* elflink.c (elf_link_add_object_symbols): Improve error
[binutils/dougsmingw.git] / bfd / hash.c
blob5223e21d2ce119100878effce9d445986ac8a123
1 /* hash.c -- hash table routines for BFD
2 Copyright 1993, 1994, 1995, 1997, 1999, 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2009 Free Software Foundation, Inc.
4 Written by Steve Chamberlain <sac@cygnus.com>
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libbfd.h"
26 #include "objalloc.h"
27 #include "libiberty.h"
30 SECTION
31 Hash Tables
33 @cindex Hash tables
34 BFD provides a simple set of hash table functions. Routines
35 are provided to initialize a hash table, to free a hash table,
36 to look up a string in a hash table and optionally create an
37 entry for it, and to traverse a hash table. There is
38 currently no routine to delete an string from a hash table.
40 The basic hash table does not permit any data to be stored
41 with a string. However, a hash table is designed to present a
42 base class from which other types of hash tables may be
43 derived. These derived types may store additional information
44 with the string. Hash tables were implemented in this way,
45 rather than simply providing a data pointer in a hash table
46 entry, because they were designed for use by the linker back
47 ends. The linker may create thousands of hash table entries,
48 and the overhead of allocating private data and storing and
49 following pointers becomes noticeable.
51 The basic hash table code is in <<hash.c>>.
53 @menu
54 @* Creating and Freeing a Hash Table::
55 @* Looking Up or Entering a String::
56 @* Traversing a Hash Table::
57 @* Deriving a New Hash Table Type::
58 @end menu
60 INODE
61 Creating and Freeing a Hash Table, Looking Up or Entering a String, Hash Tables, Hash Tables
62 SUBSECTION
63 Creating and freeing a hash table
65 @findex bfd_hash_table_init
66 @findex bfd_hash_table_init_n
67 To create a hash table, create an instance of a <<struct
68 bfd_hash_table>> (defined in <<bfd.h>>) and call
69 <<bfd_hash_table_init>> (if you know approximately how many
70 entries you will need, the function <<bfd_hash_table_init_n>>,
71 which takes a @var{size} argument, may be used).
72 <<bfd_hash_table_init>> returns <<FALSE>> if some sort of
73 error occurs.
75 @findex bfd_hash_newfunc
76 The function <<bfd_hash_table_init>> take as an argument a
77 function to use to create new entries. For a basic hash
78 table, use the function <<bfd_hash_newfunc>>. @xref{Deriving
79 a New Hash Table Type}, for why you would want to use a
80 different value for this argument.
82 @findex bfd_hash_allocate
83 <<bfd_hash_table_init>> will create an objalloc which will be
84 used to allocate new entries. You may allocate memory on this
85 objalloc using <<bfd_hash_allocate>>.
87 @findex bfd_hash_table_free
88 Use <<bfd_hash_table_free>> to free up all the memory that has
89 been allocated for a hash table. This will not free up the
90 <<struct bfd_hash_table>> itself, which you must provide.
92 @findex bfd_hash_set_default_size
93 Use <<bfd_hash_set_default_size>> to set the default size of
94 hash table to use.
96 INODE
97 Looking Up or Entering a String, Traversing a Hash Table, Creating and Freeing a Hash Table, Hash Tables
98 SUBSECTION
99 Looking up or entering a string
101 @findex bfd_hash_lookup
102 The function <<bfd_hash_lookup>> is used both to look up a
103 string in the hash table and to create a new entry.
105 If the @var{create} argument is <<FALSE>>, <<bfd_hash_lookup>>
106 will look up a string. If the string is found, it will
107 returns a pointer to a <<struct bfd_hash_entry>>. If the
108 string is not found in the table <<bfd_hash_lookup>> will
109 return <<NULL>>. You should not modify any of the fields in
110 the returns <<struct bfd_hash_entry>>.
112 If the @var{create} argument is <<TRUE>>, the string will be
113 entered into the hash table if it is not already there.
114 Either way a pointer to a <<struct bfd_hash_entry>> will be
115 returned, either to the existing structure or to a newly
116 created one. In this case, a <<NULL>> return means that an
117 error occurred.
119 If the @var{create} argument is <<TRUE>>, and a new entry is
120 created, the @var{copy} argument is used to decide whether to
121 copy the string onto the hash table objalloc or not. If
122 @var{copy} is passed as <<FALSE>>, you must be careful not to
123 deallocate or modify the string as long as the hash table
124 exists.
126 INODE
127 Traversing a Hash Table, Deriving a New Hash Table Type, Looking Up or Entering a String, Hash Tables
128 SUBSECTION
129 Traversing a hash table
131 @findex bfd_hash_traverse
132 The function <<bfd_hash_traverse>> may be used to traverse a
133 hash table, calling a function on each element. The traversal
134 is done in a random order.
136 <<bfd_hash_traverse>> takes as arguments a function and a
137 generic <<void *>> pointer. The function is called with a
138 hash table entry (a <<struct bfd_hash_entry *>>) and the
139 generic pointer passed to <<bfd_hash_traverse>>. The function
140 must return a <<boolean>> value, which indicates whether to
141 continue traversing the hash table. If the function returns
142 <<FALSE>>, <<bfd_hash_traverse>> will stop the traversal and
143 return immediately.
145 INODE
146 Deriving a New Hash Table Type, , Traversing a Hash Table, Hash Tables
147 SUBSECTION
148 Deriving a new hash table type
150 Many uses of hash tables want to store additional information
151 which each entry in the hash table. Some also find it
152 convenient to store additional information with the hash table
153 itself. This may be done using a derived hash table.
155 Since C is not an object oriented language, creating a derived
156 hash table requires sticking together some boilerplate
157 routines with a few differences specific to the type of hash
158 table you want to create.
160 An example of a derived hash table is the linker hash table.
161 The structures for this are defined in <<bfdlink.h>>. The
162 functions are in <<linker.c>>.
164 You may also derive a hash table from an already derived hash
165 table. For example, the a.out linker backend code uses a hash
166 table derived from the linker hash table.
168 @menu
169 @* Define the Derived Structures::
170 @* Write the Derived Creation Routine::
171 @* Write Other Derived Routines::
172 @end menu
174 INODE
175 Define the Derived Structures, Write the Derived Creation Routine, Deriving a New Hash Table Type, Deriving a New Hash Table Type
176 SUBSUBSECTION
177 Define the derived structures
179 You must define a structure for an entry in the hash table,
180 and a structure for the hash table itself.
182 The first field in the structure for an entry in the hash
183 table must be of the type used for an entry in the hash table
184 you are deriving from. If you are deriving from a basic hash
185 table this is <<struct bfd_hash_entry>>, which is defined in
186 <<bfd.h>>. The first field in the structure for the hash
187 table itself must be of the type of the hash table you are
188 deriving from itself. If you are deriving from a basic hash
189 table, this is <<struct bfd_hash_table>>.
191 For example, the linker hash table defines <<struct
192 bfd_link_hash_entry>> (in <<bfdlink.h>>). The first field,
193 <<root>>, is of type <<struct bfd_hash_entry>>. Similarly,
194 the first field in <<struct bfd_link_hash_table>>, <<table>>,
195 is of type <<struct bfd_hash_table>>.
197 INODE
198 Write the Derived Creation Routine, Write Other Derived Routines, Define the Derived Structures, Deriving a New Hash Table Type
199 SUBSUBSECTION
200 Write the derived creation routine
202 You must write a routine which will create and initialize an
203 entry in the hash table. This routine is passed as the
204 function argument to <<bfd_hash_table_init>>.
206 In order to permit other hash tables to be derived from the
207 hash table you are creating, this routine must be written in a
208 standard way.
210 The first argument to the creation routine is a pointer to a
211 hash table entry. This may be <<NULL>>, in which case the
212 routine should allocate the right amount of space. Otherwise
213 the space has already been allocated by a hash table type
214 derived from this one.
216 After allocating space, the creation routine must call the
217 creation routine of the hash table type it is derived from,
218 passing in a pointer to the space it just allocated. This
219 will initialize any fields used by the base hash table.
221 Finally the creation routine must initialize any local fields
222 for the new hash table type.
224 Here is a boilerplate example of a creation routine.
225 @var{function_name} is the name of the routine.
226 @var{entry_type} is the type of an entry in the hash table you
227 are creating. @var{base_newfunc} is the name of the creation
228 routine of the hash table type your hash table is derived
229 from.
231 EXAMPLE
233 .struct bfd_hash_entry *
234 .@var{function_name} (struct bfd_hash_entry *entry,
235 . struct bfd_hash_table *table,
236 . const char *string)
238 . struct @var{entry_type} *ret = (@var{entry_type} *) entry;
240 . {* Allocate the structure if it has not already been allocated by a
241 . derived class. *}
242 . if (ret == NULL)
244 . ret = bfd_hash_allocate (table, sizeof (* ret));
245 . if (ret == NULL)
246 . return NULL;
249 . {* Call the allocation method of the base class. *}
250 . ret = ((@var{entry_type} *)
251 . @var{base_newfunc} ((struct bfd_hash_entry *) ret, table, string));
253 . {* Initialize the local fields here. *}
255 . return (struct bfd_hash_entry *) ret;
258 DESCRIPTION
259 The creation routine for the linker hash table, which is in
260 <<linker.c>>, looks just like this example.
261 @var{function_name} is <<_bfd_link_hash_newfunc>>.
262 @var{entry_type} is <<struct bfd_link_hash_entry>>.
263 @var{base_newfunc} is <<bfd_hash_newfunc>>, the creation
264 routine for a basic hash table.
266 <<_bfd_link_hash_newfunc>> also initializes the local fields
267 in a linker hash table entry: <<type>>, <<written>> and
268 <<next>>.
270 INODE
271 Write Other Derived Routines, , Write the Derived Creation Routine, Deriving a New Hash Table Type
272 SUBSUBSECTION
273 Write other derived routines
275 You will want to write other routines for your new hash table,
276 as well.
278 You will want an initialization routine which calls the
279 initialization routine of the hash table you are deriving from
280 and initializes any other local fields. For the linker hash
281 table, this is <<_bfd_link_hash_table_init>> in <<linker.c>>.
283 You will want a lookup routine which calls the lookup routine
284 of the hash table you are deriving from and casts the result.
285 The linker hash table uses <<bfd_link_hash_lookup>> in
286 <<linker.c>> (this actually takes an additional argument which
287 it uses to decide how to return the looked up value).
289 You may want a traversal routine. This should just call the
290 traversal routine of the hash table you are deriving from with
291 appropriate casts. The linker hash table uses
292 <<bfd_link_hash_traverse>> in <<linker.c>>.
294 These routines may simply be defined as macros. For example,
295 the a.out backend linker hash table, which is derived from the
296 linker hash table, uses macros for the lookup and traversal
297 routines. These are <<aout_link_hash_lookup>> and
298 <<aout_link_hash_traverse>> in aoutx.h.
301 /* The default number of entries to use when creating a hash table. */
302 #define DEFAULT_SIZE 4051
304 /* The following function returns a nearest prime number which is
305 greater than N, and near a power of two. Copied from libiberty.
306 Returns zero for ridiculously large N to signify an error. */
308 static unsigned long
309 higher_prime_number (unsigned long n)
311 /* These are primes that are near, but slightly smaller than, a
312 power of two. */
313 static const unsigned long primes[] = {
314 (unsigned long) 127,
315 (unsigned long) 2039,
316 (unsigned long) 32749,
317 (unsigned long) 65521,
318 (unsigned long) 131071,
319 (unsigned long) 262139,
320 (unsigned long) 524287,
321 (unsigned long) 1048573,
322 (unsigned long) 2097143,
323 (unsigned long) 4194301,
324 (unsigned long) 8388593,
325 (unsigned long) 16777213,
326 (unsigned long) 33554393,
327 (unsigned long) 67108859,
328 (unsigned long) 134217689,
329 (unsigned long) 268435399,
330 (unsigned long) 536870909,
331 (unsigned long) 1073741789,
332 (unsigned long) 2147483647,
333 /* 4294967291L */
334 ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
337 const unsigned long *low = &primes[0];
338 const unsigned long *high = &primes[sizeof (primes) / sizeof (primes[0])];
340 while (low != high)
342 const unsigned long *mid = low + (high - low) / 2;
343 if (n >= *mid)
344 low = mid + 1;
345 else
346 high = mid;
349 if (n >= *low)
350 return 0;
352 return *low;
355 static size_t bfd_default_hash_table_size = DEFAULT_SIZE;
357 /* Create a new hash table, given a number of entries. */
359 bfd_boolean
360 bfd_hash_table_init_n (struct bfd_hash_table *table,
361 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
362 struct bfd_hash_table *,
363 const char *),
364 unsigned int entsize,
365 unsigned int size)
367 unsigned int alloc;
369 alloc = size * sizeof (struct bfd_hash_entry *);
371 table->memory = (void *) objalloc_create ();
372 if (table->memory == NULL)
374 bfd_set_error (bfd_error_no_memory);
375 return FALSE;
377 table->table = (struct bfd_hash_entry **)
378 objalloc_alloc ((struct objalloc *) table->memory, alloc);
379 if (table->table == NULL)
381 bfd_set_error (bfd_error_no_memory);
382 return FALSE;
384 memset ((void *) table->table, 0, alloc);
385 table->size = size;
386 table->entsize = entsize;
387 table->count = 0;
388 table->frozen = 0;
389 table->newfunc = newfunc;
390 return TRUE;
393 /* Create a new hash table with the default number of entries. */
395 bfd_boolean
396 bfd_hash_table_init (struct bfd_hash_table *table,
397 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
398 struct bfd_hash_table *,
399 const char *),
400 unsigned int entsize)
402 return bfd_hash_table_init_n (table, newfunc, entsize,
403 bfd_default_hash_table_size);
406 /* Free a hash table. */
408 void
409 bfd_hash_table_free (struct bfd_hash_table *table)
411 objalloc_free ((struct objalloc *) table->memory);
412 table->memory = NULL;
415 /* Look up a string in a hash table. */
417 struct bfd_hash_entry *
418 bfd_hash_lookup (struct bfd_hash_table *table,
419 const char *string,
420 bfd_boolean create,
421 bfd_boolean copy)
423 const unsigned char *s;
424 unsigned long hash;
425 unsigned int c;
426 struct bfd_hash_entry *hashp;
427 unsigned int len;
428 unsigned int index;
430 hash = 0;
431 len = 0;
432 s = (const unsigned char *) string;
433 while ((c = *s++) != '\0')
435 hash += c + (c << 17);
436 hash ^= hash >> 2;
438 len = (s - (const unsigned char *) string) - 1;
439 hash += len + (len << 17);
440 hash ^= hash >> 2;
442 index = hash % table->size;
443 for (hashp = table->table[index];
444 hashp != NULL;
445 hashp = hashp->next)
447 if (hashp->hash == hash
448 && strcmp (hashp->string, string) == 0)
449 return hashp;
452 if (! create)
453 return NULL;
455 if (copy)
457 char *new_string;
459 new_string = (char *) objalloc_alloc ((struct objalloc *) table->memory,
460 len + 1);
461 if (!new_string)
463 bfd_set_error (bfd_error_no_memory);
464 return NULL;
466 memcpy (new_string, string, len + 1);
467 string = new_string;
470 return bfd_hash_insert (table, string, hash);
473 /* Insert an entry in a hash table. */
475 struct bfd_hash_entry *
476 bfd_hash_insert (struct bfd_hash_table *table,
477 const char *string,
478 unsigned long hash)
480 struct bfd_hash_entry *hashp;
481 unsigned int index;
483 hashp = (*table->newfunc) (NULL, table, string);
484 if (hashp == NULL)
485 return NULL;
486 hashp->string = string;
487 hashp->hash = hash;
488 index = hash % table->size;
489 hashp->next = table->table[index];
490 table->table[index] = hashp;
491 table->count++;
493 if (!table->frozen && table->count > table->size * 3 / 4)
495 unsigned long newsize = higher_prime_number (table->size);
496 struct bfd_hash_entry **newtable;
497 unsigned int hi;
498 unsigned long alloc = newsize * sizeof (struct bfd_hash_entry *);
500 /* If we can't find a higher prime, or we can't possibly alloc
501 that much memory, don't try to grow the table. */
502 if (newsize == 0 || alloc / sizeof (struct bfd_hash_entry *) != newsize)
504 table->frozen = 1;
505 return hashp;
508 newtable = ((struct bfd_hash_entry **)
509 objalloc_alloc ((struct objalloc *) table->memory, alloc));
510 if (newtable == NULL)
512 table->frozen = 1;
513 return hashp;
515 memset ((PTR) newtable, 0, alloc);
517 for (hi = 0; hi < table->size; hi ++)
518 while (table->table[hi])
520 struct bfd_hash_entry *chain = table->table[hi];
521 struct bfd_hash_entry *chain_end = chain;
523 while (chain_end->next && chain_end->next->hash == chain->hash)
524 chain_end = chain_end->next;
526 table->table[hi] = chain_end->next;
527 index = chain->hash % newsize;
528 chain_end->next = newtable[index];
529 newtable[index] = chain;
531 table->table = newtable;
532 table->size = newsize;
535 return hashp;
538 /* Replace an entry in a hash table. */
540 void
541 bfd_hash_replace (struct bfd_hash_table *table,
542 struct bfd_hash_entry *old,
543 struct bfd_hash_entry *nw)
545 unsigned int index;
546 struct bfd_hash_entry **pph;
548 index = old->hash % table->size;
549 for (pph = &table->table[index];
550 (*pph) != NULL;
551 pph = &(*pph)->next)
553 if (*pph == old)
555 *pph = nw;
556 return;
560 abort ();
563 /* Allocate space in a hash table. */
565 void *
566 bfd_hash_allocate (struct bfd_hash_table *table,
567 unsigned int size)
569 void * ret;
571 ret = objalloc_alloc ((struct objalloc *) table->memory, size);
572 if (ret == NULL && size != 0)
573 bfd_set_error (bfd_error_no_memory);
574 return ret;
577 /* Base method for creating a new hash table entry. */
579 struct bfd_hash_entry *
580 bfd_hash_newfunc (struct bfd_hash_entry *entry,
581 struct bfd_hash_table *table,
582 const char *string ATTRIBUTE_UNUSED)
584 if (entry == NULL)
585 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
586 sizeof (* entry));
587 return entry;
590 /* Traverse a hash table. */
592 void
593 bfd_hash_traverse (struct bfd_hash_table *table,
594 bfd_boolean (*func) (struct bfd_hash_entry *, void *),
595 void * info)
597 unsigned int i;
599 table->frozen = 1;
600 for (i = 0; i < table->size; i++)
602 struct bfd_hash_entry *p;
604 for (p = table->table[i]; p != NULL; p = p->next)
605 if (! (*func) (p, info))
606 goto out;
608 out:
609 table->frozen = 0;
612 void
613 bfd_hash_set_default_size (bfd_size_type hash_size)
615 /* Extend this prime list if you want more granularity of hash table size. */
616 static const bfd_size_type hash_size_primes[] =
618 251, 509, 1021, 2039, 4051, 8599, 16699, 32749
620 size_t index;
622 /* Work out best prime number near the hash_size. */
623 for (index = 0; index < ARRAY_SIZE (hash_size_primes) - 1; ++index)
624 if (hash_size <= hash_size_primes[index])
625 break;
627 bfd_default_hash_table_size = hash_size_primes[index];
630 /* A few different object file formats (a.out, COFF, ELF) use a string
631 table. These functions support adding strings to a string table,
632 returning the byte offset, and writing out the table.
634 Possible improvements:
635 + look for strings matching trailing substrings of other strings
636 + better data structures? balanced trees?
637 + look at reducing memory use elsewhere -- maybe if we didn't have
638 to construct the entire symbol table at once, we could get by
639 with smaller amounts of VM? (What effect does that have on the
640 string table reductions?) */
642 /* An entry in the strtab hash table. */
644 struct strtab_hash_entry
646 struct bfd_hash_entry root;
647 /* Index in string table. */
648 bfd_size_type index;
649 /* Next string in strtab. */
650 struct strtab_hash_entry *next;
653 /* The strtab hash table. */
655 struct bfd_strtab_hash
657 struct bfd_hash_table table;
658 /* Size of strtab--also next available index. */
659 bfd_size_type size;
660 /* First string in strtab. */
661 struct strtab_hash_entry *first;
662 /* Last string in strtab. */
663 struct strtab_hash_entry *last;
664 /* Whether to precede strings with a two byte length, as in the
665 XCOFF .debug section. */
666 bfd_boolean xcoff;
669 /* Routine to create an entry in a strtab. */
671 static struct bfd_hash_entry *
672 strtab_hash_newfunc (struct bfd_hash_entry *entry,
673 struct bfd_hash_table *table,
674 const char *string)
676 struct strtab_hash_entry *ret = (struct strtab_hash_entry *) entry;
678 /* Allocate the structure if it has not already been allocated by a
679 subclass. */
680 if (ret == NULL)
681 ret = (struct strtab_hash_entry *) bfd_hash_allocate (table,
682 sizeof (* ret));
683 if (ret == NULL)
684 return NULL;
686 /* Call the allocation method of the superclass. */
687 ret = (struct strtab_hash_entry *)
688 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string);
690 if (ret)
692 /* Initialize the local fields. */
693 ret->index = (bfd_size_type) -1;
694 ret->next = NULL;
697 return (struct bfd_hash_entry *) ret;
700 /* Look up an entry in an strtab. */
702 #define strtab_hash_lookup(t, string, create, copy) \
703 ((struct strtab_hash_entry *) \
704 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
706 /* Create a new strtab. */
708 struct bfd_strtab_hash *
709 _bfd_stringtab_init (void)
711 struct bfd_strtab_hash *table;
712 bfd_size_type amt = sizeof (* table);
714 table = (struct bfd_strtab_hash *) bfd_malloc (amt);
715 if (table == NULL)
716 return NULL;
718 if (!bfd_hash_table_init (&table->table, strtab_hash_newfunc,
719 sizeof (struct strtab_hash_entry)))
721 free (table);
722 return NULL;
725 table->size = 0;
726 table->first = NULL;
727 table->last = NULL;
728 table->xcoff = FALSE;
730 return table;
733 /* Create a new strtab in which the strings are output in the format
734 used in the XCOFF .debug section: a two byte length precedes each
735 string. */
737 struct bfd_strtab_hash *
738 _bfd_xcoff_stringtab_init (void)
740 struct bfd_strtab_hash *ret;
742 ret = _bfd_stringtab_init ();
743 if (ret != NULL)
744 ret->xcoff = TRUE;
745 return ret;
748 /* Free a strtab. */
750 void
751 _bfd_stringtab_free (struct bfd_strtab_hash *table)
753 bfd_hash_table_free (&table->table);
754 free (table);
757 /* Get the index of a string in a strtab, adding it if it is not
758 already present. If HASH is FALSE, we don't really use the hash
759 table, and we don't eliminate duplicate strings. */
761 bfd_size_type
762 _bfd_stringtab_add (struct bfd_strtab_hash *tab,
763 const char *str,
764 bfd_boolean hash,
765 bfd_boolean copy)
767 struct strtab_hash_entry *entry;
769 if (hash)
771 entry = strtab_hash_lookup (tab, str, TRUE, copy);
772 if (entry == NULL)
773 return (bfd_size_type) -1;
775 else
777 entry = (struct strtab_hash_entry *) bfd_hash_allocate (&tab->table,
778 sizeof (* entry));
779 if (entry == NULL)
780 return (bfd_size_type) -1;
781 if (! copy)
782 entry->root.string = str;
783 else
785 char *n;
787 n = (char *) bfd_hash_allocate (&tab->table, strlen (str) + 1);
788 if (n == NULL)
789 return (bfd_size_type) -1;
790 entry->root.string = n;
792 entry->index = (bfd_size_type) -1;
793 entry->next = NULL;
796 if (entry->index == (bfd_size_type) -1)
798 entry->index = tab->size;
799 tab->size += strlen (str) + 1;
800 if (tab->xcoff)
802 entry->index += 2;
803 tab->size += 2;
805 if (tab->first == NULL)
806 tab->first = entry;
807 else
808 tab->last->next = entry;
809 tab->last = entry;
812 return entry->index;
815 /* Get the number of bytes in a strtab. */
817 bfd_size_type
818 _bfd_stringtab_size (struct bfd_strtab_hash *tab)
820 return tab->size;
823 /* Write out a strtab. ABFD must already be at the right location in
824 the file. */
826 bfd_boolean
827 _bfd_stringtab_emit (bfd *abfd, struct bfd_strtab_hash *tab)
829 bfd_boolean xcoff;
830 struct strtab_hash_entry *entry;
832 xcoff = tab->xcoff;
834 for (entry = tab->first; entry != NULL; entry = entry->next)
836 const char *str;
837 size_t len;
839 str = entry->root.string;
840 len = strlen (str) + 1;
842 if (xcoff)
844 bfd_byte buf[2];
846 /* The output length includes the null byte. */
847 bfd_put_16 (abfd, (bfd_vma) len, buf);
848 if (bfd_bwrite ((void *) buf, (bfd_size_type) 2, abfd) != 2)
849 return FALSE;
852 if (bfd_bwrite ((void *) str, (bfd_size_type) len, abfd) != len)
853 return FALSE;
856 return TRUE;