1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
29 #include "safe-ctype.h"
30 #include "libiberty.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info
*info
;
39 struct bfd_elf_version_tree
*verdefs
;
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
46 struct elf_find_verdep_info
48 /* General link information. */
49 struct bfd_link_info
*info
;
50 /* The number of dependencies. */
52 /* Whether we had a failure. */
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry
*, struct elf_info_failed
*);
59 /* Define a symbol in a dynamic linkage section. */
61 struct elf_link_hash_entry
*
62 _bfd_elf_define_linkage_sym (bfd
*abfd
,
63 struct bfd_link_info
*info
,
67 struct elf_link_hash_entry
*h
;
68 struct bfd_link_hash_entry
*bh
;
69 const struct elf_backend_data
*bed
;
71 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h
->root
.type
= bfd_link_hash_new
;
82 if (!_bfd_generic_link_add_one_symbol (info
, abfd
, name
, BSF_GLOBAL
,
84 get_elf_backend_data (abfd
)->collect
,
87 h
= (struct elf_link_hash_entry
*) bh
;
90 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
92 bed
= get_elf_backend_data (abfd
);
93 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
98 _bfd_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
102 struct elf_link_hash_entry
*h
;
103 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
104 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
106 /* This function may be called more than once. */
107 s
= bfd_get_section_by_name (abfd
, ".got");
108 if (s
!= NULL
&& (s
->flags
& SEC_LINKER_CREATED
) != 0)
111 flags
= bed
->dynamic_sec_flags
;
113 s
= bfd_make_section_with_flags (abfd
,
114 (bed
->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed
->dynamic_sec_flags
119 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
123 s
= bfd_make_section_with_flags (abfd
, ".got", flags
);
125 || !bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
129 if (bed
->want_got_plt
)
131 s
= bfd_make_section_with_flags (abfd
, ".got.plt", flags
);
133 || !bfd_set_section_alignment (abfd
, s
,
134 bed
->s
->log_file_align
))
139 /* The first bit of the global offset table is the header. */
140 s
->size
+= bed
->got_header_size
;
142 if (bed
->want_got_sym
)
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info
)->hgot
= h
;
158 /* Create a strtab to hold the dynamic symbol names. */
160 _bfd_elf_link_create_dynstrtab (bfd
*abfd
, struct bfd_link_info
*info
)
162 struct elf_link_hash_table
*hash_table
;
164 hash_table
= elf_hash_table (info
);
165 if (hash_table
->dynobj
== NULL
)
166 hash_table
->dynobj
= abfd
;
168 if (hash_table
->dynstr
== NULL
)
170 hash_table
->dynstr
= _bfd_elf_strtab_init ();
171 if (hash_table
->dynstr
== NULL
)
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
185 _bfd_elf_link_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
188 register asection
*s
;
189 const struct elf_backend_data
*bed
;
191 if (! is_elf_hash_table (info
->hash
))
194 if (elf_hash_table (info
)->dynamic_sections_created
)
197 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
200 abfd
= elf_hash_table (info
)->dynobj
;
201 bed
= get_elf_backend_data (abfd
);
203 flags
= bed
->dynamic_sec_flags
;
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info
->executable
)
209 s
= bfd_make_section_with_flags (abfd
, ".interp",
210 flags
| SEC_READONLY
);
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s
= bfd_make_section_with_flags (abfd
, ".gnu.version_d",
218 flags
| SEC_READONLY
);
220 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
223 s
= bfd_make_section_with_flags (abfd
, ".gnu.version",
224 flags
| SEC_READONLY
);
226 || ! bfd_set_section_alignment (abfd
, s
, 1))
229 s
= bfd_make_section_with_flags (abfd
, ".gnu.version_r",
230 flags
| SEC_READONLY
);
232 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
235 s
= bfd_make_section_with_flags (abfd
, ".dynsym",
236 flags
| SEC_READONLY
);
238 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
241 s
= bfd_make_section_with_flags (abfd
, ".dynstr",
242 flags
| SEC_READONLY
);
246 s
= bfd_make_section_with_flags (abfd
, ".dynamic", flags
);
248 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd
, info
, s
, "_DYNAMIC"))
262 s
= bfd_make_section_with_flags (abfd
, ".hash", flags
| SEC_READONLY
);
264 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
266 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
269 if (info
->emit_gnu_hash
)
271 s
= bfd_make_section_with_flags (abfd
, ".gnu.hash",
272 flags
| SEC_READONLY
);
274 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed
->s
->arch_size
== 64)
280 elf_section_data (s
)->this_hdr
.sh_entsize
= 0;
282 elf_section_data (s
)->this_hdr
.sh_entsize
= 4;
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
291 elf_hash_table (info
)->dynamic_sections_created
= TRUE
;
296 /* Create dynamic sections when linking against a dynamic object. */
299 _bfd_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
301 flagword flags
, pltflags
;
302 struct elf_link_hash_entry
*h
;
304 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
305 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags
= bed
->dynamic_sec_flags
;
312 if (bed
->plt_not_loaded
)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags
&= ~ (SEC_CODE
| SEC_LOAD
| SEC_HAS_CONTENTS
);
318 pltflags
|= SEC_ALLOC
| SEC_CODE
| SEC_LOAD
;
319 if (bed
->plt_readonly
)
320 pltflags
|= SEC_READONLY
;
322 s
= bfd_make_section_with_flags (abfd
, ".plt", pltflags
);
324 || ! bfd_set_section_alignment (abfd
, s
, bed
->plt_alignment
))
328 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
330 if (bed
->want_plt_sym
)
332 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
333 "_PROCEDURE_LINKAGE_TABLE_");
334 elf_hash_table (info
)->hplt
= h
;
339 s
= bfd_make_section_with_flags (abfd
,
340 (bed
->rela_plts_and_copies_p
341 ? ".rela.plt" : ".rel.plt"),
342 flags
| SEC_READONLY
);
344 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
348 if (! _bfd_elf_create_got_section (abfd
, info
))
351 if (bed
->want_dynbss
)
353 /* The .dynbss section is a place to put symbols which are defined
354 by dynamic objects, are referenced by regular objects, and are
355 not functions. We must allocate space for them in the process
356 image and use a R_*_COPY reloc to tell the dynamic linker to
357 initialize them at run time. The linker script puts the .dynbss
358 section into the .bss section of the final image. */
359 s
= bfd_make_section_with_flags (abfd
, ".dynbss",
361 | SEC_LINKER_CREATED
));
365 /* The .rel[a].bss section holds copy relocs. This section is not
366 normally needed. We need to create it here, though, so that the
367 linker will map it to an output section. We can't just create it
368 only if we need it, because we will not know whether we need it
369 until we have seen all the input files, and the first time the
370 main linker code calls BFD after examining all the input files
371 (size_dynamic_sections) the input sections have already been
372 mapped to the output sections. If the section turns out not to
373 be needed, we can discard it later. We will never need this
374 section when generating a shared object, since they do not use
378 s
= bfd_make_section_with_flags (abfd
,
379 (bed
->rela_plts_and_copies_p
380 ? ".rela.bss" : ".rel.bss"),
381 flags
| SEC_READONLY
);
383 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
391 /* Record a new dynamic symbol. We record the dynamic symbols as we
392 read the input files, since we need to have a list of all of them
393 before we can determine the final sizes of the output sections.
394 Note that we may actually call this function even though we are not
395 going to output any dynamic symbols; in some cases we know that a
396 symbol should be in the dynamic symbol table, but only if there is
400 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info
*info
,
401 struct elf_link_hash_entry
*h
)
403 if (h
->dynindx
== -1)
405 struct elf_strtab_hash
*dynstr
;
410 /* XXX: The ABI draft says the linker must turn hidden and
411 internal symbols into STB_LOCAL symbols when producing the
412 DSO. However, if ld.so honors st_other in the dynamic table,
413 this would not be necessary. */
414 switch (ELF_ST_VISIBILITY (h
->other
))
418 if (h
->root
.type
!= bfd_link_hash_undefined
419 && h
->root
.type
!= bfd_link_hash_undefweak
)
422 if (!elf_hash_table (info
)->is_relocatable_executable
)
430 h
->dynindx
= elf_hash_table (info
)->dynsymcount
;
431 ++elf_hash_table (info
)->dynsymcount
;
433 dynstr
= elf_hash_table (info
)->dynstr
;
436 /* Create a strtab to hold the dynamic symbol names. */
437 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
442 /* We don't put any version information in the dynamic string
444 name
= h
->root
.root
.string
;
445 p
= strchr (name
, ELF_VER_CHR
);
447 /* We know that the p points into writable memory. In fact,
448 there are only a few symbols that have read-only names, being
449 those like _GLOBAL_OFFSET_TABLE_ that are created specially
450 by the backends. Most symbols will have names pointing into
451 an ELF string table read from a file, or to objalloc memory. */
454 indx
= _bfd_elf_strtab_add (dynstr
, name
, p
!= NULL
);
459 if (indx
== (bfd_size_type
) -1)
461 h
->dynstr_index
= indx
;
467 /* Mark a symbol dynamic. */
470 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info
*info
,
471 struct elf_link_hash_entry
*h
,
472 Elf_Internal_Sym
*sym
)
474 struct bfd_elf_dynamic_list
*d
= info
->dynamic_list
;
476 /* It may be called more than once on the same H. */
477 if(h
->dynamic
|| info
->relocatable
)
480 if ((info
->dynamic_data
481 && (h
->type
== STT_OBJECT
483 && ELF_ST_TYPE (sym
->st_info
) == STT_OBJECT
)))
485 && h
->root
.type
== bfd_link_hash_new
486 && (*d
->match
) (&d
->head
, NULL
, h
->root
.root
.string
)))
490 /* Record an assignment to a symbol made by a linker script. We need
491 this in case some dynamic object refers to this symbol. */
494 bfd_elf_record_link_assignment (bfd
*output_bfd
,
495 struct bfd_link_info
*info
,
500 struct elf_link_hash_entry
*h
, *hv
;
501 struct elf_link_hash_table
*htab
;
502 const struct elf_backend_data
*bed
;
504 if (!is_elf_hash_table (info
->hash
))
507 htab
= elf_hash_table (info
);
508 h
= elf_link_hash_lookup (htab
, name
, !provide
, TRUE
, FALSE
);
512 switch (h
->root
.type
)
514 case bfd_link_hash_defined
:
515 case bfd_link_hash_defweak
:
516 case bfd_link_hash_common
:
518 case bfd_link_hash_undefweak
:
519 case bfd_link_hash_undefined
:
520 /* Since we're defining the symbol, don't let it seem to have not
521 been defined. record_dynamic_symbol and size_dynamic_sections
522 may depend on this. */
523 h
->root
.type
= bfd_link_hash_new
;
524 if (h
->root
.u
.undef
.next
!= NULL
|| htab
->root
.undefs_tail
== &h
->root
)
525 bfd_link_repair_undef_list (&htab
->root
);
527 case bfd_link_hash_new
:
528 bfd_elf_link_mark_dynamic_symbol (info
, h
, NULL
);
531 case bfd_link_hash_indirect
:
532 /* We had a versioned symbol in a dynamic library. We make the
533 the versioned symbol point to this one. */
534 bed
= get_elf_backend_data (output_bfd
);
536 while (hv
->root
.type
== bfd_link_hash_indirect
537 || hv
->root
.type
== bfd_link_hash_warning
)
538 hv
= (struct elf_link_hash_entry
*) hv
->root
.u
.i
.link
;
539 /* We don't need to update h->root.u since linker will set them
541 h
->root
.type
= bfd_link_hash_undefined
;
542 hv
->root
.type
= bfd_link_hash_indirect
;
543 hv
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
544 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hv
);
546 case bfd_link_hash_warning
:
551 /* If this symbol is being provided by the linker script, and it is
552 currently defined by a dynamic object, but not by a regular
553 object, then mark it as undefined so that the generic linker will
554 force the correct value. */
558 h
->root
.type
= bfd_link_hash_undefined
;
560 /* If this symbol is not being provided by the linker script, and it is
561 currently defined by a dynamic object, but not by a regular object,
562 then clear out any version information because the symbol will not be
563 associated with the dynamic object any more. */
567 h
->verinfo
.verdef
= NULL
;
571 if (provide
&& hidden
)
573 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
575 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
576 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
581 if (!info
->relocatable
583 && (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
))
590 || (info
->executable
&& elf_hash_table (info
)->is_relocatable_executable
))
593 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h
->u
.weakdef
!= NULL
600 && h
->u
.weakdef
->dynindx
== -1)
602 if (! bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info
*info
,
620 struct elf_link_local_dynamic_entry
*entry
;
621 struct elf_link_hash_table
*eht
;
622 struct elf_strtab_hash
*dynstr
;
623 unsigned long dynstr_index
;
625 Elf_External_Sym_Shndx eshndx
;
626 char esym
[sizeof (Elf64_External_Sym
)];
628 if (! is_elf_hash_table (info
->hash
))
631 /* See if the entry exists already. */
632 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
633 if (entry
->input_bfd
== input_bfd
&& entry
->input_indx
== input_indx
)
636 amt
= sizeof (*entry
);
637 entry
= (struct elf_link_local_dynamic_entry
*) bfd_alloc (input_bfd
, amt
);
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd
, &elf_tdata (input_bfd
)->symtab_hdr
,
643 1, input_indx
, &entry
->isym
, esym
, &eshndx
))
645 bfd_release (input_bfd
, entry
);
649 if (entry
->isym
.st_shndx
!= SHN_UNDEF
650 && entry
->isym
.st_shndx
< SHN_LORESERVE
)
654 s
= bfd_section_from_elf_index (input_bfd
, entry
->isym
.st_shndx
);
655 if (s
== NULL
|| bfd_is_abs_section (s
->output_section
))
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd
, entry
);
664 name
= (bfd_elf_string_from_elf_section
665 (input_bfd
, elf_tdata (input_bfd
)->symtab_hdr
.sh_link
,
666 entry
->isym
.st_name
));
668 dynstr
= elf_hash_table (info
)->dynstr
;
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
677 dynstr_index
= _bfd_elf_strtab_add (dynstr
, name
, FALSE
);
678 if (dynstr_index
== (unsigned long) -1)
680 entry
->isym
.st_name
= dynstr_index
;
682 eht
= elf_hash_table (info
);
684 entry
->next
= eht
->dynlocal
;
685 eht
->dynlocal
= entry
;
686 entry
->input_bfd
= input_bfd
;
687 entry
->input_indx
= input_indx
;
690 /* Whatever binding the symbol had before, it's now local. */
692 = ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (entry
->isym
.st_info
));
694 /* The dynindx will be set at the end of size_dynamic_sections. */
699 /* Return the dynindex of a local dynamic symbol. */
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info
*info
,
706 struct elf_link_local_dynamic_entry
*e
;
708 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
709 if (e
->input_bfd
== input_bfd
&& e
->input_indx
== input_indx
)
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
722 size_t *count
= (size_t *) data
;
724 if (h
->root
.type
== bfd_link_hash_warning
)
725 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
730 if (h
->dynindx
!= -1)
731 h
->dynindx
= ++(*count
);
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
744 size_t *count
= (size_t *) data
;
746 if (h
->root
.type
== bfd_link_hash_warning
)
747 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
749 if (!h
->forced_local
)
752 if (h
->dynindx
!= -1)
753 h
->dynindx
= ++(*count
);
758 /* Return true if the dynamic symbol for a given section should be
759 omitted when creating a shared library. */
761 _bfd_elf_link_omit_section_dynsym (bfd
*output_bfd ATTRIBUTE_UNUSED
,
762 struct bfd_link_info
*info
,
765 struct elf_link_hash_table
*htab
;
767 switch (elf_section_data (p
)->this_hdr
.sh_type
)
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
774 htab
= elf_hash_table (info
);
775 if (p
== htab
->tls_sec
)
778 if (htab
->text_index_section
!= NULL
)
779 return p
!= htab
->text_index_section
&& p
!= htab
->data_index_section
;
781 if (strcmp (p
->name
, ".got") == 0
782 || strcmp (p
->name
, ".got.plt") == 0
783 || strcmp (p
->name
, ".plt") == 0)
787 if (htab
->dynobj
!= NULL
788 && (ip
= bfd_get_section_by_name (htab
->dynobj
, p
->name
)) != NULL
789 && (ip
->flags
& SEC_LINKER_CREATED
)
790 && ip
->output_section
== p
)
795 /* There shouldn't be section relative relocations
796 against any other section. */
802 /* Assign dynsym indices. In a shared library we generate a section
803 symbol for each output section, which come first. Next come symbols
804 which have been forced to local binding. Then all of the back-end
805 allocated local dynamic syms, followed by the rest of the global
809 _bfd_elf_link_renumber_dynsyms (bfd
*output_bfd
,
810 struct bfd_link_info
*info
,
811 unsigned long *section_sym_count
)
813 unsigned long dynsymcount
= 0;
815 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
817 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
819 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
820 if ((p
->flags
& SEC_EXCLUDE
) == 0
821 && (p
->flags
& SEC_ALLOC
) != 0
822 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
823 elf_section_data (p
)->dynindx
= ++dynsymcount
;
825 elf_section_data (p
)->dynindx
= 0;
827 *section_sym_count
= dynsymcount
;
829 elf_link_hash_traverse (elf_hash_table (info
),
830 elf_link_renumber_local_hash_table_dynsyms
,
833 if (elf_hash_table (info
)->dynlocal
)
835 struct elf_link_local_dynamic_entry
*p
;
836 for (p
= elf_hash_table (info
)->dynlocal
; p
; p
= p
->next
)
837 p
->dynindx
= ++dynsymcount
;
840 elf_link_hash_traverse (elf_hash_table (info
),
841 elf_link_renumber_hash_table_dynsyms
,
844 /* There is an unused NULL entry at the head of the table which
845 we must account for in our count. Unless there weren't any
846 symbols, which means we'll have no table at all. */
847 if (dynsymcount
!= 0)
850 elf_hash_table (info
)->dynsymcount
= dynsymcount
;
854 /* Merge st_other field. */
857 elf_merge_st_other (bfd
*abfd
, struct elf_link_hash_entry
*h
,
858 Elf_Internal_Sym
*isym
, bfd_boolean definition
,
861 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
863 /* If st_other has a processor-specific meaning, specific
864 code might be needed here. We never merge the visibility
865 attribute with the one from a dynamic object. */
866 if (bed
->elf_backend_merge_symbol_attribute
)
867 (*bed
->elf_backend_merge_symbol_attribute
) (h
, isym
, definition
,
870 /* If this symbol has default visibility and the user has requested
871 we not re-export it, then mark it as hidden. */
875 || (abfd
->my_archive
&& abfd
->my_archive
->no_export
))
876 && ELF_ST_VISIBILITY (isym
->st_other
) != STV_INTERNAL
)
877 isym
->st_other
= (STV_HIDDEN
878 | (isym
->st_other
& ~ELF_ST_VISIBILITY (-1)));
880 if (!dynamic
&& ELF_ST_VISIBILITY (isym
->st_other
) != 0)
882 unsigned char hvis
, symvis
, other
, nvis
;
884 /* Only merge the visibility. Leave the remainder of the
885 st_other field to elf_backend_merge_symbol_attribute. */
886 other
= h
->other
& ~ELF_ST_VISIBILITY (-1);
888 /* Combine visibilities, using the most constraining one. */
889 hvis
= ELF_ST_VISIBILITY (h
->other
);
890 symvis
= ELF_ST_VISIBILITY (isym
->st_other
);
896 nvis
= hvis
< symvis
? hvis
: symvis
;
898 h
->other
= other
| nvis
;
902 /* This function is called when we want to define a new symbol. It
903 handles the various cases which arise when we find a definition in
904 a dynamic object, or when there is already a definition in a
905 dynamic object. The new symbol is described by NAME, SYM, PSEC,
906 and PVALUE. We set SYM_HASH to the hash table entry. We set
907 OVERRIDE if the old symbol is overriding a new definition. We set
908 TYPE_CHANGE_OK if it is OK for the type to change. We set
909 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
910 change, we mean that we shouldn't warn if the type or size does
911 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
912 object is overridden by a regular object. */
915 _bfd_elf_merge_symbol (bfd
*abfd
,
916 struct bfd_link_info
*info
,
918 Elf_Internal_Sym
*sym
,
921 unsigned int *pold_alignment
,
922 struct elf_link_hash_entry
**sym_hash
,
924 bfd_boolean
*override
,
925 bfd_boolean
*type_change_ok
,
926 bfd_boolean
*size_change_ok
)
928 asection
*sec
, *oldsec
;
929 struct elf_link_hash_entry
*h
;
930 struct elf_link_hash_entry
*flip
;
933 bfd_boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
934 bfd_boolean newweak
, oldweak
, newfunc
, oldfunc
;
935 const struct elf_backend_data
*bed
;
941 bind
= ELF_ST_BIND (sym
->st_info
);
943 /* Silently discard TLS symbols from --just-syms. There's no way to
944 combine a static TLS block with a new TLS block for this executable. */
945 if (ELF_ST_TYPE (sym
->st_info
) == STT_TLS
946 && sec
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
952 if (! bfd_is_und_section (sec
))
953 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
, FALSE
, FALSE
);
955 h
= ((struct elf_link_hash_entry
*)
956 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, FALSE
, FALSE
));
961 bed
= get_elf_backend_data (abfd
);
963 /* This code is for coping with dynamic objects, and is only useful
964 if we are doing an ELF link. */
965 if (!(*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
968 /* For merging, we only care about real symbols. */
970 while (h
->root
.type
== bfd_link_hash_indirect
971 || h
->root
.type
== bfd_link_hash_warning
)
972 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
974 /* We have to check it for every instance since the first few may be
975 refereences and not all compilers emit symbol type for undefined
977 bfd_elf_link_mark_dynamic_symbol (info
, h
, sym
);
979 /* If we just created the symbol, mark it as being an ELF symbol.
980 Other than that, there is nothing to do--there is no merge issue
981 with a newly defined symbol--so we just return. */
983 if (h
->root
.type
== bfd_link_hash_new
)
989 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
992 switch (h
->root
.type
)
999 case bfd_link_hash_undefined
:
1000 case bfd_link_hash_undefweak
:
1001 oldbfd
= h
->root
.u
.undef
.abfd
;
1005 case bfd_link_hash_defined
:
1006 case bfd_link_hash_defweak
:
1007 oldbfd
= h
->root
.u
.def
.section
->owner
;
1008 oldsec
= h
->root
.u
.def
.section
;
1011 case bfd_link_hash_common
:
1012 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
1013 oldsec
= h
->root
.u
.c
.p
->section
;
1017 /* In cases involving weak versioned symbols, we may wind up trying
1018 to merge a symbol with itself. Catch that here, to avoid the
1019 confusion that results if we try to override a symbol with
1020 itself. The additional tests catch cases like
1021 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1022 dynamic object, which we do want to handle here. */
1024 && ((abfd
->flags
& DYNAMIC
) == 0
1025 || !h
->def_regular
))
1028 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1029 respectively, is from a dynamic object. */
1031 newdyn
= (abfd
->flags
& DYNAMIC
) != 0;
1035 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
1036 else if (oldsec
!= NULL
)
1038 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1039 indices used by MIPS ELF. */
1040 olddyn
= (oldsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
1043 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1044 respectively, appear to be a definition rather than reference. */
1046 newdef
= !bfd_is_und_section (sec
) && !bfd_is_com_section (sec
);
1048 olddef
= (h
->root
.type
!= bfd_link_hash_undefined
1049 && h
->root
.type
!= bfd_link_hash_undefweak
1050 && h
->root
.type
!= bfd_link_hash_common
);
1052 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1053 respectively, appear to be a function. */
1055 newfunc
= (ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1056 && bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)));
1058 oldfunc
= (h
->type
!= STT_NOTYPE
1059 && bed
->is_function_type (h
->type
));
1061 /* When we try to create a default indirect symbol from the dynamic
1062 definition with the default version, we skip it if its type and
1063 the type of existing regular definition mismatch. We only do it
1064 if the existing regular definition won't be dynamic. */
1065 if (pold_alignment
== NULL
1067 && !info
->export_dynamic
1072 && (olddef
|| h
->root
.type
== bfd_link_hash_common
)
1073 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1074 && ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1075 && h
->type
!= STT_NOTYPE
1076 && !(newfunc
&& oldfunc
))
1082 /* Check TLS symbol. We don't check undefined symbol introduced by
1084 if ((ELF_ST_TYPE (sym
->st_info
) == STT_TLS
|| h
->type
== STT_TLS
)
1085 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1089 bfd_boolean ntdef
, tdef
;
1090 asection
*ntsec
, *tsec
;
1092 if (h
->type
== STT_TLS
)
1112 (*_bfd_error_handler
)
1113 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1114 tbfd
, tsec
, ntbfd
, ntsec
, h
->root
.root
.string
);
1115 else if (!tdef
&& !ntdef
)
1116 (*_bfd_error_handler
)
1117 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1118 tbfd
, ntbfd
, h
->root
.root
.string
);
1120 (*_bfd_error_handler
)
1121 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1122 tbfd
, tsec
, ntbfd
, h
->root
.root
.string
);
1124 (*_bfd_error_handler
)
1125 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1126 tbfd
, ntbfd
, ntsec
, h
->root
.root
.string
);
1128 bfd_set_error (bfd_error_bad_value
);
1132 /* We need to remember if a symbol has a definition in a dynamic
1133 object or is weak in all dynamic objects. Internal and hidden
1134 visibility will make it unavailable to dynamic objects. */
1135 if (newdyn
&& !h
->dynamic_def
)
1137 if (!bfd_is_und_section (sec
))
1141 /* Check if this symbol is weak in all dynamic objects. If it
1142 is the first time we see it in a dynamic object, we mark
1143 if it is weak. Otherwise, we clear it. */
1144 if (!h
->ref_dynamic
)
1146 if (bind
== STB_WEAK
)
1147 h
->dynamic_weak
= 1;
1149 else if (bind
!= STB_WEAK
)
1150 h
->dynamic_weak
= 0;
1154 /* If the old symbol has non-default visibility, we ignore the new
1155 definition from a dynamic object. */
1157 && ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1158 && !bfd_is_und_section (sec
))
1161 /* Make sure this symbol is dynamic. */
1163 /* A protected symbol has external availability. Make sure it is
1164 recorded as dynamic.
1166 FIXME: Should we check type and size for protected symbol? */
1167 if (ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
1168 return bfd_elf_link_record_dynamic_symbol (info
, h
);
1173 && ELF_ST_VISIBILITY (sym
->st_other
) != STV_DEFAULT
1176 /* If the new symbol with non-default visibility comes from a
1177 relocatable file and the old definition comes from a dynamic
1178 object, we remove the old definition. */
1179 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1181 /* Handle the case where the old dynamic definition is
1182 default versioned. We need to copy the symbol info from
1183 the symbol with default version to the normal one if it
1184 was referenced before. */
1187 const struct elf_backend_data
*bed
1188 = get_elf_backend_data (abfd
);
1189 struct elf_link_hash_entry
*vh
= *sym_hash
;
1190 vh
->root
.type
= h
->root
.type
;
1191 h
->root
.type
= bfd_link_hash_indirect
;
1192 (*bed
->elf_backend_copy_indirect_symbol
) (info
, vh
, h
);
1193 /* Protected symbols will override the dynamic definition
1194 with default version. */
1195 if (ELF_ST_VISIBILITY (sym
->st_other
) == STV_PROTECTED
)
1197 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) vh
;
1198 vh
->dynamic_def
= 1;
1199 vh
->ref_dynamic
= 1;
1203 h
->root
.type
= vh
->root
.type
;
1204 vh
->ref_dynamic
= 0;
1205 /* We have to hide it here since it was made dynamic
1206 global with extra bits when the symbol info was
1207 copied from the old dynamic definition. */
1208 (*bed
->elf_backend_hide_symbol
) (info
, vh
, TRUE
);
1216 if ((h
->root
.u
.undef
.next
|| info
->hash
->undefs_tail
== &h
->root
)
1217 && bfd_is_und_section (sec
))
1219 /* If the new symbol is undefined and the old symbol was
1220 also undefined before, we need to make sure
1221 _bfd_generic_link_add_one_symbol doesn't mess
1222 up the linker hash table undefs list. Since the old
1223 definition came from a dynamic object, it is still on the
1225 h
->root
.type
= bfd_link_hash_undefined
;
1226 h
->root
.u
.undef
.abfd
= abfd
;
1230 h
->root
.type
= bfd_link_hash_new
;
1231 h
->root
.u
.undef
.abfd
= NULL
;
1240 /* FIXME: Should we check type and size for protected symbol? */
1246 /* Differentiate strong and weak symbols. */
1247 newweak
= bind
== STB_WEAK
;
1248 oldweak
= (h
->root
.type
== bfd_link_hash_defweak
1249 || h
->root
.type
== bfd_link_hash_undefweak
);
1251 if (bind
== STB_GNU_UNIQUE
)
1252 h
->unique_global
= 1;
1254 /* If a new weak symbol definition comes from a regular file and the
1255 old symbol comes from a dynamic library, we treat the new one as
1256 strong. Similarly, an old weak symbol definition from a regular
1257 file is treated as strong when the new symbol comes from a dynamic
1258 library. Further, an old weak symbol from a dynamic library is
1259 treated as strong if the new symbol is from a dynamic library.
1260 This reflects the way glibc's ld.so works.
1262 Do this before setting *type_change_ok or *size_change_ok so that
1263 we warn properly when dynamic library symbols are overridden. */
1265 if (newdef
&& !newdyn
&& olddyn
)
1267 if (olddef
&& newdyn
)
1270 /* Allow changes between different types of function symbol. */
1271 if (newfunc
&& oldfunc
)
1272 *type_change_ok
= TRUE
;
1274 /* It's OK to change the type if either the existing symbol or the
1275 new symbol is weak. A type change is also OK if the old symbol
1276 is undefined and the new symbol is defined. */
1281 && h
->root
.type
== bfd_link_hash_undefined
))
1282 *type_change_ok
= TRUE
;
1284 /* It's OK to change the size if either the existing symbol or the
1285 new symbol is weak, or if the old symbol is undefined. */
1288 || h
->root
.type
== bfd_link_hash_undefined
)
1289 *size_change_ok
= TRUE
;
1291 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1292 symbol, respectively, appears to be a common symbol in a dynamic
1293 object. If a symbol appears in an uninitialized section, and is
1294 not weak, and is not a function, then it may be a common symbol
1295 which was resolved when the dynamic object was created. We want
1296 to treat such symbols specially, because they raise special
1297 considerations when setting the symbol size: if the symbol
1298 appears as a common symbol in a regular object, and the size in
1299 the regular object is larger, we must make sure that we use the
1300 larger size. This problematic case can always be avoided in C,
1301 but it must be handled correctly when using Fortran shared
1304 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1305 likewise for OLDDYNCOMMON and OLDDEF.
1307 Note that this test is just a heuristic, and that it is quite
1308 possible to have an uninitialized symbol in a shared object which
1309 is really a definition, rather than a common symbol. This could
1310 lead to some minor confusion when the symbol really is a common
1311 symbol in some regular object. However, I think it will be
1317 && (sec
->flags
& SEC_ALLOC
) != 0
1318 && (sec
->flags
& SEC_LOAD
) == 0
1321 newdyncommon
= TRUE
;
1323 newdyncommon
= FALSE
;
1327 && h
->root
.type
== bfd_link_hash_defined
1329 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
1330 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
1333 olddyncommon
= TRUE
;
1335 olddyncommon
= FALSE
;
1337 /* We now know everything about the old and new symbols. We ask the
1338 backend to check if we can merge them. */
1339 if (bed
->merge_symbol
1340 && !bed
->merge_symbol (info
, sym_hash
, h
, sym
, psec
, pvalue
,
1341 pold_alignment
, skip
, override
,
1342 type_change_ok
, size_change_ok
,
1343 &newdyn
, &newdef
, &newdyncommon
, &newweak
,
1345 &olddyn
, &olddef
, &olddyncommon
, &oldweak
,
1349 /* If both the old and the new symbols look like common symbols in a
1350 dynamic object, set the size of the symbol to the larger of the
1355 && sym
->st_size
!= h
->size
)
1357 /* Since we think we have two common symbols, issue a multiple
1358 common warning if desired. Note that we only warn if the
1359 size is different. If the size is the same, we simply let
1360 the old symbol override the new one as normally happens with
1361 symbols defined in dynamic objects. */
1363 if (! ((*info
->callbacks
->multiple_common
)
1364 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1365 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1368 if (sym
->st_size
> h
->size
)
1369 h
->size
= sym
->st_size
;
1371 *size_change_ok
= TRUE
;
1374 /* If we are looking at a dynamic object, and we have found a
1375 definition, we need to see if the symbol was already defined by
1376 some other object. If so, we want to use the existing
1377 definition, and we do not want to report a multiple symbol
1378 definition error; we do this by clobbering *PSEC to be
1379 bfd_und_section_ptr.
1381 We treat a common symbol as a definition if the symbol in the
1382 shared library is a function, since common symbols always
1383 represent variables; this can cause confusion in principle, but
1384 any such confusion would seem to indicate an erroneous program or
1385 shared library. We also permit a common symbol in a regular
1386 object to override a weak symbol in a shared object. */
1391 || (h
->root
.type
== bfd_link_hash_common
1392 && (newweak
|| newfunc
))))
1396 newdyncommon
= FALSE
;
1398 *psec
= sec
= bfd_und_section_ptr
;
1399 *size_change_ok
= TRUE
;
1401 /* If we get here when the old symbol is a common symbol, then
1402 we are explicitly letting it override a weak symbol or
1403 function in a dynamic object, and we don't want to warn about
1404 a type change. If the old symbol is a defined symbol, a type
1405 change warning may still be appropriate. */
1407 if (h
->root
.type
== bfd_link_hash_common
)
1408 *type_change_ok
= TRUE
;
1411 /* Handle the special case of an old common symbol merging with a
1412 new symbol which looks like a common symbol in a shared object.
1413 We change *PSEC and *PVALUE to make the new symbol look like a
1414 common symbol, and let _bfd_generic_link_add_one_symbol do the
1418 && h
->root
.type
== bfd_link_hash_common
)
1422 newdyncommon
= FALSE
;
1423 *pvalue
= sym
->st_size
;
1424 *psec
= sec
= bed
->common_section (oldsec
);
1425 *size_change_ok
= TRUE
;
1428 /* Skip weak definitions of symbols that are already defined. */
1429 if (newdef
&& olddef
&& newweak
)
1433 /* Merge st_other. If the symbol already has a dynamic index,
1434 but visibility says it should not be visible, turn it into a
1436 elf_merge_st_other (abfd
, h
, sym
, newdef
, newdyn
);
1437 if (h
->dynindx
!= -1)
1438 switch (ELF_ST_VISIBILITY (h
->other
))
1442 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1447 /* If the old symbol is from a dynamic object, and the new symbol is
1448 a definition which is not from a dynamic object, then the new
1449 symbol overrides the old symbol. Symbols from regular files
1450 always take precedence over symbols from dynamic objects, even if
1451 they are defined after the dynamic object in the link.
1453 As above, we again permit a common symbol in a regular object to
1454 override a definition in a shared object if the shared object
1455 symbol is a function or is weak. */
1460 || (bfd_is_com_section (sec
)
1461 && (oldweak
|| oldfunc
)))
1466 /* Change the hash table entry to undefined, and let
1467 _bfd_generic_link_add_one_symbol do the right thing with the
1470 h
->root
.type
= bfd_link_hash_undefined
;
1471 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1472 *size_change_ok
= TRUE
;
1475 olddyncommon
= FALSE
;
1477 /* We again permit a type change when a common symbol may be
1478 overriding a function. */
1480 if (bfd_is_com_section (sec
))
1484 /* If a common symbol overrides a function, make sure
1485 that it isn't defined dynamically nor has type
1488 h
->type
= STT_NOTYPE
;
1490 *type_change_ok
= TRUE
;
1493 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1496 /* This union may have been set to be non-NULL when this symbol
1497 was seen in a dynamic object. We must force the union to be
1498 NULL, so that it is correct for a regular symbol. */
1499 h
->verinfo
.vertree
= NULL
;
1502 /* Handle the special case of a new common symbol merging with an
1503 old symbol that looks like it might be a common symbol defined in
1504 a shared object. Note that we have already handled the case in
1505 which a new common symbol should simply override the definition
1506 in the shared library. */
1509 && bfd_is_com_section (sec
)
1512 /* It would be best if we could set the hash table entry to a
1513 common symbol, but we don't know what to use for the section
1514 or the alignment. */
1515 if (! ((*info
->callbacks
->multiple_common
)
1516 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1517 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1520 /* If the presumed common symbol in the dynamic object is
1521 larger, pretend that the new symbol has its size. */
1523 if (h
->size
> *pvalue
)
1526 /* We need to remember the alignment required by the symbol
1527 in the dynamic object. */
1528 BFD_ASSERT (pold_alignment
);
1529 *pold_alignment
= h
->root
.u
.def
.section
->alignment_power
;
1532 olddyncommon
= FALSE
;
1534 h
->root
.type
= bfd_link_hash_undefined
;
1535 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1537 *size_change_ok
= TRUE
;
1538 *type_change_ok
= TRUE
;
1540 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1543 h
->verinfo
.vertree
= NULL
;
1548 /* Handle the case where we had a versioned symbol in a dynamic
1549 library and now find a definition in a normal object. In this
1550 case, we make the versioned symbol point to the normal one. */
1551 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1552 flip
->root
.type
= h
->root
.type
;
1553 flip
->root
.u
.undef
.abfd
= h
->root
.u
.undef
.abfd
;
1554 h
->root
.type
= bfd_link_hash_indirect
;
1555 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) flip
;
1556 (*bed
->elf_backend_copy_indirect_symbol
) (info
, flip
, h
);
1560 flip
->ref_dynamic
= 1;
1567 /* This function is called to create an indirect symbol from the
1568 default for the symbol with the default version if needed. The
1569 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1570 set DYNSYM if the new indirect symbol is dynamic. */
1573 _bfd_elf_add_default_symbol (bfd
*abfd
,
1574 struct bfd_link_info
*info
,
1575 struct elf_link_hash_entry
*h
,
1577 Elf_Internal_Sym
*sym
,
1580 bfd_boolean
*dynsym
,
1581 bfd_boolean override
)
1583 bfd_boolean type_change_ok
;
1584 bfd_boolean size_change_ok
;
1587 struct elf_link_hash_entry
*hi
;
1588 struct bfd_link_hash_entry
*bh
;
1589 const struct elf_backend_data
*bed
;
1590 bfd_boolean collect
;
1591 bfd_boolean dynamic
;
1593 size_t len
, shortlen
;
1596 /* If this symbol has a version, and it is the default version, we
1597 create an indirect symbol from the default name to the fully
1598 decorated name. This will cause external references which do not
1599 specify a version to be bound to this version of the symbol. */
1600 p
= strchr (name
, ELF_VER_CHR
);
1601 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
1606 /* We are overridden by an old definition. We need to check if we
1607 need to create the indirect symbol from the default name. */
1608 hi
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
,
1610 BFD_ASSERT (hi
!= NULL
);
1613 while (hi
->root
.type
== bfd_link_hash_indirect
1614 || hi
->root
.type
== bfd_link_hash_warning
)
1616 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1622 bed
= get_elf_backend_data (abfd
);
1623 collect
= bed
->collect
;
1624 dynamic
= (abfd
->flags
& DYNAMIC
) != 0;
1626 shortlen
= p
- name
;
1627 shortname
= (char *) bfd_hash_allocate (&info
->hash
->table
, shortlen
+ 1);
1628 if (shortname
== NULL
)
1630 memcpy (shortname
, name
, shortlen
);
1631 shortname
[shortlen
] = '\0';
1633 /* We are going to create a new symbol. Merge it with any existing
1634 symbol with this name. For the purposes of the merge, act as
1635 though we were defining the symbol we just defined, although we
1636 actually going to define an indirect symbol. */
1637 type_change_ok
= FALSE
;
1638 size_change_ok
= FALSE
;
1640 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1641 NULL
, &hi
, &skip
, &override
,
1642 &type_change_ok
, &size_change_ok
))
1651 if (! (_bfd_generic_link_add_one_symbol
1652 (info
, abfd
, shortname
, BSF_INDIRECT
, bfd_ind_section_ptr
,
1653 0, name
, FALSE
, collect
, &bh
)))
1655 hi
= (struct elf_link_hash_entry
*) bh
;
1659 /* In this case the symbol named SHORTNAME is overriding the
1660 indirect symbol we want to add. We were planning on making
1661 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1662 is the name without a version. NAME is the fully versioned
1663 name, and it is the default version.
1665 Overriding means that we already saw a definition for the
1666 symbol SHORTNAME in a regular object, and it is overriding
1667 the symbol defined in the dynamic object.
1669 When this happens, we actually want to change NAME, the
1670 symbol we just added, to refer to SHORTNAME. This will cause
1671 references to NAME in the shared object to become references
1672 to SHORTNAME in the regular object. This is what we expect
1673 when we override a function in a shared object: that the
1674 references in the shared object will be mapped to the
1675 definition in the regular object. */
1677 while (hi
->root
.type
== bfd_link_hash_indirect
1678 || hi
->root
.type
== bfd_link_hash_warning
)
1679 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1681 h
->root
.type
= bfd_link_hash_indirect
;
1682 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1686 hi
->ref_dynamic
= 1;
1690 if (! bfd_elf_link_record_dynamic_symbol (info
, hi
))
1695 /* Now set HI to H, so that the following code will set the
1696 other fields correctly. */
1700 /* Check if HI is a warning symbol. */
1701 if (hi
->root
.type
== bfd_link_hash_warning
)
1702 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1704 /* If there is a duplicate definition somewhere, then HI may not
1705 point to an indirect symbol. We will have reported an error to
1706 the user in that case. */
1708 if (hi
->root
.type
== bfd_link_hash_indirect
)
1710 struct elf_link_hash_entry
*ht
;
1712 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1713 (*bed
->elf_backend_copy_indirect_symbol
) (info
, ht
, hi
);
1715 /* See if the new flags lead us to realize that the symbol must
1727 if (hi
->ref_regular
)
1733 /* We also need to define an indirection from the nondefault version
1737 len
= strlen (name
);
1738 shortname
= (char *) bfd_hash_allocate (&info
->hash
->table
, len
);
1739 if (shortname
== NULL
)
1741 memcpy (shortname
, name
, shortlen
);
1742 memcpy (shortname
+ shortlen
, p
+ 1, len
- shortlen
);
1744 /* Once again, merge with any existing symbol. */
1745 type_change_ok
= FALSE
;
1746 size_change_ok
= FALSE
;
1748 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1749 NULL
, &hi
, &skip
, &override
,
1750 &type_change_ok
, &size_change_ok
))
1758 /* Here SHORTNAME is a versioned name, so we don't expect to see
1759 the type of override we do in the case above unless it is
1760 overridden by a versioned definition. */
1761 if (hi
->root
.type
!= bfd_link_hash_defined
1762 && hi
->root
.type
!= bfd_link_hash_defweak
)
1763 (*_bfd_error_handler
)
1764 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1770 if (! (_bfd_generic_link_add_one_symbol
1771 (info
, abfd
, shortname
, BSF_INDIRECT
,
1772 bfd_ind_section_ptr
, 0, name
, FALSE
, collect
, &bh
)))
1774 hi
= (struct elf_link_hash_entry
*) bh
;
1776 /* If there is a duplicate definition somewhere, then HI may not
1777 point to an indirect symbol. We will have reported an error
1778 to the user in that case. */
1780 if (hi
->root
.type
== bfd_link_hash_indirect
)
1782 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
1784 /* See if the new flags lead us to realize that the symbol
1796 if (hi
->ref_regular
)
1806 /* This routine is used to export all defined symbols into the dynamic
1807 symbol table. It is called via elf_link_hash_traverse. */
1810 _bfd_elf_export_symbol (struct elf_link_hash_entry
*h
, void *data
)
1812 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
1814 /* Ignore this if we won't export it. */
1815 if (!eif
->info
->export_dynamic
&& !h
->dynamic
)
1818 /* Ignore indirect symbols. These are added by the versioning code. */
1819 if (h
->root
.type
== bfd_link_hash_indirect
)
1822 if (h
->root
.type
== bfd_link_hash_warning
)
1823 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1825 if (h
->dynindx
== -1
1831 if (eif
->verdefs
== NULL
1832 || (bfd_find_version_for_sym (eif
->verdefs
, h
->root
.root
.string
, &hide
)
1835 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
1846 /* Look through the symbols which are defined in other shared
1847 libraries and referenced here. Update the list of version
1848 dependencies. This will be put into the .gnu.version_r section.
1849 This function is called via elf_link_hash_traverse. */
1852 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry
*h
,
1855 struct elf_find_verdep_info
*rinfo
= (struct elf_find_verdep_info
*) data
;
1856 Elf_Internal_Verneed
*t
;
1857 Elf_Internal_Vernaux
*a
;
1860 if (h
->root
.type
== bfd_link_hash_warning
)
1861 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1863 /* We only care about symbols defined in shared objects with version
1868 || h
->verinfo
.verdef
== NULL
)
1871 /* See if we already know about this version. */
1872 for (t
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
1876 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
1879 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1880 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
1886 /* This is a new version. Add it to tree we are building. */
1891 t
= (Elf_Internal_Verneed
*) bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
1894 rinfo
->failed
= TRUE
;
1898 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
1899 t
->vn_nextref
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
1900 elf_tdata (rinfo
->info
->output_bfd
)->verref
= t
;
1904 a
= (Elf_Internal_Vernaux
*) bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
1907 rinfo
->failed
= TRUE
;
1911 /* Note that we are copying a string pointer here, and testing it
1912 above. If bfd_elf_string_from_elf_section is ever changed to
1913 discard the string data when low in memory, this will have to be
1915 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
1917 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
1918 a
->vna_nextptr
= t
->vn_auxptr
;
1920 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
1923 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
1930 /* Figure out appropriate versions for all the symbols. We may not
1931 have the version number script until we have read all of the input
1932 files, so until that point we don't know which symbols should be
1933 local. This function is called via elf_link_hash_traverse. */
1936 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry
*h
, void *data
)
1938 struct elf_info_failed
*sinfo
;
1939 struct bfd_link_info
*info
;
1940 const struct elf_backend_data
*bed
;
1941 struct elf_info_failed eif
;
1945 sinfo
= (struct elf_info_failed
*) data
;
1948 if (h
->root
.type
== bfd_link_hash_warning
)
1949 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1951 /* Fix the symbol flags. */
1954 if (! _bfd_elf_fix_symbol_flags (h
, &eif
))
1957 sinfo
->failed
= TRUE
;
1961 /* We only need version numbers for symbols defined in regular
1963 if (!h
->def_regular
)
1966 bed
= get_elf_backend_data (info
->output_bfd
);
1967 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
1968 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
1970 struct bfd_elf_version_tree
*t
;
1975 /* There are two consecutive ELF_VER_CHR characters if this is
1976 not a hidden symbol. */
1978 if (*p
== ELF_VER_CHR
)
1984 /* If there is no version string, we can just return out. */
1992 /* Look for the version. If we find it, it is no longer weak. */
1993 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
1995 if (strcmp (t
->name
, p
) == 0)
1999 struct bfd_elf_version_expr
*d
;
2001 len
= p
- h
->root
.root
.string
;
2002 alc
= (char *) bfd_malloc (len
);
2005 sinfo
->failed
= TRUE
;
2008 memcpy (alc
, h
->root
.root
.string
, len
- 1);
2009 alc
[len
- 1] = '\0';
2010 if (alc
[len
- 2] == ELF_VER_CHR
)
2011 alc
[len
- 2] = '\0';
2013 h
->verinfo
.vertree
= t
;
2017 if (t
->globals
.list
!= NULL
)
2018 d
= (*t
->match
) (&t
->globals
, NULL
, alc
);
2020 /* See if there is anything to force this symbol to
2022 if (d
== NULL
&& t
->locals
.list
!= NULL
)
2024 d
= (*t
->match
) (&t
->locals
, NULL
, alc
);
2027 && ! info
->export_dynamic
)
2028 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2036 /* If we are building an application, we need to create a
2037 version node for this version. */
2038 if (t
== NULL
&& info
->executable
)
2040 struct bfd_elf_version_tree
**pp
;
2043 /* If we aren't going to export this symbol, we don't need
2044 to worry about it. */
2045 if (h
->dynindx
== -1)
2049 t
= (struct bfd_elf_version_tree
*) bfd_zalloc (info
->output_bfd
, amt
);
2052 sinfo
->failed
= TRUE
;
2057 t
->name_indx
= (unsigned int) -1;
2061 /* Don't count anonymous version tag. */
2062 if (sinfo
->verdefs
!= NULL
&& sinfo
->verdefs
->vernum
== 0)
2064 for (pp
= &sinfo
->verdefs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
2066 t
->vernum
= version_index
;
2070 h
->verinfo
.vertree
= t
;
2074 /* We could not find the version for a symbol when
2075 generating a shared archive. Return an error. */
2076 (*_bfd_error_handler
)
2077 (_("%B: version node not found for symbol %s"),
2078 info
->output_bfd
, h
->root
.root
.string
);
2079 bfd_set_error (bfd_error_bad_value
);
2080 sinfo
->failed
= TRUE
;
2088 /* If we don't have a version for this symbol, see if we can find
2090 if (h
->verinfo
.vertree
== NULL
&& sinfo
->verdefs
!= NULL
)
2094 h
->verinfo
.vertree
= bfd_find_version_for_sym (sinfo
->verdefs
,
2095 h
->root
.root
.string
, &hide
);
2096 if (h
->verinfo
.vertree
!= NULL
&& hide
)
2097 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2103 /* Read and swap the relocs from the section indicated by SHDR. This
2104 may be either a REL or a RELA section. The relocations are
2105 translated into RELA relocations and stored in INTERNAL_RELOCS,
2106 which should have already been allocated to contain enough space.
2107 The EXTERNAL_RELOCS are a buffer where the external form of the
2108 relocations should be stored.
2110 Returns FALSE if something goes wrong. */
2113 elf_link_read_relocs_from_section (bfd
*abfd
,
2115 Elf_Internal_Shdr
*shdr
,
2116 void *external_relocs
,
2117 Elf_Internal_Rela
*internal_relocs
)
2119 const struct elf_backend_data
*bed
;
2120 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
2121 const bfd_byte
*erela
;
2122 const bfd_byte
*erelaend
;
2123 Elf_Internal_Rela
*irela
;
2124 Elf_Internal_Shdr
*symtab_hdr
;
2127 /* Position ourselves at the start of the section. */
2128 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
2131 /* Read the relocations. */
2132 if (bfd_bread (external_relocs
, shdr
->sh_size
, abfd
) != shdr
->sh_size
)
2135 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2136 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
2138 bed
= get_elf_backend_data (abfd
);
2140 /* Convert the external relocations to the internal format. */
2141 if (shdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2142 swap_in
= bed
->s
->swap_reloc_in
;
2143 else if (shdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2144 swap_in
= bed
->s
->swap_reloca_in
;
2147 bfd_set_error (bfd_error_wrong_format
);
2151 erela
= (const bfd_byte
*) external_relocs
;
2152 erelaend
= erela
+ shdr
->sh_size
;
2153 irela
= internal_relocs
;
2154 while (erela
< erelaend
)
2158 (*swap_in
) (abfd
, erela
, irela
);
2159 r_symndx
= ELF32_R_SYM (irela
->r_info
);
2160 if (bed
->s
->arch_size
== 64)
2164 if ((size_t) r_symndx
>= nsyms
)
2166 (*_bfd_error_handler
)
2167 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2168 " for offset 0x%lx in section `%A'"),
2170 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2171 bfd_set_error (bfd_error_bad_value
);
2175 else if (r_symndx
!= 0)
2177 (*_bfd_error_handler
)
2178 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2179 " when the object file has no symbol table"),
2181 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2182 bfd_set_error (bfd_error_bad_value
);
2185 irela
+= bed
->s
->int_rels_per_ext_rel
;
2186 erela
+= shdr
->sh_entsize
;
2192 /* Read and swap the relocs for a section O. They may have been
2193 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2194 not NULL, they are used as buffers to read into. They are known to
2195 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2196 the return value is allocated using either malloc or bfd_alloc,
2197 according to the KEEP_MEMORY argument. If O has two relocation
2198 sections (both REL and RELA relocations), then the REL_HDR
2199 relocations will appear first in INTERNAL_RELOCS, followed by the
2200 REL_HDR2 relocations. */
2203 _bfd_elf_link_read_relocs (bfd
*abfd
,
2205 void *external_relocs
,
2206 Elf_Internal_Rela
*internal_relocs
,
2207 bfd_boolean keep_memory
)
2209 Elf_Internal_Shdr
*rel_hdr
;
2210 void *alloc1
= NULL
;
2211 Elf_Internal_Rela
*alloc2
= NULL
;
2212 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2214 if (elf_section_data (o
)->relocs
!= NULL
)
2215 return elf_section_data (o
)->relocs
;
2217 if (o
->reloc_count
== 0)
2220 rel_hdr
= &elf_section_data (o
)->rel_hdr
;
2222 if (internal_relocs
== NULL
)
2226 size
= o
->reloc_count
;
2227 size
*= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
2229 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_alloc (abfd
, size
);
2231 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_malloc (size
);
2232 if (internal_relocs
== NULL
)
2236 if (external_relocs
== NULL
)
2238 bfd_size_type size
= rel_hdr
->sh_size
;
2240 if (elf_section_data (o
)->rel_hdr2
)
2241 size
+= elf_section_data (o
)->rel_hdr2
->sh_size
;
2242 alloc1
= bfd_malloc (size
);
2245 external_relocs
= alloc1
;
2248 if (!elf_link_read_relocs_from_section (abfd
, o
, rel_hdr
,
2252 if (elf_section_data (o
)->rel_hdr2
2253 && (!elf_link_read_relocs_from_section
2255 elf_section_data (o
)->rel_hdr2
,
2256 ((bfd_byte
*) external_relocs
) + rel_hdr
->sh_size
,
2257 internal_relocs
+ (NUM_SHDR_ENTRIES (rel_hdr
)
2258 * bed
->s
->int_rels_per_ext_rel
))))
2261 /* Cache the results for next time, if we can. */
2263 elf_section_data (o
)->relocs
= internal_relocs
;
2268 /* Don't free alloc2, since if it was allocated we are passing it
2269 back (under the name of internal_relocs). */
2271 return internal_relocs
;
2279 bfd_release (abfd
, alloc2
);
2286 /* Compute the size of, and allocate space for, REL_HDR which is the
2287 section header for a section containing relocations for O. */
2290 _bfd_elf_link_size_reloc_section (bfd
*abfd
,
2291 Elf_Internal_Shdr
*rel_hdr
,
2294 bfd_size_type reloc_count
;
2295 bfd_size_type num_rel_hashes
;
2297 /* Figure out how many relocations there will be. */
2298 if (rel_hdr
== &elf_section_data (o
)->rel_hdr
)
2299 reloc_count
= elf_section_data (o
)->rel_count
;
2301 reloc_count
= elf_section_data (o
)->rel_count2
;
2303 num_rel_hashes
= o
->reloc_count
;
2304 if (num_rel_hashes
< reloc_count
)
2305 num_rel_hashes
= reloc_count
;
2307 /* That allows us to calculate the size of the section. */
2308 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reloc_count
;
2310 /* The contents field must last into write_object_contents, so we
2311 allocate it with bfd_alloc rather than malloc. Also since we
2312 cannot be sure that the contents will actually be filled in,
2313 we zero the allocated space. */
2314 rel_hdr
->contents
= (unsigned char *) bfd_zalloc (abfd
, rel_hdr
->sh_size
);
2315 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
2318 /* We only allocate one set of hash entries, so we only do it the
2319 first time we are called. */
2320 if (elf_section_data (o
)->rel_hashes
== NULL
2323 struct elf_link_hash_entry
**p
;
2325 p
= (struct elf_link_hash_entry
**)
2326 bfd_zmalloc (num_rel_hashes
* sizeof (struct elf_link_hash_entry
*));
2330 elf_section_data (o
)->rel_hashes
= p
;
2336 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2337 originated from the section given by INPUT_REL_HDR) to the
2341 _bfd_elf_link_output_relocs (bfd
*output_bfd
,
2342 asection
*input_section
,
2343 Elf_Internal_Shdr
*input_rel_hdr
,
2344 Elf_Internal_Rela
*internal_relocs
,
2345 struct elf_link_hash_entry
**rel_hash
2348 Elf_Internal_Rela
*irela
;
2349 Elf_Internal_Rela
*irelaend
;
2351 Elf_Internal_Shdr
*output_rel_hdr
;
2352 asection
*output_section
;
2353 unsigned int *rel_countp
= NULL
;
2354 const struct elf_backend_data
*bed
;
2355 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
2357 output_section
= input_section
->output_section
;
2358 output_rel_hdr
= NULL
;
2360 if (elf_section_data (output_section
)->rel_hdr
.sh_entsize
2361 == input_rel_hdr
->sh_entsize
)
2363 output_rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
2364 rel_countp
= &elf_section_data (output_section
)->rel_count
;
2366 else if (elf_section_data (output_section
)->rel_hdr2
2367 && (elf_section_data (output_section
)->rel_hdr2
->sh_entsize
2368 == input_rel_hdr
->sh_entsize
))
2370 output_rel_hdr
= elf_section_data (output_section
)->rel_hdr2
;
2371 rel_countp
= &elf_section_data (output_section
)->rel_count2
;
2375 (*_bfd_error_handler
)
2376 (_("%B: relocation size mismatch in %B section %A"),
2377 output_bfd
, input_section
->owner
, input_section
);
2378 bfd_set_error (bfd_error_wrong_format
);
2382 bed
= get_elf_backend_data (output_bfd
);
2383 if (input_rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2384 swap_out
= bed
->s
->swap_reloc_out
;
2385 else if (input_rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2386 swap_out
= bed
->s
->swap_reloca_out
;
2390 erel
= output_rel_hdr
->contents
;
2391 erel
+= *rel_countp
* input_rel_hdr
->sh_entsize
;
2392 irela
= internal_relocs
;
2393 irelaend
= irela
+ (NUM_SHDR_ENTRIES (input_rel_hdr
)
2394 * bed
->s
->int_rels_per_ext_rel
);
2395 while (irela
< irelaend
)
2397 (*swap_out
) (output_bfd
, irela
, erel
);
2398 irela
+= bed
->s
->int_rels_per_ext_rel
;
2399 erel
+= input_rel_hdr
->sh_entsize
;
2402 /* Bump the counter, so that we know where to add the next set of
2404 *rel_countp
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
2409 /* Make weak undefined symbols in PIE dynamic. */
2412 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info
*info
,
2413 struct elf_link_hash_entry
*h
)
2417 && h
->root
.type
== bfd_link_hash_undefweak
)
2418 return bfd_elf_link_record_dynamic_symbol (info
, h
);
2423 /* Fix up the flags for a symbol. This handles various cases which
2424 can only be fixed after all the input files are seen. This is
2425 currently called by both adjust_dynamic_symbol and
2426 assign_sym_version, which is unnecessary but perhaps more robust in
2427 the face of future changes. */
2430 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry
*h
,
2431 struct elf_info_failed
*eif
)
2433 const struct elf_backend_data
*bed
;
2435 /* If this symbol was mentioned in a non-ELF file, try to set
2436 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2437 permit a non-ELF file to correctly refer to a symbol defined in
2438 an ELF dynamic object. */
2441 while (h
->root
.type
== bfd_link_hash_indirect
)
2442 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2444 if (h
->root
.type
!= bfd_link_hash_defined
2445 && h
->root
.type
!= bfd_link_hash_defweak
)
2448 h
->ref_regular_nonweak
= 1;
2452 if (h
->root
.u
.def
.section
->owner
!= NULL
2453 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2454 == bfd_target_elf_flavour
))
2457 h
->ref_regular_nonweak
= 1;
2463 if (h
->dynindx
== -1
2467 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
2476 /* Unfortunately, NON_ELF is only correct if the symbol
2477 was first seen in a non-ELF file. Fortunately, if the symbol
2478 was first seen in an ELF file, we're probably OK unless the
2479 symbol was defined in a non-ELF file. Catch that case here.
2480 FIXME: We're still in trouble if the symbol was first seen in
2481 a dynamic object, and then later in a non-ELF regular object. */
2482 if ((h
->root
.type
== bfd_link_hash_defined
2483 || h
->root
.type
== bfd_link_hash_defweak
)
2485 && (h
->root
.u
.def
.section
->owner
!= NULL
2486 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2487 != bfd_target_elf_flavour
)
2488 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
2489 && !h
->def_dynamic
)))
2493 /* Backend specific symbol fixup. */
2494 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
2495 if (bed
->elf_backend_fixup_symbol
2496 && !(*bed
->elf_backend_fixup_symbol
) (eif
->info
, h
))
2499 /* If this is a final link, and the symbol was defined as a common
2500 symbol in a regular object file, and there was no definition in
2501 any dynamic object, then the linker will have allocated space for
2502 the symbol in a common section but the DEF_REGULAR
2503 flag will not have been set. */
2504 if (h
->root
.type
== bfd_link_hash_defined
2508 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
2511 /* If -Bsymbolic was used (which means to bind references to global
2512 symbols to the definition within the shared object), and this
2513 symbol was defined in a regular object, then it actually doesn't
2514 need a PLT entry. Likewise, if the symbol has non-default
2515 visibility. If the symbol has hidden or internal visibility, we
2516 will force it local. */
2518 && eif
->info
->shared
2519 && is_elf_hash_table (eif
->info
->hash
)
2520 && (SYMBOLIC_BIND (eif
->info
, h
)
2521 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
2524 bfd_boolean force_local
;
2526 force_local
= (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
2527 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
);
2528 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, force_local
);
2531 /* If a weak undefined symbol has non-default visibility, we also
2532 hide it from the dynamic linker. */
2533 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
2534 && h
->root
.type
== bfd_link_hash_undefweak
)
2535 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
2537 /* If this is a weak defined symbol in a dynamic object, and we know
2538 the real definition in the dynamic object, copy interesting flags
2539 over to the real definition. */
2540 if (h
->u
.weakdef
!= NULL
)
2542 struct elf_link_hash_entry
*weakdef
;
2544 weakdef
= h
->u
.weakdef
;
2545 if (h
->root
.type
== bfd_link_hash_indirect
)
2546 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2548 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2549 || h
->root
.type
== bfd_link_hash_defweak
);
2550 BFD_ASSERT (weakdef
->def_dynamic
);
2552 /* If the real definition is defined by a regular object file,
2553 don't do anything special. See the longer description in
2554 _bfd_elf_adjust_dynamic_symbol, below. */
2555 if (weakdef
->def_regular
)
2556 h
->u
.weakdef
= NULL
;
2559 BFD_ASSERT (weakdef
->root
.type
== bfd_link_hash_defined
2560 || weakdef
->root
.type
== bfd_link_hash_defweak
);
2561 (*bed
->elf_backend_copy_indirect_symbol
) (eif
->info
, weakdef
, h
);
2568 /* Make the backend pick a good value for a dynamic symbol. This is
2569 called via elf_link_hash_traverse, and also calls itself
2573 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry
*h
, void *data
)
2575 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
2577 const struct elf_backend_data
*bed
;
2579 if (! is_elf_hash_table (eif
->info
->hash
))
2582 if (h
->root
.type
== bfd_link_hash_warning
)
2584 h
->got
= elf_hash_table (eif
->info
)->init_got_offset
;
2585 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2587 /* When warning symbols are created, they **replace** the "real"
2588 entry in the hash table, thus we never get to see the real
2589 symbol in a hash traversal. So look at it now. */
2590 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2593 /* Ignore indirect symbols. These are added by the versioning code. */
2594 if (h
->root
.type
== bfd_link_hash_indirect
)
2597 /* Fix the symbol flags. */
2598 if (! _bfd_elf_fix_symbol_flags (h
, eif
))
2601 /* If this symbol does not require a PLT entry, and it is not
2602 defined by a dynamic object, or is not referenced by a regular
2603 object, ignore it. We do have to handle a weak defined symbol,
2604 even if no regular object refers to it, if we decided to add it
2605 to the dynamic symbol table. FIXME: Do we normally need to worry
2606 about symbols which are defined by one dynamic object and
2607 referenced by another one? */
2609 && h
->type
!= STT_GNU_IFUNC
2613 && (h
->u
.weakdef
== NULL
|| h
->u
.weakdef
->dynindx
== -1))))
2615 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2619 /* If we've already adjusted this symbol, don't do it again. This
2620 can happen via a recursive call. */
2621 if (h
->dynamic_adjusted
)
2624 /* Don't look at this symbol again. Note that we must set this
2625 after checking the above conditions, because we may look at a
2626 symbol once, decide not to do anything, and then get called
2627 recursively later after REF_REGULAR is set below. */
2628 h
->dynamic_adjusted
= 1;
2630 /* If this is a weak definition, and we know a real definition, and
2631 the real symbol is not itself defined by a regular object file,
2632 then get a good value for the real definition. We handle the
2633 real symbol first, for the convenience of the backend routine.
2635 Note that there is a confusing case here. If the real definition
2636 is defined by a regular object file, we don't get the real symbol
2637 from the dynamic object, but we do get the weak symbol. If the
2638 processor backend uses a COPY reloc, then if some routine in the
2639 dynamic object changes the real symbol, we will not see that
2640 change in the corresponding weak symbol. This is the way other
2641 ELF linkers work as well, and seems to be a result of the shared
2644 I will clarify this issue. Most SVR4 shared libraries define the
2645 variable _timezone and define timezone as a weak synonym. The
2646 tzset call changes _timezone. If you write
2647 extern int timezone;
2649 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2650 you might expect that, since timezone is a synonym for _timezone,
2651 the same number will print both times. However, if the processor
2652 backend uses a COPY reloc, then actually timezone will be copied
2653 into your process image, and, since you define _timezone
2654 yourself, _timezone will not. Thus timezone and _timezone will
2655 wind up at different memory locations. The tzset call will set
2656 _timezone, leaving timezone unchanged. */
2658 if (h
->u
.weakdef
!= NULL
)
2660 /* If we get to this point, we know there is an implicit
2661 reference by a regular object file via the weak symbol H.
2662 FIXME: Is this really true? What if the traversal finds
2663 H->U.WEAKDEF before it finds H? */
2664 h
->u
.weakdef
->ref_regular
= 1;
2666 if (! _bfd_elf_adjust_dynamic_symbol (h
->u
.weakdef
, eif
))
2670 /* If a symbol has no type and no size and does not require a PLT
2671 entry, then we are probably about to do the wrong thing here: we
2672 are probably going to create a COPY reloc for an empty object.
2673 This case can arise when a shared object is built with assembly
2674 code, and the assembly code fails to set the symbol type. */
2676 && h
->type
== STT_NOTYPE
2678 (*_bfd_error_handler
)
2679 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2680 h
->root
.root
.string
);
2682 dynobj
= elf_hash_table (eif
->info
)->dynobj
;
2683 bed
= get_elf_backend_data (dynobj
);
2685 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
2694 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2698 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry
*h
,
2701 unsigned int power_of_two
;
2703 asection
*sec
= h
->root
.u
.def
.section
;
2705 /* The section aligment of definition is the maximum alignment
2706 requirement of symbols defined in the section. Since we don't
2707 know the symbol alignment requirement, we start with the
2708 maximum alignment and check low bits of the symbol address
2709 for the minimum alignment. */
2710 power_of_two
= bfd_get_section_alignment (sec
->owner
, sec
);
2711 mask
= ((bfd_vma
) 1 << power_of_two
) - 1;
2712 while ((h
->root
.u
.def
.value
& mask
) != 0)
2718 if (power_of_two
> bfd_get_section_alignment (dynbss
->owner
,
2721 /* Adjust the section alignment if needed. */
2722 if (! bfd_set_section_alignment (dynbss
->owner
, dynbss
,
2727 /* We make sure that the symbol will be aligned properly. */
2728 dynbss
->size
= BFD_ALIGN (dynbss
->size
, mask
+ 1);
2730 /* Define the symbol as being at this point in DYNBSS. */
2731 h
->root
.u
.def
.section
= dynbss
;
2732 h
->root
.u
.def
.value
= dynbss
->size
;
2734 /* Increment the size of DYNBSS to make room for the symbol. */
2735 dynbss
->size
+= h
->size
;
2740 /* Adjust all external symbols pointing into SEC_MERGE sections
2741 to reflect the object merging within the sections. */
2744 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry
*h
, void *data
)
2748 if (h
->root
.type
== bfd_link_hash_warning
)
2749 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2751 if ((h
->root
.type
== bfd_link_hash_defined
2752 || h
->root
.type
== bfd_link_hash_defweak
)
2753 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
2754 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
2756 bfd
*output_bfd
= (bfd
*) data
;
2758 h
->root
.u
.def
.value
=
2759 _bfd_merged_section_offset (output_bfd
,
2760 &h
->root
.u
.def
.section
,
2761 elf_section_data (sec
)->sec_info
,
2762 h
->root
.u
.def
.value
);
2768 /* Returns false if the symbol referred to by H should be considered
2769 to resolve local to the current module, and true if it should be
2770 considered to bind dynamically. */
2773 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
2774 struct bfd_link_info
*info
,
2775 bfd_boolean ignore_protected
)
2777 bfd_boolean binding_stays_local_p
;
2778 const struct elf_backend_data
*bed
;
2779 struct elf_link_hash_table
*hash_table
;
2784 while (h
->root
.type
== bfd_link_hash_indirect
2785 || h
->root
.type
== bfd_link_hash_warning
)
2786 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2788 /* If it was forced local, then clearly it's not dynamic. */
2789 if (h
->dynindx
== -1)
2791 if (h
->forced_local
)
2794 /* Identify the cases where name binding rules say that a
2795 visible symbol resolves locally. */
2796 binding_stays_local_p
= info
->executable
|| SYMBOLIC_BIND (info
, h
);
2798 switch (ELF_ST_VISIBILITY (h
->other
))
2805 hash_table
= elf_hash_table (info
);
2806 if (!is_elf_hash_table (hash_table
))
2809 bed
= get_elf_backend_data (hash_table
->dynobj
);
2811 /* Proper resolution for function pointer equality may require
2812 that these symbols perhaps be resolved dynamically, even though
2813 we should be resolving them to the current module. */
2814 if (!ignore_protected
|| !bed
->is_function_type (h
->type
))
2815 binding_stays_local_p
= TRUE
;
2822 /* If it isn't defined locally, then clearly it's dynamic. */
2823 if (!h
->def_regular
)
2826 /* Otherwise, the symbol is dynamic if binding rules don't tell
2827 us that it remains local. */
2828 return !binding_stays_local_p
;
2831 /* Return true if the symbol referred to by H should be considered
2832 to resolve local to the current module, and false otherwise. Differs
2833 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2834 undefined symbols and weak symbols. */
2837 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry
*h
,
2838 struct bfd_link_info
*info
,
2839 bfd_boolean local_protected
)
2841 const struct elf_backend_data
*bed
;
2842 struct elf_link_hash_table
*hash_table
;
2844 /* If it's a local sym, of course we resolve locally. */
2848 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2849 if (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
2850 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
)
2853 /* Common symbols that become definitions don't get the DEF_REGULAR
2854 flag set, so test it first, and don't bail out. */
2855 if (ELF_COMMON_DEF_P (h
))
2857 /* If we don't have a definition in a regular file, then we can't
2858 resolve locally. The sym is either undefined or dynamic. */
2859 else if (!h
->def_regular
)
2862 /* Forced local symbols resolve locally. */
2863 if (h
->forced_local
)
2866 /* As do non-dynamic symbols. */
2867 if (h
->dynindx
== -1)
2870 /* At this point, we know the symbol is defined and dynamic. In an
2871 executable it must resolve locally, likewise when building symbolic
2872 shared libraries. */
2873 if (info
->executable
|| SYMBOLIC_BIND (info
, h
))
2876 /* Now deal with defined dynamic symbols in shared libraries. Ones
2877 with default visibility might not resolve locally. */
2878 if (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
2881 hash_table
= elf_hash_table (info
);
2882 if (!is_elf_hash_table (hash_table
))
2885 bed
= get_elf_backend_data (hash_table
->dynobj
);
2887 /* STV_PROTECTED non-function symbols are local. */
2888 if (!bed
->is_function_type (h
->type
))
2891 /* Function pointer equality tests may require that STV_PROTECTED
2892 symbols be treated as dynamic symbols, even when we know that the
2893 dynamic linker will resolve them locally. */
2894 return local_protected
;
2897 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2898 aligned. Returns the first TLS output section. */
2900 struct bfd_section
*
2901 _bfd_elf_tls_setup (bfd
*obfd
, struct bfd_link_info
*info
)
2903 struct bfd_section
*sec
, *tls
;
2904 unsigned int align
= 0;
2906 for (sec
= obfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2907 if ((sec
->flags
& SEC_THREAD_LOCAL
) != 0)
2911 for (; sec
!= NULL
&& (sec
->flags
& SEC_THREAD_LOCAL
) != 0; sec
= sec
->next
)
2912 if (sec
->alignment_power
> align
)
2913 align
= sec
->alignment_power
;
2915 elf_hash_table (info
)->tls_sec
= tls
;
2917 /* Ensure the alignment of the first section is the largest alignment,
2918 so that the tls segment starts aligned. */
2920 tls
->alignment_power
= align
;
2925 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2927 is_global_data_symbol_definition (bfd
*abfd ATTRIBUTE_UNUSED
,
2928 Elf_Internal_Sym
*sym
)
2930 const struct elf_backend_data
*bed
;
2932 /* Local symbols do not count, but target specific ones might. */
2933 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
2934 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
2937 bed
= get_elf_backend_data (abfd
);
2938 /* Function symbols do not count. */
2939 if (bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)))
2942 /* If the section is undefined, then so is the symbol. */
2943 if (sym
->st_shndx
== SHN_UNDEF
)
2946 /* If the symbol is defined in the common section, then
2947 it is a common definition and so does not count. */
2948 if (bed
->common_definition (sym
))
2951 /* If the symbol is in a target specific section then we
2952 must rely upon the backend to tell us what it is. */
2953 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
2954 /* FIXME - this function is not coded yet:
2956 return _bfd_is_global_symbol_definition (abfd, sym);
2958 Instead for now assume that the definition is not global,
2959 Even if this is wrong, at least the linker will behave
2960 in the same way that it used to do. */
2966 /* Search the symbol table of the archive element of the archive ABFD
2967 whose archive map contains a mention of SYMDEF, and determine if
2968 the symbol is defined in this element. */
2970 elf_link_is_defined_archive_symbol (bfd
* abfd
, carsym
* symdef
)
2972 Elf_Internal_Shdr
* hdr
;
2973 bfd_size_type symcount
;
2974 bfd_size_type extsymcount
;
2975 bfd_size_type extsymoff
;
2976 Elf_Internal_Sym
*isymbuf
;
2977 Elf_Internal_Sym
*isym
;
2978 Elf_Internal_Sym
*isymend
;
2981 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
2985 if (! bfd_check_format (abfd
, bfd_object
))
2988 /* If we have already included the element containing this symbol in the
2989 link then we do not need to include it again. Just claim that any symbol
2990 it contains is not a definition, so that our caller will not decide to
2991 (re)include this element. */
2992 if (abfd
->archive_pass
)
2995 /* Select the appropriate symbol table. */
2996 if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
2997 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2999 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3001 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
3003 /* The sh_info field of the symtab header tells us where the
3004 external symbols start. We don't care about the local symbols. */
3005 if (elf_bad_symtab (abfd
))
3007 extsymcount
= symcount
;
3012 extsymcount
= symcount
- hdr
->sh_info
;
3013 extsymoff
= hdr
->sh_info
;
3016 if (extsymcount
== 0)
3019 /* Read in the symbol table. */
3020 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3022 if (isymbuf
== NULL
)
3025 /* Scan the symbol table looking for SYMDEF. */
3027 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
; isym
< isymend
; isym
++)
3031 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3036 if (strcmp (name
, symdef
->name
) == 0)
3038 result
= is_global_data_symbol_definition (abfd
, isym
);
3048 /* Add an entry to the .dynamic table. */
3051 _bfd_elf_add_dynamic_entry (struct bfd_link_info
*info
,
3055 struct elf_link_hash_table
*hash_table
;
3056 const struct elf_backend_data
*bed
;
3058 bfd_size_type newsize
;
3059 bfd_byte
*newcontents
;
3060 Elf_Internal_Dyn dyn
;
3062 hash_table
= elf_hash_table (info
);
3063 if (! is_elf_hash_table (hash_table
))
3066 bed
= get_elf_backend_data (hash_table
->dynobj
);
3067 s
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3068 BFD_ASSERT (s
!= NULL
);
3070 newsize
= s
->size
+ bed
->s
->sizeof_dyn
;
3071 newcontents
= (bfd_byte
*) bfd_realloc (s
->contents
, newsize
);
3072 if (newcontents
== NULL
)
3076 dyn
.d_un
.d_val
= val
;
3077 bed
->s
->swap_dyn_out (hash_table
->dynobj
, &dyn
, newcontents
+ s
->size
);
3080 s
->contents
= newcontents
;
3085 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3086 otherwise just check whether one already exists. Returns -1 on error,
3087 1 if a DT_NEEDED tag already exists, and 0 on success. */
3090 elf_add_dt_needed_tag (bfd
*abfd
,
3091 struct bfd_link_info
*info
,
3095 struct elf_link_hash_table
*hash_table
;
3096 bfd_size_type oldsize
;
3097 bfd_size_type strindex
;
3099 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
3102 hash_table
= elf_hash_table (info
);
3103 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
3104 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
, soname
, FALSE
);
3105 if (strindex
== (bfd_size_type
) -1)
3108 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
3111 const struct elf_backend_data
*bed
;
3114 bed
= get_elf_backend_data (hash_table
->dynobj
);
3115 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3117 for (extdyn
= sdyn
->contents
;
3118 extdyn
< sdyn
->contents
+ sdyn
->size
;
3119 extdyn
+= bed
->s
->sizeof_dyn
)
3121 Elf_Internal_Dyn dyn
;
3123 bed
->s
->swap_dyn_in (hash_table
->dynobj
, extdyn
, &dyn
);
3124 if (dyn
.d_tag
== DT_NEEDED
3125 && dyn
.d_un
.d_val
== strindex
)
3127 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3135 if (!_bfd_elf_link_create_dynamic_sections (hash_table
->dynobj
, info
))
3138 if (!_bfd_elf_add_dynamic_entry (info
, DT_NEEDED
, strindex
))
3142 /* We were just checking for existence of the tag. */
3143 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3149 on_needed_list (const char *soname
, struct bfd_link_needed_list
*needed
)
3151 for (; needed
!= NULL
; needed
= needed
->next
)
3152 if (strcmp (soname
, needed
->name
) == 0)
3158 /* Sort symbol by value and section. */
3160 elf_sort_symbol (const void *arg1
, const void *arg2
)
3162 const struct elf_link_hash_entry
*h1
;
3163 const struct elf_link_hash_entry
*h2
;
3164 bfd_signed_vma vdiff
;
3166 h1
= *(const struct elf_link_hash_entry
**) arg1
;
3167 h2
= *(const struct elf_link_hash_entry
**) arg2
;
3168 vdiff
= h1
->root
.u
.def
.value
- h2
->root
.u
.def
.value
;
3170 return vdiff
> 0 ? 1 : -1;
3173 long sdiff
= h1
->root
.u
.def
.section
->id
- h2
->root
.u
.def
.section
->id
;
3175 return sdiff
> 0 ? 1 : -1;
3180 /* This function is used to adjust offsets into .dynstr for
3181 dynamic symbols. This is called via elf_link_hash_traverse. */
3184 elf_adjust_dynstr_offsets (struct elf_link_hash_entry
*h
, void *data
)
3186 struct elf_strtab_hash
*dynstr
= (struct elf_strtab_hash
*) data
;
3188 if (h
->root
.type
== bfd_link_hash_warning
)
3189 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3191 if (h
->dynindx
!= -1)
3192 h
->dynstr_index
= _bfd_elf_strtab_offset (dynstr
, h
->dynstr_index
);
3196 /* Assign string offsets in .dynstr, update all structures referencing
3200 elf_finalize_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
3202 struct elf_link_hash_table
*hash_table
= elf_hash_table (info
);
3203 struct elf_link_local_dynamic_entry
*entry
;
3204 struct elf_strtab_hash
*dynstr
= hash_table
->dynstr
;
3205 bfd
*dynobj
= hash_table
->dynobj
;
3208 const struct elf_backend_data
*bed
;
3211 _bfd_elf_strtab_finalize (dynstr
);
3212 size
= _bfd_elf_strtab_size (dynstr
);
3214 bed
= get_elf_backend_data (dynobj
);
3215 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3216 BFD_ASSERT (sdyn
!= NULL
);
3218 /* Update all .dynamic entries referencing .dynstr strings. */
3219 for (extdyn
= sdyn
->contents
;
3220 extdyn
< sdyn
->contents
+ sdyn
->size
;
3221 extdyn
+= bed
->s
->sizeof_dyn
)
3223 Elf_Internal_Dyn dyn
;
3225 bed
->s
->swap_dyn_in (dynobj
, extdyn
, &dyn
);
3229 dyn
.d_un
.d_val
= size
;
3239 dyn
.d_un
.d_val
= _bfd_elf_strtab_offset (dynstr
, dyn
.d_un
.d_val
);
3244 bed
->s
->swap_dyn_out (dynobj
, &dyn
, extdyn
);
3247 /* Now update local dynamic symbols. */
3248 for (entry
= hash_table
->dynlocal
; entry
; entry
= entry
->next
)
3249 entry
->isym
.st_name
= _bfd_elf_strtab_offset (dynstr
,
3250 entry
->isym
.st_name
);
3252 /* And the rest of dynamic symbols. */
3253 elf_link_hash_traverse (hash_table
, elf_adjust_dynstr_offsets
, dynstr
);
3255 /* Adjust version definitions. */
3256 if (elf_tdata (output_bfd
)->cverdefs
)
3261 Elf_Internal_Verdef def
;
3262 Elf_Internal_Verdaux defaux
;
3264 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3268 _bfd_elf_swap_verdef_in (output_bfd
, (Elf_External_Verdef
*) p
,
3270 p
+= sizeof (Elf_External_Verdef
);
3271 if (def
.vd_aux
!= sizeof (Elf_External_Verdef
))
3273 for (i
= 0; i
< def
.vd_cnt
; ++i
)
3275 _bfd_elf_swap_verdaux_in (output_bfd
,
3276 (Elf_External_Verdaux
*) p
, &defaux
);
3277 defaux
.vda_name
= _bfd_elf_strtab_offset (dynstr
,
3279 _bfd_elf_swap_verdaux_out (output_bfd
,
3280 &defaux
, (Elf_External_Verdaux
*) p
);
3281 p
+= sizeof (Elf_External_Verdaux
);
3284 while (def
.vd_next
);
3287 /* Adjust version references. */
3288 if (elf_tdata (output_bfd
)->verref
)
3293 Elf_Internal_Verneed need
;
3294 Elf_Internal_Vernaux needaux
;
3296 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3300 _bfd_elf_swap_verneed_in (output_bfd
, (Elf_External_Verneed
*) p
,
3302 need
.vn_file
= _bfd_elf_strtab_offset (dynstr
, need
.vn_file
);
3303 _bfd_elf_swap_verneed_out (output_bfd
, &need
,
3304 (Elf_External_Verneed
*) p
);
3305 p
+= sizeof (Elf_External_Verneed
);
3306 for (i
= 0; i
< need
.vn_cnt
; ++i
)
3308 _bfd_elf_swap_vernaux_in (output_bfd
,
3309 (Elf_External_Vernaux
*) p
, &needaux
);
3310 needaux
.vna_name
= _bfd_elf_strtab_offset (dynstr
,
3312 _bfd_elf_swap_vernaux_out (output_bfd
,
3314 (Elf_External_Vernaux
*) p
);
3315 p
+= sizeof (Elf_External_Vernaux
);
3318 while (need
.vn_next
);
3324 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3325 The default is to only match when the INPUT and OUTPUT are exactly
3329 _bfd_elf_default_relocs_compatible (const bfd_target
*input
,
3330 const bfd_target
*output
)
3332 return input
== output
;
3335 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3336 This version is used when different targets for the same architecture
3337 are virtually identical. */
3340 _bfd_elf_relocs_compatible (const bfd_target
*input
,
3341 const bfd_target
*output
)
3343 const struct elf_backend_data
*obed
, *ibed
;
3345 if (input
== output
)
3348 ibed
= xvec_get_elf_backend_data (input
);
3349 obed
= xvec_get_elf_backend_data (output
);
3351 if (ibed
->arch
!= obed
->arch
)
3354 /* If both backends are using this function, deem them compatible. */
3355 return ibed
->relocs_compatible
== obed
->relocs_compatible
;
3358 /* Add symbols from an ELF object file to the linker hash table. */
3361 elf_link_add_object_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
3363 Elf_Internal_Ehdr
*ehdr
;
3364 Elf_Internal_Shdr
*hdr
;
3365 bfd_size_type symcount
;
3366 bfd_size_type extsymcount
;
3367 bfd_size_type extsymoff
;
3368 struct elf_link_hash_entry
**sym_hash
;
3369 bfd_boolean dynamic
;
3370 Elf_External_Versym
*extversym
= NULL
;
3371 Elf_External_Versym
*ever
;
3372 struct elf_link_hash_entry
*weaks
;
3373 struct elf_link_hash_entry
**nondeflt_vers
= NULL
;
3374 bfd_size_type nondeflt_vers_cnt
= 0;
3375 Elf_Internal_Sym
*isymbuf
= NULL
;
3376 Elf_Internal_Sym
*isym
;
3377 Elf_Internal_Sym
*isymend
;
3378 const struct elf_backend_data
*bed
;
3379 bfd_boolean add_needed
;
3380 struct elf_link_hash_table
*htab
;
3382 void *alloc_mark
= NULL
;
3383 struct bfd_hash_entry
**old_table
= NULL
;
3384 unsigned int old_size
= 0;
3385 unsigned int old_count
= 0;
3386 void *old_tab
= NULL
;
3389 struct bfd_link_hash_entry
*old_undefs
= NULL
;
3390 struct bfd_link_hash_entry
*old_undefs_tail
= NULL
;
3391 long old_dynsymcount
= 0;
3393 size_t hashsize
= 0;
3395 htab
= elf_hash_table (info
);
3396 bed
= get_elf_backend_data (abfd
);
3398 if ((abfd
->flags
& DYNAMIC
) == 0)
3404 /* You can't use -r against a dynamic object. Also, there's no
3405 hope of using a dynamic object which does not exactly match
3406 the format of the output file. */
3407 if (info
->relocatable
3408 || !is_elf_hash_table (htab
)
3409 || info
->output_bfd
->xvec
!= abfd
->xvec
)
3411 if (info
->relocatable
)
3412 bfd_set_error (bfd_error_invalid_operation
);
3414 bfd_set_error (bfd_error_wrong_format
);
3419 ehdr
= elf_elfheader (abfd
);
3420 if (info
->warn_alternate_em
3421 && bed
->elf_machine_code
!= ehdr
->e_machine
3422 && ((bed
->elf_machine_alt1
!= 0
3423 && ehdr
->e_machine
== bed
->elf_machine_alt1
)
3424 || (bed
->elf_machine_alt2
!= 0
3425 && ehdr
->e_machine
== bed
->elf_machine_alt2
)))
3426 info
->callbacks
->einfo
3427 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3428 ehdr
->e_machine
, abfd
, bed
->elf_machine_code
);
3430 /* As a GNU extension, any input sections which are named
3431 .gnu.warning.SYMBOL are treated as warning symbols for the given
3432 symbol. This differs from .gnu.warning sections, which generate
3433 warnings when they are included in an output file. */
3434 if (info
->executable
)
3438 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3442 name
= bfd_get_section_name (abfd
, s
);
3443 if (CONST_STRNEQ (name
, ".gnu.warning."))
3448 name
+= sizeof ".gnu.warning." - 1;
3450 /* If this is a shared object, then look up the symbol
3451 in the hash table. If it is there, and it is already
3452 been defined, then we will not be using the entry
3453 from this shared object, so we don't need to warn.
3454 FIXME: If we see the definition in a regular object
3455 later on, we will warn, but we shouldn't. The only
3456 fix is to keep track of what warnings we are supposed
3457 to emit, and then handle them all at the end of the
3461 struct elf_link_hash_entry
*h
;
3463 h
= elf_link_hash_lookup (htab
, name
, FALSE
, FALSE
, TRUE
);
3465 /* FIXME: What about bfd_link_hash_common? */
3467 && (h
->root
.type
== bfd_link_hash_defined
3468 || h
->root
.type
== bfd_link_hash_defweak
))
3470 /* We don't want to issue this warning. Clobber
3471 the section size so that the warning does not
3472 get copied into the output file. */
3479 msg
= (char *) bfd_alloc (abfd
, sz
+ 1);
3483 if (! bfd_get_section_contents (abfd
, s
, msg
, 0, sz
))
3488 if (! (_bfd_generic_link_add_one_symbol
3489 (info
, abfd
, name
, BSF_WARNING
, s
, 0, msg
,
3490 FALSE
, bed
->collect
, NULL
)))
3493 if (! info
->relocatable
)
3495 /* Clobber the section size so that the warning does
3496 not get copied into the output file. */
3499 /* Also set SEC_EXCLUDE, so that symbols defined in
3500 the warning section don't get copied to the output. */
3501 s
->flags
|= SEC_EXCLUDE
;
3510 /* If we are creating a shared library, create all the dynamic
3511 sections immediately. We need to attach them to something,
3512 so we attach them to this BFD, provided it is the right
3513 format. FIXME: If there are no input BFD's of the same
3514 format as the output, we can't make a shared library. */
3516 && is_elf_hash_table (htab
)
3517 && info
->output_bfd
->xvec
== abfd
->xvec
3518 && !htab
->dynamic_sections_created
)
3520 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
3524 else if (!is_elf_hash_table (htab
))
3529 const char *soname
= NULL
;
3531 struct bfd_link_needed_list
*rpath
= NULL
, *runpath
= NULL
;
3534 /* ld --just-symbols and dynamic objects don't mix very well.
3535 ld shouldn't allow it. */
3536 if ((s
= abfd
->sections
) != NULL
3537 && s
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
3540 /* If this dynamic lib was specified on the command line with
3541 --as-needed in effect, then we don't want to add a DT_NEEDED
3542 tag unless the lib is actually used. Similary for libs brought
3543 in by another lib's DT_NEEDED. When --no-add-needed is used
3544 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3545 any dynamic library in DT_NEEDED tags in the dynamic lib at
3547 add_needed
= (elf_dyn_lib_class (abfd
)
3548 & (DYN_AS_NEEDED
| DYN_DT_NEEDED
3549 | DYN_NO_NEEDED
)) == 0;
3551 s
= bfd_get_section_by_name (abfd
, ".dynamic");
3556 unsigned int elfsec
;
3557 unsigned long shlink
;
3559 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
3566 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
3567 if (elfsec
== SHN_BAD
)
3568 goto error_free_dyn
;
3569 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
3571 for (extdyn
= dynbuf
;
3572 extdyn
< dynbuf
+ s
->size
;
3573 extdyn
+= bed
->s
->sizeof_dyn
)
3575 Elf_Internal_Dyn dyn
;
3577 bed
->s
->swap_dyn_in (abfd
, extdyn
, &dyn
);
3578 if (dyn
.d_tag
== DT_SONAME
)
3580 unsigned int tagv
= dyn
.d_un
.d_val
;
3581 soname
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3583 goto error_free_dyn
;
3585 if (dyn
.d_tag
== DT_NEEDED
)
3587 struct bfd_link_needed_list
*n
, **pn
;
3589 unsigned int tagv
= dyn
.d_un
.d_val
;
3591 amt
= sizeof (struct bfd_link_needed_list
);
3592 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3593 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3594 if (n
== NULL
|| fnm
== NULL
)
3595 goto error_free_dyn
;
3596 amt
= strlen (fnm
) + 1;
3597 anm
= (char *) bfd_alloc (abfd
, amt
);
3599 goto error_free_dyn
;
3600 memcpy (anm
, fnm
, amt
);
3604 for (pn
= &htab
->needed
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3608 if (dyn
.d_tag
== DT_RUNPATH
)
3610 struct bfd_link_needed_list
*n
, **pn
;
3612 unsigned int tagv
= dyn
.d_un
.d_val
;
3614 amt
= sizeof (struct bfd_link_needed_list
);
3615 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3616 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3617 if (n
== NULL
|| fnm
== NULL
)
3618 goto error_free_dyn
;
3619 amt
= strlen (fnm
) + 1;
3620 anm
= (char *) bfd_alloc (abfd
, amt
);
3622 goto error_free_dyn
;
3623 memcpy (anm
, fnm
, amt
);
3627 for (pn
= & runpath
;
3633 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3634 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
3636 struct bfd_link_needed_list
*n
, **pn
;
3638 unsigned int tagv
= dyn
.d_un
.d_val
;
3640 amt
= sizeof (struct bfd_link_needed_list
);
3641 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3642 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3643 if (n
== NULL
|| fnm
== NULL
)
3644 goto error_free_dyn
;
3645 amt
= strlen (fnm
) + 1;
3646 anm
= (char *) bfd_alloc (abfd
, amt
);
3648 goto error_free_dyn
;
3649 memcpy (anm
, fnm
, amt
);
3659 if (dyn
.d_tag
== DT_AUDIT
)
3661 unsigned int tagv
= dyn
.d_un
.d_val
;
3662 audit
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3669 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3670 frees all more recently bfd_alloc'd blocks as well. */
3676 struct bfd_link_needed_list
**pn
;
3677 for (pn
= &htab
->runpath
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3682 /* We do not want to include any of the sections in a dynamic
3683 object in the output file. We hack by simply clobbering the
3684 list of sections in the BFD. This could be handled more
3685 cleanly by, say, a new section flag; the existing
3686 SEC_NEVER_LOAD flag is not the one we want, because that one
3687 still implies that the section takes up space in the output
3689 bfd_section_list_clear (abfd
);
3691 /* Find the name to use in a DT_NEEDED entry that refers to this
3692 object. If the object has a DT_SONAME entry, we use it.
3693 Otherwise, if the generic linker stuck something in
3694 elf_dt_name, we use that. Otherwise, we just use the file
3696 if (soname
== NULL
|| *soname
== '\0')
3698 soname
= elf_dt_name (abfd
);
3699 if (soname
== NULL
|| *soname
== '\0')
3700 soname
= bfd_get_filename (abfd
);
3703 /* Save the SONAME because sometimes the linker emulation code
3704 will need to know it. */
3705 elf_dt_name (abfd
) = soname
;
3707 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
3711 /* If we have already included this dynamic object in the
3712 link, just ignore it. There is no reason to include a
3713 particular dynamic object more than once. */
3717 /* Save the DT_AUDIT entry for the linker emulation code. */
3718 elf_dt_audit (abfd
) = audit
;
3721 /* If this is a dynamic object, we always link against the .dynsym
3722 symbol table, not the .symtab symbol table. The dynamic linker
3723 will only see the .dynsym symbol table, so there is no reason to
3724 look at .symtab for a dynamic object. */
3726 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
3727 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3729 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3731 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
3733 /* The sh_info field of the symtab header tells us where the
3734 external symbols start. We don't care about the local symbols at
3736 if (elf_bad_symtab (abfd
))
3738 extsymcount
= symcount
;
3743 extsymcount
= symcount
- hdr
->sh_info
;
3744 extsymoff
= hdr
->sh_info
;
3748 if (extsymcount
!= 0)
3750 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3752 if (isymbuf
== NULL
)
3755 /* We store a pointer to the hash table entry for each external
3757 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3758 sym_hash
= (struct elf_link_hash_entry
**) bfd_alloc (abfd
, amt
);
3759 if (sym_hash
== NULL
)
3760 goto error_free_sym
;
3761 elf_sym_hashes (abfd
) = sym_hash
;
3766 /* Read in any version definitions. */
3767 if (!_bfd_elf_slurp_version_tables (abfd
,
3768 info
->default_imported_symver
))
3769 goto error_free_sym
;
3771 /* Read in the symbol versions, but don't bother to convert them
3772 to internal format. */
3773 if (elf_dynversym (abfd
) != 0)
3775 Elf_Internal_Shdr
*versymhdr
;
3777 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
3778 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
3779 if (extversym
== NULL
)
3780 goto error_free_sym
;
3781 amt
= versymhdr
->sh_size
;
3782 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
3783 || bfd_bread (extversym
, amt
, abfd
) != amt
)
3784 goto error_free_vers
;
3788 /* If we are loading an as-needed shared lib, save the symbol table
3789 state before we start adding symbols. If the lib turns out
3790 to be unneeded, restore the state. */
3791 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
3796 for (entsize
= 0, i
= 0; i
< htab
->root
.table
.size
; i
++)
3798 struct bfd_hash_entry
*p
;
3799 struct elf_link_hash_entry
*h
;
3801 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3803 h
= (struct elf_link_hash_entry
*) p
;
3804 entsize
+= htab
->root
.table
.entsize
;
3805 if (h
->root
.type
== bfd_link_hash_warning
)
3806 entsize
+= htab
->root
.table
.entsize
;
3810 tabsize
= htab
->root
.table
.size
* sizeof (struct bfd_hash_entry
*);
3811 hashsize
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3812 old_tab
= bfd_malloc (tabsize
+ entsize
+ hashsize
);
3813 if (old_tab
== NULL
)
3814 goto error_free_vers
;
3816 /* Remember the current objalloc pointer, so that all mem for
3817 symbols added can later be reclaimed. */
3818 alloc_mark
= bfd_hash_allocate (&htab
->root
.table
, 1);
3819 if (alloc_mark
== NULL
)
3820 goto error_free_vers
;
3822 /* Make a special call to the linker "notice" function to
3823 tell it that we are about to handle an as-needed lib. */
3824 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
3826 goto error_free_vers
;
3828 /* Clone the symbol table and sym hashes. Remember some
3829 pointers into the symbol table, and dynamic symbol count. */
3830 old_hash
= (char *) old_tab
+ tabsize
;
3831 old_ent
= (char *) old_hash
+ hashsize
;
3832 memcpy (old_tab
, htab
->root
.table
.table
, tabsize
);
3833 memcpy (old_hash
, sym_hash
, hashsize
);
3834 old_undefs
= htab
->root
.undefs
;
3835 old_undefs_tail
= htab
->root
.undefs_tail
;
3836 old_table
= htab
->root
.table
.table
;
3837 old_size
= htab
->root
.table
.size
;
3838 old_count
= htab
->root
.table
.count
;
3839 old_dynsymcount
= htab
->dynsymcount
;
3841 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
3843 struct bfd_hash_entry
*p
;
3844 struct elf_link_hash_entry
*h
;
3846 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3848 memcpy (old_ent
, p
, htab
->root
.table
.entsize
);
3849 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3850 h
= (struct elf_link_hash_entry
*) p
;
3851 if (h
->root
.type
== bfd_link_hash_warning
)
3853 memcpy (old_ent
, h
->root
.u
.i
.link
, htab
->root
.table
.entsize
);
3854 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3861 ever
= extversym
!= NULL
? extversym
+ extsymoff
: NULL
;
3862 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
;
3864 isym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
3868 asection
*sec
, *new_sec
;
3871 struct elf_link_hash_entry
*h
;
3872 bfd_boolean definition
;
3873 bfd_boolean size_change_ok
;
3874 bfd_boolean type_change_ok
;
3875 bfd_boolean new_weakdef
;
3876 bfd_boolean override
;
3878 unsigned int old_alignment
;
3880 bfd
* undef_bfd
= NULL
;
3884 flags
= BSF_NO_FLAGS
;
3886 value
= isym
->st_value
;
3888 common
= bed
->common_definition (isym
);
3890 bind
= ELF_ST_BIND (isym
->st_info
);
3894 /* This should be impossible, since ELF requires that all
3895 global symbols follow all local symbols, and that sh_info
3896 point to the first global symbol. Unfortunately, Irix 5
3901 if (isym
->st_shndx
!= SHN_UNDEF
&& !common
)
3909 case STB_GNU_UNIQUE
:
3910 flags
= BSF_GNU_UNIQUE
;
3914 /* Leave it up to the processor backend. */
3918 if (isym
->st_shndx
== SHN_UNDEF
)
3919 sec
= bfd_und_section_ptr
;
3920 else if (isym
->st_shndx
== SHN_ABS
)
3921 sec
= bfd_abs_section_ptr
;
3922 else if (isym
->st_shndx
== SHN_COMMON
)
3924 sec
= bfd_com_section_ptr
;
3925 /* What ELF calls the size we call the value. What ELF
3926 calls the value we call the alignment. */
3927 value
= isym
->st_size
;
3931 sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3933 sec
= bfd_abs_section_ptr
;
3934 else if (sec
->kept_section
)
3936 /* Symbols from discarded section are undefined. We keep
3938 sec
= bfd_und_section_ptr
;
3939 isym
->st_shndx
= SHN_UNDEF
;
3941 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
3945 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3948 goto error_free_vers
;
3950 if (isym
->st_shndx
== SHN_COMMON
3951 && ELF_ST_TYPE (isym
->st_info
) == STT_TLS
3952 && !info
->relocatable
)
3954 asection
*tcomm
= bfd_get_section_by_name (abfd
, ".tcommon");
3958 tcomm
= bfd_make_section_with_flags (abfd
, ".tcommon",
3961 | SEC_LINKER_CREATED
3962 | SEC_THREAD_LOCAL
));
3964 goto error_free_vers
;
3968 else if (bed
->elf_add_symbol_hook
)
3970 if (! (*bed
->elf_add_symbol_hook
) (abfd
, info
, isym
, &name
, &flags
,
3972 goto error_free_vers
;
3974 /* The hook function sets the name to NULL if this symbol
3975 should be skipped for some reason. */
3980 /* Sanity check that all possibilities were handled. */
3983 bfd_set_error (bfd_error_bad_value
);
3984 goto error_free_vers
;
3987 if (bfd_is_und_section (sec
)
3988 || bfd_is_com_section (sec
))
3993 size_change_ok
= FALSE
;
3994 type_change_ok
= bed
->type_change_ok
;
3999 if (is_elf_hash_table (htab
))
4001 Elf_Internal_Versym iver
;
4002 unsigned int vernum
= 0;
4007 if (info
->default_imported_symver
)
4008 /* Use the default symbol version created earlier. */
4009 iver
.vs_vers
= elf_tdata (abfd
)->cverdefs
;
4014 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
4016 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
4018 /* If this is a hidden symbol, or if it is not version
4019 1, we append the version name to the symbol name.
4020 However, we do not modify a non-hidden absolute symbol
4021 if it is not a function, because it might be the version
4022 symbol itself. FIXME: What if it isn't? */
4023 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
4025 && (!bfd_is_abs_section (sec
)
4026 || bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
)))))
4029 size_t namelen
, verlen
, newlen
;
4032 if (isym
->st_shndx
!= SHN_UNDEF
)
4034 if (vernum
> elf_tdata (abfd
)->cverdefs
)
4036 else if (vernum
> 1)
4038 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
4044 (*_bfd_error_handler
)
4045 (_("%B: %s: invalid version %u (max %d)"),
4047 elf_tdata (abfd
)->cverdefs
);
4048 bfd_set_error (bfd_error_bad_value
);
4049 goto error_free_vers
;
4054 /* We cannot simply test for the number of
4055 entries in the VERNEED section since the
4056 numbers for the needed versions do not start
4058 Elf_Internal_Verneed
*t
;
4061 for (t
= elf_tdata (abfd
)->verref
;
4065 Elf_Internal_Vernaux
*a
;
4067 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
4069 if (a
->vna_other
== vernum
)
4071 verstr
= a
->vna_nodename
;
4080 (*_bfd_error_handler
)
4081 (_("%B: %s: invalid needed version %d"),
4082 abfd
, name
, vernum
);
4083 bfd_set_error (bfd_error_bad_value
);
4084 goto error_free_vers
;
4088 namelen
= strlen (name
);
4089 verlen
= strlen (verstr
);
4090 newlen
= namelen
+ verlen
+ 2;
4091 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4092 && isym
->st_shndx
!= SHN_UNDEF
)
4095 newname
= (char *) bfd_hash_allocate (&htab
->root
.table
, newlen
);
4096 if (newname
== NULL
)
4097 goto error_free_vers
;
4098 memcpy (newname
, name
, namelen
);
4099 p
= newname
+ namelen
;
4101 /* If this is a defined non-hidden version symbol,
4102 we add another @ to the name. This indicates the
4103 default version of the symbol. */
4104 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4105 && isym
->st_shndx
!= SHN_UNDEF
)
4107 memcpy (p
, verstr
, verlen
+ 1);
4112 /* If this is a definition of a previously undefined symbol
4113 make a note of the bfd that contained the reference in
4114 case we need to refer to it later on in error messages. */
4115 if (! bfd_is_und_section (sec
))
4117 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
4120 && (h
->root
.type
== bfd_link_hash_undefined
4121 || h
->root
.type
== bfd_link_hash_undefweak
)
4122 && h
->root
.u
.undef
.abfd
)
4123 undef_bfd
= h
->root
.u
.undef
.abfd
;
4126 if (!_bfd_elf_merge_symbol (abfd
, info
, name
, isym
, &sec
,
4127 &value
, &old_alignment
,
4128 sym_hash
, &skip
, &override
,
4129 &type_change_ok
, &size_change_ok
))
4130 goto error_free_vers
;
4139 while (h
->root
.type
== bfd_link_hash_indirect
4140 || h
->root
.type
== bfd_link_hash_warning
)
4141 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4143 /* Remember the old alignment if this is a common symbol, so
4144 that we don't reduce the alignment later on. We can't
4145 check later, because _bfd_generic_link_add_one_symbol
4146 will set a default for the alignment which we want to
4147 override. We also remember the old bfd where the existing
4148 definition comes from. */
4149 switch (h
->root
.type
)
4154 case bfd_link_hash_defined
:
4155 case bfd_link_hash_defweak
:
4156 old_bfd
= h
->root
.u
.def
.section
->owner
;
4159 case bfd_link_hash_common
:
4160 old_bfd
= h
->root
.u
.c
.p
->section
->owner
;
4161 old_alignment
= h
->root
.u
.c
.p
->alignment_power
;
4165 if (elf_tdata (abfd
)->verdef
!= NULL
4169 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
4172 if (! (_bfd_generic_link_add_one_symbol
4173 (info
, abfd
, name
, flags
, sec
, value
, NULL
, FALSE
, bed
->collect
,
4174 (struct bfd_link_hash_entry
**) sym_hash
)))
4175 goto error_free_vers
;
4178 while (h
->root
.type
== bfd_link_hash_indirect
4179 || h
->root
.type
== bfd_link_hash_warning
)
4180 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4183 h
->unique_global
= (flags
& BSF_GNU_UNIQUE
) != 0;
4185 new_weakdef
= FALSE
;
4188 && (flags
& BSF_WEAK
) != 0
4189 && !bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
))
4190 && is_elf_hash_table (htab
)
4191 && h
->u
.weakdef
== NULL
)
4193 /* Keep a list of all weak defined non function symbols from
4194 a dynamic object, using the weakdef field. Later in this
4195 function we will set the weakdef field to the correct
4196 value. We only put non-function symbols from dynamic
4197 objects on this list, because that happens to be the only
4198 time we need to know the normal symbol corresponding to a
4199 weak symbol, and the information is time consuming to
4200 figure out. If the weakdef field is not already NULL,
4201 then this symbol was already defined by some previous
4202 dynamic object, and we will be using that previous
4203 definition anyhow. */
4205 h
->u
.weakdef
= weaks
;
4210 /* Set the alignment of a common symbol. */
4211 if ((common
|| bfd_is_com_section (sec
))
4212 && h
->root
.type
== bfd_link_hash_common
)
4217 align
= bfd_log2 (isym
->st_value
);
4220 /* The new symbol is a common symbol in a shared object.
4221 We need to get the alignment from the section. */
4222 align
= new_sec
->alignment_power
;
4224 if (align
> old_alignment
4225 /* Permit an alignment power of zero if an alignment of one
4226 is specified and no other alignments have been specified. */
4227 || (isym
->st_value
== 1 && old_alignment
== 0))
4228 h
->root
.u
.c
.p
->alignment_power
= align
;
4230 h
->root
.u
.c
.p
->alignment_power
= old_alignment
;
4233 if (is_elf_hash_table (htab
))
4237 /* Check the alignment when a common symbol is involved. This
4238 can change when a common symbol is overridden by a normal
4239 definition or a common symbol is ignored due to the old
4240 normal definition. We need to make sure the maximum
4241 alignment is maintained. */
4242 if ((old_alignment
|| common
)
4243 && h
->root
.type
!= bfd_link_hash_common
)
4245 unsigned int common_align
;
4246 unsigned int normal_align
;
4247 unsigned int symbol_align
;
4251 symbol_align
= ffs (h
->root
.u
.def
.value
) - 1;
4252 if (h
->root
.u
.def
.section
->owner
!= NULL
4253 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
4255 normal_align
= h
->root
.u
.def
.section
->alignment_power
;
4256 if (normal_align
> symbol_align
)
4257 normal_align
= symbol_align
;
4260 normal_align
= symbol_align
;
4264 common_align
= old_alignment
;
4265 common_bfd
= old_bfd
;
4270 common_align
= bfd_log2 (isym
->st_value
);
4272 normal_bfd
= old_bfd
;
4275 if (normal_align
< common_align
)
4277 /* PR binutils/2735 */
4278 if (normal_bfd
== NULL
)
4279 (*_bfd_error_handler
)
4280 (_("Warning: alignment %u of common symbol `%s' in %B"
4281 " is greater than the alignment (%u) of its section %A"),
4282 common_bfd
, h
->root
.u
.def
.section
,
4283 1 << common_align
, name
, 1 << normal_align
);
4285 (*_bfd_error_handler
)
4286 (_("Warning: alignment %u of symbol `%s' in %B"
4287 " is smaller than %u in %B"),
4288 normal_bfd
, common_bfd
,
4289 1 << normal_align
, name
, 1 << common_align
);
4293 /* Remember the symbol size if it isn't undefined. */
4294 if ((isym
->st_size
!= 0 && isym
->st_shndx
!= SHN_UNDEF
)
4295 && (definition
|| h
->size
== 0))
4298 && h
->size
!= isym
->st_size
4299 && ! size_change_ok
)
4300 (*_bfd_error_handler
)
4301 (_("Warning: size of symbol `%s' changed"
4302 " from %lu in %B to %lu in %B"),
4304 name
, (unsigned long) h
->size
,
4305 (unsigned long) isym
->st_size
);
4307 h
->size
= isym
->st_size
;
4310 /* If this is a common symbol, then we always want H->SIZE
4311 to be the size of the common symbol. The code just above
4312 won't fix the size if a common symbol becomes larger. We
4313 don't warn about a size change here, because that is
4314 covered by --warn-common. Allow changed between different
4316 if (h
->root
.type
== bfd_link_hash_common
)
4317 h
->size
= h
->root
.u
.c
.size
;
4319 if (ELF_ST_TYPE (isym
->st_info
) != STT_NOTYPE
4320 && (definition
|| h
->type
== STT_NOTYPE
))
4322 unsigned int type
= ELF_ST_TYPE (isym
->st_info
);
4324 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4326 if (type
== STT_GNU_IFUNC
4327 && (abfd
->flags
& DYNAMIC
) != 0)
4330 if (h
->type
!= type
)
4332 if (h
->type
!= STT_NOTYPE
&& ! type_change_ok
)
4333 (*_bfd_error_handler
)
4334 (_("Warning: type of symbol `%s' changed"
4335 " from %d to %d in %B"),
4336 abfd
, name
, h
->type
, type
);
4342 /* Merge st_other field. */
4343 elf_merge_st_other (abfd
, h
, isym
, definition
, dynamic
);
4345 /* Set a flag in the hash table entry indicating the type of
4346 reference or definition we just found. Keep a count of
4347 the number of dynamic symbols we find. A dynamic symbol
4348 is one which is referenced or defined by both a regular
4349 object and a shared object. */
4356 if (bind
!= STB_WEAK
)
4357 h
->ref_regular_nonweak
= 1;
4369 if (! info
->executable
4382 || (h
->u
.weakdef
!= NULL
4384 && h
->u
.weakdef
->dynindx
!= -1))
4388 if (definition
&& (sec
->flags
& SEC_DEBUGGING
) && !info
->relocatable
)
4390 /* We don't want to make debug symbol dynamic. */
4394 /* Check to see if we need to add an indirect symbol for
4395 the default name. */
4396 if (definition
|| h
->root
.type
== bfd_link_hash_common
)
4397 if (!_bfd_elf_add_default_symbol (abfd
, info
, h
, name
, isym
,
4398 &sec
, &value
, &dynsym
,
4400 goto error_free_vers
;
4402 if (definition
&& !dynamic
)
4404 char *p
= strchr (name
, ELF_VER_CHR
);
4405 if (p
!= NULL
&& p
[1] != ELF_VER_CHR
)
4407 /* Queue non-default versions so that .symver x, x@FOO
4408 aliases can be checked. */
4411 amt
= ((isymend
- isym
+ 1)
4412 * sizeof (struct elf_link_hash_entry
*));
4414 (struct elf_link_hash_entry
**) bfd_malloc (amt
);
4416 goto error_free_vers
;
4418 nondeflt_vers
[nondeflt_vers_cnt
++] = h
;
4422 if (dynsym
&& h
->dynindx
== -1)
4424 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4425 goto error_free_vers
;
4426 if (h
->u
.weakdef
!= NULL
4428 && h
->u
.weakdef
->dynindx
== -1)
4430 if (!bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
4431 goto error_free_vers
;
4434 else if (dynsym
&& h
->dynindx
!= -1)
4435 /* If the symbol already has a dynamic index, but
4436 visibility says it should not be visible, turn it into
4438 switch (ELF_ST_VISIBILITY (h
->other
))
4442 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4452 && (elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0
4453 && !on_needed_list (elf_dt_name (abfd
), htab
->needed
))))
4456 const char *soname
= elf_dt_name (abfd
);
4458 /* A symbol from a library loaded via DT_NEEDED of some
4459 other library is referenced by a regular object.
4460 Add a DT_NEEDED entry for it. Issue an error if
4461 --no-add-needed is used. */
4462 if ((elf_dyn_lib_class (abfd
) & DYN_NO_NEEDED
) != 0)
4464 (*_bfd_error_handler
)
4465 (_("%B: undefined reference to symbol '%s'"),
4466 undef_bfd
== NULL
? info
->output_bfd
: undef_bfd
, name
);
4467 (*_bfd_error_handler
)
4468 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4470 bfd_set_error (bfd_error_invalid_operation
);
4471 goto error_free_vers
;
4474 elf_dyn_lib_class (abfd
) = (enum dynamic_lib_link_class
)
4475 (elf_dyn_lib_class (abfd
) & ~DYN_AS_NEEDED
);
4478 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
4480 goto error_free_vers
;
4482 BFD_ASSERT (ret
== 0);
4487 if (extversym
!= NULL
)
4493 if (isymbuf
!= NULL
)
4499 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
4503 /* Restore the symbol table. */
4504 if (bed
->as_needed_cleanup
)
4505 (*bed
->as_needed_cleanup
) (abfd
, info
);
4506 old_hash
= (char *) old_tab
+ tabsize
;
4507 old_ent
= (char *) old_hash
+ hashsize
;
4508 sym_hash
= elf_sym_hashes (abfd
);
4509 htab
->root
.table
.table
= old_table
;
4510 htab
->root
.table
.size
= old_size
;
4511 htab
->root
.table
.count
= old_count
;
4512 memcpy (htab
->root
.table
.table
, old_tab
, tabsize
);
4513 memcpy (sym_hash
, old_hash
, hashsize
);
4514 htab
->root
.undefs
= old_undefs
;
4515 htab
->root
.undefs_tail
= old_undefs_tail
;
4516 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
4518 struct bfd_hash_entry
*p
;
4519 struct elf_link_hash_entry
*h
;
4521 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
4523 h
= (struct elf_link_hash_entry
*) p
;
4524 if (h
->root
.type
== bfd_link_hash_warning
)
4525 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4526 if (h
->dynindx
>= old_dynsymcount
)
4527 _bfd_elf_strtab_delref (htab
->dynstr
, h
->dynstr_index
);
4529 memcpy (p
, old_ent
, htab
->root
.table
.entsize
);
4530 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4531 h
= (struct elf_link_hash_entry
*) p
;
4532 if (h
->root
.type
== bfd_link_hash_warning
)
4534 memcpy (h
->root
.u
.i
.link
, old_ent
, htab
->root
.table
.entsize
);
4535 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4540 /* Make a special call to the linker "notice" function to
4541 tell it that symbols added for crefs may need to be removed. */
4542 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4544 goto error_free_vers
;
4547 objalloc_free_block ((struct objalloc
*) htab
->root
.table
.memory
,
4549 if (nondeflt_vers
!= NULL
)
4550 free (nondeflt_vers
);
4554 if (old_tab
!= NULL
)
4556 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4558 goto error_free_vers
;
4563 /* Now that all the symbols from this input file are created, handle
4564 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4565 if (nondeflt_vers
!= NULL
)
4567 bfd_size_type cnt
, symidx
;
4569 for (cnt
= 0; cnt
< nondeflt_vers_cnt
; ++cnt
)
4571 struct elf_link_hash_entry
*h
= nondeflt_vers
[cnt
], *hi
;
4572 char *shortname
, *p
;
4574 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
4576 || (h
->root
.type
!= bfd_link_hash_defined
4577 && h
->root
.type
!= bfd_link_hash_defweak
))
4580 amt
= p
- h
->root
.root
.string
;
4581 shortname
= (char *) bfd_malloc (amt
+ 1);
4583 goto error_free_vers
;
4584 memcpy (shortname
, h
->root
.root
.string
, amt
);
4585 shortname
[amt
] = '\0';
4587 hi
= (struct elf_link_hash_entry
*)
4588 bfd_link_hash_lookup (&htab
->root
, shortname
,
4589 FALSE
, FALSE
, FALSE
);
4591 && hi
->root
.type
== h
->root
.type
4592 && hi
->root
.u
.def
.value
== h
->root
.u
.def
.value
4593 && hi
->root
.u
.def
.section
== h
->root
.u
.def
.section
)
4595 (*bed
->elf_backend_hide_symbol
) (info
, hi
, TRUE
);
4596 hi
->root
.type
= bfd_link_hash_indirect
;
4597 hi
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
4598 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
4599 sym_hash
= elf_sym_hashes (abfd
);
4601 for (symidx
= 0; symidx
< extsymcount
; ++symidx
)
4602 if (sym_hash
[symidx
] == hi
)
4604 sym_hash
[symidx
] = h
;
4610 free (nondeflt_vers
);
4611 nondeflt_vers
= NULL
;
4614 /* Now set the weakdefs field correctly for all the weak defined
4615 symbols we found. The only way to do this is to search all the
4616 symbols. Since we only need the information for non functions in
4617 dynamic objects, that's the only time we actually put anything on
4618 the list WEAKS. We need this information so that if a regular
4619 object refers to a symbol defined weakly in a dynamic object, the
4620 real symbol in the dynamic object is also put in the dynamic
4621 symbols; we also must arrange for both symbols to point to the
4622 same memory location. We could handle the general case of symbol
4623 aliasing, but a general symbol alias can only be generated in
4624 assembler code, handling it correctly would be very time
4625 consuming, and other ELF linkers don't handle general aliasing
4629 struct elf_link_hash_entry
**hpp
;
4630 struct elf_link_hash_entry
**hppend
;
4631 struct elf_link_hash_entry
**sorted_sym_hash
;
4632 struct elf_link_hash_entry
*h
;
4635 /* Since we have to search the whole symbol list for each weak
4636 defined symbol, search time for N weak defined symbols will be
4637 O(N^2). Binary search will cut it down to O(NlogN). */
4638 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
4639 sorted_sym_hash
= (struct elf_link_hash_entry
**) bfd_malloc (amt
);
4640 if (sorted_sym_hash
== NULL
)
4642 sym_hash
= sorted_sym_hash
;
4643 hpp
= elf_sym_hashes (abfd
);
4644 hppend
= hpp
+ extsymcount
;
4646 for (; hpp
< hppend
; hpp
++)
4650 && h
->root
.type
== bfd_link_hash_defined
4651 && !bed
->is_function_type (h
->type
))
4659 qsort (sorted_sym_hash
, sym_count
,
4660 sizeof (struct elf_link_hash_entry
*),
4663 while (weaks
!= NULL
)
4665 struct elf_link_hash_entry
*hlook
;
4672 weaks
= hlook
->u
.weakdef
;
4673 hlook
->u
.weakdef
= NULL
;
4675 BFD_ASSERT (hlook
->root
.type
== bfd_link_hash_defined
4676 || hlook
->root
.type
== bfd_link_hash_defweak
4677 || hlook
->root
.type
== bfd_link_hash_common
4678 || hlook
->root
.type
== bfd_link_hash_indirect
);
4679 slook
= hlook
->root
.u
.def
.section
;
4680 vlook
= hlook
->root
.u
.def
.value
;
4687 bfd_signed_vma vdiff
;
4689 h
= sorted_sym_hash
[idx
];
4690 vdiff
= vlook
- h
->root
.u
.def
.value
;
4697 long sdiff
= slook
->id
- h
->root
.u
.def
.section
->id
;
4710 /* We didn't find a value/section match. */
4714 for (i
= ilook
; i
< sym_count
; i
++)
4716 h
= sorted_sym_hash
[i
];
4718 /* Stop if value or section doesn't match. */
4719 if (h
->root
.u
.def
.value
!= vlook
4720 || h
->root
.u
.def
.section
!= slook
)
4722 else if (h
!= hlook
)
4724 hlook
->u
.weakdef
= h
;
4726 /* If the weak definition is in the list of dynamic
4727 symbols, make sure the real definition is put
4729 if (hlook
->dynindx
!= -1 && h
->dynindx
== -1)
4731 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4734 free (sorted_sym_hash
);
4739 /* If the real definition is in the list of dynamic
4740 symbols, make sure the weak definition is put
4741 there as well. If we don't do this, then the
4742 dynamic loader might not merge the entries for the
4743 real definition and the weak definition. */
4744 if (h
->dynindx
!= -1 && hlook
->dynindx
== -1)
4746 if (! bfd_elf_link_record_dynamic_symbol (info
, hlook
))
4747 goto err_free_sym_hash
;
4754 free (sorted_sym_hash
);
4757 if (bed
->check_directives
4758 && !(*bed
->check_directives
) (abfd
, info
))
4761 /* If this object is the same format as the output object, and it is
4762 not a shared library, then let the backend look through the
4765 This is required to build global offset table entries and to
4766 arrange for dynamic relocs. It is not required for the
4767 particular common case of linking non PIC code, even when linking
4768 against shared libraries, but unfortunately there is no way of
4769 knowing whether an object file has been compiled PIC or not.
4770 Looking through the relocs is not particularly time consuming.
4771 The problem is that we must either (1) keep the relocs in memory,
4772 which causes the linker to require additional runtime memory or
4773 (2) read the relocs twice from the input file, which wastes time.
4774 This would be a good case for using mmap.
4776 I have no idea how to handle linking PIC code into a file of a
4777 different format. It probably can't be done. */
4779 && is_elf_hash_table (htab
)
4780 && bed
->check_relocs
!= NULL
4781 && (*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
4785 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4787 Elf_Internal_Rela
*internal_relocs
;
4790 if ((o
->flags
& SEC_RELOC
) == 0
4791 || o
->reloc_count
== 0
4792 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
4793 && (o
->flags
& SEC_DEBUGGING
) != 0)
4794 || bfd_is_abs_section (o
->output_section
))
4797 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
4799 if (internal_relocs
== NULL
)
4802 ok
= (*bed
->check_relocs
) (abfd
, info
, o
, internal_relocs
);
4804 if (elf_section_data (o
)->relocs
!= internal_relocs
)
4805 free (internal_relocs
);
4812 /* If this is a non-traditional link, try to optimize the handling
4813 of the .stab/.stabstr sections. */
4815 && ! info
->traditional_format
4816 && is_elf_hash_table (htab
)
4817 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
4821 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
4822 if (stabstr
!= NULL
)
4824 bfd_size_type string_offset
= 0;
4827 for (stab
= abfd
->sections
; stab
; stab
= stab
->next
)
4828 if (CONST_STRNEQ (stab
->name
, ".stab")
4829 && (!stab
->name
[5] ||
4830 (stab
->name
[5] == '.' && ISDIGIT (stab
->name
[6])))
4831 && (stab
->flags
& SEC_MERGE
) == 0
4832 && !bfd_is_abs_section (stab
->output_section
))
4834 struct bfd_elf_section_data
*secdata
;
4836 secdata
= elf_section_data (stab
);
4837 if (! _bfd_link_section_stabs (abfd
, &htab
->stab_info
, stab
,
4838 stabstr
, &secdata
->sec_info
,
4841 if (secdata
->sec_info
)
4842 stab
->sec_info_type
= ELF_INFO_TYPE_STABS
;
4847 if (is_elf_hash_table (htab
) && add_needed
)
4849 /* Add this bfd to the loaded list. */
4850 struct elf_link_loaded_list
*n
;
4852 n
= (struct elf_link_loaded_list
*)
4853 bfd_alloc (abfd
, sizeof (struct elf_link_loaded_list
));
4857 n
->next
= htab
->loaded
;
4864 if (old_tab
!= NULL
)
4866 if (nondeflt_vers
!= NULL
)
4867 free (nondeflt_vers
);
4868 if (extversym
!= NULL
)
4871 if (isymbuf
!= NULL
)
4877 /* Return the linker hash table entry of a symbol that might be
4878 satisfied by an archive symbol. Return -1 on error. */
4880 struct elf_link_hash_entry
*
4881 _bfd_elf_archive_symbol_lookup (bfd
*abfd
,
4882 struct bfd_link_info
*info
,
4885 struct elf_link_hash_entry
*h
;
4889 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
4893 /* If this is a default version (the name contains @@), look up the
4894 symbol again with only one `@' as well as without the version.
4895 The effect is that references to the symbol with and without the
4896 version will be matched by the default symbol in the archive. */
4898 p
= strchr (name
, ELF_VER_CHR
);
4899 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
4902 /* First check with only one `@'. */
4903 len
= strlen (name
);
4904 copy
= (char *) bfd_alloc (abfd
, len
);
4906 return (struct elf_link_hash_entry
*) 0 - 1;
4908 first
= p
- name
+ 1;
4909 memcpy (copy
, name
, first
);
4910 memcpy (copy
+ first
, name
+ first
+ 1, len
- first
);
4912 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
, FALSE
, FALSE
, FALSE
);
4915 /* We also need to check references to the symbol without the
4917 copy
[first
- 1] = '\0';
4918 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
4919 FALSE
, FALSE
, FALSE
);
4922 bfd_release (abfd
, copy
);
4926 /* Add symbols from an ELF archive file to the linker hash table. We
4927 don't use _bfd_generic_link_add_archive_symbols because of a
4928 problem which arises on UnixWare. The UnixWare libc.so is an
4929 archive which includes an entry libc.so.1 which defines a bunch of
4930 symbols. The libc.so archive also includes a number of other
4931 object files, which also define symbols, some of which are the same
4932 as those defined in libc.so.1. Correct linking requires that we
4933 consider each object file in turn, and include it if it defines any
4934 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4935 this; it looks through the list of undefined symbols, and includes
4936 any object file which defines them. When this algorithm is used on
4937 UnixWare, it winds up pulling in libc.so.1 early and defining a
4938 bunch of symbols. This means that some of the other objects in the
4939 archive are not included in the link, which is incorrect since they
4940 precede libc.so.1 in the archive.
4942 Fortunately, ELF archive handling is simpler than that done by
4943 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4944 oddities. In ELF, if we find a symbol in the archive map, and the
4945 symbol is currently undefined, we know that we must pull in that
4948 Unfortunately, we do have to make multiple passes over the symbol
4949 table until nothing further is resolved. */
4952 elf_link_add_archive_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
4955 bfd_boolean
*defined
= NULL
;
4956 bfd_boolean
*included
= NULL
;
4960 const struct elf_backend_data
*bed
;
4961 struct elf_link_hash_entry
* (*archive_symbol_lookup
)
4962 (bfd
*, struct bfd_link_info
*, const char *);
4964 if (! bfd_has_map (abfd
))
4966 /* An empty archive is a special case. */
4967 if (bfd_openr_next_archived_file (abfd
, NULL
) == NULL
)
4969 bfd_set_error (bfd_error_no_armap
);
4973 /* Keep track of all symbols we know to be already defined, and all
4974 files we know to be already included. This is to speed up the
4975 second and subsequent passes. */
4976 c
= bfd_ardata (abfd
)->symdef_count
;
4980 amt
*= sizeof (bfd_boolean
);
4981 defined
= (bfd_boolean
*) bfd_zmalloc (amt
);
4982 included
= (bfd_boolean
*) bfd_zmalloc (amt
);
4983 if (defined
== NULL
|| included
== NULL
)
4986 symdefs
= bfd_ardata (abfd
)->symdefs
;
4987 bed
= get_elf_backend_data (abfd
);
4988 archive_symbol_lookup
= bed
->elf_backend_archive_symbol_lookup
;
5001 symdefend
= symdef
+ c
;
5002 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
5004 struct elf_link_hash_entry
*h
;
5006 struct bfd_link_hash_entry
*undefs_tail
;
5009 if (defined
[i
] || included
[i
])
5011 if (symdef
->file_offset
== last
)
5017 h
= archive_symbol_lookup (abfd
, info
, symdef
->name
);
5018 if (h
== (struct elf_link_hash_entry
*) 0 - 1)
5024 if (h
->root
.type
== bfd_link_hash_common
)
5026 /* We currently have a common symbol. The archive map contains
5027 a reference to this symbol, so we may want to include it. We
5028 only want to include it however, if this archive element
5029 contains a definition of the symbol, not just another common
5032 Unfortunately some archivers (including GNU ar) will put
5033 declarations of common symbols into their archive maps, as
5034 well as real definitions, so we cannot just go by the archive
5035 map alone. Instead we must read in the element's symbol
5036 table and check that to see what kind of symbol definition
5038 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
5041 else if (h
->root
.type
!= bfd_link_hash_undefined
)
5043 if (h
->root
.type
!= bfd_link_hash_undefweak
)
5048 /* We need to include this archive member. */
5049 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
5050 if (element
== NULL
)
5053 if (! bfd_check_format (element
, bfd_object
))
5056 /* Doublecheck that we have not included this object
5057 already--it should be impossible, but there may be
5058 something wrong with the archive. */
5059 if (element
->archive_pass
!= 0)
5061 bfd_set_error (bfd_error_bad_value
);
5064 element
->archive_pass
= 1;
5066 undefs_tail
= info
->hash
->undefs_tail
;
5068 if (! (*info
->callbacks
->add_archive_element
) (info
, element
,
5071 if (! bfd_link_add_symbols (element
, info
))
5074 /* If there are any new undefined symbols, we need to make
5075 another pass through the archive in order to see whether
5076 they can be defined. FIXME: This isn't perfect, because
5077 common symbols wind up on undefs_tail and because an
5078 undefined symbol which is defined later on in this pass
5079 does not require another pass. This isn't a bug, but it
5080 does make the code less efficient than it could be. */
5081 if (undefs_tail
!= info
->hash
->undefs_tail
)
5084 /* Look backward to mark all symbols from this object file
5085 which we have already seen in this pass. */
5089 included
[mark
] = TRUE
;
5094 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
5096 /* We mark subsequent symbols from this object file as we go
5097 on through the loop. */
5098 last
= symdef
->file_offset
;
5109 if (defined
!= NULL
)
5111 if (included
!= NULL
)
5116 /* Given an ELF BFD, add symbols to the global hash table as
5120 bfd_elf_link_add_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
5122 switch (bfd_get_format (abfd
))
5125 return elf_link_add_object_symbols (abfd
, info
);
5127 return elf_link_add_archive_symbols (abfd
, info
);
5129 bfd_set_error (bfd_error_wrong_format
);
5134 struct hash_codes_info
5136 unsigned long *hashcodes
;
5140 /* This function will be called though elf_link_hash_traverse to store
5141 all hash value of the exported symbols in an array. */
5144 elf_collect_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5146 struct hash_codes_info
*inf
= (struct hash_codes_info
*) data
;
5152 if (h
->root
.type
== bfd_link_hash_warning
)
5153 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5155 /* Ignore indirect symbols. These are added by the versioning code. */
5156 if (h
->dynindx
== -1)
5159 name
= h
->root
.root
.string
;
5160 p
= strchr (name
, ELF_VER_CHR
);
5163 alc
= (char *) bfd_malloc (p
- name
+ 1);
5169 memcpy (alc
, name
, p
- name
);
5170 alc
[p
- name
] = '\0';
5174 /* Compute the hash value. */
5175 ha
= bfd_elf_hash (name
);
5177 /* Store the found hash value in the array given as the argument. */
5178 *(inf
->hashcodes
)++ = ha
;
5180 /* And store it in the struct so that we can put it in the hash table
5182 h
->u
.elf_hash_value
= ha
;
5190 struct collect_gnu_hash_codes
5193 const struct elf_backend_data
*bed
;
5194 unsigned long int nsyms
;
5195 unsigned long int maskbits
;
5196 unsigned long int *hashcodes
;
5197 unsigned long int *hashval
;
5198 unsigned long int *indx
;
5199 unsigned long int *counts
;
5202 long int min_dynindx
;
5203 unsigned long int bucketcount
;
5204 unsigned long int symindx
;
5205 long int local_indx
;
5206 long int shift1
, shift2
;
5207 unsigned long int mask
;
5211 /* This function will be called though elf_link_hash_traverse to store
5212 all hash value of the exported symbols in an array. */
5215 elf_collect_gnu_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5217 struct collect_gnu_hash_codes
*s
= (struct collect_gnu_hash_codes
*) data
;
5223 if (h
->root
.type
== bfd_link_hash_warning
)
5224 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5226 /* Ignore indirect symbols. These are added by the versioning code. */
5227 if (h
->dynindx
== -1)
5230 /* Ignore also local symbols and undefined symbols. */
5231 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5234 name
= h
->root
.root
.string
;
5235 p
= strchr (name
, ELF_VER_CHR
);
5238 alc
= (char *) bfd_malloc (p
- name
+ 1);
5244 memcpy (alc
, name
, p
- name
);
5245 alc
[p
- name
] = '\0';
5249 /* Compute the hash value. */
5250 ha
= bfd_elf_gnu_hash (name
);
5252 /* Store the found hash value in the array for compute_bucket_count,
5253 and also for .dynsym reordering purposes. */
5254 s
->hashcodes
[s
->nsyms
] = ha
;
5255 s
->hashval
[h
->dynindx
] = ha
;
5257 if (s
->min_dynindx
< 0 || s
->min_dynindx
> h
->dynindx
)
5258 s
->min_dynindx
= h
->dynindx
;
5266 /* This function will be called though elf_link_hash_traverse to do
5267 final dynaminc symbol renumbering. */
5270 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry
*h
, void *data
)
5272 struct collect_gnu_hash_codes
*s
= (struct collect_gnu_hash_codes
*) data
;
5273 unsigned long int bucket
;
5274 unsigned long int val
;
5276 if (h
->root
.type
== bfd_link_hash_warning
)
5277 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5279 /* Ignore indirect symbols. */
5280 if (h
->dynindx
== -1)
5283 /* Ignore also local symbols and undefined symbols. */
5284 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5286 if (h
->dynindx
>= s
->min_dynindx
)
5287 h
->dynindx
= s
->local_indx
++;
5291 bucket
= s
->hashval
[h
->dynindx
] % s
->bucketcount
;
5292 val
= (s
->hashval
[h
->dynindx
] >> s
->shift1
)
5293 & ((s
->maskbits
>> s
->shift1
) - 1);
5294 s
->bitmask
[val
] |= ((bfd_vma
) 1) << (s
->hashval
[h
->dynindx
] & s
->mask
);
5296 |= ((bfd_vma
) 1) << ((s
->hashval
[h
->dynindx
] >> s
->shift2
) & s
->mask
);
5297 val
= s
->hashval
[h
->dynindx
] & ~(unsigned long int) 1;
5298 if (s
->counts
[bucket
] == 1)
5299 /* Last element terminates the chain. */
5301 bfd_put_32 (s
->output_bfd
, val
,
5302 s
->contents
+ (s
->indx
[bucket
] - s
->symindx
) * 4);
5303 --s
->counts
[bucket
];
5304 h
->dynindx
= s
->indx
[bucket
]++;
5308 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5311 _bfd_elf_hash_symbol (struct elf_link_hash_entry
*h
)
5313 return !(h
->forced_local
5314 || h
->root
.type
== bfd_link_hash_undefined
5315 || h
->root
.type
== bfd_link_hash_undefweak
5316 || ((h
->root
.type
== bfd_link_hash_defined
5317 || h
->root
.type
== bfd_link_hash_defweak
)
5318 && h
->root
.u
.def
.section
->output_section
== NULL
));
5321 /* Array used to determine the number of hash table buckets to use
5322 based on the number of symbols there are. If there are fewer than
5323 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5324 fewer than 37 we use 17 buckets, and so forth. We never use more
5325 than 32771 buckets. */
5327 static const size_t elf_buckets
[] =
5329 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5333 /* Compute bucket count for hashing table. We do not use a static set
5334 of possible tables sizes anymore. Instead we determine for all
5335 possible reasonable sizes of the table the outcome (i.e., the
5336 number of collisions etc) and choose the best solution. The
5337 weighting functions are not too simple to allow the table to grow
5338 without bounds. Instead one of the weighting factors is the size.
5339 Therefore the result is always a good payoff between few collisions
5340 (= short chain lengths) and table size. */
5342 compute_bucket_count (struct bfd_link_info
*info
,
5343 unsigned long int *hashcodes ATTRIBUTE_UNUSED
,
5344 unsigned long int nsyms
,
5347 size_t best_size
= 0;
5348 unsigned long int i
;
5350 /* We have a problem here. The following code to optimize the table
5351 size requires an integer type with more the 32 bits. If
5352 BFD_HOST_U_64_BIT is set we know about such a type. */
5353 #ifdef BFD_HOST_U_64_BIT
5358 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
5359 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
5360 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
5361 const struct elf_backend_data
*bed
= get_elf_backend_data (dynobj
);
5362 unsigned long int *counts
;
5365 /* Possible optimization parameters: if we have NSYMS symbols we say
5366 that the hashing table must at least have NSYMS/4 and at most
5368 minsize
= nsyms
/ 4;
5371 best_size
= maxsize
= nsyms
* 2;
5376 if ((best_size
& 31) == 0)
5380 /* Create array where we count the collisions in. We must use bfd_malloc
5381 since the size could be large. */
5383 amt
*= sizeof (unsigned long int);
5384 counts
= (unsigned long int *) bfd_malloc (amt
);
5388 /* Compute the "optimal" size for the hash table. The criteria is a
5389 minimal chain length. The minor criteria is (of course) the size
5391 for (i
= minsize
; i
< maxsize
; ++i
)
5393 /* Walk through the array of hashcodes and count the collisions. */
5394 BFD_HOST_U_64_BIT max
;
5395 unsigned long int j
;
5396 unsigned long int fact
;
5398 if (gnu_hash
&& (i
& 31) == 0)
5401 memset (counts
, '\0', i
* sizeof (unsigned long int));
5403 /* Determine how often each hash bucket is used. */
5404 for (j
= 0; j
< nsyms
; ++j
)
5405 ++counts
[hashcodes
[j
] % i
];
5407 /* For the weight function we need some information about the
5408 pagesize on the target. This is information need not be 100%
5409 accurate. Since this information is not available (so far) we
5410 define it here to a reasonable default value. If it is crucial
5411 to have a better value some day simply define this value. */
5412 # ifndef BFD_TARGET_PAGESIZE
5413 # define BFD_TARGET_PAGESIZE (4096)
5416 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5418 max
= (2 + dynsymcount
) * bed
->s
->sizeof_hash_entry
;
5421 /* Variant 1: optimize for short chains. We add the squares
5422 of all the chain lengths (which favors many small chain
5423 over a few long chains). */
5424 for (j
= 0; j
< i
; ++j
)
5425 max
+= counts
[j
] * counts
[j
];
5427 /* This adds penalties for the overall size of the table. */
5428 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5431 /* Variant 2: Optimize a lot more for small table. Here we
5432 also add squares of the size but we also add penalties for
5433 empty slots (the +1 term). */
5434 for (j
= 0; j
< i
; ++j
)
5435 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
5437 /* The overall size of the table is considered, but not as
5438 strong as in variant 1, where it is squared. */
5439 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5443 /* Compare with current best results. */
5444 if (max
< best_chlen
)
5454 #endif /* defined (BFD_HOST_U_64_BIT) */
5456 /* This is the fallback solution if no 64bit type is available or if we
5457 are not supposed to spend much time on optimizations. We select the
5458 bucket count using a fixed set of numbers. */
5459 for (i
= 0; elf_buckets
[i
] != 0; i
++)
5461 best_size
= elf_buckets
[i
];
5462 if (nsyms
< elf_buckets
[i
+ 1])
5465 if (gnu_hash
&& best_size
< 2)
5472 /* Set up the sizes and contents of the ELF dynamic sections. This is
5473 called by the ELF linker emulation before_allocation routine. We
5474 must set the sizes of the sections before the linker sets the
5475 addresses of the various sections. */
5478 bfd_elf_size_dynamic_sections (bfd
*output_bfd
,
5481 const char *filter_shlib
,
5483 const char *depaudit
,
5484 const char * const *auxiliary_filters
,
5485 struct bfd_link_info
*info
,
5486 asection
**sinterpptr
,
5487 struct bfd_elf_version_tree
*verdefs
)
5489 bfd_size_type soname_indx
;
5491 const struct elf_backend_data
*bed
;
5492 struct elf_info_failed asvinfo
;
5496 soname_indx
= (bfd_size_type
) -1;
5498 if (!is_elf_hash_table (info
->hash
))
5501 bed
= get_elf_backend_data (output_bfd
);
5502 if (info
->execstack
)
5503 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| PF_X
;
5504 else if (info
->noexecstack
)
5505 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
;
5509 asection
*notesec
= NULL
;
5512 for (inputobj
= info
->input_bfds
;
5514 inputobj
= inputobj
->link_next
)
5518 if (inputobj
->flags
& (DYNAMIC
| EXEC_P
| BFD_LINKER_CREATED
))
5520 s
= bfd_get_section_by_name (inputobj
, ".note.GNU-stack");
5523 if (s
->flags
& SEC_CODE
)
5527 else if (bed
->default_execstack
)
5532 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| exec
;
5533 if (exec
&& info
->relocatable
5534 && notesec
->output_section
!= bfd_abs_section_ptr
)
5535 notesec
->output_section
->flags
|= SEC_CODE
;
5539 /* Any syms created from now on start with -1 in
5540 got.refcount/offset and plt.refcount/offset. */
5541 elf_hash_table (info
)->init_got_refcount
5542 = elf_hash_table (info
)->init_got_offset
;
5543 elf_hash_table (info
)->init_plt_refcount
5544 = elf_hash_table (info
)->init_plt_offset
;
5546 /* The backend may have to create some sections regardless of whether
5547 we're dynamic or not. */
5548 if (bed
->elf_backend_always_size_sections
5549 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
5552 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info
))
5555 dynobj
= elf_hash_table (info
)->dynobj
;
5557 /* If there were no dynamic objects in the link, there is nothing to
5562 if (elf_hash_table (info
)->dynamic_sections_created
)
5564 struct elf_info_failed eif
;
5565 struct elf_link_hash_entry
*h
;
5567 struct bfd_elf_version_tree
*t
;
5568 struct bfd_elf_version_expr
*d
;
5570 bfd_boolean all_defined
;
5572 *sinterpptr
= bfd_get_section_by_name (dynobj
, ".interp");
5573 BFD_ASSERT (*sinterpptr
!= NULL
|| !info
->executable
);
5577 soname_indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5579 if (soname_indx
== (bfd_size_type
) -1
5580 || !_bfd_elf_add_dynamic_entry (info
, DT_SONAME
, soname_indx
))
5586 if (!_bfd_elf_add_dynamic_entry (info
, DT_SYMBOLIC
, 0))
5588 info
->flags
|= DF_SYMBOLIC
;
5595 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, rpath
,
5597 if (indx
== (bfd_size_type
) -1
5598 || !_bfd_elf_add_dynamic_entry (info
, DT_RPATH
, indx
))
5601 if (info
->new_dtags
)
5603 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
, indx
);
5604 if (!_bfd_elf_add_dynamic_entry (info
, DT_RUNPATH
, indx
))
5609 if (filter_shlib
!= NULL
)
5613 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5614 filter_shlib
, TRUE
);
5615 if (indx
== (bfd_size_type
) -1
5616 || !_bfd_elf_add_dynamic_entry (info
, DT_FILTER
, indx
))
5620 if (auxiliary_filters
!= NULL
)
5622 const char * const *p
;
5624 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
5628 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5630 if (indx
== (bfd_size_type
) -1
5631 || !_bfd_elf_add_dynamic_entry (info
, DT_AUXILIARY
, indx
))
5640 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, audit
,
5642 if (indx
== (bfd_size_type
) -1
5643 || !_bfd_elf_add_dynamic_entry (info
, DT_AUDIT
, indx
))
5647 if (depaudit
!= NULL
)
5651 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, depaudit
,
5653 if (indx
== (bfd_size_type
) -1
5654 || !_bfd_elf_add_dynamic_entry (info
, DT_DEPAUDIT
, indx
))
5659 eif
.verdefs
= verdefs
;
5662 /* If we are supposed to export all symbols into the dynamic symbol
5663 table (this is not the normal case), then do so. */
5664 if (info
->export_dynamic
5665 || (info
->executable
&& info
->dynamic
))
5667 elf_link_hash_traverse (elf_hash_table (info
),
5668 _bfd_elf_export_symbol
,
5674 /* Make all global versions with definition. */
5675 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5676 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5677 if (!d
->symver
&& d
->literal
)
5679 const char *verstr
, *name
;
5680 size_t namelen
, verlen
, newlen
;
5682 struct elf_link_hash_entry
*newh
;
5685 namelen
= strlen (name
);
5687 verlen
= strlen (verstr
);
5688 newlen
= namelen
+ verlen
+ 3;
5690 newname
= (char *) bfd_malloc (newlen
);
5691 if (newname
== NULL
)
5693 memcpy (newname
, name
, namelen
);
5695 /* Check the hidden versioned definition. */
5696 p
= newname
+ namelen
;
5698 memcpy (p
, verstr
, verlen
+ 1);
5699 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5700 newname
, FALSE
, FALSE
,
5703 || (newh
->root
.type
!= bfd_link_hash_defined
5704 && newh
->root
.type
!= bfd_link_hash_defweak
))
5706 /* Check the default versioned definition. */
5708 memcpy (p
, verstr
, verlen
+ 1);
5709 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5710 newname
, FALSE
, FALSE
,
5715 /* Mark this version if there is a definition and it is
5716 not defined in a shared object. */
5718 && !newh
->def_dynamic
5719 && (newh
->root
.type
== bfd_link_hash_defined
5720 || newh
->root
.type
== bfd_link_hash_defweak
))
5724 /* Attach all the symbols to their version information. */
5725 asvinfo
.info
= info
;
5726 asvinfo
.verdefs
= verdefs
;
5727 asvinfo
.failed
= FALSE
;
5729 elf_link_hash_traverse (elf_hash_table (info
),
5730 _bfd_elf_link_assign_sym_version
,
5735 if (!info
->allow_undefined_version
)
5737 /* Check if all global versions have a definition. */
5739 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5740 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5741 if (d
->literal
&& !d
->symver
&& !d
->script
)
5743 (*_bfd_error_handler
)
5744 (_("%s: undefined version: %s"),
5745 d
->pattern
, t
->name
);
5746 all_defined
= FALSE
;
5751 bfd_set_error (bfd_error_bad_value
);
5756 /* Find all symbols which were defined in a dynamic object and make
5757 the backend pick a reasonable value for them. */
5758 elf_link_hash_traverse (elf_hash_table (info
),
5759 _bfd_elf_adjust_dynamic_symbol
,
5764 /* Add some entries to the .dynamic section. We fill in some of the
5765 values later, in bfd_elf_final_link, but we must add the entries
5766 now so that we know the final size of the .dynamic section. */
5768 /* If there are initialization and/or finalization functions to
5769 call then add the corresponding DT_INIT/DT_FINI entries. */
5770 h
= (info
->init_function
5771 ? elf_link_hash_lookup (elf_hash_table (info
),
5772 info
->init_function
, FALSE
,
5779 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT
, 0))
5782 h
= (info
->fini_function
5783 ? elf_link_hash_lookup (elf_hash_table (info
),
5784 info
->fini_function
, FALSE
,
5791 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI
, 0))
5795 s
= bfd_get_section_by_name (output_bfd
, ".preinit_array");
5796 if (s
!= NULL
&& s
->linker_has_input
)
5798 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5799 if (! info
->executable
)
5804 for (sub
= info
->input_bfds
; sub
!= NULL
;
5805 sub
= sub
->link_next
)
5806 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
)
5807 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
5808 if (elf_section_data (o
)->this_hdr
.sh_type
5809 == SHT_PREINIT_ARRAY
)
5811 (*_bfd_error_handler
)
5812 (_("%B: .preinit_array section is not allowed in DSO"),
5817 bfd_set_error (bfd_error_nonrepresentable_section
);
5821 if (!_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAY
, 0)
5822 || !_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAYSZ
, 0))
5825 s
= bfd_get_section_by_name (output_bfd
, ".init_array");
5826 if (s
!= NULL
&& s
->linker_has_input
)
5828 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAY
, 0)
5829 || !_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAYSZ
, 0))
5832 s
= bfd_get_section_by_name (output_bfd
, ".fini_array");
5833 if (s
!= NULL
&& s
->linker_has_input
)
5835 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAY
, 0)
5836 || !_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAYSZ
, 0))
5840 dynstr
= bfd_get_section_by_name (dynobj
, ".dynstr");
5841 /* If .dynstr is excluded from the link, we don't want any of
5842 these tags. Strictly, we should be checking each section
5843 individually; This quick check covers for the case where
5844 someone does a /DISCARD/ : { *(*) }. */
5845 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
5847 bfd_size_type strsize
;
5849 strsize
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
5850 if ((info
->emit_hash
5851 && !_bfd_elf_add_dynamic_entry (info
, DT_HASH
, 0))
5852 || (info
->emit_gnu_hash
5853 && !_bfd_elf_add_dynamic_entry (info
, DT_GNU_HASH
, 0))
5854 || !_bfd_elf_add_dynamic_entry (info
, DT_STRTAB
, 0)
5855 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMTAB
, 0)
5856 || !_bfd_elf_add_dynamic_entry (info
, DT_STRSZ
, strsize
)
5857 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMENT
,
5858 bed
->s
->sizeof_sym
))
5863 /* The backend must work out the sizes of all the other dynamic
5865 if (bed
->elf_backend_size_dynamic_sections
5866 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
5869 if (elf_hash_table (info
)->dynamic_sections_created
)
5871 unsigned long section_sym_count
;
5874 /* Set up the version definition section. */
5875 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
5876 BFD_ASSERT (s
!= NULL
);
5878 /* We may have created additional version definitions if we are
5879 just linking a regular application. */
5880 verdefs
= asvinfo
.verdefs
;
5882 /* Skip anonymous version tag. */
5883 if (verdefs
!= NULL
&& verdefs
->vernum
== 0)
5884 verdefs
= verdefs
->next
;
5886 if (verdefs
== NULL
&& !info
->create_default_symver
)
5887 s
->flags
|= SEC_EXCLUDE
;
5892 struct bfd_elf_version_tree
*t
;
5894 Elf_Internal_Verdef def
;
5895 Elf_Internal_Verdaux defaux
;
5896 struct bfd_link_hash_entry
*bh
;
5897 struct elf_link_hash_entry
*h
;
5903 /* Make space for the base version. */
5904 size
+= sizeof (Elf_External_Verdef
);
5905 size
+= sizeof (Elf_External_Verdaux
);
5908 /* Make space for the default version. */
5909 if (info
->create_default_symver
)
5911 size
+= sizeof (Elf_External_Verdef
);
5915 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5917 struct bfd_elf_version_deps
*n
;
5919 size
+= sizeof (Elf_External_Verdef
);
5920 size
+= sizeof (Elf_External_Verdaux
);
5923 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5924 size
+= sizeof (Elf_External_Verdaux
);
5928 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
5929 if (s
->contents
== NULL
&& s
->size
!= 0)
5932 /* Fill in the version definition section. */
5936 def
.vd_version
= VER_DEF_CURRENT
;
5937 def
.vd_flags
= VER_FLG_BASE
;
5940 if (info
->create_default_symver
)
5942 def
.vd_aux
= 2 * sizeof (Elf_External_Verdef
);
5943 def
.vd_next
= sizeof (Elf_External_Verdef
);
5947 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5948 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5949 + sizeof (Elf_External_Verdaux
));
5952 if (soname_indx
!= (bfd_size_type
) -1)
5954 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
5956 def
.vd_hash
= bfd_elf_hash (soname
);
5957 defaux
.vda_name
= soname_indx
;
5964 name
= lbasename (output_bfd
->filename
);
5965 def
.vd_hash
= bfd_elf_hash (name
);
5966 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5968 if (indx
== (bfd_size_type
) -1)
5970 defaux
.vda_name
= indx
;
5972 defaux
.vda_next
= 0;
5974 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5975 (Elf_External_Verdef
*) p
);
5976 p
+= sizeof (Elf_External_Verdef
);
5977 if (info
->create_default_symver
)
5979 /* Add a symbol representing this version. */
5981 if (! (_bfd_generic_link_add_one_symbol
5982 (info
, dynobj
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
5984 get_elf_backend_data (dynobj
)->collect
, &bh
)))
5986 h
= (struct elf_link_hash_entry
*) bh
;
5989 h
->type
= STT_OBJECT
;
5990 h
->verinfo
.vertree
= NULL
;
5992 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5995 /* Create a duplicate of the base version with the same
5996 aux block, but different flags. */
5999 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6001 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6002 + sizeof (Elf_External_Verdaux
));
6005 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6006 (Elf_External_Verdef
*) p
);
6007 p
+= sizeof (Elf_External_Verdef
);
6009 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6010 (Elf_External_Verdaux
*) p
);
6011 p
+= sizeof (Elf_External_Verdaux
);
6013 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
6016 struct bfd_elf_version_deps
*n
;
6019 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6022 /* Add a symbol representing this version. */
6024 if (! (_bfd_generic_link_add_one_symbol
6025 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
6027 get_elf_backend_data (dynobj
)->collect
, &bh
)))
6029 h
= (struct elf_link_hash_entry
*) bh
;
6032 h
->type
= STT_OBJECT
;
6033 h
->verinfo
.vertree
= t
;
6035 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6038 def
.vd_version
= VER_DEF_CURRENT
;
6040 if (t
->globals
.list
== NULL
6041 && t
->locals
.list
== NULL
6043 def
.vd_flags
|= VER_FLG_WEAK
;
6044 def
.vd_ndx
= t
->vernum
+ (info
->create_default_symver
? 2 : 1);
6045 def
.vd_cnt
= cdeps
+ 1;
6046 def
.vd_hash
= bfd_elf_hash (t
->name
);
6047 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6049 if (t
->next
!= NULL
)
6050 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6051 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
6053 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6054 (Elf_External_Verdef
*) p
);
6055 p
+= sizeof (Elf_External_Verdef
);
6057 defaux
.vda_name
= h
->dynstr_index
;
6058 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6060 defaux
.vda_next
= 0;
6061 if (t
->deps
!= NULL
)
6062 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6063 t
->name_indx
= defaux
.vda_name
;
6065 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6066 (Elf_External_Verdaux
*) p
);
6067 p
+= sizeof (Elf_External_Verdaux
);
6069 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6071 if (n
->version_needed
== NULL
)
6073 /* This can happen if there was an error in the
6075 defaux
.vda_name
= 0;
6079 defaux
.vda_name
= n
->version_needed
->name_indx
;
6080 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6083 if (n
->next
== NULL
)
6084 defaux
.vda_next
= 0;
6086 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6088 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6089 (Elf_External_Verdaux
*) p
);
6090 p
+= sizeof (Elf_External_Verdaux
);
6094 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERDEF
, 0)
6095 || !_bfd_elf_add_dynamic_entry (info
, DT_VERDEFNUM
, cdefs
))
6098 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
6101 if ((info
->new_dtags
&& info
->flags
) || (info
->flags
& DF_STATIC_TLS
))
6103 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS
, info
->flags
))
6106 else if (info
->flags
& DF_BIND_NOW
)
6108 if (!_bfd_elf_add_dynamic_entry (info
, DT_BIND_NOW
, 0))
6114 if (info
->executable
)
6115 info
->flags_1
&= ~ (DF_1_INITFIRST
6118 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS_1
, info
->flags_1
))
6122 /* Work out the size of the version reference section. */
6124 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
6125 BFD_ASSERT (s
!= NULL
);
6127 struct elf_find_verdep_info sinfo
;
6130 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
6131 if (sinfo
.vers
== 0)
6133 sinfo
.failed
= FALSE
;
6135 elf_link_hash_traverse (elf_hash_table (info
),
6136 _bfd_elf_link_find_version_dependencies
,
6141 if (elf_tdata (output_bfd
)->verref
== NULL
)
6142 s
->flags
|= SEC_EXCLUDE
;
6145 Elf_Internal_Verneed
*t
;
6150 /* Build the version definition section. */
6153 for (t
= elf_tdata (output_bfd
)->verref
;
6157 Elf_Internal_Vernaux
*a
;
6159 size
+= sizeof (Elf_External_Verneed
);
6161 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6162 size
+= sizeof (Elf_External_Vernaux
);
6166 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
6167 if (s
->contents
== NULL
)
6171 for (t
= elf_tdata (output_bfd
)->verref
;
6176 Elf_Internal_Vernaux
*a
;
6180 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6183 t
->vn_version
= VER_NEED_CURRENT
;
6185 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6186 elf_dt_name (t
->vn_bfd
) != NULL
6187 ? elf_dt_name (t
->vn_bfd
)
6188 : lbasename (t
->vn_bfd
->filename
),
6190 if (indx
== (bfd_size_type
) -1)
6193 t
->vn_aux
= sizeof (Elf_External_Verneed
);
6194 if (t
->vn_nextref
== NULL
)
6197 t
->vn_next
= (sizeof (Elf_External_Verneed
)
6198 + caux
* sizeof (Elf_External_Vernaux
));
6200 _bfd_elf_swap_verneed_out (output_bfd
, t
,
6201 (Elf_External_Verneed
*) p
);
6202 p
+= sizeof (Elf_External_Verneed
);
6204 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6206 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
6207 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6208 a
->vna_nodename
, FALSE
);
6209 if (indx
== (bfd_size_type
) -1)
6212 if (a
->vna_nextptr
== NULL
)
6215 a
->vna_next
= sizeof (Elf_External_Vernaux
);
6217 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
6218 (Elf_External_Vernaux
*) p
);
6219 p
+= sizeof (Elf_External_Vernaux
);
6223 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERNEED
, 0)
6224 || !_bfd_elf_add_dynamic_entry (info
, DT_VERNEEDNUM
, crefs
))
6227 elf_tdata (output_bfd
)->cverrefs
= crefs
;
6231 if ((elf_tdata (output_bfd
)->cverrefs
== 0
6232 && elf_tdata (output_bfd
)->cverdefs
== 0)
6233 || _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6234 §ion_sym_count
) == 0)
6236 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6237 s
->flags
|= SEC_EXCLUDE
;
6243 /* Find the first non-excluded output section. We'll use its
6244 section symbol for some emitted relocs. */
6246 _bfd_elf_init_1_index_section (bfd
*output_bfd
, struct bfd_link_info
*info
)
6250 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6251 if ((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
)) == SEC_ALLOC
6252 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6254 elf_hash_table (info
)->text_index_section
= s
;
6259 /* Find two non-excluded output sections, one for code, one for data.
6260 We'll use their section symbols for some emitted relocs. */
6262 _bfd_elf_init_2_index_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
6266 /* Data first, since setting text_index_section changes
6267 _bfd_elf_link_omit_section_dynsym. */
6268 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6269 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
)) == SEC_ALLOC
)
6270 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6272 elf_hash_table (info
)->data_index_section
= s
;
6276 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6277 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
))
6278 == (SEC_ALLOC
| SEC_READONLY
))
6279 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6281 elf_hash_table (info
)->text_index_section
= s
;
6285 if (elf_hash_table (info
)->text_index_section
== NULL
)
6286 elf_hash_table (info
)->text_index_section
6287 = elf_hash_table (info
)->data_index_section
;
6291 bfd_elf_size_dynsym_hash_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
6293 const struct elf_backend_data
*bed
;
6295 if (!is_elf_hash_table (info
->hash
))
6298 bed
= get_elf_backend_data (output_bfd
);
6299 (*bed
->elf_backend_init_index_section
) (output_bfd
, info
);
6301 if (elf_hash_table (info
)->dynamic_sections_created
)
6305 bfd_size_type dynsymcount
;
6306 unsigned long section_sym_count
;
6307 unsigned int dtagcount
;
6309 dynobj
= elf_hash_table (info
)->dynobj
;
6311 /* Assign dynsym indicies. In a shared library we generate a
6312 section symbol for each output section, which come first.
6313 Next come all of the back-end allocated local dynamic syms,
6314 followed by the rest of the global symbols. */
6316 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6317 §ion_sym_count
);
6319 /* Work out the size of the symbol version section. */
6320 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6321 BFD_ASSERT (s
!= NULL
);
6322 if (dynsymcount
!= 0
6323 && (s
->flags
& SEC_EXCLUDE
) == 0)
6325 s
->size
= dynsymcount
* sizeof (Elf_External_Versym
);
6326 s
->contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6327 if (s
->contents
== NULL
)
6330 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERSYM
, 0))
6334 /* Set the size of the .dynsym and .hash sections. We counted
6335 the number of dynamic symbols in elf_link_add_object_symbols.
6336 We will build the contents of .dynsym and .hash when we build
6337 the final symbol table, because until then we do not know the
6338 correct value to give the symbols. We built the .dynstr
6339 section as we went along in elf_link_add_object_symbols. */
6340 s
= bfd_get_section_by_name (dynobj
, ".dynsym");
6341 BFD_ASSERT (s
!= NULL
);
6342 s
->size
= dynsymcount
* bed
->s
->sizeof_sym
;
6344 if (dynsymcount
!= 0)
6346 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
6347 if (s
->contents
== NULL
)
6350 /* The first entry in .dynsym is a dummy symbol.
6351 Clear all the section syms, in case we don't output them all. */
6352 ++section_sym_count
;
6353 memset (s
->contents
, 0, section_sym_count
* bed
->s
->sizeof_sym
);
6356 elf_hash_table (info
)->bucketcount
= 0;
6358 /* Compute the size of the hashing table. As a side effect this
6359 computes the hash values for all the names we export. */
6360 if (info
->emit_hash
)
6362 unsigned long int *hashcodes
;
6363 struct hash_codes_info hashinf
;
6365 unsigned long int nsyms
;
6367 size_t hash_entry_size
;
6369 /* Compute the hash values for all exported symbols. At the same
6370 time store the values in an array so that we could use them for
6372 amt
= dynsymcount
* sizeof (unsigned long int);
6373 hashcodes
= (unsigned long int *) bfd_malloc (amt
);
6374 if (hashcodes
== NULL
)
6376 hashinf
.hashcodes
= hashcodes
;
6377 hashinf
.error
= FALSE
;
6379 /* Put all hash values in HASHCODES. */
6380 elf_link_hash_traverse (elf_hash_table (info
),
6381 elf_collect_hash_codes
, &hashinf
);
6388 nsyms
= hashinf
.hashcodes
- hashcodes
;
6390 = compute_bucket_count (info
, hashcodes
, nsyms
, 0);
6393 if (bucketcount
== 0)
6396 elf_hash_table (info
)->bucketcount
= bucketcount
;
6398 s
= bfd_get_section_by_name (dynobj
, ".hash");
6399 BFD_ASSERT (s
!= NULL
);
6400 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
6401 s
->size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
6402 s
->contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6403 if (s
->contents
== NULL
)
6406 bfd_put (8 * hash_entry_size
, output_bfd
, bucketcount
, s
->contents
);
6407 bfd_put (8 * hash_entry_size
, output_bfd
, dynsymcount
,
6408 s
->contents
+ hash_entry_size
);
6411 if (info
->emit_gnu_hash
)
6414 unsigned char *contents
;
6415 struct collect_gnu_hash_codes cinfo
;
6419 memset (&cinfo
, 0, sizeof (cinfo
));
6421 /* Compute the hash values for all exported symbols. At the same
6422 time store the values in an array so that we could use them for
6424 amt
= dynsymcount
* 2 * sizeof (unsigned long int);
6425 cinfo
.hashcodes
= (long unsigned int *) bfd_malloc (amt
);
6426 if (cinfo
.hashcodes
== NULL
)
6429 cinfo
.hashval
= cinfo
.hashcodes
+ dynsymcount
;
6430 cinfo
.min_dynindx
= -1;
6431 cinfo
.output_bfd
= output_bfd
;
6434 /* Put all hash values in HASHCODES. */
6435 elf_link_hash_traverse (elf_hash_table (info
),
6436 elf_collect_gnu_hash_codes
, &cinfo
);
6439 free (cinfo
.hashcodes
);
6444 = compute_bucket_count (info
, cinfo
.hashcodes
, cinfo
.nsyms
, 1);
6446 if (bucketcount
== 0)
6448 free (cinfo
.hashcodes
);
6452 s
= bfd_get_section_by_name (dynobj
, ".gnu.hash");
6453 BFD_ASSERT (s
!= NULL
);
6455 if (cinfo
.nsyms
== 0)
6457 /* Empty .gnu.hash section is special. */
6458 BFD_ASSERT (cinfo
.min_dynindx
== -1);
6459 free (cinfo
.hashcodes
);
6460 s
->size
= 5 * 4 + bed
->s
->arch_size
/ 8;
6461 contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6462 if (contents
== NULL
)
6464 s
->contents
= contents
;
6465 /* 1 empty bucket. */
6466 bfd_put_32 (output_bfd
, 1, contents
);
6467 /* SYMIDX above the special symbol 0. */
6468 bfd_put_32 (output_bfd
, 1, contents
+ 4);
6469 /* Just one word for bitmask. */
6470 bfd_put_32 (output_bfd
, 1, contents
+ 8);
6471 /* Only hash fn bloom filter. */
6472 bfd_put_32 (output_bfd
, 0, contents
+ 12);
6473 /* No hashes are valid - empty bitmask. */
6474 bfd_put (bed
->s
->arch_size
, output_bfd
, 0, contents
+ 16);
6475 /* No hashes in the only bucket. */
6476 bfd_put_32 (output_bfd
, 0,
6477 contents
+ 16 + bed
->s
->arch_size
/ 8);
6481 unsigned long int maskwords
, maskbitslog2
;
6482 BFD_ASSERT (cinfo
.min_dynindx
!= -1);
6484 maskbitslog2
= bfd_log2 (cinfo
.nsyms
) + 1;
6485 if (maskbitslog2
< 3)
6487 else if ((1 << (maskbitslog2
- 2)) & cinfo
.nsyms
)
6488 maskbitslog2
= maskbitslog2
+ 3;
6490 maskbitslog2
= maskbitslog2
+ 2;
6491 if (bed
->s
->arch_size
== 64)
6493 if (maskbitslog2
== 5)
6499 cinfo
.mask
= (1 << cinfo
.shift1
) - 1;
6500 cinfo
.shift2
= maskbitslog2
;
6501 cinfo
.maskbits
= 1 << maskbitslog2
;
6502 maskwords
= 1 << (maskbitslog2
- cinfo
.shift1
);
6503 amt
= bucketcount
* sizeof (unsigned long int) * 2;
6504 amt
+= maskwords
* sizeof (bfd_vma
);
6505 cinfo
.bitmask
= (bfd_vma
*) bfd_malloc (amt
);
6506 if (cinfo
.bitmask
== NULL
)
6508 free (cinfo
.hashcodes
);
6512 cinfo
.counts
= (long unsigned int *) (cinfo
.bitmask
+ maskwords
);
6513 cinfo
.indx
= cinfo
.counts
+ bucketcount
;
6514 cinfo
.symindx
= dynsymcount
- cinfo
.nsyms
;
6515 memset (cinfo
.bitmask
, 0, maskwords
* sizeof (bfd_vma
));
6517 /* Determine how often each hash bucket is used. */
6518 memset (cinfo
.counts
, 0, bucketcount
* sizeof (cinfo
.counts
[0]));
6519 for (i
= 0; i
< cinfo
.nsyms
; ++i
)
6520 ++cinfo
.counts
[cinfo
.hashcodes
[i
] % bucketcount
];
6522 for (i
= 0, cnt
= cinfo
.symindx
; i
< bucketcount
; ++i
)
6523 if (cinfo
.counts
[i
] != 0)
6525 cinfo
.indx
[i
] = cnt
;
6526 cnt
+= cinfo
.counts
[i
];
6528 BFD_ASSERT (cnt
== dynsymcount
);
6529 cinfo
.bucketcount
= bucketcount
;
6530 cinfo
.local_indx
= cinfo
.min_dynindx
;
6532 s
->size
= (4 + bucketcount
+ cinfo
.nsyms
) * 4;
6533 s
->size
+= cinfo
.maskbits
/ 8;
6534 contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6535 if (contents
== NULL
)
6537 free (cinfo
.bitmask
);
6538 free (cinfo
.hashcodes
);
6542 s
->contents
= contents
;
6543 bfd_put_32 (output_bfd
, bucketcount
, contents
);
6544 bfd_put_32 (output_bfd
, cinfo
.symindx
, contents
+ 4);
6545 bfd_put_32 (output_bfd
, maskwords
, contents
+ 8);
6546 bfd_put_32 (output_bfd
, cinfo
.shift2
, contents
+ 12);
6547 contents
+= 16 + cinfo
.maskbits
/ 8;
6549 for (i
= 0; i
< bucketcount
; ++i
)
6551 if (cinfo
.counts
[i
] == 0)
6552 bfd_put_32 (output_bfd
, 0, contents
);
6554 bfd_put_32 (output_bfd
, cinfo
.indx
[i
], contents
);
6558 cinfo
.contents
= contents
;
6560 /* Renumber dynamic symbols, populate .gnu.hash section. */
6561 elf_link_hash_traverse (elf_hash_table (info
),
6562 elf_renumber_gnu_hash_syms
, &cinfo
);
6564 contents
= s
->contents
+ 16;
6565 for (i
= 0; i
< maskwords
; ++i
)
6567 bfd_put (bed
->s
->arch_size
, output_bfd
, cinfo
.bitmask
[i
],
6569 contents
+= bed
->s
->arch_size
/ 8;
6572 free (cinfo
.bitmask
);
6573 free (cinfo
.hashcodes
);
6577 s
= bfd_get_section_by_name (dynobj
, ".dynstr");
6578 BFD_ASSERT (s
!= NULL
);
6580 elf_finalize_dynstr (output_bfd
, info
);
6582 s
->size
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
6584 for (dtagcount
= 0; dtagcount
<= info
->spare_dynamic_tags
; ++dtagcount
)
6585 if (!_bfd_elf_add_dynamic_entry (info
, DT_NULL
, 0))
6592 /* Indicate that we are only retrieving symbol values from this
6596 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
6598 if (is_elf_hash_table (info
->hash
))
6599 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
6600 _bfd_generic_link_just_syms (sec
, info
);
6603 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6606 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
6609 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
6610 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
6613 /* Finish SHF_MERGE section merging. */
6616 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
6621 if (!is_elf_hash_table (info
->hash
))
6624 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
6625 if ((ibfd
->flags
& DYNAMIC
) == 0)
6626 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6627 if ((sec
->flags
& SEC_MERGE
) != 0
6628 && !bfd_is_abs_section (sec
->output_section
))
6630 struct bfd_elf_section_data
*secdata
;
6632 secdata
= elf_section_data (sec
);
6633 if (! _bfd_add_merge_section (abfd
,
6634 &elf_hash_table (info
)->merge_info
,
6635 sec
, &secdata
->sec_info
))
6637 else if (secdata
->sec_info
)
6638 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
6641 if (elf_hash_table (info
)->merge_info
!= NULL
)
6642 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
6643 merge_sections_remove_hook
);
6647 /* Create an entry in an ELF linker hash table. */
6649 struct bfd_hash_entry
*
6650 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
6651 struct bfd_hash_table
*table
,
6654 /* Allocate the structure if it has not already been allocated by a
6658 entry
= (struct bfd_hash_entry
*)
6659 bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
6664 /* Call the allocation method of the superclass. */
6665 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
6668 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
6669 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
6671 /* Set local fields. */
6674 ret
->got
= htab
->init_got_refcount
;
6675 ret
->plt
= htab
->init_plt_refcount
;
6676 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
6677 - offsetof (struct elf_link_hash_entry
, size
)));
6678 /* Assume that we have been called by a non-ELF symbol reader.
6679 This flag is then reset by the code which reads an ELF input
6680 file. This ensures that a symbol created by a non-ELF symbol
6681 reader will have the flag set correctly. */
6688 /* Copy data from an indirect symbol to its direct symbol, hiding the
6689 old indirect symbol. Also used for copying flags to a weakdef. */
6692 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
6693 struct elf_link_hash_entry
*dir
,
6694 struct elf_link_hash_entry
*ind
)
6696 struct elf_link_hash_table
*htab
;
6698 /* Copy down any references that we may have already seen to the
6699 symbol which just became indirect. */
6701 dir
->ref_dynamic
|= ind
->ref_dynamic
;
6702 dir
->ref_regular
|= ind
->ref_regular
;
6703 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
6704 dir
->non_got_ref
|= ind
->non_got_ref
;
6705 dir
->needs_plt
|= ind
->needs_plt
;
6706 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
6708 if (ind
->root
.type
!= bfd_link_hash_indirect
)
6711 /* Copy over the global and procedure linkage table refcount entries.
6712 These may have been already set up by a check_relocs routine. */
6713 htab
= elf_hash_table (info
);
6714 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
6716 if (dir
->got
.refcount
< 0)
6717 dir
->got
.refcount
= 0;
6718 dir
->got
.refcount
+= ind
->got
.refcount
;
6719 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
6722 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
6724 if (dir
->plt
.refcount
< 0)
6725 dir
->plt
.refcount
= 0;
6726 dir
->plt
.refcount
+= ind
->plt
.refcount
;
6727 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
6730 if (ind
->dynindx
!= -1)
6732 if (dir
->dynindx
!= -1)
6733 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
6734 dir
->dynindx
= ind
->dynindx
;
6735 dir
->dynstr_index
= ind
->dynstr_index
;
6737 ind
->dynstr_index
= 0;
6742 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
6743 struct elf_link_hash_entry
*h
,
6744 bfd_boolean force_local
)
6746 /* STT_GNU_IFUNC symbol must go through PLT. */
6747 if (h
->type
!= STT_GNU_IFUNC
)
6749 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
6754 h
->forced_local
= 1;
6755 if (h
->dynindx
!= -1)
6758 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
6764 /* Initialize an ELF linker hash table. */
6767 _bfd_elf_link_hash_table_init
6768 (struct elf_link_hash_table
*table
,
6770 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
6771 struct bfd_hash_table
*,
6773 unsigned int entsize
)
6776 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
6778 memset (table
, 0, sizeof * table
);
6779 table
->init_got_refcount
.refcount
= can_refcount
- 1;
6780 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
6781 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
6782 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
6783 /* The first dynamic symbol is a dummy. */
6784 table
->dynsymcount
= 1;
6786 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
6787 table
->root
.type
= bfd_link_elf_hash_table
;
6792 /* Create an ELF linker hash table. */
6794 struct bfd_link_hash_table
*
6795 _bfd_elf_link_hash_table_create (bfd
*abfd
)
6797 struct elf_link_hash_table
*ret
;
6798 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
6800 ret
= (struct elf_link_hash_table
*) bfd_malloc (amt
);
6804 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
6805 sizeof (struct elf_link_hash_entry
)))
6814 /* This is a hook for the ELF emulation code in the generic linker to
6815 tell the backend linker what file name to use for the DT_NEEDED
6816 entry for a dynamic object. */
6819 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
6821 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6822 && bfd_get_format (abfd
) == bfd_object
)
6823 elf_dt_name (abfd
) = name
;
6827 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
6830 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6831 && bfd_get_format (abfd
) == bfd_object
)
6832 lib_class
= elf_dyn_lib_class (abfd
);
6839 bfd_elf_set_dyn_lib_class (bfd
*abfd
, enum dynamic_lib_link_class lib_class
)
6841 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6842 && bfd_get_format (abfd
) == bfd_object
)
6843 elf_dyn_lib_class (abfd
) = lib_class
;
6846 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6847 the linker ELF emulation code. */
6849 struct bfd_link_needed_list
*
6850 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6851 struct bfd_link_info
*info
)
6853 if (! is_elf_hash_table (info
->hash
))
6855 return elf_hash_table (info
)->needed
;
6858 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6859 hook for the linker ELF emulation code. */
6861 struct bfd_link_needed_list
*
6862 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6863 struct bfd_link_info
*info
)
6865 if (! is_elf_hash_table (info
->hash
))
6867 return elf_hash_table (info
)->runpath
;
6870 /* Get the name actually used for a dynamic object for a link. This
6871 is the SONAME entry if there is one. Otherwise, it is the string
6872 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6875 bfd_elf_get_dt_soname (bfd
*abfd
)
6877 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6878 && bfd_get_format (abfd
) == bfd_object
)
6879 return elf_dt_name (abfd
);
6883 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6884 the ELF linker emulation code. */
6887 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
6888 struct bfd_link_needed_list
**pneeded
)
6891 bfd_byte
*dynbuf
= NULL
;
6892 unsigned int elfsec
;
6893 unsigned long shlink
;
6894 bfd_byte
*extdyn
, *extdynend
;
6896 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
6900 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
6901 || bfd_get_format (abfd
) != bfd_object
)
6904 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6905 if (s
== NULL
|| s
->size
== 0)
6908 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
6911 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
6912 if (elfsec
== SHN_BAD
)
6915 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
6917 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
6918 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
6921 extdynend
= extdyn
+ s
->size
;
6922 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
6924 Elf_Internal_Dyn dyn
;
6926 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
6928 if (dyn
.d_tag
== DT_NULL
)
6931 if (dyn
.d_tag
== DT_NEEDED
)
6934 struct bfd_link_needed_list
*l
;
6935 unsigned int tagv
= dyn
.d_un
.d_val
;
6938 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
6943 l
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
6964 struct elf_symbuf_symbol
6966 unsigned long st_name
; /* Symbol name, index in string tbl */
6967 unsigned char st_info
; /* Type and binding attributes */
6968 unsigned char st_other
; /* Visibilty, and target specific */
6971 struct elf_symbuf_head
6973 struct elf_symbuf_symbol
*ssym
;
6974 bfd_size_type count
;
6975 unsigned int st_shndx
;
6982 Elf_Internal_Sym
*isym
;
6983 struct elf_symbuf_symbol
*ssym
;
6988 /* Sort references to symbols by ascending section number. */
6991 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
6993 const Elf_Internal_Sym
*s1
= *(const Elf_Internal_Sym
**) arg1
;
6994 const Elf_Internal_Sym
*s2
= *(const Elf_Internal_Sym
**) arg2
;
6996 return s1
->st_shndx
- s2
->st_shndx
;
7000 elf_sym_name_compare (const void *arg1
, const void *arg2
)
7002 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
7003 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
7004 return strcmp (s1
->name
, s2
->name
);
7007 static struct elf_symbuf_head
*
7008 elf_create_symbuf (bfd_size_type symcount
, Elf_Internal_Sym
*isymbuf
)
7010 Elf_Internal_Sym
**ind
, **indbufend
, **indbuf
;
7011 struct elf_symbuf_symbol
*ssym
;
7012 struct elf_symbuf_head
*ssymbuf
, *ssymhead
;
7013 bfd_size_type i
, shndx_count
, total_size
;
7015 indbuf
= (Elf_Internal_Sym
**) bfd_malloc2 (symcount
, sizeof (*indbuf
));
7019 for (ind
= indbuf
, i
= 0; i
< symcount
; i
++)
7020 if (isymbuf
[i
].st_shndx
!= SHN_UNDEF
)
7021 *ind
++ = &isymbuf
[i
];
7024 qsort (indbuf
, indbufend
- indbuf
, sizeof (Elf_Internal_Sym
*),
7025 elf_sort_elf_symbol
);
7028 if (indbufend
> indbuf
)
7029 for (ind
= indbuf
, shndx_count
++; ind
< indbufend
- 1; ind
++)
7030 if (ind
[0]->st_shndx
!= ind
[1]->st_shndx
)
7033 total_size
= ((shndx_count
+ 1) * sizeof (*ssymbuf
)
7034 + (indbufend
- indbuf
) * sizeof (*ssym
));
7035 ssymbuf
= (struct elf_symbuf_head
*) bfd_malloc (total_size
);
7036 if (ssymbuf
== NULL
)
7042 ssym
= (struct elf_symbuf_symbol
*) (ssymbuf
+ shndx_count
+ 1);
7043 ssymbuf
->ssym
= NULL
;
7044 ssymbuf
->count
= shndx_count
;
7045 ssymbuf
->st_shndx
= 0;
7046 for (ssymhead
= ssymbuf
, ind
= indbuf
; ind
< indbufend
; ssym
++, ind
++)
7048 if (ind
== indbuf
|| ssymhead
->st_shndx
!= (*ind
)->st_shndx
)
7051 ssymhead
->ssym
= ssym
;
7052 ssymhead
->count
= 0;
7053 ssymhead
->st_shndx
= (*ind
)->st_shndx
;
7055 ssym
->st_name
= (*ind
)->st_name
;
7056 ssym
->st_info
= (*ind
)->st_info
;
7057 ssym
->st_other
= (*ind
)->st_other
;
7060 BFD_ASSERT ((bfd_size_type
) (ssymhead
- ssymbuf
) == shndx_count
7061 && (((bfd_hostptr_t
) ssym
- (bfd_hostptr_t
) ssymbuf
)
7068 /* Check if 2 sections define the same set of local and global
7072 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
,
7073 struct bfd_link_info
*info
)
7076 const struct elf_backend_data
*bed1
, *bed2
;
7077 Elf_Internal_Shdr
*hdr1
, *hdr2
;
7078 bfd_size_type symcount1
, symcount2
;
7079 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
7080 struct elf_symbuf_head
*ssymbuf1
, *ssymbuf2
;
7081 Elf_Internal_Sym
*isym
, *isymend
;
7082 struct elf_symbol
*symtable1
= NULL
, *symtable2
= NULL
;
7083 bfd_size_type count1
, count2
, i
;
7084 unsigned int shndx1
, shndx2
;
7090 /* Both sections have to be in ELF. */
7091 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
7092 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
7095 if (elf_section_type (sec1
) != elf_section_type (sec2
))
7098 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
7099 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
7100 if (shndx1
== SHN_BAD
|| shndx2
== SHN_BAD
)
7103 bed1
= get_elf_backend_data (bfd1
);
7104 bed2
= get_elf_backend_data (bfd2
);
7105 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
7106 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
7107 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
7108 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
7110 if (symcount1
== 0 || symcount2
== 0)
7116 ssymbuf1
= (struct elf_symbuf_head
*) elf_tdata (bfd1
)->symbuf
;
7117 ssymbuf2
= (struct elf_symbuf_head
*) elf_tdata (bfd2
)->symbuf
;
7119 if (ssymbuf1
== NULL
)
7121 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
7123 if (isymbuf1
== NULL
)
7126 if (!info
->reduce_memory_overheads
)
7127 elf_tdata (bfd1
)->symbuf
= ssymbuf1
7128 = elf_create_symbuf (symcount1
, isymbuf1
);
7131 if (ssymbuf1
== NULL
|| ssymbuf2
== NULL
)
7133 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
7135 if (isymbuf2
== NULL
)
7138 if (ssymbuf1
!= NULL
&& !info
->reduce_memory_overheads
)
7139 elf_tdata (bfd2
)->symbuf
= ssymbuf2
7140 = elf_create_symbuf (symcount2
, isymbuf2
);
7143 if (ssymbuf1
!= NULL
&& ssymbuf2
!= NULL
)
7145 /* Optimized faster version. */
7146 bfd_size_type lo
, hi
, mid
;
7147 struct elf_symbol
*symp
;
7148 struct elf_symbuf_symbol
*ssym
, *ssymend
;
7151 hi
= ssymbuf1
->count
;
7156 mid
= (lo
+ hi
) / 2;
7157 if (shndx1
< ssymbuf1
[mid
].st_shndx
)
7159 else if (shndx1
> ssymbuf1
[mid
].st_shndx
)
7163 count1
= ssymbuf1
[mid
].count
;
7170 hi
= ssymbuf2
->count
;
7175 mid
= (lo
+ hi
) / 2;
7176 if (shndx2
< ssymbuf2
[mid
].st_shndx
)
7178 else if (shndx2
> ssymbuf2
[mid
].st_shndx
)
7182 count2
= ssymbuf2
[mid
].count
;
7188 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7191 symtable1
= (struct elf_symbol
*)
7192 bfd_malloc (count1
* sizeof (struct elf_symbol
));
7193 symtable2
= (struct elf_symbol
*)
7194 bfd_malloc (count2
* sizeof (struct elf_symbol
));
7195 if (symtable1
== NULL
|| symtable2
== NULL
)
7199 for (ssym
= ssymbuf1
->ssym
, ssymend
= ssym
+ count1
;
7200 ssym
< ssymend
; ssym
++, symp
++)
7202 symp
->u
.ssym
= ssym
;
7203 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
7209 for (ssym
= ssymbuf2
->ssym
, ssymend
= ssym
+ count2
;
7210 ssym
< ssymend
; ssym
++, symp
++)
7212 symp
->u
.ssym
= ssym
;
7213 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
7218 /* Sort symbol by name. */
7219 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7220 elf_sym_name_compare
);
7221 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7222 elf_sym_name_compare
);
7224 for (i
= 0; i
< count1
; i
++)
7225 /* Two symbols must have the same binding, type and name. */
7226 if (symtable1
[i
].u
.ssym
->st_info
!= symtable2
[i
].u
.ssym
->st_info
7227 || symtable1
[i
].u
.ssym
->st_other
!= symtable2
[i
].u
.ssym
->st_other
7228 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7235 symtable1
= (struct elf_symbol
*)
7236 bfd_malloc (symcount1
* sizeof (struct elf_symbol
));
7237 symtable2
= (struct elf_symbol
*)
7238 bfd_malloc (symcount2
* sizeof (struct elf_symbol
));
7239 if (symtable1
== NULL
|| symtable2
== NULL
)
7242 /* Count definitions in the section. */
7244 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
; isym
< isymend
; isym
++)
7245 if (isym
->st_shndx
== shndx1
)
7246 symtable1
[count1
++].u
.isym
= isym
;
7249 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
; isym
< isymend
; isym
++)
7250 if (isym
->st_shndx
== shndx2
)
7251 symtable2
[count2
++].u
.isym
= isym
;
7253 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7256 for (i
= 0; i
< count1
; i
++)
7258 = bfd_elf_string_from_elf_section (bfd1
, hdr1
->sh_link
,
7259 symtable1
[i
].u
.isym
->st_name
);
7261 for (i
= 0; i
< count2
; i
++)
7263 = bfd_elf_string_from_elf_section (bfd2
, hdr2
->sh_link
,
7264 symtable2
[i
].u
.isym
->st_name
);
7266 /* Sort symbol by name. */
7267 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7268 elf_sym_name_compare
);
7269 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7270 elf_sym_name_compare
);
7272 for (i
= 0; i
< count1
; i
++)
7273 /* Two symbols must have the same binding, type and name. */
7274 if (symtable1
[i
].u
.isym
->st_info
!= symtable2
[i
].u
.isym
->st_info
7275 || symtable1
[i
].u
.isym
->st_other
!= symtable2
[i
].u
.isym
->st_other
7276 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7294 /* Return TRUE if 2 section types are compatible. */
7297 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
7298 bfd
*bbfd
, const asection
*bsec
)
7302 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
7303 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7306 return elf_section_type (asec
) == elf_section_type (bsec
);
7309 /* Final phase of ELF linker. */
7311 /* A structure we use to avoid passing large numbers of arguments. */
7313 struct elf_final_link_info
7315 /* General link information. */
7316 struct bfd_link_info
*info
;
7319 /* Symbol string table. */
7320 struct bfd_strtab_hash
*symstrtab
;
7321 /* .dynsym section. */
7322 asection
*dynsym_sec
;
7323 /* .hash section. */
7325 /* symbol version section (.gnu.version). */
7326 asection
*symver_sec
;
7327 /* Buffer large enough to hold contents of any section. */
7329 /* Buffer large enough to hold external relocs of any section. */
7330 void *external_relocs
;
7331 /* Buffer large enough to hold internal relocs of any section. */
7332 Elf_Internal_Rela
*internal_relocs
;
7333 /* Buffer large enough to hold external local symbols of any input
7335 bfd_byte
*external_syms
;
7336 /* And a buffer for symbol section indices. */
7337 Elf_External_Sym_Shndx
*locsym_shndx
;
7338 /* Buffer large enough to hold internal local symbols of any input
7340 Elf_Internal_Sym
*internal_syms
;
7341 /* Array large enough to hold a symbol index for each local symbol
7342 of any input BFD. */
7344 /* Array large enough to hold a section pointer for each local
7345 symbol of any input BFD. */
7346 asection
**sections
;
7347 /* Buffer to hold swapped out symbols. */
7349 /* And one for symbol section indices. */
7350 Elf_External_Sym_Shndx
*symshndxbuf
;
7351 /* Number of swapped out symbols in buffer. */
7352 size_t symbuf_count
;
7353 /* Number of symbols which fit in symbuf. */
7355 /* And same for symshndxbuf. */
7356 size_t shndxbuf_size
;
7359 /* This struct is used to pass information to elf_link_output_extsym. */
7361 struct elf_outext_info
7364 bfd_boolean localsyms
;
7365 struct elf_final_link_info
*finfo
;
7369 /* Support for evaluating a complex relocation.
7371 Complex relocations are generalized, self-describing relocations. The
7372 implementation of them consists of two parts: complex symbols, and the
7373 relocations themselves.
7375 The relocations are use a reserved elf-wide relocation type code (R_RELC
7376 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7377 information (start bit, end bit, word width, etc) into the addend. This
7378 information is extracted from CGEN-generated operand tables within gas.
7380 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7381 internal) representing prefix-notation expressions, including but not
7382 limited to those sorts of expressions normally encoded as addends in the
7383 addend field. The symbol mangling format is:
7386 | <unary-operator> ':' <node>
7387 | <binary-operator> ':' <node> ':' <node>
7390 <literal> := 's' <digits=N> ':' <N character symbol name>
7391 | 'S' <digits=N> ':' <N character section name>
7395 <binary-operator> := as in C
7396 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7399 set_symbol_value (bfd
*bfd_with_globals
,
7400 Elf_Internal_Sym
*isymbuf
,
7405 struct elf_link_hash_entry
**sym_hashes
;
7406 struct elf_link_hash_entry
*h
;
7407 size_t extsymoff
= locsymcount
;
7409 if (symidx
< locsymcount
)
7411 Elf_Internal_Sym
*sym
;
7413 sym
= isymbuf
+ symidx
;
7414 if (ELF_ST_BIND (sym
->st_info
) == STB_LOCAL
)
7416 /* It is a local symbol: move it to the
7417 "absolute" section and give it a value. */
7418 sym
->st_shndx
= SHN_ABS
;
7419 sym
->st_value
= val
;
7422 BFD_ASSERT (elf_bad_symtab (bfd_with_globals
));
7426 /* It is a global symbol: set its link type
7427 to "defined" and give it a value. */
7429 sym_hashes
= elf_sym_hashes (bfd_with_globals
);
7430 h
= sym_hashes
[symidx
- extsymoff
];
7431 while (h
->root
.type
== bfd_link_hash_indirect
7432 || h
->root
.type
== bfd_link_hash_warning
)
7433 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7434 h
->root
.type
= bfd_link_hash_defined
;
7435 h
->root
.u
.def
.value
= val
;
7436 h
->root
.u
.def
.section
= bfd_abs_section_ptr
;
7440 resolve_symbol (const char *name
,
7442 struct elf_final_link_info
*finfo
,
7444 Elf_Internal_Sym
*isymbuf
,
7447 Elf_Internal_Sym
*sym
;
7448 struct bfd_link_hash_entry
*global_entry
;
7449 const char *candidate
= NULL
;
7450 Elf_Internal_Shdr
*symtab_hdr
;
7453 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
7455 for (i
= 0; i
< locsymcount
; ++ i
)
7459 if (ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
7462 candidate
= bfd_elf_string_from_elf_section (input_bfd
,
7463 symtab_hdr
->sh_link
,
7466 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7467 name
, candidate
, (unsigned long) sym
->st_value
);
7469 if (candidate
&& strcmp (candidate
, name
) == 0)
7471 asection
*sec
= finfo
->sections
[i
];
7473 *result
= _bfd_elf_rel_local_sym (input_bfd
, sym
, &sec
, 0);
7474 *result
+= sec
->output_offset
+ sec
->output_section
->vma
;
7476 printf ("Found symbol with value %8.8lx\n",
7477 (unsigned long) *result
);
7483 /* Hmm, haven't found it yet. perhaps it is a global. */
7484 global_entry
= bfd_link_hash_lookup (finfo
->info
->hash
, name
,
7485 FALSE
, FALSE
, TRUE
);
7489 if (global_entry
->type
== bfd_link_hash_defined
7490 || global_entry
->type
== bfd_link_hash_defweak
)
7492 *result
= (global_entry
->u
.def
.value
7493 + global_entry
->u
.def
.section
->output_section
->vma
7494 + global_entry
->u
.def
.section
->output_offset
);
7496 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7497 global_entry
->root
.string
, (unsigned long) *result
);
7506 resolve_section (const char *name
,
7513 for (curr
= sections
; curr
; curr
= curr
->next
)
7514 if (strcmp (curr
->name
, name
) == 0)
7516 *result
= curr
->vma
;
7520 /* Hmm. still haven't found it. try pseudo-section names. */
7521 for (curr
= sections
; curr
; curr
= curr
->next
)
7523 len
= strlen (curr
->name
);
7524 if (len
> strlen (name
))
7527 if (strncmp (curr
->name
, name
, len
) == 0)
7529 if (strncmp (".end", name
+ len
, 4) == 0)
7531 *result
= curr
->vma
+ curr
->size
;
7535 /* Insert more pseudo-section names here, if you like. */
7543 undefined_reference (const char *reftype
, const char *name
)
7545 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7550 eval_symbol (bfd_vma
*result
,
7553 struct elf_final_link_info
*finfo
,
7555 Elf_Internal_Sym
*isymbuf
,
7564 const char *sym
= *symp
;
7566 bfd_boolean symbol_is_section
= FALSE
;
7571 if (len
< 1 || len
> sizeof (symbuf
))
7573 bfd_set_error (bfd_error_invalid_operation
);
7586 *result
= strtoul (sym
, (char **) symp
, 16);
7590 symbol_is_section
= TRUE
;
7593 symlen
= strtol (sym
, (char **) symp
, 10);
7594 sym
= *symp
+ 1; /* Skip the trailing ':'. */
7596 if (symend
< sym
|| symlen
+ 1 > sizeof (symbuf
))
7598 bfd_set_error (bfd_error_invalid_operation
);
7602 memcpy (symbuf
, sym
, symlen
);
7603 symbuf
[symlen
] = '\0';
7604 *symp
= sym
+ symlen
;
7606 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7607 the symbol as a section, or vice-versa. so we're pretty liberal in our
7608 interpretation here; section means "try section first", not "must be a
7609 section", and likewise with symbol. */
7611 if (symbol_is_section
)
7613 if (!resolve_section (symbuf
, finfo
->output_bfd
->sections
, result
)
7614 && !resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7615 isymbuf
, locsymcount
))
7617 undefined_reference ("section", symbuf
);
7623 if (!resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7624 isymbuf
, locsymcount
)
7625 && !resolve_section (symbuf
, finfo
->output_bfd
->sections
,
7628 undefined_reference ("symbol", symbuf
);
7635 /* All that remains are operators. */
7637 #define UNARY_OP(op) \
7638 if (strncmp (sym, #op, strlen (#op)) == 0) \
7640 sym += strlen (#op); \
7644 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7645 isymbuf, locsymcount, signed_p)) \
7648 *result = op ((bfd_signed_vma) a); \
7654 #define BINARY_OP(op) \
7655 if (strncmp (sym, #op, strlen (#op)) == 0) \
7657 sym += strlen (#op); \
7661 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7662 isymbuf, locsymcount, signed_p)) \
7665 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7666 isymbuf, locsymcount, signed_p)) \
7669 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7699 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym
);
7700 bfd_set_error (bfd_error_invalid_operation
);
7706 put_value (bfd_vma size
,
7707 unsigned long chunksz
,
7712 location
+= (size
- chunksz
);
7714 for (; size
; size
-= chunksz
, location
-= chunksz
, x
>>= (chunksz
* 8))
7722 bfd_put_8 (input_bfd
, x
, location
);
7725 bfd_put_16 (input_bfd
, x
, location
);
7728 bfd_put_32 (input_bfd
, x
, location
);
7732 bfd_put_64 (input_bfd
, x
, location
);
7742 get_value (bfd_vma size
,
7743 unsigned long chunksz
,
7749 for (; size
; size
-= chunksz
, location
+= chunksz
)
7757 x
= (x
<< (8 * chunksz
)) | bfd_get_8 (input_bfd
, location
);
7760 x
= (x
<< (8 * chunksz
)) | bfd_get_16 (input_bfd
, location
);
7763 x
= (x
<< (8 * chunksz
)) | bfd_get_32 (input_bfd
, location
);
7767 x
= (x
<< (8 * chunksz
)) | bfd_get_64 (input_bfd
, location
);
7778 decode_complex_addend (unsigned long *start
, /* in bits */
7779 unsigned long *oplen
, /* in bits */
7780 unsigned long *len
, /* in bits */
7781 unsigned long *wordsz
, /* in bytes */
7782 unsigned long *chunksz
, /* in bytes */
7783 unsigned long *lsb0_p
,
7784 unsigned long *signed_p
,
7785 unsigned long *trunc_p
,
7786 unsigned long encoded
)
7788 * start
= encoded
& 0x3F;
7789 * len
= (encoded
>> 6) & 0x3F;
7790 * oplen
= (encoded
>> 12) & 0x3F;
7791 * wordsz
= (encoded
>> 18) & 0xF;
7792 * chunksz
= (encoded
>> 22) & 0xF;
7793 * lsb0_p
= (encoded
>> 27) & 1;
7794 * signed_p
= (encoded
>> 28) & 1;
7795 * trunc_p
= (encoded
>> 29) & 1;
7798 bfd_reloc_status_type
7799 bfd_elf_perform_complex_relocation (bfd
*input_bfd
,
7800 asection
*input_section ATTRIBUTE_UNUSED
,
7802 Elf_Internal_Rela
*rel
,
7805 bfd_vma shift
, x
, mask
;
7806 unsigned long start
, oplen
, len
, wordsz
, chunksz
, lsb0_p
, signed_p
, trunc_p
;
7807 bfd_reloc_status_type r
;
7809 /* Perform this reloc, since it is complex.
7810 (this is not to say that it necessarily refers to a complex
7811 symbol; merely that it is a self-describing CGEN based reloc.
7812 i.e. the addend has the complete reloc information (bit start, end,
7813 word size, etc) encoded within it.). */
7815 decode_complex_addend (&start
, &oplen
, &len
, &wordsz
,
7816 &chunksz
, &lsb0_p
, &signed_p
,
7817 &trunc_p
, rel
->r_addend
);
7819 mask
= (((1L << (len
- 1)) - 1) << 1) | 1;
7822 shift
= (start
+ 1) - len
;
7824 shift
= (8 * wordsz
) - (start
+ len
);
7826 /* FIXME: octets_per_byte. */
7827 x
= get_value (wordsz
, chunksz
, input_bfd
, contents
+ rel
->r_offset
);
7830 printf ("Doing complex reloc: "
7831 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7832 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7833 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7834 lsb0_p
, signed_p
, trunc_p
, wordsz
, chunksz
, start
, len
,
7835 oplen
, x
, mask
, relocation
);
7840 /* Now do an overflow check. */
7841 r
= bfd_check_overflow ((signed_p
7842 ? complain_overflow_signed
7843 : complain_overflow_unsigned
),
7844 len
, 0, (8 * wordsz
),
7848 x
= (x
& ~(mask
<< shift
)) | ((relocation
& mask
) << shift
);
7851 printf (" relocation: %8.8lx\n"
7852 " shifted mask: %8.8lx\n"
7853 " shifted/masked reloc: %8.8lx\n"
7854 " result: %8.8lx\n",
7855 relocation
, (mask
<< shift
),
7856 ((relocation
& mask
) << shift
), x
);
7858 /* FIXME: octets_per_byte. */
7859 put_value (wordsz
, chunksz
, input_bfd
, x
, contents
+ rel
->r_offset
);
7863 /* When performing a relocatable link, the input relocations are
7864 preserved. But, if they reference global symbols, the indices
7865 referenced must be updated. Update all the relocations in
7866 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7869 elf_link_adjust_relocs (bfd
*abfd
,
7870 Elf_Internal_Shdr
*rel_hdr
,
7872 struct elf_link_hash_entry
**rel_hash
)
7875 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7877 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
7878 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
7879 bfd_vma r_type_mask
;
7882 if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
7884 swap_in
= bed
->s
->swap_reloc_in
;
7885 swap_out
= bed
->s
->swap_reloc_out
;
7887 else if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
7889 swap_in
= bed
->s
->swap_reloca_in
;
7890 swap_out
= bed
->s
->swap_reloca_out
;
7895 if (bed
->s
->int_rels_per_ext_rel
> MAX_INT_RELS_PER_EXT_REL
)
7898 if (bed
->s
->arch_size
== 32)
7905 r_type_mask
= 0xffffffff;
7909 erela
= rel_hdr
->contents
;
7910 for (i
= 0; i
< count
; i
++, rel_hash
++, erela
+= rel_hdr
->sh_entsize
)
7912 Elf_Internal_Rela irela
[MAX_INT_RELS_PER_EXT_REL
];
7915 if (*rel_hash
== NULL
)
7918 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
7920 (*swap_in
) (abfd
, erela
, irela
);
7921 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
7922 irela
[j
].r_info
= ((bfd_vma
) (*rel_hash
)->indx
<< r_sym_shift
7923 | (irela
[j
].r_info
& r_type_mask
));
7924 (*swap_out
) (abfd
, irela
, erela
);
7928 struct elf_link_sort_rela
7934 enum elf_reloc_type_class type
;
7935 /* We use this as an array of size int_rels_per_ext_rel. */
7936 Elf_Internal_Rela rela
[1];
7940 elf_link_sort_cmp1 (const void *A
, const void *B
)
7942 const struct elf_link_sort_rela
*a
= (const struct elf_link_sort_rela
*) A
;
7943 const struct elf_link_sort_rela
*b
= (const struct elf_link_sort_rela
*) B
;
7944 int relativea
, relativeb
;
7946 relativea
= a
->type
== reloc_class_relative
;
7947 relativeb
= b
->type
== reloc_class_relative
;
7949 if (relativea
< relativeb
)
7951 if (relativea
> relativeb
)
7953 if ((a
->rela
->r_info
& a
->u
.sym_mask
) < (b
->rela
->r_info
& b
->u
.sym_mask
))
7955 if ((a
->rela
->r_info
& a
->u
.sym_mask
) > (b
->rela
->r_info
& b
->u
.sym_mask
))
7957 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
7959 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
7965 elf_link_sort_cmp2 (const void *A
, const void *B
)
7967 const struct elf_link_sort_rela
*a
= (const struct elf_link_sort_rela
*) A
;
7968 const struct elf_link_sort_rela
*b
= (const struct elf_link_sort_rela
*) B
;
7971 if (a
->u
.offset
< b
->u
.offset
)
7973 if (a
->u
.offset
> b
->u
.offset
)
7975 copya
= (a
->type
== reloc_class_copy
) * 2 + (a
->type
== reloc_class_plt
);
7976 copyb
= (b
->type
== reloc_class_copy
) * 2 + (b
->type
== reloc_class_plt
);
7981 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
7983 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
7989 elf_link_sort_relocs (bfd
*abfd
, struct bfd_link_info
*info
, asection
**psec
)
7991 asection
*dynamic_relocs
;
7994 bfd_size_type count
, size
;
7995 size_t i
, ret
, sort_elt
, ext_size
;
7996 bfd_byte
*sort
, *s_non_relative
, *p
;
7997 struct elf_link_sort_rela
*sq
;
7998 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7999 int i2e
= bed
->s
->int_rels_per_ext_rel
;
8000 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
8001 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
8002 struct bfd_link_order
*lo
;
8004 bfd_boolean use_rela
;
8006 /* Find a dynamic reloc section. */
8007 rela_dyn
= bfd_get_section_by_name (abfd
, ".rela.dyn");
8008 rel_dyn
= bfd_get_section_by_name (abfd
, ".rel.dyn");
8009 if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0
8010 && rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
8012 bfd_boolean use_rela_initialised
= FALSE
;
8014 /* This is just here to stop gcc from complaining.
8015 It's initialization checking code is not perfect. */
8018 /* Both sections are present. Examine the sizes
8019 of the indirect sections to help us choose. */
8020 for (lo
= rela_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8021 if (lo
->type
== bfd_indirect_link_order
)
8023 asection
*o
= lo
->u
.indirect
.section
;
8025 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
8027 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8028 /* Section size is divisible by both rel and rela sizes.
8029 It is of no help to us. */
8033 /* Section size is only divisible by rela. */
8034 if (use_rela_initialised
&& (use_rela
== FALSE
))
8037 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8038 bfd_set_error (bfd_error_invalid_operation
);
8044 use_rela_initialised
= TRUE
;
8048 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8050 /* Section size is only divisible by rel. */
8051 if (use_rela_initialised
&& (use_rela
== TRUE
))
8054 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8055 bfd_set_error (bfd_error_invalid_operation
);
8061 use_rela_initialised
= TRUE
;
8066 /* The section size is not divisible by either - something is wrong. */
8068 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
8069 bfd_set_error (bfd_error_invalid_operation
);
8074 for (lo
= rel_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8075 if (lo
->type
== bfd_indirect_link_order
)
8077 asection
*o
= lo
->u
.indirect
.section
;
8079 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
8081 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8082 /* Section size is divisible by both rel and rela sizes.
8083 It is of no help to us. */
8087 /* Section size is only divisible by rela. */
8088 if (use_rela_initialised
&& (use_rela
== FALSE
))
8091 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8092 bfd_set_error (bfd_error_invalid_operation
);
8098 use_rela_initialised
= TRUE
;
8102 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8104 /* Section size is only divisible by rel. */
8105 if (use_rela_initialised
&& (use_rela
== TRUE
))
8108 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8109 bfd_set_error (bfd_error_invalid_operation
);
8115 use_rela_initialised
= TRUE
;
8120 /* The section size is not divisible by either - something is wrong. */
8122 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
8123 bfd_set_error (bfd_error_invalid_operation
);
8128 if (! use_rela_initialised
)
8132 else if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0)
8134 else if (rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
8141 dynamic_relocs
= rela_dyn
;
8142 ext_size
= bed
->s
->sizeof_rela
;
8143 swap_in
= bed
->s
->swap_reloca_in
;
8144 swap_out
= bed
->s
->swap_reloca_out
;
8148 dynamic_relocs
= rel_dyn
;
8149 ext_size
= bed
->s
->sizeof_rel
;
8150 swap_in
= bed
->s
->swap_reloc_in
;
8151 swap_out
= bed
->s
->swap_reloc_out
;
8155 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8156 if (lo
->type
== bfd_indirect_link_order
)
8157 size
+= lo
->u
.indirect
.section
->size
;
8159 if (size
!= dynamic_relocs
->size
)
8162 sort_elt
= (sizeof (struct elf_link_sort_rela
)
8163 + (i2e
- 1) * sizeof (Elf_Internal_Rela
));
8165 count
= dynamic_relocs
->size
/ ext_size
;
8168 sort
= (bfd_byte
*) bfd_zmalloc (sort_elt
* count
);
8172 (*info
->callbacks
->warning
)
8173 (info
, _("Not enough memory to sort relocations"), 0, abfd
, 0, 0);
8177 if (bed
->s
->arch_size
== 32)
8178 r_sym_mask
= ~(bfd_vma
) 0xff;
8180 r_sym_mask
= ~(bfd_vma
) 0xffffffff;
8182 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8183 if (lo
->type
== bfd_indirect_link_order
)
8185 bfd_byte
*erel
, *erelend
;
8186 asection
*o
= lo
->u
.indirect
.section
;
8188 if (o
->contents
== NULL
&& o
->size
!= 0)
8190 /* This is a reloc section that is being handled as a normal
8191 section. See bfd_section_from_shdr. We can't combine
8192 relocs in this case. */
8197 erelend
= o
->contents
+ o
->size
;
8198 /* FIXME: octets_per_byte. */
8199 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8201 while (erel
< erelend
)
8203 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8205 (*swap_in
) (abfd
, erel
, s
->rela
);
8206 s
->type
= (*bed
->elf_backend_reloc_type_class
) (s
->rela
);
8207 s
->u
.sym_mask
= r_sym_mask
;
8213 qsort (sort
, count
, sort_elt
, elf_link_sort_cmp1
);
8215 for (i
= 0, p
= sort
; i
< count
; i
++, p
+= sort_elt
)
8217 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8218 if (s
->type
!= reloc_class_relative
)
8224 sq
= (struct elf_link_sort_rela
*) s_non_relative
;
8225 for (; i
< count
; i
++, p
+= sort_elt
)
8227 struct elf_link_sort_rela
*sp
= (struct elf_link_sort_rela
*) p
;
8228 if (((sp
->rela
->r_info
^ sq
->rela
->r_info
) & r_sym_mask
) != 0)
8230 sp
->u
.offset
= sq
->rela
->r_offset
;
8233 qsort (s_non_relative
, count
- ret
, sort_elt
, elf_link_sort_cmp2
);
8235 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8236 if (lo
->type
== bfd_indirect_link_order
)
8238 bfd_byte
*erel
, *erelend
;
8239 asection
*o
= lo
->u
.indirect
.section
;
8242 erelend
= o
->contents
+ o
->size
;
8243 /* FIXME: octets_per_byte. */
8244 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8245 while (erel
< erelend
)
8247 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8248 (*swap_out
) (abfd
, s
->rela
, erel
);
8255 *psec
= dynamic_relocs
;
8259 /* Flush the output symbols to the file. */
8262 elf_link_flush_output_syms (struct elf_final_link_info
*finfo
,
8263 const struct elf_backend_data
*bed
)
8265 if (finfo
->symbuf_count
> 0)
8267 Elf_Internal_Shdr
*hdr
;
8271 hdr
= &elf_tdata (finfo
->output_bfd
)->symtab_hdr
;
8272 pos
= hdr
->sh_offset
+ hdr
->sh_size
;
8273 amt
= finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8274 if (bfd_seek (finfo
->output_bfd
, pos
, SEEK_SET
) != 0
8275 || bfd_bwrite (finfo
->symbuf
, amt
, finfo
->output_bfd
) != amt
)
8278 hdr
->sh_size
+= amt
;
8279 finfo
->symbuf_count
= 0;
8285 /* Add a symbol to the output symbol table. */
8288 elf_link_output_sym (struct elf_final_link_info
*finfo
,
8290 Elf_Internal_Sym
*elfsym
,
8291 asection
*input_sec
,
8292 struct elf_link_hash_entry
*h
)
8295 Elf_External_Sym_Shndx
*destshndx
;
8296 int (*output_symbol_hook
)
8297 (struct bfd_link_info
*, const char *, Elf_Internal_Sym
*, asection
*,
8298 struct elf_link_hash_entry
*);
8299 const struct elf_backend_data
*bed
;
8301 bed
= get_elf_backend_data (finfo
->output_bfd
);
8302 output_symbol_hook
= bed
->elf_backend_link_output_symbol_hook
;
8303 if (output_symbol_hook
!= NULL
)
8305 int ret
= (*output_symbol_hook
) (finfo
->info
, name
, elfsym
, input_sec
, h
);
8310 if (name
== NULL
|| *name
== '\0')
8311 elfsym
->st_name
= 0;
8312 else if (input_sec
->flags
& SEC_EXCLUDE
)
8313 elfsym
->st_name
= 0;
8316 elfsym
->st_name
= (unsigned long) _bfd_stringtab_add (finfo
->symstrtab
,
8318 if (elfsym
->st_name
== (unsigned long) -1)
8322 if (finfo
->symbuf_count
>= finfo
->symbuf_size
)
8324 if (! elf_link_flush_output_syms (finfo
, bed
))
8328 dest
= finfo
->symbuf
+ finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8329 destshndx
= finfo
->symshndxbuf
;
8330 if (destshndx
!= NULL
)
8332 if (bfd_get_symcount (finfo
->output_bfd
) >= finfo
->shndxbuf_size
)
8336 amt
= finfo
->shndxbuf_size
* sizeof (Elf_External_Sym_Shndx
);
8337 destshndx
= (Elf_External_Sym_Shndx
*) bfd_realloc (destshndx
,
8339 if (destshndx
== NULL
)
8341 finfo
->symshndxbuf
= destshndx
;
8342 memset ((char *) destshndx
+ amt
, 0, amt
);
8343 finfo
->shndxbuf_size
*= 2;
8345 destshndx
+= bfd_get_symcount (finfo
->output_bfd
);
8348 bed
->s
->swap_symbol_out (finfo
->output_bfd
, elfsym
, dest
, destshndx
);
8349 finfo
->symbuf_count
+= 1;
8350 bfd_get_symcount (finfo
->output_bfd
) += 1;
8355 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8358 check_dynsym (bfd
*abfd
, Elf_Internal_Sym
*sym
)
8360 if (sym
->st_shndx
>= (SHN_LORESERVE
& 0xffff)
8361 && sym
->st_shndx
< SHN_LORESERVE
)
8363 /* The gABI doesn't support dynamic symbols in output sections
8365 (*_bfd_error_handler
)
8366 (_("%B: Too many sections: %d (>= %d)"),
8367 abfd
, bfd_count_sections (abfd
), SHN_LORESERVE
& 0xffff);
8368 bfd_set_error (bfd_error_nonrepresentable_section
);
8374 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8375 allowing an unsatisfied unversioned symbol in the DSO to match a
8376 versioned symbol that would normally require an explicit version.
8377 We also handle the case that a DSO references a hidden symbol
8378 which may be satisfied by a versioned symbol in another DSO. */
8381 elf_link_check_versioned_symbol (struct bfd_link_info
*info
,
8382 const struct elf_backend_data
*bed
,
8383 struct elf_link_hash_entry
*h
)
8386 struct elf_link_loaded_list
*loaded
;
8388 if (!is_elf_hash_table (info
->hash
))
8391 switch (h
->root
.type
)
8397 case bfd_link_hash_undefined
:
8398 case bfd_link_hash_undefweak
:
8399 abfd
= h
->root
.u
.undef
.abfd
;
8400 if ((abfd
->flags
& DYNAMIC
) == 0
8401 || (elf_dyn_lib_class (abfd
) & DYN_DT_NEEDED
) == 0)
8405 case bfd_link_hash_defined
:
8406 case bfd_link_hash_defweak
:
8407 abfd
= h
->root
.u
.def
.section
->owner
;
8410 case bfd_link_hash_common
:
8411 abfd
= h
->root
.u
.c
.p
->section
->owner
;
8414 BFD_ASSERT (abfd
!= NULL
);
8416 for (loaded
= elf_hash_table (info
)->loaded
;
8418 loaded
= loaded
->next
)
8421 Elf_Internal_Shdr
*hdr
;
8422 bfd_size_type symcount
;
8423 bfd_size_type extsymcount
;
8424 bfd_size_type extsymoff
;
8425 Elf_Internal_Shdr
*versymhdr
;
8426 Elf_Internal_Sym
*isym
;
8427 Elf_Internal_Sym
*isymend
;
8428 Elf_Internal_Sym
*isymbuf
;
8429 Elf_External_Versym
*ever
;
8430 Elf_External_Versym
*extversym
;
8432 input
= loaded
->abfd
;
8434 /* We check each DSO for a possible hidden versioned definition. */
8436 || (input
->flags
& DYNAMIC
) == 0
8437 || elf_dynversym (input
) == 0)
8440 hdr
= &elf_tdata (input
)->dynsymtab_hdr
;
8442 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8443 if (elf_bad_symtab (input
))
8445 extsymcount
= symcount
;
8450 extsymcount
= symcount
- hdr
->sh_info
;
8451 extsymoff
= hdr
->sh_info
;
8454 if (extsymcount
== 0)
8457 isymbuf
= bfd_elf_get_elf_syms (input
, hdr
, extsymcount
, extsymoff
,
8459 if (isymbuf
== NULL
)
8462 /* Read in any version definitions. */
8463 versymhdr
= &elf_tdata (input
)->dynversym_hdr
;
8464 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
8465 if (extversym
== NULL
)
8468 if (bfd_seek (input
, versymhdr
->sh_offset
, SEEK_SET
) != 0
8469 || (bfd_bread (extversym
, versymhdr
->sh_size
, input
)
8470 != versymhdr
->sh_size
))
8478 ever
= extversym
+ extsymoff
;
8479 isymend
= isymbuf
+ extsymcount
;
8480 for (isym
= isymbuf
; isym
< isymend
; isym
++, ever
++)
8483 Elf_Internal_Versym iver
;
8484 unsigned short version_index
;
8486 if (ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
8487 || isym
->st_shndx
== SHN_UNDEF
)
8490 name
= bfd_elf_string_from_elf_section (input
,
8493 if (strcmp (name
, h
->root
.root
.string
) != 0)
8496 _bfd_elf_swap_versym_in (input
, ever
, &iver
);
8498 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0)
8500 /* If we have a non-hidden versioned sym, then it should
8501 have provided a definition for the undefined sym. */
8505 version_index
= iver
.vs_vers
& VERSYM_VERSION
;
8506 if (version_index
== 1 || version_index
== 2)
8508 /* This is the base or first version. We can use it. */
8522 /* Add an external symbol to the symbol table. This is called from
8523 the hash table traversal routine. When generating a shared object,
8524 we go through the symbol table twice. The first time we output
8525 anything that might have been forced to local scope in a version
8526 script. The second time we output the symbols that are still
8530 elf_link_output_extsym (struct elf_link_hash_entry
*h
, void *data
)
8532 struct elf_outext_info
*eoinfo
= (struct elf_outext_info
*) data
;
8533 struct elf_final_link_info
*finfo
= eoinfo
->finfo
;
8535 Elf_Internal_Sym sym
;
8536 asection
*input_sec
;
8537 const struct elf_backend_data
*bed
;
8541 if (h
->root
.type
== bfd_link_hash_warning
)
8543 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8544 if (h
->root
.type
== bfd_link_hash_new
)
8548 /* Decide whether to output this symbol in this pass. */
8549 if (eoinfo
->localsyms
)
8551 if (!h
->forced_local
)
8556 if (h
->forced_local
)
8560 bed
= get_elf_backend_data (finfo
->output_bfd
);
8562 if (h
->root
.type
== bfd_link_hash_undefined
)
8564 /* If we have an undefined symbol reference here then it must have
8565 come from a shared library that is being linked in. (Undefined
8566 references in regular files have already been handled). */
8567 bfd_boolean ignore_undef
= FALSE
;
8569 /* Some symbols may be special in that the fact that they're
8570 undefined can be safely ignored - let backend determine that. */
8571 if (bed
->elf_backend_ignore_undef_symbol
)
8572 ignore_undef
= bed
->elf_backend_ignore_undef_symbol (h
);
8574 /* If we are reporting errors for this situation then do so now. */
8575 if (ignore_undef
== FALSE
8578 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
)
8579 && finfo
->info
->unresolved_syms_in_shared_libs
!= RM_IGNORE
)
8581 if (! (finfo
->info
->callbacks
->undefined_symbol
8582 (finfo
->info
, h
->root
.root
.string
, h
->root
.u
.undef
.abfd
,
8583 NULL
, 0, finfo
->info
->unresolved_syms_in_shared_libs
== RM_GENERATE_ERROR
)))
8585 eoinfo
->failed
= TRUE
;
8591 /* We should also warn if a forced local symbol is referenced from
8592 shared libraries. */
8593 if (! finfo
->info
->relocatable
8594 && (! finfo
->info
->shared
)
8599 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
))
8601 (*_bfd_error_handler
)
8602 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8604 h
->root
.u
.def
.section
== bfd_abs_section_ptr
8605 ? finfo
->output_bfd
: h
->root
.u
.def
.section
->owner
,
8606 ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
8608 : ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
8609 ? "hidden" : "local",
8610 h
->root
.root
.string
);
8611 eoinfo
->failed
= TRUE
;
8615 /* We don't want to output symbols that have never been mentioned by
8616 a regular file, or that we have been told to strip. However, if
8617 h->indx is set to -2, the symbol is used by a reloc and we must
8621 else if ((h
->def_dynamic
8623 || h
->root
.type
== bfd_link_hash_new
)
8627 else if (finfo
->info
->strip
== strip_all
)
8629 else if (finfo
->info
->strip
== strip_some
8630 && bfd_hash_lookup (finfo
->info
->keep_hash
,
8631 h
->root
.root
.string
, FALSE
, FALSE
) == NULL
)
8633 else if (finfo
->info
->strip_discarded
8634 && (h
->root
.type
== bfd_link_hash_defined
8635 || h
->root
.type
== bfd_link_hash_defweak
)
8636 && elf_discarded_section (h
->root
.u
.def
.section
))
8641 /* If we're stripping it, and it's not a dynamic symbol, there's
8642 nothing else to do unless it is a forced local symbol. */
8645 && !h
->forced_local
)
8649 sym
.st_size
= h
->size
;
8650 sym
.st_other
= h
->other
;
8651 if (h
->forced_local
)
8653 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, h
->type
);
8654 /* Turn off visibility on local symbol. */
8655 sym
.st_other
&= ~ELF_ST_VISIBILITY (-1);
8657 else if (h
->unique_global
)
8658 sym
.st_info
= ELF_ST_INFO (STB_GNU_UNIQUE
, h
->type
);
8659 else if (h
->root
.type
== bfd_link_hash_undefweak
8660 || h
->root
.type
== bfd_link_hash_defweak
)
8661 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, h
->type
);
8663 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, h
->type
);
8665 switch (h
->root
.type
)
8668 case bfd_link_hash_new
:
8669 case bfd_link_hash_warning
:
8673 case bfd_link_hash_undefined
:
8674 case bfd_link_hash_undefweak
:
8675 input_sec
= bfd_und_section_ptr
;
8676 sym
.st_shndx
= SHN_UNDEF
;
8679 case bfd_link_hash_defined
:
8680 case bfd_link_hash_defweak
:
8682 input_sec
= h
->root
.u
.def
.section
;
8683 if (input_sec
->output_section
!= NULL
)
8686 _bfd_elf_section_from_bfd_section (finfo
->output_bfd
,
8687 input_sec
->output_section
);
8688 if (sym
.st_shndx
== SHN_BAD
)
8690 (*_bfd_error_handler
)
8691 (_("%B: could not find output section %A for input section %A"),
8692 finfo
->output_bfd
, input_sec
->output_section
, input_sec
);
8693 eoinfo
->failed
= TRUE
;
8697 /* ELF symbols in relocatable files are section relative,
8698 but in nonrelocatable files they are virtual
8700 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
8701 if (! finfo
->info
->relocatable
)
8703 sym
.st_value
+= input_sec
->output_section
->vma
;
8704 if (h
->type
== STT_TLS
)
8706 asection
*tls_sec
= elf_hash_table (finfo
->info
)->tls_sec
;
8707 if (tls_sec
!= NULL
)
8708 sym
.st_value
-= tls_sec
->vma
;
8711 /* The TLS section may have been garbage collected. */
8712 BFD_ASSERT (finfo
->info
->gc_sections
8713 && !input_sec
->gc_mark
);
8720 BFD_ASSERT (input_sec
->owner
== NULL
8721 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
8722 sym
.st_shndx
= SHN_UNDEF
;
8723 input_sec
= bfd_und_section_ptr
;
8728 case bfd_link_hash_common
:
8729 input_sec
= h
->root
.u
.c
.p
->section
;
8730 sym
.st_shndx
= bed
->common_section_index (input_sec
);
8731 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
8734 case bfd_link_hash_indirect
:
8735 /* These symbols are created by symbol versioning. They point
8736 to the decorated version of the name. For example, if the
8737 symbol foo@@GNU_1.2 is the default, which should be used when
8738 foo is used with no version, then we add an indirect symbol
8739 foo which points to foo@@GNU_1.2. We ignore these symbols,
8740 since the indirected symbol is already in the hash table. */
8744 /* Give the processor backend a chance to tweak the symbol value,
8745 and also to finish up anything that needs to be done for this
8746 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8747 forced local syms when non-shared is due to a historical quirk.
8748 STT_GNU_IFUNC symbol must go through PLT. */
8749 if ((h
->type
== STT_GNU_IFUNC
8751 && !finfo
->info
->relocatable
)
8752 || ((h
->dynindx
!= -1
8754 && ((finfo
->info
->shared
8755 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8756 || h
->root
.type
!= bfd_link_hash_undefweak
))
8757 || !h
->forced_local
)
8758 && elf_hash_table (finfo
->info
)->dynamic_sections_created
))
8760 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
8761 (finfo
->output_bfd
, finfo
->info
, h
, &sym
)))
8763 eoinfo
->failed
= TRUE
;
8768 /* If we are marking the symbol as undefined, and there are no
8769 non-weak references to this symbol from a regular object, then
8770 mark the symbol as weak undefined; if there are non-weak
8771 references, mark the symbol as strong. We can't do this earlier,
8772 because it might not be marked as undefined until the
8773 finish_dynamic_symbol routine gets through with it. */
8774 if (sym
.st_shndx
== SHN_UNDEF
8776 && (ELF_ST_BIND (sym
.st_info
) == STB_GLOBAL
8777 || ELF_ST_BIND (sym
.st_info
) == STB_WEAK
))
8780 unsigned int type
= ELF_ST_TYPE (sym
.st_info
);
8782 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8783 if (type
== STT_GNU_IFUNC
)
8786 if (h
->ref_regular_nonweak
)
8787 bindtype
= STB_GLOBAL
;
8789 bindtype
= STB_WEAK
;
8790 sym
.st_info
= ELF_ST_INFO (bindtype
, type
);
8793 /* If this is a symbol defined in a dynamic library, don't use the
8794 symbol size from the dynamic library. Relinking an executable
8795 against a new library may introduce gratuitous changes in the
8796 executable's symbols if we keep the size. */
8797 if (sym
.st_shndx
== SHN_UNDEF
8802 /* If a non-weak symbol with non-default visibility is not defined
8803 locally, it is a fatal error. */
8804 if (! finfo
->info
->relocatable
8805 && ELF_ST_VISIBILITY (sym
.st_other
) != STV_DEFAULT
8806 && ELF_ST_BIND (sym
.st_info
) != STB_WEAK
8807 && h
->root
.type
== bfd_link_hash_undefined
8810 (*_bfd_error_handler
)
8811 (_("%B: %s symbol `%s' isn't defined"),
8813 ELF_ST_VISIBILITY (sym
.st_other
) == STV_PROTECTED
8815 : ELF_ST_VISIBILITY (sym
.st_other
) == STV_INTERNAL
8816 ? "internal" : "hidden",
8817 h
->root
.root
.string
);
8818 eoinfo
->failed
= TRUE
;
8822 /* If this symbol should be put in the .dynsym section, then put it
8823 there now. We already know the symbol index. We also fill in
8824 the entry in the .hash section. */
8825 if (h
->dynindx
!= -1
8826 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
8830 sym
.st_name
= h
->dynstr_index
;
8831 esym
= finfo
->dynsym_sec
->contents
+ h
->dynindx
* bed
->s
->sizeof_sym
;
8832 if (! check_dynsym (finfo
->output_bfd
, &sym
))
8834 eoinfo
->failed
= TRUE
;
8837 bed
->s
->swap_symbol_out (finfo
->output_bfd
, &sym
, esym
, 0);
8839 if (finfo
->hash_sec
!= NULL
)
8841 size_t hash_entry_size
;
8842 bfd_byte
*bucketpos
;
8847 bucketcount
= elf_hash_table (finfo
->info
)->bucketcount
;
8848 bucket
= h
->u
.elf_hash_value
% bucketcount
;
8851 = elf_section_data (finfo
->hash_sec
)->this_hdr
.sh_entsize
;
8852 bucketpos
= ((bfd_byte
*) finfo
->hash_sec
->contents
8853 + (bucket
+ 2) * hash_entry_size
);
8854 chain
= bfd_get (8 * hash_entry_size
, finfo
->output_bfd
, bucketpos
);
8855 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, h
->dynindx
, bucketpos
);
8856 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, chain
,
8857 ((bfd_byte
*) finfo
->hash_sec
->contents
8858 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
8861 if (finfo
->symver_sec
!= NULL
&& finfo
->symver_sec
->contents
!= NULL
)
8863 Elf_Internal_Versym iversym
;
8864 Elf_External_Versym
*eversym
;
8866 if (!h
->def_regular
)
8868 if (h
->verinfo
.verdef
== NULL
)
8869 iversym
.vs_vers
= 0;
8871 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
8875 if (h
->verinfo
.vertree
== NULL
)
8876 iversym
.vs_vers
= 1;
8878 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
8879 if (finfo
->info
->create_default_symver
)
8884 iversym
.vs_vers
|= VERSYM_HIDDEN
;
8886 eversym
= (Elf_External_Versym
*) finfo
->symver_sec
->contents
;
8887 eversym
+= h
->dynindx
;
8888 _bfd_elf_swap_versym_out (finfo
->output_bfd
, &iversym
, eversym
);
8892 /* If we're stripping it, then it was just a dynamic symbol, and
8893 there's nothing else to do. */
8894 if (strip
|| (input_sec
->flags
& SEC_EXCLUDE
) != 0)
8897 indx
= bfd_get_symcount (finfo
->output_bfd
);
8898 ret
= elf_link_output_sym (finfo
, h
->root
.root
.string
, &sym
, input_sec
, h
);
8901 eoinfo
->failed
= TRUE
;
8906 else if (h
->indx
== -2)
8912 /* Return TRUE if special handling is done for relocs in SEC against
8913 symbols defined in discarded sections. */
8916 elf_section_ignore_discarded_relocs (asection
*sec
)
8918 const struct elf_backend_data
*bed
;
8920 switch (sec
->sec_info_type
)
8922 case ELF_INFO_TYPE_STABS
:
8923 case ELF_INFO_TYPE_EH_FRAME
:
8929 bed
= get_elf_backend_data (sec
->owner
);
8930 if (bed
->elf_backend_ignore_discarded_relocs
!= NULL
8931 && (*bed
->elf_backend_ignore_discarded_relocs
) (sec
))
8937 /* Return a mask saying how ld should treat relocations in SEC against
8938 symbols defined in discarded sections. If this function returns
8939 COMPLAIN set, ld will issue a warning message. If this function
8940 returns PRETEND set, and the discarded section was link-once and the
8941 same size as the kept link-once section, ld will pretend that the
8942 symbol was actually defined in the kept section. Otherwise ld will
8943 zero the reloc (at least that is the intent, but some cooperation by
8944 the target dependent code is needed, particularly for REL targets). */
8947 _bfd_elf_default_action_discarded (asection
*sec
)
8949 if (sec
->flags
& SEC_DEBUGGING
)
8952 if (strcmp (".eh_frame", sec
->name
) == 0)
8955 if (strcmp (".gcc_except_table", sec
->name
) == 0)
8958 return COMPLAIN
| PRETEND
;
8961 /* Find a match between a section and a member of a section group. */
8964 match_group_member (asection
*sec
, asection
*group
,
8965 struct bfd_link_info
*info
)
8967 asection
*first
= elf_next_in_group (group
);
8968 asection
*s
= first
;
8972 if (bfd_elf_match_symbols_in_sections (s
, sec
, info
))
8975 s
= elf_next_in_group (s
);
8983 /* Check if the kept section of a discarded section SEC can be used
8984 to replace it. Return the replacement if it is OK. Otherwise return
8988 _bfd_elf_check_kept_section (asection
*sec
, struct bfd_link_info
*info
)
8992 kept
= sec
->kept_section
;
8995 if ((kept
->flags
& SEC_GROUP
) != 0)
8996 kept
= match_group_member (sec
, kept
, info
);
8998 && ((sec
->rawsize
!= 0 ? sec
->rawsize
: sec
->size
)
8999 != (kept
->rawsize
!= 0 ? kept
->rawsize
: kept
->size
)))
9001 sec
->kept_section
= kept
;
9006 /* Link an input file into the linker output file. This function
9007 handles all the sections and relocations of the input file at once.
9008 This is so that we only have to read the local symbols once, and
9009 don't have to keep them in memory. */
9012 elf_link_input_bfd (struct elf_final_link_info
*finfo
, bfd
*input_bfd
)
9014 int (*relocate_section
)
9015 (bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
9016 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**);
9018 Elf_Internal_Shdr
*symtab_hdr
;
9021 Elf_Internal_Sym
*isymbuf
;
9022 Elf_Internal_Sym
*isym
;
9023 Elf_Internal_Sym
*isymend
;
9025 asection
**ppsection
;
9027 const struct elf_backend_data
*bed
;
9028 struct elf_link_hash_entry
**sym_hashes
;
9030 output_bfd
= finfo
->output_bfd
;
9031 bed
= get_elf_backend_data (output_bfd
);
9032 relocate_section
= bed
->elf_backend_relocate_section
;
9034 /* If this is a dynamic object, we don't want to do anything here:
9035 we don't want the local symbols, and we don't want the section
9037 if ((input_bfd
->flags
& DYNAMIC
) != 0)
9040 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
9041 if (elf_bad_symtab (input_bfd
))
9043 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
9048 locsymcount
= symtab_hdr
->sh_info
;
9049 extsymoff
= symtab_hdr
->sh_info
;
9052 /* Read the local symbols. */
9053 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
9054 if (isymbuf
== NULL
&& locsymcount
!= 0)
9056 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
9057 finfo
->internal_syms
,
9058 finfo
->external_syms
,
9059 finfo
->locsym_shndx
);
9060 if (isymbuf
== NULL
)
9064 /* Find local symbol sections and adjust values of symbols in
9065 SEC_MERGE sections. Write out those local symbols we know are
9066 going into the output file. */
9067 isymend
= isymbuf
+ locsymcount
;
9068 for (isym
= isymbuf
, pindex
= finfo
->indices
, ppsection
= finfo
->sections
;
9070 isym
++, pindex
++, ppsection
++)
9074 Elf_Internal_Sym osym
;
9080 if (elf_bad_symtab (input_bfd
))
9082 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
9089 if (isym
->st_shndx
== SHN_UNDEF
)
9090 isec
= bfd_und_section_ptr
;
9091 else if (isym
->st_shndx
== SHN_ABS
)
9092 isec
= bfd_abs_section_ptr
;
9093 else if (isym
->st_shndx
== SHN_COMMON
)
9094 isec
= bfd_com_section_ptr
;
9097 isec
= bfd_section_from_elf_index (input_bfd
, isym
->st_shndx
);
9100 /* Don't attempt to output symbols with st_shnx in the
9101 reserved range other than SHN_ABS and SHN_COMMON. */
9105 else if (isec
->sec_info_type
== ELF_INFO_TYPE_MERGE
9106 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
9108 _bfd_merged_section_offset (output_bfd
, &isec
,
9109 elf_section_data (isec
)->sec_info
,
9115 /* Don't output the first, undefined, symbol. */
9116 if (ppsection
== finfo
->sections
)
9119 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
9121 /* We never output section symbols. Instead, we use the
9122 section symbol of the corresponding section in the output
9127 /* If we are stripping all symbols, we don't want to output this
9129 if (finfo
->info
->strip
== strip_all
)
9132 /* If we are discarding all local symbols, we don't want to
9133 output this one. If we are generating a relocatable output
9134 file, then some of the local symbols may be required by
9135 relocs; we output them below as we discover that they are
9137 if (finfo
->info
->discard
== discard_all
)
9140 /* If this symbol is defined in a section which we are
9141 discarding, we don't need to keep it. */
9142 if (isym
->st_shndx
!= SHN_UNDEF
9143 && isym
->st_shndx
< SHN_LORESERVE
9144 && bfd_section_removed_from_list (output_bfd
,
9145 isec
->output_section
))
9148 /* Get the name of the symbol. */
9149 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
9154 /* See if we are discarding symbols with this name. */
9155 if ((finfo
->info
->strip
== strip_some
9156 && (bfd_hash_lookup (finfo
->info
->keep_hash
, name
, FALSE
, FALSE
)
9158 || (((finfo
->info
->discard
== discard_sec_merge
9159 && (isec
->flags
& SEC_MERGE
) && ! finfo
->info
->relocatable
)
9160 || finfo
->info
->discard
== discard_l
)
9161 && bfd_is_local_label_name (input_bfd
, name
)))
9166 /* Adjust the section index for the output file. */
9167 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9168 isec
->output_section
);
9169 if (osym
.st_shndx
== SHN_BAD
)
9172 /* ELF symbols in relocatable files are section relative, but
9173 in executable files they are virtual addresses. Note that
9174 this code assumes that all ELF sections have an associated
9175 BFD section with a reasonable value for output_offset; below
9176 we assume that they also have a reasonable value for
9177 output_section. Any special sections must be set up to meet
9178 these requirements. */
9179 osym
.st_value
+= isec
->output_offset
;
9180 if (! finfo
->info
->relocatable
)
9182 osym
.st_value
+= isec
->output_section
->vma
;
9183 if (ELF_ST_TYPE (osym
.st_info
) == STT_TLS
)
9185 /* STT_TLS symbols are relative to PT_TLS segment base. */
9186 BFD_ASSERT (elf_hash_table (finfo
->info
)->tls_sec
!= NULL
);
9187 osym
.st_value
-= elf_hash_table (finfo
->info
)->tls_sec
->vma
;
9191 indx
= bfd_get_symcount (output_bfd
);
9192 ret
= elf_link_output_sym (finfo
, name
, &osym
, isec
, NULL
);
9199 /* Relocate the contents of each section. */
9200 sym_hashes
= elf_sym_hashes (input_bfd
);
9201 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
9205 if (! o
->linker_mark
)
9207 /* This section was omitted from the link. */
9211 if (finfo
->info
->relocatable
9212 && (o
->flags
& (SEC_LINKER_CREATED
| SEC_GROUP
)) == SEC_GROUP
)
9214 /* Deal with the group signature symbol. */
9215 struct bfd_elf_section_data
*sec_data
= elf_section_data (o
);
9216 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
9217 asection
*osec
= o
->output_section
;
9219 if (symndx
>= locsymcount
9220 || (elf_bad_symtab (input_bfd
)
9221 && finfo
->sections
[symndx
] == NULL
))
9223 struct elf_link_hash_entry
*h
= sym_hashes
[symndx
- extsymoff
];
9224 while (h
->root
.type
== bfd_link_hash_indirect
9225 || h
->root
.type
== bfd_link_hash_warning
)
9226 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9227 /* Arrange for symbol to be output. */
9229 elf_section_data (osec
)->this_hdr
.sh_info
= -2;
9231 else if (ELF_ST_TYPE (isymbuf
[symndx
].st_info
) == STT_SECTION
)
9233 /* We'll use the output section target_index. */
9234 asection
*sec
= finfo
->sections
[symndx
]->output_section
;
9235 elf_section_data (osec
)->this_hdr
.sh_info
= sec
->target_index
;
9239 if (finfo
->indices
[symndx
] == -1)
9241 /* Otherwise output the local symbol now. */
9242 Elf_Internal_Sym sym
= isymbuf
[symndx
];
9243 asection
*sec
= finfo
->sections
[symndx
]->output_section
;
9248 name
= bfd_elf_string_from_elf_section (input_bfd
,
9249 symtab_hdr
->sh_link
,
9254 sym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9256 if (sym
.st_shndx
== SHN_BAD
)
9259 sym
.st_value
+= o
->output_offset
;
9261 indx
= bfd_get_symcount (output_bfd
);
9262 ret
= elf_link_output_sym (finfo
, name
, &sym
, o
, NULL
);
9266 finfo
->indices
[symndx
] = indx
;
9270 elf_section_data (osec
)->this_hdr
.sh_info
9271 = finfo
->indices
[symndx
];
9275 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
9276 || (o
->size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
9279 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
9281 /* Section was created by _bfd_elf_link_create_dynamic_sections
9286 /* Get the contents of the section. They have been cached by a
9287 relaxation routine. Note that o is a section in an input
9288 file, so the contents field will not have been set by any of
9289 the routines which work on output files. */
9290 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
9291 contents
= elf_section_data (o
)->this_hdr
.contents
;
9294 bfd_size_type amt
= o
->rawsize
? o
->rawsize
: o
->size
;
9296 contents
= finfo
->contents
;
9297 if (! bfd_get_section_contents (input_bfd
, o
, contents
, 0, amt
))
9301 if ((o
->flags
& SEC_RELOC
) != 0)
9303 Elf_Internal_Rela
*internal_relocs
;
9304 Elf_Internal_Rela
*rel
, *relend
;
9305 bfd_vma r_type_mask
;
9307 int action_discarded
;
9310 /* Get the swapped relocs. */
9312 = _bfd_elf_link_read_relocs (input_bfd
, o
, finfo
->external_relocs
,
9313 finfo
->internal_relocs
, FALSE
);
9314 if (internal_relocs
== NULL
9315 && o
->reloc_count
> 0)
9318 if (bed
->s
->arch_size
== 32)
9325 r_type_mask
= 0xffffffff;
9329 action_discarded
= -1;
9330 if (!elf_section_ignore_discarded_relocs (o
))
9331 action_discarded
= (*bed
->action_discarded
) (o
);
9333 /* Run through the relocs evaluating complex reloc symbols and
9334 looking for relocs against symbols from discarded sections
9335 or section symbols from removed link-once sections.
9336 Complain about relocs against discarded sections. Zero
9337 relocs against removed link-once sections. */
9339 rel
= internal_relocs
;
9340 relend
= rel
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9341 for ( ; rel
< relend
; rel
++)
9343 unsigned long r_symndx
= rel
->r_info
>> r_sym_shift
;
9344 unsigned int s_type
;
9345 asection
**ps
, *sec
;
9346 struct elf_link_hash_entry
*h
= NULL
;
9347 const char *sym_name
;
9349 if (r_symndx
== STN_UNDEF
)
9352 if (r_symndx
>= locsymcount
9353 || (elf_bad_symtab (input_bfd
)
9354 && finfo
->sections
[r_symndx
] == NULL
))
9356 h
= sym_hashes
[r_symndx
- extsymoff
];
9358 /* Badly formatted input files can contain relocs that
9359 reference non-existant symbols. Check here so that
9360 we do not seg fault. */
9365 sprintf_vma (buffer
, rel
->r_info
);
9366 (*_bfd_error_handler
)
9367 (_("error: %B contains a reloc (0x%s) for section %A "
9368 "that references a non-existent global symbol"),
9369 input_bfd
, o
, buffer
);
9370 bfd_set_error (bfd_error_bad_value
);
9374 while (h
->root
.type
== bfd_link_hash_indirect
9375 || h
->root
.type
== bfd_link_hash_warning
)
9376 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9381 if (h
->root
.type
== bfd_link_hash_defined
9382 || h
->root
.type
== bfd_link_hash_defweak
)
9383 ps
= &h
->root
.u
.def
.section
;
9385 sym_name
= h
->root
.root
.string
;
9389 Elf_Internal_Sym
*sym
= isymbuf
+ r_symndx
;
9391 s_type
= ELF_ST_TYPE (sym
->st_info
);
9392 ps
= &finfo
->sections
[r_symndx
];
9393 sym_name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
9397 if ((s_type
== STT_RELC
|| s_type
== STT_SRELC
)
9398 && !finfo
->info
->relocatable
)
9401 bfd_vma dot
= (rel
->r_offset
9402 + o
->output_offset
+ o
->output_section
->vma
);
9404 printf ("Encountered a complex symbol!");
9405 printf (" (input_bfd %s, section %s, reloc %ld\n",
9406 input_bfd
->filename
, o
->name
, rel
- internal_relocs
);
9407 printf (" symbol: idx %8.8lx, name %s\n",
9408 r_symndx
, sym_name
);
9409 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9410 (unsigned long) rel
->r_info
,
9411 (unsigned long) rel
->r_offset
);
9413 if (!eval_symbol (&val
, &sym_name
, input_bfd
, finfo
, dot
,
9414 isymbuf
, locsymcount
, s_type
== STT_SRELC
))
9417 /* Symbol evaluated OK. Update to absolute value. */
9418 set_symbol_value (input_bfd
, isymbuf
, locsymcount
,
9423 if (action_discarded
!= -1 && ps
!= NULL
)
9425 /* Complain if the definition comes from a
9426 discarded section. */
9427 if ((sec
= *ps
) != NULL
&& elf_discarded_section (sec
))
9429 BFD_ASSERT (r_symndx
!= 0);
9430 if (action_discarded
& COMPLAIN
)
9431 (*finfo
->info
->callbacks
->einfo
)
9432 (_("%X`%s' referenced in section `%A' of %B: "
9433 "defined in discarded section `%A' of %B\n"),
9434 sym_name
, o
, input_bfd
, sec
, sec
->owner
);
9436 /* Try to do the best we can to support buggy old
9437 versions of gcc. Pretend that the symbol is
9438 really defined in the kept linkonce section.
9439 FIXME: This is quite broken. Modifying the
9440 symbol here means we will be changing all later
9441 uses of the symbol, not just in this section. */
9442 if (action_discarded
& PRETEND
)
9446 kept
= _bfd_elf_check_kept_section (sec
,
9458 /* Relocate the section by invoking a back end routine.
9460 The back end routine is responsible for adjusting the
9461 section contents as necessary, and (if using Rela relocs
9462 and generating a relocatable output file) adjusting the
9463 reloc addend as necessary.
9465 The back end routine does not have to worry about setting
9466 the reloc address or the reloc symbol index.
9468 The back end routine is given a pointer to the swapped in
9469 internal symbols, and can access the hash table entries
9470 for the external symbols via elf_sym_hashes (input_bfd).
9472 When generating relocatable output, the back end routine
9473 must handle STB_LOCAL/STT_SECTION symbols specially. The
9474 output symbol is going to be a section symbol
9475 corresponding to the output section, which will require
9476 the addend to be adjusted. */
9478 ret
= (*relocate_section
) (output_bfd
, finfo
->info
,
9479 input_bfd
, o
, contents
,
9487 || finfo
->info
->relocatable
9488 || finfo
->info
->emitrelocations
)
9490 Elf_Internal_Rela
*irela
;
9491 Elf_Internal_Rela
*irelaend
;
9492 bfd_vma last_offset
;
9493 struct elf_link_hash_entry
**rel_hash
;
9494 struct elf_link_hash_entry
**rel_hash_list
;
9495 Elf_Internal_Shdr
*input_rel_hdr
, *input_rel_hdr2
;
9496 unsigned int next_erel
;
9497 bfd_boolean rela_normal
;
9499 input_rel_hdr
= &elf_section_data (o
)->rel_hdr
;
9500 rela_normal
= (bed
->rela_normal
9501 && (input_rel_hdr
->sh_entsize
9502 == bed
->s
->sizeof_rela
));
9504 /* Adjust the reloc addresses and symbol indices. */
9506 irela
= internal_relocs
;
9507 irelaend
= irela
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9508 rel_hash
= (elf_section_data (o
->output_section
)->rel_hashes
9509 + elf_section_data (o
->output_section
)->rel_count
9510 + elf_section_data (o
->output_section
)->rel_count2
);
9511 rel_hash_list
= rel_hash
;
9512 last_offset
= o
->output_offset
;
9513 if (!finfo
->info
->relocatable
)
9514 last_offset
+= o
->output_section
->vma
;
9515 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
9517 unsigned long r_symndx
;
9519 Elf_Internal_Sym sym
;
9521 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
9527 irela
->r_offset
= _bfd_elf_section_offset (output_bfd
,
9530 if (irela
->r_offset
>= (bfd_vma
) -2)
9532 /* This is a reloc for a deleted entry or somesuch.
9533 Turn it into an R_*_NONE reloc, at the same
9534 offset as the last reloc. elf_eh_frame.c and
9535 bfd_elf_discard_info rely on reloc offsets
9537 irela
->r_offset
= last_offset
;
9539 irela
->r_addend
= 0;
9543 irela
->r_offset
+= o
->output_offset
;
9545 /* Relocs in an executable have to be virtual addresses. */
9546 if (!finfo
->info
->relocatable
)
9547 irela
->r_offset
+= o
->output_section
->vma
;
9549 last_offset
= irela
->r_offset
;
9551 r_symndx
= irela
->r_info
>> r_sym_shift
;
9552 if (r_symndx
== STN_UNDEF
)
9555 if (r_symndx
>= locsymcount
9556 || (elf_bad_symtab (input_bfd
)
9557 && finfo
->sections
[r_symndx
] == NULL
))
9559 struct elf_link_hash_entry
*rh
;
9562 /* This is a reloc against a global symbol. We
9563 have not yet output all the local symbols, so
9564 we do not know the symbol index of any global
9565 symbol. We set the rel_hash entry for this
9566 reloc to point to the global hash table entry
9567 for this symbol. The symbol index is then
9568 set at the end of bfd_elf_final_link. */
9569 indx
= r_symndx
- extsymoff
;
9570 rh
= elf_sym_hashes (input_bfd
)[indx
];
9571 while (rh
->root
.type
== bfd_link_hash_indirect
9572 || rh
->root
.type
== bfd_link_hash_warning
)
9573 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
9575 /* Setting the index to -2 tells
9576 elf_link_output_extsym that this symbol is
9578 BFD_ASSERT (rh
->indx
< 0);
9586 /* This is a reloc against a local symbol. */
9589 sym
= isymbuf
[r_symndx
];
9590 sec
= finfo
->sections
[r_symndx
];
9591 if (ELF_ST_TYPE (sym
.st_info
) == STT_SECTION
)
9593 /* I suppose the backend ought to fill in the
9594 section of any STT_SECTION symbol against a
9595 processor specific section. */
9597 if (bfd_is_abs_section (sec
))
9599 else if (sec
== NULL
|| sec
->owner
== NULL
)
9601 bfd_set_error (bfd_error_bad_value
);
9606 asection
*osec
= sec
->output_section
;
9608 /* If we have discarded a section, the output
9609 section will be the absolute section. In
9610 case of discarded SEC_MERGE sections, use
9611 the kept section. relocate_section should
9612 have already handled discarded linkonce
9614 if (bfd_is_abs_section (osec
)
9615 && sec
->kept_section
!= NULL
9616 && sec
->kept_section
->output_section
!= NULL
)
9618 osec
= sec
->kept_section
->output_section
;
9619 irela
->r_addend
-= osec
->vma
;
9622 if (!bfd_is_abs_section (osec
))
9624 r_symndx
= osec
->target_index
;
9627 struct elf_link_hash_table
*htab
;
9630 htab
= elf_hash_table (finfo
->info
);
9631 oi
= htab
->text_index_section
;
9632 if ((osec
->flags
& SEC_READONLY
) == 0
9633 && htab
->data_index_section
!= NULL
)
9634 oi
= htab
->data_index_section
;
9638 irela
->r_addend
+= osec
->vma
- oi
->vma
;
9639 r_symndx
= oi
->target_index
;
9643 BFD_ASSERT (r_symndx
!= 0);
9647 /* Adjust the addend according to where the
9648 section winds up in the output section. */
9650 irela
->r_addend
+= sec
->output_offset
;
9654 if (finfo
->indices
[r_symndx
] == -1)
9656 unsigned long shlink
;
9661 if (finfo
->info
->strip
== strip_all
)
9663 /* You can't do ld -r -s. */
9664 bfd_set_error (bfd_error_invalid_operation
);
9668 /* This symbol was skipped earlier, but
9669 since it is needed by a reloc, we
9670 must output it now. */
9671 shlink
= symtab_hdr
->sh_link
;
9672 name
= (bfd_elf_string_from_elf_section
9673 (input_bfd
, shlink
, sym
.st_name
));
9677 osec
= sec
->output_section
;
9679 _bfd_elf_section_from_bfd_section (output_bfd
,
9681 if (sym
.st_shndx
== SHN_BAD
)
9684 sym
.st_value
+= sec
->output_offset
;
9685 if (! finfo
->info
->relocatable
)
9687 sym
.st_value
+= osec
->vma
;
9688 if (ELF_ST_TYPE (sym
.st_info
) == STT_TLS
)
9690 /* STT_TLS symbols are relative to PT_TLS
9692 BFD_ASSERT (elf_hash_table (finfo
->info
)
9694 sym
.st_value
-= (elf_hash_table (finfo
->info
)
9699 indx
= bfd_get_symcount (output_bfd
);
9700 ret
= elf_link_output_sym (finfo
, name
, &sym
, sec
,
9705 finfo
->indices
[r_symndx
] = indx
;
9710 r_symndx
= finfo
->indices
[r_symndx
];
9713 irela
->r_info
= ((bfd_vma
) r_symndx
<< r_sym_shift
9714 | (irela
->r_info
& r_type_mask
));
9717 /* Swap out the relocs. */
9718 if (input_rel_hdr
->sh_size
!= 0
9719 && !bed
->elf_backend_emit_relocs (output_bfd
, o
,
9725 input_rel_hdr2
= elf_section_data (o
)->rel_hdr2
;
9726 if (input_rel_hdr2
&& input_rel_hdr2
->sh_size
!= 0)
9728 internal_relocs
+= (NUM_SHDR_ENTRIES (input_rel_hdr
)
9729 * bed
->s
->int_rels_per_ext_rel
);
9730 rel_hash_list
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
9731 if (!bed
->elf_backend_emit_relocs (output_bfd
, o
,
9740 /* Write out the modified section contents. */
9741 if (bed
->elf_backend_write_section
9742 && (*bed
->elf_backend_write_section
) (output_bfd
, finfo
->info
, o
,
9745 /* Section written out. */
9747 else switch (o
->sec_info_type
)
9749 case ELF_INFO_TYPE_STABS
:
9750 if (! (_bfd_write_section_stabs
9752 &elf_hash_table (finfo
->info
)->stab_info
,
9753 o
, &elf_section_data (o
)->sec_info
, contents
)))
9756 case ELF_INFO_TYPE_MERGE
:
9757 if (! _bfd_write_merged_section (output_bfd
, o
,
9758 elf_section_data (o
)->sec_info
))
9761 case ELF_INFO_TYPE_EH_FRAME
:
9763 if (! _bfd_elf_write_section_eh_frame (output_bfd
, finfo
->info
,
9770 /* FIXME: octets_per_byte. */
9771 if (! (o
->flags
& SEC_EXCLUDE
)
9772 && ! (o
->output_section
->flags
& SEC_NEVER_LOAD
)
9773 && ! bfd_set_section_contents (output_bfd
, o
->output_section
,
9775 (file_ptr
) o
->output_offset
,
9786 /* Generate a reloc when linking an ELF file. This is a reloc
9787 requested by the linker, and does not come from any input file. This
9788 is used to build constructor and destructor tables when linking
9792 elf_reloc_link_order (bfd
*output_bfd
,
9793 struct bfd_link_info
*info
,
9794 asection
*output_section
,
9795 struct bfd_link_order
*link_order
)
9797 reloc_howto_type
*howto
;
9801 struct elf_link_hash_entry
**rel_hash_ptr
;
9802 Elf_Internal_Shdr
*rel_hdr
;
9803 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
9804 Elf_Internal_Rela irel
[MAX_INT_RELS_PER_EXT_REL
];
9808 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
9811 bfd_set_error (bfd_error_bad_value
);
9815 addend
= link_order
->u
.reloc
.p
->addend
;
9817 /* Figure out the symbol index. */
9818 rel_hash_ptr
= (elf_section_data (output_section
)->rel_hashes
9819 + elf_section_data (output_section
)->rel_count
9820 + elf_section_data (output_section
)->rel_count2
);
9821 if (link_order
->type
== bfd_section_reloc_link_order
)
9823 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
9824 BFD_ASSERT (indx
!= 0);
9825 *rel_hash_ptr
= NULL
;
9829 struct elf_link_hash_entry
*h
;
9831 /* Treat a reloc against a defined symbol as though it were
9832 actually against the section. */
9833 h
= ((struct elf_link_hash_entry
*)
9834 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
9835 link_order
->u
.reloc
.p
->u
.name
,
9836 FALSE
, FALSE
, TRUE
));
9838 && (h
->root
.type
== bfd_link_hash_defined
9839 || h
->root
.type
== bfd_link_hash_defweak
))
9843 section
= h
->root
.u
.def
.section
;
9844 indx
= section
->output_section
->target_index
;
9845 *rel_hash_ptr
= NULL
;
9846 /* It seems that we ought to add the symbol value to the
9847 addend here, but in practice it has already been added
9848 because it was passed to constructor_callback. */
9849 addend
+= section
->output_section
->vma
+ section
->output_offset
;
9853 /* Setting the index to -2 tells elf_link_output_extsym that
9854 this symbol is used by a reloc. */
9861 if (! ((*info
->callbacks
->unattached_reloc
)
9862 (info
, link_order
->u
.reloc
.p
->u
.name
, NULL
, NULL
, 0)))
9868 /* If this is an inplace reloc, we must write the addend into the
9870 if (howto
->partial_inplace
&& addend
!= 0)
9873 bfd_reloc_status_type rstat
;
9876 const char *sym_name
;
9878 size
= (bfd_size_type
) bfd_get_reloc_size (howto
);
9879 buf
= (bfd_byte
*) bfd_zmalloc (size
);
9882 rstat
= _bfd_relocate_contents (howto
, output_bfd
, addend
, buf
);
9889 case bfd_reloc_outofrange
:
9892 case bfd_reloc_overflow
:
9893 if (link_order
->type
== bfd_section_reloc_link_order
)
9894 sym_name
= bfd_section_name (output_bfd
,
9895 link_order
->u
.reloc
.p
->u
.section
);
9897 sym_name
= link_order
->u
.reloc
.p
->u
.name
;
9898 if (! ((*info
->callbacks
->reloc_overflow
)
9899 (info
, NULL
, sym_name
, howto
->name
, addend
, NULL
,
9900 NULL
, (bfd_vma
) 0)))
9907 ok
= bfd_set_section_contents (output_bfd
, output_section
, buf
,
9908 link_order
->offset
, size
);
9914 /* The address of a reloc is relative to the section in a
9915 relocatable file, and is a virtual address in an executable
9917 offset
= link_order
->offset
;
9918 if (! info
->relocatable
)
9919 offset
+= output_section
->vma
;
9921 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
9923 irel
[i
].r_offset
= offset
;
9925 irel
[i
].r_addend
= 0;
9927 if (bed
->s
->arch_size
== 32)
9928 irel
[0].r_info
= ELF32_R_INFO (indx
, howto
->type
);
9930 irel
[0].r_info
= ELF64_R_INFO (indx
, howto
->type
);
9932 rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
9933 erel
= rel_hdr
->contents
;
9934 if (rel_hdr
->sh_type
== SHT_REL
)
9936 erel
+= (elf_section_data (output_section
)->rel_count
9937 * bed
->s
->sizeof_rel
);
9938 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, erel
);
9942 irel
[0].r_addend
= addend
;
9943 erel
+= (elf_section_data (output_section
)->rel_count
9944 * bed
->s
->sizeof_rela
);
9945 (*bed
->s
->swap_reloca_out
) (output_bfd
, irel
, erel
);
9948 ++elf_section_data (output_section
)->rel_count
;
9954 /* Get the output vma of the section pointed to by the sh_link field. */
9957 elf_get_linked_section_vma (struct bfd_link_order
*p
)
9959 Elf_Internal_Shdr
**elf_shdrp
;
9963 s
= p
->u
.indirect
.section
;
9964 elf_shdrp
= elf_elfsections (s
->owner
);
9965 elfsec
= _bfd_elf_section_from_bfd_section (s
->owner
, s
);
9966 elfsec
= elf_shdrp
[elfsec
]->sh_link
;
9968 The Intel C compiler generates SHT_IA_64_UNWIND with
9969 SHF_LINK_ORDER. But it doesn't set the sh_link or
9970 sh_info fields. Hence we could get the situation
9971 where elfsec is 0. */
9974 const struct elf_backend_data
*bed
9975 = get_elf_backend_data (s
->owner
);
9976 if (bed
->link_order_error_handler
)
9977 bed
->link_order_error_handler
9978 (_("%B: warning: sh_link not set for section `%A'"), s
->owner
, s
);
9983 s
= elf_shdrp
[elfsec
]->bfd_section
;
9984 return s
->output_section
->vma
+ s
->output_offset
;
9989 /* Compare two sections based on the locations of the sections they are
9990 linked to. Used by elf_fixup_link_order. */
9993 compare_link_order (const void * a
, const void * b
)
9998 apos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)a
);
9999 bpos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)b
);
10002 return apos
> bpos
;
10006 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10007 order as their linked sections. Returns false if this could not be done
10008 because an output section includes both ordered and unordered
10009 sections. Ideally we'd do this in the linker proper. */
10012 elf_fixup_link_order (bfd
*abfd
, asection
*o
)
10014 int seen_linkorder
;
10017 struct bfd_link_order
*p
;
10019 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
10021 struct bfd_link_order
**sections
;
10022 asection
*s
, *other_sec
, *linkorder_sec
;
10026 linkorder_sec
= NULL
;
10028 seen_linkorder
= 0;
10029 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10031 if (p
->type
== bfd_indirect_link_order
)
10033 s
= p
->u
.indirect
.section
;
10035 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
10036 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
10037 && (elfsec
= _bfd_elf_section_from_bfd_section (sub
, s
))
10038 && elfsec
< elf_numsections (sub
)
10039 && elf_elfsections (sub
)[elfsec
]->sh_flags
& SHF_LINK_ORDER
10040 && elf_elfsections (sub
)[elfsec
]->sh_link
< elf_numsections (sub
))
10054 if (seen_other
&& seen_linkorder
)
10056 if (other_sec
&& linkorder_sec
)
10057 (*_bfd_error_handler
) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10059 linkorder_sec
->owner
, other_sec
,
10062 (*_bfd_error_handler
) (_("%A has both ordered and unordered sections"),
10064 bfd_set_error (bfd_error_bad_value
);
10069 if (!seen_linkorder
)
10072 sections
= (struct bfd_link_order
**)
10073 bfd_malloc (seen_linkorder
* sizeof (struct bfd_link_order
*));
10074 if (sections
== NULL
)
10076 seen_linkorder
= 0;
10078 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10080 sections
[seen_linkorder
++] = p
;
10082 /* Sort the input sections in the order of their linked section. */
10083 qsort (sections
, seen_linkorder
, sizeof (struct bfd_link_order
*),
10084 compare_link_order
);
10086 /* Change the offsets of the sections. */
10088 for (n
= 0; n
< seen_linkorder
; n
++)
10090 s
= sections
[n
]->u
.indirect
.section
;
10091 offset
&= ~(bfd_vma
) 0 << s
->alignment_power
;
10092 s
->output_offset
= offset
;
10093 sections
[n
]->offset
= offset
;
10094 /* FIXME: octets_per_byte. */
10095 offset
+= sections
[n
]->size
;
10103 /* Do the final step of an ELF link. */
10106 bfd_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
10108 bfd_boolean dynamic
;
10109 bfd_boolean emit_relocs
;
10111 struct elf_final_link_info finfo
;
10112 register asection
*o
;
10113 register struct bfd_link_order
*p
;
10115 bfd_size_type max_contents_size
;
10116 bfd_size_type max_external_reloc_size
;
10117 bfd_size_type max_internal_reloc_count
;
10118 bfd_size_type max_sym_count
;
10119 bfd_size_type max_sym_shndx_count
;
10121 Elf_Internal_Sym elfsym
;
10123 Elf_Internal_Shdr
*symtab_hdr
;
10124 Elf_Internal_Shdr
*symtab_shndx_hdr
;
10125 Elf_Internal_Shdr
*symstrtab_hdr
;
10126 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
10127 struct elf_outext_info eoinfo
;
10128 bfd_boolean merged
;
10129 size_t relativecount
= 0;
10130 asection
*reldyn
= 0;
10132 asection
*attr_section
= NULL
;
10133 bfd_vma attr_size
= 0;
10134 const char *std_attrs_section
;
10136 if (! is_elf_hash_table (info
->hash
))
10140 abfd
->flags
|= DYNAMIC
;
10142 dynamic
= elf_hash_table (info
)->dynamic_sections_created
;
10143 dynobj
= elf_hash_table (info
)->dynobj
;
10145 emit_relocs
= (info
->relocatable
10146 || info
->emitrelocations
);
10149 finfo
.output_bfd
= abfd
;
10150 finfo
.symstrtab
= _bfd_elf_stringtab_init ();
10151 if (finfo
.symstrtab
== NULL
)
10156 finfo
.dynsym_sec
= NULL
;
10157 finfo
.hash_sec
= NULL
;
10158 finfo
.symver_sec
= NULL
;
10162 finfo
.dynsym_sec
= bfd_get_section_by_name (dynobj
, ".dynsym");
10163 finfo
.hash_sec
= bfd_get_section_by_name (dynobj
, ".hash");
10164 BFD_ASSERT (finfo
.dynsym_sec
!= NULL
);
10165 finfo
.symver_sec
= bfd_get_section_by_name (dynobj
, ".gnu.version");
10166 /* Note that it is OK if symver_sec is NULL. */
10169 finfo
.contents
= NULL
;
10170 finfo
.external_relocs
= NULL
;
10171 finfo
.internal_relocs
= NULL
;
10172 finfo
.external_syms
= NULL
;
10173 finfo
.locsym_shndx
= NULL
;
10174 finfo
.internal_syms
= NULL
;
10175 finfo
.indices
= NULL
;
10176 finfo
.sections
= NULL
;
10177 finfo
.symbuf
= NULL
;
10178 finfo
.symshndxbuf
= NULL
;
10179 finfo
.symbuf_count
= 0;
10180 finfo
.shndxbuf_size
= 0;
10182 /* The object attributes have been merged. Remove the input
10183 sections from the link, and set the contents of the output
10185 std_attrs_section
= get_elf_backend_data (abfd
)->obj_attrs_section
;
10186 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10188 if ((std_attrs_section
&& strcmp (o
->name
, std_attrs_section
) == 0)
10189 || strcmp (o
->name
, ".gnu.attributes") == 0)
10191 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10193 asection
*input_section
;
10195 if (p
->type
!= bfd_indirect_link_order
)
10197 input_section
= p
->u
.indirect
.section
;
10198 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10199 elf_link_input_bfd ignores this section. */
10200 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
10203 attr_size
= bfd_elf_obj_attr_size (abfd
);
10206 bfd_set_section_size (abfd
, o
, attr_size
);
10208 /* Skip this section later on. */
10209 o
->map_head
.link_order
= NULL
;
10212 o
->flags
|= SEC_EXCLUDE
;
10216 /* Count up the number of relocations we will output for each output
10217 section, so that we know the sizes of the reloc sections. We
10218 also figure out some maximum sizes. */
10219 max_contents_size
= 0;
10220 max_external_reloc_size
= 0;
10221 max_internal_reloc_count
= 0;
10223 max_sym_shndx_count
= 0;
10225 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10227 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
10228 o
->reloc_count
= 0;
10230 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10232 unsigned int reloc_count
= 0;
10233 struct bfd_elf_section_data
*esdi
= NULL
;
10234 unsigned int *rel_count1
;
10236 if (p
->type
== bfd_section_reloc_link_order
10237 || p
->type
== bfd_symbol_reloc_link_order
)
10239 else if (p
->type
== bfd_indirect_link_order
)
10243 sec
= p
->u
.indirect
.section
;
10244 esdi
= elf_section_data (sec
);
10246 /* Mark all sections which are to be included in the
10247 link. This will normally be every section. We need
10248 to do this so that we can identify any sections which
10249 the linker has decided to not include. */
10250 sec
->linker_mark
= TRUE
;
10252 if (sec
->flags
& SEC_MERGE
)
10255 if (info
->relocatable
|| info
->emitrelocations
)
10256 reloc_count
= sec
->reloc_count
;
10257 else if (bed
->elf_backend_count_relocs
)
10258 reloc_count
= (*bed
->elf_backend_count_relocs
) (info
, sec
);
10260 if (sec
->rawsize
> max_contents_size
)
10261 max_contents_size
= sec
->rawsize
;
10262 if (sec
->size
> max_contents_size
)
10263 max_contents_size
= sec
->size
;
10265 /* We are interested in just local symbols, not all
10267 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
10268 && (sec
->owner
->flags
& DYNAMIC
) == 0)
10272 if (elf_bad_symtab (sec
->owner
))
10273 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
10274 / bed
->s
->sizeof_sym
);
10276 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
10278 if (sym_count
> max_sym_count
)
10279 max_sym_count
= sym_count
;
10281 if (sym_count
> max_sym_shndx_count
10282 && elf_symtab_shndx (sec
->owner
) != 0)
10283 max_sym_shndx_count
= sym_count
;
10285 if ((sec
->flags
& SEC_RELOC
) != 0)
10289 ext_size
= elf_section_data (sec
)->rel_hdr
.sh_size
;
10290 if (ext_size
> max_external_reloc_size
)
10291 max_external_reloc_size
= ext_size
;
10292 if (sec
->reloc_count
> max_internal_reloc_count
)
10293 max_internal_reloc_count
= sec
->reloc_count
;
10298 if (reloc_count
== 0)
10301 o
->reloc_count
+= reloc_count
;
10303 /* MIPS may have a mix of REL and RELA relocs on sections.
10304 To support this curious ABI we keep reloc counts in
10305 elf_section_data too. We must be careful to add the
10306 relocations from the input section to the right output
10307 count. FIXME: Get rid of one count. We have
10308 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10309 rel_count1
= &esdo
->rel_count
;
10312 bfd_boolean same_size
;
10313 bfd_size_type entsize1
;
10315 entsize1
= esdi
->rel_hdr
.sh_entsize
;
10316 /* PR 9827: If the header size has not been set yet then
10317 assume that it will match the output section's reloc type. */
10319 entsize1
= o
->use_rela_p
? bed
->s
->sizeof_rela
: bed
->s
->sizeof_rel
;
10321 BFD_ASSERT (entsize1
== bed
->s
->sizeof_rel
10322 || entsize1
== bed
->s
->sizeof_rela
);
10323 same_size
= !o
->use_rela_p
== (entsize1
== bed
->s
->sizeof_rel
);
10326 rel_count1
= &esdo
->rel_count2
;
10328 if (esdi
->rel_hdr2
!= NULL
)
10330 bfd_size_type entsize2
= esdi
->rel_hdr2
->sh_entsize
;
10331 unsigned int alt_count
;
10332 unsigned int *rel_count2
;
10334 BFD_ASSERT (entsize2
!= entsize1
10335 && (entsize2
== bed
->s
->sizeof_rel
10336 || entsize2
== bed
->s
->sizeof_rela
));
10338 rel_count2
= &esdo
->rel_count2
;
10340 rel_count2
= &esdo
->rel_count
;
10342 /* The following is probably too simplistic if the
10343 backend counts output relocs unusually. */
10344 BFD_ASSERT (bed
->elf_backend_count_relocs
== NULL
);
10345 alt_count
= NUM_SHDR_ENTRIES (esdi
->rel_hdr2
);
10346 *rel_count2
+= alt_count
;
10347 reloc_count
-= alt_count
;
10350 *rel_count1
+= reloc_count
;
10353 if (o
->reloc_count
> 0)
10354 o
->flags
|= SEC_RELOC
;
10357 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10358 set it (this is probably a bug) and if it is set
10359 assign_section_numbers will create a reloc section. */
10360 o
->flags
&=~ SEC_RELOC
;
10363 /* If the SEC_ALLOC flag is not set, force the section VMA to
10364 zero. This is done in elf_fake_sections as well, but forcing
10365 the VMA to 0 here will ensure that relocs against these
10366 sections are handled correctly. */
10367 if ((o
->flags
& SEC_ALLOC
) == 0
10368 && ! o
->user_set_vma
)
10372 if (! info
->relocatable
&& merged
)
10373 elf_link_hash_traverse (elf_hash_table (info
),
10374 _bfd_elf_link_sec_merge_syms
, abfd
);
10376 /* Figure out the file positions for everything but the symbol table
10377 and the relocs. We set symcount to force assign_section_numbers
10378 to create a symbol table. */
10379 bfd_get_symcount (abfd
) = info
->strip
== strip_all
? 0 : 1;
10380 BFD_ASSERT (! abfd
->output_has_begun
);
10381 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
10384 /* Set sizes, and assign file positions for reloc sections. */
10385 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10387 if ((o
->flags
& SEC_RELOC
) != 0)
10389 if (!(_bfd_elf_link_size_reloc_section
10390 (abfd
, &elf_section_data (o
)->rel_hdr
, o
)))
10393 if (elf_section_data (o
)->rel_hdr2
10394 && !(_bfd_elf_link_size_reloc_section
10395 (abfd
, elf_section_data (o
)->rel_hdr2
, o
)))
10399 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10400 to count upwards while actually outputting the relocations. */
10401 elf_section_data (o
)->rel_count
= 0;
10402 elf_section_data (o
)->rel_count2
= 0;
10405 _bfd_elf_assign_file_positions_for_relocs (abfd
);
10407 /* We have now assigned file positions for all the sections except
10408 .symtab and .strtab. We start the .symtab section at the current
10409 file position, and write directly to it. We build the .strtab
10410 section in memory. */
10411 bfd_get_symcount (abfd
) = 0;
10412 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10413 /* sh_name is set in prep_headers. */
10414 symtab_hdr
->sh_type
= SHT_SYMTAB
;
10415 /* sh_flags, sh_addr and sh_size all start off zero. */
10416 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
10417 /* sh_link is set in assign_section_numbers. */
10418 /* sh_info is set below. */
10419 /* sh_offset is set just below. */
10420 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
10422 off
= elf_tdata (abfd
)->next_file_pos
;
10423 off
= _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, TRUE
);
10425 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10426 incorrect. We do not yet know the size of the .symtab section.
10427 We correct next_file_pos below, after we do know the size. */
10429 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10430 continuously seeking to the right position in the file. */
10431 if (! info
->keep_memory
|| max_sym_count
< 20)
10432 finfo
.symbuf_size
= 20;
10434 finfo
.symbuf_size
= max_sym_count
;
10435 amt
= finfo
.symbuf_size
;
10436 amt
*= bed
->s
->sizeof_sym
;
10437 finfo
.symbuf
= (bfd_byte
*) bfd_malloc (amt
);
10438 if (finfo
.symbuf
== NULL
)
10440 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
10442 /* Wild guess at number of output symbols. realloc'd as needed. */
10443 amt
= 2 * max_sym_count
+ elf_numsections (abfd
) + 1000;
10444 finfo
.shndxbuf_size
= amt
;
10445 amt
*= sizeof (Elf_External_Sym_Shndx
);
10446 finfo
.symshndxbuf
= (Elf_External_Sym_Shndx
*) bfd_zmalloc (amt
);
10447 if (finfo
.symshndxbuf
== NULL
)
10451 /* Start writing out the symbol table. The first symbol is always a
10453 if (info
->strip
!= strip_all
10456 elfsym
.st_value
= 0;
10457 elfsym
.st_size
= 0;
10458 elfsym
.st_info
= 0;
10459 elfsym
.st_other
= 0;
10460 elfsym
.st_shndx
= SHN_UNDEF
;
10461 if (elf_link_output_sym (&finfo
, NULL
, &elfsym
, bfd_und_section_ptr
,
10466 /* Output a symbol for each section. We output these even if we are
10467 discarding local symbols, since they are used for relocs. These
10468 symbols have no names. We store the index of each one in the
10469 index field of the section, so that we can find it again when
10470 outputting relocs. */
10471 if (info
->strip
!= strip_all
10474 elfsym
.st_size
= 0;
10475 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10476 elfsym
.st_other
= 0;
10477 elfsym
.st_value
= 0;
10478 for (i
= 1; i
< elf_numsections (abfd
); i
++)
10480 o
= bfd_section_from_elf_index (abfd
, i
);
10483 o
->target_index
= bfd_get_symcount (abfd
);
10484 elfsym
.st_shndx
= i
;
10485 if (!info
->relocatable
)
10486 elfsym
.st_value
= o
->vma
;
10487 if (elf_link_output_sym (&finfo
, NULL
, &elfsym
, o
, NULL
) != 1)
10493 /* Allocate some memory to hold information read in from the input
10495 if (max_contents_size
!= 0)
10497 finfo
.contents
= (bfd_byte
*) bfd_malloc (max_contents_size
);
10498 if (finfo
.contents
== NULL
)
10502 if (max_external_reloc_size
!= 0)
10504 finfo
.external_relocs
= bfd_malloc (max_external_reloc_size
);
10505 if (finfo
.external_relocs
== NULL
)
10509 if (max_internal_reloc_count
!= 0)
10511 amt
= max_internal_reloc_count
* bed
->s
->int_rels_per_ext_rel
;
10512 amt
*= sizeof (Elf_Internal_Rela
);
10513 finfo
.internal_relocs
= (Elf_Internal_Rela
*) bfd_malloc (amt
);
10514 if (finfo
.internal_relocs
== NULL
)
10518 if (max_sym_count
!= 0)
10520 amt
= max_sym_count
* bed
->s
->sizeof_sym
;
10521 finfo
.external_syms
= (bfd_byte
*) bfd_malloc (amt
);
10522 if (finfo
.external_syms
== NULL
)
10525 amt
= max_sym_count
* sizeof (Elf_Internal_Sym
);
10526 finfo
.internal_syms
= (Elf_Internal_Sym
*) bfd_malloc (amt
);
10527 if (finfo
.internal_syms
== NULL
)
10530 amt
= max_sym_count
* sizeof (long);
10531 finfo
.indices
= (long int *) bfd_malloc (amt
);
10532 if (finfo
.indices
== NULL
)
10535 amt
= max_sym_count
* sizeof (asection
*);
10536 finfo
.sections
= (asection
**) bfd_malloc (amt
);
10537 if (finfo
.sections
== NULL
)
10541 if (max_sym_shndx_count
!= 0)
10543 amt
= max_sym_shndx_count
* sizeof (Elf_External_Sym_Shndx
);
10544 finfo
.locsym_shndx
= (Elf_External_Sym_Shndx
*) bfd_malloc (amt
);
10545 if (finfo
.locsym_shndx
== NULL
)
10549 if (elf_hash_table (info
)->tls_sec
)
10551 bfd_vma base
, end
= 0;
10554 for (sec
= elf_hash_table (info
)->tls_sec
;
10555 sec
&& (sec
->flags
& SEC_THREAD_LOCAL
);
10558 bfd_size_type size
= sec
->size
;
10561 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
10563 struct bfd_link_order
*o
= sec
->map_tail
.link_order
;
10565 size
= o
->offset
+ o
->size
;
10567 end
= sec
->vma
+ size
;
10569 base
= elf_hash_table (info
)->tls_sec
->vma
;
10570 end
= align_power (end
, elf_hash_table (info
)->tls_sec
->alignment_power
);
10571 elf_hash_table (info
)->tls_size
= end
- base
;
10574 /* Reorder SHF_LINK_ORDER sections. */
10575 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10577 if (!elf_fixup_link_order (abfd
, o
))
10581 /* Since ELF permits relocations to be against local symbols, we
10582 must have the local symbols available when we do the relocations.
10583 Since we would rather only read the local symbols once, and we
10584 would rather not keep them in memory, we handle all the
10585 relocations for a single input file at the same time.
10587 Unfortunately, there is no way to know the total number of local
10588 symbols until we have seen all of them, and the local symbol
10589 indices precede the global symbol indices. This means that when
10590 we are generating relocatable output, and we see a reloc against
10591 a global symbol, we can not know the symbol index until we have
10592 finished examining all the local symbols to see which ones we are
10593 going to output. To deal with this, we keep the relocations in
10594 memory, and don't output them until the end of the link. This is
10595 an unfortunate waste of memory, but I don't see a good way around
10596 it. Fortunately, it only happens when performing a relocatable
10597 link, which is not the common case. FIXME: If keep_memory is set
10598 we could write the relocs out and then read them again; I don't
10599 know how bad the memory loss will be. */
10601 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10602 sub
->output_has_begun
= FALSE
;
10603 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10605 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10607 if (p
->type
== bfd_indirect_link_order
10608 && (bfd_get_flavour ((sub
= p
->u
.indirect
.section
->owner
))
10609 == bfd_target_elf_flavour
)
10610 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
)
10612 if (! sub
->output_has_begun
)
10614 if (! elf_link_input_bfd (&finfo
, sub
))
10616 sub
->output_has_begun
= TRUE
;
10619 else if (p
->type
== bfd_section_reloc_link_order
10620 || p
->type
== bfd_symbol_reloc_link_order
)
10622 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
10627 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
10633 /* Free symbol buffer if needed. */
10634 if (!info
->reduce_memory_overheads
)
10636 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10637 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
10638 && elf_tdata (sub
)->symbuf
)
10640 free (elf_tdata (sub
)->symbuf
);
10641 elf_tdata (sub
)->symbuf
= NULL
;
10645 /* Output any global symbols that got converted to local in a
10646 version script or due to symbol visibility. We do this in a
10647 separate step since ELF requires all local symbols to appear
10648 prior to any global symbols. FIXME: We should only do this if
10649 some global symbols were, in fact, converted to become local.
10650 FIXME: Will this work correctly with the Irix 5 linker? */
10651 eoinfo
.failed
= FALSE
;
10652 eoinfo
.finfo
= &finfo
;
10653 eoinfo
.localsyms
= TRUE
;
10654 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
10659 /* If backend needs to output some local symbols not present in the hash
10660 table, do it now. */
10661 if (bed
->elf_backend_output_arch_local_syms
)
10663 typedef int (*out_sym_func
)
10664 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10665 struct elf_link_hash_entry
*);
10667 if (! ((*bed
->elf_backend_output_arch_local_syms
)
10668 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10672 /* That wrote out all the local symbols. Finish up the symbol table
10673 with the global symbols. Even if we want to strip everything we
10674 can, we still need to deal with those global symbols that got
10675 converted to local in a version script. */
10677 /* The sh_info field records the index of the first non local symbol. */
10678 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
10681 && finfo
.dynsym_sec
->output_section
!= bfd_abs_section_ptr
)
10683 Elf_Internal_Sym sym
;
10684 bfd_byte
*dynsym
= finfo
.dynsym_sec
->contents
;
10685 long last_local
= 0;
10687 /* Write out the section symbols for the output sections. */
10688 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
10694 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10697 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
10703 dynindx
= elf_section_data (s
)->dynindx
;
10706 indx
= elf_section_data (s
)->this_idx
;
10707 BFD_ASSERT (indx
> 0);
10708 sym
.st_shndx
= indx
;
10709 if (! check_dynsym (abfd
, &sym
))
10711 sym
.st_value
= s
->vma
;
10712 dest
= dynsym
+ dynindx
* bed
->s
->sizeof_sym
;
10713 if (last_local
< dynindx
)
10714 last_local
= dynindx
;
10715 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10719 /* Write out the local dynsyms. */
10720 if (elf_hash_table (info
)->dynlocal
)
10722 struct elf_link_local_dynamic_entry
*e
;
10723 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
10728 /* Copy the internal symbol and turn off visibility.
10729 Note that we saved a word of storage and overwrote
10730 the original st_name with the dynstr_index. */
10732 sym
.st_other
&= ~ELF_ST_VISIBILITY (-1);
10734 s
= bfd_section_from_elf_index (e
->input_bfd
,
10739 elf_section_data (s
->output_section
)->this_idx
;
10740 if (! check_dynsym (abfd
, &sym
))
10742 sym
.st_value
= (s
->output_section
->vma
10744 + e
->isym
.st_value
);
10747 if (last_local
< e
->dynindx
)
10748 last_local
= e
->dynindx
;
10750 dest
= dynsym
+ e
->dynindx
* bed
->s
->sizeof_sym
;
10751 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10755 elf_section_data (finfo
.dynsym_sec
->output_section
)->this_hdr
.sh_info
=
10759 /* We get the global symbols from the hash table. */
10760 eoinfo
.failed
= FALSE
;
10761 eoinfo
.localsyms
= FALSE
;
10762 eoinfo
.finfo
= &finfo
;
10763 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
10768 /* If backend needs to output some symbols not present in the hash
10769 table, do it now. */
10770 if (bed
->elf_backend_output_arch_syms
)
10772 typedef int (*out_sym_func
)
10773 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10774 struct elf_link_hash_entry
*);
10776 if (! ((*bed
->elf_backend_output_arch_syms
)
10777 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10781 /* Flush all symbols to the file. */
10782 if (! elf_link_flush_output_syms (&finfo
, bed
))
10785 /* Now we know the size of the symtab section. */
10786 off
+= symtab_hdr
->sh_size
;
10788 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
10789 if (symtab_shndx_hdr
->sh_name
!= 0)
10791 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
10792 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
10793 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
10794 amt
= bfd_get_symcount (abfd
) * sizeof (Elf_External_Sym_Shndx
);
10795 symtab_shndx_hdr
->sh_size
= amt
;
10797 off
= _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr
,
10800 if (bfd_seek (abfd
, symtab_shndx_hdr
->sh_offset
, SEEK_SET
) != 0
10801 || (bfd_bwrite (finfo
.symshndxbuf
, amt
, abfd
) != amt
))
10806 /* Finish up and write out the symbol string table (.strtab)
10808 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
10809 /* sh_name was set in prep_headers. */
10810 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
10811 symstrtab_hdr
->sh_flags
= 0;
10812 symstrtab_hdr
->sh_addr
= 0;
10813 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (finfo
.symstrtab
);
10814 symstrtab_hdr
->sh_entsize
= 0;
10815 symstrtab_hdr
->sh_link
= 0;
10816 symstrtab_hdr
->sh_info
= 0;
10817 /* sh_offset is set just below. */
10818 symstrtab_hdr
->sh_addralign
= 1;
10820 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
, off
, TRUE
);
10821 elf_tdata (abfd
)->next_file_pos
= off
;
10823 if (bfd_get_symcount (abfd
) > 0)
10825 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
10826 || ! _bfd_stringtab_emit (abfd
, finfo
.symstrtab
))
10830 /* Adjust the relocs to have the correct symbol indices. */
10831 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10833 if ((o
->flags
& SEC_RELOC
) == 0)
10836 elf_link_adjust_relocs (abfd
, &elf_section_data (o
)->rel_hdr
,
10837 elf_section_data (o
)->rel_count
,
10838 elf_section_data (o
)->rel_hashes
);
10839 if (elf_section_data (o
)->rel_hdr2
!= NULL
)
10840 elf_link_adjust_relocs (abfd
, elf_section_data (o
)->rel_hdr2
,
10841 elf_section_data (o
)->rel_count2
,
10842 (elf_section_data (o
)->rel_hashes
10843 + elf_section_data (o
)->rel_count
));
10845 /* Set the reloc_count field to 0 to prevent write_relocs from
10846 trying to swap the relocs out itself. */
10847 o
->reloc_count
= 0;
10850 if (dynamic
&& info
->combreloc
&& dynobj
!= NULL
)
10851 relativecount
= elf_link_sort_relocs (abfd
, info
, &reldyn
);
10853 /* If we are linking against a dynamic object, or generating a
10854 shared library, finish up the dynamic linking information. */
10857 bfd_byte
*dyncon
, *dynconend
;
10859 /* Fix up .dynamic entries. */
10860 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
10861 BFD_ASSERT (o
!= NULL
);
10863 dyncon
= o
->contents
;
10864 dynconend
= o
->contents
+ o
->size
;
10865 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
10867 Elf_Internal_Dyn dyn
;
10871 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
10878 if (relativecount
> 0 && dyncon
+ bed
->s
->sizeof_dyn
< dynconend
)
10880 switch (elf_section_data (reldyn
)->this_hdr
.sh_type
)
10882 case SHT_REL
: dyn
.d_tag
= DT_RELCOUNT
; break;
10883 case SHT_RELA
: dyn
.d_tag
= DT_RELACOUNT
; break;
10886 dyn
.d_un
.d_val
= relativecount
;
10893 name
= info
->init_function
;
10896 name
= info
->fini_function
;
10899 struct elf_link_hash_entry
*h
;
10901 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
10902 FALSE
, FALSE
, TRUE
);
10904 && (h
->root
.type
== bfd_link_hash_defined
10905 || h
->root
.type
== bfd_link_hash_defweak
))
10907 dyn
.d_un
.d_ptr
= h
->root
.u
.def
.value
;
10908 o
= h
->root
.u
.def
.section
;
10909 if (o
->output_section
!= NULL
)
10910 dyn
.d_un
.d_ptr
+= (o
->output_section
->vma
10911 + o
->output_offset
);
10914 /* The symbol is imported from another shared
10915 library and does not apply to this one. */
10916 dyn
.d_un
.d_ptr
= 0;
10923 case DT_PREINIT_ARRAYSZ
:
10924 name
= ".preinit_array";
10926 case DT_INIT_ARRAYSZ
:
10927 name
= ".init_array";
10929 case DT_FINI_ARRAYSZ
:
10930 name
= ".fini_array";
10932 o
= bfd_get_section_by_name (abfd
, name
);
10935 (*_bfd_error_handler
)
10936 (_("%B: could not find output section %s"), abfd
, name
);
10940 (*_bfd_error_handler
)
10941 (_("warning: %s section has zero size"), name
);
10942 dyn
.d_un
.d_val
= o
->size
;
10945 case DT_PREINIT_ARRAY
:
10946 name
= ".preinit_array";
10948 case DT_INIT_ARRAY
:
10949 name
= ".init_array";
10951 case DT_FINI_ARRAY
:
10952 name
= ".fini_array";
10959 name
= ".gnu.hash";
10968 name
= ".gnu.version_d";
10971 name
= ".gnu.version_r";
10974 name
= ".gnu.version";
10976 o
= bfd_get_section_by_name (abfd
, name
);
10979 (*_bfd_error_handler
)
10980 (_("%B: could not find output section %s"), abfd
, name
);
10983 dyn
.d_un
.d_ptr
= o
->vma
;
10990 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
10994 dyn
.d_un
.d_val
= 0;
10995 dyn
.d_un
.d_ptr
= 0;
10996 for (i
= 1; i
< elf_numsections (abfd
); i
++)
10998 Elf_Internal_Shdr
*hdr
;
11000 hdr
= elf_elfsections (abfd
)[i
];
11001 if (hdr
->sh_type
== type
11002 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
11004 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
11005 dyn
.d_un
.d_val
+= hdr
->sh_size
;
11008 if (dyn
.d_un
.d_ptr
== 0
11009 || hdr
->sh_addr
< dyn
.d_un
.d_ptr
)
11010 dyn
.d_un
.d_ptr
= hdr
->sh_addr
;
11016 bed
->s
->swap_dyn_out (dynobj
, &dyn
, dyncon
);
11020 /* If we have created any dynamic sections, then output them. */
11021 if (dynobj
!= NULL
)
11023 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
11026 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11027 if (info
->warn_shared_textrel
&& info
->shared
)
11029 bfd_byte
*dyncon
, *dynconend
;
11031 /* Fix up .dynamic entries. */
11032 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
11033 BFD_ASSERT (o
!= NULL
);
11035 dyncon
= o
->contents
;
11036 dynconend
= o
->contents
+ o
->size
;
11037 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
11039 Elf_Internal_Dyn dyn
;
11041 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
11043 if (dyn
.d_tag
== DT_TEXTREL
)
11045 info
->callbacks
->einfo
11046 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11052 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
11054 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
11056 || o
->output_section
== bfd_abs_section_ptr
)
11058 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
11060 /* At this point, we are only interested in sections
11061 created by _bfd_elf_link_create_dynamic_sections. */
11064 if (elf_hash_table (info
)->stab_info
.stabstr
== o
)
11066 if (elf_hash_table (info
)->eh_info
.hdr_sec
== o
)
11068 if ((elf_section_data (o
->output_section
)->this_hdr
.sh_type
11070 || strcmp (bfd_get_section_name (abfd
, o
), ".dynstr") != 0)
11072 /* FIXME: octets_per_byte. */
11073 if (! bfd_set_section_contents (abfd
, o
->output_section
,
11075 (file_ptr
) o
->output_offset
,
11081 /* The contents of the .dynstr section are actually in a
11083 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
11084 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
11085 || ! _bfd_elf_strtab_emit (abfd
,
11086 elf_hash_table (info
)->dynstr
))
11092 if (info
->relocatable
)
11094 bfd_boolean failed
= FALSE
;
11096 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
11101 /* If we have optimized stabs strings, output them. */
11102 if (elf_hash_table (info
)->stab_info
.stabstr
!= NULL
)
11104 if (! _bfd_write_stab_strings (abfd
, &elf_hash_table (info
)->stab_info
))
11108 if (info
->eh_frame_hdr
)
11110 if (! _bfd_elf_write_section_eh_frame_hdr (abfd
, info
))
11114 if (finfo
.symstrtab
!= NULL
)
11115 _bfd_stringtab_free (finfo
.symstrtab
);
11116 if (finfo
.contents
!= NULL
)
11117 free (finfo
.contents
);
11118 if (finfo
.external_relocs
!= NULL
)
11119 free (finfo
.external_relocs
);
11120 if (finfo
.internal_relocs
!= NULL
)
11121 free (finfo
.internal_relocs
);
11122 if (finfo
.external_syms
!= NULL
)
11123 free (finfo
.external_syms
);
11124 if (finfo
.locsym_shndx
!= NULL
)
11125 free (finfo
.locsym_shndx
);
11126 if (finfo
.internal_syms
!= NULL
)
11127 free (finfo
.internal_syms
);
11128 if (finfo
.indices
!= NULL
)
11129 free (finfo
.indices
);
11130 if (finfo
.sections
!= NULL
)
11131 free (finfo
.sections
);
11132 if (finfo
.symbuf
!= NULL
)
11133 free (finfo
.symbuf
);
11134 if (finfo
.symshndxbuf
!= NULL
)
11135 free (finfo
.symshndxbuf
);
11136 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11138 if ((o
->flags
& SEC_RELOC
) != 0
11139 && elf_section_data (o
)->rel_hashes
!= NULL
)
11140 free (elf_section_data (o
)->rel_hashes
);
11143 elf_tdata (abfd
)->linker
= TRUE
;
11147 bfd_byte
*contents
= (bfd_byte
*) bfd_malloc (attr_size
);
11148 if (contents
== NULL
)
11149 return FALSE
; /* Bail out and fail. */
11150 bfd_elf_set_obj_attr_contents (abfd
, contents
, attr_size
);
11151 bfd_set_section_contents (abfd
, attr_section
, contents
, 0, attr_size
);
11158 if (finfo
.symstrtab
!= NULL
)
11159 _bfd_stringtab_free (finfo
.symstrtab
);
11160 if (finfo
.contents
!= NULL
)
11161 free (finfo
.contents
);
11162 if (finfo
.external_relocs
!= NULL
)
11163 free (finfo
.external_relocs
);
11164 if (finfo
.internal_relocs
!= NULL
)
11165 free (finfo
.internal_relocs
);
11166 if (finfo
.external_syms
!= NULL
)
11167 free (finfo
.external_syms
);
11168 if (finfo
.locsym_shndx
!= NULL
)
11169 free (finfo
.locsym_shndx
);
11170 if (finfo
.internal_syms
!= NULL
)
11171 free (finfo
.internal_syms
);
11172 if (finfo
.indices
!= NULL
)
11173 free (finfo
.indices
);
11174 if (finfo
.sections
!= NULL
)
11175 free (finfo
.sections
);
11176 if (finfo
.symbuf
!= NULL
)
11177 free (finfo
.symbuf
);
11178 if (finfo
.symshndxbuf
!= NULL
)
11179 free (finfo
.symshndxbuf
);
11180 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11182 if ((o
->flags
& SEC_RELOC
) != 0
11183 && elf_section_data (o
)->rel_hashes
!= NULL
)
11184 free (elf_section_data (o
)->rel_hashes
);
11190 /* Initialize COOKIE for input bfd ABFD. */
11193 init_reloc_cookie (struct elf_reloc_cookie
*cookie
,
11194 struct bfd_link_info
*info
, bfd
*abfd
)
11196 Elf_Internal_Shdr
*symtab_hdr
;
11197 const struct elf_backend_data
*bed
;
11199 bed
= get_elf_backend_data (abfd
);
11200 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11202 cookie
->abfd
= abfd
;
11203 cookie
->sym_hashes
= elf_sym_hashes (abfd
);
11204 cookie
->bad_symtab
= elf_bad_symtab (abfd
);
11205 if (cookie
->bad_symtab
)
11207 cookie
->locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
11208 cookie
->extsymoff
= 0;
11212 cookie
->locsymcount
= symtab_hdr
->sh_info
;
11213 cookie
->extsymoff
= symtab_hdr
->sh_info
;
11216 if (bed
->s
->arch_size
== 32)
11217 cookie
->r_sym_shift
= 8;
11219 cookie
->r_sym_shift
= 32;
11221 cookie
->locsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
11222 if (cookie
->locsyms
== NULL
&& cookie
->locsymcount
!= 0)
11224 cookie
->locsyms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
11225 cookie
->locsymcount
, 0,
11227 if (cookie
->locsyms
== NULL
)
11229 info
->callbacks
->einfo (_("%P%X: can not read symbols: %E\n"));
11232 if (info
->keep_memory
)
11233 symtab_hdr
->contents
= (bfd_byte
*) cookie
->locsyms
;
11238 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11241 fini_reloc_cookie (struct elf_reloc_cookie
*cookie
, bfd
*abfd
)
11243 Elf_Internal_Shdr
*symtab_hdr
;
11245 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11246 if (cookie
->locsyms
!= NULL
11247 && symtab_hdr
->contents
!= (unsigned char *) cookie
->locsyms
)
11248 free (cookie
->locsyms
);
11251 /* Initialize the relocation information in COOKIE for input section SEC
11252 of input bfd ABFD. */
11255 init_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11256 struct bfd_link_info
*info
, bfd
*abfd
,
11259 const struct elf_backend_data
*bed
;
11261 if (sec
->reloc_count
== 0)
11263 cookie
->rels
= NULL
;
11264 cookie
->relend
= NULL
;
11268 bed
= get_elf_backend_data (abfd
);
11270 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
11271 info
->keep_memory
);
11272 if (cookie
->rels
== NULL
)
11274 cookie
->rel
= cookie
->rels
;
11275 cookie
->relend
= (cookie
->rels
11276 + sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
);
11278 cookie
->rel
= cookie
->rels
;
11282 /* Free the memory allocated by init_reloc_cookie_rels,
11286 fini_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11289 if (cookie
->rels
&& elf_section_data (sec
)->relocs
!= cookie
->rels
)
11290 free (cookie
->rels
);
11293 /* Initialize the whole of COOKIE for input section SEC. */
11296 init_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11297 struct bfd_link_info
*info
,
11300 if (!init_reloc_cookie (cookie
, info
, sec
->owner
))
11302 if (!init_reloc_cookie_rels (cookie
, info
, sec
->owner
, sec
))
11307 fini_reloc_cookie (cookie
, sec
->owner
);
11312 /* Free the memory allocated by init_reloc_cookie_for_section,
11316 fini_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11319 fini_reloc_cookie_rels (cookie
, sec
);
11320 fini_reloc_cookie (cookie
, sec
->owner
);
11323 /* Garbage collect unused sections. */
11325 /* Default gc_mark_hook. */
11328 _bfd_elf_gc_mark_hook (asection
*sec
,
11329 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
11330 Elf_Internal_Rela
*rel ATTRIBUTE_UNUSED
,
11331 struct elf_link_hash_entry
*h
,
11332 Elf_Internal_Sym
*sym
)
11336 switch (h
->root
.type
)
11338 case bfd_link_hash_defined
:
11339 case bfd_link_hash_defweak
:
11340 return h
->root
.u
.def
.section
;
11342 case bfd_link_hash_common
:
11343 return h
->root
.u
.c
.p
->section
;
11350 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
11355 /* COOKIE->rel describes a relocation against section SEC, which is
11356 a section we've decided to keep. Return the section that contains
11357 the relocation symbol, or NULL if no section contains it. */
11360 _bfd_elf_gc_mark_rsec (struct bfd_link_info
*info
, asection
*sec
,
11361 elf_gc_mark_hook_fn gc_mark_hook
,
11362 struct elf_reloc_cookie
*cookie
)
11364 unsigned long r_symndx
;
11365 struct elf_link_hash_entry
*h
;
11367 r_symndx
= cookie
->rel
->r_info
>> cookie
->r_sym_shift
;
11371 if (r_symndx
>= cookie
->locsymcount
11372 || ELF_ST_BIND (cookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
11374 h
= cookie
->sym_hashes
[r_symndx
- cookie
->extsymoff
];
11375 while (h
->root
.type
== bfd_link_hash_indirect
11376 || h
->root
.type
== bfd_link_hash_warning
)
11377 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11378 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, h
, NULL
);
11381 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, NULL
,
11382 &cookie
->locsyms
[r_symndx
]);
11385 /* COOKIE->rel describes a relocation against section SEC, which is
11386 a section we've decided to keep. Mark the section that contains
11387 the relocation symbol. */
11390 _bfd_elf_gc_mark_reloc (struct bfd_link_info
*info
,
11392 elf_gc_mark_hook_fn gc_mark_hook
,
11393 struct elf_reloc_cookie
*cookie
)
11397 rsec
= _bfd_elf_gc_mark_rsec (info
, sec
, gc_mark_hook
, cookie
);
11398 if (rsec
&& !rsec
->gc_mark
)
11400 if (bfd_get_flavour (rsec
->owner
) != bfd_target_elf_flavour
)
11402 else if (!_bfd_elf_gc_mark (info
, rsec
, gc_mark_hook
))
11408 /* The mark phase of garbage collection. For a given section, mark
11409 it and any sections in this section's group, and all the sections
11410 which define symbols to which it refers. */
11413 _bfd_elf_gc_mark (struct bfd_link_info
*info
,
11415 elf_gc_mark_hook_fn gc_mark_hook
)
11418 asection
*group_sec
, *eh_frame
;
11422 /* Mark all the sections in the group. */
11423 group_sec
= elf_section_data (sec
)->next_in_group
;
11424 if (group_sec
&& !group_sec
->gc_mark
)
11425 if (!_bfd_elf_gc_mark (info
, group_sec
, gc_mark_hook
))
11428 /* Look through the section relocs. */
11430 eh_frame
= elf_eh_frame_section (sec
->owner
);
11431 if ((sec
->flags
& SEC_RELOC
) != 0
11432 && sec
->reloc_count
> 0
11433 && sec
!= eh_frame
)
11435 struct elf_reloc_cookie cookie
;
11437 if (!init_reloc_cookie_for_section (&cookie
, info
, sec
))
11441 for (; cookie
.rel
< cookie
.relend
; cookie
.rel
++)
11442 if (!_bfd_elf_gc_mark_reloc (info
, sec
, gc_mark_hook
, &cookie
))
11447 fini_reloc_cookie_for_section (&cookie
, sec
);
11451 if (ret
&& eh_frame
&& elf_fde_list (sec
))
11453 struct elf_reloc_cookie cookie
;
11455 if (!init_reloc_cookie_for_section (&cookie
, info
, eh_frame
))
11459 if (!_bfd_elf_gc_mark_fdes (info
, sec
, eh_frame
,
11460 gc_mark_hook
, &cookie
))
11462 fini_reloc_cookie_for_section (&cookie
, eh_frame
);
11469 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11471 struct elf_gc_sweep_symbol_info
11473 struct bfd_link_info
*info
;
11474 void (*hide_symbol
) (struct bfd_link_info
*, struct elf_link_hash_entry
*,
11479 elf_gc_sweep_symbol (struct elf_link_hash_entry
*h
, void *data
)
11481 if (h
->root
.type
== bfd_link_hash_warning
)
11482 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11484 if ((h
->root
.type
== bfd_link_hash_defined
11485 || h
->root
.type
== bfd_link_hash_defweak
)
11486 && !h
->root
.u
.def
.section
->gc_mark
11487 && !(h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
))
11489 struct elf_gc_sweep_symbol_info
*inf
=
11490 (struct elf_gc_sweep_symbol_info
*) data
;
11491 (*inf
->hide_symbol
) (inf
->info
, h
, TRUE
);
11497 /* The sweep phase of garbage collection. Remove all garbage sections. */
11499 typedef bfd_boolean (*gc_sweep_hook_fn
)
11500 (bfd
*, struct bfd_link_info
*, asection
*, const Elf_Internal_Rela
*);
11503 elf_gc_sweep (bfd
*abfd
, struct bfd_link_info
*info
)
11506 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11507 gc_sweep_hook_fn gc_sweep_hook
= bed
->gc_sweep_hook
;
11508 unsigned long section_sym_count
;
11509 struct elf_gc_sweep_symbol_info sweep_info
;
11511 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11515 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11518 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11520 /* When any section in a section group is kept, we keep all
11521 sections in the section group. If the first member of
11522 the section group is excluded, we will also exclude the
11524 if (o
->flags
& SEC_GROUP
)
11526 asection
*first
= elf_next_in_group (o
);
11527 o
->gc_mark
= first
->gc_mark
;
11529 else if ((o
->flags
& (SEC_DEBUGGING
| SEC_LINKER_CREATED
)) != 0
11530 || (o
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
)) == 0)
11532 /* Keep debug and special sections. */
11539 /* Skip sweeping sections already excluded. */
11540 if (o
->flags
& SEC_EXCLUDE
)
11543 /* Since this is early in the link process, it is simple
11544 to remove a section from the output. */
11545 o
->flags
|= SEC_EXCLUDE
;
11547 if (info
->print_gc_sections
&& o
->size
!= 0)
11548 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub
, o
->name
);
11550 /* But we also have to update some of the relocation
11551 info we collected before. */
11553 && (o
->flags
& SEC_RELOC
) != 0
11554 && o
->reloc_count
> 0
11555 && !bfd_is_abs_section (o
->output_section
))
11557 Elf_Internal_Rela
*internal_relocs
;
11561 = _bfd_elf_link_read_relocs (o
->owner
, o
, NULL
, NULL
,
11562 info
->keep_memory
);
11563 if (internal_relocs
== NULL
)
11566 r
= (*gc_sweep_hook
) (o
->owner
, info
, o
, internal_relocs
);
11568 if (elf_section_data (o
)->relocs
!= internal_relocs
)
11569 free (internal_relocs
);
11577 /* Remove the symbols that were in the swept sections from the dynamic
11578 symbol table. GCFIXME: Anyone know how to get them out of the
11579 static symbol table as well? */
11580 sweep_info
.info
= info
;
11581 sweep_info
.hide_symbol
= bed
->elf_backend_hide_symbol
;
11582 elf_link_hash_traverse (elf_hash_table (info
), elf_gc_sweep_symbol
,
11585 _bfd_elf_link_renumber_dynsyms (abfd
, info
, §ion_sym_count
);
11589 /* Propagate collected vtable information. This is called through
11590 elf_link_hash_traverse. */
11593 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry
*h
, void *okp
)
11595 if (h
->root
.type
== bfd_link_hash_warning
)
11596 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11598 /* Those that are not vtables. */
11599 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11602 /* Those vtables that do not have parents, we cannot merge. */
11603 if (h
->vtable
->parent
== (struct elf_link_hash_entry
*) -1)
11606 /* If we've already been done, exit. */
11607 if (h
->vtable
->used
&& h
->vtable
->used
[-1])
11610 /* Make sure the parent's table is up to date. */
11611 elf_gc_propagate_vtable_entries_used (h
->vtable
->parent
, okp
);
11613 if (h
->vtable
->used
== NULL
)
11615 /* None of this table's entries were referenced. Re-use the
11617 h
->vtable
->used
= h
->vtable
->parent
->vtable
->used
;
11618 h
->vtable
->size
= h
->vtable
->parent
->vtable
->size
;
11623 bfd_boolean
*cu
, *pu
;
11625 /* Or the parent's entries into ours. */
11626 cu
= h
->vtable
->used
;
11628 pu
= h
->vtable
->parent
->vtable
->used
;
11631 const struct elf_backend_data
*bed
;
11632 unsigned int log_file_align
;
11634 bed
= get_elf_backend_data (h
->root
.u
.def
.section
->owner
);
11635 log_file_align
= bed
->s
->log_file_align
;
11636 n
= h
->vtable
->parent
->vtable
->size
>> log_file_align
;
11651 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry
*h
, void *okp
)
11654 bfd_vma hstart
, hend
;
11655 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
11656 const struct elf_backend_data
*bed
;
11657 unsigned int log_file_align
;
11659 if (h
->root
.type
== bfd_link_hash_warning
)
11660 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11662 /* Take care of both those symbols that do not describe vtables as
11663 well as those that are not loaded. */
11664 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11667 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
11668 || h
->root
.type
== bfd_link_hash_defweak
);
11670 sec
= h
->root
.u
.def
.section
;
11671 hstart
= h
->root
.u
.def
.value
;
11672 hend
= hstart
+ h
->size
;
11674 relstart
= _bfd_elf_link_read_relocs (sec
->owner
, sec
, NULL
, NULL
, TRUE
);
11676 return *(bfd_boolean
*) okp
= FALSE
;
11677 bed
= get_elf_backend_data (sec
->owner
);
11678 log_file_align
= bed
->s
->log_file_align
;
11680 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
11682 for (rel
= relstart
; rel
< relend
; ++rel
)
11683 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
11685 /* If the entry is in use, do nothing. */
11686 if (h
->vtable
->used
11687 && (rel
->r_offset
- hstart
) < h
->vtable
->size
)
11689 bfd_vma entry
= (rel
->r_offset
- hstart
) >> log_file_align
;
11690 if (h
->vtable
->used
[entry
])
11693 /* Otherwise, kill it. */
11694 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
11700 /* Mark sections containing dynamically referenced symbols. When
11701 building shared libraries, we must assume that any visible symbol is
11705 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry
*h
, void *inf
)
11707 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
11709 if (h
->root
.type
== bfd_link_hash_warning
)
11710 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11712 if ((h
->root
.type
== bfd_link_hash_defined
11713 || h
->root
.type
== bfd_link_hash_defweak
)
11715 || (!info
->executable
11717 && ELF_ST_VISIBILITY (h
->other
) != STV_INTERNAL
11718 && ELF_ST_VISIBILITY (h
->other
) != STV_HIDDEN
)))
11719 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11724 /* Keep all sections containing symbols undefined on the command-line,
11725 and the section containing the entry symbol. */
11728 _bfd_elf_gc_keep (struct bfd_link_info
*info
)
11730 struct bfd_sym_chain
*sym
;
11732 for (sym
= info
->gc_sym_list
; sym
!= NULL
; sym
= sym
->next
)
11734 struct elf_link_hash_entry
*h
;
11736 h
= elf_link_hash_lookup (elf_hash_table (info
), sym
->name
,
11737 FALSE
, FALSE
, FALSE
);
11740 && (h
->root
.type
== bfd_link_hash_defined
11741 || h
->root
.type
== bfd_link_hash_defweak
)
11742 && !bfd_is_abs_section (h
->root
.u
.def
.section
))
11743 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11747 /* Do mark and sweep of unused sections. */
11750 bfd_elf_gc_sections (bfd
*abfd
, struct bfd_link_info
*info
)
11752 bfd_boolean ok
= TRUE
;
11754 elf_gc_mark_hook_fn gc_mark_hook
;
11755 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11757 if (!bed
->can_gc_sections
11758 || !is_elf_hash_table (info
->hash
))
11760 (*_bfd_error_handler
)(_("Warning: gc-sections option ignored"));
11764 bed
->gc_keep (info
);
11766 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11767 at the .eh_frame section if we can mark the FDEs individually. */
11768 _bfd_elf_begin_eh_frame_parsing (info
);
11769 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11772 struct elf_reloc_cookie cookie
;
11774 sec
= bfd_get_section_by_name (sub
, ".eh_frame");
11775 if (sec
&& init_reloc_cookie_for_section (&cookie
, info
, sec
))
11777 _bfd_elf_parse_eh_frame (sub
, info
, sec
, &cookie
);
11778 if (elf_section_data (sec
)->sec_info
)
11779 elf_eh_frame_section (sub
) = sec
;
11780 fini_reloc_cookie_for_section (&cookie
, sec
);
11783 _bfd_elf_end_eh_frame_parsing (info
);
11785 /* Apply transitive closure to the vtable entry usage info. */
11786 elf_link_hash_traverse (elf_hash_table (info
),
11787 elf_gc_propagate_vtable_entries_used
,
11792 /* Kill the vtable relocations that were not used. */
11793 elf_link_hash_traverse (elf_hash_table (info
),
11794 elf_gc_smash_unused_vtentry_relocs
,
11799 /* Mark dynamically referenced symbols. */
11800 if (elf_hash_table (info
)->dynamic_sections_created
)
11801 elf_link_hash_traverse (elf_hash_table (info
),
11802 bed
->gc_mark_dynamic_ref
,
11805 /* Grovel through relocs to find out who stays ... */
11806 gc_mark_hook
= bed
->gc_mark_hook
;
11807 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11811 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11814 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11815 if ((o
->flags
& (SEC_EXCLUDE
| SEC_KEEP
)) == SEC_KEEP
&& !o
->gc_mark
)
11816 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
11820 /* Allow the backend to mark additional target specific sections. */
11821 if (bed
->gc_mark_extra_sections
)
11822 bed
->gc_mark_extra_sections (info
, gc_mark_hook
);
11824 /* ... and mark SEC_EXCLUDE for those that go. */
11825 return elf_gc_sweep (abfd
, info
);
11828 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11831 bfd_elf_gc_record_vtinherit (bfd
*abfd
,
11833 struct elf_link_hash_entry
*h
,
11836 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
11837 struct elf_link_hash_entry
**search
, *child
;
11838 bfd_size_type extsymcount
;
11839 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11841 /* The sh_info field of the symtab header tells us where the
11842 external symbols start. We don't care about the local symbols at
11844 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/ bed
->s
->sizeof_sym
;
11845 if (!elf_bad_symtab (abfd
))
11846 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
11848 sym_hashes
= elf_sym_hashes (abfd
);
11849 sym_hashes_end
= sym_hashes
+ extsymcount
;
11851 /* Hunt down the child symbol, which is in this section at the same
11852 offset as the relocation. */
11853 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
11855 if ((child
= *search
) != NULL
11856 && (child
->root
.type
== bfd_link_hash_defined
11857 || child
->root
.type
== bfd_link_hash_defweak
)
11858 && child
->root
.u
.def
.section
== sec
11859 && child
->root
.u
.def
.value
== offset
)
11863 (*_bfd_error_handler
) ("%B: %A+%lu: No symbol found for INHERIT",
11864 abfd
, sec
, (unsigned long) offset
);
11865 bfd_set_error (bfd_error_invalid_operation
);
11869 if (!child
->vtable
)
11871 child
->vtable
= (struct elf_link_virtual_table_entry
*)
11872 bfd_zalloc (abfd
, sizeof (*child
->vtable
));
11873 if (!child
->vtable
)
11878 /* This *should* only be the absolute section. It could potentially
11879 be that someone has defined a non-global vtable though, which
11880 would be bad. It isn't worth paging in the local symbols to be
11881 sure though; that case should simply be handled by the assembler. */
11883 child
->vtable
->parent
= (struct elf_link_hash_entry
*) -1;
11886 child
->vtable
->parent
= h
;
11891 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11894 bfd_elf_gc_record_vtentry (bfd
*abfd ATTRIBUTE_UNUSED
,
11895 asection
*sec ATTRIBUTE_UNUSED
,
11896 struct elf_link_hash_entry
*h
,
11899 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11900 unsigned int log_file_align
= bed
->s
->log_file_align
;
11904 h
->vtable
= (struct elf_link_virtual_table_entry
*)
11905 bfd_zalloc (abfd
, sizeof (*h
->vtable
));
11910 if (addend
>= h
->vtable
->size
)
11912 size_t size
, bytes
, file_align
;
11913 bfd_boolean
*ptr
= h
->vtable
->used
;
11915 /* While the symbol is undefined, we have to be prepared to handle
11917 file_align
= 1 << log_file_align
;
11918 if (h
->root
.type
== bfd_link_hash_undefined
)
11919 size
= addend
+ file_align
;
11923 if (addend
>= size
)
11925 /* Oops! We've got a reference past the defined end of
11926 the table. This is probably a bug -- shall we warn? */
11927 size
= addend
+ file_align
;
11930 size
= (size
+ file_align
- 1) & -file_align
;
11932 /* Allocate one extra entry for use as a "done" flag for the
11933 consolidation pass. */
11934 bytes
= ((size
>> log_file_align
) + 1) * sizeof (bfd_boolean
);
11938 ptr
= (bfd_boolean
*) bfd_realloc (ptr
- 1, bytes
);
11944 oldbytes
= (((h
->vtable
->size
>> log_file_align
) + 1)
11945 * sizeof (bfd_boolean
));
11946 memset (((char *) ptr
) + oldbytes
, 0, bytes
- oldbytes
);
11950 ptr
= (bfd_boolean
*) bfd_zmalloc (bytes
);
11955 /* And arrange for that done flag to be at index -1. */
11956 h
->vtable
->used
= ptr
+ 1;
11957 h
->vtable
->size
= size
;
11960 h
->vtable
->used
[addend
>> log_file_align
] = TRUE
;
11965 struct alloc_got_off_arg
{
11967 struct bfd_link_info
*info
;
11970 /* We need a special top-level link routine to convert got reference counts
11971 to real got offsets. */
11974 elf_gc_allocate_got_offsets (struct elf_link_hash_entry
*h
, void *arg
)
11976 struct alloc_got_off_arg
*gofarg
= (struct alloc_got_off_arg
*) arg
;
11977 bfd
*obfd
= gofarg
->info
->output_bfd
;
11978 const struct elf_backend_data
*bed
= get_elf_backend_data (obfd
);
11980 if (h
->root
.type
== bfd_link_hash_warning
)
11981 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11983 if (h
->got
.refcount
> 0)
11985 h
->got
.offset
= gofarg
->gotoff
;
11986 gofarg
->gotoff
+= bed
->got_elt_size (obfd
, gofarg
->info
, h
, NULL
, 0);
11989 h
->got
.offset
= (bfd_vma
) -1;
11994 /* And an accompanying bit to work out final got entry offsets once
11995 we're done. Should be called from final_link. */
11998 bfd_elf_gc_common_finalize_got_offsets (bfd
*abfd
,
11999 struct bfd_link_info
*info
)
12002 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12004 struct alloc_got_off_arg gofarg
;
12006 BFD_ASSERT (abfd
== info
->output_bfd
);
12008 if (! is_elf_hash_table (info
->hash
))
12011 /* The GOT offset is relative to the .got section, but the GOT header is
12012 put into the .got.plt section, if the backend uses it. */
12013 if (bed
->want_got_plt
)
12016 gotoff
= bed
->got_header_size
;
12018 /* Do the local .got entries first. */
12019 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
12021 bfd_signed_vma
*local_got
;
12022 bfd_size_type j
, locsymcount
;
12023 Elf_Internal_Shdr
*symtab_hdr
;
12025 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
12028 local_got
= elf_local_got_refcounts (i
);
12032 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
12033 if (elf_bad_symtab (i
))
12034 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
12036 locsymcount
= symtab_hdr
->sh_info
;
12038 for (j
= 0; j
< locsymcount
; ++j
)
12040 if (local_got
[j
] > 0)
12042 local_got
[j
] = gotoff
;
12043 gotoff
+= bed
->got_elt_size (abfd
, info
, NULL
, i
, j
);
12046 local_got
[j
] = (bfd_vma
) -1;
12050 /* Then the global .got entries. .plt refcounts are handled by
12051 adjust_dynamic_symbol */
12052 gofarg
.gotoff
= gotoff
;
12053 gofarg
.info
= info
;
12054 elf_link_hash_traverse (elf_hash_table (info
),
12055 elf_gc_allocate_got_offsets
,
12060 /* Many folk need no more in the way of final link than this, once
12061 got entry reference counting is enabled. */
12064 bfd_elf_gc_common_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
12066 if (!bfd_elf_gc_common_finalize_got_offsets (abfd
, info
))
12069 /* Invoke the regular ELF backend linker to do all the work. */
12070 return bfd_elf_final_link (abfd
, info
);
12074 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset
, void *cookie
)
12076 struct elf_reloc_cookie
*rcookie
= (struct elf_reloc_cookie
*) cookie
;
12078 if (rcookie
->bad_symtab
)
12079 rcookie
->rel
= rcookie
->rels
;
12081 for (; rcookie
->rel
< rcookie
->relend
; rcookie
->rel
++)
12083 unsigned long r_symndx
;
12085 if (! rcookie
->bad_symtab
)
12086 if (rcookie
->rel
->r_offset
> offset
)
12088 if (rcookie
->rel
->r_offset
!= offset
)
12091 r_symndx
= rcookie
->rel
->r_info
>> rcookie
->r_sym_shift
;
12092 if (r_symndx
== SHN_UNDEF
)
12095 if (r_symndx
>= rcookie
->locsymcount
12096 || ELF_ST_BIND (rcookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
12098 struct elf_link_hash_entry
*h
;
12100 h
= rcookie
->sym_hashes
[r_symndx
- rcookie
->extsymoff
];
12102 while (h
->root
.type
== bfd_link_hash_indirect
12103 || h
->root
.type
== bfd_link_hash_warning
)
12104 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12106 if ((h
->root
.type
== bfd_link_hash_defined
12107 || h
->root
.type
== bfd_link_hash_defweak
)
12108 && elf_discarded_section (h
->root
.u
.def
.section
))
12115 /* It's not a relocation against a global symbol,
12116 but it could be a relocation against a local
12117 symbol for a discarded section. */
12119 Elf_Internal_Sym
*isym
;
12121 /* Need to: get the symbol; get the section. */
12122 isym
= &rcookie
->locsyms
[r_symndx
];
12123 isec
= bfd_section_from_elf_index (rcookie
->abfd
, isym
->st_shndx
);
12124 if (isec
!= NULL
&& elf_discarded_section (isec
))
12132 /* Discard unneeded references to discarded sections.
12133 Returns TRUE if any section's size was changed. */
12134 /* This function assumes that the relocations are in sorted order,
12135 which is true for all known assemblers. */
12138 bfd_elf_discard_info (bfd
*output_bfd
, struct bfd_link_info
*info
)
12140 struct elf_reloc_cookie cookie
;
12141 asection
*stab
, *eh
;
12142 const struct elf_backend_data
*bed
;
12144 bfd_boolean ret
= FALSE
;
12146 if (info
->traditional_format
12147 || !is_elf_hash_table (info
->hash
))
12150 _bfd_elf_begin_eh_frame_parsing (info
);
12151 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
12153 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
12156 bed
= get_elf_backend_data (abfd
);
12158 if ((abfd
->flags
& DYNAMIC
) != 0)
12162 if (!info
->relocatable
)
12164 eh
= bfd_get_section_by_name (abfd
, ".eh_frame");
12167 || bfd_is_abs_section (eh
->output_section
)))
12171 stab
= bfd_get_section_by_name (abfd
, ".stab");
12173 && (stab
->size
== 0
12174 || bfd_is_abs_section (stab
->output_section
)
12175 || stab
->sec_info_type
!= ELF_INFO_TYPE_STABS
))
12180 && bed
->elf_backend_discard_info
== NULL
)
12183 if (!init_reloc_cookie (&cookie
, info
, abfd
))
12187 && stab
->reloc_count
> 0
12188 && init_reloc_cookie_rels (&cookie
, info
, abfd
, stab
))
12190 if (_bfd_discard_section_stabs (abfd
, stab
,
12191 elf_section_data (stab
)->sec_info
,
12192 bfd_elf_reloc_symbol_deleted_p
,
12195 fini_reloc_cookie_rels (&cookie
, stab
);
12199 && init_reloc_cookie_rels (&cookie
, info
, abfd
, eh
))
12201 _bfd_elf_parse_eh_frame (abfd
, info
, eh
, &cookie
);
12202 if (_bfd_elf_discard_section_eh_frame (abfd
, info
, eh
,
12203 bfd_elf_reloc_symbol_deleted_p
,
12206 fini_reloc_cookie_rels (&cookie
, eh
);
12209 if (bed
->elf_backend_discard_info
!= NULL
12210 && (*bed
->elf_backend_discard_info
) (abfd
, &cookie
, info
))
12213 fini_reloc_cookie (&cookie
, abfd
);
12215 _bfd_elf_end_eh_frame_parsing (info
);
12217 if (info
->eh_frame_hdr
12218 && !info
->relocatable
12219 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd
, info
))
12225 /* For a SHT_GROUP section, return the group signature. For other
12226 sections, return the normal section name. */
12228 static const char *
12229 section_signature (asection
*sec
)
12231 if ((sec
->flags
& SEC_GROUP
) != 0
12232 && elf_next_in_group (sec
) != NULL
12233 && elf_group_name (elf_next_in_group (sec
)) != NULL
)
12234 return elf_group_name (elf_next_in_group (sec
));
12239 _bfd_elf_section_already_linked (bfd
*abfd
, asection
*sec
,
12240 struct bfd_link_info
*info
)
12243 const char *name
, *p
;
12244 struct bfd_section_already_linked
*l
;
12245 struct bfd_section_already_linked_hash_entry
*already_linked_list
;
12247 if (sec
->output_section
== bfd_abs_section_ptr
)
12250 flags
= sec
->flags
;
12252 /* Return if it isn't a linkonce section. A comdat group section
12253 also has SEC_LINK_ONCE set. */
12254 if ((flags
& SEC_LINK_ONCE
) == 0)
12257 /* Don't put group member sections on our list of already linked
12258 sections. They are handled as a group via their group section. */
12259 if (elf_sec_group (sec
) != NULL
)
12262 /* FIXME: When doing a relocatable link, we may have trouble
12263 copying relocations in other sections that refer to local symbols
12264 in the section being discarded. Those relocations will have to
12265 be converted somehow; as of this writing I'm not sure that any of
12266 the backends handle that correctly.
12268 It is tempting to instead not discard link once sections when
12269 doing a relocatable link (technically, they should be discarded
12270 whenever we are building constructors). However, that fails,
12271 because the linker winds up combining all the link once sections
12272 into a single large link once section, which defeats the purpose
12273 of having link once sections in the first place.
12275 Also, not merging link once sections in a relocatable link
12276 causes trouble for MIPS ELF, which relies on link once semantics
12277 to handle the .reginfo section correctly. */
12279 name
= section_signature (sec
);
12281 if (CONST_STRNEQ (name
, ".gnu.linkonce.")
12282 && (p
= strchr (name
+ sizeof (".gnu.linkonce.") - 1, '.')) != NULL
)
12287 already_linked_list
= bfd_section_already_linked_table_lookup (p
);
12289 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12291 /* We may have 2 different types of sections on the list: group
12292 sections and linkonce sections. Match like sections. */
12293 if ((flags
& SEC_GROUP
) == (l
->sec
->flags
& SEC_GROUP
)
12294 && strcmp (name
, section_signature (l
->sec
)) == 0
12295 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
)
12297 /* The section has already been linked. See if we should
12298 issue a warning. */
12299 switch (flags
& SEC_LINK_DUPLICATES
)
12304 case SEC_LINK_DUPLICATES_DISCARD
:
12307 case SEC_LINK_DUPLICATES_ONE_ONLY
:
12308 (*_bfd_error_handler
)
12309 (_("%B: ignoring duplicate section `%A'"),
12313 case SEC_LINK_DUPLICATES_SAME_SIZE
:
12314 if (sec
->size
!= l
->sec
->size
)
12315 (*_bfd_error_handler
)
12316 (_("%B: duplicate section `%A' has different size"),
12320 case SEC_LINK_DUPLICATES_SAME_CONTENTS
:
12321 if (sec
->size
!= l
->sec
->size
)
12322 (*_bfd_error_handler
)
12323 (_("%B: duplicate section `%A' has different size"),
12325 else if (sec
->size
!= 0)
12327 bfd_byte
*sec_contents
, *l_sec_contents
;
12329 if (!bfd_malloc_and_get_section (abfd
, sec
, &sec_contents
))
12330 (*_bfd_error_handler
)
12331 (_("%B: warning: could not read contents of section `%A'"),
12333 else if (!bfd_malloc_and_get_section (l
->sec
->owner
, l
->sec
,
12335 (*_bfd_error_handler
)
12336 (_("%B: warning: could not read contents of section `%A'"),
12337 l
->sec
->owner
, l
->sec
);
12338 else if (memcmp (sec_contents
, l_sec_contents
, sec
->size
) != 0)
12339 (*_bfd_error_handler
)
12340 (_("%B: warning: duplicate section `%A' has different contents"),
12344 free (sec_contents
);
12345 if (l_sec_contents
)
12346 free (l_sec_contents
);
12351 /* Set the output_section field so that lang_add_section
12352 does not create a lang_input_section structure for this
12353 section. Since there might be a symbol in the section
12354 being discarded, we must retain a pointer to the section
12355 which we are really going to use. */
12356 sec
->output_section
= bfd_abs_section_ptr
;
12357 sec
->kept_section
= l
->sec
;
12359 if (flags
& SEC_GROUP
)
12361 asection
*first
= elf_next_in_group (sec
);
12362 asection
*s
= first
;
12366 s
->output_section
= bfd_abs_section_ptr
;
12367 /* Record which group discards it. */
12368 s
->kept_section
= l
->sec
;
12369 s
= elf_next_in_group (s
);
12370 /* These lists are circular. */
12380 /* A single member comdat group section may be discarded by a
12381 linkonce section and vice versa. */
12383 if ((flags
& SEC_GROUP
) != 0)
12385 asection
*first
= elf_next_in_group (sec
);
12387 if (first
!= NULL
&& elf_next_in_group (first
) == first
)
12388 /* Check this single member group against linkonce sections. */
12389 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12390 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12391 && bfd_coff_get_comdat_section (l
->sec
->owner
, l
->sec
) == NULL
12392 && bfd_elf_match_symbols_in_sections (l
->sec
, first
, info
))
12394 first
->output_section
= bfd_abs_section_ptr
;
12395 first
->kept_section
= l
->sec
;
12396 sec
->output_section
= bfd_abs_section_ptr
;
12401 /* Check this linkonce section against single member groups. */
12402 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12403 if (l
->sec
->flags
& SEC_GROUP
)
12405 asection
*first
= elf_next_in_group (l
->sec
);
12408 && elf_next_in_group (first
) == first
12409 && bfd_elf_match_symbols_in_sections (first
, sec
, info
))
12411 sec
->output_section
= bfd_abs_section_ptr
;
12412 sec
->kept_section
= first
;
12417 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12418 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12419 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12420 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12421 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12422 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12423 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12424 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12425 The reverse order cannot happen as there is never a bfd with only the
12426 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12427 matter as here were are looking only for cross-bfd sections. */
12429 if ((flags
& SEC_GROUP
) == 0 && CONST_STRNEQ (name
, ".gnu.linkonce.r."))
12430 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12431 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12432 && CONST_STRNEQ (l
->sec
->name
, ".gnu.linkonce.t."))
12434 if (abfd
!= l
->sec
->owner
)
12435 sec
->output_section
= bfd_abs_section_ptr
;
12439 /* This is the first section with this name. Record it. */
12440 if (! bfd_section_already_linked_table_insert (already_linked_list
, sec
))
12441 info
->callbacks
->einfo (_("%F%P: already_linked_table: %E\n"));
12445 _bfd_elf_common_definition (Elf_Internal_Sym
*sym
)
12447 return sym
->st_shndx
== SHN_COMMON
;
12451 _bfd_elf_common_section_index (asection
*sec ATTRIBUTE_UNUSED
)
12457 _bfd_elf_common_section (asection
*sec ATTRIBUTE_UNUSED
)
12459 return bfd_com_section_ptr
;
12463 _bfd_elf_default_got_elt_size (bfd
*abfd
,
12464 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
12465 struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
,
12466 bfd
*ibfd ATTRIBUTE_UNUSED
,
12467 unsigned long symndx ATTRIBUTE_UNUSED
)
12469 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12470 return bed
->s
->arch_size
/ 8;
12473 /* Routines to support the creation of dynamic relocs. */
12475 /* Return true if NAME is a name of a relocation
12476 section associated with section S. */
12479 is_reloc_section (bfd_boolean rela
, const char * name
, asection
* s
)
12482 return CONST_STRNEQ (name
, ".rela")
12483 && strcmp (bfd_get_section_name (NULL
, s
), name
+ 5) == 0;
12485 return CONST_STRNEQ (name
, ".rel")
12486 && strcmp (bfd_get_section_name (NULL
, s
), name
+ 4) == 0;
12489 /* Returns the name of the dynamic reloc section associated with SEC. */
12491 static const char *
12492 get_dynamic_reloc_section_name (bfd
* abfd
,
12494 bfd_boolean is_rela
)
12497 unsigned int strndx
= elf_elfheader (abfd
)->e_shstrndx
;
12498 unsigned int shnam
= elf_section_data (sec
)->rel_hdr
.sh_name
;
12500 name
= bfd_elf_string_from_elf_section (abfd
, strndx
, shnam
);
12504 if (! is_reloc_section (is_rela
, name
, sec
))
12506 static bfd_boolean complained
= FALSE
;
12510 (*_bfd_error_handler
)
12511 (_("%B: bad relocation section name `%s\'"), abfd
, name
);
12520 /* Returns the dynamic reloc section associated with SEC.
12521 If necessary compute the name of the dynamic reloc section based
12522 on SEC's name (looked up in ABFD's string table) and the setting
12526 _bfd_elf_get_dynamic_reloc_section (bfd
* abfd
,
12528 bfd_boolean is_rela
)
12530 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
12532 if (reloc_sec
== NULL
)
12534 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
12538 reloc_sec
= bfd_get_section_by_name (abfd
, name
);
12540 if (reloc_sec
!= NULL
)
12541 elf_section_data (sec
)->sreloc
= reloc_sec
;
12548 /* Returns the dynamic reloc section associated with SEC. If the
12549 section does not exist it is created and attached to the DYNOBJ
12550 bfd and stored in the SRELOC field of SEC's elf_section_data
12553 ALIGNMENT is the alignment for the newly created section and
12554 IS_RELA defines whether the name should be .rela.<SEC's name>
12555 or .rel.<SEC's name>. The section name is looked up in the
12556 string table associated with ABFD. */
12559 _bfd_elf_make_dynamic_reloc_section (asection
* sec
,
12561 unsigned int alignment
,
12563 bfd_boolean is_rela
)
12565 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
12567 if (reloc_sec
== NULL
)
12569 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
12574 reloc_sec
= bfd_get_section_by_name (dynobj
, name
);
12576 if (reloc_sec
== NULL
)
12580 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
12581 if ((sec
->flags
& SEC_ALLOC
) != 0)
12582 flags
|= SEC_ALLOC
| SEC_LOAD
;
12584 reloc_sec
= bfd_make_section_with_flags (dynobj
, name
, flags
);
12585 if (reloc_sec
!= NULL
)
12587 if (! bfd_set_section_alignment (dynobj
, reloc_sec
, alignment
))
12592 elf_section_data (sec
)->sreloc
= reloc_sec
;