Merge #11722: Switched sync.{cpp,h} to std threading primitives.
[bitcoinplatinum.git] / src / key.h
blobc610e5e6cd3e7fb5415a73e58865971222f2a273
1 // Copyright (c) 2009-2010 Satoshi Nakamoto
2 // Copyright (c) 2009-2016 The Bitcoin Core developers
3 // Distributed under the MIT software license, see the accompanying
4 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
6 #ifndef BITCOIN_KEY_H
7 #define BITCOIN_KEY_H
9 #include <pubkey.h>
10 #include <serialize.h>
11 #include <support/allocators/secure.h>
12 #include <uint256.h>
14 #include <stdexcept>
15 #include <vector>
18 /**
19 * secp256k1:
20 * const unsigned int PRIVATE_KEY_SIZE = 279;
21 * const unsigned int PUBLIC_KEY_SIZE = 65;
22 * const unsigned int SIGNATURE_SIZE = 72;
24 * see www.keylength.com
25 * script supports up to 75 for single byte push
28 /**
29 * secure_allocator is defined in allocators.h
30 * CPrivKey is a serialized private key, with all parameters included (279 bytes)
32 typedef std::vector<unsigned char, secure_allocator<unsigned char> > CPrivKey;
34 /** An encapsulated private key. */
35 class CKey
37 private:
38 //! Whether this private key is valid. We check for correctness when modifying the key
39 //! data, so fValid should always correspond to the actual state.
40 bool fValid;
42 //! Whether the public key corresponding to this private key is (to be) compressed.
43 bool fCompressed;
45 //! The actual byte data
46 std::vector<unsigned char, secure_allocator<unsigned char> > keydata;
48 //! Check whether the 32-byte array pointed to by vch is valid keydata.
49 bool static Check(const unsigned char* vch);
51 public:
52 //! Construct an invalid private key.
53 CKey() : fValid(false), fCompressed(false)
55 // Important: vch must be 32 bytes in length to not break serialization
56 keydata.resize(32);
59 friend bool operator==(const CKey& a, const CKey& b)
61 return a.fCompressed == b.fCompressed &&
62 a.size() == b.size() &&
63 memcmp(a.keydata.data(), b.keydata.data(), a.size()) == 0;
66 //! Initialize using begin and end iterators to byte data.
67 template <typename T>
68 void Set(const T pbegin, const T pend, bool fCompressedIn)
70 if (size_t(pend - pbegin) != keydata.size()) {
71 fValid = false;
72 } else if (Check(&pbegin[0])) {
73 memcpy(keydata.data(), (unsigned char*)&pbegin[0], keydata.size());
74 fValid = true;
75 fCompressed = fCompressedIn;
76 } else {
77 fValid = false;
81 //! Simple read-only vector-like interface.
82 unsigned int size() const { return (fValid ? keydata.size() : 0); }
83 const unsigned char* begin() const { return keydata.data(); }
84 const unsigned char* end() const { return keydata.data() + size(); }
86 //! Check whether this private key is valid.
87 bool IsValid() const { return fValid; }
89 //! Check whether the public key corresponding to this private key is (to be) compressed.
90 bool IsCompressed() const { return fCompressed; }
92 //! Generate a new private key using a cryptographic PRNG.
93 void MakeNewKey(bool fCompressed);
95 /**
96 * Convert the private key to a CPrivKey (serialized OpenSSL private key data).
97 * This is expensive.
99 CPrivKey GetPrivKey() const;
102 * Compute the public key from a private key.
103 * This is expensive.
105 CPubKey GetPubKey() const;
108 * Create a DER-serialized signature.
109 * The test_case parameter tweaks the deterministic nonce.
111 bool Sign(const uint256& hash, std::vector<unsigned char>& vchSig, uint32_t test_case = 0) const;
114 * Create a compact signature (65 bytes), which allows reconstructing the used public key.
115 * The format is one header byte, followed by two times 32 bytes for the serialized r and s values.
116 * The header byte: 0x1B = first key with even y, 0x1C = first key with odd y,
117 * 0x1D = second key with even y, 0x1E = second key with odd y,
118 * add 0x04 for compressed keys.
120 bool SignCompact(const uint256& hash, std::vector<unsigned char>& vchSig) const;
122 //! Derive BIP32 child key.
123 bool Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const;
126 * Verify thoroughly whether a private key and a public key match.
127 * This is done using a different mechanism than just regenerating it.
129 bool VerifyPubKey(const CPubKey& vchPubKey) const;
131 //! Load private key and check that public key matches.
132 bool Load(CPrivKey& privkey, CPubKey& vchPubKey, bool fSkipCheck);
135 struct CExtKey {
136 unsigned char nDepth;
137 unsigned char vchFingerprint[4];
138 unsigned int nChild;
139 ChainCode chaincode;
140 CKey key;
142 friend bool operator==(const CExtKey& a, const CExtKey& b)
144 return a.nDepth == b.nDepth &&
145 memcmp(&a.vchFingerprint[0], &b.vchFingerprint[0], sizeof(vchFingerprint)) == 0 &&
146 a.nChild == b.nChild &&
147 a.chaincode == b.chaincode &&
148 a.key == b.key;
151 void Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const;
152 void Decode(const unsigned char code[BIP32_EXTKEY_SIZE]);
153 bool Derive(CExtKey& out, unsigned int nChild) const;
154 CExtPubKey Neuter() const;
155 void SetMaster(const unsigned char* seed, unsigned int nSeedLen);
156 template <typename Stream>
157 void Serialize(Stream& s) const
159 unsigned int len = BIP32_EXTKEY_SIZE;
160 ::WriteCompactSize(s, len);
161 unsigned char code[BIP32_EXTKEY_SIZE];
162 Encode(code);
163 s.write((const char *)&code[0], len);
165 template <typename Stream>
166 void Unserialize(Stream& s)
168 unsigned int len = ::ReadCompactSize(s);
169 unsigned char code[BIP32_EXTKEY_SIZE];
170 if (len != BIP32_EXTKEY_SIZE)
171 throw std::runtime_error("Invalid extended key size\n");
172 s.read((char *)&code[0], len);
173 Decode(code);
177 /** Initialize the elliptic curve support. May not be called twice without calling ECC_Stop first. */
178 void ECC_Start(void);
180 /** Deinitialize the elliptic curve support. No-op if ECC_Start wasn't called first. */
181 void ECC_Stop(void);
183 /** Check that required EC support is available at runtime. */
184 bool ECC_InitSanityCheck(void);
186 #endif // BITCOIN_KEY_H