2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
9 * ====================================================
13 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
15 * Permission to use, copy, modify, and distribute this software for any
16 * purpose with or without fee is hereby granted, provided that the above
17 * copyright notice and this permission notice appear in all copies.
19 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
20 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
22 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
23 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
24 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
25 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
29 * Reentrant version of the logarithm of the Gamma function
30 * with user provide pointer for the sign of Gamma(x).
33 * 1. Argument Reduction for 0 < x <= 8
34 * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
35 * reduce x to a number in [1.5,2.5] by
36 * lgamma(1+s) = log(s) + lgamma(s)
38 * lgamma(7.3) = log(6.3) + lgamma(6.3)
39 * = log(6.3*5.3) + lgamma(5.3)
40 * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
41 * 2. Polynomial approximation of lgamma around its
42 * minimun ymin=1.461632144968362245 to maintain monotonicity.
43 * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
45 * lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
46 * 2. Rational approximation in the primary interval [2,3]
47 * We use the following approximation:
49 * lgamma(x) = 0.5*s + s*P(s)/Q(s)
50 * Our algorithms are based on the following observation
52 * zeta(2)-1 2 zeta(3)-1 3
53 * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
56 * where Euler = 0.5771... is the Euler constant, which is very
59 * 3. For x>=8, we have
60 * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
62 * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
63 * Let z = 1/x, then we approximation
64 * f(z) = lgamma(x) - (x-0.5)(log(x)-1)
67 * w = w0 + w1*z + w2*z + w3*z + ... + w6*z
69 * 4. For negative x, since (G is gamma function)
70 * -x*G(-x)*G(x) = pi/sin(pi*x),
72 * G(x) = pi/(sin(pi*x)*(-x)*G(-x))
73 * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
74 * Hence, for x<0, signgam = sign(sin(pi*x)) and
75 * lgamma(x) = log(|Gamma(x)|)
76 * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
77 * Note: one should avoid compute pi*(-x) directly in the
78 * computation of sin(pi*(-x)).
81 * lgamma(2+s) ~ s*(1-Euler) for tiny s
82 * lgamma(1)=lgamma(2)=0
83 * lgamma(x) ~ -log(x) for tiny x
84 * lgamma(0) = lgamma(inf) = inf
85 * lgamma(-integer) = +-inf
91 #include "math_private.h"
93 static const long double
96 pi
= 3.14159265358979323846264L,
97 two63
= 9.223372036854775808e18L
,
99 /* lgam(1+x) = 0.5 x + x a(x)/b(x)
100 -0.268402099609375 <= x <= 0
101 peak relative error 6.6e-22 */
102 a0
= -6.343246574721079391729402781192128239938E2L
,
103 a1
= 1.856560238672465796768677717168371401378E3L
,
104 a2
= 2.404733102163746263689288466865843408429E3L
,
105 a3
= 8.804188795790383497379532868917517596322E2L
,
106 a4
= 1.135361354097447729740103745999661157426E2L
,
107 a5
= 3.766956539107615557608581581190400021285E0L
,
109 b0
= 8.214973713960928795704317259806842490498E3L
,
110 b1
= 1.026343508841367384879065363925870888012E4L
,
111 b2
= 4.553337477045763320522762343132210919277E3L
,
112 b3
= 8.506975785032585797446253359230031874803E2L
,
113 b4
= 6.042447899703295436820744186992189445813E1L
,
114 /* b5 = 1.000000000000000000000000000000000000000E0 */
117 tc
= 1.4616321449683623412626595423257213284682E0L
,
118 tf
= -1.2148629053584961146050602565082954242826E-1,/* double precision */
119 /* tt = (tail of tf), i.e. tf + tt has extended precision. */
120 tt
= 3.3649914684731379602768989080467587736363E-18L,
121 /* lgam ( 1.4616321449683623412626595423257213284682E0 ) =
122 -1.2148629053584960809551455717769158215135617312999903886372437313313530E-1 */
124 /* lgam (x + tc) = tf + tt + x g(x)/h(x)
125 - 0.230003726999612341262659542325721328468 <= x
126 <= 0.2699962730003876587373404576742786715318
127 peak relative error 2.1e-21 */
128 g0
= 3.645529916721223331888305293534095553827E-18L,
129 g1
= 5.126654642791082497002594216163574795690E3L
,
130 g2
= 8.828603575854624811911631336122070070327E3L
,
131 g3
= 5.464186426932117031234820886525701595203E3L
,
132 g4
= 1.455427403530884193180776558102868592293E3L
,
133 g5
= 1.541735456969245924860307497029155838446E2L
,
134 g6
= 4.335498275274822298341872707453445815118E0L
,
136 h0
= 1.059584930106085509696730443974495979641E4L
,
137 h1
= 2.147921653490043010629481226937850618860E4L
,
138 h2
= 1.643014770044524804175197151958100656728E4L
,
139 h3
= 5.869021995186925517228323497501767586078E3L
,
140 h4
= 9.764244777714344488787381271643502742293E2L
,
141 h5
= 6.442485441570592541741092969581997002349E1L
,
142 /* h6 = 1.000000000000000000000000000000000000000E0 */
145 /* lgam (x+1) = -0.5 x + x u(x)/v(x)
146 -0.100006103515625 <= x <= 0.231639862060546875
147 peak relative error 1.3e-21 */
148 u0
= -8.886217500092090678492242071879342025627E1L
,
149 u1
= 6.840109978129177639438792958320783599310E2L
,
150 u2
= 2.042626104514127267855588786511809932433E3L
,
151 u3
= 1.911723903442667422201651063009856064275E3L
,
152 u4
= 7.447065275665887457628865263491667767695E2L
,
153 u5
= 1.132256494121790736268471016493103952637E2L
,
154 u6
= 4.484398885516614191003094714505960972894E0L
,
156 v0
= 1.150830924194461522996462401210374632929E3L
,
157 v1
= 3.399692260848747447377972081399737098610E3L
,
158 v2
= 3.786631705644460255229513563657226008015E3L
,
159 v3
= 1.966450123004478374557778781564114347876E3L
,
160 v4
= 4.741359068914069299837355438370682773122E2L
,
161 v5
= 4.508989649747184050907206782117647852364E1L
,
162 /* v6 = 1.000000000000000000000000000000000000000E0 */
165 /* lgam (x+2) = .5 x + x s(x)/r(x)
167 peak relative error 7.2e-22 */
168 s0
= 1.454726263410661942989109455292824853344E6L
,
169 s1
= -3.901428390086348447890408306153378922752E6L
,
170 s2
= -6.573568698209374121847873064292963089438E6L
,
171 s3
= -3.319055881485044417245964508099095984643E6L
,
172 s4
= -7.094891568758439227560184618114707107977E5L
,
173 s5
= -6.263426646464505837422314539808112478303E4L
,
174 s6
= -1.684926520999477529949915657519454051529E3L
,
176 r0
= -1.883978160734303518163008696712983134698E7L
,
177 r1
= -2.815206082812062064902202753264922306830E7L
,
178 r2
= -1.600245495251915899081846093343626358398E7L
,
179 r3
= -4.310526301881305003489257052083370058799E6L
,
180 r4
= -5.563807682263923279438235987186184968542E5L
,
181 r5
= -3.027734654434169996032905158145259713083E4L
,
182 r6
= -4.501995652861105629217250715790764371267E2L
,
183 /* r6 = 1.000000000000000000000000000000000000000E0 */
186 /* lgam(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x w(1/x^2)
188 Peak relative error 1.51e-21
190 w0
= 4.189385332046727417803e-1L,
191 w1
= 8.333333333333331447505E-2L,
192 w2
= -2.777777777750349603440E-3L,
193 w3
= 7.936507795855070755671E-4L,
194 w4
= -5.952345851765688514613E-4L,
195 w5
= 8.412723297322498080632E-4L,
196 w6
= -1.880801938119376907179E-3L,
197 w7
= 4.885026142432270781165E-3L;
199 static const long double zero
= 0.0L;
202 sin_pi(long double x
)
206 u_int32_t se
, i0
, i1
;
208 GET_LDOUBLE_WORDS (se
, i0
, i1
, x
);
210 ix
= (ix
<< 16) | (i0
>> 16);
211 if (ix
< 0x3ffd8000) /* 0.25 */
212 return sinl (pi
* x
);
213 y
= -x
; /* x is assume negative */
216 * argument reduction, make sure inexact flag not raised if input
221 { /* inexact anyway */
223 y
= 2.0*(y
- floorl(y
)); /* y = |x| mod 2.0 */
228 if (ix
>= 0x403f8000) /* 2^64 */
230 y
= zero
; n
= 0; /* y must be even */
234 if (ix
< 0x403e8000) /* 2^63 */
235 z
= y
+ two63
; /* exact */
236 GET_LDOUBLE_WORDS (se
, i0
, i1
, z
);
250 y
= cosl (pi
* (half
- y
));
254 y
= sinl (pi
* (one
- y
));
258 y
= -cosl (pi
* (y
- 1.5));
261 y
= sinl (pi
* (y
- 2.0));
269 lgammal(long double x
)
271 long double t
, y
, z
, nadj
, p
, p1
, p2
, q
, r
, w
;
273 u_int32_t se
, i0
, i1
;
276 GET_LDOUBLE_WORDS (se
, i0
, i1
, x
);
279 if ((ix
| i0
| i1
) == 0)
283 return one
/ fabsl (x
);
286 ix
= (ix
<< 16) | (i0
>> 16);
288 /* purge off +-inf, NaN, +-0, and negative arguments */
289 if (ix
>= 0x7fff0000)
292 if (ix
< 0x3fc08000) /* 2^-63 */
293 { /* |x|<2**-63, return -log(|x|) */
306 return one
/ fabsl (t
); /* -integer */
307 nadj
= logl (pi
/ fabsl (t
* x
));
313 /* purge off 1 and 2 */
314 if ((((ix
- 0x3fff8000) | i0
| i1
) == 0)
315 || (((ix
- 0x40008000) | i0
| i1
) == 0))
317 else if (ix
< 0x40008000) /* 2.0 */
320 if (ix
<= 0x3ffee666) /* 8.99993896484375e-1 */
322 /* lgamma(x) = lgamma(x+1) - log(x) */
324 if (ix
>= 0x3ffebb4a) /* 7.31597900390625e-1 */
329 else if (ix
>= 0x3ffced33)/* 2.31639862060546875e-1 */
344 if (ix
>= 0x3fffdda6) /* 1.73162841796875 */
350 else if (ix
>= 0x3fff9da6)/* 1.23162841796875 */
366 p1
= a0
+ y
* (a1
+ y
* (a2
+ y
* (a3
+ y
* (a4
+ y
* a5
))));
367 p2
= b0
+ y
* (b1
+ y
* (b2
+ y
* (b3
+ y
* (b4
+ y
))));
368 r
+= half
* y
+ y
* p1
/p2
;
371 p1
= g0
+ y
* (g1
+ y
* (g2
+ y
* (g3
+ y
* (g4
+ y
* (g5
+ y
* g6
)))));
372 p2
= h0
+ y
* (h1
+ y
* (h2
+ y
* (h3
+ y
* (h4
+ y
* (h5
+ y
)))));
377 p1
= y
* (u0
+ y
* (u1
+ y
* (u2
+ y
* (u3
+ y
* (u4
+ y
* (u5
+ y
* u6
))))));
378 p2
= v0
+ y
* (v1
+ y
* (v2
+ y
* (v3
+ y
* (v4
+ y
* (v5
+ y
)))));
379 r
+= (-half
* y
+ p1
/ p2
);
382 else if (ix
< 0x40028000) /* 8.0 */
389 (s0
+ y
* (s1
+ y
* (s2
+ y
* (s3
+ y
* (s4
+ y
* (s5
+ y
* s6
))))));
390 q
= r0
+ y
* (r1
+ y
* (r2
+ y
* (r3
+ y
* (r4
+ y
* (r5
+ y
* (r6
+ y
))))));
391 r
= half
* y
+ p
/ q
;
392 z
= one
; /* lgamma(1+s) = log(s) + lgamma(s) */
396 z
*= (y
+ 6.0); /* FALLTHRU */
398 z
*= (y
+ 5.0); /* FALLTHRU */
400 z
*= (y
+ 4.0); /* FALLTHRU */
402 z
*= (y
+ 3.0); /* FALLTHRU */
404 z
*= (y
+ 2.0); /* FALLTHRU */
409 else if (ix
< 0x40418000) /* 2^66 */
411 /* 8.0 <= x < 2**66 */
416 + y
* (w2
+ y
* (w3
+ y
* (w4
+ y
* (w5
+ y
* (w6
+ y
* w7
))))));
417 r
= (x
- half
) * (t
- one
) + w
;
420 /* 2**66 <= x <= inf */
421 r
= x
* (logl (x
) - one
);