1 // script.cc -- handle linker scripts for gold.
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
31 #include "filenames.h"
35 #include "dirsearch.h"
38 #include "workqueue.h"
40 #include "parameters.h"
43 #include "target-select.h"
46 #include "incremental.h"
51 // A token read from a script file. We don't implement keywords here;
52 // all keywords are simply represented as a string.
57 // Token classification.
62 // Token indicates end of input.
64 // Token is a string of characters.
66 // Token is a quoted string of characters.
68 // Token is an operator.
70 // Token is a number (an integer).
74 // We need an empty constructor so that we can put this STL objects.
76 : classification_(TOKEN_INVALID
), value_(NULL
), value_length_(0),
77 opcode_(0), lineno_(0), charpos_(0)
80 // A general token with no value.
81 Token(Classification classification
, int lineno
, int charpos
)
82 : classification_(classification
), value_(NULL
), value_length_(0),
83 opcode_(0), lineno_(lineno
), charpos_(charpos
)
85 gold_assert(classification
== TOKEN_INVALID
86 || classification
== TOKEN_EOF
);
89 // A general token with a value.
90 Token(Classification classification
, const char* value
, size_t length
,
91 int lineno
, int charpos
)
92 : classification_(classification
), value_(value
), value_length_(length
),
93 opcode_(0), lineno_(lineno
), charpos_(charpos
)
95 gold_assert(classification
!= TOKEN_INVALID
96 && classification
!= TOKEN_EOF
);
99 // A token representing an operator.
100 Token(int opcode
, int lineno
, int charpos
)
101 : classification_(TOKEN_OPERATOR
), value_(NULL
), value_length_(0),
102 opcode_(opcode
), lineno_(lineno
), charpos_(charpos
)
105 // Return whether the token is invalid.
108 { return this->classification_
== TOKEN_INVALID
; }
110 // Return whether this is an EOF token.
113 { return this->classification_
== TOKEN_EOF
; }
115 // Return the token classification.
117 classification() const
118 { return this->classification_
; }
120 // Return the line number at which the token starts.
123 { return this->lineno_
; }
125 // Return the character position at this the token starts.
128 { return this->charpos_
; }
130 // Get the value of a token.
133 string_value(size_t* length
) const
135 gold_assert(this->classification_
== TOKEN_STRING
136 || this->classification_
== TOKEN_QUOTED_STRING
);
137 *length
= this->value_length_
;
142 operator_value() const
144 gold_assert(this->classification_
== TOKEN_OPERATOR
);
145 return this->opcode_
;
149 integer_value() const
151 gold_assert(this->classification_
== TOKEN_INTEGER
);
153 std::string
s(this->value_
, this->value_length_
);
154 return strtoull(s
.c_str(), NULL
, 0);
158 // The token classification.
159 Classification classification_
;
160 // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or
163 // The length of the token value.
164 size_t value_length_
;
165 // The token value, for TOKEN_OPERATOR.
167 // The line number where this token started (one based).
169 // The character position within the line where this token started
174 // This class handles lexing a file into a sequence of tokens.
179 // We unfortunately have to support different lexing modes, because
180 // when reading different parts of a linker script we need to parse
181 // things differently.
184 // Reading an ordinary linker script.
186 // Reading an expression in a linker script.
188 // Reading a version script.
190 // Reading a --dynamic-list file.
194 Lex(const char* input_string
, size_t input_length
, int parsing_token
)
195 : input_string_(input_string
), input_length_(input_length
),
196 current_(input_string
), mode_(LINKER_SCRIPT
),
197 first_token_(parsing_token
), token_(),
198 lineno_(1), linestart_(input_string
)
201 // Read a file into a string.
203 read_file(Input_file
*, std::string
*);
205 // Return the next token.
209 // Return the current lexing mode.
212 { return this->mode_
; }
214 // Set the lexing mode.
217 { this->mode_
= mode
; }
221 Lex
& operator=(const Lex
&);
223 // Make a general token with no value at the current location.
225 make_token(Token::Classification c
, const char* start
) const
226 { return Token(c
, this->lineno_
, start
- this->linestart_
+ 1); }
228 // Make a general token with a value at the current location.
230 make_token(Token::Classification c
, const char* v
, size_t len
,
233 { return Token(c
, v
, len
, this->lineno_
, start
- this->linestart_
+ 1); }
235 // Make an operator token at the current location.
237 make_token(int opcode
, const char* start
) const
238 { return Token(opcode
, this->lineno_
, start
- this->linestart_
+ 1); }
240 // Make an invalid token at the current location.
242 make_invalid_token(const char* start
)
243 { return this->make_token(Token::TOKEN_INVALID
, start
); }
245 // Make an EOF token at the current location.
247 make_eof_token(const char* start
)
248 { return this->make_token(Token::TOKEN_EOF
, start
); }
250 // Return whether C can be the first character in a name. C2 is the
251 // next character, since we sometimes need that.
253 can_start_name(char c
, char c2
);
255 // If C can appear in a name which has already started, return a
256 // pointer to a character later in the token or just past
257 // it. Otherwise, return NULL.
259 can_continue_name(const char* c
);
261 // Return whether C, C2, C3 can start a hex number.
263 can_start_hex(char c
, char c2
, char c3
);
265 // If C can appear in a hex number which has already started, return
266 // a pointer to a character later in the token or just past
267 // it. Otherwise, return NULL.
269 can_continue_hex(const char* c
);
271 // Return whether C can start a non-hex number.
273 can_start_number(char c
);
275 // If C can appear in a decimal number which has already started,
276 // return a pointer to a character later in the token or just past
277 // it. Otherwise, return NULL.
279 can_continue_number(const char* c
)
280 { return Lex::can_start_number(*c
) ? c
+ 1 : NULL
; }
282 // If C1 C2 C3 form a valid three character operator, return the
283 // opcode. Otherwise return 0.
285 three_char_operator(char c1
, char c2
, char c3
);
287 // If C1 C2 form a valid two character operator, return the opcode.
288 // Otherwise return 0.
290 two_char_operator(char c1
, char c2
);
292 // If C1 is a valid one character operator, return the opcode.
293 // Otherwise return 0.
295 one_char_operator(char c1
);
297 // Read the next token.
299 get_token(const char**);
301 // Skip a C style /* */ comment. Return false if the comment did
304 skip_c_comment(const char**);
306 // Skip a line # comment. Return false if there was no newline.
308 skip_line_comment(const char**);
310 // Build a token CLASSIFICATION from all characters that match
311 // CAN_CONTINUE_FN. The token starts at START. Start matching from
312 // MATCH. Set *PP to the character following the token.
314 gather_token(Token::Classification
,
315 const char* (Lex::*can_continue_fn
)(const char*),
316 const char* start
, const char* match
, const char** pp
);
318 // Build a token from a quoted string.
320 gather_quoted_string(const char** pp
);
322 // The string we are tokenizing.
323 const char* input_string_
;
324 // The length of the string.
325 size_t input_length_
;
326 // The current offset into the string.
327 const char* current_
;
328 // The current lexing mode.
330 // The code to use for the first token. This is set to 0 after it
333 // The current token.
335 // The current line number.
337 // The start of the current line in the string.
338 const char* linestart_
;
341 // Read the whole file into memory. We don't expect linker scripts to
342 // be large, so we just use a std::string as a buffer. We ignore the
343 // data we've already read, so that we read aligned buffers.
346 Lex::read_file(Input_file
* input_file
, std::string
* contents
)
348 off_t filesize
= input_file
->file().filesize();
350 contents
->reserve(filesize
);
353 unsigned char buf
[BUFSIZ
];
354 while (off
< filesize
)
357 if (get
> filesize
- off
)
358 get
= filesize
- off
;
359 input_file
->file().read(off
, get
, buf
);
360 contents
->append(reinterpret_cast<char*>(&buf
[0]), get
);
365 // Return whether C can be the start of a name, if the next character
366 // is C2. A name can being with a letter, underscore, period, or
367 // dollar sign. Because a name can be a file name, we also permit
368 // forward slash, backslash, and tilde. Tilde is the tricky case
369 // here; GNU ld also uses it as a bitwise not operator. It is only
370 // recognized as the operator if it is not immediately followed by
371 // some character which can appear in a symbol. That is, when we
372 // don't know that we are looking at an expression, "~0" is a file
373 // name, and "~ 0" is an expression using bitwise not. We are
377 Lex::can_start_name(char c
, char c2
)
381 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
382 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
383 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
384 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
386 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
387 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
388 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
389 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
391 case '_': case '.': case '$':
395 return this->mode_
== LINKER_SCRIPT
;
398 return this->mode_
== LINKER_SCRIPT
&& can_continue_name(&c2
);
401 return (this->mode_
== VERSION_SCRIPT
402 || this->mode_
== DYNAMIC_LIST
403 || (this->mode_
== LINKER_SCRIPT
404 && can_continue_name(&c2
)));
411 // Return whether C can continue a name which has already started.
412 // Subsequent characters in a name are the same as the leading
413 // characters, plus digits and "=+-:[],?*". So in general the linker
414 // script language requires spaces around operators, unless we know
415 // that we are parsing an expression.
418 Lex::can_continue_name(const char* c
)
422 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
423 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
424 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
425 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
427 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
428 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
429 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
430 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
432 case '_': case '.': case '$':
433 case '0': case '1': case '2': case '3': case '4':
434 case '5': case '6': case '7': case '8': case '9':
437 // TODO(csilvers): why not allow ~ in names for version-scripts?
438 case '/': case '\\': case '~':
441 if (this->mode_
== LINKER_SCRIPT
)
445 case '[': case ']': case '*': case '?': case '-':
446 if (this->mode_
== LINKER_SCRIPT
|| this->mode_
== VERSION_SCRIPT
447 || this->mode_
== DYNAMIC_LIST
)
451 // TODO(csilvers): why allow this? ^ is meaningless in version scripts.
453 if (this->mode_
== VERSION_SCRIPT
|| this->mode_
== DYNAMIC_LIST
)
458 if (this->mode_
== LINKER_SCRIPT
)
460 else if ((this->mode_
== VERSION_SCRIPT
|| this->mode_
== DYNAMIC_LIST
)
463 // A name can have '::' in it, as that's a c++ namespace
464 // separator. But a single colon is not part of a name.
474 // For a number we accept 0x followed by hex digits, or any sequence
475 // of digits. The old linker accepts leading '$' for hex, and
476 // trailing HXBOD. Those are for MRI compatibility and we don't
477 // accept them. The old linker also accepts trailing MK for mega or
478 // kilo. FIXME: Those are mentioned in the documentation, and we
479 // should accept them.
481 // Return whether C1 C2 C3 can start a hex number.
484 Lex::can_start_hex(char c1
, char c2
, char c3
)
486 if (c1
== '0' && (c2
== 'x' || c2
== 'X'))
487 return this->can_continue_hex(&c3
);
491 // Return whether C can appear in a hex number.
494 Lex::can_continue_hex(const char* c
)
498 case '0': case '1': case '2': case '3': case '4':
499 case '5': case '6': case '7': case '8': case '9':
500 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
501 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
509 // Return whether C can start a non-hex number.
512 Lex::can_start_number(char c
)
516 case '0': case '1': case '2': case '3': case '4':
517 case '5': case '6': case '7': case '8': case '9':
525 // If C1 C2 C3 form a valid three character operator, return the
526 // opcode (defined in the yyscript.h file generated from yyscript.y).
527 // Otherwise return 0.
530 Lex::three_char_operator(char c1
, char c2
, char c3
)
535 if (c2
== '<' && c3
== '=')
539 if (c2
== '>' && c3
== '=')
548 // If C1 C2 form a valid two character operator, return the opcode
549 // (defined in the yyscript.h file generated from yyscript.y).
550 // Otherwise return 0.
553 Lex::two_char_operator(char c1
, char c2
)
611 // If C1 is a valid operator, return the opcode. Otherwise return 0.
614 Lex::one_char_operator(char c1
)
647 // Skip a C style comment. *PP points to just after the "/*". Return
648 // false if the comment did not end.
651 Lex::skip_c_comment(const char** pp
)
654 while (p
[0] != '*' || p
[1] != '/')
665 this->linestart_
= p
+ 1;
674 // Skip a line # comment. Return false if there was no newline.
677 Lex::skip_line_comment(const char** pp
)
680 size_t skip
= strcspn(p
, "\n");
689 this->linestart_
= p
;
695 // Build a token CLASSIFICATION from all characters that match
696 // CAN_CONTINUE_FN. Update *PP.
699 Lex::gather_token(Token::Classification classification
,
700 const char* (Lex::*can_continue_fn
)(const char*),
705 const char* new_match
= NULL
;
706 while ((new_match
= (this->*can_continue_fn
)(match
)))
709 return this->make_token(classification
, start
, match
- start
, start
);
712 // Build a token from a quoted string.
715 Lex::gather_quoted_string(const char** pp
)
717 const char* start
= *pp
;
718 const char* p
= start
;
720 size_t skip
= strcspn(p
, "\"\n");
722 return this->make_invalid_token(start
);
724 return this->make_token(Token::TOKEN_QUOTED_STRING
, p
, skip
, start
);
727 // Return the next token at *PP. Update *PP. General guideline: we
728 // require linker scripts to be simple ASCII. No unicode linker
729 // scripts. In particular we can assume that any '\0' is the end of
733 Lex::get_token(const char** pp
)
742 return this->make_eof_token(p
);
745 // Skip whitespace quickly.
746 while (*p
== ' ' || *p
== '\t' || *p
== '\r')
753 this->linestart_
= p
;
757 // Skip C style comments.
758 if (p
[0] == '/' && p
[1] == '*')
760 int lineno
= this->lineno_
;
761 int charpos
= p
- this->linestart_
+ 1;
764 if (!this->skip_c_comment(pp
))
765 return Token(Token::TOKEN_INVALID
, lineno
, charpos
);
771 // Skip line comments.
775 if (!this->skip_line_comment(pp
))
776 return this->make_eof_token(p
);
782 if (this->can_start_name(p
[0], p
[1]))
783 return this->gather_token(Token::TOKEN_STRING
,
784 &Lex::can_continue_name
,
787 // We accept any arbitrary name in double quotes, as long as it
788 // does not cross a line boundary.
792 return this->gather_quoted_string(pp
);
795 // Check for a number.
797 if (this->can_start_hex(p
[0], p
[1], p
[2]))
798 return this->gather_token(Token::TOKEN_INTEGER
,
799 &Lex::can_continue_hex
,
802 if (Lex::can_start_number(p
[0]))
803 return this->gather_token(Token::TOKEN_INTEGER
,
804 &Lex::can_continue_number
,
807 // Check for operators.
809 int opcode
= Lex::three_char_operator(p
[0], p
[1], p
[2]);
813 return this->make_token(opcode
, p
);
816 opcode
= Lex::two_char_operator(p
[0], p
[1]);
820 return this->make_token(opcode
, p
);
823 opcode
= Lex::one_char_operator(p
[0]);
827 return this->make_token(opcode
, p
);
830 return this->make_token(Token::TOKEN_INVALID
, p
);
834 // Return the next token.
839 // The first token is special.
840 if (this->first_token_
!= 0)
842 this->token_
= Token(this->first_token_
, 0, 0);
843 this->first_token_
= 0;
844 return &this->token_
;
847 this->token_
= this->get_token(&this->current_
);
849 // Don't let an early null byte fool us into thinking that we've
850 // reached the end of the file.
851 if (this->token_
.is_eof()
852 && (static_cast<size_t>(this->current_
- this->input_string_
)
853 < this->input_length_
))
854 this->token_
= this->make_invalid_token(this->current_
);
856 return &this->token_
;
859 // class Symbol_assignment.
861 // Add the symbol to the symbol table. This makes sure the symbol is
862 // there and defined. The actual value is stored later. We can't
863 // determine the actual value at this point, because we can't
864 // necessarily evaluate the expression until all ordinary symbols have
867 // The GNU linker lets symbol assignments in the linker script
868 // silently override defined symbols in object files. We are
869 // compatible. FIXME: Should we issue a warning?
872 Symbol_assignment::add_to_table(Symbol_table
* symtab
)
874 elfcpp::STV vis
= this->hidden_
? elfcpp::STV_HIDDEN
: elfcpp::STV_DEFAULT
;
875 this->sym_
= symtab
->define_as_constant(this->name_
.c_str(),
878 ? Symbol_table::DEFSYM
879 : Symbol_table::SCRIPT
),
887 true); // force_override
890 // Finalize a symbol value.
893 Symbol_assignment::finalize(Symbol_table
* symtab
, const Layout
* layout
)
895 this->finalize_maybe_dot(symtab
, layout
, false, 0, NULL
);
898 // Finalize a symbol value which can refer to the dot symbol.
901 Symbol_assignment::finalize_with_dot(Symbol_table
* symtab
,
902 const Layout
* layout
,
904 Output_section
* dot_section
)
906 this->finalize_maybe_dot(symtab
, layout
, true, dot_value
, dot_section
);
909 // Finalize a symbol value, internal version.
912 Symbol_assignment::finalize_maybe_dot(Symbol_table
* symtab
,
913 const Layout
* layout
,
914 bool is_dot_available
,
916 Output_section
* dot_section
)
918 // If we were only supposed to provide this symbol, the sym_ field
919 // will be NULL if the symbol was not referenced.
920 if (this->sym_
== NULL
)
922 gold_assert(this->provide_
);
926 if (parameters
->target().get_size() == 32)
928 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
929 this->sized_finalize
<32>(symtab
, layout
, is_dot_available
, dot_value
,
935 else if (parameters
->target().get_size() == 64)
937 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
938 this->sized_finalize
<64>(symtab
, layout
, is_dot_available
, dot_value
,
950 Symbol_assignment::sized_finalize(Symbol_table
* symtab
, const Layout
* layout
,
951 bool is_dot_available
, uint64_t dot_value
,
952 Output_section
* dot_section
)
954 Output_section
* section
;
955 uint64_t final_val
= this->val_
->eval_maybe_dot(symtab
, layout
, true,
957 dot_value
, dot_section
,
959 Sized_symbol
<size
>* ssym
= symtab
->get_sized_symbol
<size
>(this->sym_
);
960 ssym
->set_value(final_val
);
962 ssym
->set_output_section(section
);
965 // Set the symbol value if the expression yields an absolute value.
968 Symbol_assignment::set_if_absolute(Symbol_table
* symtab
, const Layout
* layout
,
969 bool is_dot_available
, uint64_t dot_value
)
971 if (this->sym_
== NULL
)
974 Output_section
* val_section
;
975 uint64_t val
= this->val_
->eval_maybe_dot(symtab
, layout
, false,
976 is_dot_available
, dot_value
,
978 if (val_section
!= NULL
)
981 if (parameters
->target().get_size() == 32)
983 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
984 Sized_symbol
<32>* ssym
= symtab
->get_sized_symbol
<32>(this->sym_
);
985 ssym
->set_value(val
);
990 else if (parameters
->target().get_size() == 64)
992 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
993 Sized_symbol
<64>* ssym
= symtab
->get_sized_symbol
<64>(this->sym_
);
994 ssym
->set_value(val
);
1003 // Print for debugging.
1006 Symbol_assignment::print(FILE* f
) const
1008 if (this->provide_
&& this->hidden_
)
1009 fprintf(f
, "PROVIDE_HIDDEN(");
1010 else if (this->provide_
)
1011 fprintf(f
, "PROVIDE(");
1012 else if (this->hidden_
)
1015 fprintf(f
, "%s = ", this->name_
.c_str());
1016 this->val_
->print(f
);
1018 if (this->provide_
|| this->hidden_
)
1024 // Class Script_assertion.
1026 // Check the assertion.
1029 Script_assertion::check(const Symbol_table
* symtab
, const Layout
* layout
)
1031 if (!this->check_
->eval(symtab
, layout
, true))
1032 gold_error("%s", this->message_
.c_str());
1035 // Print for debugging.
1038 Script_assertion::print(FILE* f
) const
1040 fprintf(f
, "ASSERT(");
1041 this->check_
->print(f
);
1042 fprintf(f
, ", \"%s\")\n", this->message_
.c_str());
1045 // Class Script_options.
1047 Script_options::Script_options()
1048 : entry_(), symbol_assignments_(), version_script_info_(),
1053 // Add a symbol to be defined.
1056 Script_options::add_symbol_assignment(const char* name
, size_t length
,
1057 bool is_defsym
, Expression
* value
,
1058 bool provide
, bool hidden
)
1060 if (length
!= 1 || name
[0] != '.')
1062 if (this->script_sections_
.in_sections_clause())
1064 gold_assert(!is_defsym
);
1065 this->script_sections_
.add_symbol_assignment(name
, length
, value
,
1070 Symbol_assignment
* p
= new Symbol_assignment(name
, length
, is_defsym
,
1071 value
, provide
, hidden
);
1072 this->symbol_assignments_
.push_back(p
);
1077 if (provide
|| hidden
)
1078 gold_error(_("invalid use of PROVIDE for dot symbol"));
1080 // The GNU linker permits assignments to dot outside of SECTIONS
1081 // clauses and treats them as occurring inside, so we don't
1082 // check in_sections_clause here.
1083 this->script_sections_
.add_dot_assignment(value
);
1087 // Add an assertion.
1090 Script_options::add_assertion(Expression
* check
, const char* message
,
1093 if (this->script_sections_
.in_sections_clause())
1094 this->script_sections_
.add_assertion(check
, message
, messagelen
);
1097 Script_assertion
* p
= new Script_assertion(check
, message
, messagelen
);
1098 this->assertions_
.push_back(p
);
1102 // Create sections required by any linker scripts.
1105 Script_options::create_script_sections(Layout
* layout
)
1107 if (this->saw_sections_clause())
1108 this->script_sections_
.create_sections(layout
);
1111 // Add any symbols we are defining to the symbol table.
1114 Script_options::add_symbols_to_table(Symbol_table
* symtab
)
1116 for (Symbol_assignments::iterator p
= this->symbol_assignments_
.begin();
1117 p
!= this->symbol_assignments_
.end();
1119 (*p
)->add_to_table(symtab
);
1120 this->script_sections_
.add_symbols_to_table(symtab
);
1123 // Finalize symbol values. Also check assertions.
1126 Script_options::finalize_symbols(Symbol_table
* symtab
, const Layout
* layout
)
1128 // We finalize the symbols defined in SECTIONS first, because they
1129 // are the ones which may have changed. This way if symbol outside
1130 // SECTIONS are defined in terms of symbols inside SECTIONS, they
1131 // will get the right value.
1132 this->script_sections_
.finalize_symbols(symtab
, layout
);
1134 for (Symbol_assignments::iterator p
= this->symbol_assignments_
.begin();
1135 p
!= this->symbol_assignments_
.end();
1137 (*p
)->finalize(symtab
, layout
);
1139 for (Assertions::iterator p
= this->assertions_
.begin();
1140 p
!= this->assertions_
.end();
1142 (*p
)->check(symtab
, layout
);
1145 // Set section addresses. We set all the symbols which have absolute
1146 // values. Then we let the SECTIONS clause do its thing. This
1147 // returns the segment which holds the file header and segment
1151 Script_options::set_section_addresses(Symbol_table
* symtab
, Layout
* layout
)
1153 for (Symbol_assignments::iterator p
= this->symbol_assignments_
.begin();
1154 p
!= this->symbol_assignments_
.end();
1156 (*p
)->set_if_absolute(symtab
, layout
, false, 0);
1158 return this->script_sections_
.set_section_addresses(symtab
, layout
);
1161 // This class holds data passed through the parser to the lexer and to
1162 // the parser support functions. This avoids global variables. We
1163 // can't use global variables because we need not be called by a
1164 // singleton thread.
1166 class Parser_closure
1169 Parser_closure(const char* filename
,
1170 const Position_dependent_options
& posdep_options
,
1171 bool parsing_defsym
, bool in_group
, bool is_in_sysroot
,
1172 Command_line
* command_line
,
1173 Script_options
* script_options
,
1175 bool skip_on_incompatible_target
)
1176 : filename_(filename
), posdep_options_(posdep_options
),
1177 parsing_defsym_(parsing_defsym
), in_group_(in_group
),
1178 is_in_sysroot_(is_in_sysroot
),
1179 skip_on_incompatible_target_(skip_on_incompatible_target
),
1180 found_incompatible_target_(false),
1181 command_line_(command_line
), script_options_(script_options
),
1182 version_script_info_(script_options
->version_script_info()),
1183 lex_(lex
), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL
)
1185 // We start out processing C symbols in the default lex mode.
1186 this->language_stack_
.push_back(Version_script_info::LANGUAGE_C
);
1187 this->lex_mode_stack_
.push_back(lex
->mode());
1190 // Return the file name.
1193 { return this->filename_
; }
1195 // Return the position dependent options. The caller may modify
1197 Position_dependent_options
&
1198 position_dependent_options()
1199 { return this->posdep_options_
; }
1201 // Whether we are parsing a --defsym.
1203 parsing_defsym() const
1204 { return this->parsing_defsym_
; }
1206 // Return whether this script is being run in a group.
1209 { return this->in_group_
; }
1211 // Return whether this script was found using a directory in the
1214 is_in_sysroot() const
1215 { return this->is_in_sysroot_
; }
1217 // Whether to skip to the next file with the same name if we find an
1218 // incompatible target in an OUTPUT_FORMAT statement.
1220 skip_on_incompatible_target() const
1221 { return this->skip_on_incompatible_target_
; }
1223 // Stop skipping to the next file on an incompatible target. This
1224 // is called when we make some unrevocable change to the data
1227 clear_skip_on_incompatible_target()
1228 { this->skip_on_incompatible_target_
= false; }
1230 // Whether we found an incompatible target in an OUTPUT_FORMAT
1233 found_incompatible_target() const
1234 { return this->found_incompatible_target_
; }
1236 // Note that we found an incompatible target.
1238 set_found_incompatible_target()
1239 { this->found_incompatible_target_
= true; }
1241 // Returns the Command_line structure passed in at constructor time.
1242 // This value may be NULL. The caller may modify this, which modifies
1243 // the passed-in Command_line object (not a copy).
1246 { return this->command_line_
; }
1248 // Return the options which may be set by a script.
1251 { return this->script_options_
; }
1253 // Return the object in which version script information should be stored.
1254 Version_script_info
*
1256 { return this->version_script_info_
; }
1258 // Return the next token, and advance.
1262 const Token
* token
= this->lex_
->next_token();
1263 this->lineno_
= token
->lineno();
1264 this->charpos_
= token
->charpos();
1268 // Set a new lexer mode, pushing the current one.
1270 push_lex_mode(Lex::Mode mode
)
1272 this->lex_mode_stack_
.push_back(this->lex_
->mode());
1273 this->lex_
->set_mode(mode
);
1276 // Pop the lexer mode.
1280 gold_assert(!this->lex_mode_stack_
.empty());
1281 this->lex_
->set_mode(this->lex_mode_stack_
.back());
1282 this->lex_mode_stack_
.pop_back();
1285 // Return the current lexer mode.
1288 { return this->lex_mode_stack_
.back(); }
1290 // Return the line number of the last token.
1293 { return this->lineno_
; }
1295 // Return the character position in the line of the last token.
1298 { return this->charpos_
; }
1300 // Return the list of input files, creating it if necessary. This
1301 // is a space leak--we never free the INPUTS_ pointer.
1305 if (this->inputs_
== NULL
)
1306 this->inputs_
= new Input_arguments();
1307 return this->inputs_
;
1310 // Return whether we saw any input files.
1313 { return this->inputs_
!= NULL
&& !this->inputs_
->empty(); }
1315 // Return the current language being processed in a version script
1316 // (eg, "C++"). The empty string represents unmangled C names.
1317 Version_script_info::Language
1318 get_current_language() const
1319 { return this->language_stack_
.back(); }
1321 // Push a language onto the stack when entering an extern block.
1323 push_language(Version_script_info::Language lang
)
1324 { this->language_stack_
.push_back(lang
); }
1326 // Pop a language off of the stack when exiting an extern block.
1330 gold_assert(!this->language_stack_
.empty());
1331 this->language_stack_
.pop_back();
1335 // The name of the file we are reading.
1336 const char* filename_
;
1337 // The position dependent options.
1338 Position_dependent_options posdep_options_
;
1339 // True if we are parsing a --defsym.
1340 bool parsing_defsym_
;
1341 // Whether we are currently in a --start-group/--end-group.
1343 // Whether the script was found in a sysrooted directory.
1344 bool is_in_sysroot_
;
1345 // If this is true, then if we find an OUTPUT_FORMAT with an
1346 // incompatible target, then we tell the parser to abort so that we
1347 // can search for the next file with the same name.
1348 bool skip_on_incompatible_target_
;
1349 // True if we found an OUTPUT_FORMAT with an incompatible target.
1350 bool found_incompatible_target_
;
1351 // May be NULL if the user chooses not to pass one in.
1352 Command_line
* command_line_
;
1353 // Options which may be set from any linker script.
1354 Script_options
* script_options_
;
1355 // Information parsed from a version script.
1356 Version_script_info
* version_script_info_
;
1359 // The line number of the last token returned by next_token.
1361 // The column number of the last token returned by next_token.
1363 // A stack of lexer modes.
1364 std::vector
<Lex::Mode
> lex_mode_stack_
;
1365 // A stack of which extern/language block we're inside. Can be C++,
1366 // java, or empty for C.
1367 std::vector
<Version_script_info::Language
> language_stack_
;
1368 // New input files found to add to the link.
1369 Input_arguments
* inputs_
;
1372 // FILE was found as an argument on the command line. Try to read it
1373 // as a script. Return true if the file was handled.
1376 read_input_script(Workqueue
* workqueue
, Symbol_table
* symtab
, Layout
* layout
,
1377 Dirsearch
* dirsearch
, int dirindex
,
1378 Input_objects
* input_objects
, Mapfile
* mapfile
,
1379 Input_group
* input_group
,
1380 const Input_argument
* input_argument
,
1381 Input_file
* input_file
, Task_token
* next_blocker
,
1382 bool* used_next_blocker
)
1384 *used_next_blocker
= false;
1386 std::string input_string
;
1387 Lex::read_file(input_file
, &input_string
);
1389 Lex
lex(input_string
.c_str(), input_string
.length(), PARSING_LINKER_SCRIPT
);
1391 Parser_closure
closure(input_file
->filename().c_str(),
1392 input_argument
->file().options(),
1394 input_group
!= NULL
,
1395 input_file
->is_in_sysroot(),
1397 layout
->script_options(),
1399 input_file
->will_search_for());
1401 bool old_saw_sections_clause
=
1402 layout
->script_options()->saw_sections_clause();
1404 if (yyparse(&closure
) != 0)
1406 if (closure
.found_incompatible_target())
1408 Read_symbols::incompatible_warning(input_argument
, input_file
);
1409 Read_symbols::requeue(workqueue
, input_objects
, symtab
, layout
,
1410 dirsearch
, dirindex
, mapfile
, input_argument
,
1411 input_group
, next_blocker
);
1417 if (!old_saw_sections_clause
1418 && layout
->script_options()->saw_sections_clause()
1419 && layout
->have_added_input_section())
1420 gold_error(_("%s: SECTIONS seen after other input files; try -T/--script"),
1421 input_file
->filename().c_str());
1423 if (!closure
.saw_inputs())
1426 Task_token
* this_blocker
= NULL
;
1427 for (Input_arguments::const_iterator p
= closure
.inputs()->begin();
1428 p
!= closure
.inputs()->end();
1432 if (p
+ 1 == closure
.inputs()->end())
1436 nb
= new Task_token(true);
1439 workqueue
->queue_soon(new Read_symbols(input_objects
, symtab
,
1440 layout
, dirsearch
, 0, mapfile
, &*p
,
1441 input_group
, this_blocker
, nb
));
1445 if (layout
->incremental_inputs())
1447 // Like new Read_symbols(...) above, we rely on close.inputs()
1448 // getting leaked by closure.
1449 Script_info
* info
= new Script_info(closure
.inputs());
1450 layout
->incremental_inputs()->report_script(
1452 input_file
->file().get_mtime(),
1455 *used_next_blocker
= true;
1460 // Helper function for read_version_script() and
1461 // read_commandline_script(). Processes the given file in the mode
1462 // indicated by first_token and lex_mode.
1465 read_script_file(const char* filename
, Command_line
* cmdline
,
1466 Script_options
* script_options
,
1467 int first_token
, Lex::Mode lex_mode
)
1469 // TODO: if filename is a relative filename, search for it manually
1470 // using "." + cmdline->options()->search_path() -- not dirsearch.
1471 Dirsearch dirsearch
;
1473 // The file locking code wants to record a Task, but we haven't
1474 // started the workqueue yet. This is only for debugging purposes,
1475 // so we invent a fake value.
1476 const Task
* task
= reinterpret_cast<const Task
*>(-1);
1478 // We don't want this file to be opened in binary mode.
1479 Position_dependent_options posdep
= cmdline
->position_dependent_options();
1480 if (posdep
.format_enum() == General_options::OBJECT_FORMAT_BINARY
)
1481 posdep
.set_format_enum(General_options::OBJECT_FORMAT_ELF
);
1482 Input_file_argument
input_argument(filename
,
1483 Input_file_argument::INPUT_FILE_TYPE_FILE
,
1485 Input_file
input_file(&input_argument
);
1487 if (!input_file
.open(dirsearch
, task
, &dummy
))
1490 std::string input_string
;
1491 Lex::read_file(&input_file
, &input_string
);
1493 Lex
lex(input_string
.c_str(), input_string
.length(), first_token
);
1494 lex
.set_mode(lex_mode
);
1496 Parser_closure
closure(filename
,
1497 cmdline
->position_dependent_options(),
1498 first_token
== Lex::DYNAMIC_LIST
,
1500 input_file
.is_in_sysroot(),
1505 if (yyparse(&closure
) != 0)
1507 input_file
.file().unlock(task
);
1511 input_file
.file().unlock(task
);
1513 gold_assert(!closure
.saw_inputs());
1518 // FILENAME was found as an argument to --script (-T).
1519 // Read it as a script, and execute its contents immediately.
1522 read_commandline_script(const char* filename
, Command_line
* cmdline
)
1524 return read_script_file(filename
, cmdline
, &cmdline
->script_options(),
1525 PARSING_LINKER_SCRIPT
, Lex::LINKER_SCRIPT
);
1528 // FILENAME was found as an argument to --version-script. Read it as
1529 // a version script, and store its contents in
1530 // cmdline->script_options()->version_script_info().
1533 read_version_script(const char* filename
, Command_line
* cmdline
)
1535 return read_script_file(filename
, cmdline
, &cmdline
->script_options(),
1536 PARSING_VERSION_SCRIPT
, Lex::VERSION_SCRIPT
);
1539 // FILENAME was found as an argument to --dynamic-list. Read it as a
1540 // list of symbols, and store its contents in DYNAMIC_LIST.
1543 read_dynamic_list(const char* filename
, Command_line
* cmdline
,
1544 Script_options
* dynamic_list
)
1546 return read_script_file(filename
, cmdline
, dynamic_list
,
1547 PARSING_DYNAMIC_LIST
, Lex::DYNAMIC_LIST
);
1550 // Implement the --defsym option on the command line. Return true if
1554 Script_options::define_symbol(const char* definition
)
1556 Lex
lex(definition
, strlen(definition
), PARSING_DEFSYM
);
1557 lex
.set_mode(Lex::EXPRESSION
);
1560 Position_dependent_options posdep_options
;
1562 Parser_closure
closure("command line", posdep_options
, true,
1563 false, false, NULL
, this, &lex
, false);
1565 if (yyparse(&closure
) != 0)
1568 gold_assert(!closure
.saw_inputs());
1573 // Print the script to F for debugging.
1576 Script_options::print(FILE* f
) const
1578 fprintf(f
, "%s: Dumping linker script\n", program_name
);
1580 if (!this->entry_
.empty())
1581 fprintf(f
, "ENTRY(%s)\n", this->entry_
.c_str());
1583 for (Symbol_assignments::const_iterator p
=
1584 this->symbol_assignments_
.begin();
1585 p
!= this->symbol_assignments_
.end();
1589 for (Assertions::const_iterator p
= this->assertions_
.begin();
1590 p
!= this->assertions_
.end();
1594 this->script_sections_
.print(f
);
1596 this->version_script_info_
.print(f
);
1599 // Manage mapping from keywords to the codes expected by the bison
1600 // parser. We construct one global object for each lex mode with
1603 class Keyword_to_parsecode
1606 // The structure which maps keywords to parsecodes.
1607 struct Keyword_parsecode
1610 const char* keyword
;
1611 // Corresponding parsecode.
1615 Keyword_to_parsecode(const Keyword_parsecode
* keywords
,
1617 : keyword_parsecodes_(keywords
), keyword_count_(keyword_count
)
1620 // Return the parsecode corresponding KEYWORD, or 0 if it is not a
1623 keyword_to_parsecode(const char* keyword
, size_t len
) const;
1626 const Keyword_parsecode
* keyword_parsecodes_
;
1627 const int keyword_count_
;
1630 // Mapping from keyword string to keyword parsecode. This array must
1631 // be kept in sorted order. Parsecodes are looked up using bsearch.
1632 // This array must correspond to the list of parsecodes in yyscript.y.
1634 static const Keyword_to_parsecode::Keyword_parsecode
1635 script_keyword_parsecodes
[] =
1637 { "ABSOLUTE", ABSOLUTE
},
1639 { "ALIGN", ALIGN_K
},
1640 { "ALIGNOF", ALIGNOF
},
1641 { "ASSERT", ASSERT_K
},
1642 { "AS_NEEDED", AS_NEEDED
},
1647 { "CONSTANT", CONSTANT
},
1648 { "CONSTRUCTORS", CONSTRUCTORS
},
1649 { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS
},
1650 { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN
},
1651 { "DATA_SEGMENT_END", DATA_SEGMENT_END
},
1652 { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END
},
1653 { "DEFINED", DEFINED
},
1655 { "EXCLUDE_FILE", EXCLUDE_FILE
},
1656 { "EXTERN", EXTERN
},
1659 { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION
},
1662 { "INCLUDE", INCLUDE
},
1663 { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION
},
1666 { "LENGTH", LENGTH
},
1667 { "LOADADDR", LOADADDR
},
1671 { "MEMORY", MEMORY
},
1674 { "NOCROSSREFS", NOCROSSREFS
},
1675 { "NOFLOAT", NOFLOAT
},
1676 { "ONLY_IF_RO", ONLY_IF_RO
},
1677 { "ONLY_IF_RW", ONLY_IF_RW
},
1678 { "OPTION", OPTION
},
1679 { "ORIGIN", ORIGIN
},
1680 { "OUTPUT", OUTPUT
},
1681 { "OUTPUT_ARCH", OUTPUT_ARCH
},
1682 { "OUTPUT_FORMAT", OUTPUT_FORMAT
},
1683 { "OVERLAY", OVERLAY
},
1685 { "PROVIDE", PROVIDE
},
1686 { "PROVIDE_HIDDEN", PROVIDE_HIDDEN
},
1688 { "SEARCH_DIR", SEARCH_DIR
},
1689 { "SECTIONS", SECTIONS
},
1690 { "SEGMENT_START", SEGMENT_START
},
1692 { "SIZEOF", SIZEOF
},
1693 { "SIZEOF_HEADERS", SIZEOF_HEADERS
},
1694 { "SORT", SORT_BY_NAME
},
1695 { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT
},
1696 { "SORT_BY_NAME", SORT_BY_NAME
},
1697 { "SPECIAL", SPECIAL
},
1699 { "STARTUP", STARTUP
},
1700 { "SUBALIGN", SUBALIGN
},
1701 { "SYSLIB", SYSLIB
},
1702 { "TARGET", TARGET_K
},
1703 { "TRUNCATE", TRUNCATE
},
1704 { "VERSION", VERSIONK
},
1705 { "global", GLOBAL
},
1711 { "sizeof_headers", SIZEOF_HEADERS
},
1714 static const Keyword_to_parsecode
1715 script_keywords(&script_keyword_parsecodes
[0],
1716 (sizeof(script_keyword_parsecodes
)
1717 / sizeof(script_keyword_parsecodes
[0])));
1719 static const Keyword_to_parsecode::Keyword_parsecode
1720 version_script_keyword_parsecodes
[] =
1722 { "extern", EXTERN
},
1723 { "global", GLOBAL
},
1727 static const Keyword_to_parsecode
1728 version_script_keywords(&version_script_keyword_parsecodes
[0],
1729 (sizeof(version_script_keyword_parsecodes
)
1730 / sizeof(version_script_keyword_parsecodes
[0])));
1732 static const Keyword_to_parsecode::Keyword_parsecode
1733 dynamic_list_keyword_parsecodes
[] =
1735 { "extern", EXTERN
},
1738 static const Keyword_to_parsecode
1739 dynamic_list_keywords(&dynamic_list_keyword_parsecodes
[0],
1740 (sizeof(dynamic_list_keyword_parsecodes
)
1741 / sizeof(dynamic_list_keyword_parsecodes
[0])));
1745 // Comparison function passed to bsearch.
1757 ktt_compare(const void* keyv
, const void* kttv
)
1759 const Ktt_key
* key
= static_cast<const Ktt_key
*>(keyv
);
1760 const Keyword_to_parsecode::Keyword_parsecode
* ktt
=
1761 static_cast<const Keyword_to_parsecode::Keyword_parsecode
*>(kttv
);
1762 int i
= strncmp(key
->str
, ktt
->keyword
, key
->len
);
1765 if (ktt
->keyword
[key
->len
] != '\0')
1770 } // End extern "C".
1773 Keyword_to_parsecode::keyword_to_parsecode(const char* keyword
,
1779 void* kttv
= bsearch(&key
,
1780 this->keyword_parsecodes_
,
1781 this->keyword_count_
,
1782 sizeof(this->keyword_parsecodes_
[0]),
1786 Keyword_parsecode
* ktt
= static_cast<Keyword_parsecode
*>(kttv
);
1787 return ktt
->parsecode
;
1790 // The following structs are used within the VersionInfo class as well
1791 // as in the bison helper functions. They store the information
1792 // parsed from the version script.
1794 // A single version expression.
1795 // For example, pattern="std::map*" and language="C++".
1796 struct Version_expression
1798 Version_expression(const std::string
& a_pattern
,
1799 Version_script_info::Language a_language
,
1801 : pattern(a_pattern
), language(a_language
), exact_match(a_exact_match
),
1802 was_matched_by_symbol(false)
1805 std::string pattern
;
1806 Version_script_info::Language language
;
1807 // If false, we use glob() to match pattern. If true, we use strcmp().
1809 // True if --no-undefined-version is in effect and we found this
1810 // version in get_symbol_version. We use mutable because this
1811 // struct is generally not modifiable after it has been created.
1812 mutable bool was_matched_by_symbol
;
1815 // A list of expressions.
1816 struct Version_expression_list
1818 std::vector
<struct Version_expression
> expressions
;
1821 // A list of which versions upon which another version depends.
1822 // Strings should be from the Stringpool.
1823 struct Version_dependency_list
1825 std::vector
<std::string
> dependencies
;
1828 // The total definition of a version. It includes the tag for the
1829 // version, its global and local expressions, and any dependencies.
1833 : tag(), global(NULL
), local(NULL
), dependencies(NULL
)
1837 const struct Version_expression_list
* global
;
1838 const struct Version_expression_list
* local
;
1839 const struct Version_dependency_list
* dependencies
;
1842 // Helper class that calls cplus_demangle when needed and takes care of freeing
1845 class Lazy_demangler
1848 Lazy_demangler(const char* symbol
, int options
)
1849 : symbol_(symbol
), options_(options
), demangled_(NULL
), did_demangle_(false)
1853 { free(this->demangled_
); }
1855 // Return the demangled name. The actual demangling happens on the first call,
1856 // and the result is later cached.
1861 // The symbol to demangle.
1862 const char *symbol_
;
1863 // Option flags to pass to cplus_demagle.
1865 // The cached demangled value, or NULL if demangling didn't happen yet or
1868 // Whether we already called cplus_demangle
1872 // Return the demangled name. The actual demangling happens on the first call,
1873 // and the result is later cached. Returns NULL if the symbol cannot be
1877 Lazy_demangler::get()
1879 if (!this->did_demangle_
)
1881 this->demangled_
= cplus_demangle(this->symbol_
, this->options_
);
1882 this->did_demangle_
= true;
1884 return this->demangled_
;
1887 // Class Version_script_info.
1889 Version_script_info::Version_script_info()
1890 : dependency_lists_(), expression_lists_(), version_trees_(), globs_(),
1891 default_version_(NULL
), default_is_global_(false), is_finalized_(false)
1893 for (int i
= 0; i
< LANGUAGE_COUNT
; ++i
)
1894 this->exact_
[i
] = NULL
;
1897 Version_script_info::~Version_script_info()
1901 // Forget all the known version script information.
1904 Version_script_info::clear()
1906 for (size_t k
= 0; k
< this->dependency_lists_
.size(); ++k
)
1907 delete this->dependency_lists_
[k
];
1908 this->dependency_lists_
.clear();
1909 for (size_t k
= 0; k
< this->version_trees_
.size(); ++k
)
1910 delete this->version_trees_
[k
];
1911 this->version_trees_
.clear();
1912 for (size_t k
= 0; k
< this->expression_lists_
.size(); ++k
)
1913 delete this->expression_lists_
[k
];
1914 this->expression_lists_
.clear();
1917 // Finalize the version script information.
1920 Version_script_info::finalize()
1922 if (!this->is_finalized_
)
1924 this->build_lookup_tables();
1925 this->is_finalized_
= true;
1929 // Return all the versions.
1931 std::vector
<std::string
>
1932 Version_script_info::get_versions() const
1934 std::vector
<std::string
> ret
;
1935 for (size_t j
= 0; j
< this->version_trees_
.size(); ++j
)
1936 if (!this->version_trees_
[j
]->tag
.empty())
1937 ret
.push_back(this->version_trees_
[j
]->tag
);
1941 // Return the dependencies of VERSION.
1943 std::vector
<std::string
>
1944 Version_script_info::get_dependencies(const char* version
) const
1946 std::vector
<std::string
> ret
;
1947 for (size_t j
= 0; j
< this->version_trees_
.size(); ++j
)
1948 if (this->version_trees_
[j
]->tag
== version
)
1950 const struct Version_dependency_list
* deps
=
1951 this->version_trees_
[j
]->dependencies
;
1953 for (size_t k
= 0; k
< deps
->dependencies
.size(); ++k
)
1954 ret
.push_back(deps
->dependencies
[k
]);
1960 // A version script essentially maps a symbol name to a version tag
1961 // and an indication of whether symbol is global or local within that
1962 // version tag. Each symbol maps to at most one version tag.
1963 // Unfortunately, in practice, version scripts are ambiguous, and list
1964 // symbols multiple times. Thus, we have to document the matching
1967 // This is a description of what the GNU linker does as of 2010-01-11.
1968 // It walks through the version tags in the order in which they appear
1969 // in the version script. For each tag, it first walks through the
1970 // global patterns for that tag, then the local patterns. When
1971 // looking at a single pattern, it first applies any language specific
1972 // demangling as specified for the pattern, and then matches the
1973 // resulting symbol name to the pattern. If it finds an exact match
1974 // for a literal pattern (a pattern enclosed in quotes or with no
1975 // wildcard characters), then that is the match that it uses. If
1976 // finds a match with a wildcard pattern, then it saves it and
1977 // continues searching. Wildcard patterns that are exactly "*" are
1978 // saved separately.
1980 // If no exact match with a literal pattern is ever found, then if a
1981 // wildcard match with a global pattern was found it is used,
1982 // otherwise if a wildcard match with a local pattern was found it is
1985 // This is the result:
1986 // * If there is an exact match, then we use the first tag in the
1987 // version script where it matches.
1988 // + If the exact match in that tag is global, it is used.
1989 // + Otherwise the exact match in that tag is local, and is used.
1990 // * Otherwise, if there is any match with a global wildcard pattern:
1991 // + If there is any match with a wildcard pattern which is not
1992 // "*", then we use the tag in which the *last* such pattern
1994 // + Otherwise, we matched "*". If there is no match with a local
1995 // wildcard pattern which is not "*", then we use the *last*
1996 // match with a global "*". Otherwise, continue.
1997 // * Otherwise, if there is any match with a local wildcard pattern:
1998 // + If there is any match with a wildcard pattern which is not
1999 // "*", then we use the tag in which the *last* such pattern
2001 // + Otherwise, we matched "*", and we use the tag in which the
2002 // *last* such match occurred.
2004 // There is an additional wrinkle. When the GNU linker finds a symbol
2005 // with a version defined in an object file due to a .symver
2006 // directive, it looks up that symbol name in that version tag. If it
2007 // finds it, it matches the symbol name against the patterns for that
2008 // version. If there is no match with a global pattern, but there is
2009 // a match with a local pattern, then the GNU linker marks the symbol
2012 // We want gold to be generally compatible, but we also want gold to
2013 // be fast. These are the rules that gold implements:
2014 // * If there is an exact match for the mangled name, we use it.
2015 // + If there is more than one exact match, we give a warning, and
2016 // we use the first tag in the script which matches.
2017 // + If a symbol has an exact match as both global and local for
2018 // the same version tag, we give an error.
2019 // * Otherwise, we look for an extern C++ or an extern Java exact
2020 // match. If we find an exact match, we use it.
2021 // + If there is more than one exact match, we give a warning, and
2022 // we use the first tag in the script which matches.
2023 // + If a symbol has an exact match as both global and local for
2024 // the same version tag, we give an error.
2025 // * Otherwise, we look through the wildcard patterns, ignoring "*"
2026 // patterns. We look through the version tags in reverse order.
2027 // For each version tag, we look through the global patterns and
2028 // then the local patterns. We use the first match we find (i.e.,
2029 // the last matching version tag in the file).
2030 // * Otherwise, we use the "*" pattern if there is one. We give an
2031 // error if there are multiple "*" patterns.
2033 // At least for now, gold does not look up the version tag for a
2034 // symbol version found in an object file to see if it should be
2035 // forced local. There are other ways to force a symbol to be local,
2036 // and I don't understand why this one is useful.
2038 // Build a set of fast lookup tables for a version script.
2041 Version_script_info::build_lookup_tables()
2043 size_t size
= this->version_trees_
.size();
2044 for (size_t j
= 0; j
< size
; ++j
)
2046 const Version_tree
* v
= this->version_trees_
[j
];
2047 this->build_expression_list_lookup(v
->local
, v
, false);
2048 this->build_expression_list_lookup(v
->global
, v
, true);
2052 // If a pattern has backlashes but no unquoted wildcard characters,
2053 // then we apply backslash unquoting and look for an exact match.
2054 // Otherwise we treat it as a wildcard pattern. This function returns
2055 // true for a wildcard pattern. Otherwise, it does backslash
2056 // unquoting on *PATTERN and returns false. If this returns true,
2057 // *PATTERN may have been partially unquoted.
2060 Version_script_info::unquote(std::string
* pattern
) const
2062 bool saw_backslash
= false;
2063 size_t len
= pattern
->length();
2065 for (size_t i
= 0; i
< len
; ++i
)
2068 saw_backslash
= false;
2071 switch ((*pattern
)[i
])
2073 case '?': case '[': case '*':
2076 saw_backslash
= true;
2084 (*pattern
)[j
] = (*pattern
)[i
];
2090 // Add an exact match for MATCH to *PE. The result of the match is
2094 Version_script_info::add_exact_match(const std::string
& match
,
2095 const Version_tree
* v
, bool is_global
,
2096 const Version_expression
* ve
,
2099 std::pair
<Exact::iterator
, bool> ins
=
2100 pe
->insert(std::make_pair(match
, Version_tree_match(v
, is_global
, ve
)));
2103 // This is the first time we have seen this match.
2107 Version_tree_match
& vtm(ins
.first
->second
);
2108 if (vtm
.real
->tag
!= v
->tag
)
2110 // This is an ambiguous match. We still return the
2111 // first version that we found in the script, but we
2112 // record the new version to issue a warning if we
2113 // wind up looking up this symbol.
2114 if (vtm
.ambiguous
== NULL
)
2117 else if (is_global
!= vtm
.is_global
)
2119 // We have a match for both the global and local entries for a
2120 // version tag. That's got to be wrong.
2121 gold_error(_("'%s' appears as both a global and a local symbol "
2122 "for version '%s' in script"),
2123 match
.c_str(), v
->tag
.c_str());
2127 // Build fast lookup information for EXPLIST and store it in LOOKUP.
2128 // All matches go to V, and IS_GLOBAL is true if they are global
2132 Version_script_info::build_expression_list_lookup(
2133 const Version_expression_list
* explist
,
2134 const Version_tree
* v
,
2137 if (explist
== NULL
)
2139 size_t size
= explist
->expressions
.size();
2140 for (size_t i
= 0; i
< size
; ++i
)
2142 const Version_expression
& exp(explist
->expressions
[i
]);
2144 if (exp
.pattern
.length() == 1 && exp
.pattern
[0] == '*')
2146 if (this->default_version_
!= NULL
2147 && this->default_version_
->tag
!= v
->tag
)
2148 gold_warning(_("wildcard match appears in both version '%s' "
2149 "and '%s' in script"),
2150 this->default_version_
->tag
.c_str(), v
->tag
.c_str());
2151 else if (this->default_version_
!= NULL
2152 && this->default_is_global_
!= is_global
)
2153 gold_error(_("wildcard match appears as both global and local "
2154 "in version '%s' in script"),
2156 this->default_version_
= v
;
2157 this->default_is_global_
= is_global
;
2161 std::string pattern
= exp
.pattern
;
2162 if (!exp
.exact_match
)
2164 if (this->unquote(&pattern
))
2166 this->globs_
.push_back(Glob(&exp
, v
, is_global
));
2171 if (this->exact_
[exp
.language
] == NULL
)
2172 this->exact_
[exp
.language
] = new Exact();
2173 this->add_exact_match(pattern
, v
, is_global
, &exp
,
2174 this->exact_
[exp
.language
]);
2178 // Return the name to match given a name, a language code, and two
2182 Version_script_info::get_name_to_match(const char* name
,
2184 Lazy_demangler
* cpp_demangler
,
2185 Lazy_demangler
* java_demangler
) const
2192 return cpp_demangler
->get();
2194 return java_demangler
->get();
2200 // Look up SYMBOL_NAME in the list of versions. Return true if the
2201 // symbol is found, false if not. If the symbol is found, then if
2202 // PVERSION is not NULL, set *PVERSION to the version tag, and if
2203 // P_IS_GLOBAL is not NULL, set *P_IS_GLOBAL according to whether the
2204 // symbol is global or not.
2207 Version_script_info::get_symbol_version(const char* symbol_name
,
2208 std::string
* pversion
,
2209 bool* p_is_global
) const
2211 Lazy_demangler
cpp_demangled_name(symbol_name
, DMGL_ANSI
| DMGL_PARAMS
);
2212 Lazy_demangler
java_demangled_name(symbol_name
,
2213 DMGL_ANSI
| DMGL_PARAMS
| DMGL_JAVA
);
2215 gold_assert(this->is_finalized_
);
2216 for (int i
= 0; i
< LANGUAGE_COUNT
; ++i
)
2218 Exact
* exact
= this->exact_
[i
];
2222 const char* name_to_match
= this->get_name_to_match(symbol_name
, i
,
2223 &cpp_demangled_name
,
2224 &java_demangled_name
);
2225 if (name_to_match
== NULL
)
2227 // If the name can not be demangled, the GNU linker goes
2228 // ahead and tries to match it anyhow. That does not
2229 // make sense to me and I have not implemented it.
2233 Exact::const_iterator pe
= exact
->find(name_to_match
);
2234 if (pe
!= exact
->end())
2236 const Version_tree_match
& vtm(pe
->second
);
2237 if (vtm
.ambiguous
!= NULL
)
2238 gold_warning(_("using '%s' as version for '%s' which is also "
2239 "named in version '%s' in script"),
2240 vtm
.real
->tag
.c_str(), name_to_match
,
2241 vtm
.ambiguous
->tag
.c_str());
2243 if (pversion
!= NULL
)
2244 *pversion
= vtm
.real
->tag
;
2245 if (p_is_global
!= NULL
)
2246 *p_is_global
= vtm
.is_global
;
2248 // If we are using --no-undefined-version, and this is a
2249 // global symbol, we have to record that we have found this
2250 // symbol, so that we don't warn about it. We have to do
2251 // this now, because otherwise we have no way to get from a
2252 // non-C language back to the demangled name that we
2254 if (p_is_global
!= NULL
&& vtm
.is_global
)
2255 vtm
.expression
->was_matched_by_symbol
= true;
2261 // Look through the glob patterns in reverse order.
2263 for (Globs::const_reverse_iterator p
= this->globs_
.rbegin();
2264 p
!= this->globs_
.rend();
2267 int language
= p
->expression
->language
;
2268 const char* name_to_match
= this->get_name_to_match(symbol_name
,
2270 &cpp_demangled_name
,
2271 &java_demangled_name
);
2272 if (name_to_match
== NULL
)
2275 if (fnmatch(p
->expression
->pattern
.c_str(), name_to_match
,
2278 if (pversion
!= NULL
)
2279 *pversion
= p
->version
->tag
;
2280 if (p_is_global
!= NULL
)
2281 *p_is_global
= p
->is_global
;
2286 // Finally, there may be a wildcard.
2287 if (this->default_version_
!= NULL
)
2289 if (pversion
!= NULL
)
2290 *pversion
= this->default_version_
->tag
;
2291 if (p_is_global
!= NULL
)
2292 *p_is_global
= this->default_is_global_
;
2299 // Give an error if any exact symbol names (not wildcards) appear in a
2300 // version script, but there is no such symbol.
2303 Version_script_info::check_unmatched_names(const Symbol_table
* symtab
) const
2305 for (size_t i
= 0; i
< this->version_trees_
.size(); ++i
)
2307 const Version_tree
* vt
= this->version_trees_
[i
];
2308 if (vt
->global
== NULL
)
2310 for (size_t j
= 0; j
< vt
->global
->expressions
.size(); ++j
)
2312 const Version_expression
& expression(vt
->global
->expressions
[j
]);
2314 // Ignore cases where we used the version because we saw a
2315 // symbol that we looked up. Note that
2316 // WAS_MATCHED_BY_SYMBOL will be true even if the symbol was
2317 // not a definition. That's OK as in that case we most
2318 // likely gave an undefined symbol error anyhow.
2319 if (expression
.was_matched_by_symbol
)
2322 // Just ignore names which are in languages other than C.
2323 // We have no way to look them up in the symbol table.
2324 if (expression
.language
!= LANGUAGE_C
)
2327 // Remove backslash quoting, and ignore wildcard patterns.
2328 std::string pattern
= expression
.pattern
;
2329 if (!expression
.exact_match
)
2331 if (this->unquote(&pattern
))
2335 if (symtab
->lookup(pattern
.c_str(), vt
->tag
.c_str()) == NULL
)
2336 gold_error(_("version script assignment of %s to symbol %s "
2337 "failed: symbol not defined"),
2338 vt
->tag
.c_str(), pattern
.c_str());
2343 struct Version_dependency_list
*
2344 Version_script_info::allocate_dependency_list()
2346 dependency_lists_
.push_back(new Version_dependency_list
);
2347 return dependency_lists_
.back();
2350 struct Version_expression_list
*
2351 Version_script_info::allocate_expression_list()
2353 expression_lists_
.push_back(new Version_expression_list
);
2354 return expression_lists_
.back();
2357 struct Version_tree
*
2358 Version_script_info::allocate_version_tree()
2360 version_trees_
.push_back(new Version_tree
);
2361 return version_trees_
.back();
2364 // Print for debugging.
2367 Version_script_info::print(FILE* f
) const
2372 fprintf(f
, "VERSION {");
2374 for (size_t i
= 0; i
< this->version_trees_
.size(); ++i
)
2376 const Version_tree
* vt
= this->version_trees_
[i
];
2378 if (vt
->tag
.empty())
2381 fprintf(f
, " %s {\n", vt
->tag
.c_str());
2383 if (vt
->global
!= NULL
)
2385 fprintf(f
, " global :\n");
2386 this->print_expression_list(f
, vt
->global
);
2389 if (vt
->local
!= NULL
)
2391 fprintf(f
, " local :\n");
2392 this->print_expression_list(f
, vt
->local
);
2396 if (vt
->dependencies
!= NULL
)
2398 const Version_dependency_list
* deps
= vt
->dependencies
;
2399 for (size_t j
= 0; j
< deps
->dependencies
.size(); ++j
)
2401 if (j
< deps
->dependencies
.size() - 1)
2403 fprintf(f
, " %s", deps
->dependencies
[j
].c_str());
2413 Version_script_info::print_expression_list(
2415 const Version_expression_list
* vel
) const
2417 Version_script_info::Language current_language
= LANGUAGE_C
;
2418 for (size_t i
= 0; i
< vel
->expressions
.size(); ++i
)
2420 const Version_expression
& ve(vel
->expressions
[i
]);
2422 if (ve
.language
!= current_language
)
2424 if (current_language
!= LANGUAGE_C
)
2426 switch (ve
.language
)
2431 fprintf(f
, " extern \"C++\" {\n");
2434 fprintf(f
, " extern \"Java\" {\n");
2439 current_language
= ve
.language
;
2443 if (current_language
!= LANGUAGE_C
)
2448 fprintf(f
, "%s", ve
.pattern
.c_str());
2455 if (current_language
!= LANGUAGE_C
)
2459 } // End namespace gold.
2461 // The remaining functions are extern "C", so it's clearer to not put
2462 // them in namespace gold.
2464 using namespace gold
;
2466 // This function is called by the bison parser to return the next
2470 yylex(YYSTYPE
* lvalp
, void* closurev
)
2472 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2473 const Token
* token
= closure
->next_token();
2474 switch (token
->classification())
2479 case Token::TOKEN_INVALID
:
2480 yyerror(closurev
, "invalid character");
2483 case Token::TOKEN_EOF
:
2486 case Token::TOKEN_STRING
:
2488 // This is either a keyword or a STRING.
2490 const char* str
= token
->string_value(&len
);
2492 switch (closure
->lex_mode())
2494 case Lex::LINKER_SCRIPT
:
2495 parsecode
= script_keywords
.keyword_to_parsecode(str
, len
);
2497 case Lex::VERSION_SCRIPT
:
2498 parsecode
= version_script_keywords
.keyword_to_parsecode(str
, len
);
2500 case Lex::DYNAMIC_LIST
:
2501 parsecode
= dynamic_list_keywords
.keyword_to_parsecode(str
, len
);
2508 lvalp
->string
.value
= str
;
2509 lvalp
->string
.length
= len
;
2513 case Token::TOKEN_QUOTED_STRING
:
2514 lvalp
->string
.value
= token
->string_value(&lvalp
->string
.length
);
2515 return QUOTED_STRING
;
2517 case Token::TOKEN_OPERATOR
:
2518 return token
->operator_value();
2520 case Token::TOKEN_INTEGER
:
2521 lvalp
->integer
= token
->integer_value();
2526 // This function is called by the bison parser to report an error.
2529 yyerror(void* closurev
, const char* message
)
2531 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2532 gold_error(_("%s:%d:%d: %s"), closure
->filename(), closure
->lineno(),
2533 closure
->charpos(), message
);
2536 // Called by the bison parser to add an external symbol to the link.
2539 script_add_extern(void* closurev
, const char* name
, size_t length
)
2541 // We treat exactly like -u NAME. FIXME: If it seems useful, we
2542 // could handle this after the command line has been read, by adding
2543 // entries to the symbol table directly.
2544 std::string
arg("--undefined=");
2545 arg
.append(name
, length
);
2546 script_parse_option(closurev
, arg
.c_str(), arg
.size());
2549 // Called by the bison parser to add a file to the link.
2552 script_add_file(void* closurev
, const char* name
, size_t length
)
2554 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2556 // If this is an absolute path, and we found the script in the
2557 // sysroot, then we want to prepend the sysroot to the file name.
2558 // For example, this is how we handle a cross link to the x86_64
2559 // libc.so, which refers to /lib/libc.so.6.
2560 std::string
name_string(name
, length
);
2561 const char* extra_search_path
= ".";
2562 std::string script_directory
;
2563 if (IS_ABSOLUTE_PATH(name_string
.c_str()))
2565 if (closure
->is_in_sysroot())
2567 const std::string
& sysroot(parameters
->options().sysroot());
2568 gold_assert(!sysroot
.empty());
2569 name_string
= sysroot
+ name_string
;
2574 // In addition to checking the normal library search path, we
2575 // also want to check in the script-directory.
2576 const char *slash
= strrchr(closure
->filename(), '/');
2579 script_directory
.assign(closure
->filename(),
2580 slash
- closure
->filename() + 1);
2581 extra_search_path
= script_directory
.c_str();
2585 Input_file_argument
file(name_string
.c_str(),
2586 Input_file_argument::INPUT_FILE_TYPE_FILE
,
2587 extra_search_path
, false,
2588 closure
->position_dependent_options());
2589 closure
->inputs()->add_file(file
);
2592 // Called by the bison parser to start a group. If we are already in
2593 // a group, that means that this script was invoked within a
2594 // --start-group --end-group sequence on the command line, or that
2595 // this script was found in a GROUP of another script. In that case,
2596 // we simply continue the existing group, rather than starting a new
2597 // one. It is possible to construct a case in which this will do
2598 // something other than what would happen if we did a recursive group,
2599 // but it's hard to imagine why the different behaviour would be
2600 // useful for a real program. Avoiding recursive groups is simpler
2601 // and more efficient.
2604 script_start_group(void* closurev
)
2606 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2607 if (!closure
->in_group())
2608 closure
->inputs()->start_group();
2611 // Called by the bison parser at the end of a group.
2614 script_end_group(void* closurev
)
2616 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2617 if (!closure
->in_group())
2618 closure
->inputs()->end_group();
2621 // Called by the bison parser to start an AS_NEEDED list.
2624 script_start_as_needed(void* closurev
)
2626 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2627 closure
->position_dependent_options().set_as_needed(true);
2630 // Called by the bison parser at the end of an AS_NEEDED list.
2633 script_end_as_needed(void* closurev
)
2635 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2636 closure
->position_dependent_options().set_as_needed(false);
2639 // Called by the bison parser to set the entry symbol.
2642 script_set_entry(void* closurev
, const char* entry
, size_t length
)
2644 // We'll parse this exactly the same as --entry=ENTRY on the commandline
2645 // TODO(csilvers): FIXME -- call set_entry directly.
2646 std::string
arg("--entry=");
2647 arg
.append(entry
, length
);
2648 script_parse_option(closurev
, arg
.c_str(), arg
.size());
2651 // Called by the bison parser to set whether to define common symbols.
2654 script_set_common_allocation(void* closurev
, int set
)
2656 const char* arg
= set
!= 0 ? "--define-common" : "--no-define-common";
2657 script_parse_option(closurev
, arg
, strlen(arg
));
2660 // Called by the bison parser to define a symbol.
2663 script_set_symbol(void* closurev
, const char* name
, size_t length
,
2664 Expression
* value
, int providei
, int hiddeni
)
2666 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2667 const bool provide
= providei
!= 0;
2668 const bool hidden
= hiddeni
!= 0;
2669 closure
->script_options()->add_symbol_assignment(name
, length
,
2670 closure
->parsing_defsym(),
2671 value
, provide
, hidden
);
2672 closure
->clear_skip_on_incompatible_target();
2675 // Called by the bison parser to add an assertion.
2678 script_add_assertion(void* closurev
, Expression
* check
, const char* message
,
2681 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2682 closure
->script_options()->add_assertion(check
, message
, messagelen
);
2683 closure
->clear_skip_on_incompatible_target();
2686 // Called by the bison parser to parse an OPTION.
2689 script_parse_option(void* closurev
, const char* option
, size_t length
)
2691 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2692 // We treat the option as a single command-line option, even if
2693 // it has internal whitespace.
2694 if (closure
->command_line() == NULL
)
2696 // There are some options that we could handle here--e.g.,
2697 // -lLIBRARY. Should we bother?
2698 gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid"
2699 " for scripts specified via -T/--script"),
2700 closure
->filename(), closure
->lineno(), closure
->charpos());
2704 bool past_a_double_dash_option
= false;
2705 const char* mutable_option
= strndup(option
, length
);
2706 gold_assert(mutable_option
!= NULL
);
2707 closure
->command_line()->process_one_option(1, &mutable_option
, 0,
2708 &past_a_double_dash_option
);
2709 // The General_options class will quite possibly store a pointer
2710 // into mutable_option, so we can't free it. In cases the class
2711 // does not store such a pointer, this is a memory leak. Alas. :(
2713 closure
->clear_skip_on_incompatible_target();
2716 // Called by the bison parser to handle OUTPUT_FORMAT. OUTPUT_FORMAT
2717 // takes either one or three arguments. In the three argument case,
2718 // the format depends on the endianness option, which we don't
2719 // currently support (FIXME). If we see an OUTPUT_FORMAT for the
2720 // wrong format, then we want to search for a new file. Returning 0
2721 // here will cause the parser to immediately abort.
2724 script_check_output_format(void* closurev
,
2725 const char* default_name
, size_t default_length
,
2726 const char*, size_t, const char*, size_t)
2728 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2729 std::string
name(default_name
, default_length
);
2730 Target
* target
= select_target_by_name(name
.c_str());
2731 if (target
== NULL
|| !parameters
->is_compatible_target(target
))
2733 if (closure
->skip_on_incompatible_target())
2735 closure
->set_found_incompatible_target();
2738 // FIXME: Should we warn about the unknown target?
2743 // Called by the bison parser to handle TARGET.
2746 script_set_target(void* closurev
, const char* target
, size_t len
)
2748 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2749 std::string
s(target
, len
);
2750 General_options::Object_format format_enum
;
2751 format_enum
= General_options::string_to_object_format(s
.c_str());
2752 closure
->position_dependent_options().set_format_enum(format_enum
);
2755 // Called by the bison parser to handle SEARCH_DIR. This is handled
2756 // exactly like a -L option.
2759 script_add_search_dir(void* closurev
, const char* option
, size_t length
)
2761 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2762 if (closure
->command_line() == NULL
)
2763 gold_warning(_("%s:%d:%d: ignoring SEARCH_DIR; SEARCH_DIR is only valid"
2764 " for scripts specified via -T/--script"),
2765 closure
->filename(), closure
->lineno(), closure
->charpos());
2768 std::string s
= "-L" + std::string(option
, length
);
2769 script_parse_option(closurev
, s
.c_str(), s
.size());
2773 /* Called by the bison parser to push the lexer into expression
2777 script_push_lex_into_expression_mode(void* closurev
)
2779 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2780 closure
->push_lex_mode(Lex::EXPRESSION
);
2783 /* Called by the bison parser to push the lexer into version
2787 script_push_lex_into_version_mode(void* closurev
)
2789 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2790 if (closure
->version_script()->is_finalized())
2791 gold_error(_("%s:%d:%d: invalid use of VERSION in input file"),
2792 closure
->filename(), closure
->lineno(), closure
->charpos());
2793 closure
->push_lex_mode(Lex::VERSION_SCRIPT
);
2796 /* Called by the bison parser to pop the lexer mode. */
2799 script_pop_lex_mode(void* closurev
)
2801 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2802 closure
->pop_lex_mode();
2805 // Register an entire version node. For example:
2811 // - tag is "GLIBC_2.1"
2812 // - tree contains the information "global: foo"
2813 // - deps contains "GLIBC_2.0"
2816 script_register_vers_node(void*,
2819 struct Version_tree
*tree
,
2820 struct Version_dependency_list
*deps
)
2822 gold_assert(tree
!= NULL
);
2823 tree
->dependencies
= deps
;
2825 tree
->tag
= std::string(tag
, taglen
);
2828 // Add a dependencies to the list of existing dependencies, if any,
2829 // and return the expanded list.
2831 extern "C" struct Version_dependency_list
*
2832 script_add_vers_depend(void* closurev
,
2833 struct Version_dependency_list
*all_deps
,
2834 const char *depend_to_add
, int deplen
)
2836 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2837 if (all_deps
== NULL
)
2838 all_deps
= closure
->version_script()->allocate_dependency_list();
2839 all_deps
->dependencies
.push_back(std::string(depend_to_add
, deplen
));
2843 // Add a pattern expression to an existing list of expressions, if any.
2845 extern "C" struct Version_expression_list
*
2846 script_new_vers_pattern(void* closurev
,
2847 struct Version_expression_list
*expressions
,
2848 const char *pattern
, int patlen
, int exact_match
)
2850 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2851 if (expressions
== NULL
)
2852 expressions
= closure
->version_script()->allocate_expression_list();
2853 expressions
->expressions
.push_back(
2854 Version_expression(std::string(pattern
, patlen
),
2855 closure
->get_current_language(),
2856 static_cast<bool>(exact_match
)));
2860 // Attaches b to the end of a, and clears b. So a = a + b and b = {}.
2862 extern "C" struct Version_expression_list
*
2863 script_merge_expressions(struct Version_expression_list
*a
,
2864 struct Version_expression_list
*b
)
2866 a
->expressions
.insert(a
->expressions
.end(),
2867 b
->expressions
.begin(), b
->expressions
.end());
2868 // We could delete b and remove it from expressions_lists_, but
2869 // that's a lot of work. This works just as well.
2870 b
->expressions
.clear();
2874 // Combine the global and local expressions into a a Version_tree.
2876 extern "C" struct Version_tree
*
2877 script_new_vers_node(void* closurev
,
2878 struct Version_expression_list
*global
,
2879 struct Version_expression_list
*local
)
2881 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2882 Version_tree
* tree
= closure
->version_script()->allocate_version_tree();
2883 tree
->global
= global
;
2884 tree
->local
= local
;
2888 // Handle a transition in language, such as at the
2889 // start or end of 'extern "C++"'
2892 version_script_push_lang(void* closurev
, const char* lang
, int langlen
)
2894 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2895 std::string
language(lang
, langlen
);
2896 Version_script_info::Language code
;
2897 if (language
.empty() || language
== "C")
2898 code
= Version_script_info::LANGUAGE_C
;
2899 else if (language
== "C++")
2900 code
= Version_script_info::LANGUAGE_CXX
;
2901 else if (language
== "Java")
2902 code
= Version_script_info::LANGUAGE_JAVA
;
2905 char* buf
= new char[langlen
+ 100];
2906 snprintf(buf
, langlen
+ 100,
2907 _("unrecognized version script language '%s'"),
2909 yyerror(closurev
, buf
);
2911 code
= Version_script_info::LANGUAGE_C
;
2913 closure
->push_language(code
);
2917 version_script_pop_lang(void* closurev
)
2919 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2920 closure
->pop_language();
2923 // Called by the bison parser to start a SECTIONS clause.
2926 script_start_sections(void* closurev
)
2928 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2929 closure
->script_options()->script_sections()->start_sections();
2930 closure
->clear_skip_on_incompatible_target();
2933 // Called by the bison parser to finish a SECTIONS clause.
2936 script_finish_sections(void* closurev
)
2938 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2939 closure
->script_options()->script_sections()->finish_sections();
2942 // Start processing entries for an output section.
2945 script_start_output_section(void* closurev
, const char* name
, size_t namelen
,
2946 const struct Parser_output_section_header
* header
)
2948 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2949 closure
->script_options()->script_sections()->start_output_section(name
,
2954 // Finish processing entries for an output section.
2957 script_finish_output_section(void* closurev
,
2958 const struct Parser_output_section_trailer
* trail
)
2960 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2961 closure
->script_options()->script_sections()->finish_output_section(trail
);
2964 // Add a data item (e.g., "WORD (0)") to the current output section.
2967 script_add_data(void* closurev
, int data_token
, Expression
* val
)
2969 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
2971 bool is_signed
= true;
2993 closure
->script_options()->script_sections()->add_data(size
, is_signed
, val
);
2996 // Add a clause setting the fill value to the current output section.
2999 script_add_fill(void* closurev
, Expression
* val
)
3001 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
3002 closure
->script_options()->script_sections()->add_fill(val
);
3005 // Add a new input section specification to the current output
3009 script_add_input_section(void* closurev
,
3010 const struct Input_section_spec
* spec
,
3013 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
3014 bool keep
= keepi
!= 0;
3015 closure
->script_options()->script_sections()->add_input_section(spec
, keep
);
3018 // When we see DATA_SEGMENT_ALIGN we record that following output
3019 // sections may be relro.
3022 script_data_segment_align(void* closurev
)
3024 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
3025 if (!closure
->script_options()->saw_sections_clause())
3026 gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3027 closure
->filename(), closure
->lineno(), closure
->charpos());
3029 closure
->script_options()->script_sections()->data_segment_align();
3032 // When we see DATA_SEGMENT_RELRO_END we know that all output sections
3033 // since DATA_SEGMENT_ALIGN should be relro.
3036 script_data_segment_relro_end(void* closurev
)
3038 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
3039 if (!closure
->script_options()->saw_sections_clause())
3040 gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3041 closure
->filename(), closure
->lineno(), closure
->charpos());
3043 closure
->script_options()->script_sections()->data_segment_relro_end();
3046 // Create a new list of string/sort pairs.
3048 extern "C" String_sort_list_ptr
3049 script_new_string_sort_list(const struct Wildcard_section
* string_sort
)
3051 return new String_sort_list(1, *string_sort
);
3054 // Add an entry to a list of string/sort pairs. The way the parser
3055 // works permits us to simply modify the first parameter, rather than
3058 extern "C" String_sort_list_ptr
3059 script_string_sort_list_add(String_sort_list_ptr pv
,
3060 const struct Wildcard_section
* string_sort
)
3063 return script_new_string_sort_list(string_sort
);
3066 pv
->push_back(*string_sort
);
3071 // Create a new list of strings.
3073 extern "C" String_list_ptr
3074 script_new_string_list(const char* str
, size_t len
)
3076 return new String_list(1, std::string(str
, len
));
3079 // Add an element to a list of strings. The way the parser works
3080 // permits us to simply modify the first parameter, rather than copy
3083 extern "C" String_list_ptr
3084 script_string_list_push_back(String_list_ptr pv
, const char* str
, size_t len
)
3087 return script_new_string_list(str
, len
);
3090 pv
->push_back(std::string(str
, len
));
3095 // Concatenate two string lists. Either or both may be NULL. The way
3096 // the parser works permits us to modify the parameters, rather than
3099 extern "C" String_list_ptr
3100 script_string_list_append(String_list_ptr pv1
, String_list_ptr pv2
)
3106 pv1
->insert(pv1
->end(), pv2
->begin(), pv2
->end());
3110 // Add a new program header.
3113 script_add_phdr(void* closurev
, const char* name
, size_t namelen
,
3114 unsigned int type
, const Phdr_info
* info
)
3116 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
3117 bool includes_filehdr
= info
->includes_filehdr
!= 0;
3118 bool includes_phdrs
= info
->includes_phdrs
!= 0;
3119 bool is_flags_valid
= info
->is_flags_valid
!= 0;
3120 Script_sections
* ss
= closure
->script_options()->script_sections();
3121 ss
->add_phdr(name
, namelen
, type
, includes_filehdr
, includes_phdrs
,
3122 is_flags_valid
, info
->flags
, info
->load_address
);
3123 closure
->clear_skip_on_incompatible_target();
3126 // Convert a program header string to a type.
3128 #define PHDR_TYPE(NAME) { #NAME, sizeof(#NAME) - 1, elfcpp::NAME }
3135 } phdr_type_names
[] =
3139 PHDR_TYPE(PT_DYNAMIC
),
3140 PHDR_TYPE(PT_INTERP
),
3142 PHDR_TYPE(PT_SHLIB
),
3145 PHDR_TYPE(PT_GNU_EH_FRAME
),
3146 PHDR_TYPE(PT_GNU_STACK
),
3147 PHDR_TYPE(PT_GNU_RELRO
)
3150 extern "C" unsigned int
3151 script_phdr_string_to_type(void* closurev
, const char* name
, size_t namelen
)
3153 for (unsigned int i
= 0;
3154 i
< sizeof(phdr_type_names
) / sizeof(phdr_type_names
[0]);
3156 if (namelen
== phdr_type_names
[i
].namelen
3157 && strncmp(name
, phdr_type_names
[i
].name
, namelen
) == 0)
3158 return phdr_type_names
[i
].val
;
3159 yyerror(closurev
, _("unknown PHDR type (try integer)"));
3160 return elfcpp::PT_NULL
;
3164 script_saw_segment_start_expression(void* closurev
)
3166 Parser_closure
* closure
= static_cast<Parser_closure
*>(closurev
);
3167 Script_sections
* ss
= closure
->script_options()->script_sections();
3168 ss
->set_saw_segment_start_expression(true);