1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public License as
9 published by the Free Software Foundation; either version 3 of the
10 License, or (at your option) any later version.
12 This program is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
31 #include "elf/xtensa.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-config.h"
35 #define XTENSA_NO_NOP_REMOVAL 0
37 /* Local helper functions. */
39 static bfd_boolean
add_extra_plt_sections (struct bfd_link_info
*, int);
40 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
41 static bfd_reloc_status_type bfd_elf_xtensa_reloc
42 (bfd
*, arelent
*, asymbol
*, void *, asection
*, bfd
*, char **);
43 static bfd_boolean do_fix_for_relocatable_link
44 (Elf_Internal_Rela
*, bfd
*, asection
*, bfd_byte
*);
45 static void do_fix_for_final_link
46 (Elf_Internal_Rela
*, bfd
*, asection
*, bfd_byte
*, bfd_vma
*);
48 /* Local functions to handle Xtensa configurability. */
50 static bfd_boolean
is_indirect_call_opcode (xtensa_opcode
);
51 static bfd_boolean
is_direct_call_opcode (xtensa_opcode
);
52 static bfd_boolean
is_windowed_call_opcode (xtensa_opcode
);
53 static xtensa_opcode
get_const16_opcode (void);
54 static xtensa_opcode
get_l32r_opcode (void);
55 static bfd_vma
l32r_offset (bfd_vma
, bfd_vma
);
56 static int get_relocation_opnd (xtensa_opcode
, int);
57 static int get_relocation_slot (int);
58 static xtensa_opcode get_relocation_opcode
59 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*);
60 static bfd_boolean is_l32r_relocation
61 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*);
62 static bfd_boolean
is_alt_relocation (int);
63 static bfd_boolean
is_operand_relocation (int);
64 static bfd_size_type insn_decode_len
65 (bfd_byte
*, bfd_size_type
, bfd_size_type
);
66 static xtensa_opcode insn_decode_opcode
67 (bfd_byte
*, bfd_size_type
, bfd_size_type
, int);
68 static bfd_boolean check_branch_target_aligned
69 (bfd_byte
*, bfd_size_type
, bfd_vma
, bfd_vma
);
70 static bfd_boolean check_loop_aligned
71 (bfd_byte
*, bfd_size_type
, bfd_vma
, bfd_vma
);
72 static bfd_boolean
check_branch_target_aligned_address (bfd_vma
, int);
73 static bfd_size_type get_asm_simplify_size
74 (bfd_byte
*, bfd_size_type
, bfd_size_type
);
76 /* Functions for link-time code simplifications. */
78 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
79 (bfd_byte
*, bfd_vma
, bfd_vma
, char **);
80 static bfd_reloc_status_type contract_asm_expansion
81 (bfd_byte
*, bfd_vma
, Elf_Internal_Rela
*, char **);
82 static xtensa_opcode
swap_callx_for_call_opcode (xtensa_opcode
);
83 static xtensa_opcode
get_expanded_call_opcode (bfd_byte
*, int, bfd_boolean
*);
85 /* Access to internal relocations, section contents and symbols. */
87 static Elf_Internal_Rela
*retrieve_internal_relocs
88 (bfd
*, asection
*, bfd_boolean
);
89 static void pin_internal_relocs (asection
*, Elf_Internal_Rela
*);
90 static void release_internal_relocs (asection
*, Elf_Internal_Rela
*);
91 static bfd_byte
*retrieve_contents (bfd
*, asection
*, bfd_boolean
);
92 static void pin_contents (asection
*, bfd_byte
*);
93 static void release_contents (asection
*, bfd_byte
*);
94 static Elf_Internal_Sym
*retrieve_local_syms (bfd
*);
96 /* Miscellaneous utility functions. */
98 static asection
*elf_xtensa_get_plt_section (struct bfd_link_info
*, int);
99 static asection
*elf_xtensa_get_gotplt_section (struct bfd_link_info
*, int);
100 static asection
*get_elf_r_symndx_section (bfd
*, unsigned long);
101 static struct elf_link_hash_entry
*get_elf_r_symndx_hash_entry
102 (bfd
*, unsigned long);
103 static bfd_vma
get_elf_r_symndx_offset (bfd
*, unsigned long);
104 static bfd_boolean
is_reloc_sym_weak (bfd
*, Elf_Internal_Rela
*);
105 static bfd_boolean
pcrel_reloc_fits (xtensa_opcode
, int, bfd_vma
, bfd_vma
);
106 static bfd_boolean
xtensa_is_property_section (asection
*);
107 static bfd_boolean
xtensa_is_insntable_section (asection
*);
108 static bfd_boolean
xtensa_is_littable_section (asection
*);
109 static bfd_boolean
xtensa_is_proptable_section (asection
*);
110 static int internal_reloc_compare (const void *, const void *);
111 static int internal_reloc_matches (const void *, const void *);
112 static asection
*xtensa_get_property_section (asection
*, const char *);
113 extern asection
*xtensa_make_property_section (asection
*, const char *);
114 static flagword
xtensa_get_property_predef_flags (asection
*);
116 /* Other functions called directly by the linker. */
118 typedef void (*deps_callback_t
)
119 (asection
*, bfd_vma
, asection
*, bfd_vma
, void *);
120 extern bfd_boolean xtensa_callback_required_dependence
121 (bfd
*, asection
*, struct bfd_link_info
*, deps_callback_t
, void *);
124 /* Globally visible flag for choosing size optimization of NOP removal
125 instead of branch-target-aware minimization for NOP removal.
126 When nonzero, narrow all instructions and remove all NOPs possible
127 around longcall expansions. */
129 int elf32xtensa_size_opt
;
132 /* The "new_section_hook" is used to set up a per-section
133 "xtensa_relax_info" data structure with additional information used
134 during relaxation. */
136 typedef struct xtensa_relax_info_struct xtensa_relax_info
;
139 /* The GNU tools do not easily allow extending interfaces to pass around
140 the pointer to the Xtensa ISA information, so instead we add a global
141 variable here (in BFD) that can be used by any of the tools that need
144 xtensa_isa xtensa_default_isa
;
147 /* When this is true, relocations may have been modified to refer to
148 symbols from other input files. The per-section list of "fix"
149 records needs to be checked when resolving relocations. */
151 static bfd_boolean relaxing_section
= FALSE
;
153 /* When this is true, during final links, literals that cannot be
154 coalesced and their relocations may be moved to other sections. */
156 int elf32xtensa_no_literal_movement
= 1;
159 static reloc_howto_type elf_howto_table
[] =
161 HOWTO (R_XTENSA_NONE
, 0, 0, 0, FALSE
, 0, complain_overflow_dont
,
162 bfd_elf_xtensa_reloc
, "R_XTENSA_NONE",
164 HOWTO (R_XTENSA_32
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
165 bfd_elf_xtensa_reloc
, "R_XTENSA_32",
166 TRUE
, 0xffffffff, 0xffffffff, FALSE
),
168 /* Replace a 32-bit value with a value from the runtime linker (only
169 used by linker-generated stub functions). The r_addend value is
170 special: 1 means to substitute a pointer to the runtime linker's
171 dynamic resolver function; 2 means to substitute the link map for
172 the shared object. */
173 HOWTO (R_XTENSA_RTLD
, 0, 2, 32, FALSE
, 0, complain_overflow_dont
,
174 NULL
, "R_XTENSA_RTLD", FALSE
, 0, 0, FALSE
),
176 HOWTO (R_XTENSA_GLOB_DAT
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
177 bfd_elf_generic_reloc
, "R_XTENSA_GLOB_DAT",
178 FALSE
, 0, 0xffffffff, FALSE
),
179 HOWTO (R_XTENSA_JMP_SLOT
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
180 bfd_elf_generic_reloc
, "R_XTENSA_JMP_SLOT",
181 FALSE
, 0, 0xffffffff, FALSE
),
182 HOWTO (R_XTENSA_RELATIVE
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
183 bfd_elf_generic_reloc
, "R_XTENSA_RELATIVE",
184 FALSE
, 0, 0xffffffff, FALSE
),
185 HOWTO (R_XTENSA_PLT
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
186 bfd_elf_xtensa_reloc
, "R_XTENSA_PLT",
187 FALSE
, 0, 0xffffffff, FALSE
),
191 /* Old relocations for backward compatibility. */
192 HOWTO (R_XTENSA_OP0
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
193 bfd_elf_xtensa_reloc
, "R_XTENSA_OP0", FALSE
, 0, 0, TRUE
),
194 HOWTO (R_XTENSA_OP1
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
195 bfd_elf_xtensa_reloc
, "R_XTENSA_OP1", FALSE
, 0, 0, TRUE
),
196 HOWTO (R_XTENSA_OP2
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
197 bfd_elf_xtensa_reloc
, "R_XTENSA_OP2", FALSE
, 0, 0, TRUE
),
199 /* Assembly auto-expansion. */
200 HOWTO (R_XTENSA_ASM_EXPAND
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
201 bfd_elf_xtensa_reloc
, "R_XTENSA_ASM_EXPAND", FALSE
, 0, 0, TRUE
),
202 /* Relax assembly auto-expansion. */
203 HOWTO (R_XTENSA_ASM_SIMPLIFY
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
204 bfd_elf_xtensa_reloc
, "R_XTENSA_ASM_SIMPLIFY", FALSE
, 0, 0, TRUE
),
208 HOWTO (R_XTENSA_32_PCREL
, 0, 2, 32, TRUE
, 0, complain_overflow_bitfield
,
209 bfd_elf_xtensa_reloc
, "R_XTENSA_32_PCREL",
210 FALSE
, 0, 0xffffffff, TRUE
),
212 /* GNU extension to record C++ vtable hierarchy. */
213 HOWTO (R_XTENSA_GNU_VTINHERIT
, 0, 2, 0, FALSE
, 0, complain_overflow_dont
,
214 NULL
, "R_XTENSA_GNU_VTINHERIT",
216 /* GNU extension to record C++ vtable member usage. */
217 HOWTO (R_XTENSA_GNU_VTENTRY
, 0, 2, 0, FALSE
, 0, complain_overflow_dont
,
218 _bfd_elf_rel_vtable_reloc_fn
, "R_XTENSA_GNU_VTENTRY",
221 /* Relocations for supporting difference of symbols. */
222 HOWTO (R_XTENSA_DIFF8
, 0, 0, 8, FALSE
, 0, complain_overflow_bitfield
,
223 bfd_elf_xtensa_reloc
, "R_XTENSA_DIFF8", FALSE
, 0, 0xff, FALSE
),
224 HOWTO (R_XTENSA_DIFF16
, 0, 1, 16, FALSE
, 0, complain_overflow_bitfield
,
225 bfd_elf_xtensa_reloc
, "R_XTENSA_DIFF16", FALSE
, 0, 0xffff, FALSE
),
226 HOWTO (R_XTENSA_DIFF32
, 0, 2, 32, FALSE
, 0, complain_overflow_bitfield
,
227 bfd_elf_xtensa_reloc
, "R_XTENSA_DIFF32", FALSE
, 0, 0xffffffff, FALSE
),
229 /* General immediate operand relocations. */
230 HOWTO (R_XTENSA_SLOT0_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
231 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT0_OP", FALSE
, 0, 0, TRUE
),
232 HOWTO (R_XTENSA_SLOT1_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
233 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT1_OP", FALSE
, 0, 0, TRUE
),
234 HOWTO (R_XTENSA_SLOT2_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
235 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT2_OP", FALSE
, 0, 0, TRUE
),
236 HOWTO (R_XTENSA_SLOT3_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
237 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT3_OP", FALSE
, 0, 0, TRUE
),
238 HOWTO (R_XTENSA_SLOT4_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
239 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT4_OP", FALSE
, 0, 0, TRUE
),
240 HOWTO (R_XTENSA_SLOT5_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
241 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT5_OP", FALSE
, 0, 0, TRUE
),
242 HOWTO (R_XTENSA_SLOT6_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
243 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT6_OP", FALSE
, 0, 0, TRUE
),
244 HOWTO (R_XTENSA_SLOT7_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
245 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT7_OP", FALSE
, 0, 0, TRUE
),
246 HOWTO (R_XTENSA_SLOT8_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
247 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT8_OP", FALSE
, 0, 0, TRUE
),
248 HOWTO (R_XTENSA_SLOT9_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
249 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT9_OP", FALSE
, 0, 0, TRUE
),
250 HOWTO (R_XTENSA_SLOT10_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
251 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT10_OP", FALSE
, 0, 0, TRUE
),
252 HOWTO (R_XTENSA_SLOT11_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
253 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT11_OP", FALSE
, 0, 0, TRUE
),
254 HOWTO (R_XTENSA_SLOT12_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
255 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT12_OP", FALSE
, 0, 0, TRUE
),
256 HOWTO (R_XTENSA_SLOT13_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
257 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT13_OP", FALSE
, 0, 0, TRUE
),
258 HOWTO (R_XTENSA_SLOT14_OP
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
259 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT14_OP", FALSE
, 0, 0, TRUE
),
261 /* "Alternate" relocations. The meaning of these is opcode-specific. */
262 HOWTO (R_XTENSA_SLOT0_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
263 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT0_ALT", FALSE
, 0, 0, TRUE
),
264 HOWTO (R_XTENSA_SLOT1_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
265 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT1_ALT", FALSE
, 0, 0, TRUE
),
266 HOWTO (R_XTENSA_SLOT2_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
267 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT2_ALT", FALSE
, 0, 0, TRUE
),
268 HOWTO (R_XTENSA_SLOT3_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
269 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT3_ALT", FALSE
, 0, 0, TRUE
),
270 HOWTO (R_XTENSA_SLOT4_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
271 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT4_ALT", FALSE
, 0, 0, TRUE
),
272 HOWTO (R_XTENSA_SLOT5_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
273 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT5_ALT", FALSE
, 0, 0, TRUE
),
274 HOWTO (R_XTENSA_SLOT6_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
275 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT6_ALT", FALSE
, 0, 0, TRUE
),
276 HOWTO (R_XTENSA_SLOT7_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
277 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT7_ALT", FALSE
, 0, 0, TRUE
),
278 HOWTO (R_XTENSA_SLOT8_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
279 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT8_ALT", FALSE
, 0, 0, TRUE
),
280 HOWTO (R_XTENSA_SLOT9_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
281 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT9_ALT", FALSE
, 0, 0, TRUE
),
282 HOWTO (R_XTENSA_SLOT10_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
283 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT10_ALT", FALSE
, 0, 0, TRUE
),
284 HOWTO (R_XTENSA_SLOT11_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
285 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT11_ALT", FALSE
, 0, 0, TRUE
),
286 HOWTO (R_XTENSA_SLOT12_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
287 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT12_ALT", FALSE
, 0, 0, TRUE
),
288 HOWTO (R_XTENSA_SLOT13_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
289 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT13_ALT", FALSE
, 0, 0, TRUE
),
290 HOWTO (R_XTENSA_SLOT14_ALT
, 0, 0, 0, TRUE
, 0, complain_overflow_dont
,
291 bfd_elf_xtensa_reloc
, "R_XTENSA_SLOT14_ALT", FALSE
, 0, 0, TRUE
),
293 /* TLS relocations. */
294 HOWTO (R_XTENSA_TLSDESC_FN
, 0, 2, 32, FALSE
, 0, complain_overflow_dont
,
295 bfd_elf_xtensa_reloc
, "R_XTENSA_TLSDESC_FN",
296 FALSE
, 0, 0xffffffff, FALSE
),
297 HOWTO (R_XTENSA_TLSDESC_ARG
, 0, 2, 32, FALSE
, 0, complain_overflow_dont
,
298 bfd_elf_xtensa_reloc
, "R_XTENSA_TLSDESC_ARG",
299 FALSE
, 0, 0xffffffff, FALSE
),
300 HOWTO (R_XTENSA_TLS_DTPOFF
, 0, 2, 32, FALSE
, 0, complain_overflow_dont
,
301 bfd_elf_xtensa_reloc
, "R_XTENSA_TLS_DTPOFF",
302 FALSE
, 0, 0xffffffff, FALSE
),
303 HOWTO (R_XTENSA_TLS_TPOFF
, 0, 2, 32, FALSE
, 0, complain_overflow_dont
,
304 bfd_elf_xtensa_reloc
, "R_XTENSA_TLS_TPOFF",
305 FALSE
, 0, 0xffffffff, FALSE
),
306 HOWTO (R_XTENSA_TLS_FUNC
, 0, 0, 0, FALSE
, 0, complain_overflow_dont
,
307 bfd_elf_xtensa_reloc
, "R_XTENSA_TLS_FUNC",
309 HOWTO (R_XTENSA_TLS_ARG
, 0, 0, 0, FALSE
, 0, complain_overflow_dont
,
310 bfd_elf_xtensa_reloc
, "R_XTENSA_TLS_ARG",
312 HOWTO (R_XTENSA_TLS_CALL
, 0, 0, 0, FALSE
, 0, complain_overflow_dont
,
313 bfd_elf_xtensa_reloc
, "R_XTENSA_TLS_CALL",
319 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
324 static reloc_howto_type
*
325 elf_xtensa_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
326 bfd_reloc_code_real_type code
)
331 TRACE ("BFD_RELOC_NONE");
332 return &elf_howto_table
[(unsigned) R_XTENSA_NONE
];
335 TRACE ("BFD_RELOC_32");
336 return &elf_howto_table
[(unsigned) R_XTENSA_32
];
338 case BFD_RELOC_32_PCREL
:
339 TRACE ("BFD_RELOC_32_PCREL");
340 return &elf_howto_table
[(unsigned) R_XTENSA_32_PCREL
];
342 case BFD_RELOC_XTENSA_DIFF8
:
343 TRACE ("BFD_RELOC_XTENSA_DIFF8");
344 return &elf_howto_table
[(unsigned) R_XTENSA_DIFF8
];
346 case BFD_RELOC_XTENSA_DIFF16
:
347 TRACE ("BFD_RELOC_XTENSA_DIFF16");
348 return &elf_howto_table
[(unsigned) R_XTENSA_DIFF16
];
350 case BFD_RELOC_XTENSA_DIFF32
:
351 TRACE ("BFD_RELOC_XTENSA_DIFF32");
352 return &elf_howto_table
[(unsigned) R_XTENSA_DIFF32
];
354 case BFD_RELOC_XTENSA_RTLD
:
355 TRACE ("BFD_RELOC_XTENSA_RTLD");
356 return &elf_howto_table
[(unsigned) R_XTENSA_RTLD
];
358 case BFD_RELOC_XTENSA_GLOB_DAT
:
359 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
360 return &elf_howto_table
[(unsigned) R_XTENSA_GLOB_DAT
];
362 case BFD_RELOC_XTENSA_JMP_SLOT
:
363 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
364 return &elf_howto_table
[(unsigned) R_XTENSA_JMP_SLOT
];
366 case BFD_RELOC_XTENSA_RELATIVE
:
367 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
368 return &elf_howto_table
[(unsigned) R_XTENSA_RELATIVE
];
370 case BFD_RELOC_XTENSA_PLT
:
371 TRACE ("BFD_RELOC_XTENSA_PLT");
372 return &elf_howto_table
[(unsigned) R_XTENSA_PLT
];
374 case BFD_RELOC_XTENSA_OP0
:
375 TRACE ("BFD_RELOC_XTENSA_OP0");
376 return &elf_howto_table
[(unsigned) R_XTENSA_OP0
];
378 case BFD_RELOC_XTENSA_OP1
:
379 TRACE ("BFD_RELOC_XTENSA_OP1");
380 return &elf_howto_table
[(unsigned) R_XTENSA_OP1
];
382 case BFD_RELOC_XTENSA_OP2
:
383 TRACE ("BFD_RELOC_XTENSA_OP2");
384 return &elf_howto_table
[(unsigned) R_XTENSA_OP2
];
386 case BFD_RELOC_XTENSA_ASM_EXPAND
:
387 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
388 return &elf_howto_table
[(unsigned) R_XTENSA_ASM_EXPAND
];
390 case BFD_RELOC_XTENSA_ASM_SIMPLIFY
:
391 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
392 return &elf_howto_table
[(unsigned) R_XTENSA_ASM_SIMPLIFY
];
394 case BFD_RELOC_VTABLE_INHERIT
:
395 TRACE ("BFD_RELOC_VTABLE_INHERIT");
396 return &elf_howto_table
[(unsigned) R_XTENSA_GNU_VTINHERIT
];
398 case BFD_RELOC_VTABLE_ENTRY
:
399 TRACE ("BFD_RELOC_VTABLE_ENTRY");
400 return &elf_howto_table
[(unsigned) R_XTENSA_GNU_VTENTRY
];
402 case BFD_RELOC_XTENSA_TLSDESC_FN
:
403 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
404 return &elf_howto_table
[(unsigned) R_XTENSA_TLSDESC_FN
];
406 case BFD_RELOC_XTENSA_TLSDESC_ARG
:
407 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
408 return &elf_howto_table
[(unsigned) R_XTENSA_TLSDESC_ARG
];
410 case BFD_RELOC_XTENSA_TLS_DTPOFF
:
411 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
412 return &elf_howto_table
[(unsigned) R_XTENSA_TLS_DTPOFF
];
414 case BFD_RELOC_XTENSA_TLS_TPOFF
:
415 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
416 return &elf_howto_table
[(unsigned) R_XTENSA_TLS_TPOFF
];
418 case BFD_RELOC_XTENSA_TLS_FUNC
:
419 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
420 return &elf_howto_table
[(unsigned) R_XTENSA_TLS_FUNC
];
422 case BFD_RELOC_XTENSA_TLS_ARG
:
423 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
424 return &elf_howto_table
[(unsigned) R_XTENSA_TLS_ARG
];
426 case BFD_RELOC_XTENSA_TLS_CALL
:
427 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
428 return &elf_howto_table
[(unsigned) R_XTENSA_TLS_CALL
];
431 if (code
>= BFD_RELOC_XTENSA_SLOT0_OP
432 && code
<= BFD_RELOC_XTENSA_SLOT14_OP
)
434 unsigned n
= (R_XTENSA_SLOT0_OP
+
435 (code
- BFD_RELOC_XTENSA_SLOT0_OP
));
436 return &elf_howto_table
[n
];
439 if (code
>= BFD_RELOC_XTENSA_SLOT0_ALT
440 && code
<= BFD_RELOC_XTENSA_SLOT14_ALT
)
442 unsigned n
= (R_XTENSA_SLOT0_ALT
+
443 (code
- BFD_RELOC_XTENSA_SLOT0_ALT
));
444 return &elf_howto_table
[n
];
454 static reloc_howto_type
*
455 elf_xtensa_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
460 for (i
= 0; i
< sizeof (elf_howto_table
) / sizeof (elf_howto_table
[0]); i
++)
461 if (elf_howto_table
[i
].name
!= NULL
462 && strcasecmp (elf_howto_table
[i
].name
, r_name
) == 0)
463 return &elf_howto_table
[i
];
469 /* Given an ELF "rela" relocation, find the corresponding howto and record
470 it in the BFD internal arelent representation of the relocation. */
473 elf_xtensa_info_to_howto_rela (bfd
*abfd ATTRIBUTE_UNUSED
,
475 Elf_Internal_Rela
*dst
)
477 unsigned int r_type
= ELF32_R_TYPE (dst
->r_info
);
479 BFD_ASSERT (r_type
< (unsigned int) R_XTENSA_max
);
480 cache_ptr
->howto
= &elf_howto_table
[r_type
];
484 /* Functions for the Xtensa ELF linker. */
486 /* The name of the dynamic interpreter. This is put in the .interp
489 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
491 /* The size in bytes of an entry in the procedure linkage table.
492 (This does _not_ include the space for the literals associated with
495 #define PLT_ENTRY_SIZE 16
497 /* For _really_ large PLTs, we may need to alternate between literals
498 and code to keep the literals within the 256K range of the L32R
499 instructions in the code. It's unlikely that anyone would ever need
500 such a big PLT, but an arbitrary limit on the PLT size would be bad.
501 Thus, we split the PLT into chunks. Since there's very little
502 overhead (2 extra literals) for each chunk, the chunk size is kept
503 small so that the code for handling multiple chunks get used and
504 tested regularly. With 254 entries, there are 1K of literals for
505 each chunk, and that seems like a nice round number. */
507 #define PLT_ENTRIES_PER_CHUNK 254
509 /* PLT entries are actually used as stub functions for lazy symbol
510 resolution. Once the symbol is resolved, the stub function is never
511 invoked. Note: the 32-byte frame size used here cannot be changed
512 without a corresponding change in the runtime linker. */
514 static const bfd_byte elf_xtensa_be_plt_entry
[PLT_ENTRY_SIZE
] =
516 0x6c, 0x10, 0x04, /* entry sp, 32 */
517 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
518 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
519 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
520 0x0a, 0x80, 0x00, /* jx a8 */
524 static const bfd_byte elf_xtensa_le_plt_entry
[PLT_ENTRY_SIZE
] =
526 0x36, 0x41, 0x00, /* entry sp, 32 */
527 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
528 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
529 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
530 0xa0, 0x08, 0x00, /* jx a8 */
534 /* The size of the thread control block. */
537 struct elf_xtensa_link_hash_entry
539 struct elf_link_hash_entry elf
;
541 bfd_signed_vma tlsfunc_refcount
;
543 #define GOT_UNKNOWN 0
545 #define GOT_TLS_GD 2 /* global or local dynamic */
546 #define GOT_TLS_IE 4 /* initial or local exec */
547 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
548 unsigned char tls_type
;
551 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
553 struct elf_xtensa_obj_tdata
555 struct elf_obj_tdata root
;
557 /* tls_type for each local got entry. */
558 char *local_got_tls_type
;
560 bfd_signed_vma
*local_tlsfunc_refcounts
;
563 #define elf_xtensa_tdata(abfd) \
564 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
566 #define elf_xtensa_local_got_tls_type(abfd) \
567 (elf_xtensa_tdata (abfd)->local_got_tls_type)
569 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
570 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
572 #define is_xtensa_elf(bfd) \
573 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
574 && elf_tdata (bfd) != NULL \
575 && elf_object_id (bfd) == XTENSA_ELF_TDATA)
578 elf_xtensa_mkobject (bfd
*abfd
)
580 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_xtensa_obj_tdata
),
584 /* Xtensa ELF linker hash table. */
586 struct elf_xtensa_link_hash_table
588 struct elf_link_hash_table elf
;
590 /* Short-cuts to get to dynamic linker sections. */
597 asection
*spltlittbl
;
599 /* Total count of PLT relocations seen during check_relocs.
600 The actual PLT code must be split into multiple sections and all
601 the sections have to be created before size_dynamic_sections,
602 where we figure out the exact number of PLT entries that will be
603 needed. It is OK if this count is an overestimate, e.g., some
604 relocations may be removed by GC. */
607 struct elf_xtensa_link_hash_entry
*tlsbase
;
610 /* Get the Xtensa ELF linker hash table from a link_info structure. */
612 #define elf_xtensa_hash_table(p) \
613 ((struct elf_xtensa_link_hash_table *) ((p)->hash))
615 /* Create an entry in an Xtensa ELF linker hash table. */
617 static struct bfd_hash_entry
*
618 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry
*entry
,
619 struct bfd_hash_table
*table
,
622 /* Allocate the structure if it has not already been allocated by a
626 entry
= bfd_hash_allocate (table
,
627 sizeof (struct elf_xtensa_link_hash_entry
));
632 /* Call the allocation method of the superclass. */
633 entry
= _bfd_elf_link_hash_newfunc (entry
, table
, string
);
636 struct elf_xtensa_link_hash_entry
*eh
= elf_xtensa_hash_entry (entry
);
637 eh
->tlsfunc_refcount
= 0;
638 eh
->tls_type
= GOT_UNKNOWN
;
644 /* Create an Xtensa ELF linker hash table. */
646 static struct bfd_link_hash_table
*
647 elf_xtensa_link_hash_table_create (bfd
*abfd
)
649 struct elf_link_hash_entry
*tlsbase
;
650 struct elf_xtensa_link_hash_table
*ret
;
651 bfd_size_type amt
= sizeof (struct elf_xtensa_link_hash_table
);
653 ret
= bfd_malloc (amt
);
657 if (!_bfd_elf_link_hash_table_init (&ret
->elf
, abfd
,
658 elf_xtensa_link_hash_newfunc
,
659 sizeof (struct elf_xtensa_link_hash_entry
)))
671 ret
->spltlittbl
= NULL
;
673 ret
->plt_reloc_count
= 0;
675 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
677 tlsbase
= elf_link_hash_lookup (&ret
->elf
, "_TLS_MODULE_BASE_",
679 tlsbase
->root
.type
= bfd_link_hash_new
;
680 tlsbase
->root
.u
.undef
.abfd
= NULL
;
681 tlsbase
->non_elf
= 0;
682 ret
->tlsbase
= elf_xtensa_hash_entry (tlsbase
);
683 ret
->tlsbase
->tls_type
= GOT_UNKNOWN
;
685 return &ret
->elf
.root
;
688 /* Copy the extra info we tack onto an elf_link_hash_entry. */
691 elf_xtensa_copy_indirect_symbol (struct bfd_link_info
*info
,
692 struct elf_link_hash_entry
*dir
,
693 struct elf_link_hash_entry
*ind
)
695 struct elf_xtensa_link_hash_entry
*edir
, *eind
;
697 edir
= elf_xtensa_hash_entry (dir
);
698 eind
= elf_xtensa_hash_entry (ind
);
700 if (ind
->root
.type
== bfd_link_hash_indirect
)
702 edir
->tlsfunc_refcount
+= eind
->tlsfunc_refcount
;
703 eind
->tlsfunc_refcount
= 0;
705 if (dir
->got
.refcount
<= 0)
707 edir
->tls_type
= eind
->tls_type
;
708 eind
->tls_type
= GOT_UNKNOWN
;
712 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
715 static inline bfd_boolean
716 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
717 struct bfd_link_info
*info
)
719 /* Check if we should do dynamic things to this symbol. The
720 "ignore_protected" argument need not be set, because Xtensa code
721 does not require special handling of STV_PROTECTED to make function
722 pointer comparisons work properly. The PLT addresses are never
723 used for function pointers. */
725 return _bfd_elf_dynamic_symbol_p (h
, info
, 0);
730 property_table_compare (const void *ap
, const void *bp
)
732 const property_table_entry
*a
= (const property_table_entry
*) ap
;
733 const property_table_entry
*b
= (const property_table_entry
*) bp
;
735 if (a
->address
== b
->address
)
737 if (a
->size
!= b
->size
)
738 return (a
->size
- b
->size
);
740 if ((a
->flags
& XTENSA_PROP_ALIGN
) != (b
->flags
& XTENSA_PROP_ALIGN
))
741 return ((b
->flags
& XTENSA_PROP_ALIGN
)
742 - (a
->flags
& XTENSA_PROP_ALIGN
));
744 if ((a
->flags
& XTENSA_PROP_ALIGN
)
745 && (GET_XTENSA_PROP_ALIGNMENT (a
->flags
)
746 != GET_XTENSA_PROP_ALIGNMENT (b
->flags
)))
747 return (GET_XTENSA_PROP_ALIGNMENT (a
->flags
)
748 - GET_XTENSA_PROP_ALIGNMENT (b
->flags
));
750 if ((a
->flags
& XTENSA_PROP_UNREACHABLE
)
751 != (b
->flags
& XTENSA_PROP_UNREACHABLE
))
752 return ((b
->flags
& XTENSA_PROP_UNREACHABLE
)
753 - (a
->flags
& XTENSA_PROP_UNREACHABLE
));
755 return (a
->flags
- b
->flags
);
758 return (a
->address
- b
->address
);
763 property_table_matches (const void *ap
, const void *bp
)
765 const property_table_entry
*a
= (const property_table_entry
*) ap
;
766 const property_table_entry
*b
= (const property_table_entry
*) bp
;
768 /* Check if one entry overlaps with the other. */
769 if ((b
->address
>= a
->address
&& b
->address
< (a
->address
+ a
->size
))
770 || (a
->address
>= b
->address
&& a
->address
< (b
->address
+ b
->size
)))
773 return (a
->address
- b
->address
);
777 /* Get the literal table or property table entries for the given
778 section. Sets TABLE_P and returns the number of entries. On
779 error, returns a negative value. */
782 xtensa_read_table_entries (bfd
*abfd
,
784 property_table_entry
**table_p
,
785 const char *sec_name
,
786 bfd_boolean output_addr
)
788 asection
*table_section
;
789 bfd_size_type table_size
= 0;
790 bfd_byte
*table_data
;
791 property_table_entry
*blocks
;
792 int blk
, block_count
;
793 bfd_size_type num_records
;
794 Elf_Internal_Rela
*internal_relocs
, *irel
, *rel_end
;
795 bfd_vma section_addr
, off
;
796 flagword predef_flags
;
797 bfd_size_type table_entry_size
, section_limit
;
800 || !(section
->flags
& SEC_ALLOC
)
801 || (section
->flags
& SEC_DEBUGGING
))
807 table_section
= xtensa_get_property_section (section
, sec_name
);
809 table_size
= table_section
->size
;
817 predef_flags
= xtensa_get_property_predef_flags (table_section
);
818 table_entry_size
= 12;
820 table_entry_size
-= 4;
822 num_records
= table_size
/ table_entry_size
;
823 table_data
= retrieve_contents (abfd
, table_section
, TRUE
);
824 blocks
= (property_table_entry
*)
825 bfd_malloc (num_records
* sizeof (property_table_entry
));
829 section_addr
= section
->output_section
->vma
+ section
->output_offset
;
831 section_addr
= section
->vma
;
833 internal_relocs
= retrieve_internal_relocs (abfd
, table_section
, TRUE
);
834 if (internal_relocs
&& !table_section
->reloc_done
)
836 qsort (internal_relocs
, table_section
->reloc_count
,
837 sizeof (Elf_Internal_Rela
), internal_reloc_compare
);
838 irel
= internal_relocs
;
843 section_limit
= bfd_get_section_limit (abfd
, section
);
844 rel_end
= internal_relocs
+ table_section
->reloc_count
;
846 for (off
= 0; off
< table_size
; off
+= table_entry_size
)
848 bfd_vma address
= bfd_get_32 (abfd
, table_data
+ off
);
850 /* Skip any relocations before the current offset. This should help
851 avoid confusion caused by unexpected relocations for the preceding
854 (irel
->r_offset
< off
855 || (irel
->r_offset
== off
856 && ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_NONE
)))
863 if (irel
&& irel
->r_offset
== off
)
866 unsigned long r_symndx
= ELF32_R_SYM (irel
->r_info
);
867 BFD_ASSERT (ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_32
);
869 if (get_elf_r_symndx_section (abfd
, r_symndx
) != section
)
872 sym_off
= get_elf_r_symndx_offset (abfd
, r_symndx
);
873 BFD_ASSERT (sym_off
== 0);
874 address
+= (section_addr
+ sym_off
+ irel
->r_addend
);
878 if (address
< section_addr
879 || address
>= section_addr
+ section_limit
)
883 blocks
[block_count
].address
= address
;
884 blocks
[block_count
].size
= bfd_get_32 (abfd
, table_data
+ off
+ 4);
886 blocks
[block_count
].flags
= predef_flags
;
888 blocks
[block_count
].flags
= bfd_get_32 (abfd
, table_data
+ off
+ 8);
892 release_contents (table_section
, table_data
);
893 release_internal_relocs (table_section
, internal_relocs
);
897 /* Now sort them into address order for easy reference. */
898 qsort (blocks
, block_count
, sizeof (property_table_entry
),
899 property_table_compare
);
901 /* Check that the table contents are valid. Problems may occur,
902 for example, if an unrelocated object file is stripped. */
903 for (blk
= 1; blk
< block_count
; blk
++)
905 /* The only circumstance where two entries may legitimately
906 have the same address is when one of them is a zero-size
907 placeholder to mark a place where fill can be inserted.
908 The zero-size entry should come first. */
909 if (blocks
[blk
- 1].address
== blocks
[blk
].address
&&
910 blocks
[blk
- 1].size
!= 0)
912 (*_bfd_error_handler
) (_("%B(%A): invalid property table"),
914 bfd_set_error (bfd_error_bad_value
);
926 static property_table_entry
*
927 elf_xtensa_find_property_entry (property_table_entry
*property_table
,
928 int property_table_size
,
931 property_table_entry entry
;
932 property_table_entry
*rv
;
934 if (property_table_size
== 0)
937 entry
.address
= addr
;
941 rv
= bsearch (&entry
, property_table
, property_table_size
,
942 sizeof (property_table_entry
), property_table_matches
);
948 elf_xtensa_in_literal_pool (property_table_entry
*lit_table
,
952 if (elf_xtensa_find_property_entry (lit_table
, lit_table_size
, addr
))
959 /* Look through the relocs for a section during the first phase, and
960 calculate needed space in the dynamic reloc sections. */
963 elf_xtensa_check_relocs (bfd
*abfd
,
964 struct bfd_link_info
*info
,
966 const Elf_Internal_Rela
*relocs
)
968 struct elf_xtensa_link_hash_table
*htab
;
969 Elf_Internal_Shdr
*symtab_hdr
;
970 struct elf_link_hash_entry
**sym_hashes
;
971 const Elf_Internal_Rela
*rel
;
972 const Elf_Internal_Rela
*rel_end
;
974 if (info
->relocatable
|| (sec
->flags
& SEC_ALLOC
) == 0)
977 BFD_ASSERT (is_xtensa_elf (abfd
));
979 htab
= elf_xtensa_hash_table (info
);
980 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
981 sym_hashes
= elf_sym_hashes (abfd
);
983 rel_end
= relocs
+ sec
->reloc_count
;
984 for (rel
= relocs
; rel
< rel_end
; rel
++)
987 unsigned long r_symndx
;
988 struct elf_link_hash_entry
*h
= NULL
;
989 struct elf_xtensa_link_hash_entry
*eh
;
990 int tls_type
, old_tls_type
;
991 bfd_boolean is_got
= FALSE
;
992 bfd_boolean is_plt
= FALSE
;
993 bfd_boolean is_tlsfunc
= FALSE
;
995 r_symndx
= ELF32_R_SYM (rel
->r_info
);
996 r_type
= ELF32_R_TYPE (rel
->r_info
);
998 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
1000 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"),
1005 if (r_symndx
>= symtab_hdr
->sh_info
)
1007 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1008 while (h
->root
.type
== bfd_link_hash_indirect
1009 || h
->root
.type
== bfd_link_hash_warning
)
1010 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1012 eh
= elf_xtensa_hash_entry (h
);
1016 case R_XTENSA_TLSDESC_FN
:
1019 tls_type
= GOT_TLS_GD
;
1024 tls_type
= GOT_TLS_IE
;
1027 case R_XTENSA_TLSDESC_ARG
:
1030 tls_type
= GOT_TLS_GD
;
1035 tls_type
= GOT_TLS_IE
;
1036 if (h
&& elf_xtensa_hash_entry (h
) != htab
->tlsbase
)
1041 case R_XTENSA_TLS_DTPOFF
:
1043 tls_type
= GOT_TLS_GD
;
1045 tls_type
= GOT_TLS_IE
;
1048 case R_XTENSA_TLS_TPOFF
:
1049 tls_type
= GOT_TLS_IE
;
1051 info
->flags
|= DF_STATIC_TLS
;
1052 if (info
->shared
|| h
)
1057 tls_type
= GOT_NORMAL
;
1062 tls_type
= GOT_NORMAL
;
1066 case R_XTENSA_GNU_VTINHERIT
:
1067 /* This relocation describes the C++ object vtable hierarchy.
1068 Reconstruct it for later use during GC. */
1069 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
1073 case R_XTENSA_GNU_VTENTRY
:
1074 /* This relocation describes which C++ vtable entries are actually
1075 used. Record for later use during GC. */
1076 BFD_ASSERT (h
!= NULL
);
1078 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_addend
))
1083 /* Nothing to do for any other relocations. */
1091 if (h
->plt
.refcount
<= 0)
1094 h
->plt
.refcount
= 1;
1097 h
->plt
.refcount
+= 1;
1099 /* Keep track of the total PLT relocation count even if we
1100 don't yet know whether the dynamic sections will be
1102 htab
->plt_reloc_count
+= 1;
1104 if (elf_hash_table (info
)->dynamic_sections_created
)
1106 if (! add_extra_plt_sections (info
, htab
->plt_reloc_count
))
1112 if (h
->got
.refcount
<= 0)
1113 h
->got
.refcount
= 1;
1115 h
->got
.refcount
+= 1;
1119 eh
->tlsfunc_refcount
+= 1;
1121 old_tls_type
= eh
->tls_type
;
1125 /* Allocate storage the first time. */
1126 if (elf_local_got_refcounts (abfd
) == NULL
)
1128 bfd_size_type size
= symtab_hdr
->sh_info
;
1131 mem
= bfd_zalloc (abfd
, size
* sizeof (bfd_signed_vma
));
1134 elf_local_got_refcounts (abfd
) = (bfd_signed_vma
*) mem
;
1136 mem
= bfd_zalloc (abfd
, size
);
1139 elf_xtensa_local_got_tls_type (abfd
) = (char *) mem
;
1141 mem
= bfd_zalloc (abfd
, size
* sizeof (bfd_signed_vma
));
1144 elf_xtensa_local_tlsfunc_refcounts (abfd
)
1145 = (bfd_signed_vma
*) mem
;
1148 /* This is a global offset table entry for a local symbol. */
1149 if (is_got
|| is_plt
)
1150 elf_local_got_refcounts (abfd
) [r_symndx
] += 1;
1153 elf_xtensa_local_tlsfunc_refcounts (abfd
) [r_symndx
] += 1;
1155 old_tls_type
= elf_xtensa_local_got_tls_type (abfd
) [r_symndx
];
1158 if ((old_tls_type
& GOT_TLS_IE
) && (tls_type
& GOT_TLS_IE
))
1159 tls_type
|= old_tls_type
;
1160 /* If a TLS symbol is accessed using IE at least once,
1161 there is no point to use a dynamic model for it. */
1162 else if (old_tls_type
!= tls_type
&& old_tls_type
!= GOT_UNKNOWN
1163 && ((old_tls_type
& GOT_TLS_GD
) == 0
1164 || (tls_type
& GOT_TLS_IE
) == 0))
1166 if ((old_tls_type
& GOT_TLS_IE
) && (tls_type
& GOT_TLS_GD
))
1167 tls_type
= old_tls_type
;
1168 else if ((old_tls_type
& GOT_TLS_GD
) && (tls_type
& GOT_TLS_GD
))
1169 tls_type
|= old_tls_type
;
1172 (*_bfd_error_handler
)
1173 (_("%B: `%s' accessed both as normal and thread local symbol"),
1175 h
? h
->root
.root
.string
: "<local>");
1180 if (old_tls_type
!= tls_type
)
1183 eh
->tls_type
= tls_type
;
1185 elf_xtensa_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
1194 elf_xtensa_make_sym_local (struct bfd_link_info
*info
,
1195 struct elf_link_hash_entry
*h
)
1199 if (h
->plt
.refcount
> 0)
1201 /* For shared objects, there's no need for PLT entries for local
1202 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1203 if (h
->got
.refcount
< 0)
1204 h
->got
.refcount
= 0;
1205 h
->got
.refcount
+= h
->plt
.refcount
;
1206 h
->plt
.refcount
= 0;
1211 /* Don't need any dynamic relocations at all. */
1212 h
->plt
.refcount
= 0;
1213 h
->got
.refcount
= 0;
1219 elf_xtensa_hide_symbol (struct bfd_link_info
*info
,
1220 struct elf_link_hash_entry
*h
,
1221 bfd_boolean force_local
)
1223 /* For a shared link, move the plt refcount to the got refcount to leave
1224 space for RELATIVE relocs. */
1225 elf_xtensa_make_sym_local (info
, h
);
1227 _bfd_elf_link_hash_hide_symbol (info
, h
, force_local
);
1231 /* Return the section that should be marked against GC for a given
1235 elf_xtensa_gc_mark_hook (asection
*sec
,
1236 struct bfd_link_info
*info
,
1237 Elf_Internal_Rela
*rel
,
1238 struct elf_link_hash_entry
*h
,
1239 Elf_Internal_Sym
*sym
)
1241 /* Property sections are marked "KEEP" in the linker scripts, but they
1242 should not cause other sections to be marked. (This approach relies
1243 on elf_xtensa_discard_info to remove property table entries that
1244 describe discarded sections. Alternatively, it might be more
1245 efficient to avoid using "KEEP" in the linker scripts and instead use
1246 the gc_mark_extra_sections hook to mark only the property sections
1247 that describe marked sections. That alternative does not work well
1248 with the current property table sections, which do not correspond
1249 one-to-one with the sections they describe, but that should be fixed
1251 if (xtensa_is_property_section (sec
))
1255 switch (ELF32_R_TYPE (rel
->r_info
))
1257 case R_XTENSA_GNU_VTINHERIT
:
1258 case R_XTENSA_GNU_VTENTRY
:
1262 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
1266 /* Update the GOT & PLT entry reference counts
1267 for the section being removed. */
1270 elf_xtensa_gc_sweep_hook (bfd
*abfd
,
1271 struct bfd_link_info
*info
,
1273 const Elf_Internal_Rela
*relocs
)
1275 Elf_Internal_Shdr
*symtab_hdr
;
1276 struct elf_link_hash_entry
**sym_hashes
;
1277 const Elf_Internal_Rela
*rel
, *relend
;
1278 struct elf_xtensa_link_hash_table
*htab
;
1280 htab
= elf_xtensa_hash_table (info
);
1282 if (info
->relocatable
)
1285 if ((sec
->flags
& SEC_ALLOC
) == 0)
1288 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1289 sym_hashes
= elf_sym_hashes (abfd
);
1291 relend
= relocs
+ sec
->reloc_count
;
1292 for (rel
= relocs
; rel
< relend
; rel
++)
1294 unsigned long r_symndx
;
1295 unsigned int r_type
;
1296 struct elf_link_hash_entry
*h
= NULL
;
1297 struct elf_xtensa_link_hash_entry
*eh
;
1298 bfd_boolean is_got
= FALSE
;
1299 bfd_boolean is_plt
= FALSE
;
1300 bfd_boolean is_tlsfunc
= FALSE
;
1302 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1303 if (r_symndx
>= symtab_hdr
->sh_info
)
1305 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1306 while (h
->root
.type
== bfd_link_hash_indirect
1307 || h
->root
.type
== bfd_link_hash_warning
)
1308 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1310 eh
= elf_xtensa_hash_entry (h
);
1312 r_type
= ELF32_R_TYPE (rel
->r_info
);
1315 case R_XTENSA_TLSDESC_FN
:
1323 case R_XTENSA_TLSDESC_ARG
:
1328 if (h
&& elf_xtensa_hash_entry (h
) != htab
->tlsbase
)
1333 case R_XTENSA_TLS_TPOFF
:
1334 if (info
->shared
|| h
)
1354 if (h
->plt
.refcount
> 0)
1359 if (h
->got
.refcount
> 0)
1364 if (eh
->tlsfunc_refcount
> 0)
1365 eh
->tlsfunc_refcount
--;
1370 if (is_got
|| is_plt
)
1372 bfd_signed_vma
*got_refcount
1373 = &elf_local_got_refcounts (abfd
) [r_symndx
];
1374 if (*got_refcount
> 0)
1379 bfd_signed_vma
*tlsfunc_refcount
1380 = &elf_xtensa_local_tlsfunc_refcounts (abfd
) [r_symndx
];
1381 if (*tlsfunc_refcount
> 0)
1382 *tlsfunc_refcount
-= 1;
1391 /* Create all the dynamic sections. */
1394 elf_xtensa_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
1396 struct elf_xtensa_link_hash_table
*htab
;
1397 flagword flags
, noalloc_flags
;
1399 htab
= elf_xtensa_hash_table (info
);
1401 /* First do all the standard stuff. */
1402 if (! _bfd_elf_create_dynamic_sections (dynobj
, info
))
1404 htab
->splt
= bfd_get_section_by_name (dynobj
, ".plt");
1405 htab
->srelplt
= bfd_get_section_by_name (dynobj
, ".rela.plt");
1406 htab
->sgot
= bfd_get_section_by_name (dynobj
, ".got");
1407 htab
->sgotplt
= bfd_get_section_by_name (dynobj
, ".got.plt");
1408 htab
->srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");
1410 /* Create any extra PLT sections in case check_relocs has already
1411 been called on all the non-dynamic input files. */
1412 if (! add_extra_plt_sections (info
, htab
->plt_reloc_count
))
1415 noalloc_flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
1416 | SEC_LINKER_CREATED
| SEC_READONLY
);
1417 flags
= noalloc_flags
| SEC_ALLOC
| SEC_LOAD
;
1419 /* Mark the ".got.plt" section READONLY. */
1420 if (htab
->sgotplt
== NULL
1421 || ! bfd_set_section_flags (dynobj
, htab
->sgotplt
, flags
))
1424 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1425 htab
->sgotloc
= bfd_make_section_with_flags (dynobj
, ".got.loc", flags
);
1426 if (htab
->sgotloc
== NULL
1427 || ! bfd_set_section_alignment (dynobj
, htab
->sgotloc
, 2))
1430 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1431 htab
->spltlittbl
= bfd_make_section_with_flags (dynobj
, ".xt.lit.plt",
1433 if (htab
->spltlittbl
== NULL
1434 || ! bfd_set_section_alignment (dynobj
, htab
->spltlittbl
, 2))
1442 add_extra_plt_sections (struct bfd_link_info
*info
, int count
)
1444 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
1447 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1448 ".got.plt" sections. */
1449 for (chunk
= count
/ PLT_ENTRIES_PER_CHUNK
; chunk
> 0; chunk
--)
1455 /* Stop when we find a section has already been created. */
1456 if (elf_xtensa_get_plt_section (info
, chunk
))
1459 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
1460 | SEC_LINKER_CREATED
| SEC_READONLY
);
1462 sname
= (char *) bfd_malloc (10);
1463 sprintf (sname
, ".plt.%u", chunk
);
1464 s
= bfd_make_section_with_flags (dynobj
, sname
, flags
| SEC_CODE
);
1466 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1469 sname
= (char *) bfd_malloc (14);
1470 sprintf (sname
, ".got.plt.%u", chunk
);
1471 s
= bfd_make_section_with_flags (dynobj
, sname
, flags
);
1473 || ! bfd_set_section_alignment (dynobj
, s
, 2))
1481 /* Adjust a symbol defined by a dynamic object and referenced by a
1482 regular object. The current definition is in some section of the
1483 dynamic object, but we're not including those sections. We have to
1484 change the definition to something the rest of the link can
1488 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1489 struct elf_link_hash_entry
*h
)
1491 /* If this is a weak symbol, and there is a real definition, the
1492 processor independent code will have arranged for us to see the
1493 real definition first, and we can just use the same value. */
1496 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
1497 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
1498 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
1499 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
1503 /* This is a reference to a symbol defined by a dynamic object. The
1504 reference must go through the GOT, so there's no need for COPY relocs,
1512 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry
*h
, void *arg
)
1514 struct bfd_link_info
*info
;
1515 struct elf_xtensa_link_hash_table
*htab
;
1516 struct elf_xtensa_link_hash_entry
*eh
= elf_xtensa_hash_entry (h
);
1518 if (h
->root
.type
== bfd_link_hash_indirect
)
1521 if (h
->root
.type
== bfd_link_hash_warning
)
1522 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1524 info
= (struct bfd_link_info
*) arg
;
1525 htab
= elf_xtensa_hash_table (info
);
1527 /* If we saw any use of an IE model for this symbol, we can then optimize
1528 away GOT entries for any TLSDESC_FN relocs. */
1529 if ((eh
->tls_type
& GOT_TLS_IE
) != 0)
1531 BFD_ASSERT (h
->got
.refcount
>= eh
->tlsfunc_refcount
);
1532 h
->got
.refcount
-= eh
->tlsfunc_refcount
;
1535 if (! elf_xtensa_dynamic_symbol_p (h
, info
))
1536 elf_xtensa_make_sym_local (info
, h
);
1538 if (h
->plt
.refcount
> 0)
1539 htab
->srelplt
->size
+= (h
->plt
.refcount
* sizeof (Elf32_External_Rela
));
1541 if (h
->got
.refcount
> 0)
1542 htab
->srelgot
->size
+= (h
->got
.refcount
* sizeof (Elf32_External_Rela
));
1549 elf_xtensa_allocate_local_got_size (struct bfd_link_info
*info
)
1551 struct elf_xtensa_link_hash_table
*htab
;
1554 htab
= elf_xtensa_hash_table (info
);
1556 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
1558 bfd_signed_vma
*local_got_refcounts
;
1559 bfd_size_type j
, cnt
;
1560 Elf_Internal_Shdr
*symtab_hdr
;
1562 local_got_refcounts
= elf_local_got_refcounts (i
);
1563 if (!local_got_refcounts
)
1566 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
1567 cnt
= symtab_hdr
->sh_info
;
1569 for (j
= 0; j
< cnt
; ++j
)
1571 /* If we saw any use of an IE model for this symbol, we can
1572 then optimize away GOT entries for any TLSDESC_FN relocs. */
1573 if ((elf_xtensa_local_got_tls_type (i
) [j
] & GOT_TLS_IE
) != 0)
1575 bfd_signed_vma
*tlsfunc_refcount
1576 = &elf_xtensa_local_tlsfunc_refcounts (i
) [j
];
1577 BFD_ASSERT (local_got_refcounts
[j
] >= *tlsfunc_refcount
);
1578 local_got_refcounts
[j
] -= *tlsfunc_refcount
;
1581 if (local_got_refcounts
[j
] > 0)
1582 htab
->srelgot
->size
+= (local_got_refcounts
[j
]
1583 * sizeof (Elf32_External_Rela
));
1589 /* Set the sizes of the dynamic sections. */
1592 elf_xtensa_size_dynamic_sections (bfd
*output_bfd ATTRIBUTE_UNUSED
,
1593 struct bfd_link_info
*info
)
1595 struct elf_xtensa_link_hash_table
*htab
;
1597 asection
*s
, *srelplt
, *splt
, *sgotplt
, *srelgot
, *spltlittbl
, *sgotloc
;
1598 bfd_boolean relplt
, relgot
;
1599 int plt_entries
, plt_chunks
, chunk
;
1604 htab
= elf_xtensa_hash_table (info
);
1605 dynobj
= elf_hash_table (info
)->dynobj
;
1608 srelgot
= htab
->srelgot
;
1609 srelplt
= htab
->srelplt
;
1611 if (elf_hash_table (info
)->dynamic_sections_created
)
1613 BFD_ASSERT (htab
->srelgot
!= NULL
1614 && htab
->srelplt
!= NULL
1615 && htab
->sgot
!= NULL
1616 && htab
->spltlittbl
!= NULL
1617 && htab
->sgotloc
!= NULL
);
1619 /* Set the contents of the .interp section to the interpreter. */
1620 if (info
->executable
)
1622 s
= bfd_get_section_by_name (dynobj
, ".interp");
1625 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1626 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1629 /* Allocate room for one word in ".got". */
1630 htab
->sgot
->size
= 4;
1632 /* Allocate space in ".rela.got" for literals that reference global
1633 symbols and space in ".rela.plt" for literals that have PLT
1635 elf_link_hash_traverse (elf_hash_table (info
),
1636 elf_xtensa_allocate_dynrelocs
,
1639 /* If we are generating a shared object, we also need space in
1640 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1641 reference local symbols. */
1643 elf_xtensa_allocate_local_got_size (info
);
1645 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1646 each PLT entry, we need the PLT code plus a 4-byte literal.
1647 For each chunk of ".plt", we also need two more 4-byte
1648 literals, two corresponding entries in ".rela.got", and an
1649 8-byte entry in ".xt.lit.plt". */
1650 spltlittbl
= htab
->spltlittbl
;
1651 plt_entries
= srelplt
->size
/ sizeof (Elf32_External_Rela
);
1653 (plt_entries
+ PLT_ENTRIES_PER_CHUNK
- 1) / PLT_ENTRIES_PER_CHUNK
;
1655 /* Iterate over all the PLT chunks, including any extra sections
1656 created earlier because the initial count of PLT relocations
1657 was an overestimate. */
1659 (splt
= elf_xtensa_get_plt_section (info
, chunk
)) != NULL
;
1664 sgotplt
= elf_xtensa_get_gotplt_section (info
, chunk
);
1665 BFD_ASSERT (sgotplt
!= NULL
);
1667 if (chunk
< plt_chunks
- 1)
1668 chunk_entries
= PLT_ENTRIES_PER_CHUNK
;
1669 else if (chunk
== plt_chunks
- 1)
1670 chunk_entries
= plt_entries
- (chunk
* PLT_ENTRIES_PER_CHUNK
);
1674 if (chunk_entries
!= 0)
1676 sgotplt
->size
= 4 * (chunk_entries
+ 2);
1677 splt
->size
= PLT_ENTRY_SIZE
* chunk_entries
;
1678 srelgot
->size
+= 2 * sizeof (Elf32_External_Rela
);
1679 spltlittbl
->size
+= 8;
1688 /* Allocate space in ".got.loc" to match the total size of all the
1690 sgotloc
= htab
->sgotloc
;
1691 sgotloc
->size
= spltlittbl
->size
;
1692 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
1694 if (abfd
->flags
& DYNAMIC
)
1696 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
1698 if (! elf_discarded_section (s
)
1699 && xtensa_is_littable_section (s
)
1701 sgotloc
->size
+= s
->size
;
1706 /* Allocate memory for dynamic sections. */
1709 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1713 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1716 /* It's OK to base decisions on the section name, because none
1717 of the dynobj section names depend upon the input files. */
1718 name
= bfd_get_section_name (dynobj
, s
);
1720 if (CONST_STRNEQ (name
, ".rela"))
1724 if (strcmp (name
, ".rela.plt") == 0)
1726 else if (strcmp (name
, ".rela.got") == 0)
1729 /* We use the reloc_count field as a counter if we need
1730 to copy relocs into the output file. */
1734 else if (! CONST_STRNEQ (name
, ".plt.")
1735 && ! CONST_STRNEQ (name
, ".got.plt.")
1736 && strcmp (name
, ".got") != 0
1737 && strcmp (name
, ".plt") != 0
1738 && strcmp (name
, ".got.plt") != 0
1739 && strcmp (name
, ".xt.lit.plt") != 0
1740 && strcmp (name
, ".got.loc") != 0)
1742 /* It's not one of our sections, so don't allocate space. */
1748 /* If we don't need this section, strip it from the output
1749 file. We must create the ".plt*" and ".got.plt*"
1750 sections in create_dynamic_sections and/or check_relocs
1751 based on a conservative estimate of the PLT relocation
1752 count, because the sections must be created before the
1753 linker maps input sections to output sections. The
1754 linker does that before size_dynamic_sections, where we
1755 compute the exact size of the PLT, so there may be more
1756 of these sections than are actually needed. */
1757 s
->flags
|= SEC_EXCLUDE
;
1759 else if ((s
->flags
& SEC_HAS_CONTENTS
) != 0)
1761 /* Allocate memory for the section contents. */
1762 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
1763 if (s
->contents
== NULL
)
1768 if (elf_hash_table (info
)->dynamic_sections_created
)
1770 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1771 known until finish_dynamic_sections, but we need to get the relocs
1772 in place before they are sorted. */
1773 for (chunk
= 0; chunk
< plt_chunks
; chunk
++)
1775 Elf_Internal_Rela irela
;
1779 irela
.r_info
= ELF32_R_INFO (0, R_XTENSA_RTLD
);
1782 loc
= (srelgot
->contents
1783 + srelgot
->reloc_count
* sizeof (Elf32_External_Rela
));
1784 bfd_elf32_swap_reloca_out (output_bfd
, &irela
, loc
);
1785 bfd_elf32_swap_reloca_out (output_bfd
, &irela
,
1786 loc
+ sizeof (Elf32_External_Rela
));
1787 srelgot
->reloc_count
+= 2;
1790 /* Add some entries to the .dynamic section. We fill in the
1791 values later, in elf_xtensa_finish_dynamic_sections, but we
1792 must add the entries now so that we get the correct size for
1793 the .dynamic section. The DT_DEBUG entry is filled in by the
1794 dynamic linker and used by the debugger. */
1795 #define add_dynamic_entry(TAG, VAL) \
1796 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1798 if (info
->executable
)
1800 if (!add_dynamic_entry (DT_DEBUG
, 0))
1806 if (!add_dynamic_entry (DT_PLTRELSZ
, 0)
1807 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
1808 || !add_dynamic_entry (DT_JMPREL
, 0))
1814 if (!add_dynamic_entry (DT_RELA
, 0)
1815 || !add_dynamic_entry (DT_RELASZ
, 0)
1816 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf32_External_Rela
)))
1820 if (!add_dynamic_entry (DT_PLTGOT
, 0)
1821 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF
, 0)
1822 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ
, 0))
1825 #undef add_dynamic_entry
1831 elf_xtensa_always_size_sections (bfd
*output_bfd
,
1832 struct bfd_link_info
*info
)
1834 struct elf_xtensa_link_hash_table
*htab
;
1837 htab
= elf_xtensa_hash_table (info
);
1838 tls_sec
= htab
->elf
.tls_sec
;
1840 if (tls_sec
&& (htab
->tlsbase
->tls_type
& GOT_TLS_ANY
) != 0)
1842 struct elf_link_hash_entry
*tlsbase
= &htab
->tlsbase
->elf
;
1843 struct bfd_link_hash_entry
*bh
= &tlsbase
->root
;
1844 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
1846 tlsbase
->type
= STT_TLS
;
1847 if (!(_bfd_generic_link_add_one_symbol
1848 (info
, output_bfd
, "_TLS_MODULE_BASE_", BSF_LOCAL
,
1849 tls_sec
, 0, NULL
, FALSE
,
1850 bed
->collect
, &bh
)))
1852 tlsbase
->def_regular
= 1;
1853 tlsbase
->other
= STV_HIDDEN
;
1854 (*bed
->elf_backend_hide_symbol
) (info
, tlsbase
, TRUE
);
1861 /* Return the base VMA address which should be subtracted from real addresses
1862 when resolving @dtpoff relocation.
1863 This is PT_TLS segment p_vaddr. */
1866 dtpoff_base (struct bfd_link_info
*info
)
1868 /* If tls_sec is NULL, we should have signalled an error already. */
1869 if (elf_hash_table (info
)->tls_sec
== NULL
)
1871 return elf_hash_table (info
)->tls_sec
->vma
;
1874 /* Return the relocation value for @tpoff relocation
1875 if STT_TLS virtual address is ADDRESS. */
1878 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
1880 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
1883 /* If tls_sec is NULL, we should have signalled an error already. */
1884 if (htab
->tls_sec
== NULL
)
1886 base
= align_power ((bfd_vma
) TCB_SIZE
, htab
->tls_sec
->alignment_power
);
1887 return address
- htab
->tls_sec
->vma
+ base
;
1890 /* Perform the specified relocation. The instruction at (contents + address)
1891 is modified to set one operand to represent the value in "relocation". The
1892 operand position is determined by the relocation type recorded in the
1895 #define CALL_SEGMENT_BITS (30)
1896 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1898 static bfd_reloc_status_type
1899 elf_xtensa_do_reloc (reloc_howto_type
*howto
,
1901 asection
*input_section
,
1905 bfd_boolean is_weak_undef
,
1906 char **error_message
)
1909 xtensa_opcode opcode
;
1910 xtensa_isa isa
= xtensa_default_isa
;
1911 static xtensa_insnbuf ibuff
= NULL
;
1912 static xtensa_insnbuf sbuff
= NULL
;
1913 bfd_vma self_address
;
1914 bfd_size_type input_size
;
1920 ibuff
= xtensa_insnbuf_alloc (isa
);
1921 sbuff
= xtensa_insnbuf_alloc (isa
);
1924 input_size
= bfd_get_section_limit (abfd
, input_section
);
1926 /* Calculate the PC address for this instruction. */
1927 self_address
= (input_section
->output_section
->vma
1928 + input_section
->output_offset
1931 switch (howto
->type
)
1934 case R_XTENSA_DIFF8
:
1935 case R_XTENSA_DIFF16
:
1936 case R_XTENSA_DIFF32
:
1937 case R_XTENSA_TLS_FUNC
:
1938 case R_XTENSA_TLS_ARG
:
1939 case R_XTENSA_TLS_CALL
:
1940 return bfd_reloc_ok
;
1942 case R_XTENSA_ASM_EXPAND
:
1945 /* Check for windowed CALL across a 1GB boundary. */
1946 opcode
= get_expanded_call_opcode (contents
+ address
,
1947 input_size
- address
, 0);
1948 if (is_windowed_call_opcode (opcode
))
1950 if ((self_address
>> CALL_SEGMENT_BITS
)
1951 != (relocation
>> CALL_SEGMENT_BITS
))
1953 *error_message
= "windowed longcall crosses 1GB boundary; "
1955 return bfd_reloc_dangerous
;
1959 return bfd_reloc_ok
;
1961 case R_XTENSA_ASM_SIMPLIFY
:
1963 /* Convert the L32R/CALLX to CALL. */
1964 bfd_reloc_status_type retval
=
1965 elf_xtensa_do_asm_simplify (contents
, address
, input_size
,
1967 if (retval
!= bfd_reloc_ok
)
1968 return bfd_reloc_dangerous
;
1970 /* The CALL needs to be relocated. Continue below for that part. */
1973 howto
= &elf_howto_table
[(unsigned) R_XTENSA_SLOT0_OP
];
1980 x
= bfd_get_32 (abfd
, contents
+ address
);
1982 bfd_put_32 (abfd
, x
, contents
+ address
);
1984 return bfd_reloc_ok
;
1986 case R_XTENSA_32_PCREL
:
1987 bfd_put_32 (abfd
, relocation
- self_address
, contents
+ address
);
1988 return bfd_reloc_ok
;
1991 case R_XTENSA_TLSDESC_FN
:
1992 case R_XTENSA_TLSDESC_ARG
:
1993 case R_XTENSA_TLS_DTPOFF
:
1994 case R_XTENSA_TLS_TPOFF
:
1995 bfd_put_32 (abfd
, relocation
, contents
+ address
);
1996 return bfd_reloc_ok
;
1999 /* Only instruction slot-specific relocations handled below.... */
2000 slot
= get_relocation_slot (howto
->type
);
2001 if (slot
== XTENSA_UNDEFINED
)
2003 *error_message
= "unexpected relocation";
2004 return bfd_reloc_dangerous
;
2007 /* Read the instruction into a buffer and decode the opcode. */
2008 xtensa_insnbuf_from_chars (isa
, ibuff
, contents
+ address
,
2009 input_size
- address
);
2010 fmt
= xtensa_format_decode (isa
, ibuff
);
2011 if (fmt
== XTENSA_UNDEFINED
)
2013 *error_message
= "cannot decode instruction format";
2014 return bfd_reloc_dangerous
;
2017 xtensa_format_get_slot (isa
, fmt
, slot
, ibuff
, sbuff
);
2019 opcode
= xtensa_opcode_decode (isa
, fmt
, slot
, sbuff
);
2020 if (opcode
== XTENSA_UNDEFINED
)
2022 *error_message
= "cannot decode instruction opcode";
2023 return bfd_reloc_dangerous
;
2026 /* Check for opcode-specific "alternate" relocations. */
2027 if (is_alt_relocation (howto
->type
))
2029 if (opcode
== get_l32r_opcode ())
2031 /* Handle the special-case of non-PC-relative L32R instructions. */
2032 bfd
*output_bfd
= input_section
->output_section
->owner
;
2033 asection
*lit4_sec
= bfd_get_section_by_name (output_bfd
, ".lit4");
2036 *error_message
= "relocation references missing .lit4 section";
2037 return bfd_reloc_dangerous
;
2039 self_address
= ((lit4_sec
->vma
& ~0xfff)
2040 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2041 newval
= relocation
;
2044 else if (opcode
== get_const16_opcode ())
2046 /* ALT used for high 16 bits. */
2047 newval
= relocation
>> 16;
2052 /* No other "alternate" relocations currently defined. */
2053 *error_message
= "unexpected relocation";
2054 return bfd_reloc_dangerous
;
2057 else /* Not an "alternate" relocation.... */
2059 if (opcode
== get_const16_opcode ())
2061 newval
= relocation
& 0xffff;
2066 /* ...normal PC-relative relocation.... */
2068 /* Determine which operand is being relocated. */
2069 opnd
= get_relocation_opnd (opcode
, howto
->type
);
2070 if (opnd
== XTENSA_UNDEFINED
)
2072 *error_message
= "unexpected relocation";
2073 return bfd_reloc_dangerous
;
2076 if (!howto
->pc_relative
)
2078 *error_message
= "expected PC-relative relocation";
2079 return bfd_reloc_dangerous
;
2082 newval
= relocation
;
2086 /* Apply the relocation. */
2087 if (xtensa_operand_do_reloc (isa
, opcode
, opnd
, &newval
, self_address
)
2088 || xtensa_operand_encode (isa
, opcode
, opnd
, &newval
)
2089 || xtensa_operand_set_field (isa
, opcode
, opnd
, fmt
, slot
,
2092 const char *opname
= xtensa_opcode_name (isa
, opcode
);
2095 msg
= "cannot encode";
2096 if (is_direct_call_opcode (opcode
))
2098 if ((relocation
& 0x3) != 0)
2099 msg
= "misaligned call target";
2101 msg
= "call target out of range";
2103 else if (opcode
== get_l32r_opcode ())
2105 if ((relocation
& 0x3) != 0)
2106 msg
= "misaligned literal target";
2107 else if (is_alt_relocation (howto
->type
))
2108 msg
= "literal target out of range (too many literals)";
2109 else if (self_address
> relocation
)
2110 msg
= "literal target out of range (try using text-section-literals)";
2112 msg
= "literal placed after use";
2115 *error_message
= vsprint_msg (opname
, ": %s", strlen (msg
) + 2, msg
);
2116 return bfd_reloc_dangerous
;
2119 /* Check for calls across 1GB boundaries. */
2120 if (is_direct_call_opcode (opcode
)
2121 && is_windowed_call_opcode (opcode
))
2123 if ((self_address
>> CALL_SEGMENT_BITS
)
2124 != (relocation
>> CALL_SEGMENT_BITS
))
2127 "windowed call crosses 1GB boundary; return may fail";
2128 return bfd_reloc_dangerous
;
2132 /* Write the modified instruction back out of the buffer. */
2133 xtensa_format_set_slot (isa
, fmt
, slot
, ibuff
, sbuff
);
2134 xtensa_insnbuf_to_chars (isa
, ibuff
, contents
+ address
,
2135 input_size
- address
);
2136 return bfd_reloc_ok
;
2141 vsprint_msg (const char *origmsg
, const char *fmt
, int arglen
, ...)
2143 /* To reduce the size of the memory leak,
2144 we only use a single message buffer. */
2145 static bfd_size_type alloc_size
= 0;
2146 static char *message
= NULL
;
2147 bfd_size_type orig_len
, len
= 0;
2148 bfd_boolean is_append
;
2150 VA_OPEN (ap
, arglen
);
2151 VA_FIXEDARG (ap
, const char *, origmsg
);
2153 is_append
= (origmsg
== message
);
2155 orig_len
= strlen (origmsg
);
2156 len
= orig_len
+ strlen (fmt
) + arglen
+ 20;
2157 if (len
> alloc_size
)
2159 message
= (char *) bfd_realloc_or_free (message
, len
);
2162 if (message
!= NULL
)
2165 memcpy (message
, origmsg
, orig_len
);
2166 vsprintf (message
+ orig_len
, fmt
, ap
);
2173 /* This function is registered as the "special_function" in the
2174 Xtensa howto for handling simplify operations.
2175 bfd_perform_relocation / bfd_install_relocation use it to
2176 perform (install) the specified relocation. Since this replaces the code
2177 in bfd_perform_relocation, it is basically an Xtensa-specific,
2178 stripped-down version of bfd_perform_relocation. */
2180 static bfd_reloc_status_type
2181 bfd_elf_xtensa_reloc (bfd
*abfd
,
2182 arelent
*reloc_entry
,
2185 asection
*input_section
,
2187 char **error_message
)
2190 bfd_reloc_status_type flag
;
2191 bfd_size_type octets
= reloc_entry
->address
* bfd_octets_per_byte (abfd
);
2192 bfd_vma output_base
= 0;
2193 reloc_howto_type
*howto
= reloc_entry
->howto
;
2194 asection
*reloc_target_output_section
;
2195 bfd_boolean is_weak_undef
;
2197 if (!xtensa_default_isa
)
2198 xtensa_default_isa
= xtensa_isa_init (0, 0);
2200 /* ELF relocs are against symbols. If we are producing relocatable
2201 output, and the reloc is against an external symbol, the resulting
2202 reloc will also be against the same symbol. In such a case, we
2203 don't want to change anything about the way the reloc is handled,
2204 since it will all be done at final link time. This test is similar
2205 to what bfd_elf_generic_reloc does except that it lets relocs with
2206 howto->partial_inplace go through even if the addend is non-zero.
2207 (The real problem is that partial_inplace is set for XTENSA_32
2208 relocs to begin with, but that's a long story and there's little we
2209 can do about it now....) */
2211 if (output_bfd
&& (symbol
->flags
& BSF_SECTION_SYM
) == 0)
2213 reloc_entry
->address
+= input_section
->output_offset
;
2214 return bfd_reloc_ok
;
2217 /* Is the address of the relocation really within the section? */
2218 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2219 return bfd_reloc_outofrange
;
2221 /* Work out which section the relocation is targeted at and the
2222 initial relocation command value. */
2224 /* Get symbol value. (Common symbols are special.) */
2225 if (bfd_is_com_section (symbol
->section
))
2228 relocation
= symbol
->value
;
2230 reloc_target_output_section
= symbol
->section
->output_section
;
2232 /* Convert input-section-relative symbol value to absolute. */
2233 if ((output_bfd
&& !howto
->partial_inplace
)
2234 || reloc_target_output_section
== NULL
)
2237 output_base
= reloc_target_output_section
->vma
;
2239 relocation
+= output_base
+ symbol
->section
->output_offset
;
2241 /* Add in supplied addend. */
2242 relocation
+= reloc_entry
->addend
;
2244 /* Here the variable relocation holds the final address of the
2245 symbol we are relocating against, plus any addend. */
2248 if (!howto
->partial_inplace
)
2250 /* This is a partial relocation, and we want to apply the relocation
2251 to the reloc entry rather than the raw data. Everything except
2252 relocations against section symbols has already been handled
2255 BFD_ASSERT (symbol
->flags
& BSF_SECTION_SYM
);
2256 reloc_entry
->addend
= relocation
;
2257 reloc_entry
->address
+= input_section
->output_offset
;
2258 return bfd_reloc_ok
;
2262 reloc_entry
->address
+= input_section
->output_offset
;
2263 reloc_entry
->addend
= 0;
2267 is_weak_undef
= (bfd_is_und_section (symbol
->section
)
2268 && (symbol
->flags
& BSF_WEAK
) != 0);
2269 flag
= elf_xtensa_do_reloc (howto
, abfd
, input_section
, relocation
,
2270 (bfd_byte
*) data
, (bfd_vma
) octets
,
2271 is_weak_undef
, error_message
);
2273 if (flag
== bfd_reloc_dangerous
)
2275 /* Add the symbol name to the error message. */
2276 if (! *error_message
)
2277 *error_message
= "";
2278 *error_message
= vsprint_msg (*error_message
, ": (%s + 0x%lx)",
2279 strlen (symbol
->name
) + 17,
2281 (unsigned long) reloc_entry
->addend
);
2288 /* Set up an entry in the procedure linkage table. */
2291 elf_xtensa_create_plt_entry (struct bfd_link_info
*info
,
2293 unsigned reloc_index
)
2295 asection
*splt
, *sgotplt
;
2296 bfd_vma plt_base
, got_base
;
2297 bfd_vma code_offset
, lit_offset
;
2300 chunk
= reloc_index
/ PLT_ENTRIES_PER_CHUNK
;
2301 splt
= elf_xtensa_get_plt_section (info
, chunk
);
2302 sgotplt
= elf_xtensa_get_gotplt_section (info
, chunk
);
2303 BFD_ASSERT (splt
!= NULL
&& sgotplt
!= NULL
);
2305 plt_base
= splt
->output_section
->vma
+ splt
->output_offset
;
2306 got_base
= sgotplt
->output_section
->vma
+ sgotplt
->output_offset
;
2308 lit_offset
= 8 + (reloc_index
% PLT_ENTRIES_PER_CHUNK
) * 4;
2309 code_offset
= (reloc_index
% PLT_ENTRIES_PER_CHUNK
) * PLT_ENTRY_SIZE
;
2311 /* Fill in the literal entry. This is the offset of the dynamic
2312 relocation entry. */
2313 bfd_put_32 (output_bfd
, reloc_index
* sizeof (Elf32_External_Rela
),
2314 sgotplt
->contents
+ lit_offset
);
2316 /* Fill in the entry in the procedure linkage table. */
2317 memcpy (splt
->contents
+ code_offset
,
2318 (bfd_big_endian (output_bfd
)
2319 ? elf_xtensa_be_plt_entry
2320 : elf_xtensa_le_plt_entry
),
2322 bfd_put_16 (output_bfd
, l32r_offset (got_base
+ 0,
2323 plt_base
+ code_offset
+ 3),
2324 splt
->contents
+ code_offset
+ 4);
2325 bfd_put_16 (output_bfd
, l32r_offset (got_base
+ 4,
2326 plt_base
+ code_offset
+ 6),
2327 splt
->contents
+ code_offset
+ 7);
2328 bfd_put_16 (output_bfd
, l32r_offset (got_base
+ lit_offset
,
2329 plt_base
+ code_offset
+ 9),
2330 splt
->contents
+ code_offset
+ 10);
2332 return plt_base
+ code_offset
;
2336 static bfd_boolean
get_indirect_call_dest_reg (xtensa_opcode
, unsigned *);
2339 replace_tls_insn (Elf_Internal_Rela
*rel
,
2341 asection
*input_section
,
2343 bfd_boolean is_ld_model
,
2344 char **error_message
)
2346 static xtensa_insnbuf ibuff
= NULL
;
2347 static xtensa_insnbuf sbuff
= NULL
;
2348 xtensa_isa isa
= xtensa_default_isa
;
2350 xtensa_opcode old_op
, new_op
;
2351 bfd_size_type input_size
;
2353 unsigned dest_reg
, src_reg
;
2357 ibuff
= xtensa_insnbuf_alloc (isa
);
2358 sbuff
= xtensa_insnbuf_alloc (isa
);
2361 input_size
= bfd_get_section_limit (abfd
, input_section
);
2363 /* Read the instruction into a buffer and decode the opcode. */
2364 xtensa_insnbuf_from_chars (isa
, ibuff
, contents
+ rel
->r_offset
,
2365 input_size
- rel
->r_offset
);
2366 fmt
= xtensa_format_decode (isa
, ibuff
);
2367 if (fmt
== XTENSA_UNDEFINED
)
2369 *error_message
= "cannot decode instruction format";
2373 BFD_ASSERT (xtensa_format_num_slots (isa
, fmt
) == 1);
2374 xtensa_format_get_slot (isa
, fmt
, 0, ibuff
, sbuff
);
2376 old_op
= xtensa_opcode_decode (isa
, fmt
, 0, sbuff
);
2377 if (old_op
== XTENSA_UNDEFINED
)
2379 *error_message
= "cannot decode instruction opcode";
2383 r_type
= ELF32_R_TYPE (rel
->r_info
);
2386 case R_XTENSA_TLS_FUNC
:
2387 case R_XTENSA_TLS_ARG
:
2388 if (old_op
!= get_l32r_opcode ()
2389 || xtensa_operand_get_field (isa
, old_op
, 0, fmt
, 0,
2390 sbuff
, &dest_reg
) != 0)
2392 *error_message
= "cannot extract L32R destination for TLS access";
2397 case R_XTENSA_TLS_CALL
:
2398 if (! get_indirect_call_dest_reg (old_op
, &dest_reg
)
2399 || xtensa_operand_get_field (isa
, old_op
, 0, fmt
, 0,
2400 sbuff
, &src_reg
) != 0)
2402 *error_message
= "cannot extract CALLXn operands for TLS access";
2415 case R_XTENSA_TLS_FUNC
:
2416 case R_XTENSA_TLS_ARG
:
2417 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2418 versions of Xtensa). */
2419 new_op
= xtensa_opcode_lookup (isa
, "nop");
2420 if (new_op
== XTENSA_UNDEFINED
)
2422 new_op
= xtensa_opcode_lookup (isa
, "or");
2423 if (new_op
== XTENSA_UNDEFINED
2424 || xtensa_opcode_encode (isa
, fmt
, 0, sbuff
, new_op
) != 0
2425 || xtensa_operand_set_field (isa
, new_op
, 0, fmt
, 0,
2427 || xtensa_operand_set_field (isa
, new_op
, 1, fmt
, 0,
2429 || xtensa_operand_set_field (isa
, new_op
, 2, fmt
, 0,
2432 *error_message
= "cannot encode OR for TLS access";
2438 if (xtensa_opcode_encode (isa
, fmt
, 0, sbuff
, new_op
) != 0)
2440 *error_message
= "cannot encode NOP for TLS access";
2446 case R_XTENSA_TLS_CALL
:
2447 /* Read THREADPTR into the CALLX's return value register. */
2448 new_op
= xtensa_opcode_lookup (isa
, "rur.threadptr");
2449 if (new_op
== XTENSA_UNDEFINED
2450 || xtensa_opcode_encode (isa
, fmt
, 0, sbuff
, new_op
) != 0
2451 || xtensa_operand_set_field (isa
, new_op
, 0, fmt
, 0,
2452 sbuff
, dest_reg
+ 2) != 0)
2454 *error_message
= "cannot encode RUR.THREADPTR for TLS access";
2464 case R_XTENSA_TLS_FUNC
:
2465 new_op
= xtensa_opcode_lookup (isa
, "rur.threadptr");
2466 if (new_op
== XTENSA_UNDEFINED
2467 || xtensa_opcode_encode (isa
, fmt
, 0, sbuff
, new_op
) != 0
2468 || xtensa_operand_set_field (isa
, new_op
, 0, fmt
, 0,
2469 sbuff
, dest_reg
) != 0)
2471 *error_message
= "cannot encode RUR.THREADPTR for TLS access";
2476 case R_XTENSA_TLS_ARG
:
2477 /* Nothing to do. Keep the original L32R instruction. */
2480 case R_XTENSA_TLS_CALL
:
2481 /* Add the CALLX's src register (holding the THREADPTR value)
2482 to the first argument register (holding the offset) and put
2483 the result in the CALLX's return value register. */
2484 new_op
= xtensa_opcode_lookup (isa
, "add");
2485 if (new_op
== XTENSA_UNDEFINED
2486 || xtensa_opcode_encode (isa
, fmt
, 0, sbuff
, new_op
) != 0
2487 || xtensa_operand_set_field (isa
, new_op
, 0, fmt
, 0,
2488 sbuff
, dest_reg
+ 2) != 0
2489 || xtensa_operand_set_field (isa
, new_op
, 1, fmt
, 0,
2490 sbuff
, dest_reg
+ 2) != 0
2491 || xtensa_operand_set_field (isa
, new_op
, 2, fmt
, 0,
2492 sbuff
, src_reg
) != 0)
2494 *error_message
= "cannot encode ADD for TLS access";
2501 xtensa_format_set_slot (isa
, fmt
, 0, ibuff
, sbuff
);
2502 xtensa_insnbuf_to_chars (isa
, ibuff
, contents
+ rel
->r_offset
,
2503 input_size
- rel
->r_offset
);
2509 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2510 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2511 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2512 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2513 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2514 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2515 || (R_TYPE) == R_XTENSA_TLS_ARG \
2516 || (R_TYPE) == R_XTENSA_TLS_CALL)
2518 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2519 both relocatable and final links. */
2522 elf_xtensa_relocate_section (bfd
*output_bfd
,
2523 struct bfd_link_info
*info
,
2525 asection
*input_section
,
2527 Elf_Internal_Rela
*relocs
,
2528 Elf_Internal_Sym
*local_syms
,
2529 asection
**local_sections
)
2531 struct elf_xtensa_link_hash_table
*htab
;
2532 Elf_Internal_Shdr
*symtab_hdr
;
2533 Elf_Internal_Rela
*rel
;
2534 Elf_Internal_Rela
*relend
;
2535 struct elf_link_hash_entry
**sym_hashes
;
2536 property_table_entry
*lit_table
= 0;
2538 char *local_got_tls_types
;
2539 char *error_message
= NULL
;
2540 bfd_size_type input_size
;
2543 if (!xtensa_default_isa
)
2544 xtensa_default_isa
= xtensa_isa_init (0, 0);
2546 BFD_ASSERT (is_xtensa_elf (input_bfd
));
2548 htab
= elf_xtensa_hash_table (info
);
2549 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2550 sym_hashes
= elf_sym_hashes (input_bfd
);
2551 local_got_tls_types
= elf_xtensa_local_got_tls_type (input_bfd
);
2553 if (elf_hash_table (info
)->dynamic_sections_created
)
2555 ltblsize
= xtensa_read_table_entries (input_bfd
, input_section
,
2556 &lit_table
, XTENSA_LIT_SEC_NAME
,
2562 input_size
= bfd_get_section_limit (input_bfd
, input_section
);
2565 relend
= relocs
+ input_section
->reloc_count
;
2566 for (; rel
< relend
; rel
++)
2569 reloc_howto_type
*howto
;
2570 unsigned long r_symndx
;
2571 struct elf_link_hash_entry
*h
;
2572 Elf_Internal_Sym
*sym
;
2577 bfd_reloc_status_type r
;
2578 bfd_boolean is_weak_undef
;
2579 bfd_boolean unresolved_reloc
;
2581 bfd_boolean dynamic_symbol
;
2583 r_type
= ELF32_R_TYPE (rel
->r_info
);
2584 if (r_type
== (int) R_XTENSA_GNU_VTINHERIT
2585 || r_type
== (int) R_XTENSA_GNU_VTENTRY
)
2588 if (r_type
< 0 || r_type
>= (int) R_XTENSA_max
)
2590 bfd_set_error (bfd_error_bad_value
);
2593 howto
= &elf_howto_table
[r_type
];
2595 r_symndx
= ELF32_R_SYM (rel
->r_info
);
2600 is_weak_undef
= FALSE
;
2601 unresolved_reloc
= FALSE
;
2604 if (howto
->partial_inplace
&& !info
->relocatable
)
2606 /* Because R_XTENSA_32 was made partial_inplace to fix some
2607 problems with DWARF info in partial links, there may be
2608 an addend stored in the contents. Take it out of there
2609 and move it back into the addend field of the reloc. */
2610 rel
->r_addend
+= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2611 bfd_put_32 (input_bfd
, 0, contents
+ rel
->r_offset
);
2614 if (r_symndx
< symtab_hdr
->sh_info
)
2616 sym
= local_syms
+ r_symndx
;
2617 sym_type
= ELF32_ST_TYPE (sym
->st_info
);
2618 sec
= local_sections
[r_symndx
];
2619 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
2623 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
2624 r_symndx
, symtab_hdr
, sym_hashes
,
2626 unresolved_reloc
, warned
);
2629 && !unresolved_reloc
2630 && h
->root
.type
== bfd_link_hash_undefweak
)
2631 is_weak_undef
= TRUE
;
2636 if (sec
!= NULL
&& elf_discarded_section (sec
))
2638 /* For relocs against symbols from removed linkonce sections,
2639 or sections discarded by a linker script, we just want the
2640 section contents zeroed. Avoid any special processing. */
2641 _bfd_clear_contents (howto
, input_bfd
, contents
+ rel
->r_offset
);
2647 if (info
->relocatable
)
2649 /* This is a relocatable link.
2650 1) If the reloc is against a section symbol, adjust
2651 according to the output section.
2652 2) If there is a new target for this relocation,
2653 the new target will be in the same output section.
2654 We adjust the relocation by the output section
2657 if (relaxing_section
)
2659 /* Check if this references a section in another input file. */
2660 if (!do_fix_for_relocatable_link (rel
, input_bfd
, input_section
,
2665 if (r_type
== R_XTENSA_ASM_SIMPLIFY
)
2667 error_message
= NULL
;
2668 /* Convert ASM_SIMPLIFY into the simpler relocation
2669 so that they never escape a relaxing link. */
2670 r
= contract_asm_expansion (contents
, input_size
, rel
,
2672 if (r
!= bfd_reloc_ok
)
2674 if (!((*info
->callbacks
->reloc_dangerous
)
2675 (info
, error_message
, input_bfd
, input_section
,
2679 r_type
= ELF32_R_TYPE (rel
->r_info
);
2682 /* This is a relocatable link, so we don't have to change
2683 anything unless the reloc is against a section symbol,
2684 in which case we have to adjust according to where the
2685 section symbol winds up in the output section. */
2686 if (r_symndx
< symtab_hdr
->sh_info
)
2688 sym
= local_syms
+ r_symndx
;
2689 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
2691 sec
= local_sections
[r_symndx
];
2692 rel
->r_addend
+= sec
->output_offset
+ sym
->st_value
;
2696 /* If there is an addend with a partial_inplace howto,
2697 then move the addend to the contents. This is a hack
2698 to work around problems with DWARF in relocatable links
2699 with some previous version of BFD. Now we can't easily get
2700 rid of the hack without breaking backward compatibility.... */
2703 howto
= &elf_howto_table
[r_type
];
2704 if (howto
->partial_inplace
)
2706 r
= elf_xtensa_do_reloc (howto
, input_bfd
, input_section
,
2707 rel
->r_addend
, contents
,
2708 rel
->r_offset
, FALSE
,
2710 if (r
!= bfd_reloc_ok
)
2712 if (!((*info
->callbacks
->reloc_dangerous
)
2713 (info
, error_message
, input_bfd
, input_section
,
2721 /* Done with work for relocatable link; continue with next reloc. */
2725 /* This is a final link. */
2727 if (relaxing_section
)
2729 /* Check if this references a section in another input file. */
2730 do_fix_for_final_link (rel
, input_bfd
, input_section
, contents
,
2734 /* Sanity check the address. */
2735 if (rel
->r_offset
>= input_size
2736 && ELF32_R_TYPE (rel
->r_info
) != R_XTENSA_NONE
)
2738 (*_bfd_error_handler
)
2739 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2740 input_bfd
, input_section
, rel
->r_offset
, input_size
);
2741 bfd_set_error (bfd_error_bad_value
);
2746 name
= h
->root
.root
.string
;
2749 name
= (bfd_elf_string_from_elf_section
2750 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
2751 if (name
== NULL
|| *name
== '\0')
2752 name
= bfd_section_name (input_bfd
, sec
);
2756 && r_type
!= R_XTENSA_NONE
2758 || h
->root
.type
== bfd_link_hash_defined
2759 || h
->root
.type
== bfd_link_hash_defweak
)
2760 && IS_XTENSA_TLS_RELOC (r_type
) != (sym_type
== STT_TLS
))
2762 (*_bfd_error_handler
)
2763 ((sym_type
== STT_TLS
2764 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2765 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2768 (long) rel
->r_offset
,
2773 dynamic_symbol
= elf_xtensa_dynamic_symbol_p (h
, info
);
2775 tls_type
= GOT_UNKNOWN
;
2777 tls_type
= elf_xtensa_hash_entry (h
)->tls_type
;
2778 else if (local_got_tls_types
)
2779 tls_type
= local_got_tls_types
[r_symndx
];
2785 if (elf_hash_table (info
)->dynamic_sections_created
2786 && (input_section
->flags
& SEC_ALLOC
) != 0
2787 && (dynamic_symbol
|| info
->shared
))
2789 Elf_Internal_Rela outrel
;
2793 if (dynamic_symbol
&& r_type
== R_XTENSA_PLT
)
2794 srel
= htab
->srelplt
;
2796 srel
= htab
->srelgot
;
2798 BFD_ASSERT (srel
!= NULL
);
2801 _bfd_elf_section_offset (output_bfd
, info
,
2802 input_section
, rel
->r_offset
);
2804 if ((outrel
.r_offset
| 1) == (bfd_vma
) -1)
2805 memset (&outrel
, 0, sizeof outrel
);
2808 outrel
.r_offset
+= (input_section
->output_section
->vma
2809 + input_section
->output_offset
);
2811 /* Complain if the relocation is in a read-only section
2812 and not in a literal pool. */
2813 if ((input_section
->flags
& SEC_READONLY
) != 0
2814 && !elf_xtensa_in_literal_pool (lit_table
, ltblsize
,
2818 _("dynamic relocation in read-only section");
2819 if (!((*info
->callbacks
->reloc_dangerous
)
2820 (info
, error_message
, input_bfd
, input_section
,
2827 outrel
.r_addend
= rel
->r_addend
;
2830 if (r_type
== R_XTENSA_32
)
2833 ELF32_R_INFO (h
->dynindx
, R_XTENSA_GLOB_DAT
);
2836 else /* r_type == R_XTENSA_PLT */
2839 ELF32_R_INFO (h
->dynindx
, R_XTENSA_JMP_SLOT
);
2841 /* Create the PLT entry and set the initial
2842 contents of the literal entry to the address of
2845 elf_xtensa_create_plt_entry (info
, output_bfd
,
2848 unresolved_reloc
= FALSE
;
2852 /* Generate a RELATIVE relocation. */
2853 outrel
.r_info
= ELF32_R_INFO (0, R_XTENSA_RELATIVE
);
2854 outrel
.r_addend
= 0;
2858 loc
= (srel
->contents
2859 + srel
->reloc_count
++ * sizeof (Elf32_External_Rela
));
2860 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
2861 BFD_ASSERT (sizeof (Elf32_External_Rela
) * srel
->reloc_count
2864 else if (r_type
== R_XTENSA_ASM_EXPAND
&& dynamic_symbol
)
2866 /* This should only happen for non-PIC code, which is not
2867 supposed to be used on systems with dynamic linking.
2868 Just ignore these relocations. */
2873 case R_XTENSA_TLS_TPOFF
:
2874 /* Switch to LE model for local symbols in an executable. */
2875 if (! info
->shared
&& ! dynamic_symbol
)
2877 relocation
= tpoff (info
, relocation
);
2882 case R_XTENSA_TLSDESC_FN
:
2883 case R_XTENSA_TLSDESC_ARG
:
2885 if (r_type
== R_XTENSA_TLSDESC_FN
)
2887 if (! info
->shared
|| (tls_type
& GOT_TLS_IE
) != 0)
2888 r_type
= R_XTENSA_NONE
;
2890 else if (r_type
== R_XTENSA_TLSDESC_ARG
)
2894 if ((tls_type
& GOT_TLS_IE
) != 0)
2895 r_type
= R_XTENSA_TLS_TPOFF
;
2899 r_type
= R_XTENSA_TLS_TPOFF
;
2900 if (! dynamic_symbol
)
2902 relocation
= tpoff (info
, relocation
);
2908 if (r_type
== R_XTENSA_NONE
)
2909 /* Nothing to do here; skip to the next reloc. */
2912 if (! elf_hash_table (info
)->dynamic_sections_created
)
2915 _("TLS relocation invalid without dynamic sections");
2916 if (!((*info
->callbacks
->reloc_dangerous
)
2917 (info
, error_message
, input_bfd
, input_section
,
2923 Elf_Internal_Rela outrel
;
2925 asection
*srel
= htab
->srelgot
;
2928 outrel
.r_offset
= (input_section
->output_section
->vma
2929 + input_section
->output_offset
2932 /* Complain if the relocation is in a read-only section
2933 and not in a literal pool. */
2934 if ((input_section
->flags
& SEC_READONLY
) != 0
2935 && ! elf_xtensa_in_literal_pool (lit_table
, ltblsize
,
2939 _("dynamic relocation in read-only section");
2940 if (!((*info
->callbacks
->reloc_dangerous
)
2941 (info
, error_message
, input_bfd
, input_section
,
2946 indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
2948 outrel
.r_addend
= relocation
- dtpoff_base (info
);
2950 outrel
.r_addend
= 0;
2953 outrel
.r_info
= ELF32_R_INFO (indx
, r_type
);
2955 unresolved_reloc
= FALSE
;
2958 loc
= (srel
->contents
2959 + srel
->reloc_count
++ * sizeof (Elf32_External_Rela
));
2960 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
2961 BFD_ASSERT (sizeof (Elf32_External_Rela
) * srel
->reloc_count
2967 case R_XTENSA_TLS_DTPOFF
:
2969 /* Switch from LD model to LE model. */
2970 relocation
= tpoff (info
, relocation
);
2972 relocation
-= dtpoff_base (info
);
2975 case R_XTENSA_TLS_FUNC
:
2976 case R_XTENSA_TLS_ARG
:
2977 case R_XTENSA_TLS_CALL
:
2978 /* Check if optimizing to IE or LE model. */
2979 if ((tls_type
& GOT_TLS_IE
) != 0)
2981 bfd_boolean is_ld_model
=
2982 (h
&& elf_xtensa_hash_entry (h
) == htab
->tlsbase
);
2983 if (! replace_tls_insn (rel
, input_bfd
, input_section
, contents
,
2984 is_ld_model
, &error_message
))
2986 if (!((*info
->callbacks
->reloc_dangerous
)
2987 (info
, error_message
, input_bfd
, input_section
,
2992 if (r_type
!= R_XTENSA_TLS_ARG
|| is_ld_model
)
2994 /* Skip subsequent relocations on the same instruction. */
2995 while (rel
+ 1 < relend
&& rel
[1].r_offset
== rel
->r_offset
)
3002 if (elf_hash_table (info
)->dynamic_sections_created
3003 && dynamic_symbol
&& (is_operand_relocation (r_type
)
3004 || r_type
== R_XTENSA_32_PCREL
))
3007 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3008 strlen (name
) + 2, name
);
3009 if (!((*info
->callbacks
->reloc_dangerous
)
3010 (info
, error_message
, input_bfd
, input_section
,
3018 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3019 because such sections are not SEC_ALLOC and thus ld.so will
3020 not process them. */
3021 if (unresolved_reloc
3022 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
3025 (*_bfd_error_handler
)
3026 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3029 (long) rel
->r_offset
,
3035 /* TLS optimizations may have changed r_type; update "howto". */
3036 howto
= &elf_howto_table
[r_type
];
3038 /* There's no point in calling bfd_perform_relocation here.
3039 Just go directly to our "special function". */
3040 r
= elf_xtensa_do_reloc (howto
, input_bfd
, input_section
,
3041 relocation
+ rel
->r_addend
,
3042 contents
, rel
->r_offset
, is_weak_undef
,
3045 if (r
!= bfd_reloc_ok
&& !warned
)
3047 BFD_ASSERT (r
== bfd_reloc_dangerous
|| r
== bfd_reloc_other
);
3048 BFD_ASSERT (error_message
!= NULL
);
3050 if (rel
->r_addend
== 0)
3051 error_message
= vsprint_msg (error_message
, ": %s",
3052 strlen (name
) + 2, name
);
3054 error_message
= vsprint_msg (error_message
, ": (%s+0x%x)",
3056 name
, (int) rel
->r_addend
);
3058 if (!((*info
->callbacks
->reloc_dangerous
)
3059 (info
, error_message
, input_bfd
, input_section
,
3068 input_section
->reloc_done
= TRUE
;
3074 /* Finish up dynamic symbol handling. There's not much to do here since
3075 the PLT and GOT entries are all set up by relocate_section. */
3078 elf_xtensa_finish_dynamic_symbol (bfd
*output_bfd ATTRIBUTE_UNUSED
,
3079 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
3080 struct elf_link_hash_entry
*h
,
3081 Elf_Internal_Sym
*sym
)
3083 if (h
->needs_plt
&& !h
->def_regular
)
3085 /* Mark the symbol as undefined, rather than as defined in
3086 the .plt section. Leave the value alone. */
3087 sym
->st_shndx
= SHN_UNDEF
;
3088 /* If the symbol is weak, we do need to clear the value.
3089 Otherwise, the PLT entry would provide a definition for
3090 the symbol even if the symbol wasn't defined anywhere,
3091 and so the symbol would never be NULL. */
3092 if (!h
->ref_regular_nonweak
)
3096 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3097 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
3098 || h
== elf_hash_table (info
)->hgot
)
3099 sym
->st_shndx
= SHN_ABS
;
3105 /* Combine adjacent literal table entries in the output. Adjacent
3106 entries within each input section may have been removed during
3107 relaxation, but we repeat the process here, even though it's too late
3108 to shrink the output section, because it's important to minimize the
3109 number of literal table entries to reduce the start-up work for the
3110 runtime linker. Returns the number of remaining table entries or -1
3114 elf_xtensa_combine_prop_entries (bfd
*output_bfd
,
3119 property_table_entry
*table
;
3120 bfd_size_type section_size
, sgotloc_size
;
3124 section_size
= sxtlit
->size
;
3125 BFD_ASSERT (section_size
% 8 == 0);
3126 num
= section_size
/ 8;
3128 sgotloc_size
= sgotloc
->size
;
3129 if (sgotloc_size
!= section_size
)
3131 (*_bfd_error_handler
)
3132 (_("internal inconsistency in size of .got.loc section"));
3136 table
= bfd_malloc (num
* sizeof (property_table_entry
));
3140 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3141 propagates to the output section, where it doesn't really apply and
3142 where it breaks the following call to bfd_malloc_and_get_section. */
3143 sxtlit
->flags
&= ~SEC_IN_MEMORY
;
3145 if (!bfd_malloc_and_get_section (output_bfd
, sxtlit
, &contents
))
3153 /* There should never be any relocations left at this point, so this
3154 is quite a bit easier than what is done during relaxation. */
3156 /* Copy the raw contents into a property table array and sort it. */
3158 for (n
= 0; n
< num
; n
++)
3160 table
[n
].address
= bfd_get_32 (output_bfd
, &contents
[offset
]);
3161 table
[n
].size
= bfd_get_32 (output_bfd
, &contents
[offset
+ 4]);
3164 qsort (table
, num
, sizeof (property_table_entry
), property_table_compare
);
3166 for (n
= 0; n
< num
; n
++)
3168 bfd_boolean remove_entry
= FALSE
;
3170 if (table
[n
].size
== 0)
3171 remove_entry
= TRUE
;
3173 && (table
[n
-1].address
+ table
[n
-1].size
== table
[n
].address
))
3175 table
[n
-1].size
+= table
[n
].size
;
3176 remove_entry
= TRUE
;
3181 for (m
= n
; m
< num
- 1; m
++)
3183 table
[m
].address
= table
[m
+1].address
;
3184 table
[m
].size
= table
[m
+1].size
;
3192 /* Copy the data back to the raw contents. */
3194 for (n
= 0; n
< num
; n
++)
3196 bfd_put_32 (output_bfd
, table
[n
].address
, &contents
[offset
]);
3197 bfd_put_32 (output_bfd
, table
[n
].size
, &contents
[offset
+ 4]);
3201 /* Clear the removed bytes. */
3202 if ((bfd_size_type
) (num
* 8) < section_size
)
3203 memset (&contents
[num
* 8], 0, section_size
- num
* 8);
3205 if (! bfd_set_section_contents (output_bfd
, sxtlit
, contents
, 0,
3209 /* Copy the contents to ".got.loc". */
3210 memcpy (sgotloc
->contents
, contents
, section_size
);
3218 /* Finish up the dynamic sections. */
3221 elf_xtensa_finish_dynamic_sections (bfd
*output_bfd
,
3222 struct bfd_link_info
*info
)
3224 struct elf_xtensa_link_hash_table
*htab
;
3226 asection
*sdyn
, *srelplt
, *sgot
, *sxtlit
, *sgotloc
;
3227 Elf32_External_Dyn
*dyncon
, *dynconend
;
3228 int num_xtlit_entries
= 0;
3230 if (! elf_hash_table (info
)->dynamic_sections_created
)
3233 htab
= elf_xtensa_hash_table (info
);
3234 dynobj
= elf_hash_table (info
)->dynobj
;
3235 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3236 BFD_ASSERT (sdyn
!= NULL
);
3238 /* Set the first entry in the global offset table to the address of
3239 the dynamic section. */
3243 BFD_ASSERT (sgot
->size
== 4);
3245 bfd_put_32 (output_bfd
, 0, sgot
->contents
);
3247 bfd_put_32 (output_bfd
,
3248 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
3252 srelplt
= htab
->srelplt
;
3253 if (srelplt
&& srelplt
->size
!= 0)
3255 asection
*sgotplt
, *srelgot
, *spltlittbl
;
3256 int chunk
, plt_chunks
, plt_entries
;
3257 Elf_Internal_Rela irela
;
3259 unsigned rtld_reloc
;
3261 srelgot
= htab
->srelgot
;
3262 spltlittbl
= htab
->spltlittbl
;
3263 BFD_ASSERT (srelgot
!= NULL
&& spltlittbl
!= NULL
);
3265 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3266 of them follow immediately after.... */
3267 for (rtld_reloc
= 0; rtld_reloc
< srelgot
->reloc_count
; rtld_reloc
++)
3269 loc
= srelgot
->contents
+ rtld_reloc
* sizeof (Elf32_External_Rela
);
3270 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &irela
);
3271 if (ELF32_R_TYPE (irela
.r_info
) == R_XTENSA_RTLD
)
3274 BFD_ASSERT (rtld_reloc
< srelgot
->reloc_count
);
3276 plt_entries
= srelplt
->size
/ sizeof (Elf32_External_Rela
);
3278 (plt_entries
+ PLT_ENTRIES_PER_CHUNK
- 1) / PLT_ENTRIES_PER_CHUNK
;
3280 for (chunk
= 0; chunk
< plt_chunks
; chunk
++)
3282 int chunk_entries
= 0;
3284 sgotplt
= elf_xtensa_get_gotplt_section (info
, chunk
);
3285 BFD_ASSERT (sgotplt
!= NULL
);
3287 /* Emit special RTLD relocations for the first two entries in
3288 each chunk of the .got.plt section. */
3290 loc
= srelgot
->contents
+ rtld_reloc
* sizeof (Elf32_External_Rela
);
3291 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &irela
);
3292 BFD_ASSERT (ELF32_R_TYPE (irela
.r_info
) == R_XTENSA_RTLD
);
3293 irela
.r_offset
= (sgotplt
->output_section
->vma
3294 + sgotplt
->output_offset
);
3295 irela
.r_addend
= 1; /* tell rtld to set value to resolver function */
3296 bfd_elf32_swap_reloca_out (output_bfd
, &irela
, loc
);
3298 BFD_ASSERT (rtld_reloc
<= srelgot
->reloc_count
);
3300 /* Next literal immediately follows the first. */
3301 loc
+= sizeof (Elf32_External_Rela
);
3302 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &irela
);
3303 BFD_ASSERT (ELF32_R_TYPE (irela
.r_info
) == R_XTENSA_RTLD
);
3304 irela
.r_offset
= (sgotplt
->output_section
->vma
3305 + sgotplt
->output_offset
+ 4);
3306 /* Tell rtld to set value to object's link map. */
3308 bfd_elf32_swap_reloca_out (output_bfd
, &irela
, loc
);
3310 BFD_ASSERT (rtld_reloc
<= srelgot
->reloc_count
);
3312 /* Fill in the literal table. */
3313 if (chunk
< plt_chunks
- 1)
3314 chunk_entries
= PLT_ENTRIES_PER_CHUNK
;
3316 chunk_entries
= plt_entries
- (chunk
* PLT_ENTRIES_PER_CHUNK
);
3318 BFD_ASSERT ((unsigned) (chunk
+ 1) * 8 <= spltlittbl
->size
);
3319 bfd_put_32 (output_bfd
,
3320 sgotplt
->output_section
->vma
+ sgotplt
->output_offset
,
3321 spltlittbl
->contents
+ (chunk
* 8) + 0);
3322 bfd_put_32 (output_bfd
,
3323 8 + (chunk_entries
* 4),
3324 spltlittbl
->contents
+ (chunk
* 8) + 4);
3327 /* All the dynamic relocations have been emitted at this point.
3328 Make sure the relocation sections are the correct size. */
3329 if (srelgot
->size
!= (sizeof (Elf32_External_Rela
)
3330 * srelgot
->reloc_count
)
3331 || srelplt
->size
!= (sizeof (Elf32_External_Rela
)
3332 * srelplt
->reloc_count
))
3335 /* The .xt.lit.plt section has just been modified. This must
3336 happen before the code below which combines adjacent literal
3337 table entries, and the .xt.lit.plt contents have to be forced to
3339 if (! bfd_set_section_contents (output_bfd
,
3340 spltlittbl
->output_section
,
3341 spltlittbl
->contents
,
3342 spltlittbl
->output_offset
,
3345 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3346 spltlittbl
->flags
&= ~SEC_HAS_CONTENTS
;
3349 /* Combine adjacent literal table entries. */
3350 BFD_ASSERT (! info
->relocatable
);
3351 sxtlit
= bfd_get_section_by_name (output_bfd
, ".xt.lit");
3352 sgotloc
= htab
->sgotloc
;
3353 BFD_ASSERT (sgotloc
);
3357 elf_xtensa_combine_prop_entries (output_bfd
, sxtlit
, sgotloc
);
3358 if (num_xtlit_entries
< 0)
3362 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
3363 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
3364 for (; dyncon
< dynconend
; dyncon
++)
3366 Elf_Internal_Dyn dyn
;
3368 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
3375 case DT_XTENSA_GOT_LOC_SZ
:
3376 dyn
.d_un
.d_val
= num_xtlit_entries
;
3379 case DT_XTENSA_GOT_LOC_OFF
:
3380 dyn
.d_un
.d_ptr
= htab
->sgotloc
->output_section
->vma
;
3384 dyn
.d_un
.d_ptr
= htab
->sgot
->output_section
->vma
;
3388 dyn
.d_un
.d_ptr
= htab
->srelplt
->output_section
->vma
;
3392 dyn
.d_un
.d_val
= htab
->srelplt
->output_section
->size
;
3396 /* Adjust RELASZ to not include JMPREL. This matches what
3397 glibc expects and what is done for several other ELF
3398 targets (e.g., i386, alpha), but the "correct" behavior
3399 seems to be unresolved. Since the linker script arranges
3400 for .rela.plt to follow all other relocation sections, we
3401 don't have to worry about changing the DT_RELA entry. */
3403 dyn
.d_un
.d_val
-= htab
->srelplt
->output_section
->size
;
3407 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
3414 /* Functions for dealing with the e_flags field. */
3416 /* Merge backend specific data from an object file to the output
3417 object file when linking. */
3420 elf_xtensa_merge_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
3422 unsigned out_mach
, in_mach
;
3423 flagword out_flag
, in_flag
;
3425 /* Check if we have the same endianess. */
3426 if (!_bfd_generic_verify_endian_match (ibfd
, obfd
))
3429 /* Don't even pretend to support mixed-format linking. */
3430 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
3431 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
3434 out_flag
= elf_elfheader (obfd
)->e_flags
;
3435 in_flag
= elf_elfheader (ibfd
)->e_flags
;
3437 out_mach
= out_flag
& EF_XTENSA_MACH
;
3438 in_mach
= in_flag
& EF_XTENSA_MACH
;
3439 if (out_mach
!= in_mach
)
3441 (*_bfd_error_handler
)
3442 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
3443 ibfd
, out_mach
, in_mach
);
3444 bfd_set_error (bfd_error_wrong_format
);
3448 if (! elf_flags_init (obfd
))
3450 elf_flags_init (obfd
) = TRUE
;
3451 elf_elfheader (obfd
)->e_flags
= in_flag
;
3453 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
3454 && bfd_get_arch_info (obfd
)->the_default
)
3455 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
3456 bfd_get_mach (ibfd
));
3461 if ((out_flag
& EF_XTENSA_XT_INSN
) != (in_flag
& EF_XTENSA_XT_INSN
))
3462 elf_elfheader (obfd
)->e_flags
&= (~ EF_XTENSA_XT_INSN
);
3464 if ((out_flag
& EF_XTENSA_XT_LIT
) != (in_flag
& EF_XTENSA_XT_LIT
))
3465 elf_elfheader (obfd
)->e_flags
&= (~ EF_XTENSA_XT_LIT
);
3472 elf_xtensa_set_private_flags (bfd
*abfd
, flagword flags
)
3474 BFD_ASSERT (!elf_flags_init (abfd
)
3475 || elf_elfheader (abfd
)->e_flags
== flags
);
3477 elf_elfheader (abfd
)->e_flags
|= flags
;
3478 elf_flags_init (abfd
) = TRUE
;
3485 elf_xtensa_print_private_bfd_data (bfd
*abfd
, void *farg
)
3487 FILE *f
= (FILE *) farg
;
3488 flagword e_flags
= elf_elfheader (abfd
)->e_flags
;
3490 fprintf (f
, "\nXtensa header:\n");
3491 if ((e_flags
& EF_XTENSA_MACH
) == E_XTENSA_MACH
)
3492 fprintf (f
, "\nMachine = Base\n");
3494 fprintf (f
, "\nMachine Id = 0x%x\n", e_flags
& EF_XTENSA_MACH
);
3496 fprintf (f
, "Insn tables = %s\n",
3497 (e_flags
& EF_XTENSA_XT_INSN
) ? "true" : "false");
3499 fprintf (f
, "Literal tables = %s\n",
3500 (e_flags
& EF_XTENSA_XT_LIT
) ? "true" : "false");
3502 return _bfd_elf_print_private_bfd_data (abfd
, farg
);
3506 /* Set the right machine number for an Xtensa ELF file. */
3509 elf_xtensa_object_p (bfd
*abfd
)
3512 unsigned long arch
= elf_elfheader (abfd
)->e_flags
& EF_XTENSA_MACH
;
3517 mach
= bfd_mach_xtensa
;
3523 (void) bfd_default_set_arch_mach (abfd
, bfd_arch_xtensa
, mach
);
3528 /* The final processing done just before writing out an Xtensa ELF object
3529 file. This gets the Xtensa architecture right based on the machine
3533 elf_xtensa_final_write_processing (bfd
*abfd
,
3534 bfd_boolean linker ATTRIBUTE_UNUSED
)
3539 switch (mach
= bfd_get_mach (abfd
))
3541 case bfd_mach_xtensa
:
3542 val
= E_XTENSA_MACH
;
3548 elf_elfheader (abfd
)->e_flags
&= (~ EF_XTENSA_MACH
);
3549 elf_elfheader (abfd
)->e_flags
|= val
;
3553 static enum elf_reloc_type_class
3554 elf_xtensa_reloc_type_class (const Elf_Internal_Rela
*rela
)
3556 switch ((int) ELF32_R_TYPE (rela
->r_info
))
3558 case R_XTENSA_RELATIVE
:
3559 return reloc_class_relative
;
3560 case R_XTENSA_JMP_SLOT
:
3561 return reloc_class_plt
;
3563 return reloc_class_normal
;
3569 elf_xtensa_discard_info_for_section (bfd
*abfd
,
3570 struct elf_reloc_cookie
*cookie
,
3571 struct bfd_link_info
*info
,
3575 bfd_vma offset
, actual_offset
;
3576 bfd_size_type removed_bytes
= 0;
3577 bfd_size_type entry_size
;
3579 if (sec
->output_section
3580 && bfd_is_abs_section (sec
->output_section
))
3583 if (xtensa_is_proptable_section (sec
))
3588 if (sec
->size
== 0 || sec
->size
% entry_size
!= 0)
3591 contents
= retrieve_contents (abfd
, sec
, info
->keep_memory
);
3595 cookie
->rels
= retrieve_internal_relocs (abfd
, sec
, info
->keep_memory
);
3598 release_contents (sec
, contents
);
3602 /* Sort the relocations. They should already be in order when
3603 relaxation is enabled, but it might not be. */
3604 qsort (cookie
->rels
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
3605 internal_reloc_compare
);
3607 cookie
->rel
= cookie
->rels
;
3608 cookie
->relend
= cookie
->rels
+ sec
->reloc_count
;
3610 for (offset
= 0; offset
< sec
->size
; offset
+= entry_size
)
3612 actual_offset
= offset
- removed_bytes
;
3614 /* The ...symbol_deleted_p function will skip over relocs but it
3615 won't adjust their offsets, so do that here. */
3616 while (cookie
->rel
< cookie
->relend
3617 && cookie
->rel
->r_offset
< offset
)
3619 cookie
->rel
->r_offset
-= removed_bytes
;
3623 while (cookie
->rel
< cookie
->relend
3624 && cookie
->rel
->r_offset
== offset
)
3626 if (bfd_elf_reloc_symbol_deleted_p (offset
, cookie
))
3628 /* Remove the table entry. (If the reloc type is NONE, then
3629 the entry has already been merged with another and deleted
3630 during relaxation.) */
3631 if (ELF32_R_TYPE (cookie
->rel
->r_info
) != R_XTENSA_NONE
)
3633 /* Shift the contents up. */
3634 if (offset
+ entry_size
< sec
->size
)
3635 memmove (&contents
[actual_offset
],
3636 &contents
[actual_offset
+ entry_size
],
3637 sec
->size
- offset
- entry_size
);
3638 removed_bytes
+= entry_size
;
3641 /* Remove this relocation. */
3642 cookie
->rel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
3645 /* Adjust the relocation offset for previous removals. This
3646 should not be done before calling ...symbol_deleted_p
3647 because it might mess up the offset comparisons there.
3648 Make sure the offset doesn't underflow in the case where
3649 the first entry is removed. */
3650 if (cookie
->rel
->r_offset
>= removed_bytes
)
3651 cookie
->rel
->r_offset
-= removed_bytes
;
3653 cookie
->rel
->r_offset
= 0;
3659 if (removed_bytes
!= 0)
3661 /* Adjust any remaining relocs (shouldn't be any). */
3662 for (; cookie
->rel
< cookie
->relend
; cookie
->rel
++)
3664 if (cookie
->rel
->r_offset
>= removed_bytes
)
3665 cookie
->rel
->r_offset
-= removed_bytes
;
3667 cookie
->rel
->r_offset
= 0;
3670 /* Clear the removed bytes. */
3671 memset (&contents
[sec
->size
- removed_bytes
], 0, removed_bytes
);
3673 pin_contents (sec
, contents
);
3674 pin_internal_relocs (sec
, cookie
->rels
);
3677 if (sec
->rawsize
== 0)
3678 sec
->rawsize
= sec
->size
;
3679 sec
->size
-= removed_bytes
;
3681 if (xtensa_is_littable_section (sec
))
3683 asection
*sgotloc
= elf_xtensa_hash_table (info
)->sgotloc
;
3685 sgotloc
->size
-= removed_bytes
;
3690 release_contents (sec
, contents
);
3691 release_internal_relocs (sec
, cookie
->rels
);
3694 return (removed_bytes
!= 0);
3699 elf_xtensa_discard_info (bfd
*abfd
,
3700 struct elf_reloc_cookie
*cookie
,
3701 struct bfd_link_info
*info
)
3704 bfd_boolean changed
= FALSE
;
3706 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
3708 if (xtensa_is_property_section (sec
))
3710 if (elf_xtensa_discard_info_for_section (abfd
, cookie
, info
, sec
))
3720 elf_xtensa_ignore_discarded_relocs (asection
*sec
)
3722 return xtensa_is_property_section (sec
);
3727 elf_xtensa_action_discarded (asection
*sec
)
3729 if (strcmp (".xt_except_table", sec
->name
) == 0)
3732 if (strcmp (".xt_except_desc", sec
->name
) == 0)
3735 return _bfd_elf_default_action_discarded (sec
);
3739 /* Support for core dump NOTE sections. */
3742 elf_xtensa_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
3747 /* The size for Xtensa is variable, so don't try to recognize the format
3748 based on the size. Just assume this is GNU/Linux. */
3751 elf_tdata (abfd
)->core_signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
3754 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
3758 size
= note
->descsz
- offset
- 4;
3760 /* Make a ".reg/999" section. */
3761 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
3762 size
, note
->descpos
+ offset
);
3767 elf_xtensa_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
3769 switch (note
->descsz
)
3774 case 128: /* GNU/Linux elf_prpsinfo */
3775 elf_tdata (abfd
)->core_program
3776 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 32, 16);
3777 elf_tdata (abfd
)->core_command
3778 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 48, 80);
3781 /* Note that for some reason, a spurious space is tacked
3782 onto the end of the args in some (at least one anyway)
3783 implementations, so strip it off if it exists. */
3786 char *command
= elf_tdata (abfd
)->core_command
;
3787 int n
= strlen (command
);
3789 if (0 < n
&& command
[n
- 1] == ' ')
3790 command
[n
- 1] = '\0';
3797 /* Generic Xtensa configurability stuff. */
3799 static xtensa_opcode callx0_op
= XTENSA_UNDEFINED
;
3800 static xtensa_opcode callx4_op
= XTENSA_UNDEFINED
;
3801 static xtensa_opcode callx8_op
= XTENSA_UNDEFINED
;
3802 static xtensa_opcode callx12_op
= XTENSA_UNDEFINED
;
3803 static xtensa_opcode call0_op
= XTENSA_UNDEFINED
;
3804 static xtensa_opcode call4_op
= XTENSA_UNDEFINED
;
3805 static xtensa_opcode call8_op
= XTENSA_UNDEFINED
;
3806 static xtensa_opcode call12_op
= XTENSA_UNDEFINED
;
3809 init_call_opcodes (void)
3811 if (callx0_op
== XTENSA_UNDEFINED
)
3813 callx0_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx0");
3814 callx4_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx4");
3815 callx8_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx8");
3816 callx12_op
= xtensa_opcode_lookup (xtensa_default_isa
, "callx12");
3817 call0_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call0");
3818 call4_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call4");
3819 call8_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call8");
3820 call12_op
= xtensa_opcode_lookup (xtensa_default_isa
, "call12");
3826 is_indirect_call_opcode (xtensa_opcode opcode
)
3828 init_call_opcodes ();
3829 return (opcode
== callx0_op
3830 || opcode
== callx4_op
3831 || opcode
== callx8_op
3832 || opcode
== callx12_op
);
3837 is_direct_call_opcode (xtensa_opcode opcode
)
3839 init_call_opcodes ();
3840 return (opcode
== call0_op
3841 || opcode
== call4_op
3842 || opcode
== call8_op
3843 || opcode
== call12_op
);
3848 is_windowed_call_opcode (xtensa_opcode opcode
)
3850 init_call_opcodes ();
3851 return (opcode
== call4_op
3852 || opcode
== call8_op
3853 || opcode
== call12_op
3854 || opcode
== callx4_op
3855 || opcode
== callx8_op
3856 || opcode
== callx12_op
);
3861 get_indirect_call_dest_reg (xtensa_opcode opcode
, unsigned *pdst
)
3863 unsigned dst
= (unsigned) -1;
3865 init_call_opcodes ();
3866 if (opcode
== callx0_op
)
3868 else if (opcode
== callx4_op
)
3870 else if (opcode
== callx8_op
)
3872 else if (opcode
== callx12_op
)
3875 if (dst
== (unsigned) -1)
3883 static xtensa_opcode
3884 get_const16_opcode (void)
3886 static bfd_boolean done_lookup
= FALSE
;
3887 static xtensa_opcode const16_opcode
= XTENSA_UNDEFINED
;
3890 const16_opcode
= xtensa_opcode_lookup (xtensa_default_isa
, "const16");
3893 return const16_opcode
;
3897 static xtensa_opcode
3898 get_l32r_opcode (void)
3900 static xtensa_opcode l32r_opcode
= XTENSA_UNDEFINED
;
3901 static bfd_boolean done_lookup
= FALSE
;
3905 l32r_opcode
= xtensa_opcode_lookup (xtensa_default_isa
, "l32r");
3913 l32r_offset (bfd_vma addr
, bfd_vma pc
)
3917 offset
= addr
- ((pc
+3) & -4);
3918 BFD_ASSERT ((offset
& ((1 << 2) - 1)) == 0);
3919 offset
= (signed int) offset
>> 2;
3920 BFD_ASSERT ((signed int) offset
>> 16 == -1);
3926 get_relocation_opnd (xtensa_opcode opcode
, int r_type
)
3928 xtensa_isa isa
= xtensa_default_isa
;
3929 int last_immed
, last_opnd
, opi
;
3931 if (opcode
== XTENSA_UNDEFINED
)
3932 return XTENSA_UNDEFINED
;
3934 /* Find the last visible PC-relative immediate operand for the opcode.
3935 If there are no PC-relative immediates, then choose the last visible
3936 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3937 last_immed
= XTENSA_UNDEFINED
;
3938 last_opnd
= xtensa_opcode_num_operands (isa
, opcode
);
3939 for (opi
= last_opnd
- 1; opi
>= 0; opi
--)
3941 if (xtensa_operand_is_visible (isa
, opcode
, opi
) == 0)
3943 if (xtensa_operand_is_PCrelative (isa
, opcode
, opi
) == 1)
3948 if (last_immed
== XTENSA_UNDEFINED
3949 && xtensa_operand_is_register (isa
, opcode
, opi
) == 0)
3953 return XTENSA_UNDEFINED
;
3955 /* If the operand number was specified in an old-style relocation,
3956 check for consistency with the operand computed above. */
3957 if (r_type
>= R_XTENSA_OP0
&& r_type
<= R_XTENSA_OP2
)
3959 int reloc_opnd
= r_type
- R_XTENSA_OP0
;
3960 if (reloc_opnd
!= last_immed
)
3961 return XTENSA_UNDEFINED
;
3969 get_relocation_slot (int r_type
)
3979 if (r_type
>= R_XTENSA_SLOT0_OP
&& r_type
<= R_XTENSA_SLOT14_OP
)
3980 return r_type
- R_XTENSA_SLOT0_OP
;
3981 if (r_type
>= R_XTENSA_SLOT0_ALT
&& r_type
<= R_XTENSA_SLOT14_ALT
)
3982 return r_type
- R_XTENSA_SLOT0_ALT
;
3986 return XTENSA_UNDEFINED
;
3990 /* Get the opcode for a relocation. */
3992 static xtensa_opcode
3993 get_relocation_opcode (bfd
*abfd
,
3996 Elf_Internal_Rela
*irel
)
3998 static xtensa_insnbuf ibuff
= NULL
;
3999 static xtensa_insnbuf sbuff
= NULL
;
4000 xtensa_isa isa
= xtensa_default_isa
;
4004 if (contents
== NULL
)
4005 return XTENSA_UNDEFINED
;
4007 if (bfd_get_section_limit (abfd
, sec
) <= irel
->r_offset
)
4008 return XTENSA_UNDEFINED
;
4012 ibuff
= xtensa_insnbuf_alloc (isa
);
4013 sbuff
= xtensa_insnbuf_alloc (isa
);
4016 /* Decode the instruction. */
4017 xtensa_insnbuf_from_chars (isa
, ibuff
, &contents
[irel
->r_offset
],
4018 sec
->size
- irel
->r_offset
);
4019 fmt
= xtensa_format_decode (isa
, ibuff
);
4020 slot
= get_relocation_slot (ELF32_R_TYPE (irel
->r_info
));
4021 if (slot
== XTENSA_UNDEFINED
)
4022 return XTENSA_UNDEFINED
;
4023 xtensa_format_get_slot (isa
, fmt
, slot
, ibuff
, sbuff
);
4024 return xtensa_opcode_decode (isa
, fmt
, slot
, sbuff
);
4029 is_l32r_relocation (bfd
*abfd
,
4032 Elf_Internal_Rela
*irel
)
4034 xtensa_opcode opcode
;
4035 if (!is_operand_relocation (ELF32_R_TYPE (irel
->r_info
)))
4037 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
4038 return (opcode
== get_l32r_opcode ());
4042 static bfd_size_type
4043 get_asm_simplify_size (bfd_byte
*contents
,
4044 bfd_size_type content_len
,
4045 bfd_size_type offset
)
4047 bfd_size_type insnlen
, size
= 0;
4049 /* Decode the size of the next two instructions. */
4050 insnlen
= insn_decode_len (contents
, content_len
, offset
);
4056 insnlen
= insn_decode_len (contents
, content_len
, offset
+ size
);
4066 is_alt_relocation (int r_type
)
4068 return (r_type
>= R_XTENSA_SLOT0_ALT
4069 && r_type
<= R_XTENSA_SLOT14_ALT
);
4074 is_operand_relocation (int r_type
)
4084 if (r_type
>= R_XTENSA_SLOT0_OP
&& r_type
<= R_XTENSA_SLOT14_OP
)
4086 if (r_type
>= R_XTENSA_SLOT0_ALT
&& r_type
<= R_XTENSA_SLOT14_ALT
)
4095 #define MIN_INSN_LENGTH 2
4097 /* Return 0 if it fails to decode. */
4100 insn_decode_len (bfd_byte
*contents
,
4101 bfd_size_type content_len
,
4102 bfd_size_type offset
)
4105 xtensa_isa isa
= xtensa_default_isa
;
4107 static xtensa_insnbuf ibuff
= NULL
;
4109 if (offset
+ MIN_INSN_LENGTH
> content_len
)
4113 ibuff
= xtensa_insnbuf_alloc (isa
);
4114 xtensa_insnbuf_from_chars (isa
, ibuff
, &contents
[offset
],
4115 content_len
- offset
);
4116 fmt
= xtensa_format_decode (isa
, ibuff
);
4117 if (fmt
== XTENSA_UNDEFINED
)
4119 insn_len
= xtensa_format_length (isa
, fmt
);
4120 if (insn_len
== XTENSA_UNDEFINED
)
4126 /* Decode the opcode for a single slot instruction.
4127 Return 0 if it fails to decode or the instruction is multi-slot. */
4130 insn_decode_opcode (bfd_byte
*contents
,
4131 bfd_size_type content_len
,
4132 bfd_size_type offset
,
4135 xtensa_isa isa
= xtensa_default_isa
;
4137 static xtensa_insnbuf insnbuf
= NULL
;
4138 static xtensa_insnbuf slotbuf
= NULL
;
4140 if (offset
+ MIN_INSN_LENGTH
> content_len
)
4141 return XTENSA_UNDEFINED
;
4143 if (insnbuf
== NULL
)
4145 insnbuf
= xtensa_insnbuf_alloc (isa
);
4146 slotbuf
= xtensa_insnbuf_alloc (isa
);
4149 xtensa_insnbuf_from_chars (isa
, insnbuf
, &contents
[offset
],
4150 content_len
- offset
);
4151 fmt
= xtensa_format_decode (isa
, insnbuf
);
4152 if (fmt
== XTENSA_UNDEFINED
)
4153 return XTENSA_UNDEFINED
;
4155 if (slot
>= xtensa_format_num_slots (isa
, fmt
))
4156 return XTENSA_UNDEFINED
;
4158 xtensa_format_get_slot (isa
, fmt
, slot
, insnbuf
, slotbuf
);
4159 return xtensa_opcode_decode (isa
, fmt
, slot
, slotbuf
);
4163 /* The offset is the offset in the contents.
4164 The address is the address of that offset. */
4167 check_branch_target_aligned (bfd_byte
*contents
,
4168 bfd_size_type content_length
,
4172 bfd_size_type insn_len
= insn_decode_len (contents
, content_length
, offset
);
4175 return check_branch_target_aligned_address (address
, insn_len
);
4180 check_loop_aligned (bfd_byte
*contents
,
4181 bfd_size_type content_length
,
4185 bfd_size_type loop_len
, insn_len
;
4186 xtensa_opcode opcode
;
4188 opcode
= insn_decode_opcode (contents
, content_length
, offset
, 0);
4189 if (opcode
== XTENSA_UNDEFINED
4190 || xtensa_opcode_is_loop (xtensa_default_isa
, opcode
) != 1)
4196 loop_len
= insn_decode_len (contents
, content_length
, offset
);
4197 insn_len
= insn_decode_len (contents
, content_length
, offset
+ loop_len
);
4198 if (loop_len
== 0 || insn_len
== 0)
4204 return check_branch_target_aligned_address (address
+ loop_len
, insn_len
);
4209 check_branch_target_aligned_address (bfd_vma addr
, int len
)
4212 return (addr
% 8 == 0);
4213 return ((addr
>> 2) == ((addr
+ len
- 1) >> 2));
4217 /* Instruction widening and narrowing. */
4219 /* When FLIX is available we need to access certain instructions only
4220 when they are 16-bit or 24-bit instructions. This table caches
4221 information about such instructions by walking through all the
4222 opcodes and finding the smallest single-slot format into which each
4225 static xtensa_format
*op_single_fmt_table
= NULL
;
4229 init_op_single_format_table (void)
4231 xtensa_isa isa
= xtensa_default_isa
;
4232 xtensa_insnbuf ibuf
;
4233 xtensa_opcode opcode
;
4237 if (op_single_fmt_table
)
4240 ibuf
= xtensa_insnbuf_alloc (isa
);
4241 num_opcodes
= xtensa_isa_num_opcodes (isa
);
4243 op_single_fmt_table
= (xtensa_format
*)
4244 bfd_malloc (sizeof (xtensa_format
) * num_opcodes
);
4245 for (opcode
= 0; opcode
< num_opcodes
; opcode
++)
4247 op_single_fmt_table
[opcode
] = XTENSA_UNDEFINED
;
4248 for (fmt
= 0; fmt
< xtensa_isa_num_formats (isa
); fmt
++)
4250 if (xtensa_format_num_slots (isa
, fmt
) == 1
4251 && xtensa_opcode_encode (isa
, fmt
, 0, ibuf
, opcode
) == 0)
4253 xtensa_opcode old_fmt
= op_single_fmt_table
[opcode
];
4254 int fmt_length
= xtensa_format_length (isa
, fmt
);
4255 if (old_fmt
== XTENSA_UNDEFINED
4256 || fmt_length
< xtensa_format_length (isa
, old_fmt
))
4257 op_single_fmt_table
[opcode
] = fmt
;
4261 xtensa_insnbuf_free (isa
, ibuf
);
4265 static xtensa_format
4266 get_single_format (xtensa_opcode opcode
)
4268 init_op_single_format_table ();
4269 return op_single_fmt_table
[opcode
];
4273 /* For the set of narrowable instructions we do NOT include the
4274 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4275 involved during linker relaxation that may require these to
4276 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4277 requires special case code to ensure it only works when op1 == op2. */
4285 struct string_pair narrowable
[] =
4288 { "addi", "addi.n" },
4289 { "addmi", "addi.n" },
4290 { "l32i", "l32i.n" },
4291 { "movi", "movi.n" },
4293 { "retw", "retw.n" },
4294 { "s32i", "s32i.n" },
4295 { "or", "mov.n" } /* special case only when op1 == op2 */
4298 struct string_pair widenable
[] =
4301 { "addi", "addi.n" },
4302 { "addmi", "addi.n" },
4303 { "beqz", "beqz.n" },
4304 { "bnez", "bnez.n" },
4305 { "l32i", "l32i.n" },
4306 { "movi", "movi.n" },
4308 { "retw", "retw.n" },
4309 { "s32i", "s32i.n" },
4310 { "or", "mov.n" } /* special case only when op1 == op2 */
4314 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4315 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4316 return the instruction buffer holding the narrow instruction. Otherwise,
4317 return 0. The set of valid narrowing are specified by a string table
4318 but require some special case operand checks in some cases. */
4320 static xtensa_insnbuf
4321 can_narrow_instruction (xtensa_insnbuf slotbuf
,
4323 xtensa_opcode opcode
)
4325 xtensa_isa isa
= xtensa_default_isa
;
4326 xtensa_format o_fmt
;
4329 static xtensa_insnbuf o_insnbuf
= NULL
;
4330 static xtensa_insnbuf o_slotbuf
= NULL
;
4332 if (o_insnbuf
== NULL
)
4334 o_insnbuf
= xtensa_insnbuf_alloc (isa
);
4335 o_slotbuf
= xtensa_insnbuf_alloc (isa
);
4338 for (opi
= 0; opi
< (sizeof (narrowable
)/sizeof (struct string_pair
)); opi
++)
4340 bfd_boolean is_or
= (strcmp ("or", narrowable
[opi
].wide
) == 0);
4342 if (opcode
== xtensa_opcode_lookup (isa
, narrowable
[opi
].wide
))
4344 uint32 value
, newval
;
4345 int i
, operand_count
, o_operand_count
;
4346 xtensa_opcode o_opcode
;
4348 /* Address does not matter in this case. We might need to
4349 fix it to handle branches/jumps. */
4350 bfd_vma self_address
= 0;
4352 o_opcode
= xtensa_opcode_lookup (isa
, narrowable
[opi
].narrow
);
4353 if (o_opcode
== XTENSA_UNDEFINED
)
4355 o_fmt
= get_single_format (o_opcode
);
4356 if (o_fmt
== XTENSA_UNDEFINED
)
4359 if (xtensa_format_length (isa
, fmt
) != 3
4360 || xtensa_format_length (isa
, o_fmt
) != 2)
4363 xtensa_format_encode (isa
, o_fmt
, o_insnbuf
);
4364 operand_count
= xtensa_opcode_num_operands (isa
, opcode
);
4365 o_operand_count
= xtensa_opcode_num_operands (isa
, o_opcode
);
4367 if (xtensa_opcode_encode (isa
, o_fmt
, 0, o_slotbuf
, o_opcode
) != 0)
4372 if (xtensa_opcode_num_operands (isa
, o_opcode
) != operand_count
)
4377 uint32 rawval0
, rawval1
, rawval2
;
4379 if (o_operand_count
+ 1 != operand_count
4380 || xtensa_operand_get_field (isa
, opcode
, 0,
4381 fmt
, 0, slotbuf
, &rawval0
) != 0
4382 || xtensa_operand_get_field (isa
, opcode
, 1,
4383 fmt
, 0, slotbuf
, &rawval1
) != 0
4384 || xtensa_operand_get_field (isa
, opcode
, 2,
4385 fmt
, 0, slotbuf
, &rawval2
) != 0
4386 || rawval1
!= rawval2
4387 || rawval0
== rawval1
/* it is a nop */)
4391 for (i
= 0; i
< o_operand_count
; ++i
)
4393 if (xtensa_operand_get_field (isa
, opcode
, i
, fmt
, 0,
4395 || xtensa_operand_decode (isa
, opcode
, i
, &value
))
4398 /* PC-relative branches need adjustment, but
4399 the PC-rel operand will always have a relocation. */
4401 if (xtensa_operand_do_reloc (isa
, o_opcode
, i
, &newval
,
4403 || xtensa_operand_encode (isa
, o_opcode
, i
, &newval
)
4404 || xtensa_operand_set_field (isa
, o_opcode
, i
, o_fmt
, 0,
4409 if (xtensa_format_set_slot (isa
, o_fmt
, 0, o_insnbuf
, o_slotbuf
))
4419 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4420 the action in-place directly into the contents and return TRUE. Otherwise,
4421 the return value is FALSE and the contents are not modified. */
4424 narrow_instruction (bfd_byte
*contents
,
4425 bfd_size_type content_length
,
4426 bfd_size_type offset
)
4428 xtensa_opcode opcode
;
4429 bfd_size_type insn_len
;
4430 xtensa_isa isa
= xtensa_default_isa
;
4432 xtensa_insnbuf o_insnbuf
;
4434 static xtensa_insnbuf insnbuf
= NULL
;
4435 static xtensa_insnbuf slotbuf
= NULL
;
4437 if (insnbuf
== NULL
)
4439 insnbuf
= xtensa_insnbuf_alloc (isa
);
4440 slotbuf
= xtensa_insnbuf_alloc (isa
);
4443 BFD_ASSERT (offset
< content_length
);
4445 if (content_length
< 2)
4448 /* We will hand-code a few of these for a little while.
4449 These have all been specified in the assembler aleady. */
4450 xtensa_insnbuf_from_chars (isa
, insnbuf
, &contents
[offset
],
4451 content_length
- offset
);
4452 fmt
= xtensa_format_decode (isa
, insnbuf
);
4453 if (xtensa_format_num_slots (isa
, fmt
) != 1)
4456 if (xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
) != 0)
4459 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4460 if (opcode
== XTENSA_UNDEFINED
)
4462 insn_len
= xtensa_format_length (isa
, fmt
);
4463 if (insn_len
> content_length
)
4466 o_insnbuf
= can_narrow_instruction (slotbuf
, fmt
, opcode
);
4469 xtensa_insnbuf_to_chars (isa
, o_insnbuf
, contents
+ offset
,
4470 content_length
- offset
);
4478 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4479 "density" instruction to a standard 3-byte instruction. If it is valid,
4480 return the instruction buffer holding the wide instruction. Otherwise,
4481 return 0. The set of valid widenings are specified by a string table
4482 but require some special case operand checks in some cases. */
4484 static xtensa_insnbuf
4485 can_widen_instruction (xtensa_insnbuf slotbuf
,
4487 xtensa_opcode opcode
)
4489 xtensa_isa isa
= xtensa_default_isa
;
4490 xtensa_format o_fmt
;
4493 static xtensa_insnbuf o_insnbuf
= NULL
;
4494 static xtensa_insnbuf o_slotbuf
= NULL
;
4496 if (o_insnbuf
== NULL
)
4498 o_insnbuf
= xtensa_insnbuf_alloc (isa
);
4499 o_slotbuf
= xtensa_insnbuf_alloc (isa
);
4502 for (opi
= 0; opi
< (sizeof (widenable
)/sizeof (struct string_pair
)); opi
++)
4504 bfd_boolean is_or
= (strcmp ("or", widenable
[opi
].wide
) == 0);
4505 bfd_boolean is_branch
= (strcmp ("beqz", widenable
[opi
].wide
) == 0
4506 || strcmp ("bnez", widenable
[opi
].wide
) == 0);
4508 if (opcode
== xtensa_opcode_lookup (isa
, widenable
[opi
].narrow
))
4510 uint32 value
, newval
;
4511 int i
, operand_count
, o_operand_count
, check_operand_count
;
4512 xtensa_opcode o_opcode
;
4514 /* Address does not matter in this case. We might need to fix it
4515 to handle branches/jumps. */
4516 bfd_vma self_address
= 0;
4518 o_opcode
= xtensa_opcode_lookup (isa
, widenable
[opi
].wide
);
4519 if (o_opcode
== XTENSA_UNDEFINED
)
4521 o_fmt
= get_single_format (o_opcode
);
4522 if (o_fmt
== XTENSA_UNDEFINED
)
4525 if (xtensa_format_length (isa
, fmt
) != 2
4526 || xtensa_format_length (isa
, o_fmt
) != 3)
4529 xtensa_format_encode (isa
, o_fmt
, o_insnbuf
);
4530 operand_count
= xtensa_opcode_num_operands (isa
, opcode
);
4531 o_operand_count
= xtensa_opcode_num_operands (isa
, o_opcode
);
4532 check_operand_count
= o_operand_count
;
4534 if (xtensa_opcode_encode (isa
, o_fmt
, 0, o_slotbuf
, o_opcode
) != 0)
4539 if (xtensa_opcode_num_operands (isa
, o_opcode
) != operand_count
)
4544 uint32 rawval0
, rawval1
;
4546 if (o_operand_count
!= operand_count
+ 1
4547 || xtensa_operand_get_field (isa
, opcode
, 0,
4548 fmt
, 0, slotbuf
, &rawval0
) != 0
4549 || xtensa_operand_get_field (isa
, opcode
, 1,
4550 fmt
, 0, slotbuf
, &rawval1
) != 0
4551 || rawval0
== rawval1
/* it is a nop */)
4555 check_operand_count
--;
4557 for (i
= 0; i
< check_operand_count
; i
++)
4560 if (is_or
&& i
== o_operand_count
- 1)
4562 if (xtensa_operand_get_field (isa
, opcode
, new_i
, fmt
, 0,
4564 || xtensa_operand_decode (isa
, opcode
, new_i
, &value
))
4567 /* PC-relative branches need adjustment, but
4568 the PC-rel operand will always have a relocation. */
4570 if (xtensa_operand_do_reloc (isa
, o_opcode
, i
, &newval
,
4572 || xtensa_operand_encode (isa
, o_opcode
, i
, &newval
)
4573 || xtensa_operand_set_field (isa
, o_opcode
, i
, o_fmt
, 0,
4578 if (xtensa_format_set_slot (isa
, o_fmt
, 0, o_insnbuf
, o_slotbuf
))
4588 /* Attempt to widen an instruction. If the widening is valid, perform
4589 the action in-place directly into the contents and return TRUE. Otherwise,
4590 the return value is FALSE and the contents are not modified. */
4593 widen_instruction (bfd_byte
*contents
,
4594 bfd_size_type content_length
,
4595 bfd_size_type offset
)
4597 xtensa_opcode opcode
;
4598 bfd_size_type insn_len
;
4599 xtensa_isa isa
= xtensa_default_isa
;
4601 xtensa_insnbuf o_insnbuf
;
4603 static xtensa_insnbuf insnbuf
= NULL
;
4604 static xtensa_insnbuf slotbuf
= NULL
;
4606 if (insnbuf
== NULL
)
4608 insnbuf
= xtensa_insnbuf_alloc (isa
);
4609 slotbuf
= xtensa_insnbuf_alloc (isa
);
4612 BFD_ASSERT (offset
< content_length
);
4614 if (content_length
< 2)
4617 /* We will hand-code a few of these for a little while.
4618 These have all been specified in the assembler aleady. */
4619 xtensa_insnbuf_from_chars (isa
, insnbuf
, &contents
[offset
],
4620 content_length
- offset
);
4621 fmt
= xtensa_format_decode (isa
, insnbuf
);
4622 if (xtensa_format_num_slots (isa
, fmt
) != 1)
4625 if (xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
) != 0)
4628 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4629 if (opcode
== XTENSA_UNDEFINED
)
4631 insn_len
= xtensa_format_length (isa
, fmt
);
4632 if (insn_len
> content_length
)
4635 o_insnbuf
= can_widen_instruction (slotbuf
, fmt
, opcode
);
4638 xtensa_insnbuf_to_chars (isa
, o_insnbuf
, contents
+ offset
,
4639 content_length
- offset
);
4646 /* Code for transforming CALLs at link-time. */
4648 static bfd_reloc_status_type
4649 elf_xtensa_do_asm_simplify (bfd_byte
*contents
,
4651 bfd_vma content_length
,
4652 char **error_message
)
4654 static xtensa_insnbuf insnbuf
= NULL
;
4655 static xtensa_insnbuf slotbuf
= NULL
;
4656 xtensa_format core_format
= XTENSA_UNDEFINED
;
4657 xtensa_opcode opcode
;
4658 xtensa_opcode direct_call_opcode
;
4659 xtensa_isa isa
= xtensa_default_isa
;
4660 bfd_byte
*chbuf
= contents
+ address
;
4663 if (insnbuf
== NULL
)
4665 insnbuf
= xtensa_insnbuf_alloc (isa
);
4666 slotbuf
= xtensa_insnbuf_alloc (isa
);
4669 if (content_length
< address
)
4671 *error_message
= _("Attempt to convert L32R/CALLX to CALL failed");
4672 return bfd_reloc_other
;
4675 opcode
= get_expanded_call_opcode (chbuf
, content_length
- address
, 0);
4676 direct_call_opcode
= swap_callx_for_call_opcode (opcode
);
4677 if (direct_call_opcode
== XTENSA_UNDEFINED
)
4679 *error_message
= _("Attempt to convert L32R/CALLX to CALL failed");
4680 return bfd_reloc_other
;
4683 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4684 core_format
= xtensa_format_lookup (isa
, "x24");
4685 opcode
= xtensa_opcode_lookup (isa
, "or");
4686 xtensa_opcode_encode (isa
, core_format
, 0, slotbuf
, opcode
);
4687 for (opn
= 0; opn
< 3; opn
++)
4690 xtensa_operand_encode (isa
, opcode
, opn
, ®no
);
4691 xtensa_operand_set_field (isa
, opcode
, opn
, core_format
, 0,
4694 xtensa_format_encode (isa
, core_format
, insnbuf
);
4695 xtensa_format_set_slot (isa
, core_format
, 0, insnbuf
, slotbuf
);
4696 xtensa_insnbuf_to_chars (isa
, insnbuf
, chbuf
, content_length
- address
);
4698 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4699 xtensa_opcode_encode (isa
, core_format
, 0, slotbuf
, direct_call_opcode
);
4700 xtensa_operand_set_field (isa
, opcode
, 0, core_format
, 0, slotbuf
, 0);
4702 xtensa_format_encode (isa
, core_format
, insnbuf
);
4703 xtensa_format_set_slot (isa
, core_format
, 0, insnbuf
, slotbuf
);
4704 xtensa_insnbuf_to_chars (isa
, insnbuf
, chbuf
+ 3,
4705 content_length
- address
- 3);
4707 return bfd_reloc_ok
;
4711 static bfd_reloc_status_type
4712 contract_asm_expansion (bfd_byte
*contents
,
4713 bfd_vma content_length
,
4714 Elf_Internal_Rela
*irel
,
4715 char **error_message
)
4717 bfd_reloc_status_type retval
=
4718 elf_xtensa_do_asm_simplify (contents
, irel
->r_offset
, content_length
,
4721 if (retval
!= bfd_reloc_ok
)
4722 return bfd_reloc_dangerous
;
4724 /* Update the irel->r_offset field so that the right immediate and
4725 the right instruction are modified during the relocation. */
4726 irel
->r_offset
+= 3;
4727 irel
->r_info
= ELF32_R_INFO (ELF32_R_SYM (irel
->r_info
), R_XTENSA_SLOT0_OP
);
4728 return bfd_reloc_ok
;
4732 static xtensa_opcode
4733 swap_callx_for_call_opcode (xtensa_opcode opcode
)
4735 init_call_opcodes ();
4737 if (opcode
== callx0_op
) return call0_op
;
4738 if (opcode
== callx4_op
) return call4_op
;
4739 if (opcode
== callx8_op
) return call8_op
;
4740 if (opcode
== callx12_op
) return call12_op
;
4742 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4743 return XTENSA_UNDEFINED
;
4747 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4748 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4749 If not, return XTENSA_UNDEFINED. */
4751 #define L32R_TARGET_REG_OPERAND 0
4752 #define CONST16_TARGET_REG_OPERAND 0
4753 #define CALLN_SOURCE_OPERAND 0
4755 static xtensa_opcode
4756 get_expanded_call_opcode (bfd_byte
*buf
, int bufsize
, bfd_boolean
*p_uses_l32r
)
4758 static xtensa_insnbuf insnbuf
= NULL
;
4759 static xtensa_insnbuf slotbuf
= NULL
;
4761 xtensa_opcode opcode
;
4762 xtensa_isa isa
= xtensa_default_isa
;
4763 uint32 regno
, const16_regno
, call_regno
;
4766 if (insnbuf
== NULL
)
4768 insnbuf
= xtensa_insnbuf_alloc (isa
);
4769 slotbuf
= xtensa_insnbuf_alloc (isa
);
4772 xtensa_insnbuf_from_chars (isa
, insnbuf
, buf
, bufsize
);
4773 fmt
= xtensa_format_decode (isa
, insnbuf
);
4774 if (fmt
== XTENSA_UNDEFINED
4775 || xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
))
4776 return XTENSA_UNDEFINED
;
4778 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4779 if (opcode
== XTENSA_UNDEFINED
)
4780 return XTENSA_UNDEFINED
;
4782 if (opcode
== get_l32r_opcode ())
4785 *p_uses_l32r
= TRUE
;
4786 if (xtensa_operand_get_field (isa
, opcode
, L32R_TARGET_REG_OPERAND
,
4787 fmt
, 0, slotbuf
, ®no
)
4788 || xtensa_operand_decode (isa
, opcode
, L32R_TARGET_REG_OPERAND
,
4790 return XTENSA_UNDEFINED
;
4792 else if (opcode
== get_const16_opcode ())
4795 *p_uses_l32r
= FALSE
;
4796 if (xtensa_operand_get_field (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4797 fmt
, 0, slotbuf
, ®no
)
4798 || xtensa_operand_decode (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4800 return XTENSA_UNDEFINED
;
4802 /* Check that the next instruction is also CONST16. */
4803 offset
+= xtensa_format_length (isa
, fmt
);
4804 xtensa_insnbuf_from_chars (isa
, insnbuf
, buf
+ offset
, bufsize
- offset
);
4805 fmt
= xtensa_format_decode (isa
, insnbuf
);
4806 if (fmt
== XTENSA_UNDEFINED
4807 || xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
))
4808 return XTENSA_UNDEFINED
;
4809 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4810 if (opcode
!= get_const16_opcode ())
4811 return XTENSA_UNDEFINED
;
4813 if (xtensa_operand_get_field (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4814 fmt
, 0, slotbuf
, &const16_regno
)
4815 || xtensa_operand_decode (isa
, opcode
, CONST16_TARGET_REG_OPERAND
,
4817 || const16_regno
!= regno
)
4818 return XTENSA_UNDEFINED
;
4821 return XTENSA_UNDEFINED
;
4823 /* Next instruction should be an CALLXn with operand 0 == regno. */
4824 offset
+= xtensa_format_length (isa
, fmt
);
4825 xtensa_insnbuf_from_chars (isa
, insnbuf
, buf
+ offset
, bufsize
- offset
);
4826 fmt
= xtensa_format_decode (isa
, insnbuf
);
4827 if (fmt
== XTENSA_UNDEFINED
4828 || xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
))
4829 return XTENSA_UNDEFINED
;
4830 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
4831 if (opcode
== XTENSA_UNDEFINED
4832 || !is_indirect_call_opcode (opcode
))
4833 return XTENSA_UNDEFINED
;
4835 if (xtensa_operand_get_field (isa
, opcode
, CALLN_SOURCE_OPERAND
,
4836 fmt
, 0, slotbuf
, &call_regno
)
4837 || xtensa_operand_decode (isa
, opcode
, CALLN_SOURCE_OPERAND
,
4839 return XTENSA_UNDEFINED
;
4841 if (call_regno
!= regno
)
4842 return XTENSA_UNDEFINED
;
4848 /* Data structures used during relaxation. */
4850 /* r_reloc: relocation values. */
4852 /* Through the relaxation process, we need to keep track of the values
4853 that will result from evaluating relocations. The standard ELF
4854 relocation structure is not sufficient for this purpose because we're
4855 operating on multiple input files at once, so we need to know which
4856 input file a relocation refers to. The r_reloc structure thus
4857 records both the input file (bfd) and ELF relocation.
4859 For efficiency, an r_reloc also contains a "target_offset" field to
4860 cache the target-section-relative offset value that is represented by
4863 The r_reloc also contains a virtual offset that allows multiple
4864 inserted literals to be placed at the same "address" with
4865 different offsets. */
4867 typedef struct r_reloc_struct r_reloc
;
4869 struct r_reloc_struct
4872 Elf_Internal_Rela rela
;
4873 bfd_vma target_offset
;
4874 bfd_vma virtual_offset
;
4878 /* The r_reloc structure is included by value in literal_value, but not
4879 every literal_value has an associated relocation -- some are simple
4880 constants. In such cases, we set all the fields in the r_reloc
4881 struct to zero. The r_reloc_is_const function should be used to
4882 detect this case. */
4885 r_reloc_is_const (const r_reloc
*r_rel
)
4887 return (r_rel
->abfd
== NULL
);
4892 r_reloc_get_target_offset (const r_reloc
*r_rel
)
4894 bfd_vma target_offset
;
4895 unsigned long r_symndx
;
4897 BFD_ASSERT (!r_reloc_is_const (r_rel
));
4898 r_symndx
= ELF32_R_SYM (r_rel
->rela
.r_info
);
4899 target_offset
= get_elf_r_symndx_offset (r_rel
->abfd
, r_symndx
);
4900 return (target_offset
+ r_rel
->rela
.r_addend
);
4904 static struct elf_link_hash_entry
*
4905 r_reloc_get_hash_entry (const r_reloc
*r_rel
)
4907 unsigned long r_symndx
= ELF32_R_SYM (r_rel
->rela
.r_info
);
4908 return get_elf_r_symndx_hash_entry (r_rel
->abfd
, r_symndx
);
4913 r_reloc_get_section (const r_reloc
*r_rel
)
4915 unsigned long r_symndx
= ELF32_R_SYM (r_rel
->rela
.r_info
);
4916 return get_elf_r_symndx_section (r_rel
->abfd
, r_symndx
);
4921 r_reloc_is_defined (const r_reloc
*r_rel
)
4927 sec
= r_reloc_get_section (r_rel
);
4928 if (sec
== bfd_abs_section_ptr
4929 || sec
== bfd_com_section_ptr
4930 || sec
== bfd_und_section_ptr
)
4937 r_reloc_init (r_reloc
*r_rel
,
4939 Elf_Internal_Rela
*irel
,
4941 bfd_size_type content_length
)
4944 reloc_howto_type
*howto
;
4948 r_rel
->rela
= *irel
;
4950 r_rel
->target_offset
= r_reloc_get_target_offset (r_rel
);
4951 r_rel
->virtual_offset
= 0;
4952 r_type
= ELF32_R_TYPE (r_rel
->rela
.r_info
);
4953 howto
= &elf_howto_table
[r_type
];
4954 if (howto
->partial_inplace
)
4956 bfd_vma inplace_val
;
4957 BFD_ASSERT (r_rel
->rela
.r_offset
< content_length
);
4959 inplace_val
= bfd_get_32 (abfd
, &contents
[r_rel
->rela
.r_offset
]);
4960 r_rel
->target_offset
+= inplace_val
;
4964 memset (r_rel
, 0, sizeof (r_reloc
));
4971 print_r_reloc (FILE *fp
, const r_reloc
*r_rel
)
4973 if (r_reloc_is_defined (r_rel
))
4975 asection
*sec
= r_reloc_get_section (r_rel
);
4976 fprintf (fp
, " %s(%s + ", sec
->owner
->filename
, sec
->name
);
4978 else if (r_reloc_get_hash_entry (r_rel
))
4979 fprintf (fp
, " %s + ", r_reloc_get_hash_entry (r_rel
)->root
.root
.string
);
4981 fprintf (fp
, " ?? + ");
4983 fprintf_vma (fp
, r_rel
->target_offset
);
4984 if (r_rel
->virtual_offset
)
4986 fprintf (fp
, " + ");
4987 fprintf_vma (fp
, r_rel
->virtual_offset
);
4996 /* source_reloc: relocations that reference literals. */
4998 /* To determine whether literals can be coalesced, we need to first
4999 record all the relocations that reference the literals. The
5000 source_reloc structure below is used for this purpose. The
5001 source_reloc entries are kept in a per-literal-section array, sorted
5002 by offset within the literal section (i.e., target offset).
5004 The source_sec and r_rel.rela.r_offset fields identify the source of
5005 the relocation. The r_rel field records the relocation value, i.e.,
5006 the offset of the literal being referenced. The opnd field is needed
5007 to determine the range of the immediate field to which the relocation
5008 applies, so we can determine whether another literal with the same
5009 value is within range. The is_null field is true when the relocation
5010 is being removed (e.g., when an L32R is being removed due to a CALLX
5011 that is converted to a direct CALL). */
5013 typedef struct source_reloc_struct source_reloc
;
5015 struct source_reloc_struct
5017 asection
*source_sec
;
5019 xtensa_opcode opcode
;
5021 bfd_boolean is_null
;
5022 bfd_boolean is_abs_literal
;
5027 init_source_reloc (source_reloc
*reloc
,
5028 asection
*source_sec
,
5029 const r_reloc
*r_rel
,
5030 xtensa_opcode opcode
,
5032 bfd_boolean is_abs_literal
)
5034 reloc
->source_sec
= source_sec
;
5035 reloc
->r_rel
= *r_rel
;
5036 reloc
->opcode
= opcode
;
5038 reloc
->is_null
= FALSE
;
5039 reloc
->is_abs_literal
= is_abs_literal
;
5043 /* Find the source_reloc for a particular source offset and relocation
5044 type. Note that the array is sorted by _target_ offset, so this is
5045 just a linear search. */
5047 static source_reloc
*
5048 find_source_reloc (source_reloc
*src_relocs
,
5051 Elf_Internal_Rela
*irel
)
5055 for (i
= 0; i
< src_count
; i
++)
5057 if (src_relocs
[i
].source_sec
== sec
5058 && src_relocs
[i
].r_rel
.rela
.r_offset
== irel
->r_offset
5059 && (ELF32_R_TYPE (src_relocs
[i
].r_rel
.rela
.r_info
)
5060 == ELF32_R_TYPE (irel
->r_info
)))
5061 return &src_relocs
[i
];
5069 source_reloc_compare (const void *ap
, const void *bp
)
5071 const source_reloc
*a
= (const source_reloc
*) ap
;
5072 const source_reloc
*b
= (const source_reloc
*) bp
;
5074 if (a
->r_rel
.target_offset
!= b
->r_rel
.target_offset
)
5075 return (a
->r_rel
.target_offset
- b
->r_rel
.target_offset
);
5077 /* We don't need to sort on these criteria for correctness,
5078 but enforcing a more strict ordering prevents unstable qsort
5079 from behaving differently with different implementations.
5080 Without the code below we get correct but different results
5081 on Solaris 2.7 and 2.8. We would like to always produce the
5082 same results no matter the host. */
5084 if ((!a
->is_null
) - (!b
->is_null
))
5085 return ((!a
->is_null
) - (!b
->is_null
));
5086 return internal_reloc_compare (&a
->r_rel
.rela
, &b
->r_rel
.rela
);
5090 /* Literal values and value hash tables. */
5092 /* Literals with the same value can be coalesced. The literal_value
5093 structure records the value of a literal: the "r_rel" field holds the
5094 information from the relocation on the literal (if there is one) and
5095 the "value" field holds the contents of the literal word itself.
5097 The value_map structure records a literal value along with the
5098 location of a literal holding that value. The value_map hash table
5099 is indexed by the literal value, so that we can quickly check if a
5100 particular literal value has been seen before and is thus a candidate
5103 typedef struct literal_value_struct literal_value
;
5104 typedef struct value_map_struct value_map
;
5105 typedef struct value_map_hash_table_struct value_map_hash_table
;
5107 struct literal_value_struct
5110 unsigned long value
;
5111 bfd_boolean is_abs_literal
;
5114 struct value_map_struct
5116 literal_value val
; /* The literal value. */
5117 r_reloc loc
; /* Location of the literal. */
5121 struct value_map_hash_table_struct
5123 unsigned bucket_count
;
5124 value_map
**buckets
;
5126 bfd_boolean has_last_loc
;
5132 init_literal_value (literal_value
*lit
,
5133 const r_reloc
*r_rel
,
5134 unsigned long value
,
5135 bfd_boolean is_abs_literal
)
5137 lit
->r_rel
= *r_rel
;
5139 lit
->is_abs_literal
= is_abs_literal
;
5144 literal_value_equal (const literal_value
*src1
,
5145 const literal_value
*src2
,
5146 bfd_boolean final_static_link
)
5148 struct elf_link_hash_entry
*h1
, *h2
;
5150 if (r_reloc_is_const (&src1
->r_rel
) != r_reloc_is_const (&src2
->r_rel
))
5153 if (r_reloc_is_const (&src1
->r_rel
))
5154 return (src1
->value
== src2
->value
);
5156 if (ELF32_R_TYPE (src1
->r_rel
.rela
.r_info
)
5157 != ELF32_R_TYPE (src2
->r_rel
.rela
.r_info
))
5160 if (src1
->r_rel
.target_offset
!= src2
->r_rel
.target_offset
)
5163 if (src1
->r_rel
.virtual_offset
!= src2
->r_rel
.virtual_offset
)
5166 if (src1
->value
!= src2
->value
)
5169 /* Now check for the same section (if defined) or the same elf_hash
5170 (if undefined or weak). */
5171 h1
= r_reloc_get_hash_entry (&src1
->r_rel
);
5172 h2
= r_reloc_get_hash_entry (&src2
->r_rel
);
5173 if (r_reloc_is_defined (&src1
->r_rel
)
5174 && (final_static_link
5175 || ((!h1
|| h1
->root
.type
!= bfd_link_hash_defweak
)
5176 && (!h2
|| h2
->root
.type
!= bfd_link_hash_defweak
))))
5178 if (r_reloc_get_section (&src1
->r_rel
)
5179 != r_reloc_get_section (&src2
->r_rel
))
5184 /* Require that the hash entries (i.e., symbols) be identical. */
5185 if (h1
!= h2
|| h1
== 0)
5189 if (src1
->is_abs_literal
!= src2
->is_abs_literal
)
5196 /* Must be power of 2. */
5197 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5199 static value_map_hash_table
*
5200 value_map_hash_table_init (void)
5202 value_map_hash_table
*values
;
5204 values
= (value_map_hash_table
*)
5205 bfd_zmalloc (sizeof (value_map_hash_table
));
5206 values
->bucket_count
= INITIAL_HASH_RELOC_BUCKET_COUNT
;
5208 values
->buckets
= (value_map
**)
5209 bfd_zmalloc (sizeof (value_map
*) * values
->bucket_count
);
5210 if (values
->buckets
== NULL
)
5215 values
->has_last_loc
= FALSE
;
5222 value_map_hash_table_delete (value_map_hash_table
*table
)
5224 free (table
->buckets
);
5230 hash_bfd_vma (bfd_vma val
)
5232 return (val
>> 2) + (val
>> 10);
5237 literal_value_hash (const literal_value
*src
)
5241 hash_val
= hash_bfd_vma (src
->value
);
5242 if (!r_reloc_is_const (&src
->r_rel
))
5246 hash_val
+= hash_bfd_vma (src
->is_abs_literal
* 1000);
5247 hash_val
+= hash_bfd_vma (src
->r_rel
.target_offset
);
5248 hash_val
+= hash_bfd_vma (src
->r_rel
.virtual_offset
);
5250 /* Now check for the same section and the same elf_hash. */
5251 if (r_reloc_is_defined (&src
->r_rel
))
5252 sec_or_hash
= r_reloc_get_section (&src
->r_rel
);
5254 sec_or_hash
= r_reloc_get_hash_entry (&src
->r_rel
);
5255 hash_val
+= hash_bfd_vma ((bfd_vma
) (size_t) sec_or_hash
);
5261 /* Check if the specified literal_value has been seen before. */
5264 value_map_get_cached_value (value_map_hash_table
*map
,
5265 const literal_value
*val
,
5266 bfd_boolean final_static_link
)
5272 idx
= literal_value_hash (val
);
5273 idx
= idx
& (map
->bucket_count
- 1);
5274 bucket
= map
->buckets
[idx
];
5275 for (map_e
= bucket
; map_e
; map_e
= map_e
->next
)
5277 if (literal_value_equal (&map_e
->val
, val
, final_static_link
))
5284 /* Record a new literal value. It is illegal to call this if VALUE
5285 already has an entry here. */
5288 add_value_map (value_map_hash_table
*map
,
5289 const literal_value
*val
,
5291 bfd_boolean final_static_link
)
5293 value_map
**bucket_p
;
5296 value_map
*val_e
= (value_map
*) bfd_zmalloc (sizeof (value_map
));
5299 bfd_set_error (bfd_error_no_memory
);
5303 BFD_ASSERT (!value_map_get_cached_value (map
, val
, final_static_link
));
5307 idx
= literal_value_hash (val
);
5308 idx
= idx
& (map
->bucket_count
- 1);
5309 bucket_p
= &map
->buckets
[idx
];
5311 val_e
->next
= *bucket_p
;
5314 /* FIXME: Consider resizing the hash table if we get too many entries. */
5320 /* Lists of text actions (ta_) for narrowing, widening, longcall
5321 conversion, space fill, code & literal removal, etc. */
5323 /* The following text actions are generated:
5325 "ta_remove_insn" remove an instruction or instructions
5326 "ta_remove_longcall" convert longcall to call
5327 "ta_convert_longcall" convert longcall to nop/call
5328 "ta_narrow_insn" narrow a wide instruction
5329 "ta_widen" widen a narrow instruction
5330 "ta_fill" add fill or remove fill
5331 removed < 0 is a fill; branches to the fill address will be
5332 changed to address + fill size (e.g., address - removed)
5333 removed >= 0 branches to the fill address will stay unchanged
5334 "ta_remove_literal" remove a literal; this action is
5335 indicated when a literal is removed
5337 "ta_add_literal" insert a new literal; this action is
5338 indicated when a literal has been moved.
5339 It may use a virtual_offset because
5340 multiple literals can be placed at the
5343 For each of these text actions, we also record the number of bytes
5344 removed by performing the text action. In the case of a "ta_widen"
5345 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5347 typedef struct text_action_struct text_action
;
5348 typedef struct text_action_list_struct text_action_list
;
5349 typedef enum text_action_enum_t text_action_t
;
5351 enum text_action_enum_t
5354 ta_remove_insn
, /* removed = -size */
5355 ta_remove_longcall
, /* removed = -size */
5356 ta_convert_longcall
, /* removed = 0 */
5357 ta_narrow_insn
, /* removed = -1 */
5358 ta_widen_insn
, /* removed = +1 */
5359 ta_fill
, /* removed = +size */
5365 /* Structure for a text action record. */
5366 struct text_action_struct
5368 text_action_t action
;
5369 asection
*sec
; /* Optional */
5371 bfd_vma virtual_offset
; /* Zero except for adding literals. */
5373 literal_value value
; /* Only valid when adding literals. */
5379 /* List of all of the actions taken on a text section. */
5380 struct text_action_list_struct
5386 static text_action
*
5387 find_fill_action (text_action_list
*l
, asection
*sec
, bfd_vma offset
)
5391 /* It is not necessary to fill at the end of a section. */
5392 if (sec
->size
== offset
)
5395 for (m_p
= &l
->head
; *m_p
&& (*m_p
)->offset
<= offset
; m_p
= &(*m_p
)->next
)
5397 text_action
*t
= *m_p
;
5398 /* When the action is another fill at the same address,
5399 just increase the size. */
5400 if (t
->offset
== offset
&& t
->action
== ta_fill
)
5408 compute_removed_action_diff (const text_action
*ta
,
5412 int removable_space
)
5415 int current_removed
= 0;
5418 current_removed
= ta
->removed_bytes
;
5420 BFD_ASSERT (ta
== NULL
|| ta
->offset
== offset
);
5421 BFD_ASSERT (ta
== NULL
|| ta
->action
== ta_fill
);
5423 /* It is not necessary to fill at the end of a section. Clean this up. */
5424 if (sec
->size
== offset
)
5425 new_removed
= removable_space
- 0;
5429 int added
= -removed
- current_removed
;
5430 /* Ignore multiples of the section alignment. */
5431 added
= ((1 << sec
->alignment_power
) - 1) & added
;
5432 new_removed
= (-added
);
5434 /* Modify for removable. */
5435 space
= removable_space
- new_removed
;
5436 new_removed
= (removable_space
5437 - (((1 << sec
->alignment_power
) - 1) & space
));
5439 return (new_removed
- current_removed
);
5444 adjust_fill_action (text_action
*ta
, int fill_diff
)
5446 ta
->removed_bytes
+= fill_diff
;
5450 /* Add a modification action to the text. For the case of adding or
5451 removing space, modify any current fill and assume that
5452 "unreachable_space" bytes can be freely contracted. Note that a
5453 negative removed value is a fill. */
5456 text_action_add (text_action_list
*l
,
5457 text_action_t action
,
5465 /* It is not necessary to fill at the end of a section. */
5466 if (action
== ta_fill
&& sec
->size
== offset
)
5469 /* It is not necessary to fill 0 bytes. */
5470 if (action
== ta_fill
&& removed
== 0)
5473 for (m_p
= &l
->head
; *m_p
&& (*m_p
)->offset
<= offset
; m_p
= &(*m_p
)->next
)
5475 text_action
*t
= *m_p
;
5477 if (action
== ta_fill
)
5479 /* When the action is another fill at the same address,
5480 just increase the size. */
5481 if (t
->offset
== offset
&& t
->action
== ta_fill
)
5483 t
->removed_bytes
+= removed
;
5486 /* Fills need to happen before widens so that we don't
5487 insert fill bytes into the instruction stream. */
5488 if (t
->offset
== offset
&& t
->action
== ta_widen_insn
)
5493 /* Create a new record and fill it up. */
5494 ta
= (text_action
*) bfd_zmalloc (sizeof (text_action
));
5495 ta
->action
= action
;
5497 ta
->offset
= offset
;
5498 ta
->removed_bytes
= removed
;
5505 text_action_add_literal (text_action_list
*l
,
5506 text_action_t action
,
5508 const literal_value
*value
,
5513 asection
*sec
= r_reloc_get_section (loc
);
5514 bfd_vma offset
= loc
->target_offset
;
5515 bfd_vma virtual_offset
= loc
->virtual_offset
;
5517 BFD_ASSERT (action
== ta_add_literal
);
5519 for (m_p
= &l
->head
; *m_p
!= NULL
; m_p
= &(*m_p
)->next
)
5521 if ((*m_p
)->offset
> offset
5522 && ((*m_p
)->offset
!= offset
5523 || (*m_p
)->virtual_offset
> virtual_offset
))
5527 /* Create a new record and fill it up. */
5528 ta
= (text_action
*) bfd_zmalloc (sizeof (text_action
));
5529 ta
->action
= action
;
5531 ta
->offset
= offset
;
5532 ta
->virtual_offset
= virtual_offset
;
5534 ta
->removed_bytes
= removed
;
5540 /* Find the total offset adjustment for the relaxations specified by
5541 text_actions, beginning from a particular starting action. This is
5542 typically used from offset_with_removed_text to search an entire list of
5543 actions, but it may also be called directly when adjusting adjacent offsets
5544 so that each search may begin where the previous one left off. */
5547 removed_by_actions (text_action
**p_start_action
,
5549 bfd_boolean before_fill
)
5554 r
= *p_start_action
;
5557 if (r
->offset
> offset
)
5560 if (r
->offset
== offset
5561 && (before_fill
|| r
->action
!= ta_fill
|| r
->removed_bytes
>= 0))
5564 removed
+= r
->removed_bytes
;
5569 *p_start_action
= r
;
5575 offset_with_removed_text (text_action_list
*action_list
, bfd_vma offset
)
5577 text_action
*r
= action_list
->head
;
5578 return offset
- removed_by_actions (&r
, offset
, FALSE
);
5583 action_list_count (text_action_list
*action_list
)
5585 text_action
*r
= action_list
->head
;
5587 for (r
= action_list
->head
; r
!= NULL
; r
= r
->next
)
5595 /* The find_insn_action routine will only find non-fill actions. */
5597 static text_action
*
5598 find_insn_action (text_action_list
*action_list
, bfd_vma offset
)
5601 for (t
= action_list
->head
; t
; t
= t
->next
)
5603 if (t
->offset
== offset
)
5610 case ta_remove_insn
:
5611 case ta_remove_longcall
:
5612 case ta_convert_longcall
:
5613 case ta_narrow_insn
:
5616 case ta_remove_literal
:
5617 case ta_add_literal
:
5630 print_action_list (FILE *fp
, text_action_list
*action_list
)
5634 fprintf (fp
, "Text Action\n");
5635 for (r
= action_list
->head
; r
!= NULL
; r
= r
->next
)
5637 const char *t
= "unknown";
5640 case ta_remove_insn
:
5641 t
= "remove_insn"; break;
5642 case ta_remove_longcall
:
5643 t
= "remove_longcall"; break;
5644 case ta_convert_longcall
:
5645 t
= "convert_longcall"; break;
5646 case ta_narrow_insn
:
5647 t
= "narrow_insn"; break;
5649 t
= "widen_insn"; break;
5654 case ta_remove_literal
:
5655 t
= "remove_literal"; break;
5656 case ta_add_literal
:
5657 t
= "add_literal"; break;
5660 fprintf (fp
, "%s: %s[0x%lx] \"%s\" %d\n",
5661 r
->sec
->owner
->filename
,
5662 r
->sec
->name
, r
->offset
, t
, r
->removed_bytes
);
5669 /* Lists of literals being coalesced or removed. */
5671 /* In the usual case, the literal identified by "from" is being
5672 coalesced with another literal identified by "to". If the literal is
5673 unused and is being removed altogether, "to.abfd" will be NULL.
5674 The removed_literal entries are kept on a per-section list, sorted
5675 by the "from" offset field. */
5677 typedef struct removed_literal_struct removed_literal
;
5678 typedef struct removed_literal_list_struct removed_literal_list
;
5680 struct removed_literal_struct
5684 removed_literal
*next
;
5687 struct removed_literal_list_struct
5689 removed_literal
*head
;
5690 removed_literal
*tail
;
5694 /* Record that the literal at "from" is being removed. If "to" is not
5695 NULL, the "from" literal is being coalesced with the "to" literal. */
5698 add_removed_literal (removed_literal_list
*removed_list
,
5699 const r_reloc
*from
,
5702 removed_literal
*r
, *new_r
, *next_r
;
5704 new_r
= (removed_literal
*) bfd_zmalloc (sizeof (removed_literal
));
5706 new_r
->from
= *from
;
5710 new_r
->to
.abfd
= NULL
;
5713 r
= removed_list
->head
;
5716 removed_list
->head
= new_r
;
5717 removed_list
->tail
= new_r
;
5719 /* Special check for common case of append. */
5720 else if (removed_list
->tail
->from
.target_offset
< from
->target_offset
)
5722 removed_list
->tail
->next
= new_r
;
5723 removed_list
->tail
= new_r
;
5727 while (r
->from
.target_offset
< from
->target_offset
&& r
->next
)
5733 new_r
->next
= next_r
;
5735 removed_list
->tail
= new_r
;
5740 /* Check if the list of removed literals contains an entry for the
5741 given address. Return the entry if found. */
5743 static removed_literal
*
5744 find_removed_literal (removed_literal_list
*removed_list
, bfd_vma addr
)
5746 removed_literal
*r
= removed_list
->head
;
5747 while (r
&& r
->from
.target_offset
< addr
)
5749 if (r
&& r
->from
.target_offset
== addr
)
5758 print_removed_literals (FILE *fp
, removed_literal_list
*removed_list
)
5761 r
= removed_list
->head
;
5763 fprintf (fp
, "Removed Literals\n");
5764 for (; r
!= NULL
; r
= r
->next
)
5766 print_r_reloc (fp
, &r
->from
);
5767 fprintf (fp
, " => ");
5768 if (r
->to
.abfd
== NULL
)
5769 fprintf (fp
, "REMOVED");
5771 print_r_reloc (fp
, &r
->to
);
5779 /* Per-section data for relaxation. */
5781 typedef struct reloc_bfd_fix_struct reloc_bfd_fix
;
5783 struct xtensa_relax_info_struct
5785 bfd_boolean is_relaxable_literal_section
;
5786 bfd_boolean is_relaxable_asm_section
;
5787 int visited
; /* Number of times visited. */
5789 source_reloc
*src_relocs
; /* Array[src_count]. */
5791 int src_next
; /* Next src_relocs entry to assign. */
5793 removed_literal_list removed_list
;
5794 text_action_list action_list
;
5796 reloc_bfd_fix
*fix_list
;
5797 reloc_bfd_fix
*fix_array
;
5798 unsigned fix_array_count
;
5800 /* Support for expanding the reloc array that is stored
5801 in the section structure. If the relocations have been
5802 reallocated, the newly allocated relocations will be referenced
5803 here along with the actual size allocated. The relocation
5804 count will always be found in the section structure. */
5805 Elf_Internal_Rela
*allocated_relocs
;
5806 unsigned relocs_count
;
5807 unsigned allocated_relocs_count
;
5810 struct elf_xtensa_section_data
5812 struct bfd_elf_section_data elf
;
5813 xtensa_relax_info relax_info
;
5818 elf_xtensa_new_section_hook (bfd
*abfd
, asection
*sec
)
5820 if (!sec
->used_by_bfd
)
5822 struct elf_xtensa_section_data
*sdata
;
5823 bfd_size_type amt
= sizeof (*sdata
);
5825 sdata
= bfd_zalloc (abfd
, amt
);
5828 sec
->used_by_bfd
= sdata
;
5831 return _bfd_elf_new_section_hook (abfd
, sec
);
5835 static xtensa_relax_info
*
5836 get_xtensa_relax_info (asection
*sec
)
5838 struct elf_xtensa_section_data
*section_data
;
5840 /* No info available if no section or if it is an output section. */
5841 if (!sec
|| sec
== sec
->output_section
)
5844 section_data
= (struct elf_xtensa_section_data
*) elf_section_data (sec
);
5845 return §ion_data
->relax_info
;
5850 init_xtensa_relax_info (asection
*sec
)
5852 xtensa_relax_info
*relax_info
= get_xtensa_relax_info (sec
);
5854 relax_info
->is_relaxable_literal_section
= FALSE
;
5855 relax_info
->is_relaxable_asm_section
= FALSE
;
5856 relax_info
->visited
= 0;
5858 relax_info
->src_relocs
= NULL
;
5859 relax_info
->src_count
= 0;
5860 relax_info
->src_next
= 0;
5862 relax_info
->removed_list
.head
= NULL
;
5863 relax_info
->removed_list
.tail
= NULL
;
5865 relax_info
->action_list
.head
= NULL
;
5867 relax_info
->fix_list
= NULL
;
5868 relax_info
->fix_array
= NULL
;
5869 relax_info
->fix_array_count
= 0;
5871 relax_info
->allocated_relocs
= NULL
;
5872 relax_info
->relocs_count
= 0;
5873 relax_info
->allocated_relocs_count
= 0;
5877 /* Coalescing literals may require a relocation to refer to a section in
5878 a different input file, but the standard relocation information
5879 cannot express that. Instead, the reloc_bfd_fix structures are used
5880 to "fix" the relocations that refer to sections in other input files.
5881 These structures are kept on per-section lists. The "src_type" field
5882 records the relocation type in case there are multiple relocations on
5883 the same location. FIXME: This is ugly; an alternative might be to
5884 add new symbols with the "owner" field to some other input file. */
5886 struct reloc_bfd_fix_struct
5890 unsigned src_type
; /* Relocation type. */
5892 asection
*target_sec
;
5893 bfd_vma target_offset
;
5894 bfd_boolean translated
;
5896 reloc_bfd_fix
*next
;
5900 static reloc_bfd_fix
*
5901 reloc_bfd_fix_init (asection
*src_sec
,
5904 asection
*target_sec
,
5905 bfd_vma target_offset
,
5906 bfd_boolean translated
)
5910 fix
= (reloc_bfd_fix
*) bfd_malloc (sizeof (reloc_bfd_fix
));
5911 fix
->src_sec
= src_sec
;
5912 fix
->src_offset
= src_offset
;
5913 fix
->src_type
= src_type
;
5914 fix
->target_sec
= target_sec
;
5915 fix
->target_offset
= target_offset
;
5916 fix
->translated
= translated
;
5923 add_fix (asection
*src_sec
, reloc_bfd_fix
*fix
)
5925 xtensa_relax_info
*relax_info
;
5927 relax_info
= get_xtensa_relax_info (src_sec
);
5928 fix
->next
= relax_info
->fix_list
;
5929 relax_info
->fix_list
= fix
;
5934 fix_compare (const void *ap
, const void *bp
)
5936 const reloc_bfd_fix
*a
= (const reloc_bfd_fix
*) ap
;
5937 const reloc_bfd_fix
*b
= (const reloc_bfd_fix
*) bp
;
5939 if (a
->src_offset
!= b
->src_offset
)
5940 return (a
->src_offset
- b
->src_offset
);
5941 return (a
->src_type
- b
->src_type
);
5946 cache_fix_array (asection
*sec
)
5948 unsigned i
, count
= 0;
5950 xtensa_relax_info
*relax_info
= get_xtensa_relax_info (sec
);
5952 if (relax_info
== NULL
)
5954 if (relax_info
->fix_list
== NULL
)
5957 for (r
= relax_info
->fix_list
; r
!= NULL
; r
= r
->next
)
5960 relax_info
->fix_array
=
5961 (reloc_bfd_fix
*) bfd_malloc (sizeof (reloc_bfd_fix
) * count
);
5962 relax_info
->fix_array_count
= count
;
5964 r
= relax_info
->fix_list
;
5965 for (i
= 0; i
< count
; i
++, r
= r
->next
)
5967 relax_info
->fix_array
[count
- 1 - i
] = *r
;
5968 relax_info
->fix_array
[count
- 1 - i
].next
= NULL
;
5971 qsort (relax_info
->fix_array
, relax_info
->fix_array_count
,
5972 sizeof (reloc_bfd_fix
), fix_compare
);
5976 static reloc_bfd_fix
*
5977 get_bfd_fix (asection
*sec
, bfd_vma offset
, unsigned type
)
5979 xtensa_relax_info
*relax_info
= get_xtensa_relax_info (sec
);
5983 if (relax_info
== NULL
)
5985 if (relax_info
->fix_list
== NULL
)
5988 if (relax_info
->fix_array
== NULL
)
5989 cache_fix_array (sec
);
5991 key
.src_offset
= offset
;
5992 key
.src_type
= type
;
5993 rv
= bsearch (&key
, relax_info
->fix_array
, relax_info
->fix_array_count
,
5994 sizeof (reloc_bfd_fix
), fix_compare
);
5999 /* Section caching. */
6001 typedef struct section_cache_struct section_cache_t
;
6003 struct section_cache_struct
6007 bfd_byte
*contents
; /* Cache of the section contents. */
6008 bfd_size_type content_length
;
6010 property_table_entry
*ptbl
; /* Cache of the section property table. */
6013 Elf_Internal_Rela
*relocs
; /* Cache of the section relocations. */
6014 unsigned reloc_count
;
6019 init_section_cache (section_cache_t
*sec_cache
)
6021 memset (sec_cache
, 0, sizeof (*sec_cache
));
6026 clear_section_cache (section_cache_t
*sec_cache
)
6030 release_contents (sec_cache
->sec
, sec_cache
->contents
);
6031 release_internal_relocs (sec_cache
->sec
, sec_cache
->relocs
);
6032 if (sec_cache
->ptbl
)
6033 free (sec_cache
->ptbl
);
6034 memset (sec_cache
, 0, sizeof (sec_cache
));
6040 section_cache_section (section_cache_t
*sec_cache
,
6042 struct bfd_link_info
*link_info
)
6045 property_table_entry
*prop_table
= NULL
;
6047 bfd_byte
*contents
= NULL
;
6048 Elf_Internal_Rela
*internal_relocs
= NULL
;
6049 bfd_size_type sec_size
;
6053 if (sec
== sec_cache
->sec
)
6057 sec_size
= bfd_get_section_limit (abfd
, sec
);
6059 /* Get the contents. */
6060 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
6061 if (contents
== NULL
&& sec_size
!= 0)
6064 /* Get the relocations. */
6065 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
6066 link_info
->keep_memory
);
6068 /* Get the entry table. */
6069 ptblsize
= xtensa_read_table_entries (abfd
, sec
, &prop_table
,
6070 XTENSA_PROP_SEC_NAME
, FALSE
);
6074 /* Fill in the new section cache. */
6075 clear_section_cache (sec_cache
);
6076 memset (sec_cache
, 0, sizeof (sec_cache
));
6078 sec_cache
->sec
= sec
;
6079 sec_cache
->contents
= contents
;
6080 sec_cache
->content_length
= sec_size
;
6081 sec_cache
->relocs
= internal_relocs
;
6082 sec_cache
->reloc_count
= sec
->reloc_count
;
6083 sec_cache
->pte_count
= ptblsize
;
6084 sec_cache
->ptbl
= prop_table
;
6089 release_contents (sec
, contents
);
6090 release_internal_relocs (sec
, internal_relocs
);
6097 /* Extended basic blocks. */
6099 /* An ebb_struct represents an Extended Basic Block. Within this
6100 range, we guarantee that all instructions are decodable, the
6101 property table entries are contiguous, and no property table
6102 specifies a segment that cannot have instructions moved. This
6103 structure contains caches of the contents, property table and
6104 relocations for the specified section for easy use. The range is
6105 specified by ranges of indices for the byte offset, property table
6106 offsets and relocation offsets. These must be consistent. */
6108 typedef struct ebb_struct ebb_t
;
6114 bfd_byte
*contents
; /* Cache of the section contents. */
6115 bfd_size_type content_length
;
6117 property_table_entry
*ptbl
; /* Cache of the section property table. */
6120 Elf_Internal_Rela
*relocs
; /* Cache of the section relocations. */
6121 unsigned reloc_count
;
6123 bfd_vma start_offset
; /* Offset in section. */
6124 unsigned start_ptbl_idx
; /* Offset in the property table. */
6125 unsigned start_reloc_idx
; /* Offset in the relocations. */
6128 unsigned end_ptbl_idx
;
6129 unsigned end_reloc_idx
;
6131 bfd_boolean ends_section
; /* Is this the last ebb in a section? */
6133 /* The unreachable property table at the end of this set of blocks;
6134 NULL if the end is not an unreachable block. */
6135 property_table_entry
*ends_unreachable
;
6139 enum ebb_target_enum
6142 EBB_DESIRE_TGT_ALIGN
,
6143 EBB_REQUIRE_TGT_ALIGN
,
6144 EBB_REQUIRE_LOOP_ALIGN
,
6149 /* proposed_action_struct is similar to the text_action_struct except
6150 that is represents a potential transformation, not one that will
6151 occur. We build a list of these for an extended basic block
6152 and use them to compute the actual actions desired. We must be
6153 careful that the entire set of actual actions we perform do not
6154 break any relocations that would fit if the actions were not
6157 typedef struct proposed_action_struct proposed_action
;
6159 struct proposed_action_struct
6161 enum ebb_target_enum align_type
; /* for the target alignment */
6162 bfd_vma alignment_pow
;
6163 text_action_t action
;
6166 bfd_boolean do_action
; /* If false, then we will not perform the action. */
6170 /* The ebb_constraint_struct keeps a set of proposed actions for an
6171 extended basic block. */
6173 typedef struct ebb_constraint_struct ebb_constraint
;
6175 struct ebb_constraint_struct
6178 bfd_boolean start_movable
;
6180 /* Bytes of extra space at the beginning if movable. */
6181 int start_extra_space
;
6183 enum ebb_target_enum start_align
;
6185 bfd_boolean end_movable
;
6187 /* Bytes of extra space at the end if movable. */
6188 int end_extra_space
;
6190 unsigned action_count
;
6191 unsigned action_allocated
;
6193 /* Array of proposed actions. */
6194 proposed_action
*actions
;
6196 /* Action alignments -- one for each proposed action. */
6197 enum ebb_target_enum
*action_aligns
;
6202 init_ebb_constraint (ebb_constraint
*c
)
6204 memset (c
, 0, sizeof (ebb_constraint
));
6209 free_ebb_constraint (ebb_constraint
*c
)
6217 init_ebb (ebb_t
*ebb
,
6220 bfd_size_type content_length
,
6221 property_table_entry
*prop_table
,
6223 Elf_Internal_Rela
*internal_relocs
,
6224 unsigned reloc_count
)
6226 memset (ebb
, 0, sizeof (ebb_t
));
6228 ebb
->contents
= contents
;
6229 ebb
->content_length
= content_length
;
6230 ebb
->ptbl
= prop_table
;
6231 ebb
->pte_count
= ptblsize
;
6232 ebb
->relocs
= internal_relocs
;
6233 ebb
->reloc_count
= reloc_count
;
6234 ebb
->start_offset
= 0;
6235 ebb
->end_offset
= ebb
->content_length
- 1;
6236 ebb
->start_ptbl_idx
= 0;
6237 ebb
->end_ptbl_idx
= ptblsize
;
6238 ebb
->start_reloc_idx
= 0;
6239 ebb
->end_reloc_idx
= reloc_count
;
6243 /* Extend the ebb to all decodable contiguous sections. The algorithm
6244 for building a basic block around an instruction is to push it
6245 forward until we hit the end of a section, an unreachable block or
6246 a block that cannot be transformed. Then we push it backwards
6247 searching for similar conditions. */
6249 static bfd_boolean
extend_ebb_bounds_forward (ebb_t
*);
6250 static bfd_boolean
extend_ebb_bounds_backward (ebb_t
*);
6251 static bfd_size_type insn_block_decodable_len
6252 (bfd_byte
*, bfd_size_type
, bfd_vma
, bfd_size_type
);
6255 extend_ebb_bounds (ebb_t
*ebb
)
6257 if (!extend_ebb_bounds_forward (ebb
))
6259 if (!extend_ebb_bounds_backward (ebb
))
6266 extend_ebb_bounds_forward (ebb_t
*ebb
)
6268 property_table_entry
*the_entry
, *new_entry
;
6270 the_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
];
6272 /* Stop when (1) we cannot decode an instruction, (2) we are at
6273 the end of the property tables, (3) we hit a non-contiguous property
6274 table entry, (4) we hit a NO_TRANSFORM region. */
6279 bfd_size_type insn_block_len
;
6281 entry_end
= the_entry
->address
- ebb
->sec
->vma
+ the_entry
->size
;
6283 insn_block_decodable_len (ebb
->contents
, ebb
->content_length
,
6285 entry_end
- ebb
->end_offset
);
6286 if (insn_block_len
!= (entry_end
- ebb
->end_offset
))
6288 (*_bfd_error_handler
)
6289 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6290 ebb
->sec
->owner
, ebb
->sec
, ebb
->end_offset
+ insn_block_len
);
6293 ebb
->end_offset
+= insn_block_len
;
6295 if (ebb
->end_offset
== ebb
->sec
->size
)
6296 ebb
->ends_section
= TRUE
;
6298 /* Update the reloc counter. */
6299 while (ebb
->end_reloc_idx
+ 1 < ebb
->reloc_count
6300 && (ebb
->relocs
[ebb
->end_reloc_idx
+ 1].r_offset
6303 ebb
->end_reloc_idx
++;
6306 if (ebb
->end_ptbl_idx
+ 1 == ebb
->pte_count
)
6309 new_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
+ 1];
6310 if (((new_entry
->flags
& XTENSA_PROP_INSN
) == 0)
6311 || ((new_entry
->flags
& XTENSA_PROP_NO_TRANSFORM
) != 0)
6312 || ((the_entry
->flags
& XTENSA_PROP_ALIGN
) != 0))
6315 if (the_entry
->address
+ the_entry
->size
!= new_entry
->address
)
6318 the_entry
= new_entry
;
6319 ebb
->end_ptbl_idx
++;
6322 /* Quick check for an unreachable or end of file just at the end. */
6323 if (ebb
->end_ptbl_idx
+ 1 == ebb
->pte_count
)
6325 if (ebb
->end_offset
== ebb
->content_length
)
6326 ebb
->ends_section
= TRUE
;
6330 new_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
+ 1];
6331 if ((new_entry
->flags
& XTENSA_PROP_UNREACHABLE
) != 0
6332 && the_entry
->address
+ the_entry
->size
== new_entry
->address
)
6333 ebb
->ends_unreachable
= new_entry
;
6336 /* Any other ending requires exact alignment. */
6342 extend_ebb_bounds_backward (ebb_t
*ebb
)
6344 property_table_entry
*the_entry
, *new_entry
;
6346 the_entry
= &ebb
->ptbl
[ebb
->start_ptbl_idx
];
6348 /* Stop when (1) we cannot decode the instructions in the current entry.
6349 (2) we are at the beginning of the property tables, (3) we hit a
6350 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6354 bfd_vma block_begin
;
6355 bfd_size_type insn_block_len
;
6357 block_begin
= the_entry
->address
- ebb
->sec
->vma
;
6359 insn_block_decodable_len (ebb
->contents
, ebb
->content_length
,
6361 ebb
->start_offset
- block_begin
);
6362 if (insn_block_len
!= ebb
->start_offset
- block_begin
)
6364 (*_bfd_error_handler
)
6365 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6366 ebb
->sec
->owner
, ebb
->sec
, ebb
->end_offset
+ insn_block_len
);
6369 ebb
->start_offset
-= insn_block_len
;
6371 /* Update the reloc counter. */
6372 while (ebb
->start_reloc_idx
> 0
6373 && (ebb
->relocs
[ebb
->start_reloc_idx
- 1].r_offset
6374 >= ebb
->start_offset
))
6376 ebb
->start_reloc_idx
--;
6379 if (ebb
->start_ptbl_idx
== 0)
6382 new_entry
= &ebb
->ptbl
[ebb
->start_ptbl_idx
- 1];
6383 if ((new_entry
->flags
& XTENSA_PROP_INSN
) == 0
6384 || ((new_entry
->flags
& XTENSA_PROP_NO_TRANSFORM
) != 0)
6385 || ((new_entry
->flags
& XTENSA_PROP_ALIGN
) != 0))
6387 if (new_entry
->address
+ new_entry
->size
!= the_entry
->address
)
6390 the_entry
= new_entry
;
6391 ebb
->start_ptbl_idx
--;
6397 static bfd_size_type
6398 insn_block_decodable_len (bfd_byte
*contents
,
6399 bfd_size_type content_len
,
6400 bfd_vma block_offset
,
6401 bfd_size_type block_len
)
6403 bfd_vma offset
= block_offset
;
6405 while (offset
< block_offset
+ block_len
)
6407 bfd_size_type insn_len
= 0;
6409 insn_len
= insn_decode_len (contents
, content_len
, offset
);
6411 return (offset
- block_offset
);
6414 return (offset
- block_offset
);
6419 ebb_propose_action (ebb_constraint
*c
,
6420 enum ebb_target_enum align_type
,
6421 bfd_vma alignment_pow
,
6422 text_action_t action
,
6425 bfd_boolean do_action
)
6427 proposed_action
*act
;
6429 if (c
->action_allocated
<= c
->action_count
)
6431 unsigned new_allocated
, i
;
6432 proposed_action
*new_actions
;
6434 new_allocated
= (c
->action_count
+ 2) * 2;
6435 new_actions
= (proposed_action
*)
6436 bfd_zmalloc (sizeof (proposed_action
) * new_allocated
);
6438 for (i
= 0; i
< c
->action_count
; i
++)
6439 new_actions
[i
] = c
->actions
[i
];
6442 c
->actions
= new_actions
;
6443 c
->action_allocated
= new_allocated
;
6446 act
= &c
->actions
[c
->action_count
];
6447 act
->align_type
= align_type
;
6448 act
->alignment_pow
= alignment_pow
;
6449 act
->action
= action
;
6450 act
->offset
= offset
;
6451 act
->removed_bytes
= removed_bytes
;
6452 act
->do_action
= do_action
;
6458 /* Access to internal relocations, section contents and symbols. */
6460 /* During relaxation, we need to modify relocations, section contents,
6461 and symbol definitions, and we need to keep the original values from
6462 being reloaded from the input files, i.e., we need to "pin" the
6463 modified values in memory. We also want to continue to observe the
6464 setting of the "keep-memory" flag. The following functions wrap the
6465 standard BFD functions to take care of this for us. */
6467 static Elf_Internal_Rela
*
6468 retrieve_internal_relocs (bfd
*abfd
, asection
*sec
, bfd_boolean keep_memory
)
6470 Elf_Internal_Rela
*internal_relocs
;
6472 if ((sec
->flags
& SEC_LINKER_CREATED
) != 0)
6475 internal_relocs
= elf_section_data (sec
)->relocs
;
6476 if (internal_relocs
== NULL
)
6477 internal_relocs
= (_bfd_elf_link_read_relocs
6478 (abfd
, sec
, NULL
, NULL
, keep_memory
));
6479 return internal_relocs
;
6484 pin_internal_relocs (asection
*sec
, Elf_Internal_Rela
*internal_relocs
)
6486 elf_section_data (sec
)->relocs
= internal_relocs
;
6491 release_internal_relocs (asection
*sec
, Elf_Internal_Rela
*internal_relocs
)
6494 && elf_section_data (sec
)->relocs
!= internal_relocs
)
6495 free (internal_relocs
);
6500 retrieve_contents (bfd
*abfd
, asection
*sec
, bfd_boolean keep_memory
)
6503 bfd_size_type sec_size
;
6505 sec_size
= bfd_get_section_limit (abfd
, sec
);
6506 contents
= elf_section_data (sec
)->this_hdr
.contents
;
6508 if (contents
== NULL
&& sec_size
!= 0)
6510 if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
6517 elf_section_data (sec
)->this_hdr
.contents
= contents
;
6524 pin_contents (asection
*sec
, bfd_byte
*contents
)
6526 elf_section_data (sec
)->this_hdr
.contents
= contents
;
6531 release_contents (asection
*sec
, bfd_byte
*contents
)
6533 if (contents
&& elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6538 static Elf_Internal_Sym
*
6539 retrieve_local_syms (bfd
*input_bfd
)
6541 Elf_Internal_Shdr
*symtab_hdr
;
6542 Elf_Internal_Sym
*isymbuf
;
6545 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
6546 locsymcount
= symtab_hdr
->sh_info
;
6548 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
6549 if (isymbuf
== NULL
&& locsymcount
!= 0)
6550 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
6553 /* Save the symbols for this input file so they won't be read again. */
6554 if (isymbuf
&& isymbuf
!= (Elf_Internal_Sym
*) symtab_hdr
->contents
)
6555 symtab_hdr
->contents
= (unsigned char *) isymbuf
;
6561 /* Code for link-time relaxation. */
6563 /* Initialization for relaxation: */
6564 static bfd_boolean
analyze_relocations (struct bfd_link_info
*);
6565 static bfd_boolean find_relaxable_sections
6566 (bfd
*, asection
*, struct bfd_link_info
*, bfd_boolean
*);
6567 static bfd_boolean collect_source_relocs
6568 (bfd
*, asection
*, struct bfd_link_info
*);
6569 static bfd_boolean is_resolvable_asm_expansion
6570 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*, struct bfd_link_info
*,
6572 static Elf_Internal_Rela
*find_associated_l32r_irel
6573 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*, Elf_Internal_Rela
*);
6574 static bfd_boolean compute_text_actions
6575 (bfd
*, asection
*, struct bfd_link_info
*);
6576 static bfd_boolean
compute_ebb_proposed_actions (ebb_constraint
*);
6577 static bfd_boolean
compute_ebb_actions (ebb_constraint
*);
6578 static bfd_boolean check_section_ebb_pcrels_fit
6579 (bfd
*, asection
*, bfd_byte
*, Elf_Internal_Rela
*, const ebb_constraint
*,
6580 const xtensa_opcode
*);
6581 static bfd_boolean
check_section_ebb_reduces (const ebb_constraint
*);
6582 static void text_action_add_proposed
6583 (text_action_list
*, const ebb_constraint
*, asection
*);
6584 static int compute_fill_extra_space (property_table_entry
*);
6587 static bfd_boolean compute_removed_literals
6588 (bfd
*, asection
*, struct bfd_link_info
*, value_map_hash_table
*);
6589 static Elf_Internal_Rela
*get_irel_at_offset
6590 (asection
*, Elf_Internal_Rela
*, bfd_vma
);
6591 static bfd_boolean is_removable_literal
6592 (const source_reloc
*, int, const source_reloc
*, int, asection
*,
6593 property_table_entry
*, int);
6594 static bfd_boolean remove_dead_literal
6595 (bfd
*, asection
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
6596 Elf_Internal_Rela
*, source_reloc
*, property_table_entry
*, int);
6597 static bfd_boolean identify_literal_placement
6598 (bfd
*, asection
*, bfd_byte
*, struct bfd_link_info
*,
6599 value_map_hash_table
*, bfd_boolean
*, Elf_Internal_Rela
*, int,
6600 source_reloc
*, property_table_entry
*, int, section_cache_t
*,
6602 static bfd_boolean
relocations_reach (source_reloc
*, int, const r_reloc
*);
6603 static bfd_boolean coalesce_shared_literal
6604 (asection
*, source_reloc
*, property_table_entry
*, int, value_map
*);
6605 static bfd_boolean move_shared_literal
6606 (asection
*, struct bfd_link_info
*, source_reloc
*, property_table_entry
*,
6607 int, const r_reloc
*, const literal_value
*, section_cache_t
*);
6610 static bfd_boolean
relax_section (bfd
*, asection
*, struct bfd_link_info
*);
6611 static bfd_boolean
translate_section_fixes (asection
*);
6612 static bfd_boolean
translate_reloc_bfd_fix (reloc_bfd_fix
*);
6613 static asection
*translate_reloc (const r_reloc
*, r_reloc
*, asection
*);
6614 static void shrink_dynamic_reloc_sections
6615 (struct bfd_link_info
*, bfd
*, asection
*, Elf_Internal_Rela
*);
6616 static bfd_boolean move_literal
6617 (bfd
*, struct bfd_link_info
*, asection
*, bfd_vma
, bfd_byte
*,
6618 xtensa_relax_info
*, Elf_Internal_Rela
**, const literal_value
*);
6619 static bfd_boolean relax_property_section
6620 (bfd
*, asection
*, struct bfd_link_info
*);
6623 static bfd_boolean
relax_section_symbols (bfd
*, asection
*);
6627 elf_xtensa_relax_section (bfd
*abfd
,
6629 struct bfd_link_info
*link_info
,
6632 static value_map_hash_table
*values
= NULL
;
6633 static bfd_boolean relocations_analyzed
= FALSE
;
6634 xtensa_relax_info
*relax_info
;
6636 if (!relocations_analyzed
)
6638 /* Do some overall initialization for relaxation. */
6639 values
= value_map_hash_table_init ();
6642 relaxing_section
= TRUE
;
6643 if (!analyze_relocations (link_info
))
6645 relocations_analyzed
= TRUE
;
6649 /* Don't mess with linker-created sections. */
6650 if ((sec
->flags
& SEC_LINKER_CREATED
) != 0)
6653 relax_info
= get_xtensa_relax_info (sec
);
6654 BFD_ASSERT (relax_info
!= NULL
);
6656 switch (relax_info
->visited
)
6659 /* Note: It would be nice to fold this pass into
6660 analyze_relocations, but it is important for this step that the
6661 sections be examined in link order. */
6662 if (!compute_removed_literals (abfd
, sec
, link_info
, values
))
6669 value_map_hash_table_delete (values
);
6671 if (!relax_section (abfd
, sec
, link_info
))
6677 if (!relax_section_symbols (abfd
, sec
))
6682 relax_info
->visited
++;
6687 /* Initialization for relaxation. */
6689 /* This function is called once at the start of relaxation. It scans
6690 all the input sections and marks the ones that are relaxable (i.e.,
6691 literal sections with L32R relocations against them), and then
6692 collects source_reloc information for all the relocations against
6693 those relaxable sections. During this process, it also detects
6694 longcalls, i.e., calls relaxed by the assembler into indirect
6695 calls, that can be optimized back into direct calls. Within each
6696 extended basic block (ebb) containing an optimized longcall, it
6697 computes a set of "text actions" that can be performed to remove
6698 the L32R associated with the longcall while optionally preserving
6699 branch target alignments. */
6702 analyze_relocations (struct bfd_link_info
*link_info
)
6706 bfd_boolean is_relaxable
= FALSE
;
6708 /* Initialize the per-section relaxation info. */
6709 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
6710 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6712 init_xtensa_relax_info (sec
);
6715 /* Mark relaxable sections (and count relocations against each one). */
6716 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
6717 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6719 if (!find_relaxable_sections (abfd
, sec
, link_info
, &is_relaxable
))
6723 /* Bail out if there are no relaxable sections. */
6727 /* Allocate space for source_relocs. */
6728 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
6729 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6731 xtensa_relax_info
*relax_info
;
6733 relax_info
= get_xtensa_relax_info (sec
);
6734 if (relax_info
->is_relaxable_literal_section
6735 || relax_info
->is_relaxable_asm_section
)
6737 relax_info
->src_relocs
= (source_reloc
*)
6738 bfd_malloc (relax_info
->src_count
* sizeof (source_reloc
));
6741 relax_info
->src_count
= 0;
6744 /* Collect info on relocations against each relaxable section. */
6745 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
6746 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6748 if (!collect_source_relocs (abfd
, sec
, link_info
))
6752 /* Compute the text actions. */
6753 for (abfd
= link_info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
6754 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6756 if (!compute_text_actions (abfd
, sec
, link_info
))
6764 /* Find all the sections that might be relaxed. The motivation for
6765 this pass is that collect_source_relocs() needs to record _all_ the
6766 relocations that target each relaxable section. That is expensive
6767 and unnecessary unless the target section is actually going to be
6768 relaxed. This pass identifies all such sections by checking if
6769 they have L32Rs pointing to them. In the process, the total number
6770 of relocations targeting each section is also counted so that we
6771 know how much space to allocate for source_relocs against each
6772 relaxable literal section. */
6775 find_relaxable_sections (bfd
*abfd
,
6777 struct bfd_link_info
*link_info
,
6778 bfd_boolean
*is_relaxable_p
)
6780 Elf_Internal_Rela
*internal_relocs
;
6782 bfd_boolean ok
= TRUE
;
6784 xtensa_relax_info
*source_relax_info
;
6785 bfd_boolean is_l32r_reloc
;
6787 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
6788 link_info
->keep_memory
);
6789 if (internal_relocs
== NULL
)
6792 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
6793 if (contents
== NULL
&& sec
->size
!= 0)
6799 source_relax_info
= get_xtensa_relax_info (sec
);
6800 for (i
= 0; i
< sec
->reloc_count
; i
++)
6802 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
6804 asection
*target_sec
;
6805 xtensa_relax_info
*target_relax_info
;
6807 /* If this section has not already been marked as "relaxable", and
6808 if it contains any ASM_EXPAND relocations (marking expanded
6809 longcalls) that can be optimized into direct calls, then mark
6810 the section as "relaxable". */
6811 if (source_relax_info
6812 && !source_relax_info
->is_relaxable_asm_section
6813 && ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_ASM_EXPAND
)
6815 bfd_boolean is_reachable
= FALSE
;
6816 if (is_resolvable_asm_expansion (abfd
, sec
, contents
, irel
,
6817 link_info
, &is_reachable
)
6820 source_relax_info
->is_relaxable_asm_section
= TRUE
;
6821 *is_relaxable_p
= TRUE
;
6825 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
6826 bfd_get_section_limit (abfd
, sec
));
6828 target_sec
= r_reloc_get_section (&r_rel
);
6829 target_relax_info
= get_xtensa_relax_info (target_sec
);
6830 if (!target_relax_info
)
6833 /* Count PC-relative operand relocations against the target section.
6834 Note: The conditions tested here must match the conditions under
6835 which init_source_reloc is called in collect_source_relocs(). */
6836 is_l32r_reloc
= FALSE
;
6837 if (is_operand_relocation (ELF32_R_TYPE (irel
->r_info
)))
6839 xtensa_opcode opcode
=
6840 get_relocation_opcode (abfd
, sec
, contents
, irel
);
6841 if (opcode
!= XTENSA_UNDEFINED
)
6843 is_l32r_reloc
= (opcode
== get_l32r_opcode ());
6844 if (!is_alt_relocation (ELF32_R_TYPE (irel
->r_info
))
6846 target_relax_info
->src_count
++;
6850 if (is_l32r_reloc
&& r_reloc_is_defined (&r_rel
))
6852 /* Mark the target section as relaxable. */
6853 target_relax_info
->is_relaxable_literal_section
= TRUE
;
6854 *is_relaxable_p
= TRUE
;
6859 release_contents (sec
, contents
);
6860 release_internal_relocs (sec
, internal_relocs
);
6865 /* Record _all_ the relocations that point to relaxable sections, and
6866 get rid of ASM_EXPAND relocs by either converting them to
6867 ASM_SIMPLIFY or by removing them. */
6870 collect_source_relocs (bfd
*abfd
,
6872 struct bfd_link_info
*link_info
)
6874 Elf_Internal_Rela
*internal_relocs
;
6876 bfd_boolean ok
= TRUE
;
6878 bfd_size_type sec_size
;
6880 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
6881 link_info
->keep_memory
);
6882 if (internal_relocs
== NULL
)
6885 sec_size
= bfd_get_section_limit (abfd
, sec
);
6886 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
6887 if (contents
== NULL
&& sec_size
!= 0)
6893 /* Record relocations against relaxable literal sections. */
6894 for (i
= 0; i
< sec
->reloc_count
; i
++)
6896 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
6898 asection
*target_sec
;
6899 xtensa_relax_info
*target_relax_info
;
6901 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
6903 target_sec
= r_reloc_get_section (&r_rel
);
6904 target_relax_info
= get_xtensa_relax_info (target_sec
);
6906 if (target_relax_info
6907 && (target_relax_info
->is_relaxable_literal_section
6908 || target_relax_info
->is_relaxable_asm_section
))
6910 xtensa_opcode opcode
= XTENSA_UNDEFINED
;
6912 bfd_boolean is_abs_literal
= FALSE
;
6914 if (is_alt_relocation (ELF32_R_TYPE (irel
->r_info
)))
6916 /* None of the current alternate relocs are PC-relative,
6917 and only PC-relative relocs matter here. However, we
6918 still need to record the opcode for literal
6920 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
6921 if (opcode
== get_l32r_opcode ())
6923 is_abs_literal
= TRUE
;
6927 opcode
= XTENSA_UNDEFINED
;
6929 else if (is_operand_relocation (ELF32_R_TYPE (irel
->r_info
)))
6931 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
6932 opnd
= get_relocation_opnd (opcode
, ELF32_R_TYPE (irel
->r_info
));
6935 if (opcode
!= XTENSA_UNDEFINED
)
6937 int src_next
= target_relax_info
->src_next
++;
6938 source_reloc
*s_reloc
= &target_relax_info
->src_relocs
[src_next
];
6940 init_source_reloc (s_reloc
, sec
, &r_rel
, opcode
, opnd
,
6946 /* Now get rid of ASM_EXPAND relocations. At this point, the
6947 src_relocs array for the target literal section may still be
6948 incomplete, but it must at least contain the entries for the L32R
6949 relocations associated with ASM_EXPANDs because they were just
6950 added in the preceding loop over the relocations. */
6952 for (i
= 0; i
< sec
->reloc_count
; i
++)
6954 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
6955 bfd_boolean is_reachable
;
6957 if (!is_resolvable_asm_expansion (abfd
, sec
, contents
, irel
, link_info
,
6963 Elf_Internal_Rela
*l32r_irel
;
6965 asection
*target_sec
;
6966 xtensa_relax_info
*target_relax_info
;
6968 /* Mark the source_reloc for the L32R so that it will be
6969 removed in compute_removed_literals(), along with the
6970 associated literal. */
6971 l32r_irel
= find_associated_l32r_irel (abfd
, sec
, contents
,
6972 irel
, internal_relocs
);
6973 if (l32r_irel
== NULL
)
6976 r_reloc_init (&r_rel
, abfd
, l32r_irel
, contents
, sec_size
);
6978 target_sec
= r_reloc_get_section (&r_rel
);
6979 target_relax_info
= get_xtensa_relax_info (target_sec
);
6981 if (target_relax_info
6982 && (target_relax_info
->is_relaxable_literal_section
6983 || target_relax_info
->is_relaxable_asm_section
))
6985 source_reloc
*s_reloc
;
6987 /* Search the source_relocs for the entry corresponding to
6988 the l32r_irel. Note: The src_relocs array is not yet
6989 sorted, but it wouldn't matter anyway because we're
6990 searching by source offset instead of target offset. */
6991 s_reloc
= find_source_reloc (target_relax_info
->src_relocs
,
6992 target_relax_info
->src_next
,
6994 BFD_ASSERT (s_reloc
);
6995 s_reloc
->is_null
= TRUE
;
6998 /* Convert this reloc to ASM_SIMPLIFY. */
6999 irel
->r_info
= ELF32_R_INFO (ELF32_R_SYM (irel
->r_info
),
7000 R_XTENSA_ASM_SIMPLIFY
);
7001 l32r_irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
7003 pin_internal_relocs (sec
, internal_relocs
);
7007 /* It is resolvable but doesn't reach. We resolve now
7008 by eliminating the relocation -- the call will remain
7009 expanded into L32R/CALLX. */
7010 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
7011 pin_internal_relocs (sec
, internal_relocs
);
7016 release_contents (sec
, contents
);
7017 release_internal_relocs (sec
, internal_relocs
);
7022 /* Return TRUE if the asm expansion can be resolved. Generally it can
7023 be resolved on a final link or when a partial link locates it in the
7024 same section as the target. Set "is_reachable" flag if the target of
7025 the call is within the range of a direct call, given the current VMA
7026 for this section and the target section. */
7029 is_resolvable_asm_expansion (bfd
*abfd
,
7032 Elf_Internal_Rela
*irel
,
7033 struct bfd_link_info
*link_info
,
7034 bfd_boolean
*is_reachable_p
)
7036 asection
*target_sec
;
7037 bfd_vma target_offset
;
7039 xtensa_opcode opcode
, direct_call_opcode
;
7040 bfd_vma self_address
;
7041 bfd_vma dest_address
;
7042 bfd_boolean uses_l32r
;
7043 bfd_size_type sec_size
;
7045 *is_reachable_p
= FALSE
;
7047 if (contents
== NULL
)
7050 if (ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_ASM_EXPAND
)
7053 sec_size
= bfd_get_section_limit (abfd
, sec
);
7054 opcode
= get_expanded_call_opcode (contents
+ irel
->r_offset
,
7055 sec_size
- irel
->r_offset
, &uses_l32r
);
7056 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7060 direct_call_opcode
= swap_callx_for_call_opcode (opcode
);
7061 if (direct_call_opcode
== XTENSA_UNDEFINED
)
7064 /* Check and see that the target resolves. */
7065 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
7066 if (!r_reloc_is_defined (&r_rel
))
7069 target_sec
= r_reloc_get_section (&r_rel
);
7070 target_offset
= r_rel
.target_offset
;
7072 /* If the target is in a shared library, then it doesn't reach. This
7073 isn't supposed to come up because the compiler should never generate
7074 non-PIC calls on systems that use shared libraries, but the linker
7075 shouldn't crash regardless. */
7076 if (!target_sec
->output_section
)
7079 /* For relocatable sections, we can only simplify when the output
7080 section of the target is the same as the output section of the
7082 if (link_info
->relocatable
7083 && (target_sec
->output_section
!= sec
->output_section
7084 || is_reloc_sym_weak (abfd
, irel
)))
7087 self_address
= (sec
->output_section
->vma
7088 + sec
->output_offset
+ irel
->r_offset
+ 3);
7089 dest_address
= (target_sec
->output_section
->vma
7090 + target_sec
->output_offset
+ target_offset
);
7092 *is_reachable_p
= pcrel_reloc_fits (direct_call_opcode
, 0,
7093 self_address
, dest_address
);
7095 if ((self_address
>> CALL_SEGMENT_BITS
) !=
7096 (dest_address
>> CALL_SEGMENT_BITS
))
7103 static Elf_Internal_Rela
*
7104 find_associated_l32r_irel (bfd
*abfd
,
7107 Elf_Internal_Rela
*other_irel
,
7108 Elf_Internal_Rela
*internal_relocs
)
7112 for (i
= 0; i
< sec
->reloc_count
; i
++)
7114 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
7116 if (irel
== other_irel
)
7118 if (irel
->r_offset
!= other_irel
->r_offset
)
7120 if (is_l32r_relocation (abfd
, sec
, contents
, irel
))
7128 static xtensa_opcode
*
7129 build_reloc_opcodes (bfd
*abfd
,
7132 Elf_Internal_Rela
*internal_relocs
)
7135 xtensa_opcode
*reloc_opcodes
=
7136 (xtensa_opcode
*) bfd_malloc (sizeof (xtensa_opcode
) * sec
->reloc_count
);
7137 for (i
= 0; i
< sec
->reloc_count
; i
++)
7139 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
7140 reloc_opcodes
[i
] = get_relocation_opcode (abfd
, sec
, contents
, irel
);
7142 return reloc_opcodes
;
7146 /* The compute_text_actions function will build a list of potential
7147 transformation actions for code in the extended basic block of each
7148 longcall that is optimized to a direct call. From this list we
7149 generate a set of actions to actually perform that optimizes for
7150 space and, if not using size_opt, maintains branch target
7153 These actions to be performed are placed on a per-section list.
7154 The actual changes are performed by relax_section() in the second
7158 compute_text_actions (bfd
*abfd
,
7160 struct bfd_link_info
*link_info
)
7162 xtensa_opcode
*reloc_opcodes
= NULL
;
7163 xtensa_relax_info
*relax_info
;
7165 Elf_Internal_Rela
*internal_relocs
;
7166 bfd_boolean ok
= TRUE
;
7168 property_table_entry
*prop_table
= 0;
7170 bfd_size_type sec_size
;
7172 relax_info
= get_xtensa_relax_info (sec
);
7173 BFD_ASSERT (relax_info
);
7174 BFD_ASSERT (relax_info
->src_next
== relax_info
->src_count
);
7176 /* Do nothing if the section contains no optimized longcalls. */
7177 if (!relax_info
->is_relaxable_asm_section
)
7180 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
7181 link_info
->keep_memory
);
7183 if (internal_relocs
)
7184 qsort (internal_relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
7185 internal_reloc_compare
);
7187 sec_size
= bfd_get_section_limit (abfd
, sec
);
7188 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
7189 if (contents
== NULL
&& sec_size
!= 0)
7195 ptblsize
= xtensa_read_table_entries (abfd
, sec
, &prop_table
,
7196 XTENSA_PROP_SEC_NAME
, FALSE
);
7203 for (i
= 0; i
< sec
->reloc_count
; i
++)
7205 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
7207 property_table_entry
*the_entry
;
7210 ebb_constraint ebb_table
;
7211 bfd_size_type simplify_size
;
7213 if (irel
&& ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_ASM_SIMPLIFY
)
7215 r_offset
= irel
->r_offset
;
7217 simplify_size
= get_asm_simplify_size (contents
, sec_size
, r_offset
);
7218 if (simplify_size
== 0)
7220 (*_bfd_error_handler
)
7221 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7222 sec
->owner
, sec
, r_offset
);
7226 /* If the instruction table is not around, then don't do this
7228 the_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
7229 sec
->vma
+ irel
->r_offset
);
7230 if (the_entry
== NULL
|| XTENSA_NO_NOP_REMOVAL
)
7232 text_action_add (&relax_info
->action_list
,
7233 ta_convert_longcall
, sec
, r_offset
,
7238 /* If the next longcall happens to be at the same address as an
7239 unreachable section of size 0, then skip forward. */
7240 ptbl_idx
= the_entry
- prop_table
;
7241 while ((the_entry
->flags
& XTENSA_PROP_UNREACHABLE
)
7242 && the_entry
->size
== 0
7243 && ptbl_idx
+ 1 < ptblsize
7244 && (prop_table
[ptbl_idx
+ 1].address
7245 == prop_table
[ptbl_idx
].address
))
7251 if (the_entry
->flags
& XTENSA_PROP_NO_TRANSFORM
)
7252 /* NO_REORDER is OK */
7255 init_ebb_constraint (&ebb_table
);
7256 ebb
= &ebb_table
.ebb
;
7257 init_ebb (ebb
, sec
, contents
, sec_size
, prop_table
, ptblsize
,
7258 internal_relocs
, sec
->reloc_count
);
7259 ebb
->start_offset
= r_offset
+ simplify_size
;
7260 ebb
->end_offset
= r_offset
+ simplify_size
;
7261 ebb
->start_ptbl_idx
= ptbl_idx
;
7262 ebb
->end_ptbl_idx
= ptbl_idx
;
7263 ebb
->start_reloc_idx
= i
;
7264 ebb
->end_reloc_idx
= i
;
7266 /* Precompute the opcode for each relocation. */
7267 if (reloc_opcodes
== NULL
)
7268 reloc_opcodes
= build_reloc_opcodes (abfd
, sec
, contents
,
7271 if (!extend_ebb_bounds (ebb
)
7272 || !compute_ebb_proposed_actions (&ebb_table
)
7273 || !compute_ebb_actions (&ebb_table
)
7274 || !check_section_ebb_pcrels_fit (abfd
, sec
, contents
,
7275 internal_relocs
, &ebb_table
,
7277 || !check_section_ebb_reduces (&ebb_table
))
7279 /* If anything goes wrong or we get unlucky and something does
7280 not fit, with our plan because of expansion between
7281 critical branches, just convert to a NOP. */
7283 text_action_add (&relax_info
->action_list
,
7284 ta_convert_longcall
, sec
, r_offset
, 0);
7285 i
= ebb_table
.ebb
.end_reloc_idx
;
7286 free_ebb_constraint (&ebb_table
);
7290 text_action_add_proposed (&relax_info
->action_list
, &ebb_table
, sec
);
7292 /* Update the index so we do not go looking at the relocations
7293 we have already processed. */
7294 i
= ebb_table
.ebb
.end_reloc_idx
;
7295 free_ebb_constraint (&ebb_table
);
7299 if (relax_info
->action_list
.head
)
7300 print_action_list (stderr
, &relax_info
->action_list
);
7304 release_contents (sec
, contents
);
7305 release_internal_relocs (sec
, internal_relocs
);
7309 free (reloc_opcodes
);
7315 /* Do not widen an instruction if it is preceeded by a
7316 loop opcode. It might cause misalignment. */
7319 prev_instr_is_a_loop (bfd_byte
*contents
,
7320 bfd_size_type content_length
,
7321 bfd_size_type offset
)
7323 xtensa_opcode prev_opcode
;
7327 prev_opcode
= insn_decode_opcode (contents
, content_length
, offset
-3, 0);
7328 return (xtensa_opcode_is_loop (xtensa_default_isa
, prev_opcode
) == 1);
7332 /* Find all of the possible actions for an extended basic block. */
7335 compute_ebb_proposed_actions (ebb_constraint
*ebb_table
)
7337 const ebb_t
*ebb
= &ebb_table
->ebb
;
7338 unsigned rel_idx
= ebb
->start_reloc_idx
;
7339 property_table_entry
*entry
, *start_entry
, *end_entry
;
7341 xtensa_isa isa
= xtensa_default_isa
;
7343 static xtensa_insnbuf insnbuf
= NULL
;
7344 static xtensa_insnbuf slotbuf
= NULL
;
7346 if (insnbuf
== NULL
)
7348 insnbuf
= xtensa_insnbuf_alloc (isa
);
7349 slotbuf
= xtensa_insnbuf_alloc (isa
);
7352 start_entry
= &ebb
->ptbl
[ebb
->start_ptbl_idx
];
7353 end_entry
= &ebb
->ptbl
[ebb
->end_ptbl_idx
];
7355 for (entry
= start_entry
; entry
<= end_entry
; entry
++)
7357 bfd_vma start_offset
, end_offset
;
7358 bfd_size_type insn_len
;
7360 start_offset
= entry
->address
- ebb
->sec
->vma
;
7361 end_offset
= entry
->address
+ entry
->size
- ebb
->sec
->vma
;
7363 if (entry
== start_entry
)
7364 start_offset
= ebb
->start_offset
;
7365 if (entry
== end_entry
)
7366 end_offset
= ebb
->end_offset
;
7367 offset
= start_offset
;
7369 if (offset
== entry
->address
- ebb
->sec
->vma
7370 && (entry
->flags
& XTENSA_PROP_INSN_BRANCH_TARGET
) != 0)
7372 enum ebb_target_enum align_type
= EBB_DESIRE_TGT_ALIGN
;
7373 BFD_ASSERT (offset
!= end_offset
);
7374 if (offset
== end_offset
)
7377 insn_len
= insn_decode_len (ebb
->contents
, ebb
->content_length
,
7382 if (check_branch_target_aligned_address (offset
, insn_len
))
7383 align_type
= EBB_REQUIRE_TGT_ALIGN
;
7385 ebb_propose_action (ebb_table
, align_type
, 0,
7386 ta_none
, offset
, 0, TRUE
);
7389 while (offset
!= end_offset
)
7391 Elf_Internal_Rela
*irel
;
7392 xtensa_opcode opcode
;
7394 while (rel_idx
< ebb
->end_reloc_idx
7395 && (ebb
->relocs
[rel_idx
].r_offset
< offset
7396 || (ebb
->relocs
[rel_idx
].r_offset
== offset
7397 && (ELF32_R_TYPE (ebb
->relocs
[rel_idx
].r_info
)
7398 != R_XTENSA_ASM_SIMPLIFY
))))
7401 /* Check for longcall. */
7402 irel
= &ebb
->relocs
[rel_idx
];
7403 if (irel
->r_offset
== offset
7404 && ELF32_R_TYPE (irel
->r_info
) == R_XTENSA_ASM_SIMPLIFY
)
7406 bfd_size_type simplify_size
;
7408 simplify_size
= get_asm_simplify_size (ebb
->contents
,
7409 ebb
->content_length
,
7411 if (simplify_size
== 0)
7414 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
7415 ta_convert_longcall
, offset
, 0, TRUE
);
7417 offset
+= simplify_size
;
7421 if (offset
+ MIN_INSN_LENGTH
> ebb
->content_length
)
7423 xtensa_insnbuf_from_chars (isa
, insnbuf
, &ebb
->contents
[offset
],
7424 ebb
->content_length
- offset
);
7425 fmt
= xtensa_format_decode (isa
, insnbuf
);
7426 if (fmt
== XTENSA_UNDEFINED
)
7428 insn_len
= xtensa_format_length (isa
, fmt
);
7429 if (insn_len
== (bfd_size_type
) XTENSA_UNDEFINED
)
7432 if (xtensa_format_num_slots (isa
, fmt
) != 1)
7438 xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
);
7439 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
7440 if (opcode
== XTENSA_UNDEFINED
)
7443 if ((entry
->flags
& XTENSA_PROP_INSN_NO_DENSITY
) == 0
7444 && (entry
->flags
& XTENSA_PROP_NO_TRANSFORM
) == 0
7445 && can_narrow_instruction (slotbuf
, fmt
, opcode
) != 0)
7447 /* Add an instruction narrow action. */
7448 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
7449 ta_narrow_insn
, offset
, 0, FALSE
);
7451 else if ((entry
->flags
& XTENSA_PROP_NO_TRANSFORM
) == 0
7452 && can_widen_instruction (slotbuf
, fmt
, opcode
) != 0
7453 && ! prev_instr_is_a_loop (ebb
->contents
,
7454 ebb
->content_length
, offset
))
7456 /* Add an instruction widen action. */
7457 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
7458 ta_widen_insn
, offset
, 0, FALSE
);
7460 else if (xtensa_opcode_is_loop (xtensa_default_isa
, opcode
) == 1)
7462 /* Check for branch targets. */
7463 ebb_propose_action (ebb_table
, EBB_REQUIRE_LOOP_ALIGN
, 0,
7464 ta_none
, offset
, 0, TRUE
);
7471 if (ebb
->ends_unreachable
)
7473 ebb_propose_action (ebb_table
, EBB_NO_ALIGN
, 0,
7474 ta_fill
, ebb
->end_offset
, 0, TRUE
);
7480 (*_bfd_error_handler
)
7481 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
7482 ebb
->sec
->owner
, ebb
->sec
, offset
);
7487 /* After all of the information has collected about the
7488 transformations possible in an EBB, compute the appropriate actions
7489 here in compute_ebb_actions. We still must check later to make
7490 sure that the actions do not break any relocations. The algorithm
7491 used here is pretty greedy. Basically, it removes as many no-ops
7492 as possible so that the end of the EBB has the same alignment
7493 characteristics as the original. First, it uses narrowing, then
7494 fill space at the end of the EBB, and finally widenings. If that
7495 does not work, it tries again with one fewer no-op removed. The
7496 optimization will only be performed if all of the branch targets
7497 that were aligned before transformation are also aligned after the
7500 When the size_opt flag is set, ignore the branch target alignments,
7501 narrow all wide instructions, and remove all no-ops unless the end
7502 of the EBB prevents it. */
7505 compute_ebb_actions (ebb_constraint
*ebb_table
)
7509 int removed_bytes
= 0;
7510 ebb_t
*ebb
= &ebb_table
->ebb
;
7511 unsigned seg_idx_start
= 0;
7512 unsigned seg_idx_end
= 0;
7514 /* We perform this like the assembler relaxation algorithm: Start by
7515 assuming all instructions are narrow and all no-ops removed; then
7518 /* For each segment of this that has a solid constraint, check to
7519 see if there are any combinations that will keep the constraint.
7521 for (seg_idx_end
= 0; seg_idx_end
< ebb_table
->action_count
; seg_idx_end
++)
7523 bfd_boolean requires_text_end_align
= FALSE
;
7524 unsigned longcall_count
= 0;
7525 unsigned longcall_convert_count
= 0;
7526 unsigned narrowable_count
= 0;
7527 unsigned narrowable_convert_count
= 0;
7528 unsigned widenable_count
= 0;
7529 unsigned widenable_convert_count
= 0;
7531 proposed_action
*action
= NULL
;
7532 int align
= (1 << ebb_table
->ebb
.sec
->alignment_power
);
7534 seg_idx_start
= seg_idx_end
;
7536 for (i
= seg_idx_start
; i
< ebb_table
->action_count
; i
++)
7538 action
= &ebb_table
->actions
[i
];
7539 if (action
->action
== ta_convert_longcall
)
7541 if (action
->action
== ta_narrow_insn
)
7543 if (action
->action
== ta_widen_insn
)
7545 if (action
->action
== ta_fill
)
7547 if (action
->align_type
== EBB_REQUIRE_LOOP_ALIGN
)
7549 if (action
->align_type
== EBB_REQUIRE_TGT_ALIGN
7550 && !elf32xtensa_size_opt
)
7555 if (seg_idx_end
== ebb_table
->action_count
&& !ebb
->ends_unreachable
)
7556 requires_text_end_align
= TRUE
;
7558 if (elf32xtensa_size_opt
&& !requires_text_end_align
7559 && action
->align_type
!= EBB_REQUIRE_LOOP_ALIGN
7560 && action
->align_type
!= EBB_REQUIRE_TGT_ALIGN
)
7562 longcall_convert_count
= longcall_count
;
7563 narrowable_convert_count
= narrowable_count
;
7564 widenable_convert_count
= 0;
7568 /* There is a constraint. Convert the max number of longcalls. */
7569 narrowable_convert_count
= 0;
7570 longcall_convert_count
= 0;
7571 widenable_convert_count
= 0;
7573 for (j
= 0; j
< longcall_count
; j
++)
7575 int removed
= (longcall_count
- j
) * 3 & (align
- 1);
7576 unsigned desire_narrow
= (align
- removed
) & (align
- 1);
7577 unsigned desire_widen
= removed
;
7578 if (desire_narrow
<= narrowable_count
)
7580 narrowable_convert_count
= desire_narrow
;
7581 narrowable_convert_count
+=
7582 (align
* ((narrowable_count
- narrowable_convert_count
)
7584 longcall_convert_count
= (longcall_count
- j
);
7585 widenable_convert_count
= 0;
7588 if (desire_widen
<= widenable_count
&& !elf32xtensa_size_opt
)
7590 narrowable_convert_count
= 0;
7591 longcall_convert_count
= longcall_count
- j
;
7592 widenable_convert_count
= desire_widen
;
7598 /* Now the number of conversions are saved. Do them. */
7599 for (i
= seg_idx_start
; i
< seg_idx_end
; i
++)
7601 action
= &ebb_table
->actions
[i
];
7602 switch (action
->action
)
7604 case ta_convert_longcall
:
7605 if (longcall_convert_count
!= 0)
7607 action
->action
= ta_remove_longcall
;
7608 action
->do_action
= TRUE
;
7609 action
->removed_bytes
+= 3;
7610 longcall_convert_count
--;
7613 case ta_narrow_insn
:
7614 if (narrowable_convert_count
!= 0)
7616 action
->do_action
= TRUE
;
7617 action
->removed_bytes
+= 1;
7618 narrowable_convert_count
--;
7622 if (widenable_convert_count
!= 0)
7624 action
->do_action
= TRUE
;
7625 action
->removed_bytes
-= 1;
7626 widenable_convert_count
--;
7635 /* Now we move on to some local opts. Try to remove each of the
7636 remaining longcalls. */
7638 if (ebb_table
->ebb
.ends_section
|| ebb_table
->ebb
.ends_unreachable
)
7641 for (i
= 0; i
< ebb_table
->action_count
; i
++)
7643 int old_removed_bytes
= removed_bytes
;
7644 proposed_action
*action
= &ebb_table
->actions
[i
];
7646 if (action
->do_action
&& action
->action
== ta_convert_longcall
)
7648 bfd_boolean bad_alignment
= FALSE
;
7650 for (j
= i
+ 1; j
< ebb_table
->action_count
; j
++)
7652 proposed_action
*new_action
= &ebb_table
->actions
[j
];
7653 bfd_vma offset
= new_action
->offset
;
7654 if (new_action
->align_type
== EBB_REQUIRE_TGT_ALIGN
)
7656 if (!check_branch_target_aligned
7657 (ebb_table
->ebb
.contents
,
7658 ebb_table
->ebb
.content_length
,
7659 offset
, offset
- removed_bytes
))
7661 bad_alignment
= TRUE
;
7665 if (new_action
->align_type
== EBB_REQUIRE_LOOP_ALIGN
)
7667 if (!check_loop_aligned (ebb_table
->ebb
.contents
,
7668 ebb_table
->ebb
.content_length
,
7670 offset
- removed_bytes
))
7672 bad_alignment
= TRUE
;
7676 if (new_action
->action
== ta_narrow_insn
7677 && !new_action
->do_action
7678 && ebb_table
->ebb
.sec
->alignment_power
== 2)
7680 /* Narrow an instruction and we are done. */
7681 new_action
->do_action
= TRUE
;
7682 new_action
->removed_bytes
+= 1;
7683 bad_alignment
= FALSE
;
7686 if (new_action
->action
== ta_widen_insn
7687 && new_action
->do_action
7688 && ebb_table
->ebb
.sec
->alignment_power
== 2)
7690 /* Narrow an instruction and we are done. */
7691 new_action
->do_action
= FALSE
;
7692 new_action
->removed_bytes
+= 1;
7693 bad_alignment
= FALSE
;
7696 if (new_action
->do_action
)
7697 removed_bytes
+= new_action
->removed_bytes
;
7701 action
->removed_bytes
+= 3;
7702 action
->action
= ta_remove_longcall
;
7703 action
->do_action
= TRUE
;
7706 removed_bytes
= old_removed_bytes
;
7707 if (action
->do_action
)
7708 removed_bytes
+= action
->removed_bytes
;
7713 for (i
= 0; i
< ebb_table
->action_count
; ++i
)
7715 proposed_action
*action
= &ebb_table
->actions
[i
];
7716 if (action
->do_action
)
7717 removed_bytes
+= action
->removed_bytes
;
7720 if ((removed_bytes
% (1 << ebb_table
->ebb
.sec
->alignment_power
)) != 0
7721 && ebb
->ends_unreachable
)
7723 proposed_action
*action
;
7727 BFD_ASSERT (ebb_table
->action_count
!= 0);
7728 action
= &ebb_table
->actions
[ebb_table
->action_count
- 1];
7729 BFD_ASSERT (action
->action
== ta_fill
);
7730 BFD_ASSERT (ebb
->ends_unreachable
->flags
& XTENSA_PROP_UNREACHABLE
);
7732 extra_space
= compute_fill_extra_space (ebb
->ends_unreachable
);
7733 br
= action
->removed_bytes
+ removed_bytes
+ extra_space
;
7734 br
= br
& ((1 << ebb
->sec
->alignment_power
) - 1);
7736 action
->removed_bytes
= extra_space
- br
;
7742 /* The xlate_map is a sorted array of address mappings designed to
7743 answer the offset_with_removed_text() query with a binary search instead
7744 of a linear search through the section's action_list. */
7746 typedef struct xlate_map_entry xlate_map_entry_t
;
7747 typedef struct xlate_map xlate_map_t
;
7749 struct xlate_map_entry
7751 unsigned orig_address
;
7752 unsigned new_address
;
7758 unsigned entry_count
;
7759 xlate_map_entry_t
*entry
;
7764 xlate_compare (const void *a_v
, const void *b_v
)
7766 const xlate_map_entry_t
*a
= (const xlate_map_entry_t
*) a_v
;
7767 const xlate_map_entry_t
*b
= (const xlate_map_entry_t
*) b_v
;
7768 if (a
->orig_address
< b
->orig_address
)
7770 if (a
->orig_address
> (b
->orig_address
+ b
->size
- 1))
7777 xlate_offset_with_removed_text (const xlate_map_t
*map
,
7778 text_action_list
*action_list
,
7781 xlate_map_entry_t tmp
;
7783 xlate_map_entry_t
*e
;
7786 return offset_with_removed_text (action_list
, offset
);
7788 if (map
->entry_count
== 0)
7791 tmp
.orig_address
= offset
;
7792 tmp
.new_address
= offset
;
7795 r
= bsearch (&offset
, map
->entry
, map
->entry_count
,
7796 sizeof (xlate_map_entry_t
), &xlate_compare
);
7797 e
= (xlate_map_entry_t
*) r
;
7799 BFD_ASSERT (e
!= NULL
);
7802 return e
->new_address
- e
->orig_address
+ offset
;
7806 /* Build a binary searchable offset translation map from a section's
7809 static xlate_map_t
*
7810 build_xlate_map (asection
*sec
, xtensa_relax_info
*relax_info
)
7812 xlate_map_t
*map
= (xlate_map_t
*) bfd_malloc (sizeof (xlate_map_t
));
7813 text_action_list
*action_list
= &relax_info
->action_list
;
7814 unsigned num_actions
= 0;
7817 xlate_map_entry_t
*current_entry
;
7822 num_actions
= action_list_count (action_list
);
7823 map
->entry
= (xlate_map_entry_t
*)
7824 bfd_malloc (sizeof (xlate_map_entry_t
) * (num_actions
+ 1));
7825 if (map
->entry
== NULL
)
7830 map
->entry_count
= 0;
7833 current_entry
= &map
->entry
[0];
7835 current_entry
->orig_address
= 0;
7836 current_entry
->new_address
= 0;
7837 current_entry
->size
= 0;
7839 for (r
= action_list
->head
; r
!= NULL
; r
= r
->next
)
7841 unsigned orig_size
= 0;
7845 case ta_remove_insn
:
7846 case ta_convert_longcall
:
7847 case ta_remove_literal
:
7848 case ta_add_literal
:
7850 case ta_remove_longcall
:
7853 case ta_narrow_insn
:
7862 current_entry
->size
=
7863 r
->offset
+ orig_size
- current_entry
->orig_address
;
7864 if (current_entry
->size
!= 0)
7869 current_entry
->orig_address
= r
->offset
+ orig_size
;
7870 removed
+= r
->removed_bytes
;
7871 current_entry
->new_address
= r
->offset
+ orig_size
- removed
;
7872 current_entry
->size
= 0;
7875 current_entry
->size
= (bfd_get_section_limit (sec
->owner
, sec
)
7876 - current_entry
->orig_address
);
7877 if (current_entry
->size
!= 0)
7884 /* Free an offset translation map. */
7887 free_xlate_map (xlate_map_t
*map
)
7889 if (map
&& map
->entry
)
7896 /* Use check_section_ebb_pcrels_fit to make sure that all of the
7897 relocations in a section will fit if a proposed set of actions
7901 check_section_ebb_pcrels_fit (bfd
*abfd
,
7904 Elf_Internal_Rela
*internal_relocs
,
7905 const ebb_constraint
*constraint
,
7906 const xtensa_opcode
*reloc_opcodes
)
7909 Elf_Internal_Rela
*irel
;
7910 xlate_map_t
*xmap
= NULL
;
7911 bfd_boolean ok
= TRUE
;
7912 xtensa_relax_info
*relax_info
;
7914 relax_info
= get_xtensa_relax_info (sec
);
7916 if (relax_info
&& sec
->reloc_count
> 100)
7918 xmap
= build_xlate_map (sec
, relax_info
);
7919 /* NULL indicates out of memory, but the slow version
7920 can still be used. */
7923 for (i
= 0; i
< sec
->reloc_count
; i
++)
7926 bfd_vma orig_self_offset
, orig_target_offset
;
7927 bfd_vma self_offset
, target_offset
;
7929 reloc_howto_type
*howto
;
7930 int self_removed_bytes
, target_removed_bytes
;
7932 irel
= &internal_relocs
[i
];
7933 r_type
= ELF32_R_TYPE (irel
->r_info
);
7935 howto
= &elf_howto_table
[r_type
];
7936 /* We maintain the required invariant: PC-relative relocations
7937 that fit before linking must fit after linking. Thus we only
7938 need to deal with relocations to the same section that are
7940 if (r_type
== R_XTENSA_ASM_SIMPLIFY
7941 || r_type
== R_XTENSA_32_PCREL
7942 || !howto
->pc_relative
)
7945 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
7946 bfd_get_section_limit (abfd
, sec
));
7948 if (r_reloc_get_section (&r_rel
) != sec
)
7951 orig_self_offset
= irel
->r_offset
;
7952 orig_target_offset
= r_rel
.target_offset
;
7954 self_offset
= orig_self_offset
;
7955 target_offset
= orig_target_offset
;
7960 xlate_offset_with_removed_text (xmap
, &relax_info
->action_list
,
7963 xlate_offset_with_removed_text (xmap
, &relax_info
->action_list
,
7964 orig_target_offset
);
7967 self_removed_bytes
= 0;
7968 target_removed_bytes
= 0;
7970 for (j
= 0; j
< constraint
->action_count
; ++j
)
7972 proposed_action
*action
= &constraint
->actions
[j
];
7973 bfd_vma offset
= action
->offset
;
7974 int removed_bytes
= action
->removed_bytes
;
7975 if (offset
< orig_self_offset
7976 || (offset
== orig_self_offset
&& action
->action
== ta_fill
7977 && action
->removed_bytes
< 0))
7978 self_removed_bytes
+= removed_bytes
;
7979 if (offset
< orig_target_offset
7980 || (offset
== orig_target_offset
&& action
->action
== ta_fill
7981 && action
->removed_bytes
< 0))
7982 target_removed_bytes
+= removed_bytes
;
7984 self_offset
-= self_removed_bytes
;
7985 target_offset
-= target_removed_bytes
;
7987 /* Try to encode it. Get the operand and check. */
7988 if (is_alt_relocation (ELF32_R_TYPE (irel
->r_info
)))
7990 /* None of the current alternate relocs are PC-relative,
7991 and only PC-relative relocs matter here. */
7995 xtensa_opcode opcode
;
7999 opcode
= reloc_opcodes
[i
];
8001 opcode
= get_relocation_opcode (abfd
, sec
, contents
, irel
);
8002 if (opcode
== XTENSA_UNDEFINED
)
8008 opnum
= get_relocation_opnd (opcode
, ELF32_R_TYPE (irel
->r_info
));
8009 if (opnum
== XTENSA_UNDEFINED
)
8015 if (!pcrel_reloc_fits (opcode
, opnum
, self_offset
, target_offset
))
8024 free_xlate_map (xmap
);
8031 check_section_ebb_reduces (const ebb_constraint
*constraint
)
8036 for (i
= 0; i
< constraint
->action_count
; i
++)
8038 const proposed_action
*action
= &constraint
->actions
[i
];
8039 if (action
->do_action
)
8040 removed
+= action
->removed_bytes
;
8050 text_action_add_proposed (text_action_list
*l
,
8051 const ebb_constraint
*ebb_table
,
8056 for (i
= 0; i
< ebb_table
->action_count
; i
++)
8058 proposed_action
*action
= &ebb_table
->actions
[i
];
8060 if (!action
->do_action
)
8062 switch (action
->action
)
8064 case ta_remove_insn
:
8065 case ta_remove_longcall
:
8066 case ta_convert_longcall
:
8067 case ta_narrow_insn
:
8070 case ta_remove_literal
:
8071 text_action_add (l
, action
->action
, sec
, action
->offset
,
8072 action
->removed_bytes
);
8085 compute_fill_extra_space (property_table_entry
*entry
)
8087 int fill_extra_space
;
8092 if ((entry
->flags
& XTENSA_PROP_UNREACHABLE
) == 0)
8095 fill_extra_space
= entry
->size
;
8096 if ((entry
->flags
& XTENSA_PROP_ALIGN
) != 0)
8098 /* Fill bytes for alignment:
8099 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8100 int pow
= GET_XTENSA_PROP_ALIGNMENT (entry
->flags
);
8101 int nsm
= (1 << pow
) - 1;
8102 bfd_vma addr
= entry
->address
+ entry
->size
;
8103 bfd_vma align_fill
= nsm
- ((addr
+ nsm
) & nsm
);
8104 fill_extra_space
+= align_fill
;
8106 return fill_extra_space
;
8110 /* First relaxation pass. */
8112 /* If the section contains relaxable literals, check each literal to
8113 see if it has the same value as another literal that has already
8114 been seen, either in the current section or a previous one. If so,
8115 add an entry to the per-section list of removed literals. The
8116 actual changes are deferred until the next pass. */
8119 compute_removed_literals (bfd
*abfd
,
8121 struct bfd_link_info
*link_info
,
8122 value_map_hash_table
*values
)
8124 xtensa_relax_info
*relax_info
;
8126 Elf_Internal_Rela
*internal_relocs
;
8127 source_reloc
*src_relocs
, *rel
;
8128 bfd_boolean ok
= TRUE
;
8129 property_table_entry
*prop_table
= NULL
;
8132 bfd_boolean last_loc_is_prev
= FALSE
;
8133 bfd_vma last_target_offset
= 0;
8134 section_cache_t target_sec_cache
;
8135 bfd_size_type sec_size
;
8137 init_section_cache (&target_sec_cache
);
8139 /* Do nothing if it is not a relaxable literal section. */
8140 relax_info
= get_xtensa_relax_info (sec
);
8141 BFD_ASSERT (relax_info
);
8142 if (!relax_info
->is_relaxable_literal_section
)
8145 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
8146 link_info
->keep_memory
);
8148 sec_size
= bfd_get_section_limit (abfd
, sec
);
8149 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
8150 if (contents
== NULL
&& sec_size
!= 0)
8156 /* Sort the source_relocs by target offset. */
8157 src_relocs
= relax_info
->src_relocs
;
8158 qsort (src_relocs
, relax_info
->src_count
,
8159 sizeof (source_reloc
), source_reloc_compare
);
8160 qsort (internal_relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
8161 internal_reloc_compare
);
8163 ptblsize
= xtensa_read_table_entries (abfd
, sec
, &prop_table
,
8164 XTENSA_PROP_SEC_NAME
, FALSE
);
8172 for (i
= 0; i
< relax_info
->src_count
; i
++)
8174 Elf_Internal_Rela
*irel
= NULL
;
8176 rel
= &src_relocs
[i
];
8177 if (get_l32r_opcode () != rel
->opcode
)
8179 irel
= get_irel_at_offset (sec
, internal_relocs
,
8180 rel
->r_rel
.target_offset
);
8182 /* If the relocation on this is not a simple R_XTENSA_32 or
8183 R_XTENSA_PLT then do not consider it. This may happen when
8184 the difference of two symbols is used in a literal. */
8185 if (irel
&& (ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_32
8186 && ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_PLT
))
8189 /* If the target_offset for this relocation is the same as the
8190 previous relocation, then we've already considered whether the
8191 literal can be coalesced. Skip to the next one.... */
8192 if (i
!= 0 && prev_i
!= -1
8193 && src_relocs
[i
-1].r_rel
.target_offset
== rel
->r_rel
.target_offset
)
8197 if (last_loc_is_prev
&&
8198 last_target_offset
+ 4 != rel
->r_rel
.target_offset
)
8199 last_loc_is_prev
= FALSE
;
8201 /* Check if the relocation was from an L32R that is being removed
8202 because a CALLX was converted to a direct CALL, and check if
8203 there are no other relocations to the literal. */
8204 if (is_removable_literal (rel
, i
, src_relocs
, relax_info
->src_count
,
8205 sec
, prop_table
, ptblsize
))
8207 if (!remove_dead_literal (abfd
, sec
, link_info
, internal_relocs
,
8208 irel
, rel
, prop_table
, ptblsize
))
8213 last_target_offset
= rel
->r_rel
.target_offset
;
8217 if (!identify_literal_placement (abfd
, sec
, contents
, link_info
,
8219 &last_loc_is_prev
, irel
,
8220 relax_info
->src_count
- i
, rel
,
8221 prop_table
, ptblsize
,
8222 &target_sec_cache
, rel
->is_abs_literal
))
8227 last_target_offset
= rel
->r_rel
.target_offset
;
8231 print_removed_literals (stderr
, &relax_info
->removed_list
);
8232 print_action_list (stderr
, &relax_info
->action_list
);
8236 if (prop_table
) free (prop_table
);
8237 clear_section_cache (&target_sec_cache
);
8239 release_contents (sec
, contents
);
8240 release_internal_relocs (sec
, internal_relocs
);
8245 static Elf_Internal_Rela
*
8246 get_irel_at_offset (asection
*sec
,
8247 Elf_Internal_Rela
*internal_relocs
,
8251 Elf_Internal_Rela
*irel
;
8253 Elf_Internal_Rela key
;
8255 if (!internal_relocs
)
8258 key
.r_offset
= offset
;
8259 irel
= bsearch (&key
, internal_relocs
, sec
->reloc_count
,
8260 sizeof (Elf_Internal_Rela
), internal_reloc_matches
);
8264 /* bsearch does not guarantee which will be returned if there are
8265 multiple matches. We need the first that is not an alignment. */
8266 i
= irel
- internal_relocs
;
8269 if (internal_relocs
[i
-1].r_offset
!= offset
)
8273 for ( ; i
< sec
->reloc_count
; i
++)
8275 irel
= &internal_relocs
[i
];
8276 r_type
= ELF32_R_TYPE (irel
->r_info
);
8277 if (irel
->r_offset
== offset
&& r_type
!= R_XTENSA_NONE
)
8286 is_removable_literal (const source_reloc
*rel
,
8288 const source_reloc
*src_relocs
,
8291 property_table_entry
*prop_table
,
8294 const source_reloc
*curr_rel
;
8295 property_table_entry
*entry
;
8300 entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
8301 sec
->vma
+ rel
->r_rel
.target_offset
);
8302 if (entry
&& (entry
->flags
& XTENSA_PROP_NO_TRANSFORM
))
8305 for (++i
; i
< src_count
; ++i
)
8307 curr_rel
= &src_relocs
[i
];
8308 /* If all others have the same target offset.... */
8309 if (curr_rel
->r_rel
.target_offset
!= rel
->r_rel
.target_offset
)
8312 if (!curr_rel
->is_null
8313 && !xtensa_is_property_section (curr_rel
->source_sec
)
8314 && !(curr_rel
->source_sec
->flags
& SEC_DEBUGGING
))
8322 remove_dead_literal (bfd
*abfd
,
8324 struct bfd_link_info
*link_info
,
8325 Elf_Internal_Rela
*internal_relocs
,
8326 Elf_Internal_Rela
*irel
,
8328 property_table_entry
*prop_table
,
8331 property_table_entry
*entry
;
8332 xtensa_relax_info
*relax_info
;
8334 relax_info
= get_xtensa_relax_info (sec
);
8338 entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
8339 sec
->vma
+ rel
->r_rel
.target_offset
);
8341 /* Mark the unused literal so that it will be removed. */
8342 add_removed_literal (&relax_info
->removed_list
, &rel
->r_rel
, NULL
);
8344 text_action_add (&relax_info
->action_list
,
8345 ta_remove_literal
, sec
, rel
->r_rel
.target_offset
, 4);
8347 /* If the section is 4-byte aligned, do not add fill. */
8348 if (sec
->alignment_power
> 2)
8350 int fill_extra_space
;
8351 bfd_vma entry_sec_offset
;
8353 property_table_entry
*the_add_entry
;
8357 entry_sec_offset
= entry
->address
- sec
->vma
+ entry
->size
;
8359 entry_sec_offset
= rel
->r_rel
.target_offset
+ 4;
8361 /* If the literal range is at the end of the section,
8363 the_add_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
8365 fill_extra_space
= compute_fill_extra_space (the_add_entry
);
8367 fa
= find_fill_action (&relax_info
->action_list
, sec
, entry_sec_offset
);
8368 removed_diff
= compute_removed_action_diff (fa
, sec
, entry_sec_offset
,
8369 -4, fill_extra_space
);
8371 adjust_fill_action (fa
, removed_diff
);
8373 text_action_add (&relax_info
->action_list
,
8374 ta_fill
, sec
, entry_sec_offset
, removed_diff
);
8377 /* Zero out the relocation on this literal location. */
8380 if (elf_hash_table (link_info
)->dynamic_sections_created
)
8381 shrink_dynamic_reloc_sections (link_info
, abfd
, sec
, irel
);
8383 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
8384 pin_internal_relocs (sec
, internal_relocs
);
8387 /* Do not modify "last_loc_is_prev". */
8393 identify_literal_placement (bfd
*abfd
,
8396 struct bfd_link_info
*link_info
,
8397 value_map_hash_table
*values
,
8398 bfd_boolean
*last_loc_is_prev_p
,
8399 Elf_Internal_Rela
*irel
,
8400 int remaining_src_rels
,
8402 property_table_entry
*prop_table
,
8404 section_cache_t
*target_sec_cache
,
8405 bfd_boolean is_abs_literal
)
8409 xtensa_relax_info
*relax_info
;
8410 bfd_boolean literal_placed
= FALSE
;
8412 unsigned long value
;
8413 bfd_boolean final_static_link
;
8414 bfd_size_type sec_size
;
8416 relax_info
= get_xtensa_relax_info (sec
);
8420 sec_size
= bfd_get_section_limit (abfd
, sec
);
8423 (!link_info
->relocatable
8424 && !elf_hash_table (link_info
)->dynamic_sections_created
);
8426 /* The placement algorithm first checks to see if the literal is
8427 already in the value map. If so and the value map is reachable
8428 from all uses, then the literal is moved to that location. If
8429 not, then we identify the last location where a fresh literal was
8430 placed. If the literal can be safely moved there, then we do so.
8431 If not, then we assume that the literal is not to move and leave
8432 the literal where it is, marking it as the last literal
8435 /* Find the literal value. */
8437 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
8440 BFD_ASSERT (rel
->r_rel
.target_offset
< sec_size
);
8441 value
= bfd_get_32 (abfd
, contents
+ rel
->r_rel
.target_offset
);
8443 init_literal_value (&val
, &r_rel
, value
, is_abs_literal
);
8445 /* Check if we've seen another literal with the same value that
8446 is in the same output section. */
8447 val_map
= value_map_get_cached_value (values
, &val
, final_static_link
);
8450 && (r_reloc_get_section (&val_map
->loc
)->output_section
8451 == sec
->output_section
)
8452 && relocations_reach (rel
, remaining_src_rels
, &val_map
->loc
)
8453 && coalesce_shared_literal (sec
, rel
, prop_table
, ptblsize
, val_map
))
8455 /* No change to last_loc_is_prev. */
8456 literal_placed
= TRUE
;
8459 /* For relocatable links, do not try to move literals. To do it
8460 correctly might increase the number of relocations in an input
8461 section making the default relocatable linking fail. */
8462 if (!link_info
->relocatable
&& !literal_placed
8463 && values
->has_last_loc
&& !(*last_loc_is_prev_p
))
8465 asection
*target_sec
= r_reloc_get_section (&values
->last_loc
);
8466 if (target_sec
&& target_sec
->output_section
== sec
->output_section
)
8468 /* Increment the virtual offset. */
8469 r_reloc try_loc
= values
->last_loc
;
8470 try_loc
.virtual_offset
+= 4;
8472 /* There is a last loc that was in the same output section. */
8473 if (relocations_reach (rel
, remaining_src_rels
, &try_loc
)
8474 && move_shared_literal (sec
, link_info
, rel
,
8475 prop_table
, ptblsize
,
8476 &try_loc
, &val
, target_sec_cache
))
8478 values
->last_loc
.virtual_offset
+= 4;
8479 literal_placed
= TRUE
;
8481 val_map
= add_value_map (values
, &val
, &try_loc
,
8484 val_map
->loc
= try_loc
;
8489 if (!literal_placed
)
8491 /* Nothing worked, leave the literal alone but update the last loc. */
8492 values
->has_last_loc
= TRUE
;
8493 values
->last_loc
= rel
->r_rel
;
8495 val_map
= add_value_map (values
, &val
, &rel
->r_rel
, final_static_link
);
8497 val_map
->loc
= rel
->r_rel
;
8498 *last_loc_is_prev_p
= TRUE
;
8505 /* Check if the original relocations (presumably on L32R instructions)
8506 identified by reloc[0..N] can be changed to reference the literal
8507 identified by r_rel. If r_rel is out of range for any of the
8508 original relocations, then we don't want to coalesce the original
8509 literal with the one at r_rel. We only check reloc[0..N], where the
8510 offsets are all the same as for reloc[0] (i.e., they're all
8511 referencing the same literal) and where N is also bounded by the
8512 number of remaining entries in the "reloc" array. The "reloc" array
8513 is sorted by target offset so we know all the entries for the same
8514 literal will be contiguous. */
8517 relocations_reach (source_reloc
*reloc
,
8518 int remaining_relocs
,
8519 const r_reloc
*r_rel
)
8521 bfd_vma from_offset
, source_address
, dest_address
;
8525 if (!r_reloc_is_defined (r_rel
))
8528 sec
= r_reloc_get_section (r_rel
);
8529 from_offset
= reloc
[0].r_rel
.target_offset
;
8531 for (i
= 0; i
< remaining_relocs
; i
++)
8533 if (reloc
[i
].r_rel
.target_offset
!= from_offset
)
8536 /* Ignore relocations that have been removed. */
8537 if (reloc
[i
].is_null
)
8540 /* The original and new output section for these must be the same
8541 in order to coalesce. */
8542 if (r_reloc_get_section (&reloc
[i
].r_rel
)->output_section
8543 != sec
->output_section
)
8546 /* Absolute literals in the same output section can always be
8548 if (reloc
[i
].is_abs_literal
)
8551 /* A literal with no PC-relative relocations can be moved anywhere. */
8552 if (reloc
[i
].opnd
!= -1)
8554 /* Otherwise, check to see that it fits. */
8555 source_address
= (reloc
[i
].source_sec
->output_section
->vma
8556 + reloc
[i
].source_sec
->output_offset
8557 + reloc
[i
].r_rel
.rela
.r_offset
);
8558 dest_address
= (sec
->output_section
->vma
8559 + sec
->output_offset
8560 + r_rel
->target_offset
);
8562 if (!pcrel_reloc_fits (reloc
[i
].opcode
, reloc
[i
].opnd
,
8563 source_address
, dest_address
))
8572 /* Move a literal to another literal location because it is
8573 the same as the other literal value. */
8576 coalesce_shared_literal (asection
*sec
,
8578 property_table_entry
*prop_table
,
8582 property_table_entry
*entry
;
8584 property_table_entry
*the_add_entry
;
8586 xtensa_relax_info
*relax_info
;
8588 relax_info
= get_xtensa_relax_info (sec
);
8592 entry
= elf_xtensa_find_property_entry
8593 (prop_table
, ptblsize
, sec
->vma
+ rel
->r_rel
.target_offset
);
8594 if (entry
&& (entry
->flags
& XTENSA_PROP_NO_TRANSFORM
))
8597 /* Mark that the literal will be coalesced. */
8598 add_removed_literal (&relax_info
->removed_list
, &rel
->r_rel
, &val_map
->loc
);
8600 text_action_add (&relax_info
->action_list
,
8601 ta_remove_literal
, sec
, rel
->r_rel
.target_offset
, 4);
8603 /* If the section is 4-byte aligned, do not add fill. */
8604 if (sec
->alignment_power
> 2)
8606 int fill_extra_space
;
8607 bfd_vma entry_sec_offset
;
8610 entry_sec_offset
= entry
->address
- sec
->vma
+ entry
->size
;
8612 entry_sec_offset
= rel
->r_rel
.target_offset
+ 4;
8614 /* If the literal range is at the end of the section,
8616 fill_extra_space
= 0;
8617 the_add_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
8619 if (the_add_entry
&& (the_add_entry
->flags
& XTENSA_PROP_UNREACHABLE
))
8620 fill_extra_space
= the_add_entry
->size
;
8622 fa
= find_fill_action (&relax_info
->action_list
, sec
, entry_sec_offset
);
8623 removed_diff
= compute_removed_action_diff (fa
, sec
, entry_sec_offset
,
8624 -4, fill_extra_space
);
8626 adjust_fill_action (fa
, removed_diff
);
8628 text_action_add (&relax_info
->action_list
,
8629 ta_fill
, sec
, entry_sec_offset
, removed_diff
);
8636 /* Move a literal to another location. This may actually increase the
8637 total amount of space used because of alignments so we need to do
8638 this carefully. Also, it may make a branch go out of range. */
8641 move_shared_literal (asection
*sec
,
8642 struct bfd_link_info
*link_info
,
8644 property_table_entry
*prop_table
,
8646 const r_reloc
*target_loc
,
8647 const literal_value
*lit_value
,
8648 section_cache_t
*target_sec_cache
)
8650 property_table_entry
*the_add_entry
, *src_entry
, *target_entry
= NULL
;
8651 text_action
*fa
, *target_fa
;
8653 xtensa_relax_info
*relax_info
, *target_relax_info
;
8654 asection
*target_sec
;
8656 ebb_constraint ebb_table
;
8657 bfd_boolean relocs_fit
;
8659 /* If this routine always returns FALSE, the literals that cannot be
8660 coalesced will not be moved. */
8661 if (elf32xtensa_no_literal_movement
)
8664 relax_info
= get_xtensa_relax_info (sec
);
8668 target_sec
= r_reloc_get_section (target_loc
);
8669 target_relax_info
= get_xtensa_relax_info (target_sec
);
8671 /* Literals to undefined sections may not be moved because they
8672 must report an error. */
8673 if (bfd_is_und_section (target_sec
))
8676 src_entry
= elf_xtensa_find_property_entry
8677 (prop_table
, ptblsize
, sec
->vma
+ rel
->r_rel
.target_offset
);
8679 if (!section_cache_section (target_sec_cache
, target_sec
, link_info
))
8682 target_entry
= elf_xtensa_find_property_entry
8683 (target_sec_cache
->ptbl
, target_sec_cache
->pte_count
,
8684 target_sec
->vma
+ target_loc
->target_offset
);
8689 /* Make sure that we have not broken any branches. */
8692 init_ebb_constraint (&ebb_table
);
8693 ebb
= &ebb_table
.ebb
;
8694 init_ebb (ebb
, target_sec_cache
->sec
, target_sec_cache
->contents
,
8695 target_sec_cache
->content_length
,
8696 target_sec_cache
->ptbl
, target_sec_cache
->pte_count
,
8697 target_sec_cache
->relocs
, target_sec_cache
->reloc_count
);
8699 /* Propose to add 4 bytes + worst-case alignment size increase to
8701 ebb_propose_action (&ebb_table
, EBB_NO_ALIGN
, 0,
8702 ta_fill
, target_loc
->target_offset
,
8703 -4 - (1 << target_sec
->alignment_power
), TRUE
);
8705 /* Check all of the PC-relative relocations to make sure they still fit. */
8706 relocs_fit
= check_section_ebb_pcrels_fit (target_sec
->owner
, target_sec
,
8707 target_sec_cache
->contents
,
8708 target_sec_cache
->relocs
,
8714 text_action_add_literal (&target_relax_info
->action_list
,
8715 ta_add_literal
, target_loc
, lit_value
, -4);
8717 if (target_sec
->alignment_power
> 2 && target_entry
!= src_entry
)
8719 /* May need to add or remove some fill to maintain alignment. */
8720 int fill_extra_space
;
8721 bfd_vma entry_sec_offset
;
8724 target_entry
->address
- target_sec
->vma
+ target_entry
->size
;
8726 /* If the literal range is at the end of the section,
8728 fill_extra_space
= 0;
8730 elf_xtensa_find_property_entry (target_sec_cache
->ptbl
,
8731 target_sec_cache
->pte_count
,
8733 if (the_add_entry
&& (the_add_entry
->flags
& XTENSA_PROP_UNREACHABLE
))
8734 fill_extra_space
= the_add_entry
->size
;
8736 target_fa
= find_fill_action (&target_relax_info
->action_list
,
8737 target_sec
, entry_sec_offset
);
8738 removed_diff
= compute_removed_action_diff (target_fa
, target_sec
,
8739 entry_sec_offset
, 4,
8742 adjust_fill_action (target_fa
, removed_diff
);
8744 text_action_add (&target_relax_info
->action_list
,
8745 ta_fill
, target_sec
, entry_sec_offset
, removed_diff
);
8748 /* Mark that the literal will be moved to the new location. */
8749 add_removed_literal (&relax_info
->removed_list
, &rel
->r_rel
, target_loc
);
8751 /* Remove the literal. */
8752 text_action_add (&relax_info
->action_list
,
8753 ta_remove_literal
, sec
, rel
->r_rel
.target_offset
, 4);
8755 /* If the section is 4-byte aligned, do not add fill. */
8756 if (sec
->alignment_power
> 2 && target_entry
!= src_entry
)
8758 int fill_extra_space
;
8759 bfd_vma entry_sec_offset
;
8762 entry_sec_offset
= src_entry
->address
- sec
->vma
+ src_entry
->size
;
8764 entry_sec_offset
= rel
->r_rel
.target_offset
+4;
8766 /* If the literal range is at the end of the section,
8768 fill_extra_space
= 0;
8769 the_add_entry
= elf_xtensa_find_property_entry (prop_table
, ptblsize
,
8771 if (the_add_entry
&& (the_add_entry
->flags
& XTENSA_PROP_UNREACHABLE
))
8772 fill_extra_space
= the_add_entry
->size
;
8774 fa
= find_fill_action (&relax_info
->action_list
, sec
, entry_sec_offset
);
8775 removed_diff
= compute_removed_action_diff (fa
, sec
, entry_sec_offset
,
8776 -4, fill_extra_space
);
8778 adjust_fill_action (fa
, removed_diff
);
8780 text_action_add (&relax_info
->action_list
,
8781 ta_fill
, sec
, entry_sec_offset
, removed_diff
);
8788 /* Second relaxation pass. */
8790 /* Modify all of the relocations to point to the right spot, and if this
8791 is a relaxable section, delete the unwanted literals and fix the
8795 relax_section (bfd
*abfd
, asection
*sec
, struct bfd_link_info
*link_info
)
8797 Elf_Internal_Rela
*internal_relocs
;
8798 xtensa_relax_info
*relax_info
;
8800 bfd_boolean ok
= TRUE
;
8802 bfd_boolean rv
= FALSE
;
8803 bfd_boolean virtual_action
;
8804 bfd_size_type sec_size
;
8806 sec_size
= bfd_get_section_limit (abfd
, sec
);
8807 relax_info
= get_xtensa_relax_info (sec
);
8808 BFD_ASSERT (relax_info
);
8810 /* First translate any of the fixes that have been added already. */
8811 translate_section_fixes (sec
);
8813 /* Handle property sections (e.g., literal tables) specially. */
8814 if (xtensa_is_property_section (sec
))
8816 BFD_ASSERT (!relax_info
->is_relaxable_literal_section
);
8817 return relax_property_section (abfd
, sec
, link_info
);
8820 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
8821 link_info
->keep_memory
);
8822 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
8823 if (contents
== NULL
&& sec_size
!= 0)
8829 if (internal_relocs
)
8831 for (i
= 0; i
< sec
->reloc_count
; i
++)
8833 Elf_Internal_Rela
*irel
;
8834 xtensa_relax_info
*target_relax_info
;
8835 bfd_vma source_offset
, old_source_offset
;
8838 asection
*target_sec
;
8840 /* Locally change the source address.
8841 Translate the target to the new target address.
8842 If it points to this section and has been removed,
8846 irel
= &internal_relocs
[i
];
8847 source_offset
= irel
->r_offset
;
8848 old_source_offset
= source_offset
;
8850 r_type
= ELF32_R_TYPE (irel
->r_info
);
8851 r_reloc_init (&r_rel
, abfd
, irel
, contents
,
8852 bfd_get_section_limit (abfd
, sec
));
8854 /* If this section could have changed then we may need to
8855 change the relocation's offset. */
8857 if (relax_info
->is_relaxable_literal_section
8858 || relax_info
->is_relaxable_asm_section
)
8860 pin_internal_relocs (sec
, internal_relocs
);
8862 if (r_type
!= R_XTENSA_NONE
8863 && find_removed_literal (&relax_info
->removed_list
,
8866 /* Remove this relocation. */
8867 if (elf_hash_table (link_info
)->dynamic_sections_created
)
8868 shrink_dynamic_reloc_sections (link_info
, abfd
, sec
, irel
);
8869 irel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
8870 irel
->r_offset
= offset_with_removed_text
8871 (&relax_info
->action_list
, irel
->r_offset
);
8875 if (r_type
== R_XTENSA_ASM_SIMPLIFY
)
8877 text_action
*action
=
8878 find_insn_action (&relax_info
->action_list
,
8880 if (action
&& (action
->action
== ta_convert_longcall
8881 || action
->action
== ta_remove_longcall
))
8883 bfd_reloc_status_type retval
;
8884 char *error_message
= NULL
;
8886 retval
= contract_asm_expansion (contents
, sec_size
,
8887 irel
, &error_message
);
8888 if (retval
!= bfd_reloc_ok
)
8890 (*link_info
->callbacks
->reloc_dangerous
)
8891 (link_info
, error_message
, abfd
, sec
,
8895 /* Update the action so that the code that moves
8896 the contents will do the right thing. */
8897 if (action
->action
== ta_remove_longcall
)
8898 action
->action
= ta_remove_insn
;
8900 action
->action
= ta_none
;
8901 /* Refresh the info in the r_rel. */
8902 r_reloc_init (&r_rel
, abfd
, irel
, contents
, sec_size
);
8903 r_type
= ELF32_R_TYPE (irel
->r_info
);
8907 source_offset
= offset_with_removed_text
8908 (&relax_info
->action_list
, irel
->r_offset
);
8909 irel
->r_offset
= source_offset
;
8912 /* If the target section could have changed then
8913 we may need to change the relocation's target offset. */
8915 target_sec
= r_reloc_get_section (&r_rel
);
8917 /* For a reference to a discarded section from a DWARF section,
8918 i.e., where action_discarded is PRETEND, the symbol will
8919 eventually be modified to refer to the kept section (at least if
8920 the kept and discarded sections are the same size). Anticipate
8921 that here and adjust things accordingly. */
8922 if (! elf_xtensa_ignore_discarded_relocs (sec
)
8923 && elf_xtensa_action_discarded (sec
) == PRETEND
8924 && sec
->sec_info_type
!= ELF_INFO_TYPE_STABS
8925 && target_sec
!= NULL
8926 && elf_discarded_section (target_sec
))
8928 /* It would be natural to call _bfd_elf_check_kept_section
8929 here, but it's not exported from elflink.c. It's also a
8930 fairly expensive check. Adjusting the relocations to the
8931 discarded section is fairly harmless; it will only adjust
8932 some addends and difference values. If it turns out that
8933 _bfd_elf_check_kept_section fails later, it won't matter,
8934 so just compare the section names to find the right group
8936 asection
*kept
= target_sec
->kept_section
;
8939 if ((kept
->flags
& SEC_GROUP
) != 0)
8941 asection
*first
= elf_next_in_group (kept
);
8942 asection
*s
= first
;
8947 if (strcmp (s
->name
, target_sec
->name
) == 0)
8952 s
= elf_next_in_group (s
);
8959 && ((target_sec
->rawsize
!= 0
8960 ? target_sec
->rawsize
: target_sec
->size
)
8961 == (kept
->rawsize
!= 0 ? kept
->rawsize
: kept
->size
)))
8965 target_relax_info
= get_xtensa_relax_info (target_sec
);
8966 if (target_relax_info
8967 && (target_relax_info
->is_relaxable_literal_section
8968 || target_relax_info
->is_relaxable_asm_section
))
8971 target_sec
= translate_reloc (&r_rel
, &new_reloc
, target_sec
);
8973 if (r_type
== R_XTENSA_DIFF8
8974 || r_type
== R_XTENSA_DIFF16
8975 || r_type
== R_XTENSA_DIFF32
)
8977 bfd_vma diff_value
= 0, new_end_offset
, diff_mask
= 0;
8979 if (bfd_get_section_limit (abfd
, sec
) < old_source_offset
)
8981 (*link_info
->callbacks
->reloc_dangerous
)
8982 (link_info
, _("invalid relocation address"),
8983 abfd
, sec
, old_source_offset
);
8989 case R_XTENSA_DIFF8
:
8991 bfd_get_8 (abfd
, &contents
[old_source_offset
]);
8993 case R_XTENSA_DIFF16
:
8995 bfd_get_16 (abfd
, &contents
[old_source_offset
]);
8997 case R_XTENSA_DIFF32
:
8999 bfd_get_32 (abfd
, &contents
[old_source_offset
]);
9003 new_end_offset
= offset_with_removed_text
9004 (&target_relax_info
->action_list
,
9005 r_rel
.target_offset
+ diff_value
);
9006 diff_value
= new_end_offset
- new_reloc
.target_offset
;
9010 case R_XTENSA_DIFF8
:
9012 bfd_put_8 (abfd
, diff_value
,
9013 &contents
[old_source_offset
]);
9015 case R_XTENSA_DIFF16
:
9017 bfd_put_16 (abfd
, diff_value
,
9018 &contents
[old_source_offset
]);
9020 case R_XTENSA_DIFF32
:
9021 diff_mask
= 0xffffffff;
9022 bfd_put_32 (abfd
, diff_value
,
9023 &contents
[old_source_offset
]);
9027 /* Check for overflow. */
9028 if ((diff_value
& ~diff_mask
) != 0)
9030 (*link_info
->callbacks
->reloc_dangerous
)
9031 (link_info
, _("overflow after relaxation"),
9032 abfd
, sec
, old_source_offset
);
9036 pin_contents (sec
, contents
);
9039 /* If the relocation still references a section in the same
9040 input file, modify the relocation directly instead of
9041 adding a "fix" record. */
9042 if (target_sec
->owner
== abfd
)
9044 unsigned r_symndx
= ELF32_R_SYM (new_reloc
.rela
.r_info
);
9045 irel
->r_info
= ELF32_R_INFO (r_symndx
, r_type
);
9046 irel
->r_addend
= new_reloc
.rela
.r_addend
;
9047 pin_internal_relocs (sec
, internal_relocs
);
9051 bfd_vma addend_displacement
;
9054 addend_displacement
=
9055 new_reloc
.target_offset
+ new_reloc
.virtual_offset
;
9056 fix
= reloc_bfd_fix_init (sec
, source_offset
, r_type
,
9058 addend_displacement
, TRUE
);
9065 if ((relax_info
->is_relaxable_literal_section
9066 || relax_info
->is_relaxable_asm_section
)
9067 && relax_info
->action_list
.head
)
9069 /* Walk through the planned actions and build up a table
9070 of move, copy and fill records. Use the move, copy and
9071 fill records to perform the actions once. */
9074 bfd_size_type final_size
, copy_size
, orig_insn_size
;
9075 bfd_byte
*scratch
= NULL
;
9076 bfd_byte
*dup_contents
= NULL
;
9077 bfd_size_type orig_size
= sec
->size
;
9078 bfd_vma orig_dot
= 0;
9079 bfd_vma orig_dot_copied
= 0; /* Byte copied already from
9080 orig dot in physical memory. */
9081 bfd_vma orig_dot_vo
= 0; /* Virtual offset from orig_dot. */
9082 bfd_vma dup_dot
= 0;
9084 text_action
*action
= relax_info
->action_list
.head
;
9086 final_size
= sec
->size
;
9087 for (action
= relax_info
->action_list
.head
; action
;
9088 action
= action
->next
)
9090 final_size
-= action
->removed_bytes
;
9093 scratch
= (bfd_byte
*) bfd_zmalloc (final_size
);
9094 dup_contents
= (bfd_byte
*) bfd_zmalloc (final_size
);
9096 /* The dot is the current fill location. */
9098 print_action_list (stderr
, &relax_info
->action_list
);
9101 for (action
= relax_info
->action_list
.head
; action
;
9102 action
= action
->next
)
9104 virtual_action
= FALSE
;
9105 if (action
->offset
> orig_dot
)
9107 orig_dot
+= orig_dot_copied
;
9108 orig_dot_copied
= 0;
9110 /* Out of the virtual world. */
9113 if (action
->offset
> orig_dot
)
9115 copy_size
= action
->offset
- orig_dot
;
9116 memmove (&dup_contents
[dup_dot
], &contents
[orig_dot
], copy_size
);
9117 orig_dot
+= copy_size
;
9118 dup_dot
+= copy_size
;
9119 BFD_ASSERT (action
->offset
== orig_dot
);
9121 else if (action
->offset
< orig_dot
)
9123 if (action
->action
== ta_fill
9124 && action
->offset
- action
->removed_bytes
== orig_dot
)
9126 /* This is OK because the fill only effects the dup_dot. */
9128 else if (action
->action
== ta_add_literal
)
9130 /* TBD. Might need to handle this. */
9133 if (action
->offset
== orig_dot
)
9135 if (action
->virtual_offset
> orig_dot_vo
)
9137 if (orig_dot_vo
== 0)
9139 /* Need to copy virtual_offset bytes. Probably four. */
9140 copy_size
= action
->virtual_offset
- orig_dot_vo
;
9141 memmove (&dup_contents
[dup_dot
],
9142 &contents
[orig_dot
], copy_size
);
9143 orig_dot_copied
= copy_size
;
9144 dup_dot
+= copy_size
;
9146 virtual_action
= TRUE
;
9149 BFD_ASSERT (action
->virtual_offset
<= orig_dot_vo
);
9151 switch (action
->action
)
9153 case ta_remove_literal
:
9154 case ta_remove_insn
:
9155 BFD_ASSERT (action
->removed_bytes
>= 0);
9156 orig_dot
+= action
->removed_bytes
;
9159 case ta_narrow_insn
:
9162 memmove (scratch
, &contents
[orig_dot
], orig_insn_size
);
9163 BFD_ASSERT (action
->removed_bytes
== 1);
9164 rv
= narrow_instruction (scratch
, final_size
, 0);
9166 memmove (&dup_contents
[dup_dot
], scratch
, copy_size
);
9167 orig_dot
+= orig_insn_size
;
9168 dup_dot
+= copy_size
;
9172 if (action
->removed_bytes
>= 0)
9173 orig_dot
+= action
->removed_bytes
;
9176 /* Already zeroed in dup_contents. Just bump the
9178 dup_dot
+= (-action
->removed_bytes
);
9183 BFD_ASSERT (action
->removed_bytes
== 0);
9186 case ta_convert_longcall
:
9187 case ta_remove_longcall
:
9188 /* These will be removed or converted before we get here. */
9195 memmove (scratch
, &contents
[orig_dot
], orig_insn_size
);
9196 BFD_ASSERT (action
->removed_bytes
== -1);
9197 rv
= widen_instruction (scratch
, final_size
, 0);
9199 memmove (&dup_contents
[dup_dot
], scratch
, copy_size
);
9200 orig_dot
+= orig_insn_size
;
9201 dup_dot
+= copy_size
;
9204 case ta_add_literal
:
9207 BFD_ASSERT (action
->removed_bytes
== -4);
9208 /* TBD -- place the literal value here and insert
9210 memset (&dup_contents
[dup_dot
], 0, 4);
9211 pin_internal_relocs (sec
, internal_relocs
);
9212 pin_contents (sec
, contents
);
9214 if (!move_literal (abfd
, link_info
, sec
, dup_dot
, dup_contents
,
9215 relax_info
, &internal_relocs
, &action
->value
))
9219 orig_dot_vo
+= copy_size
;
9221 orig_dot
+= orig_insn_size
;
9222 dup_dot
+= copy_size
;
9226 /* Not implemented yet. */
9231 removed
+= action
->removed_bytes
;
9232 BFD_ASSERT (dup_dot
<= final_size
);
9233 BFD_ASSERT (orig_dot
<= orig_size
);
9236 orig_dot
+= orig_dot_copied
;
9237 orig_dot_copied
= 0;
9239 if (orig_dot
!= orig_size
)
9241 copy_size
= orig_size
- orig_dot
;
9242 BFD_ASSERT (orig_size
> orig_dot
);
9243 BFD_ASSERT (dup_dot
+ copy_size
== final_size
);
9244 memmove (&dup_contents
[dup_dot
], &contents
[orig_dot
], copy_size
);
9245 orig_dot
+= copy_size
;
9246 dup_dot
+= copy_size
;
9248 BFD_ASSERT (orig_size
== orig_dot
);
9249 BFD_ASSERT (final_size
== dup_dot
);
9251 /* Move the dup_contents back. */
9252 if (final_size
> orig_size
)
9254 /* Contents need to be reallocated. Swap the dup_contents into
9256 sec
->contents
= dup_contents
;
9258 contents
= dup_contents
;
9259 pin_contents (sec
, contents
);
9263 BFD_ASSERT (final_size
<= orig_size
);
9264 memset (contents
, 0, orig_size
);
9265 memcpy (contents
, dup_contents
, final_size
);
9266 free (dup_contents
);
9269 pin_contents (sec
, contents
);
9271 if (sec
->rawsize
== 0)
9272 sec
->rawsize
= sec
->size
;
9273 sec
->size
= final_size
;
9277 release_internal_relocs (sec
, internal_relocs
);
9278 release_contents (sec
, contents
);
9284 translate_section_fixes (asection
*sec
)
9286 xtensa_relax_info
*relax_info
;
9289 relax_info
= get_xtensa_relax_info (sec
);
9293 for (r
= relax_info
->fix_list
; r
!= NULL
; r
= r
->next
)
9294 if (!translate_reloc_bfd_fix (r
))
9301 /* Translate a fix given the mapping in the relax info for the target
9302 section. If it has already been translated, no work is required. */
9305 translate_reloc_bfd_fix (reloc_bfd_fix
*fix
)
9307 reloc_bfd_fix new_fix
;
9309 xtensa_relax_info
*relax_info
;
9310 removed_literal
*removed
;
9311 bfd_vma new_offset
, target_offset
;
9313 if (fix
->translated
)
9316 sec
= fix
->target_sec
;
9317 target_offset
= fix
->target_offset
;
9319 relax_info
= get_xtensa_relax_info (sec
);
9322 fix
->translated
= TRUE
;
9328 /* The fix does not need to be translated if the section cannot change. */
9329 if (!relax_info
->is_relaxable_literal_section
9330 && !relax_info
->is_relaxable_asm_section
)
9332 fix
->translated
= TRUE
;
9336 /* If the literal has been moved and this relocation was on an
9337 opcode, then the relocation should move to the new literal
9338 location. Otherwise, the relocation should move within the
9342 if (is_operand_relocation (fix
->src_type
))
9344 /* Check if the original relocation is against a literal being
9346 removed
= find_removed_literal (&relax_info
->removed_list
,
9354 /* The fact that there is still a relocation to this literal indicates
9355 that the literal is being coalesced, not simply removed. */
9356 BFD_ASSERT (removed
->to
.abfd
!= NULL
);
9358 /* This was moved to some other address (possibly another section). */
9359 new_sec
= r_reloc_get_section (&removed
->to
);
9363 relax_info
= get_xtensa_relax_info (sec
);
9365 (!relax_info
->is_relaxable_literal_section
9366 && !relax_info
->is_relaxable_asm_section
))
9368 target_offset
= removed
->to
.target_offset
;
9369 new_fix
.target_sec
= new_sec
;
9370 new_fix
.target_offset
= target_offset
;
9371 new_fix
.translated
= TRUE
;
9376 target_offset
= removed
->to
.target_offset
;
9377 new_fix
.target_sec
= new_sec
;
9380 /* The target address may have been moved within its section. */
9381 new_offset
= offset_with_removed_text (&relax_info
->action_list
,
9384 new_fix
.target_offset
= new_offset
;
9385 new_fix
.target_offset
= new_offset
;
9386 new_fix
.translated
= TRUE
;
9392 /* Fix up a relocation to take account of removed literals. */
9395 translate_reloc (const r_reloc
*orig_rel
, r_reloc
*new_rel
, asection
*sec
)
9397 xtensa_relax_info
*relax_info
;
9398 removed_literal
*removed
;
9399 bfd_vma target_offset
, base_offset
;
9402 *new_rel
= *orig_rel
;
9404 if (!r_reloc_is_defined (orig_rel
))
9407 relax_info
= get_xtensa_relax_info (sec
);
9408 BFD_ASSERT (relax_info
&& (relax_info
->is_relaxable_literal_section
9409 || relax_info
->is_relaxable_asm_section
));
9411 target_offset
= orig_rel
->target_offset
;
9414 if (is_operand_relocation (ELF32_R_TYPE (orig_rel
->rela
.r_info
)))
9416 /* Check if the original relocation is against a literal being
9418 removed
= find_removed_literal (&relax_info
->removed_list
,
9421 if (removed
&& removed
->to
.abfd
)
9425 /* The fact that there is still a relocation to this literal indicates
9426 that the literal is being coalesced, not simply removed. */
9427 BFD_ASSERT (removed
->to
.abfd
!= NULL
);
9429 /* This was moved to some other address
9430 (possibly in another section). */
9431 *new_rel
= removed
->to
;
9432 new_sec
= r_reloc_get_section (new_rel
);
9436 relax_info
= get_xtensa_relax_info (sec
);
9438 || (!relax_info
->is_relaxable_literal_section
9439 && !relax_info
->is_relaxable_asm_section
))
9442 target_offset
= new_rel
->target_offset
;
9445 /* Find the base offset of the reloc symbol, excluding any addend from the
9446 reloc or from the section contents (for a partial_inplace reloc). Then
9447 find the adjusted values of the offsets due to relaxation. The base
9448 offset is needed to determine the change to the reloc's addend; the reloc
9449 addend should not be adjusted due to relaxations located before the base
9452 base_offset
= r_reloc_get_target_offset (new_rel
) - new_rel
->rela
.r_addend
;
9453 act
= relax_info
->action_list
.head
;
9454 if (base_offset
<= target_offset
)
9456 int base_removed
= removed_by_actions (&act
, base_offset
, FALSE
);
9457 int addend_removed
= removed_by_actions (&act
, target_offset
, FALSE
);
9458 new_rel
->target_offset
= target_offset
- base_removed
- addend_removed
;
9459 new_rel
->rela
.r_addend
-= addend_removed
;
9463 /* Handle a negative addend. The base offset comes first. */
9464 int tgt_removed
= removed_by_actions (&act
, target_offset
, FALSE
);
9465 int addend_removed
= removed_by_actions (&act
, base_offset
, FALSE
);
9466 new_rel
->target_offset
= target_offset
- tgt_removed
;
9467 new_rel
->rela
.r_addend
+= addend_removed
;
9474 /* For dynamic links, there may be a dynamic relocation for each
9475 literal. The number of dynamic relocations must be computed in
9476 size_dynamic_sections, which occurs before relaxation. When a
9477 literal is removed, this function checks if there is a corresponding
9478 dynamic relocation and shrinks the size of the appropriate dynamic
9479 relocation section accordingly. At this point, the contents of the
9480 dynamic relocation sections have not yet been filled in, so there's
9481 nothing else that needs to be done. */
9484 shrink_dynamic_reloc_sections (struct bfd_link_info
*info
,
9486 asection
*input_section
,
9487 Elf_Internal_Rela
*rel
)
9489 struct elf_xtensa_link_hash_table
*htab
;
9490 Elf_Internal_Shdr
*symtab_hdr
;
9491 struct elf_link_hash_entry
**sym_hashes
;
9492 unsigned long r_symndx
;
9494 struct elf_link_hash_entry
*h
;
9495 bfd_boolean dynamic_symbol
;
9497 htab
= elf_xtensa_hash_table (info
);
9498 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
9499 sym_hashes
= elf_sym_hashes (abfd
);
9501 r_type
= ELF32_R_TYPE (rel
->r_info
);
9502 r_symndx
= ELF32_R_SYM (rel
->r_info
);
9504 if (r_symndx
< symtab_hdr
->sh_info
)
9507 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
9509 dynamic_symbol
= elf_xtensa_dynamic_symbol_p (h
, info
);
9511 if ((r_type
== R_XTENSA_32
|| r_type
== R_XTENSA_PLT
)
9512 && (input_section
->flags
& SEC_ALLOC
) != 0
9513 && (dynamic_symbol
|| info
->shared
))
9516 bfd_boolean is_plt
= FALSE
;
9518 if (dynamic_symbol
&& r_type
== R_XTENSA_PLT
)
9520 srel
= htab
->srelplt
;
9524 srel
= htab
->srelgot
;
9526 /* Reduce size of the .rela.* section by one reloc. */
9527 BFD_ASSERT (srel
!= NULL
);
9528 BFD_ASSERT (srel
->size
>= sizeof (Elf32_External_Rela
));
9529 srel
->size
-= sizeof (Elf32_External_Rela
);
9533 asection
*splt
, *sgotplt
, *srelgot
;
9534 int reloc_index
, chunk
;
9536 /* Find the PLT reloc index of the entry being removed. This
9537 is computed from the size of ".rela.plt". It is needed to
9538 figure out which PLT chunk to resize. Usually "last index
9539 = size - 1" since the index starts at zero, but in this
9540 context, the size has just been decremented so there's no
9541 need to subtract one. */
9542 reloc_index
= srel
->size
/ sizeof (Elf32_External_Rela
);
9544 chunk
= reloc_index
/ PLT_ENTRIES_PER_CHUNK
;
9545 splt
= elf_xtensa_get_plt_section (info
, chunk
);
9546 sgotplt
= elf_xtensa_get_gotplt_section (info
, chunk
);
9547 BFD_ASSERT (splt
!= NULL
&& sgotplt
!= NULL
);
9549 /* Check if an entire PLT chunk has just been eliminated. */
9550 if (reloc_index
% PLT_ENTRIES_PER_CHUNK
== 0)
9552 /* The two magic GOT entries for that chunk can go away. */
9553 srelgot
= htab
->srelgot
;
9554 BFD_ASSERT (srelgot
!= NULL
);
9555 srelgot
->reloc_count
-= 2;
9556 srelgot
->size
-= 2 * sizeof (Elf32_External_Rela
);
9559 /* There should be only one entry left (and it will be
9561 BFD_ASSERT (sgotplt
->size
== 4);
9562 BFD_ASSERT (splt
->size
== PLT_ENTRY_SIZE
);
9565 BFD_ASSERT (sgotplt
->size
>= 4);
9566 BFD_ASSERT (splt
->size
>= PLT_ENTRY_SIZE
);
9569 splt
->size
-= PLT_ENTRY_SIZE
;
9575 /* Take an r_rel and move it to another section. This usually
9576 requires extending the interal_relocation array and pinning it. If
9577 the original r_rel is from the same BFD, we can complete this here.
9578 Otherwise, we add a fix record to let the final link fix the
9579 appropriate address. Contents and internal relocations for the
9580 section must be pinned after calling this routine. */
9583 move_literal (bfd
*abfd
,
9584 struct bfd_link_info
*link_info
,
9588 xtensa_relax_info
*relax_info
,
9589 Elf_Internal_Rela
**internal_relocs_p
,
9590 const literal_value
*lit
)
9592 Elf_Internal_Rela
*new_relocs
= NULL
;
9593 size_t new_relocs_count
= 0;
9594 Elf_Internal_Rela this_rela
;
9595 const r_reloc
*r_rel
;
9597 r_rel
= &lit
->r_rel
;
9598 BFD_ASSERT (elf_section_data (sec
)->relocs
== *internal_relocs_p
);
9600 if (r_reloc_is_const (r_rel
))
9601 bfd_put_32 (abfd
, lit
->value
, contents
+ offset
);
9606 asection
*target_sec
;
9610 r_type
= ELF32_R_TYPE (r_rel
->rela
.r_info
);
9611 target_sec
= r_reloc_get_section (r_rel
);
9613 /* This is the difficult case. We have to create a fix up. */
9614 this_rela
.r_offset
= offset
;
9615 this_rela
.r_info
= ELF32_R_INFO (0, r_type
);
9616 this_rela
.r_addend
=
9617 r_rel
->target_offset
- r_reloc_get_target_offset (r_rel
);
9618 bfd_put_32 (abfd
, lit
->value
, contents
+ offset
);
9620 /* Currently, we cannot move relocations during a relocatable link. */
9621 BFD_ASSERT (!link_info
->relocatable
);
9622 fix
= reloc_bfd_fix_init (sec
, offset
, r_type
,
9623 r_reloc_get_section (r_rel
),
9624 r_rel
->target_offset
+ r_rel
->virtual_offset
,
9626 /* We also need to mark that relocations are needed here. */
9627 sec
->flags
|= SEC_RELOC
;
9629 translate_reloc_bfd_fix (fix
);
9630 /* This fix has not yet been translated. */
9633 /* Add the relocation. If we have already allocated our own
9634 space for the relocations and we have room for more, then use
9635 it. Otherwise, allocate new space and move the literals. */
9636 insert_at
= sec
->reloc_count
;
9637 for (i
= 0; i
< sec
->reloc_count
; ++i
)
9639 if (this_rela
.r_offset
< (*internal_relocs_p
)[i
].r_offset
)
9646 if (*internal_relocs_p
!= relax_info
->allocated_relocs
9647 || sec
->reloc_count
+ 1 > relax_info
->allocated_relocs_count
)
9649 BFD_ASSERT (relax_info
->allocated_relocs
== NULL
9650 || sec
->reloc_count
== relax_info
->relocs_count
);
9652 if (relax_info
->allocated_relocs_count
== 0)
9653 new_relocs_count
= (sec
->reloc_count
+ 2) * 2;
9655 new_relocs_count
= (relax_info
->allocated_relocs_count
+ 2) * 2;
9657 new_relocs
= (Elf_Internal_Rela
*)
9658 bfd_zmalloc (sizeof (Elf_Internal_Rela
) * (new_relocs_count
));
9662 /* We could handle this more quickly by finding the split point. */
9664 memcpy (new_relocs
, *internal_relocs_p
,
9665 insert_at
* sizeof (Elf_Internal_Rela
));
9667 new_relocs
[insert_at
] = this_rela
;
9669 if (insert_at
!= sec
->reloc_count
)
9670 memcpy (new_relocs
+ insert_at
+ 1,
9671 (*internal_relocs_p
) + insert_at
,
9672 (sec
->reloc_count
- insert_at
)
9673 * sizeof (Elf_Internal_Rela
));
9675 if (*internal_relocs_p
!= relax_info
->allocated_relocs
)
9677 /* The first time we re-allocate, we can only free the
9678 old relocs if they were allocated with bfd_malloc.
9679 This is not true when keep_memory is in effect. */
9680 if (!link_info
->keep_memory
)
9681 free (*internal_relocs_p
);
9684 free (*internal_relocs_p
);
9685 relax_info
->allocated_relocs
= new_relocs
;
9686 relax_info
->allocated_relocs_count
= new_relocs_count
;
9687 elf_section_data (sec
)->relocs
= new_relocs
;
9689 relax_info
->relocs_count
= sec
->reloc_count
;
9690 *internal_relocs_p
= new_relocs
;
9694 if (insert_at
!= sec
->reloc_count
)
9697 for (idx
= sec
->reloc_count
; idx
> insert_at
; idx
--)
9698 (*internal_relocs_p
)[idx
] = (*internal_relocs_p
)[idx
-1];
9700 (*internal_relocs_p
)[insert_at
] = this_rela
;
9702 if (relax_info
->allocated_relocs
)
9703 relax_info
->relocs_count
= sec
->reloc_count
;
9710 /* This is similar to relax_section except that when a target is moved,
9711 we shift addresses up. We also need to modify the size. This
9712 algorithm does NOT allow for relocations into the middle of the
9713 property sections. */
9716 relax_property_section (bfd
*abfd
,
9718 struct bfd_link_info
*link_info
)
9720 Elf_Internal_Rela
*internal_relocs
;
9723 bfd_boolean ok
= TRUE
;
9724 bfd_boolean is_full_prop_section
;
9725 size_t last_zfill_target_offset
= 0;
9726 asection
*last_zfill_target_sec
= NULL
;
9727 bfd_size_type sec_size
;
9728 bfd_size_type entry_size
;
9730 sec_size
= bfd_get_section_limit (abfd
, sec
);
9731 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
9732 link_info
->keep_memory
);
9733 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
9734 if (contents
== NULL
&& sec_size
!= 0)
9740 is_full_prop_section
= xtensa_is_proptable_section (sec
);
9741 if (is_full_prop_section
)
9746 if (internal_relocs
)
9748 for (i
= 0; i
< sec
->reloc_count
; i
++)
9750 Elf_Internal_Rela
*irel
;
9751 xtensa_relax_info
*target_relax_info
;
9753 asection
*target_sec
;
9755 bfd_byte
*size_p
, *flags_p
;
9757 /* Locally change the source address.
9758 Translate the target to the new target address.
9759 If it points to this section and has been removed, MOVE IT.
9760 Also, don't forget to modify the associated SIZE at
9763 irel
= &internal_relocs
[i
];
9764 r_type
= ELF32_R_TYPE (irel
->r_info
);
9765 if (r_type
== R_XTENSA_NONE
)
9768 /* Find the literal value. */
9769 r_reloc_init (&val
.r_rel
, abfd
, irel
, contents
, sec_size
);
9770 size_p
= &contents
[irel
->r_offset
+ 4];
9772 if (is_full_prop_section
)
9773 flags_p
= &contents
[irel
->r_offset
+ 8];
9774 BFD_ASSERT (irel
->r_offset
+ entry_size
<= sec_size
);
9776 target_sec
= r_reloc_get_section (&val
.r_rel
);
9777 target_relax_info
= get_xtensa_relax_info (target_sec
);
9779 if (target_relax_info
9780 && (target_relax_info
->is_relaxable_literal_section
9781 || target_relax_info
->is_relaxable_asm_section
))
9783 /* Translate the relocation's destination. */
9784 bfd_vma old_offset
= val
.r_rel
.target_offset
;
9786 long old_size
, new_size
;
9787 text_action
*act
= target_relax_info
->action_list
.head
;
9788 new_offset
= old_offset
-
9789 removed_by_actions (&act
, old_offset
, FALSE
);
9791 /* Assert that we are not out of bounds. */
9792 old_size
= bfd_get_32 (abfd
, size_p
);
9793 new_size
= old_size
;
9797 /* Only the first zero-sized unreachable entry is
9798 allowed to expand. In this case the new offset
9799 should be the offset before the fill and the new
9800 size is the expansion size. For other zero-sized
9801 entries the resulting size should be zero with an
9802 offset before or after the fill address depending
9803 on whether the expanding unreachable entry
9805 if (last_zfill_target_sec
== 0
9806 || last_zfill_target_sec
!= target_sec
9807 || last_zfill_target_offset
!= old_offset
)
9809 bfd_vma new_end_offset
= new_offset
;
9811 /* Recompute the new_offset, but this time don't
9812 include any fill inserted by relaxation. */
9813 act
= target_relax_info
->action_list
.head
;
9814 new_offset
= old_offset
-
9815 removed_by_actions (&act
, old_offset
, TRUE
);
9817 /* If it is not unreachable and we have not yet
9818 seen an unreachable at this address, place it
9819 before the fill address. */
9820 if (flags_p
&& (bfd_get_32 (abfd
, flags_p
)
9821 & XTENSA_PROP_UNREACHABLE
) != 0)
9823 new_size
= new_end_offset
- new_offset
;
9825 last_zfill_target_sec
= target_sec
;
9826 last_zfill_target_offset
= old_offset
;
9832 removed_by_actions (&act
, old_offset
+ old_size
, TRUE
);
9834 if (new_size
!= old_size
)
9836 bfd_put_32 (abfd
, new_size
, size_p
);
9837 pin_contents (sec
, contents
);
9840 if (new_offset
!= old_offset
)
9842 bfd_vma diff
= new_offset
- old_offset
;
9843 irel
->r_addend
+= diff
;
9844 pin_internal_relocs (sec
, internal_relocs
);
9850 /* Combine adjacent property table entries. This is also done in
9851 finish_dynamic_sections() but at that point it's too late to
9852 reclaim the space in the output section, so we do this twice. */
9854 if (internal_relocs
&& (!link_info
->relocatable
9855 || xtensa_is_littable_section (sec
)))
9857 Elf_Internal_Rela
*last_irel
= NULL
;
9858 Elf_Internal_Rela
*irel
, *next_rel
, *rel_end
;
9859 int removed_bytes
= 0;
9861 flagword predef_flags
;
9863 predef_flags
= xtensa_get_property_predef_flags (sec
);
9865 /* Walk over memory and relocations at the same time.
9866 This REQUIRES that the internal_relocs be sorted by offset. */
9867 qsort (internal_relocs
, sec
->reloc_count
, sizeof (Elf_Internal_Rela
),
9868 internal_reloc_compare
);
9870 pin_internal_relocs (sec
, internal_relocs
);
9871 pin_contents (sec
, contents
);
9873 next_rel
= internal_relocs
;
9874 rel_end
= internal_relocs
+ sec
->reloc_count
;
9876 BFD_ASSERT (sec
->size
% entry_size
== 0);
9878 for (offset
= 0; offset
< sec
->size
; offset
+= entry_size
)
9880 Elf_Internal_Rela
*offset_rel
, *extra_rel
;
9881 bfd_vma bytes_to_remove
, size
, actual_offset
;
9882 bfd_boolean remove_this_rel
;
9885 /* Find the first relocation for the entry at the current offset.
9886 Adjust the offsets of any extra relocations for the previous
9891 for (irel
= next_rel
; irel
< rel_end
; irel
++)
9893 if ((irel
->r_offset
== offset
9894 && ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_NONE
)
9895 || irel
->r_offset
> offset
)
9900 irel
->r_offset
-= removed_bytes
;
9904 /* Find the next relocation (if there are any left). */
9908 for (irel
= offset_rel
+ 1; irel
< rel_end
; irel
++)
9910 if (ELF32_R_TYPE (irel
->r_info
) != R_XTENSA_NONE
)
9918 /* Check if there are relocations on the current entry. There
9919 should usually be a relocation on the offset field. If there
9920 are relocations on the size or flags, then we can't optimize
9921 this entry. Also, find the next relocation to examine on the
9925 if (offset_rel
->r_offset
>= offset
+ entry_size
)
9927 next_rel
= offset_rel
;
9928 /* There are no relocations on the current entry, but we
9929 might still be able to remove it if the size is zero. */
9932 else if (offset_rel
->r_offset
> offset
9934 && extra_rel
->r_offset
< offset
+ entry_size
))
9936 /* There is a relocation on the size or flags, so we can't
9937 do anything with this entry. Continue with the next. */
9938 next_rel
= offset_rel
;
9943 BFD_ASSERT (offset_rel
->r_offset
== offset
);
9944 offset_rel
->r_offset
-= removed_bytes
;
9945 next_rel
= offset_rel
+ 1;
9951 remove_this_rel
= FALSE
;
9952 bytes_to_remove
= 0;
9953 actual_offset
= offset
- removed_bytes
;
9954 size
= bfd_get_32 (abfd
, &contents
[actual_offset
+ 4]);
9956 if (is_full_prop_section
)
9957 flags
= bfd_get_32 (abfd
, &contents
[actual_offset
+ 8]);
9959 flags
= predef_flags
;
9962 && (flags
& XTENSA_PROP_ALIGN
) == 0
9963 && (flags
& XTENSA_PROP_UNREACHABLE
) == 0)
9965 /* Always remove entries with zero size and no alignment. */
9966 bytes_to_remove
= entry_size
;
9968 remove_this_rel
= TRUE
;
9971 && ELF32_R_TYPE (offset_rel
->r_info
) == R_XTENSA_32
)
9977 bfd_get_32 (abfd
, &contents
[last_irel
->r_offset
+ 4]);
9978 bfd_vma old_address
=
9979 (last_irel
->r_addend
9980 + bfd_get_32 (abfd
, &contents
[last_irel
->r_offset
]));
9981 bfd_vma new_address
=
9982 (offset_rel
->r_addend
9983 + bfd_get_32 (abfd
, &contents
[actual_offset
]));
9984 if (is_full_prop_section
)
9985 old_flags
= bfd_get_32
9986 (abfd
, &contents
[last_irel
->r_offset
+ 8]);
9988 old_flags
= predef_flags
;
9990 if ((ELF32_R_SYM (offset_rel
->r_info
)
9991 == ELF32_R_SYM (last_irel
->r_info
))
9992 && old_address
+ old_size
== new_address
9993 && old_flags
== flags
9994 && (old_flags
& XTENSA_PROP_INSN_BRANCH_TARGET
) == 0
9995 && (old_flags
& XTENSA_PROP_INSN_LOOP_TARGET
) == 0)
9997 /* Fix the old size. */
9998 bfd_put_32 (abfd
, old_size
+ size
,
9999 &contents
[last_irel
->r_offset
+ 4]);
10000 bytes_to_remove
= entry_size
;
10001 remove_this_rel
= TRUE
;
10004 last_irel
= offset_rel
;
10007 last_irel
= offset_rel
;
10010 if (remove_this_rel
)
10012 offset_rel
->r_info
= ELF32_R_INFO (0, R_XTENSA_NONE
);
10013 offset_rel
->r_offset
= 0;
10016 if (bytes_to_remove
!= 0)
10018 removed_bytes
+= bytes_to_remove
;
10019 if (offset
+ bytes_to_remove
< sec
->size
)
10020 memmove (&contents
[actual_offset
],
10021 &contents
[actual_offset
+ bytes_to_remove
],
10022 sec
->size
- offset
- bytes_to_remove
);
10028 /* Fix up any extra relocations on the last entry. */
10029 for (irel
= next_rel
; irel
< rel_end
; irel
++)
10030 irel
->r_offset
-= removed_bytes
;
10032 /* Clear the removed bytes. */
10033 memset (&contents
[sec
->size
- removed_bytes
], 0, removed_bytes
);
10035 if (sec
->rawsize
== 0)
10036 sec
->rawsize
= sec
->size
;
10037 sec
->size
-= removed_bytes
;
10039 if (xtensa_is_littable_section (sec
))
10041 asection
*sgotloc
= elf_xtensa_hash_table (link_info
)->sgotloc
;
10043 sgotloc
->size
-= removed_bytes
;
10049 release_internal_relocs (sec
, internal_relocs
);
10050 release_contents (sec
, contents
);
10055 /* Third relaxation pass. */
10057 /* Change symbol values to account for removed literals. */
10060 relax_section_symbols (bfd
*abfd
, asection
*sec
)
10062 xtensa_relax_info
*relax_info
;
10063 unsigned int sec_shndx
;
10064 Elf_Internal_Shdr
*symtab_hdr
;
10065 Elf_Internal_Sym
*isymbuf
;
10066 unsigned i
, num_syms
, num_locals
;
10068 relax_info
= get_xtensa_relax_info (sec
);
10069 BFD_ASSERT (relax_info
);
10071 if (!relax_info
->is_relaxable_literal_section
10072 && !relax_info
->is_relaxable_asm_section
)
10075 sec_shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
10077 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10078 isymbuf
= retrieve_local_syms (abfd
);
10080 num_syms
= symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
);
10081 num_locals
= symtab_hdr
->sh_info
;
10083 /* Adjust the local symbols defined in this section. */
10084 for (i
= 0; i
< num_locals
; i
++)
10086 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
10088 if (isym
->st_shndx
== sec_shndx
)
10090 text_action
*act
= relax_info
->action_list
.head
;
10091 bfd_vma orig_addr
= isym
->st_value
;
10093 isym
->st_value
-= removed_by_actions (&act
, orig_addr
, FALSE
);
10095 if (ELF32_ST_TYPE (isym
->st_info
) == STT_FUNC
)
10097 removed_by_actions (&act
, orig_addr
+ isym
->st_size
, FALSE
);
10101 /* Now adjust the global symbols defined in this section. */
10102 for (i
= 0; i
< (num_syms
- num_locals
); i
++)
10104 struct elf_link_hash_entry
*sym_hash
;
10106 sym_hash
= elf_sym_hashes (abfd
)[i
];
10108 if (sym_hash
->root
.type
== bfd_link_hash_warning
)
10109 sym_hash
= (struct elf_link_hash_entry
*) sym_hash
->root
.u
.i
.link
;
10111 if ((sym_hash
->root
.type
== bfd_link_hash_defined
10112 || sym_hash
->root
.type
== bfd_link_hash_defweak
)
10113 && sym_hash
->root
.u
.def
.section
== sec
)
10115 text_action
*act
= relax_info
->action_list
.head
;
10116 bfd_vma orig_addr
= sym_hash
->root
.u
.def
.value
;
10118 sym_hash
->root
.u
.def
.value
-=
10119 removed_by_actions (&act
, orig_addr
, FALSE
);
10121 if (sym_hash
->type
== STT_FUNC
)
10123 removed_by_actions (&act
, orig_addr
+ sym_hash
->size
, FALSE
);
10131 /* "Fix" handling functions, called while performing relocations. */
10134 do_fix_for_relocatable_link (Elf_Internal_Rela
*rel
,
10136 asection
*input_section
,
10137 bfd_byte
*contents
)
10140 asection
*sec
, *old_sec
;
10141 bfd_vma old_offset
;
10142 int r_type
= ELF32_R_TYPE (rel
->r_info
);
10143 reloc_bfd_fix
*fix
;
10145 if (r_type
== R_XTENSA_NONE
)
10148 fix
= get_bfd_fix (input_section
, rel
->r_offset
, r_type
);
10152 r_reloc_init (&r_rel
, input_bfd
, rel
, contents
,
10153 bfd_get_section_limit (input_bfd
, input_section
));
10154 old_sec
= r_reloc_get_section (&r_rel
);
10155 old_offset
= r_rel
.target_offset
;
10157 if (!old_sec
|| !r_reloc_is_defined (&r_rel
))
10159 if (r_type
!= R_XTENSA_ASM_EXPAND
)
10161 (*_bfd_error_handler
)
10162 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10163 input_bfd
, input_section
, rel
->r_offset
,
10164 elf_howto_table
[r_type
].name
);
10167 /* Leave it be. Resolution will happen in a later stage. */
10171 sec
= fix
->target_sec
;
10172 rel
->r_addend
+= ((sec
->output_offset
+ fix
->target_offset
)
10173 - (old_sec
->output_offset
+ old_offset
));
10180 do_fix_for_final_link (Elf_Internal_Rela
*rel
,
10182 asection
*input_section
,
10183 bfd_byte
*contents
,
10184 bfd_vma
*relocationp
)
10187 int r_type
= ELF32_R_TYPE (rel
->r_info
);
10188 reloc_bfd_fix
*fix
;
10189 bfd_vma fixup_diff
;
10191 if (r_type
== R_XTENSA_NONE
)
10194 fix
= get_bfd_fix (input_section
, rel
->r_offset
, r_type
);
10198 sec
= fix
->target_sec
;
10200 fixup_diff
= rel
->r_addend
;
10201 if (elf_howto_table
[fix
->src_type
].partial_inplace
)
10203 bfd_vma inplace_val
;
10204 BFD_ASSERT (fix
->src_offset
10205 < bfd_get_section_limit (input_bfd
, input_section
));
10206 inplace_val
= bfd_get_32 (input_bfd
, &contents
[fix
->src_offset
]);
10207 fixup_diff
+= inplace_val
;
10210 *relocationp
= (sec
->output_section
->vma
10211 + sec
->output_offset
10212 + fix
->target_offset
- fixup_diff
);
10216 /* Miscellaneous utility functions.... */
10219 elf_xtensa_get_plt_section (struct bfd_link_info
*info
, int chunk
)
10221 struct elf_xtensa_link_hash_table
*htab
;
10227 htab
= elf_xtensa_hash_table (info
);
10231 dynobj
= elf_hash_table (info
)->dynobj
;
10232 sprintf (plt_name
, ".plt.%u", chunk
);
10233 return bfd_get_section_by_name (dynobj
, plt_name
);
10238 elf_xtensa_get_gotplt_section (struct bfd_link_info
*info
, int chunk
)
10240 struct elf_xtensa_link_hash_table
*htab
;
10246 htab
= elf_xtensa_hash_table (info
);
10247 return htab
->sgotplt
;
10250 dynobj
= elf_hash_table (info
)->dynobj
;
10251 sprintf (got_name
, ".got.plt.%u", chunk
);
10252 return bfd_get_section_by_name (dynobj
, got_name
);
10256 /* Get the input section for a given symbol index.
10258 . a section symbol, return the section;
10259 . a common symbol, return the common section;
10260 . an undefined symbol, return the undefined section;
10261 . an indirect symbol, follow the links;
10262 . an absolute value, return the absolute section. */
10265 get_elf_r_symndx_section (bfd
*abfd
, unsigned long r_symndx
)
10267 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10268 asection
*target_sec
= NULL
;
10269 if (r_symndx
< symtab_hdr
->sh_info
)
10271 Elf_Internal_Sym
*isymbuf
;
10272 unsigned int section_index
;
10274 isymbuf
= retrieve_local_syms (abfd
);
10275 section_index
= isymbuf
[r_symndx
].st_shndx
;
10277 if (section_index
== SHN_UNDEF
)
10278 target_sec
= bfd_und_section_ptr
;
10279 else if (section_index
== SHN_ABS
)
10280 target_sec
= bfd_abs_section_ptr
;
10281 else if (section_index
== SHN_COMMON
)
10282 target_sec
= bfd_com_section_ptr
;
10284 target_sec
= bfd_section_from_elf_index (abfd
, section_index
);
10288 unsigned long indx
= r_symndx
- symtab_hdr
->sh_info
;
10289 struct elf_link_hash_entry
*h
= elf_sym_hashes (abfd
)[indx
];
10291 while (h
->root
.type
== bfd_link_hash_indirect
10292 || h
->root
.type
== bfd_link_hash_warning
)
10293 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10295 switch (h
->root
.type
)
10297 case bfd_link_hash_defined
:
10298 case bfd_link_hash_defweak
:
10299 target_sec
= h
->root
.u
.def
.section
;
10301 case bfd_link_hash_common
:
10302 target_sec
= bfd_com_section_ptr
;
10304 case bfd_link_hash_undefined
:
10305 case bfd_link_hash_undefweak
:
10306 target_sec
= bfd_und_section_ptr
;
10308 default: /* New indirect warning. */
10309 target_sec
= bfd_und_section_ptr
;
10317 static struct elf_link_hash_entry
*
10318 get_elf_r_symndx_hash_entry (bfd
*abfd
, unsigned long r_symndx
)
10320 unsigned long indx
;
10321 struct elf_link_hash_entry
*h
;
10322 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10324 if (r_symndx
< symtab_hdr
->sh_info
)
10327 indx
= r_symndx
- symtab_hdr
->sh_info
;
10328 h
= elf_sym_hashes (abfd
)[indx
];
10329 while (h
->root
.type
== bfd_link_hash_indirect
10330 || h
->root
.type
== bfd_link_hash_warning
)
10331 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10336 /* Get the section-relative offset for a symbol number. */
10339 get_elf_r_symndx_offset (bfd
*abfd
, unsigned long r_symndx
)
10341 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10342 bfd_vma offset
= 0;
10344 if (r_symndx
< symtab_hdr
->sh_info
)
10346 Elf_Internal_Sym
*isymbuf
;
10347 isymbuf
= retrieve_local_syms (abfd
);
10348 offset
= isymbuf
[r_symndx
].st_value
;
10352 unsigned long indx
= r_symndx
- symtab_hdr
->sh_info
;
10353 struct elf_link_hash_entry
*h
=
10354 elf_sym_hashes (abfd
)[indx
];
10356 while (h
->root
.type
== bfd_link_hash_indirect
10357 || h
->root
.type
== bfd_link_hash_warning
)
10358 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10359 if (h
->root
.type
== bfd_link_hash_defined
10360 || h
->root
.type
== bfd_link_hash_defweak
)
10361 offset
= h
->root
.u
.def
.value
;
10368 is_reloc_sym_weak (bfd
*abfd
, Elf_Internal_Rela
*rel
)
10370 unsigned long r_symndx
= ELF32_R_SYM (rel
->r_info
);
10371 struct elf_link_hash_entry
*h
;
10373 h
= get_elf_r_symndx_hash_entry (abfd
, r_symndx
);
10374 if (h
&& h
->root
.type
== bfd_link_hash_defweak
)
10381 pcrel_reloc_fits (xtensa_opcode opc
,
10383 bfd_vma self_address
,
10384 bfd_vma dest_address
)
10386 xtensa_isa isa
= xtensa_default_isa
;
10387 uint32 valp
= dest_address
;
10388 if (xtensa_operand_do_reloc (isa
, opc
, opnd
, &valp
, self_address
)
10389 || xtensa_operand_encode (isa
, opc
, opnd
, &valp
))
10396 xtensa_is_property_section (asection
*sec
)
10398 if (xtensa_is_insntable_section (sec
)
10399 || xtensa_is_littable_section (sec
)
10400 || xtensa_is_proptable_section (sec
))
10408 xtensa_is_insntable_section (asection
*sec
)
10410 if (CONST_STRNEQ (sec
->name
, XTENSA_INSN_SEC_NAME
)
10411 || CONST_STRNEQ (sec
->name
, ".gnu.linkonce.x."))
10419 xtensa_is_littable_section (asection
*sec
)
10421 if (CONST_STRNEQ (sec
->name
, XTENSA_LIT_SEC_NAME
)
10422 || CONST_STRNEQ (sec
->name
, ".gnu.linkonce.p."))
10430 xtensa_is_proptable_section (asection
*sec
)
10432 if (CONST_STRNEQ (sec
->name
, XTENSA_PROP_SEC_NAME
)
10433 || CONST_STRNEQ (sec
->name
, ".gnu.linkonce.prop."))
10441 internal_reloc_compare (const void *ap
, const void *bp
)
10443 const Elf_Internal_Rela
*a
= (const Elf_Internal_Rela
*) ap
;
10444 const Elf_Internal_Rela
*b
= (const Elf_Internal_Rela
*) bp
;
10446 if (a
->r_offset
!= b
->r_offset
)
10447 return (a
->r_offset
- b
->r_offset
);
10449 /* We don't need to sort on these criteria for correctness,
10450 but enforcing a more strict ordering prevents unstable qsort
10451 from behaving differently with different implementations.
10452 Without the code below we get correct but different results
10453 on Solaris 2.7 and 2.8. We would like to always produce the
10454 same results no matter the host. */
10456 if (a
->r_info
!= b
->r_info
)
10457 return (a
->r_info
- b
->r_info
);
10459 return (a
->r_addend
- b
->r_addend
);
10464 internal_reloc_matches (const void *ap
, const void *bp
)
10466 const Elf_Internal_Rela
*a
= (const Elf_Internal_Rela
*) ap
;
10467 const Elf_Internal_Rela
*b
= (const Elf_Internal_Rela
*) bp
;
10469 /* Check if one entry overlaps with the other; this shouldn't happen
10470 except when searching for a match. */
10471 return (a
->r_offset
- b
->r_offset
);
10475 /* Predicate function used to look up a section in a particular group. */
10478 match_section_group (bfd
*abfd ATTRIBUTE_UNUSED
, asection
*sec
, void *inf
)
10480 const char *gname
= inf
;
10481 const char *group_name
= elf_group_name (sec
);
10483 return (group_name
== gname
10484 || (group_name
!= NULL
10486 && strcmp (group_name
, gname
) == 0));
10490 static int linkonce_len
= sizeof (".gnu.linkonce.") - 1;
10493 xtensa_property_section_name (asection
*sec
, const char *base_name
)
10495 const char *suffix
, *group_name
;
10496 char *prop_sec_name
;
10498 group_name
= elf_group_name (sec
);
10501 suffix
= strrchr (sec
->name
, '.');
10502 if (suffix
== sec
->name
)
10504 prop_sec_name
= (char *) bfd_malloc (strlen (base_name
) + 1
10505 + (suffix
? strlen (suffix
) : 0));
10506 strcpy (prop_sec_name
, base_name
);
10508 strcat (prop_sec_name
, suffix
);
10510 else if (strncmp (sec
->name
, ".gnu.linkonce.", linkonce_len
) == 0)
10512 char *linkonce_kind
= 0;
10514 if (strcmp (base_name
, XTENSA_INSN_SEC_NAME
) == 0)
10515 linkonce_kind
= "x.";
10516 else if (strcmp (base_name
, XTENSA_LIT_SEC_NAME
) == 0)
10517 linkonce_kind
= "p.";
10518 else if (strcmp (base_name
, XTENSA_PROP_SEC_NAME
) == 0)
10519 linkonce_kind
= "prop.";
10523 prop_sec_name
= (char *) bfd_malloc (strlen (sec
->name
)
10524 + strlen (linkonce_kind
) + 1);
10525 memcpy (prop_sec_name
, ".gnu.linkonce.", linkonce_len
);
10526 strcpy (prop_sec_name
+ linkonce_len
, linkonce_kind
);
10528 suffix
= sec
->name
+ linkonce_len
;
10529 /* For backward compatibility, replace "t." instead of inserting
10530 the new linkonce_kind (but not for "prop" sections). */
10531 if (CONST_STRNEQ (suffix
, "t.") && linkonce_kind
[1] == '.')
10533 strcat (prop_sec_name
+ linkonce_len
, suffix
);
10536 prop_sec_name
= strdup (base_name
);
10538 return prop_sec_name
;
10543 xtensa_get_property_section (asection
*sec
, const char *base_name
)
10545 char *prop_sec_name
;
10546 asection
*prop_sec
;
10548 prop_sec_name
= xtensa_property_section_name (sec
, base_name
);
10549 prop_sec
= bfd_get_section_by_name_if (sec
->owner
, prop_sec_name
,
10550 match_section_group
,
10551 (void *) elf_group_name (sec
));
10552 free (prop_sec_name
);
10558 xtensa_make_property_section (asection
*sec
, const char *base_name
)
10560 char *prop_sec_name
;
10561 asection
*prop_sec
;
10563 /* Check if the section already exists. */
10564 prop_sec_name
= xtensa_property_section_name (sec
, base_name
);
10565 prop_sec
= bfd_get_section_by_name_if (sec
->owner
, prop_sec_name
,
10566 match_section_group
,
10567 (void *) elf_group_name (sec
));
10568 /* If not, create it. */
10571 flagword flags
= (SEC_RELOC
| SEC_HAS_CONTENTS
| SEC_READONLY
);
10572 flags
|= (bfd_get_section_flags (sec
->owner
, sec
)
10573 & (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES
));
10575 prop_sec
= bfd_make_section_anyway_with_flags
10576 (sec
->owner
, strdup (prop_sec_name
), flags
);
10580 elf_group_name (prop_sec
) = elf_group_name (sec
);
10583 free (prop_sec_name
);
10589 xtensa_get_property_predef_flags (asection
*sec
)
10591 if (xtensa_is_insntable_section (sec
))
10592 return (XTENSA_PROP_INSN
10593 | XTENSA_PROP_NO_TRANSFORM
10594 | XTENSA_PROP_INSN_NO_REORDER
);
10596 if (xtensa_is_littable_section (sec
))
10597 return (XTENSA_PROP_LITERAL
10598 | XTENSA_PROP_NO_TRANSFORM
10599 | XTENSA_PROP_INSN_NO_REORDER
);
10605 /* Other functions called directly by the linker. */
10608 xtensa_callback_required_dependence (bfd
*abfd
,
10610 struct bfd_link_info
*link_info
,
10611 deps_callback_t callback
,
10614 Elf_Internal_Rela
*internal_relocs
;
10615 bfd_byte
*contents
;
10617 bfd_boolean ok
= TRUE
;
10618 bfd_size_type sec_size
;
10620 sec_size
= bfd_get_section_limit (abfd
, sec
);
10622 /* ".plt*" sections have no explicit relocations but they contain L32R
10623 instructions that reference the corresponding ".got.plt*" sections. */
10624 if ((sec
->flags
& SEC_LINKER_CREATED
) != 0
10625 && CONST_STRNEQ (sec
->name
, ".plt"))
10629 /* Find the corresponding ".got.plt*" section. */
10630 if (sec
->name
[4] == '\0')
10631 sgotplt
= bfd_get_section_by_name (sec
->owner
, ".got.plt");
10637 BFD_ASSERT (sec
->name
[4] == '.');
10638 chunk
= strtol (&sec
->name
[5], NULL
, 10);
10640 sprintf (got_name
, ".got.plt.%u", chunk
);
10641 sgotplt
= bfd_get_section_by_name (sec
->owner
, got_name
);
10643 BFD_ASSERT (sgotplt
);
10645 /* Assume worst-case offsets: L32R at the very end of the ".plt"
10646 section referencing a literal at the very beginning of
10647 ".got.plt". This is very close to the real dependence, anyway. */
10648 (*callback
) (sec
, sec_size
, sgotplt
, 0, closure
);
10651 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
10652 when building uclibc, which runs "ld -b binary /dev/null". */
10653 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
10656 internal_relocs
= retrieve_internal_relocs (abfd
, sec
,
10657 link_info
->keep_memory
);
10658 if (internal_relocs
== NULL
10659 || sec
->reloc_count
== 0)
10662 /* Cache the contents for the duration of this scan. */
10663 contents
= retrieve_contents (abfd
, sec
, link_info
->keep_memory
);
10664 if (contents
== NULL
&& sec_size
!= 0)
10670 if (!xtensa_default_isa
)
10671 xtensa_default_isa
= xtensa_isa_init (0, 0);
10673 for (i
= 0; i
< sec
->reloc_count
; i
++)
10675 Elf_Internal_Rela
*irel
= &internal_relocs
[i
];
10676 if (is_l32r_relocation (abfd
, sec
, contents
, irel
))
10679 asection
*target_sec
;
10680 bfd_vma target_offset
;
10682 r_reloc_init (&l32r_rel
, abfd
, irel
, contents
, sec_size
);
10685 /* L32Rs must be local to the input file. */
10686 if (r_reloc_is_defined (&l32r_rel
))
10688 target_sec
= r_reloc_get_section (&l32r_rel
);
10689 target_offset
= l32r_rel
.target_offset
;
10691 (*callback
) (sec
, irel
->r_offset
, target_sec
, target_offset
,
10697 release_internal_relocs (sec
, internal_relocs
);
10698 release_contents (sec
, contents
);
10702 /* The default literal sections should always be marked as "code" (i.e.,
10703 SHF_EXECINSTR). This is particularly important for the Linux kernel
10704 module loader so that the literals are not placed after the text. */
10705 static const struct bfd_elf_special_section elf_xtensa_special_sections
[] =
10707 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
10708 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
10709 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
10710 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE
, 0 },
10711 { NULL
, 0, 0, 0, 0 }
10715 #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
10716 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
10717 #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
10718 #define TARGET_BIG_NAME "elf32-xtensa-be"
10719 #define ELF_ARCH bfd_arch_xtensa
10721 #define ELF_MACHINE_CODE EM_XTENSA
10722 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
10725 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
10726 #else /* !XCHAL_HAVE_MMU */
10727 #define ELF_MAXPAGESIZE 1
10728 #endif /* !XCHAL_HAVE_MMU */
10729 #endif /* ELF_ARCH */
10731 #define elf_backend_can_gc_sections 1
10732 #define elf_backend_can_refcount 1
10733 #define elf_backend_plt_readonly 1
10734 #define elf_backend_got_header_size 4
10735 #define elf_backend_want_dynbss 0
10736 #define elf_backend_want_got_plt 1
10738 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
10740 #define bfd_elf32_mkobject elf_xtensa_mkobject
10742 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
10743 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
10744 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
10745 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
10746 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
10747 #define bfd_elf32_bfd_reloc_name_lookup \
10748 elf_xtensa_reloc_name_lookup
10749 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
10750 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
10752 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
10753 #define elf_backend_check_relocs elf_xtensa_check_relocs
10754 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
10755 #define elf_backend_discard_info elf_xtensa_discard_info
10756 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
10757 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
10758 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
10759 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
10760 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
10761 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
10762 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
10763 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
10764 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
10765 #define elf_backend_object_p elf_xtensa_object_p
10766 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
10767 #define elf_backend_relocate_section elf_xtensa_relocate_section
10768 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
10769 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
10770 #define elf_backend_omit_section_dynsym \
10771 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
10772 #define elf_backend_special_sections elf_xtensa_special_sections
10773 #define elf_backend_action_discarded elf_xtensa_action_discarded
10774 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
10776 #include "elf32-target.h"