1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
26 #include "libiberty.h"
29 #include "elf-vxworks.h"
32 /* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34 #define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37 /* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39 #define RELOC_SIZE(HTAB) \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
44 /* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46 #define SWAP_RELOC_IN(HTAB) \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
51 /* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53 #define SWAP_RELOC_OUT(HTAB) \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
58 #define elf_info_to_howto 0
59 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61 #define ARM_ELF_ABI_VERSION 0
62 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64 static struct elf_backend_data elf32_arm_vxworks_bed
;
66 static bfd_boolean
elf32_arm_write_section (bfd
*output_bfd
,
67 struct bfd_link_info
*link_info
,
71 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
72 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 static reloc_howto_type elf32_arm_howto_table_1
[] =
78 HOWTO (R_ARM_NONE
, /* type */
80 0, /* size (0 = byte, 1 = short, 2 = long) */
82 FALSE
, /* pc_relative */
84 complain_overflow_dont
,/* complain_on_overflow */
85 bfd_elf_generic_reloc
, /* special_function */
86 "R_ARM_NONE", /* name */
87 FALSE
, /* partial_inplace */
90 FALSE
), /* pcrel_offset */
92 HOWTO (R_ARM_PC24
, /* type */
94 2, /* size (0 = byte, 1 = short, 2 = long) */
96 TRUE
, /* pc_relative */
98 complain_overflow_signed
,/* complain_on_overflow */
99 bfd_elf_generic_reloc
, /* special_function */
100 "R_ARM_PC24", /* name */
101 FALSE
, /* partial_inplace */
102 0x00ffffff, /* src_mask */
103 0x00ffffff, /* dst_mask */
104 TRUE
), /* pcrel_offset */
106 /* 32 bit absolute */
107 HOWTO (R_ARM_ABS32
, /* type */
109 2, /* size (0 = byte, 1 = short, 2 = long) */
111 FALSE
, /* pc_relative */
113 complain_overflow_bitfield
,/* complain_on_overflow */
114 bfd_elf_generic_reloc
, /* special_function */
115 "R_ARM_ABS32", /* name */
116 FALSE
, /* partial_inplace */
117 0xffffffff, /* src_mask */
118 0xffffffff, /* dst_mask */
119 FALSE
), /* pcrel_offset */
121 /* standard 32bit pc-relative reloc */
122 HOWTO (R_ARM_REL32
, /* type */
124 2, /* size (0 = byte, 1 = short, 2 = long) */
126 TRUE
, /* pc_relative */
128 complain_overflow_bitfield
,/* complain_on_overflow */
129 bfd_elf_generic_reloc
, /* special_function */
130 "R_ARM_REL32", /* name */
131 FALSE
, /* partial_inplace */
132 0xffffffff, /* src_mask */
133 0xffffffff, /* dst_mask */
134 TRUE
), /* pcrel_offset */
136 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
137 HOWTO (R_ARM_LDR_PC_G0
, /* type */
139 0, /* size (0 = byte, 1 = short, 2 = long) */
141 TRUE
, /* pc_relative */
143 complain_overflow_dont
,/* complain_on_overflow */
144 bfd_elf_generic_reloc
, /* special_function */
145 "R_ARM_LDR_PC_G0", /* name */
146 FALSE
, /* partial_inplace */
147 0xffffffff, /* src_mask */
148 0xffffffff, /* dst_mask */
149 TRUE
), /* pcrel_offset */
151 /* 16 bit absolute */
152 HOWTO (R_ARM_ABS16
, /* type */
154 1, /* size (0 = byte, 1 = short, 2 = long) */
156 FALSE
, /* pc_relative */
158 complain_overflow_bitfield
,/* complain_on_overflow */
159 bfd_elf_generic_reloc
, /* special_function */
160 "R_ARM_ABS16", /* name */
161 FALSE
, /* partial_inplace */
162 0x0000ffff, /* src_mask */
163 0x0000ffff, /* dst_mask */
164 FALSE
), /* pcrel_offset */
166 /* 12 bit absolute */
167 HOWTO (R_ARM_ABS12
, /* type */
169 2, /* size (0 = byte, 1 = short, 2 = long) */
171 FALSE
, /* pc_relative */
173 complain_overflow_bitfield
,/* complain_on_overflow */
174 bfd_elf_generic_reloc
, /* special_function */
175 "R_ARM_ABS12", /* name */
176 FALSE
, /* partial_inplace */
177 0x00000fff, /* src_mask */
178 0x00000fff, /* dst_mask */
179 FALSE
), /* pcrel_offset */
181 HOWTO (R_ARM_THM_ABS5
, /* type */
183 1, /* size (0 = byte, 1 = short, 2 = long) */
185 FALSE
, /* pc_relative */
187 complain_overflow_bitfield
,/* complain_on_overflow */
188 bfd_elf_generic_reloc
, /* special_function */
189 "R_ARM_THM_ABS5", /* name */
190 FALSE
, /* partial_inplace */
191 0x000007e0, /* src_mask */
192 0x000007e0, /* dst_mask */
193 FALSE
), /* pcrel_offset */
196 HOWTO (R_ARM_ABS8
, /* type */
198 0, /* size (0 = byte, 1 = short, 2 = long) */
200 FALSE
, /* pc_relative */
202 complain_overflow_bitfield
,/* complain_on_overflow */
203 bfd_elf_generic_reloc
, /* special_function */
204 "R_ARM_ABS8", /* name */
205 FALSE
, /* partial_inplace */
206 0x000000ff, /* src_mask */
207 0x000000ff, /* dst_mask */
208 FALSE
), /* pcrel_offset */
210 HOWTO (R_ARM_SBREL32
, /* type */
212 2, /* size (0 = byte, 1 = short, 2 = long) */
214 FALSE
, /* pc_relative */
216 complain_overflow_dont
,/* complain_on_overflow */
217 bfd_elf_generic_reloc
, /* special_function */
218 "R_ARM_SBREL32", /* name */
219 FALSE
, /* partial_inplace */
220 0xffffffff, /* src_mask */
221 0xffffffff, /* dst_mask */
222 FALSE
), /* pcrel_offset */
224 HOWTO (R_ARM_THM_CALL
, /* type */
226 2, /* size (0 = byte, 1 = short, 2 = long) */
228 TRUE
, /* pc_relative */
230 complain_overflow_signed
,/* complain_on_overflow */
231 bfd_elf_generic_reloc
, /* special_function */
232 "R_ARM_THM_CALL", /* name */
233 FALSE
, /* partial_inplace */
234 0x07ff07ff, /* src_mask */
235 0x07ff07ff, /* dst_mask */
236 TRUE
), /* pcrel_offset */
238 HOWTO (R_ARM_THM_PC8
, /* type */
240 1, /* size (0 = byte, 1 = short, 2 = long) */
242 TRUE
, /* pc_relative */
244 complain_overflow_signed
,/* complain_on_overflow */
245 bfd_elf_generic_reloc
, /* special_function */
246 "R_ARM_THM_PC8", /* name */
247 FALSE
, /* partial_inplace */
248 0x000000ff, /* src_mask */
249 0x000000ff, /* dst_mask */
250 TRUE
), /* pcrel_offset */
252 HOWTO (R_ARM_BREL_ADJ
, /* type */
254 1, /* size (0 = byte, 1 = short, 2 = long) */
256 FALSE
, /* pc_relative */
258 complain_overflow_signed
,/* complain_on_overflow */
259 bfd_elf_generic_reloc
, /* special_function */
260 "R_ARM_BREL_ADJ", /* name */
261 FALSE
, /* partial_inplace */
262 0xffffffff, /* src_mask */
263 0xffffffff, /* dst_mask */
264 FALSE
), /* pcrel_offset */
266 HOWTO (R_ARM_SWI24
, /* type */
268 0, /* size (0 = byte, 1 = short, 2 = long) */
270 FALSE
, /* pc_relative */
272 complain_overflow_signed
,/* complain_on_overflow */
273 bfd_elf_generic_reloc
, /* special_function */
274 "R_ARM_SWI24", /* name */
275 FALSE
, /* partial_inplace */
276 0x00000000, /* src_mask */
277 0x00000000, /* dst_mask */
278 FALSE
), /* pcrel_offset */
280 HOWTO (R_ARM_THM_SWI8
, /* type */
282 0, /* size (0 = byte, 1 = short, 2 = long) */
284 FALSE
, /* pc_relative */
286 complain_overflow_signed
,/* complain_on_overflow */
287 bfd_elf_generic_reloc
, /* special_function */
288 "R_ARM_SWI8", /* name */
289 FALSE
, /* partial_inplace */
290 0x00000000, /* src_mask */
291 0x00000000, /* dst_mask */
292 FALSE
), /* pcrel_offset */
294 /* BLX instruction for the ARM. */
295 HOWTO (R_ARM_XPC25
, /* type */
297 2, /* size (0 = byte, 1 = short, 2 = long) */
299 TRUE
, /* pc_relative */
301 complain_overflow_signed
,/* complain_on_overflow */
302 bfd_elf_generic_reloc
, /* special_function */
303 "R_ARM_XPC25", /* name */
304 FALSE
, /* partial_inplace */
305 0x00ffffff, /* src_mask */
306 0x00ffffff, /* dst_mask */
307 TRUE
), /* pcrel_offset */
309 /* BLX instruction for the Thumb. */
310 HOWTO (R_ARM_THM_XPC22
, /* type */
312 2, /* size (0 = byte, 1 = short, 2 = long) */
314 TRUE
, /* pc_relative */
316 complain_overflow_signed
,/* complain_on_overflow */
317 bfd_elf_generic_reloc
, /* special_function */
318 "R_ARM_THM_XPC22", /* name */
319 FALSE
, /* partial_inplace */
320 0x07ff07ff, /* src_mask */
321 0x07ff07ff, /* dst_mask */
322 TRUE
), /* pcrel_offset */
324 /* Dynamic TLS relocations. */
326 HOWTO (R_ARM_TLS_DTPMOD32
, /* type */
328 2, /* size (0 = byte, 1 = short, 2 = long) */
330 FALSE
, /* pc_relative */
332 complain_overflow_bitfield
,/* complain_on_overflow */
333 bfd_elf_generic_reloc
, /* special_function */
334 "R_ARM_TLS_DTPMOD32", /* name */
335 TRUE
, /* partial_inplace */
336 0xffffffff, /* src_mask */
337 0xffffffff, /* dst_mask */
338 FALSE
), /* pcrel_offset */
340 HOWTO (R_ARM_TLS_DTPOFF32
, /* type */
342 2, /* size (0 = byte, 1 = short, 2 = long) */
344 FALSE
, /* pc_relative */
346 complain_overflow_bitfield
,/* complain_on_overflow */
347 bfd_elf_generic_reloc
, /* special_function */
348 "R_ARM_TLS_DTPOFF32", /* name */
349 TRUE
, /* partial_inplace */
350 0xffffffff, /* src_mask */
351 0xffffffff, /* dst_mask */
352 FALSE
), /* pcrel_offset */
354 HOWTO (R_ARM_TLS_TPOFF32
, /* type */
356 2, /* size (0 = byte, 1 = short, 2 = long) */
358 FALSE
, /* pc_relative */
360 complain_overflow_bitfield
,/* complain_on_overflow */
361 bfd_elf_generic_reloc
, /* special_function */
362 "R_ARM_TLS_TPOFF32", /* name */
363 TRUE
, /* partial_inplace */
364 0xffffffff, /* src_mask */
365 0xffffffff, /* dst_mask */
366 FALSE
), /* pcrel_offset */
368 /* Relocs used in ARM Linux */
370 HOWTO (R_ARM_COPY
, /* type */
372 2, /* size (0 = byte, 1 = short, 2 = long) */
374 FALSE
, /* pc_relative */
376 complain_overflow_bitfield
,/* complain_on_overflow */
377 bfd_elf_generic_reloc
, /* special_function */
378 "R_ARM_COPY", /* name */
379 TRUE
, /* partial_inplace */
380 0xffffffff, /* src_mask */
381 0xffffffff, /* dst_mask */
382 FALSE
), /* pcrel_offset */
384 HOWTO (R_ARM_GLOB_DAT
, /* type */
386 2, /* size (0 = byte, 1 = short, 2 = long) */
388 FALSE
, /* pc_relative */
390 complain_overflow_bitfield
,/* complain_on_overflow */
391 bfd_elf_generic_reloc
, /* special_function */
392 "R_ARM_GLOB_DAT", /* name */
393 TRUE
, /* partial_inplace */
394 0xffffffff, /* src_mask */
395 0xffffffff, /* dst_mask */
396 FALSE
), /* pcrel_offset */
398 HOWTO (R_ARM_JUMP_SLOT
, /* type */
400 2, /* size (0 = byte, 1 = short, 2 = long) */
402 FALSE
, /* pc_relative */
404 complain_overflow_bitfield
,/* complain_on_overflow */
405 bfd_elf_generic_reloc
, /* special_function */
406 "R_ARM_JUMP_SLOT", /* name */
407 TRUE
, /* partial_inplace */
408 0xffffffff, /* src_mask */
409 0xffffffff, /* dst_mask */
410 FALSE
), /* pcrel_offset */
412 HOWTO (R_ARM_RELATIVE
, /* type */
414 2, /* size (0 = byte, 1 = short, 2 = long) */
416 FALSE
, /* pc_relative */
418 complain_overflow_bitfield
,/* complain_on_overflow */
419 bfd_elf_generic_reloc
, /* special_function */
420 "R_ARM_RELATIVE", /* name */
421 TRUE
, /* partial_inplace */
422 0xffffffff, /* src_mask */
423 0xffffffff, /* dst_mask */
424 FALSE
), /* pcrel_offset */
426 HOWTO (R_ARM_GOTOFF32
, /* type */
428 2, /* size (0 = byte, 1 = short, 2 = long) */
430 FALSE
, /* pc_relative */
432 complain_overflow_bitfield
,/* complain_on_overflow */
433 bfd_elf_generic_reloc
, /* special_function */
434 "R_ARM_GOTOFF32", /* name */
435 TRUE
, /* partial_inplace */
436 0xffffffff, /* src_mask */
437 0xffffffff, /* dst_mask */
438 FALSE
), /* pcrel_offset */
440 HOWTO (R_ARM_GOTPC
, /* type */
442 2, /* size (0 = byte, 1 = short, 2 = long) */
444 TRUE
, /* pc_relative */
446 complain_overflow_bitfield
,/* complain_on_overflow */
447 bfd_elf_generic_reloc
, /* special_function */
448 "R_ARM_GOTPC", /* name */
449 TRUE
, /* partial_inplace */
450 0xffffffff, /* src_mask */
451 0xffffffff, /* dst_mask */
452 TRUE
), /* pcrel_offset */
454 HOWTO (R_ARM_GOT32
, /* type */
456 2, /* size (0 = byte, 1 = short, 2 = long) */
458 FALSE
, /* pc_relative */
460 complain_overflow_bitfield
,/* complain_on_overflow */
461 bfd_elf_generic_reloc
, /* special_function */
462 "R_ARM_GOT32", /* name */
463 TRUE
, /* partial_inplace */
464 0xffffffff, /* src_mask */
465 0xffffffff, /* dst_mask */
466 FALSE
), /* pcrel_offset */
468 HOWTO (R_ARM_PLT32
, /* type */
470 2, /* size (0 = byte, 1 = short, 2 = long) */
472 TRUE
, /* pc_relative */
474 complain_overflow_bitfield
,/* complain_on_overflow */
475 bfd_elf_generic_reloc
, /* special_function */
476 "R_ARM_PLT32", /* name */
477 FALSE
, /* partial_inplace */
478 0x00ffffff, /* src_mask */
479 0x00ffffff, /* dst_mask */
480 TRUE
), /* pcrel_offset */
482 HOWTO (R_ARM_CALL
, /* type */
484 2, /* size (0 = byte, 1 = short, 2 = long) */
486 TRUE
, /* pc_relative */
488 complain_overflow_signed
,/* complain_on_overflow */
489 bfd_elf_generic_reloc
, /* special_function */
490 "R_ARM_CALL", /* name */
491 FALSE
, /* partial_inplace */
492 0x00ffffff, /* src_mask */
493 0x00ffffff, /* dst_mask */
494 TRUE
), /* pcrel_offset */
496 HOWTO (R_ARM_JUMP24
, /* type */
498 2, /* size (0 = byte, 1 = short, 2 = long) */
500 TRUE
, /* pc_relative */
502 complain_overflow_signed
,/* complain_on_overflow */
503 bfd_elf_generic_reloc
, /* special_function */
504 "R_ARM_JUMP24", /* name */
505 FALSE
, /* partial_inplace */
506 0x00ffffff, /* src_mask */
507 0x00ffffff, /* dst_mask */
508 TRUE
), /* pcrel_offset */
510 HOWTO (R_ARM_THM_JUMP24
, /* type */
512 2, /* size (0 = byte, 1 = short, 2 = long) */
514 TRUE
, /* pc_relative */
516 complain_overflow_signed
,/* complain_on_overflow */
517 bfd_elf_generic_reloc
, /* special_function */
518 "R_ARM_THM_JUMP24", /* name */
519 FALSE
, /* partial_inplace */
520 0x07ff2fff, /* src_mask */
521 0x07ff2fff, /* dst_mask */
522 TRUE
), /* pcrel_offset */
524 HOWTO (R_ARM_BASE_ABS
, /* type */
526 2, /* size (0 = byte, 1 = short, 2 = long) */
528 FALSE
, /* pc_relative */
530 complain_overflow_dont
,/* complain_on_overflow */
531 bfd_elf_generic_reloc
, /* special_function */
532 "R_ARM_BASE_ABS", /* name */
533 FALSE
, /* partial_inplace */
534 0xffffffff, /* src_mask */
535 0xffffffff, /* dst_mask */
536 FALSE
), /* pcrel_offset */
538 HOWTO (R_ARM_ALU_PCREL7_0
, /* type */
540 2, /* size (0 = byte, 1 = short, 2 = long) */
542 TRUE
, /* pc_relative */
544 complain_overflow_dont
,/* complain_on_overflow */
545 bfd_elf_generic_reloc
, /* special_function */
546 "R_ARM_ALU_PCREL_7_0", /* name */
547 FALSE
, /* partial_inplace */
548 0x00000fff, /* src_mask */
549 0x00000fff, /* dst_mask */
550 TRUE
), /* pcrel_offset */
552 HOWTO (R_ARM_ALU_PCREL15_8
, /* type */
554 2, /* size (0 = byte, 1 = short, 2 = long) */
556 TRUE
, /* pc_relative */
558 complain_overflow_dont
,/* complain_on_overflow */
559 bfd_elf_generic_reloc
, /* special_function */
560 "R_ARM_ALU_PCREL_15_8",/* name */
561 FALSE
, /* partial_inplace */
562 0x00000fff, /* src_mask */
563 0x00000fff, /* dst_mask */
564 TRUE
), /* pcrel_offset */
566 HOWTO (R_ARM_ALU_PCREL23_15
, /* type */
568 2, /* size (0 = byte, 1 = short, 2 = long) */
570 TRUE
, /* pc_relative */
572 complain_overflow_dont
,/* complain_on_overflow */
573 bfd_elf_generic_reloc
, /* special_function */
574 "R_ARM_ALU_PCREL_23_15",/* name */
575 FALSE
, /* partial_inplace */
576 0x00000fff, /* src_mask */
577 0x00000fff, /* dst_mask */
578 TRUE
), /* pcrel_offset */
580 HOWTO (R_ARM_LDR_SBREL_11_0
, /* type */
582 2, /* size (0 = byte, 1 = short, 2 = long) */
584 FALSE
, /* pc_relative */
586 complain_overflow_dont
,/* complain_on_overflow */
587 bfd_elf_generic_reloc
, /* special_function */
588 "R_ARM_LDR_SBREL_11_0",/* name */
589 FALSE
, /* partial_inplace */
590 0x00000fff, /* src_mask */
591 0x00000fff, /* dst_mask */
592 FALSE
), /* pcrel_offset */
594 HOWTO (R_ARM_ALU_SBREL_19_12
, /* type */
596 2, /* size (0 = byte, 1 = short, 2 = long) */
598 FALSE
, /* pc_relative */
600 complain_overflow_dont
,/* complain_on_overflow */
601 bfd_elf_generic_reloc
, /* special_function */
602 "R_ARM_ALU_SBREL_19_12",/* name */
603 FALSE
, /* partial_inplace */
604 0x000ff000, /* src_mask */
605 0x000ff000, /* dst_mask */
606 FALSE
), /* pcrel_offset */
608 HOWTO (R_ARM_ALU_SBREL_27_20
, /* type */
610 2, /* size (0 = byte, 1 = short, 2 = long) */
612 FALSE
, /* pc_relative */
614 complain_overflow_dont
,/* complain_on_overflow */
615 bfd_elf_generic_reloc
, /* special_function */
616 "R_ARM_ALU_SBREL_27_20",/* name */
617 FALSE
, /* partial_inplace */
618 0x0ff00000, /* src_mask */
619 0x0ff00000, /* dst_mask */
620 FALSE
), /* pcrel_offset */
622 HOWTO (R_ARM_TARGET1
, /* type */
624 2, /* size (0 = byte, 1 = short, 2 = long) */
626 FALSE
, /* pc_relative */
628 complain_overflow_dont
,/* complain_on_overflow */
629 bfd_elf_generic_reloc
, /* special_function */
630 "R_ARM_TARGET1", /* name */
631 FALSE
, /* partial_inplace */
632 0xffffffff, /* src_mask */
633 0xffffffff, /* dst_mask */
634 FALSE
), /* pcrel_offset */
636 HOWTO (R_ARM_ROSEGREL32
, /* type */
638 2, /* size (0 = byte, 1 = short, 2 = long) */
640 FALSE
, /* pc_relative */
642 complain_overflow_dont
,/* complain_on_overflow */
643 bfd_elf_generic_reloc
, /* special_function */
644 "R_ARM_ROSEGREL32", /* name */
645 FALSE
, /* partial_inplace */
646 0xffffffff, /* src_mask */
647 0xffffffff, /* dst_mask */
648 FALSE
), /* pcrel_offset */
650 HOWTO (R_ARM_V4BX
, /* type */
652 2, /* size (0 = byte, 1 = short, 2 = long) */
654 FALSE
, /* pc_relative */
656 complain_overflow_dont
,/* complain_on_overflow */
657 bfd_elf_generic_reloc
, /* special_function */
658 "R_ARM_V4BX", /* name */
659 FALSE
, /* partial_inplace */
660 0xffffffff, /* src_mask */
661 0xffffffff, /* dst_mask */
662 FALSE
), /* pcrel_offset */
664 HOWTO (R_ARM_TARGET2
, /* type */
666 2, /* size (0 = byte, 1 = short, 2 = long) */
668 FALSE
, /* pc_relative */
670 complain_overflow_signed
,/* complain_on_overflow */
671 bfd_elf_generic_reloc
, /* special_function */
672 "R_ARM_TARGET2", /* name */
673 FALSE
, /* partial_inplace */
674 0xffffffff, /* src_mask */
675 0xffffffff, /* dst_mask */
676 TRUE
), /* pcrel_offset */
678 HOWTO (R_ARM_PREL31
, /* type */
680 2, /* size (0 = byte, 1 = short, 2 = long) */
682 TRUE
, /* pc_relative */
684 complain_overflow_signed
,/* complain_on_overflow */
685 bfd_elf_generic_reloc
, /* special_function */
686 "R_ARM_PREL31", /* name */
687 FALSE
, /* partial_inplace */
688 0x7fffffff, /* src_mask */
689 0x7fffffff, /* dst_mask */
690 TRUE
), /* pcrel_offset */
692 HOWTO (R_ARM_MOVW_ABS_NC
, /* type */
694 2, /* size (0 = byte, 1 = short, 2 = long) */
696 FALSE
, /* pc_relative */
698 complain_overflow_dont
,/* complain_on_overflow */
699 bfd_elf_generic_reloc
, /* special_function */
700 "R_ARM_MOVW_ABS_NC", /* name */
701 FALSE
, /* partial_inplace */
702 0x000f0fff, /* src_mask */
703 0x000f0fff, /* dst_mask */
704 FALSE
), /* pcrel_offset */
706 HOWTO (R_ARM_MOVT_ABS
, /* type */
708 2, /* size (0 = byte, 1 = short, 2 = long) */
710 FALSE
, /* pc_relative */
712 complain_overflow_bitfield
,/* complain_on_overflow */
713 bfd_elf_generic_reloc
, /* special_function */
714 "R_ARM_MOVT_ABS", /* name */
715 FALSE
, /* partial_inplace */
716 0x000f0fff, /* src_mask */
717 0x000f0fff, /* dst_mask */
718 FALSE
), /* pcrel_offset */
720 HOWTO (R_ARM_MOVW_PREL_NC
, /* type */
722 2, /* size (0 = byte, 1 = short, 2 = long) */
724 TRUE
, /* pc_relative */
726 complain_overflow_dont
,/* complain_on_overflow */
727 bfd_elf_generic_reloc
, /* special_function */
728 "R_ARM_MOVW_PREL_NC", /* name */
729 FALSE
, /* partial_inplace */
730 0x000f0fff, /* src_mask */
731 0x000f0fff, /* dst_mask */
732 TRUE
), /* pcrel_offset */
734 HOWTO (R_ARM_MOVT_PREL
, /* type */
736 2, /* size (0 = byte, 1 = short, 2 = long) */
738 TRUE
, /* pc_relative */
740 complain_overflow_bitfield
,/* complain_on_overflow */
741 bfd_elf_generic_reloc
, /* special_function */
742 "R_ARM_MOVT_PREL", /* name */
743 FALSE
, /* partial_inplace */
744 0x000f0fff, /* src_mask */
745 0x000f0fff, /* dst_mask */
746 TRUE
), /* pcrel_offset */
748 HOWTO (R_ARM_THM_MOVW_ABS_NC
, /* type */
750 2, /* size (0 = byte, 1 = short, 2 = long) */
752 FALSE
, /* pc_relative */
754 complain_overflow_dont
,/* complain_on_overflow */
755 bfd_elf_generic_reloc
, /* special_function */
756 "R_ARM_THM_MOVW_ABS_NC",/* name */
757 FALSE
, /* partial_inplace */
758 0x040f70ff, /* src_mask */
759 0x040f70ff, /* dst_mask */
760 FALSE
), /* pcrel_offset */
762 HOWTO (R_ARM_THM_MOVT_ABS
, /* type */
764 2, /* size (0 = byte, 1 = short, 2 = long) */
766 FALSE
, /* pc_relative */
768 complain_overflow_bitfield
,/* complain_on_overflow */
769 bfd_elf_generic_reloc
, /* special_function */
770 "R_ARM_THM_MOVT_ABS", /* name */
771 FALSE
, /* partial_inplace */
772 0x040f70ff, /* src_mask */
773 0x040f70ff, /* dst_mask */
774 FALSE
), /* pcrel_offset */
776 HOWTO (R_ARM_THM_MOVW_PREL_NC
,/* type */
778 2, /* size (0 = byte, 1 = short, 2 = long) */
780 TRUE
, /* pc_relative */
782 complain_overflow_dont
,/* complain_on_overflow */
783 bfd_elf_generic_reloc
, /* special_function */
784 "R_ARM_THM_MOVW_PREL_NC",/* name */
785 FALSE
, /* partial_inplace */
786 0x040f70ff, /* src_mask */
787 0x040f70ff, /* dst_mask */
788 TRUE
), /* pcrel_offset */
790 HOWTO (R_ARM_THM_MOVT_PREL
, /* type */
792 2, /* size (0 = byte, 1 = short, 2 = long) */
794 TRUE
, /* pc_relative */
796 complain_overflow_bitfield
,/* complain_on_overflow */
797 bfd_elf_generic_reloc
, /* special_function */
798 "R_ARM_THM_MOVT_PREL", /* name */
799 FALSE
, /* partial_inplace */
800 0x040f70ff, /* src_mask */
801 0x040f70ff, /* dst_mask */
802 TRUE
), /* pcrel_offset */
804 HOWTO (R_ARM_THM_JUMP19
, /* type */
806 2, /* size (0 = byte, 1 = short, 2 = long) */
808 TRUE
, /* pc_relative */
810 complain_overflow_signed
,/* complain_on_overflow */
811 bfd_elf_generic_reloc
, /* special_function */
812 "R_ARM_THM_JUMP19", /* name */
813 FALSE
, /* partial_inplace */
814 0x043f2fff, /* src_mask */
815 0x043f2fff, /* dst_mask */
816 TRUE
), /* pcrel_offset */
818 HOWTO (R_ARM_THM_JUMP6
, /* type */
820 1, /* size (0 = byte, 1 = short, 2 = long) */
822 TRUE
, /* pc_relative */
824 complain_overflow_unsigned
,/* complain_on_overflow */
825 bfd_elf_generic_reloc
, /* special_function */
826 "R_ARM_THM_JUMP6", /* name */
827 FALSE
, /* partial_inplace */
828 0x02f8, /* src_mask */
829 0x02f8, /* dst_mask */
830 TRUE
), /* pcrel_offset */
832 /* These are declared as 13-bit signed relocations because we can
833 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
835 HOWTO (R_ARM_THM_ALU_PREL_11_0
,/* type */
837 2, /* size (0 = byte, 1 = short, 2 = long) */
839 TRUE
, /* pc_relative */
841 complain_overflow_dont
,/* complain_on_overflow */
842 bfd_elf_generic_reloc
, /* special_function */
843 "R_ARM_THM_ALU_PREL_11_0",/* name */
844 FALSE
, /* partial_inplace */
845 0xffffffff, /* src_mask */
846 0xffffffff, /* dst_mask */
847 TRUE
), /* pcrel_offset */
849 HOWTO (R_ARM_THM_PC12
, /* type */
851 2, /* size (0 = byte, 1 = short, 2 = long) */
853 TRUE
, /* pc_relative */
855 complain_overflow_dont
,/* complain_on_overflow */
856 bfd_elf_generic_reloc
, /* special_function */
857 "R_ARM_THM_PC12", /* name */
858 FALSE
, /* partial_inplace */
859 0xffffffff, /* src_mask */
860 0xffffffff, /* dst_mask */
861 TRUE
), /* pcrel_offset */
863 HOWTO (R_ARM_ABS32_NOI
, /* type */
865 2, /* size (0 = byte, 1 = short, 2 = long) */
867 FALSE
, /* pc_relative */
869 complain_overflow_dont
,/* complain_on_overflow */
870 bfd_elf_generic_reloc
, /* special_function */
871 "R_ARM_ABS32_NOI", /* name */
872 FALSE
, /* partial_inplace */
873 0xffffffff, /* src_mask */
874 0xffffffff, /* dst_mask */
875 FALSE
), /* pcrel_offset */
877 HOWTO (R_ARM_REL32_NOI
, /* type */
879 2, /* size (0 = byte, 1 = short, 2 = long) */
881 TRUE
, /* pc_relative */
883 complain_overflow_dont
,/* complain_on_overflow */
884 bfd_elf_generic_reloc
, /* special_function */
885 "R_ARM_REL32_NOI", /* name */
886 FALSE
, /* partial_inplace */
887 0xffffffff, /* src_mask */
888 0xffffffff, /* dst_mask */
889 FALSE
), /* pcrel_offset */
891 /* Group relocations. */
893 HOWTO (R_ARM_ALU_PC_G0_NC
, /* type */
895 2, /* size (0 = byte, 1 = short, 2 = long) */
897 TRUE
, /* pc_relative */
899 complain_overflow_dont
,/* complain_on_overflow */
900 bfd_elf_generic_reloc
, /* special_function */
901 "R_ARM_ALU_PC_G0_NC", /* name */
902 FALSE
, /* partial_inplace */
903 0xffffffff, /* src_mask */
904 0xffffffff, /* dst_mask */
905 TRUE
), /* pcrel_offset */
907 HOWTO (R_ARM_ALU_PC_G0
, /* type */
909 2, /* size (0 = byte, 1 = short, 2 = long) */
911 TRUE
, /* pc_relative */
913 complain_overflow_dont
,/* complain_on_overflow */
914 bfd_elf_generic_reloc
, /* special_function */
915 "R_ARM_ALU_PC_G0", /* name */
916 FALSE
, /* partial_inplace */
917 0xffffffff, /* src_mask */
918 0xffffffff, /* dst_mask */
919 TRUE
), /* pcrel_offset */
921 HOWTO (R_ARM_ALU_PC_G1_NC
, /* type */
923 2, /* size (0 = byte, 1 = short, 2 = long) */
925 TRUE
, /* pc_relative */
927 complain_overflow_dont
,/* complain_on_overflow */
928 bfd_elf_generic_reloc
, /* special_function */
929 "R_ARM_ALU_PC_G1_NC", /* name */
930 FALSE
, /* partial_inplace */
931 0xffffffff, /* src_mask */
932 0xffffffff, /* dst_mask */
933 TRUE
), /* pcrel_offset */
935 HOWTO (R_ARM_ALU_PC_G1
, /* type */
937 2, /* size (0 = byte, 1 = short, 2 = long) */
939 TRUE
, /* pc_relative */
941 complain_overflow_dont
,/* complain_on_overflow */
942 bfd_elf_generic_reloc
, /* special_function */
943 "R_ARM_ALU_PC_G1", /* name */
944 FALSE
, /* partial_inplace */
945 0xffffffff, /* src_mask */
946 0xffffffff, /* dst_mask */
947 TRUE
), /* pcrel_offset */
949 HOWTO (R_ARM_ALU_PC_G2
, /* type */
951 2, /* size (0 = byte, 1 = short, 2 = long) */
953 TRUE
, /* pc_relative */
955 complain_overflow_dont
,/* complain_on_overflow */
956 bfd_elf_generic_reloc
, /* special_function */
957 "R_ARM_ALU_PC_G2", /* name */
958 FALSE
, /* partial_inplace */
959 0xffffffff, /* src_mask */
960 0xffffffff, /* dst_mask */
961 TRUE
), /* pcrel_offset */
963 HOWTO (R_ARM_LDR_PC_G1
, /* type */
965 2, /* size (0 = byte, 1 = short, 2 = long) */
967 TRUE
, /* pc_relative */
969 complain_overflow_dont
,/* complain_on_overflow */
970 bfd_elf_generic_reloc
, /* special_function */
971 "R_ARM_LDR_PC_G1", /* name */
972 FALSE
, /* partial_inplace */
973 0xffffffff, /* src_mask */
974 0xffffffff, /* dst_mask */
975 TRUE
), /* pcrel_offset */
977 HOWTO (R_ARM_LDR_PC_G2
, /* type */
979 2, /* size (0 = byte, 1 = short, 2 = long) */
981 TRUE
, /* pc_relative */
983 complain_overflow_dont
,/* complain_on_overflow */
984 bfd_elf_generic_reloc
, /* special_function */
985 "R_ARM_LDR_PC_G2", /* name */
986 FALSE
, /* partial_inplace */
987 0xffffffff, /* src_mask */
988 0xffffffff, /* dst_mask */
989 TRUE
), /* pcrel_offset */
991 HOWTO (R_ARM_LDRS_PC_G0
, /* type */
993 2, /* size (0 = byte, 1 = short, 2 = long) */
995 TRUE
, /* pc_relative */
997 complain_overflow_dont
,/* complain_on_overflow */
998 bfd_elf_generic_reloc
, /* special_function */
999 "R_ARM_LDRS_PC_G0", /* name */
1000 FALSE
, /* partial_inplace */
1001 0xffffffff, /* src_mask */
1002 0xffffffff, /* dst_mask */
1003 TRUE
), /* pcrel_offset */
1005 HOWTO (R_ARM_LDRS_PC_G1
, /* type */
1007 2, /* size (0 = byte, 1 = short, 2 = long) */
1009 TRUE
, /* pc_relative */
1011 complain_overflow_dont
,/* complain_on_overflow */
1012 bfd_elf_generic_reloc
, /* special_function */
1013 "R_ARM_LDRS_PC_G1", /* name */
1014 FALSE
, /* partial_inplace */
1015 0xffffffff, /* src_mask */
1016 0xffffffff, /* dst_mask */
1017 TRUE
), /* pcrel_offset */
1019 HOWTO (R_ARM_LDRS_PC_G2
, /* type */
1021 2, /* size (0 = byte, 1 = short, 2 = long) */
1023 TRUE
, /* pc_relative */
1025 complain_overflow_dont
,/* complain_on_overflow */
1026 bfd_elf_generic_reloc
, /* special_function */
1027 "R_ARM_LDRS_PC_G2", /* name */
1028 FALSE
, /* partial_inplace */
1029 0xffffffff, /* src_mask */
1030 0xffffffff, /* dst_mask */
1031 TRUE
), /* pcrel_offset */
1033 HOWTO (R_ARM_LDC_PC_G0
, /* type */
1035 2, /* size (0 = byte, 1 = short, 2 = long) */
1037 TRUE
, /* pc_relative */
1039 complain_overflow_dont
,/* complain_on_overflow */
1040 bfd_elf_generic_reloc
, /* special_function */
1041 "R_ARM_LDC_PC_G0", /* name */
1042 FALSE
, /* partial_inplace */
1043 0xffffffff, /* src_mask */
1044 0xffffffff, /* dst_mask */
1045 TRUE
), /* pcrel_offset */
1047 HOWTO (R_ARM_LDC_PC_G1
, /* type */
1049 2, /* size (0 = byte, 1 = short, 2 = long) */
1051 TRUE
, /* pc_relative */
1053 complain_overflow_dont
,/* complain_on_overflow */
1054 bfd_elf_generic_reloc
, /* special_function */
1055 "R_ARM_LDC_PC_G1", /* name */
1056 FALSE
, /* partial_inplace */
1057 0xffffffff, /* src_mask */
1058 0xffffffff, /* dst_mask */
1059 TRUE
), /* pcrel_offset */
1061 HOWTO (R_ARM_LDC_PC_G2
, /* type */
1063 2, /* size (0 = byte, 1 = short, 2 = long) */
1065 TRUE
, /* pc_relative */
1067 complain_overflow_dont
,/* complain_on_overflow */
1068 bfd_elf_generic_reloc
, /* special_function */
1069 "R_ARM_LDC_PC_G2", /* name */
1070 FALSE
, /* partial_inplace */
1071 0xffffffff, /* src_mask */
1072 0xffffffff, /* dst_mask */
1073 TRUE
), /* pcrel_offset */
1075 HOWTO (R_ARM_ALU_SB_G0_NC
, /* type */
1077 2, /* size (0 = byte, 1 = short, 2 = long) */
1079 TRUE
, /* pc_relative */
1081 complain_overflow_dont
,/* complain_on_overflow */
1082 bfd_elf_generic_reloc
, /* special_function */
1083 "R_ARM_ALU_SB_G0_NC", /* name */
1084 FALSE
, /* partial_inplace */
1085 0xffffffff, /* src_mask */
1086 0xffffffff, /* dst_mask */
1087 TRUE
), /* pcrel_offset */
1089 HOWTO (R_ARM_ALU_SB_G0
, /* type */
1091 2, /* size (0 = byte, 1 = short, 2 = long) */
1093 TRUE
, /* pc_relative */
1095 complain_overflow_dont
,/* complain_on_overflow */
1096 bfd_elf_generic_reloc
, /* special_function */
1097 "R_ARM_ALU_SB_G0", /* name */
1098 FALSE
, /* partial_inplace */
1099 0xffffffff, /* src_mask */
1100 0xffffffff, /* dst_mask */
1101 TRUE
), /* pcrel_offset */
1103 HOWTO (R_ARM_ALU_SB_G1_NC
, /* type */
1105 2, /* size (0 = byte, 1 = short, 2 = long) */
1107 TRUE
, /* pc_relative */
1109 complain_overflow_dont
,/* complain_on_overflow */
1110 bfd_elf_generic_reloc
, /* special_function */
1111 "R_ARM_ALU_SB_G1_NC", /* name */
1112 FALSE
, /* partial_inplace */
1113 0xffffffff, /* src_mask */
1114 0xffffffff, /* dst_mask */
1115 TRUE
), /* pcrel_offset */
1117 HOWTO (R_ARM_ALU_SB_G1
, /* type */
1119 2, /* size (0 = byte, 1 = short, 2 = long) */
1121 TRUE
, /* pc_relative */
1123 complain_overflow_dont
,/* complain_on_overflow */
1124 bfd_elf_generic_reloc
, /* special_function */
1125 "R_ARM_ALU_SB_G1", /* name */
1126 FALSE
, /* partial_inplace */
1127 0xffffffff, /* src_mask */
1128 0xffffffff, /* dst_mask */
1129 TRUE
), /* pcrel_offset */
1131 HOWTO (R_ARM_ALU_SB_G2
, /* type */
1133 2, /* size (0 = byte, 1 = short, 2 = long) */
1135 TRUE
, /* pc_relative */
1137 complain_overflow_dont
,/* complain_on_overflow */
1138 bfd_elf_generic_reloc
, /* special_function */
1139 "R_ARM_ALU_SB_G2", /* name */
1140 FALSE
, /* partial_inplace */
1141 0xffffffff, /* src_mask */
1142 0xffffffff, /* dst_mask */
1143 TRUE
), /* pcrel_offset */
1145 HOWTO (R_ARM_LDR_SB_G0
, /* type */
1147 2, /* size (0 = byte, 1 = short, 2 = long) */
1149 TRUE
, /* pc_relative */
1151 complain_overflow_dont
,/* complain_on_overflow */
1152 bfd_elf_generic_reloc
, /* special_function */
1153 "R_ARM_LDR_SB_G0", /* name */
1154 FALSE
, /* partial_inplace */
1155 0xffffffff, /* src_mask */
1156 0xffffffff, /* dst_mask */
1157 TRUE
), /* pcrel_offset */
1159 HOWTO (R_ARM_LDR_SB_G1
, /* type */
1161 2, /* size (0 = byte, 1 = short, 2 = long) */
1163 TRUE
, /* pc_relative */
1165 complain_overflow_dont
,/* complain_on_overflow */
1166 bfd_elf_generic_reloc
, /* special_function */
1167 "R_ARM_LDR_SB_G1", /* name */
1168 FALSE
, /* partial_inplace */
1169 0xffffffff, /* src_mask */
1170 0xffffffff, /* dst_mask */
1171 TRUE
), /* pcrel_offset */
1173 HOWTO (R_ARM_LDR_SB_G2
, /* type */
1175 2, /* size (0 = byte, 1 = short, 2 = long) */
1177 TRUE
, /* pc_relative */
1179 complain_overflow_dont
,/* complain_on_overflow */
1180 bfd_elf_generic_reloc
, /* special_function */
1181 "R_ARM_LDR_SB_G2", /* name */
1182 FALSE
, /* partial_inplace */
1183 0xffffffff, /* src_mask */
1184 0xffffffff, /* dst_mask */
1185 TRUE
), /* pcrel_offset */
1187 HOWTO (R_ARM_LDRS_SB_G0
, /* type */
1189 2, /* size (0 = byte, 1 = short, 2 = long) */
1191 TRUE
, /* pc_relative */
1193 complain_overflow_dont
,/* complain_on_overflow */
1194 bfd_elf_generic_reloc
, /* special_function */
1195 "R_ARM_LDRS_SB_G0", /* name */
1196 FALSE
, /* partial_inplace */
1197 0xffffffff, /* src_mask */
1198 0xffffffff, /* dst_mask */
1199 TRUE
), /* pcrel_offset */
1201 HOWTO (R_ARM_LDRS_SB_G1
, /* type */
1203 2, /* size (0 = byte, 1 = short, 2 = long) */
1205 TRUE
, /* pc_relative */
1207 complain_overflow_dont
,/* complain_on_overflow */
1208 bfd_elf_generic_reloc
, /* special_function */
1209 "R_ARM_LDRS_SB_G1", /* name */
1210 FALSE
, /* partial_inplace */
1211 0xffffffff, /* src_mask */
1212 0xffffffff, /* dst_mask */
1213 TRUE
), /* pcrel_offset */
1215 HOWTO (R_ARM_LDRS_SB_G2
, /* type */
1217 2, /* size (0 = byte, 1 = short, 2 = long) */
1219 TRUE
, /* pc_relative */
1221 complain_overflow_dont
,/* complain_on_overflow */
1222 bfd_elf_generic_reloc
, /* special_function */
1223 "R_ARM_LDRS_SB_G2", /* name */
1224 FALSE
, /* partial_inplace */
1225 0xffffffff, /* src_mask */
1226 0xffffffff, /* dst_mask */
1227 TRUE
), /* pcrel_offset */
1229 HOWTO (R_ARM_LDC_SB_G0
, /* type */
1231 2, /* size (0 = byte, 1 = short, 2 = long) */
1233 TRUE
, /* pc_relative */
1235 complain_overflow_dont
,/* complain_on_overflow */
1236 bfd_elf_generic_reloc
, /* special_function */
1237 "R_ARM_LDC_SB_G0", /* name */
1238 FALSE
, /* partial_inplace */
1239 0xffffffff, /* src_mask */
1240 0xffffffff, /* dst_mask */
1241 TRUE
), /* pcrel_offset */
1243 HOWTO (R_ARM_LDC_SB_G1
, /* type */
1245 2, /* size (0 = byte, 1 = short, 2 = long) */
1247 TRUE
, /* pc_relative */
1249 complain_overflow_dont
,/* complain_on_overflow */
1250 bfd_elf_generic_reloc
, /* special_function */
1251 "R_ARM_LDC_SB_G1", /* name */
1252 FALSE
, /* partial_inplace */
1253 0xffffffff, /* src_mask */
1254 0xffffffff, /* dst_mask */
1255 TRUE
), /* pcrel_offset */
1257 HOWTO (R_ARM_LDC_SB_G2
, /* type */
1259 2, /* size (0 = byte, 1 = short, 2 = long) */
1261 TRUE
, /* pc_relative */
1263 complain_overflow_dont
,/* complain_on_overflow */
1264 bfd_elf_generic_reloc
, /* special_function */
1265 "R_ARM_LDC_SB_G2", /* name */
1266 FALSE
, /* partial_inplace */
1267 0xffffffff, /* src_mask */
1268 0xffffffff, /* dst_mask */
1269 TRUE
), /* pcrel_offset */
1271 /* End of group relocations. */
1273 HOWTO (R_ARM_MOVW_BREL_NC
, /* type */
1275 2, /* size (0 = byte, 1 = short, 2 = long) */
1277 FALSE
, /* pc_relative */
1279 complain_overflow_dont
,/* complain_on_overflow */
1280 bfd_elf_generic_reloc
, /* special_function */
1281 "R_ARM_MOVW_BREL_NC", /* name */
1282 FALSE
, /* partial_inplace */
1283 0x0000ffff, /* src_mask */
1284 0x0000ffff, /* dst_mask */
1285 FALSE
), /* pcrel_offset */
1287 HOWTO (R_ARM_MOVT_BREL
, /* type */
1289 2, /* size (0 = byte, 1 = short, 2 = long) */
1291 FALSE
, /* pc_relative */
1293 complain_overflow_bitfield
,/* complain_on_overflow */
1294 bfd_elf_generic_reloc
, /* special_function */
1295 "R_ARM_MOVT_BREL", /* name */
1296 FALSE
, /* partial_inplace */
1297 0x0000ffff, /* src_mask */
1298 0x0000ffff, /* dst_mask */
1299 FALSE
), /* pcrel_offset */
1301 HOWTO (R_ARM_MOVW_BREL
, /* type */
1303 2, /* size (0 = byte, 1 = short, 2 = long) */
1305 FALSE
, /* pc_relative */
1307 complain_overflow_dont
,/* complain_on_overflow */
1308 bfd_elf_generic_reloc
, /* special_function */
1309 "R_ARM_MOVW_BREL", /* name */
1310 FALSE
, /* partial_inplace */
1311 0x0000ffff, /* src_mask */
1312 0x0000ffff, /* dst_mask */
1313 FALSE
), /* pcrel_offset */
1315 HOWTO (R_ARM_THM_MOVW_BREL_NC
,/* type */
1317 2, /* size (0 = byte, 1 = short, 2 = long) */
1319 FALSE
, /* pc_relative */
1321 complain_overflow_dont
,/* complain_on_overflow */
1322 bfd_elf_generic_reloc
, /* special_function */
1323 "R_ARM_THM_MOVW_BREL_NC",/* name */
1324 FALSE
, /* partial_inplace */
1325 0x040f70ff, /* src_mask */
1326 0x040f70ff, /* dst_mask */
1327 FALSE
), /* pcrel_offset */
1329 HOWTO (R_ARM_THM_MOVT_BREL
, /* type */
1331 2, /* size (0 = byte, 1 = short, 2 = long) */
1333 FALSE
, /* pc_relative */
1335 complain_overflow_bitfield
,/* complain_on_overflow */
1336 bfd_elf_generic_reloc
, /* special_function */
1337 "R_ARM_THM_MOVT_BREL", /* name */
1338 FALSE
, /* partial_inplace */
1339 0x040f70ff, /* src_mask */
1340 0x040f70ff, /* dst_mask */
1341 FALSE
), /* pcrel_offset */
1343 HOWTO (R_ARM_THM_MOVW_BREL
, /* type */
1345 2, /* size (0 = byte, 1 = short, 2 = long) */
1347 FALSE
, /* pc_relative */
1349 complain_overflow_dont
,/* complain_on_overflow */
1350 bfd_elf_generic_reloc
, /* special_function */
1351 "R_ARM_THM_MOVW_BREL", /* name */
1352 FALSE
, /* partial_inplace */
1353 0x040f70ff, /* src_mask */
1354 0x040f70ff, /* dst_mask */
1355 FALSE
), /* pcrel_offset */
1357 EMPTY_HOWTO (90), /* Unallocated. */
1362 HOWTO (R_ARM_PLT32_ABS
, /* type */
1364 2, /* size (0 = byte, 1 = short, 2 = long) */
1366 FALSE
, /* pc_relative */
1368 complain_overflow_dont
,/* complain_on_overflow */
1369 bfd_elf_generic_reloc
, /* special_function */
1370 "R_ARM_PLT32_ABS", /* name */
1371 FALSE
, /* partial_inplace */
1372 0xffffffff, /* src_mask */
1373 0xffffffff, /* dst_mask */
1374 FALSE
), /* pcrel_offset */
1376 HOWTO (R_ARM_GOT_ABS
, /* type */
1378 2, /* size (0 = byte, 1 = short, 2 = long) */
1380 FALSE
, /* pc_relative */
1382 complain_overflow_dont
,/* complain_on_overflow */
1383 bfd_elf_generic_reloc
, /* special_function */
1384 "R_ARM_GOT_ABS", /* name */
1385 FALSE
, /* partial_inplace */
1386 0xffffffff, /* src_mask */
1387 0xffffffff, /* dst_mask */
1388 FALSE
), /* pcrel_offset */
1390 HOWTO (R_ARM_GOT_PREL
, /* type */
1392 2, /* size (0 = byte, 1 = short, 2 = long) */
1394 TRUE
, /* pc_relative */
1396 complain_overflow_dont
, /* complain_on_overflow */
1397 bfd_elf_generic_reloc
, /* special_function */
1398 "R_ARM_GOT_PREL", /* name */
1399 FALSE
, /* partial_inplace */
1400 0xffffffff, /* src_mask */
1401 0xffffffff, /* dst_mask */
1402 TRUE
), /* pcrel_offset */
1404 HOWTO (R_ARM_GOT_BREL12
, /* type */
1406 2, /* size (0 = byte, 1 = short, 2 = long) */
1408 FALSE
, /* pc_relative */
1410 complain_overflow_bitfield
,/* complain_on_overflow */
1411 bfd_elf_generic_reloc
, /* special_function */
1412 "R_ARM_GOT_BREL12", /* name */
1413 FALSE
, /* partial_inplace */
1414 0x00000fff, /* src_mask */
1415 0x00000fff, /* dst_mask */
1416 FALSE
), /* pcrel_offset */
1418 HOWTO (R_ARM_GOTOFF12
, /* type */
1420 2, /* size (0 = byte, 1 = short, 2 = long) */
1422 FALSE
, /* pc_relative */
1424 complain_overflow_bitfield
,/* complain_on_overflow */
1425 bfd_elf_generic_reloc
, /* special_function */
1426 "R_ARM_GOTOFF12", /* name */
1427 FALSE
, /* partial_inplace */
1428 0x00000fff, /* src_mask */
1429 0x00000fff, /* dst_mask */
1430 FALSE
), /* pcrel_offset */
1432 EMPTY_HOWTO (R_ARM_GOTRELAX
), /* reserved for future GOT-load optimizations */
1434 /* GNU extension to record C++ vtable member usage */
1435 HOWTO (R_ARM_GNU_VTENTRY
, /* type */
1437 2, /* size (0 = byte, 1 = short, 2 = long) */
1439 FALSE
, /* pc_relative */
1441 complain_overflow_dont
, /* complain_on_overflow */
1442 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
1443 "R_ARM_GNU_VTENTRY", /* name */
1444 FALSE
, /* partial_inplace */
1447 FALSE
), /* pcrel_offset */
1449 /* GNU extension to record C++ vtable hierarchy */
1450 HOWTO (R_ARM_GNU_VTINHERIT
, /* type */
1452 2, /* size (0 = byte, 1 = short, 2 = long) */
1454 FALSE
, /* pc_relative */
1456 complain_overflow_dont
, /* complain_on_overflow */
1457 NULL
, /* special_function */
1458 "R_ARM_GNU_VTINHERIT", /* name */
1459 FALSE
, /* partial_inplace */
1462 FALSE
), /* pcrel_offset */
1464 HOWTO (R_ARM_THM_JUMP11
, /* type */
1466 1, /* size (0 = byte, 1 = short, 2 = long) */
1468 TRUE
, /* pc_relative */
1470 complain_overflow_signed
, /* complain_on_overflow */
1471 bfd_elf_generic_reloc
, /* special_function */
1472 "R_ARM_THM_JUMP11", /* name */
1473 FALSE
, /* partial_inplace */
1474 0x000007ff, /* src_mask */
1475 0x000007ff, /* dst_mask */
1476 TRUE
), /* pcrel_offset */
1478 HOWTO (R_ARM_THM_JUMP8
, /* type */
1480 1, /* size (0 = byte, 1 = short, 2 = long) */
1482 TRUE
, /* pc_relative */
1484 complain_overflow_signed
, /* complain_on_overflow */
1485 bfd_elf_generic_reloc
, /* special_function */
1486 "R_ARM_THM_JUMP8", /* name */
1487 FALSE
, /* partial_inplace */
1488 0x000000ff, /* src_mask */
1489 0x000000ff, /* dst_mask */
1490 TRUE
), /* pcrel_offset */
1492 /* TLS relocations */
1493 HOWTO (R_ARM_TLS_GD32
, /* type */
1495 2, /* size (0 = byte, 1 = short, 2 = long) */
1497 FALSE
, /* pc_relative */
1499 complain_overflow_bitfield
,/* complain_on_overflow */
1500 NULL
, /* special_function */
1501 "R_ARM_TLS_GD32", /* name */
1502 TRUE
, /* partial_inplace */
1503 0xffffffff, /* src_mask */
1504 0xffffffff, /* dst_mask */
1505 FALSE
), /* pcrel_offset */
1507 HOWTO (R_ARM_TLS_LDM32
, /* type */
1509 2, /* size (0 = byte, 1 = short, 2 = long) */
1511 FALSE
, /* pc_relative */
1513 complain_overflow_bitfield
,/* complain_on_overflow */
1514 bfd_elf_generic_reloc
, /* special_function */
1515 "R_ARM_TLS_LDM32", /* name */
1516 TRUE
, /* partial_inplace */
1517 0xffffffff, /* src_mask */
1518 0xffffffff, /* dst_mask */
1519 FALSE
), /* pcrel_offset */
1521 HOWTO (R_ARM_TLS_LDO32
, /* type */
1523 2, /* size (0 = byte, 1 = short, 2 = long) */
1525 FALSE
, /* pc_relative */
1527 complain_overflow_bitfield
,/* complain_on_overflow */
1528 bfd_elf_generic_reloc
, /* special_function */
1529 "R_ARM_TLS_LDO32", /* name */
1530 TRUE
, /* partial_inplace */
1531 0xffffffff, /* src_mask */
1532 0xffffffff, /* dst_mask */
1533 FALSE
), /* pcrel_offset */
1535 HOWTO (R_ARM_TLS_IE32
, /* type */
1537 2, /* size (0 = byte, 1 = short, 2 = long) */
1539 FALSE
, /* pc_relative */
1541 complain_overflow_bitfield
,/* complain_on_overflow */
1542 NULL
, /* special_function */
1543 "R_ARM_TLS_IE32", /* name */
1544 TRUE
, /* partial_inplace */
1545 0xffffffff, /* src_mask */
1546 0xffffffff, /* dst_mask */
1547 FALSE
), /* pcrel_offset */
1549 HOWTO (R_ARM_TLS_LE32
, /* type */
1551 2, /* size (0 = byte, 1 = short, 2 = long) */
1553 FALSE
, /* pc_relative */
1555 complain_overflow_bitfield
,/* complain_on_overflow */
1556 bfd_elf_generic_reloc
, /* special_function */
1557 "R_ARM_TLS_LE32", /* name */
1558 TRUE
, /* partial_inplace */
1559 0xffffffff, /* src_mask */
1560 0xffffffff, /* dst_mask */
1561 FALSE
), /* pcrel_offset */
1563 HOWTO (R_ARM_TLS_LDO12
, /* type */
1565 2, /* size (0 = byte, 1 = short, 2 = long) */
1567 FALSE
, /* pc_relative */
1569 complain_overflow_bitfield
,/* complain_on_overflow */
1570 bfd_elf_generic_reloc
, /* special_function */
1571 "R_ARM_TLS_LDO12", /* name */
1572 FALSE
, /* partial_inplace */
1573 0x00000fff, /* src_mask */
1574 0x00000fff, /* dst_mask */
1575 FALSE
), /* pcrel_offset */
1577 HOWTO (R_ARM_TLS_LE12
, /* type */
1579 2, /* size (0 = byte, 1 = short, 2 = long) */
1581 FALSE
, /* pc_relative */
1583 complain_overflow_bitfield
,/* complain_on_overflow */
1584 bfd_elf_generic_reloc
, /* special_function */
1585 "R_ARM_TLS_LE12", /* name */
1586 FALSE
, /* partial_inplace */
1587 0x00000fff, /* src_mask */
1588 0x00000fff, /* dst_mask */
1589 FALSE
), /* pcrel_offset */
1591 HOWTO (R_ARM_TLS_IE12GP
, /* type */
1593 2, /* size (0 = byte, 1 = short, 2 = long) */
1595 FALSE
, /* pc_relative */
1597 complain_overflow_bitfield
,/* complain_on_overflow */
1598 bfd_elf_generic_reloc
, /* special_function */
1599 "R_ARM_TLS_IE12GP", /* name */
1600 FALSE
, /* partial_inplace */
1601 0x00000fff, /* src_mask */
1602 0x00000fff, /* dst_mask */
1603 FALSE
), /* pcrel_offset */
1606 /* 112-127 private relocations
1607 128 R_ARM_ME_TOO, obsolete
1608 129-255 unallocated in AAELF.
1610 249-255 extended, currently unused, relocations: */
1612 static reloc_howto_type elf32_arm_howto_table_2
[4] =
1614 HOWTO (R_ARM_RREL32
, /* type */
1616 0, /* size (0 = byte, 1 = short, 2 = long) */
1618 FALSE
, /* pc_relative */
1620 complain_overflow_dont
,/* complain_on_overflow */
1621 bfd_elf_generic_reloc
, /* special_function */
1622 "R_ARM_RREL32", /* name */
1623 FALSE
, /* partial_inplace */
1626 FALSE
), /* pcrel_offset */
1628 HOWTO (R_ARM_RABS32
, /* type */
1630 0, /* size (0 = byte, 1 = short, 2 = long) */
1632 FALSE
, /* pc_relative */
1634 complain_overflow_dont
,/* complain_on_overflow */
1635 bfd_elf_generic_reloc
, /* special_function */
1636 "R_ARM_RABS32", /* name */
1637 FALSE
, /* partial_inplace */
1640 FALSE
), /* pcrel_offset */
1642 HOWTO (R_ARM_RPC24
, /* type */
1644 0, /* size (0 = byte, 1 = short, 2 = long) */
1646 FALSE
, /* pc_relative */
1648 complain_overflow_dont
,/* complain_on_overflow */
1649 bfd_elf_generic_reloc
, /* special_function */
1650 "R_ARM_RPC24", /* name */
1651 FALSE
, /* partial_inplace */
1654 FALSE
), /* pcrel_offset */
1656 HOWTO (R_ARM_RBASE
, /* type */
1658 0, /* size (0 = byte, 1 = short, 2 = long) */
1660 FALSE
, /* pc_relative */
1662 complain_overflow_dont
,/* complain_on_overflow */
1663 bfd_elf_generic_reloc
, /* special_function */
1664 "R_ARM_RBASE", /* name */
1665 FALSE
, /* partial_inplace */
1668 FALSE
) /* pcrel_offset */
1671 static reloc_howto_type
*
1672 elf32_arm_howto_from_type (unsigned int r_type
)
1674 if (r_type
< ARRAY_SIZE (elf32_arm_howto_table_1
))
1675 return &elf32_arm_howto_table_1
[r_type
];
1677 if (r_type
>= R_ARM_RREL32
1678 && r_type
< R_ARM_RREL32
+ ARRAY_SIZE (elf32_arm_howto_table_2
))
1679 return &elf32_arm_howto_table_2
[r_type
- R_ARM_RREL32
];
1685 elf32_arm_info_to_howto (bfd
* abfd ATTRIBUTE_UNUSED
, arelent
* bfd_reloc
,
1686 Elf_Internal_Rela
* elf_reloc
)
1688 unsigned int r_type
;
1690 r_type
= ELF32_R_TYPE (elf_reloc
->r_info
);
1691 bfd_reloc
->howto
= elf32_arm_howto_from_type (r_type
);
1694 struct elf32_arm_reloc_map
1696 bfd_reloc_code_real_type bfd_reloc_val
;
1697 unsigned char elf_reloc_val
;
1700 /* All entries in this list must also be present in elf32_arm_howto_table. */
1701 static const struct elf32_arm_reloc_map elf32_arm_reloc_map
[] =
1703 {BFD_RELOC_NONE
, R_ARM_NONE
},
1704 {BFD_RELOC_ARM_PCREL_BRANCH
, R_ARM_PC24
},
1705 {BFD_RELOC_ARM_PCREL_CALL
, R_ARM_CALL
},
1706 {BFD_RELOC_ARM_PCREL_JUMP
, R_ARM_JUMP24
},
1707 {BFD_RELOC_ARM_PCREL_BLX
, R_ARM_XPC25
},
1708 {BFD_RELOC_THUMB_PCREL_BLX
, R_ARM_THM_XPC22
},
1709 {BFD_RELOC_32
, R_ARM_ABS32
},
1710 {BFD_RELOC_32_PCREL
, R_ARM_REL32
},
1711 {BFD_RELOC_8
, R_ARM_ABS8
},
1712 {BFD_RELOC_16
, R_ARM_ABS16
},
1713 {BFD_RELOC_ARM_OFFSET_IMM
, R_ARM_ABS12
},
1714 {BFD_RELOC_ARM_THUMB_OFFSET
, R_ARM_THM_ABS5
},
1715 {BFD_RELOC_THUMB_PCREL_BRANCH25
, R_ARM_THM_JUMP24
},
1716 {BFD_RELOC_THUMB_PCREL_BRANCH23
, R_ARM_THM_CALL
},
1717 {BFD_RELOC_THUMB_PCREL_BRANCH12
, R_ARM_THM_JUMP11
},
1718 {BFD_RELOC_THUMB_PCREL_BRANCH20
, R_ARM_THM_JUMP19
},
1719 {BFD_RELOC_THUMB_PCREL_BRANCH9
, R_ARM_THM_JUMP8
},
1720 {BFD_RELOC_THUMB_PCREL_BRANCH7
, R_ARM_THM_JUMP6
},
1721 {BFD_RELOC_ARM_GLOB_DAT
, R_ARM_GLOB_DAT
},
1722 {BFD_RELOC_ARM_JUMP_SLOT
, R_ARM_JUMP_SLOT
},
1723 {BFD_RELOC_ARM_RELATIVE
, R_ARM_RELATIVE
},
1724 {BFD_RELOC_ARM_GOTOFF
, R_ARM_GOTOFF32
},
1725 {BFD_RELOC_ARM_GOTPC
, R_ARM_GOTPC
},
1726 {BFD_RELOC_ARM_GOT32
, R_ARM_GOT32
},
1727 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1728 {BFD_RELOC_ARM_TARGET1
, R_ARM_TARGET1
},
1729 {BFD_RELOC_ARM_ROSEGREL32
, R_ARM_ROSEGREL32
},
1730 {BFD_RELOC_ARM_SBREL32
, R_ARM_SBREL32
},
1731 {BFD_RELOC_ARM_PREL31
, R_ARM_PREL31
},
1732 {BFD_RELOC_ARM_TARGET2
, R_ARM_TARGET2
},
1733 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1734 {BFD_RELOC_ARM_TLS_GD32
, R_ARM_TLS_GD32
},
1735 {BFD_RELOC_ARM_TLS_LDO32
, R_ARM_TLS_LDO32
},
1736 {BFD_RELOC_ARM_TLS_LDM32
, R_ARM_TLS_LDM32
},
1737 {BFD_RELOC_ARM_TLS_DTPMOD32
, R_ARM_TLS_DTPMOD32
},
1738 {BFD_RELOC_ARM_TLS_DTPOFF32
, R_ARM_TLS_DTPOFF32
},
1739 {BFD_RELOC_ARM_TLS_TPOFF32
, R_ARM_TLS_TPOFF32
},
1740 {BFD_RELOC_ARM_TLS_IE32
, R_ARM_TLS_IE32
},
1741 {BFD_RELOC_ARM_TLS_LE32
, R_ARM_TLS_LE32
},
1742 {BFD_RELOC_VTABLE_INHERIT
, R_ARM_GNU_VTINHERIT
},
1743 {BFD_RELOC_VTABLE_ENTRY
, R_ARM_GNU_VTENTRY
},
1744 {BFD_RELOC_ARM_MOVW
, R_ARM_MOVW_ABS_NC
},
1745 {BFD_RELOC_ARM_MOVT
, R_ARM_MOVT_ABS
},
1746 {BFD_RELOC_ARM_MOVW_PCREL
, R_ARM_MOVW_PREL_NC
},
1747 {BFD_RELOC_ARM_MOVT_PCREL
, R_ARM_MOVT_PREL
},
1748 {BFD_RELOC_ARM_THUMB_MOVW
, R_ARM_THM_MOVW_ABS_NC
},
1749 {BFD_RELOC_ARM_THUMB_MOVT
, R_ARM_THM_MOVT_ABS
},
1750 {BFD_RELOC_ARM_THUMB_MOVW_PCREL
, R_ARM_THM_MOVW_PREL_NC
},
1751 {BFD_RELOC_ARM_THUMB_MOVT_PCREL
, R_ARM_THM_MOVT_PREL
},
1752 {BFD_RELOC_ARM_ALU_PC_G0_NC
, R_ARM_ALU_PC_G0_NC
},
1753 {BFD_RELOC_ARM_ALU_PC_G0
, R_ARM_ALU_PC_G0
},
1754 {BFD_RELOC_ARM_ALU_PC_G1_NC
, R_ARM_ALU_PC_G1_NC
},
1755 {BFD_RELOC_ARM_ALU_PC_G1
, R_ARM_ALU_PC_G1
},
1756 {BFD_RELOC_ARM_ALU_PC_G2
, R_ARM_ALU_PC_G2
},
1757 {BFD_RELOC_ARM_LDR_PC_G0
, R_ARM_LDR_PC_G0
},
1758 {BFD_RELOC_ARM_LDR_PC_G1
, R_ARM_LDR_PC_G1
},
1759 {BFD_RELOC_ARM_LDR_PC_G2
, R_ARM_LDR_PC_G2
},
1760 {BFD_RELOC_ARM_LDRS_PC_G0
, R_ARM_LDRS_PC_G0
},
1761 {BFD_RELOC_ARM_LDRS_PC_G1
, R_ARM_LDRS_PC_G1
},
1762 {BFD_RELOC_ARM_LDRS_PC_G2
, R_ARM_LDRS_PC_G2
},
1763 {BFD_RELOC_ARM_LDC_PC_G0
, R_ARM_LDC_PC_G0
},
1764 {BFD_RELOC_ARM_LDC_PC_G1
, R_ARM_LDC_PC_G1
},
1765 {BFD_RELOC_ARM_LDC_PC_G2
, R_ARM_LDC_PC_G2
},
1766 {BFD_RELOC_ARM_ALU_SB_G0_NC
, R_ARM_ALU_SB_G0_NC
},
1767 {BFD_RELOC_ARM_ALU_SB_G0
, R_ARM_ALU_SB_G0
},
1768 {BFD_RELOC_ARM_ALU_SB_G1_NC
, R_ARM_ALU_SB_G1_NC
},
1769 {BFD_RELOC_ARM_ALU_SB_G1
, R_ARM_ALU_SB_G1
},
1770 {BFD_RELOC_ARM_ALU_SB_G2
, R_ARM_ALU_SB_G2
},
1771 {BFD_RELOC_ARM_LDR_SB_G0
, R_ARM_LDR_SB_G0
},
1772 {BFD_RELOC_ARM_LDR_SB_G1
, R_ARM_LDR_SB_G1
},
1773 {BFD_RELOC_ARM_LDR_SB_G2
, R_ARM_LDR_SB_G2
},
1774 {BFD_RELOC_ARM_LDRS_SB_G0
, R_ARM_LDRS_SB_G0
},
1775 {BFD_RELOC_ARM_LDRS_SB_G1
, R_ARM_LDRS_SB_G1
},
1776 {BFD_RELOC_ARM_LDRS_SB_G2
, R_ARM_LDRS_SB_G2
},
1777 {BFD_RELOC_ARM_LDC_SB_G0
, R_ARM_LDC_SB_G0
},
1778 {BFD_RELOC_ARM_LDC_SB_G1
, R_ARM_LDC_SB_G1
},
1779 {BFD_RELOC_ARM_LDC_SB_G2
, R_ARM_LDC_SB_G2
},
1780 {BFD_RELOC_ARM_V4BX
, R_ARM_V4BX
}
1783 static reloc_howto_type
*
1784 elf32_arm_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1785 bfd_reloc_code_real_type code
)
1789 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_reloc_map
); i
++)
1790 if (elf32_arm_reloc_map
[i
].bfd_reloc_val
== code
)
1791 return elf32_arm_howto_from_type (elf32_arm_reloc_map
[i
].elf_reloc_val
);
1796 static reloc_howto_type
*
1797 elf32_arm_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1802 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_1
); i
++)
1803 if (elf32_arm_howto_table_1
[i
].name
!= NULL
1804 && strcasecmp (elf32_arm_howto_table_1
[i
].name
, r_name
) == 0)
1805 return &elf32_arm_howto_table_1
[i
];
1807 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_2
); i
++)
1808 if (elf32_arm_howto_table_2
[i
].name
!= NULL
1809 && strcasecmp (elf32_arm_howto_table_2
[i
].name
, r_name
) == 0)
1810 return &elf32_arm_howto_table_2
[i
];
1815 /* Support for core dump NOTE sections. */
1818 elf32_arm_nabi_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
1823 switch (note
->descsz
)
1828 case 148: /* Linux/ARM 32-bit. */
1830 elf_tdata (abfd
)->core_signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
1833 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
1842 /* Make a ".reg/999" section. */
1843 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
1844 size
, note
->descpos
+ offset
);
1848 elf32_arm_nabi_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
1850 switch (note
->descsz
)
1855 case 124: /* Linux/ARM elf_prpsinfo. */
1856 elf_tdata (abfd
)->core_program
1857 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 28, 16);
1858 elf_tdata (abfd
)->core_command
1859 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 44, 80);
1862 /* Note that for some reason, a spurious space is tacked
1863 onto the end of the args in some (at least one anyway)
1864 implementations, so strip it off if it exists. */
1866 char *command
= elf_tdata (abfd
)->core_command
;
1867 int n
= strlen (command
);
1869 if (0 < n
&& command
[n
- 1] == ' ')
1870 command
[n
- 1] = '\0';
1876 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1877 #define TARGET_LITTLE_NAME "elf32-littlearm"
1878 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1879 #define TARGET_BIG_NAME "elf32-bigarm"
1881 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1882 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1884 typedef unsigned long int insn32
;
1885 typedef unsigned short int insn16
;
1887 /* In lieu of proper flags, assume all EABIv4 or later objects are
1889 #define INTERWORK_FLAG(abfd) \
1890 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1891 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
1892 || ((abfd)->flags & BFD_LINKER_CREATED))
1894 /* The linker script knows the section names for placement.
1895 The entry_names are used to do simple name mangling on the stubs.
1896 Given a function name, and its type, the stub can be found. The
1897 name can be changed. The only requirement is the %s be present. */
1898 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1899 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1901 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1902 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1904 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1905 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1907 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1908 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1910 #define STUB_ENTRY_NAME "__%s_veneer"
1912 /* The name of the dynamic interpreter. This is put in the .interp
1914 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1916 #ifdef FOUR_WORD_PLT
1918 /* The first entry in a procedure linkage table looks like
1919 this. It is set up so that any shared library function that is
1920 called before the relocation has been set up calls the dynamic
1922 static const bfd_vma elf32_arm_plt0_entry
[] =
1924 0xe52de004, /* str lr, [sp, #-4]! */
1925 0xe59fe010, /* ldr lr, [pc, #16] */
1926 0xe08fe00e, /* add lr, pc, lr */
1927 0xe5bef008, /* ldr pc, [lr, #8]! */
1930 /* Subsequent entries in a procedure linkage table look like
1932 static const bfd_vma elf32_arm_plt_entry
[] =
1934 0xe28fc600, /* add ip, pc, #NN */
1935 0xe28cca00, /* add ip, ip, #NN */
1936 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1937 0x00000000, /* unused */
1942 /* The first entry in a procedure linkage table looks like
1943 this. It is set up so that any shared library function that is
1944 called before the relocation has been set up calls the dynamic
1946 static const bfd_vma elf32_arm_plt0_entry
[] =
1948 0xe52de004, /* str lr, [sp, #-4]! */
1949 0xe59fe004, /* ldr lr, [pc, #4] */
1950 0xe08fe00e, /* add lr, pc, lr */
1951 0xe5bef008, /* ldr pc, [lr, #8]! */
1952 0x00000000, /* &GOT[0] - . */
1955 /* Subsequent entries in a procedure linkage table look like
1957 static const bfd_vma elf32_arm_plt_entry
[] =
1959 0xe28fc600, /* add ip, pc, #0xNN00000 */
1960 0xe28cca00, /* add ip, ip, #0xNN000 */
1961 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1966 /* The format of the first entry in the procedure linkage table
1967 for a VxWorks executable. */
1968 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry
[] =
1970 0xe52dc008, /* str ip,[sp,#-8]! */
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xe59cf008, /* ldr pc,[ip,#8] */
1973 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1976 /* The format of subsequent entries in a VxWorks executable. */
1977 static const bfd_vma elf32_arm_vxworks_exec_plt_entry
[] =
1979 0xe59fc000, /* ldr ip,[pc] */
1980 0xe59cf000, /* ldr pc,[ip] */
1981 0x00000000, /* .long @got */
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xea000000, /* b _PLT */
1984 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1987 /* The format of entries in a VxWorks shared library. */
1988 static const bfd_vma elf32_arm_vxworks_shared_plt_entry
[] =
1990 0xe59fc000, /* ldr ip,[pc] */
1991 0xe79cf009, /* ldr pc,[ip,r9] */
1992 0x00000000, /* .long @got */
1993 0xe59fc000, /* ldr ip,[pc] */
1994 0xe599f008, /* ldr pc,[r9,#8] */
1995 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1998 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1999 #define PLT_THUMB_STUB_SIZE 4
2000 static const bfd_vma elf32_arm_plt_thumb_stub
[] =
2006 /* The entries in a PLT when using a DLL-based target with multiple
2008 static const bfd_vma elf32_arm_symbian_plt_entry
[] =
2010 0xe51ff004, /* ldr pc, [pc, #-4] */
2011 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2014 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2015 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2016 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2017 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2018 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2019 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2029 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2030 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2031 is inserted in arm_build_one_stub(). */
2032 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2033 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2034 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2035 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2036 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2037 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2042 enum stub_insn_type type
;
2043 unsigned int r_type
;
2047 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2048 to reach the stub if necessary. */
2049 static const insn_sequence elf32_arm_stub_long_branch_any_any
[] =
2051 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2052 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2055 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2057 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb
[] =
2059 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2060 ARM_INSN(0xe12fff1c), /* bx ip */
2061 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2064 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2065 static const insn_sequence elf32_arm_stub_long_branch_thumb_only
[] =
2067 THUMB16_INSN(0xb401), /* push {r0} */
2068 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2069 THUMB16_INSN(0x4684), /* mov ip, r0 */
2070 THUMB16_INSN(0xbc01), /* pop {r0} */
2071 THUMB16_INSN(0x4760), /* bx ip */
2072 THUMB16_INSN(0xbf00), /* nop */
2073 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2076 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2078 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb
[] =
2080 THUMB16_INSN(0x4778), /* bx pc */
2081 THUMB16_INSN(0x46c0), /* nop */
2082 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2083 ARM_INSN(0xe12fff1c), /* bx ip */
2084 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2087 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2089 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm
[] =
2091 THUMB16_INSN(0x4778), /* bx pc */
2092 THUMB16_INSN(0x46c0), /* nop */
2093 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2094 DATA_WORD(0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2097 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2098 one, when the destination is close enough. */
2099 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm
[] =
2101 THUMB16_INSN(0x4778), /* bx pc */
2102 THUMB16_INSN(0x46c0), /* nop */
2103 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
2106 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2107 blx to reach the stub if necessary. */
2108 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic
[] =
2110 ARM_INSN(0xe59fc000), /* ldr r12, [pc] */
2111 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2112 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X-4) */
2115 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2116 blx to reach the stub if necessary. We can not add into pc;
2117 it is not guaranteed to mode switch (different in ARMv6 and
2119 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic
[] =
2121 ARM_INSN(0xe59fc004), /* ldr r12, [pc, #4] */
2122 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2123 ARM_INSN(0xe12fff1c), /* bx ip */
2124 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2127 /* V4T ARM -> ARM long branch stub, PIC. */
2128 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic
[] =
2130 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2131 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2132 ARM_INSN(0xe12fff1c), /* bx ip */
2133 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2136 /* V4T Thumb -> ARM long branch stub, PIC. */
2137 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic
[] =
2139 THUMB16_INSN(0x4778), /* bx pc */
2140 THUMB16_INSN(0x46c0), /* nop */
2141 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2142 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2143 DATA_WORD(0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X) */
2146 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2148 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic
[] =
2150 THUMB16_INSN(0xb401), /* push {r0} */
2151 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2152 THUMB16_INSN(0x46fc), /* mov ip, pc */
2153 THUMB16_INSN(0x4484), /* add ip, r0 */
2154 THUMB16_INSN(0xbc01), /* pop {r0} */
2155 THUMB16_INSN(0x4760), /* bx ip */
2156 DATA_WORD(0, R_ARM_REL32
, 4), /* dcd R_ARM_REL32(X) */
2159 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2161 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic
[] =
2163 THUMB16_INSN(0x4778), /* bx pc */
2164 THUMB16_INSN(0x46c0), /* nop */
2165 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2166 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2167 ARM_INSN(0xe12fff1c), /* bx ip */
2168 DATA_WORD(0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2171 /* Cortex-A8 erratum-workaround stubs. */
2173 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2174 can't use a conditional branch to reach this stub). */
2176 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond
[] =
2178 THUMB16_BCOND_INSN(0xd001), /* b<cond>.n true. */
2179 THUMB32_B_INSN(0xf000b800, -4), /* b.w insn_after_original_branch. */
2180 THUMB32_B_INSN(0xf000b800, -4) /* true: b.w original_branch_dest. */
2183 /* Stub used for b.w and bl.w instructions. */
2185 static const insn_sequence elf32_arm_stub_a8_veneer_b
[] =
2187 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2190 static const insn_sequence elf32_arm_stub_a8_veneer_bl
[] =
2192 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2195 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2196 instruction (which switches to ARM mode) to point to this stub. Jump to the
2197 real destination using an ARM-mode branch. */
2199 static const insn_sequence elf32_arm_stub_a8_veneer_blx
[] =
2201 ARM_REL_INSN(0xea000000, -8) /* b original_branch_dest. */
2204 /* Section name for stubs is the associated section name plus this
2206 #define STUB_SUFFIX ".stub"
2208 /* One entry per long/short branch stub defined above. */
2210 DEF_STUB(long_branch_any_any) \
2211 DEF_STUB(long_branch_v4t_arm_thumb) \
2212 DEF_STUB(long_branch_thumb_only) \
2213 DEF_STUB(long_branch_v4t_thumb_thumb) \
2214 DEF_STUB(long_branch_v4t_thumb_arm) \
2215 DEF_STUB(short_branch_v4t_thumb_arm) \
2216 DEF_STUB(long_branch_any_arm_pic) \
2217 DEF_STUB(long_branch_any_thumb_pic) \
2218 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2219 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2220 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2221 DEF_STUB(long_branch_thumb_only_pic) \
2222 DEF_STUB(a8_veneer_b_cond) \
2223 DEF_STUB(a8_veneer_b) \
2224 DEF_STUB(a8_veneer_bl) \
2225 DEF_STUB(a8_veneer_blx)
2227 #define DEF_STUB(x) arm_stub_##x,
2228 enum elf32_arm_stub_type
{
2236 const insn_sequence
* template;
2240 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2241 static const stub_def stub_definitions
[] = {
2246 struct elf32_arm_stub_hash_entry
2248 /* Base hash table entry structure. */
2249 struct bfd_hash_entry root
;
2251 /* The stub section. */
2254 /* Offset within stub_sec of the beginning of this stub. */
2255 bfd_vma stub_offset
;
2257 /* Given the symbol's value and its section we can determine its final
2258 value when building the stubs (so the stub knows where to jump). */
2259 bfd_vma target_value
;
2260 asection
*target_section
;
2262 /* Offset to apply to relocation referencing target_value. */
2263 bfd_vma target_addend
;
2265 /* The instruction which caused this stub to be generated (only valid for
2266 Cortex-A8 erratum workaround stubs at present). */
2267 unsigned long orig_insn
;
2269 /* The stub type. */
2270 enum elf32_arm_stub_type stub_type
;
2271 /* Its encoding size in bytes. */
2274 const insn_sequence
*stub_template
;
2275 /* The size of the template (number of entries). */
2276 int stub_template_size
;
2278 /* The symbol table entry, if any, that this was derived from. */
2279 struct elf32_arm_link_hash_entry
*h
;
2281 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2282 unsigned char st_type
;
2284 /* Where this stub is being called from, or, in the case of combined
2285 stub sections, the first input section in the group. */
2288 /* The name for the local symbol at the start of this stub. The
2289 stub name in the hash table has to be unique; this does not, so
2290 it can be friendlier. */
2294 /* Used to build a map of a section. This is required for mixed-endian
2297 typedef struct elf32_elf_section_map
2302 elf32_arm_section_map
;
2304 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2308 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
,
2309 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
,
2310 VFP11_ERRATUM_ARM_VENEER
,
2311 VFP11_ERRATUM_THUMB_VENEER
2313 elf32_vfp11_erratum_type
;
2315 typedef struct elf32_vfp11_erratum_list
2317 struct elf32_vfp11_erratum_list
*next
;
2323 struct elf32_vfp11_erratum_list
*veneer
;
2324 unsigned int vfp_insn
;
2328 struct elf32_vfp11_erratum_list
*branch
;
2332 elf32_vfp11_erratum_type type
;
2334 elf32_vfp11_erratum_list
;
2339 INSERT_EXIDX_CANTUNWIND_AT_END
2341 arm_unwind_edit_type
;
2343 /* A (sorted) list of edits to apply to an unwind table. */
2344 typedef struct arm_unwind_table_edit
2346 arm_unwind_edit_type type
;
2347 /* Note: we sometimes want to insert an unwind entry corresponding to a
2348 section different from the one we're currently writing out, so record the
2349 (text) section this edit relates to here. */
2350 asection
*linked_section
;
2352 struct arm_unwind_table_edit
*next
;
2354 arm_unwind_table_edit
;
2356 typedef struct _arm_elf_section_data
2358 /* Information about mapping symbols. */
2359 struct bfd_elf_section_data elf
;
2360 unsigned int mapcount
;
2361 unsigned int mapsize
;
2362 elf32_arm_section_map
*map
;
2363 /* Information about CPU errata. */
2364 unsigned int erratumcount
;
2365 elf32_vfp11_erratum_list
*erratumlist
;
2366 /* Information about unwind tables. */
2369 /* Unwind info attached to a text section. */
2372 asection
*arm_exidx_sec
;
2375 /* Unwind info attached to an .ARM.exidx section. */
2378 arm_unwind_table_edit
*unwind_edit_list
;
2379 arm_unwind_table_edit
*unwind_edit_tail
;
2383 _arm_elf_section_data
;
2385 #define elf32_arm_section_data(sec) \
2386 ((_arm_elf_section_data *) elf_section_data (sec))
2388 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2389 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2390 so may be created multiple times: we use an array of these entries whilst
2391 relaxing which we can refresh easily, then create stubs for each potentially
2392 erratum-triggering instruction once we've settled on a solution. */
2394 struct a8_erratum_fix
{
2399 unsigned long orig_insn
;
2401 enum elf32_arm_stub_type stub_type
;
2404 /* A table of relocs applied to branches which might trigger Cortex-A8
2407 struct a8_erratum_reloc
{
2409 bfd_vma destination
;
2410 unsigned int r_type
;
2411 unsigned char st_type
;
2412 const char *sym_name
;
2413 bfd_boolean non_a8_stub
;
2416 /* The size of the thread control block. */
2419 struct elf_arm_obj_tdata
2421 struct elf_obj_tdata root
;
2423 /* tls_type for each local got entry. */
2424 char *local_got_tls_type
;
2426 /* Zero to warn when linking objects with incompatible enum sizes. */
2427 int no_enum_size_warning
;
2429 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2430 int no_wchar_size_warning
;
2433 #define elf_arm_tdata(bfd) \
2434 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2436 #define elf32_arm_local_got_tls_type(bfd) \
2437 (elf_arm_tdata (bfd)->local_got_tls_type)
2439 #define is_arm_elf(bfd) \
2440 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2441 && elf_tdata (bfd) != NULL \
2442 && elf_object_id (bfd) == ARM_ELF_TDATA)
2445 elf32_arm_mkobject (bfd
*abfd
)
2447 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_arm_obj_tdata
),
2451 /* The ARM linker needs to keep track of the number of relocs that it
2452 decides to copy in check_relocs for each symbol. This is so that
2453 it can discard PC relative relocs if it doesn't need them when
2454 linking with -Bsymbolic. We store the information in a field
2455 extending the regular ELF linker hash table. */
2457 /* This structure keeps track of the number of relocs we have copied
2458 for a given symbol. */
2459 struct elf32_arm_relocs_copied
2462 struct elf32_arm_relocs_copied
* next
;
2463 /* A section in dynobj. */
2465 /* Number of relocs copied in this section. */
2466 bfd_size_type count
;
2467 /* Number of PC-relative relocs copied in this section. */
2468 bfd_size_type pc_count
;
2471 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2473 /* Arm ELF linker hash entry. */
2474 struct elf32_arm_link_hash_entry
2476 struct elf_link_hash_entry root
;
2478 /* Number of PC relative relocs copied for this symbol. */
2479 struct elf32_arm_relocs_copied
* relocs_copied
;
2481 /* We reference count Thumb references to a PLT entry separately,
2482 so that we can emit the Thumb trampoline only if needed. */
2483 bfd_signed_vma plt_thumb_refcount
;
2485 /* Some references from Thumb code may be eliminated by BL->BLX
2486 conversion, so record them separately. */
2487 bfd_signed_vma plt_maybe_thumb_refcount
;
2489 /* Since PLT entries have variable size if the Thumb prologue is
2490 used, we need to record the index into .got.plt instead of
2491 recomputing it from the PLT offset. */
2492 bfd_signed_vma plt_got_offset
;
2494 #define GOT_UNKNOWN 0
2495 #define GOT_NORMAL 1
2496 #define GOT_TLS_GD 2
2497 #define GOT_TLS_IE 4
2498 unsigned char tls_type
;
2500 /* The symbol marking the real symbol location for exported thumb
2501 symbols with Arm stubs. */
2502 struct elf_link_hash_entry
*export_glue
;
2504 /* A pointer to the most recently used stub hash entry against this
2506 struct elf32_arm_stub_hash_entry
*stub_cache
;
2509 /* Traverse an arm ELF linker hash table. */
2510 #define elf32_arm_link_hash_traverse(table, func, info) \
2511 (elf_link_hash_traverse \
2513 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2516 /* Get the ARM elf linker hash table from a link_info structure. */
2517 #define elf32_arm_hash_table(info) \
2518 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2520 #define arm_stub_hash_lookup(table, string, create, copy) \
2521 ((struct elf32_arm_stub_hash_entry *) \
2522 bfd_hash_lookup ((table), (string), (create), (copy)))
2524 /* ARM ELF linker hash table. */
2525 struct elf32_arm_link_hash_table
2527 /* The main hash table. */
2528 struct elf_link_hash_table root
;
2530 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2531 bfd_size_type thumb_glue_size
;
2533 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2534 bfd_size_type arm_glue_size
;
2536 /* The size in bytes of section containing the ARMv4 BX veneers. */
2537 bfd_size_type bx_glue_size
;
2539 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2540 veneer has been populated. */
2541 bfd_vma bx_glue_offset
[15];
2543 /* The size in bytes of the section containing glue for VFP11 erratum
2545 bfd_size_type vfp11_erratum_glue_size
;
2547 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2548 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2549 elf32_arm_write_section(). */
2550 struct a8_erratum_fix
*a8_erratum_fixes
;
2551 unsigned int num_a8_erratum_fixes
;
2553 /* An arbitrary input BFD chosen to hold the glue sections. */
2554 bfd
* bfd_of_glue_owner
;
2556 /* Nonzero to output a BE8 image. */
2559 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2560 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2563 /* The relocation to use for R_ARM_TARGET2 relocations. */
2566 /* 0 = Ignore R_ARM_V4BX.
2567 1 = Convert BX to MOV PC.
2568 2 = Generate v4 interworing stubs. */
2571 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2574 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2577 /* What sort of code sequences we should look for which may trigger the
2578 VFP11 denorm erratum. */
2579 bfd_arm_vfp11_fix vfp11_fix
;
2581 /* Global counter for the number of fixes we have emitted. */
2582 int num_vfp11_fixes
;
2584 /* Nonzero to force PIC branch veneers. */
2587 /* The number of bytes in the initial entry in the PLT. */
2588 bfd_size_type plt_header_size
;
2590 /* The number of bytes in the subsequent PLT etries. */
2591 bfd_size_type plt_entry_size
;
2593 /* True if the target system is VxWorks. */
2596 /* True if the target system is Symbian OS. */
2599 /* True if the target uses REL relocations. */
2602 /* Short-cuts to get to dynamic linker sections. */
2611 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2614 /* Data for R_ARM_TLS_LDM32 relocations. */
2617 bfd_signed_vma refcount
;
2621 /* Small local sym to section mapping cache. */
2622 struct sym_sec_cache sym_sec
;
2624 /* For convenience in allocate_dynrelocs. */
2627 /* The stub hash table. */
2628 struct bfd_hash_table stub_hash_table
;
2630 /* Linker stub bfd. */
2633 /* Linker call-backs. */
2634 asection
* (*add_stub_section
) (const char *, asection
*);
2635 void (*layout_sections_again
) (void);
2637 /* Array to keep track of which stub sections have been created, and
2638 information on stub grouping. */
2641 /* This is the section to which stubs in the group will be
2644 /* The stub section. */
2648 /* Assorted information used by elf32_arm_size_stubs. */
2649 unsigned int bfd_count
;
2651 asection
**input_list
;
2654 /* Create an entry in an ARM ELF linker hash table. */
2656 static struct bfd_hash_entry
*
2657 elf32_arm_link_hash_newfunc (struct bfd_hash_entry
* entry
,
2658 struct bfd_hash_table
* table
,
2659 const char * string
)
2661 struct elf32_arm_link_hash_entry
* ret
=
2662 (struct elf32_arm_link_hash_entry
*) entry
;
2664 /* Allocate the structure if it has not already been allocated by a
2667 ret
= bfd_hash_allocate (table
, sizeof (struct elf32_arm_link_hash_entry
));
2669 return (struct bfd_hash_entry
*) ret
;
2671 /* Call the allocation method of the superclass. */
2672 ret
= ((struct elf32_arm_link_hash_entry
*)
2673 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
2677 ret
->relocs_copied
= NULL
;
2678 ret
->tls_type
= GOT_UNKNOWN
;
2679 ret
->plt_thumb_refcount
= 0;
2680 ret
->plt_maybe_thumb_refcount
= 0;
2681 ret
->plt_got_offset
= -1;
2682 ret
->export_glue
= NULL
;
2684 ret
->stub_cache
= NULL
;
2687 return (struct bfd_hash_entry
*) ret
;
2690 /* Initialize an entry in the stub hash table. */
2692 static struct bfd_hash_entry
*
2693 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
2694 struct bfd_hash_table
*table
,
2697 /* Allocate the structure if it has not already been allocated by a
2701 entry
= bfd_hash_allocate (table
,
2702 sizeof (struct elf32_arm_stub_hash_entry
));
2707 /* Call the allocation method of the superclass. */
2708 entry
= bfd_hash_newfunc (entry
, table
, string
);
2711 struct elf32_arm_stub_hash_entry
*eh
;
2713 /* Initialize the local fields. */
2714 eh
= (struct elf32_arm_stub_hash_entry
*) entry
;
2715 eh
->stub_sec
= NULL
;
2716 eh
->stub_offset
= 0;
2717 eh
->target_value
= 0;
2718 eh
->target_section
= NULL
;
2719 eh
->stub_type
= arm_stub_none
;
2721 eh
->stub_template
= NULL
;
2722 eh
->stub_template_size
= 0;
2730 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2731 shortcuts to them in our hash table. */
2734 create_got_section (bfd
*dynobj
, struct bfd_link_info
*info
)
2736 struct elf32_arm_link_hash_table
*htab
;
2738 htab
= elf32_arm_hash_table (info
);
2739 /* BPABI objects never have a GOT, or associated sections. */
2740 if (htab
->symbian_p
)
2743 if (! _bfd_elf_create_got_section (dynobj
, info
))
2746 htab
->sgot
= bfd_get_section_by_name (dynobj
, ".got");
2747 htab
->sgotplt
= bfd_get_section_by_name (dynobj
, ".got.plt");
2748 if (!htab
->sgot
|| !htab
->sgotplt
)
2751 htab
->srelgot
= bfd_make_section_with_flags (dynobj
,
2752 RELOC_SECTION (htab
, ".got"),
2753 (SEC_ALLOC
| SEC_LOAD
2756 | SEC_LINKER_CREATED
2758 if (htab
->srelgot
== NULL
2759 || ! bfd_set_section_alignment (dynobj
, htab
->srelgot
, 2))
2764 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2765 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2769 elf32_arm_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
2771 struct elf32_arm_link_hash_table
*htab
;
2773 htab
= elf32_arm_hash_table (info
);
2774 if (!htab
->sgot
&& !create_got_section (dynobj
, info
))
2777 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
2780 htab
->splt
= bfd_get_section_by_name (dynobj
, ".plt");
2781 htab
->srelplt
= bfd_get_section_by_name (dynobj
,
2782 RELOC_SECTION (htab
, ".plt"));
2783 htab
->sdynbss
= bfd_get_section_by_name (dynobj
, ".dynbss");
2785 htab
->srelbss
= bfd_get_section_by_name (dynobj
,
2786 RELOC_SECTION (htab
, ".bss"));
2788 if (htab
->vxworks_p
)
2790 if (!elf_vxworks_create_dynamic_sections (dynobj
, info
, &htab
->srelplt2
))
2795 htab
->plt_header_size
= 0;
2796 htab
->plt_entry_size
2797 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry
);
2801 htab
->plt_header_size
2802 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry
);
2803 htab
->plt_entry_size
2804 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry
);
2811 || (!info
->shared
&& !htab
->srelbss
))
2817 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2820 elf32_arm_copy_indirect_symbol (struct bfd_link_info
*info
,
2821 struct elf_link_hash_entry
*dir
,
2822 struct elf_link_hash_entry
*ind
)
2824 struct elf32_arm_link_hash_entry
*edir
, *eind
;
2826 edir
= (struct elf32_arm_link_hash_entry
*) dir
;
2827 eind
= (struct elf32_arm_link_hash_entry
*) ind
;
2829 if (eind
->relocs_copied
!= NULL
)
2831 if (edir
->relocs_copied
!= NULL
)
2833 struct elf32_arm_relocs_copied
**pp
;
2834 struct elf32_arm_relocs_copied
*p
;
2836 /* Add reloc counts against the indirect sym to the direct sym
2837 list. Merge any entries against the same section. */
2838 for (pp
= &eind
->relocs_copied
; (p
= *pp
) != NULL
; )
2840 struct elf32_arm_relocs_copied
*q
;
2842 for (q
= edir
->relocs_copied
; q
!= NULL
; q
= q
->next
)
2843 if (q
->section
== p
->section
)
2845 q
->pc_count
+= p
->pc_count
;
2846 q
->count
+= p
->count
;
2853 *pp
= edir
->relocs_copied
;
2856 edir
->relocs_copied
= eind
->relocs_copied
;
2857 eind
->relocs_copied
= NULL
;
2860 if (ind
->root
.type
== bfd_link_hash_indirect
)
2862 /* Copy over PLT info. */
2863 edir
->plt_thumb_refcount
+= eind
->plt_thumb_refcount
;
2864 eind
->plt_thumb_refcount
= 0;
2865 edir
->plt_maybe_thumb_refcount
+= eind
->plt_maybe_thumb_refcount
;
2866 eind
->plt_maybe_thumb_refcount
= 0;
2868 if (dir
->got
.refcount
<= 0)
2870 edir
->tls_type
= eind
->tls_type
;
2871 eind
->tls_type
= GOT_UNKNOWN
;
2875 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
2878 /* Create an ARM elf linker hash table. */
2880 static struct bfd_link_hash_table
*
2881 elf32_arm_link_hash_table_create (bfd
*abfd
)
2883 struct elf32_arm_link_hash_table
*ret
;
2884 bfd_size_type amt
= sizeof (struct elf32_arm_link_hash_table
);
2886 ret
= bfd_malloc (amt
);
2890 if (!_bfd_elf_link_hash_table_init (& ret
->root
, abfd
,
2891 elf32_arm_link_hash_newfunc
,
2892 sizeof (struct elf32_arm_link_hash_entry
)))
2899 ret
->sgotplt
= NULL
;
2900 ret
->srelgot
= NULL
;
2902 ret
->srelplt
= NULL
;
2903 ret
->sdynbss
= NULL
;
2904 ret
->srelbss
= NULL
;
2905 ret
->srelplt2
= NULL
;
2906 ret
->thumb_glue_size
= 0;
2907 ret
->arm_glue_size
= 0;
2908 ret
->bx_glue_size
= 0;
2909 memset (ret
->bx_glue_offset
, 0, sizeof (ret
->bx_glue_offset
));
2910 ret
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
2911 ret
->vfp11_erratum_glue_size
= 0;
2912 ret
->num_vfp11_fixes
= 0;
2913 ret
->fix_cortex_a8
= 0;
2914 ret
->bfd_of_glue_owner
= NULL
;
2915 ret
->byteswap_code
= 0;
2916 ret
->target1_is_rel
= 0;
2917 ret
->target2_reloc
= R_ARM_NONE
;
2918 #ifdef FOUR_WORD_PLT
2919 ret
->plt_header_size
= 16;
2920 ret
->plt_entry_size
= 16;
2922 ret
->plt_header_size
= 20;
2923 ret
->plt_entry_size
= 12;
2930 ret
->sym_sec
.abfd
= NULL
;
2932 ret
->tls_ldm_got
.refcount
= 0;
2933 ret
->stub_bfd
= NULL
;
2934 ret
->add_stub_section
= NULL
;
2935 ret
->layout_sections_again
= NULL
;
2936 ret
->stub_group
= NULL
;
2939 ret
->input_list
= NULL
;
2941 if (!bfd_hash_table_init (&ret
->stub_hash_table
, stub_hash_newfunc
,
2942 sizeof (struct elf32_arm_stub_hash_entry
)))
2948 return &ret
->root
.root
;
2951 /* Free the derived linker hash table. */
2954 elf32_arm_hash_table_free (struct bfd_link_hash_table
*hash
)
2956 struct elf32_arm_link_hash_table
*ret
2957 = (struct elf32_arm_link_hash_table
*) hash
;
2959 bfd_hash_table_free (&ret
->stub_hash_table
);
2960 _bfd_generic_link_hash_table_free (hash
);
2963 /* Determine if we're dealing with a Thumb only architecture. */
2966 using_thumb_only (struct elf32_arm_link_hash_table
*globals
)
2968 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
2972 if (arch
!= TAG_CPU_ARCH_V7
)
2975 profile
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
2976 Tag_CPU_arch_profile
);
2978 return profile
== 'M';
2981 /* Determine if we're dealing with a Thumb-2 object. */
2984 using_thumb2 (struct elf32_arm_link_hash_table
*globals
)
2986 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
2988 return arch
== TAG_CPU_ARCH_V6T2
|| arch
>= TAG_CPU_ARCH_V7
;
2992 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type
)
2996 case arm_stub_long_branch_thumb_only
:
2997 case arm_stub_long_branch_v4t_thumb_arm
:
2998 case arm_stub_short_branch_v4t_thumb_arm
:
2999 case arm_stub_long_branch_v4t_thumb_arm_pic
:
3000 case arm_stub_long_branch_thumb_only_pic
:
3011 /* Determine the type of stub needed, if any, for a call. */
3013 static enum elf32_arm_stub_type
3014 arm_type_of_stub (struct bfd_link_info
*info
,
3015 asection
*input_sec
,
3016 const Elf_Internal_Rela
*rel
,
3017 unsigned char st_type
,
3018 struct elf32_arm_link_hash_entry
*hash
,
3019 bfd_vma destination
,
3025 bfd_signed_vma branch_offset
;
3026 unsigned int r_type
;
3027 struct elf32_arm_link_hash_table
* globals
;
3030 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
3033 /* We don't know the actual type of destination in case it is of
3034 type STT_SECTION: give up. */
3035 if (st_type
== STT_SECTION
)
3038 globals
= elf32_arm_hash_table (info
);
3040 thumb_only
= using_thumb_only (globals
);
3042 thumb2
= using_thumb2 (globals
);
3044 /* Determine where the call point is. */
3045 location
= (input_sec
->output_offset
3046 + input_sec
->output_section
->vma
3049 branch_offset
= (bfd_signed_vma
)(destination
- location
);
3051 r_type
= ELF32_R_TYPE (rel
->r_info
);
3053 /* Keep a simpler condition, for the sake of clarity. */
3054 if (globals
->splt
!= NULL
&& hash
!= NULL
&& hash
->root
.plt
.offset
!= (bfd_vma
) -1)
3057 /* Note when dealing with PLT entries: the main PLT stub is in
3058 ARM mode, so if the branch is in Thumb mode, another
3059 Thumb->ARM stub will be inserted later just before the ARM
3060 PLT stub. We don't take this extra distance into account
3061 here, because if a long branch stub is needed, we'll add a
3062 Thumb->Arm one and branch directly to the ARM PLT entry
3063 because it avoids spreading offset corrections in several
3067 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
)
3069 /* Handle cases where:
3070 - this call goes too far (different Thumb/Thumb2 max
3072 - it's a Thumb->Arm call and blx is not available, or it's a
3073 Thumb->Arm branch (not bl). A stub is needed in this case,
3074 but only if this call is not through a PLT entry. Indeed,
3075 PLT stubs handle mode switching already.
3078 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
3079 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
3081 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
3082 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
3083 || ((st_type
!= STT_ARM_TFUNC
)
3084 && (((r_type
== R_ARM_THM_CALL
) && !globals
->use_blx
)
3085 || (r_type
== R_ARM_THM_JUMP24
))
3088 if (st_type
== STT_ARM_TFUNC
)
3090 /* Thumb to thumb. */
3093 stub_type
= (info
->shared
| globals
->pic_veneer
)
3095 ? ((globals
->use_blx
3096 && (r_type
==R_ARM_THM_CALL
))
3097 /* V5T and above. Stub starts with ARM code, so
3098 we must be able to switch mode before
3099 reaching it, which is only possible for 'bl'
3100 (ie R_ARM_THM_CALL relocation). */
3101 ? arm_stub_long_branch_any_thumb_pic
3102 /* On V4T, use Thumb code only. */
3103 : arm_stub_long_branch_v4t_thumb_thumb_pic
)
3105 /* non-PIC stubs. */
3106 : ((globals
->use_blx
3107 && (r_type
==R_ARM_THM_CALL
))
3108 /* V5T and above. */
3109 ? arm_stub_long_branch_any_any
3111 : arm_stub_long_branch_v4t_thumb_thumb
);
3115 stub_type
= (info
->shared
| globals
->pic_veneer
)
3117 ? arm_stub_long_branch_thumb_only_pic
3119 : arm_stub_long_branch_thumb_only
;
3126 && sym_sec
->owner
!= NULL
3127 && !INTERWORK_FLAG (sym_sec
->owner
))
3129 (*_bfd_error_handler
)
3130 (_("%B(%s): warning: interworking not enabled.\n"
3131 " first occurrence: %B: Thumb call to ARM"),
3132 sym_sec
->owner
, input_bfd
, name
);
3135 stub_type
= (info
->shared
| globals
->pic_veneer
)
3137 ? ((globals
->use_blx
3138 && (r_type
==R_ARM_THM_CALL
))
3139 /* V5T and above. */
3140 ? arm_stub_long_branch_any_arm_pic
3142 : arm_stub_long_branch_v4t_thumb_arm_pic
)
3144 /* non-PIC stubs. */
3145 : ((globals
->use_blx
3146 && (r_type
==R_ARM_THM_CALL
))
3147 /* V5T and above. */
3148 ? arm_stub_long_branch_any_any
3150 : arm_stub_long_branch_v4t_thumb_arm
);
3152 /* Handle v4t short branches. */
3153 if ((stub_type
== arm_stub_long_branch_v4t_thumb_arm
)
3154 && (branch_offset
<= THM_MAX_FWD_BRANCH_OFFSET
)
3155 && (branch_offset
>= THM_MAX_BWD_BRANCH_OFFSET
))
3156 stub_type
= arm_stub_short_branch_v4t_thumb_arm
;
3160 else if (r_type
== R_ARM_CALL
|| r_type
== R_ARM_JUMP24
|| r_type
== R_ARM_PLT32
)
3162 if (st_type
== STT_ARM_TFUNC
)
3167 && sym_sec
->owner
!= NULL
3168 && !INTERWORK_FLAG (sym_sec
->owner
))
3170 (*_bfd_error_handler
)
3171 (_("%B(%s): warning: interworking not enabled.\n"
3172 " first occurrence: %B: ARM call to Thumb"),
3173 sym_sec
->owner
, input_bfd
, name
);
3176 /* We have an extra 2-bytes reach because of
3177 the mode change (bit 24 (H) of BLX encoding). */
3178 if (branch_offset
> (ARM_MAX_FWD_BRANCH_OFFSET
+ 2)
3179 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
)
3180 || ((r_type
== R_ARM_CALL
) && !globals
->use_blx
)
3181 || (r_type
== R_ARM_JUMP24
)
3182 || (r_type
== R_ARM_PLT32
))
3184 stub_type
= (info
->shared
| globals
->pic_veneer
)
3186 ? ((globals
->use_blx
)
3187 /* V5T and above. */
3188 ? arm_stub_long_branch_any_thumb_pic
3190 : arm_stub_long_branch_v4t_arm_thumb_pic
)
3192 /* non-PIC stubs. */
3193 : ((globals
->use_blx
)
3194 /* V5T and above. */
3195 ? arm_stub_long_branch_any_any
3197 : arm_stub_long_branch_v4t_arm_thumb
);
3203 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
3204 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
))
3206 stub_type
= (info
->shared
| globals
->pic_veneer
)
3208 ? arm_stub_long_branch_any_arm_pic
3209 /* non-PIC stubs. */
3210 : arm_stub_long_branch_any_any
;
3218 /* Build a name for an entry in the stub hash table. */
3221 elf32_arm_stub_name (const asection
*input_section
,
3222 const asection
*sym_sec
,
3223 const struct elf32_arm_link_hash_entry
*hash
,
3224 const Elf_Internal_Rela
*rel
)
3231 len
= 8 + 1 + strlen (hash
->root
.root
.root
.string
) + 1 + 8 + 1;
3232 stub_name
= bfd_malloc (len
);
3233 if (stub_name
!= NULL
)
3234 sprintf (stub_name
, "%08x_%s+%x",
3235 input_section
->id
& 0xffffffff,
3236 hash
->root
.root
.root
.string
,
3237 (int) rel
->r_addend
& 0xffffffff);
3241 len
= 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3242 stub_name
= bfd_malloc (len
);
3243 if (stub_name
!= NULL
)
3244 sprintf (stub_name
, "%08x_%x:%x+%x",
3245 input_section
->id
& 0xffffffff,
3246 sym_sec
->id
& 0xffffffff,
3247 (int) ELF32_R_SYM (rel
->r_info
) & 0xffffffff,
3248 (int) rel
->r_addend
& 0xffffffff);
3254 /* Look up an entry in the stub hash. Stub entries are cached because
3255 creating the stub name takes a bit of time. */
3257 static struct elf32_arm_stub_hash_entry
*
3258 elf32_arm_get_stub_entry (const asection
*input_section
,
3259 const asection
*sym_sec
,
3260 struct elf_link_hash_entry
*hash
,
3261 const Elf_Internal_Rela
*rel
,
3262 struct elf32_arm_link_hash_table
*htab
)
3264 struct elf32_arm_stub_hash_entry
*stub_entry
;
3265 struct elf32_arm_link_hash_entry
*h
= (struct elf32_arm_link_hash_entry
*) hash
;
3266 const asection
*id_sec
;
3268 if ((input_section
->flags
& SEC_CODE
) == 0)
3271 /* If this input section is part of a group of sections sharing one
3272 stub section, then use the id of the first section in the group.
3273 Stub names need to include a section id, as there may well be
3274 more than one stub used to reach say, printf, and we need to
3275 distinguish between them. */
3276 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
3278 if (h
!= NULL
&& h
->stub_cache
!= NULL
3279 && h
->stub_cache
->h
== h
3280 && h
->stub_cache
->id_sec
== id_sec
)
3282 stub_entry
= h
->stub_cache
;
3288 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, h
, rel
);
3289 if (stub_name
== NULL
)
3292 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
,
3293 stub_name
, FALSE
, FALSE
);
3295 h
->stub_cache
= stub_entry
;
3303 /* Find or create a stub section. Returns a pointer to the stub section, and
3304 the section to which the stub section will be attached (in *LINK_SEC_P).
3305 LINK_SEC_P may be NULL. */
3308 elf32_arm_create_or_find_stub_sec (asection
**link_sec_p
, asection
*section
,
3309 struct elf32_arm_link_hash_table
*htab
)
3314 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
3315 stub_sec
= htab
->stub_group
[section
->id
].stub_sec
;
3316 if (stub_sec
== NULL
)
3318 stub_sec
= htab
->stub_group
[link_sec
->id
].stub_sec
;
3319 if (stub_sec
== NULL
)
3325 namelen
= strlen (link_sec
->name
);
3326 len
= namelen
+ sizeof (STUB_SUFFIX
);
3327 s_name
= bfd_alloc (htab
->stub_bfd
, len
);
3331 memcpy (s_name
, link_sec
->name
, namelen
);
3332 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
3333 stub_sec
= (*htab
->add_stub_section
) (s_name
, link_sec
);
3334 if (stub_sec
== NULL
)
3336 htab
->stub_group
[link_sec
->id
].stub_sec
= stub_sec
;
3338 htab
->stub_group
[section
->id
].stub_sec
= stub_sec
;
3342 *link_sec_p
= link_sec
;
3347 /* Add a new stub entry to the stub hash. Not all fields of the new
3348 stub entry are initialised. */
3350 static struct elf32_arm_stub_hash_entry
*
3351 elf32_arm_add_stub (const char *stub_name
,
3353 struct elf32_arm_link_hash_table
*htab
)
3357 struct elf32_arm_stub_hash_entry
*stub_entry
;
3359 stub_sec
= elf32_arm_create_or_find_stub_sec (&link_sec
, section
, htab
);
3360 if (stub_sec
== NULL
)
3363 /* Enter this entry into the linker stub hash table. */
3364 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
3366 if (stub_entry
== NULL
)
3368 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
3374 stub_entry
->stub_sec
= stub_sec
;
3375 stub_entry
->stub_offset
= 0;
3376 stub_entry
->id_sec
= link_sec
;
3381 /* Store an Arm insn into an output section not processed by
3382 elf32_arm_write_section. */
3385 put_arm_insn (struct elf32_arm_link_hash_table
* htab
,
3386 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3388 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3389 bfd_putl32 (val
, ptr
);
3391 bfd_putb32 (val
, ptr
);
3394 /* Store a 16-bit Thumb insn into an output section not processed by
3395 elf32_arm_write_section. */
3398 put_thumb_insn (struct elf32_arm_link_hash_table
* htab
,
3399 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3401 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3402 bfd_putl16 (val
, ptr
);
3404 bfd_putb16 (val
, ptr
);
3407 static bfd_reloc_status_type elf32_arm_final_link_relocate
3408 (reloc_howto_type
*, bfd
*, bfd
*, asection
*, bfd_byte
*,
3409 Elf_Internal_Rela
*, bfd_vma
, struct bfd_link_info
*, asection
*,
3410 const char *, int, struct elf_link_hash_entry
*, bfd_boolean
*, char **);
3413 arm_build_one_stub (struct bfd_hash_entry
*gen_entry
,
3417 struct elf32_arm_stub_hash_entry
*stub_entry
;
3418 struct bfd_link_info
*info
;
3419 struct elf32_arm_link_hash_table
*htab
;
3427 const insn_sequence
*template;
3429 struct elf32_arm_link_hash_table
* globals
;
3430 int stub_reloc_idx
[MAXRELOCS
] = {-1, -1};
3431 int stub_reloc_offset
[MAXRELOCS
] = {0, 0};
3434 /* Massage our args to the form they really have. */
3435 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
3436 info
= (struct bfd_link_info
*) in_arg
;
3438 globals
= elf32_arm_hash_table (info
);
3440 htab
= elf32_arm_hash_table (info
);
3441 stub_sec
= stub_entry
->stub_sec
;
3443 /* Make a note of the offset within the stubs for this entry. */
3444 stub_entry
->stub_offset
= stub_sec
->size
;
3445 loc
= stub_sec
->contents
+ stub_entry
->stub_offset
;
3447 stub_bfd
= stub_sec
->owner
;
3449 /* This is the address of the start of the stub. */
3450 stub_addr
= stub_sec
->output_section
->vma
+ stub_sec
->output_offset
3451 + stub_entry
->stub_offset
;
3453 /* This is the address of the stub destination. */
3454 sym_value
= (stub_entry
->target_value
3455 + stub_entry
->target_section
->output_offset
3456 + stub_entry
->target_section
->output_section
->vma
);
3458 template = stub_entry
->stub_template
;
3459 template_size
= stub_entry
->stub_template_size
;
3462 for (i
= 0; i
< template_size
; i
++)
3464 switch (template[i
].type
)
3468 bfd_vma data
= template[i
].data
;
3469 if (template[i
].reloc_addend
!= 0)
3471 /* We've borrowed the reloc_addend field to mean we should
3472 insert a condition code into this (Thumb-1 branch)
3473 instruction. See THUMB16_BCOND_INSN. */
3474 BFD_ASSERT ((data
& 0xff00) == 0xd000);
3475 data
|= ((stub_entry
->orig_insn
>> 22) & 0xf) << 8;
3477 put_thumb_insn (globals
, stub_bfd
, data
, loc
+ size
);
3483 put_thumb_insn (globals
, stub_bfd
, (template[i
].data
>> 16) & 0xffff,
3485 put_thumb_insn (globals
, stub_bfd
, template[i
].data
& 0xffff,
3487 if (template[i
].r_type
!= R_ARM_NONE
)
3489 stub_reloc_idx
[nrelocs
] = i
;
3490 stub_reloc_offset
[nrelocs
++] = size
;
3496 put_arm_insn (globals
, stub_bfd
, template[i
].data
, loc
+ size
);
3497 /* Handle cases where the target is encoded within the
3499 if (template[i
].r_type
== R_ARM_JUMP24
)
3501 stub_reloc_idx
[nrelocs
] = i
;
3502 stub_reloc_offset
[nrelocs
++] = size
;
3508 bfd_put_32 (stub_bfd
, template[i
].data
, loc
+ size
);
3509 stub_reloc_idx
[nrelocs
] = i
;
3510 stub_reloc_offset
[nrelocs
++] = size
;
3520 stub_sec
->size
+= size
;
3522 /* Stub size has already been computed in arm_size_one_stub. Check
3524 BFD_ASSERT (size
== stub_entry
->stub_size
);
3526 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3527 if (stub_entry
->st_type
== STT_ARM_TFUNC
)
3530 /* Assume there is at least one and at most MAXRELOCS entries to relocate
3532 BFD_ASSERT (nrelocs
!= 0 && nrelocs
<= MAXRELOCS
);
3534 for (i
= 0; i
< nrelocs
; i
++)
3535 if (template[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_JUMP24
3536 || template[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_JUMP19
3537 || template[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_CALL
3538 || template[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_XPC22
)
3540 Elf_Internal_Rela rel
;
3541 bfd_boolean unresolved_reloc
;
3542 char *error_message
;
3544 = (template[stub_reloc_idx
[i
]].r_type
!= R_ARM_THM_XPC22
)
3545 ? STT_ARM_TFUNC
: 0;
3546 bfd_vma points_to
= sym_value
+ stub_entry
->target_addend
;
3548 rel
.r_offset
= stub_entry
->stub_offset
+ stub_reloc_offset
[i
];
3549 rel
.r_info
= ELF32_R_INFO (0, template[stub_reloc_idx
[i
]].r_type
);
3550 rel
.r_addend
= template[stub_reloc_idx
[i
]].reloc_addend
;
3552 if (stub_entry
->stub_type
== arm_stub_a8_veneer_b_cond
&& i
== 0)
3553 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
3554 template should refer back to the instruction after the original
3556 points_to
= sym_value
;
3558 /* Note: _bfd_final_link_relocate doesn't handle these relocations
3559 properly. We should probably use this function unconditionally,
3560 rather than only for certain relocations listed in the enclosing
3561 conditional, for the sake of consistency. */
3562 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
3563 (template[stub_reloc_idx
[i
]].r_type
),
3564 stub_bfd
, info
->output_bfd
, stub_sec
, stub_sec
->contents
, &rel
,
3565 points_to
, info
, stub_entry
->target_section
, "", sym_flags
,
3566 (struct elf_link_hash_entry
*) stub_entry
, &unresolved_reloc
,
3571 _bfd_final_link_relocate (elf32_arm_howto_from_type
3572 (template[stub_reloc_idx
[i
]].r_type
), stub_bfd
, stub_sec
,
3573 stub_sec
->contents
, stub_entry
->stub_offset
+ stub_reloc_offset
[i
],
3574 sym_value
+ stub_entry
->target_addend
,
3575 template[stub_reloc_idx
[i
]].reloc_addend
);
3582 /* Calculate the template, template size and instruction size for a stub.
3583 Return value is the instruction size. */
3586 find_stub_size_and_template (enum elf32_arm_stub_type stub_type
,
3587 const insn_sequence
**stub_template
,
3588 int *stub_template_size
)
3590 const insn_sequence
*template = NULL
;
3591 int template_size
= 0, i
;
3594 template = stub_definitions
[stub_type
].template;
3595 template_size
= stub_definitions
[stub_type
].template_size
;
3598 for (i
= 0; i
< template_size
; i
++)
3600 switch (template[i
].type
)
3619 *stub_template
= template;
3621 if (stub_template_size
)
3622 *stub_template_size
= template_size
;
3627 /* As above, but don't actually build the stub. Just bump offset so
3628 we know stub section sizes. */
3631 arm_size_one_stub (struct bfd_hash_entry
*gen_entry
,
3634 struct elf32_arm_stub_hash_entry
*stub_entry
;
3635 struct elf32_arm_link_hash_table
*htab
;
3636 const insn_sequence
*template;
3637 int template_size
, size
;
3639 /* Massage our args to the form they really have. */
3640 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
3641 htab
= (struct elf32_arm_link_hash_table
*) in_arg
;
3643 BFD_ASSERT((stub_entry
->stub_type
> arm_stub_none
)
3644 && stub_entry
->stub_type
< ARRAY_SIZE(stub_definitions
));
3646 size
= find_stub_size_and_template (stub_entry
->stub_type
, &template,
3649 stub_entry
->stub_size
= size
;
3650 stub_entry
->stub_template
= template;
3651 stub_entry
->stub_template_size
= template_size
;
3653 size
= (size
+ 7) & ~7;
3654 stub_entry
->stub_sec
->size
+= size
;
3659 /* External entry points for sizing and building linker stubs. */
3661 /* Set up various things so that we can make a list of input sections
3662 for each output section included in the link. Returns -1 on error,
3663 0 when no stubs will be needed, and 1 on success. */
3666 elf32_arm_setup_section_lists (bfd
*output_bfd
,
3667 struct bfd_link_info
*info
)
3670 unsigned int bfd_count
;
3671 int top_id
, top_index
;
3673 asection
**input_list
, **list
;
3675 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3677 if (! is_elf_hash_table (htab
))
3680 /* Count the number of input BFDs and find the top input section id. */
3681 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
3683 input_bfd
= input_bfd
->link_next
)
3686 for (section
= input_bfd
->sections
;
3688 section
= section
->next
)
3690 if (top_id
< section
->id
)
3691 top_id
= section
->id
;
3694 htab
->bfd_count
= bfd_count
;
3696 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
3697 htab
->stub_group
= bfd_zmalloc (amt
);
3698 if (htab
->stub_group
== NULL
)
3701 /* We can't use output_bfd->section_count here to find the top output
3702 section index as some sections may have been removed, and
3703 _bfd_strip_section_from_output doesn't renumber the indices. */
3704 for (section
= output_bfd
->sections
, top_index
= 0;
3706 section
= section
->next
)
3708 if (top_index
< section
->index
)
3709 top_index
= section
->index
;
3712 htab
->top_index
= top_index
;
3713 amt
= sizeof (asection
*) * (top_index
+ 1);
3714 input_list
= bfd_malloc (amt
);
3715 htab
->input_list
= input_list
;
3716 if (input_list
== NULL
)
3719 /* For sections we aren't interested in, mark their entries with a
3720 value we can check later. */
3721 list
= input_list
+ top_index
;
3723 *list
= bfd_abs_section_ptr
;
3724 while (list
-- != input_list
);
3726 for (section
= output_bfd
->sections
;
3728 section
= section
->next
)
3730 if ((section
->flags
& SEC_CODE
) != 0)
3731 input_list
[section
->index
] = NULL
;
3737 /* The linker repeatedly calls this function for each input section,
3738 in the order that input sections are linked into output sections.
3739 Build lists of input sections to determine groupings between which
3740 we may insert linker stubs. */
3743 elf32_arm_next_input_section (struct bfd_link_info
*info
,
3746 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3748 if (isec
->output_section
->index
<= htab
->top_index
)
3750 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
3752 if (*list
!= bfd_abs_section_ptr
)
3754 /* Steal the link_sec pointer for our list. */
3755 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3756 /* This happens to make the list in reverse order,
3757 which we reverse later. */
3758 PREV_SEC (isec
) = *list
;
3764 /* See whether we can group stub sections together. Grouping stub
3765 sections may result in fewer stubs. More importantly, we need to
3766 put all .init* and .fini* stubs at the end of the .init or
3767 .fini output sections respectively, because glibc splits the
3768 _init and _fini functions into multiple parts. Putting a stub in
3769 the middle of a function is not a good idea. */
3772 group_sections (struct elf32_arm_link_hash_table
*htab
,
3773 bfd_size_type stub_group_size
,
3774 bfd_boolean stubs_always_after_branch
)
3776 asection
**list
= htab
->input_list
;
3780 asection
*tail
= *list
;
3783 if (tail
== bfd_abs_section_ptr
)
3786 /* Reverse the list: we must avoid placing stubs at the
3787 beginning of the section because the beginning of the text
3788 section may be required for an interrupt vector in bare metal
3790 #define NEXT_SEC PREV_SEC
3792 while (tail
!= NULL
)
3794 /* Pop from tail. */
3795 asection
*item
= tail
;
3796 tail
= PREV_SEC (item
);
3799 NEXT_SEC (item
) = head
;
3803 while (head
!= NULL
)
3807 bfd_vma stub_group_start
= head
->output_offset
;
3808 bfd_vma end_of_next
;
3811 while (NEXT_SEC (curr
) != NULL
)
3813 next
= NEXT_SEC (curr
);
3814 end_of_next
= next
->output_offset
+ next
->size
;
3815 if (end_of_next
- stub_group_start
>= stub_group_size
)
3816 /* End of NEXT is too far from start, so stop. */
3818 /* Add NEXT to the group. */
3822 /* OK, the size from the start to the start of CURR is less
3823 than stub_group_size and thus can be handled by one stub
3824 section. (Or the head section is itself larger than
3825 stub_group_size, in which case we may be toast.)
3826 We should really be keeping track of the total size of
3827 stubs added here, as stubs contribute to the final output
3831 next
= NEXT_SEC (head
);
3832 /* Set up this stub group. */
3833 htab
->stub_group
[head
->id
].link_sec
= curr
;
3835 while (head
!= curr
&& (head
= next
) != NULL
);
3837 /* But wait, there's more! Input sections up to stub_group_size
3838 bytes after the stub section can be handled by it too. */
3839 if (!stubs_always_after_branch
)
3841 stub_group_start
= curr
->output_offset
+ curr
->size
;
3843 while (next
!= NULL
)
3845 end_of_next
= next
->output_offset
+ next
->size
;
3846 if (end_of_next
- stub_group_start
>= stub_group_size
)
3847 /* End of NEXT is too far from stubs, so stop. */
3849 /* Add NEXT to the stub group. */
3851 next
= NEXT_SEC (head
);
3852 htab
->stub_group
[head
->id
].link_sec
= curr
;
3858 while (list
++ != htab
->input_list
+ htab
->top_index
);
3860 free (htab
->input_list
);
3865 /* Comparison function for sorting/searching relocations relating to Cortex-A8
3869 a8_reloc_compare (const void *a
, const void *b
)
3871 const struct a8_erratum_reloc
*ra
= a
, *rb
= b
;
3873 if (ra
->from
< rb
->from
)
3875 else if (ra
->from
> rb
->from
)
3881 static struct elf_link_hash_entry
*find_thumb_glue (struct bfd_link_info
*,
3882 const char *, char **);
3884 /* Helper function to scan code for sequences which might trigger the Cortex-A8
3885 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
3886 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
3890 cortex_a8_erratum_scan (bfd
*input_bfd
,
3891 struct bfd_link_info
*info
,
3892 struct a8_erratum_fix
**a8_fixes_p
,
3893 unsigned int *num_a8_fixes_p
,
3894 unsigned int *a8_fix_table_size_p
,
3895 struct a8_erratum_reloc
*a8_relocs
,
3896 unsigned int num_a8_relocs
)
3899 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
3900 struct a8_erratum_fix
*a8_fixes
= *a8_fixes_p
;
3901 unsigned int num_a8_fixes
= *num_a8_fixes_p
;
3902 unsigned int a8_fix_table_size
= *a8_fix_table_size_p
;
3904 for (section
= input_bfd
->sections
;
3906 section
= section
->next
)
3908 bfd_byte
*contents
= NULL
;
3909 struct _arm_elf_section_data
*sec_data
;
3913 if (elf_section_type (section
) != SHT_PROGBITS
3914 || (elf_section_flags (section
) & SHF_EXECINSTR
) == 0
3915 || (section
->flags
& SEC_EXCLUDE
) != 0
3916 || (section
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
3917 || (section
->output_section
== bfd_abs_section_ptr
))
3920 base_vma
= section
->output_section
->vma
+ section
->output_offset
;
3922 if (elf_section_data (section
)->this_hdr
.contents
!= NULL
)
3923 contents
= elf_section_data (section
)->this_hdr
.contents
;
3924 else if (! bfd_malloc_and_get_section (input_bfd
, section
, &contents
))
3927 sec_data
= elf32_arm_section_data (section
);
3929 for (span
= 0; span
< sec_data
->mapcount
; span
++)
3931 unsigned int span_start
= sec_data
->map
[span
].vma
;
3932 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
3933 ? section
->size
: sec_data
->map
[span
+ 1].vma
;
3935 char span_type
= sec_data
->map
[span
].type
;
3936 bfd_boolean last_was_32bit
= FALSE
, last_was_branch
= FALSE
;
3938 if (span_type
!= 't')
3941 /* Span is entirely within a single 4KB region: skip scanning. */
3942 if (((base_vma
+ span_start
) & ~0xfff)
3943 == ((base_vma
+ span_end
) & ~0xfff))
3946 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
3948 * The opcode is BLX.W, BL.W, B.W, Bcc.W
3949 * The branch target is in the same 4KB region as the
3950 first half of the branch.
3951 * The instruction before the branch is a 32-bit
3952 length non-branch instruction. */
3953 for (i
= span_start
; i
< span_end
;)
3955 unsigned int insn
= bfd_getl16 (&contents
[i
]);
3956 bfd_boolean insn_32bit
= FALSE
, is_blx
= FALSE
, is_b
= FALSE
;
3957 bfd_boolean is_bl
= FALSE
, is_bcc
= FALSE
, is_32bit_branch
;
3959 if ((insn
& 0xe000) == 0xe000 && (insn
& 0x1800) != 0x0000)
3964 /* Load the rest of the insn (in manual-friendly order). */
3965 insn
= (insn
<< 16) | bfd_getl16 (&contents
[i
+ 2]);
3967 /* Encoding T4: B<c>.W. */
3968 is_b
= (insn
& 0xf800d000) == 0xf0009000;
3969 /* Encoding T1: BL<c>.W. */
3970 is_bl
= (insn
& 0xf800d000) == 0xf000d000;
3971 /* Encoding T2: BLX<c>.W. */
3972 is_blx
= (insn
& 0xf800d000) == 0xf000c000;
3973 /* Encoding T3: B<c>.W (not permitted in IT block). */
3974 is_bcc
= (insn
& 0xf800d000) == 0xf0008000
3975 && (insn
& 0x07f00000) != 0x03800000;
3978 is_32bit_branch
= is_b
|| is_bl
|| is_blx
|| is_bcc
;
3980 if (((base_vma
+ i
) & 0xfff) == 0xffe
3984 && ! last_was_branch
)
3986 bfd_signed_vma offset
;
3987 bfd_boolean force_target_arm
= FALSE
;
3988 bfd_boolean force_target_thumb
= FALSE
;
3990 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
3991 struct a8_erratum_reloc key
, *found
;
3993 key
.from
= base_vma
+ i
;
3994 found
= bsearch (&key
, a8_relocs
, num_a8_relocs
,
3995 sizeof (struct a8_erratum_reloc
),
4000 char *error_message
= NULL
;
4001 struct elf_link_hash_entry
*entry
;
4003 /* We don't care about the error returned from this
4004 function, only if there is glue or not. */
4005 entry
= find_thumb_glue (info
, found
->sym_name
,
4009 found
->non_a8_stub
= TRUE
;
4011 if (found
->r_type
== R_ARM_THM_CALL
4012 && found
->st_type
!= STT_ARM_TFUNC
)
4013 force_target_arm
= TRUE
;
4014 else if (found
->r_type
== R_ARM_THM_CALL
4015 && found
->st_type
== STT_ARM_TFUNC
)
4016 force_target_thumb
= TRUE
;
4019 /* Check if we have an offending branch instruction. */
4021 if (found
&& found
->non_a8_stub
)
4022 /* We've already made a stub for this instruction, e.g.
4023 it's a long branch or a Thumb->ARM stub. Assume that
4024 stub will suffice to work around the A8 erratum (see
4025 setting of always_after_branch above). */
4029 offset
= (insn
& 0x7ff) << 1;
4030 offset
|= (insn
& 0x3f0000) >> 4;
4031 offset
|= (insn
& 0x2000) ? 0x40000 : 0;
4032 offset
|= (insn
& 0x800) ? 0x80000 : 0;
4033 offset
|= (insn
& 0x4000000) ? 0x100000 : 0;
4034 if (offset
& 0x100000)
4035 offset
|= ~ ((bfd_signed_vma
) 0xfffff);
4036 stub_type
= arm_stub_a8_veneer_b_cond
;
4038 else if (is_b
|| is_bl
|| is_blx
)
4040 int s
= (insn
& 0x4000000) != 0;
4041 int j1
= (insn
& 0x2000) != 0;
4042 int j2
= (insn
& 0x800) != 0;
4046 offset
= (insn
& 0x7ff) << 1;
4047 offset
|= (insn
& 0x3ff0000) >> 4;
4051 if (offset
& 0x1000000)
4052 offset
|= ~ ((bfd_signed_vma
) 0xffffff);
4055 offset
&= ~ ((bfd_signed_vma
) 3);
4057 stub_type
= is_blx
? arm_stub_a8_veneer_blx
:
4058 is_bl
? arm_stub_a8_veneer_bl
: arm_stub_a8_veneer_b
;
4061 if (stub_type
!= arm_stub_none
)
4063 bfd_vma pc_for_insn
= base_vma
+ i
+ 4;
4065 /* The original instruction is a BL, but the target is
4066 an ARM instruction. If we were not making a stub,
4067 the BL would have been converted to a BLX. Use the
4068 BLX stub instead in that case. */
4069 if (htab
->use_blx
&& force_target_arm
4070 && stub_type
== arm_stub_a8_veneer_bl
)
4072 stub_type
= arm_stub_a8_veneer_blx
;
4076 /* Conversely, if the original instruction was
4077 BLX but the target is Thumb mode, use the BL
4079 else if (force_target_thumb
4080 && stub_type
== arm_stub_a8_veneer_blx
)
4082 stub_type
= arm_stub_a8_veneer_bl
;
4088 pc_for_insn
&= ~ ((bfd_vma
) 3);
4090 /* If we found a relocation, use the proper destination,
4091 not the offset in the (unrelocated) instruction.
4092 Note this is always done if we switched the stub type
4096 (bfd_signed_vma
) (found
->destination
- pc_for_insn
);
4098 target
= pc_for_insn
+ offset
;
4100 /* The BLX stub is ARM-mode code. Adjust the offset to
4101 take the different PC value (+8 instead of +4) into
4103 if (stub_type
== arm_stub_a8_veneer_blx
)
4106 if (((base_vma
+ i
) & ~0xfff) == (target
& ~0xfff))
4110 if (num_a8_fixes
== a8_fix_table_size
)
4112 a8_fix_table_size
*= 2;
4113 a8_fixes
= bfd_realloc (a8_fixes
,
4114 sizeof (struct a8_erratum_fix
)
4115 * a8_fix_table_size
);
4118 stub_name
= bfd_malloc (8 + 1 + 8 + 1);
4119 if (stub_name
!= NULL
)
4120 sprintf (stub_name
, "%x:%x", section
->id
, i
);
4122 a8_fixes
[num_a8_fixes
].input_bfd
= input_bfd
;
4123 a8_fixes
[num_a8_fixes
].section
= section
;
4124 a8_fixes
[num_a8_fixes
].offset
= i
;
4125 a8_fixes
[num_a8_fixes
].addend
= offset
;
4126 a8_fixes
[num_a8_fixes
].orig_insn
= insn
;
4127 a8_fixes
[num_a8_fixes
].stub_name
= stub_name
;
4128 a8_fixes
[num_a8_fixes
].stub_type
= stub_type
;
4135 i
+= insn_32bit
? 4 : 2;
4136 last_was_32bit
= insn_32bit
;
4137 last_was_branch
= is_32bit_branch
;
4141 if (elf_section_data (section
)->this_hdr
.contents
== NULL
)
4145 *a8_fixes_p
= a8_fixes
;
4146 *num_a8_fixes_p
= num_a8_fixes
;
4147 *a8_fix_table_size_p
= a8_fix_table_size
;
4152 /* Determine and set the size of the stub section for a final link.
4154 The basic idea here is to examine all the relocations looking for
4155 PC-relative calls to a target that is unreachable with a "bl"
4159 elf32_arm_size_stubs (bfd
*output_bfd
,
4161 struct bfd_link_info
*info
,
4162 bfd_signed_vma group_size
,
4163 asection
* (*add_stub_section
) (const char *, asection
*),
4164 void (*layout_sections_again
) (void))
4166 bfd_size_type stub_group_size
;
4167 bfd_boolean stubs_always_after_branch
;
4168 bfd_boolean stub_changed
= 0;
4169 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4170 struct a8_erratum_fix
*a8_fixes
= NULL
;
4171 unsigned int num_a8_fixes
= 0, prev_num_a8_fixes
= 0, a8_fix_table_size
= 10;
4172 struct a8_erratum_reloc
*a8_relocs
= NULL
;
4173 unsigned int num_a8_relocs
= 0, a8_reloc_table_size
= 10, i
;
4175 if (htab
->fix_cortex_a8
)
4177 a8_fixes
= bfd_zmalloc (sizeof (struct a8_erratum_fix
)
4178 * a8_fix_table_size
);
4179 a8_relocs
= bfd_zmalloc (sizeof (struct a8_erratum_reloc
)
4180 * a8_reloc_table_size
);
4183 /* Propagate mach to stub bfd, because it may not have been
4184 finalized when we created stub_bfd. */
4185 bfd_set_arch_mach (stub_bfd
, bfd_get_arch (output_bfd
),
4186 bfd_get_mach (output_bfd
));
4188 /* Stash our params away. */
4189 htab
->stub_bfd
= stub_bfd
;
4190 htab
->add_stub_section
= add_stub_section
;
4191 htab
->layout_sections_again
= layout_sections_again
;
4192 stubs_always_after_branch
= group_size
< 0;
4194 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4195 as the first half of a 32-bit branch straddling two 4K pages. This is a
4196 crude way of enforcing that. */
4197 if (htab
->fix_cortex_a8
)
4198 stubs_always_after_branch
= 1;
4201 stub_group_size
= -group_size
;
4203 stub_group_size
= group_size
;
4205 if (stub_group_size
== 1)
4207 /* Default values. */
4208 /* Thumb branch range is +-4MB has to be used as the default
4209 maximum size (a given section can contain both ARM and Thumb
4210 code, so the worst case has to be taken into account).
4212 This value is 24K less than that, which allows for 2025
4213 12-byte stubs. If we exceed that, then we will fail to link.
4214 The user will have to relink with an explicit group size
4216 stub_group_size
= 4170000;
4219 group_sections (htab
, stub_group_size
, stubs_always_after_branch
);
4224 unsigned int bfd_indx
;
4229 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
4231 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
4233 Elf_Internal_Shdr
*symtab_hdr
;
4235 Elf_Internal_Sym
*local_syms
= NULL
;
4239 /* We'll need the symbol table in a second. */
4240 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
4241 if (symtab_hdr
->sh_info
== 0)
4244 /* Walk over each section attached to the input bfd. */
4245 for (section
= input_bfd
->sections
;
4247 section
= section
->next
)
4249 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
4251 /* If there aren't any relocs, then there's nothing more
4253 if ((section
->flags
& SEC_RELOC
) == 0
4254 || section
->reloc_count
== 0
4255 || (section
->flags
& SEC_CODE
) == 0)
4258 /* If this section is a link-once section that will be
4259 discarded, then don't create any stubs. */
4260 if (section
->output_section
== NULL
4261 || section
->output_section
->owner
!= output_bfd
)
4264 /* Get the relocs. */
4266 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
,
4267 NULL
, info
->keep_memory
);
4268 if (internal_relocs
== NULL
)
4269 goto error_ret_free_local
;
4271 /* Now examine each relocation. */
4272 irela
= internal_relocs
;
4273 irelaend
= irela
+ section
->reloc_count
;
4274 for (; irela
< irelaend
; irela
++)
4276 unsigned int r_type
, r_indx
;
4277 enum elf32_arm_stub_type stub_type
;
4278 struct elf32_arm_stub_hash_entry
*stub_entry
;
4281 bfd_vma destination
;
4282 struct elf32_arm_link_hash_entry
*hash
;
4283 const char *sym_name
;
4285 const asection
*id_sec
;
4286 unsigned char st_type
;
4287 bfd_boolean created_stub
= FALSE
;
4289 r_type
= ELF32_R_TYPE (irela
->r_info
);
4290 r_indx
= ELF32_R_SYM (irela
->r_info
);
4292 if (r_type
>= (unsigned int) R_ARM_max
)
4294 bfd_set_error (bfd_error_bad_value
);
4295 error_ret_free_internal
:
4296 if (elf_section_data (section
)->relocs
== NULL
)
4297 free (internal_relocs
);
4298 goto error_ret_free_local
;
4301 /* Only look for stubs on branch instructions. */
4302 if ((r_type
!= (unsigned int) R_ARM_CALL
)
4303 && (r_type
!= (unsigned int) R_ARM_THM_CALL
)
4304 && (r_type
!= (unsigned int) R_ARM_JUMP24
)
4305 && (r_type
!= (unsigned int) R_ARM_THM_JUMP19
)
4306 && (r_type
!= (unsigned int) R_ARM_THM_XPC22
)
4307 && (r_type
!= (unsigned int) R_ARM_THM_JUMP24
)
4308 && (r_type
!= (unsigned int) R_ARM_PLT32
))
4311 /* Now determine the call target, its name, value,
4318 if (r_indx
< symtab_hdr
->sh_info
)
4320 /* It's a local symbol. */
4321 Elf_Internal_Sym
*sym
;
4322 Elf_Internal_Shdr
*hdr
;
4324 if (local_syms
== NULL
)
4327 = (Elf_Internal_Sym
*) symtab_hdr
->contents
;
4328 if (local_syms
== NULL
)
4330 = bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
4331 symtab_hdr
->sh_info
, 0,
4333 if (local_syms
== NULL
)
4334 goto error_ret_free_internal
;
4337 sym
= local_syms
+ r_indx
;
4338 hdr
= elf_elfsections (input_bfd
)[sym
->st_shndx
];
4339 sym_sec
= hdr
->bfd_section
;
4340 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
4341 sym_value
= sym
->st_value
;
4342 destination
= (sym_value
+ irela
->r_addend
4343 + sym_sec
->output_offset
4344 + sym_sec
->output_section
->vma
);
4345 st_type
= ELF_ST_TYPE (sym
->st_info
);
4347 = bfd_elf_string_from_elf_section (input_bfd
,
4348 symtab_hdr
->sh_link
,
4353 /* It's an external symbol. */
4356 e_indx
= r_indx
- symtab_hdr
->sh_info
;
4357 hash
= ((struct elf32_arm_link_hash_entry
*)
4358 elf_sym_hashes (input_bfd
)[e_indx
]);
4360 while (hash
->root
.root
.type
== bfd_link_hash_indirect
4361 || hash
->root
.root
.type
== bfd_link_hash_warning
)
4362 hash
= ((struct elf32_arm_link_hash_entry
*)
4363 hash
->root
.root
.u
.i
.link
);
4365 if (hash
->root
.root
.type
== bfd_link_hash_defined
4366 || hash
->root
.root
.type
== bfd_link_hash_defweak
)
4368 sym_sec
= hash
->root
.root
.u
.def
.section
;
4369 sym_value
= hash
->root
.root
.u
.def
.value
;
4370 if (sym_sec
->output_section
!= NULL
)
4371 destination
= (sym_value
+ irela
->r_addend
4372 + sym_sec
->output_offset
4373 + sym_sec
->output_section
->vma
);
4375 else if ((hash
->root
.root
.type
== bfd_link_hash_undefined
)
4376 || (hash
->root
.root
.type
== bfd_link_hash_undefweak
))
4378 /* For a shared library, use the PLT stub as
4379 target address to decide whether a long
4380 branch stub is needed.
4381 For absolute code, they cannot be handled. */
4382 struct elf32_arm_link_hash_table
*globals
=
4383 elf32_arm_hash_table (info
);
4385 if (globals
->splt
!= NULL
&& hash
!= NULL
4386 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
4388 sym_sec
= globals
->splt
;
4389 sym_value
= hash
->root
.plt
.offset
;
4390 if (sym_sec
->output_section
!= NULL
)
4391 destination
= (sym_value
4392 + sym_sec
->output_offset
4393 + sym_sec
->output_section
->vma
);
4400 bfd_set_error (bfd_error_bad_value
);
4401 goto error_ret_free_internal
;
4403 st_type
= ELF_ST_TYPE (hash
->root
.type
);
4404 sym_name
= hash
->root
.root
.root
.string
;
4409 /* Determine what (if any) linker stub is needed. */
4410 stub_type
= arm_type_of_stub (info
, section
, irela
,
4412 destination
, sym_sec
,
4413 input_bfd
, sym_name
);
4414 if (stub_type
== arm_stub_none
)
4417 /* Support for grouping stub sections. */
4418 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
4420 /* Get the name of this stub. */
4421 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, hash
,
4424 goto error_ret_free_internal
;
4426 /* We've either created a stub for this reloc already,
4427 or we are about to. */
4428 created_stub
= TRUE
;
4430 stub_entry
= arm_stub_hash_lookup
4431 (&htab
->stub_hash_table
, stub_name
,
4433 if (stub_entry
!= NULL
)
4435 /* The proper stub has already been created. */
4440 stub_entry
= elf32_arm_add_stub (stub_name
, section
,
4442 if (stub_entry
== NULL
)
4445 goto error_ret_free_internal
;
4448 stub_entry
->target_value
= sym_value
;
4449 stub_entry
->target_section
= sym_sec
;
4450 stub_entry
->stub_type
= stub_type
;
4451 stub_entry
->h
= hash
;
4452 stub_entry
->st_type
= st_type
;
4454 if (sym_name
== NULL
)
4455 sym_name
= "unnamed";
4456 stub_entry
->output_name
4457 = bfd_alloc (htab
->stub_bfd
,
4458 sizeof (THUMB2ARM_GLUE_ENTRY_NAME
)
4459 + strlen (sym_name
));
4460 if (stub_entry
->output_name
== NULL
)
4463 goto error_ret_free_internal
;
4466 /* For historical reasons, use the existing names for
4467 ARM-to-Thumb and Thumb-to-ARM stubs. */
4468 if ( ((r_type
== (unsigned int) R_ARM_THM_CALL
)
4469 || (r_type
== (unsigned int) R_ARM_THM_JUMP24
))
4470 && st_type
!= STT_ARM_TFUNC
)
4471 sprintf (stub_entry
->output_name
,
4472 THUMB2ARM_GLUE_ENTRY_NAME
, sym_name
);
4473 else if ( ((r_type
== (unsigned int) R_ARM_CALL
)
4474 || (r_type
== (unsigned int) R_ARM_JUMP24
))
4475 && st_type
== STT_ARM_TFUNC
)
4476 sprintf (stub_entry
->output_name
,
4477 ARM2THUMB_GLUE_ENTRY_NAME
, sym_name
);
4479 sprintf (stub_entry
->output_name
, STUB_ENTRY_NAME
,
4482 stub_changed
= TRUE
;
4486 /* Look for relocations which might trigger Cortex-A8
4488 if (htab
->fix_cortex_a8
4489 && (r_type
== (unsigned int) R_ARM_THM_JUMP24
4490 || r_type
== (unsigned int) R_ARM_THM_JUMP19
4491 || r_type
== (unsigned int) R_ARM_THM_CALL
4492 || r_type
== (unsigned int) R_ARM_THM_XPC22
))
4494 bfd_vma from
= section
->output_section
->vma
4495 + section
->output_offset
4498 if ((from
& 0xfff) == 0xffe)
4500 /* Found a candidate. Note we haven't checked the
4501 destination is within 4K here: if we do so (and
4502 don't create an entry in a8_relocs) we can't tell
4503 that a branch should have been relocated when
4505 if (num_a8_relocs
== a8_reloc_table_size
)
4507 a8_reloc_table_size
*= 2;
4508 a8_relocs
= bfd_realloc (a8_relocs
,
4509 sizeof (struct a8_erratum_reloc
)
4510 * a8_reloc_table_size
);
4513 a8_relocs
[num_a8_relocs
].from
= from
;
4514 a8_relocs
[num_a8_relocs
].destination
= destination
;
4515 a8_relocs
[num_a8_relocs
].r_type
= r_type
;
4516 a8_relocs
[num_a8_relocs
].st_type
= st_type
;
4517 a8_relocs
[num_a8_relocs
].sym_name
= sym_name
;
4518 a8_relocs
[num_a8_relocs
].non_a8_stub
= created_stub
;
4525 /* We're done with the internal relocs, free them. */
4526 if (elf_section_data (section
)->relocs
== NULL
)
4527 free (internal_relocs
);
4530 if (htab
->fix_cortex_a8
)
4532 /* Sort relocs which might apply to Cortex-A8 erratum. */
4533 qsort (a8_relocs
, num_a8_relocs
, sizeof (struct a8_erratum_reloc
),
4536 /* Scan for branches which might trigger Cortex-A8 erratum. */
4537 if (cortex_a8_erratum_scan (input_bfd
, info
, &a8_fixes
,
4538 &num_a8_fixes
, &a8_fix_table_size
,
4539 a8_relocs
, num_a8_relocs
) != 0)
4540 goto error_ret_free_local
;
4544 if (htab
->fix_cortex_a8
&& num_a8_fixes
!= prev_num_a8_fixes
)
4545 stub_changed
= TRUE
;
4550 /* OK, we've added some stubs. Find out the new size of the
4552 for (stub_sec
= htab
->stub_bfd
->sections
;
4554 stub_sec
= stub_sec
->next
)
4556 /* Ignore non-stub sections. */
4557 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
4563 bfd_hash_traverse (&htab
->stub_hash_table
, arm_size_one_stub
, htab
);
4565 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
4566 if (htab
->fix_cortex_a8
)
4567 for (i
= 0; i
< num_a8_fixes
; i
++)
4569 stub_sec
= elf32_arm_create_or_find_stub_sec (NULL
,
4570 a8_fixes
[i
].section
, htab
);
4572 if (stub_sec
== NULL
)
4573 goto error_ret_free_local
;
4576 += find_stub_size_and_template (a8_fixes
[i
].stub_type
, NULL
,
4581 /* Ask the linker to do its stuff. */
4582 (*htab
->layout_sections_again
) ();
4583 stub_changed
= FALSE
;
4584 prev_num_a8_fixes
= num_a8_fixes
;
4587 /* Add stubs for Cortex-A8 erratum fixes now. */
4588 if (htab
->fix_cortex_a8
)
4590 for (i
= 0; i
< num_a8_fixes
; i
++)
4592 struct elf32_arm_stub_hash_entry
*stub_entry
;
4593 char *stub_name
= a8_fixes
[i
].stub_name
;
4594 asection
*section
= a8_fixes
[i
].section
;
4595 unsigned int section_id
= a8_fixes
[i
].section
->id
;
4596 asection
*link_sec
= htab
->stub_group
[section_id
].link_sec
;
4597 asection
*stub_sec
= htab
->stub_group
[section_id
].stub_sec
;
4598 const insn_sequence
*template;
4599 int template_size
, size
= 0;
4601 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
4603 if (stub_entry
== NULL
)
4605 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
4611 stub_entry
->stub_sec
= stub_sec
;
4612 stub_entry
->stub_offset
= 0;
4613 stub_entry
->id_sec
= link_sec
;
4614 stub_entry
->stub_type
= a8_fixes
[i
].stub_type
;
4615 stub_entry
->target_section
= a8_fixes
[i
].section
;
4616 stub_entry
->target_value
= a8_fixes
[i
].offset
;
4617 stub_entry
->target_addend
= a8_fixes
[i
].addend
;
4618 stub_entry
->orig_insn
= a8_fixes
[i
].orig_insn
;
4619 stub_entry
->st_type
= STT_ARM_TFUNC
;
4621 size
= find_stub_size_and_template (a8_fixes
[i
].stub_type
, &template,
4624 stub_entry
->stub_size
= size
;
4625 stub_entry
->stub_template
= template;
4626 stub_entry
->stub_template_size
= template_size
;
4629 /* Stash the Cortex-A8 erratum fix array for use later in
4630 elf32_arm_write_section(). */
4631 htab
->a8_erratum_fixes
= a8_fixes
;
4632 htab
->num_a8_erratum_fixes
= num_a8_fixes
;
4636 htab
->a8_erratum_fixes
= NULL
;
4637 htab
->num_a8_erratum_fixes
= 0;
4641 error_ret_free_local
:
4645 /* Build all the stubs associated with the current output file. The
4646 stubs are kept in a hash table attached to the main linker hash
4647 table. We also set up the .plt entries for statically linked PIC
4648 functions here. This function is called via arm_elf_finish in the
4652 elf32_arm_build_stubs (struct bfd_link_info
*info
)
4655 struct bfd_hash_table
*table
;
4656 struct elf32_arm_link_hash_table
*htab
;
4658 htab
= elf32_arm_hash_table (info
);
4660 for (stub_sec
= htab
->stub_bfd
->sections
;
4662 stub_sec
= stub_sec
->next
)
4666 /* Ignore non-stub sections. */
4667 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
4670 /* Allocate memory to hold the linker stubs. */
4671 size
= stub_sec
->size
;
4672 stub_sec
->contents
= bfd_zalloc (htab
->stub_bfd
, size
);
4673 if (stub_sec
->contents
== NULL
&& size
!= 0)
4678 /* Build the stubs as directed by the stub hash table. */
4679 table
= &htab
->stub_hash_table
;
4680 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
4685 /* Locate the Thumb encoded calling stub for NAME. */
4687 static struct elf_link_hash_entry
*
4688 find_thumb_glue (struct bfd_link_info
*link_info
,
4690 char **error_message
)
4693 struct elf_link_hash_entry
*hash
;
4694 struct elf32_arm_link_hash_table
*hash_table
;
4696 /* We need a pointer to the armelf specific hash table. */
4697 hash_table
= elf32_arm_hash_table (link_info
);
4699 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
)
4700 + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
4702 BFD_ASSERT (tmp_name
);
4704 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
4706 hash
= elf_link_hash_lookup
4707 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
4710 && asprintf (error_message
, _("unable to find THUMB glue '%s' for '%s'"),
4711 tmp_name
, name
) == -1)
4712 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
4719 /* Locate the ARM encoded calling stub for NAME. */
4721 static struct elf_link_hash_entry
*
4722 find_arm_glue (struct bfd_link_info
*link_info
,
4724 char **error_message
)
4727 struct elf_link_hash_entry
*myh
;
4728 struct elf32_arm_link_hash_table
*hash_table
;
4730 /* We need a pointer to the elfarm specific hash table. */
4731 hash_table
= elf32_arm_hash_table (link_info
);
4733 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
)
4734 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
4736 BFD_ASSERT (tmp_name
);
4738 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
4740 myh
= elf_link_hash_lookup
4741 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
4744 && asprintf (error_message
, _("unable to find ARM glue '%s' for '%s'"),
4745 tmp_name
, name
) == -1)
4746 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
4753 /* ARM->Thumb glue (static images):
4757 ldr r12, __func_addr
4760 .word func @ behave as if you saw a ARM_32 reloc.
4767 .word func @ behave as if you saw a ARM_32 reloc.
4769 (relocatable images)
4772 ldr r12, __func_offset
4778 #define ARM2THUMB_STATIC_GLUE_SIZE 12
4779 static const insn32 a2t1_ldr_insn
= 0xe59fc000;
4780 static const insn32 a2t2_bx_r12_insn
= 0xe12fff1c;
4781 static const insn32 a2t3_func_addr_insn
= 0x00000001;
4783 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
4784 static const insn32 a2t1v5_ldr_insn
= 0xe51ff004;
4785 static const insn32 a2t2v5_func_addr_insn
= 0x00000001;
4787 #define ARM2THUMB_PIC_GLUE_SIZE 16
4788 static const insn32 a2t1p_ldr_insn
= 0xe59fc004;
4789 static const insn32 a2t2p_add_pc_insn
= 0xe08cc00f;
4790 static const insn32 a2t3p_bx_r12_insn
= 0xe12fff1c;
4792 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
4796 __func_from_thumb: __func_from_thumb:
4798 nop ldr r6, __func_addr
4808 #define THUMB2ARM_GLUE_SIZE 8
4809 static const insn16 t2a1_bx_pc_insn
= 0x4778;
4810 static const insn16 t2a2_noop_insn
= 0x46c0;
4811 static const insn32 t2a3_b_insn
= 0xea000000;
4813 #define VFP11_ERRATUM_VENEER_SIZE 8
4815 #define ARM_BX_VENEER_SIZE 12
4816 static const insn32 armbx1_tst_insn
= 0xe3100001;
4817 static const insn32 armbx2_moveq_insn
= 0x01a0f000;
4818 static const insn32 armbx3_bx_insn
= 0xe12fff10;
4820 #ifndef ELFARM_NABI_C_INCLUDED
4822 arm_allocate_glue_section_space (bfd
* abfd
, bfd_size_type size
, const char * name
)
4825 bfd_byte
* contents
;
4829 /* Do not include empty glue sections in the output. */
4832 s
= bfd_get_section_by_name (abfd
, name
);
4834 s
->flags
|= SEC_EXCLUDE
;
4839 BFD_ASSERT (abfd
!= NULL
);
4841 s
= bfd_get_section_by_name (abfd
, name
);
4842 BFD_ASSERT (s
!= NULL
);
4844 contents
= bfd_alloc (abfd
, size
);
4846 BFD_ASSERT (s
->size
== size
);
4847 s
->contents
= contents
;
4851 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info
* info
)
4853 struct elf32_arm_link_hash_table
* globals
;
4855 globals
= elf32_arm_hash_table (info
);
4856 BFD_ASSERT (globals
!= NULL
);
4858 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
4859 globals
->arm_glue_size
,
4860 ARM2THUMB_GLUE_SECTION_NAME
);
4862 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
4863 globals
->thumb_glue_size
,
4864 THUMB2ARM_GLUE_SECTION_NAME
);
4866 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
4867 globals
->vfp11_erratum_glue_size
,
4868 VFP11_ERRATUM_VENEER_SECTION_NAME
);
4870 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
4871 globals
->bx_glue_size
,
4872 ARM_BX_GLUE_SECTION_NAME
);
4877 /* Allocate space and symbols for calling a Thumb function from Arm mode.
4878 returns the symbol identifying the stub. */
4880 static struct elf_link_hash_entry
*
4881 record_arm_to_thumb_glue (struct bfd_link_info
* link_info
,
4882 struct elf_link_hash_entry
* h
)
4884 const char * name
= h
->root
.root
.string
;
4887 struct elf_link_hash_entry
* myh
;
4888 struct bfd_link_hash_entry
* bh
;
4889 struct elf32_arm_link_hash_table
* globals
;
4893 globals
= elf32_arm_hash_table (link_info
);
4895 BFD_ASSERT (globals
!= NULL
);
4896 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
4898 s
= bfd_get_section_by_name
4899 (globals
->bfd_of_glue_owner
, ARM2THUMB_GLUE_SECTION_NAME
);
4901 BFD_ASSERT (s
!= NULL
);
4903 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (name
) + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
4905 BFD_ASSERT (tmp_name
);
4907 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
4909 myh
= elf_link_hash_lookup
4910 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
4914 /* We've already seen this guy. */
4919 /* The only trick here is using hash_table->arm_glue_size as the value.
4920 Even though the section isn't allocated yet, this is where we will be
4921 putting it. The +1 on the value marks that the stub has not been
4922 output yet - not that it is a Thumb function. */
4924 val
= globals
->arm_glue_size
+ 1;
4925 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
4926 tmp_name
, BSF_GLOBAL
, s
, val
,
4927 NULL
, TRUE
, FALSE
, &bh
);
4929 myh
= (struct elf_link_hash_entry
*) bh
;
4930 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
4931 myh
->forced_local
= 1;
4935 if (link_info
->shared
|| globals
->root
.is_relocatable_executable
4936 || globals
->pic_veneer
)
4937 size
= ARM2THUMB_PIC_GLUE_SIZE
;
4938 else if (globals
->use_blx
)
4939 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
4941 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
4944 globals
->arm_glue_size
+= size
;
4949 /* Allocate space for ARMv4 BX veneers. */
4952 record_arm_bx_glue (struct bfd_link_info
* link_info
, int reg
)
4955 struct elf32_arm_link_hash_table
*globals
;
4957 struct elf_link_hash_entry
*myh
;
4958 struct bfd_link_hash_entry
*bh
;
4961 /* BX PC does not need a veneer. */
4965 globals
= elf32_arm_hash_table (link_info
);
4967 BFD_ASSERT (globals
!= NULL
);
4968 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
4970 /* Check if this veneer has already been allocated. */
4971 if (globals
->bx_glue_offset
[reg
])
4974 s
= bfd_get_section_by_name
4975 (globals
->bfd_of_glue_owner
, ARM_BX_GLUE_SECTION_NAME
);
4977 BFD_ASSERT (s
!= NULL
);
4979 /* Add symbol for veneer. */
4980 tmp_name
= bfd_malloc ((bfd_size_type
) strlen (ARM_BX_GLUE_ENTRY_NAME
) + 1);
4982 BFD_ASSERT (tmp_name
);
4984 sprintf (tmp_name
, ARM_BX_GLUE_ENTRY_NAME
, reg
);
4986 myh
= elf_link_hash_lookup
4987 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
4989 BFD_ASSERT (myh
== NULL
);
4992 val
= globals
->bx_glue_size
;
4993 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
4994 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
4995 NULL
, TRUE
, FALSE
, &bh
);
4997 myh
= (struct elf_link_hash_entry
*) bh
;
4998 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
4999 myh
->forced_local
= 1;
5001 s
->size
+= ARM_BX_VENEER_SIZE
;
5002 globals
->bx_glue_offset
[reg
] = globals
->bx_glue_size
| 2;
5003 globals
->bx_glue_size
+= ARM_BX_VENEER_SIZE
;
5007 /* Add an entry to the code/data map for section SEC. */
5010 elf32_arm_section_map_add (asection
*sec
, char type
, bfd_vma vma
)
5012 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
5013 unsigned int newidx
;
5015 if (sec_data
->map
== NULL
)
5017 sec_data
->map
= bfd_malloc (sizeof (elf32_arm_section_map
));
5018 sec_data
->mapcount
= 0;
5019 sec_data
->mapsize
= 1;
5022 newidx
= sec_data
->mapcount
++;
5024 if (sec_data
->mapcount
> sec_data
->mapsize
)
5026 sec_data
->mapsize
*= 2;
5027 sec_data
->map
= bfd_realloc_or_free (sec_data
->map
, sec_data
->mapsize
5028 * sizeof (elf32_arm_section_map
));
5033 sec_data
->map
[newidx
].vma
= vma
;
5034 sec_data
->map
[newidx
].type
= type
;
5039 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5040 veneers are handled for now. */
5043 record_vfp11_erratum_veneer (struct bfd_link_info
*link_info
,
5044 elf32_vfp11_erratum_list
*branch
,
5046 asection
*branch_sec
,
5047 unsigned int offset
)
5050 struct elf32_arm_link_hash_table
*hash_table
;
5052 struct elf_link_hash_entry
*myh
;
5053 struct bfd_link_hash_entry
*bh
;
5055 struct _arm_elf_section_data
*sec_data
;
5057 elf32_vfp11_erratum_list
*newerr
;
5059 hash_table
= elf32_arm_hash_table (link_info
);
5061 BFD_ASSERT (hash_table
!= NULL
);
5062 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
5064 s
= bfd_get_section_by_name
5065 (hash_table
->bfd_of_glue_owner
, VFP11_ERRATUM_VENEER_SECTION_NAME
);
5067 sec_data
= elf32_arm_section_data (s
);
5069 BFD_ASSERT (s
!= NULL
);
5071 tmp_name
= bfd_malloc ((bfd_size_type
) strlen
5072 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
5074 BFD_ASSERT (tmp_name
);
5076 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
5077 hash_table
->num_vfp11_fixes
);
5079 myh
= elf_link_hash_lookup
5080 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5082 BFD_ASSERT (myh
== NULL
);
5085 val
= hash_table
->vfp11_erratum_glue_size
;
5086 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
5087 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
5088 NULL
, TRUE
, FALSE
, &bh
);
5090 myh
= (struct elf_link_hash_entry
*) bh
;
5091 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5092 myh
->forced_local
= 1;
5094 /* Link veneer back to calling location. */
5095 errcount
= ++(sec_data
->erratumcount
);
5096 newerr
= bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
5098 newerr
->type
= VFP11_ERRATUM_ARM_VENEER
;
5100 newerr
->u
.v
.branch
= branch
;
5101 newerr
->u
.v
.id
= hash_table
->num_vfp11_fixes
;
5102 branch
->u
.b
.veneer
= newerr
;
5104 newerr
->next
= sec_data
->erratumlist
;
5105 sec_data
->erratumlist
= newerr
;
5107 /* A symbol for the return from the veneer. */
5108 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
5109 hash_table
->num_vfp11_fixes
);
5111 myh
= elf_link_hash_lookup
5112 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5119 _bfd_generic_link_add_one_symbol (link_info
, branch_bfd
, tmp_name
, BSF_LOCAL
,
5120 branch_sec
, val
, NULL
, TRUE
, FALSE
, &bh
);
5122 myh
= (struct elf_link_hash_entry
*) bh
;
5123 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5124 myh
->forced_local
= 1;
5128 /* Generate a mapping symbol for the veneer section, and explicitly add an
5129 entry for that symbol to the code/data map for the section. */
5130 if (hash_table
->vfp11_erratum_glue_size
== 0)
5133 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5134 ever requires this erratum fix. */
5135 _bfd_generic_link_add_one_symbol (link_info
,
5136 hash_table
->bfd_of_glue_owner
, "$a",
5137 BSF_LOCAL
, s
, 0, NULL
,
5140 myh
= (struct elf_link_hash_entry
*) bh
;
5141 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
5142 myh
->forced_local
= 1;
5144 /* The elf32_arm_init_maps function only cares about symbols from input
5145 BFDs. We must make a note of this generated mapping symbol
5146 ourselves so that code byteswapping works properly in
5147 elf32_arm_write_section. */
5148 elf32_arm_section_map_add (s
, 'a', 0);
5151 s
->size
+= VFP11_ERRATUM_VENEER_SIZE
;
5152 hash_table
->vfp11_erratum_glue_size
+= VFP11_ERRATUM_VENEER_SIZE
;
5153 hash_table
->num_vfp11_fixes
++;
5155 /* The offset of the veneer. */
5159 #define ARM_GLUE_SECTION_FLAGS \
5160 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5161 | SEC_READONLY | SEC_LINKER_CREATED)
5163 /* Create a fake section for use by the ARM backend of the linker. */
5166 arm_make_glue_section (bfd
* abfd
, const char * name
)
5170 sec
= bfd_get_section_by_name (abfd
, name
);
5175 sec
= bfd_make_section_with_flags (abfd
, name
, ARM_GLUE_SECTION_FLAGS
);
5178 || !bfd_set_section_alignment (abfd
, sec
, 2))
5181 /* Set the gc mark to prevent the section from being removed by garbage
5182 collection, despite the fact that no relocs refer to this section. */
5188 /* Add the glue sections to ABFD. This function is called from the
5189 linker scripts in ld/emultempl/{armelf}.em. */
5192 bfd_elf32_arm_add_glue_sections_to_bfd (bfd
*abfd
,
5193 struct bfd_link_info
*info
)
5195 /* If we are only performing a partial
5196 link do not bother adding the glue. */
5197 if (info
->relocatable
)
5200 return arm_make_glue_section (abfd
, ARM2THUMB_GLUE_SECTION_NAME
)
5201 && arm_make_glue_section (abfd
, THUMB2ARM_GLUE_SECTION_NAME
)
5202 && arm_make_glue_section (abfd
, VFP11_ERRATUM_VENEER_SECTION_NAME
)
5203 && arm_make_glue_section (abfd
, ARM_BX_GLUE_SECTION_NAME
);
5206 /* Select a BFD to be used to hold the sections used by the glue code.
5207 This function is called from the linker scripts in ld/emultempl/
5211 bfd_elf32_arm_get_bfd_for_interworking (bfd
*abfd
, struct bfd_link_info
*info
)
5213 struct elf32_arm_link_hash_table
*globals
;
5215 /* If we are only performing a partial link
5216 do not bother getting a bfd to hold the glue. */
5217 if (info
->relocatable
)
5220 /* Make sure we don't attach the glue sections to a dynamic object. */
5221 BFD_ASSERT (!(abfd
->flags
& DYNAMIC
));
5223 globals
= elf32_arm_hash_table (info
);
5225 BFD_ASSERT (globals
!= NULL
);
5227 if (globals
->bfd_of_glue_owner
!= NULL
)
5230 /* Save the bfd for later use. */
5231 globals
->bfd_of_glue_owner
= abfd
;
5237 check_use_blx (struct elf32_arm_link_hash_table
*globals
)
5239 if (bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
5241 globals
->use_blx
= 1;
5245 bfd_elf32_arm_process_before_allocation (bfd
*abfd
,
5246 struct bfd_link_info
*link_info
)
5248 Elf_Internal_Shdr
*symtab_hdr
;
5249 Elf_Internal_Rela
*internal_relocs
= NULL
;
5250 Elf_Internal_Rela
*irel
, *irelend
;
5251 bfd_byte
*contents
= NULL
;
5254 struct elf32_arm_link_hash_table
*globals
;
5256 /* If we are only performing a partial link do not bother
5257 to construct any glue. */
5258 if (link_info
->relocatable
)
5261 /* Here we have a bfd that is to be included on the link. We have a
5262 hook to do reloc rummaging, before section sizes are nailed down. */
5263 globals
= elf32_arm_hash_table (link_info
);
5265 BFD_ASSERT (globals
!= NULL
);
5267 check_use_blx (globals
);
5269 if (globals
->byteswap_code
&& !bfd_big_endian (abfd
))
5271 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
5276 /* PR 5398: If we have not decided to include any loadable sections in
5277 the output then we will not have a glue owner bfd. This is OK, it
5278 just means that there is nothing else for us to do here. */
5279 if (globals
->bfd_of_glue_owner
== NULL
)
5282 /* Rummage around all the relocs and map the glue vectors. */
5283 sec
= abfd
->sections
;
5288 for (; sec
!= NULL
; sec
= sec
->next
)
5290 if (sec
->reloc_count
== 0)
5293 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
5296 symtab_hdr
= & elf_symtab_hdr (abfd
);
5298 /* Load the relocs. */
5300 = _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
, FALSE
);
5302 if (internal_relocs
== NULL
)
5305 irelend
= internal_relocs
+ sec
->reloc_count
;
5306 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
5309 unsigned long r_index
;
5311 struct elf_link_hash_entry
*h
;
5313 r_type
= ELF32_R_TYPE (irel
->r_info
);
5314 r_index
= ELF32_R_SYM (irel
->r_info
);
5316 /* These are the only relocation types we care about. */
5317 if ( r_type
!= R_ARM_PC24
5318 && (r_type
!= R_ARM_V4BX
|| globals
->fix_v4bx
< 2))
5321 /* Get the section contents if we haven't done so already. */
5322 if (contents
== NULL
)
5324 /* Get cached copy if it exists. */
5325 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
5326 contents
= elf_section_data (sec
)->this_hdr
.contents
;
5329 /* Go get them off disk. */
5330 if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
5335 if (r_type
== R_ARM_V4BX
)
5339 reg
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
) & 0xf;
5340 record_arm_bx_glue (link_info
, reg
);
5344 /* If the relocation is not against a symbol it cannot concern us. */
5347 /* We don't care about local symbols. */
5348 if (r_index
< symtab_hdr
->sh_info
)
5351 /* This is an external symbol. */
5352 r_index
-= symtab_hdr
->sh_info
;
5353 h
= (struct elf_link_hash_entry
*)
5354 elf_sym_hashes (abfd
)[r_index
];
5356 /* If the relocation is against a static symbol it must be within
5357 the current section and so cannot be a cross ARM/Thumb relocation. */
5361 /* If the call will go through a PLT entry then we do not need
5363 if (globals
->splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
5369 /* This one is a call from arm code. We need to look up
5370 the target of the call. If it is a thumb target, we
5372 if (ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
)
5373 record_arm_to_thumb_glue (link_info
, h
);
5381 if (contents
!= NULL
5382 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5386 if (internal_relocs
!= NULL
5387 && elf_section_data (sec
)->relocs
!= internal_relocs
)
5388 free (internal_relocs
);
5389 internal_relocs
= NULL
;
5395 if (contents
!= NULL
5396 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5398 if (internal_relocs
!= NULL
5399 && elf_section_data (sec
)->relocs
!= internal_relocs
)
5400 free (internal_relocs
);
5407 /* Initialise maps of ARM/Thumb/data for input BFDs. */
5410 bfd_elf32_arm_init_maps (bfd
*abfd
)
5412 Elf_Internal_Sym
*isymbuf
;
5413 Elf_Internal_Shdr
*hdr
;
5414 unsigned int i
, localsyms
;
5416 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
5417 if (! is_arm_elf (abfd
))
5420 if ((abfd
->flags
& DYNAMIC
) != 0)
5423 hdr
= & elf_symtab_hdr (abfd
);
5424 localsyms
= hdr
->sh_info
;
5426 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
5427 should contain the number of local symbols, which should come before any
5428 global symbols. Mapping symbols are always local. */
5429 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, localsyms
, 0, NULL
, NULL
,
5432 /* No internal symbols read? Skip this BFD. */
5433 if (isymbuf
== NULL
)
5436 for (i
= 0; i
< localsyms
; i
++)
5438 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
5439 asection
*sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
5443 && ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
)
5445 name
= bfd_elf_string_from_elf_section (abfd
,
5446 hdr
->sh_link
, isym
->st_name
);
5448 if (bfd_is_arm_special_symbol_name (name
,
5449 BFD_ARM_SPECIAL_SYM_TYPE_MAP
))
5450 elf32_arm_section_map_add (sec
, name
[1], isym
->st_value
);
5456 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
5457 say what they wanted. */
5460 bfd_elf32_arm_set_cortex_a8_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
5462 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
5463 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
5465 if (globals
->fix_cortex_a8
== -1)
5467 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
5468 if (out_attr
[Tag_CPU_arch
].i
== TAG_CPU_ARCH_V7
5469 && (out_attr
[Tag_CPU_arch_profile
].i
== 'A'
5470 || out_attr
[Tag_CPU_arch_profile
].i
== 0))
5471 globals
->fix_cortex_a8
= 1;
5473 globals
->fix_cortex_a8
= 0;
5479 bfd_elf32_arm_set_vfp11_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
5481 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
5482 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
5484 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
5485 if (out_attr
[Tag_CPU_arch
].i
>= TAG_CPU_ARCH_V7
)
5487 switch (globals
->vfp11_fix
)
5489 case BFD_ARM_VFP11_FIX_DEFAULT
:
5490 case BFD_ARM_VFP11_FIX_NONE
:
5491 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
5495 /* Give a warning, but do as the user requests anyway. */
5496 (*_bfd_error_handler
) (_("%B: warning: selected VFP11 erratum "
5497 "workaround is not necessary for target architecture"), obfd
);
5500 else if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_DEFAULT
)
5501 /* For earlier architectures, we might need the workaround, but do not
5502 enable it by default. If users is running with broken hardware, they
5503 must enable the erratum fix explicitly. */
5504 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
5508 enum bfd_arm_vfp11_pipe
5516 /* Return a VFP register number. This is encoded as RX:X for single-precision
5517 registers, or X:RX for double-precision registers, where RX is the group of
5518 four bits in the instruction encoding and X is the single extension bit.
5519 RX and X fields are specified using their lowest (starting) bit. The return
5522 0...31: single-precision registers s0...s31
5523 32...63: double-precision registers d0...d31.
5525 Although X should be zero for VFP11 (encoding d0...d15 only), we might
5526 encounter VFP3 instructions, so we allow the full range for DP registers. */
5529 bfd_arm_vfp11_regno (unsigned int insn
, bfd_boolean is_double
, unsigned int rx
,
5533 return (((insn
>> rx
) & 0xf) | (((insn
>> x
) & 1) << 4)) + 32;
5535 return (((insn
>> rx
) & 0xf) << 1) | ((insn
>> x
) & 1);
5538 /* Set bits in *WMASK according to a register number REG as encoded by
5539 bfd_arm_vfp11_regno(). Ignore d16-d31. */
5542 bfd_arm_vfp11_write_mask (unsigned int *wmask
, unsigned int reg
)
5547 *wmask
|= 3 << ((reg
- 32) * 2);
5550 /* Return TRUE if WMASK overwrites anything in REGS. */
5553 bfd_arm_vfp11_antidependency (unsigned int wmask
, int *regs
, int numregs
)
5557 for (i
= 0; i
< numregs
; i
++)
5559 unsigned int reg
= regs
[i
];
5561 if (reg
< 32 && (wmask
& (1 << reg
)) != 0)
5569 if ((wmask
& (3 << (reg
* 2))) != 0)
5576 /* In this function, we're interested in two things: finding input registers
5577 for VFP data-processing instructions, and finding the set of registers which
5578 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
5579 hold the written set, so FLDM etc. are easy to deal with (we're only
5580 interested in 32 SP registers or 16 dp registers, due to the VFP version
5581 implemented by the chip in question). DP registers are marked by setting
5582 both SP registers in the write mask). */
5584 static enum bfd_arm_vfp11_pipe
5585 bfd_arm_vfp11_insn_decode (unsigned int insn
, unsigned int *destmask
, int *regs
,
5588 enum bfd_arm_vfp11_pipe pipe
= VFP11_BAD
;
5589 bfd_boolean is_double
= ((insn
& 0xf00) == 0xb00) ? 1 : 0;
5591 if ((insn
& 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
5594 unsigned int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
5595 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
5597 pqrs
= ((insn
& 0x00800000) >> 20)
5598 | ((insn
& 0x00300000) >> 19)
5599 | ((insn
& 0x00000040) >> 6);
5603 case 0: /* fmac[sd]. */
5604 case 1: /* fnmac[sd]. */
5605 case 2: /* fmsc[sd]. */
5606 case 3: /* fnmsc[sd]. */
5608 bfd_arm_vfp11_write_mask (destmask
, fd
);
5610 regs
[1] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
5615 case 4: /* fmul[sd]. */
5616 case 5: /* fnmul[sd]. */
5617 case 6: /* fadd[sd]. */
5618 case 7: /* fsub[sd]. */
5622 case 8: /* fdiv[sd]. */
5625 bfd_arm_vfp11_write_mask (destmask
, fd
);
5626 regs
[0] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
5631 case 15: /* extended opcode. */
5633 unsigned int extn
= ((insn
>> 15) & 0x1e)
5634 | ((insn
>> 7) & 1);
5638 case 0: /* fcpy[sd]. */
5639 case 1: /* fabs[sd]. */
5640 case 2: /* fneg[sd]. */
5641 case 8: /* fcmp[sd]. */
5642 case 9: /* fcmpe[sd]. */
5643 case 10: /* fcmpz[sd]. */
5644 case 11: /* fcmpez[sd]. */
5645 case 16: /* fuito[sd]. */
5646 case 17: /* fsito[sd]. */
5647 case 24: /* ftoui[sd]. */
5648 case 25: /* ftouiz[sd]. */
5649 case 26: /* ftosi[sd]. */
5650 case 27: /* ftosiz[sd]. */
5651 /* These instructions will not bounce due to underflow. */
5656 case 3: /* fsqrt[sd]. */
5657 /* fsqrt cannot underflow, but it can (perhaps) overwrite
5658 registers to cause the erratum in previous instructions. */
5659 bfd_arm_vfp11_write_mask (destmask
, fd
);
5663 case 15: /* fcvt{ds,sd}. */
5667 bfd_arm_vfp11_write_mask (destmask
, fd
);
5669 /* Only FCVTSD can underflow. */
5670 if ((insn
& 0x100) != 0)
5689 /* Two-register transfer. */
5690 else if ((insn
& 0x0fe00ed0) == 0x0c400a10)
5692 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
5694 if ((insn
& 0x100000) == 0)
5697 bfd_arm_vfp11_write_mask (destmask
, fm
);
5700 bfd_arm_vfp11_write_mask (destmask
, fm
);
5701 bfd_arm_vfp11_write_mask (destmask
, fm
+ 1);
5707 else if ((insn
& 0x0e100e00) == 0x0c100a00) /* A load insn. */
5709 int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
5710 unsigned int puw
= ((insn
>> 21) & 0x1) | (((insn
>> 23) & 3) << 1);
5714 case 0: /* Two-reg transfer. We should catch these above. */
5717 case 2: /* fldm[sdx]. */
5721 unsigned int i
, offset
= insn
& 0xff;
5726 for (i
= fd
; i
< fd
+ offset
; i
++)
5727 bfd_arm_vfp11_write_mask (destmask
, i
);
5731 case 4: /* fld[sd]. */
5733 bfd_arm_vfp11_write_mask (destmask
, fd
);
5742 /* Single-register transfer. Note L==0. */
5743 else if ((insn
& 0x0f100e10) == 0x0e000a10)
5745 unsigned int opcode
= (insn
>> 21) & 7;
5746 unsigned int fn
= bfd_arm_vfp11_regno (insn
, is_double
, 16, 7);
5750 case 0: /* fmsr/fmdlr. */
5751 case 1: /* fmdhr. */
5752 /* Mark fmdhr and fmdlr as writing to the whole of the DP
5753 destination register. I don't know if this is exactly right,
5754 but it is the conservative choice. */
5755 bfd_arm_vfp11_write_mask (destmask
, fn
);
5769 static int elf32_arm_compare_mapping (const void * a
, const void * b
);
5772 /* Look for potentially-troublesome code sequences which might trigger the
5773 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
5774 (available from ARM) for details of the erratum. A short version is
5775 described in ld.texinfo. */
5778 bfd_elf32_arm_vfp11_erratum_scan (bfd
*abfd
, struct bfd_link_info
*link_info
)
5781 bfd_byte
*contents
= NULL
;
5783 int regs
[3], numregs
= 0;
5784 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
5785 int use_vector
= (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_VECTOR
);
5787 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
5788 The states transition as follows:
5790 0 -> 1 (vector) or 0 -> 2 (scalar)
5791 A VFP FMAC-pipeline instruction has been seen. Fill
5792 regs[0]..regs[numregs-1] with its input operands. Remember this
5793 instruction in 'first_fmac'.
5796 Any instruction, except for a VFP instruction which overwrites
5801 A VFP instruction has been seen which overwrites any of regs[*].
5802 We must make a veneer! Reset state to 0 before examining next
5806 If we fail to match anything in state 2, reset to state 0 and reset
5807 the instruction pointer to the instruction after 'first_fmac'.
5809 If the VFP11 vector mode is in use, there must be at least two unrelated
5810 instructions between anti-dependent VFP11 instructions to properly avoid
5811 triggering the erratum, hence the use of the extra state 1. */
5813 /* If we are only performing a partial link do not bother
5814 to construct any glue. */
5815 if (link_info
->relocatable
)
5818 /* Skip if this bfd does not correspond to an ELF image. */
5819 if (! is_arm_elf (abfd
))
5822 /* We should have chosen a fix type by the time we get here. */
5823 BFD_ASSERT (globals
->vfp11_fix
!= BFD_ARM_VFP11_FIX_DEFAULT
);
5825 if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_NONE
)
5828 /* Skip this BFD if it corresponds to an executable or dynamic object. */
5829 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
5832 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
5834 unsigned int i
, span
, first_fmac
= 0, veneer_of_insn
= 0;
5835 struct _arm_elf_section_data
*sec_data
;
5837 /* If we don't have executable progbits, we're not interested in this
5838 section. Also skip if section is to be excluded. */
5839 if (elf_section_type (sec
) != SHT_PROGBITS
5840 || (elf_section_flags (sec
) & SHF_EXECINSTR
) == 0
5841 || (sec
->flags
& SEC_EXCLUDE
) != 0
5842 || sec
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
5843 || sec
->output_section
== bfd_abs_section_ptr
5844 || strcmp (sec
->name
, VFP11_ERRATUM_VENEER_SECTION_NAME
) == 0)
5847 sec_data
= elf32_arm_section_data (sec
);
5849 if (sec_data
->mapcount
== 0)
5852 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
5853 contents
= elf_section_data (sec
)->this_hdr
.contents
;
5854 else if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
5857 qsort (sec_data
->map
, sec_data
->mapcount
, sizeof (elf32_arm_section_map
),
5858 elf32_arm_compare_mapping
);
5860 for (span
= 0; span
< sec_data
->mapcount
; span
++)
5862 unsigned int span_start
= sec_data
->map
[span
].vma
;
5863 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
5864 ? sec
->size
: sec_data
->map
[span
+ 1].vma
;
5865 char span_type
= sec_data
->map
[span
].type
;
5867 /* FIXME: Only ARM mode is supported at present. We may need to
5868 support Thumb-2 mode also at some point. */
5869 if (span_type
!= 'a')
5872 for (i
= span_start
; i
< span_end
;)
5874 unsigned int next_i
= i
+ 4;
5875 unsigned int insn
= bfd_big_endian (abfd
)
5876 ? (contents
[i
] << 24)
5877 | (contents
[i
+ 1] << 16)
5878 | (contents
[i
+ 2] << 8)
5880 : (contents
[i
+ 3] << 24)
5881 | (contents
[i
+ 2] << 16)
5882 | (contents
[i
+ 1] << 8)
5884 unsigned int writemask
= 0;
5885 enum bfd_arm_vfp11_pipe pipe
;
5890 pipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
, regs
,
5892 /* I'm assuming the VFP11 erratum can trigger with denorm
5893 operands on either the FMAC or the DS pipeline. This might
5894 lead to slightly overenthusiastic veneer insertion. */
5895 if (pipe
== VFP11_FMAC
|| pipe
== VFP11_DS
)
5897 state
= use_vector
? 1 : 2;
5899 veneer_of_insn
= insn
;
5905 int other_regs
[3], other_numregs
;
5906 pipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
5909 if (pipe
!= VFP11_BAD
5910 && bfd_arm_vfp11_antidependency (writemask
, regs
,
5920 int other_regs
[3], other_numregs
;
5921 pipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
5924 if (pipe
!= VFP11_BAD
5925 && bfd_arm_vfp11_antidependency (writemask
, regs
,
5931 next_i
= first_fmac
+ 4;
5937 abort (); /* Should be unreachable. */
5942 elf32_vfp11_erratum_list
*newerr
5943 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
5946 errcount
= ++(elf32_arm_section_data (sec
)->erratumcount
);
5948 newerr
->u
.b
.vfp_insn
= veneer_of_insn
;
5953 newerr
->type
= VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
;
5960 record_vfp11_erratum_veneer (link_info
, newerr
, abfd
, sec
,
5965 newerr
->next
= sec_data
->erratumlist
;
5966 sec_data
->erratumlist
= newerr
;
5975 if (contents
!= NULL
5976 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5984 if (contents
!= NULL
5985 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
5991 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
5992 after sections have been laid out, using specially-named symbols. */
5995 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd
*abfd
,
5996 struct bfd_link_info
*link_info
)
5999 struct elf32_arm_link_hash_table
*globals
;
6002 if (link_info
->relocatable
)
6005 /* Skip if this bfd does not correspond to an ELF image. */
6006 if (! is_arm_elf (abfd
))
6009 globals
= elf32_arm_hash_table (link_info
);
6011 tmp_name
= bfd_malloc ((bfd_size_type
) strlen
6012 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
6014 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6016 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
6017 elf32_vfp11_erratum_list
*errnode
= sec_data
->erratumlist
;
6019 for (; errnode
!= NULL
; errnode
= errnode
->next
)
6021 struct elf_link_hash_entry
*myh
;
6024 switch (errnode
->type
)
6026 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
6027 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
:
6028 /* Find veneer symbol. */
6029 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
6030 errnode
->u
.b
.veneer
->u
.v
.id
);
6032 myh
= elf_link_hash_lookup
6033 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
6036 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
6037 "`%s'"), abfd
, tmp_name
);
6039 vma
= myh
->root
.u
.def
.section
->output_section
->vma
6040 + myh
->root
.u
.def
.section
->output_offset
6041 + myh
->root
.u
.def
.value
;
6043 errnode
->u
.b
.veneer
->vma
= vma
;
6046 case VFP11_ERRATUM_ARM_VENEER
:
6047 case VFP11_ERRATUM_THUMB_VENEER
:
6048 /* Find return location. */
6049 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
6052 myh
= elf_link_hash_lookup
6053 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
6056 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
6057 "`%s'"), abfd
, tmp_name
);
6059 vma
= myh
->root
.u
.def
.section
->output_section
->vma
6060 + myh
->root
.u
.def
.section
->output_offset
6061 + myh
->root
.u
.def
.value
;
6063 errnode
->u
.v
.branch
->vma
= vma
;
6076 /* Set target relocation values needed during linking. */
6079 bfd_elf32_arm_set_target_relocs (struct bfd
*output_bfd
,
6080 struct bfd_link_info
*link_info
,
6082 char * target2_type
,
6085 bfd_arm_vfp11_fix vfp11_fix
,
6086 int no_enum_warn
, int no_wchar_warn
,
6087 int pic_veneer
, int fix_cortex_a8
)
6089 struct elf32_arm_link_hash_table
*globals
;
6091 globals
= elf32_arm_hash_table (link_info
);
6093 globals
->target1_is_rel
= target1_is_rel
;
6094 if (strcmp (target2_type
, "rel") == 0)
6095 globals
->target2_reloc
= R_ARM_REL32
;
6096 else if (strcmp (target2_type
, "abs") == 0)
6097 globals
->target2_reloc
= R_ARM_ABS32
;
6098 else if (strcmp (target2_type
, "got-rel") == 0)
6099 globals
->target2_reloc
= R_ARM_GOT_PREL
;
6102 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6105 globals
->fix_v4bx
= fix_v4bx
;
6106 globals
->use_blx
|= use_blx
;
6107 globals
->vfp11_fix
= vfp11_fix
;
6108 globals
->pic_veneer
= pic_veneer
;
6109 globals
->fix_cortex_a8
= fix_cortex_a8
;
6111 BFD_ASSERT (is_arm_elf (output_bfd
));
6112 elf_arm_tdata (output_bfd
)->no_enum_size_warning
= no_enum_warn
;
6113 elf_arm_tdata (output_bfd
)->no_wchar_size_warning
= no_wchar_warn
;
6116 /* Replace the target offset of a Thumb bl or b.w instruction. */
6119 insert_thumb_branch (bfd
*abfd
, long int offset
, bfd_byte
*insn
)
6125 BFD_ASSERT ((offset
& 1) == 0);
6127 upper
= bfd_get_16 (abfd
, insn
);
6128 lower
= bfd_get_16 (abfd
, insn
+ 2);
6129 reloc_sign
= (offset
< 0) ? 1 : 0;
6130 upper
= (upper
& ~(bfd_vma
) 0x7ff)
6131 | ((offset
>> 12) & 0x3ff)
6132 | (reloc_sign
<< 10);
6133 lower
= (lower
& ~(bfd_vma
) 0x2fff)
6134 | (((!((offset
>> 23) & 1)) ^ reloc_sign
) << 13)
6135 | (((!((offset
>> 22) & 1)) ^ reloc_sign
) << 11)
6136 | ((offset
>> 1) & 0x7ff);
6137 bfd_put_16 (abfd
, upper
, insn
);
6138 bfd_put_16 (abfd
, lower
, insn
+ 2);
6141 /* Thumb code calling an ARM function. */
6144 elf32_thumb_to_arm_stub (struct bfd_link_info
* info
,
6148 asection
* input_section
,
6149 bfd_byte
* hit_data
,
6152 bfd_signed_vma addend
,
6154 char **error_message
)
6158 long int ret_offset
;
6159 struct elf_link_hash_entry
* myh
;
6160 struct elf32_arm_link_hash_table
* globals
;
6162 myh
= find_thumb_glue (info
, name
, error_message
);
6166 globals
= elf32_arm_hash_table (info
);
6168 BFD_ASSERT (globals
!= NULL
);
6169 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6171 my_offset
= myh
->root
.u
.def
.value
;
6173 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6174 THUMB2ARM_GLUE_SECTION_NAME
);
6176 BFD_ASSERT (s
!= NULL
);
6177 BFD_ASSERT (s
->contents
!= NULL
);
6178 BFD_ASSERT (s
->output_section
!= NULL
);
6180 if ((my_offset
& 0x01) == 0x01)
6183 && sym_sec
->owner
!= NULL
6184 && !INTERWORK_FLAG (sym_sec
->owner
))
6186 (*_bfd_error_handler
)
6187 (_("%B(%s): warning: interworking not enabled.\n"
6188 " first occurrence: %B: thumb call to arm"),
6189 sym_sec
->owner
, input_bfd
, name
);
6195 myh
->root
.u
.def
.value
= my_offset
;
6197 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a1_bx_pc_insn
,
6198 s
->contents
+ my_offset
);
6200 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a2_noop_insn
,
6201 s
->contents
+ my_offset
+ 2);
6204 /* Address of destination of the stub. */
6205 ((bfd_signed_vma
) val
)
6207 /* Offset from the start of the current section
6208 to the start of the stubs. */
6210 /* Offset of the start of this stub from the start of the stubs. */
6212 /* Address of the start of the current section. */
6213 + s
->output_section
->vma
)
6214 /* The branch instruction is 4 bytes into the stub. */
6216 /* ARM branches work from the pc of the instruction + 8. */
6219 put_arm_insn (globals
, output_bfd
,
6220 (bfd_vma
) t2a3_b_insn
| ((ret_offset
>> 2) & 0x00FFFFFF),
6221 s
->contents
+ my_offset
+ 4);
6224 BFD_ASSERT (my_offset
<= globals
->thumb_glue_size
);
6226 /* Now go back and fix up the original BL insn to point to here. */
6228 /* Address of where the stub is located. */
6229 (s
->output_section
->vma
+ s
->output_offset
+ my_offset
)
6230 /* Address of where the BL is located. */
6231 - (input_section
->output_section
->vma
+ input_section
->output_offset
6233 /* Addend in the relocation. */
6235 /* Biassing for PC-relative addressing. */
6238 insert_thumb_branch (input_bfd
, ret_offset
, hit_data
- input_section
->vma
);
6243 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
6245 static struct elf_link_hash_entry
*
6246 elf32_arm_create_thumb_stub (struct bfd_link_info
* info
,
6253 char ** error_message
)
6256 long int ret_offset
;
6257 struct elf_link_hash_entry
* myh
;
6258 struct elf32_arm_link_hash_table
* globals
;
6260 myh
= find_arm_glue (info
, name
, error_message
);
6264 globals
= elf32_arm_hash_table (info
);
6266 BFD_ASSERT (globals
!= NULL
);
6267 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6269 my_offset
= myh
->root
.u
.def
.value
;
6271 if ((my_offset
& 0x01) == 0x01)
6274 && sym_sec
->owner
!= NULL
6275 && !INTERWORK_FLAG (sym_sec
->owner
))
6277 (*_bfd_error_handler
)
6278 (_("%B(%s): warning: interworking not enabled.\n"
6279 " first occurrence: %B: arm call to thumb"),
6280 sym_sec
->owner
, input_bfd
, name
);
6284 myh
->root
.u
.def
.value
= my_offset
;
6286 if (info
->shared
|| globals
->root
.is_relocatable_executable
6287 || globals
->pic_veneer
)
6289 /* For relocatable objects we can't use absolute addresses,
6290 so construct the address from a relative offset. */
6291 /* TODO: If the offset is small it's probably worth
6292 constructing the address with adds. */
6293 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1p_ldr_insn
,
6294 s
->contents
+ my_offset
);
6295 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2p_add_pc_insn
,
6296 s
->contents
+ my_offset
+ 4);
6297 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t3p_bx_r12_insn
,
6298 s
->contents
+ my_offset
+ 8);
6299 /* Adjust the offset by 4 for the position of the add,
6300 and 8 for the pipeline offset. */
6301 ret_offset
= (val
- (s
->output_offset
6302 + s
->output_section
->vma
6305 bfd_put_32 (output_bfd
, ret_offset
,
6306 s
->contents
+ my_offset
+ 12);
6308 else if (globals
->use_blx
)
6310 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1v5_ldr_insn
,
6311 s
->contents
+ my_offset
);
6313 /* It's a thumb address. Add the low order bit. */
6314 bfd_put_32 (output_bfd
, val
| a2t2v5_func_addr_insn
,
6315 s
->contents
+ my_offset
+ 4);
6319 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1_ldr_insn
,
6320 s
->contents
+ my_offset
);
6322 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2_bx_r12_insn
,
6323 s
->contents
+ my_offset
+ 4);
6325 /* It's a thumb address. Add the low order bit. */
6326 bfd_put_32 (output_bfd
, val
| a2t3_func_addr_insn
,
6327 s
->contents
+ my_offset
+ 8);
6333 BFD_ASSERT (my_offset
<= globals
->arm_glue_size
);
6338 /* Arm code calling a Thumb function. */
6341 elf32_arm_to_thumb_stub (struct bfd_link_info
* info
,
6345 asection
* input_section
,
6346 bfd_byte
* hit_data
,
6349 bfd_signed_vma addend
,
6351 char **error_message
)
6353 unsigned long int tmp
;
6356 long int ret_offset
;
6357 struct elf_link_hash_entry
* myh
;
6358 struct elf32_arm_link_hash_table
* globals
;
6360 globals
= elf32_arm_hash_table (info
);
6362 BFD_ASSERT (globals
!= NULL
);
6363 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6365 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6366 ARM2THUMB_GLUE_SECTION_NAME
);
6367 BFD_ASSERT (s
!= NULL
);
6368 BFD_ASSERT (s
->contents
!= NULL
);
6369 BFD_ASSERT (s
->output_section
!= NULL
);
6371 myh
= elf32_arm_create_thumb_stub (info
, name
, input_bfd
, output_bfd
,
6372 sym_sec
, val
, s
, error_message
);
6376 my_offset
= myh
->root
.u
.def
.value
;
6377 tmp
= bfd_get_32 (input_bfd
, hit_data
);
6378 tmp
= tmp
& 0xFF000000;
6380 /* Somehow these are both 4 too far, so subtract 8. */
6381 ret_offset
= (s
->output_offset
6383 + s
->output_section
->vma
6384 - (input_section
->output_offset
6385 + input_section
->output_section
->vma
6389 tmp
= tmp
| ((ret_offset
>> 2) & 0x00FFFFFF);
6391 bfd_put_32 (output_bfd
, (bfd_vma
) tmp
, hit_data
- input_section
->vma
);
6396 /* Populate Arm stub for an exported Thumb function. */
6399 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry
*h
, void * inf
)
6401 struct bfd_link_info
* info
= (struct bfd_link_info
*) inf
;
6403 struct elf_link_hash_entry
* myh
;
6404 struct elf32_arm_link_hash_entry
*eh
;
6405 struct elf32_arm_link_hash_table
* globals
;
6408 char *error_message
;
6410 eh
= elf32_arm_hash_entry (h
);
6411 /* Allocate stubs for exported Thumb functions on v4t. */
6412 if (eh
->export_glue
== NULL
)
6415 globals
= elf32_arm_hash_table (info
);
6417 BFD_ASSERT (globals
!= NULL
);
6418 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6420 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6421 ARM2THUMB_GLUE_SECTION_NAME
);
6422 BFD_ASSERT (s
!= NULL
);
6423 BFD_ASSERT (s
->contents
!= NULL
);
6424 BFD_ASSERT (s
->output_section
!= NULL
);
6426 sec
= eh
->export_glue
->root
.u
.def
.section
;
6428 BFD_ASSERT (sec
->output_section
!= NULL
);
6430 val
= eh
->export_glue
->root
.u
.def
.value
+ sec
->output_offset
6431 + sec
->output_section
->vma
;
6433 myh
= elf32_arm_create_thumb_stub (info
, h
->root
.root
.string
,
6434 h
->root
.u
.def
.section
->owner
,
6435 globals
->obfd
, sec
, val
, s
,
6441 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
6444 elf32_arm_bx_glue (struct bfd_link_info
* info
, int reg
)
6449 struct elf32_arm_link_hash_table
*globals
;
6451 globals
= elf32_arm_hash_table (info
);
6453 BFD_ASSERT (globals
!= NULL
);
6454 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6456 s
= bfd_get_section_by_name (globals
->bfd_of_glue_owner
,
6457 ARM_BX_GLUE_SECTION_NAME
);
6458 BFD_ASSERT (s
!= NULL
);
6459 BFD_ASSERT (s
->contents
!= NULL
);
6460 BFD_ASSERT (s
->output_section
!= NULL
);
6462 BFD_ASSERT (globals
->bx_glue_offset
[reg
] & 2);
6464 glue_addr
= globals
->bx_glue_offset
[reg
] & ~(bfd_vma
)3;
6466 if ((globals
->bx_glue_offset
[reg
] & 1) == 0)
6468 p
= s
->contents
+ glue_addr
;
6469 bfd_put_32 (globals
->obfd
, armbx1_tst_insn
+ (reg
<< 16), p
);
6470 bfd_put_32 (globals
->obfd
, armbx2_moveq_insn
+ reg
, p
+ 4);
6471 bfd_put_32 (globals
->obfd
, armbx3_bx_insn
+ reg
, p
+ 8);
6472 globals
->bx_glue_offset
[reg
] |= 1;
6475 return glue_addr
+ s
->output_section
->vma
+ s
->output_offset
;
6478 /* Generate Arm stubs for exported Thumb symbols. */
6480 elf32_arm_begin_write_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
6481 struct bfd_link_info
*link_info
)
6483 struct elf32_arm_link_hash_table
* globals
;
6485 if (link_info
== NULL
)
6486 /* Ignore this if we are not called by the ELF backend linker. */
6489 globals
= elf32_arm_hash_table (link_info
);
6490 /* If blx is available then exported Thumb symbols are OK and there is
6492 if (globals
->use_blx
)
6495 elf_link_hash_traverse (&globals
->root
, elf32_arm_to_thumb_export_stub
,
6499 /* Some relocations map to different relocations depending on the
6500 target. Return the real relocation. */
6503 arm_real_reloc_type (struct elf32_arm_link_hash_table
* globals
,
6509 if (globals
->target1_is_rel
)
6515 return globals
->target2_reloc
;
6522 /* Return the base VMA address which should be subtracted from real addresses
6523 when resolving @dtpoff relocation.
6524 This is PT_TLS segment p_vaddr. */
6527 dtpoff_base (struct bfd_link_info
*info
)
6529 /* If tls_sec is NULL, we should have signalled an error already. */
6530 if (elf_hash_table (info
)->tls_sec
== NULL
)
6532 return elf_hash_table (info
)->tls_sec
->vma
;
6535 /* Return the relocation value for @tpoff relocation
6536 if STT_TLS virtual address is ADDRESS. */
6539 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
6541 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
6544 /* If tls_sec is NULL, we should have signalled an error already. */
6545 if (htab
->tls_sec
== NULL
)
6547 base
= align_power ((bfd_vma
) TCB_SIZE
, htab
->tls_sec
->alignment_power
);
6548 return address
- htab
->tls_sec
->vma
+ base
;
6551 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
6552 VALUE is the relocation value. */
6554 static bfd_reloc_status_type
6555 elf32_arm_abs12_reloc (bfd
*abfd
, void *data
, bfd_vma value
)
6558 return bfd_reloc_overflow
;
6560 value
|= bfd_get_32 (abfd
, data
) & 0xfffff000;
6561 bfd_put_32 (abfd
, value
, data
);
6562 return bfd_reloc_ok
;
6565 /* For a given value of n, calculate the value of G_n as required to
6566 deal with group relocations. We return it in the form of an
6567 encoded constant-and-rotation, together with the final residual. If n is
6568 specified as less than zero, then final_residual is filled with the
6569 input value and no further action is performed. */
6572 calculate_group_reloc_mask (bfd_vma value
, int n
, bfd_vma
*final_residual
)
6576 bfd_vma encoded_g_n
= 0;
6577 bfd_vma residual
= value
; /* Also known as Y_n. */
6579 for (current_n
= 0; current_n
<= n
; current_n
++)
6583 /* Calculate which part of the value to mask. */
6590 /* Determine the most significant bit in the residual and
6591 align the resulting value to a 2-bit boundary. */
6592 for (msb
= 30; msb
>= 0; msb
-= 2)
6593 if (residual
& (3 << msb
))
6596 /* The desired shift is now (msb - 6), or zero, whichever
6603 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
6604 g_n
= residual
& (0xff << shift
);
6605 encoded_g_n
= (g_n
>> shift
)
6606 | ((g_n
<= 0xff ? 0 : (32 - shift
) / 2) << 8);
6608 /* Calculate the residual for the next time around. */
6612 *final_residual
= residual
;
6617 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
6618 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
6621 identify_add_or_sub (bfd_vma insn
)
6623 int opcode
= insn
& 0x1e00000;
6625 if (opcode
== 1 << 23) /* ADD */
6628 if (opcode
== 1 << 22) /* SUB */
6634 /* Perform a relocation as part of a final link. */
6636 static bfd_reloc_status_type
6637 elf32_arm_final_link_relocate (reloc_howto_type
* howto
,
6640 asection
* input_section
,
6641 bfd_byte
* contents
,
6642 Elf_Internal_Rela
* rel
,
6644 struct bfd_link_info
* info
,
6646 const char * sym_name
,
6648 struct elf_link_hash_entry
* h
,
6649 bfd_boolean
* unresolved_reloc_p
,
6650 char ** error_message
)
6652 unsigned long r_type
= howto
->type
;
6653 unsigned long r_symndx
;
6654 bfd_byte
* hit_data
= contents
+ rel
->r_offset
;
6655 bfd
* dynobj
= NULL
;
6656 Elf_Internal_Shdr
* symtab_hdr
;
6657 struct elf_link_hash_entry
** sym_hashes
;
6658 bfd_vma
* local_got_offsets
;
6659 asection
* sgot
= NULL
;
6660 asection
* splt
= NULL
;
6661 asection
* sreloc
= NULL
;
6663 bfd_signed_vma signed_addend
;
6664 struct elf32_arm_link_hash_table
* globals
;
6666 globals
= elf32_arm_hash_table (info
);
6668 BFD_ASSERT (is_arm_elf (input_bfd
));
6670 /* Some relocation types map to different relocations depending on the
6671 target. We pick the right one here. */
6672 r_type
= arm_real_reloc_type (globals
, r_type
);
6673 if (r_type
!= howto
->type
)
6674 howto
= elf32_arm_howto_from_type (r_type
);
6676 /* If the start address has been set, then set the EF_ARM_HASENTRY
6677 flag. Setting this more than once is redundant, but the cost is
6678 not too high, and it keeps the code simple.
6680 The test is done here, rather than somewhere else, because the
6681 start address is only set just before the final link commences.
6683 Note - if the user deliberately sets a start address of 0, the
6684 flag will not be set. */
6685 if (bfd_get_start_address (output_bfd
) != 0)
6686 elf_elfheader (output_bfd
)->e_flags
|= EF_ARM_HASENTRY
;
6688 dynobj
= elf_hash_table (info
)->dynobj
;
6691 sgot
= bfd_get_section_by_name (dynobj
, ".got");
6692 splt
= bfd_get_section_by_name (dynobj
, ".plt");
6694 symtab_hdr
= & elf_symtab_hdr (input_bfd
);
6695 sym_hashes
= elf_sym_hashes (input_bfd
);
6696 local_got_offsets
= elf_local_got_offsets (input_bfd
);
6697 r_symndx
= ELF32_R_SYM (rel
->r_info
);
6699 if (globals
->use_rel
)
6701 addend
= bfd_get_32 (input_bfd
, hit_data
) & howto
->src_mask
;
6703 if (addend
& ((howto
->src_mask
+ 1) >> 1))
6706 signed_addend
&= ~ howto
->src_mask
;
6707 signed_addend
|= addend
;
6710 signed_addend
= addend
;
6713 addend
= signed_addend
= rel
->r_addend
;
6718 /* We don't need to find a value for this symbol. It's just a
6720 *unresolved_reloc_p
= FALSE
;
6721 return bfd_reloc_ok
;
6724 if (!globals
->vxworks_p
)
6725 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
6729 case R_ARM_ABS32_NOI
:
6731 case R_ARM_REL32_NOI
:
6737 /* Handle relocations which should use the PLT entry. ABS32/REL32
6738 will use the symbol's value, which may point to a PLT entry, but we
6739 don't need to handle that here. If we created a PLT entry, all
6740 branches in this object should go to it, except if the PLT is too
6741 far away, in which case a long branch stub should be inserted. */
6742 if ((r_type
!= R_ARM_ABS32
&& r_type
!= R_ARM_REL32
6743 && r_type
!= R_ARM_ABS32_NOI
&& r_type
!= R_ARM_REL32_NOI
6744 && r_type
!= R_ARM_CALL
6745 && r_type
!= R_ARM_JUMP24
6746 && r_type
!= R_ARM_PLT32
)
6749 && h
->plt
.offset
!= (bfd_vma
) -1)
6751 /* If we've created a .plt section, and assigned a PLT entry to
6752 this function, it should not be known to bind locally. If
6753 it were, we would have cleared the PLT entry. */
6754 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info
, h
));
6756 value
= (splt
->output_section
->vma
6757 + splt
->output_offset
6759 *unresolved_reloc_p
= FALSE
;
6760 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6761 contents
, rel
->r_offset
, value
,
6765 /* When generating a shared object or relocatable executable, these
6766 relocations are copied into the output file to be resolved at
6768 if ((info
->shared
|| globals
->root
.is_relocatable_executable
)
6769 && (input_section
->flags
& SEC_ALLOC
)
6770 && !(elf32_arm_hash_table (info
)->vxworks_p
6771 && strcmp (input_section
->output_section
->name
,
6773 && ((r_type
!= R_ARM_REL32
&& r_type
!= R_ARM_REL32_NOI
)
6774 || !SYMBOL_CALLS_LOCAL (info
, h
))
6776 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
6777 || h
->root
.type
!= bfd_link_hash_undefweak
)
6778 && r_type
!= R_ARM_PC24
6779 && r_type
!= R_ARM_CALL
6780 && r_type
!= R_ARM_JUMP24
6781 && r_type
!= R_ARM_PREL31
6782 && r_type
!= R_ARM_PLT32
)
6784 Elf_Internal_Rela outrel
;
6786 bfd_boolean skip
, relocate
;
6788 *unresolved_reloc_p
= FALSE
;
6792 sreloc
= _bfd_elf_get_dynamic_reloc_section (input_bfd
, input_section
,
6793 ! globals
->use_rel
);
6796 return bfd_reloc_notsupported
;
6802 outrel
.r_addend
= addend
;
6804 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
6806 if (outrel
.r_offset
== (bfd_vma
) -1)
6808 else if (outrel
.r_offset
== (bfd_vma
) -2)
6809 skip
= TRUE
, relocate
= TRUE
;
6810 outrel
.r_offset
+= (input_section
->output_section
->vma
6811 + input_section
->output_offset
);
6814 memset (&outrel
, 0, sizeof outrel
);
6819 || !h
->def_regular
))
6820 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, r_type
);
6825 /* This symbol is local, or marked to become local. */
6826 if (sym_flags
== STT_ARM_TFUNC
)
6828 if (globals
->symbian_p
)
6832 /* On Symbian OS, the data segment and text segement
6833 can be relocated independently. Therefore, we
6834 must indicate the segment to which this
6835 relocation is relative. The BPABI allows us to
6836 use any symbol in the right segment; we just use
6837 the section symbol as it is convenient. (We
6838 cannot use the symbol given by "h" directly as it
6839 will not appear in the dynamic symbol table.)
6841 Note that the dynamic linker ignores the section
6842 symbol value, so we don't subtract osec->vma
6843 from the emitted reloc addend. */
6845 osec
= sym_sec
->output_section
;
6847 osec
= input_section
->output_section
;
6848 symbol
= elf_section_data (osec
)->dynindx
;
6851 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
6853 if ((osec
->flags
& SEC_READONLY
) == 0
6854 && htab
->data_index_section
!= NULL
)
6855 osec
= htab
->data_index_section
;
6857 osec
= htab
->text_index_section
;
6858 symbol
= elf_section_data (osec
)->dynindx
;
6860 BFD_ASSERT (symbol
!= 0);
6863 /* On SVR4-ish systems, the dynamic loader cannot
6864 relocate the text and data segments independently,
6865 so the symbol does not matter. */
6867 outrel
.r_info
= ELF32_R_INFO (symbol
, R_ARM_RELATIVE
);
6868 if (globals
->use_rel
)
6871 outrel
.r_addend
+= value
;
6874 loc
= sreloc
->contents
;
6875 loc
+= sreloc
->reloc_count
++ * RELOC_SIZE (globals
);
6876 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
6878 /* If this reloc is against an external symbol, we do not want to
6879 fiddle with the addend. Otherwise, we need to include the symbol
6880 value so that it becomes an addend for the dynamic reloc. */
6882 return bfd_reloc_ok
;
6884 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
6885 contents
, rel
->r_offset
, value
,
6888 else switch (r_type
)
6891 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
6893 case R_ARM_XPC25
: /* Arm BLX instruction. */
6896 case R_ARM_PC24
: /* Arm B/BL instruction. */
6900 bfd_signed_vma branch_offset
;
6901 struct elf32_arm_stub_hash_entry
*stub_entry
= NULL
;
6903 if (r_type
== R_ARM_XPC25
)
6905 /* Check for Arm calling Arm function. */
6906 /* FIXME: Should we translate the instruction into a BL
6907 instruction instead ? */
6908 if (sym_flags
!= STT_ARM_TFUNC
)
6909 (*_bfd_error_handler
)
6910 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6912 h
? h
->root
.root
.string
: "(local)");
6914 else if (r_type
== R_ARM_PC24
)
6916 /* Check for Arm calling Thumb function. */
6917 if (sym_flags
== STT_ARM_TFUNC
)
6919 if (elf32_arm_to_thumb_stub (info
, sym_name
, input_bfd
,
6920 output_bfd
, input_section
,
6921 hit_data
, sym_sec
, rel
->r_offset
,
6922 signed_addend
, value
,
6924 return bfd_reloc_ok
;
6926 return bfd_reloc_dangerous
;
6930 /* Check if a stub has to be inserted because the
6931 destination is too far or we are changing mode. */
6932 if ( r_type
== R_ARM_CALL
6933 || r_type
== R_ARM_JUMP24
6934 || r_type
== R_ARM_PLT32
)
6936 /* If the call goes through a PLT entry, make sure to
6937 check distance to the right destination address. */
6938 if (h
!= NULL
&& splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
6940 value
= (splt
->output_section
->vma
6941 + splt
->output_offset
6943 *unresolved_reloc_p
= FALSE
;
6946 from
= (input_section
->output_section
->vma
6947 + input_section
->output_offset
6949 branch_offset
= (bfd_signed_vma
)(value
- from
);
6951 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
6952 || branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
6953 || ((sym_flags
== STT_ARM_TFUNC
)
6954 && (((r_type
== R_ARM_CALL
) && !globals
->use_blx
)
6955 || (r_type
== R_ARM_JUMP24
)
6956 || (r_type
== R_ARM_PLT32
) ))
6959 /* The target is out of reach, so redirect the
6960 branch to the local stub for this function. */
6962 stub_entry
= elf32_arm_get_stub_entry (input_section
,
6965 if (stub_entry
!= NULL
)
6966 value
= (stub_entry
->stub_offset
6967 + stub_entry
->stub_sec
->output_offset
6968 + stub_entry
->stub_sec
->output_section
->vma
);
6972 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
6974 S is the address of the symbol in the relocation.
6975 P is address of the instruction being relocated.
6976 A is the addend (extracted from the instruction) in bytes.
6978 S is held in 'value'.
6979 P is the base address of the section containing the
6980 instruction plus the offset of the reloc into that
6982 (input_section->output_section->vma +
6983 input_section->output_offset +
6985 A is the addend, converted into bytes, ie:
6988 Note: None of these operations have knowledge of the pipeline
6989 size of the processor, thus it is up to the assembler to
6990 encode this information into the addend. */
6991 value
-= (input_section
->output_section
->vma
6992 + input_section
->output_offset
);
6993 value
-= rel
->r_offset
;
6994 if (globals
->use_rel
)
6995 value
+= (signed_addend
<< howto
->size
);
6997 /* RELA addends do not have to be adjusted by howto->size. */
6998 value
+= signed_addend
;
7000 signed_addend
= value
;
7001 signed_addend
>>= howto
->rightshift
;
7003 /* A branch to an undefined weak symbol is turned into a jump to
7004 the next instruction unless a PLT entry will be created. */
7005 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
7006 && !(splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1))
7008 value
= (bfd_get_32 (input_bfd
, hit_data
) & 0xf0000000)
7013 /* Perform a signed range check. */
7014 if ( signed_addend
> ((bfd_signed_vma
) (howto
->dst_mask
>> 1))
7015 || signed_addend
< - ((bfd_signed_vma
) ((howto
->dst_mask
+ 1) >> 1)))
7016 return bfd_reloc_overflow
;
7018 addend
= (value
& 2);
7020 value
= (signed_addend
& howto
->dst_mask
)
7021 | (bfd_get_32 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
7023 if (r_type
== R_ARM_CALL
)
7025 /* Set the H bit in the BLX instruction. */
7026 if (sym_flags
== STT_ARM_TFUNC
)
7031 value
&= ~(bfd_vma
)(1 << 24);
7034 /* Select the correct instruction (BL or BLX). */
7035 /* Only if we are not handling a BL to a stub. In this
7036 case, mode switching is performed by the stub. */
7037 if (sym_flags
== STT_ARM_TFUNC
&& !stub_entry
)
7041 value
&= ~(bfd_vma
)(1 << 28);
7051 if (sym_flags
== STT_ARM_TFUNC
)
7055 case R_ARM_ABS32_NOI
:
7061 if (sym_flags
== STT_ARM_TFUNC
)
7063 value
-= (input_section
->output_section
->vma
7064 + input_section
->output_offset
+ rel
->r_offset
);
7067 case R_ARM_REL32_NOI
:
7069 value
-= (input_section
->output_section
->vma
7070 + input_section
->output_offset
+ rel
->r_offset
);
7074 value
-= (input_section
->output_section
->vma
7075 + input_section
->output_offset
+ rel
->r_offset
);
7076 value
+= signed_addend
;
7077 if (! h
|| h
->root
.type
!= bfd_link_hash_undefweak
)
7079 /* Check for overflow. */
7080 if ((value
^ (value
>> 1)) & (1 << 30))
7081 return bfd_reloc_overflow
;
7083 value
&= 0x7fffffff;
7084 value
|= (bfd_get_32 (input_bfd
, hit_data
) & 0x80000000);
7085 if (sym_flags
== STT_ARM_TFUNC
)
7090 bfd_put_32 (input_bfd
, value
, hit_data
);
7091 return bfd_reloc_ok
;
7095 if ((long) value
> 0x7f || (long) value
< -0x80)
7096 return bfd_reloc_overflow
;
7098 bfd_put_8 (input_bfd
, value
, hit_data
);
7099 return bfd_reloc_ok
;
7104 if ((long) value
> 0x7fff || (long) value
< -0x8000)
7105 return bfd_reloc_overflow
;
7107 bfd_put_16 (input_bfd
, value
, hit_data
);
7108 return bfd_reloc_ok
;
7110 case R_ARM_THM_ABS5
:
7111 /* Support ldr and str instructions for the thumb. */
7112 if (globals
->use_rel
)
7114 /* Need to refetch addend. */
7115 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
7116 /* ??? Need to determine shift amount from operand size. */
7117 addend
>>= howto
->rightshift
;
7121 /* ??? Isn't value unsigned? */
7122 if ((long) value
> 0x1f || (long) value
< -0x10)
7123 return bfd_reloc_overflow
;
7125 /* ??? Value needs to be properly shifted into place first. */
7126 value
|= bfd_get_16 (input_bfd
, hit_data
) & 0xf83f;
7127 bfd_put_16 (input_bfd
, value
, hit_data
);
7128 return bfd_reloc_ok
;
7130 case R_ARM_THM_ALU_PREL_11_0
:
7131 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
7134 bfd_signed_vma relocation
;
7136 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
7137 | bfd_get_16 (input_bfd
, hit_data
+ 2);
7139 if (globals
->use_rel
)
7141 signed_addend
= (insn
& 0xff) | ((insn
& 0x7000) >> 4)
7142 | ((insn
& (1 << 26)) >> 15);
7143 if (insn
& 0xf00000)
7144 signed_addend
= -signed_addend
;
7147 relocation
= value
+ signed_addend
;
7148 relocation
-= (input_section
->output_section
->vma
7149 + input_section
->output_offset
7152 value
= abs (relocation
);
7154 if (value
>= 0x1000)
7155 return bfd_reloc_overflow
;
7157 insn
= (insn
& 0xfb0f8f00) | (value
& 0xff)
7158 | ((value
& 0x700) << 4)
7159 | ((value
& 0x800) << 15);
7163 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
7164 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
7166 return bfd_reloc_ok
;
7169 case R_ARM_THM_PC12
:
7170 /* Corresponds to: ldr.w reg, [pc, #offset]. */
7173 bfd_signed_vma relocation
;
7175 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
7176 | bfd_get_16 (input_bfd
, hit_data
+ 2);
7178 if (globals
->use_rel
)
7180 signed_addend
= insn
& 0xfff;
7181 if (!(insn
& (1 << 23)))
7182 signed_addend
= -signed_addend
;
7185 relocation
= value
+ signed_addend
;
7186 relocation
-= (input_section
->output_section
->vma
7187 + input_section
->output_offset
7190 value
= abs (relocation
);
7192 if (value
>= 0x1000)
7193 return bfd_reloc_overflow
;
7195 insn
= (insn
& 0xff7ff000) | value
;
7196 if (relocation
>= 0)
7199 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
7200 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
7202 return bfd_reloc_ok
;
7205 case R_ARM_THM_XPC22
:
7206 case R_ARM_THM_CALL
:
7207 case R_ARM_THM_JUMP24
:
7208 /* Thumb BL (branch long instruction). */
7212 bfd_boolean overflow
= FALSE
;
7213 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
7214 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
7215 bfd_signed_vma reloc_signed_max
;
7216 bfd_signed_vma reloc_signed_min
;
7218 bfd_signed_vma signed_check
;
7220 int thumb2
= using_thumb2 (globals
);
7222 /* A branch to an undefined weak symbol is turned into a jump to
7223 the next instruction unless a PLT entry will be created. */
7224 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
7225 && !(splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1))
7227 bfd_put_16 (input_bfd
, 0xe000, hit_data
);
7228 bfd_put_16 (input_bfd
, 0xbf00, hit_data
+ 2);
7229 return bfd_reloc_ok
;
7232 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
7233 with Thumb-1) involving the J1 and J2 bits. */
7234 if (globals
->use_rel
)
7236 bfd_vma s
= (upper_insn
& (1 << 10)) >> 10;
7237 bfd_vma upper
= upper_insn
& 0x3ff;
7238 bfd_vma lower
= lower_insn
& 0x7ff;
7239 bfd_vma j1
= (lower_insn
& (1 << 13)) >> 13;
7240 bfd_vma j2
= (lower_insn
& (1 << 11)) >> 11;
7241 bfd_vma i1
= j1
^ s
? 0 : 1;
7242 bfd_vma i2
= j2
^ s
? 0 : 1;
7244 addend
= (i1
<< 23) | (i2
<< 22) | (upper
<< 12) | (lower
<< 1);
7246 addend
= (addend
| ((s
? 0 : 1) << 24)) - (1 << 24);
7248 signed_addend
= addend
;
7251 if (r_type
== R_ARM_THM_XPC22
)
7253 /* Check for Thumb to Thumb call. */
7254 /* FIXME: Should we translate the instruction into a BL
7255 instruction instead ? */
7256 if (sym_flags
== STT_ARM_TFUNC
)
7257 (*_bfd_error_handler
)
7258 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
7260 h
? h
->root
.root
.string
: "(local)");
7264 /* If it is not a call to Thumb, assume call to Arm.
7265 If it is a call relative to a section name, then it is not a
7266 function call at all, but rather a long jump. Calls through
7267 the PLT do not require stubs. */
7268 if (sym_flags
!= STT_ARM_TFUNC
&& sym_flags
!= STT_SECTION
7269 && (h
== NULL
|| splt
== NULL
7270 || h
->plt
.offset
== (bfd_vma
) -1))
7272 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
7274 /* Convert BL to BLX. */
7275 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
7277 else if (( r_type
!= R_ARM_THM_CALL
)
7278 && (r_type
!= R_ARM_THM_JUMP24
))
7280 if (elf32_thumb_to_arm_stub
7281 (info
, sym_name
, input_bfd
, output_bfd
, input_section
,
7282 hit_data
, sym_sec
, rel
->r_offset
, signed_addend
, value
,
7284 return bfd_reloc_ok
;
7286 return bfd_reloc_dangerous
;
7289 else if (sym_flags
== STT_ARM_TFUNC
&& globals
->use_blx
7290 && r_type
== R_ARM_THM_CALL
)
7292 /* Make sure this is a BL. */
7293 lower_insn
|= 0x1800;
7297 /* Handle calls via the PLT. */
7298 if (h
!= NULL
&& splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
7300 value
= (splt
->output_section
->vma
7301 + splt
->output_offset
7303 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
7305 /* If the Thumb BLX instruction is available, convert the
7306 BL to a BLX instruction to call the ARM-mode PLT entry. */
7307 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
7310 /* Target the Thumb stub before the ARM PLT entry. */
7311 value
-= PLT_THUMB_STUB_SIZE
;
7312 *unresolved_reloc_p
= FALSE
;
7315 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
)
7317 /* Check if a stub has to be inserted because the destination
7320 bfd_signed_vma branch_offset
;
7321 struct elf32_arm_stub_hash_entry
*stub_entry
= NULL
;
7323 from
= (input_section
->output_section
->vma
7324 + input_section
->output_offset
7326 branch_offset
= (bfd_signed_vma
)(value
- from
);
7329 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
7330 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
7333 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
7334 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
7335 || ((sym_flags
!= STT_ARM_TFUNC
)
7336 && (((r_type
== R_ARM_THM_CALL
) && !globals
->use_blx
)
7337 || r_type
== R_ARM_THM_JUMP24
)))
7339 /* The target is out of reach or we are changing modes, so
7340 redirect the branch to the local stub for this
7342 stub_entry
= elf32_arm_get_stub_entry (input_section
,
7345 if (stub_entry
!= NULL
)
7346 value
= (stub_entry
->stub_offset
7347 + stub_entry
->stub_sec
->output_offset
7348 + stub_entry
->stub_sec
->output_section
->vma
);
7350 /* If this call becomes a call to Arm, force BLX. */
7351 if (globals
->use_blx
&& (r_type
== R_ARM_THM_CALL
))
7354 && !arm_stub_is_thumb (stub_entry
->stub_type
))
7355 || (sym_flags
!= STT_ARM_TFUNC
))
7356 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
7361 relocation
= value
+ signed_addend
;
7363 relocation
-= (input_section
->output_section
->vma
7364 + input_section
->output_offset
7367 check
= relocation
>> howto
->rightshift
;
7369 /* If this is a signed value, the rightshift just dropped
7370 leading 1 bits (assuming twos complement). */
7371 if ((bfd_signed_vma
) relocation
>= 0)
7372 signed_check
= check
;
7374 signed_check
= check
| ~((bfd_vma
) -1 >> howto
->rightshift
);
7376 /* Calculate the permissable maximum and minimum values for
7377 this relocation according to whether we're relocating for
7379 bitsize
= howto
->bitsize
;
7382 reloc_signed_max
= ((1 << (bitsize
- 1)) - 1) >> howto
->rightshift
;
7383 reloc_signed_min
= ~reloc_signed_max
;
7385 /* Assumes two's complement. */
7386 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
7389 if ((lower_insn
& 0x5000) == 0x4000)
7390 /* For a BLX instruction, make sure that the relocation is rounded up
7391 to a word boundary. This follows the semantics of the instruction
7392 which specifies that bit 1 of the target address will come from bit
7393 1 of the base address. */
7394 relocation
= (relocation
+ 2) & ~ 3;
7396 /* Put RELOCATION back into the insn. Assumes two's complement.
7397 We use the Thumb-2 encoding, which is safe even if dealing with
7398 a Thumb-1 instruction by virtue of our overflow check above. */
7399 reloc_sign
= (signed_check
< 0) ? 1 : 0;
7400 upper_insn
= (upper_insn
& ~(bfd_vma
) 0x7ff)
7401 | ((relocation
>> 12) & 0x3ff)
7402 | (reloc_sign
<< 10);
7403 lower_insn
= (lower_insn
& ~(bfd_vma
) 0x2fff)
7404 | (((!((relocation
>> 23) & 1)) ^ reloc_sign
) << 13)
7405 | (((!((relocation
>> 22) & 1)) ^ reloc_sign
) << 11)
7406 | ((relocation
>> 1) & 0x7ff);
7408 /* Put the relocated value back in the object file: */
7409 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
7410 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
7412 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
7416 case R_ARM_THM_JUMP19
:
7417 /* Thumb32 conditional branch instruction. */
7420 bfd_boolean overflow
= FALSE
;
7421 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
7422 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
7423 bfd_signed_vma reloc_signed_max
= 0xffffe;
7424 bfd_signed_vma reloc_signed_min
= -0x100000;
7425 bfd_signed_vma signed_check
;
7427 /* Need to refetch the addend, reconstruct the top three bits,
7428 and squish the two 11 bit pieces together. */
7429 if (globals
->use_rel
)
7431 bfd_vma S
= (upper_insn
& 0x0400) >> 10;
7432 bfd_vma upper
= (upper_insn
& 0x003f);
7433 bfd_vma J1
= (lower_insn
& 0x2000) >> 13;
7434 bfd_vma J2
= (lower_insn
& 0x0800) >> 11;
7435 bfd_vma lower
= (lower_insn
& 0x07ff);
7440 upper
-= 0x0100; /* Sign extend. */
7442 addend
= (upper
<< 12) | (lower
<< 1);
7443 signed_addend
= addend
;
7446 /* Handle calls via the PLT. */
7447 if (h
!= NULL
&& splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
7449 value
= (splt
->output_section
->vma
7450 + splt
->output_offset
7452 /* Target the Thumb stub before the ARM PLT entry. */
7453 value
-= PLT_THUMB_STUB_SIZE
;
7454 *unresolved_reloc_p
= FALSE
;
7457 /* ??? Should handle interworking? GCC might someday try to
7458 use this for tail calls. */
7460 relocation
= value
+ signed_addend
;
7461 relocation
-= (input_section
->output_section
->vma
7462 + input_section
->output_offset
7464 signed_check
= (bfd_signed_vma
) relocation
;
7466 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
7469 /* Put RELOCATION back into the insn. */
7471 bfd_vma S
= (relocation
& 0x00100000) >> 20;
7472 bfd_vma J2
= (relocation
& 0x00080000) >> 19;
7473 bfd_vma J1
= (relocation
& 0x00040000) >> 18;
7474 bfd_vma hi
= (relocation
& 0x0003f000) >> 12;
7475 bfd_vma lo
= (relocation
& 0x00000ffe) >> 1;
7477 upper_insn
= (upper_insn
& 0xfbc0) | (S
<< 10) | hi
;
7478 lower_insn
= (lower_insn
& 0xd000) | (J1
<< 13) | (J2
<< 11) | lo
;
7481 /* Put the relocated value back in the object file: */
7482 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
7483 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
7485 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
7488 case R_ARM_THM_JUMP11
:
7489 case R_ARM_THM_JUMP8
:
7490 case R_ARM_THM_JUMP6
:
7491 /* Thumb B (branch) instruction). */
7493 bfd_signed_vma relocation
;
7494 bfd_signed_vma reloc_signed_max
= (1 << (howto
->bitsize
- 1)) - 1;
7495 bfd_signed_vma reloc_signed_min
= ~ reloc_signed_max
;
7496 bfd_signed_vma signed_check
;
7498 /* CZB cannot jump backward. */
7499 if (r_type
== R_ARM_THM_JUMP6
)
7500 reloc_signed_min
= 0;
7502 if (globals
->use_rel
)
7504 /* Need to refetch addend. */
7505 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
7506 if (addend
& ((howto
->src_mask
+ 1) >> 1))
7509 signed_addend
&= ~ howto
->src_mask
;
7510 signed_addend
|= addend
;
7513 signed_addend
= addend
;
7514 /* The value in the insn has been right shifted. We need to
7515 undo this, so that we can perform the address calculation
7516 in terms of bytes. */
7517 signed_addend
<<= howto
->rightshift
;
7519 relocation
= value
+ signed_addend
;
7521 relocation
-= (input_section
->output_section
->vma
7522 + input_section
->output_offset
7525 relocation
>>= howto
->rightshift
;
7526 signed_check
= relocation
;
7528 if (r_type
== R_ARM_THM_JUMP6
)
7529 relocation
= ((relocation
& 0x0020) << 4) | ((relocation
& 0x001f) << 3);
7531 relocation
&= howto
->dst_mask
;
7532 relocation
|= (bfd_get_16 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
7534 bfd_put_16 (input_bfd
, relocation
, hit_data
);
7536 /* Assumes two's complement. */
7537 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
7538 return bfd_reloc_overflow
;
7540 return bfd_reloc_ok
;
7543 case R_ARM_ALU_PCREL7_0
:
7544 case R_ARM_ALU_PCREL15_8
:
7545 case R_ARM_ALU_PCREL23_15
:
7550 insn
= bfd_get_32 (input_bfd
, hit_data
);
7551 if (globals
->use_rel
)
7553 /* Extract the addend. */
7554 addend
= (insn
& 0xff) << ((insn
& 0xf00) >> 7);
7555 signed_addend
= addend
;
7557 relocation
= value
+ signed_addend
;
7559 relocation
-= (input_section
->output_section
->vma
7560 + input_section
->output_offset
7562 insn
= (insn
& ~0xfff)
7563 | ((howto
->bitpos
<< 7) & 0xf00)
7564 | ((relocation
>> howto
->bitpos
) & 0xff);
7565 bfd_put_32 (input_bfd
, value
, hit_data
);
7567 return bfd_reloc_ok
;
7569 case R_ARM_GNU_VTINHERIT
:
7570 case R_ARM_GNU_VTENTRY
:
7571 return bfd_reloc_ok
;
7573 case R_ARM_GOTOFF32
:
7574 /* Relocation is relative to the start of the
7575 global offset table. */
7577 BFD_ASSERT (sgot
!= NULL
);
7579 return bfd_reloc_notsupported
;
7581 /* If we are addressing a Thumb function, we need to adjust the
7582 address by one, so that attempts to call the function pointer will
7583 correctly interpret it as Thumb code. */
7584 if (sym_flags
== STT_ARM_TFUNC
)
7587 /* Note that sgot->output_offset is not involved in this
7588 calculation. We always want the start of .got. If we
7589 define _GLOBAL_OFFSET_TABLE in a different way, as is
7590 permitted by the ABI, we might have to change this
7592 value
-= sgot
->output_section
->vma
;
7593 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7594 contents
, rel
->r_offset
, value
,
7598 /* Use global offset table as symbol value. */
7599 BFD_ASSERT (sgot
!= NULL
);
7602 return bfd_reloc_notsupported
;
7604 *unresolved_reloc_p
= FALSE
;
7605 value
= sgot
->output_section
->vma
;
7606 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7607 contents
, rel
->r_offset
, value
,
7611 case R_ARM_GOT_PREL
:
7612 /* Relocation is to the entry for this symbol in the
7613 global offset table. */
7615 return bfd_reloc_notsupported
;
7622 off
= h
->got
.offset
;
7623 BFD_ASSERT (off
!= (bfd_vma
) -1);
7624 dyn
= globals
->root
.dynamic_sections_created
;
7626 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
7628 && SYMBOL_REFERENCES_LOCAL (info
, h
))
7629 || (ELF_ST_VISIBILITY (h
->other
)
7630 && h
->root
.type
== bfd_link_hash_undefweak
))
7632 /* This is actually a static link, or it is a -Bsymbolic link
7633 and the symbol is defined locally. We must initialize this
7634 entry in the global offset table. Since the offset must
7635 always be a multiple of 4, we use the least significant bit
7636 to record whether we have initialized it already.
7638 When doing a dynamic link, we create a .rel(a).got relocation
7639 entry to initialize the value. This is done in the
7640 finish_dynamic_symbol routine. */
7645 /* If we are addressing a Thumb function, we need to
7646 adjust the address by one, so that attempts to
7647 call the function pointer will correctly
7648 interpret it as Thumb code. */
7649 if (sym_flags
== STT_ARM_TFUNC
)
7652 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
7657 *unresolved_reloc_p
= FALSE
;
7659 value
= sgot
->output_offset
+ off
;
7665 BFD_ASSERT (local_got_offsets
!= NULL
&&
7666 local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
7668 off
= local_got_offsets
[r_symndx
];
7670 /* The offset must always be a multiple of 4. We use the
7671 least significant bit to record whether we have already
7672 generated the necessary reloc. */
7677 /* If we are addressing a Thumb function, we need to
7678 adjust the address by one, so that attempts to
7679 call the function pointer will correctly
7680 interpret it as Thumb code. */
7681 if (sym_flags
== STT_ARM_TFUNC
)
7684 if (globals
->use_rel
)
7685 bfd_put_32 (output_bfd
, value
, sgot
->contents
+ off
);
7690 Elf_Internal_Rela outrel
;
7693 srelgot
= (bfd_get_section_by_name
7694 (dynobj
, RELOC_SECTION (globals
, ".got")));
7695 BFD_ASSERT (srelgot
!= NULL
);
7697 outrel
.r_addend
= addend
+ value
;
7698 outrel
.r_offset
= (sgot
->output_section
->vma
7699 + sgot
->output_offset
7701 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
7702 loc
= srelgot
->contents
;
7703 loc
+= srelgot
->reloc_count
++ * RELOC_SIZE (globals
);
7704 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7707 local_got_offsets
[r_symndx
] |= 1;
7710 value
= sgot
->output_offset
+ off
;
7712 if (r_type
!= R_ARM_GOT32
)
7713 value
+= sgot
->output_section
->vma
;
7715 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7716 contents
, rel
->r_offset
, value
,
7719 case R_ARM_TLS_LDO32
:
7720 value
= value
- dtpoff_base (info
);
7722 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7723 contents
, rel
->r_offset
, value
,
7726 case R_ARM_TLS_LDM32
:
7730 if (globals
->sgot
== NULL
)
7733 off
= globals
->tls_ldm_got
.offset
;
7739 /* If we don't know the module number, create a relocation
7743 Elf_Internal_Rela outrel
;
7746 if (globals
->srelgot
== NULL
)
7749 outrel
.r_addend
= 0;
7750 outrel
.r_offset
= (globals
->sgot
->output_section
->vma
7751 + globals
->sgot
->output_offset
+ off
);
7752 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32
);
7754 if (globals
->use_rel
)
7755 bfd_put_32 (output_bfd
, outrel
.r_addend
,
7756 globals
->sgot
->contents
+ off
);
7758 loc
= globals
->srelgot
->contents
;
7759 loc
+= globals
->srelgot
->reloc_count
++ * RELOC_SIZE (globals
);
7760 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7763 bfd_put_32 (output_bfd
, 1, globals
->sgot
->contents
+ off
);
7765 globals
->tls_ldm_got
.offset
|= 1;
7768 value
= globals
->sgot
->output_section
->vma
+ globals
->sgot
->output_offset
+ off
7769 - (input_section
->output_section
->vma
+ input_section
->output_offset
+ rel
->r_offset
);
7771 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7772 contents
, rel
->r_offset
, value
,
7776 case R_ARM_TLS_GD32
:
7777 case R_ARM_TLS_IE32
:
7783 if (globals
->sgot
== NULL
)
7790 dyn
= globals
->root
.dynamic_sections_created
;
7791 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
7793 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
7795 *unresolved_reloc_p
= FALSE
;
7798 off
= h
->got
.offset
;
7799 tls_type
= ((struct elf32_arm_link_hash_entry
*) h
)->tls_type
;
7803 if (local_got_offsets
== NULL
)
7805 off
= local_got_offsets
[r_symndx
];
7806 tls_type
= elf32_arm_local_got_tls_type (input_bfd
)[r_symndx
];
7809 if (tls_type
== GOT_UNKNOWN
)
7816 bfd_boolean need_relocs
= FALSE
;
7817 Elf_Internal_Rela outrel
;
7818 bfd_byte
*loc
= NULL
;
7821 /* The GOT entries have not been initialized yet. Do it
7822 now, and emit any relocations. If both an IE GOT and a
7823 GD GOT are necessary, we emit the GD first. */
7825 if ((info
->shared
|| indx
!= 0)
7827 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
7828 || h
->root
.type
!= bfd_link_hash_undefweak
))
7831 if (globals
->srelgot
== NULL
)
7833 loc
= globals
->srelgot
->contents
;
7834 loc
+= globals
->srelgot
->reloc_count
* RELOC_SIZE (globals
);
7837 if (tls_type
& GOT_TLS_GD
)
7841 outrel
.r_addend
= 0;
7842 outrel
.r_offset
= (globals
->sgot
->output_section
->vma
7843 + globals
->sgot
->output_offset
7845 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_DTPMOD32
);
7847 if (globals
->use_rel
)
7848 bfd_put_32 (output_bfd
, outrel
.r_addend
,
7849 globals
->sgot
->contents
+ cur_off
);
7851 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7852 globals
->srelgot
->reloc_count
++;
7853 loc
+= RELOC_SIZE (globals
);
7856 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
7857 globals
->sgot
->contents
+ cur_off
+ 4);
7860 outrel
.r_addend
= 0;
7861 outrel
.r_info
= ELF32_R_INFO (indx
,
7862 R_ARM_TLS_DTPOFF32
);
7863 outrel
.r_offset
+= 4;
7865 if (globals
->use_rel
)
7866 bfd_put_32 (output_bfd
, outrel
.r_addend
,
7867 globals
->sgot
->contents
+ cur_off
+ 4);
7870 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7871 globals
->srelgot
->reloc_count
++;
7872 loc
+= RELOC_SIZE (globals
);
7877 /* If we are not emitting relocations for a
7878 general dynamic reference, then we must be in a
7879 static link or an executable link with the
7880 symbol binding locally. Mark it as belonging
7881 to module 1, the executable. */
7882 bfd_put_32 (output_bfd
, 1,
7883 globals
->sgot
->contents
+ cur_off
);
7884 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
7885 globals
->sgot
->contents
+ cur_off
+ 4);
7891 if (tls_type
& GOT_TLS_IE
)
7896 outrel
.r_addend
= value
- dtpoff_base (info
);
7898 outrel
.r_addend
= 0;
7899 outrel
.r_offset
= (globals
->sgot
->output_section
->vma
7900 + globals
->sgot
->output_offset
7902 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_TPOFF32
);
7904 if (globals
->use_rel
)
7905 bfd_put_32 (output_bfd
, outrel
.r_addend
,
7906 globals
->sgot
->contents
+ cur_off
);
7908 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
7909 globals
->srelgot
->reloc_count
++;
7910 loc
+= RELOC_SIZE (globals
);
7913 bfd_put_32 (output_bfd
, tpoff (info
, value
),
7914 globals
->sgot
->contents
+ cur_off
);
7921 local_got_offsets
[r_symndx
] |= 1;
7924 if ((tls_type
& GOT_TLS_GD
) && r_type
!= R_ARM_TLS_GD32
)
7926 value
= globals
->sgot
->output_section
->vma
+ globals
->sgot
->output_offset
+ off
7927 - (input_section
->output_section
->vma
+ input_section
->output_offset
+ rel
->r_offset
);
7929 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7930 contents
, rel
->r_offset
, value
,
7934 case R_ARM_TLS_LE32
:
7937 (*_bfd_error_handler
)
7938 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
7939 input_bfd
, input_section
,
7940 (long) rel
->r_offset
, howto
->name
);
7944 value
= tpoff (info
, value
);
7946 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
7947 contents
, rel
->r_offset
, value
,
7951 if (globals
->fix_v4bx
)
7953 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
7955 /* Ensure that we have a BX instruction. */
7956 BFD_ASSERT ((insn
& 0x0ffffff0) == 0x012fff10);
7958 if (globals
->fix_v4bx
== 2 && (insn
& 0xf) != 0xf)
7960 /* Branch to veneer. */
7962 glue_addr
= elf32_arm_bx_glue (info
, insn
& 0xf);
7963 glue_addr
-= input_section
->output_section
->vma
7964 + input_section
->output_offset
7965 + rel
->r_offset
+ 8;
7966 insn
= (insn
& 0xf0000000) | 0x0a000000
7967 | ((glue_addr
>> 2) & 0x00ffffff);
7971 /* Preserve Rm (lowest four bits) and the condition code
7972 (highest four bits). Other bits encode MOV PC,Rm. */
7973 insn
= (insn
& 0xf000000f) | 0x01a0f000;
7976 bfd_put_32 (input_bfd
, insn
, hit_data
);
7978 return bfd_reloc_ok
;
7980 case R_ARM_MOVW_ABS_NC
:
7981 case R_ARM_MOVT_ABS
:
7982 case R_ARM_MOVW_PREL_NC
:
7983 case R_ARM_MOVT_PREL
:
7984 /* Until we properly support segment-base-relative addressing then
7985 we assume the segment base to be zero, as for the group relocations.
7986 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
7987 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
7988 case R_ARM_MOVW_BREL_NC
:
7989 case R_ARM_MOVW_BREL
:
7990 case R_ARM_MOVT_BREL
:
7992 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
7994 if (globals
->use_rel
)
7996 addend
= ((insn
>> 4) & 0xf000) | (insn
& 0xfff);
7997 signed_addend
= (addend
^ 0x8000) - 0x8000;
8000 value
+= signed_addend
;
8002 if (r_type
== R_ARM_MOVW_PREL_NC
|| r_type
== R_ARM_MOVT_PREL
)
8003 value
-= (input_section
->output_section
->vma
8004 + input_section
->output_offset
+ rel
->r_offset
);
8006 if (r_type
== R_ARM_MOVW_BREL
&& value
>= 0x10000)
8007 return bfd_reloc_overflow
;
8009 if (sym_flags
== STT_ARM_TFUNC
)
8012 if (r_type
== R_ARM_MOVT_ABS
|| r_type
== R_ARM_MOVT_PREL
8013 || r_type
== R_ARM_MOVT_BREL
)
8017 insn
|= value
& 0xfff;
8018 insn
|= (value
& 0xf000) << 4;
8019 bfd_put_32 (input_bfd
, insn
, hit_data
);
8021 return bfd_reloc_ok
;
8023 case R_ARM_THM_MOVW_ABS_NC
:
8024 case R_ARM_THM_MOVT_ABS
:
8025 case R_ARM_THM_MOVW_PREL_NC
:
8026 case R_ARM_THM_MOVT_PREL
:
8027 /* Until we properly support segment-base-relative addressing then
8028 we assume the segment base to be zero, as for the above relocations.
8029 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
8030 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
8031 as R_ARM_THM_MOVT_ABS. */
8032 case R_ARM_THM_MOVW_BREL_NC
:
8033 case R_ARM_THM_MOVW_BREL
:
8034 case R_ARM_THM_MOVT_BREL
:
8038 insn
= bfd_get_16 (input_bfd
, hit_data
) << 16;
8039 insn
|= bfd_get_16 (input_bfd
, hit_data
+ 2);
8041 if (globals
->use_rel
)
8043 addend
= ((insn
>> 4) & 0xf000)
8044 | ((insn
>> 15) & 0x0800)
8045 | ((insn
>> 4) & 0x0700)
8047 signed_addend
= (addend
^ 0x8000) - 0x8000;
8050 value
+= signed_addend
;
8052 if (r_type
== R_ARM_THM_MOVW_PREL_NC
|| r_type
== R_ARM_THM_MOVT_PREL
)
8053 value
-= (input_section
->output_section
->vma
8054 + input_section
->output_offset
+ rel
->r_offset
);
8056 if (r_type
== R_ARM_THM_MOVW_BREL
&& value
>= 0x10000)
8057 return bfd_reloc_overflow
;
8059 if (sym_flags
== STT_ARM_TFUNC
)
8062 if (r_type
== R_ARM_THM_MOVT_ABS
|| r_type
== R_ARM_THM_MOVT_PREL
8063 || r_type
== R_ARM_THM_MOVT_BREL
)
8067 insn
|= (value
& 0xf000) << 4;
8068 insn
|= (value
& 0x0800) << 15;
8069 insn
|= (value
& 0x0700) << 4;
8070 insn
|= (value
& 0x00ff);
8072 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
8073 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
8075 return bfd_reloc_ok
;
8077 case R_ARM_ALU_PC_G0_NC
:
8078 case R_ARM_ALU_PC_G1_NC
:
8079 case R_ARM_ALU_PC_G0
:
8080 case R_ARM_ALU_PC_G1
:
8081 case R_ARM_ALU_PC_G2
:
8082 case R_ARM_ALU_SB_G0_NC
:
8083 case R_ARM_ALU_SB_G1_NC
:
8084 case R_ARM_ALU_SB_G0
:
8085 case R_ARM_ALU_SB_G1
:
8086 case R_ARM_ALU_SB_G2
:
8088 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8089 bfd_vma pc
= input_section
->output_section
->vma
8090 + input_section
->output_offset
+ rel
->r_offset
;
8091 /* sb should be the origin of the *segment* containing the symbol.
8092 It is not clear how to obtain this OS-dependent value, so we
8093 make an arbitrary choice of zero. */
8097 bfd_signed_vma signed_value
;
8100 /* Determine which group of bits to select. */
8103 case R_ARM_ALU_PC_G0_NC
:
8104 case R_ARM_ALU_PC_G0
:
8105 case R_ARM_ALU_SB_G0_NC
:
8106 case R_ARM_ALU_SB_G0
:
8110 case R_ARM_ALU_PC_G1_NC
:
8111 case R_ARM_ALU_PC_G1
:
8112 case R_ARM_ALU_SB_G1_NC
:
8113 case R_ARM_ALU_SB_G1
:
8117 case R_ARM_ALU_PC_G2
:
8118 case R_ARM_ALU_SB_G2
:
8126 /* If REL, extract the addend from the insn. If RELA, it will
8127 have already been fetched for us. */
8128 if (globals
->use_rel
)
8131 bfd_vma constant
= insn
& 0xff;
8132 bfd_vma rotation
= (insn
& 0xf00) >> 8;
8135 signed_addend
= constant
;
8138 /* Compensate for the fact that in the instruction, the
8139 rotation is stored in multiples of 2 bits. */
8142 /* Rotate "constant" right by "rotation" bits. */
8143 signed_addend
= (constant
>> rotation
) |
8144 (constant
<< (8 * sizeof (bfd_vma
) - rotation
));
8147 /* Determine if the instruction is an ADD or a SUB.
8148 (For REL, this determines the sign of the addend.) */
8149 negative
= identify_add_or_sub (insn
);
8152 (*_bfd_error_handler
)
8153 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
8154 input_bfd
, input_section
,
8155 (long) rel
->r_offset
, howto
->name
);
8156 return bfd_reloc_overflow
;
8159 signed_addend
*= negative
;
8162 /* Compute the value (X) to go in the place. */
8163 if (r_type
== R_ARM_ALU_PC_G0_NC
8164 || r_type
== R_ARM_ALU_PC_G1_NC
8165 || r_type
== R_ARM_ALU_PC_G0
8166 || r_type
== R_ARM_ALU_PC_G1
8167 || r_type
== R_ARM_ALU_PC_G2
)
8169 signed_value
= value
- pc
+ signed_addend
;
8171 /* Section base relative. */
8172 signed_value
= value
- sb
+ signed_addend
;
8174 /* If the target symbol is a Thumb function, then set the
8175 Thumb bit in the address. */
8176 if (sym_flags
== STT_ARM_TFUNC
)
8179 /* Calculate the value of the relevant G_n, in encoded
8180 constant-with-rotation format. */
8181 g_n
= calculate_group_reloc_mask (abs (signed_value
), group
,
8184 /* Check for overflow if required. */
8185 if ((r_type
== R_ARM_ALU_PC_G0
8186 || r_type
== R_ARM_ALU_PC_G1
8187 || r_type
== R_ARM_ALU_PC_G2
8188 || r_type
== R_ARM_ALU_SB_G0
8189 || r_type
== R_ARM_ALU_SB_G1
8190 || r_type
== R_ARM_ALU_SB_G2
) && residual
!= 0)
8192 (*_bfd_error_handler
)
8193 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8194 input_bfd
, input_section
,
8195 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
8196 return bfd_reloc_overflow
;
8199 /* Mask out the value and the ADD/SUB part of the opcode; take care
8200 not to destroy the S bit. */
8203 /* Set the opcode according to whether the value to go in the
8204 place is negative. */
8205 if (signed_value
< 0)
8210 /* Encode the offset. */
8213 bfd_put_32 (input_bfd
, insn
, hit_data
);
8215 return bfd_reloc_ok
;
8217 case R_ARM_LDR_PC_G0
:
8218 case R_ARM_LDR_PC_G1
:
8219 case R_ARM_LDR_PC_G2
:
8220 case R_ARM_LDR_SB_G0
:
8221 case R_ARM_LDR_SB_G1
:
8222 case R_ARM_LDR_SB_G2
:
8224 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8225 bfd_vma pc
= input_section
->output_section
->vma
8226 + input_section
->output_offset
+ rel
->r_offset
;
8227 bfd_vma sb
= 0; /* See note above. */
8229 bfd_signed_vma signed_value
;
8232 /* Determine which groups of bits to calculate. */
8235 case R_ARM_LDR_PC_G0
:
8236 case R_ARM_LDR_SB_G0
:
8240 case R_ARM_LDR_PC_G1
:
8241 case R_ARM_LDR_SB_G1
:
8245 case R_ARM_LDR_PC_G2
:
8246 case R_ARM_LDR_SB_G2
:
8254 /* If REL, extract the addend from the insn. If RELA, it will
8255 have already been fetched for us. */
8256 if (globals
->use_rel
)
8258 int negative
= (insn
& (1 << 23)) ? 1 : -1;
8259 signed_addend
= negative
* (insn
& 0xfff);
8262 /* Compute the value (X) to go in the place. */
8263 if (r_type
== R_ARM_LDR_PC_G0
8264 || r_type
== R_ARM_LDR_PC_G1
8265 || r_type
== R_ARM_LDR_PC_G2
)
8267 signed_value
= value
- pc
+ signed_addend
;
8269 /* Section base relative. */
8270 signed_value
= value
- sb
+ signed_addend
;
8272 /* Calculate the value of the relevant G_{n-1} to obtain
8273 the residual at that stage. */
8274 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
8276 /* Check for overflow. */
8277 if (residual
>= 0x1000)
8279 (*_bfd_error_handler
)
8280 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8281 input_bfd
, input_section
,
8282 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
8283 return bfd_reloc_overflow
;
8286 /* Mask out the value and U bit. */
8289 /* Set the U bit if the value to go in the place is non-negative. */
8290 if (signed_value
>= 0)
8293 /* Encode the offset. */
8296 bfd_put_32 (input_bfd
, insn
, hit_data
);
8298 return bfd_reloc_ok
;
8300 case R_ARM_LDRS_PC_G0
:
8301 case R_ARM_LDRS_PC_G1
:
8302 case R_ARM_LDRS_PC_G2
:
8303 case R_ARM_LDRS_SB_G0
:
8304 case R_ARM_LDRS_SB_G1
:
8305 case R_ARM_LDRS_SB_G2
:
8307 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8308 bfd_vma pc
= input_section
->output_section
->vma
8309 + input_section
->output_offset
+ rel
->r_offset
;
8310 bfd_vma sb
= 0; /* See note above. */
8312 bfd_signed_vma signed_value
;
8315 /* Determine which groups of bits to calculate. */
8318 case R_ARM_LDRS_PC_G0
:
8319 case R_ARM_LDRS_SB_G0
:
8323 case R_ARM_LDRS_PC_G1
:
8324 case R_ARM_LDRS_SB_G1
:
8328 case R_ARM_LDRS_PC_G2
:
8329 case R_ARM_LDRS_SB_G2
:
8337 /* If REL, extract the addend from the insn. If RELA, it will
8338 have already been fetched for us. */
8339 if (globals
->use_rel
)
8341 int negative
= (insn
& (1 << 23)) ? 1 : -1;
8342 signed_addend
= negative
* (((insn
& 0xf00) >> 4) + (insn
& 0xf));
8345 /* Compute the value (X) to go in the place. */
8346 if (r_type
== R_ARM_LDRS_PC_G0
8347 || r_type
== R_ARM_LDRS_PC_G1
8348 || r_type
== R_ARM_LDRS_PC_G2
)
8350 signed_value
= value
- pc
+ signed_addend
;
8352 /* Section base relative. */
8353 signed_value
= value
- sb
+ signed_addend
;
8355 /* Calculate the value of the relevant G_{n-1} to obtain
8356 the residual at that stage. */
8357 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
8359 /* Check for overflow. */
8360 if (residual
>= 0x100)
8362 (*_bfd_error_handler
)
8363 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8364 input_bfd
, input_section
,
8365 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
8366 return bfd_reloc_overflow
;
8369 /* Mask out the value and U bit. */
8372 /* Set the U bit if the value to go in the place is non-negative. */
8373 if (signed_value
>= 0)
8376 /* Encode the offset. */
8377 insn
|= ((residual
& 0xf0) << 4) | (residual
& 0xf);
8379 bfd_put_32 (input_bfd
, insn
, hit_data
);
8381 return bfd_reloc_ok
;
8383 case R_ARM_LDC_PC_G0
:
8384 case R_ARM_LDC_PC_G1
:
8385 case R_ARM_LDC_PC_G2
:
8386 case R_ARM_LDC_SB_G0
:
8387 case R_ARM_LDC_SB_G1
:
8388 case R_ARM_LDC_SB_G2
:
8390 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
8391 bfd_vma pc
= input_section
->output_section
->vma
8392 + input_section
->output_offset
+ rel
->r_offset
;
8393 bfd_vma sb
= 0; /* See note above. */
8395 bfd_signed_vma signed_value
;
8398 /* Determine which groups of bits to calculate. */
8401 case R_ARM_LDC_PC_G0
:
8402 case R_ARM_LDC_SB_G0
:
8406 case R_ARM_LDC_PC_G1
:
8407 case R_ARM_LDC_SB_G1
:
8411 case R_ARM_LDC_PC_G2
:
8412 case R_ARM_LDC_SB_G2
:
8420 /* If REL, extract the addend from the insn. If RELA, it will
8421 have already been fetched for us. */
8422 if (globals
->use_rel
)
8424 int negative
= (insn
& (1 << 23)) ? 1 : -1;
8425 signed_addend
= negative
* ((insn
& 0xff) << 2);
8428 /* Compute the value (X) to go in the place. */
8429 if (r_type
== R_ARM_LDC_PC_G0
8430 || r_type
== R_ARM_LDC_PC_G1
8431 || r_type
== R_ARM_LDC_PC_G2
)
8433 signed_value
= value
- pc
+ signed_addend
;
8435 /* Section base relative. */
8436 signed_value
= value
- sb
+ signed_addend
;
8438 /* Calculate the value of the relevant G_{n-1} to obtain
8439 the residual at that stage. */
8440 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
8442 /* Check for overflow. (The absolute value to go in the place must be
8443 divisible by four and, after having been divided by four, must
8444 fit in eight bits.) */
8445 if ((residual
& 0x3) != 0 || residual
>= 0x400)
8447 (*_bfd_error_handler
)
8448 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8449 input_bfd
, input_section
,
8450 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
8451 return bfd_reloc_overflow
;
8454 /* Mask out the value and U bit. */
8457 /* Set the U bit if the value to go in the place is non-negative. */
8458 if (signed_value
>= 0)
8461 /* Encode the offset. */
8462 insn
|= residual
>> 2;
8464 bfd_put_32 (input_bfd
, insn
, hit_data
);
8466 return bfd_reloc_ok
;
8469 return bfd_reloc_notsupported
;
8473 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
8475 arm_add_to_rel (bfd
* abfd
,
8477 reloc_howto_type
* howto
,
8478 bfd_signed_vma increment
)
8480 bfd_signed_vma addend
;
8482 if (howto
->type
== R_ARM_THM_CALL
8483 || howto
->type
== R_ARM_THM_JUMP24
)
8485 int upper_insn
, lower_insn
;
8488 upper_insn
= bfd_get_16 (abfd
, address
);
8489 lower_insn
= bfd_get_16 (abfd
, address
+ 2);
8490 upper
= upper_insn
& 0x7ff;
8491 lower
= lower_insn
& 0x7ff;
8493 addend
= (upper
<< 12) | (lower
<< 1);
8494 addend
+= increment
;
8497 upper_insn
= (upper_insn
& 0xf800) | ((addend
>> 11) & 0x7ff);
8498 lower_insn
= (lower_insn
& 0xf800) | (addend
& 0x7ff);
8500 bfd_put_16 (abfd
, (bfd_vma
) upper_insn
, address
);
8501 bfd_put_16 (abfd
, (bfd_vma
) lower_insn
, address
+ 2);
8507 contents
= bfd_get_32 (abfd
, address
);
8509 /* Get the (signed) value from the instruction. */
8510 addend
= contents
& howto
->src_mask
;
8511 if (addend
& ((howto
->src_mask
+ 1) >> 1))
8513 bfd_signed_vma mask
;
8516 mask
&= ~ howto
->src_mask
;
8520 /* Add in the increment, (which is a byte value). */
8521 switch (howto
->type
)
8524 addend
+= increment
;
8531 addend
<<= howto
->size
;
8532 addend
+= increment
;
8534 /* Should we check for overflow here ? */
8536 /* Drop any undesired bits. */
8537 addend
>>= howto
->rightshift
;
8541 contents
= (contents
& ~ howto
->dst_mask
) | (addend
& howto
->dst_mask
);
8543 bfd_put_32 (abfd
, contents
, address
);
8547 #define IS_ARM_TLS_RELOC(R_TYPE) \
8548 ((R_TYPE) == R_ARM_TLS_GD32 \
8549 || (R_TYPE) == R_ARM_TLS_LDO32 \
8550 || (R_TYPE) == R_ARM_TLS_LDM32 \
8551 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
8552 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
8553 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
8554 || (R_TYPE) == R_ARM_TLS_LE32 \
8555 || (R_TYPE) == R_ARM_TLS_IE32)
8557 /* Relocate an ARM ELF section. */
8560 elf32_arm_relocate_section (bfd
* output_bfd
,
8561 struct bfd_link_info
* info
,
8563 asection
* input_section
,
8564 bfd_byte
* contents
,
8565 Elf_Internal_Rela
* relocs
,
8566 Elf_Internal_Sym
* local_syms
,
8567 asection
** local_sections
)
8569 Elf_Internal_Shdr
*symtab_hdr
;
8570 struct elf_link_hash_entry
**sym_hashes
;
8571 Elf_Internal_Rela
*rel
;
8572 Elf_Internal_Rela
*relend
;
8574 struct elf32_arm_link_hash_table
* globals
;
8576 globals
= elf32_arm_hash_table (info
);
8578 symtab_hdr
= & elf_symtab_hdr (input_bfd
);
8579 sym_hashes
= elf_sym_hashes (input_bfd
);
8582 relend
= relocs
+ input_section
->reloc_count
;
8583 for (; rel
< relend
; rel
++)
8586 reloc_howto_type
* howto
;
8587 unsigned long r_symndx
;
8588 Elf_Internal_Sym
* sym
;
8590 struct elf_link_hash_entry
* h
;
8592 bfd_reloc_status_type r
;
8595 bfd_boolean unresolved_reloc
= FALSE
;
8596 char *error_message
= NULL
;
8598 r_symndx
= ELF32_R_SYM (rel
->r_info
);
8599 r_type
= ELF32_R_TYPE (rel
->r_info
);
8600 r_type
= arm_real_reloc_type (globals
, r_type
);
8602 if ( r_type
== R_ARM_GNU_VTENTRY
8603 || r_type
== R_ARM_GNU_VTINHERIT
)
8606 bfd_reloc
.howto
= elf32_arm_howto_from_type (r_type
);
8607 howto
= bfd_reloc
.howto
;
8613 if (r_symndx
< symtab_hdr
->sh_info
)
8615 sym
= local_syms
+ r_symndx
;
8616 sym_type
= ELF32_ST_TYPE (sym
->st_info
);
8617 sec
= local_sections
[r_symndx
];
8618 if (globals
->use_rel
)
8620 relocation
= (sec
->output_section
->vma
8621 + sec
->output_offset
8623 if (!info
->relocatable
8624 && (sec
->flags
& SEC_MERGE
)
8625 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
8628 bfd_vma addend
, value
;
8632 case R_ARM_MOVW_ABS_NC
:
8633 case R_ARM_MOVT_ABS
:
8634 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
8635 addend
= ((value
& 0xf0000) >> 4) | (value
& 0xfff);
8636 addend
= (addend
^ 0x8000) - 0x8000;
8639 case R_ARM_THM_MOVW_ABS_NC
:
8640 case R_ARM_THM_MOVT_ABS
:
8641 value
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
)
8643 value
|= bfd_get_16 (input_bfd
,
8644 contents
+ rel
->r_offset
+ 2);
8645 addend
= ((value
& 0xf7000) >> 4) | (value
& 0xff)
8646 | ((value
& 0x04000000) >> 15);
8647 addend
= (addend
^ 0x8000) - 0x8000;
8651 if (howto
->rightshift
8652 || (howto
->src_mask
& (howto
->src_mask
+ 1)))
8654 (*_bfd_error_handler
)
8655 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
8656 input_bfd
, input_section
,
8657 (long) rel
->r_offset
, howto
->name
);
8661 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
8663 /* Get the (signed) value from the instruction. */
8664 addend
= value
& howto
->src_mask
;
8665 if (addend
& ((howto
->src_mask
+ 1) >> 1))
8667 bfd_signed_vma mask
;
8670 mask
&= ~ howto
->src_mask
;
8678 _bfd_elf_rel_local_sym (output_bfd
, sym
, &msec
, addend
)
8680 addend
+= msec
->output_section
->vma
+ msec
->output_offset
;
8682 /* Cases here must match those in the preceeding
8683 switch statement. */
8686 case R_ARM_MOVW_ABS_NC
:
8687 case R_ARM_MOVT_ABS
:
8688 value
= (value
& 0xfff0f000) | ((addend
& 0xf000) << 4)
8690 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
8693 case R_ARM_THM_MOVW_ABS_NC
:
8694 case R_ARM_THM_MOVT_ABS
:
8695 value
= (value
& 0xfbf08f00) | ((addend
& 0xf700) << 4)
8696 | (addend
& 0xff) | ((addend
& 0x0800) << 15);
8697 bfd_put_16 (input_bfd
, value
>> 16,
8698 contents
+ rel
->r_offset
);
8699 bfd_put_16 (input_bfd
, value
,
8700 contents
+ rel
->r_offset
+ 2);
8704 value
= (value
& ~ howto
->dst_mask
)
8705 | (addend
& howto
->dst_mask
);
8706 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
8712 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
8718 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
8719 r_symndx
, symtab_hdr
, sym_hashes
,
8721 unresolved_reloc
, warned
);
8726 if (sec
!= NULL
&& elf_discarded_section (sec
))
8728 /* For relocs against symbols from removed linkonce sections,
8729 or sections discarded by a linker script, we just want the
8730 section contents zeroed. Avoid any special processing. */
8731 _bfd_clear_contents (howto
, input_bfd
, contents
+ rel
->r_offset
);
8737 if (info
->relocatable
)
8739 /* This is a relocatable link. We don't have to change
8740 anything, unless the reloc is against a section symbol,
8741 in which case we have to adjust according to where the
8742 section symbol winds up in the output section. */
8743 if (sym
!= NULL
&& ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
8745 if (globals
->use_rel
)
8746 arm_add_to_rel (input_bfd
, contents
+ rel
->r_offset
,
8747 howto
, (bfd_signed_vma
) sec
->output_offset
);
8749 rel
->r_addend
+= sec
->output_offset
;
8755 name
= h
->root
.root
.string
;
8758 name
= (bfd_elf_string_from_elf_section
8759 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
8760 if (name
== NULL
|| *name
== '\0')
8761 name
= bfd_section_name (input_bfd
, sec
);
8765 && r_type
!= R_ARM_NONE
8767 || h
->root
.type
== bfd_link_hash_defined
8768 || h
->root
.type
== bfd_link_hash_defweak
)
8769 && IS_ARM_TLS_RELOC (r_type
) != (sym_type
== STT_TLS
))
8771 (*_bfd_error_handler
)
8772 ((sym_type
== STT_TLS
8773 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
8774 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
8777 (long) rel
->r_offset
,
8782 r
= elf32_arm_final_link_relocate (howto
, input_bfd
, output_bfd
,
8783 input_section
, contents
, rel
,
8784 relocation
, info
, sec
, name
,
8785 (h
? ELF_ST_TYPE (h
->type
) :
8786 ELF_ST_TYPE (sym
->st_info
)), h
,
8787 &unresolved_reloc
, &error_message
);
8789 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
8790 because such sections are not SEC_ALLOC and thus ld.so will
8791 not process them. */
8792 if (unresolved_reloc
8793 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
8796 (*_bfd_error_handler
)
8797 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
8800 (long) rel
->r_offset
,
8802 h
->root
.root
.string
);
8806 if (r
!= bfd_reloc_ok
)
8810 case bfd_reloc_overflow
:
8811 /* If the overflowing reloc was to an undefined symbol,
8812 we have already printed one error message and there
8813 is no point complaining again. */
8815 h
->root
.type
!= bfd_link_hash_undefined
)
8816 && (!((*info
->callbacks
->reloc_overflow
)
8817 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
8818 (bfd_vma
) 0, input_bfd
, input_section
,
8823 case bfd_reloc_undefined
:
8824 if (!((*info
->callbacks
->undefined_symbol
)
8825 (info
, name
, input_bfd
, input_section
,
8826 rel
->r_offset
, TRUE
)))
8830 case bfd_reloc_outofrange
:
8831 error_message
= _("out of range");
8834 case bfd_reloc_notsupported
:
8835 error_message
= _("unsupported relocation");
8838 case bfd_reloc_dangerous
:
8839 /* error_message should already be set. */
8843 error_message
= _("unknown error");
8847 BFD_ASSERT (error_message
!= NULL
);
8848 if (!((*info
->callbacks
->reloc_dangerous
)
8849 (info
, error_message
, input_bfd
, input_section
,
8860 /* Add a new unwind edit to the list described by HEAD, TAIL. If INDEX is zero,
8861 adds the edit to the start of the list. (The list must be built in order of
8862 ascending INDEX: the function's callers are primarily responsible for
8863 maintaining that condition). */
8866 add_unwind_table_edit (arm_unwind_table_edit
**head
,
8867 arm_unwind_table_edit
**tail
,
8868 arm_unwind_edit_type type
,
8869 asection
*linked_section
,
8872 arm_unwind_table_edit
*new_edit
= xmalloc (sizeof (arm_unwind_table_edit
));
8874 new_edit
->type
= type
;
8875 new_edit
->linked_section
= linked_section
;
8876 new_edit
->index
= index
;
8880 new_edit
->next
= NULL
;
8883 (*tail
)->next
= new_edit
;
8892 new_edit
->next
= *head
;
8901 static _arm_elf_section_data
*get_arm_elf_section_data (asection
*);
8903 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
8905 adjust_exidx_size(asection
*exidx_sec
, int adjust
)
8909 if (!exidx_sec
->rawsize
)
8910 exidx_sec
->rawsize
= exidx_sec
->size
;
8912 bfd_set_section_size (exidx_sec
->owner
, exidx_sec
, exidx_sec
->size
+ adjust
);
8913 out_sec
= exidx_sec
->output_section
;
8914 /* Adjust size of output section. */
8915 bfd_set_section_size (out_sec
->owner
, out_sec
, out_sec
->size
+adjust
);
8918 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
8920 insert_cantunwind_after(asection
*text_sec
, asection
*exidx_sec
)
8922 struct _arm_elf_section_data
*exidx_arm_data
;
8924 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
8925 add_unwind_table_edit (
8926 &exidx_arm_data
->u
.exidx
.unwind_edit_list
,
8927 &exidx_arm_data
->u
.exidx
.unwind_edit_tail
,
8928 INSERT_EXIDX_CANTUNWIND_AT_END
, text_sec
, UINT_MAX
);
8930 adjust_exidx_size(exidx_sec
, 8);
8933 /* Scan .ARM.exidx tables, and create a list describing edits which should be
8934 made to those tables, such that:
8936 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
8937 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
8938 codes which have been inlined into the index).
8940 The edits are applied when the tables are written
8941 (in elf32_arm_write_section).
8945 elf32_arm_fix_exidx_coverage (asection
**text_section_order
,
8946 unsigned int num_text_sections
,
8947 struct bfd_link_info
*info
)
8950 unsigned int last_second_word
= 0, i
;
8951 asection
*last_exidx_sec
= NULL
;
8952 asection
*last_text_sec
= NULL
;
8953 int last_unwind_type
= -1;
8955 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
8957 for (inp
= info
->input_bfds
; inp
!= NULL
; inp
= inp
->link_next
)
8961 for (sec
= inp
->sections
; sec
!= NULL
; sec
= sec
->next
)
8963 struct bfd_elf_section_data
*elf_sec
= elf_section_data (sec
);
8964 Elf_Internal_Shdr
*hdr
= &elf_sec
->this_hdr
;
8966 if (!hdr
|| hdr
->sh_type
!= SHT_ARM_EXIDX
)
8969 if (elf_sec
->linked_to
)
8971 Elf_Internal_Shdr
*linked_hdr
8972 = &elf_section_data (elf_sec
->linked_to
)->this_hdr
;
8973 struct _arm_elf_section_data
*linked_sec_arm_data
8974 = get_arm_elf_section_data (linked_hdr
->bfd_section
);
8976 if (linked_sec_arm_data
== NULL
)
8979 /* Link this .ARM.exidx section back from the text section it
8981 linked_sec_arm_data
->u
.text
.arm_exidx_sec
= sec
;
8986 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
8987 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
8988 and add EXIDX_CANTUNWIND entries for sections with no unwind table data.
8991 for (i
= 0; i
< num_text_sections
; i
++)
8993 asection
*sec
= text_section_order
[i
];
8994 asection
*exidx_sec
;
8995 struct _arm_elf_section_data
*arm_data
= get_arm_elf_section_data (sec
);
8996 struct _arm_elf_section_data
*exidx_arm_data
;
8997 bfd_byte
*contents
= NULL
;
8998 int deleted_exidx_bytes
= 0;
9000 arm_unwind_table_edit
*unwind_edit_head
= NULL
;
9001 arm_unwind_table_edit
*unwind_edit_tail
= NULL
;
9002 Elf_Internal_Shdr
*hdr
;
9005 if (arm_data
== NULL
)
9008 exidx_sec
= arm_data
->u
.text
.arm_exidx_sec
;
9009 if (exidx_sec
== NULL
)
9011 /* Section has no unwind data. */
9012 if (last_unwind_type
== 0 || !last_exidx_sec
)
9015 /* Ignore zero sized sections. */
9019 insert_cantunwind_after(last_text_sec
, last_exidx_sec
);
9020 last_unwind_type
= 0;
9024 /* Skip /DISCARD/ sections. */
9025 if (bfd_is_abs_section (exidx_sec
->output_section
))
9028 hdr
= &elf_section_data (exidx_sec
)->this_hdr
;
9029 if (hdr
->sh_type
!= SHT_ARM_EXIDX
)
9032 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
9033 if (exidx_arm_data
== NULL
)
9036 ibfd
= exidx_sec
->owner
;
9038 if (hdr
->contents
!= NULL
)
9039 contents
= hdr
->contents
;
9040 else if (! bfd_malloc_and_get_section (ibfd
, exidx_sec
, &contents
))
9044 for (j
= 0; j
< hdr
->sh_size
; j
+= 8)
9046 unsigned int second_word
= bfd_get_32 (ibfd
, contents
+ j
+ 4);
9050 /* An EXIDX_CANTUNWIND entry. */
9051 if (second_word
== 1)
9053 if (last_unwind_type
== 0)
9057 /* Inlined unwinding data. Merge if equal to previous. */
9058 else if ((second_word
& 0x80000000) != 0)
9060 if (last_second_word
== second_word
&& last_unwind_type
== 1)
9063 last_second_word
= second_word
;
9065 /* Normal table entry. In theory we could merge these too,
9066 but duplicate entries are likely to be much less common. */
9072 add_unwind_table_edit (&unwind_edit_head
, &unwind_edit_tail
,
9073 DELETE_EXIDX_ENTRY
, NULL
, j
/ 8);
9075 deleted_exidx_bytes
+= 8;
9078 last_unwind_type
= unwind_type
;
9081 /* Free contents if we allocated it ourselves. */
9082 if (contents
!= hdr
->contents
)
9085 /* Record edits to be applied later (in elf32_arm_write_section). */
9086 exidx_arm_data
->u
.exidx
.unwind_edit_list
= unwind_edit_head
;
9087 exidx_arm_data
->u
.exidx
.unwind_edit_tail
= unwind_edit_tail
;
9089 if (deleted_exidx_bytes
> 0)
9090 adjust_exidx_size(exidx_sec
, -deleted_exidx_bytes
);
9092 last_exidx_sec
= exidx_sec
;
9093 last_text_sec
= sec
;
9096 /* Add terminating CANTUNWIND entry. */
9097 if (last_exidx_sec
&& last_unwind_type
!= 0)
9098 insert_cantunwind_after(last_text_sec
, last_exidx_sec
);
9104 elf32_arm_output_glue_section (struct bfd_link_info
*info
, bfd
*obfd
,
9105 bfd
*ibfd
, const char *name
)
9107 asection
*sec
, *osec
;
9109 sec
= bfd_get_section_by_name (ibfd
, name
);
9110 if (sec
== NULL
|| (sec
->flags
& SEC_EXCLUDE
) != 0)
9113 osec
= sec
->output_section
;
9114 if (elf32_arm_write_section (obfd
, info
, sec
, sec
->contents
))
9117 if (! bfd_set_section_contents (obfd
, osec
, sec
->contents
,
9118 sec
->output_offset
, sec
->size
))
9125 elf32_arm_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
9127 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (info
);
9129 /* Invoke the regular ELF backend linker to do all the work. */
9130 if (!bfd_elf_final_link (abfd
, info
))
9133 /* Write out any glue sections now that we have created all the
9135 if (globals
->bfd_of_glue_owner
!= NULL
)
9137 if (! elf32_arm_output_glue_section (info
, abfd
,
9138 globals
->bfd_of_glue_owner
,
9139 ARM2THUMB_GLUE_SECTION_NAME
))
9142 if (! elf32_arm_output_glue_section (info
, abfd
,
9143 globals
->bfd_of_glue_owner
,
9144 THUMB2ARM_GLUE_SECTION_NAME
))
9147 if (! elf32_arm_output_glue_section (info
, abfd
,
9148 globals
->bfd_of_glue_owner
,
9149 VFP11_ERRATUM_VENEER_SECTION_NAME
))
9152 if (! elf32_arm_output_glue_section (info
, abfd
,
9153 globals
->bfd_of_glue_owner
,
9154 ARM_BX_GLUE_SECTION_NAME
))
9161 /* Set the right machine number. */
9164 elf32_arm_object_p (bfd
*abfd
)
9168 mach
= bfd_arm_get_mach_from_notes (abfd
, ARM_NOTE_SECTION
);
9170 if (mach
!= bfd_mach_arm_unknown
)
9171 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
9173 else if (elf_elfheader (abfd
)->e_flags
& EF_ARM_MAVERICK_FLOAT
)
9174 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, bfd_mach_arm_ep9312
);
9177 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
9182 /* Function to keep ARM specific flags in the ELF header. */
9185 elf32_arm_set_private_flags (bfd
*abfd
, flagword flags
)
9187 if (elf_flags_init (abfd
)
9188 && elf_elfheader (abfd
)->e_flags
!= flags
)
9190 if (EF_ARM_EABI_VERSION (flags
) == EF_ARM_EABI_UNKNOWN
)
9192 if (flags
& EF_ARM_INTERWORK
)
9193 (*_bfd_error_handler
)
9194 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
9198 (_("Warning: Clearing the interworking flag of %B due to outside request"),
9204 elf_elfheader (abfd
)->e_flags
= flags
;
9205 elf_flags_init (abfd
) = TRUE
;
9211 /* Copy backend specific data from one object module to another. */
9214 elf32_arm_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
9219 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
9222 in_flags
= elf_elfheader (ibfd
)->e_flags
;
9223 out_flags
= elf_elfheader (obfd
)->e_flags
;
9225 if (elf_flags_init (obfd
)
9226 && EF_ARM_EABI_VERSION (out_flags
) == EF_ARM_EABI_UNKNOWN
9227 && in_flags
!= out_flags
)
9229 /* Cannot mix APCS26 and APCS32 code. */
9230 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
9233 /* Cannot mix float APCS and non-float APCS code. */
9234 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
9237 /* If the src and dest have different interworking flags
9238 then turn off the interworking bit. */
9239 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
9241 if (out_flags
& EF_ARM_INTERWORK
)
9243 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
9246 in_flags
&= ~EF_ARM_INTERWORK
;
9249 /* Likewise for PIC, though don't warn for this case. */
9250 if ((in_flags
& EF_ARM_PIC
) != (out_flags
& EF_ARM_PIC
))
9251 in_flags
&= ~EF_ARM_PIC
;
9254 elf_elfheader (obfd
)->e_flags
= in_flags
;
9255 elf_flags_init (obfd
) = TRUE
;
9257 /* Also copy the EI_OSABI field. */
9258 elf_elfheader (obfd
)->e_ident
[EI_OSABI
] =
9259 elf_elfheader (ibfd
)->e_ident
[EI_OSABI
];
9261 /* Copy object attributes. */
9262 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
9267 /* Values for Tag_ABI_PCS_R9_use. */
9276 /* Values for Tag_ABI_PCS_RW_data. */
9279 AEABI_PCS_RW_data_absolute
,
9280 AEABI_PCS_RW_data_PCrel
,
9281 AEABI_PCS_RW_data_SBrel
,
9282 AEABI_PCS_RW_data_unused
9285 /* Values for Tag_ABI_enum_size. */
9291 AEABI_enum_forced_wide
9294 /* Determine whether an object attribute tag takes an integer, a
9298 elf32_arm_obj_attrs_arg_type (int tag
)
9300 if (tag
== Tag_compatibility
)
9301 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_STR_VAL
;
9302 else if (tag
== Tag_nodefaults
)
9303 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_NO_DEFAULT
;
9304 else if (tag
== Tag_CPU_raw_name
|| tag
== Tag_CPU_name
)
9305 return ATTR_TYPE_FLAG_STR_VAL
;
9307 return ATTR_TYPE_FLAG_INT_VAL
;
9309 return (tag
& 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL
: ATTR_TYPE_FLAG_INT_VAL
;
9312 /* The ABI defines that Tag_conformance should be emitted first, and that
9313 Tag_nodefaults should be second (if either is defined). This sets those
9314 two positions, and bumps up the position of all the remaining tags to
9317 elf32_arm_obj_attrs_order (int num
)
9320 return Tag_conformance
;
9322 return Tag_nodefaults
;
9323 if ((num
- 2) < Tag_nodefaults
)
9325 if ((num
- 1) < Tag_conformance
)
9330 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
9331 Returns -1 if no architecture could be read. */
9334 get_secondary_compatible_arch (bfd
*abfd
)
9336 obj_attribute
*attr
=
9337 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
9339 /* Note: the tag and its argument below are uleb128 values, though
9340 currently-defined values fit in one byte for each. */
9342 && attr
->s
[0] == Tag_CPU_arch
9343 && (attr
->s
[1] & 128) != 128
9347 /* This tag is "safely ignorable", so don't complain if it looks funny. */
9351 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9352 The tag is removed if ARCH is -1. */
9355 set_secondary_compatible_arch (bfd
*abfd
, int arch
)
9357 obj_attribute
*attr
=
9358 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
9366 /* Note: the tag and its argument below are uleb128 values, though
9367 currently-defined values fit in one byte for each. */
9369 attr
->s
= bfd_alloc (abfd
, 3);
9370 attr
->s
[0] = Tag_CPU_arch
;
9375 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9379 tag_cpu_arch_combine (bfd
*ibfd
, int oldtag
, int *secondary_compat_out
,
9380 int newtag
, int secondary_compat
)
9382 #define T(X) TAG_CPU_ARCH_##X
9383 int tagl
, tagh
, result
;
9386 T(V6T2
), /* PRE_V4. */
9390 T(V6T2
), /* V5TE. */
9391 T(V6T2
), /* V5TEJ. */
9398 T(V6K
), /* PRE_V4. */
9403 T(V6K
), /* V5TEJ. */
9405 T(V6KZ
), /* V6KZ. */
9411 T(V7
), /* PRE_V4. */
9430 T(V6K
), /* V5TEJ. */
9432 T(V6KZ
), /* V6KZ. */
9445 T(V6K
), /* V5TEJ. */
9447 T(V6KZ
), /* V6KZ. */
9451 T(V6S_M
), /* V6_M. */
9452 T(V6S_M
) /* V6S_M. */
9454 const int v4t_plus_v6_m
[] =
9460 T(V5TE
), /* V5TE. */
9461 T(V5TEJ
), /* V5TEJ. */
9463 T(V6KZ
), /* V6KZ. */
9464 T(V6T2
), /* V6T2. */
9467 T(V6_M
), /* V6_M. */
9468 T(V6S_M
), /* V6S_M. */
9469 T(V4T_PLUS_V6_M
) /* V4T plus V6_M. */
9478 /* Pseudo-architecture. */
9482 /* Check we've not got a higher architecture than we know about. */
9484 if (oldtag
>= MAX_TAG_CPU_ARCH
|| newtag
>= MAX_TAG_CPU_ARCH
)
9486 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd
);
9490 /* Override old tag if we have a Tag_also_compatible_with on the output. */
9492 if ((oldtag
== T(V6_M
) && *secondary_compat_out
== T(V4T
))
9493 || (oldtag
== T(V4T
) && *secondary_compat_out
== T(V6_M
)))
9494 oldtag
= T(V4T_PLUS_V6_M
);
9496 /* And override the new tag if we have a Tag_also_compatible_with on the
9499 if ((newtag
== T(V6_M
) && secondary_compat
== T(V4T
))
9500 || (newtag
== T(V4T
) && secondary_compat
== T(V6_M
)))
9501 newtag
= T(V4T_PLUS_V6_M
);
9503 tagl
= (oldtag
< newtag
) ? oldtag
: newtag
;
9504 result
= tagh
= (oldtag
> newtag
) ? oldtag
: newtag
;
9506 /* Architectures before V6KZ add features monotonically. */
9507 if (tagh
<= TAG_CPU_ARCH_V6KZ
)
9510 result
= comb
[tagh
- T(V6T2
)][tagl
];
9512 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9513 as the canonical version. */
9514 if (result
== T(V4T_PLUS_V6_M
))
9517 *secondary_compat_out
= T(V6_M
);
9520 *secondary_compat_out
= -1;
9524 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
9525 ibfd
, oldtag
, newtag
);
9533 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
9534 are conflicting attributes. */
9537 elf32_arm_merge_eabi_attributes (bfd
*ibfd
, bfd
*obfd
)
9539 obj_attribute
*in_attr
;
9540 obj_attribute
*out_attr
;
9541 obj_attribute_list
*in_list
;
9542 obj_attribute_list
*out_list
;
9543 obj_attribute_list
**out_listp
;
9544 /* Some tags have 0 = don't care, 1 = strong requirement,
9545 2 = weak requirement. */
9546 static const int order_021
[3] = {0, 2, 1};
9547 /* For use with Tag_VFP_arch. */
9548 static const int order_01243
[5] = {0, 1, 2, 4, 3};
9550 bfd_boolean result
= TRUE
;
9552 /* Skip the linker stubs file. This preserves previous behavior
9553 of accepting unknown attributes in the first input file - but
9555 if (ibfd
->flags
& BFD_LINKER_CREATED
)
9558 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
9560 /* This is the first object. Copy the attributes. */
9561 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
9563 /* Use the Tag_null value to indicate the attributes have been
9565 elf_known_obj_attributes_proc (obfd
)[0].i
= 1;
9570 in_attr
= elf_known_obj_attributes_proc (ibfd
);
9571 out_attr
= elf_known_obj_attributes_proc (obfd
);
9572 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
9573 if (in_attr
[Tag_ABI_VFP_args
].i
!= out_attr
[Tag_ABI_VFP_args
].i
)
9575 /* Ignore mismatches if the object doesn't use floating point. */
9576 if (out_attr
[Tag_ABI_FP_number_model
].i
== 0)
9577 out_attr
[Tag_ABI_VFP_args
].i
= in_attr
[Tag_ABI_VFP_args
].i
;
9578 else if (in_attr
[Tag_ABI_FP_number_model
].i
!= 0)
9581 (_("error: %B uses VFP register arguments, %B does not"),
9587 for (i
= 4; i
< NUM_KNOWN_OBJ_ATTRIBUTES
; i
++)
9589 /* Merge this attribute with existing attributes. */
9592 case Tag_CPU_raw_name
:
9594 /* These are merged after Tag_CPU_arch. */
9597 case Tag_ABI_optimization_goals
:
9598 case Tag_ABI_FP_optimization_goals
:
9599 /* Use the first value seen. */
9604 int secondary_compat
= -1, secondary_compat_out
= -1;
9605 unsigned int saved_out_attr
= out_attr
[i
].i
;
9606 static const char *name_table
[] = {
9607 /* These aren't real CPU names, but we can't guess
9608 that from the architecture version alone. */
9624 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
9625 secondary_compat
= get_secondary_compatible_arch (ibfd
);
9626 secondary_compat_out
= get_secondary_compatible_arch (obfd
);
9627 out_attr
[i
].i
= tag_cpu_arch_combine (ibfd
, out_attr
[i
].i
,
9628 &secondary_compat_out
,
9631 set_secondary_compatible_arch (obfd
, secondary_compat_out
);
9633 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
9634 if (out_attr
[i
].i
== saved_out_attr
)
9635 ; /* Leave the names alone. */
9636 else if (out_attr
[i
].i
== in_attr
[i
].i
)
9638 /* The output architecture has been changed to match the
9639 input architecture. Use the input names. */
9640 out_attr
[Tag_CPU_name
].s
= in_attr
[Tag_CPU_name
].s
9641 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_name
].s
)
9643 out_attr
[Tag_CPU_raw_name
].s
= in_attr
[Tag_CPU_raw_name
].s
9644 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_raw_name
].s
)
9649 out_attr
[Tag_CPU_name
].s
= NULL
;
9650 out_attr
[Tag_CPU_raw_name
].s
= NULL
;
9653 /* If we still don't have a value for Tag_CPU_name,
9654 make one up now. Tag_CPU_raw_name remains blank. */
9655 if (out_attr
[Tag_CPU_name
].s
== NULL
9656 && out_attr
[i
].i
< ARRAY_SIZE (name_table
))
9657 out_attr
[Tag_CPU_name
].s
=
9658 _bfd_elf_attr_strdup (obfd
, name_table
[out_attr
[i
].i
]);
9662 case Tag_ARM_ISA_use
:
9663 case Tag_THUMB_ISA_use
:
9665 case Tag_Advanced_SIMD_arch
:
9666 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
9667 case Tag_ABI_FP_rounding
:
9668 case Tag_ABI_FP_exceptions
:
9669 case Tag_ABI_FP_user_exceptions
:
9670 case Tag_ABI_FP_number_model
:
9671 case Tag_VFP_HP_extension
:
9672 case Tag_CPU_unaligned_access
:
9674 case Tag_Virtualization_use
:
9675 case Tag_MPextension_use
:
9676 /* Use the largest value specified. */
9677 if (in_attr
[i
].i
> out_attr
[i
].i
)
9678 out_attr
[i
].i
= in_attr
[i
].i
;
9681 case Tag_ABI_align8_preserved
:
9682 case Tag_ABI_PCS_RO_data
:
9683 /* Use the smallest value specified. */
9684 if (in_attr
[i
].i
< out_attr
[i
].i
)
9685 out_attr
[i
].i
= in_attr
[i
].i
;
9688 case Tag_ABI_align8_needed
:
9689 if ((in_attr
[i
].i
> 0 || out_attr
[i
].i
> 0)
9690 && (in_attr
[Tag_ABI_align8_preserved
].i
== 0
9691 || out_attr
[Tag_ABI_align8_preserved
].i
== 0))
9693 /* This error message should be enabled once all non-conformant
9694 binaries in the toolchain have had the attributes set
9697 (_("error: %B: 8-byte data alignment conflicts with %B"),
9702 case Tag_ABI_FP_denormal
:
9703 case Tag_ABI_PCS_GOT_use
:
9704 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
9705 value if greater than 2 (for future-proofing). */
9706 if ((in_attr
[i
].i
> 2 && in_attr
[i
].i
> out_attr
[i
].i
)
9707 || (in_attr
[i
].i
<= 2 && out_attr
[i
].i
<= 2
9708 && order_021
[in_attr
[i
].i
] > order_021
[out_attr
[i
].i
]))
9709 out_attr
[i
].i
= in_attr
[i
].i
;
9713 case Tag_CPU_arch_profile
:
9714 if (out_attr
[i
].i
!= in_attr
[i
].i
)
9716 /* 0 will merge with anything.
9717 'A' and 'S' merge to 'A'.
9718 'R' and 'S' merge to 'R'.
9719 'M' and 'A|R|S' is an error. */
9720 if (out_attr
[i
].i
== 0
9721 || (out_attr
[i
].i
== 'S'
9722 && (in_attr
[i
].i
== 'A' || in_attr
[i
].i
== 'R')))
9723 out_attr
[i
].i
= in_attr
[i
].i
;
9724 else if (in_attr
[i
].i
== 0
9725 || (in_attr
[i
].i
== 'S'
9726 && (out_attr
[i
].i
== 'A' || out_attr
[i
].i
== 'R')))
9731 (_("error: %B: Conflicting architecture profiles %c/%c"),
9733 in_attr
[i
].i
? in_attr
[i
].i
: '0',
9734 out_attr
[i
].i
? out_attr
[i
].i
: '0');
9740 /* Use the "greatest" from the sequence 0, 1, 2, 4, 3, or the
9741 largest value if greater than 4 (for future-proofing). */
9742 if ((in_attr
[i
].i
> 4 && in_attr
[i
].i
> out_attr
[i
].i
)
9743 || (in_attr
[i
].i
<= 4 && out_attr
[i
].i
<= 4
9744 && order_01243
[in_attr
[i
].i
] > order_01243
[out_attr
[i
].i
]))
9745 out_attr
[i
].i
= in_attr
[i
].i
;
9747 case Tag_PCS_config
:
9748 if (out_attr
[i
].i
== 0)
9749 out_attr
[i
].i
= in_attr
[i
].i
;
9750 else if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
9752 /* It's sometimes ok to mix different configs, so this is only
9755 (_("Warning: %B: Conflicting platform configuration"), ibfd
);
9758 case Tag_ABI_PCS_R9_use
:
9759 if (in_attr
[i
].i
!= out_attr
[i
].i
9760 && out_attr
[i
].i
!= AEABI_R9_unused
9761 && in_attr
[i
].i
!= AEABI_R9_unused
)
9764 (_("error: %B: Conflicting use of R9"), ibfd
);
9767 if (out_attr
[i
].i
== AEABI_R9_unused
)
9768 out_attr
[i
].i
= in_attr
[i
].i
;
9770 case Tag_ABI_PCS_RW_data
:
9771 if (in_attr
[i
].i
== AEABI_PCS_RW_data_SBrel
9772 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_SB
9773 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_unused
)
9776 (_("error: %B: SB relative addressing conflicts with use of R9"),
9780 /* Use the smallest value specified. */
9781 if (in_attr
[i
].i
< out_attr
[i
].i
)
9782 out_attr
[i
].i
= in_attr
[i
].i
;
9784 case Tag_ABI_PCS_wchar_t
:
9785 if (out_attr
[i
].i
&& in_attr
[i
].i
&& out_attr
[i
].i
!= in_attr
[i
].i
9786 && !elf_arm_tdata (obfd
)->no_wchar_size_warning
)
9789 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
9790 ibfd
, in_attr
[i
].i
, out_attr
[i
].i
);
9792 else if (in_attr
[i
].i
&& !out_attr
[i
].i
)
9793 out_attr
[i
].i
= in_attr
[i
].i
;
9795 case Tag_ABI_enum_size
:
9796 if (in_attr
[i
].i
!= AEABI_enum_unused
)
9798 if (out_attr
[i
].i
== AEABI_enum_unused
9799 || out_attr
[i
].i
== AEABI_enum_forced_wide
)
9801 /* The existing object is compatible with anything.
9802 Use whatever requirements the new object has. */
9803 out_attr
[i
].i
= in_attr
[i
].i
;
9805 else if (in_attr
[i
].i
!= AEABI_enum_forced_wide
9806 && out_attr
[i
].i
!= in_attr
[i
].i
9807 && !elf_arm_tdata (obfd
)->no_enum_size_warning
)
9809 static const char *aeabi_enum_names
[] =
9810 { "", "variable-size", "32-bit", "" };
9811 const char *in_name
=
9812 in_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
9813 ? aeabi_enum_names
[in_attr
[i
].i
]
9815 const char *out_name
=
9816 out_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
9817 ? aeabi_enum_names
[out_attr
[i
].i
]
9820 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
9821 ibfd
, in_name
, out_name
);
9825 case Tag_ABI_VFP_args
:
9828 case Tag_ABI_WMMX_args
:
9829 if (in_attr
[i
].i
!= out_attr
[i
].i
)
9832 (_("error: %B uses iWMMXt register arguments, %B does not"),
9837 case Tag_compatibility
:
9838 /* Merged in target-independent code. */
9840 case Tag_ABI_HardFP_use
:
9841 /* 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP). */
9842 if ((in_attr
[i
].i
== 1 && out_attr
[i
].i
== 2)
9843 || (in_attr
[i
].i
== 2 && out_attr
[i
].i
== 1))
9845 else if (in_attr
[i
].i
> out_attr
[i
].i
)
9846 out_attr
[i
].i
= in_attr
[i
].i
;
9848 case Tag_ABI_FP_16bit_format
:
9849 if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
9851 if (in_attr
[i
].i
!= out_attr
[i
].i
)
9854 (_("error: fp16 format mismatch between %B and %B"),
9859 if (in_attr
[i
].i
!= 0)
9860 out_attr
[i
].i
= in_attr
[i
].i
;
9863 case Tag_nodefaults
:
9864 /* This tag is set if it exists, but the value is unused (and is
9865 typically zero). We don't actually need to do anything here -
9866 the merge happens automatically when the type flags are merged
9869 case Tag_also_compatible_with
:
9870 /* Already done in Tag_CPU_arch. */
9872 case Tag_conformance
:
9873 /* Keep the attribute if it matches. Throw it away otherwise.
9874 No attribute means no claim to conform. */
9875 if (!in_attr
[i
].s
|| !out_attr
[i
].s
9876 || strcmp (in_attr
[i
].s
, out_attr
[i
].s
) != 0)
9877 out_attr
[i
].s
= NULL
;
9882 bfd
*err_bfd
= NULL
;
9884 /* The "known_obj_attributes" table does contain some undefined
9885 attributes. Ensure that there are unused. */
9886 if (out_attr
[i
].i
!= 0 || out_attr
[i
].s
!= NULL
)
9888 else if (in_attr
[i
].i
!= 0 || in_attr
[i
].s
!= NULL
)
9891 if (err_bfd
!= NULL
)
9893 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
9897 (_("%B: Unknown mandatory EABI object attribute %d"),
9899 bfd_set_error (bfd_error_bad_value
);
9905 (_("Warning: %B: Unknown EABI object attribute %d"),
9910 /* Only pass on attributes that match in both inputs. */
9911 if (in_attr
[i
].i
!= out_attr
[i
].i
9912 || in_attr
[i
].s
!= out_attr
[i
].s
9913 || (in_attr
[i
].s
!= NULL
&& out_attr
[i
].s
!= NULL
9914 && strcmp (in_attr
[i
].s
, out_attr
[i
].s
) != 0))
9917 out_attr
[i
].s
= NULL
;
9922 /* If out_attr was copied from in_attr then it won't have a type yet. */
9923 if (in_attr
[i
].type
&& !out_attr
[i
].type
)
9924 out_attr
[i
].type
= in_attr
[i
].type
;
9927 /* Merge Tag_compatibility attributes and any common GNU ones. */
9928 _bfd_elf_merge_object_attributes (ibfd
, obfd
);
9930 /* Check for any attributes not known on ARM. */
9931 in_list
= elf_other_obj_attributes_proc (ibfd
);
9932 out_listp
= &elf_other_obj_attributes_proc (obfd
);
9933 out_list
= *out_listp
;
9935 for (; in_list
|| out_list
; )
9937 bfd
*err_bfd
= NULL
;
9940 /* The tags for each list are in numerical order. */
9941 /* If the tags are equal, then merge. */
9942 if (out_list
&& (!in_list
|| in_list
->tag
> out_list
->tag
))
9944 /* This attribute only exists in obfd. We can't merge, and we don't
9945 know what the tag means, so delete it. */
9947 err_tag
= out_list
->tag
;
9948 *out_listp
= out_list
->next
;
9949 out_list
= *out_listp
;
9951 else if (in_list
&& (!out_list
|| in_list
->tag
< out_list
->tag
))
9953 /* This attribute only exists in ibfd. We can't merge, and we don't
9954 know what the tag means, so ignore it. */
9956 err_tag
= in_list
->tag
;
9957 in_list
= in_list
->next
;
9959 else /* The tags are equal. */
9961 /* As present, all attributes in the list are unknown, and
9962 therefore can't be merged meaningfully. */
9964 err_tag
= out_list
->tag
;
9966 /* Only pass on attributes that match in both inputs. */
9967 if (in_list
->attr
.i
!= out_list
->attr
.i
9968 || in_list
->attr
.s
!= out_list
->attr
.s
9969 || (in_list
->attr
.s
&& out_list
->attr
.s
9970 && strcmp (in_list
->attr
.s
, out_list
->attr
.s
) != 0))
9972 /* No match. Delete the attribute. */
9973 *out_listp
= out_list
->next
;
9974 out_list
= *out_listp
;
9978 /* Matched. Keep the attribute and move to the next. */
9979 out_list
= out_list
->next
;
9980 in_list
= in_list
->next
;
9986 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
9987 if ((err_tag
& 127) < 64)
9990 (_("%B: Unknown mandatory EABI object attribute %d"),
9992 bfd_set_error (bfd_error_bad_value
);
9998 (_("Warning: %B: Unknown EABI object attribute %d"),
10007 /* Return TRUE if the two EABI versions are incompatible. */
10010 elf32_arm_versions_compatible (unsigned iver
, unsigned over
)
10012 /* v4 and v5 are the same spec before and after it was released,
10013 so allow mixing them. */
10014 if ((iver
== EF_ARM_EABI_VER4
&& over
== EF_ARM_EABI_VER5
)
10015 || (iver
== EF_ARM_EABI_VER5
&& over
== EF_ARM_EABI_VER4
))
10018 return (iver
== over
);
10021 /* Merge backend specific data from an object file to the output
10022 object file when linking. */
10025 elf32_arm_merge_private_bfd_data (bfd
* ibfd
, bfd
* obfd
)
10027 flagword out_flags
;
10029 bfd_boolean flags_compatible
= TRUE
;
10032 /* Check if we have the same endianess. */
10033 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
10036 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
10039 if (!elf32_arm_merge_eabi_attributes (ibfd
, obfd
))
10042 /* The input BFD must have had its flags initialised. */
10043 /* The following seems bogus to me -- The flags are initialized in
10044 the assembler but I don't think an elf_flags_init field is
10045 written into the object. */
10046 /* BFD_ASSERT (elf_flags_init (ibfd)); */
10048 in_flags
= elf_elfheader (ibfd
)->e_flags
;
10049 out_flags
= elf_elfheader (obfd
)->e_flags
;
10051 /* In theory there is no reason why we couldn't handle this. However
10052 in practice it isn't even close to working and there is no real
10053 reason to want it. */
10054 if (EF_ARM_EABI_VERSION (in_flags
) >= EF_ARM_EABI_VER4
10055 && !(ibfd
->flags
& DYNAMIC
)
10056 && (in_flags
& EF_ARM_BE8
))
10058 _bfd_error_handler (_("error: %B is already in final BE8 format"),
10063 if (!elf_flags_init (obfd
))
10065 /* If the input is the default architecture and had the default
10066 flags then do not bother setting the flags for the output
10067 architecture, instead allow future merges to do this. If no
10068 future merges ever set these flags then they will retain their
10069 uninitialised values, which surprise surprise, correspond
10070 to the default values. */
10071 if (bfd_get_arch_info (ibfd
)->the_default
10072 && elf_elfheader (ibfd
)->e_flags
== 0)
10075 elf_flags_init (obfd
) = TRUE
;
10076 elf_elfheader (obfd
)->e_flags
= in_flags
;
10078 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
10079 && bfd_get_arch_info (obfd
)->the_default
)
10080 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
), bfd_get_mach (ibfd
));
10085 /* Determine what should happen if the input ARM architecture
10086 does not match the output ARM architecture. */
10087 if (! bfd_arm_merge_machines (ibfd
, obfd
))
10090 /* Identical flags must be compatible. */
10091 if (in_flags
== out_flags
)
10094 /* Check to see if the input BFD actually contains any sections. If
10095 not, its flags may not have been initialised either, but it
10096 cannot actually cause any incompatiblity. Do not short-circuit
10097 dynamic objects; their section list may be emptied by
10098 elf_link_add_object_symbols.
10100 Also check to see if there are no code sections in the input.
10101 In this case there is no need to check for code specific flags.
10102 XXX - do we need to worry about floating-point format compatability
10103 in data sections ? */
10104 if (!(ibfd
->flags
& DYNAMIC
))
10106 bfd_boolean null_input_bfd
= TRUE
;
10107 bfd_boolean only_data_sections
= TRUE
;
10109 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
10111 /* Ignore synthetic glue sections. */
10112 if (strcmp (sec
->name
, ".glue_7")
10113 && strcmp (sec
->name
, ".glue_7t"))
10115 if ((bfd_get_section_flags (ibfd
, sec
)
10116 & (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
10117 == (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
10118 only_data_sections
= FALSE
;
10120 null_input_bfd
= FALSE
;
10125 if (null_input_bfd
|| only_data_sections
)
10129 /* Complain about various flag mismatches. */
10130 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags
),
10131 EF_ARM_EABI_VERSION (out_flags
)))
10134 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
10136 (in_flags
& EF_ARM_EABIMASK
) >> 24,
10137 (out_flags
& EF_ARM_EABIMASK
) >> 24);
10141 /* Not sure what needs to be checked for EABI versions >= 1. */
10142 /* VxWorks libraries do not use these flags. */
10143 if (get_elf_backend_data (obfd
) != &elf32_arm_vxworks_bed
10144 && get_elf_backend_data (ibfd
) != &elf32_arm_vxworks_bed
10145 && EF_ARM_EABI_VERSION (in_flags
) == EF_ARM_EABI_UNKNOWN
)
10147 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
10150 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
10152 in_flags
& EF_ARM_APCS_26
? 26 : 32,
10153 out_flags
& EF_ARM_APCS_26
? 26 : 32);
10154 flags_compatible
= FALSE
;
10157 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
10159 if (in_flags
& EF_ARM_APCS_FLOAT
)
10161 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
10165 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
10168 flags_compatible
= FALSE
;
10171 if ((in_flags
& EF_ARM_VFP_FLOAT
) != (out_flags
& EF_ARM_VFP_FLOAT
))
10173 if (in_flags
& EF_ARM_VFP_FLOAT
)
10175 (_("error: %B uses VFP instructions, whereas %B does not"),
10179 (_("error: %B uses FPA instructions, whereas %B does not"),
10182 flags_compatible
= FALSE
;
10185 if ((in_flags
& EF_ARM_MAVERICK_FLOAT
) != (out_flags
& EF_ARM_MAVERICK_FLOAT
))
10187 if (in_flags
& EF_ARM_MAVERICK_FLOAT
)
10189 (_("error: %B uses Maverick instructions, whereas %B does not"),
10193 (_("error: %B does not use Maverick instructions, whereas %B does"),
10196 flags_compatible
= FALSE
;
10199 #ifdef EF_ARM_SOFT_FLOAT
10200 if ((in_flags
& EF_ARM_SOFT_FLOAT
) != (out_flags
& EF_ARM_SOFT_FLOAT
))
10202 /* We can allow interworking between code that is VFP format
10203 layout, and uses either soft float or integer regs for
10204 passing floating point arguments and results. We already
10205 know that the APCS_FLOAT flags match; similarly for VFP
10207 if ((in_flags
& EF_ARM_APCS_FLOAT
) != 0
10208 || (in_flags
& EF_ARM_VFP_FLOAT
) == 0)
10210 if (in_flags
& EF_ARM_SOFT_FLOAT
)
10212 (_("error: %B uses software FP, whereas %B uses hardware FP"),
10216 (_("error: %B uses hardware FP, whereas %B uses software FP"),
10219 flags_compatible
= FALSE
;
10224 /* Interworking mismatch is only a warning. */
10225 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
10227 if (in_flags
& EF_ARM_INTERWORK
)
10230 (_("Warning: %B supports interworking, whereas %B does not"),
10236 (_("Warning: %B does not support interworking, whereas %B does"),
10242 return flags_compatible
;
10245 /* Display the flags field. */
10248 elf32_arm_print_private_bfd_data (bfd
*abfd
, void * ptr
)
10250 FILE * file
= (FILE *) ptr
;
10251 unsigned long flags
;
10253 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
10255 /* Print normal ELF private data. */
10256 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
10258 flags
= elf_elfheader (abfd
)->e_flags
;
10259 /* Ignore init flag - it may not be set, despite the flags field
10260 containing valid data. */
10262 /* xgettext:c-format */
10263 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
10265 switch (EF_ARM_EABI_VERSION (flags
))
10267 case EF_ARM_EABI_UNKNOWN
:
10268 /* The following flag bits are GNU extensions and not part of the
10269 official ARM ELF extended ABI. Hence they are only decoded if
10270 the EABI version is not set. */
10271 if (flags
& EF_ARM_INTERWORK
)
10272 fprintf (file
, _(" [interworking enabled]"));
10274 if (flags
& EF_ARM_APCS_26
)
10275 fprintf (file
, " [APCS-26]");
10277 fprintf (file
, " [APCS-32]");
10279 if (flags
& EF_ARM_VFP_FLOAT
)
10280 fprintf (file
, _(" [VFP float format]"));
10281 else if (flags
& EF_ARM_MAVERICK_FLOAT
)
10282 fprintf (file
, _(" [Maverick float format]"));
10284 fprintf (file
, _(" [FPA float format]"));
10286 if (flags
& EF_ARM_APCS_FLOAT
)
10287 fprintf (file
, _(" [floats passed in float registers]"));
10289 if (flags
& EF_ARM_PIC
)
10290 fprintf (file
, _(" [position independent]"));
10292 if (flags
& EF_ARM_NEW_ABI
)
10293 fprintf (file
, _(" [new ABI]"));
10295 if (flags
& EF_ARM_OLD_ABI
)
10296 fprintf (file
, _(" [old ABI]"));
10298 if (flags
& EF_ARM_SOFT_FLOAT
)
10299 fprintf (file
, _(" [software FP]"));
10301 flags
&= ~(EF_ARM_INTERWORK
| EF_ARM_APCS_26
| EF_ARM_APCS_FLOAT
10302 | EF_ARM_PIC
| EF_ARM_NEW_ABI
| EF_ARM_OLD_ABI
10303 | EF_ARM_SOFT_FLOAT
| EF_ARM_VFP_FLOAT
10304 | EF_ARM_MAVERICK_FLOAT
);
10307 case EF_ARM_EABI_VER1
:
10308 fprintf (file
, _(" [Version1 EABI]"));
10310 if (flags
& EF_ARM_SYMSARESORTED
)
10311 fprintf (file
, _(" [sorted symbol table]"));
10313 fprintf (file
, _(" [unsorted symbol table]"));
10315 flags
&= ~ EF_ARM_SYMSARESORTED
;
10318 case EF_ARM_EABI_VER2
:
10319 fprintf (file
, _(" [Version2 EABI]"));
10321 if (flags
& EF_ARM_SYMSARESORTED
)
10322 fprintf (file
, _(" [sorted symbol table]"));
10324 fprintf (file
, _(" [unsorted symbol table]"));
10326 if (flags
& EF_ARM_DYNSYMSUSESEGIDX
)
10327 fprintf (file
, _(" [dynamic symbols use segment index]"));
10329 if (flags
& EF_ARM_MAPSYMSFIRST
)
10330 fprintf (file
, _(" [mapping symbols precede others]"));
10332 flags
&= ~(EF_ARM_SYMSARESORTED
| EF_ARM_DYNSYMSUSESEGIDX
10333 | EF_ARM_MAPSYMSFIRST
);
10336 case EF_ARM_EABI_VER3
:
10337 fprintf (file
, _(" [Version3 EABI]"));
10340 case EF_ARM_EABI_VER4
:
10341 fprintf (file
, _(" [Version4 EABI]"));
10344 case EF_ARM_EABI_VER5
:
10345 fprintf (file
, _(" [Version5 EABI]"));
10347 if (flags
& EF_ARM_BE8
)
10348 fprintf (file
, _(" [BE8]"));
10350 if (flags
& EF_ARM_LE8
)
10351 fprintf (file
, _(" [LE8]"));
10353 flags
&= ~(EF_ARM_LE8
| EF_ARM_BE8
);
10357 fprintf (file
, _(" <EABI version unrecognised>"));
10361 flags
&= ~ EF_ARM_EABIMASK
;
10363 if (flags
& EF_ARM_RELEXEC
)
10364 fprintf (file
, _(" [relocatable executable]"));
10366 if (flags
& EF_ARM_HASENTRY
)
10367 fprintf (file
, _(" [has entry point]"));
10369 flags
&= ~ (EF_ARM_RELEXEC
| EF_ARM_HASENTRY
);
10372 fprintf (file
, _("<Unrecognised flag bits set>"));
10374 fputc ('\n', file
);
10380 elf32_arm_get_symbol_type (Elf_Internal_Sym
* elf_sym
, int type
)
10382 switch (ELF_ST_TYPE (elf_sym
->st_info
))
10384 case STT_ARM_TFUNC
:
10385 return ELF_ST_TYPE (elf_sym
->st_info
);
10387 case STT_ARM_16BIT
:
10388 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
10389 This allows us to distinguish between data used by Thumb instructions
10390 and non-data (which is probably code) inside Thumb regions of an
10392 if (type
!= STT_OBJECT
&& type
!= STT_TLS
)
10393 return ELF_ST_TYPE (elf_sym
->st_info
);
10404 elf32_arm_gc_mark_hook (asection
*sec
,
10405 struct bfd_link_info
*info
,
10406 Elf_Internal_Rela
*rel
,
10407 struct elf_link_hash_entry
*h
,
10408 Elf_Internal_Sym
*sym
)
10411 switch (ELF32_R_TYPE (rel
->r_info
))
10413 case R_ARM_GNU_VTINHERIT
:
10414 case R_ARM_GNU_VTENTRY
:
10418 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
10421 /* Update the got entry reference counts for the section being removed. */
10424 elf32_arm_gc_sweep_hook (bfd
* abfd
,
10425 struct bfd_link_info
* info
,
10427 const Elf_Internal_Rela
* relocs
)
10429 Elf_Internal_Shdr
*symtab_hdr
;
10430 struct elf_link_hash_entry
**sym_hashes
;
10431 bfd_signed_vma
*local_got_refcounts
;
10432 const Elf_Internal_Rela
*rel
, *relend
;
10433 struct elf32_arm_link_hash_table
* globals
;
10435 if (info
->relocatable
)
10438 globals
= elf32_arm_hash_table (info
);
10440 elf_section_data (sec
)->local_dynrel
= NULL
;
10442 symtab_hdr
= & elf_symtab_hdr (abfd
);
10443 sym_hashes
= elf_sym_hashes (abfd
);
10444 local_got_refcounts
= elf_local_got_refcounts (abfd
);
10446 check_use_blx (globals
);
10448 relend
= relocs
+ sec
->reloc_count
;
10449 for (rel
= relocs
; rel
< relend
; rel
++)
10451 unsigned long r_symndx
;
10452 struct elf_link_hash_entry
*h
= NULL
;
10455 r_symndx
= ELF32_R_SYM (rel
->r_info
);
10456 if (r_symndx
>= symtab_hdr
->sh_info
)
10458 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
10459 while (h
->root
.type
== bfd_link_hash_indirect
10460 || h
->root
.type
== bfd_link_hash_warning
)
10461 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10464 r_type
= ELF32_R_TYPE (rel
->r_info
);
10465 r_type
= arm_real_reloc_type (globals
, r_type
);
10469 case R_ARM_GOT_PREL
:
10470 case R_ARM_TLS_GD32
:
10471 case R_ARM_TLS_IE32
:
10474 if (h
->got
.refcount
> 0)
10475 h
->got
.refcount
-= 1;
10477 else if (local_got_refcounts
!= NULL
)
10479 if (local_got_refcounts
[r_symndx
] > 0)
10480 local_got_refcounts
[r_symndx
] -= 1;
10484 case R_ARM_TLS_LDM32
:
10485 elf32_arm_hash_table (info
)->tls_ldm_got
.refcount
-= 1;
10489 case R_ARM_ABS32_NOI
:
10491 case R_ARM_REL32_NOI
:
10497 case R_ARM_THM_CALL
:
10498 case R_ARM_THM_JUMP24
:
10499 case R_ARM_THM_JUMP19
:
10500 case R_ARM_MOVW_ABS_NC
:
10501 case R_ARM_MOVT_ABS
:
10502 case R_ARM_MOVW_PREL_NC
:
10503 case R_ARM_MOVT_PREL
:
10504 case R_ARM_THM_MOVW_ABS_NC
:
10505 case R_ARM_THM_MOVT_ABS
:
10506 case R_ARM_THM_MOVW_PREL_NC
:
10507 case R_ARM_THM_MOVT_PREL
:
10508 /* Should the interworking branches be here also? */
10512 struct elf32_arm_link_hash_entry
*eh
;
10513 struct elf32_arm_relocs_copied
**pp
;
10514 struct elf32_arm_relocs_copied
*p
;
10516 eh
= (struct elf32_arm_link_hash_entry
*) h
;
10518 if (h
->plt
.refcount
> 0)
10520 h
->plt
.refcount
-= 1;
10521 if (r_type
== R_ARM_THM_CALL
)
10522 eh
->plt_maybe_thumb_refcount
--;
10524 if (r_type
== R_ARM_THM_JUMP24
10525 || r_type
== R_ARM_THM_JUMP19
)
10526 eh
->plt_thumb_refcount
--;
10529 if (r_type
== R_ARM_ABS32
10530 || r_type
== R_ARM_REL32
10531 || r_type
== R_ARM_ABS32_NOI
10532 || r_type
== R_ARM_REL32_NOI
)
10534 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
;
10536 if (p
->section
== sec
)
10539 if (ELF32_R_TYPE (rel
->r_info
) == R_ARM_REL32
10540 || ELF32_R_TYPE (rel
->r_info
) == R_ARM_REL32_NOI
)
10558 /* Look through the relocs for a section during the first phase. */
10561 elf32_arm_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
10562 asection
*sec
, const Elf_Internal_Rela
*relocs
)
10564 Elf_Internal_Shdr
*symtab_hdr
;
10565 struct elf_link_hash_entry
**sym_hashes
;
10566 const Elf_Internal_Rela
*rel
;
10567 const Elf_Internal_Rela
*rel_end
;
10570 bfd_vma
*local_got_offsets
;
10571 struct elf32_arm_link_hash_table
*htab
;
10572 bfd_boolean needs_plt
;
10573 unsigned long nsyms
;
10575 if (info
->relocatable
)
10578 BFD_ASSERT (is_arm_elf (abfd
));
10580 htab
= elf32_arm_hash_table (info
);
10583 /* Create dynamic sections for relocatable executables so that we can
10584 copy relocations. */
10585 if (htab
->root
.is_relocatable_executable
10586 && ! htab
->root
.dynamic_sections_created
)
10588 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
10592 dynobj
= elf_hash_table (info
)->dynobj
;
10593 local_got_offsets
= elf_local_got_offsets (abfd
);
10595 symtab_hdr
= & elf_symtab_hdr (abfd
);
10596 sym_hashes
= elf_sym_hashes (abfd
);
10597 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
10599 rel_end
= relocs
+ sec
->reloc_count
;
10600 for (rel
= relocs
; rel
< rel_end
; rel
++)
10602 struct elf_link_hash_entry
*h
;
10603 struct elf32_arm_link_hash_entry
*eh
;
10604 unsigned long r_symndx
;
10607 r_symndx
= ELF32_R_SYM (rel
->r_info
);
10608 r_type
= ELF32_R_TYPE (rel
->r_info
);
10609 r_type
= arm_real_reloc_type (htab
, r_type
);
10611 if (r_symndx
>= nsyms
10612 /* PR 9934: It is possible to have relocations that do not
10613 refer to symbols, thus it is also possible to have an
10614 object file containing relocations but no symbol table. */
10615 && (r_symndx
> 0 || nsyms
> 0))
10617 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"), abfd
,
10622 if (nsyms
== 0 || r_symndx
< symtab_hdr
->sh_info
)
10626 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
10627 while (h
->root
.type
== bfd_link_hash_indirect
10628 || h
->root
.type
== bfd_link_hash_warning
)
10629 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10632 eh
= (struct elf32_arm_link_hash_entry
*) h
;
10637 case R_ARM_GOT_PREL
:
10638 case R_ARM_TLS_GD32
:
10639 case R_ARM_TLS_IE32
:
10640 /* This symbol requires a global offset table entry. */
10642 int tls_type
, old_tls_type
;
10646 case R_ARM_TLS_GD32
: tls_type
= GOT_TLS_GD
; break;
10647 case R_ARM_TLS_IE32
: tls_type
= GOT_TLS_IE
; break;
10648 default: tls_type
= GOT_NORMAL
; break;
10654 old_tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
10658 bfd_signed_vma
*local_got_refcounts
;
10660 /* This is a global offset table entry for a local symbol. */
10661 local_got_refcounts
= elf_local_got_refcounts (abfd
);
10662 if (local_got_refcounts
== NULL
)
10664 bfd_size_type size
;
10666 size
= symtab_hdr
->sh_info
;
10667 size
*= (sizeof (bfd_signed_vma
) + sizeof (char));
10668 local_got_refcounts
= bfd_zalloc (abfd
, size
);
10669 if (local_got_refcounts
== NULL
)
10671 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
10672 elf32_arm_local_got_tls_type (abfd
)
10673 = (char *) (local_got_refcounts
+ symtab_hdr
->sh_info
);
10675 local_got_refcounts
[r_symndx
] += 1;
10676 old_tls_type
= elf32_arm_local_got_tls_type (abfd
) [r_symndx
];
10679 /* We will already have issued an error message if there is a
10680 TLS / non-TLS mismatch, based on the symbol type. We don't
10681 support any linker relaxations. So just combine any TLS
10683 if (old_tls_type
!= GOT_UNKNOWN
&& old_tls_type
!= GOT_NORMAL
10684 && tls_type
!= GOT_NORMAL
)
10685 tls_type
|= old_tls_type
;
10687 if (old_tls_type
!= tls_type
)
10690 elf32_arm_hash_entry (h
)->tls_type
= tls_type
;
10692 elf32_arm_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
10695 /* Fall through. */
10697 case R_ARM_TLS_LDM32
:
10698 if (r_type
== R_ARM_TLS_LDM32
)
10699 htab
->tls_ldm_got
.refcount
++;
10700 /* Fall through. */
10702 case R_ARM_GOTOFF32
:
10704 if (htab
->sgot
== NULL
)
10706 if (htab
->root
.dynobj
== NULL
)
10707 htab
->root
.dynobj
= abfd
;
10708 if (!create_got_section (htab
->root
.dynobj
, info
))
10714 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
10715 ldr __GOTT_INDEX__ offsets. */
10716 if (!htab
->vxworks_p
)
10718 /* Fall through. */
10725 case R_ARM_THM_CALL
:
10726 case R_ARM_THM_JUMP24
:
10727 case R_ARM_THM_JUMP19
:
10731 case R_ARM_MOVW_ABS_NC
:
10732 case R_ARM_MOVT_ABS
:
10733 case R_ARM_THM_MOVW_ABS_NC
:
10734 case R_ARM_THM_MOVT_ABS
:
10737 (*_bfd_error_handler
)
10738 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
10739 abfd
, elf32_arm_howto_table_1
[r_type
].name
,
10740 (h
) ? h
->root
.root
.string
: "a local symbol");
10741 bfd_set_error (bfd_error_bad_value
);
10745 /* Fall through. */
10747 case R_ARM_ABS32_NOI
:
10749 case R_ARM_REL32_NOI
:
10750 case R_ARM_MOVW_PREL_NC
:
10751 case R_ARM_MOVT_PREL
:
10752 case R_ARM_THM_MOVW_PREL_NC
:
10753 case R_ARM_THM_MOVT_PREL
:
10757 /* Should the interworking branches be listed here? */
10760 /* If this reloc is in a read-only section, we might
10761 need a copy reloc. We can't check reliably at this
10762 stage whether the section is read-only, as input
10763 sections have not yet been mapped to output sections.
10764 Tentatively set the flag for now, and correct in
10765 adjust_dynamic_symbol. */
10767 h
->non_got_ref
= 1;
10769 /* We may need a .plt entry if the function this reloc
10770 refers to is in a different object. We can't tell for
10771 sure yet, because something later might force the
10776 /* If we create a PLT entry, this relocation will reference
10777 it, even if it's an ABS32 relocation. */
10778 h
->plt
.refcount
+= 1;
10780 /* It's too early to use htab->use_blx here, so we have to
10781 record possible blx references separately from
10782 relocs that definitely need a thumb stub. */
10784 if (r_type
== R_ARM_THM_CALL
)
10785 eh
->plt_maybe_thumb_refcount
+= 1;
10787 if (r_type
== R_ARM_THM_JUMP24
10788 || r_type
== R_ARM_THM_JUMP19
)
10789 eh
->plt_thumb_refcount
+= 1;
10792 /* If we are creating a shared library or relocatable executable,
10793 and this is a reloc against a global symbol, or a non PC
10794 relative reloc against a local symbol, then we need to copy
10795 the reloc into the shared library. However, if we are linking
10796 with -Bsymbolic, we do not need to copy a reloc against a
10797 global symbol which is defined in an object we are
10798 including in the link (i.e., DEF_REGULAR is set). At
10799 this point we have not seen all the input files, so it is
10800 possible that DEF_REGULAR is not set now but will be set
10801 later (it is never cleared). We account for that
10802 possibility below by storing information in the
10803 relocs_copied field of the hash table entry. */
10804 if ((info
->shared
|| htab
->root
.is_relocatable_executable
)
10805 && (sec
->flags
& SEC_ALLOC
) != 0
10806 && ((r_type
== R_ARM_ABS32
|| r_type
== R_ARM_ABS32_NOI
)
10807 || (h
!= NULL
&& ! h
->needs_plt
10808 && (! info
->symbolic
|| ! h
->def_regular
))))
10810 struct elf32_arm_relocs_copied
*p
, **head
;
10812 /* When creating a shared object, we must copy these
10813 reloc types into the output file. We create a reloc
10814 section in dynobj and make room for this reloc. */
10815 if (sreloc
== NULL
)
10817 sreloc
= _bfd_elf_make_dynamic_reloc_section
10818 (sec
, dynobj
, 2, abfd
, ! htab
->use_rel
);
10820 if (sreloc
== NULL
)
10823 /* BPABI objects never have dynamic relocations mapped. */
10824 if (htab
->symbian_p
)
10828 flags
= bfd_get_section_flags (dynobj
, sreloc
);
10829 flags
&= ~(SEC_LOAD
| SEC_ALLOC
);
10830 bfd_set_section_flags (dynobj
, sreloc
, flags
);
10834 /* If this is a global symbol, we count the number of
10835 relocations we need for this symbol. */
10838 head
= &((struct elf32_arm_link_hash_entry
*) h
)->relocs_copied
;
10842 /* Track dynamic relocs needed for local syms too.
10843 We really need local syms available to do this
10844 easily. Oh well. */
10849 s
= bfd_section_from_r_symndx (abfd
, &htab
->sym_sec
,
10854 vpp
= &elf_section_data (s
)->local_dynrel
;
10855 head
= (struct elf32_arm_relocs_copied
**) vpp
;
10859 if (p
== NULL
|| p
->section
!= sec
)
10861 bfd_size_type amt
= sizeof *p
;
10863 p
= bfd_alloc (htab
->root
.dynobj
, amt
);
10873 if (r_type
== R_ARM_REL32
|| r_type
== R_ARM_REL32_NOI
)
10879 /* This relocation describes the C++ object vtable hierarchy.
10880 Reconstruct it for later use during GC. */
10881 case R_ARM_GNU_VTINHERIT
:
10882 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
10886 /* This relocation describes which C++ vtable entries are actually
10887 used. Record for later use during GC. */
10888 case R_ARM_GNU_VTENTRY
:
10889 BFD_ASSERT (h
!= NULL
);
10891 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
10900 /* Unwinding tables are not referenced directly. This pass marks them as
10901 required if the corresponding code section is marked. */
10904 elf32_arm_gc_mark_extra_sections (struct bfd_link_info
*info
,
10905 elf_gc_mark_hook_fn gc_mark_hook
)
10908 Elf_Internal_Shdr
**elf_shdrp
;
10911 /* Marking EH data may cause additional code sections to be marked,
10912 requiring multiple passes. */
10917 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10921 if (! is_arm_elf (sub
))
10924 elf_shdrp
= elf_elfsections (sub
);
10925 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
10927 Elf_Internal_Shdr
*hdr
;
10929 hdr
= &elf_section_data (o
)->this_hdr
;
10930 if (hdr
->sh_type
== SHT_ARM_EXIDX
10932 && hdr
->sh_link
< elf_numsections (sub
)
10934 && elf_shdrp
[hdr
->sh_link
]->bfd_section
->gc_mark
)
10937 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
10947 /* Treat mapping symbols as special target symbols. */
10950 elf32_arm_is_target_special_symbol (bfd
* abfd ATTRIBUTE_UNUSED
, asymbol
* sym
)
10952 return bfd_is_arm_special_symbol_name (sym
->name
,
10953 BFD_ARM_SPECIAL_SYM_TYPE_ANY
);
10956 /* This is a copy of elf_find_function() from elf.c except that
10957 ARM mapping symbols are ignored when looking for function names
10958 and STT_ARM_TFUNC is considered to a function type. */
10961 arm_elf_find_function (bfd
* abfd ATTRIBUTE_UNUSED
,
10962 asection
* section
,
10963 asymbol
** symbols
,
10965 const char ** filename_ptr
,
10966 const char ** functionname_ptr
)
10968 const char * filename
= NULL
;
10969 asymbol
* func
= NULL
;
10970 bfd_vma low_func
= 0;
10973 for (p
= symbols
; *p
!= NULL
; p
++)
10975 elf_symbol_type
*q
;
10977 q
= (elf_symbol_type
*) *p
;
10979 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
10984 filename
= bfd_asymbol_name (&q
->symbol
);
10987 case STT_ARM_TFUNC
:
10989 /* Skip mapping symbols. */
10990 if ((q
->symbol
.flags
& BSF_LOCAL
)
10991 && bfd_is_arm_special_symbol_name (q
->symbol
.name
,
10992 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
10994 /* Fall through. */
10995 if (bfd_get_section (&q
->symbol
) == section
10996 && q
->symbol
.value
>= low_func
10997 && q
->symbol
.value
<= offset
)
10999 func
= (asymbol
*) q
;
11000 low_func
= q
->symbol
.value
;
11010 *filename_ptr
= filename
;
11011 if (functionname_ptr
)
11012 *functionname_ptr
= bfd_asymbol_name (func
);
11018 /* Find the nearest line to a particular section and offset, for error
11019 reporting. This code is a duplicate of the code in elf.c, except
11020 that it uses arm_elf_find_function. */
11023 elf32_arm_find_nearest_line (bfd
* abfd
,
11024 asection
* section
,
11025 asymbol
** symbols
,
11027 const char ** filename_ptr
,
11028 const char ** functionname_ptr
,
11029 unsigned int * line_ptr
)
11031 bfd_boolean found
= FALSE
;
11033 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
11035 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
11036 filename_ptr
, functionname_ptr
,
11038 & elf_tdata (abfd
)->dwarf2_find_line_info
))
11040 if (!*functionname_ptr
)
11041 arm_elf_find_function (abfd
, section
, symbols
, offset
,
11042 *filename_ptr
? NULL
: filename_ptr
,
11048 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
11049 & found
, filename_ptr
,
11050 functionname_ptr
, line_ptr
,
11051 & elf_tdata (abfd
)->line_info
))
11054 if (found
&& (*functionname_ptr
|| *line_ptr
))
11057 if (symbols
== NULL
)
11060 if (! arm_elf_find_function (abfd
, section
, symbols
, offset
,
11061 filename_ptr
, functionname_ptr
))
11069 elf32_arm_find_inliner_info (bfd
* abfd
,
11070 const char ** filename_ptr
,
11071 const char ** functionname_ptr
,
11072 unsigned int * line_ptr
)
11075 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
11076 functionname_ptr
, line_ptr
,
11077 & elf_tdata (abfd
)->dwarf2_find_line_info
);
11081 /* Adjust a symbol defined by a dynamic object and referenced by a
11082 regular object. The current definition is in some section of the
11083 dynamic object, but we're not including those sections. We have to
11084 change the definition to something the rest of the link can
11088 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info
* info
,
11089 struct elf_link_hash_entry
* h
)
11093 struct elf32_arm_link_hash_entry
* eh
;
11094 struct elf32_arm_link_hash_table
*globals
;
11096 globals
= elf32_arm_hash_table (info
);
11097 dynobj
= elf_hash_table (info
)->dynobj
;
11099 /* Make sure we know what is going on here. */
11100 BFD_ASSERT (dynobj
!= NULL
11102 || h
->u
.weakdef
!= NULL
11105 && !h
->def_regular
)));
11107 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11109 /* If this is a function, put it in the procedure linkage table. We
11110 will fill in the contents of the procedure linkage table later,
11111 when we know the address of the .got section. */
11112 if (h
->type
== STT_FUNC
|| h
->type
== STT_ARM_TFUNC
11115 if (h
->plt
.refcount
<= 0
11116 || SYMBOL_CALLS_LOCAL (info
, h
)
11117 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
11118 && h
->root
.type
== bfd_link_hash_undefweak
))
11120 /* This case can occur if we saw a PLT32 reloc in an input
11121 file, but the symbol was never referred to by a dynamic
11122 object, or if all references were garbage collected. In
11123 such a case, we don't actually need to build a procedure
11124 linkage table, and we can just do a PC24 reloc instead. */
11125 h
->plt
.offset
= (bfd_vma
) -1;
11126 eh
->plt_thumb_refcount
= 0;
11127 eh
->plt_maybe_thumb_refcount
= 0;
11135 /* It's possible that we incorrectly decided a .plt reloc was
11136 needed for an R_ARM_PC24 or similar reloc to a non-function sym
11137 in check_relocs. We can't decide accurately between function
11138 and non-function syms in check-relocs; Objects loaded later in
11139 the link may change h->type. So fix it now. */
11140 h
->plt
.offset
= (bfd_vma
) -1;
11141 eh
->plt_thumb_refcount
= 0;
11142 eh
->plt_maybe_thumb_refcount
= 0;
11145 /* If this is a weak symbol, and there is a real definition, the
11146 processor independent code will have arranged for us to see the
11147 real definition first, and we can just use the same value. */
11148 if (h
->u
.weakdef
!= NULL
)
11150 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
11151 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
11152 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
11153 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
11157 /* If there are no non-GOT references, we do not need a copy
11159 if (!h
->non_got_ref
)
11162 /* This is a reference to a symbol defined by a dynamic object which
11163 is not a function. */
11165 /* If we are creating a shared library, we must presume that the
11166 only references to the symbol are via the global offset table.
11167 For such cases we need not do anything here; the relocations will
11168 be handled correctly by relocate_section. Relocatable executables
11169 can reference data in shared objects directly, so we don't need to
11170 do anything here. */
11171 if (info
->shared
|| globals
->root
.is_relocatable_executable
)
11176 (*_bfd_error_handler
) (_("dynamic variable `%s' is zero size"),
11177 h
->root
.root
.string
);
11181 /* We must allocate the symbol in our .dynbss section, which will
11182 become part of the .bss section of the executable. There will be
11183 an entry for this symbol in the .dynsym section. The dynamic
11184 object will contain position independent code, so all references
11185 from the dynamic object to this symbol will go through the global
11186 offset table. The dynamic linker will use the .dynsym entry to
11187 determine the address it must put in the global offset table, so
11188 both the dynamic object and the regular object will refer to the
11189 same memory location for the variable. */
11190 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
11191 BFD_ASSERT (s
!= NULL
);
11193 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
11194 copy the initial value out of the dynamic object and into the
11195 runtime process image. We need to remember the offset into the
11196 .rel(a).bss section we are going to use. */
11197 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
11201 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (globals
, ".bss"));
11202 BFD_ASSERT (srel
!= NULL
);
11203 srel
->size
+= RELOC_SIZE (globals
);
11207 return _bfd_elf_adjust_dynamic_copy (h
, s
);
11210 /* Allocate space in .plt, .got and associated reloc sections for
11214 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void * inf
)
11216 struct bfd_link_info
*info
;
11217 struct elf32_arm_link_hash_table
*htab
;
11218 struct elf32_arm_link_hash_entry
*eh
;
11219 struct elf32_arm_relocs_copied
*p
;
11220 bfd_signed_vma thumb_refs
;
11222 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11224 if (h
->root
.type
== bfd_link_hash_indirect
)
11227 if (h
->root
.type
== bfd_link_hash_warning
)
11228 /* When warning symbols are created, they **replace** the "real"
11229 entry in the hash table, thus we never get to see the real
11230 symbol in a hash traversal. So look at it now. */
11231 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11233 info
= (struct bfd_link_info
*) inf
;
11234 htab
= elf32_arm_hash_table (info
);
11236 if (htab
->root
.dynamic_sections_created
11237 && h
->plt
.refcount
> 0)
11239 /* Make sure this symbol is output as a dynamic symbol.
11240 Undefined weak syms won't yet be marked as dynamic. */
11241 if (h
->dynindx
== -1
11242 && !h
->forced_local
)
11244 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11249 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
11251 asection
*s
= htab
->splt
;
11253 /* If this is the first .plt entry, make room for the special
11256 s
->size
+= htab
->plt_header_size
;
11258 h
->plt
.offset
= s
->size
;
11260 /* If we will insert a Thumb trampoline before this PLT, leave room
11262 thumb_refs
= eh
->plt_thumb_refcount
;
11263 if (!htab
->use_blx
)
11264 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
11266 if (thumb_refs
> 0)
11268 h
->plt
.offset
+= PLT_THUMB_STUB_SIZE
;
11269 s
->size
+= PLT_THUMB_STUB_SIZE
;
11272 /* If this symbol is not defined in a regular file, and we are
11273 not generating a shared library, then set the symbol to this
11274 location in the .plt. This is required to make function
11275 pointers compare as equal between the normal executable and
11276 the shared library. */
11278 && !h
->def_regular
)
11280 h
->root
.u
.def
.section
= s
;
11281 h
->root
.u
.def
.value
= h
->plt
.offset
;
11283 /* Make sure the function is not marked as Thumb, in case
11284 it is the target of an ABS32 relocation, which will
11285 point to the PLT entry. */
11286 if (ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
)
11287 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
11290 /* Make room for this entry. */
11291 s
->size
+= htab
->plt_entry_size
;
11293 if (!htab
->symbian_p
)
11295 /* We also need to make an entry in the .got.plt section, which
11296 will be placed in the .got section by the linker script. */
11297 eh
->plt_got_offset
= htab
->sgotplt
->size
;
11298 htab
->sgotplt
->size
+= 4;
11301 /* We also need to make an entry in the .rel(a).plt section. */
11302 htab
->srelplt
->size
+= RELOC_SIZE (htab
);
11304 /* VxWorks executables have a second set of relocations for
11305 each PLT entry. They go in a separate relocation section,
11306 which is processed by the kernel loader. */
11307 if (htab
->vxworks_p
&& !info
->shared
)
11309 /* There is a relocation for the initial PLT entry:
11310 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
11311 if (h
->plt
.offset
== htab
->plt_header_size
)
11312 htab
->srelplt2
->size
+= RELOC_SIZE (htab
);
11314 /* There are two extra relocations for each subsequent
11315 PLT entry: an R_ARM_32 relocation for the GOT entry,
11316 and an R_ARM_32 relocation for the PLT entry. */
11317 htab
->srelplt2
->size
+= RELOC_SIZE (htab
) * 2;
11322 h
->plt
.offset
= (bfd_vma
) -1;
11328 h
->plt
.offset
= (bfd_vma
) -1;
11332 if (h
->got
.refcount
> 0)
11336 int tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
11339 /* Make sure this symbol is output as a dynamic symbol.
11340 Undefined weak syms won't yet be marked as dynamic. */
11341 if (h
->dynindx
== -1
11342 && !h
->forced_local
)
11344 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11348 if (!htab
->symbian_p
)
11351 h
->got
.offset
= s
->size
;
11353 if (tls_type
== GOT_UNKNOWN
)
11356 if (tls_type
== GOT_NORMAL
)
11357 /* Non-TLS symbols need one GOT slot. */
11361 if (tls_type
& GOT_TLS_GD
)
11362 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
11364 if (tls_type
& GOT_TLS_IE
)
11365 /* R_ARM_TLS_IE32 needs one GOT slot. */
11369 dyn
= htab
->root
.dynamic_sections_created
;
11372 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
11374 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
11377 if (tls_type
!= GOT_NORMAL
11378 && (info
->shared
|| indx
!= 0)
11379 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
11380 || h
->root
.type
!= bfd_link_hash_undefweak
))
11382 if (tls_type
& GOT_TLS_IE
)
11383 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11385 if (tls_type
& GOT_TLS_GD
)
11386 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11388 if ((tls_type
& GOT_TLS_GD
) && indx
!= 0)
11389 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11391 else if ((ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
11392 || h
->root
.type
!= bfd_link_hash_undefweak
)
11394 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
)))
11395 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11399 h
->got
.offset
= (bfd_vma
) -1;
11401 /* Allocate stubs for exported Thumb functions on v4t. */
11402 if (!htab
->use_blx
&& h
->dynindx
!= -1
11404 && ELF_ST_TYPE (h
->type
) == STT_ARM_TFUNC
11405 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
11407 struct elf_link_hash_entry
* th
;
11408 struct bfd_link_hash_entry
* bh
;
11409 struct elf_link_hash_entry
* myh
;
11413 /* Create a new symbol to regist the real location of the function. */
11414 s
= h
->root
.u
.def
.section
;
11415 sprintf (name
, "__real_%s", h
->root
.root
.string
);
11416 _bfd_generic_link_add_one_symbol (info
, s
->owner
,
11417 name
, BSF_GLOBAL
, s
,
11418 h
->root
.u
.def
.value
,
11419 NULL
, TRUE
, FALSE
, &bh
);
11421 myh
= (struct elf_link_hash_entry
*) bh
;
11422 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_ARM_TFUNC
);
11423 myh
->forced_local
= 1;
11424 eh
->export_glue
= myh
;
11425 th
= record_arm_to_thumb_glue (info
, h
);
11426 /* Point the symbol at the stub. */
11427 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
11428 h
->root
.u
.def
.section
= th
->root
.u
.def
.section
;
11429 h
->root
.u
.def
.value
= th
->root
.u
.def
.value
& ~1;
11432 if (eh
->relocs_copied
== NULL
)
11435 /* In the shared -Bsymbolic case, discard space allocated for
11436 dynamic pc-relative relocs against symbols which turn out to be
11437 defined in regular objects. For the normal shared case, discard
11438 space for pc-relative relocs that have become local due to symbol
11439 visibility changes. */
11441 if (info
->shared
|| htab
->root
.is_relocatable_executable
)
11443 /* The only relocs that use pc_count are R_ARM_REL32 and
11444 R_ARM_REL32_NOI, which will appear on something like
11445 ".long foo - .". We want calls to protected symbols to resolve
11446 directly to the function rather than going via the plt. If people
11447 want function pointer comparisons to work as expected then they
11448 should avoid writing assembly like ".long foo - .". */
11449 if (SYMBOL_CALLS_LOCAL (info
, h
))
11451 struct elf32_arm_relocs_copied
**pp
;
11453 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
; )
11455 p
->count
-= p
->pc_count
;
11464 if (elf32_arm_hash_table (info
)->vxworks_p
)
11466 struct elf32_arm_relocs_copied
**pp
;
11468 for (pp
= &eh
->relocs_copied
; (p
= *pp
) != NULL
; )
11470 if (strcmp (p
->section
->output_section
->name
, ".tls_vars") == 0)
11477 /* Also discard relocs on undefined weak syms with non-default
11479 if (eh
->relocs_copied
!= NULL
11480 && h
->root
.type
== bfd_link_hash_undefweak
)
11482 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
11483 eh
->relocs_copied
= NULL
;
11485 /* Make sure undefined weak symbols are output as a dynamic
11487 else if (h
->dynindx
== -1
11488 && !h
->forced_local
)
11490 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11495 else if (htab
->root
.is_relocatable_executable
&& h
->dynindx
== -1
11496 && h
->root
.type
== bfd_link_hash_new
)
11498 /* Output absolute symbols so that we can create relocations
11499 against them. For normal symbols we output a relocation
11500 against the section that contains them. */
11501 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11508 /* For the non-shared case, discard space for relocs against
11509 symbols which turn out to need copy relocs or are not
11512 if (!h
->non_got_ref
11513 && ((h
->def_dynamic
11514 && !h
->def_regular
)
11515 || (htab
->root
.dynamic_sections_created
11516 && (h
->root
.type
== bfd_link_hash_undefweak
11517 || h
->root
.type
== bfd_link_hash_undefined
))))
11519 /* Make sure this symbol is output as a dynamic symbol.
11520 Undefined weak syms won't yet be marked as dynamic. */
11521 if (h
->dynindx
== -1
11522 && !h
->forced_local
)
11524 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
11528 /* If that succeeded, we know we'll be keeping all the
11530 if (h
->dynindx
!= -1)
11534 eh
->relocs_copied
= NULL
;
11539 /* Finally, allocate space. */
11540 for (p
= eh
->relocs_copied
; p
!= NULL
; p
= p
->next
)
11542 asection
*sreloc
= elf_section_data (p
->section
)->sreloc
;
11543 sreloc
->size
+= p
->count
* RELOC_SIZE (htab
);
11549 /* Find any dynamic relocs that apply to read-only sections. */
11552 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry
* h
, void * inf
)
11554 struct elf32_arm_link_hash_entry
* eh
;
11555 struct elf32_arm_relocs_copied
* p
;
11557 if (h
->root
.type
== bfd_link_hash_warning
)
11558 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11560 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11561 for (p
= eh
->relocs_copied
; p
!= NULL
; p
= p
->next
)
11563 asection
*s
= p
->section
;
11565 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
11567 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
11569 info
->flags
|= DF_TEXTREL
;
11571 /* Not an error, just cut short the traversal. */
11579 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info
*info
,
11582 struct elf32_arm_link_hash_table
*globals
;
11584 globals
= elf32_arm_hash_table (info
);
11585 globals
->byteswap_code
= byteswap_code
;
11588 /* Set the sizes of the dynamic sections. */
11591 elf32_arm_size_dynamic_sections (bfd
* output_bfd ATTRIBUTE_UNUSED
,
11592 struct bfd_link_info
* info
)
11597 bfd_boolean relocs
;
11599 struct elf32_arm_link_hash_table
*htab
;
11601 htab
= elf32_arm_hash_table (info
);
11602 dynobj
= elf_hash_table (info
)->dynobj
;
11603 BFD_ASSERT (dynobj
!= NULL
);
11604 check_use_blx (htab
);
11606 if (elf_hash_table (info
)->dynamic_sections_created
)
11608 /* Set the contents of the .interp section to the interpreter. */
11609 if (info
->executable
)
11611 s
= bfd_get_section_by_name (dynobj
, ".interp");
11612 BFD_ASSERT (s
!= NULL
);
11613 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
11614 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
11618 /* Set up .got offsets for local syms, and space for local dynamic
11620 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
11622 bfd_signed_vma
*local_got
;
11623 bfd_signed_vma
*end_local_got
;
11624 char *local_tls_type
;
11625 bfd_size_type locsymcount
;
11626 Elf_Internal_Shdr
*symtab_hdr
;
11628 bfd_boolean is_vxworks
= elf32_arm_hash_table (info
)->vxworks_p
;
11630 if (! is_arm_elf (ibfd
))
11633 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
11635 struct elf32_arm_relocs_copied
*p
;
11637 for (p
= elf_section_data (s
)->local_dynrel
; p
!= NULL
; p
= p
->next
)
11639 if (!bfd_is_abs_section (p
->section
)
11640 && bfd_is_abs_section (p
->section
->output_section
))
11642 /* Input section has been discarded, either because
11643 it is a copy of a linkonce section or due to
11644 linker script /DISCARD/, so we'll be discarding
11647 else if (is_vxworks
11648 && strcmp (p
->section
->output_section
->name
,
11651 /* Relocations in vxworks .tls_vars sections are
11652 handled specially by the loader. */
11654 else if (p
->count
!= 0)
11656 srel
= elf_section_data (p
->section
)->sreloc
;
11657 srel
->size
+= p
->count
* RELOC_SIZE (htab
);
11658 if ((p
->section
->output_section
->flags
& SEC_READONLY
) != 0)
11659 info
->flags
|= DF_TEXTREL
;
11664 local_got
= elf_local_got_refcounts (ibfd
);
11668 symtab_hdr
= & elf_symtab_hdr (ibfd
);
11669 locsymcount
= symtab_hdr
->sh_info
;
11670 end_local_got
= local_got
+ locsymcount
;
11671 local_tls_type
= elf32_arm_local_got_tls_type (ibfd
);
11673 srel
= htab
->srelgot
;
11674 for (; local_got
< end_local_got
; ++local_got
, ++local_tls_type
)
11676 if (*local_got
> 0)
11678 *local_got
= s
->size
;
11679 if (*local_tls_type
& GOT_TLS_GD
)
11680 /* TLS_GD relocs need an 8-byte structure in the GOT. */
11682 if (*local_tls_type
& GOT_TLS_IE
)
11684 if (*local_tls_type
== GOT_NORMAL
)
11687 if (info
->shared
|| *local_tls_type
== GOT_TLS_GD
)
11688 srel
->size
+= RELOC_SIZE (htab
);
11691 *local_got
= (bfd_vma
) -1;
11695 if (htab
->tls_ldm_got
.refcount
> 0)
11697 /* Allocate two GOT entries and one dynamic relocation (if necessary)
11698 for R_ARM_TLS_LDM32 relocations. */
11699 htab
->tls_ldm_got
.offset
= htab
->sgot
->size
;
11700 htab
->sgot
->size
+= 8;
11702 htab
->srelgot
->size
+= RELOC_SIZE (htab
);
11705 htab
->tls_ldm_got
.offset
= -1;
11707 /* Allocate global sym .plt and .got entries, and space for global
11708 sym dynamic relocs. */
11709 elf_link_hash_traverse (& htab
->root
, allocate_dynrelocs
, info
);
11711 /* Here we rummage through the found bfds to collect glue information. */
11712 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
11714 if (! is_arm_elf (ibfd
))
11717 /* Initialise mapping tables for code/data. */
11718 bfd_elf32_arm_init_maps (ibfd
);
11720 if (!bfd_elf32_arm_process_before_allocation (ibfd
, info
)
11721 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd
, info
))
11722 /* xgettext:c-format */
11723 _bfd_error_handler (_("Errors encountered processing file %s"),
11727 /* Allocate space for the glue sections now that we've sized them. */
11728 bfd_elf32_arm_allocate_interworking_sections (info
);
11730 /* The check_relocs and adjust_dynamic_symbol entry points have
11731 determined the sizes of the various dynamic sections. Allocate
11732 memory for them. */
11735 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
11739 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
11742 /* It's OK to base decisions on the section name, because none
11743 of the dynobj section names depend upon the input files. */
11744 name
= bfd_get_section_name (dynobj
, s
);
11746 if (strcmp (name
, ".plt") == 0)
11748 /* Remember whether there is a PLT. */
11749 plt
= s
->size
!= 0;
11751 else if (CONST_STRNEQ (name
, ".rel"))
11755 /* Remember whether there are any reloc sections other
11756 than .rel(a).plt and .rela.plt.unloaded. */
11757 if (s
!= htab
->srelplt
&& s
!= htab
->srelplt2
)
11760 /* We use the reloc_count field as a counter if we need
11761 to copy relocs into the output file. */
11762 s
->reloc_count
= 0;
11765 else if (! CONST_STRNEQ (name
, ".got")
11766 && strcmp (name
, ".dynbss") != 0)
11768 /* It's not one of our sections, so don't allocate space. */
11774 /* If we don't need this section, strip it from the
11775 output file. This is mostly to handle .rel(a).bss and
11776 .rel(a).plt. We must create both sections in
11777 create_dynamic_sections, because they must be created
11778 before the linker maps input sections to output
11779 sections. The linker does that before
11780 adjust_dynamic_symbol is called, and it is that
11781 function which decides whether anything needs to go
11782 into these sections. */
11783 s
->flags
|= SEC_EXCLUDE
;
11787 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
11790 /* Allocate memory for the section contents. */
11791 s
->contents
= bfd_zalloc (dynobj
, s
->size
);
11792 if (s
->contents
== NULL
)
11796 if (elf_hash_table (info
)->dynamic_sections_created
)
11798 /* Add some entries to the .dynamic section. We fill in the
11799 values later, in elf32_arm_finish_dynamic_sections, but we
11800 must add the entries now so that we get the correct size for
11801 the .dynamic section. The DT_DEBUG entry is filled in by the
11802 dynamic linker and used by the debugger. */
11803 #define add_dynamic_entry(TAG, VAL) \
11804 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
11806 if (info
->executable
)
11808 if (!add_dynamic_entry (DT_DEBUG
, 0))
11814 if ( !add_dynamic_entry (DT_PLTGOT
, 0)
11815 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
11816 || !add_dynamic_entry (DT_PLTREL
,
11817 htab
->use_rel
? DT_REL
: DT_RELA
)
11818 || !add_dynamic_entry (DT_JMPREL
, 0))
11826 if (!add_dynamic_entry (DT_REL
, 0)
11827 || !add_dynamic_entry (DT_RELSZ
, 0)
11828 || !add_dynamic_entry (DT_RELENT
, RELOC_SIZE (htab
)))
11833 if (!add_dynamic_entry (DT_RELA
, 0)
11834 || !add_dynamic_entry (DT_RELASZ
, 0)
11835 || !add_dynamic_entry (DT_RELAENT
, RELOC_SIZE (htab
)))
11840 /* If any dynamic relocs apply to a read-only section,
11841 then we need a DT_TEXTREL entry. */
11842 if ((info
->flags
& DF_TEXTREL
) == 0)
11843 elf_link_hash_traverse (& htab
->root
, elf32_arm_readonly_dynrelocs
,
11846 if ((info
->flags
& DF_TEXTREL
) != 0)
11848 if (!add_dynamic_entry (DT_TEXTREL
, 0))
11851 if (htab
->vxworks_p
11852 && !elf_vxworks_add_dynamic_entries (output_bfd
, info
))
11855 #undef add_dynamic_entry
11860 /* Finish up dynamic symbol handling. We set the contents of various
11861 dynamic sections here. */
11864 elf32_arm_finish_dynamic_symbol (bfd
* output_bfd
,
11865 struct bfd_link_info
* info
,
11866 struct elf_link_hash_entry
* h
,
11867 Elf_Internal_Sym
* sym
)
11870 struct elf32_arm_link_hash_table
*htab
;
11871 struct elf32_arm_link_hash_entry
*eh
;
11873 dynobj
= elf_hash_table (info
)->dynobj
;
11874 htab
= elf32_arm_hash_table (info
);
11875 eh
= (struct elf32_arm_link_hash_entry
*) h
;
11877 if (h
->plt
.offset
!= (bfd_vma
) -1)
11883 Elf_Internal_Rela rel
;
11885 /* This symbol has an entry in the procedure linkage table. Set
11888 BFD_ASSERT (h
->dynindx
!= -1);
11890 splt
= bfd_get_section_by_name (dynobj
, ".plt");
11891 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (htab
, ".plt"));
11892 BFD_ASSERT (splt
!= NULL
&& srel
!= NULL
);
11894 /* Fill in the entry in the procedure linkage table. */
11895 if (htab
->symbian_p
)
11897 put_arm_insn (htab
, output_bfd
,
11898 elf32_arm_symbian_plt_entry
[0],
11899 splt
->contents
+ h
->plt
.offset
);
11900 bfd_put_32 (output_bfd
,
11901 elf32_arm_symbian_plt_entry
[1],
11902 splt
->contents
+ h
->plt
.offset
+ 4);
11904 /* Fill in the entry in the .rel.plt section. */
11905 rel
.r_offset
= (splt
->output_section
->vma
11906 + splt
->output_offset
11907 + h
->plt
.offset
+ 4);
11908 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
11910 /* Get the index in the procedure linkage table which
11911 corresponds to this symbol. This is the index of this symbol
11912 in all the symbols for which we are making plt entries. The
11913 first entry in the procedure linkage table is reserved. */
11914 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
11915 / htab
->plt_entry_size
);
11919 bfd_vma got_offset
, got_address
, plt_address
;
11920 bfd_vma got_displacement
;
11924 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
11925 BFD_ASSERT (sgot
!= NULL
);
11927 /* Get the offset into the .got.plt table of the entry that
11928 corresponds to this function. */
11929 got_offset
= eh
->plt_got_offset
;
11931 /* Get the index in the procedure linkage table which
11932 corresponds to this symbol. This is the index of this symbol
11933 in all the symbols for which we are making plt entries. The
11934 first three entries in .got.plt are reserved; after that
11935 symbols appear in the same order as in .plt. */
11936 plt_index
= (got_offset
- 12) / 4;
11938 /* Calculate the address of the GOT entry. */
11939 got_address
= (sgot
->output_section
->vma
11940 + sgot
->output_offset
11943 /* ...and the address of the PLT entry. */
11944 plt_address
= (splt
->output_section
->vma
11945 + splt
->output_offset
11948 ptr
= htab
->splt
->contents
+ h
->plt
.offset
;
11949 if (htab
->vxworks_p
&& info
->shared
)
11954 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
11956 val
= elf32_arm_vxworks_shared_plt_entry
[i
];
11958 val
|= got_address
- sgot
->output_section
->vma
;
11960 val
|= plt_index
* RELOC_SIZE (htab
);
11961 if (i
== 2 || i
== 5)
11962 bfd_put_32 (output_bfd
, val
, ptr
);
11964 put_arm_insn (htab
, output_bfd
, val
, ptr
);
11967 else if (htab
->vxworks_p
)
11972 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
11974 val
= elf32_arm_vxworks_exec_plt_entry
[i
];
11976 val
|= got_address
;
11978 val
|= 0xffffff & -((h
->plt
.offset
+ i
* 4 + 8) >> 2);
11980 val
|= plt_index
* RELOC_SIZE (htab
);
11981 if (i
== 2 || i
== 5)
11982 bfd_put_32 (output_bfd
, val
, ptr
);
11984 put_arm_insn (htab
, output_bfd
, val
, ptr
);
11987 loc
= (htab
->srelplt2
->contents
11988 + (plt_index
* 2 + 1) * RELOC_SIZE (htab
));
11990 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
11991 referencing the GOT for this PLT entry. */
11992 rel
.r_offset
= plt_address
+ 8;
11993 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
11994 rel
.r_addend
= got_offset
;
11995 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
11996 loc
+= RELOC_SIZE (htab
);
11998 /* Create the R_ARM_ABS32 relocation referencing the
11999 beginning of the PLT for this GOT entry. */
12000 rel
.r_offset
= got_address
;
12001 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
12003 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12007 bfd_signed_vma thumb_refs
;
12008 /* Calculate the displacement between the PLT slot and the
12009 entry in the GOT. The eight-byte offset accounts for the
12010 value produced by adding to pc in the first instruction
12011 of the PLT stub. */
12012 got_displacement
= got_address
- (plt_address
+ 8);
12014 BFD_ASSERT ((got_displacement
& 0xf0000000) == 0);
12016 thumb_refs
= eh
->plt_thumb_refcount
;
12017 if (!htab
->use_blx
)
12018 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
12020 if (thumb_refs
> 0)
12022 put_thumb_insn (htab
, output_bfd
,
12023 elf32_arm_plt_thumb_stub
[0], ptr
- 4);
12024 put_thumb_insn (htab
, output_bfd
,
12025 elf32_arm_plt_thumb_stub
[1], ptr
- 2);
12028 put_arm_insn (htab
, output_bfd
,
12029 elf32_arm_plt_entry
[0]
12030 | ((got_displacement
& 0x0ff00000) >> 20),
12032 put_arm_insn (htab
, output_bfd
,
12033 elf32_arm_plt_entry
[1]
12034 | ((got_displacement
& 0x000ff000) >> 12),
12036 put_arm_insn (htab
, output_bfd
,
12037 elf32_arm_plt_entry
[2]
12038 | (got_displacement
& 0x00000fff),
12040 #ifdef FOUR_WORD_PLT
12041 bfd_put_32 (output_bfd
, elf32_arm_plt_entry
[3], ptr
+ 12);
12045 /* Fill in the entry in the global offset table. */
12046 bfd_put_32 (output_bfd
,
12047 (splt
->output_section
->vma
12048 + splt
->output_offset
),
12049 sgot
->contents
+ got_offset
);
12051 /* Fill in the entry in the .rel(a).plt section. */
12053 rel
.r_offset
= got_address
;
12054 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_JUMP_SLOT
);
12057 loc
= srel
->contents
+ plt_index
* RELOC_SIZE (htab
);
12058 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12060 if (!h
->def_regular
)
12062 /* Mark the symbol as undefined, rather than as defined in
12063 the .plt section. Leave the value alone. */
12064 sym
->st_shndx
= SHN_UNDEF
;
12065 /* If the symbol is weak, we do need to clear the value.
12066 Otherwise, the PLT entry would provide a definition for
12067 the symbol even if the symbol wasn't defined anywhere,
12068 and so the symbol would never be NULL. */
12069 if (!h
->ref_regular_nonweak
)
12074 if (h
->got
.offset
!= (bfd_vma
) -1
12075 && (elf32_arm_hash_entry (h
)->tls_type
& GOT_TLS_GD
) == 0
12076 && (elf32_arm_hash_entry (h
)->tls_type
& GOT_TLS_IE
) == 0)
12080 Elf_Internal_Rela rel
;
12084 /* This symbol has an entry in the global offset table. Set it
12086 sgot
= bfd_get_section_by_name (dynobj
, ".got");
12087 srel
= bfd_get_section_by_name (dynobj
, RELOC_SECTION (htab
, ".got"));
12088 BFD_ASSERT (sgot
!= NULL
&& srel
!= NULL
);
12090 offset
= (h
->got
.offset
& ~(bfd_vma
) 1);
12092 rel
.r_offset
= (sgot
->output_section
->vma
12093 + sgot
->output_offset
12096 /* If this is a static link, or it is a -Bsymbolic link and the
12097 symbol is defined locally or was forced to be local because
12098 of a version file, we just want to emit a RELATIVE reloc.
12099 The entry in the global offset table will already have been
12100 initialized in the relocate_section function. */
12102 && SYMBOL_REFERENCES_LOCAL (info
, h
))
12104 BFD_ASSERT ((h
->got
.offset
& 1) != 0);
12105 rel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
12106 if (!htab
->use_rel
)
12108 rel
.r_addend
= bfd_get_32 (output_bfd
, sgot
->contents
+ offset
);
12109 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ offset
);
12114 BFD_ASSERT ((h
->got
.offset
& 1) == 0);
12115 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ offset
);
12116 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
12119 loc
= srel
->contents
+ srel
->reloc_count
++ * RELOC_SIZE (htab
);
12120 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12126 Elf_Internal_Rela rel
;
12129 /* This symbol needs a copy reloc. Set it up. */
12130 BFD_ASSERT (h
->dynindx
!= -1
12131 && (h
->root
.type
== bfd_link_hash_defined
12132 || h
->root
.type
== bfd_link_hash_defweak
));
12134 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
,
12135 RELOC_SECTION (htab
, ".bss"));
12136 BFD_ASSERT (s
!= NULL
);
12139 rel
.r_offset
= (h
->root
.u
.def
.value
12140 + h
->root
.u
.def
.section
->output_section
->vma
12141 + h
->root
.u
.def
.section
->output_offset
);
12142 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_COPY
);
12143 loc
= s
->contents
+ s
->reloc_count
++ * RELOC_SIZE (htab
);
12144 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
12147 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
12148 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
12149 to the ".got" section. */
12150 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
12151 || (!htab
->vxworks_p
&& h
== htab
->root
.hgot
))
12152 sym
->st_shndx
= SHN_ABS
;
12157 /* Finish up the dynamic sections. */
12160 elf32_arm_finish_dynamic_sections (bfd
* output_bfd
, struct bfd_link_info
* info
)
12166 dynobj
= elf_hash_table (info
)->dynobj
;
12168 sgot
= bfd_get_section_by_name (dynobj
, ".got.plt");
12169 BFD_ASSERT (elf32_arm_hash_table (info
)->symbian_p
|| sgot
!= NULL
);
12170 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
12172 if (elf_hash_table (info
)->dynamic_sections_created
)
12175 Elf32_External_Dyn
*dyncon
, *dynconend
;
12176 struct elf32_arm_link_hash_table
*htab
;
12178 htab
= elf32_arm_hash_table (info
);
12179 splt
= bfd_get_section_by_name (dynobj
, ".plt");
12180 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
12182 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
12183 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
12185 for (; dyncon
< dynconend
; dyncon
++)
12187 Elf_Internal_Dyn dyn
;
12191 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
12198 if (htab
->vxworks_p
12199 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
12200 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12205 goto get_vma_if_bpabi
;
12208 goto get_vma_if_bpabi
;
12211 goto get_vma_if_bpabi
;
12213 name
= ".gnu.version";
12214 goto get_vma_if_bpabi
;
12216 name
= ".gnu.version_d";
12217 goto get_vma_if_bpabi
;
12219 name
= ".gnu.version_r";
12220 goto get_vma_if_bpabi
;
12226 name
= RELOC_SECTION (htab
, ".plt");
12228 s
= bfd_get_section_by_name (output_bfd
, name
);
12229 BFD_ASSERT (s
!= NULL
);
12230 if (!htab
->symbian_p
)
12231 dyn
.d_un
.d_ptr
= s
->vma
;
12233 /* In the BPABI, tags in the PT_DYNAMIC section point
12234 at the file offset, not the memory address, for the
12235 convenience of the post linker. */
12236 dyn
.d_un
.d_ptr
= s
->filepos
;
12237 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12241 if (htab
->symbian_p
)
12246 s
= bfd_get_section_by_name (output_bfd
,
12247 RELOC_SECTION (htab
, ".plt"));
12248 BFD_ASSERT (s
!= NULL
);
12249 dyn
.d_un
.d_val
= s
->size
;
12250 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12255 if (!htab
->symbian_p
)
12257 /* My reading of the SVR4 ABI indicates that the
12258 procedure linkage table relocs (DT_JMPREL) should be
12259 included in the overall relocs (DT_REL). This is
12260 what Solaris does. However, UnixWare can not handle
12261 that case. Therefore, we override the DT_RELSZ entry
12262 here to make it not include the JMPREL relocs. Since
12263 the linker script arranges for .rel(a).plt to follow all
12264 other relocation sections, we don't have to worry
12265 about changing the DT_REL entry. */
12266 s
= bfd_get_section_by_name (output_bfd
,
12267 RELOC_SECTION (htab
, ".plt"));
12269 dyn
.d_un
.d_val
-= s
->size
;
12270 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12273 /* Fall through. */
12277 /* In the BPABI, the DT_REL tag must point at the file
12278 offset, not the VMA, of the first relocation
12279 section. So, we use code similar to that in
12280 elflink.c, but do not check for SHF_ALLOC on the
12281 relcoation section, since relocations sections are
12282 never allocated under the BPABI. The comments above
12283 about Unixware notwithstanding, we include all of the
12284 relocations here. */
12285 if (htab
->symbian_p
)
12288 type
= ((dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
12289 ? SHT_REL
: SHT_RELA
);
12290 dyn
.d_un
.d_val
= 0;
12291 for (i
= 1; i
< elf_numsections (output_bfd
); i
++)
12293 Elf_Internal_Shdr
*hdr
12294 = elf_elfsections (output_bfd
)[i
];
12295 if (hdr
->sh_type
== type
)
12297 if (dyn
.d_tag
== DT_RELSZ
12298 || dyn
.d_tag
== DT_RELASZ
)
12299 dyn
.d_un
.d_val
+= hdr
->sh_size
;
12300 else if ((ufile_ptr
) hdr
->sh_offset
12301 <= dyn
.d_un
.d_val
- 1)
12302 dyn
.d_un
.d_val
= hdr
->sh_offset
;
12305 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12309 /* Set the bottom bit of DT_INIT/FINI if the
12310 corresponding function is Thumb. */
12312 name
= info
->init_function
;
12315 name
= info
->fini_function
;
12317 /* If it wasn't set by elf_bfd_final_link
12318 then there is nothing to adjust. */
12319 if (dyn
.d_un
.d_val
!= 0)
12321 struct elf_link_hash_entry
* eh
;
12323 eh
= elf_link_hash_lookup (elf_hash_table (info
), name
,
12324 FALSE
, FALSE
, TRUE
);
12326 && ELF_ST_TYPE (eh
->type
) == STT_ARM_TFUNC
)
12328 dyn
.d_un
.d_val
|= 1;
12329 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
12336 /* Fill in the first entry in the procedure linkage table. */
12337 if (splt
->size
> 0 && elf32_arm_hash_table (info
)->plt_header_size
)
12339 const bfd_vma
*plt0_entry
;
12340 bfd_vma got_address
, plt_address
, got_displacement
;
12342 /* Calculate the addresses of the GOT and PLT. */
12343 got_address
= sgot
->output_section
->vma
+ sgot
->output_offset
;
12344 plt_address
= splt
->output_section
->vma
+ splt
->output_offset
;
12346 if (htab
->vxworks_p
)
12348 /* The VxWorks GOT is relocated by the dynamic linker.
12349 Therefore, we must emit relocations rather than simply
12350 computing the values now. */
12351 Elf_Internal_Rela rel
;
12353 plt0_entry
= elf32_arm_vxworks_exec_plt0_entry
;
12354 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
12355 splt
->contents
+ 0);
12356 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
12357 splt
->contents
+ 4);
12358 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
12359 splt
->contents
+ 8);
12360 bfd_put_32 (output_bfd
, got_address
, splt
->contents
+ 12);
12362 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
12363 rel
.r_offset
= plt_address
+ 12;
12364 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
12366 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
,
12367 htab
->srelplt2
->contents
);
12371 got_displacement
= got_address
- (plt_address
+ 16);
12373 plt0_entry
= elf32_arm_plt0_entry
;
12374 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
12375 splt
->contents
+ 0);
12376 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
12377 splt
->contents
+ 4);
12378 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
12379 splt
->contents
+ 8);
12380 put_arm_insn (htab
, output_bfd
, plt0_entry
[3],
12381 splt
->contents
+ 12);
12383 #ifdef FOUR_WORD_PLT
12384 /* The displacement value goes in the otherwise-unused
12385 last word of the second entry. */
12386 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 28);
12388 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 16);
12393 /* UnixWare sets the entsize of .plt to 4, although that doesn't
12394 really seem like the right value. */
12395 if (splt
->output_section
->owner
== output_bfd
)
12396 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
= 4;
12398 if (htab
->vxworks_p
&& !info
->shared
&& htab
->splt
->size
> 0)
12400 /* Correct the .rel(a).plt.unloaded relocations. They will have
12401 incorrect symbol indexes. */
12405 num_plts
= ((htab
->splt
->size
- htab
->plt_header_size
)
12406 / htab
->plt_entry_size
);
12407 p
= htab
->srelplt2
->contents
+ RELOC_SIZE (htab
);
12409 for (; num_plts
; num_plts
--)
12411 Elf_Internal_Rela rel
;
12413 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
12414 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
12415 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
12416 p
+= RELOC_SIZE (htab
);
12418 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
12419 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
12420 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
12421 p
+= RELOC_SIZE (htab
);
12426 /* Fill in the first three entries in the global offset table. */
12429 if (sgot
->size
> 0)
12432 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
12434 bfd_put_32 (output_bfd
,
12435 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
12437 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 4);
12438 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 8);
12441 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 4;
12448 elf32_arm_post_process_headers (bfd
* abfd
, struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
12450 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
12451 struct elf32_arm_link_hash_table
*globals
;
12453 i_ehdrp
= elf_elfheader (abfd
);
12455 if (EF_ARM_EABI_VERSION (i_ehdrp
->e_flags
) == EF_ARM_EABI_UNKNOWN
)
12456 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_ARM
;
12458 i_ehdrp
->e_ident
[EI_OSABI
] = 0;
12459 i_ehdrp
->e_ident
[EI_ABIVERSION
] = ARM_ELF_ABI_VERSION
;
12463 globals
= elf32_arm_hash_table (link_info
);
12464 if (globals
->byteswap_code
)
12465 i_ehdrp
->e_flags
|= EF_ARM_BE8
;
12469 static enum elf_reloc_type_class
12470 elf32_arm_reloc_type_class (const Elf_Internal_Rela
*rela
)
12472 switch ((int) ELF32_R_TYPE (rela
->r_info
))
12474 case R_ARM_RELATIVE
:
12475 return reloc_class_relative
;
12476 case R_ARM_JUMP_SLOT
:
12477 return reloc_class_plt
;
12479 return reloc_class_copy
;
12481 return reloc_class_normal
;
12485 /* Set the right machine number for an Arm ELF file. */
12488 elf32_arm_section_flags (flagword
*flags
, const Elf_Internal_Shdr
*hdr
)
12490 if (hdr
->sh_type
== SHT_NOTE
)
12491 *flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_CONTENTS
;
12497 elf32_arm_final_write_processing (bfd
*abfd
, bfd_boolean linker ATTRIBUTE_UNUSED
)
12499 bfd_arm_update_notes (abfd
, ARM_NOTE_SECTION
);
12502 /* Return TRUE if this is an unwinding table entry. */
12505 is_arm_elf_unwind_section_name (bfd
* abfd ATTRIBUTE_UNUSED
, const char * name
)
12507 return (CONST_STRNEQ (name
, ELF_STRING_ARM_unwind
)
12508 || CONST_STRNEQ (name
, ELF_STRING_ARM_unwind_once
));
12512 /* Set the type and flags for an ARM section. We do this by
12513 the section name, which is a hack, but ought to work. */
12516 elf32_arm_fake_sections (bfd
* abfd
, Elf_Internal_Shdr
* hdr
, asection
* sec
)
12520 name
= bfd_get_section_name (abfd
, sec
);
12522 if (is_arm_elf_unwind_section_name (abfd
, name
))
12524 hdr
->sh_type
= SHT_ARM_EXIDX
;
12525 hdr
->sh_flags
|= SHF_LINK_ORDER
;
12530 /* Handle an ARM specific section when reading an object file. This is
12531 called when bfd_section_from_shdr finds a section with an unknown
12535 elf32_arm_section_from_shdr (bfd
*abfd
,
12536 Elf_Internal_Shdr
* hdr
,
12540 /* There ought to be a place to keep ELF backend specific flags, but
12541 at the moment there isn't one. We just keep track of the
12542 sections by their name, instead. Fortunately, the ABI gives
12543 names for all the ARM specific sections, so we will probably get
12545 switch (hdr
->sh_type
)
12547 case SHT_ARM_EXIDX
:
12548 case SHT_ARM_PREEMPTMAP
:
12549 case SHT_ARM_ATTRIBUTES
:
12556 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
12562 /* A structure used to record a list of sections, independently
12563 of the next and prev fields in the asection structure. */
12564 typedef struct section_list
12567 struct section_list
* next
;
12568 struct section_list
* prev
;
12572 /* Unfortunately we need to keep a list of sections for which
12573 an _arm_elf_section_data structure has been allocated. This
12574 is because it is possible for functions like elf32_arm_write_section
12575 to be called on a section which has had an elf_data_structure
12576 allocated for it (and so the used_by_bfd field is valid) but
12577 for which the ARM extended version of this structure - the
12578 _arm_elf_section_data structure - has not been allocated. */
12579 static section_list
* sections_with_arm_elf_section_data
= NULL
;
12582 record_section_with_arm_elf_section_data (asection
* sec
)
12584 struct section_list
* entry
;
12586 entry
= bfd_malloc (sizeof (* entry
));
12590 entry
->next
= sections_with_arm_elf_section_data
;
12591 entry
->prev
= NULL
;
12592 if (entry
->next
!= NULL
)
12593 entry
->next
->prev
= entry
;
12594 sections_with_arm_elf_section_data
= entry
;
12597 static struct section_list
*
12598 find_arm_elf_section_entry (asection
* sec
)
12600 struct section_list
* entry
;
12601 static struct section_list
* last_entry
= NULL
;
12603 /* This is a short cut for the typical case where the sections are added
12604 to the sections_with_arm_elf_section_data list in forward order and
12605 then looked up here in backwards order. This makes a real difference
12606 to the ld-srec/sec64k.exp linker test. */
12607 entry
= sections_with_arm_elf_section_data
;
12608 if (last_entry
!= NULL
)
12610 if (last_entry
->sec
== sec
)
12611 entry
= last_entry
;
12612 else if (last_entry
->next
!= NULL
12613 && last_entry
->next
->sec
== sec
)
12614 entry
= last_entry
->next
;
12617 for (; entry
; entry
= entry
->next
)
12618 if (entry
->sec
== sec
)
12622 /* Record the entry prior to this one - it is the entry we are most
12623 likely to want to locate next time. Also this way if we have been
12624 called from unrecord_section_with_arm_elf_section_data() we will not
12625 be caching a pointer that is about to be freed. */
12626 last_entry
= entry
->prev
;
12631 static _arm_elf_section_data
*
12632 get_arm_elf_section_data (asection
* sec
)
12634 struct section_list
* entry
;
12636 entry
= find_arm_elf_section_entry (sec
);
12639 return elf32_arm_section_data (entry
->sec
);
12645 unrecord_section_with_arm_elf_section_data (asection
* sec
)
12647 struct section_list
* entry
;
12649 entry
= find_arm_elf_section_entry (sec
);
12653 if (entry
->prev
!= NULL
)
12654 entry
->prev
->next
= entry
->next
;
12655 if (entry
->next
!= NULL
)
12656 entry
->next
->prev
= entry
->prev
;
12657 if (entry
== sections_with_arm_elf_section_data
)
12658 sections_with_arm_elf_section_data
= entry
->next
;
12667 struct bfd_link_info
*info
;
12670 int (*func
) (void *, const char *, Elf_Internal_Sym
*,
12671 asection
*, struct elf_link_hash_entry
*);
12672 } output_arch_syminfo
;
12674 enum map_symbol_type
12682 /* Output a single mapping symbol. */
12685 elf32_arm_output_map_sym (output_arch_syminfo
*osi
,
12686 enum map_symbol_type type
,
12689 static const char *names
[3] = {"$a", "$t", "$d"};
12690 struct elf32_arm_link_hash_table
*htab
;
12691 Elf_Internal_Sym sym
;
12693 htab
= elf32_arm_hash_table (osi
->info
);
12694 sym
.st_value
= osi
->sec
->output_section
->vma
12695 + osi
->sec
->output_offset
12699 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
12700 sym
.st_shndx
= osi
->sec_shndx
;
12701 return osi
->func (osi
->finfo
, names
[type
], &sym
, osi
->sec
, NULL
) == 1;
12705 /* Output mapping symbols for PLT entries associated with H. */
12708 elf32_arm_output_plt_map (struct elf_link_hash_entry
*h
, void *inf
)
12710 output_arch_syminfo
*osi
= (output_arch_syminfo
*) inf
;
12711 struct elf32_arm_link_hash_table
*htab
;
12712 struct elf32_arm_link_hash_entry
*eh
;
12715 htab
= elf32_arm_hash_table (osi
->info
);
12717 if (h
->root
.type
== bfd_link_hash_indirect
)
12720 if (h
->root
.type
== bfd_link_hash_warning
)
12721 /* When warning symbols are created, they **replace** the "real"
12722 entry in the hash table, thus we never get to see the real
12723 symbol in a hash traversal. So look at it now. */
12724 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12726 if (h
->plt
.offset
== (bfd_vma
) -1)
12729 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12730 addr
= h
->plt
.offset
;
12731 if (htab
->symbian_p
)
12733 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
12735 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 4))
12738 else if (htab
->vxworks_p
)
12740 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
12742 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 8))
12744 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
+ 12))
12746 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 20))
12751 bfd_signed_vma thumb_refs
;
12753 thumb_refs
= eh
->plt_thumb_refcount
;
12754 if (!htab
->use_blx
)
12755 thumb_refs
+= eh
->plt_maybe_thumb_refcount
;
12757 if (thumb_refs
> 0)
12759 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
- 4))
12762 #ifdef FOUR_WORD_PLT
12763 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
12765 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 12))
12768 /* A three-word PLT with no Thumb thunk contains only Arm code,
12769 so only need to output a mapping symbol for the first PLT entry and
12770 entries with thumb thunks. */
12771 if (thumb_refs
> 0 || addr
== 20)
12773 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
12782 /* Output a single local symbol for a generated stub. */
12785 elf32_arm_output_stub_sym (output_arch_syminfo
*osi
, const char *name
,
12786 bfd_vma offset
, bfd_vma size
)
12788 struct elf32_arm_link_hash_table
*htab
;
12789 Elf_Internal_Sym sym
;
12791 htab
= elf32_arm_hash_table (osi
->info
);
12792 sym
.st_value
= osi
->sec
->output_section
->vma
12793 + osi
->sec
->output_offset
12795 sym
.st_size
= size
;
12797 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
12798 sym
.st_shndx
= osi
->sec_shndx
;
12799 return osi
->func (osi
->finfo
, name
, &sym
, osi
->sec
, NULL
) == 1;
12803 arm_map_one_stub (struct bfd_hash_entry
* gen_entry
,
12806 struct elf32_arm_stub_hash_entry
*stub_entry
;
12807 struct bfd_link_info
*info
;
12808 struct elf32_arm_link_hash_table
*htab
;
12809 asection
*stub_sec
;
12812 output_arch_syminfo
*osi
;
12813 const insn_sequence
*template;
12814 enum stub_insn_type prev_type
;
12817 enum map_symbol_type sym_type
;
12819 /* Massage our args to the form they really have. */
12820 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
12821 osi
= (output_arch_syminfo
*) in_arg
;
12825 htab
= elf32_arm_hash_table (info
);
12826 stub_sec
= stub_entry
->stub_sec
;
12828 /* Ensure this stub is attached to the current section being
12830 if (stub_sec
!= osi
->sec
)
12833 addr
= (bfd_vma
) stub_entry
->stub_offset
;
12834 stub_name
= stub_entry
->output_name
;
12836 template = stub_entry
->stub_template
;
12837 switch (template[0].type
)
12840 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
, stub_entry
->stub_size
))
12845 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
| 1,
12846 stub_entry
->stub_size
))
12854 prev_type
= DATA_TYPE
;
12856 for (i
= 0; i
< stub_entry
->stub_template_size
; i
++)
12858 switch (template[i
].type
)
12861 sym_type
= ARM_MAP_ARM
;
12866 sym_type
= ARM_MAP_THUMB
;
12870 sym_type
= ARM_MAP_DATA
;
12878 if (template[i
].type
!= prev_type
)
12880 prev_type
= template[i
].type
;
12881 if (!elf32_arm_output_map_sym (osi
, sym_type
, addr
+ size
))
12885 switch (template[i
].type
)
12909 /* Output mapping symbols for linker generated sections. */
12912 elf32_arm_output_arch_local_syms (bfd
*output_bfd
,
12913 struct bfd_link_info
*info
,
12915 int (*func
) (void *, const char *,
12916 Elf_Internal_Sym
*,
12918 struct elf_link_hash_entry
*))
12920 output_arch_syminfo osi
;
12921 struct elf32_arm_link_hash_table
*htab
;
12923 bfd_size_type size
;
12925 htab
= elf32_arm_hash_table (info
);
12926 check_use_blx (htab
);
12932 /* ARM->Thumb glue. */
12933 if (htab
->arm_glue_size
> 0)
12935 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
12936 ARM2THUMB_GLUE_SECTION_NAME
);
12938 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
12939 (output_bfd
, osi
.sec
->output_section
);
12940 if (info
->shared
|| htab
->root
.is_relocatable_executable
12941 || htab
->pic_veneer
)
12942 size
= ARM2THUMB_PIC_GLUE_SIZE
;
12943 else if (htab
->use_blx
)
12944 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
12946 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
12948 for (offset
= 0; offset
< htab
->arm_glue_size
; offset
+= size
)
12950 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
);
12951 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, offset
+ size
- 4);
12955 /* Thumb->ARM glue. */
12956 if (htab
->thumb_glue_size
> 0)
12958 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
12959 THUMB2ARM_GLUE_SECTION_NAME
);
12961 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
12962 (output_bfd
, osi
.sec
->output_section
);
12963 size
= THUMB2ARM_GLUE_SIZE
;
12965 for (offset
= 0; offset
< htab
->thumb_glue_size
; offset
+= size
)
12967 elf32_arm_output_map_sym (&osi
, ARM_MAP_THUMB
, offset
);
12968 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
+ 4);
12972 /* ARMv4 BX veneers. */
12973 if (htab
->bx_glue_size
> 0)
12975 osi
.sec
= bfd_get_section_by_name (htab
->bfd_of_glue_owner
,
12976 ARM_BX_GLUE_SECTION_NAME
);
12978 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
12979 (output_bfd
, osi
.sec
->output_section
);
12981 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0);
12984 /* Long calls stubs. */
12985 if (htab
->stub_bfd
&& htab
->stub_bfd
->sections
)
12987 asection
* stub_sec
;
12989 for (stub_sec
= htab
->stub_bfd
->sections
;
12991 stub_sec
= stub_sec
->next
)
12993 /* Ignore non-stub sections. */
12994 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
12997 osi
.sec
= stub_sec
;
12999 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
13000 (output_bfd
, osi
.sec
->output_section
);
13002 bfd_hash_traverse (&htab
->stub_hash_table
, arm_map_one_stub
, &osi
);
13006 /* Finally, output mapping symbols for the PLT. */
13007 if (!htab
->splt
|| htab
->splt
->size
== 0)
13010 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
13011 htab
->splt
->output_section
);
13012 osi
.sec
= htab
->splt
;
13013 /* Output mapping symbols for the plt header. SymbianOS does not have a
13015 if (htab
->vxworks_p
)
13017 /* VxWorks shared libraries have no PLT header. */
13020 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
13022 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 12))
13026 else if (!htab
->symbian_p
)
13028 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
13030 #ifndef FOUR_WORD_PLT
13031 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 16))
13036 elf_link_hash_traverse (&htab
->root
, elf32_arm_output_plt_map
, (void *) &osi
);
13040 /* Allocate target specific section data. */
13043 elf32_arm_new_section_hook (bfd
*abfd
, asection
*sec
)
13045 if (!sec
->used_by_bfd
)
13047 _arm_elf_section_data
*sdata
;
13048 bfd_size_type amt
= sizeof (*sdata
);
13050 sdata
= bfd_zalloc (abfd
, amt
);
13053 sec
->used_by_bfd
= sdata
;
13056 record_section_with_arm_elf_section_data (sec
);
13058 return _bfd_elf_new_section_hook (abfd
, sec
);
13062 /* Used to order a list of mapping symbols by address. */
13065 elf32_arm_compare_mapping (const void * a
, const void * b
)
13067 const elf32_arm_section_map
*amap
= (const elf32_arm_section_map
*) a
;
13068 const elf32_arm_section_map
*bmap
= (const elf32_arm_section_map
*) b
;
13070 if (amap
->vma
> bmap
->vma
)
13072 else if (amap
->vma
< bmap
->vma
)
13074 else if (amap
->type
> bmap
->type
)
13075 /* Ensure results do not depend on the host qsort for objects with
13076 multiple mapping symbols at the same address by sorting on type
13079 else if (amap
->type
< bmap
->type
)
13085 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
13087 static unsigned long
13088 offset_prel31 (unsigned long addr
, bfd_vma offset
)
13090 return (addr
& ~0x7ffffffful
) | ((addr
+ offset
) & 0x7ffffffful
);
13093 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
13097 copy_exidx_entry (bfd
*output_bfd
, bfd_byte
*to
, bfd_byte
*from
, bfd_vma offset
)
13099 unsigned long first_word
= bfd_get_32 (output_bfd
, from
);
13100 unsigned long second_word
= bfd_get_32 (output_bfd
, from
+ 4);
13102 /* High bit of first word is supposed to be zero. */
13103 if ((first_word
& 0x80000000ul
) == 0)
13104 first_word
= offset_prel31 (first_word
, offset
);
13106 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
13107 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
13108 if ((second_word
!= 0x1) && ((second_word
& 0x80000000ul
) == 0))
13109 second_word
= offset_prel31 (second_word
, offset
);
13111 bfd_put_32 (output_bfd
, first_word
, to
);
13112 bfd_put_32 (output_bfd
, second_word
, to
+ 4);
13115 /* Data for make_branch_to_a8_stub(). */
13117 struct a8_branch_to_stub_data
{
13118 asection
*writing_section
;
13119 bfd_byte
*contents
;
13123 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
13124 places for a particular section. */
13127 make_branch_to_a8_stub (struct bfd_hash_entry
*gen_entry
,
13130 struct elf32_arm_stub_hash_entry
*stub_entry
;
13131 struct a8_branch_to_stub_data
*data
;
13132 bfd_byte
*contents
;
13133 unsigned long branch_insn
;
13134 bfd_vma veneered_insn_loc
, veneer_entry_loc
;
13135 bfd_signed_vma branch_offset
;
13137 unsigned int index
;
13139 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
13140 data
= (struct a8_branch_to_stub_data
*) in_arg
;
13142 if (stub_entry
->target_section
!= data
->writing_section
13143 || stub_entry
->stub_type
< arm_stub_a8_veneer_b_cond
)
13146 contents
= data
->contents
;
13148 veneered_insn_loc
= stub_entry
->target_section
->output_section
->vma
13149 + stub_entry
->target_section
->output_offset
13150 + stub_entry
->target_value
;
13152 veneer_entry_loc
= stub_entry
->stub_sec
->output_section
->vma
13153 + stub_entry
->stub_sec
->output_offset
13154 + stub_entry
->stub_offset
;
13156 if (stub_entry
->stub_type
== arm_stub_a8_veneer_blx
)
13157 veneered_insn_loc
&= ~3u;
13159 branch_offset
= veneer_entry_loc
- veneered_insn_loc
- 4;
13161 abfd
= stub_entry
->target_section
->owner
;
13162 index
= stub_entry
->target_value
;
13164 /* We attempt to avoid this condition by setting stubs_always_after_branch
13165 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
13166 This check is just to be on the safe side... */
13167 if ((veneered_insn_loc
& ~0xfff) == (veneer_entry_loc
& ~0xfff))
13169 (*_bfd_error_handler
) (_("%B: error: Cortex-A8 erratum stub is "
13170 "allocated in unsafe location"), abfd
);
13174 switch (stub_entry
->stub_type
)
13176 case arm_stub_a8_veneer_b
:
13177 case arm_stub_a8_veneer_b_cond
:
13178 branch_insn
= 0xf0009000;
13181 case arm_stub_a8_veneer_blx
:
13182 branch_insn
= 0xf000e800;
13185 case arm_stub_a8_veneer_bl
:
13187 unsigned int i1
, j1
, i2
, j2
, s
;
13189 branch_insn
= 0xf000d000;
13192 if (branch_offset
< -16777216 || branch_offset
> 16777214)
13194 /* There's not much we can do apart from complain if this
13196 (*_bfd_error_handler
) (_("%B: error: Cortex-A8 erratum stub out "
13197 "of range (input file too large)"), abfd
);
13201 /* i1 = not(j1 eor s), so:
13203 j1 = (not i1) eor s. */
13205 branch_insn
|= (branch_offset
>> 1) & 0x7ff;
13206 branch_insn
|= ((branch_offset
>> 12) & 0x3ff) << 16;
13207 i2
= (branch_offset
>> 22) & 1;
13208 i1
= (branch_offset
>> 23) & 1;
13209 s
= (branch_offset
>> 24) & 1;
13212 branch_insn
|= j2
<< 11;
13213 branch_insn
|= j1
<< 13;
13214 branch_insn
|= s
<< 26;
13223 bfd_put_16 (abfd
, (branch_insn
>> 16) & 0xffff, &contents
[index
]);
13224 bfd_put_16 (abfd
, branch_insn
& 0xffff, &contents
[index
+ 2]);
13229 /* Do code byteswapping. Return FALSE afterwards so that the section is
13230 written out as normal. */
13233 elf32_arm_write_section (bfd
*output_bfd
,
13234 struct bfd_link_info
*link_info
,
13236 bfd_byte
*contents
)
13238 unsigned int mapcount
, errcount
;
13239 _arm_elf_section_data
*arm_data
;
13240 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
13241 elf32_arm_section_map
*map
;
13242 elf32_vfp11_erratum_list
*errnode
;
13245 bfd_vma offset
= sec
->output_section
->vma
+ sec
->output_offset
;
13249 /* If this section has not been allocated an _arm_elf_section_data
13250 structure then we cannot record anything. */
13251 arm_data
= get_arm_elf_section_data (sec
);
13252 if (arm_data
== NULL
)
13255 mapcount
= arm_data
->mapcount
;
13256 map
= arm_data
->map
;
13257 errcount
= arm_data
->erratumcount
;
13261 unsigned int endianflip
= bfd_big_endian (output_bfd
) ? 3 : 0;
13263 for (errnode
= arm_data
->erratumlist
; errnode
!= 0;
13264 errnode
= errnode
->next
)
13266 bfd_vma index
= errnode
->vma
- offset
;
13268 switch (errnode
->type
)
13270 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
13272 bfd_vma branch_to_veneer
;
13273 /* Original condition code of instruction, plus bit mask for
13274 ARM B instruction. */
13275 unsigned int insn
= (errnode
->u
.b
.vfp_insn
& 0xf0000000)
13278 /* The instruction is before the label. */
13281 /* Above offset included in -4 below. */
13282 branch_to_veneer
= errnode
->u
.b
.veneer
->vma
13283 - errnode
->vma
- 4;
13285 if ((signed) branch_to_veneer
< -(1 << 25)
13286 || (signed) branch_to_veneer
>= (1 << 25))
13287 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
13288 "range"), output_bfd
);
13290 insn
|= (branch_to_veneer
>> 2) & 0xffffff;
13291 contents
[endianflip
^ index
] = insn
& 0xff;
13292 contents
[endianflip
^ (index
+ 1)] = (insn
>> 8) & 0xff;
13293 contents
[endianflip
^ (index
+ 2)] = (insn
>> 16) & 0xff;
13294 contents
[endianflip
^ (index
+ 3)] = (insn
>> 24) & 0xff;
13298 case VFP11_ERRATUM_ARM_VENEER
:
13300 bfd_vma branch_from_veneer
;
13303 /* Take size of veneer into account. */
13304 branch_from_veneer
= errnode
->u
.v
.branch
->vma
13305 - errnode
->vma
- 12;
13307 if ((signed) branch_from_veneer
< -(1 << 25)
13308 || (signed) branch_from_veneer
>= (1 << 25))
13309 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
13310 "range"), output_bfd
);
13312 /* Original instruction. */
13313 insn
= errnode
->u
.v
.branch
->u
.b
.vfp_insn
;
13314 contents
[endianflip
^ index
] = insn
& 0xff;
13315 contents
[endianflip
^ (index
+ 1)] = (insn
>> 8) & 0xff;
13316 contents
[endianflip
^ (index
+ 2)] = (insn
>> 16) & 0xff;
13317 contents
[endianflip
^ (index
+ 3)] = (insn
>> 24) & 0xff;
13319 /* Branch back to insn after original insn. */
13320 insn
= 0xea000000 | ((branch_from_veneer
>> 2) & 0xffffff);
13321 contents
[endianflip
^ (index
+ 4)] = insn
& 0xff;
13322 contents
[endianflip
^ (index
+ 5)] = (insn
>> 8) & 0xff;
13323 contents
[endianflip
^ (index
+ 6)] = (insn
>> 16) & 0xff;
13324 contents
[endianflip
^ (index
+ 7)] = (insn
>> 24) & 0xff;
13334 if (arm_data
->elf
.this_hdr
.sh_type
== SHT_ARM_EXIDX
)
13336 arm_unwind_table_edit
*edit_node
13337 = arm_data
->u
.exidx
.unwind_edit_list
;
13338 /* Now, sec->size is the size of the section we will write. The original
13339 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
13340 markers) was sec->rawsize. (This isn't the case if we perform no
13341 edits, then rawsize will be zero and we should use size). */
13342 bfd_byte
*edited_contents
= bfd_malloc (sec
->size
);
13343 unsigned int input_size
= sec
->rawsize
? sec
->rawsize
: sec
->size
;
13344 unsigned int in_index
, out_index
;
13345 bfd_vma add_to_offsets
= 0;
13347 for (in_index
= 0, out_index
= 0; in_index
* 8 < input_size
|| edit_node
;)
13351 unsigned int edit_index
= edit_node
->index
;
13353 if (in_index
< edit_index
&& in_index
* 8 < input_size
)
13355 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
13356 contents
+ in_index
* 8, add_to_offsets
);
13360 else if (in_index
== edit_index
13361 || (in_index
* 8 >= input_size
13362 && edit_index
== UINT_MAX
))
13364 switch (edit_node
->type
)
13366 case DELETE_EXIDX_ENTRY
:
13368 add_to_offsets
+= 8;
13371 case INSERT_EXIDX_CANTUNWIND_AT_END
:
13373 asection
*text_sec
= edit_node
->linked_section
;
13374 bfd_vma text_offset
= text_sec
->output_section
->vma
13375 + text_sec
->output_offset
13377 bfd_vma exidx_offset
= offset
+ out_index
* 8;
13378 unsigned long prel31_offset
;
13380 /* Note: this is meant to be equivalent to an
13381 R_ARM_PREL31 relocation. These synthetic
13382 EXIDX_CANTUNWIND markers are not relocated by the
13383 usual BFD method. */
13384 prel31_offset
= (text_offset
- exidx_offset
)
13387 /* First address we can't unwind. */
13388 bfd_put_32 (output_bfd
, prel31_offset
,
13389 &edited_contents
[out_index
* 8]);
13391 /* Code for EXIDX_CANTUNWIND. */
13392 bfd_put_32 (output_bfd
, 0x1,
13393 &edited_contents
[out_index
* 8 + 4]);
13396 add_to_offsets
-= 8;
13401 edit_node
= edit_node
->next
;
13406 /* No more edits, copy remaining entries verbatim. */
13407 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
13408 contents
+ in_index
* 8, add_to_offsets
);
13414 if (!(sec
->flags
& SEC_EXCLUDE
) && !(sec
->flags
& SEC_NEVER_LOAD
))
13415 bfd_set_section_contents (output_bfd
, sec
->output_section
,
13417 (file_ptr
) sec
->output_offset
, sec
->size
);
13422 /* Fix code to point to Cortex-A8 erratum stubs. */
13423 if (globals
->fix_cortex_a8
)
13425 struct a8_branch_to_stub_data data
;
13427 data
.writing_section
= sec
;
13428 data
.contents
= contents
;
13430 bfd_hash_traverse (&globals
->stub_hash_table
, make_branch_to_a8_stub
,
13437 if (globals
->byteswap_code
)
13439 qsort (map
, mapcount
, sizeof (* map
), elf32_arm_compare_mapping
);
13442 for (i
= 0; i
< mapcount
; i
++)
13444 if (i
== mapcount
- 1)
13447 end
= map
[i
+ 1].vma
;
13449 switch (map
[i
].type
)
13452 /* Byte swap code words. */
13453 while (ptr
+ 3 < end
)
13455 tmp
= contents
[ptr
];
13456 contents
[ptr
] = contents
[ptr
+ 3];
13457 contents
[ptr
+ 3] = tmp
;
13458 tmp
= contents
[ptr
+ 1];
13459 contents
[ptr
+ 1] = contents
[ptr
+ 2];
13460 contents
[ptr
+ 2] = tmp
;
13466 /* Byte swap code halfwords. */
13467 while (ptr
+ 1 < end
)
13469 tmp
= contents
[ptr
];
13470 contents
[ptr
] = contents
[ptr
+ 1];
13471 contents
[ptr
+ 1] = tmp
;
13477 /* Leave data alone. */
13485 arm_data
->mapcount
= 0;
13486 arm_data
->mapsize
= 0;
13487 arm_data
->map
= NULL
;
13488 unrecord_section_with_arm_elf_section_data (sec
);
13494 unrecord_section_via_map_over_sections (bfd
* abfd ATTRIBUTE_UNUSED
,
13496 void * ignore ATTRIBUTE_UNUSED
)
13498 unrecord_section_with_arm_elf_section_data (sec
);
13502 elf32_arm_close_and_cleanup (bfd
* abfd
)
13504 if (abfd
->sections
)
13505 bfd_map_over_sections (abfd
,
13506 unrecord_section_via_map_over_sections
,
13509 return _bfd_elf_close_and_cleanup (abfd
);
13513 elf32_arm_bfd_free_cached_info (bfd
* abfd
)
13515 if (abfd
->sections
)
13516 bfd_map_over_sections (abfd
,
13517 unrecord_section_via_map_over_sections
,
13520 return _bfd_free_cached_info (abfd
);
13523 /* Display STT_ARM_TFUNC symbols as functions. */
13526 elf32_arm_symbol_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
13529 elf_symbol_type
*elfsym
= (elf_symbol_type
*) asym
;
13531 if (ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_ARM_TFUNC
)
13532 elfsym
->symbol
.flags
|= BSF_FUNCTION
;
13536 /* Mangle thumb function symbols as we read them in. */
13539 elf32_arm_swap_symbol_in (bfd
* abfd
,
13542 Elf_Internal_Sym
*dst
)
13544 if (!bfd_elf32_swap_symbol_in (abfd
, psrc
, pshn
, dst
))
13547 /* New EABI objects mark thumb function symbols by setting the low bit of
13548 the address. Turn these into STT_ARM_TFUNC. */
13549 if ((ELF_ST_TYPE (dst
->st_info
) == STT_FUNC
)
13550 && (dst
->st_value
& 1))
13552 dst
->st_info
= ELF_ST_INFO (ELF_ST_BIND (dst
->st_info
), STT_ARM_TFUNC
);
13553 dst
->st_value
&= ~(bfd_vma
) 1;
13559 /* Mangle thumb function symbols as we write them out. */
13562 elf32_arm_swap_symbol_out (bfd
*abfd
,
13563 const Elf_Internal_Sym
*src
,
13567 Elf_Internal_Sym newsym
;
13569 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
13570 of the address set, as per the new EABI. We do this unconditionally
13571 because objcopy does not set the elf header flags until after
13572 it writes out the symbol table. */
13573 if (ELF_ST_TYPE (src
->st_info
) == STT_ARM_TFUNC
)
13576 newsym
.st_info
= ELF_ST_INFO (ELF_ST_BIND (src
->st_info
), STT_FUNC
);
13577 if (newsym
.st_shndx
!= SHN_UNDEF
)
13579 /* Do this only for defined symbols. At link type, the static
13580 linker will simulate the work of dynamic linker of resolving
13581 symbols and will carry over the thumbness of found symbols to
13582 the output symbol table. It's not clear how it happens, but
13583 the thumbness of undefined symbols can well be different at
13584 runtime, and writing '1' for them will be confusing for users
13585 and possibly for dynamic linker itself.
13587 newsym
.st_value
|= 1;
13592 bfd_elf32_swap_symbol_out (abfd
, src
, cdst
, shndx
);
13595 /* Add the PT_ARM_EXIDX program header. */
13598 elf32_arm_modify_segment_map (bfd
*abfd
,
13599 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
13601 struct elf_segment_map
*m
;
13604 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
13605 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
13607 /* If there is already a PT_ARM_EXIDX header, then we do not
13608 want to add another one. This situation arises when running
13609 "strip"; the input binary already has the header. */
13610 m
= elf_tdata (abfd
)->segment_map
;
13611 while (m
&& m
->p_type
!= PT_ARM_EXIDX
)
13615 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
13618 m
->p_type
= PT_ARM_EXIDX
;
13620 m
->sections
[0] = sec
;
13622 m
->next
= elf_tdata (abfd
)->segment_map
;
13623 elf_tdata (abfd
)->segment_map
= m
;
13630 /* We may add a PT_ARM_EXIDX program header. */
13633 elf32_arm_additional_program_headers (bfd
*abfd
,
13634 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
13638 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
13639 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
13645 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
13648 elf32_arm_is_function_type (unsigned int type
)
13650 return (type
== STT_FUNC
) || (type
== STT_ARM_TFUNC
);
13653 /* We use this to override swap_symbol_in and swap_symbol_out. */
13654 const struct elf_size_info elf32_arm_size_info
=
13656 sizeof (Elf32_External_Ehdr
),
13657 sizeof (Elf32_External_Phdr
),
13658 sizeof (Elf32_External_Shdr
),
13659 sizeof (Elf32_External_Rel
),
13660 sizeof (Elf32_External_Rela
),
13661 sizeof (Elf32_External_Sym
),
13662 sizeof (Elf32_External_Dyn
),
13663 sizeof (Elf_External_Note
),
13667 ELFCLASS32
, EV_CURRENT
,
13668 bfd_elf32_write_out_phdrs
,
13669 bfd_elf32_write_shdrs_and_ehdr
,
13670 bfd_elf32_checksum_contents
,
13671 bfd_elf32_write_relocs
,
13672 elf32_arm_swap_symbol_in
,
13673 elf32_arm_swap_symbol_out
,
13674 bfd_elf32_slurp_reloc_table
,
13675 bfd_elf32_slurp_symbol_table
,
13676 bfd_elf32_swap_dyn_in
,
13677 bfd_elf32_swap_dyn_out
,
13678 bfd_elf32_swap_reloc_in
,
13679 bfd_elf32_swap_reloc_out
,
13680 bfd_elf32_swap_reloca_in
,
13681 bfd_elf32_swap_reloca_out
13684 #define ELF_ARCH bfd_arch_arm
13685 #define ELF_MACHINE_CODE EM_ARM
13686 #ifdef __QNXTARGET__
13687 #define ELF_MAXPAGESIZE 0x1000
13689 #define ELF_MAXPAGESIZE 0x8000
13691 #define ELF_MINPAGESIZE 0x1000
13692 #define ELF_COMMONPAGESIZE 0x1000
13694 #define bfd_elf32_mkobject elf32_arm_mkobject
13696 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
13697 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
13698 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
13699 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
13700 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
13701 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
13702 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
13703 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
13704 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
13705 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
13706 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
13707 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
13708 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
13709 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
13710 #define bfd_elf32_bfd_final_link elf32_arm_final_link
13712 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
13713 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
13714 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
13715 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
13716 #define elf_backend_check_relocs elf32_arm_check_relocs
13717 #define elf_backend_relocate_section elf32_arm_relocate_section
13718 #define elf_backend_write_section elf32_arm_write_section
13719 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
13720 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
13721 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
13722 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
13723 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
13724 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
13725 #define elf_backend_post_process_headers elf32_arm_post_process_headers
13726 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
13727 #define elf_backend_object_p elf32_arm_object_p
13728 #define elf_backend_section_flags elf32_arm_section_flags
13729 #define elf_backend_fake_sections elf32_arm_fake_sections
13730 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
13731 #define elf_backend_final_write_processing elf32_arm_final_write_processing
13732 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
13733 #define elf_backend_symbol_processing elf32_arm_symbol_processing
13734 #define elf_backend_size_info elf32_arm_size_info
13735 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
13736 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
13737 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
13738 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
13739 #define elf_backend_is_function_type elf32_arm_is_function_type
13741 #define elf_backend_can_refcount 1
13742 #define elf_backend_can_gc_sections 1
13743 #define elf_backend_plt_readonly 1
13744 #define elf_backend_want_got_plt 1
13745 #define elf_backend_want_plt_sym 0
13746 #define elf_backend_may_use_rel_p 1
13747 #define elf_backend_may_use_rela_p 0
13748 #define elf_backend_default_use_rela_p 0
13750 #define elf_backend_got_header_size 12
13752 #undef elf_backend_obj_attrs_vendor
13753 #define elf_backend_obj_attrs_vendor "aeabi"
13754 #undef elf_backend_obj_attrs_section
13755 #define elf_backend_obj_attrs_section ".ARM.attributes"
13756 #undef elf_backend_obj_attrs_arg_type
13757 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
13758 #undef elf_backend_obj_attrs_section_type
13759 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
13760 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
13762 #include "elf32-target.h"
13764 /* VxWorks Targets. */
13766 #undef TARGET_LITTLE_SYM
13767 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
13768 #undef TARGET_LITTLE_NAME
13769 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
13770 #undef TARGET_BIG_SYM
13771 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
13772 #undef TARGET_BIG_NAME
13773 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
13775 /* Like elf32_arm_link_hash_table_create -- but overrides
13776 appropriately for VxWorks. */
13778 static struct bfd_link_hash_table
*
13779 elf32_arm_vxworks_link_hash_table_create (bfd
*abfd
)
13781 struct bfd_link_hash_table
*ret
;
13783 ret
= elf32_arm_link_hash_table_create (abfd
);
13786 struct elf32_arm_link_hash_table
*htab
13787 = (struct elf32_arm_link_hash_table
*) ret
;
13789 htab
->vxworks_p
= 1;
13795 elf32_arm_vxworks_final_write_processing (bfd
*abfd
, bfd_boolean linker
)
13797 elf32_arm_final_write_processing (abfd
, linker
);
13798 elf_vxworks_final_write_processing (abfd
, linker
);
13802 #define elf32_bed elf32_arm_vxworks_bed
13804 #undef bfd_elf32_bfd_link_hash_table_create
13805 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
13806 #undef elf_backend_add_symbol_hook
13807 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
13808 #undef elf_backend_final_write_processing
13809 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
13810 #undef elf_backend_emit_relocs
13811 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
13813 #undef elf_backend_may_use_rel_p
13814 #define elf_backend_may_use_rel_p 0
13815 #undef elf_backend_may_use_rela_p
13816 #define elf_backend_may_use_rela_p 1
13817 #undef elf_backend_default_use_rela_p
13818 #define elf_backend_default_use_rela_p 1
13819 #undef elf_backend_want_plt_sym
13820 #define elf_backend_want_plt_sym 1
13821 #undef ELF_MAXPAGESIZE
13822 #define ELF_MAXPAGESIZE 0x1000
13824 #include "elf32-target.h"
13827 /* Symbian OS Targets. */
13829 #undef TARGET_LITTLE_SYM
13830 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
13831 #undef TARGET_LITTLE_NAME
13832 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
13833 #undef TARGET_BIG_SYM
13834 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
13835 #undef TARGET_BIG_NAME
13836 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
13838 /* Like elf32_arm_link_hash_table_create -- but overrides
13839 appropriately for Symbian OS. */
13841 static struct bfd_link_hash_table
*
13842 elf32_arm_symbian_link_hash_table_create (bfd
*abfd
)
13844 struct bfd_link_hash_table
*ret
;
13846 ret
= elf32_arm_link_hash_table_create (abfd
);
13849 struct elf32_arm_link_hash_table
*htab
13850 = (struct elf32_arm_link_hash_table
*)ret
;
13851 /* There is no PLT header for Symbian OS. */
13852 htab
->plt_header_size
= 0;
13853 /* The PLT entries are each one instruction and one word. */
13854 htab
->plt_entry_size
= 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
);
13855 htab
->symbian_p
= 1;
13856 /* Symbian uses armv5t or above, so use_blx is always true. */
13858 htab
->root
.is_relocatable_executable
= 1;
13863 static const struct bfd_elf_special_section
13864 elf32_arm_symbian_special_sections
[] =
13866 /* In a BPABI executable, the dynamic linking sections do not go in
13867 the loadable read-only segment. The post-linker may wish to
13868 refer to these sections, but they are not part of the final
13870 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, 0 },
13871 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, 0 },
13872 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, 0 },
13873 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, 0 },
13874 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, 0 },
13875 /* These sections do not need to be writable as the SymbianOS
13876 postlinker will arrange things so that no dynamic relocation is
13878 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
},
13879 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
},
13880 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
},
13881 { NULL
, 0, 0, 0, 0 }
13885 elf32_arm_symbian_begin_write_processing (bfd
*abfd
,
13886 struct bfd_link_info
*link_info
)
13888 /* BPABI objects are never loaded directly by an OS kernel; they are
13889 processed by a postlinker first, into an OS-specific format. If
13890 the D_PAGED bit is set on the file, BFD will align segments on
13891 page boundaries, so that an OS can directly map the file. With
13892 BPABI objects, that just results in wasted space. In addition,
13893 because we clear the D_PAGED bit, map_sections_to_segments will
13894 recognize that the program headers should not be mapped into any
13895 loadable segment. */
13896 abfd
->flags
&= ~D_PAGED
;
13897 elf32_arm_begin_write_processing (abfd
, link_info
);
13901 elf32_arm_symbian_modify_segment_map (bfd
*abfd
,
13902 struct bfd_link_info
*info
)
13904 struct elf_segment_map
*m
;
13907 /* BPABI shared libraries and executables should have a PT_DYNAMIC
13908 segment. However, because the .dynamic section is not marked
13909 with SEC_LOAD, the generic ELF code will not create such a
13911 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
13914 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
13915 if (m
->p_type
== PT_DYNAMIC
)
13920 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
13921 m
->next
= elf_tdata (abfd
)->segment_map
;
13922 elf_tdata (abfd
)->segment_map
= m
;
13926 /* Also call the generic arm routine. */
13927 return elf32_arm_modify_segment_map (abfd
, info
);
13930 /* Return address for Ith PLT stub in section PLT, for relocation REL
13931 or (bfd_vma) -1 if it should not be included. */
13934 elf32_arm_symbian_plt_sym_val (bfd_vma i
, const asection
*plt
,
13935 const arelent
*rel ATTRIBUTE_UNUSED
)
13937 return plt
->vma
+ 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
) * i
;
13942 #define elf32_bed elf32_arm_symbian_bed
13944 /* The dynamic sections are not allocated on SymbianOS; the postlinker
13945 will process them and then discard them. */
13946 #undef ELF_DYNAMIC_SEC_FLAGS
13947 #define ELF_DYNAMIC_SEC_FLAGS \
13948 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
13950 #undef elf_backend_add_symbol_hook
13951 #undef elf_backend_emit_relocs
13953 #undef bfd_elf32_bfd_link_hash_table_create
13954 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
13955 #undef elf_backend_special_sections
13956 #define elf_backend_special_sections elf32_arm_symbian_special_sections
13957 #undef elf_backend_begin_write_processing
13958 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
13959 #undef elf_backend_final_write_processing
13960 #define elf_backend_final_write_processing elf32_arm_final_write_processing
13962 #undef elf_backend_modify_segment_map
13963 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
13965 /* There is no .got section for BPABI objects, and hence no header. */
13966 #undef elf_backend_got_header_size
13967 #define elf_backend_got_header_size 0
13969 /* Similarly, there is no .got.plt section. */
13970 #undef elf_backend_want_got_plt
13971 #define elf_backend_want_got_plt 0
13973 #undef elf_backend_plt_sym_val
13974 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
13976 #undef elf_backend_may_use_rel_p
13977 #define elf_backend_may_use_rel_p 1
13978 #undef elf_backend_may_use_rela_p
13979 #define elf_backend_may_use_rela_p 0
13980 #undef elf_backend_default_use_rela_p
13981 #define elf_backend_default_use_rela_p 0
13982 #undef elf_backend_want_plt_sym
13983 #define elf_backend_want_plt_sym 0
13984 #undef ELF_MAXPAGESIZE
13985 #define ELF_MAXPAGESIZE 0x8000
13987 #include "elf32-target.h"