1 /* s_erff.c -- float version of s_erf.c.
2 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
6 * ====================================================
7 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
9 * Developed at SunPro, a Sun Microsystems, Inc. business.
10 * Permission to use, copy, modify, and distribute this
11 * software is freely granted, provided that this notice
13 * ====================================================
17 #include "math_private.h"
21 half
= 5.0000000000e-01, /* 0x3F000000 */
22 one
= 1.0000000000e+00, /* 0x3F800000 */
23 two
= 2.0000000000e+00, /* 0x40000000 */
24 /* c = (subfloat)0.84506291151 */
25 erx
= 8.4506291151e-01, /* 0x3f58560b */
27 * Coefficients for approximation to erf on [0,0.84375]
29 efx
= 1.2837916613e-01, /* 0x3e0375d4 */
30 efx8
= 1.0270333290e+00, /* 0x3f8375d4 */
31 pp0
= 1.2837916613e-01, /* 0x3e0375d4 */
32 pp1
= -3.2504209876e-01, /* 0xbea66beb */
33 pp2
= -2.8481749818e-02, /* 0xbce9528f */
34 pp3
= -5.7702702470e-03, /* 0xbbbd1489 */
35 pp4
= -2.3763017452e-05, /* 0xb7c756b1 */
36 qq1
= 3.9791721106e-01, /* 0x3ecbbbce */
37 qq2
= 6.5022252500e-02, /* 0x3d852a63 */
38 qq3
= 5.0813062117e-03, /* 0x3ba68116 */
39 qq4
= 1.3249473704e-04, /* 0x390aee49 */
40 qq5
= -3.9602282413e-06, /* 0xb684e21a */
42 * Coefficients for approximation to erf in [0.84375,1.25]
44 pa0
= -2.3621185683e-03, /* 0xbb1acdc6 */
45 pa1
= 4.1485610604e-01, /* 0x3ed46805 */
46 pa2
= -3.7220788002e-01, /* 0xbebe9208 */
47 pa3
= 3.1834661961e-01, /* 0x3ea2fe54 */
48 pa4
= -1.1089469492e-01, /* 0xbde31cc2 */
49 pa5
= 3.5478305072e-02, /* 0x3d1151b3 */
50 pa6
= -2.1663755178e-03, /* 0xbb0df9c0 */
51 qa1
= 1.0642088205e-01, /* 0x3dd9f331 */
52 qa2
= 5.4039794207e-01, /* 0x3f0a5785 */
53 qa3
= 7.1828655899e-02, /* 0x3d931ae7 */
54 qa4
= 1.2617121637e-01, /* 0x3e013307 */
55 qa5
= 1.3637083583e-02, /* 0x3c5f6e13 */
56 qa6
= 1.1984500103e-02, /* 0x3c445aa3 */
58 * Coefficients for approximation to erfc in [1.25,1/0.35]
60 ra0
= -9.8649440333e-03, /* 0xbc21a093 */
61 ra1
= -6.9385856390e-01, /* 0xbf31a0b7 */
62 ra2
= -1.0558626175e+01, /* 0xc128f022 */
63 ra3
= -6.2375331879e+01, /* 0xc2798057 */
64 ra4
= -1.6239666748e+02, /* 0xc322658c */
65 ra5
= -1.8460508728e+02, /* 0xc3389ae7 */
66 ra6
= -8.1287437439e+01, /* 0xc2a2932b */
67 ra7
= -9.8143291473e+00, /* 0xc11d077e */
68 sa1
= 1.9651271820e+01, /* 0x419d35ce */
69 sa2
= 1.3765776062e+02, /* 0x4309a863 */
70 sa3
= 4.3456588745e+02, /* 0x43d9486f */
71 sa4
= 6.4538726807e+02, /* 0x442158c9 */
72 sa5
= 4.2900814819e+02, /* 0x43d6810b */
73 sa6
= 1.0863500214e+02, /* 0x42d9451f */
74 sa7
= 6.5702495575e+00, /* 0x40d23f7c */
75 sa8
= -6.0424413532e-02, /* 0xbd777f97 */
77 * Coefficients for approximation to erfc in [1/.35,28]
79 rb0
= -9.8649431020e-03, /* 0xbc21a092 */
80 rb1
= -7.9928326607e-01, /* 0xbf4c9dd4 */
81 rb2
= -1.7757955551e+01, /* 0xc18e104b */
82 rb3
= -1.6063638306e+02, /* 0xc320a2ea */
83 rb4
= -6.3756646729e+02, /* 0xc41f6441 */
84 rb5
= -1.0250950928e+03, /* 0xc480230b */
85 rb6
= -4.8351919556e+02, /* 0xc3f1c275 */
86 sb1
= 3.0338060379e+01, /* 0x41f2b459 */
87 sb2
= 3.2579251099e+02, /* 0x43a2e571 */
88 sb3
= 1.5367296143e+03, /* 0x44c01759 */
89 sb4
= 3.1998581543e+03, /* 0x4547fdbb */
90 sb5
= 2.5530502930e+03, /* 0x451f90ce */
91 sb6
= 4.7452853394e+02, /* 0x43ed43a7 */
92 sb7
= -2.2440952301e+01; /* 0xc1b38712 */
98 float R
,S
,P
,Q
,s
,y
,z
,r
;
101 if(ix
>=0x7f800000) { /* erf(nan)=nan */
102 i
= ((u_int32_t
)hx
>>31)<<1;
103 return (float)(1-i
)+one
/x
; /* erf(+-inf)=+-1 */
106 if(ix
< 0x3f580000) { /* |x|<0.84375 */
107 if(ix
< 0x31800000) { /* |x|<2**-28 */
110 return (float)0.125*((float)8.0*x
+efx8
*x
);
114 r
= pp0
+z
*(pp1
+z
*(pp2
+z
*(pp3
+z
*pp4
)));
115 s
= one
+z
*(qq1
+z
*(qq2
+z
*(qq3
+z
*(qq4
+z
*qq5
))));
119 if(ix
< 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */
121 P
= pa0
+s
*(pa1
+s
*(pa2
+s
*(pa3
+s
*(pa4
+s
*(pa5
+s
*pa6
)))));
122 Q
= one
+s
*(qa1
+s
*(qa2
+s
*(qa3
+s
*(qa4
+s
*(qa5
+s
*qa6
)))));
123 if(hx
>=0) return erx
+ P
/Q
; else return -erx
- P
/Q
;
125 if (ix
>= 0x40c00000) { /* inf>|x|>=6 */
126 if(hx
>=0) return one
-tiny
; else return tiny
-one
;
130 if(ix
< 0x4036DB6E) { /* |x| < 1/0.35 */
131 R
=ra0
+s
*(ra1
+s
*(ra2
+s
*(ra3
+s
*(ra4
+s
*(
132 ra5
+s
*(ra6
+s
*ra7
))))));
133 S
=one
+s
*(sa1
+s
*(sa2
+s
*(sa3
+s
*(sa4
+s
*(
134 sa5
+s
*(sa6
+s
*(sa7
+s
*sa8
)))))));
135 } else { /* |x| >= 1/0.35 */
136 R
=rb0
+s
*(rb1
+s
*(rb2
+s
*(rb3
+s
*(rb4
+s
*(
138 S
=one
+s
*(sb1
+s
*(sb2
+s
*(sb3
+s
*(sb4
+s
*(
139 sb5
+s
*(sb6
+s
*sb7
))))));
141 GET_FLOAT_WORD(ix
,x
);
142 SET_FLOAT_WORD(z
,ix
&0xfffff000);
143 r
= expf(-z
*z
-(float)0.5625)*expf((z
-x
)*(z
+x
)+R
/S
);
144 if(hx
>=0) return one
-r
/x
; else return r
/x
-one
;
151 float R
,S
,P
,Q
,s
,y
,z
,r
;
152 GET_FLOAT_WORD(hx
,x
);
154 if(ix
>=0x7f800000) { /* erfc(nan)=nan */
155 /* erfc(+-inf)=0,2 */
156 return (float)(((u_int32_t
)hx
>>31)<<1)+one
/x
;
159 if(ix
< 0x3f580000) { /* |x|<0.84375 */
160 if(ix
< 0x23800000) /* |x|<2**-56 */
163 r
= pp0
+z
*(pp1
+z
*(pp2
+z
*(pp3
+z
*pp4
)));
164 s
= one
+z
*(qq1
+z
*(qq2
+z
*(qq3
+z
*(qq4
+z
*qq5
))));
166 if(hx
< 0x3e800000) { /* x<1/4 */
174 if(ix
< 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */
176 P
= pa0
+s
*(pa1
+s
*(pa2
+s
*(pa3
+s
*(pa4
+s
*(pa5
+s
*pa6
)))));
177 Q
= one
+s
*(qa1
+s
*(qa2
+s
*(qa3
+s
*(qa4
+s
*(qa5
+s
*qa6
)))));
179 z
= one
-erx
; return z
- P
/Q
;
181 z
= erx
+P
/Q
; return one
+z
;
184 if (ix
< 0x41e00000) { /* |x|<28 */
187 if(ix
< 0x4036DB6D) { /* |x| < 1/.35 ~ 2.857143*/
188 R
=ra0
+s
*(ra1
+s
*(ra2
+s
*(ra3
+s
*(ra4
+s
*(
189 ra5
+s
*(ra6
+s
*ra7
))))));
190 S
=one
+s
*(sa1
+s
*(sa2
+s
*(sa3
+s
*(sa4
+s
*(
191 sa5
+s
*(sa6
+s
*(sa7
+s
*sa8
)))))));
192 } else { /* |x| >= 1/.35 ~ 2.857143 */
193 if(hx
<0&&ix
>=0x40c00000) return two
-tiny
;/* x < -6 */
194 R
=rb0
+s
*(rb1
+s
*(rb2
+s
*(rb3
+s
*(rb4
+s
*(
196 S
=one
+s
*(sb1
+s
*(sb2
+s
*(sb3
+s
*(sb4
+s
*(
197 sb5
+s
*(sb6
+s
*sb7
))))));
199 GET_FLOAT_WORD(ix
,x
);
200 SET_FLOAT_WORD(z
,ix
&0xfffff000);
201 r
= expf(-z
*z
-(float)0.5625) * expf((z
-x
)*(z
+x
)+R
/S
);
202 if(hx
>0) return r
/x
; else return two
-r
/x
;
204 if(hx
>0) return tiny
*tiny
; else return two
-tiny
;