1 // Copyright (c) 2012-2016 The Bitcoin Core developers
2 // Distributed under the MIT software license, see the accompanying
3 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 #include <boost/test/unit_test.hpp>
5 #include "cuckoocache.h"
6 #include "script/sigcache.h"
7 #include "test/test_bitcoin.h"
11 /** Test Suite for CuckooCache
13 * 1) All tests should have a deterministic result (using insecure rand
14 * with deterministic seeds)
15 * 2) Some test methods are templated to allow for easier testing
16 * against new versions / comparing
17 * 3) Results should be treated as a regression test, i.e., did the behavior
18 * change significantly from what was expected. This can be OK, depending on
19 * the nature of the change, but requires updating the tests to reflect the new
20 * expected behavior. For example improving the hit rate may cause some tests
21 * using BOOST_CHECK_CLOSE to fail.
24 FastRandomContext
local_rand_ctx(true);
26 BOOST_AUTO_TEST_SUITE(cuckoocache_tests
);
29 /** insecure_GetRandHash fills in a uint256 from local_rand_ctx
31 void insecure_GetRandHash(uint256
& t
)
33 uint32_t* ptr
= (uint32_t*)t
.begin();
34 for (uint8_t j
= 0; j
< 8; ++j
)
35 *(ptr
++) = local_rand_ctx
.rand32();
40 /* Test that no values not inserted into the cache are read out of it.
42 * There are no repeats in the first 200000 insecure_GetRandHash calls
44 BOOST_AUTO_TEST_CASE(test_cuckoocache_no_fakes
)
46 local_rand_ctx
= FastRandomContext(true);
47 CuckooCache::cache
<uint256
, SignatureCacheHasher
> cc
{};
49 cc
.setup_bytes(megabytes
<< 20);
51 for (int x
= 0; x
< 100000; ++x
) {
52 insecure_GetRandHash(v
);
55 for (int x
= 0; x
< 100000; ++x
) {
56 insecure_GetRandHash(v
);
57 BOOST_CHECK(!cc
.contains(v
, false));
61 /** This helper returns the hit rate when megabytes*load worth of entries are
62 * inserted into a megabytes sized cache
64 template <typename Cache
>
65 double test_cache(size_t megabytes
, double load
)
67 local_rand_ctx
= FastRandomContext(true);
68 std::vector
<uint256
> hashes
;
70 size_t bytes
= megabytes
* (1 << 20);
71 set
.setup_bytes(bytes
);
72 uint32_t n_insert
= static_cast<uint32_t>(load
* (bytes
/ sizeof(uint256
)));
73 hashes
.resize(n_insert
);
74 for (uint32_t i
= 0; i
< n_insert
; ++i
) {
75 uint32_t* ptr
= (uint32_t*)hashes
[i
].begin();
76 for (uint8_t j
= 0; j
< 8; ++j
)
77 *(ptr
++) = local_rand_ctx
.rand32();
79 /** We make a copy of the hashes because future optimizations of the
80 * cuckoocache may overwrite the inserted element, so the test is
83 std::vector
<uint256
> hashes_insert_copy
= hashes
;
85 for (uint256
& h
: hashes_insert_copy
)
89 for (uint256
& h
: hashes
)
90 count
+= set
.contains(h
, false);
91 double hit_rate
= ((double)count
) / ((double)n_insert
);
95 /** The normalized hit rate for a given load.
97 * The semantics are a little confusing, so please see the below
102 * 1) at load 0.5, we expect a perfect hit rate, so we multiply by
104 * 2) at load 2.0, we expect to see half the entries, so a perfect hit rate
105 * would be 0.5. Therefore, if we see a hit rate of 0.4, 0.4*2.0 = 0.8 is the
106 * normalized hit rate.
108 * This is basically the right semantics, but has a bit of a glitch depending on
109 * how you measure around load 1.0 as after load 1.0 your normalized hit rate
110 * becomes effectively perfect, ignoring freshness.
112 double normalize_hit_rate(double hits
, double load
)
114 return hits
* std::max(load
, 1.0);
117 /** Check the hit rate on loads ranging from 0.1 to 2.0 */
118 BOOST_AUTO_TEST_CASE(cuckoocache_hit_rate_ok
)
120 /** Arbitrarily selected Hit Rate threshold that happens to work for this test
121 * as a lower bound on performance.
123 double HitRateThresh
= 0.98;
124 size_t megabytes
= 4;
125 for (double load
= 0.1; load
< 2; load
*= 2) {
126 double hits
= test_cache
<CuckooCache::cache
<uint256
, SignatureCacheHasher
>>(megabytes
, load
);
127 BOOST_CHECK(normalize_hit_rate(hits
, load
) > HitRateThresh
);
132 /** This helper checks that erased elements are preferentially inserted onto and
133 * that the hit rate of "fresher" keys is reasonable*/
134 template <typename Cache
>
135 void test_cache_erase(size_t megabytes
)
138 local_rand_ctx
= FastRandomContext(true);
139 std::vector
<uint256
> hashes
;
141 size_t bytes
= megabytes
* (1 << 20);
142 set
.setup_bytes(bytes
);
143 uint32_t n_insert
= static_cast<uint32_t>(load
* (bytes
/ sizeof(uint256
)));
144 hashes
.resize(n_insert
);
145 for (uint32_t i
= 0; i
< n_insert
; ++i
) {
146 uint32_t* ptr
= (uint32_t*)hashes
[i
].begin();
147 for (uint8_t j
= 0; j
< 8; ++j
)
148 *(ptr
++) = local_rand_ctx
.rand32();
150 /** We make a copy of the hashes because future optimizations of the
151 * cuckoocache may overwrite the inserted element, so the test is
154 std::vector
<uint256
> hashes_insert_copy
= hashes
;
156 /** Insert the first half */
157 for (uint32_t i
= 0; i
< (n_insert
/ 2); ++i
)
158 set
.insert(hashes_insert_copy
[i
]);
159 /** Erase the first quarter */
160 for (uint32_t i
= 0; i
< (n_insert
/ 4); ++i
)
161 set
.contains(hashes
[i
], true);
162 /** Insert the second half */
163 for (uint32_t i
= (n_insert
/ 2); i
< n_insert
; ++i
)
164 set
.insert(hashes_insert_copy
[i
]);
166 /** elements that we marked erased but that are still there */
167 size_t count_erased_but_contained
= 0;
168 /** elements that we did not erase but are older */
169 size_t count_stale
= 0;
170 /** elements that were most recently inserted */
171 size_t count_fresh
= 0;
173 for (uint32_t i
= 0; i
< (n_insert
/ 4); ++i
)
174 count_erased_but_contained
+= set
.contains(hashes
[i
], false);
175 for (uint32_t i
= (n_insert
/ 4); i
< (n_insert
/ 2); ++i
)
176 count_stale
+= set
.contains(hashes
[i
], false);
177 for (uint32_t i
= (n_insert
/ 2); i
< n_insert
; ++i
)
178 count_fresh
+= set
.contains(hashes
[i
], false);
180 double hit_rate_erased_but_contained
= double(count_erased_but_contained
) / (double(n_insert
) / 4.0);
181 double hit_rate_stale
= double(count_stale
) / (double(n_insert
) / 4.0);
182 double hit_rate_fresh
= double(count_fresh
) / (double(n_insert
) / 2.0);
184 // Check that our hit_rate_fresh is perfect
185 BOOST_CHECK_EQUAL(hit_rate_fresh
, 1.0);
186 // Check that we have a more than 2x better hit rate on stale elements than
188 BOOST_CHECK(hit_rate_stale
> 2 * hit_rate_erased_but_contained
);
191 BOOST_AUTO_TEST_CASE(cuckoocache_erase_ok
)
193 size_t megabytes
= 4;
194 test_cache_erase
<CuckooCache::cache
<uint256
, SignatureCacheHasher
>>(megabytes
);
197 template <typename Cache
>
198 void test_cache_erase_parallel(size_t megabytes
)
201 local_rand_ctx
= FastRandomContext(true);
202 std::vector
<uint256
> hashes
;
204 size_t bytes
= megabytes
* (1 << 20);
205 set
.setup_bytes(bytes
);
206 uint32_t n_insert
= static_cast<uint32_t>(load
* (bytes
/ sizeof(uint256
)));
207 hashes
.resize(n_insert
);
208 for (uint32_t i
= 0; i
< n_insert
; ++i
) {
209 uint32_t* ptr
= (uint32_t*)hashes
[i
].begin();
210 for (uint8_t j
= 0; j
< 8; ++j
)
211 *(ptr
++) = local_rand_ctx
.rand32();
213 /** We make a copy of the hashes because future optimizations of the
214 * cuckoocache may overwrite the inserted element, so the test is
217 std::vector
<uint256
> hashes_insert_copy
= hashes
;
218 boost::shared_mutex mtx
;
221 /** Grab lock to make sure we release inserts */
222 boost::unique_lock
<boost::shared_mutex
> l(mtx
);
223 /** Insert the first half */
224 for (uint32_t i
= 0; i
< (n_insert
/ 2); ++i
)
225 set
.insert(hashes_insert_copy
[i
]);
228 /** Spin up 3 threads to run contains with erase.
230 std::vector
<std::thread
> threads
;
231 /** Erase the first quarter */
232 for (uint32_t x
= 0; x
< 3; ++x
)
233 /** Each thread is emplaced with x copy-by-value
235 threads
.emplace_back([&, x
] {
236 boost::shared_lock
<boost::shared_mutex
> l(mtx
);
237 size_t ntodo
= (n_insert
/4)/3;
238 size_t start
= ntodo
*x
;
239 size_t end
= ntodo
*(x
+1);
240 for (uint32_t i
= start
; i
< end
; ++i
)
241 set
.contains(hashes
[i
], true);
244 /** Wait for all threads to finish
246 for (std::thread
& t
: threads
)
248 /** Grab lock to make sure we observe erases */
249 boost::unique_lock
<boost::shared_mutex
> l(mtx
);
250 /** Insert the second half */
251 for (uint32_t i
= (n_insert
/ 2); i
< n_insert
; ++i
)
252 set
.insert(hashes_insert_copy
[i
]);
254 /** elements that we marked erased but that are still there */
255 size_t count_erased_but_contained
= 0;
256 /** elements that we did not erase but are older */
257 size_t count_stale
= 0;
258 /** elements that were most recently inserted */
259 size_t count_fresh
= 0;
261 for (uint32_t i
= 0; i
< (n_insert
/ 4); ++i
)
262 count_erased_but_contained
+= set
.contains(hashes
[i
], false);
263 for (uint32_t i
= (n_insert
/ 4); i
< (n_insert
/ 2); ++i
)
264 count_stale
+= set
.contains(hashes
[i
], false);
265 for (uint32_t i
= (n_insert
/ 2); i
< n_insert
; ++i
)
266 count_fresh
+= set
.contains(hashes
[i
], false);
268 double hit_rate_erased_but_contained
= double(count_erased_but_contained
) / (double(n_insert
) / 4.0);
269 double hit_rate_stale
= double(count_stale
) / (double(n_insert
) / 4.0);
270 double hit_rate_fresh
= double(count_fresh
) / (double(n_insert
) / 2.0);
272 // Check that our hit_rate_fresh is perfect
273 BOOST_CHECK_EQUAL(hit_rate_fresh
, 1.0);
274 // Check that we have a more than 2x better hit rate on stale elements than
276 BOOST_CHECK(hit_rate_stale
> 2 * hit_rate_erased_but_contained
);
278 BOOST_AUTO_TEST_CASE(cuckoocache_erase_parallel_ok
)
280 size_t megabytes
= 4;
281 test_cache_erase_parallel
<CuckooCache::cache
<uint256
, SignatureCacheHasher
>>(megabytes
);
285 template <typename Cache
>
286 void test_cache_generations()
288 // This test checks that for a simulation of network activity, the fresh hit
289 // rate is never below 99%, and the number of times that it is worse than
290 // 99.9% are less than 1% of the time.
291 double min_hit_rate
= 0.99;
292 double tight_hit_rate
= 0.999;
293 double max_rate_less_than_tight_hit_rate
= 0.01;
294 // A cache that meets this specification is therefore shown to have a hit
295 // rate of at least tight_hit_rate * (1 - max_rate_less_than_tight_hit_rate) +
296 // min_hit_rate*max_rate_less_than_tight_hit_rate = 0.999*99%+0.99*1% == 99.89%
297 // hit rate with low variance.
299 // We use deterministic values, but this test has also passed on many
300 // iterations with non-deterministic values, so it isn't "overfit" to the
301 // specific entropy in FastRandomContext(true) and implementation of the
303 local_rand_ctx
= FastRandomContext(true);
305 // block_activity models a chunk of network activity. n_insert elements are
306 // adde to the cache. The first and last n/4 are stored for removal later
307 // and the middle n/2 are not stored. This models a network which uses half
308 // the signatures of recently (since the last block) added transactions
309 // immediately and never uses the other half.
310 struct block_activity
{
311 std::vector
<uint256
> reads
;
312 block_activity(uint32_t n_insert
, Cache
& c
) : reads()
314 std::vector
<uint256
> inserts
;
315 inserts
.resize(n_insert
);
316 reads
.reserve(n_insert
/ 2);
317 for (uint32_t i
= 0; i
< n_insert
; ++i
) {
318 uint32_t* ptr
= (uint32_t*)inserts
[i
].begin();
319 for (uint8_t j
= 0; j
< 8; ++j
)
320 *(ptr
++) = local_rand_ctx
.rand32();
322 for (uint32_t i
= 0; i
< n_insert
/ 4; ++i
)
323 reads
.push_back(inserts
[i
]);
324 for (uint32_t i
= n_insert
- (n_insert
/ 4); i
< n_insert
; ++i
)
325 reads
.push_back(inserts
[i
]);
326 for (auto h
: inserts
)
331 const uint32_t BLOCK_SIZE
= 1000;
332 // We expect window size 60 to perform reasonably given that each epoch
333 // stores 45% of the cache size (~472k).
334 const uint32_t WINDOW_SIZE
= 60;
335 const uint32_t POP_AMOUNT
= (BLOCK_SIZE
/ WINDOW_SIZE
) / 2;
336 const double load
= 10;
337 const size_t megabytes
= 4;
338 const size_t bytes
= megabytes
* (1 << 20);
339 const uint32_t n_insert
= static_cast<uint32_t>(load
* (bytes
/ sizeof(uint256
)));
341 std::vector
<block_activity
> hashes
;
343 set
.setup_bytes(bytes
);
344 hashes
.reserve(n_insert
/ BLOCK_SIZE
);
345 std::deque
<block_activity
> last_few
;
346 uint32_t out_of_tight_tolerance
= 0;
347 uint32_t total
= n_insert
/ BLOCK_SIZE
;
348 // we use the deque last_few to model a sliding window of blocks. at each
349 // step, each of the last WINDOW_SIZE block_activities checks the cache for
350 // POP_AMOUNT of the hashes that they inserted, and marks these erased.
351 for (uint32_t i
= 0; i
< total
; ++i
) {
352 if (last_few
.size() == WINDOW_SIZE
)
353 last_few
.pop_front();
354 last_few
.emplace_back(BLOCK_SIZE
, set
);
356 for (auto& act
: last_few
)
357 for (uint32_t k
= 0; k
< POP_AMOUNT
; ++k
) {
358 count
+= set
.contains(act
.reads
.back(), true);
359 act
.reads
.pop_back();
361 // We use last_few.size() rather than WINDOW_SIZE for the correct
362 // behavior on the first WINDOW_SIZE iterations where the deque is not
364 double hit
= (double(count
)) / (last_few
.size() * POP_AMOUNT
);
365 // Loose Check that hit rate is above min_hit_rate
366 BOOST_CHECK(hit
> min_hit_rate
);
367 // Tighter check, count number of times we are less than tight_hit_rate
368 // (and implicitly, greater than min_hit_rate)
369 out_of_tight_tolerance
+= hit
< tight_hit_rate
;
371 // Check that being out of tolerance happens less than
372 // max_rate_less_than_tight_hit_rate of the time
373 BOOST_CHECK(double(out_of_tight_tolerance
) / double(total
) < max_rate_less_than_tight_hit_rate
);
375 BOOST_AUTO_TEST_CASE(cuckoocache_generations
)
377 test_cache_generations
<CuckooCache::cache
<uint256
, SignatureCacheHasher
>>();
380 BOOST_AUTO_TEST_SUITE_END();