1 This is bfd.info, produced by makeinfo version 4.8 from bfd.texinfo.
4 * Bfd: (bfd). The Binary File Descriptor library.
7 This file documents the BFD library.
9 Copyright (C) 1991, 2000, 2001, 2003, 2006, 2007, 2008 Free Software
12 Permission is granted to copy, distribute and/or modify this document
13 under the terms of the GNU Free Documentation License, Version 1.3 or
14 any later version published by the Free Software Foundation; with the
15 Invariant Sections being "GNU General Public License" and "Funding Free
16 Software", the Front-Cover texts being (a) (see below), and with the
17 Back-Cover Texts being (b) (see below). A copy of the license is
18 included in the section entitled "GNU Free Documentation License".
20 (a) The FSF's Front-Cover Text is:
24 (b) The FSF's Back-Cover Text is:
26 You have freedom to copy and modify this GNU Manual, like GNU
27 software. Copies published by the Free Software Foundation raise
28 funds for GNU development.
31 File: bfd.info, Node: Top, Next: Overview, Prev: (dir), Up: (dir)
33 This file documents the binary file descriptor library libbfd.
37 * Overview:: Overview of BFD
38 * BFD front end:: BFD front end
39 * BFD back ends:: BFD back ends
40 * GNU Free Documentation License:: GNU Free Documentation License
41 * BFD Index:: BFD Index
44 File: bfd.info, Node: Overview, Next: BFD front end, Prev: Top, Up: Top
49 BFD is a package which allows applications to use the same routines to
50 operate on object files whatever the object file format. A new object
51 file format can be supported simply by creating a new BFD back end and
52 adding it to the library.
54 BFD is split into two parts: the front end, and the back ends (one
55 for each object file format).
56 * The front end of BFD provides the interface to the user. It manages
57 memory and various canonical data structures. The front end also
58 decides which back end to use and when to call back end routines.
60 * The back ends provide BFD its view of the real world. Each back
61 end provides a set of calls which the BFD front end can use to
62 maintain its canonical form. The back ends also may keep around
63 information for their own use, for greater efficiency.
68 * How It Works:: How It Works
69 * What BFD Version 2 Can Do:: What BFD Version 2 Can Do
72 File: bfd.info, Node: History, Next: How It Works, Prev: Overview, Up: Overview
77 One spur behind BFD was the desire, on the part of the GNU 960 team at
78 Intel Oregon, for interoperability of applications on their COFF and
79 b.out file formats. Cygnus was providing GNU support for the team, and
80 was contracted to provide the required functionality.
82 The name came from a conversation David Wallace was having with
83 Richard Stallman about the library: RMS said that it would be quite
84 hard--David said "BFD". Stallman was right, but the name stuck.
86 At the same time, Ready Systems wanted much the same thing, but for
87 different object file formats: IEEE-695, Oasys, Srecords, a.out and 68k
90 BFD was first implemented by members of Cygnus Support; Steve
91 Chamberlain (`sac@cygnus.com'), John Gilmore (`gnu@cygnus.com'), K.
92 Richard Pixley (`rich@cygnus.com') and David Henkel-Wallace
96 File: bfd.info, Node: How It Works, Next: What BFD Version 2 Can Do, Prev: History, Up: Overview
101 To use the library, include `bfd.h' and link with `libbfd.a'.
103 BFD provides a common interface to the parts of an object file for a
106 When an application successfully opens a target file (object,
107 archive, or whatever), a pointer to an internal structure is returned.
108 This pointer points to a structure called `bfd', described in `bfd.h'.
109 Our convention is to call this pointer a BFD, and instances of it
110 within code `abfd'. All operations on the target object file are
111 applied as methods to the BFD. The mapping is defined within `bfd.h'
112 in a set of macros, all beginning with `bfd_' to reduce namespace
115 For example, this sequence does what you would probably expect:
116 return the number of sections in an object file attached to a BFD
121 unsigned int number_of_sections (abfd)
124 return bfd_count_sections (abfd);
127 The abstraction used within BFD is that an object file has:
131 * a number of sections containing raw data (*note Sections::),
133 * a set of relocations (*note Relocations::), and
135 * some symbol information (*note Symbols::).
136 Also, BFDs opened for archives have the additional attribute of an
137 index and contain subordinate BFDs. This approach is fine for a.out and
138 coff, but loses efficiency when applied to formats such as S-records and
142 File: bfd.info, Node: What BFD Version 2 Can Do, Prev: How It Works, Up: Overview
144 1.3 What BFD Version 2 Can Do
145 =============================
147 When an object file is opened, BFD subroutines automatically determine
148 the format of the input object file. They then build a descriptor in
149 memory with pointers to routines that will be used to access elements of
150 the object file's data structures.
152 As different information from the object files is required, BFD
153 reads from different sections of the file and processes them. For
154 example, a very common operation for the linker is processing symbol
155 tables. Each BFD back end provides a routine for converting between
156 the object file's representation of symbols and an internal canonical
157 format. When the linker asks for the symbol table of an object file, it
158 calls through a memory pointer to the routine from the relevant BFD
159 back end which reads and converts the table into a canonical form. The
160 linker then operates upon the canonical form. When the link is finished
161 and the linker writes the output file's symbol table, another BFD back
162 end routine is called to take the newly created symbol table and
163 convert it into the chosen output format.
167 * BFD information loss:: Information Loss
168 * Canonical format:: The BFD canonical object-file format
171 File: bfd.info, Node: BFD information loss, Next: Canonical format, Up: What BFD Version 2 Can Do
173 1.3.1 Information Loss
174 ----------------------
176 _Information can be lost during output._ The output formats supported
177 by BFD do not provide identical facilities, and information which can
178 be described in one form has nowhere to go in another format. One
179 example of this is alignment information in `b.out'. There is nowhere
180 in an `a.out' format file to store alignment information on the
181 contained data, so when a file is linked from `b.out' and an `a.out'
182 image is produced, alignment information will not propagate to the
183 output file. (The linker will still use the alignment information
184 internally, so the link is performed correctly).
186 Another example is COFF section names. COFF files may contain an
187 unlimited number of sections, each one with a textual section name. If
188 the target of the link is a format which does not have many sections
189 (e.g., `a.out') or has sections without names (e.g., the Oasys format),
190 the link cannot be done simply. You can circumvent this problem by
191 describing the desired input-to-output section mapping with the linker
194 _Information can be lost during canonicalization._ The BFD internal
195 canonical form of the external formats is not exhaustive; there are
196 structures in input formats for which there is no direct representation
197 internally. This means that the BFD back ends cannot maintain all
198 possible data richness through the transformation between external to
199 internal and back to external formats.
201 This limitation is only a problem when an application reads one
202 format and writes another. Each BFD back end is responsible for
203 maintaining as much data as possible, and the internal BFD canonical
204 form has structures which are opaque to the BFD core, and exported only
205 to the back ends. When a file is read in one format, the canonical form
206 is generated for BFD and the application. At the same time, the back
207 end saves away any information which may otherwise be lost. If the data
208 is then written back in the same format, the back end routine will be
209 able to use the canonical form provided by the BFD core as well as the
210 information it prepared earlier. Since there is a great deal of
211 commonality between back ends, there is no information lost when
212 linking or copying big endian COFF to little endian COFF, or `a.out' to
213 `b.out'. When a mixture of formats is linked, the information is only
214 lost from the files whose format differs from the destination.
217 File: bfd.info, Node: Canonical format, Prev: BFD information loss, Up: What BFD Version 2 Can Do
219 1.3.2 The BFD canonical object-file format
220 ------------------------------------------
222 The greatest potential for loss of information occurs when there is the
223 least overlap between the information provided by the source format,
224 that stored by the canonical format, and that needed by the destination
225 format. A brief description of the canonical form may help you
226 understand which kinds of data you can count on preserving across
230 Information stored on a per-file basis includes target machine
231 architecture, particular implementation format type, a demand
232 pageable bit, and a write protected bit. Information like Unix
233 magic numbers is not stored here--only the magic numbers' meaning,
234 so a `ZMAGIC' file would have both the demand pageable bit and the
235 write protected text bit set. The byte order of the target is
236 stored on a per-file basis, so that big- and little-endian object
237 files may be used with one another.
240 Each section in the input file contains the name of the section,
241 the section's original address in the object file, size and
242 alignment information, various flags, and pointers into other BFD
246 Each symbol contains a pointer to the information for the object
247 file which originally defined it, its name, its value, and various
248 flag bits. When a BFD back end reads in a symbol table, it
249 relocates all symbols to make them relative to the base of the
250 section where they were defined. Doing this ensures that each
251 symbol points to its containing section. Each symbol also has a
252 varying amount of hidden private data for the BFD back end. Since
253 the symbol points to the original file, the private data format
254 for that symbol is accessible. `ld' can operate on a collection
255 of symbols of wildly different formats without problems.
257 Normal global and simple local symbols are maintained on output,
258 so an output file (no matter its format) will retain symbols
259 pointing to functions and to global, static, and common variables.
260 Some symbol information is not worth retaining; in `a.out', type
261 information is stored in the symbol table as long symbol names.
262 This information would be useless to most COFF debuggers; the
263 linker has command line switches to allow users to throw it away.
265 There is one word of type information within the symbol, so if the
266 format supports symbol type information within symbols (for
267 example, COFF, IEEE, Oasys) and the type is simple enough to fit
268 within one word (nearly everything but aggregates), the
269 information will be preserved.
272 Each canonical BFD relocation record contains a pointer to the
273 symbol to relocate to, the offset of the data to relocate, the
274 section the data is in, and a pointer to a relocation type
275 descriptor. Relocation is performed by passing messages through
276 the relocation type descriptor and the symbol pointer. Therefore,
277 relocations can be performed on output data using a relocation
278 method that is only available in one of the input formats. For
279 instance, Oasys provides a byte relocation format. A relocation
280 record requesting this relocation type would point indirectly to a
281 routine to perform this, so the relocation may be performed on a
282 byte being written to a 68k COFF file, even though 68k COFF has no
283 such relocation type.
286 Object formats can contain, for debugging purposes, some form of
287 mapping between symbols, source line numbers, and addresses in the
288 output file. These addresses have to be relocated along with the
289 symbol information. Each symbol with an associated list of line
290 number records points to the first record of the list. The head
291 of a line number list consists of a pointer to the symbol, which
292 allows finding out the address of the function whose line number
293 is being described. The rest of the list is made up of pairs:
294 offsets into the section and line numbers. Any format which can
295 simply derive this information can pass it successfully between
296 formats (COFF, IEEE and Oasys).
299 File: bfd.info, Node: BFD front end, Next: BFD back ends, Prev: Overview, Up: Top
307 A BFD has type `bfd'; objects of this type are the cornerstone of any
308 application using BFD. Using BFD consists of making references though
309 the BFD and to data in the BFD.
311 Here is the structure that defines the type `bfd'. It contains the
312 major data about the file and pointers to the rest of the data.
325 /* A unique identifier of the BFD */
328 /* The filename the application opened the BFD with. */
329 const char *filename;
331 /* A pointer to the target jump table. */
332 const struct bfd_target *xvec;
334 /* The IOSTREAM, and corresponding IO vector that provide access
335 to the file backing the BFD. */
337 const struct bfd_iovec *iovec;
339 /* The caching routines use these to maintain a
340 least-recently-used list of BFDs. */
341 struct bfd *lru_prev, *lru_next;
343 /* When a file is closed by the caching routines, BFD retains
344 state information on the file here... */
347 /* File modified time, if mtime_set is TRUE. */
350 /* Reserved for an unimplemented file locking extension. */
353 /* The format which belongs to the BFD. (object, core, etc.) */
356 /* The direction with which the BFD was opened. */
357 enum bfd_direction direction;
359 /* Format_specific flags. */
362 /* Values that may appear in the flags field of a BFD. These also
363 appear in the object_flags field of the bfd_target structure, where
364 they indicate the set of flags used by that backend (not all flags
365 are meaningful for all object file formats) (FIXME: at the moment,
366 the object_flags values have mostly just been copied from backend
367 to another, and are not necessarily correct). */
369 #define BFD_NO_FLAGS 0x00
371 /* BFD contains relocation entries. */
372 #define HAS_RELOC 0x01
374 /* BFD is directly executable. */
377 /* BFD has line number information (basically used for F_LNNO in a
379 #define HAS_LINENO 0x04
381 /* BFD has debugging information. */
382 #define HAS_DEBUG 0x08
384 /* BFD has symbols. */
385 #define HAS_SYMS 0x10
387 /* BFD has local symbols (basically used for F_LSYMS in a COFF
389 #define HAS_LOCALS 0x20
391 /* BFD is a dynamic object. */
394 /* Text section is write protected (if D_PAGED is not set, this is
395 like an a.out NMAGIC file) (the linker sets this by default, but
396 clears it for -r or -N). */
399 /* BFD is dynamically paged (this is like an a.out ZMAGIC file) (the
400 linker sets this by default, but clears it for -r or -n or -N). */
401 #define D_PAGED 0x100
403 /* BFD is relaxable (this means that bfd_relax_section may be able to
404 do something) (sometimes bfd_relax_section can do something even if
406 #define BFD_IS_RELAXABLE 0x200
408 /* This may be set before writing out a BFD to request using a
409 traditional format. For example, this is used to request that when
410 writing out an a.out object the symbols not be hashed to eliminate
412 #define BFD_TRADITIONAL_FORMAT 0x400
414 /* This flag indicates that the BFD contents are actually cached
415 in memory. If this is set, iostream points to a bfd_in_memory
417 #define BFD_IN_MEMORY 0x800
419 /* The sections in this BFD specify a memory page. */
420 #define HAS_LOAD_PAGE 0x1000
422 /* This BFD has been created by the linker and doesn't correspond
423 to any input file. */
424 #define BFD_LINKER_CREATED 0x2000
426 /* This may be set before writing out a BFD to request that it
427 be written using values for UIDs, GIDs, timestamps, etc. that
428 will be consistent from run to run. */
429 #define BFD_DETERMINISTIC_OUTPUT 0x4000
431 /* Currently my_archive is tested before adding origin to
432 anything. I believe that this can become always an add of
433 origin, with origin set to 0 for non archive files. */
436 /* The origin in the archive of the proxy entry. This will
437 normally be the same as origin, except for thin archives,
438 when it will contain the current offset of the proxy in the
439 thin archive rather than the offset of the bfd in its actual
441 ufile_ptr proxy_origin;
443 /* A hash table for section names. */
444 struct bfd_hash_table section_htab;
446 /* Pointer to linked list of sections. */
447 struct bfd_section *sections;
449 /* The last section on the section list. */
450 struct bfd_section *section_last;
452 /* The number of sections. */
453 unsigned int section_count;
455 /* Stuff only useful for object files:
456 The start address. */
457 bfd_vma start_address;
459 /* Used for input and output. */
460 unsigned int symcount;
462 /* Symbol table for output BFD (with symcount entries).
463 Also used by the linker to cache input BFD symbols. */
464 struct bfd_symbol **outsymbols;
466 /* Used for slurped dynamic symbol tables. */
467 unsigned int dynsymcount;
469 /* Pointer to structure which contains architecture information. */
470 const struct bfd_arch_info *arch_info;
472 /* Stuff only useful for archives. */
474 struct bfd *my_archive; /* The containing archive BFD. */
475 struct bfd *archive_next; /* The next BFD in the archive. */
476 struct bfd *archive_head; /* The first BFD in the archive. */
477 struct bfd *nested_archives; /* List of nested archive in a flattened
480 /* A chain of BFD structures involved in a link. */
481 struct bfd *link_next;
483 /* A field used by _bfd_generic_link_add_archive_symbols. This will
484 be used only for archive elements. */
487 /* Used by the back end to hold private data. */
490 struct aout_data_struct *aout_data;
491 struct artdata *aout_ar_data;
492 struct _oasys_data *oasys_obj_data;
493 struct _oasys_ar_data *oasys_ar_data;
494 struct coff_tdata *coff_obj_data;
495 struct pe_tdata *pe_obj_data;
496 struct xcoff_tdata *xcoff_obj_data;
497 struct ecoff_tdata *ecoff_obj_data;
498 struct ieee_data_struct *ieee_data;
499 struct ieee_ar_data_struct *ieee_ar_data;
500 struct srec_data_struct *srec_data;
501 struct verilog_data_struct *verilog_data;
502 struct ihex_data_struct *ihex_data;
503 struct tekhex_data_struct *tekhex_data;
504 struct elf_obj_tdata *elf_obj_data;
505 struct nlm_obj_tdata *nlm_obj_data;
506 struct bout_data_struct *bout_data;
507 struct mmo_data_struct *mmo_data;
508 struct sun_core_struct *sun_core_data;
509 struct sco5_core_struct *sco5_core_data;
510 struct trad_core_struct *trad_core_data;
511 struct som_data_struct *som_data;
512 struct hpux_core_struct *hpux_core_data;
513 struct hppabsd_core_struct *hppabsd_core_data;
514 struct sgi_core_struct *sgi_core_data;
515 struct lynx_core_struct *lynx_core_data;
516 struct osf_core_struct *osf_core_data;
517 struct cisco_core_struct *cisco_core_data;
518 struct versados_data_struct *versados_data;
519 struct netbsd_core_struct *netbsd_core_data;
520 struct mach_o_data_struct *mach_o_data;
521 struct mach_o_fat_data_struct *mach_o_fat_data;
522 struct plugin_data_struct *plugin_data;
523 struct bfd_pef_data_struct *pef_data;
524 struct bfd_pef_xlib_data_struct *pef_xlib_data;
525 struct bfd_sym_data_struct *sym_data;
530 /* Used by the application to hold private data. */
533 /* Where all the allocated stuff under this BFD goes. This is a
534 struct objalloc *, but we use void * to avoid requiring the inclusion
538 /* Is the file descriptor being cached? That is, can it be closed as
539 needed, and re-opened when accessed later? */
540 unsigned int cacheable : 1;
542 /* Marks whether there was a default target specified when the
543 BFD was opened. This is used to select which matching algorithm
544 to use to choose the back end. */
545 unsigned int target_defaulted : 1;
547 /* ... and here: (``once'' means at least once). */
548 unsigned int opened_once : 1;
550 /* Set if we have a locally maintained mtime value, rather than
551 getting it from the file each time. */
552 unsigned int mtime_set : 1;
554 /* Flag set if symbols from this BFD should not be exported. */
555 unsigned int no_export : 1;
557 /* Remember when output has begun, to stop strange things
559 unsigned int output_has_begun : 1;
561 /* Have archive map. */
562 unsigned int has_armap : 1;
564 /* Set if this is a thin archive. */
565 unsigned int is_thin_archive : 1;
571 Most BFD functions return nonzero on success (check their individual
572 documentation for precise semantics). On an error, they call
573 `bfd_set_error' to set an error condition that callers can check by
574 calling `bfd_get_error'. If that returns `bfd_error_system_call', then
577 The easiest way to report a BFD error to the user is to use
580 2.2.1 Type `bfd_error_type'
581 ---------------------------
583 The values returned by `bfd_get_error' are defined by the enumerated
584 type `bfd_error_type'.
587 typedef enum bfd_error
589 bfd_error_no_error = 0,
590 bfd_error_system_call,
591 bfd_error_invalid_target,
592 bfd_error_wrong_format,
593 bfd_error_wrong_object_format,
594 bfd_error_invalid_operation,
596 bfd_error_no_symbols,
598 bfd_error_no_more_archived_files,
599 bfd_error_malformed_archive,
600 bfd_error_file_not_recognized,
601 bfd_error_file_ambiguously_recognized,
602 bfd_error_no_contents,
603 bfd_error_nonrepresentable_section,
604 bfd_error_no_debug_section,
606 bfd_error_file_truncated,
607 bfd_error_file_too_big,
609 bfd_error_invalid_error_code
613 2.2.1.1 `bfd_get_error'
614 .......................
617 bfd_error_type bfd_get_error (void);
619 Return the current BFD error condition.
621 2.2.1.2 `bfd_set_error'
622 .......................
625 void bfd_set_error (bfd_error_type error_tag, ...);
627 Set the BFD error condition to be ERROR_TAG. If ERROR_TAG is
628 bfd_error_on_input, then this function takes two more parameters, the
629 input bfd where the error occurred, and the bfd_error_type error.
635 const char *bfd_errmsg (bfd_error_type error_tag);
637 Return a string describing the error ERROR_TAG, or the system error if
638 ERROR_TAG is `bfd_error_system_call'.
644 void bfd_perror (const char *message);
646 Print to the standard error stream a string describing the last BFD
647 error that occurred, or the last system error if the last BFD error was
648 a system call failure. If MESSAGE is non-NULL and non-empty, the error
649 string printed is preceded by MESSAGE, a colon, and a space. It is
650 followed by a newline.
652 2.2.2 BFD error handler
653 -----------------------
655 Some BFD functions want to print messages describing the problem. They
656 call a BFD error handler function. This function may be overridden by
659 The BFD error handler acts like printf.
662 typedef void (*bfd_error_handler_type) (const char *, ...);
664 2.2.2.1 `bfd_set_error_handler'
665 ...............................
668 bfd_error_handler_type bfd_set_error_handler (bfd_error_handler_type);
670 Set the BFD error handler function. Returns the previous function.
672 2.2.2.2 `bfd_set_error_program_name'
673 ....................................
676 void bfd_set_error_program_name (const char *);
678 Set the program name to use when printing a BFD error. This is printed
679 before the error message followed by a colon and space. The string
680 must not be changed after it is passed to this function.
682 2.2.2.3 `bfd_get_error_handler'
683 ...............................
686 bfd_error_handler_type bfd_get_error_handler (void);
688 Return the BFD error handler function.
693 2.3.1 Miscellaneous functions
694 -----------------------------
696 2.3.1.1 `bfd_get_reloc_upper_bound'
697 ...................................
700 long bfd_get_reloc_upper_bound (bfd *abfd, asection *sect);
702 Return the number of bytes required to store the relocation information
703 associated with section SECT attached to bfd ABFD. If an error occurs,
706 2.3.1.2 `bfd_canonicalize_reloc'
707 ................................
710 long bfd_canonicalize_reloc
711 (bfd *abfd, asection *sec, arelent **loc, asymbol **syms);
713 Call the back end associated with the open BFD ABFD and translate the
714 external form of the relocation information attached to SEC into the
715 internal canonical form. Place the table into memory at LOC, which has
716 been preallocated, usually by a call to `bfd_get_reloc_upper_bound'.
717 Returns the number of relocs, or -1 on error.
719 The SYMS table is also needed for horrible internal magic reasons.
721 2.3.1.3 `bfd_set_reloc'
722 .......................
726 (bfd *abfd, asection *sec, arelent **rel, unsigned int count);
728 Set the relocation pointer and count within section SEC to the values
729 REL and COUNT. The argument ABFD is ignored.
731 2.3.1.4 `bfd_set_file_flags'
732 ............................
735 bfd_boolean bfd_set_file_flags (bfd *abfd, flagword flags);
737 Set the flag word in the BFD ABFD to the value FLAGS.
740 * `bfd_error_wrong_format' - The target bfd was not of object format.
742 * `bfd_error_invalid_operation' - The target bfd was open for
745 * `bfd_error_invalid_operation' - The flag word contained a bit
746 which was not applicable to the type of file. E.g., an attempt
747 was made to set the `D_PAGED' bit on a BFD format which does not
748 support demand paging.
750 2.3.1.5 `bfd_get_arch_size'
751 ...........................
754 int bfd_get_arch_size (bfd *abfd);
756 Returns the architecture address size, in bits, as determined by the
757 object file's format. For ELF, this information is included in the
761 Returns the arch size in bits if known, `-1' otherwise.
763 2.3.1.6 `bfd_get_sign_extend_vma'
764 .................................
767 int bfd_get_sign_extend_vma (bfd *abfd);
769 Indicates if the target architecture "naturally" sign extends an
770 address. Some architectures implicitly sign extend address values when
771 they are converted to types larger than the size of an address. For
772 instance, bfd_get_start_address() will return an address sign extended
773 to fill a bfd_vma when this is the case.
776 Returns `1' if the target architecture is known to sign extend
777 addresses, `0' if the target architecture is known to not sign extend
778 addresses, and `-1' otherwise.
780 2.3.1.7 `bfd_set_start_address'
781 ...............................
784 bfd_boolean bfd_set_start_address (bfd *abfd, bfd_vma vma);
786 Make VMA the entry point of output BFD ABFD.
789 Returns `TRUE' on success, `FALSE' otherwise.
791 2.3.1.8 `bfd_get_gp_size'
792 .........................
795 unsigned int bfd_get_gp_size (bfd *abfd);
797 Return the maximum size of objects to be optimized using the GP
798 register under MIPS ECOFF. This is typically set by the `-G' argument
799 to the compiler, assembler or linker.
801 2.3.1.9 `bfd_set_gp_size'
802 .........................
805 void bfd_set_gp_size (bfd *abfd, unsigned int i);
807 Set the maximum size of objects to be optimized using the GP register
808 under ECOFF or MIPS ELF. This is typically set by the `-G' argument to
809 the compiler, assembler or linker.
811 2.3.1.10 `bfd_scan_vma'
812 .......................
815 bfd_vma bfd_scan_vma (const char *string, const char **end, int base);
817 Convert, like `strtoul', a numerical expression STRING into a `bfd_vma'
818 integer, and return that integer. (Though without as many bells and
819 whistles as `strtoul'.) The expression is assumed to be unsigned
820 (i.e., positive). If given a BASE, it is used as the base for
821 conversion. A base of 0 causes the function to interpret the string in
822 hex if a leading "0x" or "0X" is found, otherwise in octal if a leading
823 zero is found, otherwise in decimal.
825 If the value would overflow, the maximum `bfd_vma' value is returned.
827 2.3.1.11 `bfd_copy_private_header_data'
828 .......................................
831 bfd_boolean bfd_copy_private_header_data (bfd *ibfd, bfd *obfd);
833 Copy private BFD header information from the BFD IBFD to the the BFD
834 OBFD. This copies information that may require sections to exist, but
835 does not require symbol tables. Return `true' on success, `false' on
836 error. Possible error returns are:
838 * `bfd_error_no_memory' - Not enough memory exists to create private
841 #define bfd_copy_private_header_data(ibfd, obfd) \
842 BFD_SEND (obfd, _bfd_copy_private_header_data, \
845 2.3.1.12 `bfd_copy_private_bfd_data'
846 ....................................
849 bfd_boolean bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd);
851 Copy private BFD information from the BFD IBFD to the the BFD OBFD.
852 Return `TRUE' on success, `FALSE' on error. Possible error returns are:
854 * `bfd_error_no_memory' - Not enough memory exists to create private
857 #define bfd_copy_private_bfd_data(ibfd, obfd) \
858 BFD_SEND (obfd, _bfd_copy_private_bfd_data, \
861 2.3.1.13 `bfd_merge_private_bfd_data'
862 .....................................
865 bfd_boolean bfd_merge_private_bfd_data (bfd *ibfd, bfd *obfd);
867 Merge private BFD information from the BFD IBFD to the the output file
868 BFD OBFD when linking. Return `TRUE' on success, `FALSE' on error.
869 Possible error returns are:
871 * `bfd_error_no_memory' - Not enough memory exists to create private
874 #define bfd_merge_private_bfd_data(ibfd, obfd) \
875 BFD_SEND (obfd, _bfd_merge_private_bfd_data, \
878 2.3.1.14 `bfd_set_private_flags'
879 ................................
882 bfd_boolean bfd_set_private_flags (bfd *abfd, flagword flags);
884 Set private BFD flag information in the BFD ABFD. Return `TRUE' on
885 success, `FALSE' on error. Possible error returns are:
887 * `bfd_error_no_memory' - Not enough memory exists to create private
890 #define bfd_set_private_flags(abfd, flags) \
891 BFD_SEND (abfd, _bfd_set_private_flags, (abfd, flags))
893 2.3.1.15 `Other functions'
894 ..........................
897 The following functions exist but have not yet been documented.
898 #define bfd_sizeof_headers(abfd, info) \
899 BFD_SEND (abfd, _bfd_sizeof_headers, (abfd, info))
901 #define bfd_find_nearest_line(abfd, sec, syms, off, file, func, line) \
902 BFD_SEND (abfd, _bfd_find_nearest_line, \
903 (abfd, sec, syms, off, file, func, line))
905 #define bfd_find_line(abfd, syms, sym, file, line) \
906 BFD_SEND (abfd, _bfd_find_line, \
907 (abfd, syms, sym, file, line))
909 #define bfd_find_inliner_info(abfd, file, func, line) \
910 BFD_SEND (abfd, _bfd_find_inliner_info, \
911 (abfd, file, func, line))
913 #define bfd_debug_info_start(abfd) \
914 BFD_SEND (abfd, _bfd_debug_info_start, (abfd))
916 #define bfd_debug_info_end(abfd) \
917 BFD_SEND (abfd, _bfd_debug_info_end, (abfd))
919 #define bfd_debug_info_accumulate(abfd, section) \
920 BFD_SEND (abfd, _bfd_debug_info_accumulate, (abfd, section))
922 #define bfd_stat_arch_elt(abfd, stat) \
923 BFD_SEND (abfd, _bfd_stat_arch_elt,(abfd, stat))
925 #define bfd_update_armap_timestamp(abfd) \
926 BFD_SEND (abfd, _bfd_update_armap_timestamp, (abfd))
928 #define bfd_set_arch_mach(abfd, arch, mach)\
929 BFD_SEND ( abfd, _bfd_set_arch_mach, (abfd, arch, mach))
931 #define bfd_relax_section(abfd, section, link_info, again) \
932 BFD_SEND (abfd, _bfd_relax_section, (abfd, section, link_info, again))
934 #define bfd_gc_sections(abfd, link_info) \
935 BFD_SEND (abfd, _bfd_gc_sections, (abfd, link_info))
937 #define bfd_merge_sections(abfd, link_info) \
938 BFD_SEND (abfd, _bfd_merge_sections, (abfd, link_info))
940 #define bfd_is_group_section(abfd, sec) \
941 BFD_SEND (abfd, _bfd_is_group_section, (abfd, sec))
943 #define bfd_discard_group(abfd, sec) \
944 BFD_SEND (abfd, _bfd_discard_group, (abfd, sec))
946 #define bfd_link_hash_table_create(abfd) \
947 BFD_SEND (abfd, _bfd_link_hash_table_create, (abfd))
949 #define bfd_link_hash_table_free(abfd, hash) \
950 BFD_SEND (abfd, _bfd_link_hash_table_free, (hash))
952 #define bfd_link_add_symbols(abfd, info) \
953 BFD_SEND (abfd, _bfd_link_add_symbols, (abfd, info))
955 #define bfd_link_just_syms(abfd, sec, info) \
956 BFD_SEND (abfd, _bfd_link_just_syms, (sec, info))
958 #define bfd_final_link(abfd, info) \
959 BFD_SEND (abfd, _bfd_final_link, (abfd, info))
961 #define bfd_free_cached_info(abfd) \
962 BFD_SEND (abfd, _bfd_free_cached_info, (abfd))
964 #define bfd_get_dynamic_symtab_upper_bound(abfd) \
965 BFD_SEND (abfd, _bfd_get_dynamic_symtab_upper_bound, (abfd))
967 #define bfd_print_private_bfd_data(abfd, file)\
968 BFD_SEND (abfd, _bfd_print_private_bfd_data, (abfd, file))
970 #define bfd_canonicalize_dynamic_symtab(abfd, asymbols) \
971 BFD_SEND (abfd, _bfd_canonicalize_dynamic_symtab, (abfd, asymbols))
973 #define bfd_get_synthetic_symtab(abfd, count, syms, dyncount, dynsyms, ret) \
974 BFD_SEND (abfd, _bfd_get_synthetic_symtab, (abfd, count, syms, \
975 dyncount, dynsyms, ret))
977 #define bfd_get_dynamic_reloc_upper_bound(abfd) \
978 BFD_SEND (abfd, _bfd_get_dynamic_reloc_upper_bound, (abfd))
980 #define bfd_canonicalize_dynamic_reloc(abfd, arels, asyms) \
981 BFD_SEND (abfd, _bfd_canonicalize_dynamic_reloc, (abfd, arels, asyms))
983 extern bfd_byte *bfd_get_relocated_section_contents
984 (bfd *, struct bfd_link_info *, struct bfd_link_order *, bfd_byte *,
985 bfd_boolean, asymbol **);
987 2.3.1.16 `bfd_alt_mach_code'
988 ............................
991 bfd_boolean bfd_alt_mach_code (bfd *abfd, int alternative);
993 When more than one machine code number is available for the same
994 machine type, this function can be used to switch between the preferred
995 one (alternative == 0) and any others. Currently, only ELF supports
996 this feature, with up to two alternate machine codes.
1003 const struct bfd_arch_info *arch_info;
1004 struct bfd_section *sections;
1005 struct bfd_section *section_last;
1006 unsigned int section_count;
1007 struct bfd_hash_table section_htab;
1010 2.3.1.17 `bfd_preserve_save'
1011 ............................
1014 bfd_boolean bfd_preserve_save (bfd *, struct bfd_preserve *);
1016 When testing an object for compatibility with a particular target
1017 back-end, the back-end object_p function needs to set up certain fields
1018 in the bfd on successfully recognizing the object. This typically
1019 happens in a piecemeal fashion, with failures possible at many points.
1020 On failure, the bfd is supposed to be restored to its initial state,
1021 which is virtually impossible. However, restoring a subset of the bfd
1022 state works in practice. This function stores the subset and
1023 reinitializes the bfd.
1025 2.3.1.18 `bfd_preserve_restore'
1026 ...............................
1029 void bfd_preserve_restore (bfd *, struct bfd_preserve *);
1031 This function restores bfd state saved by bfd_preserve_save. If MARKER
1032 is non-NULL in struct bfd_preserve then that block and all subsequently
1033 bfd_alloc'd memory is freed.
1035 2.3.1.19 `bfd_preserve_finish'
1036 ..............................
1039 void bfd_preserve_finish (bfd *, struct bfd_preserve *);
1041 This function should be called when the bfd state saved by
1042 bfd_preserve_save is no longer needed. ie. when the back-end object_p
1043 function returns with success.
1045 2.3.1.20 `bfd_emul_get_maxpagesize'
1046 ...................................
1049 bfd_vma bfd_emul_get_maxpagesize (const char *);
1051 Returns the maximum page size, in bytes, as determined by emulation.
1054 Returns the maximum page size in bytes for ELF, 0 otherwise.
1056 2.3.1.21 `bfd_emul_set_maxpagesize'
1057 ...................................
1060 void bfd_emul_set_maxpagesize (const char *, bfd_vma);
1062 For ELF, set the maximum page size for the emulation. It is a no-op
1065 2.3.1.22 `bfd_emul_get_commonpagesize'
1066 ......................................
1069 bfd_vma bfd_emul_get_commonpagesize (const char *);
1071 Returns the common page size, in bytes, as determined by emulation.
1074 Returns the common page size in bytes for ELF, 0 otherwise.
1076 2.3.1.23 `bfd_emul_set_commonpagesize'
1077 ......................................
1080 void bfd_emul_set_commonpagesize (const char *, bfd_vma);
1082 For ELF, set the common page size for the emulation. It is a no-op for
1085 2.3.1.24 `bfd_demangle'
1086 .......................
1089 char *bfd_demangle (bfd *, const char *, int);
1091 Wrapper around cplus_demangle. Strips leading underscores and other
1092 such chars that would otherwise confuse the demangler. If passed a g++
1093 v3 ABI mangled name, returns a buffer allocated with malloc holding the
1094 demangled name. Returns NULL otherwise and on memory alloc failure.
1096 2.3.1.25 `struct bfd_iovec'
1097 ...........................
1100 The `struct bfd_iovec' contains the internal file I/O class. Each
1101 `BFD' has an instance of this class and all file I/O is routed through
1102 it (it is assumed that the instance implements all methods listed
1106 /* To avoid problems with macros, a "b" rather than "f"
1107 prefix is prepended to each method name. */
1108 /* Attempt to read/write NBYTES on ABFD's IOSTREAM storing/fetching
1109 bytes starting at PTR. Return the number of bytes actually
1110 transfered (a read past end-of-file returns less than NBYTES),
1111 or -1 (setting `bfd_error') if an error occurs. */
1112 file_ptr (*bread) (struct bfd *abfd, void *ptr, file_ptr nbytes);
1113 file_ptr (*bwrite) (struct bfd *abfd, const void *ptr,
1115 /* Return the current IOSTREAM file offset, or -1 (setting `bfd_error'
1116 if an error occurs. */
1117 file_ptr (*btell) (struct bfd *abfd);
1118 /* For the following, on successful completion a value of 0 is returned.
1119 Otherwise, a value of -1 is returned (and `bfd_error' is set). */
1120 int (*bseek) (struct bfd *abfd, file_ptr offset, int whence);
1121 int (*bclose) (struct bfd *abfd);
1122 int (*bflush) (struct bfd *abfd);
1123 int (*bstat) (struct bfd *abfd, struct stat *sb);
1124 /* Just like mmap: (void*)-1 on failure, mmapped address on success. */
1125 void *(*bmmap) (struct bfd *abfd, void *addr, bfd_size_type len,
1126 int prot, int flags, file_ptr offset);
1129 2.3.1.26 `bfd_get_mtime'
1130 ........................
1133 long bfd_get_mtime (bfd *abfd);
1135 Return the file modification time (as read from the file system, or
1136 from the archive header for archive members).
1138 2.3.1.27 `bfd_get_size'
1139 .......................
1142 file_ptr bfd_get_size (bfd *abfd);
1144 Return the file size (as read from file system) for the file associated
1147 The initial motivation for, and use of, this routine is not so we
1148 can get the exact size of the object the BFD applies to, since that
1149 might not be generally possible (archive members for example). It
1150 would be ideal if someone could eventually modify it so that such
1151 results were guaranteed.
1153 Instead, we want to ask questions like "is this NNN byte sized
1154 object I'm about to try read from file offset YYY reasonable?" As as
1155 example of where we might do this, some object formats use string
1156 tables for which the first `sizeof (long)' bytes of the table contain
1157 the size of the table itself, including the size bytes. If an
1158 application tries to read what it thinks is one of these string tables,
1159 without some way to validate the size, and for some reason the size is
1160 wrong (byte swapping error, wrong location for the string table, etc.),
1161 the only clue is likely to be a read error when it tries to read the
1162 table, or a "virtual memory exhausted" error when it tries to allocate
1163 15 bazillon bytes of space for the 15 bazillon byte table it is about
1164 to read. This function at least allows us to answer the question, "is
1165 the size reasonable?".
1171 void *bfd_mmap (bfd *abfd, void *addr, bfd_size_type len,
1172 int prot, int flags, file_ptr offset);
1174 Return mmap()ed region of the file, if possible and implemented.
1188 * Opening and Closing::
1191 * Linker Functions::
1195 File: bfd.info, Node: Memory Usage, Next: Initialization, Prev: BFD front end, Up: BFD front end
1200 BFD keeps all of its internal structures in obstacks. There is one
1201 obstack per open BFD file, into which the current state is stored. When
1202 a BFD is closed, the obstack is deleted, and so everything which has
1203 been allocated by BFD for the closing file is thrown away.
1205 BFD does not free anything created by an application, but pointers
1206 into `bfd' structures become invalid on a `bfd_close'; for example,
1207 after a `bfd_close' the vector passed to `bfd_canonicalize_symtab' is
1208 still around, since it has been allocated by the application, but the
1209 data that it pointed to are lost.
1211 The general rule is to not close a BFD until all operations dependent
1212 upon data from the BFD have been completed, or all the data from within
1213 the file has been copied. To help with the management of memory, there
1214 is a function (`bfd_alloc_size') which returns the number of bytes in
1215 obstacks associated with the supplied BFD. This could be used to select
1216 the greediest open BFD, close it to reclaim the memory, perform some
1217 operation and reopen the BFD again, to get a fresh copy of the data
1221 File: bfd.info, Node: Initialization, Next: Sections, Prev: Memory Usage, Up: BFD front end
1226 2.5.1 Initialization functions
1227 ------------------------------
1229 These are the functions that handle initializing a BFD.
1235 void bfd_init (void);
1237 This routine must be called before any other BFD function to initialize
1238 magical internal data structures.
1241 File: bfd.info, Node: Sections, Next: Symbols, Prev: Initialization, Up: BFD front end
1246 The raw data contained within a BFD is maintained through the section
1247 abstraction. A single BFD may have any number of sections. It keeps
1248 hold of them by pointing to the first; each one points to the next in
1251 Sections are supported in BFD in `section.c'.
1257 * typedef asection::
1258 * section prototypes::
1261 File: bfd.info, Node: Section Input, Next: Section Output, Prev: Sections, Up: Sections
1266 When a BFD is opened for reading, the section structures are created
1267 and attached to the BFD.
1269 Each section has a name which describes the section in the outside
1270 world--for example, `a.out' would contain at least three sections,
1271 called `.text', `.data' and `.bss'.
1273 Names need not be unique; for example a COFF file may have several
1274 sections named `.data'.
1276 Sometimes a BFD will contain more than the "natural" number of
1277 sections. A back end may attach other sections containing constructor
1278 data, or an application may add a section (using `bfd_make_section') to
1279 the sections attached to an already open BFD. For example, the linker
1280 creates an extra section `COMMON' for each input file's BFD to hold
1281 information about common storage.
1283 The raw data is not necessarily read in when the section descriptor
1284 is created. Some targets may leave the data in place until a
1285 `bfd_get_section_contents' call is made. Other back ends may read in
1286 all the data at once. For example, an S-record file has to be read
1287 once to determine the size of the data. An IEEE-695 file doesn't
1288 contain raw data in sections, but data and relocation expressions
1289 intermixed, so the data area has to be parsed to get out the data and
1293 File: bfd.info, Node: Section Output, Next: typedef asection, Prev: Section Input, Up: Sections
1295 2.6.2 Section output
1296 --------------------
1298 To write a new object style BFD, the various sections to be written
1299 have to be created. They are attached to the BFD in the same way as
1300 input sections; data is written to the sections using
1301 `bfd_set_section_contents'.
1303 Any program that creates or combines sections (e.g., the assembler
1304 and linker) must use the `asection' fields `output_section' and
1305 `output_offset' to indicate the file sections to which each section
1306 must be written. (If the section is being created from scratch,
1307 `output_section' should probably point to the section itself and
1308 `output_offset' should probably be zero.)
1310 The data to be written comes from input sections attached (via
1311 `output_section' pointers) to the output sections. The output section
1312 structure can be considered a filter for the input section: the output
1313 section determines the vma of the output data and the name, but the
1314 input section determines the offset into the output section of the data
1317 E.g., to create a section "O", starting at 0x100, 0x123 long,
1318 containing two subsections, "A" at offset 0x0 (i.e., at vma 0x100) and
1319 "B" at offset 0x20 (i.e., at vma 0x120) the `asection' structures would
1325 output_section -----------> section name "O"
1327 section name "B" | size 0x123
1328 output_offset 0x20 |
1330 output_section --------|
1335 The data within a section is stored in a "link_order". These are much
1336 like the fixups in `gas'. The link_order abstraction allows a section
1337 to grow and shrink within itself.
1339 A link_order knows how big it is, and which is the next link_order
1340 and where the raw data for it is; it also points to a list of
1341 relocations which apply to it.
1343 The link_order is used by the linker to perform relaxing on final
1344 code. The compiler creates code which is as big as necessary to make
1345 it work without relaxing, and the user can select whether to relax.
1346 Sometimes relaxing takes a lot of time. The linker runs around the
1347 relocations to see if any are attached to data which can be shrunk, if
1348 so it does it on a link_order by link_order basis.
1351 File: bfd.info, Node: typedef asection, Next: section prototypes, Prev: Section Output, Up: Sections
1353 2.6.4 typedef asection
1354 ----------------------
1356 Here is the section structure:
1359 typedef struct bfd_section
1361 /* The name of the section; the name isn't a copy, the pointer is
1362 the same as that passed to bfd_make_section. */
1365 /* A unique sequence number. */
1368 /* Which section in the bfd; 0..n-1 as sections are created in a bfd. */
1371 /* The next section in the list belonging to the BFD, or NULL. */
1372 struct bfd_section *next;
1374 /* The previous section in the list belonging to the BFD, or NULL. */
1375 struct bfd_section *prev;
1377 /* The field flags contains attributes of the section. Some
1378 flags are read in from the object file, and some are
1379 synthesized from other information. */
1382 #define SEC_NO_FLAGS 0x000
1384 /* Tells the OS to allocate space for this section when loading.
1385 This is clear for a section containing debug information only. */
1386 #define SEC_ALLOC 0x001
1388 /* Tells the OS to load the section from the file when loading.
1389 This is clear for a .bss section. */
1390 #define SEC_LOAD 0x002
1392 /* The section contains data still to be relocated, so there is
1393 some relocation information too. */
1394 #define SEC_RELOC 0x004
1396 /* A signal to the OS that the section contains read only data. */
1397 #define SEC_READONLY 0x008
1399 /* The section contains code only. */
1400 #define SEC_CODE 0x010
1402 /* The section contains data only. */
1403 #define SEC_DATA 0x020
1405 /* The section will reside in ROM. */
1406 #define SEC_ROM 0x040
1408 /* The section contains constructor information. This section
1409 type is used by the linker to create lists of constructors and
1410 destructors used by `g++'. When a back end sees a symbol
1411 which should be used in a constructor list, it creates a new
1412 section for the type of name (e.g., `__CTOR_LIST__'), attaches
1413 the symbol to it, and builds a relocation. To build the lists
1414 of constructors, all the linker has to do is catenate all the
1415 sections called `__CTOR_LIST__' and relocate the data
1416 contained within - exactly the operations it would peform on
1418 #define SEC_CONSTRUCTOR 0x080
1420 /* The section has contents - a data section could be
1421 `SEC_ALLOC' | `SEC_HAS_CONTENTS'; a debug section could be
1422 `SEC_HAS_CONTENTS' */
1423 #define SEC_HAS_CONTENTS 0x100
1425 /* An instruction to the linker to not output the section
1426 even if it has information which would normally be written. */
1427 #define SEC_NEVER_LOAD 0x200
1429 /* The section contains thread local data. */
1430 #define SEC_THREAD_LOCAL 0x400
1432 /* The section has GOT references. This flag is only for the
1433 linker, and is currently only used by the elf32-hppa back end.
1434 It will be set if global offset table references were detected
1435 in this section, which indicate to the linker that the section
1436 contains PIC code, and must be handled specially when doing a
1438 #define SEC_HAS_GOT_REF 0x800
1440 /* The section contains common symbols (symbols may be defined
1441 multiple times, the value of a symbol is the amount of
1442 space it requires, and the largest symbol value is the one
1443 used). Most targets have exactly one of these (which we
1444 translate to bfd_com_section_ptr), but ECOFF has two. */
1445 #define SEC_IS_COMMON 0x1000
1447 /* The section contains only debugging information. For
1448 example, this is set for ELF .debug and .stab sections.
1449 strip tests this flag to see if a section can be
1451 #define SEC_DEBUGGING 0x2000
1453 /* The contents of this section are held in memory pointed to
1454 by the contents field. This is checked by bfd_get_section_contents,
1455 and the data is retrieved from memory if appropriate. */
1456 #define SEC_IN_MEMORY 0x4000
1458 /* The contents of this section are to be excluded by the
1459 linker for executable and shared objects unless those
1460 objects are to be further relocated. */
1461 #define SEC_EXCLUDE 0x8000
1463 /* The contents of this section are to be sorted based on the sum of
1464 the symbol and addend values specified by the associated relocation
1465 entries. Entries without associated relocation entries will be
1466 appended to the end of the section in an unspecified order. */
1467 #define SEC_SORT_ENTRIES 0x10000
1469 /* When linking, duplicate sections of the same name should be
1470 discarded, rather than being combined into a single section as
1471 is usually done. This is similar to how common symbols are
1472 handled. See SEC_LINK_DUPLICATES below. */
1473 #define SEC_LINK_ONCE 0x20000
1475 /* If SEC_LINK_ONCE is set, this bitfield describes how the linker
1476 should handle duplicate sections. */
1477 #define SEC_LINK_DUPLICATES 0xc0000
1479 /* This value for SEC_LINK_DUPLICATES means that duplicate
1480 sections with the same name should simply be discarded. */
1481 #define SEC_LINK_DUPLICATES_DISCARD 0x0
1483 /* This value for SEC_LINK_DUPLICATES means that the linker
1484 should warn if there are any duplicate sections, although
1485 it should still only link one copy. */
1486 #define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
1488 /* This value for SEC_LINK_DUPLICATES means that the linker
1489 should warn if any duplicate sections are a different size. */
1490 #define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
1492 /* This value for SEC_LINK_DUPLICATES means that the linker
1493 should warn if any duplicate sections contain different
1495 #define SEC_LINK_DUPLICATES_SAME_CONTENTS \
1496 (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
1498 /* This section was created by the linker as part of dynamic
1499 relocation or other arcane processing. It is skipped when
1500 going through the first-pass output, trusting that someone
1501 else up the line will take care of it later. */
1502 #define SEC_LINKER_CREATED 0x100000
1504 /* This section should not be subject to garbage collection.
1505 Also set to inform the linker that this section should not be
1506 listed in the link map as discarded. */
1507 #define SEC_KEEP 0x200000
1509 /* This section contains "short" data, and should be placed
1511 #define SEC_SMALL_DATA 0x400000
1513 /* Attempt to merge identical entities in the section.
1514 Entity size is given in the entsize field. */
1515 #define SEC_MERGE 0x800000
1517 /* If given with SEC_MERGE, entities to merge are zero terminated
1518 strings where entsize specifies character size instead of fixed
1520 #define SEC_STRINGS 0x1000000
1522 /* This section contains data about section groups. */
1523 #define SEC_GROUP 0x2000000
1525 /* The section is a COFF shared library section. This flag is
1526 only for the linker. If this type of section appears in
1527 the input file, the linker must copy it to the output file
1528 without changing the vma or size. FIXME: Although this
1529 was originally intended to be general, it really is COFF
1530 specific (and the flag was renamed to indicate this). It
1531 might be cleaner to have some more general mechanism to
1532 allow the back end to control what the linker does with
1534 #define SEC_COFF_SHARED_LIBRARY 0x4000000
1536 /* This section contains data which may be shared with other
1537 executables or shared objects. This is for COFF only. */
1538 #define SEC_COFF_SHARED 0x8000000
1540 /* When a section with this flag is being linked, then if the size of
1541 the input section is less than a page, it should not cross a page
1542 boundary. If the size of the input section is one page or more,
1543 it should be aligned on a page boundary. This is for TI
1545 #define SEC_TIC54X_BLOCK 0x10000000
1547 /* Conditionally link this section; do not link if there are no
1548 references found to any symbol in the section. This is for TI
1550 #define SEC_TIC54X_CLINK 0x20000000
1552 /* Indicate that section has the no read flag set. This happens
1553 when memory read flag isn't set. */
1554 #define SEC_COFF_NOREAD 0x40000000
1556 /* End of section flags. */
1558 /* Some internal packed boolean fields. */
1560 /* See the vma field. */
1561 unsigned int user_set_vma : 1;
1563 /* A mark flag used by some of the linker backends. */
1564 unsigned int linker_mark : 1;
1566 /* Another mark flag used by some of the linker backends. Set for
1567 output sections that have an input section. */
1568 unsigned int linker_has_input : 1;
1570 /* Mark flag used by some linker backends for garbage collection. */
1571 unsigned int gc_mark : 1;
1573 /* The following flags are used by the ELF linker. */
1575 /* Mark sections which have been allocated to segments. */
1576 unsigned int segment_mark : 1;
1578 /* Type of sec_info information. */
1579 unsigned int sec_info_type:3;
1580 #define ELF_INFO_TYPE_NONE 0
1581 #define ELF_INFO_TYPE_STABS 1
1582 #define ELF_INFO_TYPE_MERGE 2
1583 #define ELF_INFO_TYPE_EH_FRAME 3
1584 #define ELF_INFO_TYPE_JUST_SYMS 4
1586 /* Nonzero if this section uses RELA relocations, rather than REL. */
1587 unsigned int use_rela_p:1;
1589 /* Bits used by various backends. The generic code doesn't touch
1592 /* Nonzero if this section has TLS related relocations. */
1593 unsigned int has_tls_reloc:1;
1595 /* Nonzero if this section has a call to __tls_get_addr. */
1596 unsigned int has_tls_get_addr_call:1;
1598 /* Nonzero if this section has a gp reloc. */
1599 unsigned int has_gp_reloc:1;
1601 /* Nonzero if this section needs the relax finalize pass. */
1602 unsigned int need_finalize_relax:1;
1604 /* Whether relocations have been processed. */
1605 unsigned int reloc_done : 1;
1607 /* End of internal packed boolean fields. */
1609 /* The virtual memory address of the section - where it will be
1610 at run time. The symbols are relocated against this. The
1611 user_set_vma flag is maintained by bfd; if it's not set, the
1612 backend can assign addresses (for example, in `a.out', where
1613 the default address for `.data' is dependent on the specific
1614 target and various flags). */
1617 /* The load address of the section - where it would be in a
1618 rom image; really only used for writing section header
1622 /* The size of the section in octets, as it will be output.
1623 Contains a value even if the section has no contents (e.g., the
1627 /* For input sections, the original size on disk of the section, in
1628 octets. This field should be set for any section whose size is
1629 changed by linker relaxation. It is required for sections where
1630 the linker relaxation scheme doesn't cache altered section and
1631 reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
1632 targets), and thus the original size needs to be kept to read the
1633 section multiple times. For output sections, rawsize holds the
1634 section size calculated on a previous linker relaxation pass. */
1635 bfd_size_type rawsize;
1637 /* Relaxation table. */
1638 struct relax_table *relax;
1640 /* Count of used relaxation table entries. */
1644 /* If this section is going to be output, then this value is the
1645 offset in *bytes* into the output section of the first byte in the
1646 input section (byte ==> smallest addressable unit on the
1647 target). In most cases, if this was going to start at the
1648 100th octet (8-bit quantity) in the output section, this value
1649 would be 100. However, if the target byte size is 16 bits
1650 (bfd_octets_per_byte is "2"), this value would be 50. */
1651 bfd_vma output_offset;
1653 /* The output section through which to map on output. */
1654 struct bfd_section *output_section;
1656 /* The alignment requirement of the section, as an exponent of 2 -
1657 e.g., 3 aligns to 2^3 (or 8). */
1658 unsigned int alignment_power;
1660 /* If an input section, a pointer to a vector of relocation
1661 records for the data in this section. */
1662 struct reloc_cache_entry *relocation;
1664 /* If an output section, a pointer to a vector of pointers to
1665 relocation records for the data in this section. */
1666 struct reloc_cache_entry **orelocation;
1668 /* The number of relocation records in one of the above. */
1669 unsigned reloc_count;
1671 /* Information below is back end specific - and not always used
1674 /* File position of section data. */
1677 /* File position of relocation info. */
1678 file_ptr rel_filepos;
1680 /* File position of line data. */
1681 file_ptr line_filepos;
1683 /* Pointer to data for applications. */
1686 /* If the SEC_IN_MEMORY flag is set, this points to the actual
1688 unsigned char *contents;
1690 /* Attached line number information. */
1693 /* Number of line number records. */
1694 unsigned int lineno_count;
1696 /* Entity size for merging purposes. */
1697 unsigned int entsize;
1699 /* Points to the kept section if this section is a link-once section,
1700 and is discarded. */
1701 struct bfd_section *kept_section;
1703 /* When a section is being output, this value changes as more
1704 linenumbers are written out. */
1705 file_ptr moving_line_filepos;
1707 /* What the section number is in the target world. */
1712 /* If this is a constructor section then here is a list of the
1713 relocations created to relocate items within it. */
1714 struct relent_chain *constructor_chain;
1716 /* The BFD which owns the section. */
1719 /* A symbol which points at this section only. */
1720 struct bfd_symbol *symbol;
1721 struct bfd_symbol **symbol_ptr_ptr;
1723 /* Early in the link process, map_head and map_tail are used to build
1724 a list of input sections attached to an output section. Later,
1725 output sections use these fields for a list of bfd_link_order
1728 struct bfd_link_order *link_order;
1729 struct bfd_section *s;
1730 } map_head, map_tail;
1733 /* Relax table contains information about instructions which can
1734 be removed by relaxation -- replacing a long address with a
1736 struct relax_table {
1737 /* Address where bytes may be deleted. */
1740 /* Number of bytes to be deleted. */
1744 /* These sections are global, and are managed by BFD. The application
1745 and target back end are not permitted to change the values in
1746 these sections. New code should use the section_ptr macros rather
1747 than referring directly to the const sections. The const sections
1748 may eventually vanish. */
1749 #define BFD_ABS_SECTION_NAME "*ABS*"
1750 #define BFD_UND_SECTION_NAME "*UND*"
1751 #define BFD_COM_SECTION_NAME "*COM*"
1752 #define BFD_IND_SECTION_NAME "*IND*"
1754 /* The absolute section. */
1755 extern asection bfd_abs_section;
1756 #define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
1757 #define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
1758 /* Pointer to the undefined section. */
1759 extern asection bfd_und_section;
1760 #define bfd_und_section_ptr ((asection *) &bfd_und_section)
1761 #define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
1762 /* Pointer to the common section. */
1763 extern asection bfd_com_section;
1764 #define bfd_com_section_ptr ((asection *) &bfd_com_section)
1765 /* Pointer to the indirect section. */
1766 extern asection bfd_ind_section;
1767 #define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
1768 #define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
1770 #define bfd_is_const_section(SEC) \
1771 ( ((SEC) == bfd_abs_section_ptr) \
1772 || ((SEC) == bfd_und_section_ptr) \
1773 || ((SEC) == bfd_com_section_ptr) \
1774 || ((SEC) == bfd_ind_section_ptr))
1776 /* Macros to handle insertion and deletion of a bfd's sections. These
1777 only handle the list pointers, ie. do not adjust section_count,
1778 target_index etc. */
1779 #define bfd_section_list_remove(ABFD, S) \
1783 asection *_next = _s->next; \
1784 asection *_prev = _s->prev; \
1786 _prev->next = _next; \
1788 (ABFD)->sections = _next; \
1790 _next->prev = _prev; \
1792 (ABFD)->section_last = _prev; \
1795 #define bfd_section_list_append(ABFD, S) \
1799 bfd *_abfd = ABFD; \
1801 if (_abfd->section_last) \
1803 _s->prev = _abfd->section_last; \
1804 _abfd->section_last->next = _s; \
1809 _abfd->sections = _s; \
1811 _abfd->section_last = _s; \
1814 #define bfd_section_list_prepend(ABFD, S) \
1818 bfd *_abfd = ABFD; \
1820 if (_abfd->sections) \
1822 _s->next = _abfd->sections; \
1823 _abfd->sections->prev = _s; \
1828 _abfd->section_last = _s; \
1830 _abfd->sections = _s; \
1833 #define bfd_section_list_insert_after(ABFD, A, S) \
1838 asection *_next = _a->next; \
1845 (ABFD)->section_last = _s; \
1848 #define bfd_section_list_insert_before(ABFD, B, S) \
1853 asection *_prev = _b->prev; \
1860 (ABFD)->sections = _s; \
1863 #define bfd_section_removed_from_list(ABFD, S) \
1864 ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
1866 #define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
1867 /* name, id, index, next, prev, flags, user_set_vma, */ \
1868 { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
1870 /* linker_mark, linker_has_input, gc_mark, */ \
1873 /* segment_mark, sec_info_type, use_rela_p, has_tls_reloc, */ \
1876 /* has_tls_get_addr_call, has_gp_reloc, need_finalize_relax, */ \
1879 /* reloc_done, vma, lma, size, rawsize, relax, relax_count, */ \
1880 0, 0, 0, 0, 0, 0, 0, \
1882 /* output_offset, output_section, alignment_power, */ \
1883 0, (struct bfd_section *) &SEC, 0, \
1885 /* relocation, orelocation, reloc_count, filepos, rel_filepos, */ \
1886 NULL, NULL, 0, 0, 0, \
1888 /* line_filepos, userdata, contents, lineno, lineno_count, */ \
1889 0, NULL, NULL, NULL, 0, \
1891 /* entsize, kept_section, moving_line_filepos, */ \
1894 /* target_index, used_by_bfd, constructor_chain, owner, */ \
1895 0, NULL, NULL, NULL, \
1897 /* symbol, symbol_ptr_ptr, */ \
1898 (struct bfd_symbol *) SYM, &SEC.symbol, \
1900 /* map_head, map_tail */ \
1901 { NULL }, { NULL } \
1905 File: bfd.info, Node: section prototypes, Prev: typedef asection, Up: Sections
1907 2.6.5 Section prototypes
1908 ------------------------
1910 These are the functions exported by the section handling part of BFD.
1912 2.6.5.1 `bfd_section_list_clear'
1913 ................................
1916 void bfd_section_list_clear (bfd *);
1918 Clears the section list, and also resets the section count and hash
1921 2.6.5.2 `bfd_get_section_by_name'
1922 .................................
1925 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
1927 Run through ABFD and return the one of the `asection's whose name
1928 matches NAME, otherwise `NULL'. *Note Sections::, for more information.
1930 This should only be used in special cases; the normal way to process
1931 all sections of a given name is to use `bfd_map_over_sections' and
1932 `strcmp' on the name (or better yet, base it on the section flags or
1933 something else) for each section.
1935 2.6.5.3 `bfd_get_section_by_name_if'
1936 ....................................
1939 asection *bfd_get_section_by_name_if
1942 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
1945 Call the provided function FUNC for each section attached to the BFD
1946 ABFD whose name matches NAME, passing OBJ as an argument. The function
1947 will be called as if by
1949 func (abfd, the_section, obj);
1951 It returns the first section for which FUNC returns true, otherwise
1954 2.6.5.4 `bfd_get_unique_section_name'
1955 .....................................
1958 char *bfd_get_unique_section_name
1959 (bfd *abfd, const char *templat, int *count);
1961 Invent a section name that is unique in ABFD by tacking a dot and a
1962 digit suffix onto the original TEMPLAT. If COUNT is non-NULL, then it
1963 specifies the first number tried as a suffix to generate a unique name.
1964 The value pointed to by COUNT will be incremented in this case.
1966 2.6.5.5 `bfd_make_section_old_way'
1967 ..................................
1970 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1972 Create a new empty section called NAME and attach it to the end of the
1973 chain of sections for the BFD ABFD. An attempt to create a section with
1974 a name which is already in use returns its pointer without changing the
1977 It has the funny name since this is the way it used to be before it
1980 Possible errors are:
1981 * `bfd_error_invalid_operation' - If output has already started for
1984 * `bfd_error_no_memory' - If memory allocation fails.
1986 2.6.5.6 `bfd_make_section_anyway_with_flags'
1987 ............................................
1990 asection *bfd_make_section_anyway_with_flags
1991 (bfd *abfd, const char *name, flagword flags);
1993 Create a new empty section called NAME and attach it to the end of the
1994 chain of sections for ABFD. Create a new section even if there is
1995 already a section with that name. Also set the attributes of the new
1996 section to the value FLAGS.
1998 Return `NULL' and set `bfd_error' on error; possible errors are:
1999 * `bfd_error_invalid_operation' - If output has already started for
2002 * `bfd_error_no_memory' - If memory allocation fails.
2004 2.6.5.7 `bfd_make_section_anyway'
2005 .................................
2008 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
2010 Create a new empty section called NAME and attach it to the end of the
2011 chain of sections for ABFD. Create a new section even if there is
2012 already a section with that name.
2014 Return `NULL' and set `bfd_error' on error; possible errors are:
2015 * `bfd_error_invalid_operation' - If output has already started for
2018 * `bfd_error_no_memory' - If memory allocation fails.
2020 2.6.5.8 `bfd_make_section_with_flags'
2021 .....................................
2024 asection *bfd_make_section_with_flags
2025 (bfd *, const char *name, flagword flags);
2027 Like `bfd_make_section_anyway', but return `NULL' (without calling
2028 bfd_set_error ()) without changing the section chain if there is
2029 already a section named NAME. Also set the attributes of the new
2030 section to the value FLAGS. If there is an error, return `NULL' and set
2033 2.6.5.9 `bfd_make_section'
2034 ..........................
2037 asection *bfd_make_section (bfd *, const char *name);
2039 Like `bfd_make_section_anyway', but return `NULL' (without calling
2040 bfd_set_error ()) without changing the section chain if there is
2041 already a section named NAME. If there is an error, return `NULL' and
2044 2.6.5.10 `bfd_set_section_flags'
2045 ................................
2048 bfd_boolean bfd_set_section_flags
2049 (bfd *abfd, asection *sec, flagword flags);
2051 Set the attributes of the section SEC in the BFD ABFD to the value
2052 FLAGS. Return `TRUE' on success, `FALSE' on error. Possible error
2055 * `bfd_error_invalid_operation' - The section cannot have one or
2056 more of the attributes requested. For example, a .bss section in
2057 `a.out' may not have the `SEC_HAS_CONTENTS' field set.
2059 2.6.5.11 `bfd_map_over_sections'
2060 ................................
2063 void bfd_map_over_sections
2065 void (*func) (bfd *abfd, asection *sect, void *obj),
2068 Call the provided function FUNC for each section attached to the BFD
2069 ABFD, passing OBJ as an argument. The function will be called as if by
2071 func (abfd, the_section, obj);
2073 This is the preferred method for iterating over sections; an
2074 alternative would be to use a loop:
2077 for (p = abfd->sections; p != NULL; p = p->next)
2080 2.6.5.12 `bfd_sections_find_if'
2081 ...............................
2084 asection *bfd_sections_find_if
2086 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
2089 Call the provided function OPERATION for each section attached to the
2090 BFD ABFD, passing OBJ as an argument. The function will be called as if
2093 operation (abfd, the_section, obj);
2095 It returns the first section for which OPERATION returns true.
2097 2.6.5.13 `bfd_set_section_size'
2098 ...............................
2101 bfd_boolean bfd_set_section_size
2102 (bfd *abfd, asection *sec, bfd_size_type val);
2104 Set SEC to the size VAL. If the operation is ok, then `TRUE' is
2105 returned, else `FALSE'.
2107 Possible error returns:
2108 * `bfd_error_invalid_operation' - Writing has started to the BFD, so
2109 setting the size is invalid.
2111 2.6.5.14 `bfd_set_section_contents'
2112 ...................................
2115 bfd_boolean bfd_set_section_contents
2116 (bfd *abfd, asection *section, const void *data,
2117 file_ptr offset, bfd_size_type count);
2119 Sets the contents of the section SECTION in BFD ABFD to the data
2120 starting in memory at DATA. The data is written to the output section
2121 starting at offset OFFSET for COUNT octets.
2123 Normally `TRUE' is returned, else `FALSE'. Possible error returns
2125 * `bfd_error_no_contents' - The output section does not have the
2126 `SEC_HAS_CONTENTS' attribute, so nothing can be written to it.
2129 This routine is front end to the back end function
2130 `_bfd_set_section_contents'.
2132 2.6.5.15 `bfd_get_section_contents'
2133 ...................................
2136 bfd_boolean bfd_get_section_contents
2137 (bfd *abfd, asection *section, void *location, file_ptr offset,
2138 bfd_size_type count);
2140 Read data from SECTION in BFD ABFD into memory starting at LOCATION.
2141 The data is read at an offset of OFFSET from the start of the input
2142 section, and is read for COUNT bytes.
2144 If the contents of a constructor with the `SEC_CONSTRUCTOR' flag set
2145 are requested or if the section does not have the `SEC_HAS_CONTENTS'
2146 flag set, then the LOCATION is filled with zeroes. If no errors occur,
2147 `TRUE' is returned, else `FALSE'.
2149 2.6.5.16 `bfd_malloc_and_get_section'
2150 .....................................
2153 bfd_boolean bfd_malloc_and_get_section
2154 (bfd *abfd, asection *section, bfd_byte **buf);
2156 Read all data from SECTION in BFD ABFD into a buffer, *BUF, malloc'd by
2159 2.6.5.17 `bfd_copy_private_section_data'
2160 ........................................
2163 bfd_boolean bfd_copy_private_section_data
2164 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
2166 Copy private section information from ISEC in the BFD IBFD to the
2167 section OSEC in the BFD OBFD. Return `TRUE' on success, `FALSE' on
2168 error. Possible error returns are:
2170 * `bfd_error_no_memory' - Not enough memory exists to create private
2173 #define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
2174 BFD_SEND (obfd, _bfd_copy_private_section_data, \
2175 (ibfd, isection, obfd, osection))
2177 2.6.5.18 `bfd_generic_is_group_section'
2178 .......................................
2181 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
2183 Returns TRUE if SEC is a member of a group.
2185 2.6.5.19 `bfd_generic_discard_group'
2186 ....................................
2189 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
2191 Remove all members of GROUP from the output.
2194 File: bfd.info, Node: Symbols, Next: Archives, Prev: Sections, Up: BFD front end
2199 BFD tries to maintain as much symbol information as it can when it
2200 moves information from file to file. BFD passes information to
2201 applications though the `asymbol' structure. When the application
2202 requests the symbol table, BFD reads the table in the native form and
2203 translates parts of it into the internal format. To maintain more than
2204 the information passed to applications, some targets keep some
2205 information "behind the scenes" in a structure only the particular back
2206 end knows about. For example, the coff back end keeps the original
2207 symbol table structure as well as the canonical structure when a BFD is
2208 read in. On output, the coff back end can reconstruct the output symbol
2209 table so that no information is lost, even information unique to coff
2210 which BFD doesn't know or understand. If a coff symbol table were read,
2211 but were written through an a.out back end, all the coff specific
2212 information would be lost. The symbol table of a BFD is not necessarily
2213 read in until a canonicalize request is made. Then the BFD back end
2214 fills in a table provided by the application with pointers to the
2215 canonical information. To output symbols, the application provides BFD
2216 with a table of pointers to pointers to `asymbol's. This allows
2217 applications like the linker to output a symbol as it was read, since
2218 the "behind the scenes" information will be still available.
2226 * symbol handling functions::
2229 File: bfd.info, Node: Reading Symbols, Next: Writing Symbols, Prev: Symbols, Up: Symbols
2231 2.7.1 Reading symbols
2232 ---------------------
2234 There are two stages to reading a symbol table from a BFD: allocating
2235 storage, and the actual reading process. This is an excerpt from an
2236 application which reads the symbol table:
2238 long storage_needed;
2239 asymbol **symbol_table;
2240 long number_of_symbols;
2243 storage_needed = bfd_get_symtab_upper_bound (abfd);
2245 if (storage_needed < 0)
2248 if (storage_needed == 0)
2251 symbol_table = xmalloc (storage_needed);
2254 bfd_canonicalize_symtab (abfd, symbol_table);
2256 if (number_of_symbols < 0)
2259 for (i = 0; i < number_of_symbols; i++)
2260 process_symbol (symbol_table[i]);
2262 All storage for the symbols themselves is in an objalloc connected
2263 to the BFD; it is freed when the BFD is closed.
2266 File: bfd.info, Node: Writing Symbols, Next: Mini Symbols, Prev: Reading Symbols, Up: Symbols
2268 2.7.2 Writing symbols
2269 ---------------------
2271 Writing of a symbol table is automatic when a BFD open for writing is
2272 closed. The application attaches a vector of pointers to pointers to
2273 symbols to the BFD being written, and fills in the symbol count. The
2274 close and cleanup code reads through the table provided and performs
2275 all the necessary operations. The BFD output code must always be
2276 provided with an "owned" symbol: one which has come from another BFD,
2277 or one which has been created using `bfd_make_empty_symbol'. Here is an
2278 example showing the creation of a symbol table with only one element:
2287 abfd = bfd_openw ("foo","a.out-sunos-big");
2288 bfd_set_format (abfd, bfd_object);
2289 new = bfd_make_empty_symbol (abfd);
2290 new->name = "dummy_symbol";
2291 new->section = bfd_make_section_old_way (abfd, ".text");
2292 new->flags = BSF_GLOBAL;
2293 new->value = 0x12345;
2298 bfd_set_symtab (abfd, ptrs, 1);
2305 00012345 A dummy_symbol
2307 Many formats cannot represent arbitrary symbol information; for
2308 instance, the `a.out' object format does not allow an arbitrary number
2309 of sections. A symbol pointing to a section which is not one of
2310 `.text', `.data' or `.bss' cannot be described.
2313 File: bfd.info, Node: Mini Symbols, Next: typedef asymbol, Prev: Writing Symbols, Up: Symbols
2318 Mini symbols provide read-only access to the symbol table. They use
2319 less memory space, but require more time to access. They can be useful
2320 for tools like nm or objdump, which may have to handle symbol tables of
2321 extremely large executables.
2323 The `bfd_read_minisymbols' function will read the symbols into
2324 memory in an internal form. It will return a `void *' pointer to a
2325 block of memory, a symbol count, and the size of each symbol. The
2326 pointer is allocated using `malloc', and should be freed by the caller
2327 when it is no longer needed.
2329 The function `bfd_minisymbol_to_symbol' will take a pointer to a
2330 minisymbol, and a pointer to a structure returned by
2331 `bfd_make_empty_symbol', and return a `asymbol' structure. The return
2332 value may or may not be the same as the value from
2333 `bfd_make_empty_symbol' which was passed in.
2336 File: bfd.info, Node: typedef asymbol, Next: symbol handling functions, Prev: Mini Symbols, Up: Symbols
2338 2.7.4 typedef asymbol
2339 ---------------------
2341 An `asymbol' has the form:
2344 typedef struct bfd_symbol
2346 /* A pointer to the BFD which owns the symbol. This information
2347 is necessary so that a back end can work out what additional
2348 information (invisible to the application writer) is carried
2351 This field is *almost* redundant, since you can use section->owner
2352 instead, except that some symbols point to the global sections
2353 bfd_{abs,com,und}_section. This could be fixed by making
2354 these globals be per-bfd (or per-target-flavor). FIXME. */
2355 struct bfd *the_bfd; /* Use bfd_asymbol_bfd(sym) to access this field. */
2357 /* The text of the symbol. The name is left alone, and not copied; the
2358 application may not alter it. */
2361 /* The value of the symbol. This really should be a union of a
2362 numeric value with a pointer, since some flags indicate that
2363 a pointer to another symbol is stored here. */
2366 /* Attributes of a symbol. */
2367 #define BSF_NO_FLAGS 0x00
2369 /* The symbol has local scope; `static' in `C'. The value
2370 is the offset into the section of the data. */
2371 #define BSF_LOCAL (1 << 0)
2373 /* The symbol has global scope; initialized data in `C'. The
2374 value is the offset into the section of the data. */
2375 #define BSF_GLOBAL (1 << 1)
2377 /* The symbol has global scope and is exported. The value is
2378 the offset into the section of the data. */
2379 #define BSF_EXPORT BSF_GLOBAL /* No real difference. */
2381 /* A normal C symbol would be one of:
2382 `BSF_LOCAL', `BSF_COMMON', `BSF_UNDEFINED' or
2385 /* The symbol is a debugging record. The value has an arbitrary
2386 meaning, unless BSF_DEBUGGING_RELOC is also set. */
2387 #define BSF_DEBUGGING (1 << 2)
2389 /* The symbol denotes a function entry point. Used in ELF,
2390 perhaps others someday. */
2391 #define BSF_FUNCTION (1 << 3)
2393 /* Used by the linker. */
2394 #define BSF_KEEP (1 << 5)
2395 #define BSF_KEEP_G (1 << 6)
2397 /* A weak global symbol, overridable without warnings by
2398 a regular global symbol of the same name. */
2399 #define BSF_WEAK (1 << 7)
2401 /* This symbol was created to point to a section, e.g. ELF's
2402 STT_SECTION symbols. */
2403 #define BSF_SECTION_SYM (1 << 8)
2405 /* The symbol used to be a common symbol, but now it is
2407 #define BSF_OLD_COMMON (1 << 9)
2409 /* In some files the type of a symbol sometimes alters its
2410 location in an output file - ie in coff a `ISFCN' symbol
2411 which is also `C_EXT' symbol appears where it was
2412 declared and not at the end of a section. This bit is set
2413 by the target BFD part to convey this information. */
2414 #define BSF_NOT_AT_END (1 << 10)
2416 /* Signal that the symbol is the label of constructor section. */
2417 #define BSF_CONSTRUCTOR (1 << 11)
2419 /* Signal that the symbol is a warning symbol. The name is a
2420 warning. The name of the next symbol is the one to warn about;
2421 if a reference is made to a symbol with the same name as the next
2422 symbol, a warning is issued by the linker. */
2423 #define BSF_WARNING (1 << 12)
2425 /* Signal that the symbol is indirect. This symbol is an indirect
2426 pointer to the symbol with the same name as the next symbol. */
2427 #define BSF_INDIRECT (1 << 13)
2429 /* BSF_FILE marks symbols that contain a file name. This is used
2430 for ELF STT_FILE symbols. */
2431 #define BSF_FILE (1 << 14)
2433 /* Symbol is from dynamic linking information. */
2434 #define BSF_DYNAMIC (1 << 15)
2436 /* The symbol denotes a data object. Used in ELF, and perhaps
2438 #define BSF_OBJECT (1 << 16)
2440 /* This symbol is a debugging symbol. The value is the offset
2441 into the section of the data. BSF_DEBUGGING should be set
2443 #define BSF_DEBUGGING_RELOC (1 << 17)
2445 /* This symbol is thread local. Used in ELF. */
2446 #define BSF_THREAD_LOCAL (1 << 18)
2448 /* This symbol represents a complex relocation expression,
2449 with the expression tree serialized in the symbol name. */
2450 #define BSF_RELC (1 << 19)
2452 /* This symbol represents a signed complex relocation expression,
2453 with the expression tree serialized in the symbol name. */
2454 #define BSF_SRELC (1 << 20)
2456 /* This symbol was created by bfd_get_synthetic_symtab. */
2457 #define BSF_SYNTHETIC (1 << 21)
2459 /* This symbol is an indirect code object. Unrelated to BSF_INDIRECT.
2460 The dynamic linker will compute the value of this symbol by
2461 calling the function that it points to. BSF_FUNCTION must
2462 also be also set. */
2463 #define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
2464 /* This symbol is a globally unique data object. The dynamic linker
2465 will make sure that in the entire process there is just one symbol
2466 with this name and type in use. BSF_OBJECT must also be set. */
2467 #define BSF_GNU_UNIQUE (1 << 23)
2471 /* A pointer to the section to which this symbol is
2472 relative. This will always be non NULL, there are special
2473 sections for undefined and absolute symbols. */
2474 struct bfd_section *section;
2476 /* Back end special data. */
2487 File: bfd.info, Node: symbol handling functions, Prev: typedef asymbol, Up: Symbols
2489 2.7.5 Symbol handling functions
2490 -------------------------------
2492 2.7.5.1 `bfd_get_symtab_upper_bound'
2493 ....................................
2496 Return the number of bytes required to store a vector of pointers to
2497 `asymbols' for all the symbols in the BFD ABFD, including a terminal
2498 NULL pointer. If there are no symbols in the BFD, then return 0. If an
2499 error occurs, return -1.
2500 #define bfd_get_symtab_upper_bound(abfd) \
2501 BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
2503 2.7.5.2 `bfd_is_local_label'
2504 ............................
2507 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
2509 Return TRUE if the given symbol SYM in the BFD ABFD is a compiler
2510 generated local label, else return FALSE.
2512 2.7.5.3 `bfd_is_local_label_name'
2513 .................................
2516 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
2518 Return TRUE if a symbol with the name NAME in the BFD ABFD is a
2519 compiler generated local label, else return FALSE. This just checks
2520 whether the name has the form of a local label.
2521 #define bfd_is_local_label_name(abfd, name) \
2522 BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
2524 2.7.5.4 `bfd_is_target_special_symbol'
2525 ......................................
2528 bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
2530 Return TRUE iff a symbol SYM in the BFD ABFD is something special to
2531 the particular target represented by the BFD. Such symbols should
2532 normally not be mentioned to the user.
2533 #define bfd_is_target_special_symbol(abfd, sym) \
2534 BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
2536 2.7.5.5 `bfd_canonicalize_symtab'
2537 .................................
2540 Read the symbols from the BFD ABFD, and fills in the vector LOCATION
2541 with pointers to the symbols and a trailing NULL. Return the actual
2542 number of symbol pointers, not including the NULL.
2543 #define bfd_canonicalize_symtab(abfd, location) \
2544 BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
2546 2.7.5.6 `bfd_set_symtab'
2547 ........................
2550 bfd_boolean bfd_set_symtab
2551 (bfd *abfd, asymbol **location, unsigned int count);
2553 Arrange that when the output BFD ABFD is closed, the table LOCATION of
2554 COUNT pointers to symbols will be written.
2556 2.7.5.7 `bfd_print_symbol_vandf'
2557 ................................
2560 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
2562 Print the value and flags of the SYMBOL supplied to the stream FILE.
2564 2.7.5.8 `bfd_make_empty_symbol'
2565 ...............................
2568 Create a new `asymbol' structure for the BFD ABFD and return a pointer
2571 This routine is necessary because each back end has private
2572 information surrounding the `asymbol'. Building your own `asymbol' and
2573 pointing to it will not create the private information, and will cause
2575 #define bfd_make_empty_symbol(abfd) \
2576 BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
2578 2.7.5.9 `_bfd_generic_make_empty_symbol'
2579 ........................................
2582 asymbol *_bfd_generic_make_empty_symbol (bfd *);
2584 Create a new `asymbol' structure for the BFD ABFD and return a pointer
2585 to it. Used by core file routines, binary back-end and anywhere else
2586 where no private info is needed.
2588 2.7.5.10 `bfd_make_debug_symbol'
2589 ................................
2592 Create a new `asymbol' structure for the BFD ABFD, to be used as a
2593 debugging symbol. Further details of its use have yet to be worked out.
2594 #define bfd_make_debug_symbol(abfd,ptr,size) \
2595 BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
2597 2.7.5.11 `bfd_decode_symclass'
2598 ..............................
2601 Return a character corresponding to the symbol class of SYMBOL, or '?'
2602 for an unknown class.
2605 int bfd_decode_symclass (asymbol *symbol);
2607 2.7.5.12 `bfd_is_undefined_symclass'
2608 ....................................
2611 Returns non-zero if the class symbol returned by bfd_decode_symclass
2612 represents an undefined symbol. Returns zero otherwise.
2615 bfd_boolean bfd_is_undefined_symclass (int symclass);
2617 2.7.5.13 `bfd_symbol_info'
2618 ..........................
2621 Fill in the basic info about symbol that nm needs. Additional info may
2622 be added by the back-ends after calling this function.
2625 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
2627 2.7.5.14 `bfd_copy_private_symbol_data'
2628 .......................................
2631 bfd_boolean bfd_copy_private_symbol_data
2632 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
2634 Copy private symbol information from ISYM in the BFD IBFD to the symbol
2635 OSYM in the BFD OBFD. Return `TRUE' on success, `FALSE' on error.
2636 Possible error returns are:
2638 * `bfd_error_no_memory' - Not enough memory exists to create private
2641 #define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
2642 BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
2643 (ibfd, isymbol, obfd, osymbol))
2646 File: bfd.info, Node: Archives, Next: Formats, Prev: Symbols, Up: BFD front end
2652 An archive (or library) is just another BFD. It has a symbol table,
2653 although there's not much a user program will do with it.
2655 The big difference between an archive BFD and an ordinary BFD is
2656 that the archive doesn't have sections. Instead it has a chain of BFDs
2657 that are considered its contents. These BFDs can be manipulated like
2658 any other. The BFDs contained in an archive opened for reading will
2659 all be opened for reading. You may put either input or output BFDs
2660 into an archive opened for output; they will be handled correctly when
2661 the archive is closed.
2663 Use `bfd_openr_next_archived_file' to step through the contents of
2664 an archive opened for input. You don't have to read the entire archive
2665 if you don't want to! Read it until you find what you want.
2667 Archive contents of output BFDs are chained through the `next'
2668 pointer in a BFD. The first one is findable through the `archive_head'
2669 slot of the archive. Set it with `bfd_set_archive_head' (q.v.). A
2670 given BFD may be in only one open output archive at a time.
2672 As expected, the BFD archive code is more general than the archive
2673 code of any given environment. BFD archives may contain files of
2674 different formats (e.g., a.out and coff) and even different
2675 architectures. You may even place archives recursively into archives!
2677 This can cause unexpected confusion, since some archive formats are
2678 more expressive than others. For instance, Intel COFF archives can
2679 preserve long filenames; SunOS a.out archives cannot. If you move a
2680 file from the first to the second format and back again, the filename
2681 may be truncated. Likewise, different a.out environments have different
2682 conventions as to how they truncate filenames, whether they preserve
2683 directory names in filenames, etc. When interoperating with native
2684 tools, be sure your files are homogeneous.
2686 Beware: most of these formats do not react well to the presence of
2687 spaces in filenames. We do the best we can, but can't always handle
2688 this case due to restrictions in the format of archives. Many Unix
2689 utilities are braindead in regards to spaces and such in filenames
2690 anyway, so this shouldn't be much of a restriction.
2692 Archives are supported in BFD in `archive.c'.
2694 2.8.1 Archive functions
2695 -----------------------
2697 2.8.1.1 `bfd_get_next_mapent'
2698 .............................
2701 symindex bfd_get_next_mapent
2702 (bfd *abfd, symindex previous, carsym **sym);
2704 Step through archive ABFD's symbol table (if it has one). Successively
2705 update SYM with the next symbol's information, returning that symbol's
2706 (internal) index into the symbol table.
2708 Supply `BFD_NO_MORE_SYMBOLS' as the PREVIOUS entry to get the first
2709 one; returns `BFD_NO_MORE_SYMBOLS' when you've already got the last one.
2711 A `carsym' is a canonical archive symbol. The only user-visible
2712 element is its name, a null-terminated string.
2714 2.8.1.2 `bfd_set_archive_head'
2715 ..............................
2718 bfd_boolean bfd_set_archive_head (bfd *output, bfd *new_head);
2720 Set the head of the chain of BFDs contained in the archive OUTPUT to
2723 2.8.1.3 `bfd_openr_next_archived_file'
2724 ......................................
2727 bfd *bfd_openr_next_archived_file (bfd *archive, bfd *previous);
2729 Provided a BFD, ARCHIVE, containing an archive and NULL, open an input
2730 BFD on the first contained element and returns that. Subsequent calls
2731 should pass the archive and the previous return value to return a
2732 created BFD to the next contained element. NULL is returned when there
2736 File: bfd.info, Node: Formats, Next: Relocations, Prev: Archives, Up: BFD front end
2741 A format is a BFD concept of high level file contents type. The formats
2742 supported by BFD are:
2745 The BFD may contain data, symbols, relocations and debug info.
2748 The BFD contains other BFDs and an optional index.
2751 The BFD contains the result of an executable core dump.
2753 2.9.1 File format functions
2754 ---------------------------
2756 2.9.1.1 `bfd_check_format'
2757 ..........................
2760 bfd_boolean bfd_check_format (bfd *abfd, bfd_format format);
2762 Verify if the file attached to the BFD ABFD is compatible with the
2763 format FORMAT (i.e., one of `bfd_object', `bfd_archive' or `bfd_core').
2765 If the BFD has been set to a specific target before the call, only
2766 the named target and format combination is checked. If the target has
2767 not been set, or has been set to `default', then all the known target
2768 backends is interrogated to determine a match. If the default target
2769 matches, it is used. If not, exactly one target must recognize the
2770 file, or an error results.
2772 The function returns `TRUE' on success, otherwise `FALSE' with one
2773 of the following error codes:
2775 * `bfd_error_invalid_operation' - if `format' is not one of
2776 `bfd_object', `bfd_archive' or `bfd_core'.
2778 * `bfd_error_system_call' - if an error occured during a read - even
2779 some file mismatches can cause bfd_error_system_calls.
2781 * `file_not_recognised' - none of the backends recognised the file
2784 * `bfd_error_file_ambiguously_recognized' - more than one backend
2785 recognised the file format.
2787 2.9.1.2 `bfd_check_format_matches'
2788 ..................................
2791 bfd_boolean bfd_check_format_matches
2792 (bfd *abfd, bfd_format format, char ***matching);
2794 Like `bfd_check_format', except when it returns FALSE with `bfd_errno'
2795 set to `bfd_error_file_ambiguously_recognized'. In that case, if
2796 MATCHING is not NULL, it will be filled in with a NULL-terminated list
2797 of the names of the formats that matched, allocated with `malloc'.
2798 Then the user may choose a format and try again.
2800 When done with the list that MATCHING points to, the caller should
2803 2.9.1.3 `bfd_set_format'
2804 ........................
2807 bfd_boolean bfd_set_format (bfd *abfd, bfd_format format);
2809 This function sets the file format of the BFD ABFD to the format
2810 FORMAT. If the target set in the BFD does not support the format
2811 requested, the format is invalid, or the BFD is not open for writing,
2812 then an error occurs.
2814 2.9.1.4 `bfd_format_string'
2815 ...........................
2818 const char *bfd_format_string (bfd_format format);
2820 Return a pointer to a const string `invalid', `object', `archive',
2821 `core', or `unknown', depending upon the value of FORMAT.
2824 File: bfd.info, Node: Relocations, Next: Core Files, Prev: Formats, Up: BFD front end
2829 BFD maintains relocations in much the same way it maintains symbols:
2830 they are left alone until required, then read in en-masse and
2831 translated into an internal form. A common routine
2832 `bfd_perform_relocation' acts upon the canonical form to do the fixup.
2834 Relocations are maintained on a per section basis, while symbols are
2835 maintained on a per BFD basis.
2837 All that a back end has to do to fit the BFD interface is to create
2838 a `struct reloc_cache_entry' for each relocation in a particular
2839 section, and fill in the right bits of the structures.
2847 File: bfd.info, Node: typedef arelent, Next: howto manager, Prev: Relocations, Up: Relocations
2849 2.10.1 typedef arelent
2850 ----------------------
2852 This is the structure of a relocation entry:
2855 typedef enum bfd_reloc_status
2857 /* No errors detected. */
2860 /* The relocation was performed, but there was an overflow. */
2863 /* The address to relocate was not within the section supplied. */
2864 bfd_reloc_outofrange,
2866 /* Used by special functions. */
2869 /* Unsupported relocation size requested. */
2870 bfd_reloc_notsupported,
2875 /* The symbol to relocate against was undefined. */
2876 bfd_reloc_undefined,
2878 /* The relocation was performed, but may not be ok - presently
2879 generated only when linking i960 coff files with i960 b.out
2880 symbols. If this type is returned, the error_message argument
2881 to bfd_perform_relocation will be set. */
2884 bfd_reloc_status_type;
2887 typedef struct reloc_cache_entry
2889 /* A pointer into the canonical table of pointers. */
2890 struct bfd_symbol **sym_ptr_ptr;
2892 /* offset in section. */
2893 bfd_size_type address;
2895 /* addend for relocation value. */
2898 /* Pointer to how to perform the required relocation. */
2899 reloc_howto_type *howto;
2904 Here is a description of each of the fields within an `arelent':
2907 The symbol table pointer points to a pointer to the symbol
2908 associated with the relocation request. It is the pointer into the
2909 table returned by the back end's `canonicalize_symtab' action. *Note
2910 Symbols::. The symbol is referenced through a pointer to a pointer so
2911 that tools like the linker can fix up all the symbols of the same name
2912 by modifying only one pointer. The relocation routine looks in the
2913 symbol and uses the base of the section the symbol is attached to and
2914 the value of the symbol as the initial relocation offset. If the symbol
2915 pointer is zero, then the section provided is looked up.
2918 The `address' field gives the offset in bytes from the base of the
2919 section data which owns the relocation record to the first byte of
2920 relocatable information. The actual data relocated will be relative to
2921 this point; for example, a relocation type which modifies the bottom
2922 two bytes of a four byte word would not touch the first byte pointed to
2923 in a big endian world.
2926 The `addend' is a value provided by the back end to be added (!) to
2927 the relocation offset. Its interpretation is dependent upon the howto.
2928 For example, on the 68k the code:
2933 return foo[0x12345678];
2936 Could be compiled into:
2944 This could create a reloc pointing to `foo', but leave the offset in
2945 the data, something like:
2947 RELOCATION RECORDS FOR [.text]:
2951 00000000 4e56 fffc ; linkw fp,#-4
2952 00000004 1039 1234 5678 ; moveb @#12345678,d0
2953 0000000a 49c0 ; extbl d0
2954 0000000c 4e5e ; unlk fp
2957 Using coff and an 88k, some instructions don't have enough space in
2958 them to represent the full address range, and pointers have to be
2959 loaded in two parts. So you'd get something like:
2961 or.u r13,r0,hi16(_foo+0x12345678)
2962 ld.b r2,r13,lo16(_foo+0x12345678)
2965 This should create two relocs, both pointing to `_foo', and with
2966 0x12340000 in their addend field. The data would consist of:
2968 RELOCATION RECORDS FOR [.text]:
2970 00000002 HVRT16 _foo+0x12340000
2971 00000006 LVRT16 _foo+0x12340000
2973 00000000 5da05678 ; or.u r13,r0,0x5678
2974 00000004 1c4d5678 ; ld.b r2,r13,0x5678
2975 00000008 f400c001 ; jmp r1
2977 The relocation routine digs out the value from the data, adds it to
2978 the addend to get the original offset, and then adds the value of
2979 `_foo'. Note that all 32 bits have to be kept around somewhere, to cope
2980 with carry from bit 15 to bit 16.
2982 One further example is the sparc and the a.out format. The sparc has
2983 a similar problem to the 88k, in that some instructions don't have room
2984 for an entire offset, but on the sparc the parts are created in odd
2985 sized lumps. The designers of the a.out format chose to not use the
2986 data within the section for storing part of the offset; all the offset
2987 is kept within the reloc. Anything in the data should be ignored.
2990 sethi %hi(_foo+0x12345678),%g2
2991 ldsb [%g2+%lo(_foo+0x12345678)],%i0
2995 Both relocs contain a pointer to `foo', and the offsets contain junk.
2997 RELOCATION RECORDS FOR [.text]:
2999 00000004 HI22 _foo+0x12345678
3000 00000008 LO10 _foo+0x12345678
3002 00000000 9de3bf90 ; save %sp,-112,%sp
3003 00000004 05000000 ; sethi %hi(_foo+0),%g2
3004 00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0
3005 0000000c 81c7e008 ; ret
3006 00000010 81e80000 ; restore
3009 The `howto' field can be imagined as a relocation instruction. It is
3010 a pointer to a structure which contains information on what to do with
3011 all of the other information in the reloc record and data section. A
3012 back end would normally have a relocation instruction set and turn
3013 relocations into pointers to the correct structure on input - but it
3014 would be possible to create each howto field on demand.
3016 2.10.1.1 `enum complain_overflow'
3017 .................................
3019 Indicates what sort of overflow checking should be done when performing
3023 enum complain_overflow
3025 /* Do not complain on overflow. */
3026 complain_overflow_dont,
3028 /* Complain if the value overflows when considered as a signed
3029 number one bit larger than the field. ie. A bitfield of N bits
3030 is allowed to represent -2**n to 2**n-1. */
3031 complain_overflow_bitfield,
3033 /* Complain if the value overflows when considered as a signed
3035 complain_overflow_signed,
3037 /* Complain if the value overflows when considered as an
3039 complain_overflow_unsigned
3042 2.10.1.2 `reloc_howto_type'
3043 ...........................
3045 The `reloc_howto_type' is a structure which contains all the
3046 information that libbfd needs to know to tie up a back end's data.
3048 struct bfd_symbol; /* Forward declaration. */
3050 struct reloc_howto_struct
3052 /* The type field has mainly a documentary use - the back end can
3053 do what it wants with it, though normally the back end's
3054 external idea of what a reloc number is stored
3055 in this field. For example, a PC relative word relocation
3056 in a coff environment has the type 023 - because that's
3057 what the outside world calls a R_PCRWORD reloc. */
3060 /* The value the final relocation is shifted right by. This drops
3061 unwanted data from the relocation. */
3062 unsigned int rightshift;
3064 /* The size of the item to be relocated. This is *not* a
3065 power-of-two measure. To get the number of bytes operated
3066 on by a type of relocation, use bfd_get_reloc_size. */
3069 /* The number of bits in the item to be relocated. This is used
3070 when doing overflow checking. */
3071 unsigned int bitsize;
3073 /* Notes that the relocation is relative to the location in the
3074 data section of the addend. The relocation function will
3075 subtract from the relocation value the address of the location
3077 bfd_boolean pc_relative;
3079 /* The bit position of the reloc value in the destination.
3080 The relocated value is left shifted by this amount. */
3081 unsigned int bitpos;
3083 /* What type of overflow error should be checked for when
3085 enum complain_overflow complain_on_overflow;
3087 /* If this field is non null, then the supplied function is
3088 called rather than the normal function. This allows really
3089 strange relocation methods to be accommodated (e.g., i960 callj
3091 bfd_reloc_status_type (*special_function)
3092 (bfd *, arelent *, struct bfd_symbol *, void *, asection *,
3095 /* The textual name of the relocation type. */
3098 /* Some formats record a relocation addend in the section contents
3099 rather than with the relocation. For ELF formats this is the
3100 distinction between USE_REL and USE_RELA (though the code checks
3101 for USE_REL == 1/0). The value of this field is TRUE if the
3102 addend is recorded with the section contents; when performing a
3103 partial link (ld -r) the section contents (the data) will be
3104 modified. The value of this field is FALSE if addends are
3105 recorded with the relocation (in arelent.addend); when performing
3106 a partial link the relocation will be modified.
3107 All relocations for all ELF USE_RELA targets should set this field
3108 to FALSE (values of TRUE should be looked on with suspicion).
3109 However, the converse is not true: not all relocations of all ELF
3110 USE_REL targets set this field to TRUE. Why this is so is peculiar
3111 to each particular target. For relocs that aren't used in partial
3112 links (e.g. GOT stuff) it doesn't matter what this is set to. */
3113 bfd_boolean partial_inplace;
3115 /* src_mask selects the part of the instruction (or data) to be used
3116 in the relocation sum. If the target relocations don't have an
3117 addend in the reloc, eg. ELF USE_REL, src_mask will normally equal
3118 dst_mask to extract the addend from the section contents. If
3119 relocations do have an addend in the reloc, eg. ELF USE_RELA, this
3120 field should be zero. Non-zero values for ELF USE_RELA targets are
3121 bogus as in those cases the value in the dst_mask part of the
3122 section contents should be treated as garbage. */
3125 /* dst_mask selects which parts of the instruction (or data) are
3126 replaced with a relocated value. */
3129 /* When some formats create PC relative instructions, they leave
3130 the value of the pc of the place being relocated in the offset
3131 slot of the instruction, so that a PC relative relocation can
3132 be made just by adding in an ordinary offset (e.g., sun3 a.out).
3133 Some formats leave the displacement part of an instruction
3134 empty (e.g., m88k bcs); this flag signals the fact. */
3135 bfd_boolean pcrel_offset;
3138 2.10.1.3 `The HOWTO Macro'
3139 ..........................
3142 The HOWTO define is horrible and will go away.
3143 #define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \
3144 { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC }
3147 And will be replaced with the totally magic way. But for the moment, we
3148 are compatible, so do it this way.
3149 #define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \
3150 HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \
3151 NAME, FALSE, 0, 0, IN)
3154 This is used to fill in an empty howto entry in an array.
3155 #define EMPTY_HOWTO(C) \
3156 HOWTO ((C), 0, 0, 0, FALSE, 0, complain_overflow_dont, NULL, \
3157 NULL, FALSE, 0, 0, FALSE)
3160 Helper routine to turn a symbol into a relocation value.
3161 #define HOWTO_PREPARE(relocation, symbol) \
3163 if (symbol != NULL) \
3165 if (bfd_is_com_section (symbol->section)) \
3171 relocation = symbol->value; \
3176 2.10.1.4 `bfd_get_reloc_size'
3177 .............................
3180 unsigned int bfd_get_reloc_size (reloc_howto_type *);
3182 For a reloc_howto_type that operates on a fixed number of bytes, this
3183 returns the number of bytes operated on.
3185 2.10.1.5 `arelent_chain'
3186 ........................
3189 How relocs are tied together in an `asection':
3190 typedef struct relent_chain
3193 struct relent_chain *next;
3197 2.10.1.6 `bfd_check_overflow'
3198 .............................
3201 bfd_reloc_status_type bfd_check_overflow
3202 (enum complain_overflow how,
3203 unsigned int bitsize,
3204 unsigned int rightshift,
3205 unsigned int addrsize,
3206 bfd_vma relocation);
3208 Perform overflow checking on RELOCATION which has BITSIZE significant
3209 bits and will be shifted right by RIGHTSHIFT bits, on a machine with
3210 addresses containing ADDRSIZE significant bits. The result is either of
3211 `bfd_reloc_ok' or `bfd_reloc_overflow'.
3213 2.10.1.7 `bfd_perform_relocation'
3214 .................................
3217 bfd_reloc_status_type bfd_perform_relocation
3219 arelent *reloc_entry,
3221 asection *input_section,
3223 char **error_message);
3225 If OUTPUT_BFD is supplied to this function, the generated image will be
3226 relocatable; the relocations are copied to the output file after they
3227 have been changed to reflect the new state of the world. There are two
3228 ways of reflecting the results of partial linkage in an output file: by
3229 modifying the output data in place, and by modifying the relocation
3230 record. Some native formats (e.g., basic a.out and basic coff) have no
3231 way of specifying an addend in the relocation type, so the addend has
3232 to go in the output data. This is no big deal since in these formats
3233 the output data slot will always be big enough for the addend. Complex
3234 reloc types with addends were invented to solve just this problem. The
3235 ERROR_MESSAGE argument is set to an error message if this return
3236 `bfd_reloc_dangerous'.
3238 2.10.1.8 `bfd_install_relocation'
3239 .................................
3242 bfd_reloc_status_type bfd_install_relocation
3244 arelent *reloc_entry,
3245 void *data, bfd_vma data_start,
3246 asection *input_section,
3247 char **error_message);
3249 This looks remarkably like `bfd_perform_relocation', except it does not
3250 expect that the section contents have been filled in. I.e., it's
3251 suitable for use when creating, rather than applying a relocation.
3253 For now, this function should be considered reserved for the
3257 File: bfd.info, Node: howto manager, Prev: typedef arelent, Up: Relocations
3259 2.10.2 The howto manager
3260 ------------------------
3262 When an application wants to create a relocation, but doesn't know what
3263 the target machine might call it, it can find out by using this bit of
3266 2.10.2.1 `bfd_reloc_code_type'
3267 ..............................
3270 The insides of a reloc code. The idea is that, eventually, there will
3271 be one enumerator for every type of relocation we ever do. Pass one of
3272 these values to `bfd_reloc_type_lookup', and it'll return a howto
3275 This does mean that the application must determine the correct
3276 enumerator value; you can't get a howto pointer from a random set of
3279 Here are the possible values for `enum bfd_reloc_code_real':
3288 Basic absolute relocations of N bits.
3290 -- : BFD_RELOC_64_PCREL
3291 -- : BFD_RELOC_32_PCREL
3292 -- : BFD_RELOC_24_PCREL
3293 -- : BFD_RELOC_16_PCREL
3294 -- : BFD_RELOC_12_PCREL
3295 -- : BFD_RELOC_8_PCREL
3296 PC-relative relocations. Sometimes these are relative to the
3297 address of the relocation itself; sometimes they are relative to
3298 the start of the section containing the relocation. It depends on
3299 the specific target.
3301 The 24-bit relocation is used in some Intel 960 configurations.
3303 -- : BFD_RELOC_32_SECREL
3304 Section relative relocations. Some targets need this for DWARF2.
3306 -- : BFD_RELOC_32_GOT_PCREL
3307 -- : BFD_RELOC_16_GOT_PCREL
3308 -- : BFD_RELOC_8_GOT_PCREL
3309 -- : BFD_RELOC_32_GOTOFF
3310 -- : BFD_RELOC_16_GOTOFF
3311 -- : BFD_RELOC_LO16_GOTOFF
3312 -- : BFD_RELOC_HI16_GOTOFF
3313 -- : BFD_RELOC_HI16_S_GOTOFF
3314 -- : BFD_RELOC_8_GOTOFF
3315 -- : BFD_RELOC_64_PLT_PCREL
3316 -- : BFD_RELOC_32_PLT_PCREL
3317 -- : BFD_RELOC_24_PLT_PCREL
3318 -- : BFD_RELOC_16_PLT_PCREL
3319 -- : BFD_RELOC_8_PLT_PCREL
3320 -- : BFD_RELOC_64_PLTOFF
3321 -- : BFD_RELOC_32_PLTOFF
3322 -- : BFD_RELOC_16_PLTOFF
3323 -- : BFD_RELOC_LO16_PLTOFF
3324 -- : BFD_RELOC_HI16_PLTOFF
3325 -- : BFD_RELOC_HI16_S_PLTOFF
3326 -- : BFD_RELOC_8_PLTOFF
3329 -- : BFD_RELOC_68K_GLOB_DAT
3330 -- : BFD_RELOC_68K_JMP_SLOT
3331 -- : BFD_RELOC_68K_RELATIVE
3332 -- : BFD_RELOC_68K_TLS_GD32
3333 -- : BFD_RELOC_68K_TLS_GD16
3334 -- : BFD_RELOC_68K_TLS_GD8
3335 -- : BFD_RELOC_68K_TLS_LDM32
3336 -- : BFD_RELOC_68K_TLS_LDM16
3337 -- : BFD_RELOC_68K_TLS_LDM8
3338 -- : BFD_RELOC_68K_TLS_LDO32
3339 -- : BFD_RELOC_68K_TLS_LDO16
3340 -- : BFD_RELOC_68K_TLS_LDO8
3341 -- : BFD_RELOC_68K_TLS_IE32
3342 -- : BFD_RELOC_68K_TLS_IE16
3343 -- : BFD_RELOC_68K_TLS_IE8
3344 -- : BFD_RELOC_68K_TLS_LE32
3345 -- : BFD_RELOC_68K_TLS_LE16
3346 -- : BFD_RELOC_68K_TLS_LE8
3347 Relocations used by 68K ELF.
3349 -- : BFD_RELOC_32_BASEREL
3350 -- : BFD_RELOC_16_BASEREL
3351 -- : BFD_RELOC_LO16_BASEREL
3352 -- : BFD_RELOC_HI16_BASEREL
3353 -- : BFD_RELOC_HI16_S_BASEREL
3354 -- : BFD_RELOC_8_BASEREL
3356 Linkage-table relative.
3358 -- : BFD_RELOC_8_FFnn
3359 Absolute 8-bit relocation, but used to form an address like 0xFFnn.
3361 -- : BFD_RELOC_32_PCREL_S2
3362 -- : BFD_RELOC_16_PCREL_S2
3363 -- : BFD_RELOC_23_PCREL_S2
3364 These PC-relative relocations are stored as word displacements -
3365 i.e., byte displacements shifted right two bits. The 30-bit word
3366 displacement (<<32_PCREL_S2>> - 32 bits, shifted 2) is used on the
3367 SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The
3368 signed 16-bit displacement is used on the MIPS, and the 23-bit
3369 displacement is used on the Alpha.
3373 High 22 bits and low 10 bits of 32-bit value, placed into lower
3374 bits of the target word. These are used on the SPARC.
3376 -- : BFD_RELOC_GPREL16
3377 -- : BFD_RELOC_GPREL32
3378 For systems that allocate a Global Pointer register, these are
3379 displacements off that register. These relocation types are
3380 handled specially, because the value the register will have is
3381 decided relatively late.
3383 -- : BFD_RELOC_I960_CALLJ
3384 Reloc types used for i960/b.out.
3387 -- : BFD_RELOC_SPARC_WDISP22
3388 -- : BFD_RELOC_SPARC22
3389 -- : BFD_RELOC_SPARC13
3390 -- : BFD_RELOC_SPARC_GOT10
3391 -- : BFD_RELOC_SPARC_GOT13
3392 -- : BFD_RELOC_SPARC_GOT22
3393 -- : BFD_RELOC_SPARC_PC10
3394 -- : BFD_RELOC_SPARC_PC22
3395 -- : BFD_RELOC_SPARC_WPLT30
3396 -- : BFD_RELOC_SPARC_COPY
3397 -- : BFD_RELOC_SPARC_GLOB_DAT
3398 -- : BFD_RELOC_SPARC_JMP_SLOT
3399 -- : BFD_RELOC_SPARC_RELATIVE
3400 -- : BFD_RELOC_SPARC_UA16
3401 -- : BFD_RELOC_SPARC_UA32
3402 -- : BFD_RELOC_SPARC_UA64
3403 -- : BFD_RELOC_SPARC_GOTDATA_HIX22
3404 -- : BFD_RELOC_SPARC_GOTDATA_LOX10
3405 -- : BFD_RELOC_SPARC_GOTDATA_OP_HIX22
3406 -- : BFD_RELOC_SPARC_GOTDATA_OP_LOX10
3407 -- : BFD_RELOC_SPARC_GOTDATA_OP
3408 SPARC ELF relocations. There is probably some overlap with other
3409 relocation types already defined.
3411 -- : BFD_RELOC_SPARC_BASE13
3412 -- : BFD_RELOC_SPARC_BASE22
3413 I think these are specific to SPARC a.out (e.g., Sun 4).
3415 -- : BFD_RELOC_SPARC_64
3416 -- : BFD_RELOC_SPARC_10
3417 -- : BFD_RELOC_SPARC_11
3418 -- : BFD_RELOC_SPARC_OLO10
3419 -- : BFD_RELOC_SPARC_HH22
3420 -- : BFD_RELOC_SPARC_HM10
3421 -- : BFD_RELOC_SPARC_LM22
3422 -- : BFD_RELOC_SPARC_PC_HH22
3423 -- : BFD_RELOC_SPARC_PC_HM10
3424 -- : BFD_RELOC_SPARC_PC_LM22
3425 -- : BFD_RELOC_SPARC_WDISP16
3426 -- : BFD_RELOC_SPARC_WDISP19
3427 -- : BFD_RELOC_SPARC_7
3428 -- : BFD_RELOC_SPARC_6
3429 -- : BFD_RELOC_SPARC_5
3430 -- : BFD_RELOC_SPARC_DISP64
3431 -- : BFD_RELOC_SPARC_PLT32
3432 -- : BFD_RELOC_SPARC_PLT64
3433 -- : BFD_RELOC_SPARC_HIX22
3434 -- : BFD_RELOC_SPARC_LOX10
3435 -- : BFD_RELOC_SPARC_H44
3436 -- : BFD_RELOC_SPARC_M44
3437 -- : BFD_RELOC_SPARC_L44
3438 -- : BFD_RELOC_SPARC_REGISTER
3441 -- : BFD_RELOC_SPARC_REV32
3442 SPARC little endian relocation
3444 -- : BFD_RELOC_SPARC_TLS_GD_HI22
3445 -- : BFD_RELOC_SPARC_TLS_GD_LO10
3446 -- : BFD_RELOC_SPARC_TLS_GD_ADD
3447 -- : BFD_RELOC_SPARC_TLS_GD_CALL
3448 -- : BFD_RELOC_SPARC_TLS_LDM_HI22
3449 -- : BFD_RELOC_SPARC_TLS_LDM_LO10
3450 -- : BFD_RELOC_SPARC_TLS_LDM_ADD
3451 -- : BFD_RELOC_SPARC_TLS_LDM_CALL
3452 -- : BFD_RELOC_SPARC_TLS_LDO_HIX22
3453 -- : BFD_RELOC_SPARC_TLS_LDO_LOX10
3454 -- : BFD_RELOC_SPARC_TLS_LDO_ADD
3455 -- : BFD_RELOC_SPARC_TLS_IE_HI22
3456 -- : BFD_RELOC_SPARC_TLS_IE_LO10
3457 -- : BFD_RELOC_SPARC_TLS_IE_LD
3458 -- : BFD_RELOC_SPARC_TLS_IE_LDX
3459 -- : BFD_RELOC_SPARC_TLS_IE_ADD
3460 -- : BFD_RELOC_SPARC_TLS_LE_HIX22
3461 -- : BFD_RELOC_SPARC_TLS_LE_LOX10
3462 -- : BFD_RELOC_SPARC_TLS_DTPMOD32
3463 -- : BFD_RELOC_SPARC_TLS_DTPMOD64
3464 -- : BFD_RELOC_SPARC_TLS_DTPOFF32
3465 -- : BFD_RELOC_SPARC_TLS_DTPOFF64
3466 -- : BFD_RELOC_SPARC_TLS_TPOFF32
3467 -- : BFD_RELOC_SPARC_TLS_TPOFF64
3468 SPARC TLS relocations
3470 -- : BFD_RELOC_SPU_IMM7
3471 -- : BFD_RELOC_SPU_IMM8
3472 -- : BFD_RELOC_SPU_IMM10
3473 -- : BFD_RELOC_SPU_IMM10W
3474 -- : BFD_RELOC_SPU_IMM16
3475 -- : BFD_RELOC_SPU_IMM16W
3476 -- : BFD_RELOC_SPU_IMM18
3477 -- : BFD_RELOC_SPU_PCREL9a
3478 -- : BFD_RELOC_SPU_PCREL9b
3479 -- : BFD_RELOC_SPU_PCREL16
3480 -- : BFD_RELOC_SPU_LO16
3481 -- : BFD_RELOC_SPU_HI16
3482 -- : BFD_RELOC_SPU_PPU32
3483 -- : BFD_RELOC_SPU_PPU64
3484 -- : BFD_RELOC_SPU_ADD_PIC
3487 -- : BFD_RELOC_ALPHA_GPDISP_HI16
3488 Alpha ECOFF and ELF relocations. Some of these treat the symbol or
3489 "addend" in some special way. For GPDISP_HI16 ("gpdisp")
3490 relocations, the symbol is ignored when writing; when reading, it
3491 will be the absolute section symbol. The addend is the
3492 displacement in bytes of the "lda" instruction from the "ldah"
3493 instruction (which is at the address of this reloc).
3495 -- : BFD_RELOC_ALPHA_GPDISP_LO16
3496 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as
3497 with GPDISP_HI16 relocs. The addend is ignored when writing the
3498 relocations out, and is filled in with the file's GP value on
3499 reading, for convenience.
3501 -- : BFD_RELOC_ALPHA_GPDISP
3502 The ELF GPDISP relocation is exactly the same as the GPDISP_HI16
3503 relocation except that there is no accompanying GPDISP_LO16
3506 -- : BFD_RELOC_ALPHA_LITERAL
3507 -- : BFD_RELOC_ALPHA_ELF_LITERAL
3508 -- : BFD_RELOC_ALPHA_LITUSE
3509 The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;
3510 the assembler turns it into a LDQ instruction to load the address
3511 of the symbol, and then fills in a register in the real
3514 The LITERAL reloc, at the LDQ instruction, refers to the .lita
3515 section symbol. The addend is ignored when writing, but is filled
3516 in with the file's GP value on reading, for convenience, as with
3517 the GPDISP_LO16 reloc.
3519 The ELF_LITERAL reloc is somewhere between 16_GOTOFF and
3520 GPDISP_LO16. It should refer to the symbol to be referenced, as
3521 with 16_GOTOFF, but it generates output not based on the position
3522 within the .got section, but relative to the GP value chosen for
3523 the file during the final link stage.
3525 The LITUSE reloc, on the instruction using the loaded address,
3526 gives information to the linker that it might be able to use to
3527 optimize away some literal section references. The symbol is
3528 ignored (read as the absolute section symbol), and the "addend"
3529 indicates the type of instruction using the register: 1 - "memory"
3530 fmt insn 2 - byte-manipulation (byte offset reg) 3 - jsr (target
3533 -- : BFD_RELOC_ALPHA_HINT
3534 The HINT relocation indicates a value that should be filled into
3535 the "hint" field of a jmp/jsr/ret instruction, for possible branch-
3536 prediction logic which may be provided on some processors.
3538 -- : BFD_RELOC_ALPHA_LINKAGE
3539 The LINKAGE relocation outputs a linkage pair in the object file,
3540 which is filled by the linker.
3542 -- : BFD_RELOC_ALPHA_CODEADDR
3543 The CODEADDR relocation outputs a STO_CA in the object file, which
3544 is filled by the linker.
3546 -- : BFD_RELOC_ALPHA_GPREL_HI16
3547 -- : BFD_RELOC_ALPHA_GPREL_LO16
3548 The GPREL_HI/LO relocations together form a 32-bit offset from the
3551 -- : BFD_RELOC_ALPHA_BRSGP
3552 Like BFD_RELOC_23_PCREL_S2, except that the source and target must
3553 share a common GP, and the target address is adjusted for
3554 STO_ALPHA_STD_GPLOAD.
3556 -- : BFD_RELOC_ALPHA_NOP
3557 The NOP relocation outputs a NOP if the longword displacement
3558 between two procedure entry points is < 2^21.
3560 -- : BFD_RELOC_ALPHA_BSR
3561 The BSR relocation outputs a BSR if the longword displacement
3562 between two procedure entry points is < 2^21.
3564 -- : BFD_RELOC_ALPHA_LDA
3565 The LDA relocation outputs a LDA if the longword displacement
3566 between two procedure entry points is < 2^16.
3568 -- : BFD_RELOC_ALPHA_BOH
3569 The BOH relocation outputs a BSR if the longword displacement
3570 between two procedure entry points is < 2^21, or else a hint.
3572 -- : BFD_RELOC_ALPHA_TLSGD
3573 -- : BFD_RELOC_ALPHA_TLSLDM
3574 -- : BFD_RELOC_ALPHA_DTPMOD64
3575 -- : BFD_RELOC_ALPHA_GOTDTPREL16
3576 -- : BFD_RELOC_ALPHA_DTPREL64
3577 -- : BFD_RELOC_ALPHA_DTPREL_HI16
3578 -- : BFD_RELOC_ALPHA_DTPREL_LO16
3579 -- : BFD_RELOC_ALPHA_DTPREL16
3580 -- : BFD_RELOC_ALPHA_GOTTPREL16
3581 -- : BFD_RELOC_ALPHA_TPREL64
3582 -- : BFD_RELOC_ALPHA_TPREL_HI16
3583 -- : BFD_RELOC_ALPHA_TPREL_LO16
3584 -- : BFD_RELOC_ALPHA_TPREL16
3585 Alpha thread-local storage relocations.
3587 -- : BFD_RELOC_MIPS_JMP
3588 Bits 27..2 of the relocation address shifted right 2 bits; simple
3591 -- : BFD_RELOC_MIPS16_JMP
3592 The MIPS16 jump instruction.
3594 -- : BFD_RELOC_MIPS16_GPREL
3595 MIPS16 GP relative reloc.
3598 High 16 bits of 32-bit value; simple reloc.
3600 -- : BFD_RELOC_HI16_S
3601 High 16 bits of 32-bit value but the low 16 bits will be sign
3602 extended and added to form the final result. If the low 16 bits
3603 form a negative number, we need to add one to the high value to
3604 compensate for the borrow when the low bits are added.
3609 -- : BFD_RELOC_HI16_PCREL
3610 High 16 bits of 32-bit pc-relative value
3612 -- : BFD_RELOC_HI16_S_PCREL
3613 High 16 bits of 32-bit pc-relative value, adjusted
3615 -- : BFD_RELOC_LO16_PCREL
3616 Low 16 bits of pc-relative value
3618 -- : BFD_RELOC_MIPS16_GOT16
3619 -- : BFD_RELOC_MIPS16_CALL16
3620 Equivalent of BFD_RELOC_MIPS_*, but with the MIPS16 layout of
3621 16-bit immediate fields
3623 -- : BFD_RELOC_MIPS16_HI16
3624 MIPS16 high 16 bits of 32-bit value.
3626 -- : BFD_RELOC_MIPS16_HI16_S
3627 MIPS16 high 16 bits of 32-bit value but the low 16 bits will be
3628 sign extended and added to form the final result. If the low 16
3629 bits form a negative number, we need to add one to the high value
3630 to compensate for the borrow when the low bits are added.
3632 -- : BFD_RELOC_MIPS16_LO16
3635 -- : BFD_RELOC_MIPS_LITERAL
3636 Relocation against a MIPS literal section.
3638 -- : BFD_RELOC_MIPS_GOT16
3639 -- : BFD_RELOC_MIPS_CALL16
3640 -- : BFD_RELOC_MIPS_GOT_HI16
3641 -- : BFD_RELOC_MIPS_GOT_LO16
3642 -- : BFD_RELOC_MIPS_CALL_HI16
3643 -- : BFD_RELOC_MIPS_CALL_LO16
3644 -- : BFD_RELOC_MIPS_SUB
3645 -- : BFD_RELOC_MIPS_GOT_PAGE
3646 -- : BFD_RELOC_MIPS_GOT_OFST
3647 -- : BFD_RELOC_MIPS_GOT_DISP
3648 -- : BFD_RELOC_MIPS_SHIFT5
3649 -- : BFD_RELOC_MIPS_SHIFT6
3650 -- : BFD_RELOC_MIPS_INSERT_A
3651 -- : BFD_RELOC_MIPS_INSERT_B
3652 -- : BFD_RELOC_MIPS_DELETE
3653 -- : BFD_RELOC_MIPS_HIGHEST
3654 -- : BFD_RELOC_MIPS_HIGHER
3655 -- : BFD_RELOC_MIPS_SCN_DISP
3656 -- : BFD_RELOC_MIPS_REL16
3657 -- : BFD_RELOC_MIPS_RELGOT
3658 -- : BFD_RELOC_MIPS_JALR
3659 -- : BFD_RELOC_MIPS_TLS_DTPMOD32
3660 -- : BFD_RELOC_MIPS_TLS_DTPREL32
3661 -- : BFD_RELOC_MIPS_TLS_DTPMOD64
3662 -- : BFD_RELOC_MIPS_TLS_DTPREL64
3663 -- : BFD_RELOC_MIPS_TLS_GD
3664 -- : BFD_RELOC_MIPS_TLS_LDM
3665 -- : BFD_RELOC_MIPS_TLS_DTPREL_HI16
3666 -- : BFD_RELOC_MIPS_TLS_DTPREL_LO16
3667 -- : BFD_RELOC_MIPS_TLS_GOTTPREL
3668 -- : BFD_RELOC_MIPS_TLS_TPREL32
3669 -- : BFD_RELOC_MIPS_TLS_TPREL64
3670 -- : BFD_RELOC_MIPS_TLS_TPREL_HI16
3671 -- : BFD_RELOC_MIPS_TLS_TPREL_LO16
3672 MIPS ELF relocations.
3674 -- : BFD_RELOC_MIPS_COPY
3675 -- : BFD_RELOC_MIPS_JUMP_SLOT
3676 MIPS ELF relocations (VxWorks and PLT extensions).
3678 -- : BFD_RELOC_MOXIE_10_PCREL
3679 Moxie ELF relocations.
3681 -- : BFD_RELOC_FRV_LABEL16
3682 -- : BFD_RELOC_FRV_LABEL24
3683 -- : BFD_RELOC_FRV_LO16
3684 -- : BFD_RELOC_FRV_HI16
3685 -- : BFD_RELOC_FRV_GPREL12
3686 -- : BFD_RELOC_FRV_GPRELU12
3687 -- : BFD_RELOC_FRV_GPREL32
3688 -- : BFD_RELOC_FRV_GPRELHI
3689 -- : BFD_RELOC_FRV_GPRELLO
3690 -- : BFD_RELOC_FRV_GOT12
3691 -- : BFD_RELOC_FRV_GOTHI
3692 -- : BFD_RELOC_FRV_GOTLO
3693 -- : BFD_RELOC_FRV_FUNCDESC
3694 -- : BFD_RELOC_FRV_FUNCDESC_GOT12
3695 -- : BFD_RELOC_FRV_FUNCDESC_GOTHI
3696 -- : BFD_RELOC_FRV_FUNCDESC_GOTLO
3697 -- : BFD_RELOC_FRV_FUNCDESC_VALUE
3698 -- : BFD_RELOC_FRV_FUNCDESC_GOTOFF12
3699 -- : BFD_RELOC_FRV_FUNCDESC_GOTOFFHI
3700 -- : BFD_RELOC_FRV_FUNCDESC_GOTOFFLO
3701 -- : BFD_RELOC_FRV_GOTOFF12
3702 -- : BFD_RELOC_FRV_GOTOFFHI
3703 -- : BFD_RELOC_FRV_GOTOFFLO
3704 -- : BFD_RELOC_FRV_GETTLSOFF
3705 -- : BFD_RELOC_FRV_TLSDESC_VALUE
3706 -- : BFD_RELOC_FRV_GOTTLSDESC12
3707 -- : BFD_RELOC_FRV_GOTTLSDESCHI
3708 -- : BFD_RELOC_FRV_GOTTLSDESCLO
3709 -- : BFD_RELOC_FRV_TLSMOFF12
3710 -- : BFD_RELOC_FRV_TLSMOFFHI
3711 -- : BFD_RELOC_FRV_TLSMOFFLO
3712 -- : BFD_RELOC_FRV_GOTTLSOFF12
3713 -- : BFD_RELOC_FRV_GOTTLSOFFHI
3714 -- : BFD_RELOC_FRV_GOTTLSOFFLO
3715 -- : BFD_RELOC_FRV_TLSOFF
3716 -- : BFD_RELOC_FRV_TLSDESC_RELAX
3717 -- : BFD_RELOC_FRV_GETTLSOFF_RELAX
3718 -- : BFD_RELOC_FRV_TLSOFF_RELAX
3719 -- : BFD_RELOC_FRV_TLSMOFF
3720 Fujitsu Frv Relocations.
3722 -- : BFD_RELOC_MN10300_GOTOFF24
3723 This is a 24bit GOT-relative reloc for the mn10300.
3725 -- : BFD_RELOC_MN10300_GOT32
3726 This is a 32bit GOT-relative reloc for the mn10300, offset by two
3727 bytes in the instruction.
3729 -- : BFD_RELOC_MN10300_GOT24
3730 This is a 24bit GOT-relative reloc for the mn10300, offset by two
3731 bytes in the instruction.
3733 -- : BFD_RELOC_MN10300_GOT16
3734 This is a 16bit GOT-relative reloc for the mn10300, offset by two
3735 bytes in the instruction.
3737 -- : BFD_RELOC_MN10300_COPY
3738 Copy symbol at runtime.
3740 -- : BFD_RELOC_MN10300_GLOB_DAT
3743 -- : BFD_RELOC_MN10300_JMP_SLOT
3746 -- : BFD_RELOC_MN10300_RELATIVE
3747 Adjust by program base.
3749 -- : BFD_RELOC_MN10300_SYM_DIFF
3750 Together with another reloc targeted at the same location, allows
3751 for a value that is the difference of two symbols in the same
3754 -- : BFD_RELOC_MN10300_ALIGN
3755 The addend of this reloc is an alignment power that must be
3756 honoured at the offset's location, regardless of linker relaxation.
3758 -- : BFD_RELOC_386_GOT32
3759 -- : BFD_RELOC_386_PLT32
3760 -- : BFD_RELOC_386_COPY
3761 -- : BFD_RELOC_386_GLOB_DAT
3762 -- : BFD_RELOC_386_JUMP_SLOT
3763 -- : BFD_RELOC_386_RELATIVE
3764 -- : BFD_RELOC_386_GOTOFF
3765 -- : BFD_RELOC_386_GOTPC
3766 -- : BFD_RELOC_386_TLS_TPOFF
3767 -- : BFD_RELOC_386_TLS_IE
3768 -- : BFD_RELOC_386_TLS_GOTIE
3769 -- : BFD_RELOC_386_TLS_LE
3770 -- : BFD_RELOC_386_TLS_GD
3771 -- : BFD_RELOC_386_TLS_LDM
3772 -- : BFD_RELOC_386_TLS_LDO_32
3773 -- : BFD_RELOC_386_TLS_IE_32
3774 -- : BFD_RELOC_386_TLS_LE_32
3775 -- : BFD_RELOC_386_TLS_DTPMOD32
3776 -- : BFD_RELOC_386_TLS_DTPOFF32
3777 -- : BFD_RELOC_386_TLS_TPOFF32
3778 -- : BFD_RELOC_386_TLS_GOTDESC
3779 -- : BFD_RELOC_386_TLS_DESC_CALL
3780 -- : BFD_RELOC_386_TLS_DESC
3781 -- : BFD_RELOC_386_IRELATIVE
3782 i386/elf relocations
3784 -- : BFD_RELOC_X86_64_GOT32
3785 -- : BFD_RELOC_X86_64_PLT32
3786 -- : BFD_RELOC_X86_64_COPY
3787 -- : BFD_RELOC_X86_64_GLOB_DAT
3788 -- : BFD_RELOC_X86_64_JUMP_SLOT
3789 -- : BFD_RELOC_X86_64_RELATIVE
3790 -- : BFD_RELOC_X86_64_GOTPCREL
3791 -- : BFD_RELOC_X86_64_32S
3792 -- : BFD_RELOC_X86_64_DTPMOD64
3793 -- : BFD_RELOC_X86_64_DTPOFF64
3794 -- : BFD_RELOC_X86_64_TPOFF64
3795 -- : BFD_RELOC_X86_64_TLSGD
3796 -- : BFD_RELOC_X86_64_TLSLD
3797 -- : BFD_RELOC_X86_64_DTPOFF32
3798 -- : BFD_RELOC_X86_64_GOTTPOFF
3799 -- : BFD_RELOC_X86_64_TPOFF32
3800 -- : BFD_RELOC_X86_64_GOTOFF64
3801 -- : BFD_RELOC_X86_64_GOTPC32
3802 -- : BFD_RELOC_X86_64_GOT64
3803 -- : BFD_RELOC_X86_64_GOTPCREL64
3804 -- : BFD_RELOC_X86_64_GOTPC64
3805 -- : BFD_RELOC_X86_64_GOTPLT64
3806 -- : BFD_RELOC_X86_64_PLTOFF64
3807 -- : BFD_RELOC_X86_64_GOTPC32_TLSDESC
3808 -- : BFD_RELOC_X86_64_TLSDESC_CALL
3809 -- : BFD_RELOC_X86_64_TLSDESC
3810 -- : BFD_RELOC_X86_64_IRELATIVE
3811 x86-64/elf relocations
3813 -- : BFD_RELOC_NS32K_IMM_8
3814 -- : BFD_RELOC_NS32K_IMM_16
3815 -- : BFD_RELOC_NS32K_IMM_32
3816 -- : BFD_RELOC_NS32K_IMM_8_PCREL
3817 -- : BFD_RELOC_NS32K_IMM_16_PCREL
3818 -- : BFD_RELOC_NS32K_IMM_32_PCREL
3819 -- : BFD_RELOC_NS32K_DISP_8
3820 -- : BFD_RELOC_NS32K_DISP_16
3821 -- : BFD_RELOC_NS32K_DISP_32
3822 -- : BFD_RELOC_NS32K_DISP_8_PCREL
3823 -- : BFD_RELOC_NS32K_DISP_16_PCREL
3824 -- : BFD_RELOC_NS32K_DISP_32_PCREL
3827 -- : BFD_RELOC_PDP11_DISP_8_PCREL
3828 -- : BFD_RELOC_PDP11_DISP_6_PCREL
3831 -- : BFD_RELOC_PJ_CODE_HI16
3832 -- : BFD_RELOC_PJ_CODE_LO16
3833 -- : BFD_RELOC_PJ_CODE_DIR16
3834 -- : BFD_RELOC_PJ_CODE_DIR32
3835 -- : BFD_RELOC_PJ_CODE_REL16
3836 -- : BFD_RELOC_PJ_CODE_REL32
3837 Picojava relocs. Not all of these appear in object files.
3839 -- : BFD_RELOC_PPC_B26
3840 -- : BFD_RELOC_PPC_BA26
3841 -- : BFD_RELOC_PPC_TOC16
3842 -- : BFD_RELOC_PPC_B16
3843 -- : BFD_RELOC_PPC_B16_BRTAKEN
3844 -- : BFD_RELOC_PPC_B16_BRNTAKEN
3845 -- : BFD_RELOC_PPC_BA16
3846 -- : BFD_RELOC_PPC_BA16_BRTAKEN
3847 -- : BFD_RELOC_PPC_BA16_BRNTAKEN
3848 -- : BFD_RELOC_PPC_COPY
3849 -- : BFD_RELOC_PPC_GLOB_DAT
3850 -- : BFD_RELOC_PPC_JMP_SLOT
3851 -- : BFD_RELOC_PPC_RELATIVE
3852 -- : BFD_RELOC_PPC_LOCAL24PC
3853 -- : BFD_RELOC_PPC_EMB_NADDR32
3854 -- : BFD_RELOC_PPC_EMB_NADDR16
3855 -- : BFD_RELOC_PPC_EMB_NADDR16_LO
3856 -- : BFD_RELOC_PPC_EMB_NADDR16_HI
3857 -- : BFD_RELOC_PPC_EMB_NADDR16_HA
3858 -- : BFD_RELOC_PPC_EMB_SDAI16
3859 -- : BFD_RELOC_PPC_EMB_SDA2I16
3860 -- : BFD_RELOC_PPC_EMB_SDA2REL
3861 -- : BFD_RELOC_PPC_EMB_SDA21
3862 -- : BFD_RELOC_PPC_EMB_MRKREF
3863 -- : BFD_RELOC_PPC_EMB_RELSEC16
3864 -- : BFD_RELOC_PPC_EMB_RELST_LO
3865 -- : BFD_RELOC_PPC_EMB_RELST_HI
3866 -- : BFD_RELOC_PPC_EMB_RELST_HA
3867 -- : BFD_RELOC_PPC_EMB_BIT_FLD
3868 -- : BFD_RELOC_PPC_EMB_RELSDA
3869 -- : BFD_RELOC_PPC64_HIGHER
3870 -- : BFD_RELOC_PPC64_HIGHER_S
3871 -- : BFD_RELOC_PPC64_HIGHEST
3872 -- : BFD_RELOC_PPC64_HIGHEST_S
3873 -- : BFD_RELOC_PPC64_TOC16_LO
3874 -- : BFD_RELOC_PPC64_TOC16_HI
3875 -- : BFD_RELOC_PPC64_TOC16_HA
3876 -- : BFD_RELOC_PPC64_TOC
3877 -- : BFD_RELOC_PPC64_PLTGOT16
3878 -- : BFD_RELOC_PPC64_PLTGOT16_LO
3879 -- : BFD_RELOC_PPC64_PLTGOT16_HI
3880 -- : BFD_RELOC_PPC64_PLTGOT16_HA
3881 -- : BFD_RELOC_PPC64_ADDR16_DS
3882 -- : BFD_RELOC_PPC64_ADDR16_LO_DS
3883 -- : BFD_RELOC_PPC64_GOT16_DS
3884 -- : BFD_RELOC_PPC64_GOT16_LO_DS
3885 -- : BFD_RELOC_PPC64_PLT16_LO_DS
3886 -- : BFD_RELOC_PPC64_SECTOFF_DS
3887 -- : BFD_RELOC_PPC64_SECTOFF_LO_DS
3888 -- : BFD_RELOC_PPC64_TOC16_DS
3889 -- : BFD_RELOC_PPC64_TOC16_LO_DS
3890 -- : BFD_RELOC_PPC64_PLTGOT16_DS
3891 -- : BFD_RELOC_PPC64_PLTGOT16_LO_DS
3892 Power(rs6000) and PowerPC relocations.
3894 -- : BFD_RELOC_PPC_TLS
3895 -- : BFD_RELOC_PPC_TLSGD
3896 -- : BFD_RELOC_PPC_TLSLD
3897 -- : BFD_RELOC_PPC_DTPMOD
3898 -- : BFD_RELOC_PPC_TPREL16
3899 -- : BFD_RELOC_PPC_TPREL16_LO
3900 -- : BFD_RELOC_PPC_TPREL16_HI
3901 -- : BFD_RELOC_PPC_TPREL16_HA
3902 -- : BFD_RELOC_PPC_TPREL
3903 -- : BFD_RELOC_PPC_DTPREL16
3904 -- : BFD_RELOC_PPC_DTPREL16_LO
3905 -- : BFD_RELOC_PPC_DTPREL16_HI
3906 -- : BFD_RELOC_PPC_DTPREL16_HA
3907 -- : BFD_RELOC_PPC_DTPREL
3908 -- : BFD_RELOC_PPC_GOT_TLSGD16
3909 -- : BFD_RELOC_PPC_GOT_TLSGD16_LO
3910 -- : BFD_RELOC_PPC_GOT_TLSGD16_HI
3911 -- : BFD_RELOC_PPC_GOT_TLSGD16_HA
3912 -- : BFD_RELOC_PPC_GOT_TLSLD16
3913 -- : BFD_RELOC_PPC_GOT_TLSLD16_LO
3914 -- : BFD_RELOC_PPC_GOT_TLSLD16_HI
3915 -- : BFD_RELOC_PPC_GOT_TLSLD16_HA
3916 -- : BFD_RELOC_PPC_GOT_TPREL16
3917 -- : BFD_RELOC_PPC_GOT_TPREL16_LO
3918 -- : BFD_RELOC_PPC_GOT_TPREL16_HI
3919 -- : BFD_RELOC_PPC_GOT_TPREL16_HA
3920 -- : BFD_RELOC_PPC_GOT_DTPREL16
3921 -- : BFD_RELOC_PPC_GOT_DTPREL16_LO
3922 -- : BFD_RELOC_PPC_GOT_DTPREL16_HI
3923 -- : BFD_RELOC_PPC_GOT_DTPREL16_HA
3924 -- : BFD_RELOC_PPC64_TPREL16_DS
3925 -- : BFD_RELOC_PPC64_TPREL16_LO_DS
3926 -- : BFD_RELOC_PPC64_TPREL16_HIGHER
3927 -- : BFD_RELOC_PPC64_TPREL16_HIGHERA
3928 -- : BFD_RELOC_PPC64_TPREL16_HIGHEST
3929 -- : BFD_RELOC_PPC64_TPREL16_HIGHESTA
3930 -- : BFD_RELOC_PPC64_DTPREL16_DS
3931 -- : BFD_RELOC_PPC64_DTPREL16_LO_DS
3932 -- : BFD_RELOC_PPC64_DTPREL16_HIGHER
3933 -- : BFD_RELOC_PPC64_DTPREL16_HIGHERA
3934 -- : BFD_RELOC_PPC64_DTPREL16_HIGHEST
3935 -- : BFD_RELOC_PPC64_DTPREL16_HIGHESTA
3936 PowerPC and PowerPC64 thread-local storage relocations.
3938 -- : BFD_RELOC_I370_D12
3939 IBM 370/390 relocations
3942 The type of reloc used to build a constructor table - at the moment
3943 probably a 32 bit wide absolute relocation, but the target can
3944 choose. It generally does map to one of the other relocation
3947 -- : BFD_RELOC_ARM_PCREL_BRANCH
3948 ARM 26 bit pc-relative branch. The lowest two bits must be zero
3949 and are not stored in the instruction.
3951 -- : BFD_RELOC_ARM_PCREL_BLX
3952 ARM 26 bit pc-relative branch. The lowest bit must be zero and is
3953 not stored in the instruction. The 2nd lowest bit comes from a 1
3954 bit field in the instruction.
3956 -- : BFD_RELOC_THUMB_PCREL_BLX
3957 Thumb 22 bit pc-relative branch. The lowest bit must be zero and
3958 is not stored in the instruction. The 2nd lowest bit comes from a
3959 1 bit field in the instruction.
3961 -- : BFD_RELOC_ARM_PCREL_CALL
3962 ARM 26-bit pc-relative branch for an unconditional BL or BLX
3965 -- : BFD_RELOC_ARM_PCREL_JUMP
3966 ARM 26-bit pc-relative branch for B or conditional BL instruction.
3968 -- : BFD_RELOC_THUMB_PCREL_BRANCH7
3969 -- : BFD_RELOC_THUMB_PCREL_BRANCH9
3970 -- : BFD_RELOC_THUMB_PCREL_BRANCH12
3971 -- : BFD_RELOC_THUMB_PCREL_BRANCH20
3972 -- : BFD_RELOC_THUMB_PCREL_BRANCH23
3973 -- : BFD_RELOC_THUMB_PCREL_BRANCH25
3974 Thumb 7-, 9-, 12-, 20-, 23-, and 25-bit pc-relative branches. The
3975 lowest bit must be zero and is not stored in the instruction.
3976 Note that the corresponding ELF R_ARM_THM_JUMPnn constant has an
3977 "nn" one smaller in all cases. Note further that BRANCH23
3978 corresponds to R_ARM_THM_CALL.
3980 -- : BFD_RELOC_ARM_OFFSET_IMM
3981 12-bit immediate offset, used in ARM-format ldr and str
3984 -- : BFD_RELOC_ARM_THUMB_OFFSET
3985 5-bit immediate offset, used in Thumb-format ldr and str
3988 -- : BFD_RELOC_ARM_TARGET1
3989 Pc-relative or absolute relocation depending on target. Used for
3990 entries in .init_array sections.
3992 -- : BFD_RELOC_ARM_ROSEGREL32
3993 Read-only segment base relative address.
3995 -- : BFD_RELOC_ARM_SBREL32
3996 Data segment base relative address.
3998 -- : BFD_RELOC_ARM_TARGET2
3999 This reloc is used for references to RTTI data from exception
4000 handling tables. The actual definition depends on the target. It
4001 may be a pc-relative or some form of GOT-indirect relocation.
4003 -- : BFD_RELOC_ARM_PREL31
4004 31-bit PC relative address.
4006 -- : BFD_RELOC_ARM_MOVW
4007 -- : BFD_RELOC_ARM_MOVT
4008 -- : BFD_RELOC_ARM_MOVW_PCREL
4009 -- : BFD_RELOC_ARM_MOVT_PCREL
4010 -- : BFD_RELOC_ARM_THUMB_MOVW
4011 -- : BFD_RELOC_ARM_THUMB_MOVT
4012 -- : BFD_RELOC_ARM_THUMB_MOVW_PCREL
4013 -- : BFD_RELOC_ARM_THUMB_MOVT_PCREL
4014 Low and High halfword relocations for MOVW and MOVT instructions.
4016 -- : BFD_RELOC_ARM_JUMP_SLOT
4017 -- : BFD_RELOC_ARM_GLOB_DAT
4018 -- : BFD_RELOC_ARM_GOT32
4019 -- : BFD_RELOC_ARM_PLT32
4020 -- : BFD_RELOC_ARM_RELATIVE
4021 -- : BFD_RELOC_ARM_GOTOFF
4022 -- : BFD_RELOC_ARM_GOTPC
4023 Relocations for setting up GOTs and PLTs for shared libraries.
4025 -- : BFD_RELOC_ARM_TLS_GD32
4026 -- : BFD_RELOC_ARM_TLS_LDO32
4027 -- : BFD_RELOC_ARM_TLS_LDM32
4028 -- : BFD_RELOC_ARM_TLS_DTPOFF32
4029 -- : BFD_RELOC_ARM_TLS_DTPMOD32
4030 -- : BFD_RELOC_ARM_TLS_TPOFF32
4031 -- : BFD_RELOC_ARM_TLS_IE32
4032 -- : BFD_RELOC_ARM_TLS_LE32
4033 ARM thread-local storage relocations.
4035 -- : BFD_RELOC_ARM_ALU_PC_G0_NC
4036 -- : BFD_RELOC_ARM_ALU_PC_G0
4037 -- : BFD_RELOC_ARM_ALU_PC_G1_NC
4038 -- : BFD_RELOC_ARM_ALU_PC_G1
4039 -- : BFD_RELOC_ARM_ALU_PC_G2
4040 -- : BFD_RELOC_ARM_LDR_PC_G0
4041 -- : BFD_RELOC_ARM_LDR_PC_G1
4042 -- : BFD_RELOC_ARM_LDR_PC_G2
4043 -- : BFD_RELOC_ARM_LDRS_PC_G0
4044 -- : BFD_RELOC_ARM_LDRS_PC_G1
4045 -- : BFD_RELOC_ARM_LDRS_PC_G2
4046 -- : BFD_RELOC_ARM_LDC_PC_G0
4047 -- : BFD_RELOC_ARM_LDC_PC_G1
4048 -- : BFD_RELOC_ARM_LDC_PC_G2
4049 -- : BFD_RELOC_ARM_ALU_SB_G0_NC
4050 -- : BFD_RELOC_ARM_ALU_SB_G0
4051 -- : BFD_RELOC_ARM_ALU_SB_G1_NC
4052 -- : BFD_RELOC_ARM_ALU_SB_G1
4053 -- : BFD_RELOC_ARM_ALU_SB_G2
4054 -- : BFD_RELOC_ARM_LDR_SB_G0
4055 -- : BFD_RELOC_ARM_LDR_SB_G1
4056 -- : BFD_RELOC_ARM_LDR_SB_G2
4057 -- : BFD_RELOC_ARM_LDRS_SB_G0
4058 -- : BFD_RELOC_ARM_LDRS_SB_G1
4059 -- : BFD_RELOC_ARM_LDRS_SB_G2
4060 -- : BFD_RELOC_ARM_LDC_SB_G0
4061 -- : BFD_RELOC_ARM_LDC_SB_G1
4062 -- : BFD_RELOC_ARM_LDC_SB_G2
4063 ARM group relocations.
4065 -- : BFD_RELOC_ARM_V4BX
4066 Annotation of BX instructions.
4068 -- : BFD_RELOC_ARM_IMMEDIATE
4069 -- : BFD_RELOC_ARM_ADRL_IMMEDIATE
4070 -- : BFD_RELOC_ARM_T32_IMMEDIATE
4071 -- : BFD_RELOC_ARM_T32_ADD_IMM
4072 -- : BFD_RELOC_ARM_T32_IMM12
4073 -- : BFD_RELOC_ARM_T32_ADD_PC12
4074 -- : BFD_RELOC_ARM_SHIFT_IMM
4075 -- : BFD_RELOC_ARM_SMC
4076 -- : BFD_RELOC_ARM_SWI
4077 -- : BFD_RELOC_ARM_MULTI
4078 -- : BFD_RELOC_ARM_CP_OFF_IMM
4079 -- : BFD_RELOC_ARM_CP_OFF_IMM_S2
4080 -- : BFD_RELOC_ARM_T32_CP_OFF_IMM
4081 -- : BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
4082 -- : BFD_RELOC_ARM_ADR_IMM
4083 -- : BFD_RELOC_ARM_LDR_IMM
4084 -- : BFD_RELOC_ARM_LITERAL
4085 -- : BFD_RELOC_ARM_IN_POOL
4086 -- : BFD_RELOC_ARM_OFFSET_IMM8
4087 -- : BFD_RELOC_ARM_T32_OFFSET_U8
4088 -- : BFD_RELOC_ARM_T32_OFFSET_IMM
4089 -- : BFD_RELOC_ARM_HWLITERAL
4090 -- : BFD_RELOC_ARM_THUMB_ADD
4091 -- : BFD_RELOC_ARM_THUMB_IMM
4092 -- : BFD_RELOC_ARM_THUMB_SHIFT
4093 These relocs are only used within the ARM assembler. They are not
4094 (at present) written to any object files.
4096 -- : BFD_RELOC_SH_PCDISP8BY2
4097 -- : BFD_RELOC_SH_PCDISP12BY2
4098 -- : BFD_RELOC_SH_IMM3
4099 -- : BFD_RELOC_SH_IMM3U
4100 -- : BFD_RELOC_SH_DISP12
4101 -- : BFD_RELOC_SH_DISP12BY2
4102 -- : BFD_RELOC_SH_DISP12BY4
4103 -- : BFD_RELOC_SH_DISP12BY8
4104 -- : BFD_RELOC_SH_DISP20
4105 -- : BFD_RELOC_SH_DISP20BY8
4106 -- : BFD_RELOC_SH_IMM4
4107 -- : BFD_RELOC_SH_IMM4BY2
4108 -- : BFD_RELOC_SH_IMM4BY4
4109 -- : BFD_RELOC_SH_IMM8
4110 -- : BFD_RELOC_SH_IMM8BY2
4111 -- : BFD_RELOC_SH_IMM8BY4
4112 -- : BFD_RELOC_SH_PCRELIMM8BY2
4113 -- : BFD_RELOC_SH_PCRELIMM8BY4
4114 -- : BFD_RELOC_SH_SWITCH16
4115 -- : BFD_RELOC_SH_SWITCH32
4116 -- : BFD_RELOC_SH_USES
4117 -- : BFD_RELOC_SH_COUNT
4118 -- : BFD_RELOC_SH_ALIGN
4119 -- : BFD_RELOC_SH_CODE
4120 -- : BFD_RELOC_SH_DATA
4121 -- : BFD_RELOC_SH_LABEL
4122 -- : BFD_RELOC_SH_LOOP_START
4123 -- : BFD_RELOC_SH_LOOP_END
4124 -- : BFD_RELOC_SH_COPY
4125 -- : BFD_RELOC_SH_GLOB_DAT
4126 -- : BFD_RELOC_SH_JMP_SLOT
4127 -- : BFD_RELOC_SH_RELATIVE
4128 -- : BFD_RELOC_SH_GOTPC
4129 -- : BFD_RELOC_SH_GOT_LOW16
4130 -- : BFD_RELOC_SH_GOT_MEDLOW16
4131 -- : BFD_RELOC_SH_GOT_MEDHI16
4132 -- : BFD_RELOC_SH_GOT_HI16
4133 -- : BFD_RELOC_SH_GOTPLT_LOW16
4134 -- : BFD_RELOC_SH_GOTPLT_MEDLOW16
4135 -- : BFD_RELOC_SH_GOTPLT_MEDHI16
4136 -- : BFD_RELOC_SH_GOTPLT_HI16
4137 -- : BFD_RELOC_SH_PLT_LOW16
4138 -- : BFD_RELOC_SH_PLT_MEDLOW16
4139 -- : BFD_RELOC_SH_PLT_MEDHI16
4140 -- : BFD_RELOC_SH_PLT_HI16
4141 -- : BFD_RELOC_SH_GOTOFF_LOW16
4142 -- : BFD_RELOC_SH_GOTOFF_MEDLOW16
4143 -- : BFD_RELOC_SH_GOTOFF_MEDHI16
4144 -- : BFD_RELOC_SH_GOTOFF_HI16
4145 -- : BFD_RELOC_SH_GOTPC_LOW16
4146 -- : BFD_RELOC_SH_GOTPC_MEDLOW16
4147 -- : BFD_RELOC_SH_GOTPC_MEDHI16
4148 -- : BFD_RELOC_SH_GOTPC_HI16
4149 -- : BFD_RELOC_SH_COPY64
4150 -- : BFD_RELOC_SH_GLOB_DAT64
4151 -- : BFD_RELOC_SH_JMP_SLOT64
4152 -- : BFD_RELOC_SH_RELATIVE64
4153 -- : BFD_RELOC_SH_GOT10BY4
4154 -- : BFD_RELOC_SH_GOT10BY8
4155 -- : BFD_RELOC_SH_GOTPLT10BY4
4156 -- : BFD_RELOC_SH_GOTPLT10BY8
4157 -- : BFD_RELOC_SH_GOTPLT32
4158 -- : BFD_RELOC_SH_SHMEDIA_CODE
4159 -- : BFD_RELOC_SH_IMMU5
4160 -- : BFD_RELOC_SH_IMMS6
4161 -- : BFD_RELOC_SH_IMMS6BY32
4162 -- : BFD_RELOC_SH_IMMU6
4163 -- : BFD_RELOC_SH_IMMS10
4164 -- : BFD_RELOC_SH_IMMS10BY2
4165 -- : BFD_RELOC_SH_IMMS10BY4
4166 -- : BFD_RELOC_SH_IMMS10BY8
4167 -- : BFD_RELOC_SH_IMMS16
4168 -- : BFD_RELOC_SH_IMMU16
4169 -- : BFD_RELOC_SH_IMM_LOW16
4170 -- : BFD_RELOC_SH_IMM_LOW16_PCREL
4171 -- : BFD_RELOC_SH_IMM_MEDLOW16
4172 -- : BFD_RELOC_SH_IMM_MEDLOW16_PCREL
4173 -- : BFD_RELOC_SH_IMM_MEDHI16
4174 -- : BFD_RELOC_SH_IMM_MEDHI16_PCREL
4175 -- : BFD_RELOC_SH_IMM_HI16
4176 -- : BFD_RELOC_SH_IMM_HI16_PCREL
4177 -- : BFD_RELOC_SH_PT_16
4178 -- : BFD_RELOC_SH_TLS_GD_32
4179 -- : BFD_RELOC_SH_TLS_LD_32
4180 -- : BFD_RELOC_SH_TLS_LDO_32
4181 -- : BFD_RELOC_SH_TLS_IE_32
4182 -- : BFD_RELOC_SH_TLS_LE_32
4183 -- : BFD_RELOC_SH_TLS_DTPMOD32
4184 -- : BFD_RELOC_SH_TLS_DTPOFF32
4185 -- : BFD_RELOC_SH_TLS_TPOFF32
4186 Renesas / SuperH SH relocs. Not all of these appear in object
4189 -- : BFD_RELOC_ARC_B22_PCREL
4190 ARC Cores relocs. ARC 22 bit pc-relative branch. The lowest two
4191 bits must be zero and are not stored in the instruction. The high
4192 20 bits are installed in bits 26 through 7 of the instruction.
4194 -- : BFD_RELOC_ARC_B26
4195 ARC 26 bit absolute branch. The lowest two bits must be zero and
4196 are not stored in the instruction. The high 24 bits are installed
4197 in bits 23 through 0.
4199 -- : BFD_RELOC_BFIN_16_IMM
4200 ADI Blackfin 16 bit immediate absolute reloc.
4202 -- : BFD_RELOC_BFIN_16_HIGH
4203 ADI Blackfin 16 bit immediate absolute reloc higher 16 bits.
4205 -- : BFD_RELOC_BFIN_4_PCREL
4206 ADI Blackfin 'a' part of LSETUP.
4208 -- : BFD_RELOC_BFIN_5_PCREL
4211 -- : BFD_RELOC_BFIN_16_LOW
4212 ADI Blackfin 16 bit immediate absolute reloc lower 16 bits.
4214 -- : BFD_RELOC_BFIN_10_PCREL
4217 -- : BFD_RELOC_BFIN_11_PCREL
4218 ADI Blackfin 'b' part of LSETUP.
4220 -- : BFD_RELOC_BFIN_12_PCREL_JUMP
4223 -- : BFD_RELOC_BFIN_12_PCREL_JUMP_S
4224 ADI Blackfin Short jump, pcrel.
4226 -- : BFD_RELOC_BFIN_24_PCREL_CALL_X
4227 ADI Blackfin Call.x not implemented.
4229 -- : BFD_RELOC_BFIN_24_PCREL_JUMP_L
4230 ADI Blackfin Long Jump pcrel.
4232 -- : BFD_RELOC_BFIN_GOT17M4
4233 -- : BFD_RELOC_BFIN_GOTHI
4234 -- : BFD_RELOC_BFIN_GOTLO
4235 -- : BFD_RELOC_BFIN_FUNCDESC
4236 -- : BFD_RELOC_BFIN_FUNCDESC_GOT17M4
4237 -- : BFD_RELOC_BFIN_FUNCDESC_GOTHI
4238 -- : BFD_RELOC_BFIN_FUNCDESC_GOTLO
4239 -- : BFD_RELOC_BFIN_FUNCDESC_VALUE
4240 -- : BFD_RELOC_BFIN_FUNCDESC_GOTOFF17M4
4241 -- : BFD_RELOC_BFIN_FUNCDESC_GOTOFFHI
4242 -- : BFD_RELOC_BFIN_FUNCDESC_GOTOFFLO
4243 -- : BFD_RELOC_BFIN_GOTOFF17M4
4244 -- : BFD_RELOC_BFIN_GOTOFFHI
4245 -- : BFD_RELOC_BFIN_GOTOFFLO
4246 ADI Blackfin FD-PIC relocations.
4248 -- : BFD_RELOC_BFIN_GOT
4249 ADI Blackfin GOT relocation.
4251 -- : BFD_RELOC_BFIN_PLTPC
4252 ADI Blackfin PLTPC relocation.
4254 -- : BFD_ARELOC_BFIN_PUSH
4255 ADI Blackfin arithmetic relocation.
4257 -- : BFD_ARELOC_BFIN_CONST
4258 ADI Blackfin arithmetic relocation.
4260 -- : BFD_ARELOC_BFIN_ADD
4261 ADI Blackfin arithmetic relocation.
4263 -- : BFD_ARELOC_BFIN_SUB
4264 ADI Blackfin arithmetic relocation.
4266 -- : BFD_ARELOC_BFIN_MULT
4267 ADI Blackfin arithmetic relocation.
4269 -- : BFD_ARELOC_BFIN_DIV
4270 ADI Blackfin arithmetic relocation.
4272 -- : BFD_ARELOC_BFIN_MOD
4273 ADI Blackfin arithmetic relocation.
4275 -- : BFD_ARELOC_BFIN_LSHIFT
4276 ADI Blackfin arithmetic relocation.
4278 -- : BFD_ARELOC_BFIN_RSHIFT
4279 ADI Blackfin arithmetic relocation.
4281 -- : BFD_ARELOC_BFIN_AND
4282 ADI Blackfin arithmetic relocation.
4284 -- : BFD_ARELOC_BFIN_OR
4285 ADI Blackfin arithmetic relocation.
4287 -- : BFD_ARELOC_BFIN_XOR
4288 ADI Blackfin arithmetic relocation.
4290 -- : BFD_ARELOC_BFIN_LAND
4291 ADI Blackfin arithmetic relocation.
4293 -- : BFD_ARELOC_BFIN_LOR
4294 ADI Blackfin arithmetic relocation.
4296 -- : BFD_ARELOC_BFIN_LEN
4297 ADI Blackfin arithmetic relocation.
4299 -- : BFD_ARELOC_BFIN_NEG
4300 ADI Blackfin arithmetic relocation.
4302 -- : BFD_ARELOC_BFIN_COMP
4303 ADI Blackfin arithmetic relocation.
4305 -- : BFD_ARELOC_BFIN_PAGE
4306 ADI Blackfin arithmetic relocation.
4308 -- : BFD_ARELOC_BFIN_HWPAGE
4309 ADI Blackfin arithmetic relocation.
4311 -- : BFD_ARELOC_BFIN_ADDR
4312 ADI Blackfin arithmetic relocation.
4314 -- : BFD_RELOC_D10V_10_PCREL_R
4315 Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2
4316 bits assumed to be 0.
4318 -- : BFD_RELOC_D10V_10_PCREL_L
4319 Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2
4320 bits assumed to be 0. This is the same as the previous reloc
4321 except it is in the left container, i.e., shifted left 15 bits.
4323 -- : BFD_RELOC_D10V_18
4324 This is an 18-bit reloc with the right 2 bits assumed to be 0.
4326 -- : BFD_RELOC_D10V_18_PCREL
4327 This is an 18-bit reloc with the right 2 bits assumed to be 0.
4329 -- : BFD_RELOC_D30V_6
4330 Mitsubishi D30V relocs. This is a 6-bit absolute reloc.
4332 -- : BFD_RELOC_D30V_9_PCREL
4333 This is a 6-bit pc-relative reloc with the right 3 bits assumed to
4336 -- : BFD_RELOC_D30V_9_PCREL_R
4337 This is a 6-bit pc-relative reloc with the right 3 bits assumed to
4338 be 0. Same as the previous reloc but on the right side of the
4341 -- : BFD_RELOC_D30V_15
4342 This is a 12-bit absolute reloc with the right 3 bitsassumed to be
4345 -- : BFD_RELOC_D30V_15_PCREL
4346 This is a 12-bit pc-relative reloc with the right 3 bits assumed
4349 -- : BFD_RELOC_D30V_15_PCREL_R
4350 This is a 12-bit pc-relative reloc with the right 3 bits assumed
4351 to be 0. Same as the previous reloc but on the right side of the
4354 -- : BFD_RELOC_D30V_21
4355 This is an 18-bit absolute reloc with the right 3 bits assumed to
4358 -- : BFD_RELOC_D30V_21_PCREL
4359 This is an 18-bit pc-relative reloc with the right 3 bits assumed
4362 -- : BFD_RELOC_D30V_21_PCREL_R
4363 This is an 18-bit pc-relative reloc with the right 3 bits assumed
4364 to be 0. Same as the previous reloc but on the right side of the
4367 -- : BFD_RELOC_D30V_32
4368 This is a 32-bit absolute reloc.
4370 -- : BFD_RELOC_D30V_32_PCREL
4371 This is a 32-bit pc-relative reloc.
4373 -- : BFD_RELOC_DLX_HI16_S
4376 -- : BFD_RELOC_DLX_LO16
4379 -- : BFD_RELOC_DLX_JMP26
4382 -- : BFD_RELOC_M32C_HI8
4383 -- : BFD_RELOC_M32C_RL_JUMP
4384 -- : BFD_RELOC_M32C_RL_1ADDR
4385 -- : BFD_RELOC_M32C_RL_2ADDR
4386 Renesas M16C/M32C Relocations.
4388 -- : BFD_RELOC_M32R_24
4389 Renesas M32R (formerly Mitsubishi M32R) relocs. This is a 24 bit
4392 -- : BFD_RELOC_M32R_10_PCREL
4393 This is a 10-bit pc-relative reloc with the right 2 bits assumed
4396 -- : BFD_RELOC_M32R_18_PCREL
4397 This is an 18-bit reloc with the right 2 bits assumed to be 0.
4399 -- : BFD_RELOC_M32R_26_PCREL
4400 This is a 26-bit reloc with the right 2 bits assumed to be 0.
4402 -- : BFD_RELOC_M32R_HI16_ULO
4403 This is a 16-bit reloc containing the high 16 bits of an address
4404 used when the lower 16 bits are treated as unsigned.
4406 -- : BFD_RELOC_M32R_HI16_SLO
4407 This is a 16-bit reloc containing the high 16 bits of an address
4408 used when the lower 16 bits are treated as signed.
4410 -- : BFD_RELOC_M32R_LO16
4411 This is a 16-bit reloc containing the lower 16 bits of an address.
4413 -- : BFD_RELOC_M32R_SDA16
4414 This is a 16-bit reloc containing the small data area offset for
4415 use in add3, load, and store instructions.
4417 -- : BFD_RELOC_M32R_GOT24
4418 -- : BFD_RELOC_M32R_26_PLTREL
4419 -- : BFD_RELOC_M32R_COPY
4420 -- : BFD_RELOC_M32R_GLOB_DAT
4421 -- : BFD_RELOC_M32R_JMP_SLOT
4422 -- : BFD_RELOC_M32R_RELATIVE
4423 -- : BFD_RELOC_M32R_GOTOFF
4424 -- : BFD_RELOC_M32R_GOTOFF_HI_ULO
4425 -- : BFD_RELOC_M32R_GOTOFF_HI_SLO
4426 -- : BFD_RELOC_M32R_GOTOFF_LO
4427 -- : BFD_RELOC_M32R_GOTPC24
4428 -- : BFD_RELOC_M32R_GOT16_HI_ULO
4429 -- : BFD_RELOC_M32R_GOT16_HI_SLO
4430 -- : BFD_RELOC_M32R_GOT16_LO
4431 -- : BFD_RELOC_M32R_GOTPC_HI_ULO
4432 -- : BFD_RELOC_M32R_GOTPC_HI_SLO
4433 -- : BFD_RELOC_M32R_GOTPC_LO
4436 -- : BFD_RELOC_V850_9_PCREL
4437 This is a 9-bit reloc
4439 -- : BFD_RELOC_V850_22_PCREL
4440 This is a 22-bit reloc
4442 -- : BFD_RELOC_V850_SDA_16_16_OFFSET
4443 This is a 16 bit offset from the short data area pointer.
4445 -- : BFD_RELOC_V850_SDA_15_16_OFFSET
4446 This is a 16 bit offset (of which only 15 bits are used) from the
4447 short data area pointer.
4449 -- : BFD_RELOC_V850_ZDA_16_16_OFFSET
4450 This is a 16 bit offset from the zero data area pointer.
4452 -- : BFD_RELOC_V850_ZDA_15_16_OFFSET
4453 This is a 16 bit offset (of which only 15 bits are used) from the
4454 zero data area pointer.
4456 -- : BFD_RELOC_V850_TDA_6_8_OFFSET
4457 This is an 8 bit offset (of which only 6 bits are used) from the
4458 tiny data area pointer.
4460 -- : BFD_RELOC_V850_TDA_7_8_OFFSET
4461 This is an 8bit offset (of which only 7 bits are used) from the
4462 tiny data area pointer.
4464 -- : BFD_RELOC_V850_TDA_7_7_OFFSET
4465 This is a 7 bit offset from the tiny data area pointer.
4467 -- : BFD_RELOC_V850_TDA_16_16_OFFSET
4468 This is a 16 bit offset from the tiny data area pointer.
4470 -- : BFD_RELOC_V850_TDA_4_5_OFFSET
4471 This is a 5 bit offset (of which only 4 bits are used) from the
4472 tiny data area pointer.
4474 -- : BFD_RELOC_V850_TDA_4_4_OFFSET
4475 This is a 4 bit offset from the tiny data area pointer.
4477 -- : BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET
4478 This is a 16 bit offset from the short data area pointer, with the
4479 bits placed non-contiguously in the instruction.
4481 -- : BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET
4482 This is a 16 bit offset from the zero data area pointer, with the
4483 bits placed non-contiguously in the instruction.
4485 -- : BFD_RELOC_V850_CALLT_6_7_OFFSET
4486 This is a 6 bit offset from the call table base pointer.
4488 -- : BFD_RELOC_V850_CALLT_16_16_OFFSET
4489 This is a 16 bit offset from the call table base pointer.
4491 -- : BFD_RELOC_V850_LONGCALL
4492 Used for relaxing indirect function calls.
4494 -- : BFD_RELOC_V850_LONGJUMP
4495 Used for relaxing indirect jumps.
4497 -- : BFD_RELOC_V850_ALIGN
4498 Used to maintain alignment whilst relaxing.
4500 -- : BFD_RELOC_V850_LO16_SPLIT_OFFSET
4501 This is a variation of BFD_RELOC_LO16 that can be used in v850e
4504 -- : BFD_RELOC_MN10300_32_PCREL
4505 This is a 32bit pcrel reloc for the mn10300, offset by two bytes
4508 -- : BFD_RELOC_MN10300_16_PCREL
4509 This is a 16bit pcrel reloc for the mn10300, offset by two bytes
4512 -- : BFD_RELOC_TIC30_LDP
4513 This is a 8bit DP reloc for the tms320c30, where the most
4514 significant 8 bits of a 24 bit word are placed into the least
4515 significant 8 bits of the opcode.
4517 -- : BFD_RELOC_TIC54X_PARTLS7
4518 This is a 7bit reloc for the tms320c54x, where the least
4519 significant 7 bits of a 16 bit word are placed into the least
4520 significant 7 bits of the opcode.
4522 -- : BFD_RELOC_TIC54X_PARTMS9
4523 This is a 9bit DP reloc for the tms320c54x, where the most
4524 significant 9 bits of a 16 bit word are placed into the least
4525 significant 9 bits of the opcode.
4527 -- : BFD_RELOC_TIC54X_23
4528 This is an extended address 23-bit reloc for the tms320c54x.
4530 -- : BFD_RELOC_TIC54X_16_OF_23
4531 This is a 16-bit reloc for the tms320c54x, where the least
4532 significant 16 bits of a 23-bit extended address are placed into
4535 -- : BFD_RELOC_TIC54X_MS7_OF_23
4536 This is a reloc for the tms320c54x, where the most significant 7
4537 bits of a 23-bit extended address are placed into the opcode.
4539 -- : BFD_RELOC_FR30_48
4540 This is a 48 bit reloc for the FR30 that stores 32 bits.
4542 -- : BFD_RELOC_FR30_20
4543 This is a 32 bit reloc for the FR30 that stores 20 bits split up
4546 -- : BFD_RELOC_FR30_6_IN_4
4547 This is a 16 bit reloc for the FR30 that stores a 6 bit word
4550 -- : BFD_RELOC_FR30_8_IN_8
4551 This is a 16 bit reloc for the FR30 that stores an 8 bit byte
4554 -- : BFD_RELOC_FR30_9_IN_8
4555 This is a 16 bit reloc for the FR30 that stores a 9 bit short
4558 -- : BFD_RELOC_FR30_10_IN_8
4559 This is a 16 bit reloc for the FR30 that stores a 10 bit word
4562 -- : BFD_RELOC_FR30_9_PCREL
4563 This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative
4564 short offset into 8 bits.
4566 -- : BFD_RELOC_FR30_12_PCREL
4567 This is a 16 bit reloc for the FR30 that stores a 12 bit pc
4568 relative short offset into 11 bits.
4570 -- : BFD_RELOC_MCORE_PCREL_IMM8BY4
4571 -- : BFD_RELOC_MCORE_PCREL_IMM11BY2
4572 -- : BFD_RELOC_MCORE_PCREL_IMM4BY2
4573 -- : BFD_RELOC_MCORE_PCREL_32
4574 -- : BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2
4575 -- : BFD_RELOC_MCORE_RVA
4576 Motorola Mcore relocations.
4578 -- : BFD_RELOC_MEP_8
4579 -- : BFD_RELOC_MEP_16
4580 -- : BFD_RELOC_MEP_32
4581 -- : BFD_RELOC_MEP_PCREL8A2
4582 -- : BFD_RELOC_MEP_PCREL12A2
4583 -- : BFD_RELOC_MEP_PCREL17A2
4584 -- : BFD_RELOC_MEP_PCREL24A2
4585 -- : BFD_RELOC_MEP_PCABS24A2
4586 -- : BFD_RELOC_MEP_LOW16
4587 -- : BFD_RELOC_MEP_HI16U
4588 -- : BFD_RELOC_MEP_HI16S
4589 -- : BFD_RELOC_MEP_GPREL
4590 -- : BFD_RELOC_MEP_TPREL
4591 -- : BFD_RELOC_MEP_TPREL7
4592 -- : BFD_RELOC_MEP_TPREL7A2
4593 -- : BFD_RELOC_MEP_TPREL7A4
4594 -- : BFD_RELOC_MEP_UIMM24
4595 -- : BFD_RELOC_MEP_ADDR24A4
4596 -- : BFD_RELOC_MEP_GNU_VTINHERIT
4597 -- : BFD_RELOC_MEP_GNU_VTENTRY
4598 Toshiba Media Processor Relocations.
4600 -- : BFD_RELOC_MMIX_GETA
4601 -- : BFD_RELOC_MMIX_GETA_1
4602 -- : BFD_RELOC_MMIX_GETA_2
4603 -- : BFD_RELOC_MMIX_GETA_3
4604 These are relocations for the GETA instruction.
4606 -- : BFD_RELOC_MMIX_CBRANCH
4607 -- : BFD_RELOC_MMIX_CBRANCH_J
4608 -- : BFD_RELOC_MMIX_CBRANCH_1
4609 -- : BFD_RELOC_MMIX_CBRANCH_2
4610 -- : BFD_RELOC_MMIX_CBRANCH_3
4611 These are relocations for a conditional branch instruction.
4613 -- : BFD_RELOC_MMIX_PUSHJ
4614 -- : BFD_RELOC_MMIX_PUSHJ_1
4615 -- : BFD_RELOC_MMIX_PUSHJ_2
4616 -- : BFD_RELOC_MMIX_PUSHJ_3
4617 -- : BFD_RELOC_MMIX_PUSHJ_STUBBABLE
4618 These are relocations for the PUSHJ instruction.
4620 -- : BFD_RELOC_MMIX_JMP
4621 -- : BFD_RELOC_MMIX_JMP_1
4622 -- : BFD_RELOC_MMIX_JMP_2
4623 -- : BFD_RELOC_MMIX_JMP_3
4624 These are relocations for the JMP instruction.
4626 -- : BFD_RELOC_MMIX_ADDR19
4627 This is a relocation for a relative address as in a GETA
4628 instruction or a branch.
4630 -- : BFD_RELOC_MMIX_ADDR27
4631 This is a relocation for a relative address as in a JMP
4634 -- : BFD_RELOC_MMIX_REG_OR_BYTE
4635 This is a relocation for an instruction field that may be a general
4636 register or a value 0..255.
4638 -- : BFD_RELOC_MMIX_REG
4639 This is a relocation for an instruction field that may be a general
4642 -- : BFD_RELOC_MMIX_BASE_PLUS_OFFSET
4643 This is a relocation for two instruction fields holding a register
4644 and an offset, the equivalent of the relocation.
4646 -- : BFD_RELOC_MMIX_LOCAL
4647 This relocation is an assertion that the expression is not
4648 allocated as a global register. It does not modify contents.
4650 -- : BFD_RELOC_AVR_7_PCREL
4651 This is a 16 bit reloc for the AVR that stores 8 bit pc relative
4652 short offset into 7 bits.
4654 -- : BFD_RELOC_AVR_13_PCREL
4655 This is a 16 bit reloc for the AVR that stores 13 bit pc relative
4656 short offset into 12 bits.
4658 -- : BFD_RELOC_AVR_16_PM
4659 This is a 16 bit reloc for the AVR that stores 17 bit value
4660 (usually program memory address) into 16 bits.
4662 -- : BFD_RELOC_AVR_LO8_LDI
4663 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
4664 data memory address) into 8 bit immediate value of LDI insn.
4666 -- : BFD_RELOC_AVR_HI8_LDI
4667 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8
4668 bit of data memory address) into 8 bit immediate value of LDI insn.
4670 -- : BFD_RELOC_AVR_HH8_LDI
4671 This is a 16 bit reloc for the AVR that stores 8 bit value (most
4672 high 8 bit of program memory address) into 8 bit immediate value
4675 -- : BFD_RELOC_AVR_MS8_LDI
4676 This is a 16 bit reloc for the AVR that stores 8 bit value (most
4677 high 8 bit of 32 bit value) into 8 bit immediate value of LDI insn.
4679 -- : BFD_RELOC_AVR_LO8_LDI_NEG
4680 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4681 (usually data memory address) into 8 bit immediate value of SUBI
4684 -- : BFD_RELOC_AVR_HI8_LDI_NEG
4685 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4686 (high 8 bit of data memory address) into 8 bit immediate value of
4689 -- : BFD_RELOC_AVR_HH8_LDI_NEG
4690 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4691 (most high 8 bit of program memory address) into 8 bit immediate
4692 value of LDI or SUBI insn.
4694 -- : BFD_RELOC_AVR_MS8_LDI_NEG
4695 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4696 (msb of 32 bit value) into 8 bit immediate value of LDI insn.
4698 -- : BFD_RELOC_AVR_LO8_LDI_PM
4699 This is a 16 bit reloc for the AVR that stores 8 bit value (usually
4700 command address) into 8 bit immediate value of LDI insn.
4702 -- : BFD_RELOC_AVR_LO8_LDI_GS
4703 This is a 16 bit reloc for the AVR that stores 8 bit value
4704 (command address) into 8 bit immediate value of LDI insn. If the
4705 address is beyond the 128k boundary, the linker inserts a jump
4706 stub for this reloc in the lower 128k.
4708 -- : BFD_RELOC_AVR_HI8_LDI_PM
4709 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8
4710 bit of command address) into 8 bit immediate value of LDI insn.
4712 -- : BFD_RELOC_AVR_HI8_LDI_GS
4713 This is a 16 bit reloc for the AVR that stores 8 bit value (high 8
4714 bit of command address) into 8 bit immediate value of LDI insn.
4715 If the address is beyond the 128k boundary, the linker inserts a
4716 jump stub for this reloc below 128k.
4718 -- : BFD_RELOC_AVR_HH8_LDI_PM
4719 This is a 16 bit reloc for the AVR that stores 8 bit value (most
4720 high 8 bit of command address) into 8 bit immediate value of LDI
4723 -- : BFD_RELOC_AVR_LO8_LDI_PM_NEG
4724 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4725 (usually command address) into 8 bit immediate value of SUBI insn.
4727 -- : BFD_RELOC_AVR_HI8_LDI_PM_NEG
4728 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4729 (high 8 bit of 16 bit command address) into 8 bit immediate value
4732 -- : BFD_RELOC_AVR_HH8_LDI_PM_NEG
4733 This is a 16 bit reloc for the AVR that stores negated 8 bit value
4734 (high 6 bit of 22 bit command address) into 8 bit immediate value
4737 -- : BFD_RELOC_AVR_CALL
4738 This is a 32 bit reloc for the AVR that stores 23 bit value into
4741 -- : BFD_RELOC_AVR_LDI
4742 This is a 16 bit reloc for the AVR that stores all needed bits for
4743 absolute addressing with ldi with overflow check to linktime
4745 -- : BFD_RELOC_AVR_6
4746 This is a 6 bit reloc for the AVR that stores offset for ldd/std
4749 -- : BFD_RELOC_AVR_6_ADIW
4750 This is a 6 bit reloc for the AVR that stores offset for adiw/sbiw
4753 -- : BFD_RELOC_390_12
4756 -- : BFD_RELOC_390_GOT12
4759 -- : BFD_RELOC_390_PLT32
4760 32 bit PC relative PLT address.
4762 -- : BFD_RELOC_390_COPY
4763 Copy symbol at runtime.
4765 -- : BFD_RELOC_390_GLOB_DAT
4768 -- : BFD_RELOC_390_JMP_SLOT
4771 -- : BFD_RELOC_390_RELATIVE
4772 Adjust by program base.
4774 -- : BFD_RELOC_390_GOTPC
4775 32 bit PC relative offset to GOT.
4777 -- : BFD_RELOC_390_GOT16
4780 -- : BFD_RELOC_390_PC16DBL
4781 PC relative 16 bit shifted by 1.
4783 -- : BFD_RELOC_390_PLT16DBL
4784 16 bit PC rel. PLT shifted by 1.
4786 -- : BFD_RELOC_390_PC32DBL
4787 PC relative 32 bit shifted by 1.
4789 -- : BFD_RELOC_390_PLT32DBL
4790 32 bit PC rel. PLT shifted by 1.
4792 -- : BFD_RELOC_390_GOTPCDBL
4793 32 bit PC rel. GOT shifted by 1.
4795 -- : BFD_RELOC_390_GOT64
4798 -- : BFD_RELOC_390_PLT64
4799 64 bit PC relative PLT address.
4801 -- : BFD_RELOC_390_GOTENT
4802 32 bit rel. offset to GOT entry.
4804 -- : BFD_RELOC_390_GOTOFF64
4805 64 bit offset to GOT.
4807 -- : BFD_RELOC_390_GOTPLT12
4808 12-bit offset to symbol-entry within GOT, with PLT handling.
4810 -- : BFD_RELOC_390_GOTPLT16
4811 16-bit offset to symbol-entry within GOT, with PLT handling.
4813 -- : BFD_RELOC_390_GOTPLT32
4814 32-bit offset to symbol-entry within GOT, with PLT handling.
4816 -- : BFD_RELOC_390_GOTPLT64
4817 64-bit offset to symbol-entry within GOT, with PLT handling.
4819 -- : BFD_RELOC_390_GOTPLTENT
4820 32-bit rel. offset to symbol-entry within GOT, with PLT handling.
4822 -- : BFD_RELOC_390_PLTOFF16
4823 16-bit rel. offset from the GOT to a PLT entry.
4825 -- : BFD_RELOC_390_PLTOFF32
4826 32-bit rel. offset from the GOT to a PLT entry.
4828 -- : BFD_RELOC_390_PLTOFF64
4829 64-bit rel. offset from the GOT to a PLT entry.
4831 -- : BFD_RELOC_390_TLS_LOAD
4832 -- : BFD_RELOC_390_TLS_GDCALL
4833 -- : BFD_RELOC_390_TLS_LDCALL
4834 -- : BFD_RELOC_390_TLS_GD32
4835 -- : BFD_RELOC_390_TLS_GD64
4836 -- : BFD_RELOC_390_TLS_GOTIE12
4837 -- : BFD_RELOC_390_TLS_GOTIE32
4838 -- : BFD_RELOC_390_TLS_GOTIE64
4839 -- : BFD_RELOC_390_TLS_LDM32
4840 -- : BFD_RELOC_390_TLS_LDM64
4841 -- : BFD_RELOC_390_TLS_IE32
4842 -- : BFD_RELOC_390_TLS_IE64
4843 -- : BFD_RELOC_390_TLS_IEENT
4844 -- : BFD_RELOC_390_TLS_LE32
4845 -- : BFD_RELOC_390_TLS_LE64
4846 -- : BFD_RELOC_390_TLS_LDO32
4847 -- : BFD_RELOC_390_TLS_LDO64
4848 -- : BFD_RELOC_390_TLS_DTPMOD
4849 -- : BFD_RELOC_390_TLS_DTPOFF
4850 -- : BFD_RELOC_390_TLS_TPOFF
4851 s390 tls relocations.
4853 -- : BFD_RELOC_390_20
4854 -- : BFD_RELOC_390_GOT20
4855 -- : BFD_RELOC_390_GOTPLT20
4856 -- : BFD_RELOC_390_TLS_GOTIE20
4857 Long displacement extension.
4859 -- : BFD_RELOC_SCORE_GPREL15
4860 Score relocations Low 16 bit for load/store
4862 -- : BFD_RELOC_SCORE_DUMMY2
4863 -- : BFD_RELOC_SCORE_JMP
4864 This is a 24-bit reloc with the right 1 bit assumed to be 0
4866 -- : BFD_RELOC_SCORE_BRANCH
4867 This is a 19-bit reloc with the right 1 bit assumed to be 0
4869 -- : BFD_RELOC_SCORE_IMM30
4870 This is a 32-bit reloc for 48-bit instructions.
4872 -- : BFD_RELOC_SCORE_IMM32
4873 This is a 32-bit reloc for 48-bit instructions.
4875 -- : BFD_RELOC_SCORE16_JMP
4876 This is a 11-bit reloc with the right 1 bit assumed to be 0
4878 -- : BFD_RELOC_SCORE16_BRANCH
4879 This is a 8-bit reloc with the right 1 bit assumed to be 0
4881 -- : BFD_RELOC_SCORE_BCMP
4882 This is a 9-bit reloc with the right 1 bit assumed to be 0
4884 -- : BFD_RELOC_SCORE_GOT15
4885 -- : BFD_RELOC_SCORE_GOT_LO16
4886 -- : BFD_RELOC_SCORE_CALL15
4887 -- : BFD_RELOC_SCORE_DUMMY_HI16
4888 Undocumented Score relocs
4890 -- : BFD_RELOC_IP2K_FR9
4891 Scenix IP2K - 9-bit register number / data address
4893 -- : BFD_RELOC_IP2K_BANK
4894 Scenix IP2K - 4-bit register/data bank number
4896 -- : BFD_RELOC_IP2K_ADDR16CJP
4897 Scenix IP2K - low 13 bits of instruction word address
4899 -- : BFD_RELOC_IP2K_PAGE3
4900 Scenix IP2K - high 3 bits of instruction word address
4902 -- : BFD_RELOC_IP2K_LO8DATA
4903 -- : BFD_RELOC_IP2K_HI8DATA
4904 -- : BFD_RELOC_IP2K_EX8DATA
4905 Scenix IP2K - ext/low/high 8 bits of data address
4907 -- : BFD_RELOC_IP2K_LO8INSN
4908 -- : BFD_RELOC_IP2K_HI8INSN
4909 Scenix IP2K - low/high 8 bits of instruction word address
4911 -- : BFD_RELOC_IP2K_PC_SKIP
4912 Scenix IP2K - even/odd PC modifier to modify snb pcl.0
4914 -- : BFD_RELOC_IP2K_TEXT
4915 Scenix IP2K - 16 bit word address in text section.
4917 -- : BFD_RELOC_IP2K_FR_OFFSET
4918 Scenix IP2K - 7-bit sp or dp offset
4920 -- : BFD_RELOC_VPE4KMATH_DATA
4921 -- : BFD_RELOC_VPE4KMATH_INSN
4922 Scenix VPE4K coprocessor - data/insn-space addressing
4924 -- : BFD_RELOC_VTABLE_INHERIT
4925 -- : BFD_RELOC_VTABLE_ENTRY
4926 These two relocations are used by the linker to determine which of
4927 the entries in a C++ virtual function table are actually used.
4928 When the -gc-sections option is given, the linker will zero out
4929 the entries that are not used, so that the code for those
4930 functions need not be included in the output.
4932 VTABLE_INHERIT is a zero-space relocation used to describe to the
4933 linker the inheritance tree of a C++ virtual function table. The
4934 relocation's symbol should be the parent class' vtable, and the
4935 relocation should be located at the child vtable.
4937 VTABLE_ENTRY is a zero-space relocation that describes the use of a
4938 virtual function table entry. The reloc's symbol should refer to
4939 the table of the class mentioned in the code. Off of that base,
4940 an offset describes the entry that is being used. For Rela hosts,
4941 this offset is stored in the reloc's addend. For Rel hosts, we
4942 are forced to put this offset in the reloc's section offset.
4944 -- : BFD_RELOC_IA64_IMM14
4945 -- : BFD_RELOC_IA64_IMM22
4946 -- : BFD_RELOC_IA64_IMM64
4947 -- : BFD_RELOC_IA64_DIR32MSB
4948 -- : BFD_RELOC_IA64_DIR32LSB
4949 -- : BFD_RELOC_IA64_DIR64MSB
4950 -- : BFD_RELOC_IA64_DIR64LSB
4951 -- : BFD_RELOC_IA64_GPREL22
4952 -- : BFD_RELOC_IA64_GPREL64I
4953 -- : BFD_RELOC_IA64_GPREL32MSB
4954 -- : BFD_RELOC_IA64_GPREL32LSB
4955 -- : BFD_RELOC_IA64_GPREL64MSB
4956 -- : BFD_RELOC_IA64_GPREL64LSB
4957 -- : BFD_RELOC_IA64_LTOFF22
4958 -- : BFD_RELOC_IA64_LTOFF64I
4959 -- : BFD_RELOC_IA64_PLTOFF22
4960 -- : BFD_RELOC_IA64_PLTOFF64I
4961 -- : BFD_RELOC_IA64_PLTOFF64MSB
4962 -- : BFD_RELOC_IA64_PLTOFF64LSB
4963 -- : BFD_RELOC_IA64_FPTR64I
4964 -- : BFD_RELOC_IA64_FPTR32MSB
4965 -- : BFD_RELOC_IA64_FPTR32LSB
4966 -- : BFD_RELOC_IA64_FPTR64MSB
4967 -- : BFD_RELOC_IA64_FPTR64LSB
4968 -- : BFD_RELOC_IA64_PCREL21B
4969 -- : BFD_RELOC_IA64_PCREL21BI
4970 -- : BFD_RELOC_IA64_PCREL21M
4971 -- : BFD_RELOC_IA64_PCREL21F
4972 -- : BFD_RELOC_IA64_PCREL22
4973 -- : BFD_RELOC_IA64_PCREL60B
4974 -- : BFD_RELOC_IA64_PCREL64I
4975 -- : BFD_RELOC_IA64_PCREL32MSB
4976 -- : BFD_RELOC_IA64_PCREL32LSB
4977 -- : BFD_RELOC_IA64_PCREL64MSB
4978 -- : BFD_RELOC_IA64_PCREL64LSB
4979 -- : BFD_RELOC_IA64_LTOFF_FPTR22
4980 -- : BFD_RELOC_IA64_LTOFF_FPTR64I
4981 -- : BFD_RELOC_IA64_LTOFF_FPTR32MSB
4982 -- : BFD_RELOC_IA64_LTOFF_FPTR32LSB
4983 -- : BFD_RELOC_IA64_LTOFF_FPTR64MSB
4984 -- : BFD_RELOC_IA64_LTOFF_FPTR64LSB
4985 -- : BFD_RELOC_IA64_SEGREL32MSB
4986 -- : BFD_RELOC_IA64_SEGREL32LSB
4987 -- : BFD_RELOC_IA64_SEGREL64MSB
4988 -- : BFD_RELOC_IA64_SEGREL64LSB
4989 -- : BFD_RELOC_IA64_SECREL32MSB
4990 -- : BFD_RELOC_IA64_SECREL32LSB
4991 -- : BFD_RELOC_IA64_SECREL64MSB
4992 -- : BFD_RELOC_IA64_SECREL64LSB
4993 -- : BFD_RELOC_IA64_REL32MSB
4994 -- : BFD_RELOC_IA64_REL32LSB
4995 -- : BFD_RELOC_IA64_REL64MSB
4996 -- : BFD_RELOC_IA64_REL64LSB
4997 -- : BFD_RELOC_IA64_LTV32MSB
4998 -- : BFD_RELOC_IA64_LTV32LSB
4999 -- : BFD_RELOC_IA64_LTV64MSB
5000 -- : BFD_RELOC_IA64_LTV64LSB
5001 -- : BFD_RELOC_IA64_IPLTMSB
5002 -- : BFD_RELOC_IA64_IPLTLSB
5003 -- : BFD_RELOC_IA64_COPY
5004 -- : BFD_RELOC_IA64_LTOFF22X
5005 -- : BFD_RELOC_IA64_LDXMOV
5006 -- : BFD_RELOC_IA64_TPREL14
5007 -- : BFD_RELOC_IA64_TPREL22
5008 -- : BFD_RELOC_IA64_TPREL64I
5009 -- : BFD_RELOC_IA64_TPREL64MSB
5010 -- : BFD_RELOC_IA64_TPREL64LSB
5011 -- : BFD_RELOC_IA64_LTOFF_TPREL22
5012 -- : BFD_RELOC_IA64_DTPMOD64MSB
5013 -- : BFD_RELOC_IA64_DTPMOD64LSB
5014 -- : BFD_RELOC_IA64_LTOFF_DTPMOD22
5015 -- : BFD_RELOC_IA64_DTPREL14
5016 -- : BFD_RELOC_IA64_DTPREL22
5017 -- : BFD_RELOC_IA64_DTPREL64I
5018 -- : BFD_RELOC_IA64_DTPREL32MSB
5019 -- : BFD_RELOC_IA64_DTPREL32LSB
5020 -- : BFD_RELOC_IA64_DTPREL64MSB
5021 -- : BFD_RELOC_IA64_DTPREL64LSB
5022 -- : BFD_RELOC_IA64_LTOFF_DTPREL22
5023 Intel IA64 Relocations.
5025 -- : BFD_RELOC_M68HC11_HI8
5026 Motorola 68HC11 reloc. This is the 8 bit high part of an absolute
5029 -- : BFD_RELOC_M68HC11_LO8
5030 Motorola 68HC11 reloc. This is the 8 bit low part of an absolute
5033 -- : BFD_RELOC_M68HC11_3B
5034 Motorola 68HC11 reloc. This is the 3 bit of a value.
5036 -- : BFD_RELOC_M68HC11_RL_JUMP
5037 Motorola 68HC11 reloc. This reloc marks the beginning of a
5038 jump/call instruction. It is used for linker relaxation to
5039 correctly identify beginning of instruction and change some
5040 branches to use PC-relative addressing mode.
5042 -- : BFD_RELOC_M68HC11_RL_GROUP
5043 Motorola 68HC11 reloc. This reloc marks a group of several
5044 instructions that gcc generates and for which the linker
5045 relaxation pass can modify and/or remove some of them.
5047 -- : BFD_RELOC_M68HC11_LO16
5048 Motorola 68HC11 reloc. This is the 16-bit lower part of an
5049 address. It is used for 'call' instruction to specify the symbol
5050 address without any special transformation (due to memory bank
5053 -- : BFD_RELOC_M68HC11_PAGE
5054 Motorola 68HC11 reloc. This is a 8-bit reloc that specifies the
5055 page number of an address. It is used by 'call' instruction to
5056 specify the page number of the symbol.
5058 -- : BFD_RELOC_M68HC11_24
5059 Motorola 68HC11 reloc. This is a 24-bit reloc that represents the
5060 address with a 16-bit value and a 8-bit page number. The symbol
5061 address is transformed to follow the 16K memory bank of 68HC12
5062 (seen as mapped in the window).
5064 -- : BFD_RELOC_M68HC12_5B
5065 Motorola 68HC12 reloc. This is the 5 bits of a value.
5067 -- : BFD_RELOC_16C_NUM08
5068 -- : BFD_RELOC_16C_NUM08_C
5069 -- : BFD_RELOC_16C_NUM16
5070 -- : BFD_RELOC_16C_NUM16_C
5071 -- : BFD_RELOC_16C_NUM32
5072 -- : BFD_RELOC_16C_NUM32_C
5073 -- : BFD_RELOC_16C_DISP04
5074 -- : BFD_RELOC_16C_DISP04_C
5075 -- : BFD_RELOC_16C_DISP08
5076 -- : BFD_RELOC_16C_DISP08_C
5077 -- : BFD_RELOC_16C_DISP16
5078 -- : BFD_RELOC_16C_DISP16_C
5079 -- : BFD_RELOC_16C_DISP24
5080 -- : BFD_RELOC_16C_DISP24_C
5081 -- : BFD_RELOC_16C_DISP24a
5082 -- : BFD_RELOC_16C_DISP24a_C
5083 -- : BFD_RELOC_16C_REG04
5084 -- : BFD_RELOC_16C_REG04_C
5085 -- : BFD_RELOC_16C_REG04a
5086 -- : BFD_RELOC_16C_REG04a_C
5087 -- : BFD_RELOC_16C_REG14
5088 -- : BFD_RELOC_16C_REG14_C
5089 -- : BFD_RELOC_16C_REG16
5090 -- : BFD_RELOC_16C_REG16_C
5091 -- : BFD_RELOC_16C_REG20
5092 -- : BFD_RELOC_16C_REG20_C
5093 -- : BFD_RELOC_16C_ABS20
5094 -- : BFD_RELOC_16C_ABS20_C
5095 -- : BFD_RELOC_16C_ABS24
5096 -- : BFD_RELOC_16C_ABS24_C
5097 -- : BFD_RELOC_16C_IMM04
5098 -- : BFD_RELOC_16C_IMM04_C
5099 -- : BFD_RELOC_16C_IMM16
5100 -- : BFD_RELOC_16C_IMM16_C
5101 -- : BFD_RELOC_16C_IMM20
5102 -- : BFD_RELOC_16C_IMM20_C
5103 -- : BFD_RELOC_16C_IMM24
5104 -- : BFD_RELOC_16C_IMM24_C
5105 -- : BFD_RELOC_16C_IMM32
5106 -- : BFD_RELOC_16C_IMM32_C
5107 NS CR16C Relocations.
5109 -- : BFD_RELOC_CR16_NUM8
5110 -- : BFD_RELOC_CR16_NUM16
5111 -- : BFD_RELOC_CR16_NUM32
5112 -- : BFD_RELOC_CR16_NUM32a
5113 -- : BFD_RELOC_CR16_REGREL0
5114 -- : BFD_RELOC_CR16_REGREL4
5115 -- : BFD_RELOC_CR16_REGREL4a
5116 -- : BFD_RELOC_CR16_REGREL14
5117 -- : BFD_RELOC_CR16_REGREL14a
5118 -- : BFD_RELOC_CR16_REGREL16
5119 -- : BFD_RELOC_CR16_REGREL20
5120 -- : BFD_RELOC_CR16_REGREL20a
5121 -- : BFD_RELOC_CR16_ABS20
5122 -- : BFD_RELOC_CR16_ABS24
5123 -- : BFD_RELOC_CR16_IMM4
5124 -- : BFD_RELOC_CR16_IMM8
5125 -- : BFD_RELOC_CR16_IMM16
5126 -- : BFD_RELOC_CR16_IMM20
5127 -- : BFD_RELOC_CR16_IMM24
5128 -- : BFD_RELOC_CR16_IMM32
5129 -- : BFD_RELOC_CR16_IMM32a
5130 -- : BFD_RELOC_CR16_DISP4
5131 -- : BFD_RELOC_CR16_DISP8
5132 -- : BFD_RELOC_CR16_DISP16
5133 -- : BFD_RELOC_CR16_DISP20
5134 -- : BFD_RELOC_CR16_DISP24
5135 -- : BFD_RELOC_CR16_DISP24a
5136 -- : BFD_RELOC_CR16_SWITCH8
5137 -- : BFD_RELOC_CR16_SWITCH16
5138 -- : BFD_RELOC_CR16_SWITCH32
5139 -- : BFD_RELOC_CR16_GOT_REGREL20
5140 -- : BFD_RELOC_CR16_GOTC_REGREL20
5141 -- : BFD_RELOC_CR16_GLOB_DAT
5142 NS CR16 Relocations.
5144 -- : BFD_RELOC_CRX_REL4
5145 -- : BFD_RELOC_CRX_REL8
5146 -- : BFD_RELOC_CRX_REL8_CMP
5147 -- : BFD_RELOC_CRX_REL16
5148 -- : BFD_RELOC_CRX_REL24
5149 -- : BFD_RELOC_CRX_REL32
5150 -- : BFD_RELOC_CRX_REGREL12
5151 -- : BFD_RELOC_CRX_REGREL22
5152 -- : BFD_RELOC_CRX_REGREL28
5153 -- : BFD_RELOC_CRX_REGREL32
5154 -- : BFD_RELOC_CRX_ABS16
5155 -- : BFD_RELOC_CRX_ABS32
5156 -- : BFD_RELOC_CRX_NUM8
5157 -- : BFD_RELOC_CRX_NUM16
5158 -- : BFD_RELOC_CRX_NUM32
5159 -- : BFD_RELOC_CRX_IMM16
5160 -- : BFD_RELOC_CRX_IMM32
5161 -- : BFD_RELOC_CRX_SWITCH8
5162 -- : BFD_RELOC_CRX_SWITCH16
5163 -- : BFD_RELOC_CRX_SWITCH32
5166 -- : BFD_RELOC_CRIS_BDISP8
5167 -- : BFD_RELOC_CRIS_UNSIGNED_5
5168 -- : BFD_RELOC_CRIS_SIGNED_6
5169 -- : BFD_RELOC_CRIS_UNSIGNED_6
5170 -- : BFD_RELOC_CRIS_SIGNED_8
5171 -- : BFD_RELOC_CRIS_UNSIGNED_8
5172 -- : BFD_RELOC_CRIS_SIGNED_16
5173 -- : BFD_RELOC_CRIS_UNSIGNED_16
5174 -- : BFD_RELOC_CRIS_LAPCQ_OFFSET
5175 -- : BFD_RELOC_CRIS_UNSIGNED_4
5176 These relocs are only used within the CRIS assembler. They are not
5177 (at present) written to any object files.
5179 -- : BFD_RELOC_CRIS_COPY
5180 -- : BFD_RELOC_CRIS_GLOB_DAT
5181 -- : BFD_RELOC_CRIS_JUMP_SLOT
5182 -- : BFD_RELOC_CRIS_RELATIVE
5183 Relocs used in ELF shared libraries for CRIS.
5185 -- : BFD_RELOC_CRIS_32_GOT
5186 32-bit offset to symbol-entry within GOT.
5188 -- : BFD_RELOC_CRIS_16_GOT
5189 16-bit offset to symbol-entry within GOT.
5191 -- : BFD_RELOC_CRIS_32_GOTPLT
5192 32-bit offset to symbol-entry within GOT, with PLT handling.
5194 -- : BFD_RELOC_CRIS_16_GOTPLT
5195 16-bit offset to symbol-entry within GOT, with PLT handling.
5197 -- : BFD_RELOC_CRIS_32_GOTREL
5198 32-bit offset to symbol, relative to GOT.
5200 -- : BFD_RELOC_CRIS_32_PLT_GOTREL
5201 32-bit offset to symbol with PLT entry, relative to GOT.
5203 -- : BFD_RELOC_CRIS_32_PLT_PCREL
5204 32-bit offset to symbol with PLT entry, relative to this
5207 -- : BFD_RELOC_CRIS_32_GOT_GD
5208 -- : BFD_RELOC_CRIS_16_GOT_GD
5209 -- : BFD_RELOC_CRIS_32_GD
5210 -- : BFD_RELOC_CRIS_DTP
5211 -- : BFD_RELOC_CRIS_32_DTPREL
5212 -- : BFD_RELOC_CRIS_16_DTPREL
5213 -- : BFD_RELOC_CRIS_32_GOT_TPREL
5214 -- : BFD_RELOC_CRIS_16_GOT_TPREL
5215 -- : BFD_RELOC_CRIS_32_TPREL
5216 -- : BFD_RELOC_CRIS_16_TPREL
5217 -- : BFD_RELOC_CRIS_DTPMOD
5218 -- : BFD_RELOC_CRIS_32_IE
5219 Relocs used in TLS code for CRIS.
5221 -- : BFD_RELOC_860_COPY
5222 -- : BFD_RELOC_860_GLOB_DAT
5223 -- : BFD_RELOC_860_JUMP_SLOT
5224 -- : BFD_RELOC_860_RELATIVE
5225 -- : BFD_RELOC_860_PC26
5226 -- : BFD_RELOC_860_PLT26
5227 -- : BFD_RELOC_860_PC16
5228 -- : BFD_RELOC_860_LOW0
5229 -- : BFD_RELOC_860_SPLIT0
5230 -- : BFD_RELOC_860_LOW1
5231 -- : BFD_RELOC_860_SPLIT1
5232 -- : BFD_RELOC_860_LOW2
5233 -- : BFD_RELOC_860_SPLIT2
5234 -- : BFD_RELOC_860_LOW3
5235 -- : BFD_RELOC_860_LOGOT0
5236 -- : BFD_RELOC_860_SPGOT0
5237 -- : BFD_RELOC_860_LOGOT1
5238 -- : BFD_RELOC_860_SPGOT1
5239 -- : BFD_RELOC_860_LOGOTOFF0
5240 -- : BFD_RELOC_860_SPGOTOFF0
5241 -- : BFD_RELOC_860_LOGOTOFF1
5242 -- : BFD_RELOC_860_SPGOTOFF1
5243 -- : BFD_RELOC_860_LOGOTOFF2
5244 -- : BFD_RELOC_860_LOGOTOFF3
5245 -- : BFD_RELOC_860_LOPC
5246 -- : BFD_RELOC_860_HIGHADJ
5247 -- : BFD_RELOC_860_HAGOT
5248 -- : BFD_RELOC_860_HAGOTOFF
5249 -- : BFD_RELOC_860_HAPC
5250 -- : BFD_RELOC_860_HIGH
5251 -- : BFD_RELOC_860_HIGOT
5252 -- : BFD_RELOC_860_HIGOTOFF
5253 Intel i860 Relocations.
5255 -- : BFD_RELOC_OPENRISC_ABS_26
5256 -- : BFD_RELOC_OPENRISC_REL_26
5257 OpenRISC Relocations.
5259 -- : BFD_RELOC_H8_DIR16A8
5260 -- : BFD_RELOC_H8_DIR16R8
5261 -- : BFD_RELOC_H8_DIR24A8
5262 -- : BFD_RELOC_H8_DIR24R8
5263 -- : BFD_RELOC_H8_DIR32A16
5266 -- : BFD_RELOC_XSTORMY16_REL_12
5267 -- : BFD_RELOC_XSTORMY16_12
5268 -- : BFD_RELOC_XSTORMY16_24
5269 -- : BFD_RELOC_XSTORMY16_FPTR16
5270 Sony Xstormy16 Relocations.
5273 Self-describing complex relocations.
5275 -- : BFD_RELOC_XC16X_PAG
5276 -- : BFD_RELOC_XC16X_POF
5277 -- : BFD_RELOC_XC16X_SEG
5278 -- : BFD_RELOC_XC16X_SOF
5279 Infineon Relocations.
5281 -- : BFD_RELOC_VAX_GLOB_DAT
5282 -- : BFD_RELOC_VAX_JMP_SLOT
5283 -- : BFD_RELOC_VAX_RELATIVE
5284 Relocations used by VAX ELF.
5286 -- : BFD_RELOC_MT_PC16
5287 Morpho MT - 16 bit immediate relocation.
5289 -- : BFD_RELOC_MT_HI16
5290 Morpho MT - Hi 16 bits of an address.
5292 -- : BFD_RELOC_MT_LO16
5293 Morpho MT - Low 16 bits of an address.
5295 -- : BFD_RELOC_MT_GNU_VTINHERIT
5296 Morpho MT - Used to tell the linker which vtable entries are used.
5298 -- : BFD_RELOC_MT_GNU_VTENTRY
5299 Morpho MT - Used to tell the linker which vtable entries are used.
5301 -- : BFD_RELOC_MT_PCINSN8
5302 Morpho MT - 8 bit immediate relocation.
5304 -- : BFD_RELOC_MSP430_10_PCREL
5305 -- : BFD_RELOC_MSP430_16_PCREL
5306 -- : BFD_RELOC_MSP430_16
5307 -- : BFD_RELOC_MSP430_16_PCREL_BYTE
5308 -- : BFD_RELOC_MSP430_16_BYTE
5309 -- : BFD_RELOC_MSP430_2X_PCREL
5310 -- : BFD_RELOC_MSP430_RL_PCREL
5311 msp430 specific relocation codes
5313 -- : BFD_RELOC_IQ2000_OFFSET_16
5314 -- : BFD_RELOC_IQ2000_OFFSET_21
5315 -- : BFD_RELOC_IQ2000_UHI16
5318 -- : BFD_RELOC_XTENSA_RTLD
5319 Special Xtensa relocation used only by PLT entries in ELF shared
5320 objects to indicate that the runtime linker should set the value
5321 to one of its own internal functions or data structures.
5323 -- : BFD_RELOC_XTENSA_GLOB_DAT
5324 -- : BFD_RELOC_XTENSA_JMP_SLOT
5325 -- : BFD_RELOC_XTENSA_RELATIVE
5326 Xtensa relocations for ELF shared objects.
5328 -- : BFD_RELOC_XTENSA_PLT
5329 Xtensa relocation used in ELF object files for symbols that may
5330 require PLT entries. Otherwise, this is just a generic 32-bit
5333 -- : BFD_RELOC_XTENSA_DIFF8
5334 -- : BFD_RELOC_XTENSA_DIFF16
5335 -- : BFD_RELOC_XTENSA_DIFF32
5336 Xtensa relocations to mark the difference of two local symbols.
5337 These are only needed to support linker relaxation and can be
5338 ignored when not relaxing. The field is set to the value of the
5339 difference assuming no relaxation. The relocation encodes the
5340 position of the first symbol so the linker can determine whether
5341 to adjust the field value.
5343 -- : BFD_RELOC_XTENSA_SLOT0_OP
5344 -- : BFD_RELOC_XTENSA_SLOT1_OP
5345 -- : BFD_RELOC_XTENSA_SLOT2_OP
5346 -- : BFD_RELOC_XTENSA_SLOT3_OP
5347 -- : BFD_RELOC_XTENSA_SLOT4_OP
5348 -- : BFD_RELOC_XTENSA_SLOT5_OP
5349 -- : BFD_RELOC_XTENSA_SLOT6_OP
5350 -- : BFD_RELOC_XTENSA_SLOT7_OP
5351 -- : BFD_RELOC_XTENSA_SLOT8_OP
5352 -- : BFD_RELOC_XTENSA_SLOT9_OP
5353 -- : BFD_RELOC_XTENSA_SLOT10_OP
5354 -- : BFD_RELOC_XTENSA_SLOT11_OP
5355 -- : BFD_RELOC_XTENSA_SLOT12_OP
5356 -- : BFD_RELOC_XTENSA_SLOT13_OP
5357 -- : BFD_RELOC_XTENSA_SLOT14_OP
5358 Generic Xtensa relocations for instruction operands. Only the slot
5359 number is encoded in the relocation. The relocation applies to the
5360 last PC-relative immediate operand, or if there are no PC-relative
5361 immediates, to the last immediate operand.
5363 -- : BFD_RELOC_XTENSA_SLOT0_ALT
5364 -- : BFD_RELOC_XTENSA_SLOT1_ALT
5365 -- : BFD_RELOC_XTENSA_SLOT2_ALT
5366 -- : BFD_RELOC_XTENSA_SLOT3_ALT
5367 -- : BFD_RELOC_XTENSA_SLOT4_ALT
5368 -- : BFD_RELOC_XTENSA_SLOT5_ALT
5369 -- : BFD_RELOC_XTENSA_SLOT6_ALT
5370 -- : BFD_RELOC_XTENSA_SLOT7_ALT
5371 -- : BFD_RELOC_XTENSA_SLOT8_ALT
5372 -- : BFD_RELOC_XTENSA_SLOT9_ALT
5373 -- : BFD_RELOC_XTENSA_SLOT10_ALT
5374 -- : BFD_RELOC_XTENSA_SLOT11_ALT
5375 -- : BFD_RELOC_XTENSA_SLOT12_ALT
5376 -- : BFD_RELOC_XTENSA_SLOT13_ALT
5377 -- : BFD_RELOC_XTENSA_SLOT14_ALT
5378 Alternate Xtensa relocations. Only the slot is encoded in the
5379 relocation. The meaning of these relocations is opcode-specific.
5381 -- : BFD_RELOC_XTENSA_OP0
5382 -- : BFD_RELOC_XTENSA_OP1
5383 -- : BFD_RELOC_XTENSA_OP2
5384 Xtensa relocations for backward compatibility. These have all been
5385 replaced by BFD_RELOC_XTENSA_SLOT0_OP.
5387 -- : BFD_RELOC_XTENSA_ASM_EXPAND
5388 Xtensa relocation to mark that the assembler expanded the
5389 instructions from an original target. The expansion size is
5390 encoded in the reloc size.
5392 -- : BFD_RELOC_XTENSA_ASM_SIMPLIFY
5393 Xtensa relocation to mark that the linker should simplify
5394 assembler-expanded instructions. This is commonly used internally
5395 by the linker after analysis of a BFD_RELOC_XTENSA_ASM_EXPAND.
5397 -- : BFD_RELOC_XTENSA_TLSDESC_FN
5398 -- : BFD_RELOC_XTENSA_TLSDESC_ARG
5399 -- : BFD_RELOC_XTENSA_TLS_DTPOFF
5400 -- : BFD_RELOC_XTENSA_TLS_TPOFF
5401 -- : BFD_RELOC_XTENSA_TLS_FUNC
5402 -- : BFD_RELOC_XTENSA_TLS_ARG
5403 -- : BFD_RELOC_XTENSA_TLS_CALL
5404 Xtensa TLS relocations.
5406 -- : BFD_RELOC_Z80_DISP8
5407 8 bit signed offset in (ix+d) or (iy+d).
5409 -- : BFD_RELOC_Z8K_DISP7
5412 -- : BFD_RELOC_Z8K_CALLR
5415 -- : BFD_RELOC_Z8K_IMM4L
5418 -- : BFD_RELOC_LM32_CALL
5419 -- : BFD_RELOC_LM32_BRANCH
5420 -- : BFD_RELOC_LM32_16_GOT
5421 -- : BFD_RELOC_LM32_GOTOFF_HI16
5422 -- : BFD_RELOC_LM32_GOTOFF_LO16
5423 -- : BFD_RELOC_LM32_COPY
5424 -- : BFD_RELOC_LM32_GLOB_DAT
5425 -- : BFD_RELOC_LM32_JMP_SLOT
5426 -- : BFD_RELOC_LM32_RELATIVE
5427 Lattice Mico32 relocations.
5429 -- : BFD_RELOC_MACH_O_SECTDIFF
5430 Difference between two section addreses. Must be followed by a
5431 BFD_RELOC_MACH_O_PAIR.
5433 -- : BFD_RELOC_MACH_O_PAIR
5434 Mach-O generic relocations.
5436 -- : BFD_RELOC_MICROBLAZE_32_LO
5437 This is a 32 bit reloc for the microblaze that stores the low 16
5440 -- : BFD_RELOC_MICROBLAZE_32_LO_PCREL
5441 This is a 32 bit pc-relative reloc for the microblaze that stores
5442 the low 16 bits of a value
5444 -- : BFD_RELOC_MICROBLAZE_32_ROSDA
5445 This is a 32 bit reloc for the microblaze that stores a value
5446 relative to the read-only small data area anchor
5448 -- : BFD_RELOC_MICROBLAZE_32_RWSDA
5449 This is a 32 bit reloc for the microblaze that stores a value
5450 relative to the read-write small data area anchor
5452 -- : BFD_RELOC_MICROBLAZE_32_SYM_OP_SYM
5453 This is a 32 bit reloc for the microblaze to handle expressions of
5454 the form "Symbol Op Symbol"
5456 -- : BFD_RELOC_MICROBLAZE_64_NONE
5457 This is a 64 bit reloc that stores the 32 bit pc relative value in
5458 two words (with an imm instruction). No relocation is done here -
5459 only used for relaxing
5461 -- : BFD_RELOC_MICROBLAZE_64_GOTPC
5462 This is a 64 bit reloc that stores the 32 bit pc relative value in
5463 two words (with an imm instruction). The relocation is
5464 PC-relative GOT offset
5466 -- : BFD_RELOC_MICROBLAZE_64_GOT
5467 This is a 64 bit reloc that stores the 32 bit pc relative value in
5468 two words (with an imm instruction). The relocation is GOT offset
5470 -- : BFD_RELOC_MICROBLAZE_64_PLT
5471 This is a 64 bit reloc that stores the 32 bit pc relative value in
5472 two words (with an imm instruction). The relocation is
5473 PC-relative offset into PLT
5475 -- : BFD_RELOC_MICROBLAZE_64_GOTOFF
5476 This is a 64 bit reloc that stores the 32 bit GOT relative value
5477 in two words (with an imm instruction). The relocation is
5478 relative offset from _GLOBAL_OFFSET_TABLE_
5480 -- : BFD_RELOC_MICROBLAZE_32_GOTOFF
5481 This is a 32 bit reloc that stores the 32 bit GOT relative value
5482 in a word. The relocation is relative offset from
5484 -- : BFD_RELOC_MICROBLAZE_COPY
5485 This is used to tell the dynamic linker to copy the value out of
5486 the dynamic object into the runtime process image.
5489 typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
5491 2.10.2.2 `bfd_reloc_type_lookup'
5492 ................................
5495 reloc_howto_type *bfd_reloc_type_lookup
5496 (bfd *abfd, bfd_reloc_code_real_type code);
5497 reloc_howto_type *bfd_reloc_name_lookup
5498 (bfd *abfd, const char *reloc_name);
5500 Return a pointer to a howto structure which, when invoked, will perform
5501 the relocation CODE on data from the architecture noted.
5503 2.10.2.3 `bfd_default_reloc_type_lookup'
5504 ........................................
5507 reloc_howto_type *bfd_default_reloc_type_lookup
5508 (bfd *abfd, bfd_reloc_code_real_type code);
5510 Provides a default relocation lookup routine for any architecture.
5512 2.10.2.4 `bfd_get_reloc_code_name'
5513 ..................................
5516 const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
5518 Provides a printable name for the supplied relocation code. Useful
5519 mainly for printing error messages.
5521 2.10.2.5 `bfd_generic_relax_section'
5522 ....................................
5525 bfd_boolean bfd_generic_relax_section
5528 struct bfd_link_info *,
5531 Provides default handling for relaxing for back ends which don't do
5534 2.10.2.6 `bfd_generic_gc_sections'
5535 ..................................
5538 bfd_boolean bfd_generic_gc_sections
5539 (bfd *, struct bfd_link_info *);
5541 Provides default handling for relaxing for back ends which don't do
5542 section gc - i.e., does nothing.
5544 2.10.2.7 `bfd_generic_merge_sections'
5545 .....................................
5548 bfd_boolean bfd_generic_merge_sections
5549 (bfd *, struct bfd_link_info *);
5551 Provides default handling for SEC_MERGE section merging for back ends
5552 which don't have SEC_MERGE support - i.e., does nothing.
5554 2.10.2.8 `bfd_generic_get_relocated_section_contents'
5555 .....................................................
5558 bfd_byte *bfd_generic_get_relocated_section_contents
5560 struct bfd_link_info *link_info,
5561 struct bfd_link_order *link_order,
5563 bfd_boolean relocatable,
5566 Provides default handling of relocation effort for back ends which
5567 can't be bothered to do it efficiently.
5570 File: bfd.info, Node: Core Files, Next: Targets, Prev: Relocations, Up: BFD front end
5575 2.11.1 Core file functions
5576 --------------------------
5579 These are functions pertaining to core files.
5581 2.11.1.1 `bfd_core_file_failing_command'
5582 ........................................
5585 const char *bfd_core_file_failing_command (bfd *abfd);
5587 Return a read-only string explaining which program was running when it
5588 failed and produced the core file ABFD.
5590 2.11.1.2 `bfd_core_file_failing_signal'
5591 .......................................
5594 int bfd_core_file_failing_signal (bfd *abfd);
5596 Returns the signal number which caused the core dump which generated
5597 the file the BFD ABFD is attached to.
5599 2.11.1.3 `core_file_matches_executable_p'
5600 .........................................
5603 bfd_boolean core_file_matches_executable_p
5604 (bfd *core_bfd, bfd *exec_bfd);
5606 Return `TRUE' if the core file attached to CORE_BFD was generated by a
5607 run of the executable file attached to EXEC_BFD, `FALSE' otherwise.
5609 2.11.1.4 `generic_core_file_matches_executable_p'
5610 .................................................
5613 bfd_boolean generic_core_file_matches_executable_p
5614 (bfd *core_bfd, bfd *exec_bfd);
5616 Return TRUE if the core file attached to CORE_BFD was generated by a
5617 run of the executable file attached to EXEC_BFD. The match is based on
5618 executable basenames only.
5620 Note: When not able to determine the core file failing command or
5621 the executable name, we still return TRUE even though we're not sure
5622 that core file and executable match. This is to avoid generating a
5623 false warning in situations where we really don't know whether they
5627 File: bfd.info, Node: Targets, Next: Architectures, Prev: Core Files, Up: BFD front end
5633 Each port of BFD to a different machine requires the creation of a
5634 target back end. All the back end provides to the root part of BFD is a
5635 structure containing pointers to functions which perform certain low
5636 level operations on files. BFD translates the applications's requests
5637 through a pointer into calls to the back end routines.
5639 When a file is opened with `bfd_openr', its format and target are
5640 unknown. BFD uses various mechanisms to determine how to interpret the
5641 file. The operations performed are:
5643 * Create a BFD by calling the internal routine `_bfd_new_bfd', then
5644 call `bfd_find_target' with the target string supplied to
5645 `bfd_openr' and the new BFD pointer.
5647 * If a null target string was provided to `bfd_find_target', look up
5648 the environment variable `GNUTARGET' and use that as the target
5651 * If the target string is still `NULL', or the target string is
5652 `default', then use the first item in the target vector as the
5653 target type, and set `target_defaulted' in the BFD to cause
5654 `bfd_check_format' to loop through all the targets. *Note
5655 bfd_target::. *Note Formats::.
5657 * Otherwise, inspect the elements in the target vector one by one,
5658 until a match on target name is found. When found, use it.
5660 * Otherwise return the error `bfd_error_invalid_target' to
5663 * `bfd_openr' attempts to open the file using `bfd_open_file', and
5665 Once the BFD has been opened and the target selected, the file
5666 format may be determined. This is done by calling `bfd_check_format' on
5667 the BFD with a suggested format. If `target_defaulted' has been set,
5668 each possible target type is tried to see if it recognizes the
5669 specified format. `bfd_check_format' returns `TRUE' when the caller
5677 File: bfd.info, Node: bfd_target, Prev: Targets, Up: Targets
5683 This structure contains everything that BFD knows about a target. It
5684 includes things like its byte order, name, and which routines to call
5685 to do various operations.
5687 Every BFD points to a target structure with its `xvec' member.
5689 The macros below are used to dispatch to functions through the
5690 `bfd_target' vector. They are used in a number of macros further down
5691 in `bfd.h', and are also used when calling various routines by hand
5692 inside the BFD implementation. The ARGLIST argument must be
5693 parenthesized; it contains all the arguments to the called function.
5695 They make the documentation (more) unpleasant to read, so if someone
5696 wants to fix this and not break the above, please do.
5697 #define BFD_SEND(bfd, message, arglist) \
5698 ((*((bfd)->xvec->message)) arglist)
5700 #ifdef DEBUG_BFD_SEND
5702 #define BFD_SEND(bfd, message, arglist) \
5703 (((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \
5704 ((*((bfd)->xvec->message)) arglist) : \
5705 (bfd_assert (__FILE__,__LINE__), NULL))
5707 For operations which index on the BFD format:
5708 #define BFD_SEND_FMT(bfd, message, arglist) \
5709 (((bfd)->xvec->message[(int) ((bfd)->format)]) arglist)
5711 #ifdef DEBUG_BFD_SEND
5713 #define BFD_SEND_FMT(bfd, message, arglist) \
5714 (((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \
5715 (((bfd)->xvec->message[(int) ((bfd)->format)]) arglist) : \
5716 (bfd_assert (__FILE__,__LINE__), NULL))
5718 This is the structure which defines the type of BFD this is. The
5719 `xvec' member of the struct `bfd' itself points here. Each module that
5720 implements access to a different target under BFD, defines one of these.
5722 FIXME, these names should be rationalised with the names of the
5723 entry points which call them. Too bad we can't have one macro to define
5727 bfd_target_unknown_flavour,
5728 bfd_target_aout_flavour,
5729 bfd_target_coff_flavour,
5730 bfd_target_ecoff_flavour,
5731 bfd_target_xcoff_flavour,
5732 bfd_target_elf_flavour,
5733 bfd_target_ieee_flavour,
5734 bfd_target_nlm_flavour,
5735 bfd_target_oasys_flavour,
5736 bfd_target_tekhex_flavour,
5737 bfd_target_srec_flavour,
5738 bfd_target_verilog_flavour,
5739 bfd_target_ihex_flavour,
5740 bfd_target_som_flavour,
5741 bfd_target_os9k_flavour,
5742 bfd_target_versados_flavour,
5743 bfd_target_msdos_flavour,
5744 bfd_target_ovax_flavour,
5745 bfd_target_evax_flavour,
5746 bfd_target_mmo_flavour,
5747 bfd_target_mach_o_flavour,
5748 bfd_target_pef_flavour,
5749 bfd_target_pef_xlib_flavour,
5750 bfd_target_sym_flavour
5753 enum bfd_endian { BFD_ENDIAN_BIG, BFD_ENDIAN_LITTLE, BFD_ENDIAN_UNKNOWN };
5755 /* Forward declaration. */
5756 typedef struct bfd_link_info _bfd_link_info;
5758 typedef struct bfd_target
5760 /* Identifies the kind of target, e.g., SunOS4, Ultrix, etc. */
5763 /* The "flavour" of a back end is a general indication about
5764 the contents of a file. */
5765 enum bfd_flavour flavour;
5767 /* The order of bytes within the data area of a file. */
5768 enum bfd_endian byteorder;
5770 /* The order of bytes within the header parts of a file. */
5771 enum bfd_endian header_byteorder;
5773 /* A mask of all the flags which an executable may have set -
5774 from the set `BFD_NO_FLAGS', `HAS_RELOC', ...`D_PAGED'. */
5775 flagword object_flags;
5777 /* A mask of all the flags which a section may have set - from
5778 the set `SEC_NO_FLAGS', `SEC_ALLOC', ...`SET_NEVER_LOAD'. */
5779 flagword section_flags;
5781 /* The character normally found at the front of a symbol.
5782 (if any), perhaps `_'. */
5783 char symbol_leading_char;
5785 /* The pad character for file names within an archive header. */
5788 /* The maximum number of characters in an archive header. */
5789 unsigned short ar_max_namelen;
5791 /* Entries for byte swapping for data. These are different from the
5792 other entry points, since they don't take a BFD as the first argument.
5793 Certain other handlers could do the same. */
5794 bfd_uint64_t (*bfd_getx64) (const void *);
5795 bfd_int64_t (*bfd_getx_signed_64) (const void *);
5796 void (*bfd_putx64) (bfd_uint64_t, void *);
5797 bfd_vma (*bfd_getx32) (const void *);
5798 bfd_signed_vma (*bfd_getx_signed_32) (const void *);
5799 void (*bfd_putx32) (bfd_vma, void *);
5800 bfd_vma (*bfd_getx16) (const void *);
5801 bfd_signed_vma (*bfd_getx_signed_16) (const void *);
5802 void (*bfd_putx16) (bfd_vma, void *);
5804 /* Byte swapping for the headers. */
5805 bfd_uint64_t (*bfd_h_getx64) (const void *);
5806 bfd_int64_t (*bfd_h_getx_signed_64) (const void *);
5807 void (*bfd_h_putx64) (bfd_uint64_t, void *);
5808 bfd_vma (*bfd_h_getx32) (const void *);
5809 bfd_signed_vma (*bfd_h_getx_signed_32) (const void *);
5810 void (*bfd_h_putx32) (bfd_vma, void *);
5811 bfd_vma (*bfd_h_getx16) (const void *);
5812 bfd_signed_vma (*bfd_h_getx_signed_16) (const void *);
5813 void (*bfd_h_putx16) (bfd_vma, void *);
5815 /* Format dependent routines: these are vectors of entry points
5816 within the target vector structure, one for each format to check. */
5818 /* Check the format of a file being read. Return a `bfd_target *' or zero. */
5819 const struct bfd_target *(*_bfd_check_format[bfd_type_end]) (bfd *);
5821 /* Set the format of a file being written. */
5822 bfd_boolean (*_bfd_set_format[bfd_type_end]) (bfd *);
5824 /* Write cached information into a file being written, at `bfd_close'. */
5825 bfd_boolean (*_bfd_write_contents[bfd_type_end]) (bfd *);
5826 The general target vector. These vectors are initialized using the
5827 BFD_JUMP_TABLE macros.
5829 /* Generic entry points. */
5830 #define BFD_JUMP_TABLE_GENERIC(NAME) \
5831 NAME##_close_and_cleanup, \
5832 NAME##_bfd_free_cached_info, \
5833 NAME##_new_section_hook, \
5834 NAME##_get_section_contents, \
5835 NAME##_get_section_contents_in_window
5837 /* Called when the BFD is being closed to do any necessary cleanup. */
5838 bfd_boolean (*_close_and_cleanup) (bfd *);
5839 /* Ask the BFD to free all cached information. */
5840 bfd_boolean (*_bfd_free_cached_info) (bfd *);
5841 /* Called when a new section is created. */
5842 bfd_boolean (*_new_section_hook) (bfd *, sec_ptr);
5843 /* Read the contents of a section. */
5844 bfd_boolean (*_bfd_get_section_contents)
5845 (bfd *, sec_ptr, void *, file_ptr, bfd_size_type);
5846 bfd_boolean (*_bfd_get_section_contents_in_window)
5847 (bfd *, sec_ptr, bfd_window *, file_ptr, bfd_size_type);
5849 /* Entry points to copy private data. */
5850 #define BFD_JUMP_TABLE_COPY(NAME) \
5851 NAME##_bfd_copy_private_bfd_data, \
5852 NAME##_bfd_merge_private_bfd_data, \
5853 _bfd_generic_init_private_section_data, \
5854 NAME##_bfd_copy_private_section_data, \
5855 NAME##_bfd_copy_private_symbol_data, \
5856 NAME##_bfd_copy_private_header_data, \
5857 NAME##_bfd_set_private_flags, \
5858 NAME##_bfd_print_private_bfd_data
5860 /* Called to copy BFD general private data from one object file
5862 bfd_boolean (*_bfd_copy_private_bfd_data) (bfd *, bfd *);
5863 /* Called to merge BFD general private data from one object file
5864 to a common output file when linking. */
5865 bfd_boolean (*_bfd_merge_private_bfd_data) (bfd *, bfd *);
5866 /* Called to initialize BFD private section data from one object file
5868 #define bfd_init_private_section_data(ibfd, isec, obfd, osec, link_info) \
5869 BFD_SEND (obfd, _bfd_init_private_section_data, (ibfd, isec, obfd, osec, link_info))
5870 bfd_boolean (*_bfd_init_private_section_data)
5871 (bfd *, sec_ptr, bfd *, sec_ptr, struct bfd_link_info *);
5872 /* Called to copy BFD private section data from one object file
5874 bfd_boolean (*_bfd_copy_private_section_data)
5875 (bfd *, sec_ptr, bfd *, sec_ptr);
5876 /* Called to copy BFD private symbol data from one symbol
5878 bfd_boolean (*_bfd_copy_private_symbol_data)
5879 (bfd *, asymbol *, bfd *, asymbol *);
5880 /* Called to copy BFD private header data from one object file
5882 bfd_boolean (*_bfd_copy_private_header_data)
5884 /* Called to set private backend flags. */
5885 bfd_boolean (*_bfd_set_private_flags) (bfd *, flagword);
5887 /* Called to print private BFD data. */
5888 bfd_boolean (*_bfd_print_private_bfd_data) (bfd *, void *);
5890 /* Core file entry points. */
5891 #define BFD_JUMP_TABLE_CORE(NAME) \
5892 NAME##_core_file_failing_command, \
5893 NAME##_core_file_failing_signal, \
5894 NAME##_core_file_matches_executable_p
5896 char * (*_core_file_failing_command) (bfd *);
5897 int (*_core_file_failing_signal) (bfd *);
5898 bfd_boolean (*_core_file_matches_executable_p) (bfd *, bfd *);
5900 /* Archive entry points. */
5901 #define BFD_JUMP_TABLE_ARCHIVE(NAME) \
5902 NAME##_slurp_armap, \
5903 NAME##_slurp_extended_name_table, \
5904 NAME##_construct_extended_name_table, \
5905 NAME##_truncate_arname, \
5906 NAME##_write_armap, \
5907 NAME##_read_ar_hdr, \
5908 NAME##_openr_next_archived_file, \
5909 NAME##_get_elt_at_index, \
5910 NAME##_generic_stat_arch_elt, \
5911 NAME##_update_armap_timestamp
5913 bfd_boolean (*_bfd_slurp_armap) (bfd *);
5914 bfd_boolean (*_bfd_slurp_extended_name_table) (bfd *);
5915 bfd_boolean (*_bfd_construct_extended_name_table)
5916 (bfd *, char **, bfd_size_type *, const char **);
5917 void (*_bfd_truncate_arname) (bfd *, const char *, char *);
5918 bfd_boolean (*write_armap)
5919 (bfd *, unsigned int, struct orl *, unsigned int, int);
5920 void * (*_bfd_read_ar_hdr_fn) (bfd *);
5921 bfd * (*openr_next_archived_file) (bfd *, bfd *);
5922 #define bfd_get_elt_at_index(b,i) BFD_SEND (b, _bfd_get_elt_at_index, (b,i))
5923 bfd * (*_bfd_get_elt_at_index) (bfd *, symindex);
5924 int (*_bfd_stat_arch_elt) (bfd *, struct stat *);
5925 bfd_boolean (*_bfd_update_armap_timestamp) (bfd *);
5927 /* Entry points used for symbols. */
5928 #define BFD_JUMP_TABLE_SYMBOLS(NAME) \
5929 NAME##_get_symtab_upper_bound, \
5930 NAME##_canonicalize_symtab, \
5931 NAME##_make_empty_symbol, \
5932 NAME##_print_symbol, \
5933 NAME##_get_symbol_info, \
5934 NAME##_bfd_is_local_label_name, \
5935 NAME##_bfd_is_target_special_symbol, \
5936 NAME##_get_lineno, \
5937 NAME##_find_nearest_line, \
5938 _bfd_generic_find_line, \
5939 NAME##_find_inliner_info, \
5940 NAME##_bfd_make_debug_symbol, \
5941 NAME##_read_minisymbols, \
5942 NAME##_minisymbol_to_symbol
5944 long (*_bfd_get_symtab_upper_bound) (bfd *);
5945 long (*_bfd_canonicalize_symtab)
5946 (bfd *, struct bfd_symbol **);
5948 (*_bfd_make_empty_symbol) (bfd *);
5949 void (*_bfd_print_symbol)
5950 (bfd *, void *, struct bfd_symbol *, bfd_print_symbol_type);
5951 #define bfd_print_symbol(b,p,s,e) BFD_SEND (b, _bfd_print_symbol, (b,p,s,e))
5952 void (*_bfd_get_symbol_info)
5953 (bfd *, struct bfd_symbol *, symbol_info *);
5954 #define bfd_get_symbol_info(b,p,e) BFD_SEND (b, _bfd_get_symbol_info, (b,p,e))
5955 bfd_boolean (*_bfd_is_local_label_name) (bfd *, const char *);
5956 bfd_boolean (*_bfd_is_target_special_symbol) (bfd *, asymbol *);
5957 alent * (*_get_lineno) (bfd *, struct bfd_symbol *);
5958 bfd_boolean (*_bfd_find_nearest_line)
5959 (bfd *, struct bfd_section *, struct bfd_symbol **, bfd_vma,
5960 const char **, const char **, unsigned int *);
5961 bfd_boolean (*_bfd_find_line)
5962 (bfd *, struct bfd_symbol **, struct bfd_symbol *,
5963 const char **, unsigned int *);
5964 bfd_boolean (*_bfd_find_inliner_info)
5965 (bfd *, const char **, const char **, unsigned int *);
5966 /* Back-door to allow format-aware applications to create debug symbols
5967 while using BFD for everything else. Currently used by the assembler
5968 when creating COFF files. */
5969 asymbol * (*_bfd_make_debug_symbol)
5970 (bfd *, void *, unsigned long size);
5971 #define bfd_read_minisymbols(b, d, m, s) \
5972 BFD_SEND (b, _read_minisymbols, (b, d, m, s))
5973 long (*_read_minisymbols)
5974 (bfd *, bfd_boolean, void **, unsigned int *);
5975 #define bfd_minisymbol_to_symbol(b, d, m, f) \
5976 BFD_SEND (b, _minisymbol_to_symbol, (b, d, m, f))
5977 asymbol * (*_minisymbol_to_symbol)
5978 (bfd *, bfd_boolean, const void *, asymbol *);
5980 /* Routines for relocs. */
5981 #define BFD_JUMP_TABLE_RELOCS(NAME) \
5982 NAME##_get_reloc_upper_bound, \
5983 NAME##_canonicalize_reloc, \
5984 NAME##_bfd_reloc_type_lookup, \
5985 NAME##_bfd_reloc_name_lookup
5987 long (*_get_reloc_upper_bound) (bfd *, sec_ptr);
5988 long (*_bfd_canonicalize_reloc)
5989 (bfd *, sec_ptr, arelent **, struct bfd_symbol **);
5990 /* See documentation on reloc types. */
5992 (*reloc_type_lookup) (bfd *, bfd_reloc_code_real_type);
5994 (*reloc_name_lookup) (bfd *, const char *);
5997 /* Routines used when writing an object file. */
5998 #define BFD_JUMP_TABLE_WRITE(NAME) \
5999 NAME##_set_arch_mach, \
6000 NAME##_set_section_contents
6002 bfd_boolean (*_bfd_set_arch_mach)
6003 (bfd *, enum bfd_architecture, unsigned long);
6004 bfd_boolean (*_bfd_set_section_contents)
6005 (bfd *, sec_ptr, const void *, file_ptr, bfd_size_type);
6007 /* Routines used by the linker. */
6008 #define BFD_JUMP_TABLE_LINK(NAME) \
6009 NAME##_sizeof_headers, \
6010 NAME##_bfd_get_relocated_section_contents, \
6011 NAME##_bfd_relax_section, \
6012 NAME##_bfd_link_hash_table_create, \
6013 NAME##_bfd_link_hash_table_free, \
6014 NAME##_bfd_link_add_symbols, \
6015 NAME##_bfd_link_just_syms, \
6016 NAME##_bfd_final_link, \
6017 NAME##_bfd_link_split_section, \
6018 NAME##_bfd_gc_sections, \
6019 NAME##_bfd_merge_sections, \
6020 NAME##_bfd_is_group_section, \
6021 NAME##_bfd_discard_group, \
6022 NAME##_section_already_linked, \
6023 NAME##_bfd_define_common_symbol
6025 int (*_bfd_sizeof_headers) (bfd *, struct bfd_link_info *);
6026 bfd_byte * (*_bfd_get_relocated_section_contents)
6027 (bfd *, struct bfd_link_info *, struct bfd_link_order *,
6028 bfd_byte *, bfd_boolean, struct bfd_symbol **);
6030 bfd_boolean (*_bfd_relax_section)
6031 (bfd *, struct bfd_section *, struct bfd_link_info *, bfd_boolean *);
6033 /* Create a hash table for the linker. Different backends store
6034 different information in this table. */
6035 struct bfd_link_hash_table *
6036 (*_bfd_link_hash_table_create) (bfd *);
6038 /* Release the memory associated with the linker hash table. */
6039 void (*_bfd_link_hash_table_free) (struct bfd_link_hash_table *);
6041 /* Add symbols from this object file into the hash table. */
6042 bfd_boolean (*_bfd_link_add_symbols) (bfd *, struct bfd_link_info *);
6044 /* Indicate that we are only retrieving symbol values from this section. */
6045 void (*_bfd_link_just_syms) (asection *, struct bfd_link_info *);
6047 /* Do a link based on the link_order structures attached to each
6048 section of the BFD. */
6049 bfd_boolean (*_bfd_final_link) (bfd *, struct bfd_link_info *);
6051 /* Should this section be split up into smaller pieces during linking. */
6052 bfd_boolean (*_bfd_link_split_section) (bfd *, struct bfd_section *);
6054 /* Remove sections that are not referenced from the output. */
6055 bfd_boolean (*_bfd_gc_sections) (bfd *, struct bfd_link_info *);
6057 /* Attempt to merge SEC_MERGE sections. */
6058 bfd_boolean (*_bfd_merge_sections) (bfd *, struct bfd_link_info *);
6060 /* Is this section a member of a group? */
6061 bfd_boolean (*_bfd_is_group_section) (bfd *, const struct bfd_section *);
6063 /* Discard members of a group. */
6064 bfd_boolean (*_bfd_discard_group) (bfd *, struct bfd_section *);
6066 /* Check if SEC has been already linked during a reloceatable or
6068 void (*_section_already_linked) (bfd *, struct bfd_section *,
6069 struct bfd_link_info *);
6071 /* Define a common symbol. */
6072 bfd_boolean (*_bfd_define_common_symbol) (bfd *, struct bfd_link_info *,
6073 struct bfd_link_hash_entry *);
6075 /* Routines to handle dynamic symbols and relocs. */
6076 #define BFD_JUMP_TABLE_DYNAMIC(NAME) \
6077 NAME##_get_dynamic_symtab_upper_bound, \
6078 NAME##_canonicalize_dynamic_symtab, \
6079 NAME##_get_synthetic_symtab, \
6080 NAME##_get_dynamic_reloc_upper_bound, \
6081 NAME##_canonicalize_dynamic_reloc
6083 /* Get the amount of memory required to hold the dynamic symbols. */
6084 long (*_bfd_get_dynamic_symtab_upper_bound) (bfd *);
6085 /* Read in the dynamic symbols. */
6086 long (*_bfd_canonicalize_dynamic_symtab)
6087 (bfd *, struct bfd_symbol **);
6088 /* Create synthetized symbols. */
6089 long (*_bfd_get_synthetic_symtab)
6090 (bfd *, long, struct bfd_symbol **, long, struct bfd_symbol **,
6091 struct bfd_symbol **);
6092 /* Get the amount of memory required to hold the dynamic relocs. */
6093 long (*_bfd_get_dynamic_reloc_upper_bound) (bfd *);
6094 /* Read in the dynamic relocs. */
6095 long (*_bfd_canonicalize_dynamic_reloc)
6096 (bfd *, arelent **, struct bfd_symbol **);
6097 A pointer to an alternative bfd_target in case the current one is not
6098 satisfactory. This can happen when the target cpu supports both big
6099 and little endian code, and target chosen by the linker has the wrong
6100 endianness. The function open_output() in ld/ldlang.c uses this field
6101 to find an alternative output format that is suitable.
6102 /* Opposite endian version of this target. */
6103 const struct bfd_target * alternative_target;
6105 /* Data for use by back-end routines, which isn't
6106 generic enough to belong in this structure. */
6107 const void *backend_data;
6111 2.12.1.1 `bfd_set_default_target'
6112 .................................
6115 bfd_boolean bfd_set_default_target (const char *name);
6117 Set the default target vector to use when recognizing a BFD. This
6118 takes the name of the target, which may be a BFD target name or a
6119 configuration triplet.
6121 2.12.1.2 `bfd_find_target'
6122 ..........................
6125 const bfd_target *bfd_find_target (const char *target_name, bfd *abfd);
6127 Return a pointer to the transfer vector for the object target named
6128 TARGET_NAME. If TARGET_NAME is `NULL', choose the one in the
6129 environment variable `GNUTARGET'; if that is null or not defined, then
6130 choose the first entry in the target list. Passing in the string
6131 "default" or setting the environment variable to "default" will cause
6132 the first entry in the target list to be returned, and
6133 "target_defaulted" will be set in the BFD if ABFD isn't `NULL'. This
6134 causes `bfd_check_format' to loop over all the targets to find the one
6135 that matches the file being read.
6137 2.12.1.3 `bfd_target_list'
6138 ..........................
6141 const char ** bfd_target_list (void);
6143 Return a freshly malloced NULL-terminated vector of the names of all
6144 the valid BFD targets. Do not modify the names.
6146 2.12.1.4 `bfd_seach_for_target'
6147 ...............................
6150 const bfd_target *bfd_search_for_target
6151 (int (*search_func) (const bfd_target *, void *),
6154 Return a pointer to the first transfer vector in the list of transfer
6155 vectors maintained by BFD that produces a non-zero result when passed
6156 to the function SEARCH_FUNC. The parameter DATA is passed, unexamined,
6157 to the search function.
6160 File: bfd.info, Node: Architectures, Next: Opening and Closing, Prev: Targets, Up: BFD front end
6165 BFD keeps one atom in a BFD describing the architecture of the data
6166 attached to the BFD: a pointer to a `bfd_arch_info_type'.
6168 Pointers to structures can be requested independently of a BFD so
6169 that an architecture's information can be interrogated without access
6172 The architecture information is provided by each architecture
6173 package. The set of default architectures is selected by the macro
6174 `SELECT_ARCHITECTURES'. This is normally set up in the
6175 `config/TARGET.mt' file of your choice. If the name is not defined,
6176 then all the architectures supported are included.
6178 When BFD starts up, all the architectures are called with an
6179 initialize method. It is up to the architecture back end to insert as
6180 many items into the list of architectures as it wants to; generally
6181 this would be one for each machine and one for the default case (an
6182 item with a machine field of 0).
6184 BFD's idea of an architecture is implemented in `archures.c'.
6186 2.13.1 bfd_architecture
6187 -----------------------
6190 This enum gives the object file's CPU architecture, in a global
6191 sense--i.e., what processor family does it belong to? Another field
6192 indicates which processor within the family is in use. The machine
6193 gives a number which distinguishes different versions of the
6194 architecture, containing, for example, 2 and 3 for Intel i960 KA and
6195 i960 KB, and 68020 and 68030 for Motorola 68020 and 68030.
6196 enum bfd_architecture
6198 bfd_arch_unknown, /* File arch not known. */
6199 bfd_arch_obscure, /* Arch known, not one of these. */
6200 bfd_arch_m68k, /* Motorola 68xxx */
6201 #define bfd_mach_m68000 1
6202 #define bfd_mach_m68008 2
6203 #define bfd_mach_m68010 3
6204 #define bfd_mach_m68020 4
6205 #define bfd_mach_m68030 5
6206 #define bfd_mach_m68040 6
6207 #define bfd_mach_m68060 7
6208 #define bfd_mach_cpu32 8
6209 #define bfd_mach_fido 9
6210 #define bfd_mach_mcf_isa_a_nodiv 10
6211 #define bfd_mach_mcf_isa_a 11
6212 #define bfd_mach_mcf_isa_a_mac 12
6213 #define bfd_mach_mcf_isa_a_emac 13
6214 #define bfd_mach_mcf_isa_aplus 14
6215 #define bfd_mach_mcf_isa_aplus_mac 15
6216 #define bfd_mach_mcf_isa_aplus_emac 16
6217 #define bfd_mach_mcf_isa_b_nousp 17
6218 #define bfd_mach_mcf_isa_b_nousp_mac 18
6219 #define bfd_mach_mcf_isa_b_nousp_emac 19
6220 #define bfd_mach_mcf_isa_b 20
6221 #define bfd_mach_mcf_isa_b_mac 21
6222 #define bfd_mach_mcf_isa_b_emac 22
6223 #define bfd_mach_mcf_isa_b_float 23
6224 #define bfd_mach_mcf_isa_b_float_mac 24
6225 #define bfd_mach_mcf_isa_b_float_emac 25
6226 #define bfd_mach_mcf_isa_c 26
6227 #define bfd_mach_mcf_isa_c_mac 27
6228 #define bfd_mach_mcf_isa_c_emac 28
6229 #define bfd_mach_mcf_isa_c_nodiv 29
6230 #define bfd_mach_mcf_isa_c_nodiv_mac 30
6231 #define bfd_mach_mcf_isa_c_nodiv_emac 31
6232 bfd_arch_vax, /* DEC Vax */
6233 bfd_arch_i960, /* Intel 960 */
6234 /* The order of the following is important.
6235 lower number indicates a machine type that
6236 only accepts a subset of the instructions
6237 available to machines with higher numbers.
6238 The exception is the "ca", which is
6239 incompatible with all other machines except
6242 #define bfd_mach_i960_core 1
6243 #define bfd_mach_i960_ka_sa 2
6244 #define bfd_mach_i960_kb_sb 3
6245 #define bfd_mach_i960_mc 4
6246 #define bfd_mach_i960_xa 5
6247 #define bfd_mach_i960_ca 6
6248 #define bfd_mach_i960_jx 7
6249 #define bfd_mach_i960_hx 8
6251 bfd_arch_or32, /* OpenRISC 32 */
6253 bfd_arch_sparc, /* SPARC */
6254 #define bfd_mach_sparc 1
6255 /* The difference between v8plus and v9 is that v9 is a true 64 bit env. */
6256 #define bfd_mach_sparc_sparclet 2
6257 #define bfd_mach_sparc_sparclite 3
6258 #define bfd_mach_sparc_v8plus 4
6259 #define bfd_mach_sparc_v8plusa 5 /* with ultrasparc add'ns. */
6260 #define bfd_mach_sparc_sparclite_le 6
6261 #define bfd_mach_sparc_v9 7
6262 #define bfd_mach_sparc_v9a 8 /* with ultrasparc add'ns. */
6263 #define bfd_mach_sparc_v8plusb 9 /* with cheetah add'ns. */
6264 #define bfd_mach_sparc_v9b 10 /* with cheetah add'ns. */
6265 /* Nonzero if MACH has the v9 instruction set. */
6266 #define bfd_mach_sparc_v9_p(mach) \
6267 ((mach) >= bfd_mach_sparc_v8plus && (mach) <= bfd_mach_sparc_v9b \
6268 && (mach) != bfd_mach_sparc_sparclite_le)
6269 /* Nonzero if MACH is a 64 bit sparc architecture. */
6270 #define bfd_mach_sparc_64bit_p(mach) \
6271 ((mach) >= bfd_mach_sparc_v9 && (mach) != bfd_mach_sparc_v8plusb)
6272 bfd_arch_spu, /* PowerPC SPU */
6273 #define bfd_mach_spu 256
6274 bfd_arch_mips, /* MIPS Rxxxx */
6275 #define bfd_mach_mips3000 3000
6276 #define bfd_mach_mips3900 3900
6277 #define bfd_mach_mips4000 4000
6278 #define bfd_mach_mips4010 4010
6279 #define bfd_mach_mips4100 4100
6280 #define bfd_mach_mips4111 4111
6281 #define bfd_mach_mips4120 4120
6282 #define bfd_mach_mips4300 4300
6283 #define bfd_mach_mips4400 4400
6284 #define bfd_mach_mips4600 4600
6285 #define bfd_mach_mips4650 4650
6286 #define bfd_mach_mips5000 5000
6287 #define bfd_mach_mips5400 5400
6288 #define bfd_mach_mips5500 5500
6289 #define bfd_mach_mips6000 6000
6290 #define bfd_mach_mips7000 7000
6291 #define bfd_mach_mips8000 8000
6292 #define bfd_mach_mips9000 9000
6293 #define bfd_mach_mips10000 10000
6294 #define bfd_mach_mips12000 12000
6295 #define bfd_mach_mips14000 14000
6296 #define bfd_mach_mips16000 16000
6297 #define bfd_mach_mips16 16
6298 #define bfd_mach_mips5 5
6299 #define bfd_mach_mips_loongson_2e 3001
6300 #define bfd_mach_mips_loongson_2f 3002
6301 #define bfd_mach_mips_sb1 12310201 /* octal 'SB', 01 */
6302 #define bfd_mach_mips_octeon 6501
6303 #define bfd_mach_mips_xlr 887682 /* decimal 'XLR' */
6304 #define bfd_mach_mipsisa32 32
6305 #define bfd_mach_mipsisa32r2 33
6306 #define bfd_mach_mipsisa64 64
6307 #define bfd_mach_mipsisa64r2 65
6308 bfd_arch_i386, /* Intel 386 */
6309 #define bfd_mach_i386_i386 1
6310 #define bfd_mach_i386_i8086 2
6311 #define bfd_mach_i386_i386_intel_syntax 3
6312 #define bfd_mach_x86_64 64
6313 #define bfd_mach_x86_64_intel_syntax 65
6314 bfd_arch_l1om, /* Intel L1OM */
6315 #define bfd_mach_l1om 66
6316 #define bfd_mach_l1om_intel_syntax 67
6317 bfd_arch_we32k, /* AT&T WE32xxx */
6318 bfd_arch_tahoe, /* CCI/Harris Tahoe */
6319 bfd_arch_i860, /* Intel 860 */
6320 bfd_arch_i370, /* IBM 360/370 Mainframes */
6321 bfd_arch_romp, /* IBM ROMP PC/RT */
6322 bfd_arch_convex, /* Convex */
6323 bfd_arch_m88k, /* Motorola 88xxx */
6324 bfd_arch_m98k, /* Motorola 98xxx */
6325 bfd_arch_pyramid, /* Pyramid Technology */
6326 bfd_arch_h8300, /* Renesas H8/300 (formerly Hitachi H8/300) */
6327 #define bfd_mach_h8300 1
6328 #define bfd_mach_h8300h 2
6329 #define bfd_mach_h8300s 3
6330 #define bfd_mach_h8300hn 4
6331 #define bfd_mach_h8300sn 5
6332 #define bfd_mach_h8300sx 6
6333 #define bfd_mach_h8300sxn 7
6334 bfd_arch_pdp11, /* DEC PDP-11 */
6336 bfd_arch_powerpc, /* PowerPC */
6337 #define bfd_mach_ppc 32
6338 #define bfd_mach_ppc64 64
6339 #define bfd_mach_ppc_403 403
6340 #define bfd_mach_ppc_403gc 4030
6341 #define bfd_mach_ppc_405 405
6342 #define bfd_mach_ppc_505 505
6343 #define bfd_mach_ppc_601 601
6344 #define bfd_mach_ppc_602 602
6345 #define bfd_mach_ppc_603 603
6346 #define bfd_mach_ppc_ec603e 6031
6347 #define bfd_mach_ppc_604 604
6348 #define bfd_mach_ppc_620 620
6349 #define bfd_mach_ppc_630 630
6350 #define bfd_mach_ppc_750 750
6351 #define bfd_mach_ppc_860 860
6352 #define bfd_mach_ppc_a35 35
6353 #define bfd_mach_ppc_rs64ii 642
6354 #define bfd_mach_ppc_rs64iii 643
6355 #define bfd_mach_ppc_7400 7400
6356 #define bfd_mach_ppc_e500 500
6357 #define bfd_mach_ppc_e500mc 5001
6358 bfd_arch_rs6000, /* IBM RS/6000 */
6359 #define bfd_mach_rs6k 6000
6360 #define bfd_mach_rs6k_rs1 6001
6361 #define bfd_mach_rs6k_rsc 6003
6362 #define bfd_mach_rs6k_rs2 6002
6363 bfd_arch_hppa, /* HP PA RISC */
6364 #define bfd_mach_hppa10 10
6365 #define bfd_mach_hppa11 11
6366 #define bfd_mach_hppa20 20
6367 #define bfd_mach_hppa20w 25
6368 bfd_arch_d10v, /* Mitsubishi D10V */
6369 #define bfd_mach_d10v 1
6370 #define bfd_mach_d10v_ts2 2
6371 #define bfd_mach_d10v_ts3 3
6372 bfd_arch_d30v, /* Mitsubishi D30V */
6373 bfd_arch_dlx, /* DLX */
6374 bfd_arch_m68hc11, /* Motorola 68HC11 */
6375 bfd_arch_m68hc12, /* Motorola 68HC12 */
6376 #define bfd_mach_m6812_default 0
6377 #define bfd_mach_m6812 1
6378 #define bfd_mach_m6812s 2
6379 bfd_arch_z8k, /* Zilog Z8000 */
6380 #define bfd_mach_z8001 1
6381 #define bfd_mach_z8002 2
6382 bfd_arch_h8500, /* Renesas H8/500 (formerly Hitachi H8/500) */
6383 bfd_arch_sh, /* Renesas / SuperH SH (formerly Hitachi SH) */
6384 #define bfd_mach_sh 1
6385 #define bfd_mach_sh2 0x20
6386 #define bfd_mach_sh_dsp 0x2d
6387 #define bfd_mach_sh2a 0x2a
6388 #define bfd_mach_sh2a_nofpu 0x2b
6389 #define bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu 0x2a1
6390 #define bfd_mach_sh2a_nofpu_or_sh3_nommu 0x2a2
6391 #define bfd_mach_sh2a_or_sh4 0x2a3
6392 #define bfd_mach_sh2a_or_sh3e 0x2a4
6393 #define bfd_mach_sh2e 0x2e
6394 #define bfd_mach_sh3 0x30
6395 #define bfd_mach_sh3_nommu 0x31
6396 #define bfd_mach_sh3_dsp 0x3d
6397 #define bfd_mach_sh3e 0x3e
6398 #define bfd_mach_sh4 0x40
6399 #define bfd_mach_sh4_nofpu 0x41
6400 #define bfd_mach_sh4_nommu_nofpu 0x42
6401 #define bfd_mach_sh4a 0x4a
6402 #define bfd_mach_sh4a_nofpu 0x4b
6403 #define bfd_mach_sh4al_dsp 0x4d
6404 #define bfd_mach_sh5 0x50
6405 bfd_arch_alpha, /* Dec Alpha */
6406 #define bfd_mach_alpha_ev4 0x10
6407 #define bfd_mach_alpha_ev5 0x20
6408 #define bfd_mach_alpha_ev6 0x30
6409 bfd_arch_arm, /* Advanced Risc Machines ARM. */
6410 #define bfd_mach_arm_unknown 0
6411 #define bfd_mach_arm_2 1
6412 #define bfd_mach_arm_2a 2
6413 #define bfd_mach_arm_3 3
6414 #define bfd_mach_arm_3M 4
6415 #define bfd_mach_arm_4 5
6416 #define bfd_mach_arm_4T 6
6417 #define bfd_mach_arm_5 7
6418 #define bfd_mach_arm_5T 8
6419 #define bfd_mach_arm_5TE 9
6420 #define bfd_mach_arm_XScale 10
6421 #define bfd_mach_arm_ep9312 11
6422 #define bfd_mach_arm_iWMMXt 12
6423 #define bfd_mach_arm_iWMMXt2 13
6424 bfd_arch_ns32k, /* National Semiconductors ns32000 */
6425 bfd_arch_w65, /* WDC 65816 */
6426 bfd_arch_tic30, /* Texas Instruments TMS320C30 */
6427 bfd_arch_tic4x, /* Texas Instruments TMS320C3X/4X */
6428 #define bfd_mach_tic3x 30
6429 #define bfd_mach_tic4x 40
6430 bfd_arch_tic54x, /* Texas Instruments TMS320C54X */
6431 bfd_arch_tic80, /* TI TMS320c80 (MVP) */
6432 bfd_arch_v850, /* NEC V850 */
6433 #define bfd_mach_v850 1
6434 #define bfd_mach_v850e 'E'
6435 #define bfd_mach_v850e1 '1'
6436 bfd_arch_arc, /* ARC Cores */
6437 #define bfd_mach_arc_5 5
6438 #define bfd_mach_arc_6 6
6439 #define bfd_mach_arc_7 7
6440 #define bfd_mach_arc_8 8
6441 bfd_arch_m32c, /* Renesas M16C/M32C. */
6442 #define bfd_mach_m16c 0x75
6443 #define bfd_mach_m32c 0x78
6444 bfd_arch_m32r, /* Renesas M32R (formerly Mitsubishi M32R/D) */
6445 #define bfd_mach_m32r 1 /* For backwards compatibility. */
6446 #define bfd_mach_m32rx 'x'
6447 #define bfd_mach_m32r2 '2'
6448 bfd_arch_mn10200, /* Matsushita MN10200 */
6449 bfd_arch_mn10300, /* Matsushita MN10300 */
6450 #define bfd_mach_mn10300 300
6451 #define bfd_mach_am33 330
6452 #define bfd_mach_am33_2 332
6454 #define bfd_mach_fr30 0x46523330
6456 #define bfd_mach_frv 1
6457 #define bfd_mach_frvsimple 2
6458 #define bfd_mach_fr300 300
6459 #define bfd_mach_fr400 400
6460 #define bfd_mach_fr450 450
6461 #define bfd_mach_frvtomcat 499 /* fr500 prototype */
6462 #define bfd_mach_fr500 500
6463 #define bfd_mach_fr550 550
6464 bfd_arch_moxie, /* The moxie processor */
6465 #define bfd_mach_moxie 1
6468 #define bfd_mach_mep 1
6469 #define bfd_mach_mep_h1 0x6831
6470 #define bfd_mach_mep_c5 0x6335
6471 bfd_arch_ia64, /* HP/Intel ia64 */
6472 #define bfd_mach_ia64_elf64 64
6473 #define bfd_mach_ia64_elf32 32
6474 bfd_arch_ip2k, /* Ubicom IP2K microcontrollers. */
6475 #define bfd_mach_ip2022 1
6476 #define bfd_mach_ip2022ext 2
6477 bfd_arch_iq2000, /* Vitesse IQ2000. */
6478 #define bfd_mach_iq2000 1
6479 #define bfd_mach_iq10 2
6481 #define bfd_mach_ms1 1
6482 #define bfd_mach_mrisc2 2
6483 #define bfd_mach_ms2 3
6485 bfd_arch_avr, /* Atmel AVR microcontrollers. */
6486 #define bfd_mach_avr1 1
6487 #define bfd_mach_avr2 2
6488 #define bfd_mach_avr25 25
6489 #define bfd_mach_avr3 3
6490 #define bfd_mach_avr31 31
6491 #define bfd_mach_avr35 35
6492 #define bfd_mach_avr4 4
6493 #define bfd_mach_avr5 5
6494 #define bfd_mach_avr51 51
6495 #define bfd_mach_avr6 6
6496 bfd_arch_bfin, /* ADI Blackfin */
6497 #define bfd_mach_bfin 1
6498 bfd_arch_cr16, /* National Semiconductor CompactRISC (ie CR16). */
6499 #define bfd_mach_cr16 1
6500 bfd_arch_cr16c, /* National Semiconductor CompactRISC. */
6501 #define bfd_mach_cr16c 1
6502 bfd_arch_crx, /* National Semiconductor CRX. */
6503 #define bfd_mach_crx 1
6504 bfd_arch_cris, /* Axis CRIS */
6505 #define bfd_mach_cris_v0_v10 255
6506 #define bfd_mach_cris_v32 32
6507 #define bfd_mach_cris_v10_v32 1032
6508 bfd_arch_s390, /* IBM s390 */
6509 #define bfd_mach_s390_31 31
6510 #define bfd_mach_s390_64 64
6511 bfd_arch_score, /* Sunplus score */
6512 #define bfd_mach_score3 3
6513 #define bfd_mach_score7 7
6514 bfd_arch_openrisc, /* OpenRISC */
6515 bfd_arch_mmix, /* Donald Knuth's educational processor. */
6517 #define bfd_mach_xstormy16 1
6518 bfd_arch_msp430, /* Texas Instruments MSP430 architecture. */
6519 #define bfd_mach_msp11 11
6520 #define bfd_mach_msp110 110
6521 #define bfd_mach_msp12 12
6522 #define bfd_mach_msp13 13
6523 #define bfd_mach_msp14 14
6524 #define bfd_mach_msp15 15
6525 #define bfd_mach_msp16 16
6526 #define bfd_mach_msp21 21
6527 #define bfd_mach_msp31 31
6528 #define bfd_mach_msp32 32
6529 #define bfd_mach_msp33 33
6530 #define bfd_mach_msp41 41
6531 #define bfd_mach_msp42 42
6532 #define bfd_mach_msp43 43
6533 #define bfd_mach_msp44 44
6534 bfd_arch_xc16x, /* Infineon's XC16X Series. */
6535 #define bfd_mach_xc16x 1
6536 #define bfd_mach_xc16xl 2
6537 #define bfd_mach_xc16xs 3
6538 bfd_arch_xtensa, /* Tensilica's Xtensa cores. */
6539 #define bfd_mach_xtensa 1
6540 bfd_arch_maxq, /* Dallas MAXQ 10/20 */
6541 #define bfd_mach_maxq10 10
6542 #define bfd_mach_maxq20 20
6544 #define bfd_mach_z80strict 1 /* No undocumented opcodes. */
6545 #define bfd_mach_z80 3 /* With ixl, ixh, iyl, and iyh. */
6546 #define bfd_mach_z80full 7 /* All undocumented instructions. */
6547 #define bfd_mach_r800 11 /* R800: successor with multiplication. */
6548 bfd_arch_lm32, /* Lattice Mico32 */
6549 #define bfd_mach_lm32 1
6550 bfd_arch_microblaze,/* Xilinx MicroBlaze. */
6554 2.13.2 bfd_arch_info
6555 --------------------
6558 This structure contains information on architectures for use within BFD.
6560 typedef struct bfd_arch_info
6563 int bits_per_address;
6565 enum bfd_architecture arch;
6567 const char *arch_name;
6568 const char *printable_name;
6569 unsigned int section_align_power;
6570 /* TRUE if this is the default machine for the architecture.
6571 The default arch should be the first entry for an arch so that
6572 all the entries for that arch can be accessed via `next'. */
6573 bfd_boolean the_default;
6574 const struct bfd_arch_info * (*compatible)
6575 (const struct bfd_arch_info *a, const struct bfd_arch_info *b);
6577 bfd_boolean (*scan) (const struct bfd_arch_info *, const char *);
6579 const struct bfd_arch_info *next;
6583 2.13.2.1 `bfd_printable_name'
6584 .............................
6587 const char *bfd_printable_name (bfd *abfd);
6589 Return a printable string representing the architecture and machine
6590 from the pointer to the architecture info structure.
6592 2.13.2.2 `bfd_scan_arch'
6593 ........................
6596 const bfd_arch_info_type *bfd_scan_arch (const char *string);
6598 Figure out if BFD supports any cpu which could be described with the
6599 name STRING. Return a pointer to an `arch_info' structure if a machine
6600 is found, otherwise NULL.
6602 2.13.2.3 `bfd_arch_list'
6603 ........................
6606 const char **bfd_arch_list (void);
6608 Return a freshly malloced NULL-terminated vector of the names of all
6609 the valid BFD architectures. Do not modify the names.
6611 2.13.2.4 `bfd_arch_get_compatible'
6612 ..................................
6615 const bfd_arch_info_type *bfd_arch_get_compatible
6616 (const bfd *abfd, const bfd *bbfd, bfd_boolean accept_unknowns);
6618 Determine whether two BFDs' architectures and machine types are
6619 compatible. Calculates the lowest common denominator between the two
6620 architectures and machine types implied by the BFDs and returns a
6621 pointer to an `arch_info' structure describing the compatible machine.
6623 2.13.2.5 `bfd_default_arch_struct'
6624 ..................................
6627 The `bfd_default_arch_struct' is an item of `bfd_arch_info_type' which
6628 has been initialized to a fairly generic state. A BFD starts life by
6629 pointing to this structure, until the correct back end has determined
6630 the real architecture of the file.
6631 extern const bfd_arch_info_type bfd_default_arch_struct;
6633 2.13.2.6 `bfd_set_arch_info'
6634 ............................
6637 void bfd_set_arch_info (bfd *abfd, const bfd_arch_info_type *arg);
6639 Set the architecture info of ABFD to ARG.
6641 2.13.2.7 `bfd_default_set_arch_mach'
6642 ....................................
6645 bfd_boolean bfd_default_set_arch_mach
6646 (bfd *abfd, enum bfd_architecture arch, unsigned long mach);
6648 Set the architecture and machine type in BFD ABFD to ARCH and MACH.
6649 Find the correct pointer to a structure and insert it into the
6650 `arch_info' pointer.
6652 2.13.2.8 `bfd_get_arch'
6653 .......................
6656 enum bfd_architecture bfd_get_arch (bfd *abfd);
6658 Return the enumerated type which describes the BFD ABFD's architecture.
6660 2.13.2.9 `bfd_get_mach'
6661 .......................
6664 unsigned long bfd_get_mach (bfd *abfd);
6666 Return the long type which describes the BFD ABFD's machine.
6668 2.13.2.10 `bfd_arch_bits_per_byte'
6669 ..................................
6672 unsigned int bfd_arch_bits_per_byte (bfd *abfd);
6674 Return the number of bits in one of the BFD ABFD's architecture's bytes.
6676 2.13.2.11 `bfd_arch_bits_per_address'
6677 .....................................
6680 unsigned int bfd_arch_bits_per_address (bfd *abfd);
6682 Return the number of bits in one of the BFD ABFD's architecture's
6685 2.13.2.12 `bfd_default_compatible'
6686 ..................................
6689 const bfd_arch_info_type *bfd_default_compatible
6690 (const bfd_arch_info_type *a, const bfd_arch_info_type *b);
6692 The default function for testing for compatibility.
6694 2.13.2.13 `bfd_default_scan'
6695 ............................
6698 bfd_boolean bfd_default_scan
6699 (const struct bfd_arch_info *info, const char *string);
6701 The default function for working out whether this is an architecture
6702 hit and a machine hit.
6704 2.13.2.14 `bfd_get_arch_info'
6705 .............................
6708 const bfd_arch_info_type *bfd_get_arch_info (bfd *abfd);
6710 Return the architecture info struct in ABFD.
6712 2.13.2.15 `bfd_lookup_arch'
6713 ...........................
6716 const bfd_arch_info_type *bfd_lookup_arch
6717 (enum bfd_architecture arch, unsigned long machine);
6719 Look for the architecture info structure which matches the arguments
6720 ARCH and MACHINE. A machine of 0 matches the machine/architecture
6721 structure which marks itself as the default.
6723 2.13.2.16 `bfd_printable_arch_mach'
6724 ...................................
6727 const char *bfd_printable_arch_mach
6728 (enum bfd_architecture arch, unsigned long machine);
6730 Return a printable string representing the architecture and machine
6733 This routine is depreciated.
6735 2.13.2.17 `bfd_octets_per_byte'
6736 ...............................
6739 unsigned int bfd_octets_per_byte (bfd *abfd);
6741 Return the number of octets (8-bit quantities) per target byte (minimum
6742 addressable unit). In most cases, this will be one, but some DSP
6743 targets have 16, 32, or even 48 bits per byte.
6745 2.13.2.18 `bfd_arch_mach_octets_per_byte'
6746 .........................................
6749 unsigned int bfd_arch_mach_octets_per_byte
6750 (enum bfd_architecture arch, unsigned long machine);
6752 See bfd_octets_per_byte.
6754 This routine is provided for those cases where a bfd * is not
6758 File: bfd.info, Node: Opening and Closing, Next: Internal, Prev: Architectures, Up: BFD front end
6760 2.14 Opening and closing BFDs
6761 =============================
6763 2.14.1 Functions for opening and closing
6764 ----------------------------------------
6766 2.14.1.1 `bfd_fopen'
6767 ....................
6770 bfd *bfd_fopen (const char *filename, const char *target,
6771 const char *mode, int fd);
6773 Open the file FILENAME with the target TARGET. Return a pointer to the
6774 created BFD. If FD is not -1, then `fdopen' is used to open the file;
6775 otherwise, `fopen' is used. MODE is passed directly to `fopen' or
6778 Calls `bfd_find_target', so TARGET is interpreted as by that
6781 The new BFD is marked as cacheable iff FD is -1.
6783 If `NULL' is returned then an error has occured. Possible errors
6784 are `bfd_error_no_memory', `bfd_error_invalid_target' or `system_call'
6787 2.14.1.2 `bfd_openr'
6788 ....................
6791 bfd *bfd_openr (const char *filename, const char *target);
6793 Open the file FILENAME (using `fopen') with the target TARGET. Return
6794 a pointer to the created BFD.
6796 Calls `bfd_find_target', so TARGET is interpreted as by that
6799 If `NULL' is returned then an error has occured. Possible errors
6800 are `bfd_error_no_memory', `bfd_error_invalid_target' or `system_call'
6803 2.14.1.3 `bfd_fdopenr'
6804 ......................
6807 bfd *bfd_fdopenr (const char *filename, const char *target, int fd);
6809 `bfd_fdopenr' is to `bfd_fopenr' much like `fdopen' is to `fopen'. It
6810 opens a BFD on a file already described by the FD supplied.
6812 When the file is later `bfd_close'd, the file descriptor will be
6813 closed. If the caller desires that this file descriptor be cached by
6814 BFD (opened as needed, closed as needed to free descriptors for other
6815 opens), with the supplied FD used as an initial file descriptor (but
6816 subject to closure at any time), call bfd_set_cacheable(bfd, 1) on the
6817 returned BFD. The default is to assume no caching; the file descriptor
6818 will remain open until `bfd_close', and will not be affected by BFD
6819 operations on other files.
6821 Possible errors are `bfd_error_no_memory',
6822 `bfd_error_invalid_target' and `bfd_error_system_call'.
6824 2.14.1.4 `bfd_openstreamr'
6825 ..........................
6828 bfd *bfd_openstreamr (const char *, const char *, void *);
6830 Open a BFD for read access on an existing stdio stream. When the BFD
6831 is passed to `bfd_close', the stream will be closed.
6833 2.14.1.5 `bfd_openr_iovec'
6834 ..........................
6837 bfd *bfd_openr_iovec (const char *filename, const char *target,
6838 void *(*open) (struct bfd *nbfd,
6839 void *open_closure),
6841 file_ptr (*pread) (struct bfd *nbfd,
6846 int (*close) (struct bfd *nbfd,
6848 int (*stat) (struct bfd *abfd,
6852 Create and return a BFD backed by a read-only STREAM. The STREAM is
6853 created using OPEN, accessed using PREAD and destroyed using CLOSE.
6855 Calls `bfd_find_target', so TARGET is interpreted as by that
6858 Calls OPEN (which can call `bfd_zalloc' and `bfd_get_filename') to
6859 obtain the read-only stream backing the BFD. OPEN either succeeds
6860 returning the non-`NULL' STREAM, or fails returning `NULL' (setting
6863 Calls PREAD to request NBYTES of data from STREAM starting at OFFSET
6864 (e.g., via a call to `bfd_read'). PREAD either succeeds returning the
6865 number of bytes read (which can be less than NBYTES when end-of-file),
6866 or fails returning -1 (setting `bfd_error').
6868 Calls CLOSE when the BFD is later closed using `bfd_close'. CLOSE
6869 either succeeds returning 0, or fails returning -1 (setting
6872 Calls STAT to fill in a stat structure for bfd_stat, bfd_get_size,
6873 and bfd_get_mtime calls. STAT returns 0 on success, or returns -1 on
6874 failure (setting `bfd_error').
6876 If `bfd_openr_iovec' returns `NULL' then an error has occurred.
6877 Possible errors are `bfd_error_no_memory', `bfd_error_invalid_target'
6878 and `bfd_error_system_call'.
6880 2.14.1.6 `bfd_openw'
6881 ....................
6884 bfd *bfd_openw (const char *filename, const char *target);
6886 Create a BFD, associated with file FILENAME, using the file format
6887 TARGET, and return a pointer to it.
6889 Possible errors are `bfd_error_system_call', `bfd_error_no_memory',
6890 `bfd_error_invalid_target'.
6892 2.14.1.7 `bfd_close'
6893 ....................
6896 bfd_boolean bfd_close (bfd *abfd);
6898 Close a BFD. If the BFD was open for writing, then pending operations
6899 are completed and the file written out and closed. If the created file
6900 is executable, then `chmod' is called to mark it as such.
6902 All memory attached to the BFD is released.
6904 The file descriptor associated with the BFD is closed (even if it
6905 was passed in to BFD by `bfd_fdopenr').
6908 `TRUE' is returned if all is ok, otherwise `FALSE'.
6910 2.14.1.8 `bfd_close_all_done'
6911 .............................
6914 bfd_boolean bfd_close_all_done (bfd *);
6916 Close a BFD. Differs from `bfd_close' since it does not complete any
6917 pending operations. This routine would be used if the application had
6918 just used BFD for swapping and didn't want to use any of the writing
6921 If the created file is executable, then `chmod' is called to mark it
6924 All memory attached to the BFD is released.
6927 `TRUE' is returned if all is ok, otherwise `FALSE'.
6929 2.14.1.9 `bfd_create'
6930 .....................
6933 bfd *bfd_create (const char *filename, bfd *templ);
6935 Create a new BFD in the manner of `bfd_openw', but without opening a
6936 file. The new BFD takes the target from the target used by TEMPLATE.
6937 The format is always set to `bfd_object'.
6939 2.14.1.10 `bfd_make_writable'
6940 .............................
6943 bfd_boolean bfd_make_writable (bfd *abfd);
6945 Takes a BFD as created by `bfd_create' and converts it into one like as
6946 returned by `bfd_openw'. It does this by converting the BFD to
6947 BFD_IN_MEMORY. It's assumed that you will call `bfd_make_readable' on
6951 `TRUE' is returned if all is ok, otherwise `FALSE'.
6953 2.14.1.11 `bfd_make_readable'
6954 .............................
6957 bfd_boolean bfd_make_readable (bfd *abfd);
6959 Takes a BFD as created by `bfd_create' and `bfd_make_writable' and
6960 converts it into one like as returned by `bfd_openr'. It does this by
6961 writing the contents out to the memory buffer, then reversing the
6965 `TRUE' is returned if all is ok, otherwise `FALSE'.
6967 2.14.1.12 `bfd_alloc'
6968 .....................
6971 void *bfd_alloc (bfd *abfd, bfd_size_type wanted);
6973 Allocate a block of WANTED bytes of memory attached to `abfd' and
6974 return a pointer to it.
6976 2.14.1.13 `bfd_alloc2'
6977 ......................
6980 void *bfd_alloc2 (bfd *abfd, bfd_size_type nmemb, bfd_size_type size);
6982 Allocate a block of NMEMB elements of SIZE bytes each of memory
6983 attached to `abfd' and return a pointer to it.
6985 2.14.1.14 `bfd_zalloc'
6986 ......................
6989 void *bfd_zalloc (bfd *abfd, bfd_size_type wanted);
6991 Allocate a block of WANTED bytes of zeroed memory attached to `abfd'
6992 and return a pointer to it.
6994 2.14.1.15 `bfd_zalloc2'
6995 .......................
6998 void *bfd_zalloc2 (bfd *abfd, bfd_size_type nmemb, bfd_size_type size);
7000 Allocate a block of NMEMB elements of SIZE bytes each of zeroed memory
7001 attached to `abfd' and return a pointer to it.
7003 2.14.1.16 `bfd_calc_gnu_debuglink_crc32'
7004 ........................................
7007 unsigned long bfd_calc_gnu_debuglink_crc32
7008 (unsigned long crc, const unsigned char *buf, bfd_size_type len);
7010 Computes a CRC value as used in the .gnu_debuglink section. Advances
7011 the previously computed CRC value by computing and adding in the crc32
7012 for LEN bytes of BUF.
7015 Return the updated CRC32 value.
7017 2.14.1.17 `get_debug_link_info'
7018 ...............................
7021 char *get_debug_link_info (bfd *abfd, unsigned long *crc32_out);
7023 fetch the filename and CRC32 value for any separate debuginfo
7024 associated with ABFD. Return NULL if no such info found, otherwise
7025 return filename and update CRC32_OUT.
7027 2.14.1.18 `separate_debug_file_exists'
7028 ......................................
7031 bfd_boolean separate_debug_file_exists
7032 (char *name, unsigned long crc32);
7034 Checks to see if NAME is a file and if its contents match CRC32.
7036 2.14.1.19 `find_separate_debug_file'
7037 ....................................
7040 char *find_separate_debug_file (bfd *abfd);
7042 Searches ABFD for a reference to separate debugging information, scans
7043 various locations in the filesystem, including the file tree rooted at
7044 DEBUG_FILE_DIRECTORY, and returns a filename of such debugging
7045 information if the file is found and has matching CRC32. Returns NULL
7046 if no reference to debugging file exists, or file cannot be found.
7048 2.14.1.20 `bfd_follow_gnu_debuglink'
7049 ....................................
7052 char *bfd_follow_gnu_debuglink (bfd *abfd, const char *dir);
7054 Takes a BFD and searches it for a .gnu_debuglink section. If this
7055 section is found, it examines the section for the name and checksum of
7056 a '.debug' file containing auxiliary debugging information. It then
7057 searches the filesystem for this .debug file in some standard
7058 locations, including the directory tree rooted at DIR, and if found
7059 returns the full filename.
7061 If DIR is NULL, it will search a default path configured into libbfd
7062 at build time. [XXX this feature is not currently implemented].
7065 `NULL' on any errors or failure to locate the .debug file, otherwise a
7066 pointer to a heap-allocated string containing the filename. The caller
7067 is responsible for freeing this string.
7069 2.14.1.21 `bfd_create_gnu_debuglink_section'
7070 ............................................
7073 struct bfd_section *bfd_create_gnu_debuglink_section
7074 (bfd *abfd, const char *filename);
7076 Takes a BFD and adds a .gnu_debuglink section to it. The section is
7077 sized to be big enough to contain a link to the specified FILENAME.
7080 A pointer to the new section is returned if all is ok. Otherwise
7081 `NULL' is returned and bfd_error is set.
7083 2.14.1.22 `bfd_fill_in_gnu_debuglink_section'
7084 .............................................
7087 bfd_boolean bfd_fill_in_gnu_debuglink_section
7088 (bfd *abfd, struct bfd_section *sect, const char *filename);
7090 Takes a BFD and containing a .gnu_debuglink section SECT and fills in
7091 the contents of the section to contain a link to the specified
7092 FILENAME. The filename should be relative to the current directory.
7095 `TRUE' is returned if all is ok. Otherwise `FALSE' is returned and
7099 File: bfd.info, Node: Internal, Next: File Caching, Prev: Opening and Closing, Up: BFD front end
7101 2.15 Implementation details
7102 ===========================
7104 2.15.1 Internal functions
7105 -------------------------
7108 These routines are used within BFD. They are not intended for export,
7109 but are documented here for completeness.
7111 2.15.1.1 `bfd_write_bigendian_4byte_int'
7112 ........................................
7115 bfd_boolean bfd_write_bigendian_4byte_int (bfd *, unsigned int);
7117 Write a 4 byte integer I to the output BFD ABFD, in big endian order
7118 regardless of what else is going on. This is useful in archives.
7120 2.15.1.2 `bfd_put_size'
7121 .......................
7123 2.15.1.3 `bfd_get_size'
7124 .......................
7127 These macros as used for reading and writing raw data in sections; each
7128 access (except for bytes) is vectored through the target format of the
7129 BFD and mangled accordingly. The mangling performs any necessary endian
7130 translations and removes alignment restrictions. Note that types
7131 accepted and returned by these macros are identical so they can be
7132 swapped around in macros--for example, `libaout.h' defines `GET_WORD'
7133 to either `bfd_get_32' or `bfd_get_64'.
7135 In the put routines, VAL must be a `bfd_vma'. If we are on a system
7136 without prototypes, the caller is responsible for making sure that is
7137 true, with a cast if necessary. We don't cast them in the macro
7138 definitions because that would prevent `lint' or `gcc -Wall' from
7139 detecting sins such as passing a pointer. To detect calling these with
7140 less than a `bfd_vma', use `gcc -Wconversion' on a host with 64 bit
7143 /* Byte swapping macros for user section data. */
7145 #define bfd_put_8(abfd, val, ptr) \
7146 ((void) (*((unsigned char *) (ptr)) = (val) & 0xff))
7147 #define bfd_put_signed_8 \
7149 #define bfd_get_8(abfd, ptr) \
7150 (*(unsigned char *) (ptr) & 0xff)
7151 #define bfd_get_signed_8(abfd, ptr) \
7152 (((*(unsigned char *) (ptr) & 0xff) ^ 0x80) - 0x80)
7154 #define bfd_put_16(abfd, val, ptr) \
7155 BFD_SEND (abfd, bfd_putx16, ((val),(ptr)))
7156 #define bfd_put_signed_16 \
7158 #define bfd_get_16(abfd, ptr) \
7159 BFD_SEND (abfd, bfd_getx16, (ptr))
7160 #define bfd_get_signed_16(abfd, ptr) \
7161 BFD_SEND (abfd, bfd_getx_signed_16, (ptr))
7163 #define bfd_put_32(abfd, val, ptr) \
7164 BFD_SEND (abfd, bfd_putx32, ((val),(ptr)))
7165 #define bfd_put_signed_32 \
7167 #define bfd_get_32(abfd, ptr) \
7168 BFD_SEND (abfd, bfd_getx32, (ptr))
7169 #define bfd_get_signed_32(abfd, ptr) \
7170 BFD_SEND (abfd, bfd_getx_signed_32, (ptr))
7172 #define bfd_put_64(abfd, val, ptr) \
7173 BFD_SEND (abfd, bfd_putx64, ((val), (ptr)))
7174 #define bfd_put_signed_64 \
7176 #define bfd_get_64(abfd, ptr) \
7177 BFD_SEND (abfd, bfd_getx64, (ptr))
7178 #define bfd_get_signed_64(abfd, ptr) \
7179 BFD_SEND (abfd, bfd_getx_signed_64, (ptr))
7181 #define bfd_get(bits, abfd, ptr) \
7182 ((bits) == 8 ? (bfd_vma) bfd_get_8 (abfd, ptr) \
7183 : (bits) == 16 ? bfd_get_16 (abfd, ptr) \
7184 : (bits) == 32 ? bfd_get_32 (abfd, ptr) \
7185 : (bits) == 64 ? bfd_get_64 (abfd, ptr) \
7186 : (abort (), (bfd_vma) - 1))
7188 #define bfd_put(bits, abfd, val, ptr) \
7189 ((bits) == 8 ? bfd_put_8 (abfd, val, ptr) \
7190 : (bits) == 16 ? bfd_put_16 (abfd, val, ptr) \
7191 : (bits) == 32 ? bfd_put_32 (abfd, val, ptr) \
7192 : (bits) == 64 ? bfd_put_64 (abfd, val, ptr) \
7193 : (abort (), (void) 0))
7195 2.15.1.4 `bfd_h_put_size'
7196 .........................
7199 These macros have the same function as their `bfd_get_x' brethren,
7200 except that they are used for removing information for the header
7201 records of object files. Believe it or not, some object files keep
7202 their header records in big endian order and their data in little
7205 /* Byte swapping macros for file header data. */
7207 #define bfd_h_put_8(abfd, val, ptr) \
7208 bfd_put_8 (abfd, val, ptr)
7209 #define bfd_h_put_signed_8(abfd, val, ptr) \
7210 bfd_put_8 (abfd, val, ptr)
7211 #define bfd_h_get_8(abfd, ptr) \
7212 bfd_get_8 (abfd, ptr)
7213 #define bfd_h_get_signed_8(abfd, ptr) \
7214 bfd_get_signed_8 (abfd, ptr)
7216 #define bfd_h_put_16(abfd, val, ptr) \
7217 BFD_SEND (abfd, bfd_h_putx16, (val, ptr))
7218 #define bfd_h_put_signed_16 \
7220 #define bfd_h_get_16(abfd, ptr) \
7221 BFD_SEND (abfd, bfd_h_getx16, (ptr))
7222 #define bfd_h_get_signed_16(abfd, ptr) \
7223 BFD_SEND (abfd, bfd_h_getx_signed_16, (ptr))
7225 #define bfd_h_put_32(abfd, val, ptr) \
7226 BFD_SEND (abfd, bfd_h_putx32, (val, ptr))
7227 #define bfd_h_put_signed_32 \
7229 #define bfd_h_get_32(abfd, ptr) \
7230 BFD_SEND (abfd, bfd_h_getx32, (ptr))
7231 #define bfd_h_get_signed_32(abfd, ptr) \
7232 BFD_SEND (abfd, bfd_h_getx_signed_32, (ptr))
7234 #define bfd_h_put_64(abfd, val, ptr) \
7235 BFD_SEND (abfd, bfd_h_putx64, (val, ptr))
7236 #define bfd_h_put_signed_64 \
7238 #define bfd_h_get_64(abfd, ptr) \
7239 BFD_SEND (abfd, bfd_h_getx64, (ptr))
7240 #define bfd_h_get_signed_64(abfd, ptr) \
7241 BFD_SEND (abfd, bfd_h_getx_signed_64, (ptr))
7243 /* Aliases for the above, which should eventually go away. */
7245 #define H_PUT_64 bfd_h_put_64
7246 #define H_PUT_32 bfd_h_put_32
7247 #define H_PUT_16 bfd_h_put_16
7248 #define H_PUT_8 bfd_h_put_8
7249 #define H_PUT_S64 bfd_h_put_signed_64
7250 #define H_PUT_S32 bfd_h_put_signed_32
7251 #define H_PUT_S16 bfd_h_put_signed_16
7252 #define H_PUT_S8 bfd_h_put_signed_8
7253 #define H_GET_64 bfd_h_get_64
7254 #define H_GET_32 bfd_h_get_32
7255 #define H_GET_16 bfd_h_get_16
7256 #define H_GET_8 bfd_h_get_8
7257 #define H_GET_S64 bfd_h_get_signed_64
7258 #define H_GET_S32 bfd_h_get_signed_32
7259 #define H_GET_S16 bfd_h_get_signed_16
7260 #define H_GET_S8 bfd_h_get_signed_8
7266 unsigned int bfd_log2 (bfd_vma x);
7268 Return the log base 2 of the value supplied, rounded up. E.g., an X of
7269 1025 returns 11. A X of 0 returns 0.
7272 File: bfd.info, Node: File Caching, Next: Linker Functions, Prev: Internal, Up: BFD front end
7277 The file caching mechanism is embedded within BFD and allows the
7278 application to open as many BFDs as it wants without regard to the
7279 underlying operating system's file descriptor limit (often as low as 20
7280 open files). The module in `cache.c' maintains a least recently used
7281 list of `BFD_CACHE_MAX_OPEN' files, and exports the name
7282 `bfd_cache_lookup', which runs around and makes sure that the required
7283 BFD is open. If not, then it chooses a file to close, closes it and
7284 opens the one wanted, returning its file handle.
7286 2.16.1 Caching functions
7287 ------------------------
7289 2.16.1.1 `bfd_cache_init'
7290 .........................
7293 bfd_boolean bfd_cache_init (bfd *abfd);
7295 Add a newly opened BFD to the cache.
7297 2.16.1.2 `bfd_cache_close'
7298 ..........................
7301 bfd_boolean bfd_cache_close (bfd *abfd);
7303 Remove the BFD ABFD from the cache. If the attached file is open, then
7307 `FALSE' is returned if closing the file fails, `TRUE' is returned if
7310 2.16.1.3 `bfd_cache_close_all'
7311 ..............................
7314 bfd_boolean bfd_cache_close_all (void);
7316 Remove all BFDs from the cache. If the attached file is open, then
7320 `FALSE' is returned if closing one of the file fails, `TRUE' is
7321 returned if all is well.
7323 2.16.1.4 `bfd_open_file'
7324 ........................
7327 FILE* bfd_open_file (bfd *abfd);
7329 Call the OS to open a file for ABFD. Return the `FILE *' (possibly
7330 `NULL') that results from this operation. Set up the BFD so that
7331 future accesses know the file is open. If the `FILE *' returned is
7332 `NULL', then it won't have been put in the cache, so it won't have to
7336 File: bfd.info, Node: Linker Functions, Next: Hash Tables, Prev: File Caching, Up: BFD front end
7338 2.17 Linker Functions
7339 =====================
7341 The linker uses three special entry points in the BFD target vector.
7342 It is not necessary to write special routines for these entry points
7343 when creating a new BFD back end, since generic versions are provided.
7344 However, writing them can speed up linking and make it use
7345 significantly less runtime memory.
7347 The first routine creates a hash table used by the other routines.
7348 The second routine adds the symbols from an object file to the hash
7349 table. The third routine takes all the object files and links them
7350 together to create the output file. These routines are designed so
7351 that the linker proper does not need to know anything about the symbols
7352 in the object files that it is linking. The linker merely arranges the
7353 sections as directed by the linker script and lets BFD handle the
7354 details of symbols and relocs.
7356 The second routine and third routines are passed a pointer to a
7357 `struct bfd_link_info' structure (defined in `bfdlink.h') which holds
7358 information relevant to the link, including the linker hash table
7359 (which was created by the first routine) and a set of callback
7360 functions to the linker proper.
7362 The generic linker routines are in `linker.c', and use the header
7363 file `genlink.h'. As of this writing, the only back ends which have
7364 implemented versions of these routines are a.out (in `aoutx.h') and
7365 ECOFF (in `ecoff.c'). The a.out routines are used as examples
7366 throughout this section.
7370 * Creating a Linker Hash Table::
7371 * Adding Symbols to the Hash Table::
7372 * Performing the Final Link::
7375 File: bfd.info, Node: Creating a Linker Hash Table, Next: Adding Symbols to the Hash Table, Prev: Linker Functions, Up: Linker Functions
7377 2.17.1 Creating a linker hash table
7378 -----------------------------------
7380 The linker routines must create a hash table, which must be derived
7381 from `struct bfd_link_hash_table' described in `bfdlink.c'. *Note Hash
7382 Tables::, for information on how to create a derived hash table. This
7383 entry point is called using the target vector of the linker output file.
7385 The `_bfd_link_hash_table_create' entry point must allocate and
7386 initialize an instance of the desired hash table. If the back end does
7387 not require any additional information to be stored with the entries in
7388 the hash table, the entry point may simply create a `struct
7389 bfd_link_hash_table'. Most likely, however, some additional
7390 information will be needed.
7392 For example, with each entry in the hash table the a.out linker
7393 keeps the index the symbol has in the final output file (this index
7394 number is used so that when doing a relocatable link the symbol index
7395 used in the output file can be quickly filled in when copying over a
7396 reloc). The a.out linker code defines the required structures and
7397 functions for a hash table derived from `struct bfd_link_hash_table'.
7398 The a.out linker hash table is created by the function
7399 `NAME(aout,link_hash_table_create)'; it simply allocates space for the
7400 hash table, initializes it, and returns a pointer to it.
7402 When writing the linker routines for a new back end, you will
7403 generally not know exactly which fields will be required until you have
7404 finished. You should simply create a new hash table which defines no
7405 additional fields, and then simply add fields as they become necessary.
7408 File: bfd.info, Node: Adding Symbols to the Hash Table, Next: Performing the Final Link, Prev: Creating a Linker Hash Table, Up: Linker Functions
7410 2.17.2 Adding symbols to the hash table
7411 ---------------------------------------
7413 The linker proper will call the `_bfd_link_add_symbols' entry point for
7414 each object file or archive which is to be linked (typically these are
7415 the files named on the command line, but some may also come from the
7416 linker script). The entry point is responsible for examining the file.
7417 For an object file, BFD must add any relevant symbol information to
7418 the hash table. For an archive, BFD must determine which elements of
7419 the archive should be used and adding them to the link.
7421 The a.out version of this entry point is
7422 `NAME(aout,link_add_symbols)'.
7426 * Differing file formats::
7427 * Adding symbols from an object file::
7428 * Adding symbols from an archive::
7431 File: bfd.info, Node: Differing file formats, Next: Adding symbols from an object file, Prev: Adding Symbols to the Hash Table, Up: Adding Symbols to the Hash Table
7433 2.17.2.1 Differing file formats
7434 ...............................
7436 Normally all the files involved in a link will be of the same format,
7437 but it is also possible to link together different format object files,
7438 and the back end must support that. The `_bfd_link_add_symbols' entry
7439 point is called via the target vector of the file to be added. This
7440 has an important consequence: the function may not assume that the hash
7441 table is the type created by the corresponding
7442 `_bfd_link_hash_table_create' vector. All the `_bfd_link_add_symbols'
7443 function can assume about the hash table is that it is derived from
7444 `struct bfd_link_hash_table'.
7446 Sometimes the `_bfd_link_add_symbols' function must store some
7447 information in the hash table entry to be used by the `_bfd_final_link'
7448 function. In such a case the output bfd xvec must be checked to make
7449 sure that the hash table was created by an object file of the same
7452 The `_bfd_final_link' routine must be prepared to handle a hash
7453 entry without any extra information added by the
7454 `_bfd_link_add_symbols' function. A hash entry without extra
7455 information will also occur when the linker script directs the linker
7456 to create a symbol. Note that, regardless of how a hash table entry is
7457 added, all the fields will be initialized to some sort of null value by
7458 the hash table entry initialization function.
7460 See `ecoff_link_add_externals' for an example of how to check the
7461 output bfd before saving information (in this case, the ECOFF external
7462 symbol debugging information) in a hash table entry.
7465 File: bfd.info, Node: Adding symbols from an object file, Next: Adding symbols from an archive, Prev: Differing file formats, Up: Adding Symbols to the Hash Table
7467 2.17.2.2 Adding symbols from an object file
7468 ...........................................
7470 When the `_bfd_link_add_symbols' routine is passed an object file, it
7471 must add all externally visible symbols in that object file to the hash
7472 table. The actual work of adding the symbol to the hash table is
7473 normally handled by the function `_bfd_generic_link_add_one_symbol'.
7474 The `_bfd_link_add_symbols' routine is responsible for reading all the
7475 symbols from the object file and passing the correct information to
7476 `_bfd_generic_link_add_one_symbol'.
7478 The `_bfd_link_add_symbols' routine should not use
7479 `bfd_canonicalize_symtab' to read the symbols. The point of providing
7480 this routine is to avoid the overhead of converting the symbols into
7481 generic `asymbol' structures.
7483 `_bfd_generic_link_add_one_symbol' handles the details of combining
7484 common symbols, warning about multiple definitions, and so forth. It
7485 takes arguments which describe the symbol to add, notably symbol flags,
7486 a section, and an offset. The symbol flags include such things as
7487 `BSF_WEAK' or `BSF_INDIRECT'. The section is a section in the object
7488 file, or something like `bfd_und_section_ptr' for an undefined symbol
7489 or `bfd_com_section_ptr' for a common symbol.
7491 If the `_bfd_final_link' routine is also going to need to read the
7492 symbol information, the `_bfd_link_add_symbols' routine should save it
7493 somewhere attached to the object file BFD. However, the information
7494 should only be saved if the `keep_memory' field of the `info' argument
7495 is TRUE, so that the `-no-keep-memory' linker switch is effective.
7497 The a.out function which adds symbols from an object file is
7498 `aout_link_add_object_symbols', and most of the interesting work is in
7499 `aout_link_add_symbols'. The latter saves pointers to the hash tables
7500 entries created by `_bfd_generic_link_add_one_symbol' indexed by symbol
7501 number, so that the `_bfd_final_link' routine does not have to call the
7502 hash table lookup routine to locate the entry.
7505 File: bfd.info, Node: Adding symbols from an archive, Prev: Adding symbols from an object file, Up: Adding Symbols to the Hash Table
7507 2.17.2.3 Adding symbols from an archive
7508 .......................................
7510 When the `_bfd_link_add_symbols' routine is passed an archive, it must
7511 look through the symbols defined by the archive and decide which
7512 elements of the archive should be included in the link. For each such
7513 element it must call the `add_archive_element' linker callback, and it
7514 must add the symbols from the object file to the linker hash table.
7516 In most cases the work of looking through the symbols in the archive
7517 should be done by the `_bfd_generic_link_add_archive_symbols' function.
7518 This function builds a hash table from the archive symbol table and
7519 looks through the list of undefined symbols to see which elements
7520 should be included. `_bfd_generic_link_add_archive_symbols' is passed
7521 a function to call to make the final decision about adding an archive
7522 element to the link and to do the actual work of adding the symbols to
7523 the linker hash table.
7525 The function passed to `_bfd_generic_link_add_archive_symbols' must
7526 read the symbols of the archive element and decide whether the archive
7527 element should be included in the link. If the element is to be
7528 included, the `add_archive_element' linker callback routine must be
7529 called with the element as an argument, and the elements symbols must
7530 be added to the linker hash table just as though the element had itself
7531 been passed to the `_bfd_link_add_symbols' function.
7533 When the a.out `_bfd_link_add_symbols' function receives an archive,
7534 it calls `_bfd_generic_link_add_archive_symbols' passing
7535 `aout_link_check_archive_element' as the function argument.
7536 `aout_link_check_archive_element' calls `aout_link_check_ar_symbols'.
7537 If the latter decides to add the element (an element is only added if
7538 it provides a real, non-common, definition for a previously undefined
7539 or common symbol) it calls the `add_archive_element' callback and then
7540 `aout_link_check_archive_element' calls `aout_link_add_symbols' to
7541 actually add the symbols to the linker hash table.
7543 The ECOFF back end is unusual in that it does not normally call
7544 `_bfd_generic_link_add_archive_symbols', because ECOFF archives already
7545 contain a hash table of symbols. The ECOFF back end searches the
7546 archive itself to avoid the overhead of creating a new hash table.
7549 File: bfd.info, Node: Performing the Final Link, Prev: Adding Symbols to the Hash Table, Up: Linker Functions
7551 2.17.3 Performing the final link
7552 --------------------------------
7554 When all the input files have been processed, the linker calls the
7555 `_bfd_final_link' entry point of the output BFD. This routine is
7556 responsible for producing the final output file, which has several
7557 aspects. It must relocate the contents of the input sections and copy
7558 the data into the output sections. It must build an output symbol
7559 table including any local symbols from the input files and the global
7560 symbols from the hash table. When producing relocatable output, it must
7561 modify the input relocs and write them into the output file. There may
7562 also be object format dependent work to be done.
7564 The linker will also call the `write_object_contents' entry point
7565 when the BFD is closed. The two entry points must work together in
7566 order to produce the correct output file.
7568 The details of how this works are inevitably dependent upon the
7569 specific object file format. The a.out `_bfd_final_link' routine is
7570 `NAME(aout,final_link)'.
7574 * Information provided by the linker::
7575 * Relocating the section contents::
7576 * Writing the symbol table::
7579 File: bfd.info, Node: Information provided by the linker, Next: Relocating the section contents, Prev: Performing the Final Link, Up: Performing the Final Link
7581 2.17.3.1 Information provided by the linker
7582 ...........................................
7584 Before the linker calls the `_bfd_final_link' entry point, it sets up
7585 some data structures for the function to use.
7587 The `input_bfds' field of the `bfd_link_info' structure will point
7588 to a list of all the input files included in the link. These files are
7589 linked through the `link_next' field of the `bfd' structure.
7591 Each section in the output file will have a list of `link_order'
7592 structures attached to the `map_head.link_order' field (the
7593 `link_order' structure is defined in `bfdlink.h'). These structures
7594 describe how to create the contents of the output section in terms of
7595 the contents of various input sections, fill constants, and,
7596 eventually, other types of information. They also describe relocs that
7597 must be created by the BFD backend, but do not correspond to any input
7598 file; this is used to support -Ur, which builds constructors while
7599 generating a relocatable object file.
7602 File: bfd.info, Node: Relocating the section contents, Next: Writing the symbol table, Prev: Information provided by the linker, Up: Performing the Final Link
7604 2.17.3.2 Relocating the section contents
7605 ........................................
7607 The `_bfd_final_link' function should look through the `link_order'
7608 structures attached to each section of the output file. Each
7609 `link_order' structure should either be handled specially, or it should
7610 be passed to the function `_bfd_default_link_order' which will do the
7611 right thing (`_bfd_default_link_order' is defined in `linker.c').
7613 For efficiency, a `link_order' of type `bfd_indirect_link_order'
7614 whose associated section belongs to a BFD of the same format as the
7615 output BFD must be handled specially. This type of `link_order'
7616 describes part of an output section in terms of a section belonging to
7617 one of the input files. The `_bfd_final_link' function should read the
7618 contents of the section and any associated relocs, apply the relocs to
7619 the section contents, and write out the modified section contents. If
7620 performing a relocatable link, the relocs themselves must also be
7621 modified and written out.
7623 The functions `_bfd_relocate_contents' and
7624 `_bfd_final_link_relocate' provide some general support for performing
7625 the actual relocations, notably overflow checking. Their arguments
7626 include information about the symbol the relocation is against and a
7627 `reloc_howto_type' argument which describes the relocation to perform.
7628 These functions are defined in `reloc.c'.
7630 The a.out function which handles reading, relocating, and writing
7631 section contents is `aout_link_input_section'. The actual relocation
7632 is done in `aout_link_input_section_std' and
7633 `aout_link_input_section_ext'.
7636 File: bfd.info, Node: Writing the symbol table, Prev: Relocating the section contents, Up: Performing the Final Link
7638 2.17.3.3 Writing the symbol table
7639 .................................
7641 The `_bfd_final_link' function must gather all the symbols in the input
7642 files and write them out. It must also write out all the symbols in
7643 the global hash table. This must be controlled by the `strip' and
7644 `discard' fields of the `bfd_link_info' structure.
7646 The local symbols of the input files will not have been entered into
7647 the linker hash table. The `_bfd_final_link' routine must consider
7648 each input file and include the symbols in the output file. It may be
7649 convenient to do this when looking through the `link_order' structures,
7650 or it may be done by stepping through the `input_bfds' list.
7652 The `_bfd_final_link' routine must also traverse the global hash
7653 table to gather all the externally visible symbols. It is possible
7654 that most of the externally visible symbols may be written out when
7655 considering the symbols of each input file, but it is still necessary
7656 to traverse the hash table since the linker script may have defined
7657 some symbols that are not in any of the input files.
7659 The `strip' field of the `bfd_link_info' structure controls which
7660 symbols are written out. The possible values are listed in
7661 `bfdlink.h'. If the value is `strip_some', then the `keep_hash' field
7662 of the `bfd_link_info' structure is a hash table of symbols to keep;
7663 each symbol should be looked up in this hash table, and only symbols
7664 which are present should be included in the output file.
7666 If the `strip' field of the `bfd_link_info' structure permits local
7667 symbols to be written out, the `discard' field is used to further
7668 controls which local symbols are included in the output file. If the
7669 value is `discard_l', then all local symbols which begin with a certain
7670 prefix are discarded; this is controlled by the
7671 `bfd_is_local_label_name' entry point.
7673 The a.out backend handles symbols by calling
7674 `aout_link_write_symbols' on each input BFD and then traversing the
7675 global hash table with the function `aout_link_write_other_symbol'. It
7676 builds a string table while writing out the symbols, which is written
7677 to the output file at the end of `NAME(aout,final_link)'.
7679 2.17.3.4 `bfd_link_split_section'
7680 .................................
7683 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
7685 Return nonzero if SEC should be split during a reloceatable or final
7687 #define bfd_link_split_section(abfd, sec) \
7688 BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
7690 2.17.3.5 `bfd_section_already_linked'
7691 .....................................
7694 void bfd_section_already_linked (bfd *abfd, asection *sec,
7695 struct bfd_link_info *info);
7697 Check if SEC has been already linked during a reloceatable or final
7699 #define bfd_section_already_linked(abfd, sec, info) \
7700 BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
7702 2.17.3.6 `bfd_generic_define_common_symbol'
7703 ...........................................
7706 bfd_boolean bfd_generic_define_common_symbol
7707 (bfd *output_bfd, struct bfd_link_info *info,
7708 struct bfd_link_hash_entry *h);
7710 Convert common symbol H into a defined symbol. Return TRUE on success
7711 and FALSE on failure.
7712 #define bfd_define_common_symbol(output_bfd, info, h) \
7713 BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
7715 2.17.3.7 `bfd_find_version_for_sym '
7716 ....................................
7719 struct bfd_elf_version_tree * bfd_find_version_for_sym
7720 (struct bfd_elf_version_tree *verdefs,
7721 const char *sym_name, bfd_boolean *hide);
7723 Search an elf version script tree for symbol versioning info and export
7724 / don't-export status for a given symbol. Return non-NULL on success
7725 and NULL on failure; also sets the output `hide' boolean parameter.
7728 File: bfd.info, Node: Hash Tables, Prev: Linker Functions, Up: BFD front end
7733 BFD provides a simple set of hash table functions. Routines are
7734 provided to initialize a hash table, to free a hash table, to look up a
7735 string in a hash table and optionally create an entry for it, and to
7736 traverse a hash table. There is currently no routine to delete an
7737 string from a hash table.
7739 The basic hash table does not permit any data to be stored with a
7740 string. However, a hash table is designed to present a base class from
7741 which other types of hash tables may be derived. These derived types
7742 may store additional information with the string. Hash tables were
7743 implemented in this way, rather than simply providing a data pointer in
7744 a hash table entry, because they were designed for use by the linker
7745 back ends. The linker may create thousands of hash table entries, and
7746 the overhead of allocating private data and storing and following
7747 pointers becomes noticeable.
7749 The basic hash table code is in `hash.c'.
7753 * Creating and Freeing a Hash Table::
7754 * Looking Up or Entering a String::
7755 * Traversing a Hash Table::
7756 * Deriving a New Hash Table Type::
7759 File: bfd.info, Node: Creating and Freeing a Hash Table, Next: Looking Up or Entering a String, Prev: Hash Tables, Up: Hash Tables
7761 2.18.1 Creating and freeing a hash table
7762 ----------------------------------------
7764 To create a hash table, create an instance of a `struct bfd_hash_table'
7765 (defined in `bfd.h') and call `bfd_hash_table_init' (if you know
7766 approximately how many entries you will need, the function
7767 `bfd_hash_table_init_n', which takes a SIZE argument, may be used).
7768 `bfd_hash_table_init' returns `FALSE' if some sort of error occurs.
7770 The function `bfd_hash_table_init' take as an argument a function to
7771 use to create new entries. For a basic hash table, use the function
7772 `bfd_hash_newfunc'. *Note Deriving a New Hash Table Type::, for why
7773 you would want to use a different value for this argument.
7775 `bfd_hash_table_init' will create an objalloc which will be used to
7776 allocate new entries. You may allocate memory on this objalloc using
7777 `bfd_hash_allocate'.
7779 Use `bfd_hash_table_free' to free up all the memory that has been
7780 allocated for a hash table. This will not free up the `struct
7781 bfd_hash_table' itself, which you must provide.
7783 Use `bfd_hash_set_default_size' to set the default size of hash
7787 File: bfd.info, Node: Looking Up or Entering a String, Next: Traversing a Hash Table, Prev: Creating and Freeing a Hash Table, Up: Hash Tables
7789 2.18.2 Looking up or entering a string
7790 --------------------------------------
7792 The function `bfd_hash_lookup' is used both to look up a string in the
7793 hash table and to create a new entry.
7795 If the CREATE argument is `FALSE', `bfd_hash_lookup' will look up a
7796 string. If the string is found, it will returns a pointer to a `struct
7797 bfd_hash_entry'. If the string is not found in the table
7798 `bfd_hash_lookup' will return `NULL'. You should not modify any of the
7799 fields in the returns `struct bfd_hash_entry'.
7801 If the CREATE argument is `TRUE', the string will be entered into
7802 the hash table if it is not already there. Either way a pointer to a
7803 `struct bfd_hash_entry' will be returned, either to the existing
7804 structure or to a newly created one. In this case, a `NULL' return
7805 means that an error occurred.
7807 If the CREATE argument is `TRUE', and a new entry is created, the
7808 COPY argument is used to decide whether to copy the string onto the
7809 hash table objalloc or not. If COPY is passed as `FALSE', you must be
7810 careful not to deallocate or modify the string as long as the hash table
7814 File: bfd.info, Node: Traversing a Hash Table, Next: Deriving a New Hash Table Type, Prev: Looking Up or Entering a String, Up: Hash Tables
7816 2.18.3 Traversing a hash table
7817 ------------------------------
7819 The function `bfd_hash_traverse' may be used to traverse a hash table,
7820 calling a function on each element. The traversal is done in a random
7823 `bfd_hash_traverse' takes as arguments a function and a generic
7824 `void *' pointer. The function is called with a hash table entry (a
7825 `struct bfd_hash_entry *') and the generic pointer passed to
7826 `bfd_hash_traverse'. The function must return a `boolean' value, which
7827 indicates whether to continue traversing the hash table. If the
7828 function returns `FALSE', `bfd_hash_traverse' will stop the traversal
7829 and return immediately.
7832 File: bfd.info, Node: Deriving a New Hash Table Type, Prev: Traversing a Hash Table, Up: Hash Tables
7834 2.18.4 Deriving a new hash table type
7835 -------------------------------------
7837 Many uses of hash tables want to store additional information which
7838 each entry in the hash table. Some also find it convenient to store
7839 additional information with the hash table itself. This may be done
7840 using a derived hash table.
7842 Since C is not an object oriented language, creating a derived hash
7843 table requires sticking together some boilerplate routines with a few
7844 differences specific to the type of hash table you want to create.
7846 An example of a derived hash table is the linker hash table. The
7847 structures for this are defined in `bfdlink.h'. The functions are in
7850 You may also derive a hash table from an already derived hash table.
7851 For example, the a.out linker backend code uses a hash table derived
7852 from the linker hash table.
7856 * Define the Derived Structures::
7857 * Write the Derived Creation Routine::
7858 * Write Other Derived Routines::
7861 File: bfd.info, Node: Define the Derived Structures, Next: Write the Derived Creation Routine, Prev: Deriving a New Hash Table Type, Up: Deriving a New Hash Table Type
7863 2.18.4.1 Define the derived structures
7864 ......................................
7866 You must define a structure for an entry in the hash table, and a
7867 structure for the hash table itself.
7869 The first field in the structure for an entry in the hash table must
7870 be of the type used for an entry in the hash table you are deriving
7871 from. If you are deriving from a basic hash table this is `struct
7872 bfd_hash_entry', which is defined in `bfd.h'. The first field in the
7873 structure for the hash table itself must be of the type of the hash
7874 table you are deriving from itself. If you are deriving from a basic
7875 hash table, this is `struct bfd_hash_table'.
7877 For example, the linker hash table defines `struct
7878 bfd_link_hash_entry' (in `bfdlink.h'). The first field, `root', is of
7879 type `struct bfd_hash_entry'. Similarly, the first field in `struct
7880 bfd_link_hash_table', `table', is of type `struct bfd_hash_table'.
7883 File: bfd.info, Node: Write the Derived Creation Routine, Next: Write Other Derived Routines, Prev: Define the Derived Structures, Up: Deriving a New Hash Table Type
7885 2.18.4.2 Write the derived creation routine
7886 ...........................................
7888 You must write a routine which will create and initialize an entry in
7889 the hash table. This routine is passed as the function argument to
7890 `bfd_hash_table_init'.
7892 In order to permit other hash tables to be derived from the hash
7893 table you are creating, this routine must be written in a standard way.
7895 The first argument to the creation routine is a pointer to a hash
7896 table entry. This may be `NULL', in which case the routine should
7897 allocate the right amount of space. Otherwise the space has already
7898 been allocated by a hash table type derived from this one.
7900 After allocating space, the creation routine must call the creation
7901 routine of the hash table type it is derived from, passing in a pointer
7902 to the space it just allocated. This will initialize any fields used
7903 by the base hash table.
7905 Finally the creation routine must initialize any local fields for
7906 the new hash table type.
7908 Here is a boilerplate example of a creation routine. FUNCTION_NAME
7909 is the name of the routine. ENTRY_TYPE is the type of an entry in the
7910 hash table you are creating. BASE_NEWFUNC is the name of the creation
7911 routine of the hash table type your hash table is derived from.
7913 struct bfd_hash_entry *
7914 FUNCTION_NAME (struct bfd_hash_entry *entry,
7915 struct bfd_hash_table *table,
7918 struct ENTRY_TYPE *ret = (ENTRY_TYPE *) entry;
7920 /* Allocate the structure if it has not already been allocated by a
7924 ret = bfd_hash_allocate (table, sizeof (* ret));
7929 /* Call the allocation method of the base class. */
7930 ret = ((ENTRY_TYPE *)
7931 BASE_NEWFUNC ((struct bfd_hash_entry *) ret, table, string));
7933 /* Initialize the local fields here. */
7935 return (struct bfd_hash_entry *) ret;
7938 The creation routine for the linker hash table, which is in `linker.c',
7939 looks just like this example. FUNCTION_NAME is
7940 `_bfd_link_hash_newfunc'. ENTRY_TYPE is `struct bfd_link_hash_entry'.
7941 BASE_NEWFUNC is `bfd_hash_newfunc', the creation routine for a basic
7944 `_bfd_link_hash_newfunc' also initializes the local fields in a
7945 linker hash table entry: `type', `written' and `next'.
7948 File: bfd.info, Node: Write Other Derived Routines, Prev: Write the Derived Creation Routine, Up: Deriving a New Hash Table Type
7950 2.18.4.3 Write other derived routines
7951 .....................................
7953 You will want to write other routines for your new hash table, as well.
7955 You will want an initialization routine which calls the
7956 initialization routine of the hash table you are deriving from and
7957 initializes any other local fields. For the linker hash table, this is
7958 `_bfd_link_hash_table_init' in `linker.c'.
7960 You will want a lookup routine which calls the lookup routine of the
7961 hash table you are deriving from and casts the result. The linker hash
7962 table uses `bfd_link_hash_lookup' in `linker.c' (this actually takes an
7963 additional argument which it uses to decide how to return the looked up
7966 You may want a traversal routine. This should just call the
7967 traversal routine of the hash table you are deriving from with
7968 appropriate casts. The linker hash table uses `bfd_link_hash_traverse'
7971 These routines may simply be defined as macros. For example, the
7972 a.out backend linker hash table, which is derived from the linker hash
7973 table, uses macros for the lookup and traversal routines. These are
7974 `aout_link_hash_lookup' and `aout_link_hash_traverse' in aoutx.h.
7977 File: bfd.info, Node: BFD back ends, Next: GNU Free Documentation License, Prev: BFD front end, Up: Top
7984 * What to Put Where::
7985 * aout :: a.out backends
7986 * coff :: coff backends
7987 * elf :: elf backends
7988 * mmo :: mmo backend
7991 File: bfd.info, Node: What to Put Where, Next: aout, Prev: BFD back ends, Up: BFD back ends
7993 3.1 What to Put Where
7994 =====================
7996 All of BFD lives in one directory.
7999 File: bfd.info, Node: aout, Next: coff, Prev: What to Put Where, Up: BFD back ends
8005 BFD supports a number of different flavours of a.out format, though the
8006 major differences are only the sizes of the structures on disk, and the
8007 shape of the relocation information.
8009 The support is split into a basic support file `aoutx.h' and other
8010 files which derive functions from the base. One derivation file is
8011 `aoutf1.h' (for a.out flavour 1), and adds to the basic a.out functions
8012 support for sun3, sun4, 386 and 29k a.out files, to create a target
8013 jump vector for a specific target.
8015 This information is further split out into more specific files for
8016 each machine, including `sunos.c' for sun3 and sun4, `newsos3.c' for
8017 the Sony NEWS, and `demo64.c' for a demonstration of a 64 bit a.out
8020 The base file `aoutx.h' defines general mechanisms for reading and
8021 writing records to and from disk and various other methods which BFD
8022 requires. It is included by `aout32.c' and `aout64.c' to form the names
8023 `aout_32_swap_exec_header_in', `aout_64_swap_exec_header_in', etc.
8025 As an example, this is what goes on to make the back end for a sun4,
8028 #define ARCH_SIZE 32
8031 Which exports names:
8034 aout_32_canonicalize_reloc
8035 aout_32_find_nearest_line
8037 aout_32_get_reloc_upper_bound
8042 #define TARGET_NAME "a.out-sunos-big"
8043 #define VECNAME sunos_big_vec
8046 requires all the names from `aout32.c', and produces the jump vector
8050 The file `host-aout.c' is a special case. It is for a large set of
8051 hosts that use "more or less standard" a.out files, and for which
8052 cross-debugging is not interesting. It uses the standard 32-bit a.out
8053 support routines, but determines the file offsets and addresses of the
8054 text, data, and BSS sections, the machine architecture and machine
8055 type, and the entry point address, in a host-dependent manner. Once
8056 these values have been determined, generic code is used to handle the
8059 When porting it to run on a new system, you must supply:
8063 HOST_MACHINE_ARCH (optional)
8064 HOST_MACHINE_MACHINE (optional)
8065 HOST_TEXT_START_ADDR
8068 in the file `../include/sys/h-XXX.h' (for your host). These values,
8069 plus the structures and macros defined in `a.out.h' on your host
8070 system, will produce a BFD target that will access ordinary a.out files
8071 on your host. To configure a new machine to use `host-aout.c', specify:
8073 TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec
8074 TDEPFILES= host-aout.o trad-core.o
8076 in the `config/XXX.mt' file, and modify `configure.in' to use the
8077 `XXX.mt' file (by setting "`bfd_target=XXX'") when your configuration
8084 The file `aoutx.h' provides for both the _standard_ and _extended_
8085 forms of a.out relocation records.
8087 The standard records contain only an address, a symbol index, and a
8088 type field. The extended records (used on 29ks and sparcs) also have a
8089 full integer for an addend.
8091 3.2.2 Internal entry points
8092 ---------------------------
8095 `aoutx.h' exports several routines for accessing the contents of an
8096 a.out file, which are gathered and exported in turn by various format
8097 specific files (eg sunos.c).
8099 3.2.2.1 `aout_SIZE_swap_exec_header_in'
8100 .......................................
8103 void aout_SIZE_swap_exec_header_in,
8105 struct external_exec *bytes,
8106 struct internal_exec *execp);
8108 Swap the information in an executable header RAW_BYTES taken from a raw
8109 byte stream memory image into the internal exec header structure EXECP.
8111 3.2.2.2 `aout_SIZE_swap_exec_header_out'
8112 ........................................
8115 void aout_SIZE_swap_exec_header_out
8117 struct internal_exec *execp,
8118 struct external_exec *raw_bytes);
8120 Swap the information in an internal exec header structure EXECP into
8121 the buffer RAW_BYTES ready for writing to disk.
8123 3.2.2.3 `aout_SIZE_some_aout_object_p'
8124 ......................................
8127 const bfd_target *aout_SIZE_some_aout_object_p
8129 struct internal_exec *execp,
8130 const bfd_target *(*callback_to_real_object_p) (bfd *));
8132 Some a.out variant thinks that the file open in ABFD checking is an
8133 a.out file. Do some more checking, and set up for access if it really
8134 is. Call back to the calling environment's "finish up" function just
8135 before returning, to handle any last-minute setup.
8137 3.2.2.4 `aout_SIZE_mkobject'
8138 ............................
8141 bfd_boolean aout_SIZE_mkobject, (bfd *abfd);
8143 Initialize BFD ABFD for use with a.out files.
8145 3.2.2.5 `aout_SIZE_machine_type'
8146 ................................
8149 enum machine_type aout_SIZE_machine_type
8150 (enum bfd_architecture arch,
8151 unsigned long machine,
8152 bfd_boolean *unknown);
8154 Keep track of machine architecture and machine type for a.out's. Return
8155 the `machine_type' for a particular architecture and machine, or
8156 `M_UNKNOWN' if that exact architecture and machine can't be represented
8159 If the architecture is understood, machine type 0 (default) is
8162 3.2.2.6 `aout_SIZE_set_arch_mach'
8163 .................................
8166 bfd_boolean aout_SIZE_set_arch_mach,
8168 enum bfd_architecture arch,
8169 unsigned long machine);
8171 Set the architecture and the machine of the BFD ABFD to the values ARCH
8172 and MACHINE. Verify that ABFD's format can support the architecture
8175 3.2.2.7 `aout_SIZE_new_section_hook'
8176 ....................................
8179 bfd_boolean aout_SIZE_new_section_hook,
8183 Called by the BFD in response to a `bfd_make_section' request.
8186 File: bfd.info, Node: coff, Next: elf, Prev: aout, Up: BFD back ends
8191 BFD supports a number of different flavours of coff format. The major
8192 differences between formats are the sizes and alignments of fields in
8193 structures on disk, and the occasional extra field.
8195 Coff in all its varieties is implemented with a few common files and
8196 a number of implementation specific files. For example, The 88k bcs
8197 coff format is implemented in the file `coff-m88k.c'. This file
8198 `#include's `coff/m88k.h' which defines the external structure of the
8199 coff format for the 88k, and `coff/internal.h' which defines the
8200 internal structure. `coff-m88k.c' also defines the relocations used by
8201 the 88k format *Note Relocations::.
8203 The Intel i960 processor version of coff is implemented in
8204 `coff-i960.c'. This file has the same structure as `coff-m88k.c',
8205 except that it includes `coff/i960.h' rather than `coff-m88k.h'.
8207 3.3.1 Porting to a new version of coff
8208 --------------------------------------
8210 The recommended method is to select from the existing implementations
8211 the version of coff which is most like the one you want to use. For
8212 example, we'll say that i386 coff is the one you select, and that your
8213 coff flavour is called foo. Copy `i386coff.c' to `foocoff.c', copy
8214 `../include/coff/i386.h' to `../include/coff/foo.h', and add the lines
8215 to `targets.c' and `Makefile.in' so that your new back end is used.
8216 Alter the shapes of the structures in `../include/coff/foo.h' so that
8217 they match what you need. You will probably also have to add `#ifdef's
8218 to the code in `coff/internal.h' and `coffcode.h' if your version of
8221 You can verify that your new BFD backend works quite simply by
8222 building `objdump' from the `binutils' directory, and making sure that
8223 its version of what's going on and your host system's idea (assuming it
8224 has the pretty standard coff dump utility, usually called `att-dump' or
8225 just `dump') are the same. Then clean up your code, and send what
8226 you've done to Cygnus. Then your stuff will be in the next release, and
8227 you won't have to keep integrating it.
8229 3.3.2 How the coff backend works
8230 --------------------------------
8235 The Coff backend is split into generic routines that are applicable to
8236 any Coff target and routines that are specific to a particular target.
8237 The target-specific routines are further split into ones which are
8238 basically the same for all Coff targets except that they use the
8239 external symbol format or use different values for certain constants.
8241 The generic routines are in `coffgen.c'. These routines work for
8242 any Coff target. They use some hooks into the target specific code;
8243 the hooks are in a `bfd_coff_backend_data' structure, one of which
8244 exists for each target.
8246 The essentially similar target-specific routines are in
8247 `coffcode.h'. This header file includes executable C code. The
8248 various Coff targets first include the appropriate Coff header file,
8249 make any special defines that are needed, and then include `coffcode.h'.
8251 Some of the Coff targets then also have additional routines in the
8252 target source file itself.
8254 For example, `coff-i960.c' includes `coff/internal.h' and
8255 `coff/i960.h'. It then defines a few constants, such as `I960', and
8256 includes `coffcode.h'. Since the i960 has complex relocation types,
8257 `coff-i960.c' also includes some code to manipulate the i960 relocs.
8258 This code is not in `coffcode.h' because it would not be used by any
8261 3.3.2.2 Coff long section names
8262 ...............................
8264 In the standard Coff object format, section names are limited to the
8265 eight bytes available in the `s_name' field of the `SCNHDR' section
8266 header structure. The format requires the field to be NUL-padded, but
8267 not necessarily NUL-terminated, so the longest section names permitted
8268 are a full eight characters.
8270 The Microsoft PE variants of the Coff object file format add an
8271 extension to support the use of long section names. This extension is
8272 defined in section 4 of the Microsoft PE/COFF specification (rev 8.1).
8273 If a section name is too long to fit into the section header's `s_name'
8274 field, it is instead placed into the string table, and the `s_name'
8275 field is filled with a slash ("/") followed by the ASCII decimal
8276 representation of the offset of the full name relative to the string
8279 Note that this implies that the extension can only be used in object
8280 files, as executables do not contain a string table. The standard
8281 specifies that long section names from objects emitted into executable
8282 images are to be truncated.
8284 However, as a GNU extension, BFD can generate executable images that
8285 contain a string table and long section names. This would appear to be
8286 technically valid, as the standard only says that Coff debugging
8287 information is deprecated, not forbidden, and in practice it works,
8288 although some tools that parse PE files expecting the MS standard
8289 format may become confused; `PEview' is one known example.
8291 The functionality is supported in BFD by code implemented under the
8292 control of the macro `COFF_LONG_SECTION_NAMES'. If not defined, the
8293 format does not support long section names in any way. If defined, it
8294 is used to initialise a flag, `_bfd_coff_long_section_names', and a
8295 hook function pointer, `_bfd_coff_set_long_section_names', in the Coff
8296 backend data structure. The flag controls the generation of long
8297 section names in output BFDs at runtime; if it is false, as it will be
8298 by default when generating an executable image, long section names are
8299 truncated; if true, the long section names extension is employed. The
8300 hook points to a function that allows the value of the flag to be
8301 altered at runtime, on formats that support long section names at all;
8302 on other formats it points to a stub that returns an error indication.
8303 With input BFDs, the flag is set according to whether any long section
8304 names are detected while reading the section headers. For a completely
8305 new BFD, the flag is set to the default for the target format. This
8306 information can be used by a client of the BFD library when deciding
8307 what output format to generate, and means that a BFD that is opened for
8308 read and subsequently converted to a writeable BFD and modified
8309 in-place will retain whatever format it had on input.
8311 If `COFF_LONG_SECTION_NAMES' is simply defined (blank), or is
8312 defined to the value "1", then long section names are enabled by
8313 default; if it is defined to the value zero, they are disabled by
8314 default (but still accepted in input BFDs). The header `coffcode.h'
8315 defines a macro, `COFF_DEFAULT_LONG_SECTION_NAMES', which is used in
8316 the backends to initialise the backend data structure fields
8317 appropriately; see the comments for further detail.
8319 3.3.2.3 Bit twiddling
8320 .....................
8322 Each flavour of coff supported in BFD has its own header file
8323 describing the external layout of the structures. There is also an
8324 internal description of the coff layout, in `coff/internal.h'. A major
8325 function of the coff backend is swapping the bytes and twiddling the
8326 bits to translate the external form of the structures into the normal
8327 internal form. This is all performed in the `bfd_swap'_thing_direction
8328 routines. Some elements are different sizes between different versions
8329 of coff; it is the duty of the coff version specific include file to
8330 override the definitions of various packing routines in `coffcode.h'.
8331 E.g., the size of line number entry in coff is sometimes 16 bits, and
8332 sometimes 32 bits. `#define'ing `PUT_LNSZ_LNNO' and `GET_LNSZ_LNNO'
8333 will select the correct one. No doubt, some day someone will find a
8334 version of coff which has a varying field size not catered to at the
8335 moment. To port BFD, that person will have to add more `#defines'.
8336 Three of the bit twiddling routines are exported to `gdb';
8337 `coff_swap_aux_in', `coff_swap_sym_in' and `coff_swap_lineno_in'. `GDB'
8338 reads the symbol table on its own, but uses BFD to fix things up. More
8339 of the bit twiddlers are exported for `gas'; `coff_swap_aux_out',
8340 `coff_swap_sym_out', `coff_swap_lineno_out', `coff_swap_reloc_out',
8341 `coff_swap_filehdr_out', `coff_swap_aouthdr_out',
8342 `coff_swap_scnhdr_out'. `Gas' currently keeps track of all the symbol
8343 table and reloc drudgery itself, thereby saving the internal BFD
8344 overhead, but uses BFD to swap things on the way out, making cross
8345 ports much safer. Doing so also allows BFD (and thus the linker) to
8346 use the same header files as `gas', which makes one avenue to disaster
8349 3.3.2.4 Symbol reading
8350 ......................
8352 The simple canonical form for symbols used by BFD is not rich enough to
8353 keep all the information available in a coff symbol table. The back end
8354 gets around this problem by keeping the original symbol table around,
8355 "behind the scenes".
8357 When a symbol table is requested (through a call to
8358 `bfd_canonicalize_symtab'), a request gets through to
8359 `coff_get_normalized_symtab'. This reads the symbol table from the coff
8360 file and swaps all the structures inside into the internal form. It
8361 also fixes up all the pointers in the table (represented in the file by
8362 offsets from the first symbol in the table) into physical pointers to
8363 elements in the new internal table. This involves some work since the
8364 meanings of fields change depending upon context: a field that is a
8365 pointer to another structure in the symbol table at one moment may be
8366 the size in bytes of a structure at the next. Another pass is made
8367 over the table. All symbols which mark file names (`C_FILE' symbols)
8368 are modified so that the internal string points to the value in the
8369 auxent (the real filename) rather than the normal text associated with
8370 the symbol (`".file"').
8372 At this time the symbol names are moved around. Coff stores all
8373 symbols less than nine characters long physically within the symbol
8374 table; longer strings are kept at the end of the file in the string
8375 table. This pass moves all strings into memory and replaces them with
8376 pointers to the strings.
8378 The symbol table is massaged once again, this time to create the
8379 canonical table used by the BFD application. Each symbol is inspected
8380 in turn, and a decision made (using the `sclass' field) about the
8381 various flags to set in the `asymbol'. *Note Symbols::. The generated
8382 canonical table shares strings with the hidden internal symbol table.
8384 Any linenumbers are read from the coff file too, and attached to the
8385 symbols which own the functions the linenumbers belong to.
8387 3.3.2.5 Symbol writing
8388 ......................
8390 Writing a symbol to a coff file which didn't come from a coff file will
8391 lose any debugging information. The `asymbol' structure remembers the
8392 BFD from which the symbol was taken, and on output the back end makes
8393 sure that the same destination target as source target is present.
8395 When the symbols have come from a coff file then all the debugging
8396 information is preserved.
8398 Symbol tables are provided for writing to the back end in a vector
8399 of pointers to pointers. This allows applications like the linker to
8400 accumulate and output large symbol tables without having to do too much
8403 This function runs through the provided symbol table and patches
8404 each symbol marked as a file place holder (`C_FILE') to point to the
8405 next file place holder in the list. It also marks each `offset' field
8406 in the list with the offset from the first symbol of the current symbol.
8408 Another function of this procedure is to turn the canonical value
8409 form of BFD into the form used by coff. Internally, BFD expects symbol
8410 values to be offsets from a section base; so a symbol physically at
8411 0x120, but in a section starting at 0x100, would have the value 0x20.
8412 Coff expects symbols to contain their final value, so symbols have
8413 their values changed at this point to reflect their sum with their
8414 owning section. This transformation uses the `output_section' field of
8415 the `asymbol''s `asection' *Note Sections::.
8417 * `coff_mangle_symbols'
8418 This routine runs though the provided symbol table and uses the
8419 offsets generated by the previous pass and the pointers generated when
8420 the symbol table was read in to create the structured hierarchy
8421 required by coff. It changes each pointer to a symbol into the index
8422 into the symbol table of the asymbol.
8424 * `coff_write_symbols'
8425 This routine runs through the symbol table and patches up the
8426 symbols from their internal form into the coff way, calls the bit
8427 twiddlers, and writes out the table to the file.
8429 3.3.2.6 `coff_symbol_type'
8430 ..........................
8433 The hidden information for an `asymbol' is described in a
8434 `combined_entry_type':
8437 typedef struct coff_ptr_struct
8439 /* Remembers the offset from the first symbol in the file for
8440 this symbol. Generated by coff_renumber_symbols. */
8441 unsigned int offset;
8443 /* Should the value of this symbol be renumbered. Used for
8444 XCOFF C_BSTAT symbols. Set by coff_slurp_symbol_table. */
8445 unsigned int fix_value : 1;
8447 /* Should the tag field of this symbol be renumbered.
8448 Created by coff_pointerize_aux. */
8449 unsigned int fix_tag : 1;
8451 /* Should the endidx field of this symbol be renumbered.
8452 Created by coff_pointerize_aux. */
8453 unsigned int fix_end : 1;
8455 /* Should the x_csect.x_scnlen field be renumbered.
8456 Created by coff_pointerize_aux. */
8457 unsigned int fix_scnlen : 1;
8459 /* Fix up an XCOFF C_BINCL/C_EINCL symbol. The value is the
8460 index into the line number entries. Set by coff_slurp_symbol_table. */
8461 unsigned int fix_line : 1;
8463 /* The container for the symbol structure as read and translated
8467 union internal_auxent auxent;
8468 struct internal_syment syment;
8470 } combined_entry_type;
8473 /* Each canonical asymbol really looks like this: */
8475 typedef struct coff_symbol_struct
8477 /* The actual symbol which the rest of BFD works with */
8480 /* A pointer to the hidden information for this symbol */
8481 combined_entry_type *native;
8483 /* A pointer to the linenumber information for this symbol */
8484 struct lineno_cache_entry *lineno;
8486 /* Have the line numbers been relocated yet ? */
8487 bfd_boolean done_lineno;
8490 3.3.2.7 `bfd_coff_backend_data'
8491 ...............................
8493 /* COFF symbol classifications. */
8495 enum coff_symbol_classification
8497 /* Global symbol. */
8499 /* Common symbol. */
8501 /* Undefined symbol. */
8502 COFF_SYMBOL_UNDEFINED,
8505 /* PE section symbol. */
8506 COFF_SYMBOL_PE_SECTION
8508 Special entry points for gdb to swap in coff symbol table parts:
8511 void (*_bfd_coff_swap_aux_in)
8512 (bfd *, void *, int, int, int, int, void *);
8514 void (*_bfd_coff_swap_sym_in)
8515 (bfd *, void *, void *);
8517 void (*_bfd_coff_swap_lineno_in)
8518 (bfd *, void *, void *);
8520 unsigned int (*_bfd_coff_swap_aux_out)
8521 (bfd *, void *, int, int, int, int, void *);
8523 unsigned int (*_bfd_coff_swap_sym_out)
8524 (bfd *, void *, void *);
8526 unsigned int (*_bfd_coff_swap_lineno_out)
8527 (bfd *, void *, void *);
8529 unsigned int (*_bfd_coff_swap_reloc_out)
8530 (bfd *, void *, void *);
8532 unsigned int (*_bfd_coff_swap_filehdr_out)
8533 (bfd *, void *, void *);
8535 unsigned int (*_bfd_coff_swap_aouthdr_out)
8536 (bfd *, void *, void *);
8538 unsigned int (*_bfd_coff_swap_scnhdr_out)
8539 (bfd *, void *, void *);
8541 unsigned int _bfd_filhsz;
8542 unsigned int _bfd_aoutsz;
8543 unsigned int _bfd_scnhsz;
8544 unsigned int _bfd_symesz;
8545 unsigned int _bfd_auxesz;
8546 unsigned int _bfd_relsz;
8547 unsigned int _bfd_linesz;
8548 unsigned int _bfd_filnmlen;
8549 bfd_boolean _bfd_coff_long_filenames;
8551 bfd_boolean _bfd_coff_long_section_names;
8552 bfd_boolean (*_bfd_coff_set_long_section_names)
8555 unsigned int _bfd_coff_default_section_alignment_power;
8556 bfd_boolean _bfd_coff_force_symnames_in_strings;
8557 unsigned int _bfd_coff_debug_string_prefix_length;
8559 void (*_bfd_coff_swap_filehdr_in)
8560 (bfd *, void *, void *);
8562 void (*_bfd_coff_swap_aouthdr_in)
8563 (bfd *, void *, void *);
8565 void (*_bfd_coff_swap_scnhdr_in)
8566 (bfd *, void *, void *);
8568 void (*_bfd_coff_swap_reloc_in)
8569 (bfd *abfd, void *, void *);
8571 bfd_boolean (*_bfd_coff_bad_format_hook)
8574 bfd_boolean (*_bfd_coff_set_arch_mach_hook)
8577 void * (*_bfd_coff_mkobject_hook)
8578 (bfd *, void *, void *);
8580 bfd_boolean (*_bfd_styp_to_sec_flags_hook)
8581 (bfd *, void *, const char *, asection *, flagword *);
8583 void (*_bfd_set_alignment_hook)
8584 (bfd *, asection *, void *);
8586 bfd_boolean (*_bfd_coff_slurp_symbol_table)
8589 bfd_boolean (*_bfd_coff_symname_in_debug)
8590 (bfd *, struct internal_syment *);
8592 bfd_boolean (*_bfd_coff_pointerize_aux_hook)
8593 (bfd *, combined_entry_type *, combined_entry_type *,
8594 unsigned int, combined_entry_type *);
8596 bfd_boolean (*_bfd_coff_print_aux)
8597 (bfd *, FILE *, combined_entry_type *, combined_entry_type *,
8598 combined_entry_type *, unsigned int);
8600 void (*_bfd_coff_reloc16_extra_cases)
8601 (bfd *, struct bfd_link_info *, struct bfd_link_order *, arelent *,
8602 bfd_byte *, unsigned int *, unsigned int *);
8604 int (*_bfd_coff_reloc16_estimate)
8605 (bfd *, asection *, arelent *, unsigned int,
8606 struct bfd_link_info *);
8608 enum coff_symbol_classification (*_bfd_coff_classify_symbol)
8609 (bfd *, struct internal_syment *);
8611 bfd_boolean (*_bfd_coff_compute_section_file_positions)
8614 bfd_boolean (*_bfd_coff_start_final_link)
8615 (bfd *, struct bfd_link_info *);
8617 bfd_boolean (*_bfd_coff_relocate_section)
8618 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8619 struct internal_reloc *, struct internal_syment *, asection **);
8621 reloc_howto_type *(*_bfd_coff_rtype_to_howto)
8622 (bfd *, asection *, struct internal_reloc *,
8623 struct coff_link_hash_entry *, struct internal_syment *,
8626 bfd_boolean (*_bfd_coff_adjust_symndx)
8627 (bfd *, struct bfd_link_info *, bfd *, asection *,
8628 struct internal_reloc *, bfd_boolean *);
8630 bfd_boolean (*_bfd_coff_link_add_one_symbol)
8631 (struct bfd_link_info *, bfd *, const char *, flagword,
8632 asection *, bfd_vma, const char *, bfd_boolean, bfd_boolean,
8633 struct bfd_link_hash_entry **);
8635 bfd_boolean (*_bfd_coff_link_output_has_begun)
8636 (bfd *, struct coff_final_link_info *);
8638 bfd_boolean (*_bfd_coff_final_link_postscript)
8639 (bfd *, struct coff_final_link_info *);
8641 bfd_boolean (*_bfd_coff_print_pdata)
8644 } bfd_coff_backend_data;
8646 #define coff_backend_info(abfd) \
8647 ((bfd_coff_backend_data *) (abfd)->xvec->backend_data)
8649 #define bfd_coff_swap_aux_in(a,e,t,c,ind,num,i) \
8650 ((coff_backend_info (a)->_bfd_coff_swap_aux_in) (a,e,t,c,ind,num,i))
8652 #define bfd_coff_swap_sym_in(a,e,i) \
8653 ((coff_backend_info (a)->_bfd_coff_swap_sym_in) (a,e,i))
8655 #define bfd_coff_swap_lineno_in(a,e,i) \
8656 ((coff_backend_info ( a)->_bfd_coff_swap_lineno_in) (a,e,i))
8658 #define bfd_coff_swap_reloc_out(abfd, i, o) \
8659 ((coff_backend_info (abfd)->_bfd_coff_swap_reloc_out) (abfd, i, o))
8661 #define bfd_coff_swap_lineno_out(abfd, i, o) \
8662 ((coff_backend_info (abfd)->_bfd_coff_swap_lineno_out) (abfd, i, o))
8664 #define bfd_coff_swap_aux_out(a,i,t,c,ind,num,o) \
8665 ((coff_backend_info (a)->_bfd_coff_swap_aux_out) (a,i,t,c,ind,num,o))
8667 #define bfd_coff_swap_sym_out(abfd, i,o) \
8668 ((coff_backend_info (abfd)->_bfd_coff_swap_sym_out) (abfd, i, o))
8670 #define bfd_coff_swap_scnhdr_out(abfd, i,o) \
8671 ((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_out) (abfd, i, o))
8673 #define bfd_coff_swap_filehdr_out(abfd, i,o) \
8674 ((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_out) (abfd, i, o))
8676 #define bfd_coff_swap_aouthdr_out(abfd, i,o) \
8677 ((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_out) (abfd, i, o))
8679 #define bfd_coff_filhsz(abfd) (coff_backend_info (abfd)->_bfd_filhsz)
8680 #define bfd_coff_aoutsz(abfd) (coff_backend_info (abfd)->_bfd_aoutsz)
8681 #define bfd_coff_scnhsz(abfd) (coff_backend_info (abfd)->_bfd_scnhsz)
8682 #define bfd_coff_symesz(abfd) (coff_backend_info (abfd)->_bfd_symesz)
8683 #define bfd_coff_auxesz(abfd) (coff_backend_info (abfd)->_bfd_auxesz)
8684 #define bfd_coff_relsz(abfd) (coff_backend_info (abfd)->_bfd_relsz)
8685 #define bfd_coff_linesz(abfd) (coff_backend_info (abfd)->_bfd_linesz)
8686 #define bfd_coff_filnmlen(abfd) (coff_backend_info (abfd)->_bfd_filnmlen)
8687 #define bfd_coff_long_filenames(abfd) \
8688 (coff_backend_info (abfd)->_bfd_coff_long_filenames)
8689 #define bfd_coff_long_section_names(abfd) \
8690 (coff_backend_info (abfd)->_bfd_coff_long_section_names)
8691 #define bfd_coff_set_long_section_names(abfd, enable) \
8692 ((coff_backend_info (abfd)->_bfd_coff_set_long_section_names) (abfd, enable))
8693 #define bfd_coff_default_section_alignment_power(abfd) \
8694 (coff_backend_info (abfd)->_bfd_coff_default_section_alignment_power)
8695 #define bfd_coff_swap_filehdr_in(abfd, i,o) \
8696 ((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_in) (abfd, i, o))
8698 #define bfd_coff_swap_aouthdr_in(abfd, i,o) \
8699 ((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_in) (abfd, i, o))
8701 #define bfd_coff_swap_scnhdr_in(abfd, i,o) \
8702 ((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_in) (abfd, i, o))
8704 #define bfd_coff_swap_reloc_in(abfd, i, o) \
8705 ((coff_backend_info (abfd)->_bfd_coff_swap_reloc_in) (abfd, i, o))
8707 #define bfd_coff_bad_format_hook(abfd, filehdr) \
8708 ((coff_backend_info (abfd)->_bfd_coff_bad_format_hook) (abfd, filehdr))
8710 #define bfd_coff_set_arch_mach_hook(abfd, filehdr)\
8711 ((coff_backend_info (abfd)->_bfd_coff_set_arch_mach_hook) (abfd, filehdr))
8712 #define bfd_coff_mkobject_hook(abfd, filehdr, aouthdr)\
8713 ((coff_backend_info (abfd)->_bfd_coff_mkobject_hook)\
8714 (abfd, filehdr, aouthdr))
8716 #define bfd_coff_styp_to_sec_flags_hook(abfd, scnhdr, name, section, flags_ptr)\
8717 ((coff_backend_info (abfd)->_bfd_styp_to_sec_flags_hook)\
8718 (abfd, scnhdr, name, section, flags_ptr))
8720 #define bfd_coff_set_alignment_hook(abfd, sec, scnhdr)\
8721 ((coff_backend_info (abfd)->_bfd_set_alignment_hook) (abfd, sec, scnhdr))
8723 #define bfd_coff_slurp_symbol_table(abfd)\
8724 ((coff_backend_info (abfd)->_bfd_coff_slurp_symbol_table) (abfd))
8726 #define bfd_coff_symname_in_debug(abfd, sym)\
8727 ((coff_backend_info (abfd)->_bfd_coff_symname_in_debug) (abfd, sym))
8729 #define bfd_coff_force_symnames_in_strings(abfd)\
8730 (coff_backend_info (abfd)->_bfd_coff_force_symnames_in_strings)
8732 #define bfd_coff_debug_string_prefix_length(abfd)\
8733 (coff_backend_info (abfd)->_bfd_coff_debug_string_prefix_length)
8735 #define bfd_coff_print_aux(abfd, file, base, symbol, aux, indaux)\
8736 ((coff_backend_info (abfd)->_bfd_coff_print_aux)\
8737 (abfd, file, base, symbol, aux, indaux))
8739 #define bfd_coff_reloc16_extra_cases(abfd, link_info, link_order,\
8740 reloc, data, src_ptr, dst_ptr)\
8741 ((coff_backend_info (abfd)->_bfd_coff_reloc16_extra_cases)\
8742 (abfd, link_info, link_order, reloc, data, src_ptr, dst_ptr))
8744 #define bfd_coff_reloc16_estimate(abfd, section, reloc, shrink, link_info)\
8745 ((coff_backend_info (abfd)->_bfd_coff_reloc16_estimate)\
8746 (abfd, section, reloc, shrink, link_info))
8748 #define bfd_coff_classify_symbol(abfd, sym)\
8749 ((coff_backend_info (abfd)->_bfd_coff_classify_symbol)\
8752 #define bfd_coff_compute_section_file_positions(abfd)\
8753 ((coff_backend_info (abfd)->_bfd_coff_compute_section_file_positions)\
8756 #define bfd_coff_start_final_link(obfd, info)\
8757 ((coff_backend_info (obfd)->_bfd_coff_start_final_link)\
8759 #define bfd_coff_relocate_section(obfd,info,ibfd,o,con,rel,isyms,secs)\
8760 ((coff_backend_info (ibfd)->_bfd_coff_relocate_section)\
8761 (obfd, info, ibfd, o, con, rel, isyms, secs))
8762 #define bfd_coff_rtype_to_howto(abfd, sec, rel, h, sym, addendp)\
8763 ((coff_backend_info (abfd)->_bfd_coff_rtype_to_howto)\
8764 (abfd, sec, rel, h, sym, addendp))
8765 #define bfd_coff_adjust_symndx(obfd, info, ibfd, sec, rel, adjustedp)\
8766 ((coff_backend_info (abfd)->_bfd_coff_adjust_symndx)\
8767 (obfd, info, ibfd, sec, rel, adjustedp))
8768 #define bfd_coff_link_add_one_symbol(info, abfd, name, flags, section,\
8769 value, string, cp, coll, hashp)\
8770 ((coff_backend_info (abfd)->_bfd_coff_link_add_one_symbol)\
8771 (info, abfd, name, flags, section, value, string, cp, coll, hashp))
8773 #define bfd_coff_link_output_has_begun(a,p) \
8774 ((coff_backend_info (a)->_bfd_coff_link_output_has_begun) (a, p))
8775 #define bfd_coff_final_link_postscript(a,p) \
8776 ((coff_backend_info (a)->_bfd_coff_final_link_postscript) (a, p))
8778 #define bfd_coff_have_print_pdata(a) \
8779 (coff_backend_info (a)->_bfd_coff_print_pdata)
8780 #define bfd_coff_print_pdata(a,p) \
8781 ((coff_backend_info (a)->_bfd_coff_print_pdata) (a, p))
8783 /* Macro: Returns true if the bfd is a PE executable as opposed to a
8785 #define bfd_pei_p(abfd) \
8786 (CONST_STRNEQ ((abfd)->xvec->name, "pei-"))
8788 3.3.2.8 Writing relocations
8789 ...........................
8791 To write relocations, the back end steps though the canonical
8792 relocation table and create an `internal_reloc'. The symbol index to
8793 use is removed from the `offset' field in the symbol table supplied.
8794 The address comes directly from the sum of the section base address and
8795 the relocation offset; the type is dug directly from the howto field.
8796 Then the `internal_reloc' is swapped into the shape of an
8797 `external_reloc' and written out to disk.
8799 3.3.2.9 Reading linenumbers
8800 ...........................
8802 Creating the linenumber table is done by reading in the entire coff
8803 linenumber table, and creating another table for internal use.
8805 A coff linenumber table is structured so that each function is
8806 marked as having a line number of 0. Each line within the function is
8807 an offset from the first line in the function. The base of the line
8808 number information for the table is stored in the symbol associated
8811 Note: The PE format uses line number 0 for a flag indicating a new
8814 The information is copied from the external to the internal table,
8815 and each symbol which marks a function is marked by pointing its...
8817 How does this work ?
8819 3.3.2.10 Reading relocations
8820 ............................
8822 Coff relocations are easily transformed into the internal BFD form
8825 Reading a coff relocation table is done in the following stages:
8827 * Read the entire coff relocation table into memory.
8829 * Process each relocation in turn; first swap it from the external
8830 to the internal form.
8832 * Turn the symbol referenced in the relocation's symbol index into a
8833 pointer into the canonical symbol table. This table is the same
8834 as the one returned by a call to `bfd_canonicalize_symtab'. The
8835 back end will call that routine and save the result if a
8836 canonicalization hasn't been done.
8838 * The reloc index is turned into a pointer to a howto structure, in
8839 a back end specific way. For instance, the 386 and 960 use the
8840 `r_type' to directly produce an index into a howto table vector;
8841 the 88k subtracts a number from the `r_type' field and creates an
8845 File: bfd.info, Node: elf, Next: mmo, Prev: coff, Up: BFD back ends
8850 BFD support for ELF formats is being worked on. Currently, the best
8851 supported back ends are for sparc and i386 (running svr4 or Solaris 2).
8853 Documentation of the internals of the support code still needs to be
8854 written. The code is changing quickly enough that we haven't bothered
8858 File: bfd.info, Node: mmo, Prev: elf, Up: BFD back ends
8863 The mmo object format is used exclusively together with Professor
8864 Donald E. Knuth's educational 64-bit processor MMIX. The simulator
8865 `mmix' which is available at
8866 `http://www-cs-faculty.stanford.edu/~knuth/programs/mmix.tar.gz'
8867 understands this format. That package also includes a combined
8868 assembler and linker called `mmixal'. The mmo format has no advantages
8869 feature-wise compared to e.g. ELF. It is a simple non-relocatable
8870 object format with no support for archives or debugging information,
8871 except for symbol value information and line numbers (which is not yet
8872 implemented in BFD). See
8873 `http://www-cs-faculty.stanford.edu/~knuth/mmix.html' for more
8874 information about MMIX. The ELF format is used for intermediate object
8875 files in the BFD implementation.
8881 * mmo section mapping::
8884 File: bfd.info, Node: File layout, Next: Symbol-table, Prev: mmo, Up: mmo
8889 The mmo file contents is not partitioned into named sections as with
8890 e.g. ELF. Memory areas is formed by specifying the location of the
8891 data that follows. Only the memory area `0x0000...00' to `0x01ff...ff'
8892 is executable, so it is used for code (and constants) and the area
8893 `0x2000...00' to `0x20ff...ff' is used for writable data. *Note mmo
8896 There is provision for specifying "special data" of 65536 different
8897 types. We use type 80 (decimal), arbitrarily chosen the same as the
8898 ELF `e_machine' number for MMIX, filling it with section information
8899 normally found in ELF objects. *Note mmo section mapping::.
8901 Contents is entered as 32-bit words, xor:ed over previous contents,
8902 always zero-initialized. A word that starts with the byte `0x98' forms
8903 a command called a `lopcode', where the next byte distinguished between
8904 the thirteen lopcodes. The two remaining bytes, called the `Y' and `Z'
8905 fields, or the `YZ' field (a 16-bit big-endian number), are used for
8906 various purposes different for each lopcode. As documented in
8907 `http://www-cs-faculty.stanford.edu/~knuth/mmixal-intro.ps.gz', the
8911 0x98000001. The next word is contents, regardless of whether it
8912 starts with 0x98 or not.
8915 0x9801YYZZ, where `Z' is 1 or 2. This is a location directive,
8916 setting the location for the next data to the next 32-bit word
8917 (for Z = 1) or 64-bit word (for Z = 2), plus Y * 2^56. Normally
8918 `Y' is 0 for the text segment and 2 for the data segment.
8921 0x9802YYZZ. Increase the current location by `YZ' bytes.
8924 0x9803YYZZ, where `Z' is 1 or 2. Store the current location as 64
8925 bits into the location pointed to by the next 32-bit (Z = 1) or
8926 64-bit (Z = 2) word, plus Y * 2^56.
8929 0x9804YYZZ. `YZ' is stored into the current location plus 2 - 4 *
8933 0x980500ZZ. `Z' is 16 or 24. A value `L' derived from the
8934 following 32-bit word are used in a manner similar to `YZ' in
8935 lop_fixr: it is xor:ed into the current location minus 4 * L. The
8936 first byte of the word is 0 or 1. If it is 1, then L = (LOWEST 24
8937 BITS OF WORD) - 2^Z, if 0, then L = (LOWEST 24 BITS OF WORD).
8940 0x9806YYZZ. `Y' is the file number, `Z' is count of 32-bit words.
8941 Set the file number to `Y' and the line counter to 0. The next Z
8942 * 4 bytes contain the file name, padded with zeros if the count is
8943 not a multiple of four. The same `Y' may occur multiple times,
8944 but `Z' must be 0 for all but the first occurrence.
8947 0x9807YYZZ. `YZ' is the line number. Together with lop_file, it
8948 forms the source location for the next 32-bit word. Note that for
8949 each non-lopcode 32-bit word, line numbers are assumed incremented
8953 0x9808YYZZ. `YZ' is the type number. Data until the next lopcode
8954 other than lop_quote forms special data of type `YZ'. *Note mmo
8957 Other types than 80, (or type 80 with a content that does not
8958 parse) is stored in sections named `.MMIX.spec_data.N' where N is
8959 the `YZ'-type. The flags for such a sections say not to allocate
8960 or load the data. The vma is 0. Contents of multiple occurrences
8961 of special data N is concatenated to the data of the previous
8962 lop_spec Ns. The location in data or code at which the lop_spec
8966 0x980901ZZ. The first lopcode in a file. The `Z' field forms the
8967 length of header information in 32-bit words, where the first word
8968 tells the time in seconds since `00:00:00 GMT Jan 1 1970'.
8971 0x980a00ZZ. Z > 32. This lopcode follows after all
8972 content-generating lopcodes in a program. The `Z' field denotes
8973 the value of `rG' at the beginning of the program. The following
8974 256 - Z big-endian 64-bit words are loaded into global registers
8978 0x980b0000. The next-to-last lopcode in a program. Must follow
8979 immediately after the lop_post lopcode and its data. After this
8980 lopcode follows all symbols in a compressed format (*note
8984 0x980cYYZZ. The last lopcode in a program. It must follow the
8985 lop_stab lopcode and its data. The `YZ' field contains the number
8986 of 32-bit words of symbol table information after the preceding
8989 Note that the lopcode "fixups"; `lop_fixr', `lop_fixrx' and
8990 `lop_fixo' are not generated by BFD, but are handled. They are
8991 generated by `mmixal'.
8993 This trivial one-label, one-instruction file:
8997 can be represented this way in mmo:
8999 0x98090101 - lop_pre, one 32-bit word with timestamp.
9001 0x98010002 - lop_loc, text segment, using a 64-bit address.
9002 Note that mmixal does not emit this for the file above.
9003 0x00000000 - Address, high 32 bits.
9004 0x00000000 - Address, low 32 bits.
9005 0x98060002 - lop_file, 2 32-bit words for file-name.
9007 0x2e730000 - ".s\0\0"
9008 0x98070001 - lop_line, line 1.
9009 0x00010203 - TRAP 1,2,3
9010 0x980a00ff - lop_post, setting $255 to 0.
9013 0x980b0000 - lop_stab for ":Main" = 0, serial 1.
9014 0x203a4040 *Note Symbol-table::.
9019 0x980c0005 - lop_end; symbol table contained five 32-bit words.
9022 File: bfd.info, Node: Symbol-table, Next: mmo section mapping, Prev: File layout, Up: mmo
9024 3.5.2 Symbol table format
9025 -------------------------
9027 From mmixal.w (or really, the generated mmixal.tex) in
9028 `http://www-cs-faculty.stanford.edu/~knuth/programs/mmix.tar.gz'):
9029 "Symbols are stored and retrieved by means of a `ternary search trie',
9030 following ideas of Bentley and Sedgewick. (See ACM-SIAM Symp. on
9031 Discrete Algorithms `8' (1997), 360-369; R.Sedgewick, `Algorithms in C'
9032 (Reading, Mass. Addison-Wesley, 1998), `15.4'.) Each trie node stores
9033 a character, and there are branches to subtries for the cases where a
9034 given character is less than, equal to, or greater than the character
9035 in the trie. There also is a pointer to a symbol table entry if a
9036 symbol ends at the current node."
9038 So it's a tree encoded as a stream of bytes. The stream of bytes
9039 acts on a single virtual global symbol, adding and removing characters
9040 and signalling complete symbol points. Here, we read the stream and
9041 create symbols at the completion points.
9043 First, there's a control byte `m'. If any of the listed bits in `m'
9044 is nonzero, we execute what stands at the right, in the listed order:
9047 0x40 - Traverse left trie.
9048 (Read a new command byte and recurse.)
9051 0x2f - Read the next byte as a character and store it in the
9052 current character position; increment character position.
9053 Test the bits of `m':
9056 0x80 - The character is 16-bit (so read another byte,
9057 merge into current character.
9060 0xf - We have a complete symbol; parse the type, value
9061 and serial number and do what should be done
9062 with a symbol. The type and length information
9063 is in j = (m & 0xf).
9066 j == 0xf: A register variable. The following
9067 byte tells which register.
9068 j <= 8: An absolute symbol. Read j bytes as the
9069 big-endian number the symbol equals.
9070 A j = 2 with two zero bytes denotes an
9072 j > 8: As with j <= 8, but add (0x20 << 56)
9073 to the value in the following j - 8
9076 Then comes the serial number, as a variant of
9077 uleb128, but better named ubeb128:
9078 Read bytes and shift the previous value left 7
9079 (multiply by 128). Add in the new byte, repeat
9080 until a byte has bit 7 set. The serial number
9081 is the computed value minus 128.
9084 0x20 - Traverse middle trie. (Read a new command byte
9085 and recurse.) Decrement character position.
9088 0x10 - Traverse right trie. (Read a new command byte and
9091 Let's look again at the `lop_stab' for the trivial file (*note File
9094 0x980b0000 - lop_stab for ":Main" = 0, serial 1.
9101 This forms the trivial trie (note that the path between ":" and "M"
9113 016e "n" is the last character in a full symbol, and
9114 with a value represented in one byte.
9116 81 The serial number is 1.
9119 File: bfd.info, Node: mmo section mapping, Prev: Symbol-table, Up: mmo
9121 3.5.3 mmo section mapping
9122 -------------------------
9124 The implementation in BFD uses special data type 80 (decimal) to
9125 encapsulate and describe named sections, containing e.g. debug
9126 information. If needed, any datum in the encapsulation will be quoted
9127 using lop_quote. First comes a 32-bit word holding the number of
9128 32-bit words containing the zero-terminated zero-padded segment name.
9129 After the name there's a 32-bit word holding flags describing the
9130 section type. Then comes a 64-bit big-endian word with the section
9131 length (in bytes), then another with the section start address.
9132 Depending on the type of section, the contents might follow,
9133 zero-padded to 32-bit boundary. For a loadable section (such as data
9134 or code), the contents might follow at some later point, not
9135 necessarily immediately, as a lop_loc with the same start address as in
9136 the section description, followed by the contents. This in effect
9137 forms a descriptor that must be emitted before the actual contents.
9138 Sections described this way must not overlap.
9140 For areas that don't have such descriptors, synthetic sections are
9141 formed by BFD. Consecutive contents in the two memory areas
9142 `0x0000...00' to `0x01ff...ff' and `0x2000...00' to `0x20ff...ff' are
9143 entered in sections named `.text' and `.data' respectively. If an area
9144 is not otherwise described, but would together with a neighboring lower
9145 area be less than `0x40000000' bytes long, it is joined with the lower
9146 area and the gap is zero-filled. For other cases, a new section is
9147 formed, named `.MMIX.sec.N'. Here, N is a number, a running count
9148 through the mmo file, starting at 0.
9150 A loadable section specified as:
9152 .section secname,"ax"
9153 TETRA 1,2,3,4,-1,-2009
9156 and linked to address `0x4', is represented by the sequence:
9158 0x98080050 - lop_spec 80
9159 0x00000002 - two 32-bit words for the section name
9161 0x616d6500 - "ame\0"
9162 0x00000033 - flags CODE, READONLY, LOAD, ALLOC
9163 0x00000000 - high 32 bits of section length
9164 0x0000001c - section length is 28 bytes; 6 * 4 + 1 + alignment to 32 bits
9165 0x00000000 - high 32 bits of section address
9166 0x00000004 - section address is 4
9167 0x98010002 - 64 bits with address of following data
9168 0x00000000 - high 32 bits of address
9169 0x00000004 - low 32 bits: data starts at address 4
9176 0x50000000 - 80 as a byte, padded with zeros.
9178 Note that the lop_spec wrapping does not include the section
9179 contents. Compare this to a non-loaded section specified as:
9185 This, when linked to address `0x200000000000001c', is represented by:
9187 0x98080050 - lop_spec 80
9188 0x00000002 - two 32-bit words for the section name
9191 0x00000010 - flag READONLY
9192 0x00000000 - high 32 bits of section length
9193 0x0000000c - section length is 12 bytes; 2 * 4 + 2 + alignment to 32 bits
9194 0x20000000 - high 32 bits of address
9195 0x0000001c - low 32 bits of address 0x200000000000001c
9198 0x26280000 - 38, 40 as bytes, padded with zeros
9200 For the latter example, the section contents must not be loaded in
9201 memory, and is therefore specified as part of the special data. The
9202 address is usually unimportant but might provide information for e.g.
9203 the DWARF 2 debugging format.
9206 File: bfd.info, Node: GNU Free Documentation License, Next: BFD Index, Prev: BFD back ends, Up: Top
9208 Version 1.3, 3 November 2008
9210 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
9213 Everyone is permitted to copy and distribute verbatim copies
9214 of this license document, but changing it is not allowed.
9218 The purpose of this License is to make a manual, textbook, or other
9219 functional and useful document "free" in the sense of freedom: to
9220 assure everyone the effective freedom to copy and redistribute it,
9221 with or without modifying it, either commercially or
9222 noncommercially. Secondarily, this License preserves for the
9223 author and publisher a way to get credit for their work, while not
9224 being considered responsible for modifications made by others.
9226 This License is a kind of "copyleft", which means that derivative
9227 works of the document must themselves be free in the same sense.
9228 It complements the GNU General Public License, which is a copyleft
9229 license designed for free software.
9231 We have designed this License in order to use it for manuals for
9232 free software, because free software needs free documentation: a
9233 free program should come with manuals providing the same freedoms
9234 that the software does. But this License is not limited to
9235 software manuals; it can be used for any textual work, regardless
9236 of subject matter or whether it is published as a printed book.
9237 We recommend this License principally for works whose purpose is
9238 instruction or reference.
9240 1. APPLICABILITY AND DEFINITIONS
9242 This License applies to any manual or other work, in any medium,
9243 that contains a notice placed by the copyright holder saying it
9244 can be distributed under the terms of this License. Such a notice
9245 grants a world-wide, royalty-free license, unlimited in duration,
9246 to use that work under the conditions stated herein. The
9247 "Document", below, refers to any such manual or work. Any member
9248 of the public is a licensee, and is addressed as "you". You
9249 accept the license if you copy, modify or distribute the work in a
9250 way requiring permission under copyright law.
9252 A "Modified Version" of the Document means any work containing the
9253 Document or a portion of it, either copied verbatim, or with
9254 modifications and/or translated into another language.
9256 A "Secondary Section" is a named appendix or a front-matter section
9257 of the Document that deals exclusively with the relationship of the
9258 publishers or authors of the Document to the Document's overall
9259 subject (or to related matters) and contains nothing that could
9260 fall directly within that overall subject. (Thus, if the Document
9261 is in part a textbook of mathematics, a Secondary Section may not
9262 explain any mathematics.) The relationship could be a matter of
9263 historical connection with the subject or with related matters, or
9264 of legal, commercial, philosophical, ethical or political position
9267 The "Invariant Sections" are certain Secondary Sections whose
9268 titles are designated, as being those of Invariant Sections, in
9269 the notice that says that the Document is released under this
9270 License. If a section does not fit the above definition of
9271 Secondary then it is not allowed to be designated as Invariant.
9272 The Document may contain zero Invariant Sections. If the Document
9273 does not identify any Invariant Sections then there are none.
9275 The "Cover Texts" are certain short passages of text that are
9276 listed, as Front-Cover Texts or Back-Cover Texts, in the notice
9277 that says that the Document is released under this License. A
9278 Front-Cover Text may be at most 5 words, and a Back-Cover Text may
9279 be at most 25 words.
9281 A "Transparent" copy of the Document means a machine-readable copy,
9282 represented in a format whose specification is available to the
9283 general public, that is suitable for revising the document
9284 straightforwardly with generic text editors or (for images
9285 composed of pixels) generic paint programs or (for drawings) some
9286 widely available drawing editor, and that is suitable for input to
9287 text formatters or for automatic translation to a variety of
9288 formats suitable for input to text formatters. A copy made in an
9289 otherwise Transparent file format whose markup, or absence of
9290 markup, has been arranged to thwart or discourage subsequent
9291 modification by readers is not Transparent. An image format is
9292 not Transparent if used for any substantial amount of text. A
9293 copy that is not "Transparent" is called "Opaque".
9295 Examples of suitable formats for Transparent copies include plain
9296 ASCII without markup, Texinfo input format, LaTeX input format,
9297 SGML or XML using a publicly available DTD, and
9298 standard-conforming simple HTML, PostScript or PDF designed for
9299 human modification. Examples of transparent image formats include
9300 PNG, XCF and JPG. Opaque formats include proprietary formats that
9301 can be read and edited only by proprietary word processors, SGML or
9302 XML for which the DTD and/or processing tools are not generally
9303 available, and the machine-generated HTML, PostScript or PDF
9304 produced by some word processors for output purposes only.
9306 The "Title Page" means, for a printed book, the title page itself,
9307 plus such following pages as are needed to hold, legibly, the
9308 material this License requires to appear in the title page. For
9309 works in formats which do not have any title page as such, "Title
9310 Page" means the text near the most prominent appearance of the
9311 work's title, preceding the beginning of the body of the text.
9313 The "publisher" means any person or entity that distributes copies
9314 of the Document to the public.
9316 A section "Entitled XYZ" means a named subunit of the Document
9317 whose title either is precisely XYZ or contains XYZ in parentheses
9318 following text that translates XYZ in another language. (Here XYZ
9319 stands for a specific section name mentioned below, such as
9320 "Acknowledgements", "Dedications", "Endorsements", or "History".)
9321 To "Preserve the Title" of such a section when you modify the
9322 Document means that it remains a section "Entitled XYZ" according
9325 The Document may include Warranty Disclaimers next to the notice
9326 which states that this License applies to the Document. These
9327 Warranty Disclaimers are considered to be included by reference in
9328 this License, but only as regards disclaiming warranties: any other
9329 implication that these Warranty Disclaimers may have is void and
9330 has no effect on the meaning of this License.
9334 You may copy and distribute the Document in any medium, either
9335 commercially or noncommercially, provided that this License, the
9336 copyright notices, and the license notice saying this License
9337 applies to the Document are reproduced in all copies, and that you
9338 add no other conditions whatsoever to those of this License. You
9339 may not use technical measures to obstruct or control the reading
9340 or further copying of the copies you make or distribute. However,
9341 you may accept compensation in exchange for copies. If you
9342 distribute a large enough number of copies you must also follow
9343 the conditions in section 3.
9345 You may also lend copies, under the same conditions stated above,
9346 and you may publicly display copies.
9348 3. COPYING IN QUANTITY
9350 If you publish printed copies (or copies in media that commonly
9351 have printed covers) of the Document, numbering more than 100, and
9352 the Document's license notice requires Cover Texts, you must
9353 enclose the copies in covers that carry, clearly and legibly, all
9354 these Cover Texts: Front-Cover Texts on the front cover, and
9355 Back-Cover Texts on the back cover. Both covers must also clearly
9356 and legibly identify you as the publisher of these copies. The
9357 front cover must present the full title with all words of the
9358 title equally prominent and visible. You may add other material
9359 on the covers in addition. Copying with changes limited to the
9360 covers, as long as they preserve the title of the Document and
9361 satisfy these conditions, can be treated as verbatim copying in
9364 If the required texts for either cover are too voluminous to fit
9365 legibly, you should put the first ones listed (as many as fit
9366 reasonably) on the actual cover, and continue the rest onto
9369 If you publish or distribute Opaque copies of the Document
9370 numbering more than 100, you must either include a
9371 machine-readable Transparent copy along with each Opaque copy, or
9372 state in or with each Opaque copy a computer-network location from
9373 which the general network-using public has access to download
9374 using public-standard network protocols a complete Transparent
9375 copy of the Document, free of added material. If you use the
9376 latter option, you must take reasonably prudent steps, when you
9377 begin distribution of Opaque copies in quantity, to ensure that
9378 this Transparent copy will remain thus accessible at the stated
9379 location until at least one year after the last time you
9380 distribute an Opaque copy (directly or through your agents or
9381 retailers) of that edition to the public.
9383 It is requested, but not required, that you contact the authors of
9384 the Document well before redistributing any large number of
9385 copies, to give them a chance to provide you with an updated
9386 version of the Document.
9390 You may copy and distribute a Modified Version of the Document
9391 under the conditions of sections 2 and 3 above, provided that you
9392 release the Modified Version under precisely this License, with
9393 the Modified Version filling the role of the Document, thus
9394 licensing distribution and modification of the Modified Version to
9395 whoever possesses a copy of it. In addition, you must do these
9396 things in the Modified Version:
9398 A. Use in the Title Page (and on the covers, if any) a title
9399 distinct from that of the Document, and from those of
9400 previous versions (which should, if there were any, be listed
9401 in the History section of the Document). You may use the
9402 same title as a previous version if the original publisher of
9403 that version gives permission.
9405 B. List on the Title Page, as authors, one or more persons or
9406 entities responsible for authorship of the modifications in
9407 the Modified Version, together with at least five of the
9408 principal authors of the Document (all of its principal
9409 authors, if it has fewer than five), unless they release you
9410 from this requirement.
9412 C. State on the Title page the name of the publisher of the
9413 Modified Version, as the publisher.
9415 D. Preserve all the copyright notices of the Document.
9417 E. Add an appropriate copyright notice for your modifications
9418 adjacent to the other copyright notices.
9420 F. Include, immediately after the copyright notices, a license
9421 notice giving the public permission to use the Modified
9422 Version under the terms of this License, in the form shown in
9425 G. Preserve in that license notice the full lists of Invariant
9426 Sections and required Cover Texts given in the Document's
9429 H. Include an unaltered copy of this License.
9431 I. Preserve the section Entitled "History", Preserve its Title,
9432 and add to it an item stating at least the title, year, new
9433 authors, and publisher of the Modified Version as given on
9434 the Title Page. If there is no section Entitled "History" in
9435 the Document, create one stating the title, year, authors,
9436 and publisher of the Document as given on its Title Page,
9437 then add an item describing the Modified Version as stated in
9438 the previous sentence.
9440 J. Preserve the network location, if any, given in the Document
9441 for public access to a Transparent copy of the Document, and
9442 likewise the network locations given in the Document for
9443 previous versions it was based on. These may be placed in
9444 the "History" section. You may omit a network location for a
9445 work that was published at least four years before the
9446 Document itself, or if the original publisher of the version
9447 it refers to gives permission.
9449 K. For any section Entitled "Acknowledgements" or "Dedications",
9450 Preserve the Title of the section, and preserve in the
9451 section all the substance and tone of each of the contributor
9452 acknowledgements and/or dedications given therein.
9454 L. Preserve all the Invariant Sections of the Document,
9455 unaltered in their text and in their titles. Section numbers
9456 or the equivalent are not considered part of the section
9459 M. Delete any section Entitled "Endorsements". Such a section
9460 may not be included in the Modified Version.
9462 N. Do not retitle any existing section to be Entitled
9463 "Endorsements" or to conflict in title with any Invariant
9466 O. Preserve any Warranty Disclaimers.
9468 If the Modified Version includes new front-matter sections or
9469 appendices that qualify as Secondary Sections and contain no
9470 material copied from the Document, you may at your option
9471 designate some or all of these sections as invariant. To do this,
9472 add their titles to the list of Invariant Sections in the Modified
9473 Version's license notice. These titles must be distinct from any
9474 other section titles.
9476 You may add a section Entitled "Endorsements", provided it contains
9477 nothing but endorsements of your Modified Version by various
9478 parties--for example, statements of peer review or that the text
9479 has been approved by an organization as the authoritative
9480 definition of a standard.
9482 You may add a passage of up to five words as a Front-Cover Text,
9483 and a passage of up to 25 words as a Back-Cover Text, to the end
9484 of the list of Cover Texts in the Modified Version. Only one
9485 passage of Front-Cover Text and one of Back-Cover Text may be
9486 added by (or through arrangements made by) any one entity. If the
9487 Document already includes a cover text for the same cover,
9488 previously added by you or by arrangement made by the same entity
9489 you are acting on behalf of, you may not add another; but you may
9490 replace the old one, on explicit permission from the previous
9491 publisher that added the old one.
9493 The author(s) and publisher(s) of the Document do not by this
9494 License give permission to use their names for publicity for or to
9495 assert or imply endorsement of any Modified Version.
9497 5. COMBINING DOCUMENTS
9499 You may combine the Document with other documents released under
9500 this License, under the terms defined in section 4 above for
9501 modified versions, provided that you include in the combination
9502 all of the Invariant Sections of all of the original documents,
9503 unmodified, and list them all as Invariant Sections of your
9504 combined work in its license notice, and that you preserve all
9505 their Warranty Disclaimers.
9507 The combined work need only contain one copy of this License, and
9508 multiple identical Invariant Sections may be replaced with a single
9509 copy. If there are multiple Invariant Sections with the same name
9510 but different contents, make the title of each such section unique
9511 by adding at the end of it, in parentheses, the name of the
9512 original author or publisher of that section if known, or else a
9513 unique number. Make the same adjustment to the section titles in
9514 the list of Invariant Sections in the license notice of the
9517 In the combination, you must combine any sections Entitled
9518 "History" in the various original documents, forming one section
9519 Entitled "History"; likewise combine any sections Entitled
9520 "Acknowledgements", and any sections Entitled "Dedications". You
9521 must delete all sections Entitled "Endorsements."
9523 6. COLLECTIONS OF DOCUMENTS
9525 You may make a collection consisting of the Document and other
9526 documents released under this License, and replace the individual
9527 copies of this License in the various documents with a single copy
9528 that is included in the collection, provided that you follow the
9529 rules of this License for verbatim copying of each of the
9530 documents in all other respects.
9532 You may extract a single document from such a collection, and
9533 distribute it individually under this License, provided you insert
9534 a copy of this License into the extracted document, and follow
9535 this License in all other respects regarding verbatim copying of
9538 7. AGGREGATION WITH INDEPENDENT WORKS
9540 A compilation of the Document or its derivatives with other
9541 separate and independent documents or works, in or on a volume of
9542 a storage or distribution medium, is called an "aggregate" if the
9543 copyright resulting from the compilation is not used to limit the
9544 legal rights of the compilation's users beyond what the individual
9545 works permit. When the Document is included in an aggregate, this
9546 License does not apply to the other works in the aggregate which
9547 are not themselves derivative works of the Document.
9549 If the Cover Text requirement of section 3 is applicable to these
9550 copies of the Document, then if the Document is less than one half
9551 of the entire aggregate, the Document's Cover Texts may be placed
9552 on covers that bracket the Document within the aggregate, or the
9553 electronic equivalent of covers if the Document is in electronic
9554 form. Otherwise they must appear on printed covers that bracket
9555 the whole aggregate.
9559 Translation is considered a kind of modification, so you may
9560 distribute translations of the Document under the terms of section
9561 4. Replacing Invariant Sections with translations requires special
9562 permission from their copyright holders, but you may include
9563 translations of some or all Invariant Sections in addition to the
9564 original versions of these Invariant Sections. You may include a
9565 translation of this License, and all the license notices in the
9566 Document, and any Warranty Disclaimers, provided that you also
9567 include the original English version of this License and the
9568 original versions of those notices and disclaimers. In case of a
9569 disagreement between the translation and the original version of
9570 this License or a notice or disclaimer, the original version will
9573 If a section in the Document is Entitled "Acknowledgements",
9574 "Dedications", or "History", the requirement (section 4) to
9575 Preserve its Title (section 1) will typically require changing the
9580 You may not copy, modify, sublicense, or distribute the Document
9581 except as expressly provided under this License. Any attempt
9582 otherwise to copy, modify, sublicense, or distribute it is void,
9583 and will automatically terminate your rights under this License.
9585 However, if you cease all violation of this License, then your
9586 license from a particular copyright holder is reinstated (a)
9587 provisionally, unless and until the copyright holder explicitly
9588 and finally terminates your license, and (b) permanently, if the
9589 copyright holder fails to notify you of the violation by some
9590 reasonable means prior to 60 days after the cessation.
9592 Moreover, your license from a particular copyright holder is
9593 reinstated permanently if the copyright holder notifies you of the
9594 violation by some reasonable means, this is the first time you have
9595 received notice of violation of this License (for any work) from
9596 that copyright holder, and you cure the violation prior to 30 days
9597 after your receipt of the notice.
9599 Termination of your rights under this section does not terminate
9600 the licenses of parties who have received copies or rights from
9601 you under this License. If your rights have been terminated and
9602 not permanently reinstated, receipt of a copy of some or all of
9603 the same material does not give you any rights to use it.
9605 10. FUTURE REVISIONS OF THIS LICENSE
9607 The Free Software Foundation may publish new, revised versions of
9608 the GNU Free Documentation License from time to time. Such new
9609 versions will be similar in spirit to the present version, but may
9610 differ in detail to address new problems or concerns. See
9611 `http://www.gnu.org/copyleft/'.
9613 Each version of the License is given a distinguishing version
9614 number. If the Document specifies that a particular numbered
9615 version of this License "or any later version" applies to it, you
9616 have the option of following the terms and conditions either of
9617 that specified version or of any later version that has been
9618 published (not as a draft) by the Free Software Foundation. If
9619 the Document does not specify a version number of this License,
9620 you may choose any version ever published (not as a draft) by the
9621 Free Software Foundation. If the Document specifies that a proxy
9622 can decide which future versions of this License can be used, that
9623 proxy's public statement of acceptance of a version permanently
9624 authorizes you to choose that version for the Document.
9628 "Massive Multiauthor Collaboration Site" (or "MMC Site") means any
9629 World Wide Web server that publishes copyrightable works and also
9630 provides prominent facilities for anybody to edit those works. A
9631 public wiki that anybody can edit is an example of such a server.
9632 A "Massive Multiauthor Collaboration" (or "MMC") contained in the
9633 site means any set of copyrightable works thus published on the MMC
9636 "CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
9637 license published by Creative Commons Corporation, a not-for-profit
9638 corporation with a principal place of business in San Francisco,
9639 California, as well as future copyleft versions of that license
9640 published by that same organization.
9642 "Incorporate" means to publish or republish a Document, in whole or
9643 in part, as part of another Document.
9645 An MMC is "eligible for relicensing" if it is licensed under this
9646 License, and if all works that were first published under this
9647 License somewhere other than this MMC, and subsequently
9648 incorporated in whole or in part into the MMC, (1) had no cover
9649 texts or invariant sections, and (2) were thus incorporated prior
9650 to November 1, 2008.
9652 The operator of an MMC Site may republish an MMC contained in the
9653 site under CC-BY-SA on the same site at any time before August 1,
9654 2009, provided the MMC is eligible for relicensing.
9657 ADDENDUM: How to use this License for your documents
9658 ====================================================
9660 To use this License in a document you have written, include a copy of
9661 the License in the document and put the following copyright and license
9662 notices just after the title page:
9664 Copyright (C) YEAR YOUR NAME.
9665 Permission is granted to copy, distribute and/or modify this document
9666 under the terms of the GNU Free Documentation License, Version 1.3
9667 or any later version published by the Free Software Foundation;
9668 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
9669 Texts. A copy of the license is included in the section entitled ``GNU
9670 Free Documentation License''.
9672 If you have Invariant Sections, Front-Cover Texts and Back-Cover
9673 Texts, replace the "with...Texts." line with this:
9675 with the Invariant Sections being LIST THEIR TITLES, with
9676 the Front-Cover Texts being LIST, and with the Back-Cover Texts
9679 If you have Invariant Sections without Cover Texts, or some other
9680 combination of the three, merge those two alternatives to suit the
9683 If your document contains nontrivial examples of program code, we
9684 recommend releasing these examples in parallel under your choice of
9685 free software license, such as the GNU General Public License, to
9686 permit their use in free software.
9689 File: bfd.info, Node: BFD Index, Prev: GNU Free Documentation License, Up: Top
9697 * _bfd_final_link_relocate: Relocating the section contents.
9699 * _bfd_generic_link_add_archive_symbols: Adding symbols from an archive.
9701 * _bfd_generic_link_add_one_symbol: Adding symbols from an object file.
9703 * _bfd_generic_make_empty_symbol: symbol handling functions.
9705 * _bfd_link_add_symbols in target vector: Adding Symbols to the Hash Table.
9707 * _bfd_link_final_link in target vector: Performing the Final Link.
9709 * _bfd_link_hash_table_create in target vector: Creating a Linker Hash Table.
9711 * _bfd_relocate_contents: Relocating the section contents.
9713 * aout_SIZE_machine_type: aout. (line 147)
9714 * aout_SIZE_mkobject: aout. (line 139)
9715 * aout_SIZE_new_section_hook: aout. (line 177)
9716 * aout_SIZE_set_arch_mach: aout. (line 164)
9717 * aout_SIZE_some_aout_object_p: aout. (line 125)
9718 * aout_SIZE_swap_exec_header_in: aout. (line 101)
9719 * aout_SIZE_swap_exec_header_out: aout. (line 113)
9720 * arelent_chain: typedef arelent. (line 339)
9721 * BFD: Overview. (line 6)
9722 * BFD canonical format: Canonical format. (line 11)
9723 * bfd_alloc: Opening and Closing.
9725 * bfd_alloc2: Opening and Closing.
9727 * bfd_alt_mach_code: BFD front end. (line 689)
9728 * bfd_arch_bits_per_address: Architectures. (line 517)
9729 * bfd_arch_bits_per_byte: Architectures. (line 509)
9730 * bfd_arch_get_compatible: Architectures. (line 452)
9731 * bfd_arch_list: Architectures. (line 443)
9732 * bfd_arch_mach_octets_per_byte: Architectures. (line 586)
9733 * BFD_ARELOC_BFIN_ADD: howto manager. (line 1005)
9734 * BFD_ARELOC_BFIN_ADDR: howto manager. (line 1056)
9735 * BFD_ARELOC_BFIN_AND: howto manager. (line 1026)
9736 * BFD_ARELOC_BFIN_COMP: howto manager. (line 1047)
9737 * BFD_ARELOC_BFIN_CONST: howto manager. (line 1002)
9738 * BFD_ARELOC_BFIN_DIV: howto manager. (line 1014)
9739 * BFD_ARELOC_BFIN_HWPAGE: howto manager. (line 1053)
9740 * BFD_ARELOC_BFIN_LAND: howto manager. (line 1035)
9741 * BFD_ARELOC_BFIN_LEN: howto manager. (line 1041)
9742 * BFD_ARELOC_BFIN_LOR: howto manager. (line 1038)
9743 * BFD_ARELOC_BFIN_LSHIFT: howto manager. (line 1020)
9744 * BFD_ARELOC_BFIN_MOD: howto manager. (line 1017)
9745 * BFD_ARELOC_BFIN_MULT: howto manager. (line 1011)
9746 * BFD_ARELOC_BFIN_NEG: howto manager. (line 1044)
9747 * BFD_ARELOC_BFIN_OR: howto manager. (line 1029)
9748 * BFD_ARELOC_BFIN_PAGE: howto manager. (line 1050)
9749 * BFD_ARELOC_BFIN_PUSH: howto manager. (line 999)
9750 * BFD_ARELOC_BFIN_RSHIFT: howto manager. (line 1023)
9751 * BFD_ARELOC_BFIN_SUB: howto manager. (line 1008)
9752 * BFD_ARELOC_BFIN_XOR: howto manager. (line 1032)
9753 * bfd_cache_close: File Caching. (line 26)
9754 * bfd_cache_close_all: File Caching. (line 39)
9755 * bfd_cache_init: File Caching. (line 18)
9756 * bfd_calc_gnu_debuglink_crc32: Opening and Closing.
9758 * bfd_canonicalize_reloc: BFD front end. (line 408)
9759 * bfd_canonicalize_symtab: symbol handling functions.
9761 * bfd_check_format: Formats. (line 21)
9762 * bfd_check_format_matches: Formats. (line 52)
9763 * bfd_check_overflow: typedef arelent. (line 351)
9764 * bfd_close: Opening and Closing.
9766 * bfd_close_all_done: Opening and Closing.
9768 * bfd_coff_backend_data: coff. (line 304)
9769 * bfd_copy_private_bfd_data: BFD front end. (line 547)
9770 * bfd_copy_private_header_data: BFD front end. (line 529)
9771 * bfd_copy_private_section_data: section prototypes. (line 255)
9772 * bfd_copy_private_symbol_data: symbol handling functions.
9774 * bfd_core_file_failing_command: Core Files. (line 12)
9775 * bfd_core_file_failing_signal: Core Files. (line 21)
9776 * bfd_create: Opening and Closing.
9778 * bfd_create_gnu_debuglink_section: Opening and Closing.
9780 * bfd_decode_symclass: symbol handling functions.
9782 * bfd_default_arch_struct: Architectures. (line 464)
9783 * bfd_default_compatible: Architectures. (line 526)
9784 * bfd_default_reloc_type_lookup: howto manager. (line 2247)
9785 * bfd_default_scan: Architectures. (line 535)
9786 * bfd_default_set_arch_mach: Architectures. (line 482)
9787 * bfd_demangle: BFD front end. (line 787)
9788 * bfd_emul_get_commonpagesize: BFD front end. (line 767)
9789 * bfd_emul_get_maxpagesize: BFD front end. (line 747)
9790 * bfd_emul_set_commonpagesize: BFD front end. (line 778)
9791 * bfd_emul_set_maxpagesize: BFD front end. (line 758)
9792 * bfd_errmsg: BFD front end. (line 333)
9793 * bfd_fdopenr: Opening and Closing.
9795 * bfd_fill_in_gnu_debuglink_section: Opening and Closing.
9797 * bfd_find_target: bfd_target. (line 445)
9798 * bfd_find_version_for_sym: Writing the symbol table.
9800 * bfd_follow_gnu_debuglink: Opening and Closing.
9802 * bfd_fopen: Opening and Closing.
9804 * bfd_format_string: Formats. (line 79)
9805 * bfd_generic_define_common_symbol: Writing the symbol table.
9807 * bfd_generic_discard_group: section prototypes. (line 281)
9808 * bfd_generic_gc_sections: howto manager. (line 2278)
9809 * bfd_generic_get_relocated_section_contents: howto manager. (line 2298)
9810 * bfd_generic_is_group_section: section prototypes. (line 273)
9811 * bfd_generic_merge_sections: howto manager. (line 2288)
9812 * bfd_generic_relax_section: howto manager. (line 2265)
9813 * bfd_get_arch: Architectures. (line 493)
9814 * bfd_get_arch_info: Architectures. (line 545)
9815 * bfd_get_arch_size: BFD front end. (line 452)
9816 * bfd_get_error: BFD front end. (line 314)
9817 * bfd_get_error_handler: BFD front end. (line 384)
9818 * bfd_get_gp_size: BFD front end. (line 493)
9819 * bfd_get_mach: Architectures. (line 501)
9820 * bfd_get_mtime: BFD front end. (line 831)
9821 * bfd_get_next_mapent: Archives. (line 52)
9822 * bfd_get_reloc_code_name: howto manager. (line 2256)
9823 * bfd_get_reloc_size: typedef arelent. (line 330)
9824 * bfd_get_reloc_upper_bound: BFD front end. (line 398)
9825 * bfd_get_section_by_name: section prototypes. (line 17)
9826 * bfd_get_section_by_name_if: section prototypes. (line 31)
9827 * bfd_get_section_contents: section prototypes. (line 228)
9828 * bfd_get_sign_extend_vma: BFD front end. (line 465)
9829 * bfd_get_size <1>: Internal. (line 25)
9830 * bfd_get_size: BFD front end. (line 840)
9831 * bfd_get_symtab_upper_bound: symbol handling functions.
9833 * bfd_get_unique_section_name: section prototypes. (line 50)
9834 * bfd_h_put_size: Internal. (line 97)
9835 * bfd_hash_allocate: Creating and Freeing a Hash Table.
9837 * bfd_hash_lookup: Looking Up or Entering a String.
9839 * bfd_hash_newfunc: Creating and Freeing a Hash Table.
9841 * bfd_hash_set_default_size: Creating and Freeing a Hash Table.
9843 * bfd_hash_table_free: Creating and Freeing a Hash Table.
9845 * bfd_hash_table_init: Creating and Freeing a Hash Table.
9847 * bfd_hash_table_init_n: Creating and Freeing a Hash Table.
9849 * bfd_hash_traverse: Traversing a Hash Table.
9851 * bfd_init: Initialization. (line 11)
9852 * bfd_install_relocation: typedef arelent. (line 392)
9853 * bfd_is_local_label: symbol handling functions.
9855 * bfd_is_local_label_name: symbol handling functions.
9857 * bfd_is_target_special_symbol: symbol handling functions.
9859 * bfd_is_undefined_symclass: symbol handling functions.
9861 * bfd_link_split_section: Writing the symbol table.
9863 * bfd_log2: Internal. (line 164)
9864 * bfd_lookup_arch: Architectures. (line 553)
9865 * bfd_make_debug_symbol: symbol handling functions.
9867 * bfd_make_empty_symbol: symbol handling functions.
9869 * bfd_make_readable: Opening and Closing.
9871 * bfd_make_section: section prototypes. (line 129)
9872 * bfd_make_section_anyway: section prototypes. (line 100)
9873 * bfd_make_section_anyway_with_flags: section prototypes. (line 82)
9874 * bfd_make_section_old_way: section prototypes. (line 62)
9875 * bfd_make_section_with_flags: section prototypes. (line 116)
9876 * bfd_make_writable: Opening and Closing.
9878 * bfd_malloc_and_get_section: section prototypes. (line 245)
9879 * bfd_map_over_sections: section prototypes. (line 155)
9880 * bfd_merge_private_bfd_data: BFD front end. (line 563)
9881 * bfd_mmap: BFD front end. (line 869)
9882 * bfd_octets_per_byte: Architectures. (line 576)
9883 * bfd_open_file: File Caching. (line 52)
9884 * bfd_openr: Opening and Closing.
9886 * bfd_openr_iovec: Opening and Closing.
9888 * bfd_openr_next_archived_file: Archives. (line 78)
9889 * bfd_openstreamr: Opening and Closing.
9891 * bfd_openw: Opening and Closing.
9893 * bfd_perform_relocation: typedef arelent. (line 367)
9894 * bfd_perror: BFD front end. (line 342)
9895 * bfd_preserve_finish: BFD front end. (line 737)
9896 * bfd_preserve_restore: BFD front end. (line 727)
9897 * bfd_preserve_save: BFD front end. (line 711)
9898 * bfd_print_symbol_vandf: symbol handling functions.
9900 * bfd_printable_arch_mach: Architectures. (line 564)
9901 * bfd_printable_name: Architectures. (line 424)
9902 * bfd_put_size: Internal. (line 22)
9903 * BFD_RELOC_12_PCREL: howto manager. (line 39)
9904 * BFD_RELOC_14: howto manager. (line 31)
9905 * BFD_RELOC_16: howto manager. (line 30)
9906 * BFD_RELOC_16_BASEREL: howto manager. (line 95)
9907 * BFD_RELOC_16_GOT_PCREL: howto manager. (line 52)
9908 * BFD_RELOC_16_GOTOFF: howto manager. (line 55)
9909 * BFD_RELOC_16_PCREL: howto manager. (line 38)
9910 * BFD_RELOC_16_PCREL_S2: howto manager. (line 107)
9911 * BFD_RELOC_16_PLT_PCREL: howto manager. (line 63)
9912 * BFD_RELOC_16_PLTOFF: howto manager. (line 67)
9913 * BFD_RELOC_16C_ABS20: howto manager. (line 1838)
9914 * BFD_RELOC_16C_ABS20_C: howto manager. (line 1839)
9915 * BFD_RELOC_16C_ABS24: howto manager. (line 1840)
9916 * BFD_RELOC_16C_ABS24_C: howto manager. (line 1841)
9917 * BFD_RELOC_16C_DISP04: howto manager. (line 1818)
9918 * BFD_RELOC_16C_DISP04_C: howto manager. (line 1819)
9919 * BFD_RELOC_16C_DISP08: howto manager. (line 1820)
9920 * BFD_RELOC_16C_DISP08_C: howto manager. (line 1821)
9921 * BFD_RELOC_16C_DISP16: howto manager. (line 1822)
9922 * BFD_RELOC_16C_DISP16_C: howto manager. (line 1823)
9923 * BFD_RELOC_16C_DISP24: howto manager. (line 1824)
9924 * BFD_RELOC_16C_DISP24_C: howto manager. (line 1825)
9925 * BFD_RELOC_16C_DISP24a: howto manager. (line 1826)
9926 * BFD_RELOC_16C_DISP24a_C: howto manager. (line 1827)
9927 * BFD_RELOC_16C_IMM04: howto manager. (line 1842)
9928 * BFD_RELOC_16C_IMM04_C: howto manager. (line 1843)
9929 * BFD_RELOC_16C_IMM16: howto manager. (line 1844)
9930 * BFD_RELOC_16C_IMM16_C: howto manager. (line 1845)
9931 * BFD_RELOC_16C_IMM20: howto manager. (line 1846)
9932 * BFD_RELOC_16C_IMM20_C: howto manager. (line 1847)
9933 * BFD_RELOC_16C_IMM24: howto manager. (line 1848)
9934 * BFD_RELOC_16C_IMM24_C: howto manager. (line 1849)
9935 * BFD_RELOC_16C_IMM32: howto manager. (line 1850)
9936 * BFD_RELOC_16C_IMM32_C: howto manager. (line 1851)
9937 * BFD_RELOC_16C_NUM08: howto manager. (line 1812)
9938 * BFD_RELOC_16C_NUM08_C: howto manager. (line 1813)
9939 * BFD_RELOC_16C_NUM16: howto manager. (line 1814)
9940 * BFD_RELOC_16C_NUM16_C: howto manager. (line 1815)
9941 * BFD_RELOC_16C_NUM32: howto manager. (line 1816)
9942 * BFD_RELOC_16C_NUM32_C: howto manager. (line 1817)
9943 * BFD_RELOC_16C_REG04: howto manager. (line 1828)
9944 * BFD_RELOC_16C_REG04_C: howto manager. (line 1829)
9945 * BFD_RELOC_16C_REG04a: howto manager. (line 1830)
9946 * BFD_RELOC_16C_REG04a_C: howto manager. (line 1831)
9947 * BFD_RELOC_16C_REG14: howto manager. (line 1832)
9948 * BFD_RELOC_16C_REG14_C: howto manager. (line 1833)
9949 * BFD_RELOC_16C_REG16: howto manager. (line 1834)
9950 * BFD_RELOC_16C_REG16_C: howto manager. (line 1835)
9951 * BFD_RELOC_16C_REG20: howto manager. (line 1836)
9952 * BFD_RELOC_16C_REG20_C: howto manager. (line 1837)
9953 * BFD_RELOC_23_PCREL_S2: howto manager. (line 108)
9954 * BFD_RELOC_24: howto manager. (line 29)
9955 * BFD_RELOC_24_PCREL: howto manager. (line 37)
9956 * BFD_RELOC_24_PLT_PCREL: howto manager. (line 62)
9957 * BFD_RELOC_26: howto manager. (line 28)
9958 * BFD_RELOC_32: howto manager. (line 27)
9959 * BFD_RELOC_32_BASEREL: howto manager. (line 94)
9960 * BFD_RELOC_32_GOT_PCREL: howto manager. (line 51)
9961 * BFD_RELOC_32_GOTOFF: howto manager. (line 54)
9962 * BFD_RELOC_32_PCREL: howto manager. (line 36)
9963 * BFD_RELOC_32_PCREL_S2: howto manager. (line 106)
9964 * BFD_RELOC_32_PLT_PCREL: howto manager. (line 61)
9965 * BFD_RELOC_32_PLTOFF: howto manager. (line 66)
9966 * BFD_RELOC_32_SECREL: howto manager. (line 48)
9967 * BFD_RELOC_386_COPY: howto manager. (line 505)
9968 * BFD_RELOC_386_GLOB_DAT: howto manager. (line 506)
9969 * BFD_RELOC_386_GOT32: howto manager. (line 503)
9970 * BFD_RELOC_386_GOTOFF: howto manager. (line 509)
9971 * BFD_RELOC_386_GOTPC: howto manager. (line 510)
9972 * BFD_RELOC_386_IRELATIVE: howto manager. (line 526)
9973 * BFD_RELOC_386_JUMP_SLOT: howto manager. (line 507)
9974 * BFD_RELOC_386_PLT32: howto manager. (line 504)
9975 * BFD_RELOC_386_RELATIVE: howto manager. (line 508)
9976 * BFD_RELOC_386_TLS_DESC: howto manager. (line 525)
9977 * BFD_RELOC_386_TLS_DESC_CALL: howto manager. (line 524)
9978 * BFD_RELOC_386_TLS_DTPMOD32: howto manager. (line 520)
9979 * BFD_RELOC_386_TLS_DTPOFF32: howto manager. (line 521)
9980 * BFD_RELOC_386_TLS_GD: howto manager. (line 515)
9981 * BFD_RELOC_386_TLS_GOTDESC: howto manager. (line 523)
9982 * BFD_RELOC_386_TLS_GOTIE: howto manager. (line 513)
9983 * BFD_RELOC_386_TLS_IE: howto manager. (line 512)
9984 * BFD_RELOC_386_TLS_IE_32: howto manager. (line 518)
9985 * BFD_RELOC_386_TLS_LDM: howto manager. (line 516)
9986 * BFD_RELOC_386_TLS_LDO_32: howto manager. (line 517)
9987 * BFD_RELOC_386_TLS_LE: howto manager. (line 514)
9988 * BFD_RELOC_386_TLS_LE_32: howto manager. (line 519)
9989 * BFD_RELOC_386_TLS_TPOFF: howto manager. (line 511)
9990 * BFD_RELOC_386_TLS_TPOFF32: howto manager. (line 522)
9991 * BFD_RELOC_390_12: howto manager. (line 1498)
9992 * BFD_RELOC_390_20: howto manager. (line 1598)
9993 * BFD_RELOC_390_COPY: howto manager. (line 1507)
9994 * BFD_RELOC_390_GLOB_DAT: howto manager. (line 1510)
9995 * BFD_RELOC_390_GOT12: howto manager. (line 1501)
9996 * BFD_RELOC_390_GOT16: howto manager. (line 1522)
9997 * BFD_RELOC_390_GOT20: howto manager. (line 1599)
9998 * BFD_RELOC_390_GOT64: howto manager. (line 1540)
9999 * BFD_RELOC_390_GOTENT: howto manager. (line 1546)
10000 * BFD_RELOC_390_GOTOFF64: howto manager. (line 1549)
10001 * BFD_RELOC_390_GOTPC: howto manager. (line 1519)
10002 * BFD_RELOC_390_GOTPCDBL: howto manager. (line 1537)
10003 * BFD_RELOC_390_GOTPLT12: howto manager. (line 1552)
10004 * BFD_RELOC_390_GOTPLT16: howto manager. (line 1555)
10005 * BFD_RELOC_390_GOTPLT20: howto manager. (line 1600)
10006 * BFD_RELOC_390_GOTPLT32: howto manager. (line 1558)
10007 * BFD_RELOC_390_GOTPLT64: howto manager. (line 1561)
10008 * BFD_RELOC_390_GOTPLTENT: howto manager. (line 1564)
10009 * BFD_RELOC_390_JMP_SLOT: howto manager. (line 1513)
10010 * BFD_RELOC_390_PC16DBL: howto manager. (line 1525)
10011 * BFD_RELOC_390_PC32DBL: howto manager. (line 1531)
10012 * BFD_RELOC_390_PLT16DBL: howto manager. (line 1528)
10013 * BFD_RELOC_390_PLT32: howto manager. (line 1504)
10014 * BFD_RELOC_390_PLT32DBL: howto manager. (line 1534)
10015 * BFD_RELOC_390_PLT64: howto manager. (line 1543)
10016 * BFD_RELOC_390_PLTOFF16: howto manager. (line 1567)
10017 * BFD_RELOC_390_PLTOFF32: howto manager. (line 1570)
10018 * BFD_RELOC_390_PLTOFF64: howto manager. (line 1573)
10019 * BFD_RELOC_390_RELATIVE: howto manager. (line 1516)
10020 * BFD_RELOC_390_TLS_DTPMOD: howto manager. (line 1593)
10021 * BFD_RELOC_390_TLS_DTPOFF: howto manager. (line 1594)
10022 * BFD_RELOC_390_TLS_GD32: howto manager. (line 1579)
10023 * BFD_RELOC_390_TLS_GD64: howto manager. (line 1580)
10024 * BFD_RELOC_390_TLS_GDCALL: howto manager. (line 1577)
10025 * BFD_RELOC_390_TLS_GOTIE12: howto manager. (line 1581)
10026 * BFD_RELOC_390_TLS_GOTIE20: howto manager. (line 1601)
10027 * BFD_RELOC_390_TLS_GOTIE32: howto manager. (line 1582)
10028 * BFD_RELOC_390_TLS_GOTIE64: howto manager. (line 1583)
10029 * BFD_RELOC_390_TLS_IE32: howto manager. (line 1586)
10030 * BFD_RELOC_390_TLS_IE64: howto manager. (line 1587)
10031 * BFD_RELOC_390_TLS_IEENT: howto manager. (line 1588)
10032 * BFD_RELOC_390_TLS_LDCALL: howto manager. (line 1578)
10033 * BFD_RELOC_390_TLS_LDM32: howto manager. (line 1584)
10034 * BFD_RELOC_390_TLS_LDM64: howto manager. (line 1585)
10035 * BFD_RELOC_390_TLS_LDO32: howto manager. (line 1591)
10036 * BFD_RELOC_390_TLS_LDO64: howto manager. (line 1592)
10037 * BFD_RELOC_390_TLS_LE32: howto manager. (line 1589)
10038 * BFD_RELOC_390_TLS_LE64: howto manager. (line 1590)
10039 * BFD_RELOC_390_TLS_LOAD: howto manager. (line 1576)
10040 * BFD_RELOC_390_TLS_TPOFF: howto manager. (line 1595)
10041 * BFD_RELOC_64: howto manager. (line 26)
10042 * BFD_RELOC_64_PCREL: howto manager. (line 35)
10043 * BFD_RELOC_64_PLT_PCREL: howto manager. (line 60)
10044 * BFD_RELOC_64_PLTOFF: howto manager. (line 65)
10045 * BFD_RELOC_68K_GLOB_DAT: howto manager. (line 74)
10046 * BFD_RELOC_68K_JMP_SLOT: howto manager. (line 75)
10047 * BFD_RELOC_68K_RELATIVE: howto manager. (line 76)
10048 * BFD_RELOC_68K_TLS_GD16: howto manager. (line 78)
10049 * BFD_RELOC_68K_TLS_GD32: howto manager. (line 77)
10050 * BFD_RELOC_68K_TLS_GD8: howto manager. (line 79)
10051 * BFD_RELOC_68K_TLS_IE16: howto manager. (line 87)
10052 * BFD_RELOC_68K_TLS_IE32: howto manager. (line 86)
10053 * BFD_RELOC_68K_TLS_IE8: howto manager. (line 88)
10054 * BFD_RELOC_68K_TLS_LDM16: howto manager. (line 81)
10055 * BFD_RELOC_68K_TLS_LDM32: howto manager. (line 80)
10056 * BFD_RELOC_68K_TLS_LDM8: howto manager. (line 82)
10057 * BFD_RELOC_68K_TLS_LDO16: howto manager. (line 84)
10058 * BFD_RELOC_68K_TLS_LDO32: howto manager. (line 83)
10059 * BFD_RELOC_68K_TLS_LDO8: howto manager. (line 85)
10060 * BFD_RELOC_68K_TLS_LE16: howto manager. (line 90)
10061 * BFD_RELOC_68K_TLS_LE32: howto manager. (line 89)
10062 * BFD_RELOC_68K_TLS_LE8: howto manager. (line 91)
10063 * BFD_RELOC_8: howto manager. (line 32)
10064 * BFD_RELOC_860_COPY: howto manager. (line 1966)
10065 * BFD_RELOC_860_GLOB_DAT: howto manager. (line 1967)
10066 * BFD_RELOC_860_HAGOT: howto manager. (line 1992)
10067 * BFD_RELOC_860_HAGOTOFF: howto manager. (line 1993)
10068 * BFD_RELOC_860_HAPC: howto manager. (line 1994)
10069 * BFD_RELOC_860_HIGH: howto manager. (line 1995)
10070 * BFD_RELOC_860_HIGHADJ: howto manager. (line 1991)
10071 * BFD_RELOC_860_HIGOT: howto manager. (line 1996)
10072 * BFD_RELOC_860_HIGOTOFF: howto manager. (line 1997)
10073 * BFD_RELOC_860_JUMP_SLOT: howto manager. (line 1968)
10074 * BFD_RELOC_860_LOGOT0: howto manager. (line 1980)
10075 * BFD_RELOC_860_LOGOT1: howto manager. (line 1982)
10076 * BFD_RELOC_860_LOGOTOFF0: howto manager. (line 1984)
10077 * BFD_RELOC_860_LOGOTOFF1: howto manager. (line 1986)
10078 * BFD_RELOC_860_LOGOTOFF2: howto manager. (line 1988)
10079 * BFD_RELOC_860_LOGOTOFF3: howto manager. (line 1989)
10080 * BFD_RELOC_860_LOPC: howto manager. (line 1990)
10081 * BFD_RELOC_860_LOW0: howto manager. (line 1973)
10082 * BFD_RELOC_860_LOW1: howto manager. (line 1975)
10083 * BFD_RELOC_860_LOW2: howto manager. (line 1977)
10084 * BFD_RELOC_860_LOW3: howto manager. (line 1979)
10085 * BFD_RELOC_860_PC16: howto manager. (line 1972)
10086 * BFD_RELOC_860_PC26: howto manager. (line 1970)
10087 * BFD_RELOC_860_PLT26: howto manager. (line 1971)
10088 * BFD_RELOC_860_RELATIVE: howto manager. (line 1969)
10089 * BFD_RELOC_860_SPGOT0: howto manager. (line 1981)
10090 * BFD_RELOC_860_SPGOT1: howto manager. (line 1983)
10091 * BFD_RELOC_860_SPGOTOFF0: howto manager. (line 1985)
10092 * BFD_RELOC_860_SPGOTOFF1: howto manager. (line 1987)
10093 * BFD_RELOC_860_SPLIT0: howto manager. (line 1974)
10094 * BFD_RELOC_860_SPLIT1: howto manager. (line 1976)
10095 * BFD_RELOC_860_SPLIT2: howto manager. (line 1978)
10096 * BFD_RELOC_8_BASEREL: howto manager. (line 99)
10097 * BFD_RELOC_8_FFnn: howto manager. (line 103)
10098 * BFD_RELOC_8_GOT_PCREL: howto manager. (line 53)
10099 * BFD_RELOC_8_GOTOFF: howto manager. (line 59)
10100 * BFD_RELOC_8_PCREL: howto manager. (line 40)
10101 * BFD_RELOC_8_PLT_PCREL: howto manager. (line 64)
10102 * BFD_RELOC_8_PLTOFF: howto manager. (line 71)
10103 * BFD_RELOC_ALPHA_BOH: howto manager. (line 313)
10104 * BFD_RELOC_ALPHA_BRSGP: howto manager. (line 296)
10105 * BFD_RELOC_ALPHA_BSR: howto manager. (line 305)
10106 * BFD_RELOC_ALPHA_CODEADDR: howto manager. (line 287)
10107 * BFD_RELOC_ALPHA_DTPMOD64: howto manager. (line 319)
10108 * BFD_RELOC_ALPHA_DTPREL16: howto manager. (line 324)
10109 * BFD_RELOC_ALPHA_DTPREL64: howto manager. (line 321)
10110 * BFD_RELOC_ALPHA_DTPREL_HI16: howto manager. (line 322)
10111 * BFD_RELOC_ALPHA_DTPREL_LO16: howto manager. (line 323)
10112 * BFD_RELOC_ALPHA_ELF_LITERAL: howto manager. (line 252)
10113 * BFD_RELOC_ALPHA_GOTDTPREL16: howto manager. (line 320)
10114 * BFD_RELOC_ALPHA_GOTTPREL16: howto manager. (line 325)
10115 * BFD_RELOC_ALPHA_GPDISP: howto manager. (line 246)
10116 * BFD_RELOC_ALPHA_GPDISP_HI16: howto manager. (line 232)
10117 * BFD_RELOC_ALPHA_GPDISP_LO16: howto manager. (line 240)
10118 * BFD_RELOC_ALPHA_GPREL_HI16: howto manager. (line 291)
10119 * BFD_RELOC_ALPHA_GPREL_LO16: howto manager. (line 292)
10120 * BFD_RELOC_ALPHA_HINT: howto manager. (line 278)
10121 * BFD_RELOC_ALPHA_LDA: howto manager. (line 309)
10122 * BFD_RELOC_ALPHA_LINKAGE: howto manager. (line 283)
10123 * BFD_RELOC_ALPHA_LITERAL: howto manager. (line 251)
10124 * BFD_RELOC_ALPHA_LITUSE: howto manager. (line 253)
10125 * BFD_RELOC_ALPHA_NOP: howto manager. (line 301)
10126 * BFD_RELOC_ALPHA_TLSGD: howto manager. (line 317)
10127 * BFD_RELOC_ALPHA_TLSLDM: howto manager. (line 318)
10128 * BFD_RELOC_ALPHA_TPREL16: howto manager. (line 329)
10129 * BFD_RELOC_ALPHA_TPREL64: howto manager. (line 326)
10130 * BFD_RELOC_ALPHA_TPREL_HI16: howto manager. (line 327)
10131 * BFD_RELOC_ALPHA_TPREL_LO16: howto manager. (line 328)
10132 * BFD_RELOC_ARC_B22_PCREL: howto manager. (line 934)
10133 * BFD_RELOC_ARC_B26: howto manager. (line 939)
10134 * BFD_RELOC_ARM_ADR_IMM: howto manager. (line 827)
10135 * BFD_RELOC_ARM_ADRL_IMMEDIATE: howto manager. (line 814)
10136 * BFD_RELOC_ARM_ALU_PC_G0: howto manager. (line 781)
10137 * BFD_RELOC_ARM_ALU_PC_G0_NC: howto manager. (line 780)
10138 * BFD_RELOC_ARM_ALU_PC_G1: howto manager. (line 783)
10139 * BFD_RELOC_ARM_ALU_PC_G1_NC: howto manager. (line 782)
10140 * BFD_RELOC_ARM_ALU_PC_G2: howto manager. (line 784)
10141 * BFD_RELOC_ARM_ALU_SB_G0: howto manager. (line 795)
10142 * BFD_RELOC_ARM_ALU_SB_G0_NC: howto manager. (line 794)
10143 * BFD_RELOC_ARM_ALU_SB_G1: howto manager. (line 797)
10144 * BFD_RELOC_ARM_ALU_SB_G1_NC: howto manager. (line 796)
10145 * BFD_RELOC_ARM_ALU_SB_G2: howto manager. (line 798)
10146 * BFD_RELOC_ARM_CP_OFF_IMM: howto manager. (line 823)
10147 * BFD_RELOC_ARM_CP_OFF_IMM_S2: howto manager. (line 824)
10148 * BFD_RELOC_ARM_GLOB_DAT: howto manager. (line 762)
10149 * BFD_RELOC_ARM_GOT32: howto manager. (line 763)
10150 * BFD_RELOC_ARM_GOTOFF: howto manager. (line 766)
10151 * BFD_RELOC_ARM_GOTPC: howto manager. (line 767)
10152 * BFD_RELOC_ARM_HWLITERAL: howto manager. (line 834)
10153 * BFD_RELOC_ARM_IMMEDIATE: howto manager. (line 813)
10154 * BFD_RELOC_ARM_IN_POOL: howto manager. (line 830)
10155 * BFD_RELOC_ARM_JUMP_SLOT: howto manager. (line 761)
10156 * BFD_RELOC_ARM_LDC_PC_G0: howto manager. (line 791)
10157 * BFD_RELOC_ARM_LDC_PC_G1: howto manager. (line 792)
10158 * BFD_RELOC_ARM_LDC_PC_G2: howto manager. (line 793)
10159 * BFD_RELOC_ARM_LDC_SB_G0: howto manager. (line 805)
10160 * BFD_RELOC_ARM_LDC_SB_G1: howto manager. (line 806)
10161 * BFD_RELOC_ARM_LDC_SB_G2: howto manager. (line 807)
10162 * BFD_RELOC_ARM_LDR_IMM: howto manager. (line 828)
10163 * BFD_RELOC_ARM_LDR_PC_G0: howto manager. (line 785)
10164 * BFD_RELOC_ARM_LDR_PC_G1: howto manager. (line 786)
10165 * BFD_RELOC_ARM_LDR_PC_G2: howto manager. (line 787)
10166 * BFD_RELOC_ARM_LDR_SB_G0: howto manager. (line 799)
10167 * BFD_RELOC_ARM_LDR_SB_G1: howto manager. (line 800)
10168 * BFD_RELOC_ARM_LDR_SB_G2: howto manager. (line 801)
10169 * BFD_RELOC_ARM_LDRS_PC_G0: howto manager. (line 788)
10170 * BFD_RELOC_ARM_LDRS_PC_G1: howto manager. (line 789)
10171 * BFD_RELOC_ARM_LDRS_PC_G2: howto manager. (line 790)
10172 * BFD_RELOC_ARM_LDRS_SB_G0: howto manager. (line 802)
10173 * BFD_RELOC_ARM_LDRS_SB_G1: howto manager. (line 803)
10174 * BFD_RELOC_ARM_LDRS_SB_G2: howto manager. (line 804)
10175 * BFD_RELOC_ARM_LITERAL: howto manager. (line 829)
10176 * BFD_RELOC_ARM_MOVT: howto manager. (line 752)
10177 * BFD_RELOC_ARM_MOVT_PCREL: howto manager. (line 754)
10178 * BFD_RELOC_ARM_MOVW: howto manager. (line 751)
10179 * BFD_RELOC_ARM_MOVW_PCREL: howto manager. (line 753)
10180 * BFD_RELOC_ARM_MULTI: howto manager. (line 822)
10181 * BFD_RELOC_ARM_OFFSET_IMM: howto manager. (line 725)
10182 * BFD_RELOC_ARM_OFFSET_IMM8: howto manager. (line 831)
10183 * BFD_RELOC_ARM_PCREL_BLX: howto manager. (line 696)
10184 * BFD_RELOC_ARM_PCREL_BRANCH: howto manager. (line 692)
10185 * BFD_RELOC_ARM_PCREL_CALL: howto manager. (line 706)
10186 * BFD_RELOC_ARM_PCREL_JUMP: howto manager. (line 710)
10187 * BFD_RELOC_ARM_PLT32: howto manager. (line 764)
10188 * BFD_RELOC_ARM_PREL31: howto manager. (line 748)
10189 * BFD_RELOC_ARM_RELATIVE: howto manager. (line 765)
10190 * BFD_RELOC_ARM_ROSEGREL32: howto manager. (line 737)
10191 * BFD_RELOC_ARM_SBREL32: howto manager. (line 740)
10192 * BFD_RELOC_ARM_SHIFT_IMM: howto manager. (line 819)
10193 * BFD_RELOC_ARM_SMC: howto manager. (line 820)
10194 * BFD_RELOC_ARM_SWI: howto manager. (line 821)
10195 * BFD_RELOC_ARM_T32_ADD_IMM: howto manager. (line 816)
10196 * BFD_RELOC_ARM_T32_ADD_PC12: howto manager. (line 818)
10197 * BFD_RELOC_ARM_T32_CP_OFF_IMM: howto manager. (line 825)
10198 * BFD_RELOC_ARM_T32_CP_OFF_IMM_S2: howto manager. (line 826)
10199 * BFD_RELOC_ARM_T32_IMM12: howto manager. (line 817)
10200 * BFD_RELOC_ARM_T32_IMMEDIATE: howto manager. (line 815)
10201 * BFD_RELOC_ARM_T32_OFFSET_IMM: howto manager. (line 833)
10202 * BFD_RELOC_ARM_T32_OFFSET_U8: howto manager. (line 832)
10203 * BFD_RELOC_ARM_TARGET1: howto manager. (line 733)
10204 * BFD_RELOC_ARM_TARGET2: howto manager. (line 743)
10205 * BFD_RELOC_ARM_THUMB_ADD: howto manager. (line 835)
10206 * BFD_RELOC_ARM_THUMB_IMM: howto manager. (line 836)
10207 * BFD_RELOC_ARM_THUMB_MOVT: howto manager. (line 756)
10208 * BFD_RELOC_ARM_THUMB_MOVT_PCREL: howto manager. (line 758)
10209 * BFD_RELOC_ARM_THUMB_MOVW: howto manager. (line 755)
10210 * BFD_RELOC_ARM_THUMB_MOVW_PCREL: howto manager. (line 757)
10211 * BFD_RELOC_ARM_THUMB_OFFSET: howto manager. (line 729)
10212 * BFD_RELOC_ARM_THUMB_SHIFT: howto manager. (line 837)
10213 * BFD_RELOC_ARM_TLS_DTPMOD32: howto manager. (line 774)
10214 * BFD_RELOC_ARM_TLS_DTPOFF32: howto manager. (line 773)
10215 * BFD_RELOC_ARM_TLS_GD32: howto manager. (line 770)
10216 * BFD_RELOC_ARM_TLS_IE32: howto manager. (line 776)
10217 * BFD_RELOC_ARM_TLS_LDM32: howto manager. (line 772)
10218 * BFD_RELOC_ARM_TLS_LDO32: howto manager. (line 771)
10219 * BFD_RELOC_ARM_TLS_LE32: howto manager. (line 777)
10220 * BFD_RELOC_ARM_TLS_TPOFF32: howto manager. (line 775)
10221 * BFD_RELOC_ARM_V4BX: howto manager. (line 810)
10222 * BFD_RELOC_AVR_13_PCREL: howto manager. (line 1399)
10223 * BFD_RELOC_AVR_16_PM: howto manager. (line 1403)
10224 * BFD_RELOC_AVR_6: howto manager. (line 1490)
10225 * BFD_RELOC_AVR_6_ADIW: howto manager. (line 1494)
10226 * BFD_RELOC_AVR_7_PCREL: howto manager. (line 1395)
10227 * BFD_RELOC_AVR_CALL: howto manager. (line 1482)
10228 * BFD_RELOC_AVR_HH8_LDI: howto manager. (line 1415)
10229 * BFD_RELOC_AVR_HH8_LDI_NEG: howto manager. (line 1434)
10230 * BFD_RELOC_AVR_HH8_LDI_PM: howto manager. (line 1463)
10231 * BFD_RELOC_AVR_HH8_LDI_PM_NEG: howto manager. (line 1477)
10232 * BFD_RELOC_AVR_HI8_LDI: howto manager. (line 1411)
10233 * BFD_RELOC_AVR_HI8_LDI_GS: howto manager. (line 1457)
10234 * BFD_RELOC_AVR_HI8_LDI_NEG: howto manager. (line 1429)
10235 * BFD_RELOC_AVR_HI8_LDI_PM: howto manager. (line 1453)
10236 * BFD_RELOC_AVR_HI8_LDI_PM_NEG: howto manager. (line 1472)
10237 * BFD_RELOC_AVR_LDI: howto manager. (line 1486)
10238 * BFD_RELOC_AVR_LO8_LDI: howto manager. (line 1407)
10239 * BFD_RELOC_AVR_LO8_LDI_GS: howto manager. (line 1447)
10240 * BFD_RELOC_AVR_LO8_LDI_NEG: howto manager. (line 1424)
10241 * BFD_RELOC_AVR_LO8_LDI_PM: howto manager. (line 1443)
10242 * BFD_RELOC_AVR_LO8_LDI_PM_NEG: howto manager. (line 1468)
10243 * BFD_RELOC_AVR_MS8_LDI: howto manager. (line 1420)
10244 * BFD_RELOC_AVR_MS8_LDI_NEG: howto manager. (line 1439)
10245 * BFD_RELOC_BFIN_10_PCREL: howto manager. (line 959)
10246 * BFD_RELOC_BFIN_11_PCREL: howto manager. (line 962)
10247 * BFD_RELOC_BFIN_12_PCREL_JUMP: howto manager. (line 965)
10248 * BFD_RELOC_BFIN_12_PCREL_JUMP_S: howto manager. (line 968)
10249 * BFD_RELOC_BFIN_16_HIGH: howto manager. (line 947)
10250 * BFD_RELOC_BFIN_16_IMM: howto manager. (line 944)
10251 * BFD_RELOC_BFIN_16_LOW: howto manager. (line 956)
10252 * BFD_RELOC_BFIN_24_PCREL_CALL_X: howto manager. (line 971)
10253 * BFD_RELOC_BFIN_24_PCREL_JUMP_L: howto manager. (line 974)
10254 * BFD_RELOC_BFIN_4_PCREL: howto manager. (line 950)
10255 * BFD_RELOC_BFIN_5_PCREL: howto manager. (line 953)
10256 * BFD_RELOC_BFIN_FUNCDESC: howto manager. (line 980)
10257 * BFD_RELOC_BFIN_FUNCDESC_GOT17M4: howto manager. (line 981)
10258 * BFD_RELOC_BFIN_FUNCDESC_GOTHI: howto manager. (line 982)
10259 * BFD_RELOC_BFIN_FUNCDESC_GOTLO: howto manager. (line 983)
10260 * BFD_RELOC_BFIN_FUNCDESC_GOTOFF17M4: howto manager. (line 985)
10261 * BFD_RELOC_BFIN_FUNCDESC_GOTOFFHI: howto manager. (line 986)
10262 * BFD_RELOC_BFIN_FUNCDESC_GOTOFFLO: howto manager. (line 987)
10263 * BFD_RELOC_BFIN_FUNCDESC_VALUE: howto manager. (line 984)
10264 * BFD_RELOC_BFIN_GOT: howto manager. (line 993)
10265 * BFD_RELOC_BFIN_GOT17M4: howto manager. (line 977)
10266 * BFD_RELOC_BFIN_GOTHI: howto manager. (line 978)
10267 * BFD_RELOC_BFIN_GOTLO: howto manager. (line 979)
10268 * BFD_RELOC_BFIN_GOTOFF17M4: howto manager. (line 988)
10269 * BFD_RELOC_BFIN_GOTOFFHI: howto manager. (line 989)
10270 * BFD_RELOC_BFIN_GOTOFFLO: howto manager. (line 990)
10271 * BFD_RELOC_BFIN_PLTPC: howto manager. (line 996)
10272 * bfd_reloc_code_type: howto manager. (line 10)
10273 * BFD_RELOC_CR16_ABS20: howto manager. (line 1866)
10274 * BFD_RELOC_CR16_ABS24: howto manager. (line 1867)
10275 * BFD_RELOC_CR16_DISP16: howto manager. (line 1877)
10276 * BFD_RELOC_CR16_DISP20: howto manager. (line 1878)
10277 * BFD_RELOC_CR16_DISP24: howto manager. (line 1879)
10278 * BFD_RELOC_CR16_DISP24a: howto manager. (line 1880)
10279 * BFD_RELOC_CR16_DISP4: howto manager. (line 1875)
10280 * BFD_RELOC_CR16_DISP8: howto manager. (line 1876)
10281 * BFD_RELOC_CR16_GLOB_DAT: howto manager. (line 1886)
10282 * BFD_RELOC_CR16_GOT_REGREL20: howto manager. (line 1884)
10283 * BFD_RELOC_CR16_GOTC_REGREL20: howto manager. (line 1885)
10284 * BFD_RELOC_CR16_IMM16: howto manager. (line 1870)
10285 * BFD_RELOC_CR16_IMM20: howto manager. (line 1871)
10286 * BFD_RELOC_CR16_IMM24: howto manager. (line 1872)
10287 * BFD_RELOC_CR16_IMM32: howto manager. (line 1873)
10288 * BFD_RELOC_CR16_IMM32a: howto manager. (line 1874)
10289 * BFD_RELOC_CR16_IMM4: howto manager. (line 1868)
10290 * BFD_RELOC_CR16_IMM8: howto manager. (line 1869)
10291 * BFD_RELOC_CR16_NUM16: howto manager. (line 1855)
10292 * BFD_RELOC_CR16_NUM32: howto manager. (line 1856)
10293 * BFD_RELOC_CR16_NUM32a: howto manager. (line 1857)
10294 * BFD_RELOC_CR16_NUM8: howto manager. (line 1854)
10295 * BFD_RELOC_CR16_REGREL0: howto manager. (line 1858)
10296 * BFD_RELOC_CR16_REGREL14: howto manager. (line 1861)
10297 * BFD_RELOC_CR16_REGREL14a: howto manager. (line 1862)
10298 * BFD_RELOC_CR16_REGREL16: howto manager. (line 1863)
10299 * BFD_RELOC_CR16_REGREL20: howto manager. (line 1864)
10300 * BFD_RELOC_CR16_REGREL20a: howto manager. (line 1865)
10301 * BFD_RELOC_CR16_REGREL4: howto manager. (line 1859)
10302 * BFD_RELOC_CR16_REGREL4a: howto manager. (line 1860)
10303 * BFD_RELOC_CR16_SWITCH16: howto manager. (line 1882)
10304 * BFD_RELOC_CR16_SWITCH32: howto manager. (line 1883)
10305 * BFD_RELOC_CR16_SWITCH8: howto manager. (line 1881)
10306 * BFD_RELOC_CRIS_16_DTPREL: howto manager. (line 1957)
10307 * BFD_RELOC_CRIS_16_GOT: howto manager. (line 1933)
10308 * BFD_RELOC_CRIS_16_GOT_GD: howto manager. (line 1953)
10309 * BFD_RELOC_CRIS_16_GOT_TPREL: howto manager. (line 1959)
10310 * BFD_RELOC_CRIS_16_GOTPLT: howto manager. (line 1939)
10311 * BFD_RELOC_CRIS_16_TPREL: howto manager. (line 1961)
10312 * BFD_RELOC_CRIS_32_DTPREL: howto manager. (line 1956)
10313 * BFD_RELOC_CRIS_32_GD: howto manager. (line 1954)
10314 * BFD_RELOC_CRIS_32_GOT: howto manager. (line 1930)
10315 * BFD_RELOC_CRIS_32_GOT_GD: howto manager. (line 1952)
10316 * BFD_RELOC_CRIS_32_GOT_TPREL: howto manager. (line 1958)
10317 * BFD_RELOC_CRIS_32_GOTPLT: howto manager. (line 1936)
10318 * BFD_RELOC_CRIS_32_GOTREL: howto manager. (line 1942)
10319 * BFD_RELOC_CRIS_32_IE: howto manager. (line 1963)
10320 * BFD_RELOC_CRIS_32_PLT_GOTREL: howto manager. (line 1945)
10321 * BFD_RELOC_CRIS_32_PLT_PCREL: howto manager. (line 1948)
10322 * BFD_RELOC_CRIS_32_TPREL: howto manager. (line 1960)
10323 * BFD_RELOC_CRIS_BDISP8: howto manager. (line 1911)
10324 * BFD_RELOC_CRIS_COPY: howto manager. (line 1924)
10325 * BFD_RELOC_CRIS_DTP: howto manager. (line 1955)
10326 * BFD_RELOC_CRIS_DTPMOD: howto manager. (line 1962)
10327 * BFD_RELOC_CRIS_GLOB_DAT: howto manager. (line 1925)
10328 * BFD_RELOC_CRIS_JUMP_SLOT: howto manager. (line 1926)
10329 * BFD_RELOC_CRIS_LAPCQ_OFFSET: howto manager. (line 1919)
10330 * BFD_RELOC_CRIS_RELATIVE: howto manager. (line 1927)
10331 * BFD_RELOC_CRIS_SIGNED_16: howto manager. (line 1917)
10332 * BFD_RELOC_CRIS_SIGNED_6: howto manager. (line 1913)
10333 * BFD_RELOC_CRIS_SIGNED_8: howto manager. (line 1915)
10334 * BFD_RELOC_CRIS_UNSIGNED_16: howto manager. (line 1918)
10335 * BFD_RELOC_CRIS_UNSIGNED_4: howto manager. (line 1920)
10336 * BFD_RELOC_CRIS_UNSIGNED_5: howto manager. (line 1912)
10337 * BFD_RELOC_CRIS_UNSIGNED_6: howto manager. (line 1914)
10338 * BFD_RELOC_CRIS_UNSIGNED_8: howto manager. (line 1916)
10339 * BFD_RELOC_CRX_ABS16: howto manager. (line 1899)
10340 * BFD_RELOC_CRX_ABS32: howto manager. (line 1900)
10341 * BFD_RELOC_CRX_IMM16: howto manager. (line 1904)
10342 * BFD_RELOC_CRX_IMM32: howto manager. (line 1905)
10343 * BFD_RELOC_CRX_NUM16: howto manager. (line 1902)
10344 * BFD_RELOC_CRX_NUM32: howto manager. (line 1903)
10345 * BFD_RELOC_CRX_NUM8: howto manager. (line 1901)
10346 * BFD_RELOC_CRX_REGREL12: howto manager. (line 1895)
10347 * BFD_RELOC_CRX_REGREL22: howto manager. (line 1896)
10348 * BFD_RELOC_CRX_REGREL28: howto manager. (line 1897)
10349 * BFD_RELOC_CRX_REGREL32: howto manager. (line 1898)
10350 * BFD_RELOC_CRX_REL16: howto manager. (line 1892)
10351 * BFD_RELOC_CRX_REL24: howto manager. (line 1893)
10352 * BFD_RELOC_CRX_REL32: howto manager. (line 1894)
10353 * BFD_RELOC_CRX_REL4: howto manager. (line 1889)
10354 * BFD_RELOC_CRX_REL8: howto manager. (line 1890)
10355 * BFD_RELOC_CRX_REL8_CMP: howto manager. (line 1891)
10356 * BFD_RELOC_CRX_SWITCH16: howto manager. (line 1907)
10357 * BFD_RELOC_CRX_SWITCH32: howto manager. (line 1908)
10358 * BFD_RELOC_CRX_SWITCH8: howto manager. (line 1906)
10359 * BFD_RELOC_CTOR: howto manager. (line 686)
10360 * BFD_RELOC_D10V_10_PCREL_L: howto manager. (line 1063)
10361 * BFD_RELOC_D10V_10_PCREL_R: howto manager. (line 1059)
10362 * BFD_RELOC_D10V_18: howto manager. (line 1068)
10363 * BFD_RELOC_D10V_18_PCREL: howto manager. (line 1071)
10364 * BFD_RELOC_D30V_15: howto manager. (line 1086)
10365 * BFD_RELOC_D30V_15_PCREL: howto manager. (line 1090)
10366 * BFD_RELOC_D30V_15_PCREL_R: howto manager. (line 1094)
10367 * BFD_RELOC_D30V_21: howto manager. (line 1099)
10368 * BFD_RELOC_D30V_21_PCREL: howto manager. (line 1103)
10369 * BFD_RELOC_D30V_21_PCREL_R: howto manager. (line 1107)
10370 * BFD_RELOC_D30V_32: howto manager. (line 1112)
10371 * BFD_RELOC_D30V_32_PCREL: howto manager. (line 1115)
10372 * BFD_RELOC_D30V_6: howto manager. (line 1074)
10373 * BFD_RELOC_D30V_9_PCREL: howto manager. (line 1077)
10374 * BFD_RELOC_D30V_9_PCREL_R: howto manager. (line 1081)
10375 * BFD_RELOC_DLX_HI16_S: howto manager. (line 1118)
10376 * BFD_RELOC_DLX_JMP26: howto manager. (line 1124)
10377 * BFD_RELOC_DLX_LO16: howto manager. (line 1121)
10378 * BFD_RELOC_FR30_10_IN_8: howto manager. (line 1303)
10379 * BFD_RELOC_FR30_12_PCREL: howto manager. (line 1311)
10380 * BFD_RELOC_FR30_20: howto manager. (line 1287)
10381 * BFD_RELOC_FR30_48: howto manager. (line 1284)
10382 * BFD_RELOC_FR30_6_IN_4: howto manager. (line 1291)
10383 * BFD_RELOC_FR30_8_IN_8: howto manager. (line 1295)
10384 * BFD_RELOC_FR30_9_IN_8: howto manager. (line 1299)
10385 * BFD_RELOC_FR30_9_PCREL: howto manager. (line 1307)
10386 * BFD_RELOC_FRV_FUNCDESC: howto manager. (line 438)
10387 * BFD_RELOC_FRV_FUNCDESC_GOT12: howto manager. (line 439)
10388 * BFD_RELOC_FRV_FUNCDESC_GOTHI: howto manager. (line 440)
10389 * BFD_RELOC_FRV_FUNCDESC_GOTLO: howto manager. (line 441)
10390 * BFD_RELOC_FRV_FUNCDESC_GOTOFF12: howto manager. (line 443)
10391 * BFD_RELOC_FRV_FUNCDESC_GOTOFFHI: howto manager. (line 444)
10392 * BFD_RELOC_FRV_FUNCDESC_GOTOFFLO: howto manager. (line 445)
10393 * BFD_RELOC_FRV_FUNCDESC_VALUE: howto manager. (line 442)
10394 * BFD_RELOC_FRV_GETTLSOFF: howto manager. (line 449)
10395 * BFD_RELOC_FRV_GETTLSOFF_RELAX: howto manager. (line 462)
10396 * BFD_RELOC_FRV_GOT12: howto manager. (line 435)
10397 * BFD_RELOC_FRV_GOTHI: howto manager. (line 436)
10398 * BFD_RELOC_FRV_GOTLO: howto manager. (line 437)
10399 * BFD_RELOC_FRV_GOTOFF12: howto manager. (line 446)
10400 * BFD_RELOC_FRV_GOTOFFHI: howto manager. (line 447)
10401 * BFD_RELOC_FRV_GOTOFFLO: howto manager. (line 448)
10402 * BFD_RELOC_FRV_GOTTLSDESC12: howto manager. (line 451)
10403 * BFD_RELOC_FRV_GOTTLSDESCHI: howto manager. (line 452)
10404 * BFD_RELOC_FRV_GOTTLSDESCLO: howto manager. (line 453)
10405 * BFD_RELOC_FRV_GOTTLSOFF12: howto manager. (line 457)
10406 * BFD_RELOC_FRV_GOTTLSOFFHI: howto manager. (line 458)
10407 * BFD_RELOC_FRV_GOTTLSOFFLO: howto manager. (line 459)
10408 * BFD_RELOC_FRV_GPREL12: howto manager. (line 430)
10409 * BFD_RELOC_FRV_GPREL32: howto manager. (line 432)
10410 * BFD_RELOC_FRV_GPRELHI: howto manager. (line 433)
10411 * BFD_RELOC_FRV_GPRELLO: howto manager. (line 434)
10412 * BFD_RELOC_FRV_GPRELU12: howto manager. (line 431)
10413 * BFD_RELOC_FRV_HI16: howto manager. (line 429)
10414 * BFD_RELOC_FRV_LABEL16: howto manager. (line 426)
10415 * BFD_RELOC_FRV_LABEL24: howto manager. (line 427)
10416 * BFD_RELOC_FRV_LO16: howto manager. (line 428)
10417 * BFD_RELOC_FRV_TLSDESC_RELAX: howto manager. (line 461)
10418 * BFD_RELOC_FRV_TLSDESC_VALUE: howto manager. (line 450)
10419 * BFD_RELOC_FRV_TLSMOFF: howto manager. (line 464)
10420 * BFD_RELOC_FRV_TLSMOFF12: howto manager. (line 454)
10421 * BFD_RELOC_FRV_TLSMOFFHI: howto manager. (line 455)
10422 * BFD_RELOC_FRV_TLSMOFFLO: howto manager. (line 456)
10423 * BFD_RELOC_FRV_TLSOFF: howto manager. (line 460)
10424 * BFD_RELOC_FRV_TLSOFF_RELAX: howto manager. (line 463)
10425 * BFD_RELOC_GPREL16: howto manager. (line 121)
10426 * BFD_RELOC_GPREL32: howto manager. (line 122)
10427 * BFD_RELOC_H8_DIR16A8: howto manager. (line 2004)
10428 * BFD_RELOC_H8_DIR16R8: howto manager. (line 2005)
10429 * BFD_RELOC_H8_DIR24A8: howto manager. (line 2006)
10430 * BFD_RELOC_H8_DIR24R8: howto manager. (line 2007)
10431 * BFD_RELOC_H8_DIR32A16: howto manager. (line 2008)
10432 * BFD_RELOC_HI16: howto manager. (line 342)
10433 * BFD_RELOC_HI16_BASEREL: howto manager. (line 97)
10434 * BFD_RELOC_HI16_GOTOFF: howto manager. (line 57)
10435 * BFD_RELOC_HI16_PCREL: howto manager. (line 354)
10436 * BFD_RELOC_HI16_PLTOFF: howto manager. (line 69)
10437 * BFD_RELOC_HI16_S: howto manager. (line 345)
10438 * BFD_RELOC_HI16_S_BASEREL: howto manager. (line 98)
10439 * BFD_RELOC_HI16_S_GOTOFF: howto manager. (line 58)
10440 * BFD_RELOC_HI16_S_PCREL: howto manager. (line 357)
10441 * BFD_RELOC_HI16_S_PLTOFF: howto manager. (line 70)
10442 * BFD_RELOC_HI22: howto manager. (line 116)
10443 * BFD_RELOC_I370_D12: howto manager. (line 683)
10444 * BFD_RELOC_I960_CALLJ: howto manager. (line 128)
10445 * BFD_RELOC_IA64_COPY: howto manager. (line 1748)
10446 * BFD_RELOC_IA64_DIR32LSB: howto manager. (line 1693)
10447 * BFD_RELOC_IA64_DIR32MSB: howto manager. (line 1692)
10448 * BFD_RELOC_IA64_DIR64LSB: howto manager. (line 1695)
10449 * BFD_RELOC_IA64_DIR64MSB: howto manager. (line 1694)
10450 * BFD_RELOC_IA64_DTPMOD64LSB: howto manager. (line 1758)
10451 * BFD_RELOC_IA64_DTPMOD64MSB: howto manager. (line 1757)
10452 * BFD_RELOC_IA64_DTPREL14: howto manager. (line 1760)
10453 * BFD_RELOC_IA64_DTPREL22: howto manager. (line 1761)
10454 * BFD_RELOC_IA64_DTPREL32LSB: howto manager. (line 1764)
10455 * BFD_RELOC_IA64_DTPREL32MSB: howto manager. (line 1763)
10456 * BFD_RELOC_IA64_DTPREL64I: howto manager. (line 1762)
10457 * BFD_RELOC_IA64_DTPREL64LSB: howto manager. (line 1766)
10458 * BFD_RELOC_IA64_DTPREL64MSB: howto manager. (line 1765)
10459 * BFD_RELOC_IA64_FPTR32LSB: howto manager. (line 1710)
10460 * BFD_RELOC_IA64_FPTR32MSB: howto manager. (line 1709)
10461 * BFD_RELOC_IA64_FPTR64I: howto manager. (line 1708)
10462 * BFD_RELOC_IA64_FPTR64LSB: howto manager. (line 1712)
10463 * BFD_RELOC_IA64_FPTR64MSB: howto manager. (line 1711)
10464 * BFD_RELOC_IA64_GPREL22: howto manager. (line 1696)
10465 * BFD_RELOC_IA64_GPREL32LSB: howto manager. (line 1699)
10466 * BFD_RELOC_IA64_GPREL32MSB: howto manager. (line 1698)
10467 * BFD_RELOC_IA64_GPREL64I: howto manager. (line 1697)
10468 * BFD_RELOC_IA64_GPREL64LSB: howto manager. (line 1701)
10469 * BFD_RELOC_IA64_GPREL64MSB: howto manager. (line 1700)
10470 * BFD_RELOC_IA64_IMM14: howto manager. (line 1689)
10471 * BFD_RELOC_IA64_IMM22: howto manager. (line 1690)
10472 * BFD_RELOC_IA64_IMM64: howto manager. (line 1691)
10473 * BFD_RELOC_IA64_IPLTLSB: howto manager. (line 1747)
10474 * BFD_RELOC_IA64_IPLTMSB: howto manager. (line 1746)
10475 * BFD_RELOC_IA64_LDXMOV: howto manager. (line 1750)
10476 * BFD_RELOC_IA64_LTOFF22: howto manager. (line 1702)
10477 * BFD_RELOC_IA64_LTOFF22X: howto manager. (line 1749)
10478 * BFD_RELOC_IA64_LTOFF64I: howto manager. (line 1703)
10479 * BFD_RELOC_IA64_LTOFF_DTPMOD22: howto manager. (line 1759)
10480 * BFD_RELOC_IA64_LTOFF_DTPREL22: howto manager. (line 1767)
10481 * BFD_RELOC_IA64_LTOFF_FPTR22: howto manager. (line 1724)
10482 * BFD_RELOC_IA64_LTOFF_FPTR32LSB: howto manager. (line 1727)
10483 * BFD_RELOC_IA64_LTOFF_FPTR32MSB: howto manager. (line 1726)
10484 * BFD_RELOC_IA64_LTOFF_FPTR64I: howto manager. (line 1725)
10485 * BFD_RELOC_IA64_LTOFF_FPTR64LSB: howto manager. (line 1729)
10486 * BFD_RELOC_IA64_LTOFF_FPTR64MSB: howto manager. (line 1728)
10487 * BFD_RELOC_IA64_LTOFF_TPREL22: howto manager. (line 1756)
10488 * BFD_RELOC_IA64_LTV32LSB: howto manager. (line 1743)
10489 * BFD_RELOC_IA64_LTV32MSB: howto manager. (line 1742)
10490 * BFD_RELOC_IA64_LTV64LSB: howto manager. (line 1745)
10491 * BFD_RELOC_IA64_LTV64MSB: howto manager. (line 1744)
10492 * BFD_RELOC_IA64_PCREL21B: howto manager. (line 1713)
10493 * BFD_RELOC_IA64_PCREL21BI: howto manager. (line 1714)
10494 * BFD_RELOC_IA64_PCREL21F: howto manager. (line 1716)
10495 * BFD_RELOC_IA64_PCREL21M: howto manager. (line 1715)
10496 * BFD_RELOC_IA64_PCREL22: howto manager. (line 1717)
10497 * BFD_RELOC_IA64_PCREL32LSB: howto manager. (line 1721)
10498 * BFD_RELOC_IA64_PCREL32MSB: howto manager. (line 1720)
10499 * BFD_RELOC_IA64_PCREL60B: howto manager. (line 1718)
10500 * BFD_RELOC_IA64_PCREL64I: howto manager. (line 1719)
10501 * BFD_RELOC_IA64_PCREL64LSB: howto manager. (line 1723)
10502 * BFD_RELOC_IA64_PCREL64MSB: howto manager. (line 1722)
10503 * BFD_RELOC_IA64_PLTOFF22: howto manager. (line 1704)
10504 * BFD_RELOC_IA64_PLTOFF64I: howto manager. (line 1705)
10505 * BFD_RELOC_IA64_PLTOFF64LSB: howto manager. (line 1707)
10506 * BFD_RELOC_IA64_PLTOFF64MSB: howto manager. (line 1706)
10507 * BFD_RELOC_IA64_REL32LSB: howto manager. (line 1739)
10508 * BFD_RELOC_IA64_REL32MSB: howto manager. (line 1738)
10509 * BFD_RELOC_IA64_REL64LSB: howto manager. (line 1741)
10510 * BFD_RELOC_IA64_REL64MSB: howto manager. (line 1740)
10511 * BFD_RELOC_IA64_SECREL32LSB: howto manager. (line 1735)
10512 * BFD_RELOC_IA64_SECREL32MSB: howto manager. (line 1734)
10513 * BFD_RELOC_IA64_SECREL64LSB: howto manager. (line 1737)
10514 * BFD_RELOC_IA64_SECREL64MSB: howto manager. (line 1736)
10515 * BFD_RELOC_IA64_SEGREL32LSB: howto manager. (line 1731)
10516 * BFD_RELOC_IA64_SEGREL32MSB: howto manager. (line 1730)
10517 * BFD_RELOC_IA64_SEGREL64LSB: howto manager. (line 1733)
10518 * BFD_RELOC_IA64_SEGREL64MSB: howto manager. (line 1732)
10519 * BFD_RELOC_IA64_TPREL14: howto manager. (line 1751)
10520 * BFD_RELOC_IA64_TPREL22: howto manager. (line 1752)
10521 * BFD_RELOC_IA64_TPREL64I: howto manager. (line 1753)
10522 * BFD_RELOC_IA64_TPREL64LSB: howto manager. (line 1755)
10523 * BFD_RELOC_IA64_TPREL64MSB: howto manager. (line 1754)
10524 * BFD_RELOC_IP2K_ADDR16CJP: howto manager. (line 1641)
10525 * BFD_RELOC_IP2K_BANK: howto manager. (line 1638)
10526 * BFD_RELOC_IP2K_EX8DATA: howto manager. (line 1649)
10527 * BFD_RELOC_IP2K_FR9: howto manager. (line 1635)
10528 * BFD_RELOC_IP2K_FR_OFFSET: howto manager. (line 1662)
10529 * BFD_RELOC_IP2K_HI8DATA: howto manager. (line 1648)
10530 * BFD_RELOC_IP2K_HI8INSN: howto manager. (line 1653)
10531 * BFD_RELOC_IP2K_LO8DATA: howto manager. (line 1647)
10532 * BFD_RELOC_IP2K_LO8INSN: howto manager. (line 1652)
10533 * BFD_RELOC_IP2K_PAGE3: howto manager. (line 1644)
10534 * BFD_RELOC_IP2K_PC_SKIP: howto manager. (line 1656)
10535 * BFD_RELOC_IP2K_TEXT: howto manager. (line 1659)
10536 * BFD_RELOC_IQ2000_OFFSET_16: howto manager. (line 2058)
10537 * BFD_RELOC_IQ2000_OFFSET_21: howto manager. (line 2059)
10538 * BFD_RELOC_IQ2000_UHI16: howto manager. (line 2060)
10539 * BFD_RELOC_LM32_16_GOT: howto manager. (line 2165)
10540 * BFD_RELOC_LM32_BRANCH: howto manager. (line 2164)
10541 * BFD_RELOC_LM32_CALL: howto manager. (line 2163)
10542 * BFD_RELOC_LM32_COPY: howto manager. (line 2168)
10543 * BFD_RELOC_LM32_GLOB_DAT: howto manager. (line 2169)
10544 * BFD_RELOC_LM32_GOTOFF_HI16: howto manager. (line 2166)
10545 * BFD_RELOC_LM32_GOTOFF_LO16: howto manager. (line 2167)
10546 * BFD_RELOC_LM32_JMP_SLOT: howto manager. (line 2170)
10547 * BFD_RELOC_LM32_RELATIVE: howto manager. (line 2171)
10548 * BFD_RELOC_LO10: howto manager. (line 117)
10549 * BFD_RELOC_LO16: howto manager. (line 351)
10550 * BFD_RELOC_LO16_BASEREL: howto manager. (line 96)
10551 * BFD_RELOC_LO16_GOTOFF: howto manager. (line 56)
10552 * BFD_RELOC_LO16_PCREL: howto manager. (line 360)
10553 * BFD_RELOC_LO16_PLTOFF: howto manager. (line 68)
10554 * BFD_RELOC_M32C_HI8: howto manager. (line 1127)
10555 * BFD_RELOC_M32C_RL_1ADDR: howto manager. (line 1129)
10556 * BFD_RELOC_M32C_RL_2ADDR: howto manager. (line 1130)
10557 * BFD_RELOC_M32C_RL_JUMP: howto manager. (line 1128)
10558 * BFD_RELOC_M32R_10_PCREL: howto manager. (line 1137)
10559 * BFD_RELOC_M32R_18_PCREL: howto manager. (line 1141)
10560 * BFD_RELOC_M32R_24: howto manager. (line 1133)
10561 * BFD_RELOC_M32R_26_PCREL: howto manager. (line 1144)
10562 * BFD_RELOC_M32R_26_PLTREL: howto manager. (line 1163)
10563 * BFD_RELOC_M32R_COPY: howto manager. (line 1164)
10564 * BFD_RELOC_M32R_GLOB_DAT: howto manager. (line 1165)
10565 * BFD_RELOC_M32R_GOT16_HI_SLO: howto manager. (line 1174)
10566 * BFD_RELOC_M32R_GOT16_HI_ULO: howto manager. (line 1173)
10567 * BFD_RELOC_M32R_GOT16_LO: howto manager. (line 1175)
10568 * BFD_RELOC_M32R_GOT24: howto manager. (line 1162)
10569 * BFD_RELOC_M32R_GOTOFF: howto manager. (line 1168)
10570 * BFD_RELOC_M32R_GOTOFF_HI_SLO: howto manager. (line 1170)
10571 * BFD_RELOC_M32R_GOTOFF_HI_ULO: howto manager. (line 1169)
10572 * BFD_RELOC_M32R_GOTOFF_LO: howto manager. (line 1171)
10573 * BFD_RELOC_M32R_GOTPC24: howto manager. (line 1172)
10574 * BFD_RELOC_M32R_GOTPC_HI_SLO: howto manager. (line 1177)
10575 * BFD_RELOC_M32R_GOTPC_HI_ULO: howto manager. (line 1176)
10576 * BFD_RELOC_M32R_GOTPC_LO: howto manager. (line 1178)
10577 * BFD_RELOC_M32R_HI16_SLO: howto manager. (line 1151)
10578 * BFD_RELOC_M32R_HI16_ULO: howto manager. (line 1147)
10579 * BFD_RELOC_M32R_JMP_SLOT: howto manager. (line 1166)
10580 * BFD_RELOC_M32R_LO16: howto manager. (line 1155)
10581 * BFD_RELOC_M32R_RELATIVE: howto manager. (line 1167)
10582 * BFD_RELOC_M32R_SDA16: howto manager. (line 1158)
10583 * BFD_RELOC_M68HC11_24: howto manager. (line 1803)
10584 * BFD_RELOC_M68HC11_3B: howto manager. (line 1778)
10585 * BFD_RELOC_M68HC11_HI8: howto manager. (line 1770)
10586 * BFD_RELOC_M68HC11_LO16: howto manager. (line 1792)
10587 * BFD_RELOC_M68HC11_LO8: howto manager. (line 1774)
10588 * BFD_RELOC_M68HC11_PAGE: howto manager. (line 1798)
10589 * BFD_RELOC_M68HC11_RL_GROUP: howto manager. (line 1787)
10590 * BFD_RELOC_M68HC11_RL_JUMP: howto manager. (line 1781)
10591 * BFD_RELOC_M68HC12_5B: howto manager. (line 1809)
10592 * BFD_RELOC_MACH_O_PAIR: howto manager. (line 2178)
10593 * BFD_RELOC_MACH_O_SECTDIFF: howto manager. (line 2174)
10594 * BFD_RELOC_MCORE_PCREL_32: howto manager. (line 1318)
10595 * BFD_RELOC_MCORE_PCREL_IMM11BY2: howto manager. (line 1316)
10596 * BFD_RELOC_MCORE_PCREL_IMM4BY2: howto manager. (line 1317)
10597 * BFD_RELOC_MCORE_PCREL_IMM8BY4: howto manager. (line 1315)
10598 * BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2: howto manager. (line 1319)
10599 * BFD_RELOC_MCORE_RVA: howto manager. (line 1320)
10600 * BFD_RELOC_MEP_16: howto manager. (line 1324)
10601 * BFD_RELOC_MEP_32: howto manager. (line 1325)
10602 * BFD_RELOC_MEP_8: howto manager. (line 1323)
10603 * BFD_RELOC_MEP_ADDR24A4: howto manager. (line 1340)
10604 * BFD_RELOC_MEP_GNU_VTENTRY: howto manager. (line 1342)
10605 * BFD_RELOC_MEP_GNU_VTINHERIT: howto manager. (line 1341)
10606 * BFD_RELOC_MEP_GPREL: howto manager. (line 1334)
10607 * BFD_RELOC_MEP_HI16S: howto manager. (line 1333)
10608 * BFD_RELOC_MEP_HI16U: howto manager. (line 1332)
10609 * BFD_RELOC_MEP_LOW16: howto manager. (line 1331)
10610 * BFD_RELOC_MEP_PCABS24A2: howto manager. (line 1330)
10611 * BFD_RELOC_MEP_PCREL12A2: howto manager. (line 1327)
10612 * BFD_RELOC_MEP_PCREL17A2: howto manager. (line 1328)
10613 * BFD_RELOC_MEP_PCREL24A2: howto manager. (line 1329)
10614 * BFD_RELOC_MEP_PCREL8A2: howto manager. (line 1326)
10615 * BFD_RELOC_MEP_TPREL: howto manager. (line 1335)
10616 * BFD_RELOC_MEP_TPREL7: howto manager. (line 1336)
10617 * BFD_RELOC_MEP_TPREL7A2: howto manager. (line 1337)
10618 * BFD_RELOC_MEP_TPREL7A4: howto manager. (line 1338)
10619 * BFD_RELOC_MEP_UIMM24: howto manager. (line 1339)
10620 * BFD_RELOC_MICROBLAZE_32_GOTOFF: howto manager. (line 2225)
10621 * BFD_RELOC_MICROBLAZE_32_LO: howto manager. (line 2181)
10622 * BFD_RELOC_MICROBLAZE_32_LO_PCREL: howto manager. (line 2185)
10623 * BFD_RELOC_MICROBLAZE_32_ROSDA: howto manager. (line 2189)
10624 * BFD_RELOC_MICROBLAZE_32_RWSDA: howto manager. (line 2193)
10625 * BFD_RELOC_MICROBLAZE_32_SYM_OP_SYM: howto manager. (line 2197)
10626 * BFD_RELOC_MICROBLAZE_64_GOT: howto manager. (line 2211)
10627 * BFD_RELOC_MICROBLAZE_64_GOTOFF: howto manager. (line 2220)
10628 * BFD_RELOC_MICROBLAZE_64_GOTPC: howto manager. (line 2206)
10629 * BFD_RELOC_MICROBLAZE_64_NONE: howto manager. (line 2201)
10630 * BFD_RELOC_MICROBLAZE_64_PLT: howto manager. (line 2215)
10631 * BFD_RELOC_MICROBLAZE_COPY: howto manager. (line 2229)
10632 * BFD_RELOC_MIPS16_CALL16: howto manager. (line 364)
10633 * BFD_RELOC_MIPS16_GOT16: howto manager. (line 363)
10634 * BFD_RELOC_MIPS16_GPREL: howto manager. (line 339)
10635 * BFD_RELOC_MIPS16_HI16: howto manager. (line 368)
10636 * BFD_RELOC_MIPS16_HI16_S: howto manager. (line 371)
10637 * BFD_RELOC_MIPS16_JMP: howto manager. (line 336)
10638 * BFD_RELOC_MIPS16_LO16: howto manager. (line 377)
10639 * BFD_RELOC_MIPS_CALL16: howto manager. (line 384)
10640 * BFD_RELOC_MIPS_CALL_HI16: howto manager. (line 387)
10641 * BFD_RELOC_MIPS_CALL_LO16: howto manager. (line 388)
10642 * BFD_RELOC_MIPS_COPY: howto manager. (line 419)
10643 * BFD_RELOC_MIPS_DELETE: howto manager. (line 397)
10644 * BFD_RELOC_MIPS_GOT16: howto manager. (line 383)
10645 * BFD_RELOC_MIPS_GOT_DISP: howto manager. (line 392)
10646 * BFD_RELOC_MIPS_GOT_HI16: howto manager. (line 385)
10647 * BFD_RELOC_MIPS_GOT_LO16: howto manager. (line 386)
10648 * BFD_RELOC_MIPS_GOT_OFST: howto manager. (line 391)
10649 * BFD_RELOC_MIPS_GOT_PAGE: howto manager. (line 390)
10650 * BFD_RELOC_MIPS_HIGHER: howto manager. (line 399)
10651 * BFD_RELOC_MIPS_HIGHEST: howto manager. (line 398)
10652 * BFD_RELOC_MIPS_INSERT_A: howto manager. (line 395)
10653 * BFD_RELOC_MIPS_INSERT_B: howto manager. (line 396)
10654 * BFD_RELOC_MIPS_JALR: howto manager. (line 403)
10655 * BFD_RELOC_MIPS_JMP: howto manager. (line 332)
10656 * BFD_RELOC_MIPS_JUMP_SLOT: howto manager. (line 420)
10657 * BFD_RELOC_MIPS_LITERAL: howto manager. (line 380)
10658 * BFD_RELOC_MIPS_REL16: howto manager. (line 401)
10659 * BFD_RELOC_MIPS_RELGOT: howto manager. (line 402)
10660 * BFD_RELOC_MIPS_SCN_DISP: howto manager. (line 400)
10661 * BFD_RELOC_MIPS_SHIFT5: howto manager. (line 393)
10662 * BFD_RELOC_MIPS_SHIFT6: howto manager. (line 394)
10663 * BFD_RELOC_MIPS_SUB: howto manager. (line 389)
10664 * BFD_RELOC_MIPS_TLS_DTPMOD32: howto manager. (line 404)
10665 * BFD_RELOC_MIPS_TLS_DTPMOD64: howto manager. (line 406)
10666 * BFD_RELOC_MIPS_TLS_DTPREL32: howto manager. (line 405)
10667 * BFD_RELOC_MIPS_TLS_DTPREL64: howto manager. (line 407)
10668 * BFD_RELOC_MIPS_TLS_DTPREL_HI16: howto manager. (line 410)
10669 * BFD_RELOC_MIPS_TLS_DTPREL_LO16: howto manager. (line 411)
10670 * BFD_RELOC_MIPS_TLS_GD: howto manager. (line 408)
10671 * BFD_RELOC_MIPS_TLS_GOTTPREL: howto manager. (line 412)
10672 * BFD_RELOC_MIPS_TLS_LDM: howto manager. (line 409)
10673 * BFD_RELOC_MIPS_TLS_TPREL32: howto manager. (line 413)
10674 * BFD_RELOC_MIPS_TLS_TPREL64: howto manager. (line 414)
10675 * BFD_RELOC_MIPS_TLS_TPREL_HI16: howto manager. (line 415)
10676 * BFD_RELOC_MIPS_TLS_TPREL_LO16: howto manager. (line 416)
10677 * BFD_RELOC_MMIX_ADDR19: howto manager. (line 1371)
10678 * BFD_RELOC_MMIX_ADDR27: howto manager. (line 1375)
10679 * BFD_RELOC_MMIX_BASE_PLUS_OFFSET: howto manager. (line 1387)
10680 * BFD_RELOC_MMIX_CBRANCH: howto manager. (line 1351)
10681 * BFD_RELOC_MMIX_CBRANCH_1: howto manager. (line 1353)
10682 * BFD_RELOC_MMIX_CBRANCH_2: howto manager. (line 1354)
10683 * BFD_RELOC_MMIX_CBRANCH_3: howto manager. (line 1355)
10684 * BFD_RELOC_MMIX_CBRANCH_J: howto manager. (line 1352)
10685 * BFD_RELOC_MMIX_GETA: howto manager. (line 1345)
10686 * BFD_RELOC_MMIX_GETA_1: howto manager. (line 1346)
10687 * BFD_RELOC_MMIX_GETA_2: howto manager. (line 1347)
10688 * BFD_RELOC_MMIX_GETA_3: howto manager. (line 1348)
10689 * BFD_RELOC_MMIX_JMP: howto manager. (line 1365)
10690 * BFD_RELOC_MMIX_JMP_1: howto manager. (line 1366)
10691 * BFD_RELOC_MMIX_JMP_2: howto manager. (line 1367)
10692 * BFD_RELOC_MMIX_JMP_3: howto manager. (line 1368)
10693 * BFD_RELOC_MMIX_LOCAL: howto manager. (line 1391)
10694 * BFD_RELOC_MMIX_PUSHJ: howto manager. (line 1358)
10695 * BFD_RELOC_MMIX_PUSHJ_1: howto manager. (line 1359)
10696 * BFD_RELOC_MMIX_PUSHJ_2: howto manager. (line 1360)
10697 * BFD_RELOC_MMIX_PUSHJ_3: howto manager. (line 1361)
10698 * BFD_RELOC_MMIX_PUSHJ_STUBBABLE: howto manager. (line 1362)
10699 * BFD_RELOC_MMIX_REG: howto manager. (line 1383)
10700 * BFD_RELOC_MMIX_REG_OR_BYTE: howto manager. (line 1379)
10701 * BFD_RELOC_MN10300_16_PCREL: howto manager. (line 1253)
10702 * BFD_RELOC_MN10300_32_PCREL: howto manager. (line 1249)
10703 * BFD_RELOC_MN10300_ALIGN: howto manager. (line 499)
10704 * BFD_RELOC_MN10300_COPY: howto manager. (line 482)
10705 * BFD_RELOC_MN10300_GLOB_DAT: howto manager. (line 485)
10706 * BFD_RELOC_MN10300_GOT16: howto manager. (line 478)
10707 * BFD_RELOC_MN10300_GOT24: howto manager. (line 474)
10708 * BFD_RELOC_MN10300_GOT32: howto manager. (line 470)
10709 * BFD_RELOC_MN10300_GOTOFF24: howto manager. (line 467)
10710 * BFD_RELOC_MN10300_JMP_SLOT: howto manager. (line 488)
10711 * BFD_RELOC_MN10300_RELATIVE: howto manager. (line 491)
10712 * BFD_RELOC_MN10300_SYM_DIFF: howto manager. (line 494)
10713 * BFD_RELOC_MOXIE_10_PCREL: howto manager. (line 423)
10714 * BFD_RELOC_MSP430_10_PCREL: howto manager. (line 2049)
10715 * BFD_RELOC_MSP430_16: howto manager. (line 2051)
10716 * BFD_RELOC_MSP430_16_BYTE: howto manager. (line 2053)
10717 * BFD_RELOC_MSP430_16_PCREL: howto manager. (line 2050)
10718 * BFD_RELOC_MSP430_16_PCREL_BYTE: howto manager. (line 2052)
10719 * BFD_RELOC_MSP430_2X_PCREL: howto manager. (line 2054)
10720 * BFD_RELOC_MSP430_RL_PCREL: howto manager. (line 2055)
10721 * BFD_RELOC_MT_GNU_VTENTRY: howto manager. (line 2043)
10722 * BFD_RELOC_MT_GNU_VTINHERIT: howto manager. (line 2040)
10723 * BFD_RELOC_MT_HI16: howto manager. (line 2034)
10724 * BFD_RELOC_MT_LO16: howto manager. (line 2037)
10725 * BFD_RELOC_MT_PC16: howto manager. (line 2031)
10726 * BFD_RELOC_MT_PCINSN8: howto manager. (line 2046)
10727 * BFD_RELOC_NONE: howto manager. (line 131)
10728 * BFD_RELOC_NS32K_DISP_16: howto manager. (line 565)
10729 * BFD_RELOC_NS32K_DISP_16_PCREL: howto manager. (line 568)
10730 * BFD_RELOC_NS32K_DISP_32: howto manager. (line 566)
10731 * BFD_RELOC_NS32K_DISP_32_PCREL: howto manager. (line 569)
10732 * BFD_RELOC_NS32K_DISP_8: howto manager. (line 564)
10733 * BFD_RELOC_NS32K_DISP_8_PCREL: howto manager. (line 567)
10734 * BFD_RELOC_NS32K_IMM_16: howto manager. (line 559)
10735 * BFD_RELOC_NS32K_IMM_16_PCREL: howto manager. (line 562)
10736 * BFD_RELOC_NS32K_IMM_32: howto manager. (line 560)
10737 * BFD_RELOC_NS32K_IMM_32_PCREL: howto manager. (line 563)
10738 * BFD_RELOC_NS32K_IMM_8: howto manager. (line 558)
10739 * BFD_RELOC_NS32K_IMM_8_PCREL: howto manager. (line 561)
10740 * BFD_RELOC_OPENRISC_ABS_26: howto manager. (line 2000)
10741 * BFD_RELOC_OPENRISC_REL_26: howto manager. (line 2001)
10742 * BFD_RELOC_PDP11_DISP_6_PCREL: howto manager. (line 573)
10743 * BFD_RELOC_PDP11_DISP_8_PCREL: howto manager. (line 572)
10744 * BFD_RELOC_PJ_CODE_DIR16: howto manager. (line 578)
10745 * BFD_RELOC_PJ_CODE_DIR32: howto manager. (line 579)
10746 * BFD_RELOC_PJ_CODE_HI16: howto manager. (line 576)
10747 * BFD_RELOC_PJ_CODE_LO16: howto manager. (line 577)
10748 * BFD_RELOC_PJ_CODE_REL16: howto manager. (line 580)
10749 * BFD_RELOC_PJ_CODE_REL32: howto manager. (line 581)
10750 * BFD_RELOC_PPC64_ADDR16_DS: howto manager. (line 626)
10751 * BFD_RELOC_PPC64_ADDR16_LO_DS: howto manager. (line 627)
10752 * BFD_RELOC_PPC64_DTPREL16_DS: howto manager. (line 675)
10753 * BFD_RELOC_PPC64_DTPREL16_HIGHER: howto manager. (line 677)
10754 * BFD_RELOC_PPC64_DTPREL16_HIGHERA: howto manager. (line 678)
10755 * BFD_RELOC_PPC64_DTPREL16_HIGHEST: howto manager. (line 679)
10756 * BFD_RELOC_PPC64_DTPREL16_HIGHESTA: howto manager. (line 680)
10757 * BFD_RELOC_PPC64_DTPREL16_LO_DS: howto manager. (line 676)
10758 * BFD_RELOC_PPC64_GOT16_DS: howto manager. (line 628)
10759 * BFD_RELOC_PPC64_GOT16_LO_DS: howto manager. (line 629)
10760 * BFD_RELOC_PPC64_HIGHER: howto manager. (line 614)
10761 * BFD_RELOC_PPC64_HIGHER_S: howto manager. (line 615)
10762 * BFD_RELOC_PPC64_HIGHEST: howto manager. (line 616)
10763 * BFD_RELOC_PPC64_HIGHEST_S: howto manager. (line 617)
10764 * BFD_RELOC_PPC64_PLT16_LO_DS: howto manager. (line 630)
10765 * BFD_RELOC_PPC64_PLTGOT16: howto manager. (line 622)
10766 * BFD_RELOC_PPC64_PLTGOT16_DS: howto manager. (line 635)
10767 * BFD_RELOC_PPC64_PLTGOT16_HA: howto manager. (line 625)
10768 * BFD_RELOC_PPC64_PLTGOT16_HI: howto manager. (line 624)
10769 * BFD_RELOC_PPC64_PLTGOT16_LO: howto manager. (line 623)
10770 * BFD_RELOC_PPC64_PLTGOT16_LO_DS: howto manager. (line 636)
10771 * BFD_RELOC_PPC64_SECTOFF_DS: howto manager. (line 631)
10772 * BFD_RELOC_PPC64_SECTOFF_LO_DS: howto manager. (line 632)
10773 * BFD_RELOC_PPC64_TOC: howto manager. (line 621)
10774 * BFD_RELOC_PPC64_TOC16_DS: howto manager. (line 633)
10775 * BFD_RELOC_PPC64_TOC16_HA: howto manager. (line 620)
10776 * BFD_RELOC_PPC64_TOC16_HI: howto manager. (line 619)
10777 * BFD_RELOC_PPC64_TOC16_LO: howto manager. (line 618)
10778 * BFD_RELOC_PPC64_TOC16_LO_DS: howto manager. (line 634)
10779 * BFD_RELOC_PPC64_TPREL16_DS: howto manager. (line 669)
10780 * BFD_RELOC_PPC64_TPREL16_HIGHER: howto manager. (line 671)
10781 * BFD_RELOC_PPC64_TPREL16_HIGHERA: howto manager. (line 672)
10782 * BFD_RELOC_PPC64_TPREL16_HIGHEST: howto manager. (line 673)
10783 * BFD_RELOC_PPC64_TPREL16_HIGHESTA: howto manager. (line 674)
10784 * BFD_RELOC_PPC64_TPREL16_LO_DS: howto manager. (line 670)
10785 * BFD_RELOC_PPC_B16: howto manager. (line 587)
10786 * BFD_RELOC_PPC_B16_BRNTAKEN: howto manager. (line 589)
10787 * BFD_RELOC_PPC_B16_BRTAKEN: howto manager. (line 588)
10788 * BFD_RELOC_PPC_B26: howto manager. (line 584)
10789 * BFD_RELOC_PPC_BA16: howto manager. (line 590)
10790 * BFD_RELOC_PPC_BA16_BRNTAKEN: howto manager. (line 592)
10791 * BFD_RELOC_PPC_BA16_BRTAKEN: howto manager. (line 591)
10792 * BFD_RELOC_PPC_BA26: howto manager. (line 585)
10793 * BFD_RELOC_PPC_COPY: howto manager. (line 593)
10794 * BFD_RELOC_PPC_DTPMOD: howto manager. (line 642)
10795 * BFD_RELOC_PPC_DTPREL: howto manager. (line 652)
10796 * BFD_RELOC_PPC_DTPREL16: howto manager. (line 648)
10797 * BFD_RELOC_PPC_DTPREL16_HA: howto manager. (line 651)
10798 * BFD_RELOC_PPC_DTPREL16_HI: howto manager. (line 650)
10799 * BFD_RELOC_PPC_DTPREL16_LO: howto manager. (line 649)
10800 * BFD_RELOC_PPC_EMB_BIT_FLD: howto manager. (line 612)
10801 * BFD_RELOC_PPC_EMB_MRKREF: howto manager. (line 607)
10802 * BFD_RELOC_PPC_EMB_NADDR16: howto manager. (line 599)
10803 * BFD_RELOC_PPC_EMB_NADDR16_HA: howto manager. (line 602)
10804 * BFD_RELOC_PPC_EMB_NADDR16_HI: howto manager. (line 601)
10805 * BFD_RELOC_PPC_EMB_NADDR16_LO: howto manager. (line 600)
10806 * BFD_RELOC_PPC_EMB_NADDR32: howto manager. (line 598)
10807 * BFD_RELOC_PPC_EMB_RELSDA: howto manager. (line 613)
10808 * BFD_RELOC_PPC_EMB_RELSEC16: howto manager. (line 608)
10809 * BFD_RELOC_PPC_EMB_RELST_HA: howto manager. (line 611)
10810 * BFD_RELOC_PPC_EMB_RELST_HI: howto manager. (line 610)
10811 * BFD_RELOC_PPC_EMB_RELST_LO: howto manager. (line 609)
10812 * BFD_RELOC_PPC_EMB_SDA21: howto manager. (line 606)
10813 * BFD_RELOC_PPC_EMB_SDA2I16: howto manager. (line 604)
10814 * BFD_RELOC_PPC_EMB_SDA2REL: howto manager. (line 605)
10815 * BFD_RELOC_PPC_EMB_SDAI16: howto manager. (line 603)
10816 * BFD_RELOC_PPC_GLOB_DAT: howto manager. (line 594)
10817 * BFD_RELOC_PPC_GOT_DTPREL16: howto manager. (line 665)
10818 * BFD_RELOC_PPC_GOT_DTPREL16_HA: howto manager. (line 668)
10819 * BFD_RELOC_PPC_GOT_DTPREL16_HI: howto manager. (line 667)
10820 * BFD_RELOC_PPC_GOT_DTPREL16_LO: howto manager. (line 666)
10821 * BFD_RELOC_PPC_GOT_TLSGD16: howto manager. (line 653)
10822 * BFD_RELOC_PPC_GOT_TLSGD16_HA: howto manager. (line 656)
10823 * BFD_RELOC_PPC_GOT_TLSGD16_HI: howto manager. (line 655)
10824 * BFD_RELOC_PPC_GOT_TLSGD16_LO: howto manager. (line 654)
10825 * BFD_RELOC_PPC_GOT_TLSLD16: howto manager. (line 657)
10826 * BFD_RELOC_PPC_GOT_TLSLD16_HA: howto manager. (line 660)
10827 * BFD_RELOC_PPC_GOT_TLSLD16_HI: howto manager. (line 659)
10828 * BFD_RELOC_PPC_GOT_TLSLD16_LO: howto manager. (line 658)
10829 * BFD_RELOC_PPC_GOT_TPREL16: howto manager. (line 661)
10830 * BFD_RELOC_PPC_GOT_TPREL16_HA: howto manager. (line 664)
10831 * BFD_RELOC_PPC_GOT_TPREL16_HI: howto manager. (line 663)
10832 * BFD_RELOC_PPC_GOT_TPREL16_LO: howto manager. (line 662)
10833 * BFD_RELOC_PPC_JMP_SLOT: howto manager. (line 595)
10834 * BFD_RELOC_PPC_LOCAL24PC: howto manager. (line 597)
10835 * BFD_RELOC_PPC_RELATIVE: howto manager. (line 596)
10836 * BFD_RELOC_PPC_TLS: howto manager. (line 639)
10837 * BFD_RELOC_PPC_TLSGD: howto manager. (line 640)
10838 * BFD_RELOC_PPC_TLSLD: howto manager. (line 641)
10839 * BFD_RELOC_PPC_TOC16: howto manager. (line 586)
10840 * BFD_RELOC_PPC_TPREL: howto manager. (line 647)
10841 * BFD_RELOC_PPC_TPREL16: howto manager. (line 643)
10842 * BFD_RELOC_PPC_TPREL16_HA: howto manager. (line 646)
10843 * BFD_RELOC_PPC_TPREL16_HI: howto manager. (line 645)
10844 * BFD_RELOC_PPC_TPREL16_LO: howto manager. (line 644)
10845 * BFD_RELOC_RELC: howto manager. (line 2017)
10846 * BFD_RELOC_RVA: howto manager. (line 100)
10847 * BFD_RELOC_SCORE16_BRANCH: howto manager. (line 1623)
10848 * BFD_RELOC_SCORE16_JMP: howto manager. (line 1620)
10849 * BFD_RELOC_SCORE_BCMP: howto manager. (line 1626)
10850 * BFD_RELOC_SCORE_BRANCH: howto manager. (line 1611)
10851 * BFD_RELOC_SCORE_CALL15: howto manager. (line 1631)
10852 * BFD_RELOC_SCORE_DUMMY2: howto manager. (line 1607)
10853 * BFD_RELOC_SCORE_DUMMY_HI16: howto manager. (line 1632)
10854 * BFD_RELOC_SCORE_GOT15: howto manager. (line 1629)
10855 * BFD_RELOC_SCORE_GOT_LO16: howto manager. (line 1630)
10856 * BFD_RELOC_SCORE_GPREL15: howto manager. (line 1604)
10857 * BFD_RELOC_SCORE_IMM30: howto manager. (line 1614)
10858 * BFD_RELOC_SCORE_IMM32: howto manager. (line 1617)
10859 * BFD_RELOC_SCORE_JMP: howto manager. (line 1608)
10860 * BFD_RELOC_SH_ALIGN: howto manager. (line 863)
10861 * BFD_RELOC_SH_CODE: howto manager. (line 864)
10862 * BFD_RELOC_SH_COPY: howto manager. (line 869)
10863 * BFD_RELOC_SH_COPY64: howto manager. (line 894)
10864 * BFD_RELOC_SH_COUNT: howto manager. (line 862)
10865 * BFD_RELOC_SH_DATA: howto manager. (line 865)
10866 * BFD_RELOC_SH_DISP12: howto manager. (line 845)
10867 * BFD_RELOC_SH_DISP12BY2: howto manager. (line 846)
10868 * BFD_RELOC_SH_DISP12BY4: howto manager. (line 847)
10869 * BFD_RELOC_SH_DISP12BY8: howto manager. (line 848)
10870 * BFD_RELOC_SH_DISP20: howto manager. (line 849)
10871 * BFD_RELOC_SH_DISP20BY8: howto manager. (line 850)
10872 * BFD_RELOC_SH_GLOB_DAT: howto manager. (line 870)
10873 * BFD_RELOC_SH_GLOB_DAT64: howto manager. (line 895)
10874 * BFD_RELOC_SH_GOT10BY4: howto manager. (line 898)
10875 * BFD_RELOC_SH_GOT10BY8: howto manager. (line 899)
10876 * BFD_RELOC_SH_GOT_HI16: howto manager. (line 877)
10877 * BFD_RELOC_SH_GOT_LOW16: howto manager. (line 874)
10878 * BFD_RELOC_SH_GOT_MEDHI16: howto manager. (line 876)
10879 * BFD_RELOC_SH_GOT_MEDLOW16: howto manager. (line 875)
10880 * BFD_RELOC_SH_GOTOFF_HI16: howto manager. (line 889)
10881 * BFD_RELOC_SH_GOTOFF_LOW16: howto manager. (line 886)
10882 * BFD_RELOC_SH_GOTOFF_MEDHI16: howto manager. (line 888)
10883 * BFD_RELOC_SH_GOTOFF_MEDLOW16: howto manager. (line 887)
10884 * BFD_RELOC_SH_GOTPC: howto manager. (line 873)
10885 * BFD_RELOC_SH_GOTPC_HI16: howto manager. (line 893)
10886 * BFD_RELOC_SH_GOTPC_LOW16: howto manager. (line 890)
10887 * BFD_RELOC_SH_GOTPC_MEDHI16: howto manager. (line 892)
10888 * BFD_RELOC_SH_GOTPC_MEDLOW16: howto manager. (line 891)
10889 * BFD_RELOC_SH_GOTPLT10BY4: howto manager. (line 900)
10890 * BFD_RELOC_SH_GOTPLT10BY8: howto manager. (line 901)
10891 * BFD_RELOC_SH_GOTPLT32: howto manager. (line 902)
10892 * BFD_RELOC_SH_GOTPLT_HI16: howto manager. (line 881)
10893 * BFD_RELOC_SH_GOTPLT_LOW16: howto manager. (line 878)
10894 * BFD_RELOC_SH_GOTPLT_MEDHI16: howto manager. (line 880)
10895 * BFD_RELOC_SH_GOTPLT_MEDLOW16: howto manager. (line 879)
10896 * BFD_RELOC_SH_IMM3: howto manager. (line 843)
10897 * BFD_RELOC_SH_IMM3U: howto manager. (line 844)
10898 * BFD_RELOC_SH_IMM4: howto manager. (line 851)
10899 * BFD_RELOC_SH_IMM4BY2: howto manager. (line 852)
10900 * BFD_RELOC_SH_IMM4BY4: howto manager. (line 853)
10901 * BFD_RELOC_SH_IMM8: howto manager. (line 854)
10902 * BFD_RELOC_SH_IMM8BY2: howto manager. (line 855)
10903 * BFD_RELOC_SH_IMM8BY4: howto manager. (line 856)
10904 * BFD_RELOC_SH_IMM_HI16: howto manager. (line 920)
10905 * BFD_RELOC_SH_IMM_HI16_PCREL: howto manager. (line 921)
10906 * BFD_RELOC_SH_IMM_LOW16: howto manager. (line 914)
10907 * BFD_RELOC_SH_IMM_LOW16_PCREL: howto manager. (line 915)
10908 * BFD_RELOC_SH_IMM_MEDHI16: howto manager. (line 918)
10909 * BFD_RELOC_SH_IMM_MEDHI16_PCREL: howto manager. (line 919)
10910 * BFD_RELOC_SH_IMM_MEDLOW16: howto manager. (line 916)
10911 * BFD_RELOC_SH_IMM_MEDLOW16_PCREL: howto manager. (line 917)
10912 * BFD_RELOC_SH_IMMS10: howto manager. (line 908)
10913 * BFD_RELOC_SH_IMMS10BY2: howto manager. (line 909)
10914 * BFD_RELOC_SH_IMMS10BY4: howto manager. (line 910)
10915 * BFD_RELOC_SH_IMMS10BY8: howto manager. (line 911)
10916 * BFD_RELOC_SH_IMMS16: howto manager. (line 912)
10917 * BFD_RELOC_SH_IMMS6: howto manager. (line 905)
10918 * BFD_RELOC_SH_IMMS6BY32: howto manager. (line 906)
10919 * BFD_RELOC_SH_IMMU16: howto manager. (line 913)
10920 * BFD_RELOC_SH_IMMU5: howto manager. (line 904)
10921 * BFD_RELOC_SH_IMMU6: howto manager. (line 907)
10922 * BFD_RELOC_SH_JMP_SLOT: howto manager. (line 871)
10923 * BFD_RELOC_SH_JMP_SLOT64: howto manager. (line 896)
10924 * BFD_RELOC_SH_LABEL: howto manager. (line 866)
10925 * BFD_RELOC_SH_LOOP_END: howto manager. (line 868)
10926 * BFD_RELOC_SH_LOOP_START: howto manager. (line 867)
10927 * BFD_RELOC_SH_PCDISP12BY2: howto manager. (line 842)
10928 * BFD_RELOC_SH_PCDISP8BY2: howto manager. (line 841)
10929 * BFD_RELOC_SH_PCRELIMM8BY2: howto manager. (line 857)
10930 * BFD_RELOC_SH_PCRELIMM8BY4: howto manager. (line 858)
10931 * BFD_RELOC_SH_PLT_HI16: howto manager. (line 885)
10932 * BFD_RELOC_SH_PLT_LOW16: howto manager. (line 882)
10933 * BFD_RELOC_SH_PLT_MEDHI16: howto manager. (line 884)
10934 * BFD_RELOC_SH_PLT_MEDLOW16: howto manager. (line 883)
10935 * BFD_RELOC_SH_PT_16: howto manager. (line 922)
10936 * BFD_RELOC_SH_RELATIVE: howto manager. (line 872)
10937 * BFD_RELOC_SH_RELATIVE64: howto manager. (line 897)
10938 * BFD_RELOC_SH_SHMEDIA_CODE: howto manager. (line 903)
10939 * BFD_RELOC_SH_SWITCH16: howto manager. (line 859)
10940 * BFD_RELOC_SH_SWITCH32: howto manager. (line 860)
10941 * BFD_RELOC_SH_TLS_DTPMOD32: howto manager. (line 928)
10942 * BFD_RELOC_SH_TLS_DTPOFF32: howto manager. (line 929)
10943 * BFD_RELOC_SH_TLS_GD_32: howto manager. (line 923)
10944 * BFD_RELOC_SH_TLS_IE_32: howto manager. (line 926)
10945 * BFD_RELOC_SH_TLS_LD_32: howto manager. (line 924)
10946 * BFD_RELOC_SH_TLS_LDO_32: howto manager. (line 925)
10947 * BFD_RELOC_SH_TLS_LE_32: howto manager. (line 927)
10948 * BFD_RELOC_SH_TLS_TPOFF32: howto manager. (line 930)
10949 * BFD_RELOC_SH_USES: howto manager. (line 861)
10950 * BFD_RELOC_SPARC13: howto manager. (line 134)
10951 * BFD_RELOC_SPARC22: howto manager. (line 133)
10952 * BFD_RELOC_SPARC_10: howto manager. (line 161)
10953 * BFD_RELOC_SPARC_11: howto manager. (line 162)
10954 * BFD_RELOC_SPARC_5: howto manager. (line 174)
10955 * BFD_RELOC_SPARC_6: howto manager. (line 173)
10956 * BFD_RELOC_SPARC_64: howto manager. (line 160)
10957 * BFD_RELOC_SPARC_7: howto manager. (line 172)
10958 * BFD_RELOC_SPARC_BASE13: howto manager. (line 156)
10959 * BFD_RELOC_SPARC_BASE22: howto manager. (line 157)
10960 * BFD_RELOC_SPARC_COPY: howto manager. (line 141)
10961 * BFD_RELOC_SPARC_DISP64: howto manager. (line 175)
10962 * BFD_RELOC_SPARC_GLOB_DAT: howto manager. (line 142)
10963 * BFD_RELOC_SPARC_GOT10: howto manager. (line 135)
10964 * BFD_RELOC_SPARC_GOT13: howto manager. (line 136)
10965 * BFD_RELOC_SPARC_GOT22: howto manager. (line 137)
10966 * BFD_RELOC_SPARC_GOTDATA_HIX22: howto manager. (line 148)
10967 * BFD_RELOC_SPARC_GOTDATA_LOX10: howto manager. (line 149)
10968 * BFD_RELOC_SPARC_GOTDATA_OP: howto manager. (line 152)
10969 * BFD_RELOC_SPARC_GOTDATA_OP_HIX22: howto manager. (line 150)
10970 * BFD_RELOC_SPARC_GOTDATA_OP_LOX10: howto manager. (line 151)
10971 * BFD_RELOC_SPARC_H44: howto manager. (line 180)
10972 * BFD_RELOC_SPARC_HH22: howto manager. (line 164)
10973 * BFD_RELOC_SPARC_HIX22: howto manager. (line 178)
10974 * BFD_RELOC_SPARC_HM10: howto manager. (line 165)
10975 * BFD_RELOC_SPARC_JMP_SLOT: howto manager. (line 143)
10976 * BFD_RELOC_SPARC_L44: howto manager. (line 182)
10977 * BFD_RELOC_SPARC_LM22: howto manager. (line 166)
10978 * BFD_RELOC_SPARC_LOX10: howto manager. (line 179)
10979 * BFD_RELOC_SPARC_M44: howto manager. (line 181)
10980 * BFD_RELOC_SPARC_OLO10: howto manager. (line 163)
10981 * BFD_RELOC_SPARC_PC10: howto manager. (line 138)
10982 * BFD_RELOC_SPARC_PC22: howto manager. (line 139)
10983 * BFD_RELOC_SPARC_PC_HH22: howto manager. (line 167)
10984 * BFD_RELOC_SPARC_PC_HM10: howto manager. (line 168)
10985 * BFD_RELOC_SPARC_PC_LM22: howto manager. (line 169)
10986 * BFD_RELOC_SPARC_PLT32: howto manager. (line 176)
10987 * BFD_RELOC_SPARC_PLT64: howto manager. (line 177)
10988 * BFD_RELOC_SPARC_REGISTER: howto manager. (line 183)
10989 * BFD_RELOC_SPARC_RELATIVE: howto manager. (line 144)
10990 * BFD_RELOC_SPARC_REV32: howto manager. (line 186)
10991 * BFD_RELOC_SPARC_TLS_DTPMOD32: howto manager. (line 207)
10992 * BFD_RELOC_SPARC_TLS_DTPMOD64: howto manager. (line 208)
10993 * BFD_RELOC_SPARC_TLS_DTPOFF32: howto manager. (line 209)
10994 * BFD_RELOC_SPARC_TLS_DTPOFF64: howto manager. (line 210)
10995 * BFD_RELOC_SPARC_TLS_GD_ADD: howto manager. (line 191)
10996 * BFD_RELOC_SPARC_TLS_GD_CALL: howto manager. (line 192)
10997 * BFD_RELOC_SPARC_TLS_GD_HI22: howto manager. (line 189)
10998 * BFD_RELOC_SPARC_TLS_GD_LO10: howto manager. (line 190)
10999 * BFD_RELOC_SPARC_TLS_IE_ADD: howto manager. (line 204)
11000 * BFD_RELOC_SPARC_TLS_IE_HI22: howto manager. (line 200)
11001 * BFD_RELOC_SPARC_TLS_IE_LD: howto manager. (line 202)
11002 * BFD_RELOC_SPARC_TLS_IE_LDX: howto manager. (line 203)
11003 * BFD_RELOC_SPARC_TLS_IE_LO10: howto manager. (line 201)
11004 * BFD_RELOC_SPARC_TLS_LDM_ADD: howto manager. (line 195)
11005 * BFD_RELOC_SPARC_TLS_LDM_CALL: howto manager. (line 196)
11006 * BFD_RELOC_SPARC_TLS_LDM_HI22: howto manager. (line 193)
11007 * BFD_RELOC_SPARC_TLS_LDM_LO10: howto manager. (line 194)
11008 * BFD_RELOC_SPARC_TLS_LDO_ADD: howto manager. (line 199)
11009 * BFD_RELOC_SPARC_TLS_LDO_HIX22: howto manager. (line 197)
11010 * BFD_RELOC_SPARC_TLS_LDO_LOX10: howto manager. (line 198)
11011 * BFD_RELOC_SPARC_TLS_LE_HIX22: howto manager. (line 205)
11012 * BFD_RELOC_SPARC_TLS_LE_LOX10: howto manager. (line 206)
11013 * BFD_RELOC_SPARC_TLS_TPOFF32: howto manager. (line 211)
11014 * BFD_RELOC_SPARC_TLS_TPOFF64: howto manager. (line 212)
11015 * BFD_RELOC_SPARC_UA16: howto manager. (line 145)
11016 * BFD_RELOC_SPARC_UA32: howto manager. (line 146)
11017 * BFD_RELOC_SPARC_UA64: howto manager. (line 147)
11018 * BFD_RELOC_SPARC_WDISP16: howto manager. (line 170)
11019 * BFD_RELOC_SPARC_WDISP19: howto manager. (line 171)
11020 * BFD_RELOC_SPARC_WDISP22: howto manager. (line 132)
11021 * BFD_RELOC_SPARC_WPLT30: howto manager. (line 140)
11022 * BFD_RELOC_SPU_ADD_PIC: howto manager. (line 229)
11023 * BFD_RELOC_SPU_HI16: howto manager. (line 226)
11024 * BFD_RELOC_SPU_IMM10: howto manager. (line 217)
11025 * BFD_RELOC_SPU_IMM10W: howto manager. (line 218)
11026 * BFD_RELOC_SPU_IMM16: howto manager. (line 219)
11027 * BFD_RELOC_SPU_IMM16W: howto manager. (line 220)
11028 * BFD_RELOC_SPU_IMM18: howto manager. (line 221)
11029 * BFD_RELOC_SPU_IMM7: howto manager. (line 215)
11030 * BFD_RELOC_SPU_IMM8: howto manager. (line 216)
11031 * BFD_RELOC_SPU_LO16: howto manager. (line 225)
11032 * BFD_RELOC_SPU_PCREL16: howto manager. (line 224)
11033 * BFD_RELOC_SPU_PCREL9a: howto manager. (line 222)
11034 * BFD_RELOC_SPU_PCREL9b: howto manager. (line 223)
11035 * BFD_RELOC_SPU_PPU32: howto manager. (line 227)
11036 * BFD_RELOC_SPU_PPU64: howto manager. (line 228)
11037 * BFD_RELOC_THUMB_PCREL_BLX: howto manager. (line 701)
11038 * BFD_RELOC_THUMB_PCREL_BRANCH12: howto manager. (line 715)
11039 * BFD_RELOC_THUMB_PCREL_BRANCH20: howto manager. (line 716)
11040 * BFD_RELOC_THUMB_PCREL_BRANCH23: howto manager. (line 717)
11041 * BFD_RELOC_THUMB_PCREL_BRANCH25: howto manager. (line 718)
11042 * BFD_RELOC_THUMB_PCREL_BRANCH7: howto manager. (line 713)
11043 * BFD_RELOC_THUMB_PCREL_BRANCH9: howto manager. (line 714)
11044 * BFD_RELOC_TIC30_LDP: howto manager. (line 1257)
11045 * BFD_RELOC_TIC54X_16_OF_23: howto manager. (line 1275)
11046 * BFD_RELOC_TIC54X_23: howto manager. (line 1272)
11047 * BFD_RELOC_TIC54X_MS7_OF_23: howto manager. (line 1280)
11048 * BFD_RELOC_TIC54X_PARTLS7: howto manager. (line 1262)
11049 * BFD_RELOC_TIC54X_PARTMS9: howto manager. (line 1267)
11050 * bfd_reloc_type_lookup: howto manager. (line 2234)
11051 * BFD_RELOC_V850_22_PCREL: howto manager. (line 1184)
11052 * BFD_RELOC_V850_9_PCREL: howto manager. (line 1181)
11053 * BFD_RELOC_V850_ALIGN: howto manager. (line 1242)
11054 * BFD_RELOC_V850_CALLT_16_16_OFFSET: howto manager. (line 1233)
11055 * BFD_RELOC_V850_CALLT_6_7_OFFSET: howto manager. (line 1230)
11056 * BFD_RELOC_V850_LO16_SPLIT_OFFSET: howto manager. (line 1245)
11057 * BFD_RELOC_V850_LONGCALL: howto manager. (line 1236)
11058 * BFD_RELOC_V850_LONGJUMP: howto manager. (line 1239)
11059 * BFD_RELOC_V850_SDA_15_16_OFFSET: howto manager. (line 1190)
11060 * BFD_RELOC_V850_SDA_16_16_OFFSET: howto manager. (line 1187)
11061 * BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET: howto manager. (line 1222)
11062 * BFD_RELOC_V850_TDA_16_16_OFFSET: howto manager. (line 1212)
11063 * BFD_RELOC_V850_TDA_4_4_OFFSET: howto manager. (line 1219)
11064 * BFD_RELOC_V850_TDA_4_5_OFFSET: howto manager. (line 1215)
11065 * BFD_RELOC_V850_TDA_6_8_OFFSET: howto manager. (line 1201)
11066 * BFD_RELOC_V850_TDA_7_7_OFFSET: howto manager. (line 1209)
11067 * BFD_RELOC_V850_TDA_7_8_OFFSET: howto manager. (line 1205)
11068 * BFD_RELOC_V850_ZDA_15_16_OFFSET: howto manager. (line 1197)
11069 * BFD_RELOC_V850_ZDA_16_16_OFFSET: howto manager. (line 1194)
11070 * BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET: howto manager. (line 1226)
11071 * BFD_RELOC_VAX_GLOB_DAT: howto manager. (line 2026)
11072 * BFD_RELOC_VAX_JMP_SLOT: howto manager. (line 2027)
11073 * BFD_RELOC_VAX_RELATIVE: howto manager. (line 2028)
11074 * BFD_RELOC_VPE4KMATH_DATA: howto manager. (line 1665)
11075 * BFD_RELOC_VPE4KMATH_INSN: howto manager. (line 1666)
11076 * BFD_RELOC_VTABLE_ENTRY: howto manager. (line 1670)
11077 * BFD_RELOC_VTABLE_INHERIT: howto manager. (line 1669)
11078 * BFD_RELOC_X86_64_32S: howto manager. (line 536)
11079 * BFD_RELOC_X86_64_COPY: howto manager. (line 531)
11080 * BFD_RELOC_X86_64_DTPMOD64: howto manager. (line 537)
11081 * BFD_RELOC_X86_64_DTPOFF32: howto manager. (line 542)
11082 * BFD_RELOC_X86_64_DTPOFF64: howto manager. (line 538)
11083 * BFD_RELOC_X86_64_GLOB_DAT: howto manager. (line 532)
11084 * BFD_RELOC_X86_64_GOT32: howto manager. (line 529)
11085 * BFD_RELOC_X86_64_GOT64: howto manager. (line 547)
11086 * BFD_RELOC_X86_64_GOTOFF64: howto manager. (line 545)
11087 * BFD_RELOC_X86_64_GOTPC32: howto manager. (line 546)
11088 * BFD_RELOC_X86_64_GOTPC32_TLSDESC: howto manager. (line 552)
11089 * BFD_RELOC_X86_64_GOTPC64: howto manager. (line 549)
11090 * BFD_RELOC_X86_64_GOTPCREL: howto manager. (line 535)
11091 * BFD_RELOC_X86_64_GOTPCREL64: howto manager. (line 548)
11092 * BFD_RELOC_X86_64_GOTPLT64: howto manager. (line 550)
11093 * BFD_RELOC_X86_64_GOTTPOFF: howto manager. (line 543)
11094 * BFD_RELOC_X86_64_IRELATIVE: howto manager. (line 555)
11095 * BFD_RELOC_X86_64_JUMP_SLOT: howto manager. (line 533)
11096 * BFD_RELOC_X86_64_PLT32: howto manager. (line 530)
11097 * BFD_RELOC_X86_64_PLTOFF64: howto manager. (line 551)
11098 * BFD_RELOC_X86_64_RELATIVE: howto manager. (line 534)
11099 * BFD_RELOC_X86_64_TLSDESC: howto manager. (line 554)
11100 * BFD_RELOC_X86_64_TLSDESC_CALL: howto manager. (line 553)
11101 * BFD_RELOC_X86_64_TLSGD: howto manager. (line 540)
11102 * BFD_RELOC_X86_64_TLSLD: howto manager. (line 541)
11103 * BFD_RELOC_X86_64_TPOFF32: howto manager. (line 544)
11104 * BFD_RELOC_X86_64_TPOFF64: howto manager. (line 539)
11105 * BFD_RELOC_XC16X_PAG: howto manager. (line 2020)
11106 * BFD_RELOC_XC16X_POF: howto manager. (line 2021)
11107 * BFD_RELOC_XC16X_SEG: howto manager. (line 2022)
11108 * BFD_RELOC_XC16X_SOF: howto manager. (line 2023)
11109 * BFD_RELOC_XSTORMY16_12: howto manager. (line 2012)
11110 * BFD_RELOC_XSTORMY16_24: howto manager. (line 2013)
11111 * BFD_RELOC_XSTORMY16_FPTR16: howto manager. (line 2014)
11112 * BFD_RELOC_XSTORMY16_REL_12: howto manager. (line 2011)
11113 * BFD_RELOC_XTENSA_ASM_EXPAND: howto manager. (line 2132)
11114 * BFD_RELOC_XTENSA_ASM_SIMPLIFY: howto manager. (line 2137)
11115 * BFD_RELOC_XTENSA_DIFF16: howto manager. (line 2079)
11116 * BFD_RELOC_XTENSA_DIFF32: howto manager. (line 2080)
11117 * BFD_RELOC_XTENSA_DIFF8: howto manager. (line 2078)
11118 * BFD_RELOC_XTENSA_GLOB_DAT: howto manager. (line 2068)
11119 * BFD_RELOC_XTENSA_JMP_SLOT: howto manager. (line 2069)
11120 * BFD_RELOC_XTENSA_OP0: howto manager. (line 2126)
11121 * BFD_RELOC_XTENSA_OP1: howto manager. (line 2127)
11122 * BFD_RELOC_XTENSA_OP2: howto manager. (line 2128)
11123 * BFD_RELOC_XTENSA_PLT: howto manager. (line 2073)
11124 * BFD_RELOC_XTENSA_RELATIVE: howto manager. (line 2070)
11125 * BFD_RELOC_XTENSA_RTLD: howto manager. (line 2063)
11126 * BFD_RELOC_XTENSA_SLOT0_ALT: howto manager. (line 2108)
11127 * BFD_RELOC_XTENSA_SLOT0_OP: howto manager. (line 2088)
11128 * BFD_RELOC_XTENSA_SLOT10_ALT: howto manager. (line 2118)
11129 * BFD_RELOC_XTENSA_SLOT10_OP: howto manager. (line 2098)
11130 * BFD_RELOC_XTENSA_SLOT11_ALT: howto manager. (line 2119)
11131 * BFD_RELOC_XTENSA_SLOT11_OP: howto manager. (line 2099)
11132 * BFD_RELOC_XTENSA_SLOT12_ALT: howto manager. (line 2120)
11133 * BFD_RELOC_XTENSA_SLOT12_OP: howto manager. (line 2100)
11134 * BFD_RELOC_XTENSA_SLOT13_ALT: howto manager. (line 2121)
11135 * BFD_RELOC_XTENSA_SLOT13_OP: howto manager. (line 2101)
11136 * BFD_RELOC_XTENSA_SLOT14_ALT: howto manager. (line 2122)
11137 * BFD_RELOC_XTENSA_SLOT14_OP: howto manager. (line 2102)
11138 * BFD_RELOC_XTENSA_SLOT1_ALT: howto manager. (line 2109)
11139 * BFD_RELOC_XTENSA_SLOT1_OP: howto manager. (line 2089)
11140 * BFD_RELOC_XTENSA_SLOT2_ALT: howto manager. (line 2110)
11141 * BFD_RELOC_XTENSA_SLOT2_OP: howto manager. (line 2090)
11142 * BFD_RELOC_XTENSA_SLOT3_ALT: howto manager. (line 2111)
11143 * BFD_RELOC_XTENSA_SLOT3_OP: howto manager. (line 2091)
11144 * BFD_RELOC_XTENSA_SLOT4_ALT: howto manager. (line 2112)
11145 * BFD_RELOC_XTENSA_SLOT4_OP: howto manager. (line 2092)
11146 * BFD_RELOC_XTENSA_SLOT5_ALT: howto manager. (line 2113)
11147 * BFD_RELOC_XTENSA_SLOT5_OP: howto manager. (line 2093)
11148 * BFD_RELOC_XTENSA_SLOT6_ALT: howto manager. (line 2114)
11149 * BFD_RELOC_XTENSA_SLOT6_OP: howto manager. (line 2094)
11150 * BFD_RELOC_XTENSA_SLOT7_ALT: howto manager. (line 2115)
11151 * BFD_RELOC_XTENSA_SLOT7_OP: howto manager. (line 2095)
11152 * BFD_RELOC_XTENSA_SLOT8_ALT: howto manager. (line 2116)
11153 * BFD_RELOC_XTENSA_SLOT8_OP: howto manager. (line 2096)
11154 * BFD_RELOC_XTENSA_SLOT9_ALT: howto manager. (line 2117)
11155 * BFD_RELOC_XTENSA_SLOT9_OP: howto manager. (line 2097)
11156 * BFD_RELOC_XTENSA_TLS_ARG: howto manager. (line 2147)
11157 * BFD_RELOC_XTENSA_TLS_CALL: howto manager. (line 2148)
11158 * BFD_RELOC_XTENSA_TLS_DTPOFF: howto manager. (line 2144)
11159 * BFD_RELOC_XTENSA_TLS_FUNC: howto manager. (line 2146)
11160 * BFD_RELOC_XTENSA_TLS_TPOFF: howto manager. (line 2145)
11161 * BFD_RELOC_XTENSA_TLSDESC_ARG: howto manager. (line 2143)
11162 * BFD_RELOC_XTENSA_TLSDESC_FN: howto manager. (line 2142)
11163 * BFD_RELOC_Z80_DISP8: howto manager. (line 2151)
11164 * BFD_RELOC_Z8K_CALLR: howto manager. (line 2157)
11165 * BFD_RELOC_Z8K_DISP7: howto manager. (line 2154)
11166 * BFD_RELOC_Z8K_IMM4L: howto manager. (line 2160)
11167 * bfd_scan_arch: Architectures. (line 433)
11168 * bfd_scan_vma: BFD front end. (line 513)
11169 * bfd_seach_for_target: bfd_target. (line 470)
11170 * bfd_section_already_linked: Writing the symbol table.
11172 * bfd_section_list_clear: section prototypes. (line 8)
11173 * bfd_sections_find_if: section prototypes. (line 176)
11174 * bfd_set_arch_info: Architectures. (line 474)
11175 * bfd_set_archive_head: Archives. (line 69)
11176 * bfd_set_default_target: bfd_target. (line 435)
11177 * bfd_set_error: BFD front end. (line 323)
11178 * bfd_set_error_handler: BFD front end. (line 365)
11179 * bfd_set_error_program_name: BFD front end. (line 374)
11180 * bfd_set_file_flags: BFD front end. (line 433)
11181 * bfd_set_format: Formats. (line 68)
11182 * bfd_set_gp_size: BFD front end. (line 503)
11183 * bfd_set_private_flags: BFD front end. (line 580)
11184 * bfd_set_reloc: BFD front end. (line 423)
11185 * bfd_set_section_contents: section prototypes. (line 207)
11186 * bfd_set_section_flags: section prototypes. (line 140)
11187 * bfd_set_section_size: section prototypes. (line 193)
11188 * bfd_set_start_address: BFD front end. (line 482)
11189 * bfd_set_symtab: symbol handling functions.
11191 * bfd_symbol_info: symbol handling functions.
11193 * bfd_target_list: bfd_target. (line 461)
11194 * bfd_write_bigendian_4byte_int: Internal. (line 13)
11195 * bfd_zalloc: Opening and Closing.
11197 * bfd_zalloc2: Opening and Closing.
11199 * coff_symbol_type: coff. (line 244)
11200 * core_file_matches_executable_p: Core Files. (line 30)
11201 * find_separate_debug_file: Opening and Closing.
11203 * generic_core_file_matches_executable_p: Core Files. (line 40)
11204 * get_debug_link_info: Opening and Closing.
11206 * Hash tables: Hash Tables. (line 6)
11207 * internal object-file format: Canonical format. (line 11)
11208 * Linker: Linker Functions. (line 6)
11209 * Other functions: BFD front end. (line 595)
11210 * separate_debug_file_exists: Opening and Closing.
11212 * struct bfd_iovec: BFD front end. (line 798)
11213 * target vector (_bfd_final_link): Performing the Final Link.
11215 * target vector (_bfd_link_add_symbols): Adding Symbols to the Hash Table.
11217 * target vector (_bfd_link_hash_table_create): Creating a Linker Hash Table.
11219 * The HOWTO Macro: typedef arelent. (line 291)
11220 * what is it?: Overview. (line 6)
11226 Node: Overview
\x7f1390
11227 Node: History
\x7f2441
11228 Node: How It Works
\x7f3387
11229 Node: What BFD Version 2 Can Do
\x7f4930
11230 Node: BFD information loss
\x7f6245
11231 Node: Canonical format
\x7f8777
11232 Node: BFD front end
\x7f13149
11233 Node: Memory Usage
\x7f44457
11234 Node: Initialization
\x7f45685
11235 Node: Sections
\x7f46144
11236 Node: Section Input
\x7f46627
11237 Node: Section Output
\x7f47992
11238 Node: typedef asection
\x7f50478
11239 Node: section prototypes
\x7f75809
11240 Node: Symbols
\x7f85489
11241 Node: Reading Symbols
\x7f87084
11242 Node: Writing Symbols
\x7f88191
11243 Node: Mini Symbols
\x7f89900
11244 Node: typedef asymbol
\x7f90874
11245 Node: symbol handling functions
\x7f96933
11246 Node: Archives
\x7f102275
11247 Node: Formats
\x7f106001
11248 Node: Relocations
\x7f108949
11249 Node: typedef arelent
\x7f109676
11250 Node: howto manager
\x7f125487
11251 Node: Core Files
\x7f197788
11252 Node: Targets
\x7f199605
11253 Node: bfd_target
\x7f201575
11254 Node: Architectures
\x7f222154
11255 Node: Opening and Closing
\x7f245337
11256 Node: Internal
\x7f256601
11257 Node: File Caching
\x7f262934
11258 Node: Linker Functions
\x7f264848
11259 Node: Creating a Linker Hash Table
\x7f266521
11260 Node: Adding Symbols to the Hash Table
\x7f268259
11261 Node: Differing file formats
\x7f269159
11262 Node: Adding symbols from an object file
\x7f270884
11263 Node: Adding symbols from an archive
\x7f273035
11264 Node: Performing the Final Link
\x7f275449
11265 Node: Information provided by the linker
\x7f276691
11266 Node: Relocating the section contents
\x7f277845
11267 Node: Writing the symbol table
\x7f279596
11268 Node: Hash Tables
\x7f283611
11269 Node: Creating and Freeing a Hash Table
\x7f284809
11270 Node: Looking Up or Entering a String
\x7f286059
11271 Node: Traversing a Hash Table
\x7f287312
11272 Node: Deriving a New Hash Table Type
\x7f288101
11273 Node: Define the Derived Structures
\x7f289167
11274 Node: Write the Derived Creation Routine
\x7f290248
11275 Node: Write Other Derived Routines
\x7f292872
11276 Node: BFD back ends
\x7f294187
11277 Node: What to Put Where
\x7f294457
11278 Node: aout
\x7f294637
11279 Node: coff
\x7f300955
11280 Node: elf
\x7f329388
11281 Node: mmo
\x7f329789
11282 Node: File layout
\x7f330717
11283 Node: Symbol-table
\x7f336364
11284 Node: mmo section mapping
\x7f340133
11285 Node: GNU Free Documentation License
\x7f343785
11286 Node: BFD Index
\x7f368868