[tests] Add -blocknotify functional test
[bitcoinplatinum.git] / src / arith_uint256.cpp
blobb4952af6f48906a29db02ce9a86766e01d7d92ca
1 // Copyright (c) 2009-2010 Satoshi Nakamoto
2 // Copyright (c) 2009-2016 The Bitcoin Core developers
3 // Distributed under the MIT software license, see the accompanying
4 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
6 #include "arith_uint256.h"
8 #include "uint256.h"
9 #include "utilstrencodings.h"
10 #include "crypto/common.h"
12 #include <stdio.h>
13 #include <string.h>
15 template <unsigned int BITS>
16 base_uint<BITS>::base_uint(const std::string& str)
18 static_assert(BITS/32 > 0 && BITS%32 == 0, "Template parameter BITS must be a positive multiple of 32.");
20 SetHex(str);
23 template <unsigned int BITS>
24 base_uint<BITS>& base_uint<BITS>::operator<<=(unsigned int shift)
26 base_uint<BITS> a(*this);
27 for (int i = 0; i < WIDTH; i++)
28 pn[i] = 0;
29 int k = shift / 32;
30 shift = shift % 32;
31 for (int i = 0; i < WIDTH; i++) {
32 if (i + k + 1 < WIDTH && shift != 0)
33 pn[i + k + 1] |= (a.pn[i] >> (32 - shift));
34 if (i + k < WIDTH)
35 pn[i + k] |= (a.pn[i] << shift);
37 return *this;
40 template <unsigned int BITS>
41 base_uint<BITS>& base_uint<BITS>::operator>>=(unsigned int shift)
43 base_uint<BITS> a(*this);
44 for (int i = 0; i < WIDTH; i++)
45 pn[i] = 0;
46 int k = shift / 32;
47 shift = shift % 32;
48 for (int i = 0; i < WIDTH; i++) {
49 if (i - k - 1 >= 0 && shift != 0)
50 pn[i - k - 1] |= (a.pn[i] << (32 - shift));
51 if (i - k >= 0)
52 pn[i - k] |= (a.pn[i] >> shift);
54 return *this;
57 template <unsigned int BITS>
58 base_uint<BITS>& base_uint<BITS>::operator*=(uint32_t b32)
60 uint64_t carry = 0;
61 for (int i = 0; i < WIDTH; i++) {
62 uint64_t n = carry + (uint64_t)b32 * pn[i];
63 pn[i] = n & 0xffffffff;
64 carry = n >> 32;
66 return *this;
69 template <unsigned int BITS>
70 base_uint<BITS>& base_uint<BITS>::operator*=(const base_uint& b)
72 base_uint<BITS> a = *this;
73 *this = 0;
74 for (int j = 0; j < WIDTH; j++) {
75 uint64_t carry = 0;
76 for (int i = 0; i + j < WIDTH; i++) {
77 uint64_t n = carry + pn[i + j] + (uint64_t)a.pn[j] * b.pn[i];
78 pn[i + j] = n & 0xffffffff;
79 carry = n >> 32;
82 return *this;
85 template <unsigned int BITS>
86 base_uint<BITS>& base_uint<BITS>::operator/=(const base_uint& b)
88 base_uint<BITS> div = b; // make a copy, so we can shift.
89 base_uint<BITS> num = *this; // make a copy, so we can subtract.
90 *this = 0; // the quotient.
91 int num_bits = num.bits();
92 int div_bits = div.bits();
93 if (div_bits == 0)
94 throw uint_error("Division by zero");
95 if (div_bits > num_bits) // the result is certainly 0.
96 return *this;
97 int shift = num_bits - div_bits;
98 div <<= shift; // shift so that div and num align.
99 while (shift >= 0) {
100 if (num >= div) {
101 num -= div;
102 pn[shift / 32] |= (1 << (shift & 31)); // set a bit of the result.
104 div >>= 1; // shift back.
105 shift--;
107 // num now contains the remainder of the division.
108 return *this;
111 template <unsigned int BITS>
112 int base_uint<BITS>::CompareTo(const base_uint<BITS>& b) const
114 for (int i = WIDTH - 1; i >= 0; i--) {
115 if (pn[i] < b.pn[i])
116 return -1;
117 if (pn[i] > b.pn[i])
118 return 1;
120 return 0;
123 template <unsigned int BITS>
124 bool base_uint<BITS>::EqualTo(uint64_t b) const
126 for (int i = WIDTH - 1; i >= 2; i--) {
127 if (pn[i])
128 return false;
130 if (pn[1] != (b >> 32))
131 return false;
132 if (pn[0] != (b & 0xfffffffful))
133 return false;
134 return true;
137 template <unsigned int BITS>
138 double base_uint<BITS>::getdouble() const
140 double ret = 0.0;
141 double fact = 1.0;
142 for (int i = 0; i < WIDTH; i++) {
143 ret += fact * pn[i];
144 fact *= 4294967296.0;
146 return ret;
149 template <unsigned int BITS>
150 std::string base_uint<BITS>::GetHex() const
152 return ArithToUint256(*this).GetHex();
155 template <unsigned int BITS>
156 void base_uint<BITS>::SetHex(const char* psz)
158 *this = UintToArith256(uint256S(psz));
161 template <unsigned int BITS>
162 void base_uint<BITS>::SetHex(const std::string& str)
164 SetHex(str.c_str());
167 template <unsigned int BITS>
168 std::string base_uint<BITS>::ToString() const
170 return (GetHex());
173 template <unsigned int BITS>
174 unsigned int base_uint<BITS>::bits() const
176 for (int pos = WIDTH - 1; pos >= 0; pos--) {
177 if (pn[pos]) {
178 for (int nbits = 31; nbits > 0; nbits--) {
179 if (pn[pos] & 1 << nbits)
180 return 32 * pos + nbits + 1;
182 return 32 * pos + 1;
185 return 0;
188 // Explicit instantiations for base_uint<256>
189 template base_uint<256>::base_uint(const std::string&);
190 template base_uint<256>& base_uint<256>::operator<<=(unsigned int);
191 template base_uint<256>& base_uint<256>::operator>>=(unsigned int);
192 template base_uint<256>& base_uint<256>::operator*=(uint32_t b32);
193 template base_uint<256>& base_uint<256>::operator*=(const base_uint<256>& b);
194 template base_uint<256>& base_uint<256>::operator/=(const base_uint<256>& b);
195 template int base_uint<256>::CompareTo(const base_uint<256>&) const;
196 template bool base_uint<256>::EqualTo(uint64_t) const;
197 template double base_uint<256>::getdouble() const;
198 template std::string base_uint<256>::GetHex() const;
199 template std::string base_uint<256>::ToString() const;
200 template void base_uint<256>::SetHex(const char*);
201 template void base_uint<256>::SetHex(const std::string&);
202 template unsigned int base_uint<256>::bits() const;
204 // This implementation directly uses shifts instead of going
205 // through an intermediate MPI representation.
206 arith_uint256& arith_uint256::SetCompact(uint32_t nCompact, bool* pfNegative, bool* pfOverflow)
208 int nSize = nCompact >> 24;
209 uint32_t nWord = nCompact & 0x007fffff;
210 if (nSize <= 3) {
211 nWord >>= 8 * (3 - nSize);
212 *this = nWord;
213 } else {
214 *this = nWord;
215 *this <<= 8 * (nSize - 3);
217 if (pfNegative)
218 *pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0;
219 if (pfOverflow)
220 *pfOverflow = nWord != 0 && ((nSize > 34) ||
221 (nWord > 0xff && nSize > 33) ||
222 (nWord > 0xffff && nSize > 32));
223 return *this;
226 uint32_t arith_uint256::GetCompact(bool fNegative) const
228 int nSize = (bits() + 7) / 8;
229 uint32_t nCompact = 0;
230 if (nSize <= 3) {
231 nCompact = GetLow64() << 8 * (3 - nSize);
232 } else {
233 arith_uint256 bn = *this >> 8 * (nSize - 3);
234 nCompact = bn.GetLow64();
236 // The 0x00800000 bit denotes the sign.
237 // Thus, if it is already set, divide the mantissa by 256 and increase the exponent.
238 if (nCompact & 0x00800000) {
239 nCompact >>= 8;
240 nSize++;
242 assert((nCompact & ~0x007fffff) == 0);
243 assert(nSize < 256);
244 nCompact |= nSize << 24;
245 nCompact |= (fNegative && (nCompact & 0x007fffff) ? 0x00800000 : 0);
246 return nCompact;
249 uint256 ArithToUint256(const arith_uint256 &a)
251 uint256 b;
252 for(int x=0; x<a.WIDTH; ++x)
253 WriteLE32(b.begin() + x*4, a.pn[x]);
254 return b;
256 arith_uint256 UintToArith256(const uint256 &a)
258 arith_uint256 b;
259 for(int x=0; x<b.WIDTH; ++x)
260 b.pn[x] = ReadLE32(a.begin() + x*4);
261 return b;