1 // symtab.cc -- the gold symbol table
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
35 #include "dwarf_reader.h"
39 #include "workqueue.h"
41 #include "demangle.h" // needed for --dynamic-list-cpp-new
49 // Initialize fields in Symbol. This initializes everything except u_
53 Symbol::init_fields(const char* name
, const char* version
,
54 elfcpp::STT type
, elfcpp::STB binding
,
55 elfcpp::STV visibility
, unsigned char nonvis
)
58 this->version_
= version
;
59 this->symtab_index_
= 0;
60 this->dynsym_index_
= 0;
61 this->got_offsets_
.init();
62 this->plt_offset_
= -1U;
64 this->binding_
= binding
;
65 this->visibility_
= visibility
;
66 this->nonvis_
= nonvis
;
67 this->is_def_
= false;
68 this->is_forwarder_
= false;
69 this->has_alias_
= false;
70 this->needs_dynsym_entry_
= false;
71 this->in_reg_
= false;
72 this->in_dyn_
= false;
73 this->has_warning_
= false;
74 this->is_copied_from_dynobj_
= false;
75 this->is_forced_local_
= false;
76 this->is_ordinary_shndx_
= false;
77 this->in_real_elf_
= false;
78 this->is_defined_in_discarded_section_
= false;
81 // Return the demangled version of the symbol's name, but only
82 // if the --demangle flag was set.
85 demangle(const char* name
)
87 if (!parameters
->options().do_demangle())
90 // cplus_demangle allocates memory for the result it returns,
91 // and returns NULL if the name is already demangled.
92 char* demangled_name
= cplus_demangle(name
, DMGL_ANSI
| DMGL_PARAMS
);
93 if (demangled_name
== NULL
)
96 std::string
retval(demangled_name
);
102 Symbol::demangled_name() const
104 return demangle(this->name());
107 // Initialize the fields in the base class Symbol for SYM in OBJECT.
109 template<int size
, bool big_endian
>
111 Symbol::init_base_object(const char* name
, const char* version
, Object
* object
,
112 const elfcpp::Sym
<size
, big_endian
>& sym
,
113 unsigned int st_shndx
, bool is_ordinary
)
115 this->init_fields(name
, version
, sym
.get_st_type(), sym
.get_st_bind(),
116 sym
.get_st_visibility(), sym
.get_st_nonvis());
117 this->u_
.from_object
.object
= object
;
118 this->u_
.from_object
.shndx
= st_shndx
;
119 this->is_ordinary_shndx_
= is_ordinary
;
120 this->source_
= FROM_OBJECT
;
121 this->in_reg_
= !object
->is_dynamic();
122 this->in_dyn_
= object
->is_dynamic();
123 this->in_real_elf_
= object
->pluginobj() == NULL
;
126 // Initialize the fields in the base class Symbol for a symbol defined
127 // in an Output_data.
130 Symbol::init_base_output_data(const char* name
, const char* version
,
131 Output_data
* od
, elfcpp::STT type
,
132 elfcpp::STB binding
, elfcpp::STV visibility
,
133 unsigned char nonvis
, bool offset_is_from_end
)
135 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
136 this->u_
.in_output_data
.output_data
= od
;
137 this->u_
.in_output_data
.offset_is_from_end
= offset_is_from_end
;
138 this->source_
= IN_OUTPUT_DATA
;
139 this->in_reg_
= true;
140 this->in_real_elf_
= true;
143 // Initialize the fields in the base class Symbol for a symbol defined
144 // in an Output_segment.
147 Symbol::init_base_output_segment(const char* name
, const char* version
,
148 Output_segment
* os
, elfcpp::STT type
,
149 elfcpp::STB binding
, elfcpp::STV visibility
,
150 unsigned char nonvis
,
151 Segment_offset_base offset_base
)
153 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
154 this->u_
.in_output_segment
.output_segment
= os
;
155 this->u_
.in_output_segment
.offset_base
= offset_base
;
156 this->source_
= IN_OUTPUT_SEGMENT
;
157 this->in_reg_
= true;
158 this->in_real_elf_
= true;
161 // Initialize the fields in the base class Symbol for a symbol defined
165 Symbol::init_base_constant(const char* name
, const char* version
,
166 elfcpp::STT type
, elfcpp::STB binding
,
167 elfcpp::STV visibility
, unsigned char nonvis
)
169 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
170 this->source_
= IS_CONSTANT
;
171 this->in_reg_
= true;
172 this->in_real_elf_
= true;
175 // Initialize the fields in the base class Symbol for an undefined
179 Symbol::init_base_undefined(const char* name
, const char* version
,
180 elfcpp::STT type
, elfcpp::STB binding
,
181 elfcpp::STV visibility
, unsigned char nonvis
)
183 this->init_fields(name
, version
, type
, binding
, visibility
, nonvis
);
184 this->dynsym_index_
= -1U;
185 this->source_
= IS_UNDEFINED
;
186 this->in_reg_
= true;
187 this->in_real_elf_
= true;
190 // Allocate a common symbol in the base.
193 Symbol::allocate_base_common(Output_data
* od
)
195 gold_assert(this->is_common());
196 this->source_
= IN_OUTPUT_DATA
;
197 this->u_
.in_output_data
.output_data
= od
;
198 this->u_
.in_output_data
.offset_is_from_end
= false;
201 // Initialize the fields in Sized_symbol for SYM in OBJECT.
204 template<bool big_endian
>
206 Sized_symbol
<size
>::init_object(const char* name
, const char* version
,
208 const elfcpp::Sym
<size
, big_endian
>& sym
,
209 unsigned int st_shndx
, bool is_ordinary
)
211 this->init_base_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
212 this->value_
= sym
.get_st_value();
213 this->symsize_
= sym
.get_st_size();
216 // Initialize the fields in Sized_symbol for a symbol defined in an
221 Sized_symbol
<size
>::init_output_data(const char* name
, const char* version
,
222 Output_data
* od
, Value_type value
,
223 Size_type symsize
, elfcpp::STT type
,
225 elfcpp::STV visibility
,
226 unsigned char nonvis
,
227 bool offset_is_from_end
)
229 this->init_base_output_data(name
, version
, od
, type
, binding
, visibility
,
230 nonvis
, offset_is_from_end
);
231 this->value_
= value
;
232 this->symsize_
= symsize
;
235 // Initialize the fields in Sized_symbol for a symbol defined in an
240 Sized_symbol
<size
>::init_output_segment(const char* name
, const char* version
,
241 Output_segment
* os
, Value_type value
,
242 Size_type symsize
, elfcpp::STT type
,
244 elfcpp::STV visibility
,
245 unsigned char nonvis
,
246 Segment_offset_base offset_base
)
248 this->init_base_output_segment(name
, version
, os
, type
, binding
, visibility
,
249 nonvis
, offset_base
);
250 this->value_
= value
;
251 this->symsize_
= symsize
;
254 // Initialize the fields in Sized_symbol for a symbol defined as a
259 Sized_symbol
<size
>::init_constant(const char* name
, const char* version
,
260 Value_type value
, Size_type symsize
,
261 elfcpp::STT type
, elfcpp::STB binding
,
262 elfcpp::STV visibility
, unsigned char nonvis
)
264 this->init_base_constant(name
, version
, type
, binding
, visibility
, nonvis
);
265 this->value_
= value
;
266 this->symsize_
= symsize
;
269 // Initialize the fields in Sized_symbol for an undefined symbol.
273 Sized_symbol
<size
>::init_undefined(const char* name
, const char* version
,
274 elfcpp::STT type
, elfcpp::STB binding
,
275 elfcpp::STV visibility
, unsigned char nonvis
)
277 this->init_base_undefined(name
, version
, type
, binding
, visibility
, nonvis
);
282 // Return true if SHNDX represents a common symbol.
285 Symbol::is_common_shndx(unsigned int shndx
)
287 return (shndx
== elfcpp::SHN_COMMON
288 || shndx
== parameters
->target().small_common_shndx()
289 || shndx
== parameters
->target().large_common_shndx());
292 // Allocate a common symbol.
296 Sized_symbol
<size
>::allocate_common(Output_data
* od
, Value_type value
)
298 this->allocate_base_common(od
);
299 this->value_
= value
;
302 // The ""'s around str ensure str is a string literal, so sizeof works.
303 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
305 // Return true if this symbol should be added to the dynamic symbol
309 Symbol::should_add_dynsym_entry() const
311 // If the symbol is used by a dynamic relocation, we need to add it.
312 if (this->needs_dynsym_entry())
315 // If this symbol's section is not added, the symbol need not be added.
316 // The section may have been GCed. Note that export_dynamic is being
317 // overridden here. This should not be done for shared objects.
318 if (parameters
->options().gc_sections()
319 && !parameters
->options().shared()
320 && this->source() == Symbol::FROM_OBJECT
321 && !this->object()->is_dynamic())
323 Relobj
* relobj
= static_cast<Relobj
*>(this->object());
325 unsigned int shndx
= this->shndx(&is_ordinary
);
326 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
327 && !relobj
->is_section_included(shndx
))
331 // If the symbol was forced local in a version script, do not add it.
332 if (this->is_forced_local())
335 // If the symbol was forced dynamic in a --dynamic-list file, add it.
336 if (parameters
->options().in_dynamic_list(this->name()))
339 // If dynamic-list-data was specified, add any STT_OBJECT.
340 if (parameters
->options().dynamic_list_data()
341 && !this->is_from_dynobj()
342 && this->type() == elfcpp::STT_OBJECT
)
345 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
346 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
347 if ((parameters
->options().dynamic_list_cpp_new()
348 || parameters
->options().dynamic_list_cpp_typeinfo())
349 && !this->is_from_dynobj())
351 // TODO(csilvers): We could probably figure out if we're an operator
352 // new/delete or typeinfo without the need to demangle.
353 char* demangled_name
= cplus_demangle(this->name(),
354 DMGL_ANSI
| DMGL_PARAMS
);
355 if (demangled_name
== NULL
)
357 // Not a C++ symbol, so it can't satisfy these flags
359 else if (parameters
->options().dynamic_list_cpp_new()
360 && (strprefix(demangled_name
, "operator new")
361 || strprefix(demangled_name
, "operator delete")))
363 free(demangled_name
);
366 else if (parameters
->options().dynamic_list_cpp_typeinfo()
367 && (strprefix(demangled_name
, "typeinfo name for")
368 || strprefix(demangled_name
, "typeinfo for")))
370 free(demangled_name
);
374 free(demangled_name
);
377 // If exporting all symbols or building a shared library,
378 // and the symbol is defined in a regular object and is
379 // externally visible, we need to add it.
380 if ((parameters
->options().export_dynamic() || parameters
->options().shared())
381 && !this->is_from_dynobj()
382 && this->is_externally_visible())
388 // Return true if the final value of this symbol is known at link
392 Symbol::final_value_is_known() const
394 // If we are not generating an executable, then no final values are
395 // known, since they will change at runtime.
396 if (parameters
->options().output_is_position_independent()
397 || parameters
->options().relocatable())
400 // If the symbol is not from an object file, and is not undefined,
401 // then it is defined, and known.
402 if (this->source_
!= FROM_OBJECT
)
404 if (this->source_
!= IS_UNDEFINED
)
409 // If the symbol is from a dynamic object, then the final value
411 if (this->object()->is_dynamic())
414 // If the symbol is not undefined (it is defined or common),
415 // then the final value is known.
416 if (!this->is_undefined())
420 // If the symbol is undefined, then whether the final value is known
421 // depends on whether we are doing a static link. If we are doing a
422 // dynamic link, then the final value could be filled in at runtime.
423 // This could reasonably be the case for a weak undefined symbol.
424 return parameters
->doing_static_link();
427 // Return the output section where this symbol is defined.
430 Symbol::output_section() const
432 switch (this->source_
)
436 unsigned int shndx
= this->u_
.from_object
.shndx
;
437 if (shndx
!= elfcpp::SHN_UNDEF
&& this->is_ordinary_shndx_
)
439 gold_assert(!this->u_
.from_object
.object
->is_dynamic());
440 gold_assert(this->u_
.from_object
.object
->pluginobj() == NULL
);
441 Relobj
* relobj
= static_cast<Relobj
*>(this->u_
.from_object
.object
);
442 return relobj
->output_section(shndx
);
448 return this->u_
.in_output_data
.output_data
->output_section();
450 case IN_OUTPUT_SEGMENT
:
460 // Set the symbol's output section. This is used for symbols defined
461 // in scripts. This should only be called after the symbol table has
465 Symbol::set_output_section(Output_section
* os
)
467 switch (this->source_
)
471 gold_assert(this->output_section() == os
);
474 this->source_
= IN_OUTPUT_DATA
;
475 this->u_
.in_output_data
.output_data
= os
;
476 this->u_
.in_output_data
.offset_is_from_end
= false;
478 case IN_OUTPUT_SEGMENT
:
485 // Class Symbol_table.
487 Symbol_table::Symbol_table(unsigned int count
,
488 const Version_script_info
& version_script
)
489 : saw_undefined_(0), offset_(0), table_(count
), namepool_(),
490 forwarders_(), commons_(), tls_commons_(), small_commons_(),
491 large_commons_(), forced_locals_(), warnings_(),
492 version_script_(version_script
), gc_(NULL
), icf_(NULL
)
494 namepool_
.reserve(count
);
497 Symbol_table::~Symbol_table()
501 // The hash function. The key values are Stringpool keys.
504 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key
& key
) const
506 return key
.first
^ key
.second
;
509 // The symbol table key equality function. This is called with
513 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key
& k1
,
514 const Symbol_table_key
& k2
) const
516 return k1
.first
== k2
.first
&& k1
.second
== k2
.second
;
520 Symbol_table::is_section_folded(Object
* obj
, unsigned int shndx
) const
522 return (parameters
->options().icf_enabled()
523 && this->icf_
->is_section_folded(obj
, shndx
));
526 // For symbols that have been listed with -u option, add them to the
527 // work list to avoid gc'ing them.
530 Symbol_table::gc_mark_undef_symbols()
532 for (options::String_set::const_iterator p
=
533 parameters
->options().undefined_begin();
534 p
!= parameters
->options().undefined_end();
537 const char* name
= p
->c_str();
538 Symbol
* sym
= this->lookup(name
);
539 gold_assert (sym
!= NULL
);
540 if (sym
->source() == Symbol::FROM_OBJECT
541 && !sym
->object()->is_dynamic())
543 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
545 unsigned int shndx
= sym
->shndx(&is_ordinary
);
548 gold_assert(this->gc_
!= NULL
);
549 this->gc_
->worklist().push(Section_id(obj
, shndx
));
556 Symbol_table::gc_mark_symbol_for_shlib(Symbol
* sym
)
558 if (!sym
->is_from_dynobj()
559 && sym
->is_externally_visible())
561 //Add the object and section to the work list.
562 Relobj
* obj
= static_cast<Relobj
*>(sym
->object());
564 unsigned int shndx
= sym
->shndx(&is_ordinary
);
565 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
)
567 gold_assert(this->gc_
!= NULL
);
568 this->gc_
->worklist().push(Section_id(obj
, shndx
));
573 // When doing garbage collection, keep symbols that have been seen in
576 Symbol_table::gc_mark_dyn_syms(Symbol
* sym
)
578 if (sym
->in_dyn() && sym
->source() == Symbol::FROM_OBJECT
579 && !sym
->object()->is_dynamic())
581 Relobj
*obj
= static_cast<Relobj
*>(sym
->object());
583 unsigned int shndx
= sym
->shndx(&is_ordinary
);
584 if (is_ordinary
&& shndx
!= elfcpp::SHN_UNDEF
)
586 gold_assert(this->gc_
!= NULL
);
587 this->gc_
->worklist().push(Section_id(obj
, shndx
));
592 // Make TO a symbol which forwards to FROM.
595 Symbol_table::make_forwarder(Symbol
* from
, Symbol
* to
)
597 gold_assert(from
!= to
);
598 gold_assert(!from
->is_forwarder() && !to
->is_forwarder());
599 this->forwarders_
[from
] = to
;
600 from
->set_forwarder();
603 // Resolve the forwards from FROM, returning the real symbol.
606 Symbol_table::resolve_forwards(const Symbol
* from
) const
608 gold_assert(from
->is_forwarder());
609 Unordered_map
<const Symbol
*, Symbol
*>::const_iterator p
=
610 this->forwarders_
.find(from
);
611 gold_assert(p
!= this->forwarders_
.end());
615 // Look up a symbol by name.
618 Symbol_table::lookup(const char* name
, const char* version
) const
620 Stringpool::Key name_key
;
621 name
= this->namepool_
.find(name
, &name_key
);
625 Stringpool::Key version_key
= 0;
628 version
= this->namepool_
.find(version
, &version_key
);
633 Symbol_table_key
key(name_key
, version_key
);
634 Symbol_table::Symbol_table_type::const_iterator p
= this->table_
.find(key
);
635 if (p
== this->table_
.end())
640 // Resolve a Symbol with another Symbol. This is only used in the
641 // unusual case where there are references to both an unversioned
642 // symbol and a symbol with a version, and we then discover that that
643 // version is the default version. Because this is unusual, we do
644 // this the slow way, by converting back to an ELF symbol.
646 template<int size
, bool big_endian
>
648 Symbol_table::resolve(Sized_symbol
<size
>* to
, const Sized_symbol
<size
>* from
)
650 unsigned char buf
[elfcpp::Elf_sizes
<size
>::sym_size
];
651 elfcpp::Sym_write
<size
, big_endian
> esym(buf
);
652 // We don't bother to set the st_name or the st_shndx field.
653 esym
.put_st_value(from
->value());
654 esym
.put_st_size(from
->symsize());
655 esym
.put_st_info(from
->binding(), from
->type());
656 esym
.put_st_other(from
->visibility(), from
->nonvis());
658 unsigned int shndx
= from
->shndx(&is_ordinary
);
659 this->resolve(to
, esym
.sym(), shndx
, is_ordinary
, shndx
, from
->object(),
665 if (parameters
->options().gc_sections())
666 this->gc_mark_dyn_syms(to
);
669 // Record that a symbol is forced to be local by a version script or
673 Symbol_table::force_local(Symbol
* sym
)
675 if (!sym
->is_defined() && !sym
->is_common())
677 if (sym
->is_forced_local())
679 // We already got this one.
682 sym
->set_is_forced_local();
683 this->forced_locals_
.push_back(sym
);
686 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
687 // is only called for undefined symbols, when at least one --wrap
691 Symbol_table::wrap_symbol(const char* name
, Stringpool::Key
* name_key
)
693 // For some targets, we need to ignore a specific character when
694 // wrapping, and add it back later.
696 if (name
[0] == parameters
->target().wrap_char())
702 if (parameters
->options().is_wrap(name
))
704 // Turn NAME into __wrap_NAME.
711 // This will give us both the old and new name in NAMEPOOL_, but
712 // that is OK. Only the versions we need will wind up in the
713 // real string table in the output file.
714 return this->namepool_
.add(s
.c_str(), true, name_key
);
717 const char* const real_prefix
= "__real_";
718 const size_t real_prefix_length
= strlen(real_prefix
);
719 if (strncmp(name
, real_prefix
, real_prefix_length
) == 0
720 && parameters
->options().is_wrap(name
+ real_prefix_length
))
722 // Turn __real_NAME into NAME.
726 s
+= name
+ real_prefix_length
;
727 return this->namepool_
.add(s
.c_str(), true, name_key
);
733 // This is called when we see a symbol NAME/VERSION, and the symbol
734 // already exists in the symbol table, and VERSION is marked as being
735 // the default version. SYM is the NAME/VERSION symbol we just added.
736 // DEFAULT_IS_NEW is true if this is the first time we have seen the
737 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
739 template<int size
, bool big_endian
>
741 Symbol_table::define_default_version(Sized_symbol
<size
>* sym
,
743 Symbol_table_type::iterator pdef
)
747 // This is the first time we have seen NAME/NULL. Make
748 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
751 sym
->set_is_default();
753 else if (pdef
->second
== sym
)
755 // NAME/NULL already points to NAME/VERSION. Don't mark the
756 // symbol as the default if it is not already the default.
760 // This is the unfortunate case where we already have entries
761 // for both NAME/VERSION and NAME/NULL. We now see a symbol
762 // NAME/VERSION where VERSION is the default version. We have
763 // already resolved this new symbol with the existing
764 // NAME/VERSION symbol.
766 // It's possible that NAME/NULL and NAME/VERSION are both
767 // defined in regular objects. This can only happen if one
768 // object file defines foo and another defines foo@@ver. This
769 // is somewhat obscure, but we call it a multiple definition
772 // It's possible that NAME/NULL actually has a version, in which
773 // case it won't be the same as VERSION. This happens with
774 // ver_test_7.so in the testsuite for the symbol t2_2. We see
775 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
776 // then see an unadorned t2_2 in an object file and give it
777 // version VER1 from the version script. This looks like a
778 // default definition for VER1, so it looks like we should merge
779 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
780 // not obvious that this is an error, either. So we just punt.
782 // If one of the symbols has non-default visibility, and the
783 // other is defined in a shared object, then they are different
786 // Otherwise, we just resolve the symbols as though they were
789 if (pdef
->second
->version() != NULL
)
790 gold_assert(pdef
->second
->version() != sym
->version());
791 else if (sym
->visibility() != elfcpp::STV_DEFAULT
792 && pdef
->second
->is_from_dynobj())
794 else if (pdef
->second
->visibility() != elfcpp::STV_DEFAULT
795 && sym
->is_from_dynobj())
799 const Sized_symbol
<size
>* symdef
;
800 symdef
= this->get_sized_symbol
<size
>(pdef
->second
);
801 Symbol_table::resolve
<size
, big_endian
>(sym
, symdef
);
802 this->make_forwarder(pdef
->second
, sym
);
804 sym
->set_is_default();
809 // Add one symbol from OBJECT to the symbol table. NAME is symbol
810 // name and VERSION is the version; both are canonicalized. DEF is
811 // whether this is the default version. ST_SHNDX is the symbol's
812 // section index; IS_ORDINARY is whether this is a normal section
813 // rather than a special code.
815 // If IS_DEFAULT_VERSION is true, then this is the definition of a
816 // default version of a symbol. That means that any lookup of
817 // NAME/NULL and any lookup of NAME/VERSION should always return the
818 // same symbol. This is obvious for references, but in particular we
819 // want to do this for definitions: overriding NAME/NULL should also
820 // override NAME/VERSION. If we don't do that, it would be very hard
821 // to override functions in a shared library which uses versioning.
823 // We implement this by simply making both entries in the hash table
824 // point to the same Symbol structure. That is easy enough if this is
825 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
826 // that we have seen both already, in which case they will both have
827 // independent entries in the symbol table. We can't simply change
828 // the symbol table entry, because we have pointers to the entries
829 // attached to the object files. So we mark the entry attached to the
830 // object file as a forwarder, and record it in the forwarders_ map.
831 // Note that entries in the hash table will never be marked as
834 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
835 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
836 // for a special section code. ST_SHNDX may be modified if the symbol
837 // is defined in a section being discarded.
839 template<int size
, bool big_endian
>
841 Symbol_table::add_from_object(Object
* object
,
843 Stringpool::Key name_key
,
845 Stringpool::Key version_key
,
846 bool is_default_version
,
847 const elfcpp::Sym
<size
, big_endian
>& sym
,
848 unsigned int st_shndx
,
850 unsigned int orig_st_shndx
)
852 // Print a message if this symbol is being traced.
853 if (parameters
->options().is_trace_symbol(name
))
855 if (orig_st_shndx
== elfcpp::SHN_UNDEF
)
856 gold_info(_("%s: reference to %s"), object
->name().c_str(), name
);
858 gold_info(_("%s: definition of %s"), object
->name().c_str(), name
);
861 // For an undefined symbol, we may need to adjust the name using
863 if (orig_st_shndx
== elfcpp::SHN_UNDEF
864 && parameters
->options().any_wrap())
866 const char* wrap_name
= this->wrap_symbol(name
, &name_key
);
867 if (wrap_name
!= name
)
869 // If we see a reference to malloc with version GLIBC_2.0,
870 // and we turn it into a reference to __wrap_malloc, then we
871 // discard the version number. Otherwise the user would be
872 // required to specify the correct version for
880 Symbol
* const snull
= NULL
;
881 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
882 this->table_
.insert(std::make_pair(std::make_pair(name_key
, version_key
),
885 std::pair
<typename
Symbol_table_type::iterator
, bool> insdefault
=
886 std::make_pair(this->table_
.end(), false);
887 if (is_default_version
)
889 const Stringpool::Key vnull_key
= 0;
890 insdefault
= this->table_
.insert(std::make_pair(std::make_pair(name_key
,
895 // ins.first: an iterator, which is a pointer to a pair.
896 // ins.first->first: the key (a pair of name and version).
897 // ins.first->second: the value (Symbol*).
898 // ins.second: true if new entry was inserted, false if not.
900 Sized_symbol
<size
>* ret
;
905 // We already have an entry for NAME/VERSION.
906 ret
= this->get_sized_symbol
<size
>(ins
.first
->second
);
907 gold_assert(ret
!= NULL
);
909 was_undefined
= ret
->is_undefined();
910 was_common
= ret
->is_common();
912 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
, object
,
914 if (parameters
->options().gc_sections())
915 this->gc_mark_dyn_syms(ret
);
917 if (is_default_version
)
918 this->define_default_version
<size
, big_endian
>(ret
, insdefault
.second
,
923 // This is the first time we have seen NAME/VERSION.
924 gold_assert(ins
.first
->second
== NULL
);
926 if (is_default_version
&& !insdefault
.second
)
928 // We already have an entry for NAME/NULL. If we override
929 // it, then change it to NAME/VERSION.
930 ret
= this->get_sized_symbol
<size
>(insdefault
.first
->second
);
932 was_undefined
= ret
->is_undefined();
933 was_common
= ret
->is_common();
935 this->resolve(ret
, sym
, st_shndx
, is_ordinary
, orig_st_shndx
, object
,
937 if (parameters
->options().gc_sections())
938 this->gc_mark_dyn_syms(ret
);
939 ins
.first
->second
= ret
;
943 was_undefined
= false;
946 Sized_target
<size
, big_endian
>* target
=
947 parameters
->sized_target
<size
, big_endian
>();
948 if (!target
->has_make_symbol())
949 ret
= new Sized_symbol
<size
>();
952 ret
= target
->make_symbol();
955 // This means that we don't want a symbol table
957 if (!is_default_version
)
958 this->table_
.erase(ins
.first
);
961 this->table_
.erase(insdefault
.first
);
962 // Inserting INSDEFAULT invalidated INS.
963 this->table_
.erase(std::make_pair(name_key
,
970 ret
->init_object(name
, version
, object
, sym
, st_shndx
, is_ordinary
);
972 ins
.first
->second
= ret
;
973 if (is_default_version
)
975 // This is the first time we have seen NAME/NULL. Point
976 // it at the new entry for NAME/VERSION.
977 gold_assert(insdefault
.second
);
978 insdefault
.first
->second
= ret
;
982 if (is_default_version
)
983 ret
->set_is_default();
986 // Record every time we see a new undefined symbol, to speed up
988 if (!was_undefined
&& ret
->is_undefined())
989 ++this->saw_undefined_
;
991 // Keep track of common symbols, to speed up common symbol
993 if (!was_common
&& ret
->is_common())
995 if (ret
->type() == elfcpp::STT_TLS
)
996 this->tls_commons_
.push_back(ret
);
997 else if (!is_ordinary
998 && st_shndx
== parameters
->target().small_common_shndx())
999 this->small_commons_
.push_back(ret
);
1000 else if (!is_ordinary
1001 && st_shndx
== parameters
->target().large_common_shndx())
1002 this->large_commons_
.push_back(ret
);
1004 this->commons_
.push_back(ret
);
1007 // If we're not doing a relocatable link, then any symbol with
1008 // hidden or internal visibility is local.
1009 if ((ret
->visibility() == elfcpp::STV_HIDDEN
1010 || ret
->visibility() == elfcpp::STV_INTERNAL
)
1011 && (ret
->binding() == elfcpp::STB_GLOBAL
1012 || ret
->binding() == elfcpp::STB_GNU_UNIQUE
1013 || ret
->binding() == elfcpp::STB_WEAK
)
1014 && !parameters
->options().relocatable())
1015 this->force_local(ret
);
1020 // Add all the symbols in a relocatable object to the hash table.
1022 template<int size
, bool big_endian
>
1024 Symbol_table::add_from_relobj(
1025 Sized_relobj
<size
, big_endian
>* relobj
,
1026 const unsigned char* syms
,
1028 size_t symndx_offset
,
1029 const char* sym_names
,
1030 size_t sym_name_size
,
1031 typename Sized_relobj
<size
, big_endian
>::Symbols
* sympointers
,
1036 gold_assert(size
== parameters
->target().get_size());
1038 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1040 const bool just_symbols
= relobj
->just_symbols();
1042 const unsigned char* p
= syms
;
1043 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
)
1045 (*sympointers
)[i
] = NULL
;
1047 elfcpp::Sym
<size
, big_endian
> sym(p
);
1049 unsigned int st_name
= sym
.get_st_name();
1050 if (st_name
>= sym_name_size
)
1052 relobj
->error(_("bad global symbol name offset %u at %zu"),
1057 const char* name
= sym_names
+ st_name
;
1060 unsigned int st_shndx
= relobj
->adjust_sym_shndx(i
+ symndx_offset
,
1063 unsigned int orig_st_shndx
= st_shndx
;
1065 orig_st_shndx
= elfcpp::SHN_UNDEF
;
1067 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1070 // A symbol defined in a section which we are not including must
1071 // be treated as an undefined symbol.
1072 bool is_defined_in_discarded_section
= false;
1073 if (st_shndx
!= elfcpp::SHN_UNDEF
1075 && !relobj
->is_section_included(st_shndx
))
1077 st_shndx
= elfcpp::SHN_UNDEF
;
1078 is_defined_in_discarded_section
= true;
1081 // In an object file, an '@' in the name separates the symbol
1082 // name from the version name. If there are two '@' characters,
1083 // this is the default version.
1084 const char* ver
= strchr(name
, '@');
1085 Stringpool::Key ver_key
= 0;
1087 // IS_DEFAULT_VERSION: is the version default?
1088 // IS_FORCED_LOCAL: is the symbol forced local?
1089 bool is_default_version
= false;
1090 bool is_forced_local
= false;
1094 // The symbol name is of the form foo@VERSION or foo@@VERSION
1095 namelen
= ver
- name
;
1099 is_default_version
= true;
1102 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1104 // We don't want to assign a version to an undefined symbol,
1105 // even if it is listed in the version script. FIXME: What
1106 // about a common symbol?
1109 namelen
= strlen(name
);
1110 if (!this->version_script_
.empty()
1111 && st_shndx
!= elfcpp::SHN_UNDEF
)
1113 // The symbol name did not have a version, but the
1114 // version script may assign a version anyway.
1115 std::string version
;
1117 if (this->version_script_
.get_symbol_version(name
, &version
,
1121 is_forced_local
= true;
1122 else if (!version
.empty())
1124 ver
= this->namepool_
.add_with_length(version
.c_str(),
1128 is_default_version
= true;
1134 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1135 unsigned char symbuf
[sym_size
];
1136 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1139 memcpy(symbuf
, p
, sym_size
);
1140 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1141 if (orig_st_shndx
!= elfcpp::SHN_UNDEF
&& is_ordinary
)
1143 // Symbol values in object files are section relative.
1144 // This is normally what we want, but since here we are
1145 // converting the symbol to absolute we need to add the
1146 // section address. The section address in an object
1147 // file is normally zero, but people can use a linker
1148 // script to change it.
1149 sw
.put_st_value(sym
.get_st_value()
1150 + relobj
->section_address(orig_st_shndx
));
1152 st_shndx
= elfcpp::SHN_ABS
;
1153 is_ordinary
= false;
1157 // Fix up visibility if object has no-export set.
1158 if (relobj
->no_export()
1159 && (orig_st_shndx
!= elfcpp::SHN_UNDEF
|| !is_ordinary
))
1161 // We may have copied symbol already above.
1164 memcpy(symbuf
, p
, sym_size
);
1168 elfcpp::STV visibility
= sym2
.get_st_visibility();
1169 if (visibility
== elfcpp::STV_DEFAULT
1170 || visibility
== elfcpp::STV_PROTECTED
)
1172 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1173 unsigned char nonvis
= sym2
.get_st_nonvis();
1174 sw
.put_st_other(elfcpp::STV_HIDDEN
, nonvis
);
1178 Stringpool::Key name_key
;
1179 name
= this->namepool_
.add_with_length(name
, namelen
, true,
1182 Sized_symbol
<size
>* res
;
1183 res
= this->add_from_object(relobj
, name
, name_key
, ver
, ver_key
,
1184 is_default_version
, *psym
, st_shndx
,
1185 is_ordinary
, orig_st_shndx
);
1187 // If building a shared library using garbage collection, do not
1188 // treat externally visible symbols as garbage.
1189 if (parameters
->options().gc_sections()
1190 && parameters
->options().shared())
1191 this->gc_mark_symbol_for_shlib(res
);
1193 if (is_forced_local
)
1194 this->force_local(res
);
1196 if (is_defined_in_discarded_section
)
1197 res
->set_is_defined_in_discarded_section();
1199 (*sympointers
)[i
] = res
;
1203 // Add a symbol from a plugin-claimed file.
1205 template<int size
, bool big_endian
>
1207 Symbol_table::add_from_pluginobj(
1208 Sized_pluginobj
<size
, big_endian
>* obj
,
1211 elfcpp::Sym
<size
, big_endian
>* sym
)
1213 unsigned int st_shndx
= sym
->get_st_shndx();
1214 bool is_ordinary
= st_shndx
< elfcpp::SHN_LORESERVE
;
1216 Stringpool::Key ver_key
= 0;
1217 bool is_default_version
= false;
1218 bool is_forced_local
= false;
1222 ver
= this->namepool_
.add(ver
, true, &ver_key
);
1224 // We don't want to assign a version to an undefined symbol,
1225 // even if it is listed in the version script. FIXME: What
1226 // about a common symbol?
1229 if (!this->version_script_
.empty()
1230 && st_shndx
!= elfcpp::SHN_UNDEF
)
1232 // The symbol name did not have a version, but the
1233 // version script may assign a version anyway.
1234 std::string version
;
1236 if (this->version_script_
.get_symbol_version(name
, &version
,
1240 is_forced_local
= true;
1241 else if (!version
.empty())
1243 ver
= this->namepool_
.add_with_length(version
.c_str(),
1247 is_default_version
= true;
1253 Stringpool::Key name_key
;
1254 name
= this->namepool_
.add(name
, true, &name_key
);
1256 Sized_symbol
<size
>* res
;
1257 res
= this->add_from_object(obj
, name
, name_key
, ver
, ver_key
,
1258 is_default_version
, *sym
, st_shndx
,
1259 is_ordinary
, st_shndx
);
1261 if (is_forced_local
)
1262 this->force_local(res
);
1267 // Add all the symbols in a dynamic object to the hash table.
1269 template<int size
, bool big_endian
>
1271 Symbol_table::add_from_dynobj(
1272 Sized_dynobj
<size
, big_endian
>* dynobj
,
1273 const unsigned char* syms
,
1275 const char* sym_names
,
1276 size_t sym_name_size
,
1277 const unsigned char* versym
,
1279 const std::vector
<const char*>* version_map
,
1280 typename Sized_relobj
<size
, big_endian
>::Symbols
* sympointers
,
1285 gold_assert(size
== parameters
->target().get_size());
1287 if (dynobj
->just_symbols())
1289 gold_error(_("--just-symbols does not make sense with a shared object"));
1293 if (versym
!= NULL
&& versym_size
/ 2 < count
)
1295 dynobj
->error(_("too few symbol versions"));
1299 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
1301 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1302 // weak aliases. This is necessary because if the dynamic object
1303 // provides the same variable under two names, one of which is a
1304 // weak definition, and the regular object refers to the weak
1305 // definition, we have to put both the weak definition and the
1306 // strong definition into the dynamic symbol table. Given a weak
1307 // definition, the only way that we can find the corresponding
1308 // strong definition, if any, is to search the symbol table.
1309 std::vector
<Sized_symbol
<size
>*> object_symbols
;
1311 const unsigned char* p
= syms
;
1312 const unsigned char* vs
= versym
;
1313 for (size_t i
= 0; i
< count
; ++i
, p
+= sym_size
, vs
+= 2)
1315 elfcpp::Sym
<size
, big_endian
> sym(p
);
1317 if (sympointers
!= NULL
)
1318 (*sympointers
)[i
] = NULL
;
1320 // Ignore symbols with local binding or that have
1321 // internal or hidden visibility.
1322 if (sym
.get_st_bind() == elfcpp::STB_LOCAL
1323 || sym
.get_st_visibility() == elfcpp::STV_INTERNAL
1324 || sym
.get_st_visibility() == elfcpp::STV_HIDDEN
)
1327 // A protected symbol in a shared library must be treated as a
1328 // normal symbol when viewed from outside the shared library.
1329 // Implement this by overriding the visibility here.
1330 elfcpp::Sym
<size
, big_endian
>* psym
= &sym
;
1331 unsigned char symbuf
[sym_size
];
1332 elfcpp::Sym
<size
, big_endian
> sym2(symbuf
);
1333 if (sym
.get_st_visibility() == elfcpp::STV_PROTECTED
)
1335 memcpy(symbuf
, p
, sym_size
);
1336 elfcpp::Sym_write
<size
, big_endian
> sw(symbuf
);
1337 sw
.put_st_other(elfcpp::STV_DEFAULT
, sym
.get_st_nonvis());
1341 unsigned int st_name
= psym
->get_st_name();
1342 if (st_name
>= sym_name_size
)
1344 dynobj
->error(_("bad symbol name offset %u at %zu"),
1349 const char* name
= sym_names
+ st_name
;
1352 unsigned int st_shndx
= dynobj
->adjust_sym_shndx(i
, psym
->get_st_shndx(),
1355 if (st_shndx
!= elfcpp::SHN_UNDEF
)
1358 Sized_symbol
<size
>* res
;
1362 Stringpool::Key name_key
;
1363 name
= this->namepool_
.add(name
, true, &name_key
);
1364 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1365 false, *psym
, st_shndx
, is_ordinary
,
1370 // Read the version information.
1372 unsigned int v
= elfcpp::Swap
<16, big_endian
>::readval(vs
);
1374 bool hidden
= (v
& elfcpp::VERSYM_HIDDEN
) != 0;
1375 v
&= elfcpp::VERSYM_VERSION
;
1377 // The Sun documentation says that V can be VER_NDX_LOCAL,
1378 // or VER_NDX_GLOBAL, or a version index. The meaning of
1379 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1380 // The old GNU linker will happily generate VER_NDX_LOCAL
1381 // for an undefined symbol. I don't know what the Sun
1382 // linker will generate.
1384 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1385 && st_shndx
!= elfcpp::SHN_UNDEF
)
1387 // This symbol should not be visible outside the object.
1391 // At this point we are definitely going to add this symbol.
1392 Stringpool::Key name_key
;
1393 name
= this->namepool_
.add(name
, true, &name_key
);
1395 if (v
== static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL
)
1396 || v
== static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL
))
1398 // This symbol does not have a version.
1399 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1400 false, *psym
, st_shndx
, is_ordinary
,
1405 if (v
>= version_map
->size())
1407 dynobj
->error(_("versym for symbol %zu out of range: %u"),
1412 const char* version
= (*version_map
)[v
];
1413 if (version
== NULL
)
1415 dynobj
->error(_("versym for symbol %zu has no name: %u"),
1420 Stringpool::Key version_key
;
1421 version
= this->namepool_
.add(version
, true, &version_key
);
1423 // If this is an absolute symbol, and the version name
1424 // and symbol name are the same, then this is the
1425 // version definition symbol. These symbols exist to
1426 // support using -u to pull in particular versions. We
1427 // do not want to record a version for them.
1428 if (st_shndx
== elfcpp::SHN_ABS
1430 && name_key
== version_key
)
1431 res
= this->add_from_object(dynobj
, name
, name_key
, NULL
, 0,
1432 false, *psym
, st_shndx
, is_ordinary
,
1436 const bool is_default_version
=
1437 !hidden
&& st_shndx
!= elfcpp::SHN_UNDEF
;
1438 res
= this->add_from_object(dynobj
, name
, name_key
, version
,
1439 version_key
, is_default_version
,
1441 is_ordinary
, st_shndx
);
1446 // Note that it is possible that RES was overridden by an
1447 // earlier object, in which case it can't be aliased here.
1448 if (st_shndx
!= elfcpp::SHN_UNDEF
1450 && psym
->get_st_type() == elfcpp::STT_OBJECT
1451 && res
->source() == Symbol::FROM_OBJECT
1452 && res
->object() == dynobj
)
1453 object_symbols
.push_back(res
);
1455 if (sympointers
!= NULL
)
1456 (*sympointers
)[i
] = res
;
1459 this->record_weak_aliases(&object_symbols
);
1462 // This is used to sort weak aliases. We sort them first by section
1463 // index, then by offset, then by weak ahead of strong.
1466 class Weak_alias_sorter
1469 bool operator()(const Sized_symbol
<size
>*, const Sized_symbol
<size
>*) const;
1474 Weak_alias_sorter
<size
>::operator()(const Sized_symbol
<size
>* s1
,
1475 const Sized_symbol
<size
>* s2
) const
1478 unsigned int s1_shndx
= s1
->shndx(&is_ordinary
);
1479 gold_assert(is_ordinary
);
1480 unsigned int s2_shndx
= s2
->shndx(&is_ordinary
);
1481 gold_assert(is_ordinary
);
1482 if (s1_shndx
!= s2_shndx
)
1483 return s1_shndx
< s2_shndx
;
1485 if (s1
->value() != s2
->value())
1486 return s1
->value() < s2
->value();
1487 if (s1
->binding() != s2
->binding())
1489 if (s1
->binding() == elfcpp::STB_WEAK
)
1491 if (s2
->binding() == elfcpp::STB_WEAK
)
1494 return std::string(s1
->name()) < std::string(s2
->name());
1497 // SYMBOLS is a list of object symbols from a dynamic object. Look
1498 // for any weak aliases, and record them so that if we add the weak
1499 // alias to the dynamic symbol table, we also add the corresponding
1504 Symbol_table::record_weak_aliases(std::vector
<Sized_symbol
<size
>*>* symbols
)
1506 // Sort the vector by section index, then by offset, then by weak
1508 std::sort(symbols
->begin(), symbols
->end(), Weak_alias_sorter
<size
>());
1510 // Walk through the vector. For each weak definition, record
1512 for (typename
std::vector
<Sized_symbol
<size
>*>::const_iterator p
=
1514 p
!= symbols
->end();
1517 if ((*p
)->binding() != elfcpp::STB_WEAK
)
1520 // Build a circular list of weak aliases. Each symbol points to
1521 // the next one in the circular list.
1523 Sized_symbol
<size
>* from_sym
= *p
;
1524 typename
std::vector
<Sized_symbol
<size
>*>::const_iterator q
;
1525 for (q
= p
+ 1; q
!= symbols
->end(); ++q
)
1528 if ((*q
)->shndx(&dummy
) != from_sym
->shndx(&dummy
)
1529 || (*q
)->value() != from_sym
->value())
1532 this->weak_aliases_
[from_sym
] = *q
;
1533 from_sym
->set_has_alias();
1539 this->weak_aliases_
[from_sym
] = *p
;
1540 from_sym
->set_has_alias();
1547 // Create and return a specially defined symbol. If ONLY_IF_REF is
1548 // true, then only create the symbol if there is a reference to it.
1549 // If this does not return NULL, it sets *POLDSYM to the existing
1550 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1551 // resolve the newly created symbol to the old one. This
1552 // canonicalizes *PNAME and *PVERSION.
1554 template<int size
, bool big_endian
>
1556 Symbol_table::define_special_symbol(const char** pname
, const char** pversion
,
1558 Sized_symbol
<size
>** poldsym
,
1559 bool *resolve_oldsym
)
1561 *resolve_oldsym
= false;
1563 // If the caller didn't give us a version, see if we get one from
1564 // the version script.
1566 bool is_default_version
= false;
1567 if (*pversion
== NULL
)
1570 if (this->version_script_
.get_symbol_version(*pname
, &v
, &is_global
))
1572 if (is_global
&& !v
.empty())
1574 *pversion
= v
.c_str();
1575 // If we get the version from a version script, then we
1576 // are also the default version.
1577 is_default_version
= true;
1583 Sized_symbol
<size
>* sym
;
1585 bool add_to_table
= false;
1586 typename
Symbol_table_type::iterator add_loc
= this->table_
.end();
1587 bool add_def_to_table
= false;
1588 typename
Symbol_table_type::iterator add_def_loc
= this->table_
.end();
1592 oldsym
= this->lookup(*pname
, *pversion
);
1593 if (oldsym
== NULL
&& is_default_version
)
1594 oldsym
= this->lookup(*pname
, NULL
);
1595 if (oldsym
== NULL
|| !oldsym
->is_undefined())
1598 *pname
= oldsym
->name();
1599 if (!is_default_version
)
1600 *pversion
= oldsym
->version();
1604 // Canonicalize NAME and VERSION.
1605 Stringpool::Key name_key
;
1606 *pname
= this->namepool_
.add(*pname
, true, &name_key
);
1608 Stringpool::Key version_key
= 0;
1609 if (*pversion
!= NULL
)
1610 *pversion
= this->namepool_
.add(*pversion
, true, &version_key
);
1612 Symbol
* const snull
= NULL
;
1613 std::pair
<typename
Symbol_table_type::iterator
, bool> ins
=
1614 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1618 std::pair
<typename
Symbol_table_type::iterator
, bool> insdefault
=
1619 std::make_pair(this->table_
.end(), false);
1620 if (is_default_version
)
1622 const Stringpool::Key vnull
= 0;
1624 this->table_
.insert(std::make_pair(std::make_pair(name_key
,
1631 // We already have a symbol table entry for NAME/VERSION.
1632 oldsym
= ins
.first
->second
;
1633 gold_assert(oldsym
!= NULL
);
1635 if (is_default_version
)
1637 Sized_symbol
<size
>* soldsym
=
1638 this->get_sized_symbol
<size
>(oldsym
);
1639 this->define_default_version
<size
, big_endian
>(soldsym
,
1646 // We haven't seen this symbol before.
1647 gold_assert(ins
.first
->second
== NULL
);
1649 add_to_table
= true;
1650 add_loc
= ins
.first
;
1652 if (is_default_version
&& !insdefault
.second
)
1654 // We are adding NAME/VERSION, and it is the default
1655 // version. We already have an entry for NAME/NULL.
1656 oldsym
= insdefault
.first
->second
;
1657 *resolve_oldsym
= true;
1663 if (is_default_version
)
1665 add_def_to_table
= true;
1666 add_def_loc
= insdefault
.first
;
1672 const Target
& target
= parameters
->target();
1673 if (!target
.has_make_symbol())
1674 sym
= new Sized_symbol
<size
>();
1677 Sized_target
<size
, big_endian
>* sized_target
=
1678 parameters
->sized_target
<size
, big_endian
>();
1679 sym
= sized_target
->make_symbol();
1685 add_loc
->second
= sym
;
1687 gold_assert(oldsym
!= NULL
);
1689 if (add_def_to_table
)
1690 add_def_loc
->second
= sym
;
1692 *poldsym
= this->get_sized_symbol
<size
>(oldsym
);
1697 // Define a symbol based on an Output_data.
1700 Symbol_table::define_in_output_data(const char* name
,
1701 const char* version
,
1707 elfcpp::STB binding
,
1708 elfcpp::STV visibility
,
1709 unsigned char nonvis
,
1710 bool offset_is_from_end
,
1713 if (parameters
->target().get_size() == 32)
1715 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1716 return this->do_define_in_output_data
<32>(name
, version
, defined
, od
,
1717 value
, symsize
, type
, binding
,
1725 else if (parameters
->target().get_size() == 64)
1727 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1728 return this->do_define_in_output_data
<64>(name
, version
, defined
, od
,
1729 value
, symsize
, type
, binding
,
1741 // Define a symbol in an Output_data, sized version.
1745 Symbol_table::do_define_in_output_data(
1747 const char* version
,
1750 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1751 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1753 elfcpp::STB binding
,
1754 elfcpp::STV visibility
,
1755 unsigned char nonvis
,
1756 bool offset_is_from_end
,
1759 Sized_symbol
<size
>* sym
;
1760 Sized_symbol
<size
>* oldsym
;
1761 bool resolve_oldsym
;
1763 if (parameters
->target().is_big_endian())
1765 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1766 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1767 only_if_ref
, &oldsym
,
1775 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1776 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1777 only_if_ref
, &oldsym
,
1787 sym
->init_output_data(name
, version
, od
, value
, symsize
, type
, binding
,
1788 visibility
, nonvis
, offset_is_from_end
);
1792 if (binding
== elfcpp::STB_LOCAL
1793 || this->version_script_
.symbol_is_local(name
))
1794 this->force_local(sym
);
1795 else if (version
!= NULL
)
1796 sym
->set_is_default();
1800 if (Symbol_table::should_override_with_special(oldsym
, defined
))
1801 this->override_with_special(oldsym
, sym
);
1812 // Define a symbol based on an Output_segment.
1815 Symbol_table::define_in_output_segment(const char* name
,
1816 const char* version
,
1822 elfcpp::STB binding
,
1823 elfcpp::STV visibility
,
1824 unsigned char nonvis
,
1825 Symbol::Segment_offset_base offset_base
,
1828 if (parameters
->target().get_size() == 32)
1830 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1831 return this->do_define_in_output_segment
<32>(name
, version
, defined
, os
,
1832 value
, symsize
, type
,
1833 binding
, visibility
, nonvis
,
1834 offset_base
, only_if_ref
);
1839 else if (parameters
->target().get_size() == 64)
1841 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1842 return this->do_define_in_output_segment
<64>(name
, version
, defined
, os
,
1843 value
, symsize
, type
,
1844 binding
, visibility
, nonvis
,
1845 offset_base
, only_if_ref
);
1854 // Define a symbol in an Output_segment, sized version.
1858 Symbol_table::do_define_in_output_segment(
1860 const char* version
,
1863 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1864 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1866 elfcpp::STB binding
,
1867 elfcpp::STV visibility
,
1868 unsigned char nonvis
,
1869 Symbol::Segment_offset_base offset_base
,
1872 Sized_symbol
<size
>* sym
;
1873 Sized_symbol
<size
>* oldsym
;
1874 bool resolve_oldsym
;
1876 if (parameters
->target().is_big_endian())
1878 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1879 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1880 only_if_ref
, &oldsym
,
1888 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1889 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
1890 only_if_ref
, &oldsym
,
1900 sym
->init_output_segment(name
, version
, os
, value
, symsize
, type
, binding
,
1901 visibility
, nonvis
, offset_base
);
1905 if (binding
== elfcpp::STB_LOCAL
1906 || this->version_script_
.symbol_is_local(name
))
1907 this->force_local(sym
);
1908 else if (version
!= NULL
)
1909 sym
->set_is_default();
1913 if (Symbol_table::should_override_with_special(oldsym
, defined
))
1914 this->override_with_special(oldsym
, sym
);
1925 // Define a special symbol with a constant value. It is a multiple
1926 // definition error if this symbol is already defined.
1929 Symbol_table::define_as_constant(const char* name
,
1930 const char* version
,
1935 elfcpp::STB binding
,
1936 elfcpp::STV visibility
,
1937 unsigned char nonvis
,
1939 bool force_override
)
1941 if (parameters
->target().get_size() == 32)
1943 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1944 return this->do_define_as_constant
<32>(name
, version
, defined
, value
,
1945 symsize
, type
, binding
,
1946 visibility
, nonvis
, only_if_ref
,
1952 else if (parameters
->target().get_size() == 64)
1954 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1955 return this->do_define_as_constant
<64>(name
, version
, defined
, value
,
1956 symsize
, type
, binding
,
1957 visibility
, nonvis
, only_if_ref
,
1967 // Define a symbol as a constant, sized version.
1971 Symbol_table::do_define_as_constant(
1973 const char* version
,
1975 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
1976 typename
elfcpp::Elf_types
<size
>::Elf_WXword symsize
,
1978 elfcpp::STB binding
,
1979 elfcpp::STV visibility
,
1980 unsigned char nonvis
,
1982 bool force_override
)
1984 Sized_symbol
<size
>* sym
;
1985 Sized_symbol
<size
>* oldsym
;
1986 bool resolve_oldsym
;
1988 if (parameters
->target().is_big_endian())
1990 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1991 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
1992 only_if_ref
, &oldsym
,
2000 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2001 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2002 only_if_ref
, &oldsym
,
2012 sym
->init_constant(name
, version
, value
, symsize
, type
, binding
, visibility
,
2017 // Version symbols are absolute symbols with name == version.
2018 // We don't want to force them to be local.
2019 if ((version
== NULL
2022 && (binding
== elfcpp::STB_LOCAL
2023 || this->version_script_
.symbol_is_local(name
)))
2024 this->force_local(sym
);
2025 else if (version
!= NULL
2026 && (name
!= version
|| value
!= 0))
2027 sym
->set_is_default();
2032 || Symbol_table::should_override_with_special(oldsym
, defined
))
2033 this->override_with_special(oldsym
, sym
);
2044 // Define a set of symbols in output sections.
2047 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2048 const Define_symbol_in_section
* p
,
2051 for (int i
= 0; i
< count
; ++i
, ++p
)
2053 Output_section
* os
= layout
->find_output_section(p
->output_section
);
2055 this->define_in_output_data(p
->name
, NULL
, PREDEFINED
, os
, p
->value
,
2056 p
->size
, p
->type
, p
->binding
,
2057 p
->visibility
, p
->nonvis
,
2058 p
->offset_is_from_end
,
2059 only_if_ref
|| p
->only_if_ref
);
2061 this->define_as_constant(p
->name
, NULL
, PREDEFINED
, 0, p
->size
,
2062 p
->type
, p
->binding
, p
->visibility
, p
->nonvis
,
2063 only_if_ref
|| p
->only_if_ref
,
2068 // Define a set of symbols in output segments.
2071 Symbol_table::define_symbols(const Layout
* layout
, int count
,
2072 const Define_symbol_in_segment
* p
,
2075 for (int i
= 0; i
< count
; ++i
, ++p
)
2077 Output_segment
* os
= layout
->find_output_segment(p
->segment_type
,
2078 p
->segment_flags_set
,
2079 p
->segment_flags_clear
);
2081 this->define_in_output_segment(p
->name
, NULL
, PREDEFINED
, os
, p
->value
,
2082 p
->size
, p
->type
, p
->binding
,
2083 p
->visibility
, p
->nonvis
,
2085 only_if_ref
|| p
->only_if_ref
);
2087 this->define_as_constant(p
->name
, NULL
, PREDEFINED
, 0, p
->size
,
2088 p
->type
, p
->binding
, p
->visibility
, p
->nonvis
,
2089 only_if_ref
|| p
->only_if_ref
,
2094 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2095 // symbol should be defined--typically a .dyn.bss section. VALUE is
2096 // the offset within POSD.
2100 Symbol_table::define_with_copy_reloc(
2101 Sized_symbol
<size
>* csym
,
2103 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
)
2105 gold_assert(csym
->is_from_dynobj());
2106 gold_assert(!csym
->is_copied_from_dynobj());
2107 Object
* object
= csym
->object();
2108 gold_assert(object
->is_dynamic());
2109 Dynobj
* dynobj
= static_cast<Dynobj
*>(object
);
2111 // Our copied variable has to override any variable in a shared
2113 elfcpp::STB binding
= csym
->binding();
2114 if (binding
== elfcpp::STB_WEAK
)
2115 binding
= elfcpp::STB_GLOBAL
;
2117 this->define_in_output_data(csym
->name(), csym
->version(), COPY
,
2118 posd
, value
, csym
->symsize(),
2119 csym
->type(), binding
,
2120 csym
->visibility(), csym
->nonvis(),
2123 csym
->set_is_copied_from_dynobj();
2124 csym
->set_needs_dynsym_entry();
2126 this->copied_symbol_dynobjs_
[csym
] = dynobj
;
2128 // We have now defined all aliases, but we have not entered them all
2129 // in the copied_symbol_dynobjs_ map.
2130 if (csym
->has_alias())
2135 sym
= this->weak_aliases_
[sym
];
2138 gold_assert(sym
->output_data() == posd
);
2140 sym
->set_is_copied_from_dynobj();
2141 this->copied_symbol_dynobjs_
[sym
] = dynobj
;
2146 // SYM is defined using a COPY reloc. Return the dynamic object where
2147 // the original definition was found.
2150 Symbol_table::get_copy_source(const Symbol
* sym
) const
2152 gold_assert(sym
->is_copied_from_dynobj());
2153 Copied_symbol_dynobjs::const_iterator p
=
2154 this->copied_symbol_dynobjs_
.find(sym
);
2155 gold_assert(p
!= this->copied_symbol_dynobjs_
.end());
2159 // Add any undefined symbols named on the command line.
2162 Symbol_table::add_undefined_symbols_from_command_line()
2164 if (parameters
->options().any_undefined())
2166 if (parameters
->target().get_size() == 32)
2168 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2169 this->do_add_undefined_symbols_from_command_line
<32>();
2174 else if (parameters
->target().get_size() == 64)
2176 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2177 this->do_add_undefined_symbols_from_command_line
<64>();
2189 Symbol_table::do_add_undefined_symbols_from_command_line()
2191 for (options::String_set::const_iterator p
=
2192 parameters
->options().undefined_begin();
2193 p
!= parameters
->options().undefined_end();
2196 const char* name
= p
->c_str();
2198 if (this->lookup(name
) != NULL
)
2201 const char* version
= NULL
;
2203 Sized_symbol
<size
>* sym
;
2204 Sized_symbol
<size
>* oldsym
;
2205 bool resolve_oldsym
;
2206 if (parameters
->target().is_big_endian())
2208 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2209 sym
= this->define_special_symbol
<size
, true>(&name
, &version
,
2218 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2219 sym
= this->define_special_symbol
<size
, false>(&name
, &version
,
2227 gold_assert(oldsym
== NULL
);
2229 sym
->init_undefined(name
, version
, elfcpp::STT_NOTYPE
, elfcpp::STB_GLOBAL
,
2230 elfcpp::STV_DEFAULT
, 0);
2231 ++this->saw_undefined_
;
2235 // Set the dynamic symbol indexes. INDEX is the index of the first
2236 // global dynamic symbol. Pointers to the symbols are stored into the
2237 // vector SYMS. The names are added to DYNPOOL. This returns an
2238 // updated dynamic symbol index.
2241 Symbol_table::set_dynsym_indexes(unsigned int index
,
2242 std::vector
<Symbol
*>* syms
,
2243 Stringpool
* dynpool
,
2246 for (Symbol_table_type::iterator p
= this->table_
.begin();
2247 p
!= this->table_
.end();
2250 Symbol
* sym
= p
->second
;
2252 // Note that SYM may already have a dynamic symbol index, since
2253 // some symbols appear more than once in the symbol table, with
2254 // and without a version.
2256 if (!sym
->should_add_dynsym_entry())
2257 sym
->set_dynsym_index(-1U);
2258 else if (!sym
->has_dynsym_index())
2260 sym
->set_dynsym_index(index
);
2262 syms
->push_back(sym
);
2263 dynpool
->add(sym
->name(), false, NULL
);
2265 // Record any version information.
2266 if (sym
->version() != NULL
)
2267 versions
->record_version(this, dynpool
, sym
);
2269 // If the symbol is defined in a dynamic object and is
2270 // referenced in a regular object, then mark the dynamic
2271 // object as needed. This is used to implement --as-needed.
2272 if (sym
->is_from_dynobj() && sym
->in_reg())
2273 sym
->object()->set_is_needed();
2277 // Finish up the versions. In some cases this may add new dynamic
2279 index
= versions
->finalize(this, index
, syms
);
2284 // Set the final values for all the symbols. The index of the first
2285 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2286 // file offset OFF. Add their names to POOL. Return the new file
2287 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2290 Symbol_table::finalize(off_t off
, off_t dynoff
, size_t dyn_global_index
,
2291 size_t dyncount
, Stringpool
* pool
,
2292 unsigned int *plocal_symcount
)
2296 gold_assert(*plocal_symcount
!= 0);
2297 this->first_global_index_
= *plocal_symcount
;
2299 this->dynamic_offset_
= dynoff
;
2300 this->first_dynamic_global_index_
= dyn_global_index
;
2301 this->dynamic_count_
= dyncount
;
2303 if (parameters
->target().get_size() == 32)
2305 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2306 ret
= this->sized_finalize
<32>(off
, pool
, plocal_symcount
);
2311 else if (parameters
->target().get_size() == 64)
2313 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2314 ret
= this->sized_finalize
<64>(off
, pool
, plocal_symcount
);
2322 // Now that we have the final symbol table, we can reliably note
2323 // which symbols should get warnings.
2324 this->warnings_
.note_warnings(this);
2329 // SYM is going into the symbol table at *PINDEX. Add the name to
2330 // POOL, update *PINDEX and *POFF.
2334 Symbol_table::add_to_final_symtab(Symbol
* sym
, Stringpool
* pool
,
2335 unsigned int* pindex
, off_t
* poff
)
2337 sym
->set_symtab_index(*pindex
);
2338 pool
->add(sym
->name(), false, NULL
);
2340 *poff
+= elfcpp::Elf_sizes
<size
>::sym_size
;
2343 // Set the final value for all the symbols. This is called after
2344 // Layout::finalize, so all the output sections have their final
2349 Symbol_table::sized_finalize(off_t off
, Stringpool
* pool
,
2350 unsigned int* plocal_symcount
)
2352 off
= align_address(off
, size
>> 3);
2353 this->offset_
= off
;
2355 unsigned int index
= *plocal_symcount
;
2356 const unsigned int orig_index
= index
;
2358 // First do all the symbols which have been forced to be local, as
2359 // they must appear before all global symbols.
2360 for (Forced_locals::iterator p
= this->forced_locals_
.begin();
2361 p
!= this->forced_locals_
.end();
2365 gold_assert(sym
->is_forced_local());
2366 if (this->sized_finalize_symbol
<size
>(sym
))
2368 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2373 // Now do all the remaining symbols.
2374 for (Symbol_table_type::iterator p
= this->table_
.begin();
2375 p
!= this->table_
.end();
2378 Symbol
* sym
= p
->second
;
2379 if (this->sized_finalize_symbol
<size
>(sym
))
2380 this->add_to_final_symtab
<size
>(sym
, pool
, &index
, &off
);
2383 this->output_count_
= index
- orig_index
;
2388 // Compute the final value of SYM and store status in location PSTATUS.
2389 // During relaxation, this may be called multiple times for a symbol to
2390 // compute its would-be final value in each relaxation pass.
2393 typename Sized_symbol
<size
>::Value_type
2394 Symbol_table::compute_final_value(
2395 const Sized_symbol
<size
>* sym
,
2396 Compute_final_value_status
* pstatus
) const
2398 typedef typename Sized_symbol
<size
>::Value_type Value_type
;
2401 switch (sym
->source())
2403 case Symbol::FROM_OBJECT
:
2406 unsigned int shndx
= sym
->shndx(&is_ordinary
);
2409 && shndx
!= elfcpp::SHN_ABS
2410 && !Symbol::is_common_shndx(shndx
))
2412 *pstatus
= CFVS_UNSUPPORTED_SYMBOL_SECTION
;
2416 Object
* symobj
= sym
->object();
2417 if (symobj
->is_dynamic())
2420 shndx
= elfcpp::SHN_UNDEF
;
2422 else if (symobj
->pluginobj() != NULL
)
2425 shndx
= elfcpp::SHN_UNDEF
;
2427 else if (shndx
== elfcpp::SHN_UNDEF
)
2429 else if (!is_ordinary
2430 && (shndx
== elfcpp::SHN_ABS
2431 || Symbol::is_common_shndx(shndx
)))
2432 value
= sym
->value();
2435 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2436 Output_section
* os
= relobj
->output_section(shndx
);
2438 if (this->is_section_folded(relobj
, shndx
))
2440 gold_assert(os
== NULL
);
2441 // Get the os of the section it is folded onto.
2442 Section_id folded
= this->icf_
->get_folded_section(relobj
,
2444 gold_assert(folded
.first
!= NULL
);
2445 Relobj
* folded_obj
= reinterpret_cast<Relobj
*>(folded
.first
);
2446 unsigned folded_shndx
= folded
.second
;
2448 os
= folded_obj
->output_section(folded_shndx
);
2449 gold_assert(os
!= NULL
);
2451 // Replace (relobj, shndx) with canonical ICF input section.
2452 shndx
= folded_shndx
;
2453 relobj
= folded_obj
;
2456 uint64_t secoff64
= relobj
->output_section_offset(shndx
);
2459 bool static_or_reloc
= (parameters
->doing_static_link() ||
2460 parameters
->options().relocatable());
2461 gold_assert(static_or_reloc
|| sym
->dynsym_index() == -1U);
2463 *pstatus
= CFVS_NO_OUTPUT_SECTION
;
2467 if (secoff64
== -1ULL)
2469 // The section needs special handling (e.g., a merge section).
2471 value
= os
->output_address(relobj
, shndx
, sym
->value());
2476 convert_types
<Value_type
, uint64_t>(secoff64
);
2477 if (sym
->type() == elfcpp::STT_TLS
)
2478 value
= sym
->value() + os
->tls_offset() + secoff
;
2480 value
= sym
->value() + os
->address() + secoff
;
2486 case Symbol::IN_OUTPUT_DATA
:
2488 Output_data
* od
= sym
->output_data();
2489 value
= sym
->value();
2490 if (sym
->type() != elfcpp::STT_TLS
)
2491 value
+= od
->address();
2494 Output_section
* os
= od
->output_section();
2495 gold_assert(os
!= NULL
);
2496 value
+= os
->tls_offset() + (od
->address() - os
->address());
2498 if (sym
->offset_is_from_end())
2499 value
+= od
->data_size();
2503 case Symbol::IN_OUTPUT_SEGMENT
:
2505 Output_segment
* os
= sym
->output_segment();
2506 value
= sym
->value();
2507 if (sym
->type() != elfcpp::STT_TLS
)
2508 value
+= os
->vaddr();
2509 switch (sym
->offset_base())
2511 case Symbol::SEGMENT_START
:
2513 case Symbol::SEGMENT_END
:
2514 value
+= os
->memsz();
2516 case Symbol::SEGMENT_BSS
:
2517 value
+= os
->filesz();
2525 case Symbol::IS_CONSTANT
:
2526 value
= sym
->value();
2529 case Symbol::IS_UNDEFINED
:
2541 // Finalize the symbol SYM. This returns true if the symbol should be
2542 // added to the symbol table, false otherwise.
2546 Symbol_table::sized_finalize_symbol(Symbol
* unsized_sym
)
2548 typedef typename Sized_symbol
<size
>::Value_type Value_type
;
2550 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(unsized_sym
);
2552 // The default version of a symbol may appear twice in the symbol
2553 // table. We only need to finalize it once.
2554 if (sym
->has_symtab_index())
2559 gold_assert(!sym
->has_symtab_index());
2560 sym
->set_symtab_index(-1U);
2561 gold_assert(sym
->dynsym_index() == -1U);
2565 // Compute final symbol value.
2566 Compute_final_value_status status
;
2567 Value_type value
= this->compute_final_value(sym
, &status
);
2573 case CFVS_UNSUPPORTED_SYMBOL_SECTION
:
2576 unsigned int shndx
= sym
->shndx(&is_ordinary
);
2577 gold_error(_("%s: unsupported symbol section 0x%x"),
2578 sym
->demangled_name().c_str(), shndx
);
2581 case CFVS_NO_OUTPUT_SECTION
:
2582 sym
->set_symtab_index(-1U);
2588 sym
->set_value(value
);
2590 if (parameters
->options().strip_all()
2591 || !parameters
->options().should_retain_symbol(sym
->name()))
2593 sym
->set_symtab_index(-1U);
2600 // Write out the global symbols.
2603 Symbol_table::write_globals(const Stringpool
* sympool
,
2604 const Stringpool
* dynpool
,
2605 Output_symtab_xindex
* symtab_xindex
,
2606 Output_symtab_xindex
* dynsym_xindex
,
2607 Output_file
* of
) const
2609 switch (parameters
->size_and_endianness())
2611 #ifdef HAVE_TARGET_32_LITTLE
2612 case Parameters::TARGET_32_LITTLE
:
2613 this->sized_write_globals
<32, false>(sympool
, dynpool
, symtab_xindex
,
2617 #ifdef HAVE_TARGET_32_BIG
2618 case Parameters::TARGET_32_BIG
:
2619 this->sized_write_globals
<32, true>(sympool
, dynpool
, symtab_xindex
,
2623 #ifdef HAVE_TARGET_64_LITTLE
2624 case Parameters::TARGET_64_LITTLE
:
2625 this->sized_write_globals
<64, false>(sympool
, dynpool
, symtab_xindex
,
2629 #ifdef HAVE_TARGET_64_BIG
2630 case Parameters::TARGET_64_BIG
:
2631 this->sized_write_globals
<64, true>(sympool
, dynpool
, symtab_xindex
,
2640 // Write out the global symbols.
2642 template<int size
, bool big_endian
>
2644 Symbol_table::sized_write_globals(const Stringpool
* sympool
,
2645 const Stringpool
* dynpool
,
2646 Output_symtab_xindex
* symtab_xindex
,
2647 Output_symtab_xindex
* dynsym_xindex
,
2648 Output_file
* of
) const
2650 const Target
& target
= parameters
->target();
2652 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2654 const unsigned int output_count
= this->output_count_
;
2655 const section_size_type oview_size
= output_count
* sym_size
;
2656 const unsigned int first_global_index
= this->first_global_index_
;
2657 unsigned char* psyms
;
2658 if (this->offset_
== 0 || output_count
== 0)
2661 psyms
= of
->get_output_view(this->offset_
, oview_size
);
2663 const unsigned int dynamic_count
= this->dynamic_count_
;
2664 const section_size_type dynamic_size
= dynamic_count
* sym_size
;
2665 const unsigned int first_dynamic_global_index
=
2666 this->first_dynamic_global_index_
;
2667 unsigned char* dynamic_view
;
2668 if (this->dynamic_offset_
== 0 || dynamic_count
== 0)
2669 dynamic_view
= NULL
;
2671 dynamic_view
= of
->get_output_view(this->dynamic_offset_
, dynamic_size
);
2673 for (Symbol_table_type::const_iterator p
= this->table_
.begin();
2674 p
!= this->table_
.end();
2677 Sized_symbol
<size
>* sym
= static_cast<Sized_symbol
<size
>*>(p
->second
);
2679 // Possibly warn about unresolved symbols in shared libraries.
2680 this->warn_about_undefined_dynobj_symbol(sym
);
2682 unsigned int sym_index
= sym
->symtab_index();
2683 unsigned int dynsym_index
;
2684 if (dynamic_view
== NULL
)
2687 dynsym_index
= sym
->dynsym_index();
2689 if (sym_index
== -1U && dynsym_index
== -1U)
2691 // This symbol is not included in the output file.
2696 typename
elfcpp::Elf_types
<size
>::Elf_Addr sym_value
= sym
->value();
2697 typename
elfcpp::Elf_types
<size
>::Elf_Addr dynsym_value
= sym_value
;
2698 switch (sym
->source())
2700 case Symbol::FROM_OBJECT
:
2703 unsigned int in_shndx
= sym
->shndx(&is_ordinary
);
2706 && in_shndx
!= elfcpp::SHN_ABS
2707 && !Symbol::is_common_shndx(in_shndx
))
2709 gold_error(_("%s: unsupported symbol section 0x%x"),
2710 sym
->demangled_name().c_str(), in_shndx
);
2715 Object
* symobj
= sym
->object();
2716 if (symobj
->is_dynamic())
2718 if (sym
->needs_dynsym_value())
2719 dynsym_value
= target
.dynsym_value(sym
);
2720 shndx
= elfcpp::SHN_UNDEF
;
2722 else if (symobj
->pluginobj() != NULL
)
2723 shndx
= elfcpp::SHN_UNDEF
;
2724 else if (in_shndx
== elfcpp::SHN_UNDEF
2726 && (in_shndx
== elfcpp::SHN_ABS
2727 || Symbol::is_common_shndx(in_shndx
))))
2731 Relobj
* relobj
= static_cast<Relobj
*>(symobj
);
2732 Output_section
* os
= relobj
->output_section(in_shndx
);
2733 if (this->is_section_folded(relobj
, in_shndx
))
2735 // This global symbol must be written out even though
2737 // Get the os of the section it is folded onto.
2739 this->icf_
->get_folded_section(relobj
, in_shndx
);
2740 gold_assert(folded
.first
!=NULL
);
2741 Relobj
* folded_obj
=
2742 reinterpret_cast<Relobj
*>(folded
.first
);
2743 os
= folded_obj
->output_section(folded
.second
);
2744 gold_assert(os
!= NULL
);
2746 gold_assert(os
!= NULL
);
2747 shndx
= os
->out_shndx();
2749 if (shndx
>= elfcpp::SHN_LORESERVE
)
2751 if (sym_index
!= -1U)
2752 symtab_xindex
->add(sym_index
, shndx
);
2753 if (dynsym_index
!= -1U)
2754 dynsym_xindex
->add(dynsym_index
, shndx
);
2755 shndx
= elfcpp::SHN_XINDEX
;
2758 // In object files symbol values are section
2760 if (parameters
->options().relocatable())
2761 sym_value
-= os
->address();
2767 case Symbol::IN_OUTPUT_DATA
:
2768 shndx
= sym
->output_data()->out_shndx();
2769 if (shndx
>= elfcpp::SHN_LORESERVE
)
2771 if (sym_index
!= -1U)
2772 symtab_xindex
->add(sym_index
, shndx
);
2773 if (dynsym_index
!= -1U)
2774 dynsym_xindex
->add(dynsym_index
, shndx
);
2775 shndx
= elfcpp::SHN_XINDEX
;
2779 case Symbol::IN_OUTPUT_SEGMENT
:
2780 shndx
= elfcpp::SHN_ABS
;
2783 case Symbol::IS_CONSTANT
:
2784 shndx
= elfcpp::SHN_ABS
;
2787 case Symbol::IS_UNDEFINED
:
2788 shndx
= elfcpp::SHN_UNDEF
;
2795 if (sym_index
!= -1U)
2797 sym_index
-= first_global_index
;
2798 gold_assert(sym_index
< output_count
);
2799 unsigned char* ps
= psyms
+ (sym_index
* sym_size
);
2800 this->sized_write_symbol
<size
, big_endian
>(sym
, sym_value
, shndx
,
2804 if (dynsym_index
!= -1U)
2806 dynsym_index
-= first_dynamic_global_index
;
2807 gold_assert(dynsym_index
< dynamic_count
);
2808 unsigned char* pd
= dynamic_view
+ (dynsym_index
* sym_size
);
2809 this->sized_write_symbol
<size
, big_endian
>(sym
, dynsym_value
, shndx
,
2814 of
->write_output_view(this->offset_
, oview_size
, psyms
);
2815 if (dynamic_view
!= NULL
)
2816 of
->write_output_view(this->dynamic_offset_
, dynamic_size
, dynamic_view
);
2819 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2820 // strtab holding the name.
2822 template<int size
, bool big_endian
>
2824 Symbol_table::sized_write_symbol(
2825 Sized_symbol
<size
>* sym
,
2826 typename
elfcpp::Elf_types
<size
>::Elf_Addr value
,
2828 const Stringpool
* pool
,
2829 unsigned char* p
) const
2831 elfcpp::Sym_write
<size
, big_endian
> osym(p
);
2832 osym
.put_st_name(pool
->get_offset(sym
->name()));
2833 osym
.put_st_value(value
);
2834 // Use a symbol size of zero for undefined symbols from shared libraries.
2835 if (shndx
== elfcpp::SHN_UNDEF
&& sym
->is_from_dynobj())
2836 osym
.put_st_size(0);
2838 osym
.put_st_size(sym
->symsize());
2839 elfcpp::STT type
= sym
->type();
2840 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
2841 if (type
== elfcpp::STT_GNU_IFUNC
2842 && sym
->is_from_dynobj())
2843 type
= elfcpp::STT_FUNC
;
2844 // A version script may have overridden the default binding.
2845 if (sym
->is_forced_local())
2846 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
, type
));
2848 osym
.put_st_info(elfcpp::elf_st_info(sym
->binding(), type
));
2849 osym
.put_st_other(elfcpp::elf_st_other(sym
->visibility(), sym
->nonvis()));
2850 osym
.put_st_shndx(shndx
);
2853 // Check for unresolved symbols in shared libraries. This is
2854 // controlled by the --allow-shlib-undefined option.
2856 // We only warn about libraries for which we have seen all the
2857 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2858 // which were not seen in this link. If we didn't see a DT_NEEDED
2859 // entry, we aren't going to be able to reliably report whether the
2860 // symbol is undefined.
2862 // We also don't warn about libraries found in a system library
2863 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2864 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
2865 // can have undefined references satisfied by ld-linux.so.
2868 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol
* sym
) const
2871 if (sym
->source() == Symbol::FROM_OBJECT
2872 && sym
->object()->is_dynamic()
2873 && sym
->shndx(&dummy
) == elfcpp::SHN_UNDEF
2874 && sym
->binding() != elfcpp::STB_WEAK
2875 && !parameters
->options().allow_shlib_undefined()
2876 && !parameters
->target().is_defined_by_abi(sym
)
2877 && !sym
->object()->is_in_system_directory())
2879 // A very ugly cast.
2880 Dynobj
* dynobj
= static_cast<Dynobj
*>(sym
->object());
2881 if (!dynobj
->has_unknown_needed_entries())
2882 gold_undefined_symbol(sym
);
2886 // Write out a section symbol. Return the update offset.
2889 Symbol_table::write_section_symbol(const Output_section
*os
,
2890 Output_symtab_xindex
* symtab_xindex
,
2894 switch (parameters
->size_and_endianness())
2896 #ifdef HAVE_TARGET_32_LITTLE
2897 case Parameters::TARGET_32_LITTLE
:
2898 this->sized_write_section_symbol
<32, false>(os
, symtab_xindex
, of
,
2902 #ifdef HAVE_TARGET_32_BIG
2903 case Parameters::TARGET_32_BIG
:
2904 this->sized_write_section_symbol
<32, true>(os
, symtab_xindex
, of
,
2908 #ifdef HAVE_TARGET_64_LITTLE
2909 case Parameters::TARGET_64_LITTLE
:
2910 this->sized_write_section_symbol
<64, false>(os
, symtab_xindex
, of
,
2914 #ifdef HAVE_TARGET_64_BIG
2915 case Parameters::TARGET_64_BIG
:
2916 this->sized_write_section_symbol
<64, true>(os
, symtab_xindex
, of
,
2925 // Write out a section symbol, specialized for size and endianness.
2927 template<int size
, bool big_endian
>
2929 Symbol_table::sized_write_section_symbol(const Output_section
* os
,
2930 Output_symtab_xindex
* symtab_xindex
,
2934 const int sym_size
= elfcpp::Elf_sizes
<size
>::sym_size
;
2936 unsigned char* pov
= of
->get_output_view(offset
, sym_size
);
2938 elfcpp::Sym_write
<size
, big_endian
> osym(pov
);
2939 osym
.put_st_name(0);
2940 if (parameters
->options().relocatable())
2941 osym
.put_st_value(0);
2943 osym
.put_st_value(os
->address());
2944 osym
.put_st_size(0);
2945 osym
.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL
,
2946 elfcpp::STT_SECTION
));
2947 osym
.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT
, 0));
2949 unsigned int shndx
= os
->out_shndx();
2950 if (shndx
>= elfcpp::SHN_LORESERVE
)
2952 symtab_xindex
->add(os
->symtab_index(), shndx
);
2953 shndx
= elfcpp::SHN_XINDEX
;
2955 osym
.put_st_shndx(shndx
);
2957 of
->write_output_view(offset
, sym_size
, pov
);
2960 // Print statistical information to stderr. This is used for --stats.
2963 Symbol_table::print_stats() const
2965 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2966 fprintf(stderr
, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2967 program_name
, this->table_
.size(), this->table_
.bucket_count());
2969 fprintf(stderr
, _("%s: symbol table entries: %zu\n"),
2970 program_name
, this->table_
.size());
2972 this->namepool_
.print_stats("symbol table stringpool");
2975 // We check for ODR violations by looking for symbols with the same
2976 // name for which the debugging information reports that they were
2977 // defined in different source locations. When comparing the source
2978 // location, we consider instances with the same base filename and
2979 // line number to be the same. This is because different object
2980 // files/shared libraries can include the same header file using
2981 // different paths, and we don't want to report an ODR violation in
2984 // This struct is used to compare line information, as returned by
2985 // Dwarf_line_info::one_addr2line. It implements a < comparison
2986 // operator used with std::set.
2988 struct Odr_violation_compare
2991 operator()(const std::string
& s1
, const std::string
& s2
) const
2993 std::string::size_type pos1
= s1
.rfind('/');
2994 std::string::size_type pos2
= s2
.rfind('/');
2995 if (pos1
== std::string::npos
2996 || pos2
== std::string::npos
)
2998 return s1
.compare(pos1
, std::string::npos
,
2999 s2
, pos2
, std::string::npos
) < 0;
3003 // Check candidate_odr_violations_ to find symbols with the same name
3004 // but apparently different definitions (different source-file/line-no).
3007 Symbol_table::detect_odr_violations(const Task
* task
,
3008 const char* output_file_name
) const
3010 for (Odr_map::const_iterator it
= candidate_odr_violations_
.begin();
3011 it
!= candidate_odr_violations_
.end();
3014 const char* symbol_name
= it
->first
;
3015 // We use a sorted set so the output is deterministic.
3016 std::set
<std::string
, Odr_violation_compare
> line_nums
;
3018 for (Unordered_set
<Symbol_location
, Symbol_location_hash
>::const_iterator
3019 locs
= it
->second
.begin();
3020 locs
!= it
->second
.end();
3023 // We need to lock the object in order to read it. This
3024 // means that we have to run in a singleton Task. If we
3025 // want to run this in a general Task for better
3026 // performance, we will need one Task for object, plus
3027 // appropriate locking to ensure that we don't conflict with
3028 // other uses of the object. Also note, one_addr2line is not
3029 // currently thread-safe.
3030 Task_lock_obj
<Object
> tl(task
, locs
->object
);
3031 // 16 is the size of the object-cache that one_addr2line should use.
3032 std::string lineno
= Dwarf_line_info::one_addr2line(
3033 locs
->object
, locs
->shndx
, locs
->offset
, 16);
3034 if (!lineno
.empty())
3035 line_nums
.insert(lineno
);
3038 if (line_nums
.size() > 1)
3040 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
3041 "places (possible ODR violation):"),
3042 output_file_name
, demangle(symbol_name
).c_str());
3043 for (std::set
<std::string
>::const_iterator it2
= line_nums
.begin();
3044 it2
!= line_nums
.end();
3046 fprintf(stderr
, " %s\n", it2
->c_str());
3049 // We only call one_addr2line() in this function, so we can clear its cache.
3050 Dwarf_line_info::clear_addr2line_cache();
3053 // Warnings functions.
3055 // Add a new warning.
3058 Warnings::add_warning(Symbol_table
* symtab
, const char* name
, Object
* obj
,
3059 const std::string
& warning
)
3061 name
= symtab
->canonicalize_name(name
);
3062 this->warnings_
[name
].set(obj
, warning
);
3065 // Look through the warnings and mark the symbols for which we should
3066 // warn. This is called during Layout::finalize when we know the
3067 // sources for all the symbols.
3070 Warnings::note_warnings(Symbol_table
* symtab
)
3072 for (Warning_table::iterator p
= this->warnings_
.begin();
3073 p
!= this->warnings_
.end();
3076 Symbol
* sym
= symtab
->lookup(p
->first
, NULL
);
3078 && sym
->source() == Symbol::FROM_OBJECT
3079 && sym
->object() == p
->second
.object
)
3080 sym
->set_has_warning();
3084 // Issue a warning. This is called when we see a relocation against a
3085 // symbol for which has a warning.
3087 template<int size
, bool big_endian
>
3089 Warnings::issue_warning(const Symbol
* sym
,
3090 const Relocate_info
<size
, big_endian
>* relinfo
,
3091 size_t relnum
, off_t reloffset
) const
3093 gold_assert(sym
->has_warning());
3094 Warning_table::const_iterator p
= this->warnings_
.find(sym
->name());
3095 gold_assert(p
!= this->warnings_
.end());
3096 gold_warning_at_location(relinfo
, relnum
, reloffset
,
3097 "%s", p
->second
.text
.c_str());
3100 // Instantiate the templates we need. We could use the configure
3101 // script to restrict this to only the ones needed for implemented
3104 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3107 Sized_symbol
<32>::allocate_common(Output_data
*, Value_type
);
3110 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3113 Sized_symbol
<64>::allocate_common(Output_data
*, Value_type
);
3116 #ifdef HAVE_TARGET_32_LITTLE
3119 Symbol_table::add_from_relobj
<32, false>(
3120 Sized_relobj
<32, false>* relobj
,
3121 const unsigned char* syms
,
3123 size_t symndx_offset
,
3124 const char* sym_names
,
3125 size_t sym_name_size
,
3126 Sized_relobj
<32, false>::Symbols
* sympointers
,
3130 #ifdef HAVE_TARGET_32_BIG
3133 Symbol_table::add_from_relobj
<32, true>(
3134 Sized_relobj
<32, true>* relobj
,
3135 const unsigned char* syms
,
3137 size_t symndx_offset
,
3138 const char* sym_names
,
3139 size_t sym_name_size
,
3140 Sized_relobj
<32, true>::Symbols
* sympointers
,
3144 #ifdef HAVE_TARGET_64_LITTLE
3147 Symbol_table::add_from_relobj
<64, false>(
3148 Sized_relobj
<64, false>* relobj
,
3149 const unsigned char* syms
,
3151 size_t symndx_offset
,
3152 const char* sym_names
,
3153 size_t sym_name_size
,
3154 Sized_relobj
<64, false>::Symbols
* sympointers
,
3158 #ifdef HAVE_TARGET_64_BIG
3161 Symbol_table::add_from_relobj
<64, true>(
3162 Sized_relobj
<64, true>* relobj
,
3163 const unsigned char* syms
,
3165 size_t symndx_offset
,
3166 const char* sym_names
,
3167 size_t sym_name_size
,
3168 Sized_relobj
<64, true>::Symbols
* sympointers
,
3172 #ifdef HAVE_TARGET_32_LITTLE
3175 Symbol_table::add_from_pluginobj
<32, false>(
3176 Sized_pluginobj
<32, false>* obj
,
3179 elfcpp::Sym
<32, false>* sym
);
3182 #ifdef HAVE_TARGET_32_BIG
3185 Symbol_table::add_from_pluginobj
<32, true>(
3186 Sized_pluginobj
<32, true>* obj
,
3189 elfcpp::Sym
<32, true>* sym
);
3192 #ifdef HAVE_TARGET_64_LITTLE
3195 Symbol_table::add_from_pluginobj
<64, false>(
3196 Sized_pluginobj
<64, false>* obj
,
3199 elfcpp::Sym
<64, false>* sym
);
3202 #ifdef HAVE_TARGET_64_BIG
3205 Symbol_table::add_from_pluginobj
<64, true>(
3206 Sized_pluginobj
<64, true>* obj
,
3209 elfcpp::Sym
<64, true>* sym
);
3212 #ifdef HAVE_TARGET_32_LITTLE
3215 Symbol_table::add_from_dynobj
<32, false>(
3216 Sized_dynobj
<32, false>* dynobj
,
3217 const unsigned char* syms
,
3219 const char* sym_names
,
3220 size_t sym_name_size
,
3221 const unsigned char* versym
,
3223 const std::vector
<const char*>* version_map
,
3224 Sized_relobj
<32, false>::Symbols
* sympointers
,
3228 #ifdef HAVE_TARGET_32_BIG
3231 Symbol_table::add_from_dynobj
<32, true>(
3232 Sized_dynobj
<32, true>* dynobj
,
3233 const unsigned char* syms
,
3235 const char* sym_names
,
3236 size_t sym_name_size
,
3237 const unsigned char* versym
,
3239 const std::vector
<const char*>* version_map
,
3240 Sized_relobj
<32, true>::Symbols
* sympointers
,
3244 #ifdef HAVE_TARGET_64_LITTLE
3247 Symbol_table::add_from_dynobj
<64, false>(
3248 Sized_dynobj
<64, false>* dynobj
,
3249 const unsigned char* syms
,
3251 const char* sym_names
,
3252 size_t sym_name_size
,
3253 const unsigned char* versym
,
3255 const std::vector
<const char*>* version_map
,
3256 Sized_relobj
<64, false>::Symbols
* sympointers
,
3260 #ifdef HAVE_TARGET_64_BIG
3263 Symbol_table::add_from_dynobj
<64, true>(
3264 Sized_dynobj
<64, true>* dynobj
,
3265 const unsigned char* syms
,
3267 const char* sym_names
,
3268 size_t sym_name_size
,
3269 const unsigned char* versym
,
3271 const std::vector
<const char*>* version_map
,
3272 Sized_relobj
<64, true>::Symbols
* sympointers
,
3276 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3279 Symbol_table::define_with_copy_reloc
<32>(
3280 Sized_symbol
<32>* sym
,
3282 elfcpp::Elf_types
<32>::Elf_Addr value
);
3285 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3288 Symbol_table::define_with_copy_reloc
<64>(
3289 Sized_symbol
<64>* sym
,
3291 elfcpp::Elf_types
<64>::Elf_Addr value
);
3294 #ifdef HAVE_TARGET_32_LITTLE
3297 Warnings::issue_warning
<32, false>(const Symbol
* sym
,
3298 const Relocate_info
<32, false>* relinfo
,
3299 size_t relnum
, off_t reloffset
) const;
3302 #ifdef HAVE_TARGET_32_BIG
3305 Warnings::issue_warning
<32, true>(const Symbol
* sym
,
3306 const Relocate_info
<32, true>* relinfo
,
3307 size_t relnum
, off_t reloffset
) const;
3310 #ifdef HAVE_TARGET_64_LITTLE
3313 Warnings::issue_warning
<64, false>(const Symbol
* sym
,
3314 const Relocate_info
<64, false>* relinfo
,
3315 size_t relnum
, off_t reloffset
) const;
3318 #ifdef HAVE_TARGET_64_BIG
3321 Warnings::issue_warning
<64, true>(const Symbol
* sym
,
3322 const Relocate_info
<64, true>* relinfo
,
3323 size_t relnum
, off_t reloffset
) const;
3326 } // End namespace gold.