1 # Prover implementation for Weierstrass curves of the form
2 # y^2 = x^3 + A * x + B, specifically with a = 0 and b = 7, with group laws
3 # operating on affine and Jacobian coordinates, including the point at infinity
4 # represented by a 4th variable in coordinates.
6 load("group_prover.sage")
10 def __init__(self, x, y, infinity=0):
13 self.infinity = infinity
15 return "affinepoint(x=%s,y=%s,inf=%s)" % (self.x, self.y, self.infinity)
19 def __init__(self, x, y, z, infinity=0):
23 self.Infinity = infinity
25 return "jacobianpoint(X=%s,Y=%s,Z=%s,inf=%s)" % (self.X, self.Y, self.Z, self.Infinity)
28 def point_at_infinity():
29 return jacobianpoint(1, 1, 1, 1)
33 if p.__class__ == affinepoint:
34 return affinepoint(p.x, -p.y)
35 if p.__class__ == jacobianpoint:
36 return jacobianpoint(p.X, -p.Y, p.Z)
40 def on_weierstrass_curve(A, B, p):
41 """Return a set of zero-expressions for an affine point to be on the curve"""
42 return constraints(zero={p.x^3 + A*p.x + B - p.y^2: 'on_curve'})
45 def tangential_to_weierstrass_curve(A, B, p12, p3):
46 """Return a set of zero-expressions for ((x12,y12),(x3,y3)) to be a line that is tangential to the curve at (x12,y12)"""
47 return constraints(zero={
48 (p12.y - p3.y) * (p12.y * 2) - (p12.x^2 * 3 + A) * (p12.x - p3.x): 'tangential_to_curve'
52 def colinear(p1, p2, p3):
53 """Return a set of zero-expressions for ((x1,y1),(x2,y2),(x3,y3)) to be collinear"""
54 return constraints(zero={
55 (p1.y - p2.y) * (p1.x - p3.x) - (p1.y - p3.y) * (p1.x - p2.x): 'colinear_1',
56 (p2.y - p3.y) * (p2.x - p1.x) - (p2.y - p1.y) * (p2.x - p3.x): 'colinear_2',
57 (p3.y - p1.y) * (p3.x - p2.x) - (p3.y - p2.y) * (p3.x - p1.x): 'colinear_3'
61 def good_affine_point(p):
62 return constraints(nonzero={p.x : 'nonzero_x', p.y : 'nonzero_y'})
65 def good_jacobian_point(p):
66 return constraints(nonzero={p.X : 'nonzero_X', p.Y : 'nonzero_Y', p.Z^6 : 'nonzero_Z'})
70 return constraints(nonzero={p.Z^6 : 'nonzero_X'})
73 def finite(p, *affine_fns):
74 con = good_point(p) + constraints(zero={p.Infinity : 'finite_point'})
76 return con + reduce(lambda a, b: a + b, (f(affinepoint(p.X / p.Z^2, p.Y / p.Z^3)) for f in affine_fns), con)
81 return constraints(nonzero={p.Infinity : 'infinite_point'})
84 def law_jacobian_weierstrass_add(A, B, pa, pb, pA, pB, pC):
85 """Check whether the passed set of coordinates is a valid Jacobian add, given assumptions"""
86 assumeLaw = (good_affine_point(pa) +
87 good_affine_point(pb) +
88 good_jacobian_point(pA) +
89 good_jacobian_point(pB) +
90 on_weierstrass_curve(A, B, pa) +
91 on_weierstrass_curve(A, B, pb) +
94 constraints(nonzero={pa.x - pb.x : 'different_x'}))
95 require = (finite(pC, lambda pc: on_weierstrass_curve(A, B, pc) +
96 colinear(pa, pb, negate(pc))))
97 return (assumeLaw, require)
100 def law_jacobian_weierstrass_double(A, B, pa, pb, pA, pB, pC):
101 """Check whether the passed set of coordinates is a valid Jacobian doubling, given assumptions"""
102 assumeLaw = (good_affine_point(pa) +
103 good_affine_point(pb) +
104 good_jacobian_point(pA) +
105 good_jacobian_point(pB) +
106 on_weierstrass_curve(A, B, pa) +
107 on_weierstrass_curve(A, B, pb) +
110 constraints(zero={pa.x - pb.x : 'equal_x', pa.y - pb.y : 'equal_y'}))
111 require = (finite(pC, lambda pc: on_weierstrass_curve(A, B, pc) +
112 tangential_to_weierstrass_curve(A, B, pa, negate(pc))))
113 return (assumeLaw, require)
116 def law_jacobian_weierstrass_add_opposites(A, B, pa, pb, pA, pB, pC):
117 assumeLaw = (good_affine_point(pa) +
118 good_affine_point(pb) +
119 good_jacobian_point(pA) +
120 good_jacobian_point(pB) +
121 on_weierstrass_curve(A, B, pa) +
122 on_weierstrass_curve(A, B, pb) +
125 constraints(zero={pa.x - pb.x : 'equal_x', pa.y + pb.y : 'opposite_y'}))
126 require = infinite(pC)
127 return (assumeLaw, require)
130 def law_jacobian_weierstrass_add_infinite_a(A, B, pa, pb, pA, pB, pC):
131 assumeLaw = (good_affine_point(pa) +
132 good_affine_point(pb) +
133 good_jacobian_point(pA) +
134 good_jacobian_point(pB) +
135 on_weierstrass_curve(A, B, pb) +
138 require = finite(pC, lambda pc: constraints(zero={pc.x - pb.x : 'c.x=b.x', pc.y - pb.y : 'c.y=b.y'}))
139 return (assumeLaw, require)
142 def law_jacobian_weierstrass_add_infinite_b(A, B, pa, pb, pA, pB, pC):
143 assumeLaw = (good_affine_point(pa) +
144 good_affine_point(pb) +
145 good_jacobian_point(pA) +
146 good_jacobian_point(pB) +
147 on_weierstrass_curve(A, B, pa) +
150 require = finite(pC, lambda pc: constraints(zero={pc.x - pa.x : 'c.x=a.x', pc.y - pa.y : 'c.y=a.y'}))
151 return (assumeLaw, require)
154 def law_jacobian_weierstrass_add_infinite_ab(A, B, pa, pb, pA, pB, pC):
155 assumeLaw = (good_affine_point(pa) +
156 good_affine_point(pb) +
157 good_jacobian_point(pA) +
158 good_jacobian_point(pB) +
161 require = infinite(pC)
162 return (assumeLaw, require)
165 laws_jacobian_weierstrass = {
166 'add': law_jacobian_weierstrass_add,
167 'double': law_jacobian_weierstrass_double,
168 'add_opposite': law_jacobian_weierstrass_add_opposites,
169 'add_infinite_a': law_jacobian_weierstrass_add_infinite_a,
170 'add_infinite_b': law_jacobian_weierstrass_add_infinite_b,
171 'add_infinite_ab': law_jacobian_weierstrass_add_infinite_ab
175 def check_exhaustive_jacobian_weierstrass(name, A, B, branches, formula, p):
176 """Verify an implementation of addition of Jacobian points on a Weierstrass curve, by executing and validating the result for every possible addition in a prime field"""
178 print "Formula %s on Z%i:" % (name, p)
180 for x in xrange(0, p):
181 for y in xrange(0, p):
182 point = affinepoint(F(x), F(y))
183 r, e = concrete_verify(on_weierstrass_curve(A, B, point))
187 for za in xrange(1, p):
188 for zb in xrange(1, p):
193 pA = jacobianpoint(pa.x * F(za)^2, pa.y * F(za)^3, F(za), ia)
194 pB = jacobianpoint(pb.x * F(zb)^2, pb.y * F(zb)^3, F(zb), ib)
195 for branch in xrange(0, branches):
196 assumeAssert, assumeBranch, pC = formula(branch, pA, pB)
200 pC.Infinity = F(pC.Infinity)
201 r, e = concrete_verify(assumeAssert + assumeBranch)
204 for key in laws_jacobian_weierstrass:
205 assumeLaw, require = laws_jacobian_weierstrass[key](A, B, pa, pb, pA, pB, pC)
206 r, e = concrete_verify(assumeLaw)
209 print " multiple branches for (%s,%s,%s,%s) + (%s,%s,%s,%s)" % (pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity)
212 r, e = concrete_verify(require)
214 print " failure in branch %i for (%s,%s,%s,%s) + (%s,%s,%s,%s) = (%s,%s,%s,%s): %s" % (branch, pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity, pC.X, pC.Y, pC.Z, pC.Infinity, e)
218 def check_symbolic_function(R, assumeAssert, assumeBranch, f, A, B, pa, pb, pA, pB, pC):
219 assumeLaw, require = f(A, B, pa, pb, pA, pB, pC)
220 return check_symbolic(R, assumeLaw, assumeAssert, assumeBranch, require)
222 def check_symbolic_jacobian_weierstrass(name, A, B, branches, formula):
223 """Verify an implementation of addition of Jacobian points on a Weierstrass curve symbolically"""
224 R.<ax,bx,ay,by,Az,Bz,Ai,Bi> = PolynomialRing(QQ,8,order='invlex')
225 lift = lambda x: fastfrac(R,x)
235 pa = affinepoint(ax, ay, Ai)
236 pb = affinepoint(bx, by, Bi)
237 pA = jacobianpoint(ax * Az^2, ay * Az^3, Az, Ai)
238 pB = jacobianpoint(bx * Bz^2, by * Bz^3, Bz, Bi)
242 for key in laws_jacobian_weierstrass:
245 print ("Formula " + name + ":")
247 for branch in xrange(branches):
248 assumeFormula, assumeBranch, pC = formula(branch, pA, pB)
252 pC.Infinity = lift(pC.Infinity)
254 for key in laws_jacobian_weierstrass:
255 res[key].append((check_symbolic_function(R, assumeFormula, assumeBranch, laws_jacobian_weierstrass[key], A, B, pa, pb, pA, pB, pC), branch))
262 print " branch %i: %s" % (x[1], x[0])