,
8559 is_v4bx_interworking
);
8563 case elfcpp::R_ARM_THM_PC8
:
8565 Arm_relocate_functions::thm_pc8(view
, object
, psymval
, address
);
8568 case elfcpp::R_ARM_THM_PC12
:
8570 Arm_relocate_functions::thm_pc12(view
, object
, psymval
, address
);
8573 case elfcpp::R_ARM_THM_ALU_PREL_11_0
:
8575 Arm_relocate_functions::thm_alu11(view
, object
, psymval
, address
,
8579 case elfcpp::R_ARM_ALU_PC_G0_NC
:
8580 case elfcpp::R_ARM_ALU_PC_G0
:
8581 case elfcpp::R_ARM_ALU_PC_G1_NC
:
8582 case elfcpp::R_ARM_ALU_PC_G1
:
8583 case elfcpp::R_ARM_ALU_PC_G2
:
8584 case elfcpp::R_ARM_ALU_SB_G0_NC
:
8585 case elfcpp::R_ARM_ALU_SB_G0
:
8586 case elfcpp::R_ARM_ALU_SB_G1_NC
:
8587 case elfcpp::R_ARM_ALU_SB_G1
:
8588 case elfcpp::R_ARM_ALU_SB_G2
:
8590 Arm_relocate_functions::arm_grp_alu(view
, object
, psymval
,
8591 reloc_property
->group_index(),
8592 relative_address_base
,
8593 thumb_bit
, check_overflow
);
8596 case elfcpp::R_ARM_LDR_PC_G0
:
8597 case elfcpp::R_ARM_LDR_PC_G1
:
8598 case elfcpp::R_ARM_LDR_PC_G2
:
8599 case elfcpp::R_ARM_LDR_SB_G0
:
8600 case elfcpp::R_ARM_LDR_SB_G1
:
8601 case elfcpp::R_ARM_LDR_SB_G2
:
8603 Arm_relocate_functions::arm_grp_ldr(view
, object
, psymval
,
8604 reloc_property
->group_index(),
8605 relative_address_base
);
8608 case elfcpp::R_ARM_LDRS_PC_G0
:
8609 case elfcpp::R_ARM_LDRS_PC_G1
:
8610 case elfcpp::R_ARM_LDRS_PC_G2
:
8611 case elfcpp::R_ARM_LDRS_SB_G0
:
8612 case elfcpp::R_ARM_LDRS_SB_G1
:
8613 case elfcpp::R_ARM_LDRS_SB_G2
:
8615 Arm_relocate_functions::arm_grp_ldrs(view
, object
, psymval
,
8616 reloc_property
->group_index(),
8617 relative_address_base
);
8620 case elfcpp::R_ARM_LDC_PC_G0
:
8621 case elfcpp::R_ARM_LDC_PC_G1
:
8622 case elfcpp::R_ARM_LDC_PC_G2
:
8623 case elfcpp::R_ARM_LDC_SB_G0
:
8624 case elfcpp::R_ARM_LDC_SB_G1
:
8625 case elfcpp::R_ARM_LDC_SB_G2
:
8627 Arm_relocate_functions::arm_grp_ldc(view
, object
, psymval
,
8628 reloc_property
->group_index(),
8629 relative_address_base
);
8632 // These are initial tls relocs, which are expected when
8634 case elfcpp::R_ARM_TLS_GD32
: // Global-dynamic
8635 case elfcpp::R_ARM_TLS_LDM32
: // Local-dynamic
8636 case elfcpp::R_ARM_TLS_LDO32
: // Alternate local-dynamic
8637 case elfcpp::R_ARM_TLS_IE32
: // Initial-exec
8638 case elfcpp::R_ARM_TLS_LE32
: // Local-exec
8640 this->relocate_tls(relinfo
, target
, relnum
, rel
, r_type
, gsym
, psymval
,
8641 view
, address
, view_size
);
8648 // Report any errors.
8649 switch (reloc_status
)
8651 case Arm_relocate_functions::STATUS_OKAY
:
8653 case Arm_relocate_functions::STATUS_OVERFLOW
:
8654 gold_error_at_location(relinfo
, relnum
, rel
.get_r_offset(),
8655 _("relocation overflow in %s"),
8656 reloc_property
->name().c_str());
8658 case Arm_relocate_functions::STATUS_BAD_RELOC
:
8659 gold_error_at_location(
8663 _("unexpected opcode while processing relocation %s"),
8664 reloc_property
->name().c_str());
8673 // Perform a TLS relocation.
8675 template<bool big_endian
>
8676 inline typename Arm_relocate_functions
<big_endian
>::Status
8677 Target_arm
<big_endian
>::Relocate::relocate_tls(
8678 const Relocate_info
<32, big_endian
>* relinfo
,
8679 Target_arm
<big_endian
>* target
,
8681 const elfcpp::Rel
<32, big_endian
>& rel
,
8682 unsigned int r_type
,
8683 const Sized_symbol
<32>* gsym
,
8684 const Symbol_value
<32>* psymval
,
8685 unsigned char* view
,
8686 elfcpp::Elf_types
<32>::Elf_Addr address
,
8687 section_size_type
/*view_size*/ )
8689 typedef Arm_relocate_functions
<big_endian
> ArmRelocFuncs
;
8690 typedef Relocate_functions
<32, big_endian
> RelocFuncs
;
8691 Output_segment
* tls_segment
= relinfo
->layout
->tls_segment();
8693 const Sized_relobj
<32, big_endian
>* object
= relinfo
->object
;
8695 elfcpp::Elf_types
<32>::Elf_Addr value
= psymval
->value(object
, 0);
8697 const bool is_final
= (gsym
== NULL
8698 ? !parameters
->options().shared()
8699 : gsym
->final_value_is_known());
8700 const tls::Tls_optimization optimized_type
8701 = Target_arm
<big_endian
>::optimize_tls_reloc(is_final
, r_type
);
8704 case elfcpp::R_ARM_TLS_GD32
: // Global-dynamic
8706 unsigned int got_type
= GOT_TYPE_TLS_PAIR
;
8707 unsigned int got_offset
;
8710 gold_assert(gsym
->has_got_offset(got_type
));
8711 got_offset
= gsym
->got_offset(got_type
) - target
->got_size();
8715 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(rel
.get_r_info());
8716 gold_assert(object
->local_has_got_offset(r_sym
, got_type
));
8717 got_offset
= (object
->local_got_offset(r_sym
, got_type
)
8718 - target
->got_size());
8720 if (optimized_type
== tls::TLSOPT_NONE
)
8722 Arm_address got_entry
=
8723 target
->got_plt_section()->address() + got_offset
;
8725 // Relocate the field with the PC relative offset of the pair of
8727 RelocFuncs::pcrel32(view
, got_entry
, address
);
8728 return ArmRelocFuncs::STATUS_OKAY
;
8733 case elfcpp::R_ARM_TLS_LDM32
: // Local-dynamic
8734 if (optimized_type
== tls::TLSOPT_NONE
)
8736 // Relocate the field with the offset of the GOT entry for
8737 // the module index.
8738 unsigned int got_offset
;
8739 got_offset
= (target
->got_mod_index_entry(NULL
, NULL
, NULL
)
8740 - target
->got_size());
8741 Arm_address got_entry
=
8742 target
->got_plt_section()->address() + got_offset
;
8744 // Relocate the field with the PC relative offset of the pair of
8746 RelocFuncs::pcrel32(view
, got_entry
, address
);
8747 return ArmRelocFuncs::STATUS_OKAY
;
8751 case elfcpp::R_ARM_TLS_LDO32
: // Alternate local-dynamic
8752 RelocFuncs::rel32(view
, value
);
8753 return ArmRelocFuncs::STATUS_OKAY
;
8755 case elfcpp::R_ARM_TLS_IE32
: // Initial-exec
8756 if (optimized_type
== tls::TLSOPT_NONE
)
8758 // Relocate the field with the offset of the GOT entry for
8759 // the tp-relative offset of the symbol.
8760 unsigned int got_type
= GOT_TYPE_TLS_OFFSET
;
8761 unsigned int got_offset
;
8764 gold_assert(gsym
->has_got_offset(got_type
));
8765 got_offset
= gsym
->got_offset(got_type
);
8769 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(rel
.get_r_info());
8770 gold_assert(object
->local_has_got_offset(r_sym
, got_type
));
8771 got_offset
= object
->local_got_offset(r_sym
, got_type
);
8774 // All GOT offsets are relative to the end of the GOT.
8775 got_offset
-= target
->got_size();
8777 Arm_address got_entry
=
8778 target
->got_plt_section()->address() + got_offset
;
8780 // Relocate the field with the PC relative offset of the GOT entry.
8781 RelocFuncs::pcrel32(view
, got_entry
, address
);
8782 return ArmRelocFuncs::STATUS_OKAY
;
8786 case elfcpp::R_ARM_TLS_LE32
: // Local-exec
8787 // If we're creating a shared library, a dynamic relocation will
8788 // have been created for this location, so do not apply it now.
8789 if (!parameters
->options().shared())
8791 gold_assert(tls_segment
!= NULL
);
8793 // $tp points to the TCB, which is followed by the TLS, so we
8794 // need to add TCB size to the offset.
8795 Arm_address aligned_tcb_size
=
8796 align_address(ARM_TCB_SIZE
, tls_segment
->maximum_alignment());
8797 RelocFuncs::rel32(view
, value
+ aligned_tcb_size
);
8800 return ArmRelocFuncs::STATUS_OKAY
;
8806 gold_error_at_location(relinfo
, relnum
, rel
.get_r_offset(),
8807 _("unsupported reloc %u"),
8809 return ArmRelocFuncs::STATUS_BAD_RELOC
;
8812 // Relocate section data.
8814 template<bool big_endian
>
8816 Target_arm
<big_endian
>::relocate_section(
8817 const Relocate_info
<32, big_endian
>* relinfo
,
8818 unsigned int sh_type
,
8819 const unsigned char* prelocs
,
8821 Output_section
* output_section
,
8822 bool needs_special_offset_handling
,
8823 unsigned char* view
,
8824 Arm_address address
,
8825 section_size_type view_size
,
8826 const Reloc_symbol_changes
* reloc_symbol_changes
)
8828 typedef typename Target_arm
<big_endian
>::Relocate Arm_relocate
;
8829 gold_assert(sh_type
== elfcpp::SHT_REL
);
8831 // See if we are relocating a relaxed input section. If so, the view
8832 // covers the whole output section and we need to adjust accordingly.
8833 if (needs_special_offset_handling
)
8835 const Output_relaxed_input_section
* poris
=
8836 output_section
->find_relaxed_input_section(relinfo
->object
,
8837 relinfo
->data_shndx
);
8840 Arm_address section_address
= poris
->address();
8841 section_size_type section_size
= poris
->data_size();
8843 gold_assert((section_address
>= address
)
8844 && ((section_address
+ section_size
)
8845 <= (address
+ view_size
)));
8847 off_t offset
= section_address
- address
;
8850 view_size
= section_size
;
8854 gold::relocate_section
<32, big_endian
, Target_arm
, elfcpp::SHT_REL
,
8861 needs_special_offset_handling
,
8865 reloc_symbol_changes
);
8868 // Return the size of a relocation while scanning during a relocatable
8871 template<bool big_endian
>
8873 Target_arm
<big_endian
>::Relocatable_size_for_reloc::get_size_for_reloc(
8874 unsigned int r_type
,
8877 r_type
= get_real_reloc_type(r_type
);
8878 const Arm_reloc_property
* arp
=
8879 arm_reloc_property_table
->get_implemented_static_reloc_property(r_type
);
8884 std::string reloc_name
=
8885 arm_reloc_property_table
->reloc_name_in_error_message(r_type
);
8886 gold_error(_("%s: unexpected %s in object file"),
8887 object
->name().c_str(), reloc_name
.c_str());
8892 // Scan the relocs during a relocatable link.
8894 template<bool big_endian
>
8896 Target_arm
<big_endian
>::scan_relocatable_relocs(
8897 Symbol_table
* symtab
,
8899 Sized_relobj
<32, big_endian
>* object
,
8900 unsigned int data_shndx
,
8901 unsigned int sh_type
,
8902 const unsigned char* prelocs
,
8904 Output_section
* output_section
,
8905 bool needs_special_offset_handling
,
8906 size_t local_symbol_count
,
8907 const unsigned char* plocal_symbols
,
8908 Relocatable_relocs
* rr
)
8910 gold_assert(sh_type
== elfcpp::SHT_REL
);
8912 typedef gold::Default_scan_relocatable_relocs
<elfcpp::SHT_REL
,
8913 Relocatable_size_for_reloc
> Scan_relocatable_relocs
;
8915 gold::scan_relocatable_relocs
<32, big_endian
, elfcpp::SHT_REL
,
8916 Scan_relocatable_relocs
>(
8924 needs_special_offset_handling
,
8930 // Relocate a section during a relocatable link.
8932 template<bool big_endian
>
8934 Target_arm
<big_endian
>::relocate_for_relocatable(
8935 const Relocate_info
<32, big_endian
>* relinfo
,
8936 unsigned int sh_type
,
8937 const unsigned char* prelocs
,
8939 Output_section
* output_section
,
8940 off_t offset_in_output_section
,
8941 const Relocatable_relocs
* rr
,
8942 unsigned char* view
,
8943 Arm_address view_address
,
8944 section_size_type view_size
,
8945 unsigned char* reloc_view
,
8946 section_size_type reloc_view_size
)
8948 gold_assert(sh_type
== elfcpp::SHT_REL
);
8950 gold::relocate_for_relocatable
<32, big_endian
, elfcpp::SHT_REL
>(
8955 offset_in_output_section
,
8964 // Return the value to use for a dynamic symbol which requires special
8965 // treatment. This is how we support equality comparisons of function
8966 // pointers across shared library boundaries, as described in the
8967 // processor specific ABI supplement.
8969 template<bool big_endian
>
8971 Target_arm
<big_endian
>::do_dynsym_value(const Symbol
* gsym
) const
8973 gold_assert(gsym
->is_from_dynobj() && gsym
->has_plt_offset());
8974 return this->plt_section()->address() + gsym
->plt_offset();
8977 // Map platform-specific relocs to real relocs
8979 template<bool big_endian
>
8981 Target_arm
<big_endian
>::get_real_reloc_type (unsigned int r_type
)
8985 case elfcpp::R_ARM_TARGET1
:
8986 // This is either R_ARM_ABS32 or R_ARM_REL32;
8987 return elfcpp::R_ARM_ABS32
;
8989 case elfcpp::R_ARM_TARGET2
:
8990 // This can be any reloc type but ususally is R_ARM_GOT_PREL
8991 return elfcpp::R_ARM_GOT_PREL
;
8998 // Whether if two EABI versions V1 and V2 are compatible.
9000 template<bool big_endian
>
9002 Target_arm
<big_endian
>::are_eabi_versions_compatible(
9003 elfcpp::Elf_Word v1
,
9004 elfcpp::Elf_Word v2
)
9006 // v4 and v5 are the same spec before and after it was released,
9007 // so allow mixing them.
9008 if ((v1
== elfcpp::EF_ARM_EABI_VER4
&& v2
== elfcpp::EF_ARM_EABI_VER5
)
9009 || (v1
== elfcpp::EF_ARM_EABI_VER5
&& v2
== elfcpp::EF_ARM_EABI_VER4
))
9015 // Combine FLAGS from an input object called NAME and the processor-specific
9016 // flags in the ELF header of the output. Much of this is adapted from the
9017 // processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9018 // in bfd/elf32-arm.c.
9020 template<bool big_endian
>
9022 Target_arm
<big_endian
>::merge_processor_specific_flags(
9023 const std::string
& name
,
9024 elfcpp::Elf_Word flags
)
9026 if (this->are_processor_specific_flags_set())
9028 elfcpp::Elf_Word out_flags
= this->processor_specific_flags();
9030 // Nothing to merge if flags equal to those in output.
9031 if (flags
== out_flags
)
9034 // Complain about various flag mismatches.
9035 elfcpp::Elf_Word version1
= elfcpp::arm_eabi_version(flags
);
9036 elfcpp::Elf_Word version2
= elfcpp::arm_eabi_version(out_flags
);
9037 if (!this->are_eabi_versions_compatible(version1
, version2
)
9038 && parameters
->options().warn_mismatch())
9039 gold_error(_("Source object %s has EABI version %d but output has "
9040 "EABI version %d."),
9042 (flags
& elfcpp::EF_ARM_EABIMASK
) >> 24,
9043 (out_flags
& elfcpp::EF_ARM_EABIMASK
) >> 24);
9047 // If the input is the default architecture and had the default
9048 // flags then do not bother setting the flags for the output
9049 // architecture, instead allow future merges to do this. If no
9050 // future merges ever set these flags then they will retain their
9051 // uninitialised values, which surprise surprise, correspond
9052 // to the default values.
9056 // This is the first time, just copy the flags.
9057 // We only copy the EABI version for now.
9058 this->set_processor_specific_flags(flags
& elfcpp::EF_ARM_EABIMASK
);
9062 // Adjust ELF file header.
9063 template<bool big_endian
>
9065 Target_arm
<big_endian
>::do_adjust_elf_header(
9066 unsigned char* view
,
9069 gold_assert(len
== elfcpp::Elf_sizes
<32>::ehdr_size
);
9071 elfcpp::Ehdr
<32, big_endian
> ehdr(view
);
9072 unsigned char e_ident
[elfcpp::EI_NIDENT
];
9073 memcpy(e_ident
, ehdr
.get_e_ident(), elfcpp::EI_NIDENT
);
9075 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9076 == elfcpp::EF_ARM_EABI_UNKNOWN
)
9077 e_ident
[elfcpp::EI_OSABI
] = elfcpp::ELFOSABI_ARM
;
9079 e_ident
[elfcpp::EI_OSABI
] = 0;
9080 e_ident
[elfcpp::EI_ABIVERSION
] = 0;
9082 // FIXME: Do EF_ARM_BE8 adjustment.
9084 elfcpp::Ehdr_write
<32, big_endian
> oehdr(view
);
9085 oehdr
.put_e_ident(e_ident
);
9088 // do_make_elf_object to override the same function in the base class.
9089 // We need to use a target-specific sub-class of Sized_relobj<32, big_endian>
9090 // to store ARM specific information. Hence we need to have our own
9091 // ELF object creation.
9093 template<bool big_endian
>
9095 Target_arm
<big_endian
>::do_make_elf_object(
9096 const std::string
& name
,
9097 Input_file
* input_file
,
9098 off_t offset
, const elfcpp::Ehdr
<32, big_endian
>& ehdr
)
9100 int et
= ehdr
.get_e_type();
9101 if (et
== elfcpp::ET_REL
)
9103 Arm_relobj
<big_endian
>* obj
=
9104 new Arm_relobj
<big_endian
>(name
, input_file
, offset
, ehdr
);
9108 else if (et
== elfcpp::ET_DYN
)
9110 Sized_dynobj
<32, big_endian
>* obj
=
9111 new Arm_dynobj
<big_endian
>(name
, input_file
, offset
, ehdr
);
9117 gold_error(_("%s: unsupported ELF file type %d"),
9123 // Read the architecture from the Tag_also_compatible_with attribute, if any.
9124 // Returns -1 if no architecture could be read.
9125 // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
9127 template<bool big_endian
>
9129 Target_arm
<big_endian
>::get_secondary_compatible_arch(
9130 const Attributes_section_data
* pasd
)
9132 const Object_attribute
*known_attributes
=
9133 pasd
->known_attributes(Object_attribute::OBJ_ATTR_PROC
);
9135 // Note: the tag and its argument below are uleb128 values, though
9136 // currently-defined values fit in one byte for each.
9137 const std::string
& sv
=
9138 known_attributes
[elfcpp::Tag_also_compatible_with
].string_value();
9140 && sv
.data()[0] == elfcpp::Tag_CPU_arch
9141 && (sv
.data()[1] & 128) != 128)
9142 return sv
.data()[1];
9144 // This tag is "safely ignorable", so don't complain if it looks funny.
9148 // Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9149 // The tag is removed if ARCH is -1.
9150 // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
9152 template<bool big_endian
>
9154 Target_arm
<big_endian
>::set_secondary_compatible_arch(
9155 Attributes_section_data
* pasd
,
9158 Object_attribute
*known_attributes
=
9159 pasd
->known_attributes(Object_attribute::OBJ_ATTR_PROC
);
9163 known_attributes
[elfcpp::Tag_also_compatible_with
].set_string_value("");
9167 // Note: the tag and its argument below are uleb128 values, though
9168 // currently-defined values fit in one byte for each.
9170 sv
[0] = elfcpp::Tag_CPU_arch
;
9171 gold_assert(arch
!= 0);
9175 known_attributes
[elfcpp::Tag_also_compatible_with
].set_string_value(sv
);
9178 // Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9180 // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
9182 template<bool big_endian
>
9184 Target_arm
<big_endian
>::tag_cpu_arch_combine(
9187 int* secondary_compat_out
,
9189 int secondary_compat
)
9191 #define T(X) elfcpp::TAG_CPU_ARCH_##X
9192 static const int v6t2
[] =
9204 static const int v6k
[] =
9217 static const int v7
[] =
9231 static const int v6_m
[] =
9246 static const int v6s_m
[] =
9262 static const int v7e_m
[] =
9279 static const int v4t_plus_v6_m
[] =
9295 T(V4T_PLUS_V6_M
) // V4T plus V6_M.
9297 static const int *comb
[] =
9305 // Pseudo-architecture.
9309 // Check we've not got a higher architecture than we know about.
9311 if (oldtag
>= elfcpp::MAX_TAG_CPU_ARCH
|| newtag
>= elfcpp::MAX_TAG_CPU_ARCH
)
9313 gold_error(_("%s: unknown CPU architecture"), name
);
9317 // Override old tag if we have a Tag_also_compatible_with on the output.
9319 if ((oldtag
== T(V6_M
) && *secondary_compat_out
== T(V4T
))
9320 || (oldtag
== T(V4T
) && *secondary_compat_out
== T(V6_M
)))
9321 oldtag
= T(V4T_PLUS_V6_M
);
9323 // And override the new tag if we have a Tag_also_compatible_with on the
9326 if ((newtag
== T(V6_M
) && secondary_compat
== T(V4T
))
9327 || (newtag
== T(V4T
) && secondary_compat
== T(V6_M
)))
9328 newtag
= T(V4T_PLUS_V6_M
);
9330 // Architectures before V6KZ add features monotonically.
9331 int tagh
= std::max(oldtag
, newtag
);
9332 if (tagh
<= elfcpp::TAG_CPU_ARCH_V6KZ
)
9335 int tagl
= std::min(oldtag
, newtag
);
9336 int result
= comb
[tagh
- T(V6T2
)][tagl
];
9338 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9339 // as the canonical version.
9340 if (result
== T(V4T_PLUS_V6_M
))
9343 *secondary_compat_out
= T(V6_M
);
9346 *secondary_compat_out
= -1;
9350 gold_error(_("%s: conflicting CPU architectures %d/%d"),
9351 name
, oldtag
, newtag
);
9359 // Helper to print AEABI enum tag value.
9361 template<bool big_endian
>
9363 Target_arm
<big_endian
>::aeabi_enum_name(unsigned int value
)
9365 static const char *aeabi_enum_names
[] =
9366 { "", "variable-size", "32-bit", "" };
9367 const size_t aeabi_enum_names_size
=
9368 sizeof(aeabi_enum_names
) / sizeof(aeabi_enum_names
[0]);
9370 if (value
< aeabi_enum_names_size
)
9371 return std::string(aeabi_enum_names
[value
]);
9375 sprintf(buffer
, "<unknown value %u>", value
);
9376 return std::string(buffer
);
9380 // Return the string value to store in TAG_CPU_name.
9382 template<bool big_endian
>
9384 Target_arm
<big_endian
>::tag_cpu_name_value(unsigned int value
)
9386 static const char *name_table
[] = {
9387 // These aren't real CPU names, but we can't guess
9388 // that from the architecture version alone.
9404 const size_t name_table_size
= sizeof(name_table
) / sizeof(name_table
[0]);
9406 if (value
< name_table_size
)
9407 return std::string(name_table
[value
]);
9411 sprintf(buffer
, "<unknown CPU value %u>", value
);
9412 return std::string(buffer
);
9416 // Merge object attributes from input file called NAME with those of the
9417 // output. The input object attributes are in the object pointed by PASD.
9419 template<bool big_endian
>
9421 Target_arm
<big_endian
>::merge_object_attributes(
9423 const Attributes_section_data
* pasd
)
9425 // Return if there is no attributes section data.
9429 // If output has no object attributes, just copy.
9430 if (this->attributes_section_data_
== NULL
)
9432 this->attributes_section_data_
= new Attributes_section_data(*pasd
);
9436 const int vendor
= Object_attribute::OBJ_ATTR_PROC
;
9437 const Object_attribute
* in_attr
= pasd
->known_attributes(vendor
);
9438 Object_attribute
* out_attr
=
9439 this->attributes_section_data_
->known_attributes(vendor
);
9441 // This needs to happen before Tag_ABI_FP_number_model is merged. */
9442 if (in_attr
[elfcpp::Tag_ABI_VFP_args
].int_value()
9443 != out_attr
[elfcpp::Tag_ABI_VFP_args
].int_value())
9445 // Ignore mismatches if the object doesn't use floating point. */
9446 if (out_attr
[elfcpp::Tag_ABI_FP_number_model
].int_value() == 0)
9447 out_attr
[elfcpp::Tag_ABI_VFP_args
].set_int_value(
9448 in_attr
[elfcpp::Tag_ABI_VFP_args
].int_value());
9449 else if (in_attr
[elfcpp::Tag_ABI_FP_number_model
].int_value() != 0
9450 && parameters
->options().warn_mismatch())
9451 gold_error(_("%s uses VFP register arguments, output does not"),
9455 for (int i
= 4; i
< Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES
; ++i
)
9457 // Merge this attribute with existing attributes.
9460 case elfcpp::Tag_CPU_raw_name
:
9461 case elfcpp::Tag_CPU_name
:
9462 // These are merged after Tag_CPU_arch.
9465 case elfcpp::Tag_ABI_optimization_goals
:
9466 case elfcpp::Tag_ABI_FP_optimization_goals
:
9467 // Use the first value seen.
9470 case elfcpp::Tag_CPU_arch
:
9472 unsigned int saved_out_attr
= out_attr
->int_value();
9473 // Merge Tag_CPU_arch and Tag_also_compatible_with.
9474 int secondary_compat
=
9475 this->get_secondary_compatible_arch(pasd
);
9476 int secondary_compat_out
=
9477 this->get_secondary_compatible_arch(
9478 this->attributes_section_data_
);
9479 out_attr
[i
].set_int_value(
9480 tag_cpu_arch_combine(name
, out_attr
[i
].int_value(),
9481 &secondary_compat_out
,
9482 in_attr
[i
].int_value(),
9484 this->set_secondary_compatible_arch(this->attributes_section_data_
,
9485 secondary_compat_out
);
9487 // Merge Tag_CPU_name and Tag_CPU_raw_name.
9488 if (out_attr
[i
].int_value() == saved_out_attr
)
9489 ; // Leave the names alone.
9490 else if (out_attr
[i
].int_value() == in_attr
[i
].int_value())
9492 // The output architecture has been changed to match the
9493 // input architecture. Use the input names.
9494 out_attr
[elfcpp::Tag_CPU_name
].set_string_value(
9495 in_attr
[elfcpp::Tag_CPU_name
].string_value());
9496 out_attr
[elfcpp::Tag_CPU_raw_name
].set_string_value(
9497 in_attr
[elfcpp::Tag_CPU_raw_name
].string_value());
9501 out_attr
[elfcpp::Tag_CPU_name
].set_string_value("");
9502 out_attr
[elfcpp::Tag_CPU_raw_name
].set_string_value("");
9505 // If we still don't have a value for Tag_CPU_name,
9506 // make one up now. Tag_CPU_raw_name remains blank.
9507 if (out_attr
[elfcpp::Tag_CPU_name
].string_value() == "")
9509 const std::string cpu_name
=
9510 this->tag_cpu_name_value(out_attr
[i
].int_value());
9511 // FIXME: If we see an unknown CPU, this will be set
9512 // to "<unknown CPU n>", where n is the attribute value.
9513 // This is different from BFD, which leaves the name alone.
9514 out_attr
[elfcpp::Tag_CPU_name
].set_string_value(cpu_name
);
9519 case elfcpp::Tag_ARM_ISA_use
:
9520 case elfcpp::Tag_THUMB_ISA_use
:
9521 case elfcpp::Tag_WMMX_arch
:
9522 case elfcpp::Tag_Advanced_SIMD_arch
:
9523 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
9524 case elfcpp::Tag_ABI_FP_rounding
:
9525 case elfcpp::Tag_ABI_FP_exceptions
:
9526 case elfcpp::Tag_ABI_FP_user_exceptions
:
9527 case elfcpp::Tag_ABI_FP_number_model
:
9528 case elfcpp::Tag_VFP_HP_extension
:
9529 case elfcpp::Tag_CPU_unaligned_access
:
9530 case elfcpp::Tag_T2EE_use
:
9531 case elfcpp::Tag_Virtualization_use
:
9532 case elfcpp::Tag_MPextension_use
:
9533 // Use the largest value specified.
9534 if (in_attr
[i
].int_value() > out_attr
[i
].int_value())
9535 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
9538 case elfcpp::Tag_ABI_align8_preserved
:
9539 case elfcpp::Tag_ABI_PCS_RO_data
:
9540 // Use the smallest value specified.
9541 if (in_attr
[i
].int_value() < out_attr
[i
].int_value())
9542 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
9545 case elfcpp::Tag_ABI_align8_needed
:
9546 if ((in_attr
[i
].int_value() > 0 || out_attr
[i
].int_value() > 0)
9547 && (in_attr
[elfcpp::Tag_ABI_align8_preserved
].int_value() == 0
9548 || (out_attr
[elfcpp::Tag_ABI_align8_preserved
].int_value()
9551 // This error message should be enabled once all non-conformant
9552 // binaries in the toolchain have had the attributes set
9554 // gold_error(_("output 8-byte data alignment conflicts with %s"),
9558 case elfcpp::Tag_ABI_FP_denormal
:
9559 case elfcpp::Tag_ABI_PCS_GOT_use
:
9561 // These tags have 0 = don't care, 1 = strong requirement,
9562 // 2 = weak requirement.
9563 static const int order_021
[3] = {0, 2, 1};
9565 // Use the "greatest" from the sequence 0, 2, 1, or the largest
9566 // value if greater than 2 (for future-proofing).
9567 if ((in_attr
[i
].int_value() > 2
9568 && in_attr
[i
].int_value() > out_attr
[i
].int_value())
9569 || (in_attr
[i
].int_value() <= 2
9570 && out_attr
[i
].int_value() <= 2
9571 && (order_021
[in_attr
[i
].int_value()]
9572 > order_021
[out_attr
[i
].int_value()])))
9573 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
9577 case elfcpp::Tag_CPU_arch_profile
:
9578 if (out_attr
[i
].int_value() != in_attr
[i
].int_value())
9580 // 0 will merge with anything.
9581 // 'A' and 'S' merge to 'A'.
9582 // 'R' and 'S' merge to 'R'.
9583 // 'M' and 'A|R|S' is an error.
9584 if (out_attr
[i
].int_value() == 0
9585 || (out_attr
[i
].int_value() == 'S'
9586 && (in_attr
[i
].int_value() == 'A'
9587 || in_attr
[i
].int_value() == 'R')))
9588 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
9589 else if (in_attr
[i
].int_value() == 0
9590 || (in_attr
[i
].int_value() == 'S'
9591 && (out_attr
[i
].int_value() == 'A'
9592 || out_attr
[i
].int_value() == 'R')))
9594 else if (parameters
->options().warn_mismatch())
9597 (_("conflicting architecture profiles %c/%c"),
9598 in_attr
[i
].int_value() ? in_attr
[i
].int_value() : '0',
9599 out_attr
[i
].int_value() ? out_attr
[i
].int_value() : '0');
9603 case elfcpp::Tag_VFP_arch
:
9620 // Values greater than 6 aren't defined, so just pick the
9622 if (in_attr
[i
].int_value() > 6
9623 && in_attr
[i
].int_value() > out_attr
[i
].int_value())
9625 *out_attr
= *in_attr
;
9628 // The output uses the superset of input features
9629 // (ISA version) and registers.
9630 int ver
= std::max(vfp_versions
[in_attr
[i
].int_value()].ver
,
9631 vfp_versions
[out_attr
[i
].int_value()].ver
);
9632 int regs
= std::max(vfp_versions
[in_attr
[i
].int_value()].regs
,
9633 vfp_versions
[out_attr
[i
].int_value()].regs
);
9634 // This assumes all possible supersets are also a valid
9637 for (newval
= 6; newval
> 0; newval
--)
9639 if (regs
== vfp_versions
[newval
].regs
9640 && ver
== vfp_versions
[newval
].ver
)
9643 out_attr
[i
].set_int_value(newval
);
9646 case elfcpp::Tag_PCS_config
:
9647 if (out_attr
[i
].int_value() == 0)
9648 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
9649 else if (in_attr
[i
].int_value() != 0
9650 && out_attr
[i
].int_value() != 0
9651 && parameters
->options().warn_mismatch())
9653 // It's sometimes ok to mix different configs, so this is only
9655 gold_warning(_("%s: conflicting platform configuration"), name
);
9658 case elfcpp::Tag_ABI_PCS_R9_use
:
9659 if (in_attr
[i
].int_value() != out_attr
[i
].int_value()
9660 && out_attr
[i
].int_value() != elfcpp::AEABI_R9_unused
9661 && in_attr
[i
].int_value() != elfcpp::AEABI_R9_unused
9662 && parameters
->options().warn_mismatch())
9664 gold_error(_("%s: conflicting use of R9"), name
);
9666 if (out_attr
[i
].int_value() == elfcpp::AEABI_R9_unused
)
9667 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
9669 case elfcpp::Tag_ABI_PCS_RW_data
:
9670 if (in_attr
[i
].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
9671 && (in_attr
[elfcpp::Tag_ABI_PCS_R9_use
].int_value()
9672 != elfcpp::AEABI_R9_SB
)
9673 && (out_attr
[elfcpp::Tag_ABI_PCS_R9_use
].int_value()
9674 != elfcpp::AEABI_R9_unused
)
9675 && parameters
->options().warn_mismatch())
9677 gold_error(_("%s: SB relative addressing conflicts with use "
9681 // Use the smallest value specified.
9682 if (in_attr
[i
].int_value() < out_attr
[i
].int_value())
9683 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
9685 case elfcpp::Tag_ABI_PCS_wchar_t
:
9686 // FIXME: Make it possible to turn off this warning.
9687 if (out_attr
[i
].int_value()
9688 && in_attr
[i
].int_value()
9689 && out_attr
[i
].int_value() != in_attr
[i
].int_value()
9690 && parameters
->options().warn_mismatch())
9692 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
9693 "use %u-byte wchar_t; use of wchar_t values "
9694 "across objects may fail"),
9695 name
, in_attr
[i
].int_value(),
9696 out_attr
[i
].int_value());
9698 else if (in_attr
[i
].int_value() && !out_attr
[i
].int_value())
9699 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
9701 case elfcpp::Tag_ABI_enum_size
:
9702 if (in_attr
[i
].int_value() != elfcpp::AEABI_enum_unused
)
9704 if (out_attr
[i
].int_value() == elfcpp::AEABI_enum_unused
9705 || out_attr
[i
].int_value() == elfcpp::AEABI_enum_forced_wide
)
9707 // The existing object is compatible with anything.
9708 // Use whatever requirements the new object has.
9709 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
9711 // FIXME: Make it possible to turn off this warning.
9712 else if (in_attr
[i
].int_value() != elfcpp::AEABI_enum_forced_wide
9713 && out_attr
[i
].int_value() != in_attr
[i
].int_value()
9714 && parameters
->options().warn_mismatch())
9716 unsigned int in_value
= in_attr
[i
].int_value();
9717 unsigned int out_value
= out_attr
[i
].int_value();
9718 gold_warning(_("%s uses %s enums yet the output is to use "
9719 "%s enums; use of enum values across objects "
9722 this->aeabi_enum_name(in_value
).c_str(),
9723 this->aeabi_enum_name(out_value
).c_str());
9727 case elfcpp::Tag_ABI_VFP_args
:
9730 case elfcpp::Tag_ABI_WMMX_args
:
9731 if (in_attr
[i
].int_value() != out_attr
[i
].int_value()
9732 && parameters
->options().warn_mismatch())
9734 gold_error(_("%s uses iWMMXt register arguments, output does "
9739 case Object_attribute::Tag_compatibility
:
9740 // Merged in target-independent code.
9742 case elfcpp::Tag_ABI_HardFP_use
:
9743 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
9744 if ((in_attr
[i
].int_value() == 1 && out_attr
[i
].int_value() == 2)
9745 || (in_attr
[i
].int_value() == 2 && out_attr
[i
].int_value() == 1))
9746 out_attr
[i
].set_int_value(3);
9747 else if (in_attr
[i
].int_value() > out_attr
[i
].int_value())
9748 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
9750 case elfcpp::Tag_ABI_FP_16bit_format
:
9751 if (in_attr
[i
].int_value() != 0 && out_attr
[i
].int_value() != 0)
9753 if (in_attr
[i
].int_value() != out_attr
[i
].int_value()
9754 && parameters
->options().warn_mismatch())
9755 gold_error(_("fp16 format mismatch between %s and output"),
9758 if (in_attr
[i
].int_value() != 0)
9759 out_attr
[i
].set_int_value(in_attr
[i
].int_value());
9762 case elfcpp::Tag_nodefaults
:
9763 // This tag is set if it exists, but the value is unused (and is
9764 // typically zero). We don't actually need to do anything here -
9765 // the merge happens automatically when the type flags are merged
9768 case elfcpp::Tag_also_compatible_with
:
9769 // Already done in Tag_CPU_arch.
9771 case elfcpp::Tag_conformance
:
9772 // Keep the attribute if it matches. Throw it away otherwise.
9773 // No attribute means no claim to conform.
9774 if (in_attr
[i
].string_value() != out_attr
[i
].string_value())
9775 out_attr
[i
].set_string_value("");
9780 const char* err_object
= NULL
;
9782 // The "known_obj_attributes" table does contain some undefined
9783 // attributes. Ensure that there are unused.
9784 if (out_attr
[i
].int_value() != 0
9785 || out_attr
[i
].string_value() != "")
9786 err_object
= "output";
9787 else if (in_attr
[i
].int_value() != 0
9788 || in_attr
[i
].string_value() != "")
9791 if (err_object
!= NULL
9792 && parameters
->options().warn_mismatch())
9794 // Attribute numbers >=64 (mod 128) can be safely ignored.
9796 gold_error(_("%s: unknown mandatory EABI object attribute "
9800 gold_warning(_("%s: unknown EABI object attribute %d"),
9804 // Only pass on attributes that match in both inputs.
9805 if (!in_attr
[i
].matches(out_attr
[i
]))
9807 out_attr
[i
].set_int_value(0);
9808 out_attr
[i
].set_string_value("");
9813 // If out_attr was copied from in_attr then it won't have a type yet.
9814 if (in_attr
[i
].type() && !out_attr
[i
].type())
9815 out_attr
[i
].set_type(in_attr
[i
].type());
9818 // Merge Tag_compatibility attributes and any common GNU ones.
9819 this->attributes_section_data_
->merge(name
, pasd
);
9821 // Check for any attributes not known on ARM.
9822 typedef Vendor_object_attributes::Other_attributes Other_attributes
;
9823 const Other_attributes
* in_other_attributes
= pasd
->other_attributes(vendor
);
9824 Other_attributes::const_iterator in_iter
= in_other_attributes
->begin();
9825 Other_attributes
* out_other_attributes
=
9826 this->attributes_section_data_
->other_attributes(vendor
);
9827 Other_attributes::iterator out_iter
= out_other_attributes
->begin();
9829 while (in_iter
!= in_other_attributes
->end()
9830 || out_iter
!= out_other_attributes
->end())
9832 const char* err_object
= NULL
;
9835 // The tags for each list are in numerical order.
9836 // If the tags are equal, then merge.
9837 if (out_iter
!= out_other_attributes
->end()
9838 && (in_iter
== in_other_attributes
->end()
9839 || in_iter
->first
> out_iter
->first
))
9841 // This attribute only exists in output. We can't merge, and we
9842 // don't know what the tag means, so delete it.
9843 err_object
= "output";
9844 err_tag
= out_iter
->first
;
9845 int saved_tag
= out_iter
->first
;
9846 delete out_iter
->second
;
9847 out_other_attributes
->erase(out_iter
);
9848 out_iter
= out_other_attributes
->upper_bound(saved_tag
);
9850 else if (in_iter
!= in_other_attributes
->end()
9851 && (out_iter
!= out_other_attributes
->end()
9852 || in_iter
->first
< out_iter
->first
))
9854 // This attribute only exists in input. We can't merge, and we
9855 // don't know what the tag means, so ignore it.
9857 err_tag
= in_iter
->first
;
9860 else // The tags are equal.
9862 // As present, all attributes in the list are unknown, and
9863 // therefore can't be merged meaningfully.
9864 err_object
= "output";
9865 err_tag
= out_iter
->first
;
9867 // Only pass on attributes that match in both inputs.
9868 if (!in_iter
->second
->matches(*(out_iter
->second
)))
9870 // No match. Delete the attribute.
9871 int saved_tag
= out_iter
->first
;
9872 delete out_iter
->second
;
9873 out_other_attributes
->erase(out_iter
);
9874 out_iter
= out_other_attributes
->upper_bound(saved_tag
);
9878 // Matched. Keep the attribute and move to the next.
9884 if (err_object
&& parameters
->options().warn_mismatch())
9886 // Attribute numbers >=64 (mod 128) can be safely ignored. */
9887 if ((err_tag
& 127) < 64)
9889 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
9890 err_object
, err_tag
);
9894 gold_warning(_("%s: unknown EABI object attribute %d"),
9895 err_object
, err_tag
);
9901 // Stub-generation methods for Target_arm.
9903 // Make a new Arm_input_section object.
9905 template<bool big_endian
>
9906 Arm_input_section
<big_endian
>*
9907 Target_arm
<big_endian
>::new_arm_input_section(
9911 Section_id
sid(relobj
, shndx
);
9913 Arm_input_section
<big_endian
>* arm_input_section
=
9914 new Arm_input_section
<big_endian
>(relobj
, shndx
);
9915 arm_input_section
->init();
9917 // Register new Arm_input_section in map for look-up.
9918 std::pair
<typename
Arm_input_section_map::iterator
, bool> ins
=
9919 this->arm_input_section_map_
.insert(std::make_pair(sid
, arm_input_section
));
9921 // Make sure that it we have not created another Arm_input_section
9922 // for this input section already.
9923 gold_assert(ins
.second
);
9925 return arm_input_section
;
9928 // Find the Arm_input_section object corresponding to the SHNDX-th input
9929 // section of RELOBJ.
9931 template<bool big_endian
>
9932 Arm_input_section
<big_endian
>*
9933 Target_arm
<big_endian
>::find_arm_input_section(
9935 unsigned int shndx
) const
9937 Section_id
sid(relobj
, shndx
);
9938 typename
Arm_input_section_map::const_iterator p
=
9939 this->arm_input_section_map_
.find(sid
);
9940 return (p
!= this->arm_input_section_map_
.end()) ? p
->second
: NULL
;
9943 // Make a new stub table.
9945 template<bool big_endian
>
9946 Stub_table
<big_endian
>*
9947 Target_arm
<big_endian
>::new_stub_table(Arm_input_section
<big_endian
>* owner
)
9949 Stub_table
<big_endian
>* stub_table
=
9950 new Stub_table
<big_endian
>(owner
);
9951 this->stub_tables_
.push_back(stub_table
);
9953 stub_table
->set_address(owner
->address() + owner
->data_size());
9954 stub_table
->set_file_offset(owner
->offset() + owner
->data_size());
9955 stub_table
->finalize_data_size();
9960 // Scan a relocation for stub generation.
9962 template<bool big_endian
>
9964 Target_arm
<big_endian
>::scan_reloc_for_stub(
9965 const Relocate_info
<32, big_endian
>* relinfo
,
9966 unsigned int r_type
,
9967 const Sized_symbol
<32>* gsym
,
9969 const Symbol_value
<32>* psymval
,
9970 elfcpp::Elf_types
<32>::Elf_Swxword addend
,
9971 Arm_address address
)
9973 typedef typename Target_arm
<big_endian
>::Relocate Relocate
;
9975 const Arm_relobj
<big_endian
>* arm_relobj
=
9976 Arm_relobj
<big_endian
>::as_arm_relobj(relinfo
->object
);
9978 bool target_is_thumb
;
9979 Symbol_value
<32> symval
;
9982 // This is a global symbol. Determine if we use PLT and if the
9983 // final target is THUMB.
9984 if (gsym
->use_plt_offset(Relocate::reloc_is_non_pic(r_type
)))
9986 // This uses a PLT, change the symbol value.
9987 symval
.set_output_value(this->plt_section()->address()
9988 + gsym
->plt_offset());
9990 target_is_thumb
= false;
9992 else if (gsym
->is_undefined())
9993 // There is no need to generate a stub symbol is undefined.
9998 ((gsym
->type() == elfcpp::STT_ARM_TFUNC
)
9999 || (gsym
->type() == elfcpp::STT_FUNC
10000 && !gsym
->is_undefined()
10001 && ((psymval
->value(arm_relobj
, 0) & 1) != 0)));
10006 // This is a local symbol. Determine if the final target is THUMB.
10007 target_is_thumb
= arm_relobj
->local_symbol_is_thumb_function(r_sym
);
10010 // Strip LSB if this points to a THUMB target.
10011 const Arm_reloc_property
* reloc_property
=
10012 arm_reloc_property_table
->get_implemented_static_reloc_property(r_type
);
10013 gold_assert(reloc_property
!= NULL
);
10014 if (target_is_thumb
10015 && reloc_property
->uses_thumb_bit()
10016 && ((psymval
->value(arm_relobj
, 0) & 1) != 0))
10018 Arm_address stripped_value
=
10019 psymval
->value(arm_relobj
, 0) & ~static_cast<Arm_address
>(1);
10020 symval
.set_output_value(stripped_value
);
10024 // Get the symbol value.
10025 Symbol_value
<32>::Value value
= psymval
->value(arm_relobj
, 0);
10027 // Owing to pipelining, the PC relative branches below actually skip
10028 // two instructions when the branch offset is 0.
10029 Arm_address destination
;
10032 case elfcpp::R_ARM_CALL
:
10033 case elfcpp::R_ARM_JUMP24
:
10034 case elfcpp::R_ARM_PLT32
:
10036 destination
= value
+ addend
+ 8;
10038 case elfcpp::R_ARM_THM_CALL
:
10039 case elfcpp::R_ARM_THM_XPC22
:
10040 case elfcpp::R_ARM_THM_JUMP24
:
10041 case elfcpp::R_ARM_THM_JUMP19
:
10043 destination
= value
+ addend
+ 4;
10046 gold_unreachable();
10049 Reloc_stub
* stub
= NULL
;
10050 Stub_type stub_type
=
10051 Reloc_stub::stub_type_for_reloc(r_type
, address
, destination
,
10053 if (stub_type
!= arm_stub_none
)
10055 // Try looking up an existing stub from a stub table.
10056 Stub_table
<big_endian
>* stub_table
=
10057 arm_relobj
->stub_table(relinfo
->data_shndx
);
10058 gold_assert(stub_table
!= NULL
);
10060 // Locate stub by destination.
10061 Reloc_stub::Key
stub_key(stub_type
, gsym
, arm_relobj
, r_sym
, addend
);
10063 // Create a stub if there is not one already
10064 stub
= stub_table
->find_reloc_stub(stub_key
);
10067 // create a new stub and add it to stub table.
10068 stub
= this->stub_factory().make_reloc_stub(stub_type
);
10069 stub_table
->add_reloc_stub(stub
, stub_key
);
10072 // Record the destination address.
10073 stub
->set_destination_address(destination
10074 | (target_is_thumb
? 1 : 0));
10077 // For Cortex-A8, we need to record a relocation at 4K page boundary.
10078 if (this->fix_cortex_a8_
10079 && (r_type
== elfcpp::R_ARM_THM_JUMP24
10080 || r_type
== elfcpp::R_ARM_THM_JUMP19
10081 || r_type
== elfcpp::R_ARM_THM_CALL
10082 || r_type
== elfcpp::R_ARM_THM_XPC22
)
10083 && (address
& 0xfffU
) == 0xffeU
)
10085 // Found a candidate. Note we haven't checked the destination is
10086 // within 4K here: if we do so (and don't create a record) we can't
10087 // tell that a branch should have been relocated when scanning later.
10088 this->cortex_a8_relocs_info_
[address
] =
10089 new Cortex_a8_reloc(stub
, r_type
,
10090 destination
| (target_is_thumb
? 1 : 0));
10094 // This function scans a relocation sections for stub generation.
10095 // The template parameter Relocate must be a class type which provides
10096 // a single function, relocate(), which implements the machine
10097 // specific part of a relocation.
10099 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
10100 // SHT_REL or SHT_RELA.
10102 // PRELOCS points to the relocation data. RELOC_COUNT is the number
10103 // of relocs. OUTPUT_SECTION is the output section.
10104 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
10105 // mapped to output offsets.
10107 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
10108 // VIEW_SIZE is the size. These refer to the input section, unless
10109 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
10110 // the output section.
10112 template<bool big_endian
>
10113 template<int sh_type
>
10115 Target_arm
<big_endian
>::scan_reloc_section_for_stubs(
10116 const Relocate_info
<32, big_endian
>* relinfo
,
10117 const unsigned char* prelocs
,
10118 size_t reloc_count
,
10119 Output_section
* output_section
,
10120 bool needs_special_offset_handling
,
10121 const unsigned char* view
,
10122 elfcpp::Elf_types
<32>::Elf_Addr view_address
,
10125 typedef typename Reloc_types
<sh_type
, 32, big_endian
>::Reloc Reltype
;
10126 const int reloc_size
=
10127 Reloc_types
<sh_type
, 32, big_endian
>::reloc_size
;
10129 Arm_relobj
<big_endian
>* arm_object
=
10130 Arm_relobj
<big_endian
>::as_arm_relobj(relinfo
->object
);
10131 unsigned int local_count
= arm_object
->local_symbol_count();
10133 Comdat_behavior comdat_behavior
= CB_UNDETERMINED
;
10135 for (size_t i
= 0; i
< reloc_count
; ++i
, prelocs
+= reloc_size
)
10137 Reltype
reloc(prelocs
);
10139 typename
elfcpp::Elf_types
<32>::Elf_WXword r_info
= reloc
.get_r_info();
10140 unsigned int r_sym
= elfcpp::elf_r_sym
<32>(r_info
);
10141 unsigned int r_type
= elfcpp::elf_r_type
<32>(r_info
);
10143 r_type
= this->get_real_reloc_type(r_type
);
10145 // Only a few relocation types need stubs.
10146 if ((r_type
!= elfcpp::R_ARM_CALL
)
10147 && (r_type
!= elfcpp::R_ARM_JUMP24
)
10148 && (r_type
!= elfcpp::R_ARM_PLT32
)
10149 && (r_type
!= elfcpp::R_ARM_THM_CALL
)
10150 && (r_type
!= elfcpp::R_ARM_THM_XPC22
)
10151 && (r_type
!= elfcpp::R_ARM_THM_JUMP24
)
10152 && (r_type
!= elfcpp::R_ARM_THM_JUMP19
)
10153 && (r_type
!= elfcpp::R_ARM_V4BX
))
10156 section_offset_type offset
=
10157 convert_to_section_size_type(reloc
.get_r_offset());
10159 if (needs_special_offset_handling
)
10161 offset
= output_section
->output_offset(relinfo
->object
,
10162 relinfo
->data_shndx
,
10168 // Create a v4bx stub if --fix-v4bx-interworking is used.
10169 if (r_type
== elfcpp::R_ARM_V4BX
)
10171 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
)
10173 // Get the BX instruction.
10174 typedef typename
elfcpp::Swap
<32, big_endian
>::Valtype Valtype
;
10175 const Valtype
* wv
=
10176 reinterpret_cast<const Valtype
*>(view
+ offset
);
10177 elfcpp::Elf_types
<32>::Elf_Swxword insn
=
10178 elfcpp::Swap
<32, big_endian
>::readval(wv
);
10179 const uint32_t reg
= (insn
& 0xf);
10183 // Try looking up an existing stub from a stub table.
10184 Stub_table
<big_endian
>* stub_table
=
10185 arm_object
->stub_table(relinfo
->data_shndx
);
10186 gold_assert(stub_table
!= NULL
);
10188 if (stub_table
->find_arm_v4bx_stub(reg
) == NULL
)
10190 // create a new stub and add it to stub table.
10191 Arm_v4bx_stub
* stub
=
10192 this->stub_factory().make_arm_v4bx_stub(reg
);
10193 gold_assert(stub
!= NULL
);
10194 stub_table
->add_arm_v4bx_stub(stub
);
10202 Stub_addend_reader
<sh_type
, big_endian
> stub_addend_reader
;
10203 elfcpp::Elf_types
<32>::Elf_Swxword addend
=
10204 stub_addend_reader(r_type
, view
+ offset
, reloc
);
10206 const Sized_symbol
<32>* sym
;
10208 Symbol_value
<32> symval
;
10209 const Symbol_value
<32> *psymval
;
10210 if (r_sym
< local_count
)
10213 psymval
= arm_object
->local_symbol(r_sym
);
10215 // If the local symbol belongs to a section we are discarding,
10216 // and that section is a debug section, try to find the
10217 // corresponding kept section and map this symbol to its
10218 // counterpart in the kept section. The symbol must not
10219 // correspond to a section we are folding.
10221 unsigned int shndx
= psymval
->input_shndx(&is_ordinary
);
10223 && shndx
!= elfcpp::SHN_UNDEF
10224 && !arm_object
->is_section_included(shndx
)
10225 && !(relinfo
->symtab
->is_section_folded(arm_object
, shndx
)))
10227 if (comdat_behavior
== CB_UNDETERMINED
)
10230 arm_object
->section_name(relinfo
->data_shndx
);
10231 comdat_behavior
= get_comdat_behavior(name
.c_str());
10233 if (comdat_behavior
== CB_PRETEND
)
10236 typename
elfcpp::Elf_types
<32>::Elf_Addr value
=
10237 arm_object
->map_to_kept_section(shndx
, &found
);
10239 symval
.set_output_value(value
+ psymval
->input_value());
10241 symval
.set_output_value(0);
10245 symval
.set_output_value(0);
10247 symval
.set_no_output_symtab_entry();
10253 const Symbol
* gsym
= arm_object
->global_symbol(r_sym
);
10254 gold_assert(gsym
!= NULL
);
10255 if (gsym
->is_forwarder())
10256 gsym
= relinfo
->symtab
->resolve_forwards(gsym
);
10258 sym
= static_cast<const Sized_symbol
<32>*>(gsym
);
10259 if (sym
->has_symtab_index())
10260 symval
.set_output_symtab_index(sym
->symtab_index());
10262 symval
.set_no_output_symtab_entry();
10264 // We need to compute the would-be final value of this global
10266 const Symbol_table
* symtab
= relinfo
->symtab
;
10267 const Sized_symbol
<32>* sized_symbol
=
10268 symtab
->get_sized_symbol
<32>(gsym
);
10269 Symbol_table::Compute_final_value_status status
;
10270 Arm_address value
=
10271 symtab
->compute_final_value
<32>(sized_symbol
, &status
);
10273 // Skip this if the symbol has not output section.
10274 if (status
== Symbol_table::CFVS_NO_OUTPUT_SECTION
)
10277 symval
.set_output_value(value
);
10281 // If symbol is a section symbol, we don't know the actual type of
10282 // destination. Give up.
10283 if (psymval
->is_section_symbol())
10286 this->scan_reloc_for_stub(relinfo
, r_type
, sym
, r_sym
, psymval
,
10287 addend
, view_address
+ offset
);
10291 // Scan an input section for stub generation.
10293 template<bool big_endian
>
10295 Target_arm
<big_endian
>::scan_section_for_stubs(
10296 const Relocate_info
<32, big_endian
>* relinfo
,
10297 unsigned int sh_type
,
10298 const unsigned char* prelocs
,
10299 size_t reloc_count
,
10300 Output_section
* output_section
,
10301 bool needs_special_offset_handling
,
10302 const unsigned char* view
,
10303 Arm_address view_address
,
10304 section_size_type view_size
)
10306 if (sh_type
== elfcpp::SHT_REL
)
10307 this->scan_reloc_section_for_stubs
<elfcpp::SHT_REL
>(
10312 needs_special_offset_handling
,
10316 else if (sh_type
== elfcpp::SHT_RELA
)
10317 // We do not support RELA type relocations yet. This is provided for
10319 this->scan_reloc_section_for_stubs
<elfcpp::SHT_RELA
>(
10324 needs_special_offset_handling
,
10329 gold_unreachable();
10332 // Group input sections for stub generation.
10334 // We goup input sections in an output sections so that the total size,
10335 // including any padding space due to alignment is smaller than GROUP_SIZE
10336 // unless the only input section in group is bigger than GROUP_SIZE already.
10337 // Then an ARM stub table is created to follow the last input section
10338 // in group. For each group an ARM stub table is created an is placed
10339 // after the last group. If STUB_ALWATS_AFTER_BRANCH is false, we further
10340 // extend the group after the stub table.
10342 template<bool big_endian
>
10344 Target_arm
<big_endian
>::group_sections(
10346 section_size_type group_size
,
10347 bool stubs_always_after_branch
)
10349 // Group input sections and insert stub table
10350 Layout::Section_list section_list
;
10351 layout
->get_allocated_sections(§ion_list
);
10352 for (Layout::Section_list::const_iterator p
= section_list
.begin();
10353 p
!= section_list
.end();
10356 Arm_output_section
<big_endian
>* output_section
=
10357 Arm_output_section
<big_endian
>::as_arm_output_section(*p
);
10358 output_section
->group_sections(group_size
, stubs_always_after_branch
,
10363 // Relaxation hook. This is where we do stub generation.
10365 template<bool big_endian
>
10367 Target_arm
<big_endian
>::do_relax(
10369 const Input_objects
* input_objects
,
10370 Symbol_table
* symtab
,
10373 // No need to generate stubs if this is a relocatable link.
10374 gold_assert(!parameters
->options().relocatable());
10376 // If this is the first pass, we need to group input sections into
10378 bool done_exidx_fixup
= false;
10381 // Determine the stub group size. The group size is the absolute
10382 // value of the parameter --stub-group-size. If --stub-group-size
10383 // is passed a negative value, we restict stubs to be always after
10384 // the stubbed branches.
10385 int32_t stub_group_size_param
=
10386 parameters
->options().stub_group_size();
10387 bool stubs_always_after_branch
= stub_group_size_param
< 0;
10388 section_size_type stub_group_size
= abs(stub_group_size_param
);
10390 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
10391 // page as the first half of a 32-bit branch straddling two 4K pages.
10392 // This is a crude way of enforcing that.
10393 if (this->fix_cortex_a8_
)
10394 stubs_always_after_branch
= true;
10396 if (stub_group_size
== 1)
10399 // Thumb branch range is +-4MB has to be used as the default
10400 // maximum size (a given section can contain both ARM and Thumb
10401 // code, so the worst case has to be taken into account). If we are
10402 // fixing cortex-a8 errata, the branch range has to be even smaller,
10403 // since wide conditional branch has a range of +-1MB only.
10405 // This value is 24K less than that, which allows for 2025
10406 // 12-byte stubs. If we exceed that, then we will fail to link.
10407 // The user will have to relink with an explicit group size
10409 if (this->fix_cortex_a8_
)
10410 stub_group_size
= 1024276;
10412 stub_group_size
= 4170000;
10415 group_sections(layout
, stub_group_size
, stubs_always_after_branch
);
10417 // Also fix .ARM.exidx section coverage.
10418 Output_section
* os
= layout
->find_output_section(".ARM.exidx");
10419 if (os
!= NULL
&& os
->type() == elfcpp::SHT_ARM_EXIDX
)
10421 Arm_output_section
<big_endian
>* exidx_output_section
=
10422 Arm_output_section
<big_endian
>::as_arm_output_section(os
);
10423 this->fix_exidx_coverage(layout
, exidx_output_section
, symtab
);
10424 done_exidx_fixup
= true;
10428 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
10429 // beginning of each relaxation pass, just blow away all the stubs.
10430 // Alternatively, we could selectively remove only the stubs and reloc
10431 // information for code sections that have moved since the last pass.
10432 // That would require more book-keeping.
10433 typedef typename
Stub_table_list::iterator Stub_table_iterator
;
10434 if (this->fix_cortex_a8_
)
10436 // Clear all Cortex-A8 reloc information.
10437 for (typename
Cortex_a8_relocs_info::const_iterator p
=
10438 this->cortex_a8_relocs_info_
.begin();
10439 p
!= this->cortex_a8_relocs_info_
.end();
10442 this->cortex_a8_relocs_info_
.clear();
10444 // Remove all Cortex-A8 stubs.
10445 for (Stub_table_iterator sp
= this->stub_tables_
.begin();
10446 sp
!= this->stub_tables_
.end();
10448 (*sp
)->remove_all_cortex_a8_stubs();
10451 // Scan relocs for relocation stubs
10452 for (Input_objects::Relobj_iterator op
= input_objects
->relobj_begin();
10453 op
!= input_objects
->relobj_end();
10456 Arm_relobj
<big_endian
>* arm_relobj
=
10457 Arm_relobj
<big_endian
>::as_arm_relobj(*op
);
10458 arm_relobj
->scan_sections_for_stubs(this, symtab
, layout
);
10461 // Check all stub tables to see if any of them have their data sizes
10462 // or addresses alignments changed. These are the only things that
10464 bool any_stub_table_changed
= false;
10465 Unordered_set
<const Output_section
*> sections_needing_adjustment
;
10466 for (Stub_table_iterator sp
= this->stub_tables_
.begin();
10467 (sp
!= this->stub_tables_
.end()) && !any_stub_table_changed
;
10470 if ((*sp
)->update_data_size_and_addralign())
10472 // Update data size of stub table owner.
10473 Arm_input_section
<big_endian
>* owner
= (*sp
)->owner();
10474 uint64_t address
= owner
->address();
10475 off_t offset
= owner
->offset();
10476 owner
->reset_address_and_file_offset();
10477 owner
->set_address_and_file_offset(address
, offset
);
10479 sections_needing_adjustment
.insert(owner
->output_section());
10480 any_stub_table_changed
= true;
10484 // Output_section_data::output_section() returns a const pointer but we
10485 // need to update output sections, so we record all output sections needing
10486 // update above and scan the sections here to find out what sections need
10488 for(Layout::Section_list::const_iterator p
= layout
->section_list().begin();
10489 p
!= layout
->section_list().end();
10492 if (sections_needing_adjustment
.find(*p
)
10493 != sections_needing_adjustment
.end())
10494 (*p
)->set_section_offsets_need_adjustment();
10497 // Stop relaxation if no EXIDX fix-up and no stub table change.
10498 bool continue_relaxation
= done_exidx_fixup
|| any_stub_table_changed
;
10500 // Finalize the stubs in the last relaxation pass.
10501 if (!continue_relaxation
)
10503 for (Stub_table_iterator sp
= this->stub_tables_
.begin();
10504 (sp
!= this->stub_tables_
.end()) && !any_stub_table_changed
;
10506 (*sp
)->finalize_stubs();
10508 // Update output local symbol counts of objects if necessary.
10509 for (Input_objects::Relobj_iterator op
= input_objects
->relobj_begin();
10510 op
!= input_objects
->relobj_end();
10513 Arm_relobj
<big_endian
>* arm_relobj
=
10514 Arm_relobj
<big_endian
>::as_arm_relobj(*op
);
10516 // Update output local symbol counts. We need to discard local
10517 // symbols defined in parts of input sections that are discarded by
10519 if (arm_relobj
->output_local_symbol_count_needs_update())
10520 arm_relobj
->update_output_local_symbol_count();
10524 return continue_relaxation
;
10527 // Relocate a stub.
10529 template<bool big_endian
>
10531 Target_arm
<big_endian
>::relocate_stub(
10533 const Relocate_info
<32, big_endian
>* relinfo
,
10534 Output_section
* output_section
,
10535 unsigned char* view
,
10536 Arm_address address
,
10537 section_size_type view_size
)
10540 const Stub_template
* stub_template
= stub
->stub_template();
10541 for (size_t i
= 0; i
< stub_template
->reloc_count(); i
++)
10543 size_t reloc_insn_index
= stub_template
->reloc_insn_index(i
);
10544 const Insn_template
* insn
= &stub_template
->insns()[reloc_insn_index
];
10546 unsigned int r_type
= insn
->r_type();
10547 section_size_type reloc_offset
= stub_template
->reloc_offset(i
);
10548 section_size_type reloc_size
= insn
->size();
10549 gold_assert(reloc_offset
+ reloc_size
<= view_size
);
10551 // This is the address of the stub destination.
10552 Arm_address target
= stub
->reloc_target(i
) + insn
->reloc_addend();
10553 Symbol_value
<32> symval
;
10554 symval
.set_output_value(target
);
10556 // Synthesize a fake reloc just in case. We don't have a symbol so
10558 unsigned char reloc_buffer
[elfcpp::Elf_sizes
<32>::rel_size
];
10559 memset(reloc_buffer
, 0, sizeof(reloc_buffer
));
10560 elfcpp::Rel_write
<32, big_endian
> reloc_write(reloc_buffer
);
10561 reloc_write
.put_r_offset(reloc_offset
);
10562 reloc_write
.put_r_info(elfcpp::elf_r_info
<32>(0, r_type
));
10563 elfcpp::Rel
<32, big_endian
> rel(reloc_buffer
);
10565 relocate
.relocate(relinfo
, this, output_section
,
10566 this->fake_relnum_for_stubs
, rel
, r_type
,
10567 NULL
, &symval
, view
+ reloc_offset
,
10568 address
+ reloc_offset
, reloc_size
);
10572 // Determine whether an object attribute tag takes an integer, a
10575 template<bool big_endian
>
10577 Target_arm
<big_endian
>::do_attribute_arg_type(int tag
) const
10579 if (tag
== Object_attribute::Tag_compatibility
)
10580 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
10581 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL
);
10582 else if (tag
== elfcpp::Tag_nodefaults
)
10583 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
10584 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT
);
10585 else if (tag
== elfcpp::Tag_CPU_raw_name
|| tag
== elfcpp::Tag_CPU_name
)
10586 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL
;
10588 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL
;
10590 return ((tag
& 1) != 0
10591 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
10592 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL
);
10595 // Reorder attributes.
10597 // The ABI defines that Tag_conformance should be emitted first, and that
10598 // Tag_nodefaults should be second (if either is defined). This sets those
10599 // two positions, and bumps up the position of all the remaining tags to
10602 template<bool big_endian
>
10604 Target_arm
<big_endian
>::do_attributes_order(int num
) const
10606 // Reorder the known object attributes in output. We want to move
10607 // Tag_conformance to position 4 and Tag_conformance to position 5
10608 // and shift eveything between 4 .. Tag_conformance - 1 to make room.
10610 return elfcpp::Tag_conformance
;
10612 return elfcpp::Tag_nodefaults
;
10613 if ((num
- 2) < elfcpp::Tag_nodefaults
)
10615 if ((num
- 1) < elfcpp::Tag_conformance
)
10620 // Scan a span of THUMB code for Cortex-A8 erratum.
10622 template<bool big_endian
>
10624 Target_arm
<big_endian
>::scan_span_for_cortex_a8_erratum(
10625 Arm_relobj
<big_endian
>* arm_relobj
,
10626 unsigned int shndx
,
10627 section_size_type span_start
,
10628 section_size_type span_end
,
10629 const unsigned char* view
,
10630 Arm_address address
)
10632 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
10634 // The opcode is BLX.W, BL.W, B.W, Bcc.W
10635 // The branch target is in the same 4KB region as the
10636 // first half of the branch.
10637 // The instruction before the branch is a 32-bit
10638 // length non-branch instruction.
10639 section_size_type i
= span_start
;
10640 bool last_was_32bit
= false;
10641 bool last_was_branch
= false;
10642 while (i
< span_end
)
10644 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
10645 const Valtype
* wv
= reinterpret_cast<const Valtype
*>(view
+ i
);
10646 uint32_t insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
10647 bool is_blx
= false, is_b
= false;
10648 bool is_bl
= false, is_bcc
= false;
10650 bool insn_32bit
= (insn
& 0xe000) == 0xe000 && (insn
& 0x1800) != 0x0000;
10653 // Load the rest of the insn (in manual-friendly order).
10654 insn
= (insn
<< 16) | elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
10656 // Encoding T4: B<c>.W.
10657 is_b
= (insn
& 0xf800d000U
) == 0xf0009000U
;
10658 // Encoding T1: BL<c>.W.
10659 is_bl
= (insn
& 0xf800d000U
) == 0xf000d000U
;
10660 // Encoding T2: BLX<c>.W.
10661 is_blx
= (insn
& 0xf800d000U
) == 0xf000c000U
;
10662 // Encoding T3: B<c>.W (not permitted in IT block).
10663 is_bcc
= ((insn
& 0xf800d000U
) == 0xf0008000U
10664 && (insn
& 0x07f00000U
) != 0x03800000U
);
10667 bool is_32bit_branch
= is_b
|| is_bl
|| is_blx
|| is_bcc
;
10669 // If this instruction is a 32-bit THUMB branch that crosses a 4K
10670 // page boundary and it follows 32-bit non-branch instruction,
10671 // we need to work around.
10672 if (is_32bit_branch
10673 && ((address
+ i
) & 0xfffU
) == 0xffeU
10675 && !last_was_branch
)
10677 // Check to see if there is a relocation stub for this branch.
10678 bool force_target_arm
= false;
10679 bool force_target_thumb
= false;
10680 const Cortex_a8_reloc
* cortex_a8_reloc
= NULL
;
10681 Cortex_a8_relocs_info::const_iterator p
=
10682 this->cortex_a8_relocs_info_
.find(address
+ i
);
10684 if (p
!= this->cortex_a8_relocs_info_
.end())
10686 cortex_a8_reloc
= p
->second
;
10687 bool target_is_thumb
= (cortex_a8_reloc
->destination() & 1) != 0;
10689 if (cortex_a8_reloc
->r_type() == elfcpp::R_ARM_THM_CALL
10690 && !target_is_thumb
)
10691 force_target_arm
= true;
10692 else if (cortex_a8_reloc
->r_type() == elfcpp::R_ARM_THM_CALL
10693 && target_is_thumb
)
10694 force_target_thumb
= true;
10698 Stub_type stub_type
= arm_stub_none
;
10700 // Check if we have an offending branch instruction.
10701 uint16_t upper_insn
= (insn
>> 16) & 0xffffU
;
10702 uint16_t lower_insn
= insn
& 0xffffU
;
10703 typedef struct Arm_relocate_functions
<big_endian
> RelocFuncs
;
10705 if (cortex_a8_reloc
!= NULL
10706 && cortex_a8_reloc
->reloc_stub() != NULL
)
10707 // We've already made a stub for this instruction, e.g.
10708 // it's a long branch or a Thumb->ARM stub. Assume that
10709 // stub will suffice to work around the A8 erratum (see
10710 // setting of always_after_branch above).
10714 offset
= RelocFuncs::thumb32_cond_branch_offset(upper_insn
,
10716 stub_type
= arm_stub_a8_veneer_b_cond
;
10718 else if (is_b
|| is_bl
|| is_blx
)
10720 offset
= RelocFuncs::thumb32_branch_offset(upper_insn
,
10725 stub_type
= (is_blx
10726 ? arm_stub_a8_veneer_blx
10728 ? arm_stub_a8_veneer_bl
10729 : arm_stub_a8_veneer_b
));
10732 if (stub_type
!= arm_stub_none
)
10734 Arm_address pc_for_insn
= address
+ i
+ 4;
10736 // The original instruction is a BL, but the target is
10737 // an ARM instruction. If we were not making a stub,
10738 // the BL would have been converted to a BLX. Use the
10739 // BLX stub instead in that case.
10740 if (this->may_use_blx() && force_target_arm
10741 && stub_type
== arm_stub_a8_veneer_bl
)
10743 stub_type
= arm_stub_a8_veneer_blx
;
10747 // Conversely, if the original instruction was
10748 // BLX but the target is Thumb mode, use the BL stub.
10749 else if (force_target_thumb
10750 && stub_type
== arm_stub_a8_veneer_blx
)
10752 stub_type
= arm_stub_a8_veneer_bl
;
10760 // If we found a relocation, use the proper destination,
10761 // not the offset in the (unrelocated) instruction.
10762 // Note this is always done if we switched the stub type above.
10763 if (cortex_a8_reloc
!= NULL
)
10764 offset
= (off_t
) (cortex_a8_reloc
->destination() - pc_for_insn
);
10766 Arm_address target
= (pc_for_insn
+ offset
) | (is_blx
? 0 : 1);
10768 // Add a new stub if destination address in in the same page.
10769 if (((address
+ i
) & ~0xfffU
) == (target
& ~0xfffU
))
10771 Cortex_a8_stub
* stub
=
10772 this->stub_factory_
.make_cortex_a8_stub(stub_type
,
10776 Stub_table
<big_endian
>* stub_table
=
10777 arm_relobj
->stub_table(shndx
);
10778 gold_assert(stub_table
!= NULL
);
10779 stub_table
->add_cortex_a8_stub(address
+ i
, stub
);
10784 i
+= insn_32bit
? 4 : 2;
10785 last_was_32bit
= insn_32bit
;
10786 last_was_branch
= is_32bit_branch
;
10790 // Apply the Cortex-A8 workaround.
10792 template<bool big_endian
>
10794 Target_arm
<big_endian
>::apply_cortex_a8_workaround(
10795 const Cortex_a8_stub
* stub
,
10796 Arm_address stub_address
,
10797 unsigned char* insn_view
,
10798 Arm_address insn_address
)
10800 typedef typename
elfcpp::Swap
<16, big_endian
>::Valtype Valtype
;
10801 Valtype
* wv
= reinterpret_cast<Valtype
*>(insn_view
);
10802 Valtype upper_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
);
10803 Valtype lower_insn
= elfcpp::Swap
<16, big_endian
>::readval(wv
+ 1);
10804 off_t branch_offset
= stub_address
- (insn_address
+ 4);
10806 typedef struct Arm_relocate_functions
<big_endian
> RelocFuncs
;
10807 switch (stub
->stub_template()->type())
10809 case arm_stub_a8_veneer_b_cond
:
10810 gold_assert(!utils::has_overflow
<21>(branch_offset
));
10811 upper_insn
= RelocFuncs::thumb32_cond_branch_upper(upper_insn
,
10813 lower_insn
= RelocFuncs::thumb32_cond_branch_lower(lower_insn
,
10817 case arm_stub_a8_veneer_b
:
10818 case arm_stub_a8_veneer_bl
:
10819 case arm_stub_a8_veneer_blx
:
10820 if ((lower_insn
& 0x5000U
) == 0x4000U
)
10821 // For a BLX instruction, make sure that the relocation is
10822 // rounded up to a word boundary. This follows the semantics of
10823 // the instruction which specifies that bit 1 of the target
10824 // address will come from bit 1 of the base address.
10825 branch_offset
= (branch_offset
+ 2) & ~3;
10827 // Put BRANCH_OFFSET back into the insn.
10828 gold_assert(!utils::has_overflow
<25>(branch_offset
));
10829 upper_insn
= RelocFuncs::thumb32_branch_upper(upper_insn
, branch_offset
);
10830 lower_insn
= RelocFuncs::thumb32_branch_lower(lower_insn
, branch_offset
);
10834 gold_unreachable();
10837 // Put the relocated value back in the object file:
10838 elfcpp::Swap
<16, big_endian
>::writeval(wv
, upper_insn
);
10839 elfcpp::Swap
<16, big_endian
>::writeval(wv
+ 1, lower_insn
);
10842 template<bool big_endian
>
10843 class Target_selector_arm
: public Target_selector
10846 Target_selector_arm()
10847 : Target_selector(elfcpp::EM_ARM
, 32, big_endian
,
10848 (big_endian
? "elf32-bigarm" : "elf32-littlearm"))
10852 do_instantiate_target()
10853 { return new Target_arm
<big_endian
>(); }
10856 // Fix .ARM.exidx section coverage.
10858 template<bool big_endian
>
10860 Target_arm
<big_endian
>::fix_exidx_coverage(
10862 Arm_output_section
<big_endian
>* exidx_section
,
10863 Symbol_table
* symtab
)
10865 // We need to look at all the input sections in output in ascending
10866 // order of of output address. We do that by building a sorted list
10867 // of output sections by addresses. Then we looks at the output sections
10868 // in order. The input sections in an output section are already sorted
10869 // by addresses within the output section.
10871 typedef std::set
<Output_section
*, output_section_address_less_than
>
10872 Sorted_output_section_list
;
10873 Sorted_output_section_list sorted_output_sections
;
10874 Layout::Section_list section_list
;
10875 layout
->get_allocated_sections(§ion_list
);
10876 for (Layout::Section_list::const_iterator p
= section_list
.begin();
10877 p
!= section_list
.end();
10880 // We only care about output sections that contain executable code.
10881 if (((*p
)->flags() & elfcpp::SHF_EXECINSTR
) != 0)
10882 sorted_output_sections
.insert(*p
);
10885 // Go over the output sections in ascending order of output addresses.
10886 typedef typename Arm_output_section
<big_endian
>::Text_section_list
10888 Text_section_list sorted_text_sections
;
10889 for(typename
Sorted_output_section_list::iterator p
=
10890 sorted_output_sections
.begin();
10891 p
!= sorted_output_sections
.end();
10894 Arm_output_section
<big_endian
>* arm_output_section
=
10895 Arm_output_section
<big_endian
>::as_arm_output_section(*p
);
10896 arm_output_section
->append_text_sections_to_list(&sorted_text_sections
);
10899 exidx_section
->fix_exidx_coverage(layout
, sorted_text_sections
, symtab
,
10900 merge_exidx_entries());
10903 Target_selector_arm
<false> target_selector_arm
;
10904 Target_selector_arm
<true> target_selector_armbe
;
10906 } // End anonymous namespace.